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Abstract: We present an advanced formulation of the Fourier modal method for analyzing the
second-harmonic generation in multilayers of periodic arrays of nanostructures. In our method,
we solve Maxwell’s equations in a curvilinear coordinate system, in which the interfaces are
defined by surfaces of constant coordinates. Thus, we can apply the correct Fourier factorization
rules as well as adaptive spatial resolution to nanostructures with complex cross sections. We
extend here the factorization rules to the second-harmonic susceptibility tensor expressed in the
curvilinear coordinates. The combination of adaptive curvilinear coordinates and factorization
rules allows for efficient calculation of the second-harmonic intensity, as demonstrated for one-
and two-dimensional periodic nanostructures.
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1. Introduction

In recent years, a major work has been devoted to utilizing resonant phenomena in nanophotonic
systems [1–6]. This includes the control of far-field emission patterns [7–9] and the ability to
achieve high intensities in the resonant near field [10–13], resulting in investigations of resonantly
enhanced nonlinear effects in nanophotonics [14–19].
In order to understand the optical properties of nanophotonic systems and particularly for

enhancing nonlinear effects, numerical methods play a crucial role. Different approaches have
been developed to account for the nonlinear contributions to Maxwell’s equations in either time
or frequency domain [20, 21]. In our paper, we focus on how to derive the second-harmonic
emission from nanostructures with the Fourier modal method [22, 23]. This numerical technique
belongs to the class of modal methods, which are frequency domain solvers that are very efficient



for calculating the optical properties of layered structures. The reason is that modal methods
do not require a numerical discretization in the stacking direction of the layered structures.
Instead, one searches for eigenmodes that can propagate or decay in the stacking direction. These
eigenmodes serve as a basis for deriving the propagation of fields through a layer, which is usually
carried out by the scattering matrix approach [24]. In the case of the Fourier modal method,
the eigenmodes are calculated by decomposing Maxwell’s equations in a finite Fourier basis.
This implies periodic boundary conditions, so that the Fourier modal method is ideal for layered
periodic structures, i.e., for structures that are typically fabricated by lithographic methods.

Possible formulations for the calculation of harmonic generation in the Fourier modal method
are described in [25,26]. They are based on the so-called undepleted pump approximation, where
the energy depletion of the pump field is neglected in a first-order approximation, because the
energy transfer from the pump field to any harmonic is rather small. As a consequence, the
undepleted pump approximation allows for using a two-step process, in which we first derive
the pump field from Maxwell’s equations for a given incident field. The resulting near fields
are potential sources for fields at the harmonic. The emission intensity of these sources at
the harmonic depends on the nonlinear susceptibility tensor as well as on the linear optical
properties of the given system at the harmonic. Therefore, we need to solve only two linear
problems – a homogeneous and an inhomogeneous differential equation for the pump field and
the field generated at the harmonic, respectively. For the sake of simplicity, we focus here on
second-harmonic generation, but the approach can be generalized for higher-harmonic generation.

While previous approaches for solving the inhomogeneous equations at the second harmonic
rely on deriving the solutions for entire layers [25, 26], we propose here to consider nonlinear
sources in planes normal to the stacking direction and to coherently integrate over the emission of
theses sources. Thus, we treat the second-harmonic emission in the same way as the emission from
currents in certain layers [8, 27], with the currents originating now in the nonlinear polarization.
Moreover, we combine the derivation of the second-harmonic emission with two advanced
formulations of the Fourier modal method: Factorization rules [22, 28] and matched coordinates
with adaptive spatial resolution [23, 29]. These formulations have been introduced in order to
prevent inaccuracies in the Fourier modal method related to the Gibbs phenomenon that occur
due to the finite Fourier basis. Regarding the factorization rules, we find that their formulation
for the second-harmonic susceptibility described in previous works [25, 26] can be further
improved. In particular, we show that it is necessary to account for the discontinuities of the
fields at the pump energy and the second harmonic simultaneously. This new formulation of the
Fourier factorization of the second-harmonic susceptibility tensor allows for including matched
coordinates and adaptive spatial resolution. Thus, even nontrivial lateral geometries with large
contrast in the dielectric function can be calculated efficiently by using a coordinate system in
which all material interfaces are described by surfaces of constant coordinates with an increased
spatial resolution in the vicinity of these interfaces.
The paper is structured in three main sections. The first one describes how to derive the

second-harmonic emission of two-dimensional periodic nanostructures in a modal method. The
second section addresses the Fourier modal method and contains our extended formulation of the
factorization rules and the matched coordinates applied to the nonlinear susceptibility tensor. In
the last part, we present numerical results.

2. Second-harmonic generation in modal methods

Modal methods are well-suited for multilayer systems that are composed of layers with a common
translational symmetry. Modal methods benefit from this symmetry, because they are based
on solving Maxwell’s equations separately in each layer. The solutions are then combined by
considering the boundary conditions between adjacent layers.
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Fig. 1. Lateral view of a layer of nonlinear material with circular air holes. This structure is
one of the examples that will be treated in this paper. As illustrated, the linear field induces
a nonlinear polarization that results in a volumetric source at the second harmonic, which
we discretize in a set of planar emitting layers. For each discrete source at a position x3

0 ,
we calculate the propagation of the field through the structure using the scattering matrix
formalism. Then, we integrate coherently over all contributions to obtain the total far field.
The inset in the right part depicts a schematic of the scattering matrix formalism, with the
amplitude vectors A+ and A− of downward and upward propagating or decaying eigenmodes
in a certain layer [cf. equation (5)], respectively. The boxes with Sb and St indicate the
scattering matrices of the sub-structures above and below a layer.

For our derivations, we use the covariant formulation of Maxwell’s equations:

εαβγ∂βEγ =ik0µ
αβHβ, (1)

εαβγ∂βHγ = − ik0(ε
αβEβ + 4πPα) +

4π
c

jα . (2)

Equations (1) and (2) hold for higher harmonics and for the pump field, with Pα and jα denoting
the α component of the nonlinear polarization and free currents, respectively. Furthermore, εαβγ
is the Levi-Civita symbol. The time dependence of the fields E and H is assumed to be exp(−iωt);
the vacuum wave number is denoted as k0 = ω/c. In the undepleted pump approximation for
second-harmonic generation, Pα(ω) = 0 at the pump energy, while the simplest form at the
second harmonic is given by [26]

Pα(2ω) = χ(2),αβγ(2ω;ω, ω)Eβ(ω)Eγ(ω), (3)

with χ(2),αβγ being the components of the second-harmonic susceptibility tensor. Therefore, in
the undepleted pump approximation, the equations describing the pump field are independent
of the fields at the second harmonic, whereas the pump field enters as an inhomogeneity in the
equations at the second harmonic.
Let us first address the pump frequency. Without the loss of generality, we define x3 as the

direction of translational symmetry (see Fig. 1). By eliminating the E3 and H3 components from
Maxwell’s equations, we obtain the following system of equations [22]:

− i∂3F(x1, x2, x3) = M(x1, x2)F(x1, x2, x3). (4)



Here, F = (E1, E2,H1,H2)
T denotes a supervector of transversal field components. The Fourier

transformed expression of the matrix operator M is given in Appendix A. Most importantly, it is
independent of x3, so that we can make the ansatz F(x1, x2, x3) = Fm(x1, x2) exp(iγmx3), which
transforms Eq. (4) into the eigenvalue problem

γmFm = MFm. (5)

with eigenmodes Fm that can propagate or decay with propagation constants γm in the direction of
translational symmetry. The eigenmodes form a basis, in which we can expand arbitrary solutions
of Maxwell’s equations inside that layer. In the following, we split the full set of eigenmodes
{Fm} into subsets {F±m} with eigenvalues γ±m. The superscript + or − denotes the sign of the real
part of γ±m (i.e., forward or backward propagation along the x3 direction) in the case that the
imaginary part of γ±m vanishes. Otherwise, sign(Imγ±m) = ±1 (i.e., forward or backward decay in
the x3 direction). Thus, an arbitrary field can be expanded as

F(x1, x2, x3) =
∑
m

A+mF+m(x1, x2)eiγ
+
m(x

3−x3
+) + A−mF−m(x1, x2)eiγ

−
m(x

3−x3
−), (6)

where A±m is the expansion coefficient calculated at positions x3
±. The expansion coefficients A±m

can be summarized as elements of supervectors A±
l
as the amplitude vectors for each layer l. The

connection of the amplitude vectors at positions x3
l
and x3

l′
(x3

l
< x3

l′
) is given by the scattering

matrix Sl′,l [24]: (
A+
l′

A−
l

)
︸   ︷︷   ︸
≡Aout

l′, l

=

(
S++
l′,l

S+−
l′,l

S+−
l′,l

S−−
l′,l

)
︸            ︷︷            ︸

≡Sl′, l

(
A+
l

A−
l′

)
︸   ︷︷   ︸
≡Ain

l′, l

. (7)

In the case that there is a free current located at the x1x2 plane through position x3
0 (x3

l
< x3

0 <

x3
l′
), such that J(x3) = J0δ(x3 − x3

0), it is possible to construct a similar matrix Σl′,l(x3
0) for the

emission of that current based on [8, 27]:

Aout
l′,l = Σl′,l(x

3
0)J0. (8)

The supervector J(x3) as well as Σl′,l(x3) are specified in Appendix B. Owing to the linearity of
this equation, we may consider an arbitrary volumetric source J(x3) as a superposition of sources
at positions x3, so that

Aout
l′,l =

x3
l′∫

x3
l

dx3
Σl′,l(x3)J(x3). (9)

From Eq. (2), it can be seen that we can treat the nonlinear polarization Pα in the same way as
the current jα, i.e., we define jα = −iωPα in the absence of free currents, and use Eq. (9) in
order to calculate the emission of the nonlinear source to the far field.

3. Second-harmonic generation in the Fourier modal method

3.1. Fourier factorization rules

In the Fourier modal method, equation (5) is solved in a truncated Fourier space. However, it
is known that the expansion of discontinuous functions in a truncated Fourier space exhibits
over- and undershoots close to the jump discontinuity that are shifted to the discontinuity when
increasing the dimension of the truncated Fourier space, with a pointwise convergence. This
behavior, known as Gibbs phenomenon, hampers the performance of the Fourier modal method,



because the dielectric function is discontinuous in layers that contain different materials. Even
worse, whenever we multiply two discontinuous functions with concurrent jump discontinuities
such as permittivity and normal component of the electric field at an interface between two
materials, Lifeng Li has shown that the corresponding convolution in Fourier space does not
converge at the concurrent jump discontinuity [28]. He has formulated so-called factorization
rules, which allow to overcome this issue by reformulating Maxwell’s equations such that there
are no products of functions with concurrent jump discontinuities [22]. These factorization rules
have to be obeyed when transforming the material tensors to reciprocal space, including the
second-order susceptibility tensor.

Let us consider an interface with a normal vector that equals the contravariant basis vector eα.
This means that the normal component of the dielectric displacement with respect to the interface
is Dα, while Eβ with β , α gives the two tangential electric field components. The constitutive
equation for Dα is as follows:

Dα = εααEα + εαβEβ + 4π χ(2),ασρÊσ Êρ︸           ︷︷           ︸
Pα

, β , α.
(10)

Note that the condition β , α implies that there is no summation over indices α and the
summation over β runs only over indices β , α. For all other indices, we maintain the standard
sum convention over all three components. The hat denotes quantities at the pump frequency.

In a first step, we express the discontinuous component of the electric field as a function of the
other field components:

Eα = (εαα)−1Dα − (εαα)−1εαβEβ − (εαα)−14πχ(2),ασρÊσ Êρ, β , α. (11)

In this equation, the product of the linear permittivity and the field component Eα with a
concurrent jump discontinuity has been removed, so that we can Fourier transform Eq. (11) in
the xα direction according to Li’s factorization rules. We denote this Fourier transformation
by square brackets with subscript α. After reorganization of the terms, we obtain the Fourier
transform of the electric displacement:

[Dα]α = [(ε
αα)−1]−1

α ([Eα]α + [(εαα)−1εαβ]α[Eβ]α + 4π[(εαα)−1 χ(2),ασρÊσ Êρ]α), β , α.
(12)

This simple derivation provides the accurate Fourier transformation of Dα for eα being normal
to the interface. The Fourier transformation of the other two components Dβ in direction xα can
be found by substituting Eα in the constitutive equation for Dβ by Eq. (11):[

Dβ
]
α
= [εβα(εαα)−1]α[Dα]α + [ε

βγ − εβα(εαα)−1εαγ]α[Eγ]α β , α& γ , α

+4π[χ(2),βσρ − εβα(εαα)−1 χ(2),ασρÊσ Êρ]α .
(13)

Inserting Eq. (12) into Eq. (13) and repeating these steps for the second direction of periodicity
yields the correctly factorized Fourier transform of the permittivity tensor. Following the notation
of L. Li [22], we can summarize the above steps by defining an operator l+τ and its inverse l−τ , with

B ≡ l±τ A, Bρσ =


(Aττ)−1 , ρ = τ, σ = τ;
(Aττ)−1 Aτσ , ρ = τ, σ , τ;
Aρτ(Aττ)−1 , ρ , τ, σ = τ;
Aρσ ± Aρτ(Aττ)−1 Aτσ , ρ , τ, σ , τ,

(14)

for arbitrary rank two tensors A and B. Thus, the correct application of the Fourier factorization
rules to the permittivity tensor yields

ε̃ = l+2 F2l−2 l+1 F1l−1 ε, (15)



where Fτ is the Fourier transformation in the direction τ. The order of the Fourier transformation
is arbitrary, but it should be noted that it has a small influence [22].
Similarly, it is possible to construct from Eqs. (12) and (13) an operator m±τ that should be

applied to the second-harmonic susceptibility tensor and accounts for the discontinuities at the
second harmonic:

G ≡ m±τ (B)C, Gαρσ =

{
BττCτρσ , α = τ;
Cαρσ ± BατCτρσ , α , τ.

(16)

Here, the tensors B and C are results of applying specific operators to the permittivity and
second-harmonic susceptibility, respectively. For the latter, we have to additionally take into
account the discontinuities of the pump field. Hence, we express the discontinuous components
of the electric field of the pump as a function of the continuous components of the electric field
and displacement as well as the permittivity tensor evaluated at the pump energy:

Êα = (ε̂αα)−1(D̂α − ε̂αβ Êβ) , β , α. (17)

Inserting Eq. (17) into Eqs. (12) and (13) results in lengthy expressions that contain no products
of functions with concurrent jump discontinuities, so that they can be Fourier transformed.
They consist of products of m−τ (l

−
τ ε), ε̂ and χ(2), which can be written in the compact form

m−τ (l
−
τ ε) j

−
τ (l
−
τ ε̂)χ

(2), with the new operator j±τ being defined by

Γ≡ j±τ (B)G, Γ
αρσ =


GαττBττBττ, ρ = τ, σ = τ;
GατσBττ± GαττBττBτσ, ρ = τ, σ , τ;
GαρτBττ± GαττBτρBττ, ρ , τ, σ = τ;
Gαρσ± GατσBτρ± GαρτBτσ+ GαττBτρBτσ, ρ , τ, σ , τ.

(18)

Note that j±τ j∓τ = m±τm∓τ = 1, which allows us to recast Eqs. (12) and (13) into the form of Eq. (10)
after carrying out the Fourier transformation. For brevity of notations, we define a new operator
Tτ with

Tτ(ε, ε̂)χ(2) = j+τ (Fτ l−τ ε̂)m
+
τ (Fτ l−τ ε)Fτm−τ (l

−
τ ε) j

−
τ (l
−
τ ε̂)χ

(2), (19)

which gives the correctly factorized Fourier transform χ(2) in direction xτ . Thus, the final result
for the correctly factorized Fourier transform of the second harmonic susceptibility yields

χ̃(2) = T2(l+1 F1l−1 ε, l
+
1 F1l−1 ε̂)T1(ε, ε̂)χ

(2). (20)

This equation holds for the second-harmonic susceptibility tensor χ(2), but it can be generalized
to higher harmonics as well.

3.2. Adaptive spatial resolution and matched coordinates

While factorization rules allow for accurately describing products of functions with concurrent
jump discontinuities in a finite Fourier space, they cannot overcome the Gibbs phenomenon in
general. In particular, the Fourier expansion of functions with discontinuities exhibits over- and
undershoots at the discontinuity that are approximately 18 % of the jump height [30]. This means
that the dimension of the finite Fourier basis in the Fourier modal method needs to be large in
order to achieve a convincing convergence behavior in the case that the index contrast in the
dielectric function is high. This occurs, e.g., at interfaces between semiconductors and air, as well
as at interfaces between dielectrics and metals. Therefore, Granet developed a new formulation
of the Fourier modal method [29], in which he implemented coordinate transformations such that
the spatial resolution near material interfaces is increased. The implementation of this adaptive



spatial resolution requires replacing the original permittivity tensor by a redefined tensor that
contains the discontinuous dielectric function times the metric components of the coordinate
transformation. Thus, the influence of Gibbs phenomenon is drastically reduced, because the
metric components are close to zero near the jump discontinuities, providing a smaller effective
jump height in the adaptive coordinates.
However, the implementation of adaptive spatial resolution and factorization rules is only

straight-forward in cases, where all material interfaces are aligned along the directions of
periodicity [31, 32]. The application of factorization rules in layers with complex cross sections
requires to find at least a decomposition of the fields into normal and tangential components [33,34].
In the covariant formulation of Maxwell’s equations, normal and tangential field components
are directly provided by the contra- and covariant field components in the case that all material
interfaces are aligned along surfaces of constant coordinates [23]. This means that one needs
to find matched coordinate systems that are adapted to the geometry of interest. Using the
covariant formulation of Maxwell’s equations [Eqs. (1) and (2)], it is straight-forward to combine
this approach with adaptive spatial resolution and factorization rules in order to achieve a fast
convergence behavior even for metallo-dielectric systems [23,35,36]. An example of coordinates
with adaptive spatial resolution matching a circular geometry is displayed in Fig. 2.

x axis (mm)
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Fig. 2. Example of matched coordinates for the structure depicted in Fig. 1. Note that the
matched coordinates include the material interfaces as surfaces of constant coordinates with
an increased spatial resolution in their vicinity. The coordinate transformation is included in
the numerical calculations in the form of redefined permittivity, permeability, and nonlinear
susceptibility tensors.

In the following, xα and xα denote the coordinates of uniform (Cartesian) and nonuniform
(curvilinear) coordinate systems, respectively. The electric and magnetic field are covariant
vectors of weight zero, whereas the electric displacement, the magnetic induction, and the
nonlinear polarization are contravariant vectors of weight one. The permittivity and permeability
are tensors of rank two and weight one and the second-harmonic susceptibility is a tensor of
rank three and weight one. The transformation from uniform to curvilinear coordinates for two
arbitrary tensors M and N of rank two and three, respectively, and weight one is given by

Mρσ =
∂(x1, x2, x3)

∂(x1, x2, x3
)

M
αβ ∂xρ

∂xα
∂xσ

∂xβ
, Nρστ =

∂(x1, x2, x3)

∂(x1, x2, x3
)
N
αβγ ∂xρ

∂xα
∂xσ

∂xβ
∂xτ

∂xγ
. (21)

In the Fourier modal method with matched coordinates, we now simply replace all quantities of



the uniform coordinate system by those of the nonuniform coordinate system. Most importantly,
ε, µ, and χ(2) should be replaced by the redefined tensors given through Eq. (21) before carrying
out their Fourier transformation according to the correct Fourier factorization rules given in
section 3.1. The downside of the Fourier modal method with matched coordinates is that it requires
solving homogeneous and isotropic layers numerically, even though knowing their analytical
solutions in uniform coordinates. This additional effort is, however, usually compensated by
the fast convergence of the results in layers with high index contrast, and it can be reduced by
additional means [37].

4. Numerical results

In this section, we illustrate the performance of our method for two example geometries. The first
geometry is an asymmetric one-dimensional grating made of gallium arsenide (GaAs). As this
structure possesses only layers with trivial material distributions, we can easily compare our new
formulation of the factorization rules for the second-harmonic susceptibility tensor with previous
formulations of the factorization rules [25, 26]. In the following, we refer to our formulation of
the factorization rules as full factorization rules, whereas we denote previous formulations as
simple factorization rules. In addition, we illustrate the impact of adaptive spatial resolution
on the performance of the derivation of the second-harmonic emission for this simple example
geometry. The second example geometry is a two-dimensional grating made of lithium niobate
(LiNbO3) with a circular cross section (see Fig.1). This structure exhibits a high contrast of
refractive index at its interfaces, and it possesses a nontrivial lateral cross section, so that previous
formulations of the Fourier modal method cannot be used in order to derive the second-harmonic
emission from this system accurately.

4.1. One-dimensional grating

A schematic of the asymmetric one-dimensional grating is depicted in Fig. 3(a). The structure
consists of two adjacent periodic layers with GaAs surrounded by air. Each layer is 100 nm thick.
The width of the GaAs region in the upper and lower layer is 0.66 µm and 0.75 µm, respectively.
The period is 1 µm. Without the loss of generality, we consider a constant refractive index of
n = 3.85 for GaAs.
The crystallographic lattice of GaAs is face centered cubic; in Gaussian units, the reduced

representation [38] of the second-harmonic susceptibility is

χ(2) = 10−7 ©«
0 0 0 5.73 0 0
0 0 0 0 5.73 0
0 0 0 0 0 5.73

ª®¬ cm
statV

. (22)

We consider an incident pump field that is normally incident with 1W of incoming power per
unit cell area. The incident electric field is linearly polarized and aligned along the direction of
periodicity. The unpolarized second-harmonic intensity is calculated by summing up the s- and
p-polarized intensities radiated in the fundamental diffraction orders.
In the numerical calculation of the second-harmonic emission, we use a spatial grid of

512 points per unit cell. Figure 3(b) shows the linear transmittance (red solid line) and the
second-harmonic unpolarized intensity emitted above (black dashed line) and below (gray solid
line) the structure calculated for a reciprocal basis (i.e., number of plane waves) of size 167.
In order to illustrate the impact of resonances on the second-harmonic intensity, we denote
the resonance energies of that structure by arrows. The resonance energies have been derived
from the scattering matrix by the methods described in [37, 39, 40]. The fundamental resonance
at 842meV possesses a large linewidth of 84meV, the higher-order resonances are narrower
(from 4.4meV to 60meV linewidth). Evidently, we have a peak of emission whenever there is a
resonance at the second-harmonic energy.
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Fig. 3. (a) One-dimensional periodic asymmetric grating made of GaAs and surrounded
by air. This structure consists of two layers, where each layer has a of thickness of 100 nm
and a period of 1 µm. The upper part of the grating has a width of 0.66 µm; the lower part
has a width of 0.75 µm. The second-harmonic emission originates in the GaAs region. We
consider normal incidence with the incident electric field aligned along the x1 direction
and an incoming power of 1W per unit cell area. (b) Linear transmission (red solid line),
second-harmonic unpolarized intensity emitted above (black dashed line) and below (gray
solid line) the structure as well as resonance energies (black arrows). (c) Relative error of the
second-harmonic unpolarized intensity below the system at a pump energy of 670meV for
three different implementations: Simple factorization rules (dark blue line), full factorization
rules with (light blue line) and without (blue line) adaptive spatial resolution.

In order to illustrate the convergence of our calculations, we calculated the relative error
of the second-harmonic unpolarized intensity for a successively increasing number of plane
waves in the reciprocal basis. The relative error is calculated as the relative difference of the
second-harmonic intensity for finite and infinite Fourier basis, where the latter has been derived
from an exponential fit to the second-harmonic intensity as a function of the number of plane
waves in the Fourier basis. The results derived by the Fourier modal method with simple (dark
blue line) and full factorization rules with (light blue line) and without (blue line) adaptive spatial
resolution are depicted in Fig. 3(c) at a pump energy of 670meV. The formulation with full
factorization rules converges significantly faster than the approach with simple factorization rules.
The best convergence behavior can be obtained by the formulation with full factorization rules
and adaptive spatial resolution.

4.2. Two-dimensional grating

The two-dimensional grating consists of a LiNbO3 film with circular air holes (see Fig. 1). The
period is 1.400 µm; the radius of the air holes is 600 nm; the thickness of the film is 80 nm. The
incoming pump field is normally incident and linearly polarized with 1W power per unit cell
area. The incident electric field is aligned along the x1 direction. The permittivity of LiNbO3 is a



diagonal tensor with ε11 = ε22 = 2.292 and ε33 = 2.212. The second-harmonic susceptibility is
given by

χ(2) = 10−9 ©«
0 0 0 0 −13 −6.6
−6.6 6.6 0 −13 0 0
−13 −13 −75.9 0 0 0

ª®¬ cm
statV

. (23)

Figure 4(a) displays the linear transmittance and the second-harmonic unpolarized intensity of
this structure calculated for 19 × 19 plane waves in the Fourier basis (quadratic truncation) and
512 × 512 spatial points. The structure exhibits a large number of resonances in the given energy
range, but only few resonances can be excited by the pump or the second-harmonic energy, with
resonance energies of 842 − 8.8i meV, 1152 − 25i meV, 1183 − 40i meV, 1700 − 46i meV and
2345 − 10i meV (the absolute value of the imaginary part is half of the resonance linewidth).
Figure panels 4(b-c) contain the convergence behavior of the relative error calculated at pump
energies of (b) 580meV (dark blue line) and (c) 842meV (blue line).
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Fig. 4. (a) Second-harmonic unpolarized intensity above (black dashed line) and below (gray
solid line) the structure, and linear transmittance spectra (red line) of the structure presented
in Fig. 1. The thickness of the structure is 80 nm, the period is 1.400 µm along the x and y
directions and the radius of the holes is 600 nm. (b-c) Convergence behavior of the calculated
second-harmonic unpolarized intensity with the pump field at (a) 580meV (dark blue line)
and (b) 842meV (blue line). The triangles in (a) mark the energies at which the convergence
curves have been calculated.

5. Conclusion

We have developed a formulation of the Fourier modal method for the calculation of the second-
harmonic intensity in crossed gratings, in which we can combine factorization rules with matched
coordinates and adaptive spatial resolution. In particular, our formulation of the factorization
rules accounts for the permittivity tensor at the pump and the second-harmonic energy. Thus, we
can calculate accurately the second-harmonic emission of periodic nanostructure arrays with
complex cross sections, as demonstrated by our numerical results.

A. Basic principles of the Fourier modal method

In the Fourier modal method, we solve Maxwell’s equations in reciprocal space, with the electric
and magnetic fields being decomposed in Fourier-Floquet series:

Fα(x1, x2, x3) =
∑
m,n

Fα,mn(x3)eik1,mx1+k2,nx
2
. (24)



Here, Fα denotes the vector components of either Eα or Hα for α ∈ {1, 2, 3} and m, n ∈ Z.
Furthermore,

kα,m = kα,0 + Gα,m, Gα,m = m
2π
Pα
, k1,0 = N sin θ cos φ, k2,0 = N sin θ sin φ, (25)

with Pα as the period in direction α; N = 1 for the pump field and N = 2 at the second-harmonic
energy [25]. The electric displacement and the second-harmonic polarization are given by

Dρ
mn =

∑
p,q

ε̃
ρσ
mn,pqEσ,pq + 4πPρmn, (26)

Pρmn =
∑

p′,q′,p′′,q′′

χ̃
(2),ραβ
mn,p′q′,p′′q′′ Êα,p′q′ Êβ,p′′q′′ . (27)

Here, ε̃ and χ̃(2) refer to the Fourier transform of the permittivity and the second-harmonic
susceptibility carried out according to the factorization rules as defined in Eqs. (15) and (20).
The matrix M in Eq. (5) is given by:

M =


−µ̌23K2 − K1ε̌

31 µ̌23K1 − K1ε̌
32

µ̌13K2 − K2ε̌
31 −µ̌13K1 − K2ε̌

32

−k0ε̌
21 − 1

k0
K1 µ̌

33K2 −k0ε̌
22 + 1

k0
K1 µ̌

33K1
k0ε̌

11 − 1
k0

K2 µ̌
33K2 k0ε̌

12 + 1
k0

K2 µ̌
33K1

k0 µ̌
21 + 1

k0
K1ε̌

33K2 k0 µ̌
22 − 1

k0
K1ε̌

33K1
−k0 µ̌

11 + 1
k0

K2ε̌
33K2 −k0 µ̌

12 − 1
k0

K2ε̌
33K1

−ε̌23K2 − K1 µ̌
31 ε̌23K1 − K1 µ̌

32

ε̌13K2 − K2 µ̌
31 −ε̌13K1 − K2 µ̌

32

 ,
(28)

where ε̌ = l−3 ε̃ and µ̌ = l−3 µ̃ [22]. Furthermore, K1 and K2 are diagonal matrices with diagonal
elements k1,m and k2,m, respectively.

B. The scattering matrix formalism

The scattering matrix approach is a general formalism that provides the relations between the
incoming and outgoing fields of a system. In a modal method, this system can be an interface, a
layer or a system containing several layers and interfaces. In the case of the latter, the propagation
through the layers and interfaces is calculated separately, and the results are combined recursively
to obtain the scattering matrix of the multilayer. This procedure is performed in three steps [24].

In the first step, we build the propagation matrix Pl(L) in layer l using the eigenvalues of this
layer: [

A+
l
(x3

0 + L)
A−
l
(x3

0 + L)

]
=

(
eiΓ+l L 0

0 eiΓ−l L
)

︸                ︷︷                ︸
Pl (L)

[
A+
l
(x3

0)

A−
l
(x3

0)

]
. (29)

Here, L is the thickness of the layer, and Pl(L) is constituted by blocks of sub-matrices defined
by the matrix exponentials of Γ±

l
, i.e., diagonal matrices containing the eigenvalues of layer l.

In the second step, we build the transfer matrix Il,l−1 of an interface between the layer l − 1
and layer l using the boundary conditions of the tangential field components:(

A+
l

A−
l

)
= F−1

l Fl−1︸   ︷︷   ︸
Il, l−1

(
A+
l−1

A−
l−1

)
. (30)



Here Fl and Fl−1 are the material matrices of layers l and l − 1, respectively. The columns of
these matrices are the eigenvectors of the corresponding layers.
In the last step, we use an iterative procedure to combine subsequently the matrices of the

interfaces between layers and the propagation inside each layer. The recursion starts with a unit
scattering matrix. At each recursion, the current scattering matrix is combined with a matrix X
that is either an interface matrix Il,l−1 or an inverse propagation matrix Pl(−L), with

X ≡
(

X++ X+−

X−+ X−−

)
. (31)

Formally, we denote the combination of the scattering matrix S and matrix X by the operator ∗,
which results in the scattering matrix for the next recursion

X ∗ S =
[

−(W++)−1S++ −(W++)−1W+−
S−+ − S−−X−+(W++)−1S++ S−−X−− − S−−X−+(W++)−1W+−

]
. (32)

Here,
W+± = S+−X−± − X+±. (33)

Let us address now the second-harmonic emission. The corresponding source term in Eq. (8)
can be derived from Eqs. (10) and (13) in [8], which yields

J(x3) = −4πiF−1
0


−K1(ε̃

33
0 )
−1P3

−K2(ε̃
33
0 )
−1P3

k0[ε̃
23
0 (ε̃

33
0 )
−1P3 − P2]

k0[P1 − ε̃13
0 (ε̃

33
0 )
−1P3]

 , (34)

with the eigenvector matrix F0 and the Fourier transformed permittivity tensor ε̃0 being that of the
layer at x3. Pα is a supervector containing the amplitudes Pαmn of the correctly Fourier-factorized
second-harmonic polarization. Combining Eqs. (16) to (19) of [8], the scattering matrix for the
emission of that source can be written as

Σl′,l(x3
0) =

[
S++b VeiΓ+0 (L−x3

0 ) −S++b VeiΓ+0 LS+−t e−iΓ−0 x3
0

S−−t Ue−iΓ−0 LS−+b eiΓ+0 (L−x3
0 ) −S−−t Ue−iΓ−0 (x3

0 )

]
. (35)

Here, L is the thickness of the layer generating the second harmonic, St and Sb denote the matrices
of the groups of layers above and below this region, respectively, and the exponential terms are
diagonal matrices that account for the propagation inside the emitting layer. U and V are matrices
that account for internal reflections:

U =(1 − e−iΓ
−
0 LS−+b eiΓ

+
0 LS+−t )

−1, V =(1 − eiΓ
+
0 LS+−t e−iΓ

−
0 LS−+b )

−1. (36)
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