
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Evaluating the Profitability of the
MediaWiki Application under different

Cloud Distribution Scenarios

María Elena Alonso Mencía

Course of Study: Computer Science

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Dipl.-Inf. Santiago Gómez Sáez
Commenced: April 7, 2016
Completed: September 29, 2016

CR-Classification: C.2.4, C.4, G.1.2





Abstract

Cloud computing has gained popularity over the last years, causing a significant increase
of available cloud offerings among providers. Therefore, this wide spectrum of options
has led to an increment of possibilities for distributing applications in the cloud, by means
of selecting specialized services to host each application component. Nevertheless, it also
implies the need of finding the optimal solution depending on its purpose, usually based on
future economical profitability. Nowadays, instead of considering an application as a whole
when deploying it in the cloud, e.g. deploying whole application stack in a virtual machine,
investigations focus on how to distribute the application components in heterogeneous cloud
environments. Consequently, users have an even higher range of options and should carefully
choose good decision criterion, going further than only considering the direct cost for the
needed cloud instances. Some challenges are deriving a revenue model - as they tend to be
application specific - and customizing the evaluation of different migration configurations
of a real application with authentic data metrics. In this sense, this document uses utility
analysis as it includes a non-directly countable element, preferences, and allows basing the
decision on a trade-off taking into account other aspects which have an influence on the
final performance such as users satisfaction or cloud instance availability under different
deployment topologies. Therefore, the evaluation and comparison of different selected cloud
offerings is possible and helps throughout the decision. This thesis presents an overview of
state-of-the-art revenue models used nowadays on web applications and afterwards specifies
the study and aims to apply the utility concept to evaluate a current application, MediaWiki,
based on real data. Results show that this approach is more complex and differs from the
one considering only the monetary expenses, pursuing a better balance between the possible
business-technology conflict.





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamentals 5

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Cloud Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Pearson’s Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Utility Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Economic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Utility Maximization as Optimization . . . . . . . . . . . . . . . . . . . 13

2.5 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Standard Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 External Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Kereta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.4 Offerings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Related Works 25

3.1 Utility-based Analysis in Cloud Computing . . . . . . . . . . . . . . . . . . . . 25
3.2 Web Application and Wikis Analysis . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 WikiBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Business Application Revenue Models 31

4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



Contents

5 Wikipedia Revenue Analysis 37
5.1 MediaWiki Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Revenue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Financial Data: Donations . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Wikimedia Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Wikipedia Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.1 Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Wikimedia and Wikipedia Metrics . . . . . . . . . . . . . . . . . . . . . 44

5.5 Derived Monthly Revenue Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5.1 Monthly Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Utility Functions 55
6.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Case Study: MediaWiki and English Wikipedia 61
7.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.3 Utility and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Outcome and Future Work 73

Bibliography 75

iv



List of Figures

1.1 Migration of a Web Application to the Cloud Process Scheme . . . . . . . . . 1

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 TOSCA Service Template[PS13] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Winery Components Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Utility Function Example [Joh07] . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Curve Fitting Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Seasonal Decomposition Plot Example . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 DataFrame Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 DataFrame Select Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 DataFrame Selecting Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 DataFrame Indexed by Column . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 DataFrame Column Indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 DataFrame Row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.13 System Design Scheme [Fre16] . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 WikiBench Design Scheme [vB09] . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Business Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 MediaWiki Topology. Based on [SALS15] . . . . . . . . . . . . . . . . . . . . . 38
5.2 Wikimedia Foundation Total Donations . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Wikimedia Foundation Average Donation . . . . . . . . . . . . . . . . . . . . . 39
5.4 Wikim. Foundation Average Number of Donations . . . . . . . . . . . . . . . 39
5.5 Independent Auditors’ Report 30 June 2015 and 2014[KPM] . . . . . . . . . . 41
5.6 Wikimedia Foundation Donations . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Seasonal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Wikimedia Foundation Donations prediction . . . . . . . . . . . . . . . . . . . 47
5.9 January Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 February Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.11 March Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12 April Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.13 May Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14 June Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Viable Topologies of MediaWiki Application . . . . . . . . . . . . . . . . . . . 63
7.2 Average User Satisfaction: Daily and Monthly Basis . . . . . . . . . . . . . . . 65
7.3 Average Transactions per User: Daily and Monthly Basis . . . . . . . . . . . . 66
7.4 Average Users: Daily and Monthly Basis . . . . . . . . . . . . . . . . . . . . . . 67

v



List of Figures

vi



List of Tables

2.1 Pearson’s coefficient interpretation [NST13] . . . . . . . . . . . . . . . . . . . . 11

4.1 Common revenue models per application type . . . . . . . . . . . . . . . . . . 36

5.1 Pearson’s correlation coefficient between donations and metrics . . . . . . . . 46

7.1 Subset of Viable Topologies for MediaWiki Application . . . . . . . . . . . . . 62
7.2 Utility results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii





1 Introduction

1.1 Motivation

Cloud computing has become one important technology nowadays, offering multiple options
for users. It has also advantages in small and large areas, easing the deployment of appli-
cations - or some of its individual components -, reducing initial inversions (e.g. physical
infrastructure) and increasing scalability possibilities. Many service models have appeared
recently and the technological scenery follows the Everything-as-a-Service model (*aaS), as
[SAL16] refers to it. It offers flexibility to cloud users when deciding to migrate an application
but, on the other hand, finding the optimal deployment is more complex.

Moreover, considering the different individual parts of the application highly increases
the possible deployment combinations and widely extends the possible viable topologies.
GENTL, TOSCA standard or Blueprints can be used to describe an application and its
topology, depicting for example its components, interactions and inheritances. [ABLS13]
distinguishes four possible migration types from partially making use of the cloud (types I
- replace component with cloud offerings - and II - migrate some of the application functionality to
the cloud) to completely migrating the application, where Andrikopoulos et al. distinguish
two options: type III - classic migration, migrating the whole software stack, considering the
application as one integral piece - and type IV - cloudify the application as a combination of
different cloud services, with its associated complexity but also flexibility.

Therefore, as there exist multiple paths, it is essential to choose the optimal deployment
decision. This can be made based only on total business expenses of all the needed cloud in-
stances (according to the pricing models of the provider) but other more complex approaches
are suggested. However, utility functions can have application on this issue, allowing any
modelling specified and defined by the user depending on his preferences.

Define 
Specifications & 
Characteristics

Define 
Evaluation

Method

Fulfill
Model
Needs

Evaluation Decision

Figure 1.1: Migration of a Web Application to the Cloud Process Scheme

1



1 Introduction

1.2 Problem Definition and Challenges

Utility-based analysis offers another step on the procedure addressed to optimize an applica-
tion migration to the cloud, by considering other elements together with the cloud instance
cost and allowing the evaluation of different metrics into one axis. User satisfaction, availabil-
ity and adaptation costs, for example, can have an influence on final profitability and should
be taken into account if a deeper approach is needed. However, infinite utility-based analysis
may be applied, depending on the type of application and the factors that users focus on
maximizing.

In the scope of this thesis, utility is used to analyze the trade-off between expected benefits -
and its influences - and economical expenses. Most web applications aim to be profitable and
generate some revenue through its use and, therefore, its business model should be studied.
However, with new technological options and a general increase of connectivity at our society,
new models have appeared and the first challenge is presenting some of the state-of-the-art
and commonly used ones as the base for the analysis. There exist some utility approaches, for
example related to economical decisions such as investments [Tho03] or more technological
issues like provisioning storage systems [STFG08]. This thesis, as [Fre16], follows the path of
applying this theory to cloud migration of applications but there is a need of studying it at a
real case of web application which, intrinsecally to the evaluation process, also involves the
challenge of collecting and analysing real data. MediaWiki has been chosen as the application
under study on this thesis, following studies such as [SAL16] or [SALS15] which also used
this example at their evaluation. By summarizing it, presented challenges are:

• Examine revenue models for web applications.

• Define a utility-based analysis suitable for cloud applications distribution.

• Evaluate a real case, after collecting and selecting real data and studying its influence
on revenue.

1.3 Outline

This document is organized in 8 sections:

1. Introduction: Definition of the problem and objectives for the thesis. Listing of the
thesis structure and some acronyms used in it.

2. Fundamentals: Necessary concepts and study areas for the thesis are clarified.

3. Related Works: Existing works related to the topic of the thesis are covered and com-
pared with this document.

4. Business Application Revenue Models: Presentation of some state-of-the art revenue
models with examples and comparison between their uses at different web application
types.

2



1.4 Abbreviations and Acronyms

5. Wikipedia Revenue Analysis: Examination of Wikimedia Foundation revenue model
and MediaWiki topology. It also presents the used data collection and its evaluation.
Derivation of monthly revenue models for the first semester of the year.

6. Utility Functions: Utility analysis designed for the evaluation of cloud computing
applications at this thesis is introduced and defined.

7. Case Study: MediaWiki and English Wikipedia: Previous implementation is used
to evaluate MediaWiki performance by using the collected real data from English
Wikipedia and the utility analysis previously defined.

8. Outcome and Future Work: Obtained results are discussed and possible forwarding
research areas are stated.

1.4 Abbreviations and Acronyms

This section lists some abbreviations and acronyms that are used throughout this thesis and
may be useful for the reader:

API Application Programming Interface

AWS Amazon Web Services

CaaS Communication as a Service

CMS Customer Management System

CPC Cost per Click

CPI Cost per Impression

CPM Cost per Mile

CPU Central Processing Unit

CRM Customer Relationship Management

CSAR Cloud Service Archive

DaaS Data as a Service

DBaaS Database as a Service

ERP Enterprise Resource Planning

FAQ Frequently Asked Questions

GCE Google Compute Engine

GENTL Generalized Topology Language

GUI Graphical User Interface

3



1 Introduction

HaaS Hardware as a Service

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IBM International Business Machines Corp.

ID Identifier

IoT Internet of Things

IT Information Technology

JDBC Java Database Connector

JRE Java Runtime Environment

M Million (i.e. 106)

MATLAB Matrix Laboratory

NIST National Institute of Standards and Technology

NumPy Numeric Python

PaaS Platform as a Service

PSO Particle Swarm Optimization

QoS Quality of Service

RDS Relational Database Service

RUBiS Rice University Bidding System

SaaS Software as a Service

SciPy Scientific Python

SLA Service-Level Agreement

SQL Structured Query Language

TCP-W Transmission Control Protocol Web Benchmark

TOSCA Topology and Orchestration Specification for Cloud Applications

URI Uniform Resource Identifier Specification

VM Virtual Machine

Wikim. Wikimedia

XML Extensible Markup Language

4



2 Fundamentals

2.1 Cloud Computing

The concept appeared for the first time in 2007 [NDDSD13] and since then, its definition,
characteristics and possible applications have been widely studied. Many definitions of this
emerging technology have been developed in the academic or business areas:

Buyya et al. [BYV+09] defined it as a parallel and distributed computing system consisting of a
collection of inter-connected and virtualised computers that are dynamically provisioned and presented
as one or more unified computing resources based on service-level agreements (SLA) established
through negotiation between the service provider and consumers.

Madhavaiah et al. [MB12] stated that cloud computing is an information technology-based business
model, provided as a service over the Internet, where both hardware and software computing services
are delivered on-demand to customers in a self-service fashion, independent of device and location
within high levels of quality, in a dynamically scalable, rapidly provisioned, shared and virtualized
way and with minimal service provider interaction.

The National Institute of Standards and Technology [BGPCV12] sees it as a model for enabling
convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. They distinguish among 3 service and
4 deployment models that are explained afterwards, and 5 essential characteristics:

• On-demand self-service: Resources required by the consumer are provided as de-
manded without the necessity of human interaction with the service provider.

• Broad network access: Standard mechanisms over networks are used to access the
services available and, therefore, allows it through different devices (e.g. mobile phone,
computer).

• Resource pooling: Resources are shared by multiple users in a dynamic way through a
multi-tenant model but without any (or only at high-level) control of the location of the
resources assigned.

• Rapid elasticity: Automatically resource scaling in and out depending on the increase
or decrease in demand, done in a transparent way so that the consumer does not
appreciate limits on the amount of possible capabilities.

• Measured service: Resources are controlled and optimized conditioned on measure-
ments that depend on the type of computing capability used. Moreover, the usage of
the resource can also be monitored and, consequently, adding transparency to service
providers and customers.

5



2 Fundamentals

2.1.1 Actors

Three main roles are distinguished in [VRMCL08] related to the deployment of cloud systems:
The needed infrastructure is offered by the infrastructure providers to the service providers
as a service, allowing them to transfer computing capabilities, with the associated economical
and versatile advantages. This is the basic structure that allows the second group to offer
through Internet their own software services in the cloud to the service users, closing the
cycle.

On the other hand, [LBRK10] studies the actors of cloud computing from a business perspec-
tive and adds three new roles to the before mentioned actors (named infrastructure providers,
service providers and customers):
Aggregate service providers (or aggregators) are at the same time customers and providers as
they combine already-existing total or partial services creating new ones that are offered to
users. If they aggregate data instead of services, guaranteeing it could be used by various
cloud services, they receive the name of data integrators.
Platform providers offer the foundations for the deployment of applications as they serve as
a service register offered by distinct providers.
Consulting is in charge of identifying services that are suitable to add value to the customer’s
business model.

2.1.2 Service Models

There are mainly three types of service models depending on the service requirements of the
users [BGPCV12]:

• Infrastructure as a Service(IaaS): Offers to the network architects storage, network, and
processing tools, as the base for installation, development and running of software. It
relies on virtualization technologies (being able to have ad-hoc systems [VRMCL08])
although the main disadvantage is the insufficiency of constant performance guarantees
[LBRK10]. In this model, consumers can control the operating system and storage.

• Platform as a Service(PaaS): Offers the means to application developers in order to
deploy cloud applications using tools supported by providers (e.g. programming lan-
guages). The main disadvantage is the possibility of lock-in effects, causing dependency
between the application developer and the used platform provider. In this model,
consumers cannot control the lower layers of the system such as operating system and
storage, but they can shape the applications.

• Software as a Service(SaaS): Offers to the end users applications that rely on a cloud
service. This software can be accessed over internet through a browser or a program
interface. It could even be an aggregation of different cloud services but the end user
will see it as a single one [LBRK10]. In this model, consumers cannot control the lower
layers of the system such as operating system and storage, nor the applications.

6



2.1 Cloud Computing

Figure 2.1: Cloud Computing

Figure 2.1 shows how these mentioned cloud service models are built one over another,
closer to end users as going upwards in the pyramid. It is also shown that the amount of
cloud providers increases as approaching closer-to-user solutions.

However, they are not the unique types as many other have been also studied: For example,
Data as a Service (DaaS) and Hardware as a Service (HaaS) [WTK+08], Communication as a Service
(CaaS) [LBRK10], Database as a Service (DBaaS) [LS10] or Security as a Service [VT14].

2.1.3 Deployment Models

Depending on the user requirements and preferences, different deployment models for the
cloud system can be chosen [BGPCV12]. Each cloud infrastructure has specific characteristics
in the access to the resources. The four deployment models presented are:

• Public cloud: Can be used openly by the general public. It is the most-used model and
the provider has full control over aspects such as policy, value and charging model
[DWC10]. Its management, ownership and operation is done by a combination of
business, government or academic organization [BGPCV12].

• Private cloud: Can only be used by a single organization although its ownership,
management or operation is not necessary done by it. The location of the infrastructure
could be premise or off premise [DWC10]. Optimizing the already existing resources
inside the organization and security worries such as data privacy are two reasons to
choose this model [DWC10].

• Community cloud: Can only be accessed by a specific group (community) that shares
policies, requirements, concerns, values. Its management, ownership and operation
is done by any combination of organizations in the community and a third-party
[BGPCV12].

7



2 Fundamentals

• Hybrid cloud: Composed by a combination of various cloud deployment models which
have been already mentioned so that they remain unique but allow interchanging of
data or applications. Cloud interoperability and standardizations are essential for this
model.

Dillon et al. also mentions another deployment model, Virtual Private Cloud, developed by
Amazon Web Services (AWS), which is between the public and the private solution and offers
a protected link between the IT infrastructure of an organization and the public cloud of
Amazon.

2.2 Cloud Applications

Applications based on the cloud are nowadays being popularly deployed and this should be
done in the optimal way to be able to provide good services to the users. Studying their struc-
ture and individual components may help in that process. Modelling its application topology
can be done through languages or standards such as GENTL, Blueprints or TOSCA.

2.2.1 Topologies

Applications tend to be complex and composed by various individual components that add
functionality to it and are related among them. Portability regarding a cloud application is
essential to avoid the lock-in effect and ease the deployment and management processes.
This could be achieved by using portable, standardized and machine-readable format to
model these components and the relationships established between them [BBKL14]. Some of
the cloud application language topologies will be presented although there exist more (e.g.
Blueprints, AWS CloudFormation, CAMP).

GENTL

GENTL stands for Generalized Topology Language. It models and supports the robust design
of topology of applications based on the cloud and aims to reuse existing topology repre-
sentations in a way that allows to extend them in the future and form complex models by
combinations of other ones [ARSL14].

GENTL defines a metamodel whose basic component is the Topology element and contains a
name and unique ID. From it, we can define the Component elements linked by Connectors
(for a pair) that describe the relationship between them and whose type is represented by
the Connector Classes. Moreover, components can be associated in Groups and form sub-
topologies. This topology language supports also defining Attribute elements for Topology,
Component and Group items that can be of two types : Simple, consisting of a name and a
value; and Composite, sequencing attributes to enable nesting [ARSL14]. GENTL provides

8



2.2 Cloud Applications

Figure 2.2: TOSCA Service Template[PS13]

also the possibility of adding additional (but not directly connected to the topology) infor-
mation by using static or dynamic Annotations. They can be address to machine processing
(automatic), human beings (human-oriented) or a combination of both (hybrid) [ARSL14].

TOSCA

TOSCA stands for Topology and Orchestration Specification for Cloud Applications. It is an OASIS
standard that offers a standardized and definite language that describes the application
components, relations and their management. It adds portability and automated management
to applications and reusability to its components [BBKL14, BBLS12]. Its standarized container
file type is CSAR (Cloud Service ARchive) with an organized structure [PS13].

TOSCA has two different parts [BBKL14, BBH+13]: Topology and management plans. The
first element focuses on the components and the dependencies and relationships between
them as well as describing its management capabilities that are used by the second one to
allow the deployment, configuration, management and operation of the application through
high-level manager tasks. The topology is composed by a graph with two elements: nodes
(representing the components) and connections between them (representing the established
relationships, e.g. ’installed on’, ’deployed on’, ’connects to’) whereas management plans
have an external message as the starting point and calls management operations related to the
nodes, which depend on the type of elements used in the topology. The metamodel in TOSCA
(defining the structure and management of the application) is composed by three conceptual
layers both for nodes and relationships: Types, templates and instances [BBKL14].

9



2 Fundamentals

Types Templates Artifacts

REST Interface

Importer Exporter

R
EP

O
SI

TO
R

Y

GUI GUI GUI HTML5 or JavaScript

Java or JSP

JAX-RS

Java

Databases or

File System

Figure 2.3: Winery Components Scheme

OpenTOSCA Winery

Winery is an open source modelling tool of cloud applications based on TOSCA standard,
simplifying the development of CSARs through a web browser (i.e. Chrome and Firefox). It
divides the TOSCA metamodel in two groups managed by: (1) the Topology Modeler and (2)
the Element Manager, and stores all the data in (3) the Repository [KBBL13]. (1) allows a sim-
ple and visual graphical modelling of applications through a GUI whose element types can be
configured or created using (2). However, Winery does not cover a TOSCA runtime environ-
ment and, therefore, does not support the instantiation of the application. For that purpose,
OpenTOSCA could be used [KBBL13]. Additionally, there could exist a BPM4TOSCA plan
modeller that supports the creation of BPMN models with required elements and structures
by TOSCA plans. Figure 2.3 shows the general component organization1.

2.3 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient (r) represents the statistical linear relationship between two
variables (X and Y). Its numerical values range between -1 and +1 and do not have units.
This coefficient measures the type of relationship and its strength:

1. To measure the type: The sign of the coefficient shows the type of the relationship:

• Positive sign (r > 0), a direct relationship is established (i.e. when X is high, Y too
and when X is low, Y is too).

• Negative sign (r < 0), an inverse relationship is established (i.e. when X is high, Y
is low and vice versa).

1based on https://projects.eclipse.org/projects/soa.winery

10



2.4 Utility Theory

Correlation Interpretation

0 ≤ |r| ≤ 0.2 Very Weak

0.201 ≤ |r| ≤ 0.4 Weak

0.401 ≤ |r| ≤ 0.6 Moderate

0.601 ≤ |r| ≤ 0.8 Strong

0.801 ≤ |r| ≤ 1 Very Strong

Table 2.1: Pearson’s coefficient interpretation [NST13]

2. To measure the strength: The intensity of the link is calculated with respect to the
absolute value of r. The closer |r| to 1, the stronger the relationship is. See table 2.1.

2.4 Utility Theory

Used in both economics and decision theory,[STFG08] defines utility as ’a value that represents
the desirability of a particular state or outcome’. [LL11] sees it as ’the satisfation that each choice
provides to the decision maker and for [Joh07] it is ’the perceived value of a good’. Utility theory
is a transversal area to mathematics, economics and psychology that studies quantitatively
preferences under uncertainty [RYF15b]. It assumes that maximizing utility principle is the
base for making decisions [LL11].

2.4.1 Overview

As [Joh07] explains, according to modern psychology, the perception of wealth is not fixed.
The stated example is the difference in value that £1 would mean for a beggar and for a
millionaire, as the wealth of the first one may highly increase whereas for the second one
will not make any difference. Utility functions try to establish the relationship between the
perceived and the real value and work over a non-empty and comparable set X of elements
[Fis88].

The mostly used relation in utility theories, as well as in this thesis, is the asymmetric binary
relation [Fis88]� on X. With x, y ∈ X, x � y indicates that x is preferred over y. Moreover, the
indifference ∼ (no strict preference) and the preference-indifference relation � are defined.

Most utility theories assume the following four characteristics [Joh07, Fis88]:

Independence. Utility functions are independent between them as they are random variables.
Completeness. All possible outcomes are associated to a utility.
Transitive: If x � y and y � z, then x � z.

11



2 Fundamentals

Figure 2.4: Utility Function Example [Joh07]

Continuity. When continuous wealth.
Utility are also increasing functions, fulfilling

u′(x) > 0

as more wealth is more desired. However, as in the beggar example, adding wealth has more
value when the previous one was lower (decreasing marginal utility) [Joh07]. Figure 2.4
shows how the same increase in x (4x) implies a lower amount of utility increase. Therefore
(as risk-aversion characteristic),

u′′(x) ≤ 0

Moreover, if � is assumed to be transitive and X is countable, there exists a real-valued
function u on X satisfying:

x � y⇒ u(x) > u(y) f or ∀x, y ∈ X

Some common and simple examples of utility functions are

u1(x) = 1− exp−αx with α > 0

u2(x) = log x

But more complex utility functions can be generated depending on its use.

2.4.2 Economic applications

Utility has been used in many academic papers related to different topics such as scheduling
batch tasks [IGC04], medical cases (as [PSW80], that studies the application or avoidance of
prescribing coronary artery bypass surgery through utility theory) and of course in more
economical challenges, as finding the optimal financing decision, consumption and invest-
ment strategies maximizing the consumption utility [Hak70]. More related to the topic of
this document, utility functions were used in [WTKD04] to achieve the self-optimization in
autonomic computing systems. However, an important use for utility theory was made in
economics, for example in taxations [Sti50].

12



2.4 Utility Theory

Risk-Aversion

From utility theory, decisions under uncertainty also consider the different attitudes by people
towards risk. This can be expressed by the shape of the utility function. The fundamental
concept of risk aversion is that the decision-maker would rather prefer the outcome of a
non-degenerate lottery over the lottery itself [Bar07]. This is stated by Jenson’s equality, with
concave utility function, that fulfils for any random variable X that

E[u(X)] ≤ u(E[u(X)])

Papers such as [RYF15a], [Bar07], and [ZL11] have followed this line and it is also used in
investment decisions (e.g. [Tho03]).

Revenue and Cost

However, this paper aims to focus on the revenue and cost concept definitions through utility
functions. One of the advantages this method offers is the possibility of combining different
axes of interest into a single utility value.

Lin et al.[LL11] apply utility theory to a real case: maintenance and repair decisions regarding
the pavement of a city of Taiwan. They aimed to optimize the decision of budget allocation
combining different utility factors (such as pavement quality, people’s opinion and traffic
volume) and minimizing cost.

Strunk et al.[STFG08] study the case of using utility functions in a provisioning storage
system situation. Then, the obtained results are used to improve the storage system config-
uration. The generalized form of the utility function is taken to be a sum of independent
sub-expressions and more specifically, if it is related to revenue and cost, the following general
expression is reached

Total_Utility = Revenue− Cost

Therefore, the total utility of the system is found to be the subtraction between the revenue of
the system and the cost associated to it (considering the cost as positive).

2.4.3 Utility Maximization as Optimization

Using a standardized topology language that offers portability between different cloud
systems (e.g. TOSCA) will ease the deployment of applications. Moreover, finding their
optimal distribution is essential to be able to reduce costs from execution and data transfers as
the pay-per-use model is commonly applied in cloud computing and due to the vast amount
of solutions available at the market, some challenges may arise.

Pandey et al. approach this topic focusing on reducing the total execution cost of applications
by using the Particle Swarm Optimization (PSO). They study this meta-heuristic technique as
the solution for dynamically schedule workflow applications [PWGB10].

13



2 Fundamentals

Focusing on the migration configuration of an application to the cloud, if it has not been
developed particularly for the cloud (cloud-native) but it should be adapted in some way to
be suitable for it (cloud-enabled), an analysing and optimization of the chosen distribution
is important [ABLS13]. Designers have to work both on how the distribution should be
done and which solution of the market could lead to the best performance. In [ARXL14], the
authors focus on cost-efficiency and propose a process consisting of four ordered steps:

(1) Application modelling, determine the topology of the application without taking into account
any information regarding cloud offerings (it could be used an specific language for this,
e.g. TOSCA, but also any other option that later on could be translated to one). (2) Mapping
to offerings, possible offerings - and, therefore, possible providers- are selected through an
identification process at the desired level (entire topology, sub-topology or component) using
the application topology graph obtained after (1). (3) Cost calculation, obtains the cost of each
of the possible offerings by using the result of the previous stage (called enriched topologies).
The combination of the enriched topologies with the addition of the results of (3) leads to a
group of cost-annotated topologies. The final step is the (4) optimal topology selection based on
the results of (3), and choosing the best solution for a concrete usage profile. If different usage
profiles are used, step (3) is repeated.

2.5 Python

Pyhton 2 is an open-source programming language (whose name is inspired in ’Monty
Python’) used throughout this thesis for different tasks such as data analysis and plots.
Created in the early 1990s at Stichting Mathematisch Centrum in the Netherlands, this high-
level, interpreted, interactive and object-oriented 3 language focuses on clear user syntax. One of
its particularities is the strict role of indentation, as the interpreter of the code will divide it in
blocks depending on the indentation. This is opposed to the more ’aesthetic’ role that it has
in other programming languages such as Java.

2.5.1 Standard Libraries

[Fou16a] collects the built-in C modules that form the standard library that Python software
comes along with.

One of the contained modules is csv, that allows users to read and write in CSV (Comma
Separated Values) format, which is one of the most common for databases. The reading
method implemented in the module is csv.reader(csvfile, **fmtparams and it can be used after
opening the csv file. For that, the open(filename, mode) is used. Required ’mode’ attribute is ’r’
and ’w’ for reading and writing modes respectively but they are not the only ones. Moreover,
writerows() method is used to write a complete row. There exist many optional parameters for

2Reference manual at https://docs.python.org/3/reference/index.html
3https://docs.python.org/3/license.html

14



2.5 Python

the csv.reader() and csv.writer() functions. Therefore, checking the documentation for more
information is advised.

2.5.2 External Libraries

Python language also allows importing diverse packages and modules to be able to extend
the resources and possible usable functions. Some examples are exposed:

SciPy

SciPy4 is a Python group of open-source software for science, mathematics and engineering.
Some of its core packages are SciPy library, IPython, Sympy, pandas, NumPy and Matplotlib.
The last three of them were used in this thesis and, therefore, are explained in more detail
afterwards.

One of the modules contained in scipy is optimize where the function curve_ f it() is included.
This function uses the non-linear least squares method to fit a defined function f to some data
passed as a parameter. Its definition according to the documentation5 is:

scipy.optimize.curve_ fit(f, xdata, ydata, p0=None, sigma=None, absolute_ sigma=False,
check_ finite=True, bounds=(-inf, inf), method=None, jac=None, **kwargs)

The main (and compulsory) parameters are:

f is the model function to fit the data to. It should be defined so the first argument
corresponds to the independent variable and the parameters to fit as separate arguments.

xdata sequence or array containing the data of the independent variable.

ydata dependent data (f(xdata,...).

Moreover, another important parameter of the function is p0. It represents the initial values
for the parameters fitting. It is an optional parameter. If not specified, 1 is taken as initial
value for all. This method returns:

popt Array containing the guessed optimal values for the parameters.

pcov Estimated covariance matrix of popt.

In this method, parameters are iterated and calculated to minimize the sum of the squared
error of f (xdata, ∗opt)− ydata. One example of use when trying to fit some data to a cosine
function would be:

4https://scipy.org
5http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_ fit.html

15



2 Fundamentals

0 1 2 3 4 5 6 7 8
2

1

0

1

2

3

4

Original Data
Fitted Data
 y=2.66*cos(x)1.25

Figure 2.5: Curve Fitting Example

1 from scipy.optimize import curve_fit

2 from numpy import cos , linspace

3 import matplotlib.pylab as plt

4

5 def cosine(x, a, b):

6 return a*cos(x)+b

7

8 xdata = [0.27, 0.37 , 1, 1.83, 2.8, 2.95 , 3.1, 4, 4.2, 4.28, 4.92 , 5.74 , 5.

88 , 6, 6.67, 8]

9 ydata = [3.99, 3.43 , 2, 0.51, -1.31 , -1.46, -1.4, -0.48 , -0.01, 0.16 , 2.32

, 3.6, 3.81, 3.81 , 3.84 , 0.9]

10

11 popt , pcov = curve_fit(cosine , xdata , ydata , p0=(2.5, 1.2))

12

13 x_fitting = linspace(0, 8, 20)

14

15 plt.plot(xdata , ydata , 'ro', label='Original Data')

16 plt.plot(x_fitting , cosine(x_fitting , popt[0], popt[1]), '--',label='

Fitted Data' + '\n y=' + str(round(popt

[0], 2)) + '*cos(x)'+ str(round(popt[1]

, 2)))

17 plt.legend(loc='best')

18 plt.show()

Figure 2.5 shows the result of both the original data (red dots) and the fitted cosine function
(blue lines). NumPy and Matplotlib libraries were also used in previous example. They are
mentioned in sections 2.5.2 and 2.5.2 respectively.

16



2.5 Python

Figure 2.6: Seasonal Decomposition Plot Example

NumPy

This popular Python library for scientific computing6is fundamental because it provides
functions and data structures whose high-performance is not provided with the standard
library. One of the main features that this Python library offers is the ’powerful N-dimensional
array object’ (ndarray) as well as operations on them in an efficient way. The ndarray is a
multidimensional container of elements that are equal in type and size, that can be accessed
and modified.

Statsmodels

Statsmodels7 package comprises a set of statistical functions, based on R functionalities, that
increases the possibilities of Python programming. Furthermore, combinations with other
modules are possible (e.g. R writing style, ndarrays -see section 2.5.2- or DataFrames - 2.5.2-
are supported).

Contained function seasonal_decompose (statsmodels.tsa.seasonal.seasonal_decompose) was used
through this thesis and is therefore explained. Based on R function decompose, aims to split
a seasonal time series function in three sub-functions. Figure 2.6 shows an example of the

6http://www.numpy.org/
7http://statsmodels.sourceforge.net/0.6.0/index.html

17



2 Fundamentals

result. Observed function is decomposed into the sum of the seasonal component, the trend that
the function follows and the residual function, so that the studied function is obtained.

Pandas

Pandas8 is an open-source Python library that adds high-performance data analysis function-
alities in Python, avoiding the necessity to change to another more specific programming
language (e.g. R). It was developed on the basis of NumPy library.

One of its main elements is the creation of two new data structures: the Series and the
DataFrame object. Its common characteristic is the allowance of integrated indexing but they
also have a different point. The first one will be used as a one-dimensional structure for
sequences whereas the second one is designed for more dimensions. Panda’s DataFrame is
similar to the ndarray structure but for example, each column could have a different data
type whereas that is not possible with a ndarray.

An example is used to illustrate this element. The common creation of a DataFrame is done
by passing to its constructor the required data. In the following example, that data is a set of
columns composed by a key (age, name and surname) and some values. After the importation
of pandas package, the structure can be generated just by calling DataFrame constructor and
passing the desired data.

1 example_data = {'age':[18, 21 , 30 , 9], 'name':['John', 'Laura ', 'Mark', '

Anne'], 'surname ':['Green ', 'McKinsey ',

'Jones ', 'Smith']}

2 data_fr = pd.DataFrame(example_data)

Then, the result of printing the object is represented in figure 2.7 (prints will represent the
columns in alphabetically order -with respect to their labels- from left to right). It also shows
the column and row indexation of this object. Another option when creating this structure is
specifying which columns of the data element the user wants to include in the DataFrame.
Figure 2.8 would be the obtained printed output.

1 data_fr = pd.DataFrame(example_data , columns=['age', 'surname '])

Moreover, any row indexation can be chosen if the user prefers it over the default one (from 0
to N − 1, being N the number of rows). For that purpose, the optional attribute index of the
constructor should be used. An example using ordinal numbers would be (see figure 2.9):

1 data_fr = pd.DataFrame(example_data , index=['first ', 'second ', 'third', '

fourth '])

8http://pandas.pydata.org/

18



2.5 Python

Figure 2.7: DataFrame Example Figure 2.8: DataFrame Select Columns

Figure 2.9: DataFrame Selecting Index Figure 2.10: DataFrame Indexed by
Column

If we want to choose a specific column and index by it, we can do the following (figure
2.10):

1 data_fr = pd.DataFrame(example_data , index=example_data.get('age'),

columns=['name', 'surname '])

Indexing by column is done in an intuitive way by using the column label as an attribute of
the DataFrame object. The return object is a Series data type as seen in figure 2.11:

1 print(data_fr.age)

If a row or a set of rows wants to be selected, ix attribute is used with the row index. Example
of the code and the result (figure 2.12):

1 print(data_fr.ix[1])

Panda’s package also offers support for reading and writing with csv files. The basic reading
method is pandas.read_ csv(filepath_ or_ buffer, * * opt_ params) and the corresponding writing
one is pandas.DataFrame.to_ csv(filepath_ or_ buffer, * * opt_ params). There exist the option of

Figure 2.11: DataFrame Column Indexation

19



2 Fundamentals

Figure 2.12: DataFrame Row

specifying a column as indexation for the DataFrame obtained when reading:

1 data_fr = pandas.read_csv('file -to -read.csv', index_col='Label -of-chosen -

column '

Another used functionality offered by this method is date parsing to obtain datetime instances.
For that, a date parser should be created depending on the receiving value structure, and
adding two optional parameters to the function call:

1 data_fr = pd.read_csv('file -to-read.csv', parse_dates=True , date_parser=

created_dateparser , index_col='Label -of

-date -column -to-parse ')

If parse_ dates’ value is ’True’, index is parsed. However, there is also the option of specifying
a set of columns to be parsed.

Matplotlib

Matplotlib9 is an open-source Python-based 2D plotting package (including 3D charts). It
eases the generation of various kinds of plots such as bar charts, histograms, polar charts
or scatterplots [H+07]. With a philosophy of being able to create simple plots with a few
commands, matplotlib has a vast range of plotting possibilities depending on the user re-
quirements.

Pyplot is a sub-module included in matplotlib package that provides a framework so that its
use is similar to MATLAB10. The basic functions of pyplot are:

1. pyplot.figure(): Creates a figure object.

2. pyplot.plot(): Plot required data. Options allow to personalize the visualization adding
options such as choosing the color, width and type of used line.

3. pyplot.title(): Set a title for the plot.

4. pyplot.xlabel() and pyplot.ylabel(): Set x and y axis shown labels respectively.

5. pyplot.xlim() and pyplot.ylim(): Set or get x and y axis limits respectively.

9http://matplotlib.org/
10http://es.mathworks.com/products/matlab/

20



2.6 Kereta

6. pyplot.label(): Displays the label of each plot with the corresponding text as defined by
the user in the arguments of pyplot.plot() function.

7. pyplot.show(): Displays the figure(s).

2.6 Kereta

Kereta is a framework developed by Frech in [Fre16] that can be used as a supporting tool to
perform the utility-based evaluation.

2.6.1 Overview

The growing popularity of Cloud Computing and its applications has motivated an increase
in the number of market offerings related to it. Some well-known companies that have taken
part in the cloud business are Amazon, Google, IBM and Red Hat. However, the wide range
of possible cloud service and deployment models (see sections 2.1.2 and 2.1.3 respectively
for more reference on this) together with the high amount of organizations in the sector have
led to a vast solution spectrum. Users facing cloud computing ’world’ that want to deploy an
application on the cloud are challenged to find the optimal topology solution balancing costs
and performance.

That is the motivation of [Fre16]. His approach focuses on the evaluation of the different
deployment topology options for applications on the Cloud, following a utility-based study
method. As a result, a decision support framework, Kereta, was designed.

2.6.2 Utility Function

[Fre16] follows a utility-based analysis aiming to evaluate different topology deployments for
business applications on the cloud. It defines the utility function U as:

U(Ti
µ, W, R, t) = revexp − cost

where:

t is a definite time interval,

Ti
µ refers to the µ-topology under evaluation,

W is a set of m application workloads at T,

R is a set of requirements r0, r1, ...rn ∈ R,

revexp measures the expected revenue of the application and

cost measures the costs of the distribution.

21



2 Fundamentals

Term revexp is calculated as the definite integral of the revenue per time unit on interval t:

revexp =
∫ tmax

tmin

rev<unit>dt

where

rev<unit> =
m

∑
j=1

p(wj, t) ∗ user_av(t) ∗ tpu(wj) ∗ rpu(t) ∗ sat(Ti
µ, t) ∗ availab(Ti

µ, t)

p is the probability of receiving a concrete workload wj at t,

user_av is the average number of users at t,

tpu represents the average number of transactions per user,

rpu measures the average application revenue per user,

sat is the average user satisfaction of Ti
µ at t and

availab values the availability of Ti
µ at t.

Term cost is calculated as the sum of costs of a concrete distribution Tµ and the adaptation costs
to ensure satisfying the set of requirements R at time subintervals {t0, t1, ..., tk}, originating
topology Ti,j

µ :

cost = cost f ixed(Ti
µ, t) +

k

∑
q=0

costadaptation(T
i,q
µ , W, R, tq)

2.6.3 Architecture

The system developed by Frech follows the scheme of figure 2.13. As it can be seen, Kereta
module is composed by three elements: (1) a repository, (2) a calculation element and (3) a
MySQL database enabled through a JDBC (Java DataBase Conector driver), as well as an
interface between the module and the previous Winery modeling tool ([KBBL13]).

Supported resources, explained in 2.6.4, are managed through the repository and are used
afterwards by the calculation component in order to perform the computation of the defined
utility. Both elements can be accessed through a REST-API interface. It adds the HTTP
methods (GET, PUT, POST and DELETE) and return a status code with an XML representation
in case an error occurred.

On the other hand, the database is used to persist resources by using different tables. Each
entry is composed by fields, its corresponding data type and description. Some resources
have also a key (that can be private or foreign).

Moreover, a suitable GUI to Kereta is provided by the extension of Winery modelling tool.

22



2.6 Kereta

Figure 2.13: System Design Scheme [Fre16]

2.6.4 Offerings

Kereta’s repository allows management of resources with a REST-API. Implemented resources
are divided in five groups each one containing one or more elements: (a) Application,
containing application-specific topology, application-specific components and requirement
resources. (b) Distribution, composed by application distribution, application sub-graph
and performance fields. (c) Utility function, including themselves and its sub-functions. (d)
Function, constituted by function and parameter resources. And (e) type, covering application
type, requirement type, function type and data type.

Users can make use of HTTP-methods through the API for each one of the previously
mentioned resources (obtaining as a result a XML-document of messages or resource ’s
representation when needed): GET (returns a group of resources or the outcome value of a
function), PUT (is not allowed to change resource properties related to their URIs), POST
(creates a resource regardless of its level as it can be rooted or nested) and DELETE (eliminates
single resources - and its nested ones). Moreover, the repository implements a search function,
allowing the reusability of functions and utility functions (which can also be cloned) and
the evaluation of the previous mentioned resources together with sub-functions by key
assignments specified at the URI, that will be passed to the calculation module. In it, function
formula is transformed to a processable tree representation by reverse polish notation method
(reached through Shunting-Yard Algorithm) and the result is calculated.

The calculation module supports complex formulas, that can be composed by: sums, subtrac-
tions, multiplications, divisions, exponents, integrals, roots, factorials or boolean operators
(not- ¬ -, or- ∨ -, xor -⊕-, and -& -, lower and bigger than -< and > respectively-, equal -=-,
and the combination of these last pair of operators -≤, ≥ -). What is more, sine, cosine and
tangential functions can be used, as well as minimum and maximum comparison.

Moreover, the parser is also able to manage if and else statements, parenthesis (of both types
-() and [] ) and e and π constants.

23



2 Fundamentals

24



3 Related Works

3.1 Utility-based Analysis in Cloud Computing

Utility-functions have been widely used in cloud computing analysis: for instance, to forecast
possible workload to ease optimal resource auto-scaling [RDG11], to help calculating possible
guaranteed Quality of Services (QoS) in cloud environments [XP09] or related to mapping
cloud resources to workflows [PDAL+09].

Paton et al. aim to maximize the utility, which they define in two ways. Related to response
time:

UtilityRT
w (w, a) =

1
∑i∈w PRTw(i, ai)

And related to profit:

UtilityPro f it
w (w, a) = ∑i∈w(Income(i, ai)− EvaluationCost(i, ai))

In these formulas, w is the group of workflows, a are the assignments for instances i in w,
ai is the workflow assigned to instance i and the predicted response time of the assigned
workflow is PRTw. Moreover, evaluation of instance i with assignment ai leads to assets
received due to it (Income) -that also depends on PRTw - and costs of the resources used in
the evaluation (EvaluationCost). This last definition of utility function is similar to the one
applied at this thesis, as a trade-off between revenue (income) and cost (evaluation cost),
although [PDAL+09] analysis is based on workflows.

Minarolli and Freisleben’ approach [MF11] also proposed a maximization of utility functions,
in this case, with the goal of finding the optimal resource allocation for virtual machines
under an Infrastructure as a Service model (see section 2.1.2). This is done by the local node
controller. The defined theoretical utility function from a virtual machine i is a linear function
directly proportional to the paid money per CPU allocated resource unit (αi, measured in
$/% ) and the CPU percentage of allocated resources (called Si by the authors):

ui = αi ∗ Si

However, in practice they had to adjust this formula and add a term SOi referencing the share
of CPU needed for the implemented local node controller, resulting in the formula:

ui = αi ∗ (Si + SOi)

They also defined a utility function (Nj) per node j (n in total) as the sum of utility functions

25



3 Related Works

of each virtual machine allocated on the node (m in total) minus the cost of the node (Cj):

Nj =
m

∑
n=1

(Ujn)− Cj

The total utility function of the system (that should be maximized) then is given by the sum
of nodes’ utilities:

utotal =
n

∑
t=1

Nt

Or, written using the cost-performance previous relation:

utotal =
n

∑
t=1

s=m

∑
s=1

(Uts)− Ct

On [ZWS06], Zhu et al. also use utility functions but in this case to express the desire of some
QoS metrics y. The utility function of a service h(y) is defined as a trade-off between the
payoff in a service level agreement (z(y))and the cost function (c(y)):

h(y) = z(y)− c(y)

Approach in [Fre16] used this functions to allow analysis of cloud distributions, resulting
in the implementation of Kereta framework increasing the analysis in revenue and cost.
This document defines the utility as a balance between the expected revenue (studying the
trends of last years) and the cost derived of the cloud migration, both considering direct and
adaptation costs. One advanced step is that not only the strict revenue is considered but also
some possible influences (such as user satisfaction) are added to the analysis. However, in
this thesis the definition of the terms aimed to be defined concretely and linked to real data
measurements.

3.2 Web Application and Wikis Analysis

Web applications are constantly under development and its complexity has increased sig-
nificantly as the number of available tools and resources for application developers rises.
Moreover, improvements are highly valued and testing is one of the methods that can be
used for it. [MJ98] already underlined the importance of making performance analysis but
also its arduousness. [BMT05] agrees with that fact and states some value-add elements for
web applications such as speed (updates and technology improvements), complexity and a
mature design.

However, other area of testing and study closer to this thesis is the one that aims to find the
optimal application distribution (regardless if it is for performance or economical reasons).
For example, well-known Amazon started as a rigid application that ran only on one server.
Nevertheless, the growth on popularity led to manageability problems and they ended up

26



3.2 Web Application and Wikis Analysis

changing its architecture into a distributed and decentralized system [Gra06] because of
scaling advantages and easy service introduction.

[UPVS07] is also developed in this area but focuses its study on large-scale wiki sites like
Wikipedia. It remarks the advantages of distributed systems and propose a new architecture
that involves computer resources of supporters of this wiki, willing to host part of Wikipedia
and becoming collaborative nodes (other distribution strategies for wikis have also been
studied, e.g. peer-to-peer [Mor07]). The load is balanced on all of them although each page
is located only on a single node in a dynamic way so its location can change. This leads to
a redirection routing mechanism to the correct node that is managed by distributed hash
tables. Moreover, this collaborative and distributed organization also has drawbacks and
risks that should be faced: node failures -and recoveries- (could damage the integrity of
the complete system) and security (guaranteeing that attacks from not reliable nodes are
minimized). A method to evaluate the page distribution according to the load handling is
requested by [UPVS07] approach. Assuming only limitations on disk space and bandwidth,
the cost function reached is:

c(N, P, W) = ∑
p∈P

[
α

(
i(p, W)

itot(N, W)

)j

+ β

(
o(p, W)

otot(N, W)

)j
]

i(p, W) represents in bytes the size of incoming requests for an specific page p during time
window W and the maximum able to receive is itot(p, W). The same reasoning follows
o(p, W) and otot(p, W) but for outgoing bytes due to requests of page p in window W. α and
β constants are used to weight the effect of each term and j is a constant greater than 1. It
is directly proportional to the number and usage of resources needed by pages hosted in a
node but inversely proportional to the resources provided and user’s noticed performance.
Urdaneta et al. also consider constant load measuring at the nodes to evaluate if a page
movement is necessary.

Another study related to Wikipedia analysis is [UPVS09]. This approach adds realistic
workload at the evaluation and states the importance of a good combination of aspects
including distribution and replication (i.e. popular articles should be replicated in more
servers as they are more likely to be read and updated). The data used through [UPVS09] is a
trace of 107 days (between years 2007 and 2008) which contains a sample (10%, 20.6 billion
HTTP requests) of Wikipedia’s real traffic. After noticing that almost a 50% (45.05) of the
previous workload was addressed to the English version of Wikipedia (en.wikipedia.com), the
authors decided to evaluate a set of workload data of this wiki too. In addition to the address
difference, the general analysis includes requests of all types (i.e. page creations, editions or
reads; uploaded media; static file; cache maintenance; etc.) The results show that the three
most frequent type of requests are addressed to: (1)static files, with a 24.04%; (2)uploaded
media files, with a 21.88%; and (3)image thumbnails, with a 18.7%. [UPVS09] states that this
types are the most popular due to the fact that they are usually embedded in wiki pages
and, therefore, requested when its reading is performed. Old versions of Wikipedia pages
are accessed with a frequency of only a 6% and [UPVS09] recommends storing them in a
separate document from the last version due to the low frequency access so they can be
located in nodes having low bandwidth. The authors also classified the pages according

27



3 Related Works

to their managed workload (and, consequently popularity), offering different strategies (i.e.
replication or load balancing) for each group.

3.2.1 WikiBench

Benchmarks are used also in researches on how to improve web application hosting systems.
One example is RUBBoS. However, scalability is not achived as it can only be run on one
system. To avoid that, and other limits of similar tools, WikiBench1 was created. It is a
developed software at VU (Vrije Universiteit) University of Amsterdam by Guillaume Pierre
and based on MediaWiki that aims to be a testing tool for distributed web applications. Using
real (although anonymized) Wikipedia access traces, it is able to generate close-to-reality
workload with scaling advantages that other benchmarks such as TCP-W or RUBiS (auction-
based) cannot offer. As [vB09] explains, apart from WikiBench application itself, this software
is constituted also by TraceBench (which is in charge of trace processing) and post-processing
tools (i.e. scripts responsible for analysing log files of the application and represent the
obtained results).

The needed meeting requirements of WikiBench are: (1) realistic generated workload, (2)
no-benchmark-size limits on its use, (3) consistent results when reproducing, (4) scaling
ability, (5) configurable traffic settings and (6) portability and package-based (i.e. containing
needed snapshots). An overview of its design is seen at figure 3.1. There exist three different
areas: a controller, a worker node (or a set of them) and the tested system. The first one,
after TraceReader processing (i.e. reducing traffic intensity but keeping characteristics such
as reading/editing page ratio), organizes the distribution of work amount (POST and GET
requests) of each node and coordinates the system through plain text messages. In addition,
traces are sampled randomly but maintaining the realism.

This software can be useful in various computing research fields such as performance or
capacity planning analysis.

3.3 Conclusion

There are studies about multiple ways of testing and distributing an application in a cloud
system but the advantages of utility theory give another approach when considering different
distributions for applications. WikiBench tool has many pros but the most significant one is
its ability to offer testing with real data from Wikipedia, increasing the accuracy of the results,
which can be used to improve the systems.

Moreover, utility theory offers the possibility of evaluating diverse metrics and adds flexibility
as its design depends on the elements to maximize. Therefore, multiple definitions can be
made depending on the desired evaluation. Basing it on the economical perspective, which
is in fact the main objective in many cases, but taking into account other elements which

1http://www.wikibench.eu/

28



3.3 Conclusion

Figure 3.1: WikiBench Design Scheme [vB09]

can influence the final result, allows deepening at the study. It can rely on already existing
tools, such as Nefolog (for cost calculation of different deployment configurations)[XA+13]
or Kereta (for utility calculation), easing the process. Furthermore, a case study of a real web
application can improve and support forwarding research on this area.

29



3 Related Works

30



4 Business Application Revenue Models

In general, businesses and organizations’ abstract methodology consists of producing an
output with an input in a way that this process generates some benefits (i.e. the revenue
overtakes the costs of the process) and meet customers’ needs as shown in figure 4.1. The
following formula summarizes the conceptual idea:

Net_income = Revenue− Cost

4.1 Concept

A revenue model denotes a plan on how an organization will generate profits, earn income and
get a higher return on investment, by making the most of its sources. They are considered
essential for good business organization, helping to determine user segments and value their
own potential.

There exist a wide range of models although the target sector, the type of company and
corporate culture and policies are important when deciding which revenue model to follow.
Lifetime of enterprises can also be relevant in that decision. For instance, mainly start-ups’
revenue models are created in a long-term basis (i.e. the time plan is longer than one year) as
their first objective goes towards a growth instead of generating revenue. One good example
of this is the well-known Google, which waited two years after its company’s creation before
having plain text advertisements on the webpage showing user’s search results.

4.2 Examples

Some examples of revenue models used nowadays in web applications are:

Advertising

This is one of the most common revenue models for web applications. The process consists
of charging other companies for hosting and promoting their advertisements. There exist
different types. The first one to appear is cost per impression (CPI). In this case, revenue
depends on the times an ad is displayed. Generally:

Revenue =
N

∑
n=1

τn ∗ δn

31



4 Business Application Revenue Models

Transformations

INPUT(S)

OUTPUT(S)BUSINESS- Material
- Capital
- Equipment
- Knowledge
- Time
- Labour

- Goods
- Services

COST REVENUE

INPUT(S)

BUSINESS

COST

Figure 4.1: Business Process

where N is the total number of ads displayed, τ is the cost per impression and δn the total
number of impressions for ad n. There exists also a version called cost per mile (CPM), whose
reasoning is the same as previous CPI but calculated per a thousand impressions.

There is a variant of this model called cost per click (CPC), where the company owning the
ads will pay the one hosting them depending on the number of times a user clicked on the
advertisement. Therefore, another way of expressing it:

Revenue =
N

∑
n=1

bidn ∗ η

where N is the number of total advertisements hold on a web, bidn the fixed amount of money
per click agreed for ad n and η the number of clicks on that advert. Well-known Google,
through AdWords1 follow this model. However, as [Eva08] explains, the basic fee in both
options (τ and bid) depends on many factors such as:

• Size: Dimensions of the ad can also have an influence on the price.

• Location: Depending on the place where the ad is displayed. More visible ones would
be charged higher.

• Number of visitors: Popularity of a page can cause changes on the fee (i.e. more visitors
increase the basic price).

User subscription

In this model, revenue is obtained through a (usually monthly) charge in exchange of the
possibility of using the web application. There exist some variants in this model that may

1https://www.google.es/adwords/

32



4.2 Examples

change the subscription price but the main characteristic is that users are, independently of
the amount of money, always charged for the service. The most common are:

1. Fixed subscription: The subscription fee is fixed and the same for all users. One
example of this method would be SeeSo2, a web application hosting comedy videos,
with a prearranged subscription charge for its users. If the web application has η users,
revenue is stated as:

Revenue = f ee ∗ η

2. Variable subscription: There exist some subscription packages, associated to different
features (higher fee is linked to more exclusive ones) such as higher service speed,
time duration, number of available options or higher storage capacity. One example
of this model would be GraphicStock3, that offers three plans (monthly, annual and
premium) which are differentiated among them in terms of time-limited duration of the
subscription and the range of options available to the user. Revenue can be calculated
as:

Revenue =
N

∑
n=1

pricen ∗ ηn

where N is the number of total subscription plans available at the application, pricen is
the price of package n and ηn the number of users that chose option n.

3. A la carte subscription: Each feature or option of the web application has its inde-
pendent price and user is charged for the ones chosen, having the opportunity of a
completely personalized configuration and a wide range of possible combinations. One
example of this model would be CreativeMarket4, where users can download design
content from many artist, paying per download its associated amount. The general
formula would be:

Revenue =
P

∑
p=1

pricep ∗ ηp

where P is the total number of products or features offered, pricep is the cost of product
p and ηp the number of users that have bought that characteristic, service or product.

Transaction fees

Revenue is commission-based, obtained for the operator through enabling or executing some
transactions (e.g. selling a product). This operator offers another companies a platform to
perform their transactions. That companies act as the same time as clients (of the market
provider) and sellers (regarding general public). Amazon and eBay are examples of this model
[Rap03].

2https://www.seeso.com/
3https://www.graphicstock.com/join/?utm_source=GAWGS-Search-Brand-DE-99&utm_-

medium=cpc&utm_campaign=GAWGS-Search-Brand-DE-99
4https://creativemarket.com/

33



4 Business Application Revenue Models

Revenue is usually both fixed and percentage-based. A fixed fee is charged for posting
a product to sell and also a percentage of each sale should also be paid to the operator.
Summarising the concept:

Revenue =
N

∑
n=1

f ixed_charge + percent_chargen

percent_chargen = αn ∗ τn ∗ η

where N is the total number of elements, αn represents the agreed percentage for item n, τn is
the price of element n, and η is the number of products n sold through the operator.

Freemium

Dropbox5 is a good example of this technique. The word freemium comes from the union of
free and premium. Some basic services are offered for free but users are charged for additional
features. Dropbox, for example, offers more storage capacity - among other features - for
users paying a fixed amount of money per month. A common variant of this revenue model
is offering a free service with advertisements and the option of getting rid of them by paying
some amount of money.

In this model, the sum of all exclusive options produces the revenue:

Revenue =
N

∑
n=1

αn ∗ ηn

where N is the number of total charged options, αn is the fee that users who want the advance
features of option n have to pay and ηn the number of users that took option n. In this model,
if only one ’premium’ option is offered, revenue can be simplified as:

Revenue = α ∗ η

Sponsorship

In this model, a company (or more) is charged with a fee in return of some sponsorship
offerings such as standout advertisements, agreements regarding data licensing, priority in
search listings or branding features (e.g. displaying their logo). For example, Twitter6 offers
preference in user listings for sponsor companies. In sponsorship, revenue depends on the
amount of money and offerings agreed between the company and its sponsor.

5https://www.dropbox.com/plans
6https://business.twitter.com/es/help/overview/ads-pricing.html

34



4.2 Examples

Sales

Main income goal comes from selling a product, which can either be a good or a service.
Although it was usually linked to a physical selling place, Internet managed to disassociate
those concepts. The total revenue would be the total money earned by this and it would be
calculated as the product between its price and the number of sold ones:

Revenue =
N

∑
n=1

τn ∗ ηn

where N is the total number of products at that web, τn the money obtained through the sale
of one product n and ηn the number of items corresponding to that product sold.

For example, E-tickets7 allows users to create sales pages and gets some fixed money for each
ticket sold.

Selling data

Digital area has changed significantly the traditional business models. Users are connected to
the Internet and sharing constant data publicly. Many companies have realised how valuable
personal data is. It can help to predict trends, users’ likes and dislikes, understand their
reactions to new products and increase knowledge about a targeted sector. The sentence "if
you are not paying for a product, you are not a customer, you are the product" states this revenue
model clearly. Personal data is worthy and many companies are willing to buy it while others
have access to their users’ data and know its market possibilities. It can also be seen as a
special version of previous revenue model.

BDEX8 for example, is a marketplace that joins companies using this revenue model (willing
to sell data) and companies willing to process and use it (e.g. for targeting campains).

Another model is donations-based. Developed more in detail in section 5.1. It is important to
point out that all these revenue models are not exclusive and two or more can be used by the
same web application at the same time. The total revenue then is obtained by the sum of all
types of revenue (being R the total amount of types used):

Total_revenue =
R

∑
r=1

Revenuer

Table 4.1 shows the revenue models commonly used for some examples of applications type.

7https://www.etickets.to/
8http://www.bigdataexchange.com/

35



4 Business Application Revenue Models

Table 4.1: Common revenue models per application type

36



5 Wikipedia Revenue Analysis

Regarding wikis (database or website developed by a user community, allowing editions by
any user), the study was focused on Wikimedia Foundation as it is one well-known organi-
zation that supports ‘free knowledge projects’ [Fou16b] (i.e Wikipedia, Wiktionary, Wikiquote,
Wikibooks, Wikisource, Wikimedia Commons, Wikispecies, Wikinews, Wikiversity, Wikidata,
Wikivoyage and MediaWiki) and it has some open financial information [KPM, Fouc].

In the previous chapter, general revenue models were explained but this chapter focuses on
Wikipedia, as the first step addressed to the utility-based analysis. First of all, an overview
of MediaWiki and its topology is presented as it is needed for the analysis. After that, its
business model and results of last financial years (2013-2014 and 2014-2015) are presented as
the basis for its type definition. Data is then collected to study any possible strong relationship
between the direct profits obtained and some statistical metrics (e.g. users, page edits) to
analyse its inclusion in the revenue and utility model used in the document. Finally, revenue
models are derived for the first semester of the year and are used in the performed evaluation
at chapter 7.

5.1 MediaWiki Engine

MediaWiki is an open-source PHP-based software developed for wikis in 2002, relaying on
a back-end database (e.g. MySQL). For that reason, easy scalability and security handling
are important. Extensions, multimedia, mobile applications and user customizations are
supported. It was initially designed to cover the needs of Wikipedia, but nowadays other well-
known wiki projects, such as Wikimedia Commons or WikiLeaks, also use this software.

5.1.1 Topology

When considering the migration of an already-existing application to the cloud, approaches
usually tend to consider the whole software stack, packaging it into virtual machines (VMs)
running on the cloud (called type III migration in [ABLS13]). However, considering the
application topology (i.e. representation of components of an application in middleware
solution) as the basis for finding the optimal cloud distribution with less constraints could
add more options such as multiple cloud provider offerings. For example, TOSCA standard
(see section 2.2.1) represents the topology of an application as a labelled graph composed by
nodes, edges and labels.

[ASLW14] defines three topology types for web applications. The α-topology is constituted
by the needed application specific components, whereas the elements that are not specific
or dependent of the studied application (and are, therefore, reusable for others) are called

37



5 Wikipedia Revenue Analysis

Topology Node

Alternative Topology Node

consists_of

hosted_on

alternative_hosted_on

interacts_with

uses

α
-t
o
p
o
lo
g
y

γ-
to

p
o
lo
g
y

MWiki App:
Web_App

MWiki FrontEnd:
PHP_App

Apache_PHP_Mod:
PHP_Container

Apache_HTTP_Serv:
Web_Server

Ubuntu_14.04_LTS:
Virt_Linux

IBM_Server:
Physical_Server

Wiki_Backend_DB:
SQL_DB

MySQL:
SQL_RDBMS_Server

Ubuntu_14.04_LTS:
Virt_Linux

AWS_EC2_m3.xlarge:
AWS_EC2

AWS_EBS_gp2:
Distributed_Storage

AWS_EC2_t2.large:
AWS_EC2

MySQL:
SQL_DBaaS

AWS_RDS_m3.large:
AWS_RDS

Figure 5.1: MediaWiki Topology. Based on [SALS15]

γ-topology. Both sub-topologies compose the µ-topology, which represents a viable topology
for the application [ASLW14].

In this case, MediaWiki topology, represented in figure 5.1, is the basis under study for the
distribution analysis. It is composed by two tiers: a front-end and a back-end database. These
elements model the α-topology whereas the low part represents the γ-topology. PHP files
deployed in a PHP container constitute the front-end. This container is developed as an
Apache Server element running on a Linux virtual machine using Ubuntu, which is installed
on an IBM server. The back-end also uses that virtual machine through a MySQL RDB server
for the wiki database. The topology also shows some other alternatives for the used topology
such as using a MySQL DBaaS solution deployed in AWS RDS database instance for the
back-end.

5.2 Revenue Model

Wikimedia Foundation does not consider any of the revenue models explained before (see
section 4.2) although some studies show that, for instance, advertising is an important online
revenue source [Eva08]. It has a strong policy regarding advertisements which are not
considered a way of revenue for the foundation as they ‘do not believe that advertising belongs
in a project devoted to free, reliable, and neutral knowledge. Introducing commercial interests could
jeopardize Wikipedia’s reliability as a neutral source of information’. As discussed in [Yam13],
there was a conflict between the non-profit role (editors as volunteers) and the necessity of
raising capital (implying commercial interests), where protests held by some editors and the

38



5.2 Revenue Model

09-10 10-11 11-12 12-13 13-14 14-15
Financial Year

10

20

30

40

50

60

70

80

A
m

o
u
n
t 

o
f 

D
o
n
a
ti

o
n
s 

(m
ill

io
n
s 

o
f 

$
)

Wikimedia Foundation Total Donations

Figure 5.2: Wikimedia Foundation To-
tal Donations

09-10 10-11 11-12 12-13 13-14 14-15
Financial Year

10

15

20

25

30

35

40

D
o
n
a
ti

o
n
 A

v
e
ra

g
e
 (

$
)

Wikimedia Foundation Average Donation

Figure 5.3: Wikimedia Foundation Av-
erage Donation

09-10 10-11 11-12 12-13 13-14 14-15
Financial Year

0

1

2

3

4

5

N
u
m

b
e
r 

o
f 

D
o
n
a
ti

o
n
s 

(i
n
 M

ill
io

n
s)

Wikimedia Foundation Average Number of Donations

Figure 5.4: Wikim. Foundation Aver-
age Number of Donations

desire of neutrality led to the previously mentioned ads policy. However, [Yam13] also gives
the example of Google search engine which, mantaining to be neutral in their commercial
services, displays advertisements in its result page.

Fundraising/Donations. Wikimedia Foundation is a donation-based organization, received
from users or companies (minimum donation is $1 for security reasons, as smaller donations
are usually used by dishonest entities in order to try to get credit information). Benefactors
(i.e. Peter Baldwin) and foundations (i.e. Alfred P. Sloan Foundation) [Foua] have also
helped financially. In last published report [KPM], it is reflected that $72, 236, 884 of the total
unrestricted net assets were collected through fundraising, which represents a 95.301%.

Figure 5.2 shows the ascending trend for donations on the last past years (from financial year
2009-2010 to 2014-2015), excluding commitments for future ones. In financial year 2009-2010
(i.e. from 1 July to 30 June of following year) the total donations received by the Foundation
were around $15.1M, increasing significantly ending in $75.5M in 2014-2015. That means an

39



5 Wikipedia Revenue Analysis

increase of 400% in 5 years. It is shown that the maximum difference was between financial
years 2013-2014 and 2014-2015.

At the same time, the average amount per donation is decreasing as seen in figure 5.3.
From $35.67 per donation in financial year 2009-2010, the values followed a decreasing trend
(although in 2013-2014 there was a slight increase), concluding at $15.2 per donations 5 years
later (i.e. a decrease of around 57.5%). Therefore, there exists an increase of more than 1073%
of the number of donations in that period (see figure 5.4 - note the scale of y axis).

The Wikimedia Foundation annually creates finacial reports that help to mantain a transparent
finantial system of the foundation. Annual plans and reports, forms and frequently asked
questions (FAQ) can be found in [Foub]. Moreover, an independent auditors’ report is
published each financial year showing the balance sheet of the foundation (assets, liabilities
and net assets) at the end of the last two financial years that are being compared. Figure 5.5
shows a comparison between the results at 30 June of 2015 and 2014 (i.e. end of financial years
2013-2014 and 2014-2015) presenting an increase in total support and revenue of a 44.47%
(75,797,223 in 2015 whereas 52,465,287 in 2014) and a 14.58% in expenses (52,596,782 in 2015
whereas 45,900,745 in 2014). These results contributed to an increase of 45.53% in total net
assets at the end of the year. This supports the argument that the business model used by
Wikimedia Foundation is successful.

5.3 Data Collection

For this thesis, we collected the necessary performance and access data on a daily and
monthly basis. In the remainder of this section, the different types of data gathered and their
characteristics are presented.

5.3.1 Financial Data: Donations

In the evaluation of MediaWiki’s profitability, financial data is essential. As explained in
section 5.2, WikiMedia Foundation is the non- profit organization that supports financially a
set of wikis (being Wikipedia the most popular). It is sustained through donations and data
of these contributions since August 2008 (2008/08/03) to end of June 2016 (2016/06/30)1 was
collected (hereinafter dates are in format yyyy/mm/dd or yyyy/mm if no other specification is
made). This data showed the total daily donations received at Wikimedia Foundation in USD,
without considering refunds.

1https://frdata.wikimedia.org/

40



5.3 Data Collection

Figure 5.5: Independent Auditors’ Report 30 June 2015 and 2014[KPM]

41



5 Wikipedia Revenue Analysis

5.3.2 Wikimedia Projects

User actions through Wikimedia projects are tracked and daily data of three areas was
collected2 for later analysis:

1. Loading time: 95 percentile of loading time of a search query results page (time between
a user sends the request for a page and results are listed and provided for them by the
servers, after the corresponding identification and ranking of probable related articles).
Daily data from four sources was taken (i.e. desktop, mobile web and mobile app
- Android or iOS-based) and also the mean of those four 95 percentile results was
calculated.

2. Clickthrough rate: Data showing the percentage of visitors that had clicked on a link of
Wikipedia Portal3 to go to one of its projects.

3. Search threshold passing rate: Data showing the rate of users whose session dwell time at
Wikimedia portal exceeds 10 seconds (i.e. time between a user arrives at the page and
clicks into a link to another page or performs a search).

5.3.3 Wikipedia Statistics

Wikipedia, developed by Wikimedia Foundation in January 2001, aims to be a free set of
encyclopedias in different languages. By the time this thesis was written, Wikipedia had
almost 41 million articles in 283 languages (active). It also maintains some records about the
statistics of this project4. Statistical information about all Wikipedia language versions can be
found (i.e. active editors, edits per hour, number of articles, etc). However this data is only
kept in a monthly basis and not daily records as needed so it could not be used and other
sources were needed.

The English version, with 5,206,540 article count constitutes the biggest Wikipedia. Further-
more, around a 50% of the traffic to Wikimedia projects is addressed to the English edition of
Wikipedia, constituting the most important one of the Wikimedia Foundation. Due to this, the
analysis and study of this thesis was focused on this edition of the free online encyclopedia.

One collected metric is the number of unique devices that made one or more requests to the
English Wikipedia project5, both in web and mobile version, and also the total amount of
unique devices was considered in the following analysis6. This study was focused on the
English version of Wikipedia, as already mentioned, but available graphs support all the other
projects too (e.g. Spanish Wikipedia, French Wikivoyage or the German Wiktionary). Data is
collected on a daily basis but ranging between 2016/01/01 and 2016/06/30 due to the recent
introduction of this metric measurement, based on last access cookie. Wikimedia Foundation

2https://datasets.wikimedia.org/aggregate-datasets
3www.wikipedia.org
4https://stats.wikimedia.org/EN/Sitemap.htm
5https://dumps.wikimedia.org/other/unique_devices/
6Graph available at https://analytics.wikimedia.org/

42



5.4 Data Analysis

considered this metric as a good approximation of the total number of different users (closer
than number of pageviews or registered users) accessing the project although they state it
is an estimation as some people can use more than one device (laptop and mobile phone,
for example) and other may share the same computer. But the number of user accounts
(new created users at the English project of Wikipedia metric was also collected) is not
linked to the total users as login is not a requirement for accessing the projects (with reading
purposes). Wikimedia Foundation had been using comScore for this metric measurement but
they decided to change the method due to the limitations. Desktop traffic measurements are
the strength of comScore but due to the increasing mobile traffic, the results did not reflect
accurately the desired metric.

Number of edits done by users and daily pageviews at English Wikipedia web were also
collected from Wikimedia Foundation7 8, on a daily basis from 2015/07/01 to 2016/06/30.
Values related to the number of created users at English Wikipedia were gathered as Wikipedia
has public Wikipedia logs 9. These values consider any user creation, without a limitation of
contributions.

Daily data of some metrics related to search events at English Wikipedia was also collected
from 2. When a user wants to perform a search query, he should: (1) start a session (search
sessions), (2) wait until a results page is presented (result pages opened) and (3) click through
to a listed article at the page in (2) (clickthroughs). Total of events (1), (2) and (3) was also
calculated. These metrics were tracked from four sources: desktop, mobile web and mobile
app (both Android and iOS-based). There exists also the option of obtaining zero results at
the search (e.g. due to user spelling mistakes or no related entries). The rate of non-automata
search queries at English Wikipedia that did not return any results is stored at the zero results
rate metric.

5.4 Data Analysis

All the collected data was organized and analysed for the purpose of understanding the
followed trends and establishing relations between the metrics.

5.4.1 Financial Data

The first dataset to be analysed was the donations received at Wikimedia Foundation (which,
as already mentioned, supports financially some wiki projects such as Wikipedia or Medi-
aWiki). Figure 5.6 shows the donations from 2009/01/01 to 2016/06/30 into four date basis:
daily, weekly, monthly and yearly (from left to right).

As it can be seen in plot 5.6, daily, weekly and monthly donations follow a seasonal pattern
with a rising trend, where some high peaks at the end of the years or beginning of the

7https://wikimediafoundation.org/wiki/Home
8Graphs available at https://analytics.wikimedia.org/
9https://en.wikipedia.org/wiki/Special:Log

43



5 Wikipedia Revenue Analysis

2009 2010 2011 2012 2013 2014 2015 2016
Date

0

500000

1000000

1500000

2000000

2500000

D
o
n
a
ti

o
n
 (

$
)

Donations by day

2010 2011 2012 2013 2014 2015 2016
Date

0.0

0.2

0.4

0.6

0.8

1.0

D
o
n
a
ti

o
n
 (

$
)

1e7 Donations by week

2009 2010 2011 2012 2013 2014 2015 2016
Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
o
n
a
ti

o
n
 (

$
)

1e7 Donations by month

2009 2010 2011 2012 2013 2014 2015
Date

0

1

2

3

4

5

6

D
o
n
a
ti

o
n
 (

$
)

1e7 Donations by year

Figure 5.6: Wikimedia Foundation Donations

next one occurs. That is due to the English language fundraising campaign organized by
Wikimedia Foundation. It takes place in late November and December and constitutes their
largest fundraising campaign ($25M was the goal for the last campaign - conducted through
December 2015 - finally reaching over $30M). Banners on the English Wikipedia together
with emails to English-speaking foundation supporters compose the campaign.

Due to the repetition pattern found at the graphs, Dickey-Fuller test was performed on the
daily basis and it was positive. Therefore, our data was stationary.

Furthermore, seasonal component was used to predict next year’s period, based on the
seasonal component, predicted trend through a linear model and residual results of previous
year (plots are shown in figure 5.8) as the last two financial years have a similar behaviour.
Seasonal decomposition results are shown in figure 5.7.

Due to the obtained results, the data analysis scope of this thesis was restricted to recent one
year period from 1st July 2015 to 30th June 2016. Moreover, figure 5.8, behaviour of predicted
year is similar to the one before and, therefore, it is used as the basis.

5.4.2 Wikimedia and Wikipedia Metrics

Data introduced at section 5.3 was arranged into the previously mentioned study period
(2015/07/01 - 2016/06/30). The goal was analysing the strength of possible relationships

44



5.4 Data Analysis

Figure 5.7: Seasonal decomposition

45



5 Wikipedia Revenue Analysis

TIME BASIS
METRIC Day Week Month

Wikimedia
projects

Desktop loading time (95 perc) -0,119 -0,130 -0,222
Mobile web loading time (95 perc) 0,170 0,280 0,403
Android mobile app loading time (95 perc) 0,061 0,111 0,143
iOS mobile app loading time (95 perc) -0,035 0,005 -0,141
Average loading time (95 perc) 0,004 0,073 -0,011
Search threshold passing rate 0,192 0,228 0,236
Clickthrough rate -0,035 -0,101 -0,214

English
Wikipedia

Pageviews -0,060 0,021 -0,211
Web unique device requests 0,130 0,328 0,393
Mobile web unique device requests -0,171 0,146 -0,288
Total unique device requests 0,030 0,229 0,028
New users 0,187 0,180 0,200
Edits by users -0,109 -0,406 -0,464
Desktop search sessions events 0,014 0,063 -0,062
Desktop results page events -0,004 -0,010 -0,002
Desktop clickthrough events -0,080 -0,022 -0,218
Total desktop events -0,005 -0,012 -0,007
Mobile search sessions events -0,168 -0,056 -0,177
Mobile results page events -0,217 -0,163 -0,266
Mobile clickthrough events -0,233 -0,142 -0,237
Total mobile events -0,197 -0,104 -0,260
Android mobile app search events -0,171 -0,054 -0,113
Android mobile app results page events 0,006 0,134 0,106
Android mobile app clickthrough events -0,161 -0,049 -0,089
Android mobile app total events -0,056 0,090 0,080
iOS mobile app search events -0,084 -0,087 -0,103
iOS mobile app results page events -0,085 -0,088 -0,102
iOS mobile app clickthrough events -0,084 -0,087 -0,102
iOS mobile app total events -0,085 -0,088 -0,102
Zero results rate 0,200 0,147 -0,072

Table 5.1: Pearson’s correlation coefficient between donations and metrics

46



5.4 Data Analysis

Figure 5.8: Wikimedia Foundation Donations prediction

between received donations at Wikimedia Foundation (i.e. revenue in this case) and the
different studied metrics, in case they should be added to the utility definition for the study
case. Followed procedure focused on Pearson’s correlation coefficient (see section 2.3 for
more information). Sets of data which were not complete for the study period took only into
account the period were data existed. For later use, if needed, missing data in daily basis
was replaced by the mean of existing values. Corresponding weekly and monthly values
were calculated using that daily data. This analysis was performed in the already mentioned
basis (daily, weekly and monthly) and the results are presented in table 5.1. Note that the
obtained values (which represent the coefficients) are dimensionless, i.e. do not have units, as
mentioned in section 2.3.

As it can be seen in the table, it is difficult to establish a linear relationship between the studied
metrics and the received donations at the foundation and the three strongest are of moderate
type: mobile web loading time (monthly, 0.403) and edits by users (weekly, -0.406; monthly,
-0.464). The first one suggest that mobile web users are not affected strongly by the delay time,
as their speed expectations are not as high as, for example, desktop users. The second one
suggest that there exists a slightly higher relation between number of users editions at English
Wikipedia and donations received as it appeared both in weekly and monthly basis. These
two coefficients are negative, meaning it is an inverse moderate relationship and therefore,
the more editions, the less donations received and vice versa. Finding mistakes and correcting
them seems to slightly influence users to reduce their economic contributions.

47



5 Wikipedia Revenue Analysis

In general, correlation coefficient becomes stronger if the studied time basis is longer. This
could be expected as the cumulative influence of Wikimedia performance to donations is
better found in a longer-term basis (e.g. users donate some days after their experience).

The conclusion of these performance metrics analysis is that there is very difficult to establish
a linear association between them and an increase or reduction of received donations at Wikim.
Foundation. Only the number of user editions at English Wikipedia scored a - negative -
moderate connection and, as it appeared both in weekly and monthly basis, it is considered
afterwards at the utility analysis.

5.5 Derived Monthly Revenue Model

The definition of utility function specified in this document considers two main terms:
totalrevenue and cost, both with some subterms. This section develops one of the terms as-
sociated to the revenue: rptbasis. As this application does not use a sales revenue model,
transactions are associated in this case to number of pageviews. Considering real data from
Wikimedia Foundation and English Wikipedia (see sections 5.3 and 5.4), some models for
the first semester of the year were defined. This period was chosen because, although studied
data ranged for a year (2015/07/01 - 2016/06/30), metrics used to collect data regarding the
number of users changed on January 2016.

5.5.1 Monthly Models

Models were proposed for the first 6 months of the year, studying the revenue per transaction
in a daily and weekly basis. Days range from 1 to 30, 31 or 29 depending on the considered
month and weeks are counted in an ordered way. The value for the first week of the month is
1, for the second week 2, and so on. Moreover, a simplified and general fragment represent
the followed implementation for simplicity and after that, results are presented and are used
afterwards at the evaluation.

First of all, needed modules are imported for later use and studied month period is defined,
as well as indicating the data files.

1 import pandas as pd

2 import matplotlib.pylab as plt

3 import numpy as np

4 from scipy.optimize import curve_fit

5 from matplotlib import gridspec

6

7 FIRST_DAY = '01-01-2016' #mm -dd -yyyy format is followed

8 LAST_DAY = '01-31-2016'

9 DATE_INDEX_COLUMN = 'Date'

10

11 FILES = ['csv -file -with -daily -data', 'csv -file -with -weekly -data']

12 TITLES = ['Daily basis ', 'Weekly basis ']

48



5.5 Derived Monthly Revenue Model

After that, the model function has to be defined. This depends on the data shape and the
desire of the user as any function allowed by python or one of its modules can be used. In this
case, an exponential and a polynomial function are shown, with three and four coefficients
respectively but users can add any number of possible coefficients to be calculated provided
that its number does not exceed the number of data points available.

1 def exponential(x, a, b, c):

2 return a*np.exp(-b*x)+c

3 def polynomial(x, a, b, c, d):

4 return a*np.power(x,3)+b*np.power(x,2)c*x+d

A dateparser is used while reading the csv files so that python is able to manage the dates
following the indicated format (in this case month/day/year) used at the file.

1 dateparser = lambda dates: pd.datetime.strptime(dates , '%m/%d/%Y')

2 data = pd.read_csv(desired_file , parse_dates=True , date_parser=dateparser ,

index_col=DATE_INDEX_COLUMN)

After filtering the data with the desired values at the defined period and configuring the plots,
the curve_fit algorithm was applied (see section 2.5.2 for more information). X points for the
plot are stated as x_data. The initial point where the algorithm starts its computation is noted
as initial-point (although it is an optional parameter) and amount-of-desired-points will define
the fitting function. Note that p0 must have the same number of components as coefficients
of previously defined modelling function. Finally, model-function has to be substituted by
the name of the modelling function used. In this case it can be replaced by exponential or
polynomial.

1 popt , pcov = curve_fit(model-function , x_data , working_data , p0=initial-

point)

2 x_fitting_points = np.linspace(1, working_data.size , amount-of-desired-

points)

3 fitting_function = exponential(x_fitting_points , *popt)

Where popt contains the calculated coefficients minimizing the least square error for the
modelling function if a solution was found. Then, a plot showing the calculated function was
presented.

Obtained results for all the studied months are introduced, with 2 plots per month. The left
one is based on daily analysis and the right one on weekly data. They can be seen at figures
5.9, 5.10, 5.11, 5.12, 5.13 and 5.14. Resulting functions were:

49



5 Wikipedia Revenue Analysis

5 10 15 20 25 30
January 2016

0.0

0.5

1.0

1.5

2.0

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 3 Daily basis
Fitted Data
 y=2.52e-02*exp(-2.66*x)+6.19e-05
Data

06/01 13/01 20/01 27/01
January 2016

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 3 Weekly basis
Fitted Data
 y=4.04e-01*exp(-5.72*x)+5.81e-05
Data

Figure 5.9: January Model

January

Figure 5.9 shows the modelled functions for this month:{
rptday = 2.52 ∗ 10−2 ∗ e−2.66x + 6.19 ∗ 10−5

rptweek = 4.04 ∗ 10−1 ∗ e
−5.72x + 5.81 ∗ 10−5

February

Figure 5.10 shows the modelled functions for this month:{
rptday = 1.02 ∗ 10−5x + 8.05 ∗ 10−5 ∗ e3.04∗10−2x ∗ sin(8.98 ∗ 10−1x + 29.6) + 6.11 ∗ 10−5

rptweek = −2.62 ∗ 10−5x2 + 1.85 ∗ 10−4x− 1.24 ∗ 10−4

March

Figure 5.11 shows the modelled functions for this month:{
rptday = 1.89 ∗ 10−8x4 − 10−6x3 + 1.58 ∗ 10−5x2 − 7.69 ∗ 10−5x + 3.58 ∗ 10−4

rptweek = 3.74 ∗ 10−5x4 − 4.59 ∗ 10−4x3 + 1.93 ∗ 10−3x2 − 3.23 ∗ 10−3x + 2.07 ∗ 10−3

50



5.5 Derived Monthly Revenue Model

5 10 15 20 25
February 2016

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Daily basis
Fitted Data
 y=1.02e-05*x + 8.05e-05*exp(3.04e-02*x)* 
 * sin(8.98e-01x + 2.96e+01) + 6.11e-05
Data

02/02 09/02 16/02 23/02
February 2016

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Weekly basis
Fitted Data
 y=-2.62e-05*x^2 + 1.85e-04*x -1.24e-04
Data

Figure 5.10: February Model

5 10 15 20 25 30
March 2016

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Donations by day
Fitted Data
 y=1.89e-08*x^4 -1.00e-06*x^3 + 
 + 1.58e-05*x^2 -7.69e-05*x + 3.58e-04
Data

01/03 08/03 15/03 22/03 29/03
March 2016

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4Donations by week

Fitted Data
 y=3.74e-05*x^4 -4.59e-04*x^3 + 
 + 1.93e-03*x^2 -3.23e-03*x + 2.07e-03
Data

Figure 5.11: March Model

51



5 Wikipedia Revenue Analysis

5 10 15 20 25 30
April 2016

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 3 Donations by day
Fitted Data
 y=1.3489e-03 -1.1929e-03*x+4.8475e-04*x^2 -8.7905e-05*x^3+
+8.4575e-06*x^4 -4.6333e-07*x^5 +1.4486e-08*x^6 -
-2.4002e-10*x^7 + 1.6294e-12*x^8
Data

05/04 12/04 19/04 26/04
April 2016

0

1

2

3

4

5

6

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4Donations by week

Fitted Data
 y=1.62e-04 +6.68e-04*x -3.23e-04*x^2 +4.02e-05*x^3
Data

Figure 5.12: April Model

April

Figure 5.12 shows the modelled functions for this month:
rptday = 1.6294 ∗ 10−12x8 − 2.4002 ∗ 10−10x7 + 1.4486 ∗ 10−8x6 − 4.6333 ∗ 10−7x5 + 8.4574∗

∗ 10−6x4 − 8.7905 ∗ 10−5x3 + 4.8475 ∗ 10−4x2 − 1.1929 ∗ 10−3x + 1.3489 ∗ 10−3

rptweek = 4.02 ∗ 10−5x3 − 3.23 ∗ 10−4x2 + 6.68 ∗ 10−4x + 1.62 ∗ 10−4

May

Figure 5.13 shows the modelled functions for this month:{
rptday = 2.03 ∗ 10−8x3 − 9.93 ∗ 10−7x2 + 5.4 ∗ 10−6x + 2.2 ∗ 10−4

rptweek = 3.29 ∗ 10−6x3 − 2.67 ∗ 10−5x2 − 7.56 ∗ 10−7x + 3.05 ∗ 10−4

52



5.5 Derived Monthly Revenue Model

5 10 15 20 25 30
May 2016

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Daily basis
Fitted Data
 y=2.03e-08*x^3 -9.93e-07*x^2 +5.40e-06*x +2.20e-04
Data

03/05 10/05 17/05 24/05
May 2016

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Weekly basis
Fitted Data
 y=3.29e-06*x^3 -2.67e-05*x^2 -7.56e-07*x +3.05e-04
Data

Figure 5.13: May Model

5 10 15 20 25 30
June 2016

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Daily basis
Fitted Data
 y=9.60e-04*(1/(1.87e+00* sqrt(2*pi))* 
 *exp(-(x-1.64e+01)^2) / (2*(1.87e+00)^2)) + 4.57e-05
Data

07/06 14/06 21/06 28/06 30/06
June 2016

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
 d

o
n
a
ti

o
n
 (

U
S
D

) 
p
e
r 

tr
a
n
sa

ct
io

n 1e 4 Weekly basis

Fitted Data
 y=6.43e-05*(1/(2.10e-01* sqrt(2*pi))* 
 *exp(-(x-3.00e+00)^2) / (2*(2.10e-01)^2)) + 5.10e-05
Data

Figure 5.14: June Model

53



5 Wikipedia Revenue Analysis

June

Figure 5.14 shows the modelled functions for this month: rptday = 9.6 ∗ 10−4 ∗
(

1
1.87∗

√
2π

)
∗ e
− (x−16.4)2

2∗(1.87)2 + 4.57 ∗ 10−5

rptweek = 6.43 ∗ 10−5 ∗
(

1
2.1∗10−1∗

√
2π

)
∗ e
− (x−3)2

2∗(2.1∗10−1)2 + 5.1 ∗ 10−5

5.6 Discussion

Chapter 5 summarizes the analysis of Wikipedia’s revenue model. As explained here, it is
not based on any up-to-date models explained in Chapter 4 but on users’ and benefactors’
donations to Wikimedia Foundation. Studying the published financial information shows
that over the last six years there is a rising trend at received funds whereas the average
amount of money per donation decreases.

After that, the topology of MediaWiki (software addressed at the beginning to cover Wikipedia
needs) is reviewed as studying the possible cloud deployments on a components level gives
more flexibility than considering the application as one compact element.

Finally, the revenue model is derived. For that purpose, first the collected data is presented
and then analysed to find possible direct relationships between them and the received
donations. Finally, the monthly models for the first semester (particular for each month) are
calculated and, as well as the metric analysis results, are used at the utility based evaluation,
whose definition is done at the following chapter.

54



6 Utility Functions

As already explained through this document, utility functions are used as the basis for the
comparison of viable application distributions. This chapter develops and explains the
followed utility-based analysis based on [Fre16] (see section 2.4 for further information) with
some modifications.

6.1 Concept

The presence of a set X of elements that are aimed to be compared, makes necessary the
definition of a utility function u, that assigns a number in R domain to each object x ∈ X
(u : X → R). In our case, as already mentioned, function u was defined as a trade-off between
revenue and cost. Optimizing an application’s distribution is done by evaluating the utility
functions with a set of parameters called application profile (P). Nonetheless, utility functions
are not unique. Depending on the dimension under study or the metrics considered, different
ones can be defined (e.g. topology chosen will have an influence on the evaluated cost).

Before defining the utility function, some elements are needed:

• A set of topologies Λ for a web application can be generated, included viable inferred
topologies Tµ

(i), i ≥ 1 where Tµ

(i) ∈ Λ. Set Tµ

(i) is composed by two subsets: T(i) =

{Tα
(i), Tγ

(i)}, i ≥ 1, representing the associated α and γ topologies of the distribution.

• A set of requirements or constraints Γ (R in [Fre16])are also defined: Γ = {r1, r2, ..., rn}.
For example, possibility of scalability for future applications.

• A set of ordered time intervals Φ, as the basis for the application topology analysis.
Φ = {t1, t2, .., tq}, where each tq is determined by two date-time values, tmin

q andtmax
q ,

that define the beginning and the end of the interval tq = {tmin
q , tmax

q }.

For example, in a simple daily basis case defined by a pair of time intervals Φ = {t1, t2}:

tmin
1 = {2016/02/12 00 : 00 : 00} tmax

1 = {2016/02/12 23 : 59 : 59}

t2 = {{2016/02/13 00 : 00 : 00}, {2016/02/13 23 : 59 : 59}}

Afterwards, the utility function can be completely defined:

u(Tµ, Γ, tq, P) = total_revenue(Tµ, tq, P)− cost(Tµ, Γ, tq, P) (6.1)

In our case, Tµ, Γ, tq, P define object X, so we can rewrite the expression as u : Tµ, Γ, tq, P→ R.
Then, u is composed by total_revenue : Tµ, tq, P→ R, which takes into account the expected

55



6 Utility Functions

revenue at a concrete time interval and some QoS metrics, and cost : Tµ, Γ, tq, P → R,
calculating the predicted cost of the distribution for chosen topology. These elements are
developed in following sections 6.2 and 6.3 respectively.

6.2 Revenue

This section develops the total_revenue function, defined at 6.1. Three terms have an influence
on it: revexp, satis f action and availab.

− revexp : Tµ, tq, P→ R, expected revenue of the application during time interval tq ∈ Φ.

− satis f action : tq → [0, 1], ratio of user satisfaction for time interval tq ∈ Φ, which has a
strong influence on the total revenue of the application.

− availab : Tµ, Γ, tq, P→ [0, 1], system availability will also impact on possible revenue as
it is an important QoS metric.

By expressing the concept with an equation:

total_revenue(Tµ, tq, P) = revexp(Tµ, tq, P) ∗ satis f action(tq) ∗ availab(Tµ, Γ, tq, P)

Expected Revenue

The expected revenue measures the predicted economical profits obtained by the application
at a time interval tq. It can be calculated as the sum of individual expected revenues over all
the time intervals Φ

revexp_basis(Tµ, W, t, P) =
tq

∑
t=t1

tpu(t) ∗ rpt(t) ∗ #users(t)

where:

− tpu(t): shows the average number of transactions per user at time period t ∈ Φ.

− rptbasis(t): shows the average revenue per transaction at time period t ∈ Φ. A model
is derived considering the defined data basis under consideration (e.g. daily, weekly,
monthly).

− #users(t): average number of users at time period t ∈ Φ.

56



6.2 Revenue

Satisfaction

User satisfaction is taken into account when considering the total possible revenue of the
application. The performance data analysis exposed at section 5.4.2 shows a moderate rela-
tionship between a reduction of donations and the number of editions at English Wikipedia.
Consequently, as already mentioned, finding errors is considered as an indicator of users’
dissatisfaction and is contemplated in this term. The chosen definition in this document
was:

satis f action = 1−
[

average_load_time
max_acc_load_time

∗ wlt + zero_rate ∗ wz +

(
user_edits

total_articles

)
∗ we

]
where:

average_load_time denotes the average user perceived loading time at a time interval
tq ∈ Φ,

max_acc_load_time is the maximum accepted loading time for users,

zero_rate represents zero rate ratio obtained by users’ search query,

user_edits considers the number of editions performed by users,

total_articles is the number of articles contained at the considered version,

wlt represents the dissatisfaction weight associated to the loading time,

wz denotes dissatisfaction weight associated to the zero results rate and

we is the dissatisfaction weight associated to edits.

[Nah04] studies the tolerable waiting time for web users, also mentioning and comparing
previous researches. It mentions that the acceptable time varies depending on the type of
page, as user expectation regarding simple content pages are lower than pages with more
complex content (e.g. available graphics or multimedia - such as videos - at the page).
The interval between 2 and 4 seconds represents the time range when a change in users
behaviour takes place and other mentioned studies also remark 2 seconds as the acceptable
delay. Therefore, for this analysis 2 seconds are assumed as the minimum tolerable average
loading time, without having influence on user satisfaction. [Nah04] concludes also that 15
seconds is the maximum tolerable time. Therefore, max_acc_load_time = 15sec. Furthermore,
weights related to loading time, zero results rate and edits (wlt, wz and we respectively)
should be defined. In this document, the loading time and the zero results rate are assumed
to have the same influence and, as the relationship found between donations and editions
was moderate and not strong (according to Pearson’s coefficient interpretation table 2.1), its
weight is considered as half of the other two. Therefore, it was defined wlt = wz = 2/5 and
we = 1/5.

57



6 Utility Functions

Availability

Service availability has an impact on users engagement, it is also considered as a total_revenue
term. Consequently, for topology Tµ

(i), consisting of N instances or elements (e.g. physical
server) considered independent, average global availability can be calculated as a standard
average:

availab(Tµ, Γ, tq, P) =
1
N
∗

N

∑
j=1

availability(j) (6.2)

For example, suppose that an application topology distribution Tµ
1 entails having a physical

server and a cloud instance. The first element fails statistically two hours per three months
and chosen cloud provider ensures a minimum availability of 99.85%. Following equation
6.2, first step is calculating the individual availabilities:

- Cloud instance availability is direct, as provider already stated it.

- Physical server availability should be derived:

1 natural year = 8760 hours
2 hours f ailure

3 months
∗ 12 months

year
=

8 hours f ailure
year

availabilityphysical_server =
8760− 8

8760
≈ 0.999087

≈ 99.91%

And then, total availability of topology Tµ
1 can be calculated with 6.2:

availab(Tµ
1 , Γ, tq, P) =

1
2
∗

2

∑
j=1

availability(j)

≈ 0.9991 + 0.9985
2

≈ 0.99879

≈ 99.88%

6.3 Cost

This section develops the cost function, defined at 6.1. As [Fre16] defined, the associated
cost for a distribution of an application on the cloud implies the aggregation of a fixed

58



6.3 Cost

cost, associated to the cloud offerings and the adaptation costs to satisfy a set of defined
requirements: cost(Tµ, Γ, tq, P) = cost f ixed(Tµ, Γ, tq) + costadaptation(Tµ, Γ, tq, P)

cost f ixed : Tµ, Γ, tq → R+ measures the direct economical charges for provisioning all
the cloud instances or elements needed for the deployment to develop topology Tµ

i
fulfilling requirements Γ at time interval tq.

costadaptation : Tµ, Γ, tq, P→ R+ measures the possible needed adaptations for topology
Tµ

i to satisfy all requirements in Γ.

cost f ixed = ∑ costcloud_o f f erings

For example, if the viable application topology Tµ
1 implies the need of AWS instances t2.small,

m4.large and hosts the Web Shop front end on a physical IBM zSeries server, the cost f ixed
would be calculated as:

cost f ixed = ∑ costcloud_elements =

= costt2.small + costm4.large + costzSeries

where cost of cloud instances would be fixed by the provider and costzSeries could be simplified
and calculated as the aggregation of the costs associated to the NCPU CPU cores at the server
cluster working Y years[SAH+16]:

coston−premise =

(
1− 1√

2

)
∗

Y−1
∑

t=0

Ct
(1+k)t[

1−
(

1√
2

)Y
]
∗ NCPU ∗ H ∗ µ

C0 is the acquisition cost and

C1..Y are the annual maintenance costs over the working years,

k represents the investment,

h denotes the operational hours expectation,

µ is the expected utilization of the cluster

Fixed cost is also determined by the application profile under study. For example, AWS
instances can have different charges if it is on demand or reserved, and the chosen pay
method. EC2 t2.small is used to ilustrate this1. Also no upfront and partial upfront cases are
supported but not considered here for simplicity.

costEC2_t2.small =


0.028 ∗ h if instance = on-demand

163 + 0.019 ∗ h reserved 1 year, all upfront
332 + 0.013 ∗ h reserved 3 years, all upfront

1Prices of September 2016 at https://aws.amazon.com/ec2/pricing/

59



6 Utility Functions

where h represents the hours of instance usage.

On the other hand, costadaptation represents the aggregation of additional costs (e.g. scaling
needs due to a peak at workload or the requirement of having a database replica) for topology
Tµ

(i) at a concrete time interval tq, ensuring that all the requirements Γ are satisfied with the
application profile values P.

60



7 Case Study: MediaWiki and English Wikipedia

7.1 Evaluation

In this chapter, a practical case of the utility-based analysis explained before is carried out.
MediaWiki case is studied with the real data mentioned in sections 5.3 and 5.4. Chapter 6
develops the utility function concept and definition though this thesis as the trade-off between
the total revenue and the cost (see equation 6.1). Both terms are developed separately and
afterwards the utility is calculated. In the evaluation, daily and monthly basis are chosen
following the modelling rpt equations basis.

Therefore, defining an application profile (P) is necessary for our purpose: Our application
will run from January to June, both inclusively, with a 24/7 system, implying 4344 hours in
total. Moreover, West Europe is assumed as the desired infrastructure location and only one
provider is requested for all the instances to avoid inter-provider latencies. In this document,
four of the most popular cloud providers are considered: Amazon Web Services (AWS),
Windows Azure, Rackspace and Google Compute Engine (GCE).

Table 7.1 shows a subset of viable topologies for MediaWiki application which would be
under study. Furthermore, some acyclic graphs of topologies of table 7.1 are depicted in
figure 7.1. For simplicity, it only includes the cases considering AWS as the provider.

7.1.1 Revenue

In this document, total_revenue term is related to the Tµ

(i), 1 ≤ i ≤ 13 where Tµ

(i) ∈ Λ with
already stated equation:

total_revenue(Tµ, tq, P) = revexp(Tµ, tq, P) ∗ satis f action(tq) ∗ availab(Tµ, Γ, tq, P)

Expected revenue and satisfaction are calculated depending on the time basis and the month
under study but availability according to chosen providers is constant for ∀tq ∈ Φ. According
to AWS, its service-level agreement offers an uptime percentage of at least 99.95% per month
for EC21 and RDS2, as well as Google Compute Engine does3. Azure also guarantees an
availability of 99.95% for VM4. Finally, Rackspace offers an availability of at least 99.9% for all
their cloud instances5.

1As of June 1, 2013 - https://aws.amazon.com/es/ec2/sla/
2As of March 25, 2016 - https://aws.amazon.com/es/rds/sla/
3As of August 20, 2016 - https://cloud.google.com/compute/sla
4As of July, 2016 - https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_2/
5As of February 8, 2015 - https://www.rackspace.com/information/legal/cloud/sla/

61



7 Case Study: MediaWiki and English Wikipedia

Topology Provider MediaWiki Front-End MediaWiki Back-End Region Cost on demand

Tµ
1 AWS

EC2 t2.large
(Linux)

EC2 m3.xlarge
(Linux)

EU (IR) 0.405 ($/h)

Tµ
2 AWS

EC2 m4.2xlarge
(Linux)

EU (IR) 0.528 ($/h)

Tµ
3 AWS

EC2 m4.large
(Linux)

EC2 r3.large
(Linux)

EU (IR) 0.317 ($/h)

Tµ
4 AWS

EC2 m4.large
(Linux)

RDS db.r3.large (max stor.) EU (IR) 1.463 ($/h)

Tµ
5 Azure

DS2
(Linux)

DS3
(Linux)

West Europe 0.6128 ($/h)

Tµ
6 Azure

DS4
(Linux)

West Europe 0.8171 ($/h)

Tµ
7 Azure

DS2
(Linux)

DS11
(Linux)

West Europe 0.4767 ($/h)

Tµ
8 Rackspace

Cloud Server 8GB
(Linux)

Cloud Server 8GB(x2)
(Linux)

GB 0.768 ($/h)

Tµ
9 Rackspace

Cloud Server 8GB
(Linux)

Cloud Server (Memory) 15GB
(Linux)

GB 0.436 ($/h)

Tµ
10 Rackspace

Cloud Server 8GB
(Linux)

Cloud DB 16 GB 1.216 ($/h)

Tµ
11 GCE

n1-standard-2
(Linux)

n1-standard-4
(Linux)

Europe 0.234 ($/h)

Tµ
12 GCE

n1-standard-8
(Linux)

Europe 0.312 ($/h)

Tµ
13 GCE

n1-standard-2
(Linux)

n1-highmem-2 Europe 0.175 ($/h)

Table 7.1: Subset of Viable Topologies for MediaWiki Application

62



7.1 Evaluation

Figure 7.1: Viable Topologies of MediaWiki Application

63



7 Case Study: MediaWiki and English Wikipedia

Therefore, the total availability for the studied subset of viable topologies can be calculated:

availability =



99.95% f or Tµ
1

99.95% f or Tµ
2

99.95% f or Tµ
3

99.95% f or Tµ
4

99.95% f or Tµ
5

99.95% f or Tµ
6

99.95% f or Tµ
7

99.9% f or Tµ
8

99.9% f or Tµ
9

99.9% f or Tµ
10

99.95% f or Tµ
11

99.95% f or Tµ
12

99.95% f or Tµ
13

Moreover, user satisfaction was calculated using equation developed at section 6.2 and the
corresponding collected data, keeping the assumption that a loading time less than 2 seconds
does not have an influence on users satisfaction, and the weights consideration defined at
section 6.2 (see figure 7.2):

satis f action = 1−
[

average_load_time
max_acc_load_time

∗ 0.4 + zero_rate ∗ 0.4 +
(

user_edits
total_articles

)
∗ 0.2

]

On the other hand, expected revenue should be calculated with the modelling formulae
obtained in section 6. A non-leap year was considered, with the same week distributions as
from 2016/01/01 to 2016/06/30. As the rpt are calculated for each month, the calculations
are performed for a concrete month and are summed afterwards. Therefore,

(revexp ∗ satis f )basis =
June

∑
mnth=Jan

tq

∑
t=t1

tpu(mnth, t) ∗ rpt(mnth, t) ∗ #users(mnth, t) ∗ satis f (mnth, t)

In this case tpu term (transactions per user) considers the number of pageviews as transactions
as mentioned in section 5.5. This document does not calculate its value on the studied cloud
services but considers the values obtained at the collected statistical data (section 5.3) as the
basis for the utility calculation. Term tpu for this period is depicted in figure 7.3 whereas
#users is represented at figure 7.4. Both graphs show daily and monthly records.

64



7.1 Evaluation

Jan 2016 Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

0.86

0.88

0.90

0.92

0.94

A
v
e
ra

g
e
 u

se
r 

sa
ti

sf
a
ct

io
n

Daily basis

Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

0.89

0.90

0.91

0.92

0.93

A
v
e
ra

g
e
 u

se
r 

sa
ti

sf
a
ct

io
n

Weekly basis

Figure 7.2: Average User Satisfaction: Daily and Monthly Basis

65



7 Case Study: MediaWiki and English Wikipedia

Jan 2016 Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

A
v
e
ra

g
e
 p

a
g
e
v
ie

w
s 

p
e
r 

u
se

r

Daily basis

Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

4.15

4.20

4.25

4.30

4.35

4.40

4.45

A
v
e
ra

g
e
 p

a
g
e
v
ie

w
s 

p
e
r 

u
se

r

Weekly basis

Figure 7.3: Average Transactions per User: Daily and Monthly Basis

66



7.1 Evaluation

Jan 2016 Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

4.5

5.0

5.5

6.0

6.5

7.0

7.5

N
u
m

b
e
r 

o
f 

U
se

rs

1e7 Daily basis

Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016
Date

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
u
m

b
e
r 

o
f 

U
se

rs

1e8 Weekly basis

Figure 7.4: Average Users: Daily and Monthly Basis

67



7 Case Study: MediaWiki and English Wikipedia

By using the collected data, the obtained results were:

(revexp ∗ satis f )day = 8158348.87$

(revexp ∗ satis f )week = 10527561.5$

Depending on the chosen basis, the expected revenue varies due to the modelled rpu. In this
case, the lowest value is taken, as it constraints the final result, by modelling the worst case
situation. Therefore, henceforth revexp ∗ satis f = (revexp ∗ satis f )day.

Then, total_revenue per topology Tµ

(i) ∈ Λ would be calculated by multiplying the previous
result and the corresponding availability, calculated before, for our subset of viable topologies.
Consequently, final results for total_revenue term are:

total_revenue =



8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
1

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
2

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
3

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
4

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
5

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
6

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
7

8158348.87 ∗ 99.9% ≈ 8150190.52$ f or Tµ
8

8158348.87 ∗ 99.9% ≈ 8150190.52$ f or Tµ
9

8158348.87 ∗ 99.9% ≈ 8150190.52$ f or Tµ
10

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
11

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
12

8158348.87 ∗ 99.95% ≈ 8154269.70$ f or Tµ
13

Complete donations at Wikimedia Foundation are considered in this evaluation as this
organization does not provide its financial information divided by a concrete project and
language. It is reasonable to assume a popularity division, per project and language, but it
may not be the case always and some expenses may be related to many projects and could
not be divided. However, if the popularity division was accepted, the revenue results for
each topology would only be scaled by the same factor and the order would be preserved.

7.1.2 Cost

On the other hand, the second main term of the utility is the cost. Its concept is developed in
section 6.3 as the aggregation of direct (instance pricing) and adaptation costs (e.g. requiring
a database replica). In this case, one of the identified possible adaptation costs is the scaling

68



7.1 Evaluation

of a VM during November and December months, being able to cope with possible workload
increments occurring when the English campaign is held. However, those months are not
considered in the study.

Furthermore, supporting tools such as Nefolog[XA+13] help in the cost calculation process.
However, all the considered providers offered its own cost calculator tools too6. Obtained
cost for the considered topologies is:

cost =



1759.32$ f or Tµ
1

2293.63$ f or Tµ
2

1377.05$ f or Tµ
3

6355.27$ f or Tµ
4

2662$ f or Tµ
5

3549.48$ f or Tµ
6

2070.78$ f or Tµ
7

3336.19$ f or Tµ
8

1893.98$ f or Tµ
9

5282.3$ f or Tµ
10

1016.5$ f or Tµ
11

1355.33$ f or Tµ
12

760.2$ f or Tµ
13

7.1.3 Utility and Results

Previous sections 7.1.1 and 7.1.2 present the different evaluation terms total_revenue and
cost for equation 6.1:

u(Tµ, Γ, tq, P) = total_revenue(Tµ, tq, P)− cost(Tµ, Γ, tq, P)

considering a fixed subset of viable application topologies Tµ

(i) ∈ Λ introduced at table 7.1
during a time period Φ and some requirements.

By applying the previous equation, we can evaluate the different topologies and, aiming to a
maximum utility, order the results which are comparable now because, as was commented in
section 6.1, utility functions map objects (topologies in this case) to a number in R domain.

6http://calculator.s3.amazonaws.com/index.html, https://azure.microsoft.com/en-us/pricing/calculator/,
https://www.rackspace.com/calculator and https://cloud.google.com/products/calculator/

69



7 Case Study: MediaWiki and English Wikipedia

Topology Utility Revenue Cost

Tµ
13 8153509.50 8154269.70 760.2

Tµ
11 8153253.20 8154269.70 1016.5

Tµ
12 8152914.37 8154269.70 1355.33

Tµ
3 8152892.65 8154269.70 1377.05

Tµ
1 8152510.38 8154269.70 1759.32

Tµ
7 8152198.92 8154269.70 2070.78

Tµ
2 8151976.07 8154269.70 2293.63

Tµ
5 8151607.70 8154269.70 2662

Tµ
6 8150720.21 8154269.70 3549.48

Tµ
9 8148296.54 8150190.52 1893.98

Tµ
4 8147914.43 8154269.70 6355.27

Tµ
8 8146854.33 8150190.52 3336.19

Tµ
10 8144908.22 8150190.52 5282.3

Table 7.2: Utility results

Table 7.2 shows the numerical results of the utility evaluation:

u(Tµ
13) ≥ u(Tµ

11) ≥ u(Tµ
12) ≥ u(Tµ

3 ) ≥ u(Tµ
1 ) ≥ u(Tµ

7 ) ≥ u(Tµ
2 ) ≥

≥ u(Tµ
5 ) ≥ u(Tµ

6 ) ≥ u(Tµ
9 ) ≥ u(Tµ

4 ) ≥ u(Tµ
8 ) ≥ u(Tµ

10)

Therefore, as explained in section 2.4.1, considering monotonic utility functions, this evalua-
tion list maintains the preference order for the subset of viable topologies considered:

Tµ
13 � Tµ

11 � Tµ
12 � Tµ

3 � Tµ
1 � Tµ

7 � Tµ
2 � Tµ

5 � Tµ
6 � Tµ

9 � Tµ
4 � Tµ

8 � Tµ
10

Results show that the preferred topology is one offered by Google Compute Engine, deploying
MediaWiki front-end and back-end at two different off-premise instances. In fact, Google
Compute Engine is the preferred provider. On the other hand, the last topology by preference
is offered by Rackspace, deploying both components separately. However, it should be
pointed out that, opposed to the general first thinking, the last topology at the ranking is not
associated to the highest cost, which is derived from the DaaS solution. This supports the
idea that, although it represents a big influence, basing the decision on how to deploy an
application in the cloud only on expected monetary expenses may not be the best option. A
balance between predicted revenue and costs through a utility-based analysis gives a more
complex approach and may lead to an equilibrium among the interests of business and IT
experts. Moreover, utility functions allow multiple definitions depending on the purpose
and the web application under study. In this analysis only the number of user editions at
English Wikipedia shows a possible relationship with the received donations and, therefore,

70



7.1 Evaluation

is included as an influence at users satisfaction. However, if for a particular case an specific
metric is found to directly affect the revenue of the application, it can be included at the
analysis by redefining the utility function.

71



7 Case Study: MediaWiki and English Wikipedia

72



8 Outcome and Future Work

The wide adoption of cloud computing has led to an increase on offerings available to the
public. However, optimizing their use and configuration is essential both for providers (able to
have more clients) and users (having less monetary expenses while managing their resources
in an efficient way). For that reason, the deployment of web applications in the cloud should
be carefully analysed. Multiple studies are focused on finding suitable evaluation methods.
One of them considers that the balance between performance, revenue and costs is achieved
through utility functions that take into account, among other metrics, the revenue model
and some viable topologies for the application under study. They are derived through an
individual component level characterization rather than considering it a whole. However, as
it is domain and application specific, determining a revenue model is one of the challenges
faced with this approach and real data should be collected and analysed to study its possible
influences.

This document aims to evaluate a set of different cloud distributions for MediaWiki appli-
cation by using utility-based analysis derived through real data of last years focusing on
the economical trade-off between associated profits and costs and their influences. For that
purpose, Chapter 2 presents the fundamental concepts of cloud computing (e.g. deployment
models) and gives an overview of some application topology languages such as Winery,
easing the description of the components of a web application and its interrelations. This
helps analysing the possible viable cloud distributions of an application. Moreover, the basic
concepts of utility theory and python libraries used are also covered in this chapter, as well as
[Fre16] thesis, which is the starting point for this document. Chapter 3 summarizes some of
already existing works that apply utility theory to cloud computing analysis. Each author
defines an approach but they tend to find a maximization of a trade-off between a cost and a
term which can be oriented from the economical or the performance point of view (e.g. CPU
resources allocation). Furthermore, some existing works related to analysing wikis (concretely
Wikipedia) and tools address for it (such as Wikibench) are mentioned.

Chapter 4 starts the examination with some of the revenue models applied nowadays at
web applications, with examples, as the first step to give a general overview of state-of-
the-art models. However, those are not unique but domain specific and a combination of
them can be used depending on the case. Consequently, when considering a determined
application such in this work, the application specific revenue model should be derived as
well as studying its topology because, as it was mentioned before, it increases the amount of
deployment possibilities. It is done in Chapter 5, which explains the derived revenue model
applied obtained through real data metrics that were collected and analysed in case a direct
relationship between them and received donations exist and needed to be included in the
utility. The concept applied is concretely defined in Chapter 6, where each term is explained
and the formulae are derived. They, as well as the derived monthly revenue model, are used
at the evaluation performed at Chapter 7 where a subset of possible viable topologies from

73



8 Outcome and Future Work

different cloud providers is analysed in order to choose the optimal solution for the migration.
Results are also presented in the chapter and show that the balance between business and IT
interests is better achieved by means of a more complex utility approach, which improves the
one based only on predicted costs.

Future works in this area may follow the utility analysis with other web applications and
derive new revenue and costs models for them. Considering not only the obtained monetary
returns and derived operational costs, but also how the end-user satisfaction affects the utility
of the application. Moreover, due to the limitations on available data, this analysis was
performed in a fixed time interval, but future works can study more complex scenarios if
past data records are higher. Cloud computing seems to have many applications and any e-
technology or activity (e.g. IoT) may promote its use. Therefore, this area can have an impact
on efficient future cloud uses both for cloud providers and clients, as well as in distributions
or re-distribution of applications.

74



Bibliography

[ABLS13] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. How to adapt applica-
tions for the Cloud environment. Computing, 95(6):493–535, 2013.

[ARSL14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann. A GENTL approach
for cloud application topologies. In European Conference on Service-Oriented and
Cloud Computing, pages 148–159. Springer, 2014.

[ARXL14] V. Andrikopoulos, A. Reuter, M. Xiu, and F. Leymann. Design Support for Cost-
efficient Application Distribution in the Cloud. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 697–704. IEEE, 2014.

[ASLW14] V. Andrikopoulos, S. G. Sáez, F. Leymann, and J. Wettinger. Optimal distribution
of applications in the cloud. In International Conference on Advanced Information
Systems Engineering, pages 75–90. Springer, 2014.

[Bar07] C. Barz. Risk-Averse Capacity Control in Revenue Management (Ph. D. thesis).
Springer Verlag, 2007.

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and
S. Wagner. OpenTOSCA - a runtime for TOSCA-based cloud applications, pages
692–695. Springer Berlin Heidelberg, 2013.

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. TOSCA: portable auto-
mated deployment and management of cloud applications. In Advanced Web
Services, pages 527–549. Springer, 2014.

[BBLS12] T. Binz, G. Breiter, F. Leymann, and T. Spatzier. Portable Cloud Services Using
TOSCA. IEEE Internet Computing, 16(3):80–85, 2012.

[BGPCV12] L. Badger, T. Grance, R. Patt-Corner, and J. Voas. Cloud Computing Synopsis
and Recommendations. Recommendations of the National Institute of Standards and
Technology, Tech. Rep, 2012.

[BMT05] C. Bellettini, A. Marchetto, and A. Trentini. TestUml: user-metrics driven
web applications testing. In Proceedings of the 2005 ACM symposium on Applied
computing, pages 1694–1698. ACM, 2005.

[BYV+09] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation computer systems, 25(6):599–616, 2009.

[DWC10] T. Dillon, C. Wu, and E. Chang. Cloud computing: issues and challenges. In
2010 24th IEEE international conference on advanced information networking and
applications, pages 27–33. Ieee, 2010.

75



Bibliography

[Eva08] D. S. Evans. The economics of the online advertising industry. Review of network
economics, 7(3), 2008.

[Fis88] P. C. Fishburn. Utility theory. Wiley Online Library, 1988.

[Foua] W. Foundation. Benefactors 2014-2015 - Wikimedia Foundation. https://

wikimediafoundation.org/wiki/Benefactors/2014-2015.

[Foub] W. Foundation. Financial reports - Wikimedia Foundation. https://

wikimediafoundation.org/wiki/Financial_reports.

[Fouc] W. Foundation. Wikimedia Foundation 2015-2016 Annual
Plan.pdf. https://upload.wikimedia.org/wikipedia/foundation/4/43/

WMF2015-16AnnualPlan.pdf.

[Fou16a] P. S. Foundation. The Python Standard Library — Python 3.5.2 documentation.
https://docs.python.org/3/library/, Jul 2016.

[Fou16b] W. Foundation. Frequently asked questions of Wikimedia Foundation. https:
//wikimediafoundation.org/wiki/FAQ/en, March 2016.

[Fre16] F. H. Frech. Utility-based Analysis of Evolving Cloud Application Topologies.
Master’s thesis, University of Stuttgart, Jan 2016.

[Gra06] J. Gray. A conversation with Werner Vogels. ACM Queue, 4(4):14–22, 2006.

[H+07] J. D. Hunter et al. Matplotlib: A 2D graphics environment. Computing in science
and engineering, 9(3):90–95, 2007.

[Hak70] N. H. Hakansson. Optimal investment and consumption strategies under risk
for a class of utility functions. Econometrica: Journal of the Econometric Society,
pages 587–607, 1970.

[IGC04] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing risk and reward in a market-
based task service. In High performance Distributed Computing, 2004. Proceedings.
13th IEEE International Symposium on, pages 160–169. IEEE, 2004.

[Joh07] T. Johnson. Utility functions. C2922 economics, Heriot Watt University, Edinburgh,
2007.

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery: A modeling tool for
TOSCA-based cloud applications. In International Conference on Service-Oriented
Computing, pages 700–704. Springer, 2013.

[KPM] KPMG. Audit_Report_-_FY_14-15_-_Final.PDF. https://upload.wikimedia.

org/wikipedia/foundation/0/0b/Audit_Report_-_FY_14-15_-_Final.PDF.

[LBRK10] S. Leimeister, M. Böhm, C. Riedl, and H. Krcmar. The Business Perspective of
Cloud Computing: Actors, Roles and Value Networks. In ECIS, 2010.

76

https://wikimediafoundation.org/wiki/Benefactors/2014-2015
https://wikimediafoundation.org/wiki/Benefactors/2014-2015
https://wikimediafoundation.org/wiki/Financial_reports
https://wikimediafoundation.org/wiki/Financial_reports
https://upload.wikimedia.org/wikipedia/foundation/4/43/WMF2015-16AnnualPlan.pdf
https://upload.wikimedia.org/wikipedia/foundation/4/43/WMF2015-16AnnualPlan.pdf
https://docs.python.org/3/library/
https://wikimediafoundation.org/wiki/FAQ/en
https://wikimediafoundation.org/wiki/FAQ/en
https://upload.wikimedia.org/wikipedia/foundation/0/0b/Audit_Report_-_FY_14-15_-_Final.PDF
https://upload.wikimedia.org/wikipedia/foundation/0/0b/Audit_Report_-_FY_14-15_-_Final.PDF


Bibliography

[LL11] K.-L. Lin and C.-L. Lin. Applying utility theory to cost allocation of pavement
maintenance and repair. International Journal of Pavement Research and Technology,
4(4):212–221, 2011.

[LS10] W. Lehner and K.-U. Sattler. Database as a service (DBaaS). In 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010), pages 1216–1217. IEEE,
2010.

[MB12] C. Madhavaiah and I. Bashir. Defining cloud computing in business perspective:
a review of research. Metamorphosis: A Journal of Management Research, 11(2):50–
65, 2012.

[MF11] D. Minarolli and B. Freisleben. Utility-based resource allocation for virtual
machines in cloud computing. In Computers and Communications (ISCC), 2011
IEEE Symposium on, pages 410–417. IEEE, 2011.

[MJ98] D. Mosberger and T. Jin. Httperf—a tool for measuring web server performance.
ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37, 1998.

[Mor07] J. C. Morris. DistriWiki: a distributed peer-to-peer wiki network. In Proceedings
of the 2007 international symposium on Wikis, pages 69–74. ACM, 2007.

[Nah04] F. F.-H. Nah. A study on tolerable waiting time: how long are web users willing
to wait? Behaviour & Information Technology, 23(3):153–163, 2004.

[NDDSD13] M. Z. Nkhoma, D. P. Dang, and A. De Souza-Daw. Contributing factors of
cloud computing adoption: a technology-organisation-environment framework
approach. In Proceedings of the European Conference on Information Management &
Evaluation, pages 180–189, 2013.

[NST13] NSTA. Chapter 8: Correlation. NSTA Reports, 25(4):29, 11 2013.

[PDAL+09] N. Paton, M. A. De Aragão, K. Lee, A. A. Fernandes, and R. Sakellariou. Op-
timizing utility in cloud computing through autonomic workload execution.
Bulletin of the Technical Committee on Data Engineering, 32(1):51–58, 2009.

[PS13] D. Palma and T. Spatzier. Topology and orchestration specification for cloud
applications version 1.0. OASIS Standard, November 2013.

[PSW80] J. S. Pliskin, D. S. Shepard, and M. C. Weinstein. Utility functions for life years
and health status. Operations research, 28(1):206–224, 1980.

[PWGB10] S. Pandey, L. Wu, S. M. Guru, and R. Buyya. A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing en-
vironments. In 2010 24th IEEE international conference on advanced information
networking and applications, pages 400–407. IEEE, 2010.

[Rap03] M. Rappa. Business models on the web. Available at Managing the Digital
Enterprise website: http://digitalenterprise. org, 2003.

77



Bibliography

[RDG11] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In Cloud Computing (CLOUD), 2011
IEEE International Conference on, pages 500–507. IEEE, 2011.

[RYF15a] X. Ruan, Z. Yin, and D. M. Frangopol. Risk matrix integrating risk attitudes
based on utility theory. Risk Analysis, 35(8):1437–1447, 2015.

[RYF15b] X. Ruan, Z. Yin, and D. M. Frangopol. Risk Matrix Integrating Risk Attitudes
Based on Utility Theory: Risk Matrix Integrating Risk Attitudes. Risk Analysis,
35(8):1437–1447, 2015.

[SAH+16] S. G. Sáez, V. Andrikopoulos, M. Hahn, D. Karastoyanova, F. Leymann, M. Sk-
ouradaki, and K. Vukojevic-Haupt. Performance and Cost Trade-Off in IaaS Envi-
ronments: A Scientific Workflow Simulation Environment Case Study, volume 581 of
Cloud Computing and Services Science, pages 153–170. Springer, February 2016.

[SAL16] S. G. Sáez, V. Andrikopoulos, and F. Leymann. Consolidation of Performance
and Workload Models in Evolving Cloud Application Topologies. In Proceedings
of the 6th International Conference on Cloud Computing and Service Science (CLOSER
2016), pages 160–169, Rome, Italy, April 2016. SciTePress.

[SALS15] S. G. Sáez, V. Andrikopoulos, F. Leymann, and S. Strauch. Design support for
performance aware dynamic application (Re-) distribution in the cloud. IEEE
Transactions on Services Computing, 8(2):225–239, 2015.

[STFG08] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger. Using Utility to
Provision Storage Systems. In FAST, volume 8, pages 1–16, 2008.

[Sti50] G. J. Stigler. The Development of Utility Theory. II. Journal of Political Economy,
58(5):373–396, 1950.

[Tho03] R. Thomson. The use of utility functions for investment channel choice in
defined contribution retirement funds. II: A proposed system. British Actuarial
Journal, 9(04):903–958, 2003.

[UPVS07] G. Urdaneta, G. Pierre, and M. Van Steen. A Decentralized Wiki Engine for
Collaborative Wikipedia Hosting. In WEBIST (1), pages 156–163, 2007.

[UPVS09] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia workload analysis for
decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[vB09] E.-J. van Baaren. Wikibench: A distributed, wikipedia based web application
benchmark. Master’s thesis, VU University Amsterdam, 2009.

[VRMCL08] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, 2008.

[VT14] V. Varadharajan and U. Tupakula. Security as a service model for cloud en-
vironment. IEEE Transactions on Network and Service Management, 11(1):60–75,
2014.

78



Bibliography

[WTK+08] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl. Scientific
Cloud Computing: Early Definition and Experience. In HPCC, volume 8, pages
825–830, 2008.

[WTKD04] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic
systems. In Autonomic Computing, 2004. Proceedings. International Conference on,
pages 70–77. IEEE, 2004.

[XA+13] M. Xiu, V. Andrikopoulos, et al. The Nefolog & MiDSuS Systems for Cloud
Migration Support. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Germany, Technical Report, 8, 2013.

[XP09] K. Xiong and H. Perros. Service performance and analysis in cloud computing.
In 2009 Congress on Services-I, pages 693–700. IEEE, 2009.

[Yam13] S.-C. J. Yam. Decommercialization and anti-elitism: early years of Wikipedia
2001-2002. International Journal of Arts & Sciences, 6(1):533, 2013.

[ZL11] W. Zhuang and M. Z. Li. Revenue optimization of risk-averse managers with
atemporal utility. Journal of Revenue & Pricing Management, 10(5):424–437, 2011.

[ZWS06] X. Zhu, Z. Wang, and S. Singhal. Utility-driven workload management using
nested control design. In 2006 American Control Conference, pages 6–pp. IEEE,
2006.

All links were last followed on September 27, 2016

79



Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, September 27, 2016 ——————————–
(María Elena Alonso Mencía)


	Introduction
	Motivation
	Problem Definition and Challenges
	Outline
	Abbreviations and Acronyms

	Fundamentals
	Cloud Computing
	Actors
	Service Models
	Deployment Models

	Cloud Applications
	Topologies

	Pearson's Correlation Coefficient
	Utility Theory
	Overview
	Economic applications
	Utility Maximization as Optimization

	Python
	Standard Libraries
	External Libraries

	Kereta
	Overview
	Utility Function
	Architecture
	Offerings


	Related Works
	Utility-based Analysis in Cloud Computing
	Web Application and Wikis Analysis
	WikiBench

	Conclusion

	Business Application Revenue Models
	Concept
	Examples

	Wikipedia Revenue Analysis
	MediaWiki Engine
	Topology

	Revenue Model
	Data Collection
	Financial Data: Donations
	Wikimedia Projects
	Wikipedia Statistics

	Data Analysis
	Financial Data
	Wikimedia and Wikipedia Metrics

	Derived Monthly Revenue Model
	Monthly Models

	Discussion

	Utility Functions
	Concept
	Revenue
	Cost

	Case Study: MediaWiki and English Wikipedia
	Evaluation
	Revenue
	Cost
	Utility and Results


	Outcome and Future Work
	Bibliography

