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Abstract

In order to master the administration and automation problem of distributed applications
in the cloud age, topology & orchestration platforms have been established in the past
few years. Application topologies and their entire lifecycle can easily be modeled and
later on be deployed on various cloud environments. Standards like the Topology and
Orchestration Specification for Cloud Applications (TOSCA) help to keep the description
of applications platform independent and increase interoperability between components.
Another recent paradigm in Cloud Computing is containerized virtualization. The
particular and significant popularity of Docker containers was mainly driven be the
needs of having less dependencies when moving from development to production
environments. The technology around Docker container still evolves very fast and
projects to provision and manage Docker container in a automated way have already
been adopted by major Cloud providers (e.g. Amazon ECS1, Azure Container Service2,
Google Container Engine3), but lack in topology & orchestration platforms like Cloudify4

or OpenTOSCA5. The cloud provider offerings use container cluster technologies like
Apache Mesos or kubernetes under the hood, as the lifecycle management of container is
a complicated task. Container cluster technologies provide an easy way to automatically
scale, deploy and manage multiple Docker container on various infrastructures.

This thesis aims to enable the support for the deployment of clustered Docker containers
using a TOSCA compliant topology & orchestration language and execution environment.
More specifically, the Cloudify environment is used as the basis to enable the modeling
and deployment of container clusters hosted on kubernetes. By the usage of the Cloudify
platform the interoperability with other non-containerized applications and general
platform independence is assured, while still taking advantage the container cluster
features. The resulting system is able to orchestrate, manage and scale application
components individually, regardless of the underlying cloud technology.

1https://aws.amazon.com/ecs/
2https://azure.microsoft.com/en-us/services/container-service/
3https://cloud.google.com/container-engine/
4https://getcloudify.org
5http://opentosca.org
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Zusammenfassung

In den letzten Jahren haben sich neue Herausforderungen durch den steigenden
Verwaltungs- und Administrationsaufwand für verteilte Anwendungen in Cloud-
Umgebungen ergeben. Um dieser Problematik entgegenzuwirken haben sich Topology
& Orchestration Plattformen etabliert, welche es ermöglichen Topologien für Anwendun-
gen und deren gesamte Lebenszyklen einfach zu modellieren und später auf verschieden
Cloud Umgebunden zu deployen. Standards wie die Topology and Orchestration Specifi-
cation for Cloud Applications (TOSCA) ermöglichen es Anwendungen plattformunab-
hängig zu beschreiben, um ein höheres Maß an Interoperabilität zwischen einzelnen
Komponenten zu gewährleisten. Ein weiteres sehr verbreitetes Paradigma im Bereich
Cloud Computing stellt die Container-Virtualisierung dar. Die steigende Beliebtheit von
Containern, und speziell Docker Containern, ist zurückzuführen auf die Loslösung von
sämtlichen Abhängigkeiten durch die Container-Virtualisierung, welche zum Beispiel
zu einem barrierefreie Prozess beim Umzug von Entwicklungs- auf Produktionssys-
teme führt. Insbesondere Technologien rund um Docker Container entwickeln sich
aktuell äußert schnell weiter und auch Provider wie Google, Amazon und Microsoft
haben bereits Technologien zur automatisierten Provisionierung von Docker Containern
eingebunden (z.B. Amazon ECS6, Azure Container Service7, Google Container Engine8).
Da es sich bei der Verwaltung des gesamten Lebenszyklus, sowie der Skalierung von
Container um eine komplexe Aufgabe handelt, bauen diese Services auf sogenannte
Container Cluster Technologien auf. Container Cluster Technologien ermöglichen es
containerisierte Anwendungen zu skalieren, deployen, ohne jegliche Abhängigkeiten zur
unterliegenden Infrastruktur.

Diese Arbeit stellt Ansätze vor, um in einer TOSCA-basierten Topologie- & Orchestrierung-
sumgebung, Docker Container in Clustern zu deployen und auszuführen. Im Detail wird
eine Cloudify-Umgebung als Basis für die Bereitstellung von geclusterten Containern
durch Kubernetes verwendet. Die Cloudify Plattform ermöglich hierbei die Verbindun-
gen zwischen nicht-containerisierten und containerisierten Anwendungskomponenten,
während durch das Container Cluster nach wie vor Skalierung, Load Balancing und
Service Discovery zur Verfügung gestellt wird. Das Gesamtsystem ist somit in der Lage
Anwendungskomponenten individuell und unabhängig zu skalieren und zu verwalten.
Als weitere Teil der Arbeit wird ein Ausblick gegeben, in welche Richtung ein solches
System entwickelt werden kann, falls bereits angekündigte Technologien realisiert wer-
den.

6https://aws.amazon.com/ecs/
7https://azure.microsoft.com/en-us/services/container-service/
8https://cloud.google.com/container-engine/
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1 Introduction

One of the reasons Cloud Computing has emerged so quickly in the last couple of years
is the immense benefit of being able to run applications in a distributed manner. Major
Cloud providers like Amazon1, Microsoft2 and Google3 have extended their offerings in
the Platform-as-a-Service sector (PaaS) to provide customers with services to make it
even easier and faster to deploy distributed containerized applications without taking
care of the underlying infrastructure. The provisioning support for container-based
virtualization approaches like Docker has been adapted by most Cloud providers (e.g.
Amazon ECS4) to further simplify the deployment process and enable users to automate
processes like scaling and load balancing. Additionally recently evolved container cluster
technologies like Apache Mesos or kubernetes, which are partly used by major cloud
providers in their PaaS offerings, also provide interesting approaches on the way to
keeping affords of deployment and maintenance to a minimum level.

In order to manage and describe such highly sophisticated applications and services it
requires standards and frameworks to build a common ground between cloud providers.
Standards like the Topology and Orchestration Specification for Cloud Applications
(TOSCA)[OAS16a] have been evolved to describe and manage topologies and orchestra-
tion of applications in a cloud platform portable way and thus enhance the portability of
cloud applications through describing their lifecycle, requirements and relationships.

The recent trend of container-based virtualization techniques has helped developers to
further close the gap between development and production environments. Nevertheless
the ability to enable TOSCA specified applications to be provisioned with container-
based virtualization techniques like Docker5 would help significantly to improve the
interoperability of distributed applications in the cloud and will be the subject of this
thesis.

1https://aws.amazon.com/
2https://azure.microsoft.com/en-us/services/cloud-services/
3https://cloud.google.com/
4https://aws.amazon.com/ecs
5https://docs.docker.com/
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1 Introduction

1.1 Motivation & Problem Statement

In todays IT and business world, applications become more and more complex. Different
application components run on different platforms, require individual hardware and
might even have special security or privacy constraints. Cloud computing in general
provides a solution to parts of the stated problem, such as providing the underlying
resources, but raises new problems like the organization and management of the ap-
plication components itself. The containing components might have dependencies
between one another or have to fulfill other platform specific requirements before being
able to start. In order to fully automate entire lifecycles a topology and orchestration
specification as well an execution engine is required. The Topology and Orchestration
Specification for Cloud Applications (TOSCA) provides such a standard and is already
well established in the industry. While topology describes how the application and its
components are modeled in a platform neutral way, the orchestration describes the
automation of deployment and other management tasks. By specifying the topology and
orchestration details it is possible to automate the entire lifecycle of cloud applications.

The recent establishment of containerized virtualization approaches also opens new
challenges for the orchestration of distributed cloud applications. While part of the
topology & orchestration description is the creation of new node types, which also define
the custom behavior during management operations, the design and implementation of
such types for container and especially Docker container has only recently been tried
to approach. Furthermore the technology around Docker containers is still evolving
very quickly and new technologies like container cluster technologies appear very
frequently. In order to fully take advantage of such new technologies in topology &
orchestration platforms, it requires to extend and define the behavior and structure
of these newly adopted technologies in a platform independent way, preferably using
standards like TOSCA. The utilization of such practices to provision containerized,
distributed applications with respect to a TOSCA based orchestration platform will help
to automate processes for cloud applications and will be the subject of this thesis.

1.2 Outline

This thesis is structured in the following way:

Chapter 1 – Introduction: Brief introduction to the topic and disclosure of its motiva-
tion and problem statement.

Chapter 2 – Fundamentals: This chapter covers the fundamentals that are required
during the course of this thesis. The basics of modern Cloud Computing will

14



1.2 Outline

be discussed, as well as the Topology and Orchestration of applications in cloud
environments. This further leads to Container-based virtualization techniques
including Container Cluster Technologies.

Chapter 3 – Related Work: There are numerous approaches that have similar inten-
tions or provide approaches on other platform or ecosystems. This chapter dis-
cusses related work that interferes with the overall topic of this thesis.

Chapter 4 – Specification: This chapter specifies the requirements for the system, fol-
lowed by the description of several use-cases as well as a high-level architectural
system overview.

Chapter 5 – System Design: The overall system design details are covered and ex-
plained in this chapter. This covers the technology-specific architecture as well the
connection between them.

Chapter 6 – Implementation: This chapter outlines the implementation of the pro-
posed system and its components.

Chapter 7 – Validation This chapter describes a use-case which validates the intro-
duced system and its requirements. The execution of the use-case will be covered
step-by-step.

Chapter 8 – Conclusion & Future Work Draws a conclusion of this thesis and provides
an outlook on the future use of this work and related topics.

15





2 Fundamentals

2.1 Cloud Computing

Cloud Computing and Virtualization are the key principles that made it possible to
provide an even easier network access to a large amount of resources. Resources like
networks, servers, storage, applications or even services are maintained in a big pool and
can be allocated and assigned dynamically [BGPV12]. Through the dynamic allocation
the underlying hardware and infrastructure is utilized in the best possible way [VRCL08].
Through virtualization physical servers can be divided into multiple virtual machines
by using a so called Hypervisor. Each virtual machine has resources assigned to it and
runs a separate Operating System. The Cloud Computing paradigm has been widely
adopted in both research and industry domains due to the efficiency of scaling and the
possibilities to deploy and host applications in a distributed manner.

2.1.1 Deployment Models

A Deployment Model describes how the physical infrastructure of a Cloud is hosted and
deployed.

Public Cloud

3rd party

infrastructure

Hybrid Cloud

Private Cloud

In-house 

infrastructure

Figure 2.1: Cloud Deployment Models

17



2 Fundamentals

1. Public Cloud Model
The Public Cloud Model provides an infrastructure which is accessible by the
public and lets multiple users share the same infrastructure to reach maximum
efficiency and reduce overhead [BGPV12]. The usage is mainly billed by a monthly
pay-per-usage model. The infrastructure is maintained by the provider, who also
offers management tools for users to control their environment and provision
new resources within very few clicks. The resources and services vary between
providers and reach from Virtual Machines to Object Storage solutions to Mobile
Services like Push Notifications. Popular providers including Amazon AWS, Google
Cloud Platform and Microsoft Azure cover most of the market share and offer a
huge variety of services.

2. Private Cloud Model
The Private Cloud Model restricts public access and is mainly a result of security
and privacy constraints within companies or organizations. The infrastructure is
operated solely for single organization that can be divided into internal customers
[BGPV12]. Interfaces similar to public cloud offerings are provided to employees
and other eligible parties. A significant downside of a Private Cloud is the time and
money intense maintenance which makes it only suitable for large scale enterprises
and companies.

3. Hybrid Cloud Model
Multiple cloud infrastructures can be combined into what is often referred to as
the Hybrid Cloud Model [BGPV12]. This approach is often chosen when it is
important to keep only a certain amount of data within a private data center while
non-sensitive data can be stored off-shore. An other use case is to extend the
resources of a private cloud infrastructure in times of traffic peaks or unpredictable
bursts. Computing capacity and resources can be increased through a connection
to a public cloud provider. Bandwidth limitations play an important role when
extending a Private Cloud and need to be considered closely.

2.1.2 Service Models

Regardless of the selected deployment model the services offered within a cloud envi-
ronment can be subdivided into different abstraction layers that have emerged over the
last couple of years.

• Infrastructure-as-a-Service (IaaS) Model
Clients get direct access to infrastructural resources like Virtual Machines (VMs),

18



2.1 Cloud Computing

databases or networks. The underlying physical hardware is fully virtualized to
maximize elasticity and scaleability [DWC10]. This also means that new resources
can be provisioned within a very short turnaround time in order to face temporary
and unexpected workloads. One of the most popular services is Amazon Elastic
Compute Cloud (EC2)1.

Infrastructure-as-a-Service
(IaaS)

Platform-as-a-Service
(PaaS)

Software-as-a-Service
(SaaS)

Figure 2.2: Cloud Service Models

• Platform-as-a-Service (PaaS) Model
PaaS defines services which allow users to create, manage and run applications
without maintaining the underlying infrastructure throughout their entire lifecycle.
Clients are supplied with an application hosting environment that can be configured
and be used automatically scale [BGPV12]. Examples include Amazon Beanstalk2

and Microsoft Azure Container Service3.

• Software-as-a-Service (SaaS) Model
SaaS provides the highest abstraction layer in the service model section. Software
hosted on the Cloud infrastructure is offered to the user. Clients can access the
software through an API or a interfaces like a WebGUI [FLMS11]. The provider
takes care of hosting the entire application. The infrastructure as well as the
platform is fully managed by the provider [BGPV12]. Popular examples include
Google Docs4 or SalesForce5.

1https://aws.amazon.com/ec2/
2https://aws.amazon.com/en/elasticbeanstalk/
3https://azure.microsoft.com/en-us/services/container-service/
4https://docs.google.com/
5https://salesforce.com/
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2 Fundamentals

2.1.3 Providers

Cloud providers differ not only in deployment models but also in their services and
service models. This thesis focuses on three major Cloud providers (Amazon AWS,
Microsoft Azure, Google Cloud Platform) as they cover over 42% of the entire IaaS
market share in 2014 [Sta16].

Amazon AWS

Amazon started its Cloud offerings in 2006 as a subsidiary of Amazon.com with just
infrastructure services and has ever since constantly added services in the IaaS and PaaS
sector. The first services offered were Amazon Elastic Compute Cloud (EC2), Simple
Storage Service (S3) and Simple Queue Service (SQS)[Gar07]. Amazon EC2 provides
scalable Virtual Machines based on the Xen virtualization, whereas S3 is an affordable
object storage. Nowadays Amazon has spread its data centers across the globe with
more than 12 geographical regions and 33 availability zones [Ama16].

A few services have claimed more and more popularity especially with regards the
deployment of distributed applications. With Amazon Beanstalk a PaaS service is
provided that lets users deploy scalable web applications and services with a few clicks.
Beanstalk uses EC2 resources under the hood and as the service per se is free of
charge, customers get billed for the usage of EC2 resources. Load-Balancing, scaling and
monitoring is fully handled by Amazon, without any needs of maintaining the underlying
infrastructure.

One of the very recently added services is Amazon ECS (EC2 Container Service) which
lets you easily deploy containerized Docker applications. Users can manage and run
these applications either from the web dashboard or through multiple SDKs or CLIs.
The containerized Docker containers are being automatically deployed to Amazon EC2
instances which run a custom ECS agent that is being handled by the service. As of most
of the Amazon services it integrates really well with any other offerings like for example
Elastic Load Balancing.

Microsoft Azure

Microsoft Azure is a cloud platform by Microsoft started in 2010 to help developers build
applications that are highly scalable and flexible. The cloud infrastructure is based on
the Microsoft Azure Hypervisor (WAH) technology [QLDG09] and is often referred to as
an classic example of a PaaS platform [Sav15]. IaaS is an other part of their offering
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2.2 Topology & Orchestration

and doesn’t differ much from the competitors. The wide range of PaaS solutions that
integrate especially really well with the .NET platform really set Azure apart.

Microsoft Azure Cloud Services lets you deploy your application in a fully automated
way without taking care of the infrastructure, supporting Node.JS, PHP, Java, .NET
Python and Ruby [Tul13].

Google Cloud Platform

The Google Cloud Platform provides multiple options in the PaaS and IaaS sector, giving
the user different control over the environment. The Compute offerings can be divided
into the following three services.

Google App Engine is a PaaS that provides support including Python, Java, PHP and
Go to directly deploy and run applications, while letting Google take care of hosting,
maintaining and scaling the infrastructure.

Google Container Engine was built due to the increasing impact of container-based
development within the last couple of years. Developers can simply deploy their con-
tainerized applications to a cluster that is running on Google Compute Engine instances
with Kubernetes6.

Google Compute Engine is a IaaS that provides among others unmanaged Virtual
Machines, while giving you control of the operating system and the environment.

2.2 Topology & Orchestration

Even though more and more cloud providers enter the market with all of them introduc-
ing different offerings and services, the description of distributed application remains
the same and thus forms a key principle in the process of providing interoperability
between different cloud providers.

6http://kubernetes.io/docs/whatisk8s/
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2 Fundamentals

2.2.1 Application Topology

The term network topology is used to describe how resources in a computer network
are organized and connected [Dav06]. The topology of distributed applications in
Cloud environments describes how different parts of the application are structured and
linked to one another. Distributed applications and in particular cloud services and their
topologies need to be described in a proper way in order to take full advantage of cloud
environments and later on provide interoperability between providers.

For example the Topology of a simple Flask web applications might consist of a MongoDB
database and the web application itself. The application needs to run on a web server
like Apache or Nginx, which additionally requires to run Pythn in order to execute the
application per se. The connection towards the MongoDB database describes a necessary
relationship to provide the application with data and the ability to persist data.

Web App

Database
MySQL 5.7.12

Web Server
Nginx, Python 2.7.X

Host system
OS: Ubuntu 14.04

Virtual Machine
AWS EC2 t2.micro

Virtual Machine
AWS EC2 t2.Large

Host system
OS: Ubuntu 14.04

consits of

hosted onhosted on

hosted onhosted on

consits of

Figure 2.3: Example of a simple application topology

2.2.2 Orchestration

Oxford dictionary defines orchestrating as "to plan or coordinate the elements of (a
situation) to produce a desired effect, especially surreptitiously)" [Ste10]. In terms
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of Cloud Computing orchestration describes the automation of creation, management
and manipulation of cloud resources like compute, storage and network in order to
realize a user requests [LMVF11]. These requests can differ significantly and are mostly
modeled by complex workflows that handle the provisioning of underlying resources.
Orchestration is not only limited to delivering a service utilizing a particular provider,
it rather strives to utilize all possible providers to achieve the desired goal in the best
possible way. As part of this the orchestration also includes the execution of workflows
on different providers, which due to their internal service logic and vendor-specific
gateways and APIs describes an other important challenge.

2.2.3 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
open standard for distributed cloud based applications. TOSCA was established in 2014
by the OASIS committee and is being used widely to describe application topologies in a
platform independent way. This solves the common vendor-lock issue and additionally
provides a way to connect components even across different cloud providers [OAS13].

Besides the definition and description of relations between components of cloud applica-
tions, TOSCA also defines their life cycle. Life cycle definitions might later on be used by
an orchestration engine to execute processes like deployment, scaling, termination or
restart of the distributed application [BBLS12].

TOSCA is structured in a very simple and straightforward way. Service Templates
describe topology as well as orchestration aspects through a specific TOSCA language.
Figure 2.4 shows that each Service Template consists of a Topology Template, different
Node and Relationship Types and Plans.

Topology Templates are further subdivided into Node and Relationship Templates. Node
Templates have to be defined for different topology layers. A web application might
have a Node Type (an instance of a Node Template) for a PHP application, which then is
based on a Node Type that represents a Web Server, hosted on an other Node Type that
models a cloud-hosted VM. Relationship Templates model connections between and to
other Node Templates. Both Node Types as well as Relationship Types can have different
properties and interfaces [BBH+13].

To describe entire workflows, TOSCA specifies so called Plans for management operations
of components. Plans describe typically processes like termination and start and are
based on existing workflow languages like BPEL and BPMN.
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Figure 2.4: Structure of TOSCA service templates [OAS13]

TOSCA Simple YAML Profiles

OASIS specified a Simple YAML Profile format to further simplify the way Service
Templates and thus Cloud Applications are defined and specified. The ultimate goal
is that over time through community contributions a repository of existing node and
relationship types will grow to help other users speed up the specification process. This
will also enable users to provide software specific scripts that start for example a service.
The format expects to build on top of a few base types, which later one can be used in a
hierarchical way [OAS16b].

Example of base types could include a Compute Node or a DBMS Node. Figure 2.1 shows
an exemplary definition which builds on top of a base node type called tosca.nodes.Compute

defined in the tosca_simple_yaml_1_0. my_server then has specific details defined like CPU,
RAM or even disk space.
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tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:

node_templates:

my_server:

type: tosca.nodes.Compute

capabilities:

# Host container properties

host:

properties:

num_cpus: 1

disk_size: 10 GB

mem_size: 4096 MB

Listing 2.1: TOSCA Simple YAML Example [OAS16b]

OpenTOSCA Ecosystem

OpenTOSCA is a open source TOSCA-based ecosystem developed by the University of
Stuttgart [Uni16]. Applications are provisioned in an imperative manner, meaning that
applications are modeled through plans, which are similar to blueprints in Cloudify.

Modeling Tool

OpenTOSCA winery OpenTOSCA container OpenTOSCA vinothek

Runtime Environment Self-Service Portal

Figure 2.5: OpenTOSCA ecosystem components [Uni16]

As shown in Figure 2.5 the OpenTOSCA ecosystem is separated in three key compo-
nents. OpenTOSCA Container provides a runtime engine to execute management and
deployment operations by using the CSAR (Cloud Service Archive) format. CSAR files
include information to fully deploy and instantiate distributed cloud applications [Tre13].
Among other things a CSAR archive can include Service Templates, Node Types and
Relationships. On top the winery adds a modeling tool for topologies and management
plans and the so-called Vinothek enables users to provision new applications across
cloud providers through a web interface.
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Figure 2.6: OpenTOSCA architecture [BBH+13]

Figure 2.6 gives a more detailed architectural overview of the OpenTOSCA container
runtime component. In particular the runtime engine takes care of the execution of
management operations, plan execution and application state management [BBH+13].
If needed the CSAR format can be extended with Implementation Artifacts in order
to provide custom management operations. The Implementation Artifact Engine is
generally responsible for the custom operations and for making them available in
management plans. All plans are processed and validated by the Plan Engine and serve
as a descriptor for management operations. A CSAR file can contain multiple plans which
serve different needs like scaling, instantiating or similar. The controller component
provides a general API access to add and remove CSAR files, whereas the remaining
components and functions as an overlaying controller of the other components.

Lego4TOSCA

Lego4TOSCA builds on top of TOSCA and provides a generic format to describe reusable
TOSCA node types. Figure 2.7 shows the basic nodes types of Lego4TOSCA called
Building blocks. They can provided parameters on different hierarchical levels from
infrastructural, which might include the configuration of an EC2 instance, to an operation
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system level, which defines the operating system per se and certain runtime parameters
[HLNW14].

Figure 2.7: Lego4TOSCA Node Types [HLNW14]

Cloudify

Cloudify is an open-source platform to orchestrate and manage distributed cloud appli-
cations using the TOSCA specification. Similar to OpenTOSCA Cloudify provides tools
to model applications and services, as well as a provisioning and orchestration engine.
Through the usage of TOSCA the entire platform can provision multi-tier applications in
a platform independent fashion. This gives users the possibility to even span application
components across multiple providers [Gig16e].

Cloudify describes and provides tools to model topologies and orchestration configura-
tions in blueprints which are defined using the YAML format and a specific Cloudify DSL
(Domain Specific Language), which is derived from the TOSCA Simple YAML format
specified by the OASIS committee. Blueprints include the application topology, work-
flows and policies and describe the entire application lifecycle. Additionally blueprints
include runtime related parameters like URLs, usernames or passwords.
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Figure 2.8: Cloudify Architectural Overview [Gig16a]

In figure 2.8 a general overview of the Cloudify Architecture is given.

Every Cloudify environment consists of a Cloudify Manager VM and multiple Application
VMs. The Cloudify Manager VM provides access to a GUI as well as a Command Line
Interface, which enables the user to manage application blueprints and provision and
orchestrate them. The GUI further provides access to system and application monitoring
and logging features as well as management tools to administrate deployed applications
and blueprints.

Each provisioning task is described in Cloudify workflows, which are part of the modeling
and can consist of custom Python and bash scripts. The Cloudify workflow engine,
located on the Manager VM, parses the provided YAML application blueprint files and
manages the orchestration tasks and their timing through the Task Broker. The Task
Broker is built on top the Celery tasks broker, which is a asynchronous task queue
based on distributed message passing system [Cel16] responsible for the distributed
orchestration of tasks. The provisioning of common infrastructural resources like VMs or
network interfaces is then passed onto a manager agent, which is also located within the
Manager VM itself. After a successful deployment a general and a separate monitoring
agent on the application VM report back to the central Manager VM in order for it to
propagate the information to the user interface.
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2.3 Container Based Virtualization

During the development process of an application developers usually work in their own
development environment, which typically differs significantly from the environment
that is later on used for production deployment. This directly leads to the problem of
either adjusting the application to match the production environment or adjusting the
deployment environment to match the application. Container based solutions promise a
solution for this lack in the develop to deploy workflow, which is sometimes also referred
to as "Dependency Hell" [Boe15]. On top this also provides a light weight alternative to
full virtualization approaches [Mer14].

The main difference between virtualization and container-based virtualization is that it
doesn’t fully emulate a hardware layer and thus uses a different architectural virtual-
ization approach by sharing the underlying operating system [DRK14] (also see Figure
2.9). This means generally less isolation but significantly lower overhead in resources
like storage and CPU.

Figure 2.9: Comparison of Hypervisor-based Virtualization (right) and Container-based
Virtualization (left) [Ber14]
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2.3.1 LXC

LXC (i.e. LinuX Containers) are a container based virtualization method that uses core
features of the Linux kernel like cgroups and kernel namespaces in order to isolate
containers from one another. By accomplishing a detachment of users, processes and
network management, LXC achieves a separation within a single host operating system.

The Linux kernel namespace provides a separation of the user management for every
container, so that root privileges and user rights don’t interfere and the host operating
system can operate independently. A virtual network provides an abstraction layer for
network interfaces of the container and an additional process namespace is responsible
for isolating and managing processes on a container basis [XNR+13].

2.3.2 Docker

Docker containers are isolated packages of software that ship with their dependencies
and config files already included. This makes it possible to run them in different
environments out of the box.

The open source project uses different Linux-kernels and is build on the foundation of
LXC features to achieve virtualization without setting up an entire operating system
for every container [Boe15]. Each Docker container gets created by a Docker base
image. New Containers can share base images (e.g. Ubuntu) and simply store new
versions of files that get modified. This so called copy-on-write process is part of the
AuFS (Advanced Multi-Layered Unification Filesystem) that Docker uses and is very
efficient and light. When creating a new Docker image all steps taken are stored in the
image and can then later on be used to re-create containers [Ber14].

Additional Dockerfiles can include instructions on what needs to be installed on top of a
base image and can be used as a script to initially bring up the container and include
environmental instructions like persistent storage, port mappings and further.

Docker Hub

Docker Hub is a central repository for Docker Images hosted by Docker, Inc. It enables
users to collaborate on application and service container configuration, while providing
features like automated builds, webhooks and more.

Typically Dockerfiles include a reference to Docker Hub in order to pull the required
image and optionally resources. The image can be specified either directly through the
repository/image name or via a Dockerfile. A Dockerfiles can additionally include further
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instruction on the deployment process. After pulling the image successfully Docker can
deploy the application. Figure 2.10 shows a workflow using Docker Hub as the Docker
image registry.
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Figure 2.10: A typical Docker deployment workflow

Docker Swarm & Docker Compose

Orchestration of multiple Docker containers can be a challenging task. Containers in
a distributed application may depend on one another and sometimes even require a
specific starting order. The configuration and linking of multiple containers during the
deployment process are key aspects that Docker Compose tries to solve. Through a single
YAML file dependencies, links, volumes and other parameters can defined and later be
used to boot up entire applications with just a single command. Docker Compose defines
containerized parts of a distributed application as services [Tur14]. Listing 2.2 shows
an example Python Flask web application consisting of a web service and a database
service.
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web:

build: .

command: python -u webapp.py

ports:

- "5000:80"

volumes:

- .:/mountVolume

links:

- database

database:

image: mongo:latest

Listing 2.2: Distributed web application modeled in YAML for Docker Compose

While Docker Compose provides an easy way to define relations in distributed con-
tainerized applications through a single YAML file, Docker Swarm moreover adds native
clustering support to the Docker ecosystem. This means multiple Docker hosts can
virtually appear as a single host, while providing additional cluster scaling capabilities.
Docker Swarm serves the standard Docker API, so other tools like Docker Compose can
be pointed to a Swarm cluster just like to a single Docker host.

2.4 Container Compatible Cloud Services

Due to the increasing popularity among developers most cloud providers have adopted
solutions to support the deployment of container-based applications. The most important
provider specific solutions are described in the following.
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Figure 2.11: Cloud Provider Container Services Overview

2.4.1 Amazon Beanstalk

Amazon Elastic Beanstalk (EBS) provides an easy way to deploy containerized applica-
tions by providing a fully automated deployment, provisioning and monitoring platform
on top of the AWS services. The underlying resources are provisioned by EBS and scale
in and out to match user requirements and current workloads. All it requires is to upload
and deploy an application to the environment.

2.4.2 Amazon ECS

Amazon ECS is a solution that lets you manage, scale and deploy containerized appli-
cations to a cluster of Amazon EC2 instances. The cluster infrastructure is managed
by Amazon and provides functionality for load balancing, auto scaling and other AWS
services.

In order to deploy a containerized application to Amazon ECS the user has to assign
EC2 instances or an Auto Scaling group to the cluster. All Nodes within a cluster run
ECS container agents to connect to the Cluster and get thus get managed.

33



2 Fundamentals

Applications are defined by Task Definitions7 which can contain different, even linked
Docker containers as well as their resources and limitations. A Task Definition that is
executed in a cluster is called a Task. In order to maintain a required number of Task
instances, Services have to be created. Services make sure failed Tasks are restarted or
replaced by new ones to assure a desired count of running Tasks.

2.4.3 Google Container Engine

Google Container Engine provides a comparable solution to Amazons ECS service.
Docker containers get deployed into a cluster of assigned VMs (provided under the hood
through Google Compute Engine). The cluster size can be defined by the user and if
necessary can be modified and scaled at a later point.

The cluster is operated and managed through Googles Kubernetes8, which is an open-
source cluster management software which automates the deployment and management
of containerized applications. Kubernetes supports different Container formats including
the Docker container format.

Each Kubernetes cluster consists of a Kubernetes Master, which provides a publicly
available API endpoint to communicate with the cluster. The Kubernetes Master is fully
managed and thus doesn’t need to be maintained by the user. Besides the Kubernetes
Master the cluster consists of nodes which run Docker Hosts and execute containers.
Additionally each node runs a Kublet Agent in order to connect and get managed by the
Kubernetes Master.

7http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html/
8http://kubernetes.io/
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Figure 2.12: Google Container Engine Components - Kubernetes Overview

To get an actual containerized application running in the cluster Pods need to be
defined. A Pod is defined as "a group of one or more containers, the shared storage
for those containers, and options about how to run the containers"9 and is defined by
parameters like the Docker image, the number of replications, environment variables
and further details (see comparison table). Pods are very similar to "Task Definitions" in
Amazons Container Service (ECS) and can be defined through the provided CLI tools
or the Kubernetes Dashboard which runs on the Kubernetes Master. The Dashboard
is preconfigured on the Kubernetes Master and is generally available through https:

//kubernetes-master-ip/ui.

In order to maintain a desired count of Pod replications, Kubernetes automatically sets
up a Replication Controller which internally deploys new Pods in case of crashes or
failures. Kubernetes Services provide an abstraction layer for deployed Pods to guarantee
consistent access (a proxy IP is assigned) to the application, while underlying containers
might be switched out.

9http://kubernetes.io/docs/user-guide/pods/
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2.4.4 Microsoft Container Service

By the time of this writing Microsoft Azure Container Service (ACS) is still in preview
and is Microsofts attempt to provide a similar solution to Google Container Engine
and Amazon ECS. The overall goal is to provide a platform to deploy containerized
applications in a managed environment utilizing orchestration technologies like Apache
Mesos10 with the Marathon Framework and Docker Swarm11.

During the initial cluster deployment the user can pick an Apache Mesos or Docker
Swarm cluster deployment template to get started. The cluster management software
will handle the underlying hardware and provide a way to easily scale and deploy
containers. While Docker Swarm is directly able to handle Docker containers, Apache
Mesos additionally requires Marathon12 to orchestrate containers. It comes preinstalled
with the Apache Mesos template provided by Azure and provides on top a web interface
very similar to the one of Kubernetes.

2.4.5 Comparison

In order to scale containerized applications Amazon ECS, Google Container Engine
and Azure Container Service utilize different cluster technologies as described in the
previous section. By using such the user is still in control of the underlying infrastructure
and assigns nodes to the cluster. Amazon Beanstalk provides an additional layer of
abstraction by fully managing the underlying infrastructure. The user simply has to
upload an application and it gets automatically deployed on AWS. Provisioning, scaling,
load balancing and health monitoring are entirely managed by the Beanstalk service.

10http://mesos.apache.org/
11https://docs.docker.com/swarm/overview
12https://mesosphere.github.io/marathon/
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3 Related Work

This chapter provides a general overview about related technologies with respect to
the provisioning of Docker containers on multi-cloud platforms using an orchestration
engine. Special attention was drawn towards the integration and orchestration with
existing non-containerized application components and the distribution across multiple
cloud providers. Various technologies were analyzed that attempt to solve either the
multi-cloud provisioning problem or the problem that solves mixing of non-containerized
and containerized components.

Ubernetes is a project by Google and derives from the main kubernetes project1, which
already provides a orchestration and provisioning platform for Docker containers. Uber-
netes is still an early stage project, with various architectural and technological proposals
but hasn’t reached a beta stage yet. A drawback kubernetes brings along is its incapabil-
ity of deploying worker nodes or containers on multiple cloud providers simultaneously.
Ubernetes aims to open up the kubernetes platform by providing higher availability,
application portability to avoid vendor lock-ins, on- and off-premise hosting because
of privacy sensitive data and capacity overflowing on public cloud offerings. All those
use-cases have been generated by the latest feedback of developer and large companies
and formed the needs of a solution like Ubernetes.

Figure 3.1 gives a high-level overview of current status of the proposed Ubernetes
architecture. A overlaying Ubernetes API is suggested which controls the deployment
of multiple independent kubernetes clusters into different Cloud environments. The
Ubernetes API further handles kubernetes cluster as first class objects, meaning that each
cluster registered, listed, described and deregistered via the API. Each kubernetes cluster
is unaware of other clusters. The Policy Engine decides which applications are deployed
into which cluster but coordinates closely with the Migration Controller and the Desired
Federation State storage. The Migration Controller assures that the replications are
running on the cluster as specified. The Desired Federation State storage is proposed
to be similar to a distributed ETCD storage, which is already used in kubernetes as
introduced in Chapter 2: Container Cluster Technologies. The Ubernetes project looks

1https://kubernetes.io
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Figure 3.1: Ubernetes Architecture [Kub16c]

very promising, nevertheless by the time of this writing the project is not in a stage
which is suitable for production use.

Part of the OpenStack system is the subproject OpenStack Heat2 which provides an
orchestration and provisioning engine for the OpenStack cloud platform. Applications
can be launched based on templates which are specified in simple text configuration
files. A templates describes the overall structure of an application including server,
floating IPs, volumes, security groups and further [Ope16]. Currently OpenStack Heat
uses custom DSL. Currently a 2nd version of the OpenStack Heat DSL (Heat DSL23

is evolving which is planned to provide compliance to the TOSCA specification. As of
right now OpenStack provides a toolkit (project Heat-Translator4 to translate TOSCA
specified application templates into Heat Orchestration Templates (HOT). In OpenStack
provides a very interesting approach, which has a wide range of supported types and an
interesting architecture. Custom plugins even allow it to run Docker containers as part
of Heat templates. A major drawback of the OpenStack Heat system is that it is limited
to the OpenStack eco-system, which never the less could combine on- and off-premise
data centers.

The open-source project Kansible5 uses kubernetes and RedHats Ansible6 in order to
combine the usage of container clustering with non-containerized applications or compo-

2https://wiki.openstack.org/wiki/Heat
3https://wiki.openstack.org/wiki/Heat/DSL2
4https://github.com/openstack/heat-translator
5https://github.com/fabric8io/kansible
6https://www.ansible.com/
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nents. Kansable uses Ansible playbooks in order to configure and run non-containerized
applications. A playbook is a file which specifies an applications configuration, deploy-
ment and orchestration process. Playbook are also written in YAML and are very similar
to the TOSCA Simple YAML Profile introduced in the Chapter 2. Kansible then allows to
add the Ansible specified component to the kubernetes cluster and fully manage it. All
kubernetes features are compatible including scaling, monitoring, service discovery and
load balancing. A specifically assigned replication controller takes care of these tasks.
Even though Kansible provides a way to host non-containerized applications within an
existing kubernetes cluster, it is still tied down to the usage of one Cloud provider of the
underlying kubernetes cluster. Further no compliance to a standard specification like
TOSCA is provided, which further limits the portability of applications.
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4.1 Requirements

This thesis aims to provide a orchestration & provisioning solution for distributed
containerized cloud applications while providing a high level of platform interoperability.
This section will outline the non-functional and functional requirements that the system
must fulfill.

4.1.1 Functional Requirements

Application Modeling Tool: A tool is required in order to model distributed applications,
including their topologies and orchestration tasks. Modeling plans can later on
also be used to directly provision and deploy application using the provisioning &
orchestration engine.

Virtualization Configuration: The modeling tool needs to provide support for different
virtualization approaches, meaning that application components can be configured
to run on bare Virtual Machine or within Docker Containers. The user will also
have the possibility to connect components with different virtualization.

Configure Application Resources: Infrastructural resources (e.g. CPU, Memory, Net-
work, ...) need to be configurable and allocated to specific application components.

Deployment of Distributed Applications: The platform needs to provide interfaces to
provision and deploy distributed applications that have been modeled with the
modeling tool. The deployment procedure should be accessible through a user
interface.

Application Management Interface: An interface must be provided that gives easy ac-
cess and control to the currently deployed applications. Application control opera-
tions include deploying, starting, stopping, scaling and deleting.
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Scale Applications: The user should also be able to scale running applications and their
components up and down by increasing the replication count or the resources
available.

Monitoring & Logging: A specific interface for logging and monitoring capabilities is
required in order to provide the user with error reporting and continuous updates
on the system status.

Runtime Environment: The user needs to be able to select on which platform the entire
runtime environment as well as the applications is deployed on.

4.1.2 Non-Functional Requirements

Portability: To increase the portability of distributed applications compliance to the
TOSCA specification must be given. This will enable the usage of multi-cloud
applications, while avoiding a vendor-specific adaption. Additional support for
Docker will also provide portability in terms of moving between production and
development environments.

Interoperability: Different application components need to be able to operate with each
other, no matter what virtualization approach is used or which underlying cloud
provider is used.

Clustered Container Virtualization: The system needs to be able to fully support con-
tainer virtualization and proper service discovery by the use of a Container Cluster
Technology.

Scalability: Deployed applications and separate components must be able to scale
horizontally as well as vertically. Even containerized components need to be able
to scale.

Failure Recoverability: In case of failure of an application component the system needs
to be able to recover in an automated manner. Monitoring features need to
continuously check if a component is properly running and trigger a restart or the
deployment of a new replication.

Failure Isolation: The failure of a single application should have no direct impact on
other applications.

Low Resource Overhead: The resource usage should have as little overhead as possible,
while taking advantage of hyper-visor and container virtualization and container
cluster technologies.
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Easy Handling: The system itself should despite its complexity be easy to handle and
use.

Extensibility: It should be easy to extend the system in terms of new applications node
types, cloud providers or other custom operations.

4.2 Use Case Description

In todays business world applications become bigger and more complex. Distributed
applications evolve in complexity and contain different components. With an increas-
ing complexity, components are distributed among infrastructure and might even be
hosted using different environment technologies like for example Docker. On top of the
increasing complexity of applications, the usage of different cloud providers for a single
distributed application is becoming more and more common. Mixed on- and off-premise
setups out of privacy constraints are just one of the reasons for the latest trends in this
direction.

This thesis suggests different use cases in order to run a containerized distributed
application while using an existing application running on bare infrastructure. This
shows that existing components can be continued to use in system using containerized
parts. The use case further requires for the containerized components to automatically
scale in case of increased load, while still providing unified access to the service (proper
Service Discovery). Besides the topological description, the application needs to be
orchestrated in an automated fashion, which includes the continues monitoring of
system status in order to guarantee a maximum level of reliability. Figure 4.1 gives an
overview about all use cases.
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Figure 4.1: Distributed Containerized Application Deployment Use Cases

The following tables provide additional information about the use cases.

Name Model Distributed Application
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Goal The user will be able to model complex distributed applications with a model-
ing tool. The applications will especially consist of native and containerized
application components, which need to be connected. Also support for
different Cloud provider needs to be given.

Actor General User / Developer

Pre-Condition The modeling tool provides a given set of node types

Post-Condition The application is modeled in a way that can later on be used by a Topology
& Orchestration engine to deploy the application.

Post-Condition in
Special Case

The user needs to be provided with accurate error messages, if the modeling
is incorrect.

Normal Case
1. The user builds a modeling plan out of existing components and node

types

2. The modeling plan is valid

Special Cases
1a. The modeling tool provides not enough components

a) The user needs to be provided with options to the extend given
modeling components

2a. The modeling plan is invalid

a) Provide accurate error messages that show inconstancies or other
problems

2b. The modeling plan contains unknown types

a) The user needs to be provided with options to the extend given
modeling components

Table 4.1: Description of Use Case Model Distributed Application.
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Name Deploy Containerized Application

Goal The user wants to deploy a distributed application containing components
running on bare infrastructure and some being containerized

Actor General User / Developer

Pre-Condition The user has already modeled the application components and its dependen-
cies

Post-Condition The application with all its components was successfully orchestrated and
deployed.

Post-Condition in
Special Case

If the deployment fails then all resources should be teared down and the
user needs to be informed about possible error sources

Normal Case
1. The user provides the modeling plan for the application

2. The Topology & Orchestration platform provisions the resources, in-
cluding the container cluster

3. The container images get pulled from a central repository

4. The containerized components exposed their services

5. The components get orchestrated

6. The application is running and the orchestrated components are able
to connect to each other
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Special Cases
1a. The model plan is incorrect or missing

a) The system points out sources of error in the modeling

b) The system aborts the deployment

2a. The provisioning of resources fails

a) Rollback all actions and inform user about possible error sources

2b. The deployment of the container cluster fails

a) Rollback all actions and inform user about possible error sources

3a. The specified container image can’t be pulled

a) Inform user to provide a proper container image

4a. The service can’t be exposed

a) Check if an other service is exposing to the same port and report
error sources

5a. Orchestration fails

a) Rollback all actions and inform user about possible error sources

Table 4.2: Description of Use Case Deploy Containerized Application.
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Name Scale Application

Goal The user needs to be able to scale the deployed application vertically and
horizontally.

Actor General User / Developer

Pre-Condition The application is already deployed and running with a containerized part
on a container cluster

Post-Condition The application has scaled up or down according to the user input

Post-Condition in
Special Case

If the scaling fails the application needs to recover its previous state

Normal Case
1. A distributed application with containerized components is already

running

2. The containerized part that needs to be scaled will increase or decrease
the replication count

3. New resources get provisioned and assigned to the cluster in order to
scale the application up

4. The internal cluster load balancer distributes the traffic among the
nodes

Special Cases
1a. No application is running

2a. A change of the replication count will not trigger the scaling

a) Check if changes have been applied, if not provide the user with
an error message

3a. The resource provisioning or resource assignment to the cluster fails

a) Provide an error message, but keep the service running

4a. The load is not balanced between the nodes

a) Monitoring capabilities need to watch if the load is balanced and
in case of failure report with error messages

Table 4.3: Description of Use Case Scale Application.
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Name Monitor Application

Goal The user needs to be able to monitor resources that have been provisioned.

Actor General User / Developer

Pre-Condition The application is already deployed and running with a containerized part
on a container cluster, a workload can be monitored.

Post-Condition The user is informed about the current status of the resources and the
application components

Post-Condition in
Special Case

If no information is provided, provide access possibilities to control the
resources manually

Normal Case
1. The user select the application that he wants to monitor, preferably in

a dashboard

2. The user receives information like logging, status and load

Special Cases
1a. No application is running or selected

2a. No data is provided, it seems like the components are not being moni-
tored

a) Check if there is no connection to the components and provided
accurate error messages as well as possibilities to manually con-
nect and monitor the components

Table 4.4: Description of Use Case Monitor Application.
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Name Tear Down Application

Goal Applications and its components need to be able to be stopped and teared
down

Actor General User / Developer

Pre-Condition The application is already deployed and running with a containerized part
on a container cluster, a workload can be monitored.

Post-Condition The application is stopped and the resources are deallocated

Post-Condition in
Special Case

Parts of the application are still running

Normal Case
1. The user select the application that he wants to terminate, preferably

in a dashboard

2. The platform stops the service and tears down the resources, including
the cluster if no other container components are running

Special Cases
1a. No application is running or selected

2a. The application is not able to be stopped

a) Provide possibilities to force an application to stop

2b. Parts of the application get stuck and won’t shut down

a) Provide possibilities manually tear down the resources

Table 4.5: Description of Use Case Tear Down Application.
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4.3 System Overview

To accomplish the previously named features a system based on the following compo-
nents is introduced. The components are also outlined in Figure 4.2. The system covers
the entire workflow from modeling of an application over orchestration its components
to scaling and managing the application throughout its lifecycle. This section gives an
high level overview of the system whereas chapter 5 gives insights into the concrete
implementation and the technology providers used.
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Figure 4.2: Architectural System Overview

1. Modeling Tool
A modeling tool will be provided to model distributed applications as well as rela-
tionships between them. The modeling will later be used by the orchestration &
provisioning engine in order to deploy the distributed components. It’s noteworthy
that the modeling of applications not only covers topological specifications, like in-
frastructural requirements, but also states dependencies and other orchestrational
details. The modeling mostly starts off with more generic types, which later on
will derive into more specific node types like for example Cloud provider specific
node types. An important part of a modeling tool is that it should be able to easily
extend it in case new types are needed.

2. Topology & Orchestration Engine
In the introduced system an Topology & Orchestration Engine will be used. By
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applying compliance to a standard like TOSCA a very high level of platform inter-
operability for applications will be assured. The Topology & Orchestration Engine
will take advantage of the TOSCA specification and provide functionality to execute
deployments and other orchestrational tasks in various environments. Further the
engine needs to be aligned with the modeling tool in order to application modeling
structures and provision them.

3. Runtime Environment
In order to provide scaling capabilities monitoring functionalities of the runtime
environment will assure accurate up and down-scaling of the underlying resources.
A proper monitoring is also required to determine failure of running instances and
maintain proper execution.

4. Container Cluster Technology
Recent Container cluster technologies like Docker Swarm, kubernetes or Apache
Mesos have been evolved to satisfy common needs like auto-scaling, service
discovery and load balancing, while providing a container-centric infrastructure
[Kub16d]. The management and maintenance of containers is a complicated task,
which a container cluster handles in a fully automated way, while providing very
little overhead. Further the following benefits can be achieved:

a) Scaling of Containers
Scaling a Docker host system vertically can increase the resource in times of a
traffic peak. Nevertheless it’s sometimes inevitable to scale a Docker container
horizontally. While scaling the host vertically can be easily done by simply
adding resources to the underlying virtual machine, scaling horizontally
requires an additional load balancer to distribute requests between deployed
instances. This becomes a difficult tasks if multiple Docker containers run
separately on multiple hosts and still need to scale automatically and discover
services provided among themselves. Docker cluster technologies solve this by
providing an entire infrastructure to host Docker containers, which provides
auto-scaling and load balancing.

b) Service Discovery
The service provided by a container needs to be accessible in a unified way
regardless of the current number of replications and current scaling. To
achieve this each Cluster provides different approaches for proper Service
Discovery, which is handled in a fully automated fashion. This way containers
can connect to each other or can even be accessed from components outside
of the cluster.

5. Docker Container
The Container Cluster technologies discussed in this thesis cover solely the orches-
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tration of containers and provide no capability to manage applications running
on an other infrastructure. The high flexibility of containers make it a common
tool for developer and thus are common input and runtime format for every cloud
orchestration engine.

6. Native Services
While newly develop application components are mainly build on the basis of
Docker containers many old components are still running on bare infrastructure.
Nevertheless it is required to incorporate those components in topologies with
containerized applications and provide interoperability between them. In the
suggested system the orchestration and topology engine is able to provision and
orchestrate both types.
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The previously introduced system will consist of different components, which will be
integrated in a topology and orchestration eco-system. Some fundamental architectural
design choices have already been introduced in chapter 4. This chapter will not only
argue the selected design decisions but also introduce the specific technologies.

5.1 Architecture

5.1.1 Containers

The general benefits of container virtualization have already been covered in Chapter 2.
Through the increased popularity of Docker within the latest few years special attention
was drawn towards the deployment of Docker containers. A huge community has been
established, that provides not only great support but also a huge variety of Docker
images that are hosted on a public Docker image repository called Docker Hub. Images
from Docker Hub are publicly accessible and can be pulled from the orchestration engine
during deployment.

5.1.2 Cloud Application Specification

Cloud specifications allow an easy platform independent description of distributed appli-
cations. The previously introduced TOSCA standard shows a high market acceptance and
adoption even by market leading IT companies. Further the TOSCA standard provides
the Simple YAML format (see chapter 2: TOSCA Simple YAML Profiles) which can easily
be extended to cover custom or provider specific nodes types. This way a common
ground for the modeling of distributed applications is already given.
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5.1.3 Topology & Orchestration Platform

The foundation of the introduced system is a topology and orchestration platform. Open-
TOSCA and Cloudify as TOSCA based orchestration platforms have been taken into
consideration, while specifying the architectural design. Cloudify provides a wide range
of already supported node types, which can be used to model and manage complex and
distributed applications. Deriving and extending new node types is very intuitive and
easy as Cloudify uses the official TOSCA Simple YAML format (see Chapter 2). Basic
node types like compute instances for AWS or OpenStack have already been published
by the Cloudify Team. While Lego4TOSCA offers similar types for the OpenTOSCA eco
system based on XML templates, the overall number of available node types for Cloudify
outreaches the number available types for OpenTSCOA through Lego4TOSCA. Addition-
ally benefits of Cloudify include a big community, a well structured documentation and
free support.

The modeling of distributed applications for Cloudify including their lifecycle, dependen-
cies and components is also done through specifying YAML files following the Simple
YAML format. A custom DSL deriving from the official TOSCA Simple YAML specifica-
tion (tosca_simple_yaml_1_0), forms the foundation. This DSL provides types for compute
nodes and other basic types in the Cloudify eco system. Listing 5.1 shows a simple
web server application specified using the Cloudify DSL 1.3. The web server derives
from the cloudify.nodes.WebServer node type, and specifies the port as well as the VM it’s
running on. The underlying VM derives from the cloudify.nodes.Compute and specifies
the IP address. The http_web_server further specifies custom life cycle operations, for the
configure, start and stop tasks.
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tosca_definitions_version: cloudify_dsl_1_3

description: >

This blueprint installs a simple web server on the manager VM.

imports:

- http://www.getcloudify.org/spec/cloudify/3.4m5/types.yaml

inputs:

server_ip:

description: >

The ip of the server the application will be deployed on.

webserver_port:

description: >

The HTTP web server port.

default: 80

node_templates:

vm:

type: cloudify.nodes.Compute

properties:

ip: { get_input: server_ip }

http_web_server:

type: cloudify.nodes.WebServer

properties:

port: { get_input: webserver_port }

relationships:

- type: cloudify.relationships.contained_in

target: vm

interfaces:

cloudify.interfaces.lifecycle:

configure: scripts/configure.sh

start: scripts/start.sh

stop: scripts/stop.sh

Listing 5.1: Cloudify Webserver Example [Gig16b]

Custom Cloudify plugins that are loaded into the Cloudify management VM, provide an
easy way to define provider specific life-cycles and provisioning tasks by using a Python
interface. Plugins can also be loaded onto the Application VM to provide custom runtime
tasks. An example of a very common plugin is the Cloudify AWS plugin, which provides
functionality to deploy EC2 instances and offers access to other AWS services. An other
example for an Application VM plugin would be the official Cloudify script plugin,
which enables the execution of scripts on a running Cloudify Application VM during
the runtime. The Cloudify plugin interface will be used in the proposed architecture
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of this thesis to extend the Cloudify eco system with a scalable solution to host Docker
containers through a Cluster technology.

5.1.4 Container Cluster Technology

Even though the Cloudify eco-system already provides a Docker plugin to run container-
ized components, the capabilities are very limited. In general all aspects of cluster
technologies mentioned in chapter 4 apply here. Different Cloud provider like Amazon
AWS, Microsoft Azure and Google already started including cluster technologies with
services like Amazon ECS, Azure Container Service and Google Container Engine. Table
5.1 shows a comparison of the configuration parameters by cluster technology. The
parameters were divided into three sections, which give an abstraction of different stages
during the deployment procedure. Each cluster consisted of more general parameters
like the cluster name, the region of deployment and network details. Applications
running on the cluster have separate parameters and only different in naming conven-
tions, which Table 5.1 tries to clear by giving them more generic names. The biggest
difference between the providers was seen in the network or linking section. Each cloud
technology had specific parameters, which influences the options but can also lead to a
more complex user experience. During the initial testing it became clear that kubernetes
had the most user friendly and hassle free approach, which drew special attention to the
straightforwardness of service discovery.
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Table 5.1: Container Service Config Parameters by Cloud Providers
m, Amazon ECS Azure Container Service Google Container Engine
General Credentials Credentials Credentials
Cluster Cluster Name Cluster Name Cluster Name

Region* Region* Region*
Network Details* Network Details* Network Details*
Agent VM Size* Agent VM Size* Agent VM Size*

# Agents # Agents # Agents
# Master Nodes*

Orchestrator Type*
Tasks/ Name Name Name
Pods/ # Instances # Instances # Instances
Applications Image Image Image

CPU/Memory Available CPU/Memory Available CPU/Memory Available
Env Variables Env Variables Env Variables
Port Mapping Port Mapping Port Mapping

RUN Command RUN Command RUN Command
Volume Mounting* Volume Mounting* Volume Mounting*

Labels Labels Labels
Network/ Container Linking* Network Mode* Namespace*
Linking/ Hostname, DNS, ...* Hostname, Ports, User, ...* ...
Service Discovery Docker Security Options* Parameters*

Working Directory, Entry Point* Executor*
... Ports*

Constraints*
User*

* Provider specific parameter

The extension of the Cloudify ecosystem by a kubernetes plugin in order to run, manage
and scale Docker micro-services, is a viable solution to achieve the requirements stated in
Chapter 4. The comparison of the different cluster technologies showed that kubernetes
was very straightforward in terms of service discovery and lifecycle management of
Docker containers in general. An other benefit of cluster technologies is that they provide
an other abstraction layer, so the underlying infrastructure can easily be exchanged.
Figure 5.1 shows that the underlying IaaS provider can vary. The container cluster
provisions the containers independent of the infrastructure it runs on.
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Container Cluster Technology

AWS Google Azure

Container

hosted on

Figure 5.1: Container Cluster Environment

A typical kubernetes Cluster contains a kubernetes Master as well as multiple minion
nodes, which represent the worker nodes in the cluster. Workloads are spread between
the minions, on which a kublet agent and a Docker host is running in order to execute
packaged applications called pods. A pod is considered a package of components of an
application which are closely related and can contain one or more containers. Kubernetes
handles the scaling, lifecycle management as well as service discovery in an automated
fashion. The capacity available to the cluster is dependent on the minions assigned to
it. The challenge of using a kubernetes cluster as a node type in Cloudify lies in the
provisioning of the kubernetes master and its minion nodes.

In general two options are considerable, while deciding how to provision the kubernetes
master inside of Cloudify. The direct deployment on the Cloudify management VM and
a separate deployment on a VM orchestrated by Cloudify. A provisioning on a separate
host provides a higher level of scaling flexibility with slightly more orchestration affords.
In order to implement this approach Cloudify suggest the definition of a separate
kubernetes master node type as well as node types for the minion hosts and the pods
(microservice).

Figure 5.2 shows the deployment process of an containerized application on Cloudify
using a kubernetes cluster. First Cloudify provisions a new VM hosting the kubernetes
Master node. The minion nodes are not provisioned by the kubernetes Master node as
expected, but rather by the Cloudify management VM itself during the initial deployment
of the cluster. Afterwards the successful deployment of the master and minion nodes,
the kubernetes cluster is ready to deploy applications. Cloudify afterwards reads the
microservice specification from the YAML blueprint and lets the Master node deploy
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it into the cluster. After the service is available Cloudify can continue connecting it to
other parts of an application.

Figure 5.2: Cloudify Kubernetes Cluster Provisioning

61





6 Implementation

This chapter will discuss the implementation of the previously introduced architectural
design and its challenges. In particular this section will cover the creation of a plugin
and blueprints to use kubernetes as a cluster on the AWS or OpenStack cloud platforms.
While Cloudify already provides a proprietary and outdated solution for the OpenStack
cloud [Gig16c], the challenge mainly was to provide support for the latest version of
Cloudify and add additional support for other cloud providers.

Kubernetes Multi-Node Setup

Kubernetes provides very detailed information on their website on how to setup a multi-
node cluster [Kub16b]. The guidelines use Docker itself for provisioning the kubernetes
master and other components on any infrastructure. In order to connect the different
components of the multi-node setup flannel [Cor16b] is used. Flannel is a virtual subnet,
reliant on etcd, a distributed key-value store specifically designed for service discover
and shared configuration management [Cor16a]. A separate Docker container will host
flannel and take care of connecting the different pods and services host later on.

The following command which will later on be used in a custom kubernetes plugin will
launch a Docker daemon running etcd:

sudo docker -H unix:///var/run/docker-bootstrap.sock run -d \

--net=host \

gcr.io/google_containers/etcd-amd64:2.2.1 \

/usr/local/bin/etcd \

--listen-client-urls=http://127.0.0.1:4001 \

--advertise-client-urls=http://127.0.0.1:4001 \

--data-dir=/var/etcd/data

Listing 6.1: etcd Docker command

A custom CIDR address range needs to be set, which will later on will be used to
provision the pods in the cluster. Afterwards flannel can be launched in a container on
the master node.
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sudo docker -H unix:///var/run/docker-bootstrap.sock run -d \

--net=host \

--privileged \

-v /dev/net:/dev/net \

quay.io/coreos/flannel:flannel:0.5.5’

Listing 6.2: flannel Docker command

After getting the subnet details from the previously started flannel Docker container,
the Docker configuration of the kubernetes master host system needs to be changed
accordingly. Afterwards the Docker service on the master node needs to be restarted in
order to apply the latest network changes.

The following command will execute the final launch of the kubernetes master node on
the host system:

sudo docker run \

--volume=/:/rootfs:ro \

--volume=/sys:/sys:ro \

--volume=/var/lib/docker/:/var/lib/docker:rw \

--volume=/var/lib/kubelet/:/var/lib/kubelet:rw \

--volume=/var/run:/var/run:rw \

--net=host \

--privileged=true \

--pid=host \

-d \

gcr.io/google_containers/hyperkube-amd64:v1.2.3 \

/hyperkube kubelet \

--allow-privileged=true \

--api-servers=http://localhost:{} \

--v=2 \

--address=0.0.0.0 \

--enable-server \

--hostname-override=127.0.0.1 \

--config=/etc/kubernetes/manifests-multi \

--containerized \

--cluster-dns=10.0.0.10 \

--cluster-domain=cluster.local".{master_port}

Listing 6.3: kubernetes Docker command

The setup of the minion nodes also requires a configured Docker host in order to deploy
and connected the kubelet agents to the master node. After setting up the Docker service
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on the node itself and adjusting the network settings with regards to the IP of the master
node, the installation of flannel can be started:

sudo docker -H unix:///var/run/docker-bootstrap.sock run \

-d --net=host --privileged \

-v /dev/net:/dev/net \

quay.io/coreos/flannel:0.5.3 \

/opt/bin/flanneld \

--etcd-endpoints=http://{master_ip}:4001

Listing 6.4: flannel Docker command for minion host system

After the execution an other command is required to retrieve the flannel subnet config-
uration from the Docker container. The procedure is identical to the the master node.
The settings are necessary to change the general Docker host settings of the minion
node. After getting the subnet the Docker configuration needs to be changed. This way
the Docker host system is aware of the the flannel network and uses the IP ranges and
subnet instead of its default settings.

After those actions have been completed and the Docker service was restarted, the
kubelet agent can be installed. The steps taken connect the deployed kubelet agents to
the master node.

The final step is to run a containerized service as a Docker image on the deployed
multi-node cluster. In order to control the cluster and execute commands, the kubectl
command line tool is used [Kub16a]. The execution is fully run by the kubernetes master
node.

kubectl run NAME --image=image [--env="key=value"] [--port=port] [--replicas=replicas]

[--dry-run=bool] [--overrides=inline-json] [flags]

Listing 6.5: kubectl command to start a service [Kub16a]

In order to make the service publicly accessible, the service needs to be exposed to a
specific port.

kubectl expose (-f FILENAME | TYPE NAME | TYPE/NAME) [--port=port] [--protocol=TCP|UDP]

[--target-port=number-or-name] [--name=name] [----external-ip=external-ip-of-service]

[--type=type] [flags]

Listing 6.6: kubectl command to expose a service [Kub16a]
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After the service has been exposed you can easily retrieve the public and private IP
address of the service. The kubectl get command will output all details for a service
including the IPs.

kubectl get (-f FILENAME | TYPE [NAME | /NAME | -l label]) [--watch] [--sort-by=FIELD]

[[-o | --output]=OUTPUT_FORMAT] [flags]

Listing 6.7: kubectl command to get service details [Kub16a]

If service are not longer required the kubectl delete command lets you delete resources
such as pods and services.

kubectl delete ([-f FILENAME] | TYPE [(NAME | -l label | --all)])

Listing 6.8: kubectl command to delete a pod or service [Kub16a]

Kubernetes Cloudify Plugin

In order to integrate the kubernetes cluster and service deployment in Cloudify a custom
plugin is required. The plugin will be loaded onto the Cloudify master node. The master
node will then be instructed to load the plugin onto the node that is going to host the
kubernetes master.

Cloudify Plugin File Structure Cloudify plugins help to define custom operations that
get executed during certain life cycle operations in the deployment process of a node type.
This thesis introduces an approach containing a Cloudify plugin to provision a multi-
node kubernetes cluster and run and scale applications on it. In general each Cloudify
plugin follows an architectural design, which consists of a few basic components:

• __init__.py

The __init__.py file is required to treat the directory and files as a python package.
It can contain function definitions that are being used by multiple script files in
the package directory.

• setup.py - The initial setup file
Contains information like the name, author, version, license as well as depen-
dencies on other Cloudify plugins. Any Cloudify plugin is a python module with
a few simple restraint. Each plugin requires the install dependency of cloudify-
plugins-common and a unique name. Further the setup.py file includes a packages
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parameter that needs to correspond to a folder in the plugin directory, which will
include python files with task definitions and similar.

• plugin.yaml

The plugin.yaml file contains custom node type definitions, as well as declarations
of custom relationships and workflows required for the cluster deployment and
management. The detailed implementation of lifecycle operations will be discussed
later on and are implemented in specific python scripts in the Package directory.

The following custom node types have been defined:

– cloudify.kubernetes.Base

The kubernetes master as well as the kubernetes nodes share a few base
properties which the cloudify.kubernetes.Base node type defines. It derives
from the cloudify.nodes.Root node type.

cloudify.kubernetes.Base node type properties:

∗ ssh_keyfilename: SSH key file for passwordless access

∗ ssh_username: The username corresponding to the SSH key

∗ ssh_password: The password corresponding to the SSH key and username

∗ ssh_port: The port needed to connect via SSH

∗ install_docker: Determines if Docker needs to be installed on the host

∗ install: Determines if kubernetes needs to installed on the host

– cloudify.kubernetes.Master

Derives from the cloudify.kubernetes.Base and defines a node type for the
kubernetes master node. The master node also coordinates the deployment
of services within the cluster.
cloudify.kubernetes.Master node type properties:

∗ master_port: The kubernetes master nodes default port, which is also used
when kubernetes nodes connect to it

cloudify.kubernetes.Master lifecycle operations:

∗ start: The cloudify.kubernetes.Master node type requires a custom start
operation that brings up the Master node of the cluster.

– cloudify.kubernetes.Node

Derives from the cloudify.kubernetes.Base and defines a node type for the
kubernetes nodes (minions) within a cluster.
cloudify.kubernetes.Node lifecycle operations:
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∗ start: The cloudify.kubernetes.Node node type also requires a custom start
operation that will deploy the minion node and connect it to the kuber-
netes cluster master node.

– cloudify.kubernetes.Microservice

The cloudify.kubernetes.Microservice doesn’t derive from the cloudify.kubernetes.Base

node type but rather from the cloudify.nodes.Root node type. The
cloudify.kubernetes.Microservice represents a service that gets deployed in
the kubernetes cluster. cloudify.kubernetes.Microservice node type properties:

∗ name: A service name

∗ image: The Docker image that the service runs. Will be pulled from Docker
Hub.

∗ port: The port of the service that the Docker container will publish to.

∗ target_port: The target port on which the service will be available.

∗ protocol: The protocol that will be used to publish the serivce. Defaults
to TCP.

∗ replicas: The number of pod replications that will be deployed within the
cluster

∗ run_overrides: If the default kubectl run command needs to be overwritten,
this property can be used

∗ expose_overrides: If the default kubectl expose command needs to be
overwritten, this property can be used

∗ config: kubernetes configuration in key/value format

∗ config_path: If an external kubernetes configuration needs to be loaded
this path will be applied

∗ config_overrides: If the default config command needs to be overwritten,
this property can be used

cloudify.kubernetes.Microservice lifecycle operations:

∗ start: The cloudify.kubernetes.Microservice node type uses a custom start
operation to deploy the service into the cluster. Internally the kubectl

create -f FILE command is used to deploy the service within the kuber-
netes cluster.
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Additional the following custom relationships have been introduced. The detailed
implementation of the defined relationships are located in the tasks.py file in the
Packages directory.

– cloudify.kubernetes.relationships.connected_to_master

Derives from cloudify.relationships.connected_to and defines a relationship
specifically for the connection from minion nodes to the kubernetes master
node. The operation hooks into the postconfigure workflow [Gig16d] and
retrieves details like IP, port and SSH details and makes them available in the
Cloudify context object.

– cloudify.kubernetes.relationships.contained_in_host

Directly derives from the cloudify.relationships.contained_in relationship and
extends the default behavior by making the IP address of the containing host
available to the included host. This relationship will later on be used to share
network details between the host of the master node and the kubernetes
master itself.

On top of custom node types and relationships, workflows have been defined.
Workflows can be executed on deployments and can contained multiple tasks.
Each workflow is deployment-sensitive, meaning that certain workflows are only
available in certain stages of the deployment. Applied to the kubernetes cluster
this means that workflows to run, expose, scale and delete containers and services
are only available when the kubernetes cluster has been successfully deployed.

As already mentioned the following workflows will be available after the successful
deployment of a kubernetes cluster. The implementation of the workflows is
located in the workflows.py file.

– kube_run

This workflow executes the kubectl run command to run a pod and maintain
a give number of replications throughout the cluster.

Parameters:

∗ master: Name of the master node

∗ name: Name of the pod to run

∗ image: The id of the image that will be run

∗ port: The port that will internally be opened

∗ replicas: The number of replications maintained by the replication con-
troller

69



6 Implementation

∗ dry_run: If the operation should be performed as a dry run or not

∗ overrides: If specified the parameters will be overwritten by the provided
string in JSON format

– kube_expose

Exposes the the provided resource on a given port by using the kubectl expose

command.

Parameters:

∗ master: Name of the master node

∗ name: Name of the resource that needs to be exposed

∗ resource: The type of the resource that needs to be exposed

∗ protocol: The protocol used to expose the resource (TCP or UDP)

∗ port: The port that will be used to expose the resource

∗ target_port: The port of the resource that will be used to map it to the
external port

∗ service_name: Name of the exposed service that will be created

∗ overrides: If specified the parameters will be overwritten by the provided
string in JSON format

– kube_scale

Scales the given resource to a given number of replications using
the replication controller and the kubectl scale (-f FILENAME | TYPE NAME |

TYPE/NAME)--replicas=COUNT [--resource-version=version] [--current-replicas=count]

[flags] command.

Parameters:

∗ master: Name of the master node

∗ name: Name of the resource that needs to be deleted or stopped

∗ replicas: Number of replicas to adjust scaling to

– kube_delete

Deletes the resource using the kubectl delete (-f FILENAME | TYPE [NAME |

/NAME | -l label | --all])[flags] command.

Parameters:

∗ master: Name of the master node
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∗ name: Name of the resource that needs to be deleted or stopped

∗ resource: The type of the resource that needs to be deleted or stopped

∗ all: Needs to be set to True if all resources need to be deleted or stopped

• Package directory
As already mentioned in the previous section the package directory includes files
implementing workflows, operations and node type specific lifecycle methods. In
order to execute the command line commands a few python modules have been
used:

– The subprocess [Pyt16b] and os [Pyt16a] python modules were used to
execute the command line tasks on nodes.

– The ctx module provides an easy access to context related data like the
Cloudify logger or node properties that have been defined in a Cloudify
blueprint during the modeling process.

The following will give a more detailed overview about the implementation of the
actual files:

– start_master_ubuntu14.py

Defines the start operation for the cloudify.kubernetes.Master node type men-
tioned previously. The entire bootstrapping of the kubernetes master node
is implemented in this file. The function start_master includes the following
steps:
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6 Implementation

1. Installation of Docker

1 subprocess.call("sudo apt-get install apt-transport-https

ca-certificates",shell=True)

2 subprocess.call("sudo apt-key adv --keyserver

hkp://p80.pool.sks-keyservers.net:80 --recv-keys

58118E89F3A912897C070ADBF76221572C52609D",shell=True)

3
4 subprocess.call("sudo apt-get install apparmor",shell=True)

5
6 subprocess.call("sudo touch

/etc/apt/sources.list.d/docker.list",shell=True)

7 subprocess.call("sudo bash -c ’echo \"deb

https://apt.dockerproject.org/repo ubuntu-trusty main\" >

/etc/apt/sources.list.d/docker.list’",shell=True)

8
9 subprocess.call("sudo apt-get update",shell=True)

10 subprocess.call("sudo apt-get --assume-yes install

linux-image-extra-$(uname -r)",shell=True)

11
12 subprocess.call("sudo apt-get --assume-yes install

docker-engine",shell=True)

13
14 subprocess.call("service docker start",shell=True)

Listing 6.9: Docker installation using python and subprocess module

2. Changing configuration of Docker daemon

1 subprocess.Popen([’sudo’,’nohup’,’docker’,’daemon’,

’-H’,’unix:///var/run/docker-bootstrap.sock’,

’-p’,’/var/run/docker-bootstrap.pid’, ’--iptables=false’,

’--ip-masq=false’, ’--bridge=none’,

’--graph=/var/lib/docker-bootstrap’], stdout=open(’/dev/null’),

stderr=open(’/tmp/docker-bootstrap.log’,’w’), stdin=open(’/dev/null’))

Listing 6.10: Disable iptables and ip-masq for Docker Daemon
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3. Start ETCD

1 os.system("sudo docker -H unix:///var/run/docker-bootstrap.sock run -d

--net=host gcr.io/google_containers/etcd-amd64:2.2.1

/usr/local/bin/etcd --listen-client-urls=http://127.0.0.1:4001

-advertise-client-urls=http://127.0.0.1:4001

--data-dir=/var/etcd/data")

Listing 6.11: Run ETCD in Docker Container

4. Set CIDR range for flannel

1 os.system("sudo docker -H unix:///var/run/docker-bootstrap.sock run

--net=host gcr.io/google_containers/etcd-amd64:2.2.1 etcdctl set

/coreos.com/network/config ’{ \"Network\": \"10.1.0.0/16\"}’")

Listing 6.12: Docker installation using python and subprocess module

5. Run flannel

1 pipe=subprocess.Popen([’sudo’,’docker’, ’-H’,

’unix:///var/run/docker-bootstrap.sock’,’run’, ’-d’,’--net=host’,

’--privileged’,’-v’, ’/dev/net:/dev/net’,

’quay.io/coreos/flannel:0.5.5’], stderr=open(’/dev/null’),

stdout=subprocess.PIPE)

2
3 # get container id

4 cid=pipe.stdout.read().strip()

5 pipe.wait()

Listing 6.13: Run flannel using Docker image and save container ID
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6. Get flannel settings and adjust docker config

1 # get flannel subnet settings

2 pipe = subprocess.Popen([’sudo’,’docker’,

’-H’,’unix:///var/run/docker-bootstrap.sock’, ’exec’,format(cid),

’cat’,’/run/flannel/subnet.env’], stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

3 out, err = pipe.communicate()

4
5 # Extract flannel subnet

6 result = out.decode()

7 flannel=";".join(result.split())

8
9 # Adjust local Docker configuration to use flannel subnet

10 with open("/tmp/docker","w") as fd:

11 with open("/etc/default/docker","r") as fdin:

12 for line in fdin:

13 fd.write(line)

14 with open("/tmp/docker","a") as fd:

15 fd.write(flannel+"\n")

16 fd.write(’DOCKER_OPTS="--bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}"\n’)

17
18 subprocess.call("sudo mv /tmp/docker /etc/default/docker",shell=True)

Listing 6.14: Extract the flannel subnet configuration from running
flannel Docker container

7. Remove Docker bridge

1 # remove existing docker bridge

2 os.system("sudo /sbin/ifconfig docker0 down")

3 os.system("sudo apt-get install -y bridge-utils")

4 os.system("sudo brctl delbr docker0")

5
6 # restart docker

7 os.system("sudo service docker start")

Listing 6.15: Removal of the default docker0 bridge
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8. Get the master port from the blueprint and start kubernetes master

1 # get the port from the blueprint

2 master_port=ctx.node.properties[’master_port’]

3
4 # start the master

5 subprocess.call("sudo docker run \

6 --volume=/:/rootfs:ro \

7 --volume=/sys:/sys:ro \

8 --volume=/var/lib/docker/:/var/lib/docker:rw \

9 --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \

10 --volume=/var/run:/var/run:rw \

11 --net=host \

12 --privileged=true \

13 --pid=host \

14 -d \

15 gcr.io/google_containers/hyperkube-amd64:v1.2.3 \

16 /hyperkube kubelet \

17 --allow-privileged=true \

18 --api-servers=http://localhost:{} \

19 --v=2 \

20 --address=0.0.0.0 \

21 --enable-server \

22 --hostname-override=127.0.0.1 \

23 --config=/etc/kubernetes/manifests-multi \

24 --containerized \

25 --cluster-dns=10.0.0.10 \

26 --cluster-domain=cluster.local".format(master_port), shell=True)

Listing 6.16: Start the kubernetes master as Docker container

– start_node_ubuntu14.py

Defines a start_node Cloudify operation which is used to deploy a kubernetes
node. The kubernetes nodes connect to the master node using the kubelet
agent command line tool. Additionally every kubernetes node runs the
kubernetes proxy in order to provide unified access for services and support
load balancing across multiple replicas.

1. Docker Installation
The Docker engine installation works identical to listing 6.12.

2. Changing the Docker daemon configuration
The Docker configuration needs to changed just like on the master node.
The command in listing 6.10 is used to disables iptables, ip masquerade
and network bridging for the hosts docker configuration.
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3. Installing flannel

1 # Get the master ip address from the blueprint

2 master_ip=ctx.instance.runtime_properties[’master_ip’]

3
4 # Start flannel using as docker container

5 pipe=subprocess.Popen([’sudo’,’docker’,

’-H’,’unix:///var/run/docker-bootstrap.sock’,’run’,

’-d’,’--net=host’,’--privileged’, ’-v’,’/dev/net:/dev/net’,

’quay.io/coreos/flannel:0.5.3’, ’/opt/bin/flanneld’,

’--etcd-endpoints=http://{}:4001’.format(master_ip)],

stderr=open(’/dev/null’),stdout=subprocess.PIPE)

Listing 6.17: Install flannel on worker node

4. Get flannel settings and adjust docker config

1 # get container id from previously started flannel container

2 cid=pipe.stdout.read().strip()

3 pipe.wait()

4
5 # get flannel subnet settings

6 pipe = subprocess.Popen([’sudo’,’docker’,

7 ’-H’,’unix:///var/run/docker-bootstrap.sock’, ’exec’,format(cid),

8 ’cat’,’/run/flannel/subnet.env’], stdout=subprocess.PIPE,

9 stderr=subprocess.PIPE)

10 out, err = pipe.communicate()

11
12 # extract flannel subnet

13 result = out.decode()

14 flannel=";".join(result.split())

15
16 # Adjust local Docker configuration to use flannel subnet

17 with open("/tmp/docker","w") as fd:

18 with open("/etc/default/docker","r") as fdin:

19 for line in fdin:

20 fd.write(line)

21 with open("/tmp/docker","a") as fd:

22 fd.write(flannel+"\n")

23 fd.write(’DOCKER_OPTS="--bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}"\n’)

24 subprocess.call("sudo mv /tmp/docker /etc/default/docker",shell=True)

Listing 6.18: Install flannel on worker node

5. Remove Docker bridge
This step is identical to the one shown in listing 6.15 for the master node.
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6. Install kubelet with master node

1 # get master ip and port from blueprint

2 master_ip=ctx.instance.runtime_properties[’master_ip’]

3 master_port=ctx.instance.runtime_properties[’master_port’]

4
5 # run kubelet

6 subprocess.call("sudo docker run --net=host -d -v

/var/run/docker.sock:/var/run/docker.sock

gcr.io/google_containers/hyperkube:v1.0.1 /hyperkube kubelet

--api-servers=http://{}:{} --v=2 --address=0.0.0.0 --enable-server

--hostname-override={} --cluster-dns=10.0.0.10

--cluster-domain=cluster.local".format(master_ip, master_port),

shell=True)

Listing 6.19: Run kubelet on worker node with master node IP

7. Start kubernetes service proxy
The kubernetes service proxy functions as a load balancer in order to
provide services from a consistent address, while having multiple replica-
tions throughout the cluster.

1 subprocess.call("sudo docker run -d --net=host --privileged

gcr.io/google_containers/hyperkube:v1.0.1 /hyperkube proxy

--master=http://{}:{} --v=2".format(master_ip,master_port),shell=True)

Listing 6.20: Run kubelet proxy service

– tasks.py

The tasks.py file defines functions annotated with the @operation mark, in
order for Cloudify to recognize them as Cloudify operations. The following
operations have been defined:

∗ cloudify.kubernetes.relationships.connected_to_master implementation

∗ cloudify.kubernetes.relationships.contained_in_host implementation

∗ cloudify.kubernetes.Microservice start operation: Writes the service de-
scription into a YAML file as required by the kubernetes documentation.
Afterwards the file can be passed into the kubectl create command to cre-
ate a service. The implementation also includes the usage of kubectl run

and kubectl expose to cover the full deployment of the microservice.
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7 Validation

The validation of the proposed system will be conducted by deploying a distributed
application using a mixture of containerized and non-containerized application compo-
nents. In order to deploy such application a modeling is required. The modeling will
be done by creating a Cloudify YAML blueprint file. The blueprint will not only define
the components and their relationships but also the underlying infrastructure resources,
including the Iaas Cloud provider.

Figure 7.1 gives an overview about the validation process that will be applied. After
setting up the environment and the Cloudify platform, the application can be modeled
and deployed. To validate the application specific functions, the general application
service is tested, followed by scaling the application components and then tearing the
application down.
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Figure 7.1: Validation Workflow

1. Cloudify Manager Installation
The primary focus for this validation will be the deployment on Amazon AWS.
Therefore a Cloudify Manager needs to be setup within AWS in order to provi-
sion the application nodes when required. Cloudify provides specific Manager
Blueprints for different IaaS providers, which are available on GitHub. The AWS
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Manager Blueprint1 requires the AWS Access Key ID and Secret Access Key to make
requests to AWS and provision resources. Besides the AWS credentials it’s required
to either specify a path to a local SSH key file to connect to the manager VM as well
as the application VM’s, which will be provisioned later on, or if non is specified a
new one is created by Cloudify. The same applies for the AWS EC2 security groups,
the user either needs to specify a group that will be applied to the manager and
application VM’s or a new one will be created during the bootstrapping process.
The last required parameters are the image id as well as the instance type. For this
validation the CentOS Linux 7 x86_64 HVM EBS image with a m3.medium instance type
was used.

To execute the bootstrapping of the Manager VM the Cloudify CLI is required.
Instructions on how to install the Cloudify CLI on all major platform can be
found in the official documentation2. After the installation the following bootstrap
command can be executed in order to provision the Cloudify Manager VM on AWS.

cfy bootstrap --install-plugins -p aws-ec2-manager-blueprint.yaml -i

aws-ec2-manager-blueprint-inputs.yaml

Listing 7.1: Bootstrap Cloudify Manager VM on AWS

Afterwards the CLI should output the IP address of the Cloudify Manager VM and
the user should be able to see the provisioned EC2 instance in the AWS dashboard.

The Cloudify Dashboard should now be accessible through a browser by the IP.
Figure 7.2 shows the Cloudify Dashboard after the Manager Bootstrap process.

1https://github.com/cloudify-cosmo/cloudify-manager-blueprints/blob/master/aws-ec2-

manager-blueprint.yaml
2http://docs.getcloudify.org/3.3.1/installation/from-packages/
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Figure 7.2: Cloudify Dashboard on AWS

2. Application Modeling
After the successful deployment of the Manager VM on AWS, the application itself
needs to be modeled using the Cloudify YAML blueprint format.

The application that will be deployed consists of three different components
and derives from the official Cloudify nodecellar example3. Figure 7.3 shows a
containerized web application deployed on a kubernetes cluster using Docker,
which retrieves data from a database that is located outside of the kubernetes
cluster and runs on a separate EC2 instance. The application blueprint will use the
kubernetes plugin introduced in Chapter 5 and also the Cloudify AWS plugin4 to
provision infrastructural resources on AWS.

Database

kubernetes Cluster

EC2 Instance

Master
Node

Minion
Node

Minion
Node

kubernetes Cluster

Web Application

Figure 7.3: Application Overview

3https://github.com/cloudify-cosmo/cloudify-nodecellar-example
4https://github.com/cloudify-cosmo/cloudify-aws-plugin
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7 Validation

Listing 7.2 shows the first part of the blueprint. A MongoDB database is specified
to be run on an EC2 instance. Additionally a specifically assigned security group is
defined, which will later on allow the web application to access the data by using
the default MongoDB port 28017.

mongod_host:

type: cloudify.aws.nodes.Instance

properties:

image_id: {get_input: image}

instance_type: {get_input: size}

agent_config:

user: { get_input: agent_user }

relationships:

- type: cloudify.aws.relationships.instance_connected_to_security_group

target: mongod_security_group

mongod_security_group:

type: cloudify.aws.nodes.SecurityGroup

properties:

resource_id: mongod_security_group

description: mongod security group

rules:

- ip_protocol: tcp

from_port: { get_property: [ mongod, port ] }

to_port: { get_property: [ mongod, port ] }

cidr_ip: 0.0.0.0/0

- ip_protocol: tcp

from_port: 28017

to_port: 28017

cidr_ip: 0.0.0.0/0

mongod:

type: nodecellar.nodes.Mongod

instances:

deploy: 1

properties:

port: 27400

relationships:

- type: cloudify.relationships.contained_in

target: mongod_host

interfaces:

cloudify.interfaces.lifecycle:

create: scripts/mongo/install-mongo.sh

start: scripts/mongo/start-mongo.sh

configure: scripts/mongo/install-pymongo.sh

stop: scripts/mongo/stop-mongo.sh

Listing 7.2: MongoDB Blueprint Modeling
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Further Listing 7.3 shows the modeling of the kubernetes cluster containing a
master node and a minion node. The master node host gets a specific security
group, a separate Elastic IP and a relationship that binds to the kubernetes cluster.
The minion node host is part of the same security group and also gets bind to the
same kubernetes cluster. The security group opens all ports required to access the
kubernetes dashboard and the kubernetes API.

kubernetes:

type: cloudify.nodes.Tier

master_ip:

type: cloudify.aws.nodes.ElasticIP

master_host:

type: cloudify.aws.nodes.Instance

properties:

image_id: { get_input: image }

instance_type: { get_input: size }

agent_config:

user: { get_input: agent_user }

relationships:

- target: kubernetes

type: cloudify.relationships.contained_in

- target: master_security_group

type: cloudify.aws.relationships.instance_connected_to_security_group

- type: cloudify.aws.relationships.instance_connected_to_elastic_ip

target: master_ip

minion_host:

type: cloudify.aws.nodes.Instance

properties:

image_id: { get_input: image }

instance_type: { get_input: size }

agent_config:

user: { get_input: agent_user }

relationships:

- target: master_security_group

type: cloudify.aws.relationships.instance_connected_to_security_group

- target: kubernetes

type: cloudify.relationships.contained_in

master_security_group:

type: cloudify.aws.nodes.SecurityGroup

properties:

resource_id: master_security_group

description: kubernetes master security group

rules:
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- ip_protocol: tcp

from_port: { get_property: [ master, master_port ]}

to_port: { get_property: [ master, master_port ]}

cidr_ip: 0.0.0.0/0

- ip_protocol: tcp

from_port: 4001

to_port: 4001

cidr_ip: 0.0.0.0/0

- ip_protocol: tcp

from_port: 3000

to_port: 3000

cidr_ip: 0.0.0.0/0

Listing 7.3: Kubernetes Cluster Modeling

Lastly Listing 7.4 shows how the services get assigned to the hosts which have
been model in the previous listings. The nodecellar web application is handled as
a kubernetes microservice that gets deployed through the master node and thus
requires additional parameters.

master:

type: cloudify.kubernetes.Master

properties:

install: true

install_docker: true

relationships:

- type: cloudify.kubernetes.relationships.contained_in_host

target: master_host

minion:

type: cloudify.kubernetes.Node

properties:

install_docker: true

relationships:

- type: cloudify.kubernetes.relationships.connected_to_master

target: master

- type: cloudify.relationships.contained_in

target: minion_host

nodecellar:

type: cloudify.kubernetes.Microservice

properties:

config_path: service.yaml

config_overrides:

- "[’spec’][’containers’][0][’env’][0][’value’] = ’@{mongod_host,ip}’"

- { concat: ["[’spec’][’containers’][0][’env’][1][’value’]=","’",{

get_property: [mongod,port]},"’"]}
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relationships:

- type: cloudify.relationships.contained_in

target: master_host

- type: cloudify.kubernetes.relationships.connected_to_master

target: master

- type: cloudify.relationships.connected_to

target: mongod

Listing 7.4: Application Service Modeling

The service.yaml contains the specifics about what that needs to be deployed into
the kubernetes cluster. This could either be a simple kubernetes pod or specification
for a service, a replication controller or a kubernetes deployment.

After the blueprint has been specified, it needs to be packaged including the
kubernetes plugins, which can be skipped if the plugin has been published online
and specified in the blueprint accordingly.

3. Application Deployment
The deployment of a blueprint on Cloudify requires two steps, the blueprint
deployment and the deployment of the application itself. After the initial blueprint
upload a validation check on the topology will be triggered. If the validation was
successful the topology is displayed graphically on the Cloudify dashboard. Figure
7.4 shows the topology of the nodecellar example application using a kubernetes
cluster. This gives users the possibility to double check the blueprint modeling and
the entire topology.

Figure 7.4: Cloudify Dashboard - Blueprint Topology Overview
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The blueprint deployment itself, can be started by clicking "Create Deployment" and
specifying a name, an image for the virtual machine (AMI ID) and the appropriate
agent user name as well as the EC2 instance type. Figure 7.5 shows the deployment
creation dialog with the test input. After the creation dialog was confirmed the
blueprint deployment will be executed.

Figure 7.5: Cloudify Dashboard - Create Deployment Dialog

The Deployments tab in the Dashboard gives an overview about all currently
deployed blueprints (see Figure 7.6). By clicking "Execute Workflow" and then
selecting the Install workflow, the deployment and provisioning of the entire
application gets started.

Figure 7.6: Cloudify Dashboard - Blueprint Deployment Overview

After the process has been completed the user can double check the AWS dashboard
if the instances have been provisioned.
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4. Service Test
The Logs & Events tab gives detailed information about the status of the deployment
and if the install workflow has been executed successfully an event with the type
"Workflow ended successfully" will be logged. Afterwards the user can access
the kubernetes API through the IP of the kubernetes master node. The endpoint
/api/v1/pods gives information about the currently active pods in the cluster. Listing
7.5 shows the determining section for the nodecellar example application that has
been deployed.

...

"metadata": {

"name": "nodecellar",

"namespace": "default",

"selfLink": "/api/v1/namespaces/default/pods/nodecellar",

"uid": "42c1a2b5-30eb-11e6-a19a-0a87ce970989",

"resourceVersion": "72",

"creationTimestamp": "2016-06-12T22:16:07Z"

},

"spec": {

"volumes": [

{

"name": "default-token-pfz9l",

"secret": {

"secretName": "default-token-pfz9l"

}

}

],

"containers": [

{

"name": "nodecellar",

"image": "dfilppi/nodecellar:v1",

"command": [

"../node/bin/node",

"server.js"

],

"workingDir": "/root/nodecellar-master",

"ports": [

{

"hostPort": 3000,

"containerPort": 3000,

"protocol": "TCP",

"hostIP": "0.0.0.0"

}

...

Listing 7.5: kubernetes API Pods endpoint
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The user can also access the web application now by accessing the master node on
port 3000 using a browser.

5. Application Scaling
The scaling of the application can also be done using the Cloudify Dashboard. It
is possible to scale the replication count of a kubernetes deployment, replication
controller or service (see Figure 7.7).

Figure 7.7: Cloudify Dashboard - kubectl scale Workflow

Additionally Cloudify provides support to scale provisioned nodes up and down.
Figure 7.8 shows the dialog for the scaling of nodes outside of kubernetes. After
the dialog has been confirmed Cloudify will provision a new node and load balance
all requests among them.
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Figure 7.8: Cloudify Dashboard - Regular Scale Workflow

6. Application Tear Down
An application tear down is being handled in a fully automated fashion using
the Cloudify dashboard. The uninstall workflow will shut down the service and
terminate all provisioned virtual machines and other resources on AWS.
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8 Conclusion & Future Work

The provisioning and management of distributed applications in the cloud is a complex
process. Orchestration platforms like Cloudify help to provide a high level of platform
interoperability and reduce the complexity of deploying and managing applications
throughout their entire lifecycle. Because of the significant popularity of containerized
applications a Cloudify kubernetes plugin for the Cloudify ecosystem was introduce, in
order to enable the provisioning of containerized applications. The plugin adds support
for the modeling of kubernetes clusters, containerized applications and their entire
lifecycle. It became clear that features like scaling, load balancing and proper service
discovery are very specific for containerized applications and couldn’t easily be added to
a orchestration engine without the use of a container cluster technology.

The fundamentals in Chapter 2 have covered basics about container virtualization and
cloud computing, while also looking into the market and paying special attention towards
the current offerings in the PaaS section of all major cloud providers for container
management services. It was shown that even Amazon ECS, Google Container Service
and Microsoft Azure Container Service utilize different container cluster technologies to
manage Docker containers. In Chapter 3 similar approaches to enable the orchestration
and management of containerized applications have been analyzed, while drawing
special attention towards platform interoperability. The most interesting approach was
Ubernetes, which enables the federation of multiple kubernetes clusters on different
platforms by applying an other API layer on top of all deployed kubernetes clusters.
By the time of this writing the project only reached proposal status and therefore
couldn’t be included in the proposed implementation. In Chapter 4 the non-functional
and functional requirements of a system which deploys containerized applications are
listed. It became clear that such requirements can only be fulfilled by using a container
cluster technology in combination with an orchestration platform. The proposed system
integrates a container cluster as a separate node type into the platform including the
handling of all lifecycle operations for the cluster and its container services. The
underlying runtime would then also be responsible for connecting the container services
with other provisioned resources.

Chapter 5 then maps the requirements and the proposed system to specific technologies.
The system is based on the Cloudify orchestration engine and platform, which provides
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compliance to the TOSCA specification and supports modeling via the TOSCA Simple
YAML Profile format. After comparing different container cluster technologies, kuber-
netes was selected due to an easier overall deployment and service discover process.
Further the chapter outlines the inclusion into the Cloudify ecosystem by specifying the
needs of a custom Cloudify plugin to inject kubernetes node types and functionality to
manage the cluster and deploy containers on it.

The implementation of the system is stated in Chapter 6. A Cloudify plugin is introduced
which bootstraps an entire multi-node kubernetes cluster using Docker itself on separate
nodes within Cloudify. The implementation follows official instructions in the kubernetes
documentation and wraps them into the Cloudify plugin written in Python. Management
operations are executed using the kubectl command line tool through the kubernetes
master node. Additionally custom node types are being defined to be available for
application modeling and provisioning.

The Validation described in Chapter 7 deploys a distributed application including non-
containerized and containerized components to verify the use with a practical application.
The process includes the modeling of a web application using a database running on a
VM, while running the web application itself on the kubernetes cluster. The result show
that the deployment was successfully created and a following scaling procedure could
also be successfully executed. It is noteworthy that the implementation as of right now
is only suitable for the use within AWS, but should be easily transferable to other cloud
providers. If the already mentioned Ubernetes project gets into development it would
be easier to include a Ubernetes cluster into Cloudify, which would provide shift the
cross-provider support out of Cloudify towards Ubernetes. Further the deployment of
multiple container cluster could be considerer in the future.
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