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Abstract

In 1977 Christopher Alexander and his colleagues published their pioneering idea about pat-
tern languages consisting of linked patterns, which are linked human-readable documents
that describe proven solutions in a context. Since then patterns and pattern languages have
been established in various disciplines, constantly new patterns are created and added to
pattern languages. Hence, pattern languages the can be seen as living network of patterns.
However contrary to the idea of pattern languages as living networks, most of the pattern
languages that exist today are documented in static documents such as books, papers or
journals that are hard to change. Moreover, with increasing amount of printed documents,
it becomes difficult for pattern users to manual select patterns that suits their use case.

We propose a concept of using Semantic Web Standards to describe information about
patterns, concrete solutions and their relations in form of linked data on the web. This
linked data is a machine-readable representation of pattern and solution languages that
can be shared across software systems. Further, we present the concept of an IT-based
pattern and solution repository that abstracts the technologies of the semantic web and
allows users to publish information about patterns, concrete solutions and their relations in
form of RDF data. Furthermore, the pattern repository provides functionalities to retrieve
RDF data that describes information about patterns, concrete solutions and their relations
from distributed source and visualize the information in human readable documents.
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1 Introduction

This chapter gives an introduction for the thesis. First it presents the general background of
the thesis. Second it clarifies the motivation of the thesis and states the problem relevance.
Subsequent it defines the different research goals of the thesis. Finally it describes the
structure of the thesis.

1.1 General Background

In 1977 Christopher Alexander and his colleagues [Ale77] published their pioneering idea
of a pattern language consisting of linked patterns, which are human readable documents
that describe proven solutions to recurring problems in a context. Alexander et al. define the
characteristics of a pattern as follows: "Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a solution." [Ale79]. Alexander describes
the structure of a pattern language as a network of patterns. This means individual patterns
are not isolated, instead they are connected to other patterns which solve problems that
often occur in the same context as the original problem. Those interrelations support
navigation through the pattern language to collect patterns which are typically used in
combination [RS96; Zdu07].

While the pattern language by Alexander et al. focuses on the domain of architecture and
urban design, patterns and pattern languages have been established in various disciplines
as means to capture proven solutions for frequently recurring problems. Today they can
be found in disciplines such as education, emergency situations, and communication tech-
niques. Iba et al. [IM10] documented a set of learning patterns that can be applied by
learners to support their learning. Furukawazono et al. [FSMI13] present a pattern lan-
guage that provide survival guidance in the situation of a catastrophic earthquake. Schhuler
et al. [Sch08] present a pattern language that captures knowledge about information and
communication techniques to address social and environmental problems collaboratively.

Pattern languages can also be found in more technically disciplines like information tech-
nology. The Cloud Computing Patterns by Fehling et al. [FLR+14] capture knowledge and
experience in the domain of cloud computing by describing the fundamentals to design,
build and manage cloud applications. Hohpe et al. [HW04] documented a pattern language
providing guidance to design and document enterprise integration solutions.

Alexander describes pattern languages as a living network of patterns. This refers to the fact
that pattern languages typically grow over time as people constantly create new patterns
to document their knowledge. Hence, a pattern language is not a static artifact, instead
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1 Introduction

it is subject to a collaborative process that constantly change the structure of the pattern
language. In this ongoing collaborative process of documenting new patterns, also the
interrelations between patterns are under a constant change. Pattern languages which have
primary been authored isolated from each other may converge over new relations between
patterns that are part of the two pattern languages [FBL]. For example, the Remoting
Patterns by Völter et al. [VKZ13] has many relations to patterns and pattern languages
from related domains such as networking, concurrency and resource management. They
aim to act as connector between these other languages when applied to distributed object
middleware or distributed application development [ZKV04].

1.2 Motivation and Problem Relevance

Contrary to the idea of pattern languages as living networks, most of the pattern languages
that exist today are documented in static documents such as books, papers or journals.
Falkenthal et al. [FBL] criticizes that static documents can not sufficiently represent the
liveness of pattern languages. Instead they provide static snapshots of knowledge to a
certain point in time. Furthermore, Rosengard et al. [RU04] argues, that as the amount
of printed documents increases, it becomes difficult for it to be effectively used. Hence,
IT-based tool support for automatic organization and retrieval of patterns is needed.

To make pattern documents less static, multiple web-pages and online pattern repositories
emerged over the last few years. For example, the web-page that hosts the Cloud Computing
Patterns by Fehling et al. [Feh17], or the Pattern Library for Interaction Design [Van08].
However most have different pattern formats as well as different underlying schemas for
data representation, which leads to isolated data silos that are not accessible to other
software systems. Therefor, it needs a concept for common data formats and exchange
protocols to make pattern repositories accessible to computer agents that allow automatic
organization and retrieval of patterns.

Additionally, most of the existing online pattern repositories are used to publish the
contained patterns and do not provide functionalities to author and publish new pattern
languages[FBFL14]. As a result, pattern authors need to create their own web-page or
online pattern repository to publish their pattern language. However, maintaining a web-
page or online pattern repository requires advanced knowledge in information technology.
Whereas advanced concepts and technologies of computer science are common in the
domain of natural science and engineering [HTT+09], pattern authors and users from non-
technical disciplines may be familiar with digital technologies like email and bibliographic
databases, but they are rarely familiar with advanced concepts and techniques of computer
science.
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1.3 Document Structure

1.3 Document Structure

The remaining thesis is structured as followed: Fundamental concepts and technology
standards that build the foundation of the thesis are presented in Chapter 2. The current
research state is presented in Chapter 3. Chapter 4 discusses use cases and requirements
that an IT-based system for pattern languages has to fulfill. The concept for an ontological
representation of pattern languages and solution languages is presented in Chapter 5.
Chapter 6 presents the architecture of an IT-based system for pattern languages and
solution languages that leverages Semantic Web technologies to store information about
pattern languages and solution languages in common data formats that can be exchanged
by applications. The implementation details of a prototype that shows the the feasibility of
the concepts are presented in Chapter 7. Chapter 8 completes the thesis with a conclusion
and gives an outlook about challenges and improvement potential for future work.
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2 Fundamentals

This chapter presents the fundamental concepts and technology standards that build the
foundation of this thesis.

2.1 Patterns and Pattern Languages

This thesis uses Christopher Alexander‘s definition of patterns and pattern languages
[Ale77; Ale79]. Alexander writes: "Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a solution" [Ale79]. Subsequent he
defines that "As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to resolve themselves. As an element of
language, a pattern is an instruction, which shows how this spatial configuration can be
used, over and over again, to resolve the given system of forces, wherever the context
makes it relevant" [Ale79]. This means a pattern is both, a statement in a pattern language
and an element that exist in the world. Depending on the discipline those elements may be
spatial configurations as described by Alexander, but can also be other things. For example,
in the domain of information technology, the elements that it exists in the world could be
configurations in program code. In the domain of costumes in films, the elements may be
costumes in a wardrobe composed of different articles of clothing.

A pattern language as described by Alexander has a structure of a network. This can be
ascribed to the fact that patterns are not isolated solutions to a particular problem, but are
interrelated to other patterns. Alexander writes, "the structure of a pattern language is
created by the fact that individual patterns are not isolated". Furthermore he states that
"the language lives, or not, as a totality, to the degree these patterns form a whole" [Ale79].
Thereby pattern languages can provide a means to combine patterns and to guide users to
an overall solution.

2.2 Concrete Solutions and Solution Languages

Patterns abstract and generalizes solution knowledge in an technology and implementation
agnostic way, which has the advantage that patterns are applicable for many different use
cases. However, as a consequence of the abstraction, the solutions provided by patterns
can mostly not be applied directly to specific use cases. Pattern users often need to
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spend immense manual efforts in order to create a use case specific implementation of
the abstract solution knowledge provided by the pattern. For example, the Gang of Four
patterns by Gamma et al.[Gam95] describe various software design patterns for object-
oriented programming. However, if for example a Java developer uses those patterns, he
needs to transfer the general solution principles described by the patterns to be applicable
to his concrete use case, i.e., he has to implement solutions based on the Java programming
language. A software architect who has to design a cloud application architecture may
use the cloud computing patterns by Fehling et al. [FLR+14] to gain insights about
provider supplied cloud offerings, but these patterns are again generic solutions that are
independent of concrete vendor products and do therefore not provide provider specific
implementation details. To provide a means to reuse existing concrete implementations of
the abstract solution knowledge presented by patterns, Falkenthal et al. [FL17] present
the concept of Concrete Solutions. Concrete solutions are linked to patterns and provide
use-case specific implementations of the abstractly described solution documented by the
pattern. Moreover, they propose the concept of Solution Languages that structure concrete
solutions analogously to pattern languages organize patterns. Thereby the provide user
navigation guidance through the set concrete solutions linked to patterns in a pattern
language [FL17].

2.3 Semantic Web

The term Semantic Web was coined by Tim Berners-Lee, for an extension of the world wide
web, "in which information is given well-defined meaning, better enabling computers and
people to work in cooperation" [BHL01]. The World Wide Web Consortium (W3C) provides
a stack of technology standards that help to build the Semantic Web. The technology
standards of the Semantic Web provide a framework to implement a machine-readable Web
of data [Con15b]. This section describes the parts of the Semantic Web Standards that are
relevant for this thesis, in more detail.

2.3.1 Resource Description Framework (RDF)

The Semantic Web builds on the Resource Description Framework (RDF), which provides a
simple data model for publishing and linking data on the web [Con15b]. The intention of
RDF is to provide open and interchangeable data format for information of resources on
the web, that can be automatically processed by software agents [Con04].
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Subject Object
Predicate

Figure 2.1: Illustration of an RDF triple as node-arc-node link

RDF aims to meet the following goals:

• a simple data model that is easy to process and to manipulate

• formal semantics that provides a reliable basis for arguing the meaning of an RDF
expression

• an IRI based vocabulary to define semantics of RDF expressions that is fully extensible

• allow anyone to make statements about any resources that be referenced by an IRI

RDF represents data as a set of triples. Each triple consists of a subject, a predicate, and an
object. The subject is an IRI reference or a blank node. The predicate is an IRI reference.
The object is an IRI reference, a literal or a blank node. Together they form a node-arc-node
link as illustrate in Figure 2.1.

RDF triples allow describing relationships between resources. Thereby the predicate
indicates the relationship and the two resources are indicated by the subject and object. A
set of such triples forms webs of information about related things, a so-called RDF Graph.

RDF uses IRI references to identify and add semantic meaning to resources and predicates.
The IRIs used to encode information ensure that the information about resources and
predicates is tied to a unique definition, that everyone can find on the web [BHL01]. Thus,
the set of triples that builds an RDF graph can be distributed in different documents on
the web and can still be uniquely identified by their IRI. RDF provides a basic IRI based
vocabulary that provides semantic meanings for certain IRI references. This vocabulary can
easily be extended which allows anyone to define new semantic terms.

An exemplary set of RDF triples encoded in RDF/XML Syntax is shown in Listing 1. There,
the terms of the RDF vocabulary defined by the namespace rdf are used to identify resources.
Further terms of the FOAF vocabulary [Dan14] defined by the namespace foaf are used
to encode the predicates of the RDF triples with semantic meaning. The resulting RDF
Graph describing information about a Person is depicted in Figure 2.2. There, subject
and object nodes containing an IRI are represented as ovals, all the predicate arcs are
labeled with their IRIs and string literal nodes are represented as rectangles. There, the
subject identified by the IRI https://example.com/MaxMustermann is related via a predicate

19
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https://example.com/MaxMustermann

https://example.com/ErikaMustermann Max Mustermann

http://xmlns.com/foaf/0.1/knows http://xmlns.com/foaf/0.1/name

Figure 2.2: A visualization of the RDF Graph described by Listing 1

that is identified by the IRI http://xmlns.com/foaf/0.1/knows to an object identified by
the IRI https://example.com/ErikMustermann. Furthermore, the subject identified by the
IRI https://example.com/MaxMustermann is related via a predicate that is identified by
the IRI http://xmlns.com/foaf/0.1/name to an object which is a literal with the value Max
Mustermann

1 <rdf:RDF

2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:foaf="http://xmlns.com/foaf/0.1/">

4

5 <rdf:Description rdf:about="https://example.com/MaxMustermann">

6 <foaf:name>Max Mustermann</foaf:name>

7 <foaf:knows rdf:resource="https://example.com/ErikaMustermann"/>

8 </rdf:Description>

9

10 </rdf:RDF>

Listing 1: A set of RDF triples described in RDF/XML syntax

2.3.2 Resource Description Framework Schema (RDFS)

RDF allows expressing knowledge by publishing and linking data. However, different data
sets may use different identifiers for the same thing [BHL01]. For example, one dataset
may use the identifier author and the other creator. A program needs to know that these
two identifiers actually mean the same. The semantic web provides ontologies to solve this
problem. Ontologies are also RDF documents and define concepts and relationships, also
called terms, that are used to describe and represent an area of concern. Ontologies provide
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a means to classify the terms and characterize possible relationships. Moreover, constraints
on using the terms can be defined. In the domain of the Semantic Web, ontologies are also
referred as vocabularies. Although there exist no strict distinction between those terms, the
word ontology is mostly used for more complex collection of terms [Con15c]. The Semantic
Web Standards provide the Resource Description Framework Schema (RDFS) and the Web
Ontology Language (OWL) that provides formal semantics to create vocabularies.

The Resource Description Framework Schema (RDFS) provides a data-modeling vocabulary
for RDF data and is an extension of the RDF vocabulary [Bri14]. RDFS is a semantic
extension of RDF that provides capabilities of describing groups of resources, and relations
between those resources. Groups of resources are defined by means of classes. The members
of a class are called instances, or individuals. The set of instances that are a member of a
class are called the class extension of the class [Bri14]. A class can be defined by defining
an instance of rdfs:class which itself is a class. In addition, a hierarchy or also called a
taxonomy of the classes can be defined by the taxonomic predicate rdfs:subClassOf, which
relates a more specific class to a more general class. If a class C1 is a subclass of a class
C2, then every individual of C1 is also an individual of C2. Moreover the rdfs:subClassOf
relation is transitive which means if C1 is a subclass of C2 and C2 is a subclass of C3, then
C1 is also a subclass of C3 [WMS04]. An example of defining classes and subclasses in
RDFS is shown in Listing 2. There, the classes Human, Adult and Child are defined by
defining them as instances of rdfs:Class. In addition the rdfs:subClassOf predicate indicates
that the classes Adult and Child are subclasses of the class Human.

1 <rdf:RDF

2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

4

5 <rdfs:Class rdf:ID="Human"/>

6

7 <rdfs:Class rdf:ID="Adult">

8 <rdfs:subClassOf rdf:resource="#Human"/>

9 </rdfs:Class>

10

11 <rdfs:Class rdf:ID="Child">

12 <rdfs:subClassOf rdf:resource="#Human"/>

13 </rdfs:Class>

14

15 </rdf:RDF>

Listing 2: Definition of a RDFS class Human with two subclasses Child and Adult

In RDF, properties describe a relation between a subject resource and an object re-
source. Similar to the concept of classes and subclasses, RDFS defines the construct
of rdfs:subproperty to create hierarchies between properties. The rdfs:subproperty can
be used to describe, that one property is a subproperty of another. If a property P1 is a
subproperty of a property P2, then all pairs of resources that are related by P2 are also
related by P1 [Bri14].
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The characteristics domain and range defines that the property links instances belonging to
the domain to instances belonging to the range. Based on this concept, a machine reader
could validate if a property is used in a correct context. For example, if a machine reader
detects that a property is used to link instances that are not a member of the class extension
defined by the domain or range of the property, the machine reader could either ignore
the property or mark it with an error. An example of defining a property with domain and
range in RDFS is shown in Listing 3. There, the property hasParent is defined. The domain
and range define that the property hasParent links instances of the class Child to instances
of the class Adult.

1 <rdf:RDF xml:lang="en"

2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

4

5 <rdf:Description ID="hasParent">

6 <rdf:type resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

7 <rdfs:domain rdf:resource="#Child"/>

8 <rdfs:range rdf:resource="#Adult"/>

9 </rdf:Description>

10

11 </rdf:RDF>

Listing 3: Definition of a RDF property hasParent with domain Child and range Adult

2.3.3 Web Ontology Language (OWL)

RDFS provides basic semantics to define a machine-readable taxonomy of classes and
properties that can be used to describe resources and relations between those resources.
However, if machines need to perform useful reasoning task it requires a language that
provides formal semantics that goes beyond the basic semantics describe by RDFS [MH04].
The Web Ontology Language (OWL) is an extension of RDFS and has been designed to
meet those needs. OWL provides an additional vocabulary with a formal semantics that
can be used to represent things, group of things in vocabularies and describe relations
between those things. OWL has more ways of expressing meaning and semantics than RDF
and RDFS, and therefore goes beyond these languages in its ability to present machine
interpretable content on the web [MH04]. For reasons of the number of semantic constructs
provided by OWL, this thesis will not discuss all of them in detail. However, this section
will provide an overview of the important formal semantics provided by OWL.

OWL extends the vocabulary of RDFS for describing classes and properties. The vocabulary
provides semantics to describe classes and their relations in more detail. For example,
describing additional property restrictions on classes, in form of cardinality constraints or
value constraints. Cardinality constraints describe a constraint on the number of values
a property can take. For example, a cardinality constraint could express that for a tennis
game the hasPlayer property has the cardinality 2. For a football game, the same property
would have 22 values. A value constraint defines constraints on the range of a property, in
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case the property is applied to that specific class description. Furthermore, OWL provides
semantics to describe classes with more advanced class constructors such as intersection,
union, and complement [MH04].

OWL also extend the formal semantic to describe properties and their relations. OWL
distinguish between two main categories of properties, object properties that link individuals
to individuals and datatype properties that link individuals to data values. Relations to other
properties can be defined with concepts such as owl:equivalentProperty that can state that
two properties have the same property extension, or owl:inverseOf that can be used to
define inverse relations between properties. Listing 4 shows an exemplary usage of the
owl:inverseOf construct. There the object properties hasParent and hasChild are defined.
The owl:inverseOf construct attached to the hasChild property defines that the hasChild is
an inverse of hasParent. Moreover, OWL provides semantics to define cardinality constraints
on properties and to define logical characteristics such as symmetry or transitivity.

1 <owl:ObjectProperty rdf:ID="hasParent">

2 </owl:ObjectProperty>

3

4 <owl:ObjectProperty rdf:ID="hasChild">

5 <owl:inverseOf rdf:resource="#hasParent"/>

6 </owl:ObjectProperty>

Listing 4: The owl:inverseOf construct defines an inverse relation between the properties
hasChild and hasParent

2.3.4 SPARQL

In the Semantic Web, the data is stored as RDF files. Just as other databases need a specific
query language, the semantic web needs its own RDF-specific query language. The triples
of RDF data are queried using SPARQL Query Language for RDF (SPARQL). SPARQL is a
W3C standard, that allows to send queries and receive results through different protocols
like the Hypertext Transfer Protocol (HTTP) [Con15a].

A SPARQL query contains a set of triple patterns, which is called a basic graph pattern. A
triple pattern is like an RDF triple except that the subject, predicate, and object may be a
variable. The result of the query would be the subgraph of an RDF graph that matches the
basic graph pattern [PS+06]. The general form of a SPARQL query to retrieve data is can
be defined by the following statements:

• PREFIX, which defines namespaces used in the query.

• SELECT, which defines the variables that should appear in the result.

• FROM, which defines the endpoint of the data graph.

• WHERE, which contains the basic triple pattern.
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• Modifiers, like ORDER BY, DISTINCT etc.

Listing 5 shows an example of a SPARQL query to retrieve the names of all persons from a
given RDF graph. There the PREFIX statement defines the namespace foaf. The SELECT
statement defines that the variable ?name should appear in the result. The FROM statement
defines http://www.w3.org/People/Berners-Lee/card as the endpoint of the data graph. The
WHERE state contains the basic graph pattern. The basic graph pattern in this example
consists of a single triple pattern with a variable (?person) in the subject position and a
variable (?name) in the object position.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 SELECT ?name

3 FROM <http://www.w3.org/People/Berners-Lee/card>

4 WHERE

5 {

6 ?person foaf:name ?name .

7 }

Listing 5: A SPARQL query that defines a graph pattern consisting of a single triple pattern
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3 Related Work

This chapter presents related work in the field of pattern language formalizations and
pattern language repositories that builds the foundation for this thesis.

In 1977 Christopher Alexander and his colleagues presented the pioneering concept of
a pattern language, which was born in the domain of architecture and urban design.
They described pattern languages as a network of linked pattern documents, where each
pattern describes a common problem and gives a proven solution [Ale77]. The structural
organization of the pattern language by Alexander et al. connects patterns that describe
the large structures like cities to more fine-grained structures like streets and houses. They
show that pattern languages are a powerful mean to solve complex solution as they give a
wise guidance of combining different patterns.

Falkenthal et al. criticize [FBL] that contrary to the collaborative idea of living network of
patterns, many pattern languages are documented in static documents like books, papers or
journal. Furthermore, they state that there is currently no it-based tool available that gives
pattern authors "an intuitive means to publish, adapt, and interrelate pattern languages
via globally accessible media such as web pages that are linked to each other". Based
on Alexander’s concept of pattern languages, they discuss how pattern languages can be
authored and adapted to implement the idea of living networks of patterns. Moreover, they
present a formal notion of pattern languages as node-colored and edge-weighted directed
multigraphs, which acts as a foundation of this thesis, to develop a web-based system for
authoring and browsing pattern languages. Chapter 4 will discuss this in more detail.

Mullet [Mul] discusses the importance of pattern languages in the field of human-computer
interaction design, to enable the application of patterns in combination. However, he
criticizes that the vast majority of existing pattern languages do not have the ability to
guide users to successful design strategies. Hence, he encourages to start a dialogue on
what an effective pattern meta-language could look like.

Zdun [Zdu07] propose an approach to facilitate the selection of patterns based on desired
quality attributes and systematic design decisions based on patterns. In this approach,
he formalized patterns and pattern relationships in a pattern language grammar. The
relationships formalized in the pattern language grammar are annotated with effects on
quality goals. Based on the pattern language grammar possible pattern sequences in a
pattern language can be derived. Subsequent the quality goal annotations can be used
during the selection of sequence steps to indicate how quality goals are affected by design
decisions.
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3 Related Work

Falkenthal et al. [FBB+14a; FBB+14b; FBB+16] state that due to fact that patterns
aims to abstract and generalize solution knowledge in a technology and implementation
agnostic way, the solutions provided by the patterns can mostly not be applied one-to-one
to specific use cases. They refer to this as abstraction gap between patterns and concrete
use-cases. As a consequence, users require knowledge about refinement and need to
invest additional manual effort, to apply a pattern to a specific use case. In order to close
this gap they introduced the concept of pattern refinement to allow the navigation from
abstract pattern to Concrete Solutions, which are individual use-case specific realizations
of the abstract solution principles describe by a pattern. Thereby they also showed how
semantic refinement links can be used to interrelate pattern languages on different levels
of abstraction. To provide a means to indicate when to select a specific Concrete Solution,
Selection Criteria which are represented as human-readable text or computer interpretable
descriptions can be added to the relations between pattern and Concrete Solutions.

Subsequent, based on their former research, Falkenthal et al. [FL17] present an approach to
organize concrete solutions into Solution Languages, which provide a means to purposefully
navigate through a set of concrete solutions that are linked to patterns of a pattern
language. They identify the following three capabilities that a Solution Language need to
provide: (i) navigation between concrete solutions, (ii) navigation guidance to find relevant
further concrete solutions, (iii) and capabilities to document relevant knowledge about
dependencies between concrete solutions, such as knowledge about aggregation steps that
are required to combine two concrete solutions. Following they state that the capabilities
(i) and (ii) can be realized by semantic links between concrete solutions. To realize (iii)
they introduce the concept of a Concrete Solution Aggregation Descriptor (CSAD), which
allows annotating a link between concrete solutions with additional information.

Barzen et al. [BL15; BL17] show that patterns are not restricted to natural science, but
can also be used to represent knowledge in the humanities. They propose a formalism to
collect costumes in movies as concrete solutions and abstract them to costume patterns
structured into a costume pattern language. In this formalism, they use domain-specific
ontologies in order to define valid properties and values to describe concrete solutions
within the domain. They emphasize the power of ontologies to create a unified vocabulary
of semantic terms that is available and reusable by others. For example, in the domain of
costumes in movies, the ontology captures properties and values of elements that form
a costume. Based on the ontology concrete solutions can be detected and grouped into
costumes with the same effect. These groups represent the essence of a set of concrete
solutions which makes up a costume pattern. Furthermore, they generalize the method
that it is also applicable in other domains besides costumes in movies.

Over the past years, a large number of patterns had been described in natural language
and documented in printed forms such as books, papers or journals. Rosengard et al.
[RU04] criticizes that patterns documented in printed form are ineffective to use and can
not be understood by machine agents. Moreover, they state the fact that a consistent
representation of patterns is missing. Hence, they introduce the idea of combining software
patterns with ontological representations, to create a knowledge base that can be shared
between agents.
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Dietrich et al. [DE05; DE07] present a similar approach. They argue that patterns present
knowledge that is shared by communities, which makes them by nature distributed and
inconsistent. Based on this idea, they use the web ontology language OWL to define an
object-oriented design ontology, called ODOL1. The ontology defines the concepts needed
to describe design patterns in a formal and machine-readable format. They implemented
a Java based prototype2 that uses the ontology to detect pattern instances in software
artifacts. Moreover, the prototype can be used to extract patterns from code and document
them in an RDF file. Their overall vision is to create a web of patterns which they define as
a system of loosely linked ontologies and design pattern descriptions that can be shared
between communities. However, they also admit that adequate tool support, such as
pattern authoring kits to create and publish new patterns, is still missing.

The vocabulary of terms provided by ODOL ontology is limited to the domain of object-
oriented design patterns. Di Martino et al. [DE13] extends the ODOL ontology with
the concept of pattern categories, represented as OWL class. This class gives a means
to categorize patterns in a hierarchical structure by adding arbitrary pattern families as
subclasses. As proof of work, they extended the ontology with terms that could be used
to describe Cloud Patterns. Furthermore, they criticize that common terms existing in the
textual description of patterns have no occurrence in the ODOL ontology. For example,
terms that describe the intent or consequences of patterns, but also terms that provide
a means to semantically link patterns. In order to express this information, they use the
pattern template described by Gamma et al.[GHJV93] as a base to extend the ontology by
a series of classes and properties that are useful to identify, compare and relate patterns.
In subsequent work [DEC15], based on ODOL they propose a semantic representation of
cloud services, patterns and appliances. Based on the semantic representation they propose
an automatic reasoning procedure that allows automatic discovery of cloud services, and
appliances. Moreover, it enables the mapping between vendor dependent and agnostic
cloud patterns and services.

Online pattern repositories have been proven to be a promising solution for publishing,
authoring and browsing pattern languages. Over the last view years, multiple pattern
repositories such as the Portland Pattern Repository [Cun+06], the Open Pattern Repository
[Hee09], or PatternPedia[FBFL14] have been developed containing pattern languages from
various domains and offering diverse functionalities to support pattern users.

Köppe et al. [KISV16], argue that although existing pattern repositories offer various
functionalities to support pattern users, none of them fulfill all user needs. In their work,
they identify requirements and features for pattern repositories which support all phases of
the design pattern life-cycle. To achieve this, they analyzed existing pattern repositories as
well as related literature to identify relevant aspects and functionalities required by pattern
repositories. Additionally, they conducted a focus group consisting of participants of the
Pattern Languages Of Programs Conference (PLoP) 2015 to get insights from experienced
pattern authors regarding their thoughts on requirements for pattern repositories.

1http://www-ist.massey.ac.nz/Projects/wop/odol.html
2http://www-ist.massey.ac.nz/wop/
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4 Use Cases and Requirements

This chapter lays out a set of use cases describing user interactions that a pattern repository
offering IT-based tool support for authoring and browsing pattern languages and solution
languages must provide. In addition, it discusses the different functional and non-functional
requirements that need to be fulfilled by the software system developed in the context of
this thesis. The requirements and use cases are derived from former research in the area of
pattern language repositories as well as from the assignment of tasks formulated by the
proposal of this thesis.

4.1 Use Cases

Pattern languages have been proven to be a useful tool for capturing deep domain expertise
in all kind of disciplines. As result patterns and pattern languages have developed in
various domains, such as education, cinematography and information technology. Over
the last view years, a large number of patterns had been described in natural language
and documented in various printed forms such as books, papers or journals. However,
this static form of documentation contradicts the primary idea of pattern languages as
living networks of patterns as described by Christopher Alexander [Ale77]. Moreover, the
fact that patterns are distributed over various documents makes it hard for users to find
patterns that suit their problem.

Köppe et al. [KISV16] argues that IT-based pattern repositories could provide a promising
solution to overcome those problems as they have the ability to provide pattern users
various functionalities such as collaborative pattern writing, pattern editing, or browsing
of existing pattern languages. In their work, they analyzed existing repositories as well
as existing research to identify important aspects and user interactions that an IT-based
pattern repository must provide. They identify capabilities such as pattern writing, pattern
reviews, and pattern browsing. This thesis uses the identified aspects as a basis to identify
relevant user interactions that the IT-based pattern repository must provide.

The user group of an IT-based pattern repository is defined by pattern authors and pattern
users. They differentiate by the fact that only pattern authors have write-access to the
repository for authoring pattern and concrete solution documents. Pattern users have no
write access they can use the repository to browse existing pattern and solution languages.

The following major use case from the perspective of a pattern author are identified and
formulated, as Figure 4.1 illustrates: (i) Author pattern documents, (ii) Author Concrete
Solution Documents, (iii) Link Documents , (iv) Community Collaboration.
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4 Use Cases and Requirements

Author Pattern Documents: Pattern authors can create and edit pattern documents.
Thereby pattern authors can define the content of the pattern document with various
digital information such as text, pictures, or sketches.

(i)

Author Concrete Solution Documents: Patten authors can create and edit concrete
solution documents, which provide information about use case specific implementa-
tion details of an abstractly described solution, documented by a pattern.

(ii)

Link Documents: Pattern authors can link pattern documents and/or concrete
solution documents, in order to create a browsable pattern and solution languages.
Moreover, they can describe the relation type, the direction of the relation, and
provide arbitrary additional documentation in form of digital information such as
text, pictures, or sketches.

(iii)

Community Collaboration: Pattern authors can collaborate on authoring pattern
documents and concrete solution documents. Pattern authors can write pattern and
concrete solution documents together, make change requests on existing pattern and
concrete solution documents or review proposed changes. Thereby they can use
various collaboration functionalities such as review functionalities, communication
functionalities, or versioning.

(iv)

The following major use case from the perspective of a pattern user are identified and
formulated, as Figure 4.2 illustrates: (i) Browse Pattern Languages and Solution Languages,
(ii) Provide Feedback.

Browse Pattern Languages and Solution Languages: Pattern users can browse
pattern languages and solution languages by following the semantic links contained
in pattern documents and solution documents. Moreover, they can filter a given
pattern language or solution language based on selection criteria to receive only the
subset of pattern documents or concrete solution documents that match their specific
use case.

(i)

Provide Feedback: Pattern users can provide feedback on existing pattern documents
and concrete solution documents. They can use rating mechanisms to review the
quality of existing pattern or concrete solution documents. Moreover, they can share
their experience about using pattern or concrete solution documents with the authors
and provide possible ideas for improvement in form of textual feedback.

(ii)

4.2 Requirements

The functional and non-functional requirements that an IT-based pattern repository has to
meet, are derived from both, the assignment of tasks formulated by the proposal of this
thesis, as well as former research in the domain of pattern languages and pattern language
repositories. Table 4.1 shows a list of functional requirements (FR). A list of non-functional
requirements (NFR) is shown in Table 4.2. This section will discuss these requirements in
detail.
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4.2 Requirements

Link Documents

Author Concrete Solution 
Documents

Author Pattern Documents

Community Collaboration

Pattern Repository

Pattern Author

Figure 4.1: Use cases from the perspective of a pattern author on a software based pattern
repository

Browse Pattern Lanugages 
and Solution Languages

Provide Feedback

Pattern Repository

Pattern User

Figure 4.2: Use cases from the perspective of a pattern user on a software based pattern
repository
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4 Use Cases and Requirements

# Description

FR1 Support Semantic Links in Pattern and Concrete Solution Documents
FR2 Allow to Annotate Semantic Links with Additional Informations
FR3 Support Pattern Languages Consisting of Distributed Pattern Documents
FR4 Support Solution Languages Consisting of Distributed Concrete Solution Documents
FR5 Support Querying of Pattern and Concrete Solution Documents
FR6 Provide Collaboration Functionalities
FR7 Support Versioning of Pattern and Solution Languages

Table 4.1: List of functional requirements

# Description

NFR1 Usability
NFR3 Compatibility
NFR3 Interoperability

Table 4.2: List of non-functional requirements

FR1: Support Semantic Links in Pattern and Concrete Solution Documents

Patterns are typically not isolated instead they are linked to related patterns, which provide
pattern users navigation guidance through a set of patterns that may be relevant in the
same context. This navigable network of patterns is called a pattern language. In the
pattern language described by Alexander et al. all relationships between patterns had
the same semantic meaning. However, in many other domains, link types with different
semantic meaning are needed to describe the structure of a pattern language. Thereby the
semantic meanings as well as the amount of types depends on the domain of the patterns
and can vary between different pattern languages. For example the remoting pattern
language by Zdun et al. [ZKV04] define semantic link types such as implies, may use, and
requires. The cloud computing pattern language by Fehling et. al [FLR+14] uses semantic
links types such as see also and consider after to interrelate patterns.

The software system should provide means to define semantic links that are not only human
readable but can also be processed by machines. The proposal of the thesis specified that
Semantic Web Standards should be used to define the semantics of relationships in form
of machine-readable metadata. Therefore, the developed software system must provide a
means to define semantic relationships between pattern documents and solution documents
in form RDF data. Moreover, it must provide a means to process the information provided
by the RDF data and visualize it in a human-readable format.
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4.2 Requirements

FR2: Allow to Annotate Semantic Links with Additional Informations

In many cases, a semantically typed link is not sufficient to describe the relationship
between patterns and/or concrete solutions. Instead, the link needs to provide more
detailed knowledge about a relationship. For example, if two patterns are connected via the
relationship alternative, additional information attached to the relationship can describe
use-cases in which one of the alternatives is more suitable than the other. Additional
information attached to a semantic link can be aggregated with that relates two concrete
solutions may provide documentation in form of concrete manual aggregation steps that
need to be done. Falkenthal et al. [FBL] suggest to extract that information from the
pattern/ concrete solution documents itself, which makes it easier to maintain pattern and
solution languages as new relations can be created without rewriting existing documents.

The software system needs to support those concepts and provide a means to annotate
semantic links with additional documentation about the relationship. Moreover, it needs to
provide a means to author this information in separate documents that can be authored
independently from the pattern/ concrete solution documents they interrelate.

FR3: Support Pattern Languages Consisting of Distributed Pattern
Documents

A pattern language is not a static artifact, but it is subject to a collaborative process that
constantly changes the structure of the pattern language. In this ongoing collaborative
process of documenting new patterns, also the interrelations between patterns are under
a constant change. Pattern languages which have primary been authored isolated from
each other may converge over new relations between patterns that are part of the two
pattern languages [FBL]. For example, the Remoting Patterns by Völter et al. [VKZ13] has
many relations to patterns and pattern languages from related domains such as networking,
concurrency, and resource management that are documented in other places such as books
or journals. Those pattern languages are not documented in a central place and had been
written by different authors. However, from the perspective of a pattern reader, the pattern
languages converge to one as there exist relations between patterns of the different pattern
languages. Hence the network of patterns that form a pattern language is not limited to a
central location such as books, web pages or pattern repositories. Instead the network of a
pattern language can be distributed over various locations.

The developed software system must provide a means to create pattern languages that
consist of pattern documents that are not stored centrally, but are distributed over the web
and authored by different authorities. Moreover, the software system needs to provide a
means to retrieve the distributed pattern documents that form a pattern language in order
to provide pattern users a means to browse through the pattern language.
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4 Use Cases and Requirements

FR4: Support Solution Languages Consisting of Distributed Concrete
Solution Documents

Concrete solutions are linked to patterns and provide use-case specific implementations
of knowledge described by a pattern [FL17]. Numerous concrete solutions can be linked
to one pattern. For example, the Observer Design Pattern described by the Gang of Four
Patterns [GHJV93], could be linked to an existing concrete solution implemented in Java
and also to an existing concrete solution implemented in C#. Moreover, these two concrete
solutions may be authored by different software programmers and are stored in different
places on the web. Therefore, analogous to pattern languages the software system must
provide a means to create solution languages that consist of concrete solution documents
that are distributed over the web and authored by different authorities. Moreover, the
software system needs to provide a means to retrieve the distributed concrete solution
documents that form a pattern language in order to provide pattern users a means to
browse through the concrete solution language.

FR5: Support Querying of Pattern and Concrete Solution Documents

In many cases, the user is only interested in a subset of patterns and/or concrete solutions
contained in a pattern and concrete solution language. For example, a software architect
that want to host his software application in the cloud may search for patterns describing
different types of cloud offerings. A project manager that want to gather knowledge about
building a Software as a Service (SaaS) offering may also be interested in cloud computing
patterns, but he searches for a different subset of cloud computing patterns. Further, a
user that already selected specific patterns that suit his use-case are may want to query
use-case specific concrete solution documents based on the patterns he selected. Having a
large network of patterns makes it challenging for the user to go through all the existing
patterns and concrete solutions and select the ones that suit his problem. Therefore, the
software systems need to allow automated selection of suitable pattern documents and
solution documents based on given input parameters.

FR6: Provide Collaboration Functionalities

Although Pattern Languages and Solution Languages can be authored by individuals they
are most likely subject to a collaborative process in the pattern community [KISV16].
Therefore, an IT-based pattern repository needs to provide functionalities that ease the
collaborative authoring of pattern languages and solution languages:

• The content in the pattern repository can be authored by one or more authors that
have write-access.

• Pattern authors have the ability to propose changes that can then be reviewed by
other pattern authors.
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4.2 Requirements

• Users can provide feedback and make suggestions for improvements. For example, a
make-up artist who applied a pattern for costumes in films may share her feedback
with the authors of the pattern.

4.2.1 FR7: Support Versioning of Pattern and Solution Languages

In collaborative projects version control is an important function as it provides a means
to keep track of changes in the projects. Version control keeps track of what files have
been changed, the specific changes in the files, and the contributor who made the changes.
Additionally, it provides functionalities to revert specific changes in order to recall a prior
version. To ease community collaboration, the software system needs to support version
control for pattern documents and solution documents.

NFR1: Usability

Pattern languages are used in a wide variety of disciplines. Many of them are non-technical
like the patterns in the domain of architecture and urban design for building and planning
by Christopher Alexander [Ale77]. Barzen et al. show how patterns can be used in the
domain of costumes in films to solve the recurring problem of achieving effects in films by
using clothes [BL15]. The authors of such pattern languages have a deep expertise in their
domain, but their knowledge in information technology is often limited. Thus, the software
system should enable the authoring of pattern languages without advanced knowledge in
information technology.

NFR2: Compatibility

The proposal of the thesis specified that software system should be implemented as a
browser-based application. This ensures a high degree of compatibility as the system
functions universally with various systems. Moreover, it prevents users from installing any
software on their computers.

NFR3: Interoperability

To support the development of a distributed living network of patterns it is important to
support the growth of the ecosystem around it. It should be easy to develop additional
software systems that interact with the existing pattern and solution languages. Moreover,
it should be possible to exchange information between software systems.
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5 Concept

This chapter proposes an ontological representation of pattern languages and solution
languages that uses Semantic Web Standards to describe machine-readable information
about patterns and concrete solutions and their interrelations. The chapter is structured
as follows, first it describes the general concepts of using Semantic Web Standards to
represent pattern languages and solution languages. Subsequent it shows how Semantic
Web Standards can be used to create a vocabulary that defines specific concepts of pattern
languages and solution languages in form of machine readable metadata. Furthermore this
chapter describes how this vocabulary can be used to create a machine-readable network
of linked data that describes informations about patterns, concrete solution and their
interrelations.

5.1 A Semantic Web of Pattern Languages and Solution
Languages

This section describes the general concept of a Semantic Web of Pattern and Solution
Languages. This section describes how Semantic Web Standards can be used to create a
vocabulary that defines the concepts and relationships, needed to describe and represent
pattern languages and solution languages, in a machine readable form. Additionally it
describes how instances of those concepts and relationships can be created which can be
used to form instances of pattern languages and solution languages consisting of machine
readable linked data contained in documents that are distributed on the web.

Authoring pattern languages and solution languages is a collaborative process. Pattern lan-
guages and solution languages consist of knowledge that is shared across a community and
grows over time as different pattern authors contribute new knowledge. As a consequence
this knowledge is by nature distributed and inconsistent [DE07]. This motivates the use of
the Semantic Web Standards to represent information of pattern languages and solution
languages on the web, because they are inherently designed for machine readable, open
and distributed representation of knowledge. In the following we show how the Semantic
Web Standards can be used to create a formal and machine processable representation
of pattern languages and solution languages, a Semantic Web of Pattern and Solution
Languages.
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5 Concept

By using Semantic Web Standards to represent knowledge about patterns, concrete solutions
and their interrelations we can meet the following objectives:

• In the context of Support Semantic Links in Pattern and Concrete Solution Documents
(FR1) and Allow to Annotate Semantic Links with Additional Informations (FR2). The
semantic web standards meets the objective of a formal and machine processable
representation of resources and their interrelations on the web in form of linked data.
Due to this fact, the semantic web standards can be used to describe informations
of pattern, concrete solutions and their relations in form of linked data on the web,
which provides a formal and machine processable representation of pattern languages
and solution languages.

• In the context of Support Pattern Languages Consisting of Distributed Pattern Documents
(FR3) and Support Solution Languages Consisting of Distributed Concrete Solution Doc-
uments, the semantic web standards enable distributed representation of knowledge
without a single point of control. This knowledge can be shared and reused across
software systems. In order to achieve consensus between authority, vocabularies that
define and classify concepts in form of machine-readable schema can be created and
shared over the web. Moreover, the standards provide common data formats on the
web that are compatible with existing standard web technologies.

• In the context of Support Querying of Pattern and Concrete Solution Documents, the
semantic web standards provides its own query language SPARQL, which can be used
to programmatically retrieve specific RDF data from an RDF graph.

Three of the cornerstones of the semantic web standards are the Resource Description
Language (RDF), Resource Description Framework Schema (RDFS), and the Web Ontology
Language (OWL), which are designed to represent knowledge about things, group of
things and their relations in a machine readable fashion. While RDF builds a standard
data model that uses triples in form of subject, predicate and object to express binary
relationships between resources that are identified by IRIs, RDFS and OWL are build to
create vocabularies that define semantic terms that can be used to encode RDF data with
semantic metadata that describe the resources.

The semantic terms contained in an OWL vocabulary describe concepts and relationships
that can be used to describe and represent an area of concern. Thereby, OWL provide a
means to classify the terms, define possible relationships, as well as possible constraints on
using those terms [Con15c]. In the past years different vocabularies have been published,
for example the vocabulary of the Dublin Core metadata Initiative [Con08] that provides
common terms to describe digital resources such as images, videos, web pages and also
physical resources such as books, articles, or DVDs. Another example is the FOAF vocabulary
[Dan14] that provide semantic terms to describe persons and their relations to other persons
and objects.

One of the big advantages of OWL is its open world assumption, which means that
description of resources are not limited to a single file or scope instead they can be extended
by other vocabularies, which allows that knowledge can be easily added [WMS04]. For
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5.1 A Semantic Web of Pattern Languages and Solution Languages

example, a vocabulary that describe basic terms to describe patterns and relationships
between patterns could be extended by a vocabulary that defines additional terms such as
terms to describe patterns in the domain of cloud computing.

Vocabularies can be published in form of RDF documents on the world wide web to be
shared within the community. Published vocabularies can then be imported into other
RDF documents to describe the contained resources in a machine readable way by creating
instances of terms defined in the vocabulary. The general concept is illustrated in Figure 5.1.
There, a vocabulary defines terms that can be used to describe facts about cloud computing
patterns. The RDF data illustrated in Figure 5.1 is written in XML syntax however the docu-
ments can also represent machine readable data in other RDF syntax, such as N3, turtle,
or RDFa which allows to embed RDF data into Hypertext Markup Language (HTML). The
vocabulary defines the class Pattern and its subclass CloudComputingPattern. Additional it
defines the properties patternName, alternative, and seeAlso. The terms defined by the vocab-
ulary are used in the illustrated RDF documents to describe machine readable information
about instances of the class CloudComputingPattern. The RDF documentA contains RDF data
that defines a CloudComputingPattern with the IRI "http://ccp.com/docA#public-cloud".
The RDF data describes that this CloudComputingPattern has the property patternName
of ’Public Cloud’ and the relationship alternative to another CloudComputingPattern ref-
erenced by the IRI of "http://ccp.com/docB#private-cloud". As resources are defined by
IRIs, the resources that are linked to each other form a network of linked data that can
be browsed by a machine-reader, although the data is distributed over the web. Based
on the semantically linked knowledge represented in form of an RDF graph, the SPARQL
query language can be used to analyze the linked knowledge by writing queries against
it. For example, on the RDF graph build by the RDF data in Figure 5.1 a SPARQL query
may retrieve all objects that are linked via the predicate ccp:alternative to the subject
"http://ccp.com/docA#public-cloud".
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<ccp:CloudComputingPattern rdf:about="http://ccp.com/docA#public-cloud">
<ccp:patternName>Public Cloud</ccp:patternName>
<ccp:alternative rdf:resource=“http://ccp.com/docB#private-cloud“></ccp:alternative>

</ccp:CloudComputingPattern>

<ccp:CloudComputingPattern rdf:about="http://ccp.com/docB#private-cloud">
<ccp:patternName>Private Cloud</ccp:patternName>

</ccp:CloudComputingPattern>
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CloudComputingPattern

patternName

Private Cloud

RDF document B

Figure 5.1: The terms defined by a vocabulary are used to encode RDF data in documents with machine readable semantic metadata
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5.2 Ontological representation of Pattern Languages

This section describes how Semantic Web standards can be used to describe concepts of
pattern languages in form of machine readable metadata. Thereby it describes how OWL
can be used to define a vocabulary with the concepts and relationships needed to describe
and represent pattern languages in form of machine readable metadata. Additionally it
describes how instances of those concepts can be created to describe instances of pattern
languages consisting of machine readable distributed documents.

5.2.1 Semantic classification of pattern types

Today patterns and pattern languages have been established in various disciplines such
as information technology, education, or architecture. Structuring patterns into pattern
languages categorizes patterns by means of pattern types, e.g the patterns in a cloud
computing pattern language are cloud computing patterns, the patterns in a object-oriented
software design pattern language are object-oriented software design patterns, or the
patterns of a urban design pattern language are urban design patterns. As the relevance
on the different patterns contained in the pattern language may differ depending on
the profession of the pattern language reader as well as his specific use case, patterns
contained in a pattern language are often again subdivided into categories to support
pattern readers by finding relevant patterns for their use case. For example, a software
architect or developer using the cloud computing patterns by Fehling et al. [FLR+14], may
want to use cloud offerings to host his application may use the pattern language to learn
about cloud offerings and to find out which cloud offerings meet the application specific
requirements. An IT infrastructure manager who want to build a Platform as a Service
(PaaS) offering, may search for different patterns, those that provide knowledge about
cloud properties that need to be fulfilled by PaaS offerings. This categorization of patterns
creates a semantic classification of the patterns into pattern types. Moreover it creates a
hierarchy between those pattern types.

In OWL this semantic classification of pattern types can be defined by the concept of OWL
classes. Based on those classes, instances of patterns can be created that are individuals of a
class. If an individual is a member of a class, it tells a machine reader that it falls under the
semantic classification of that class. In addition, a hierarchy or also called a taxonomy of
the classes can be defined by the taxonomic predicate rdfs:subClassOf, which relates a more
specific class to a more general class. If a class C1 is a subclass of a class C2, then every in-
dividual of C1 is also an individual of C2. Moreover the rdfs:subClassOf relation is transitive
which means if C1 is a subclass of C2 and C2 is a subclass of C3, then C1 is also a subclass of
C3 [WMS04]. Listing 6 shows an excerpt of an exemplary vocabulary that defines the two
classes CloudComputingPattern and CloudApplicationArchitecturePattern. Moreover it relates
the class CloudApplicationArchitecturePattern via the predicate rdfs:subClassOf to the class
CloudComputingPattern, which defines that the class CloudApplicationArchitecturePattern is
a subclass of the class CloudComputingPattern.
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1 <owl:Class rdf:ID="CloudComputingPattern">

2 <rdfs:label>Cloud Computing Pattern</rdfs:label>

3 <rdfs:comment>This class represents those things which are Cloud Computing Patterns</rdfs:comment>

4 </owl:Class>

5

6 <owl:Class rdf:ID="CloudApplicationArchitecturePattern">

7 <rdfs:label>Cloud Application Architecture Pattern</rdfs:label>

8 <rdfs:comment>This is a subclass of Cloud Computing Pattern</rdfs:comment>

9 <rdfs:subClassOf>

10 <owl:Class rdf:about="#CloudComputingPattern"></owl:Class>

11 </rdfs:subClassOf>

12 </owl:Class>

Listing 6: Excerpt of an exemplary vocabulary that defines that the class CloudApplication-
ArchitecturePattern is a subclass of the class CloudComputingPattern

5.2.2 Navigation through pattern languages

Patterns are typically not isolated nuggets of advice, instead they are linked to related
patterns, which allow pattern users to navigate from one pattern to other patterns that
may be relevant in the same context. This navigable network of patterns is called a
pattern language. Whereas the initial pattern language by Christopher Alexander uses a
single implicit link type between patterns, in many other domains different link types are
needed to describe the structure of the pattern language and to provide precise navigation
guidance to find relevant further pattern [FBL]. For example in the pattern language
on cloud computing [FLR+14], patterns are referenced with link types such as see also
and consider after. The remoting pattern language by Zdun et al. [ZKV04] describe
dependencies between patterns via different link types such as implies, may use, and
requires. Links in existing pattern languages are mostly represented as textual references in
printed documents or as simple hyper-links on webpages. The semantic meaning of such
links can be understand by humans, but they can not be processed by machine-readers.

Referring to the mentioned examples we introduce the concept of semantic links between
pattern languages that provide a navigation guidance through pattern languages, by sup-
porting machine readers to decide if related patterns are relevant or not. In OWL, semantic
links between resources can be defined by object properties that link individuals of classes.
Similar to classes the characteristics of object properties can be defined in a vocabulary.
The example shown in Listing 7, defines property for the relationships alternative and
considerAfter. The domain and range defines that the property links individuals belonging
to the class CloudComputingPattern. The defined properties can then be used to express
semantic links between individuals of CloudComputingPattern. An example of the concept
is illustrate in Figure 5.2. There RDF data contained in distributed documents describe
individuals of the class CloudComputingPattern. The individuals are semantically linked
via object properties. The individual PublicCloud contained in document Pa is linked via
the object property seeAlso to the individual SaaS contained in document Pb. Moreover,
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PA

PC

PB

<ccp:CloudComputingPattern rdf:about=" http://ccp.com/docA/PublicCloud" >
<ccp:patternName>Public Cloud</ccp:patternName>
<ccp:alternative rdf:resource=" http://ccp.com/docC/PrivateCloud"></ccp:alternative>
<ccp:considerAfter rdf:resource=" http://ccp.com/docB/SaaS"></ccp:considerAfter>

</ccp:CloudComputingPattern>

<ccp:CloudComputingPattern rdf:about=" http://ccp.com/docC/PrivateCloud" >
<ccp:patternName>Private Cloud</ccp:patternName>
<ccp:alternative rdf:resource=" http://ccp.com/docA/PublicCloud"></ccp:alternative>

</ccp:CloudComputingPattern>

<ccp:CloudComputingPattern rdf:about=" http://ccp.com/docB/SaaS" >
<ccp:patternName>Software as a Service</ccp:patternName>

</ccp:CloudComputingPattern>

Figure 5.2: Pattern Individuals contained in different documents are semantically linked
via object properties

the individual Public Cloud is linked via the object property alternative to the individual
PrivateCloud described in document Pc. In addition the individual PrivateCloud is also
linked via the object property alternative to the individual PublicCloud.

1 <owl:ObjectProperty rdf:ID="alternative">

2 <rdfs:domain rdf:resource="#CloudComputingPattern"/>

3 <rdfs:range rdf:resource="#CloudComputingPattern" />

4 </owl:ObjectProperty>

5 <owl:ObjectProperty rdf:ID="considerAfter">

6 <rdfs:domain rdf:resource="#CloudComputingPattern"/>

7 <rdfs:range rdf:resource="#CloudComputingPattern" />

8 </owl:ObjectProperty>

Listing 7: Definition of two object property alternative and considerAfter to link individuals
of the class CloudComputingPattern

Pattern Relation Descriptor

Falkenthal et al. [FBB+14b] argues that in some cases it is important that links between
patterns not only describe how those patterns are related by means of a semantic keyword
but also provide more detailed knowledge about the relationship to describe how the
relation is defined in the specific case. For example, if two patterns are interrelated with
the semantic link can be combined with, additional information can be provided to the user
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PAPB PRD

<ccp:CloudComputingPattern rdf:about=" RelationalDatabase " >
<ccp:patternName> Relational Database </ccp:patternName>

</ccp:CloudComputingPattern>

<ccp:CloudComputingPattern rdf:about=" StatelessComponent " >
<ccp:patternName> Stateless Component </ccp:patternName>

</ccp:CloudComputingPattern>

<ccp:PRDConsiderAfter rdf:about=" PRD" >
<ccp:sketch rdf:resource="http://ccp.com/external_state.jpg"></ccp:sketch >
<ccp:context>To keep external state you may need storing offerings</ccp:context>
<ccp:hasSource rdf:resource="http://ccp.com/StatelessComponent"></ccp:hasSource>
<ccp:hasTarget rdf:resource="http://ccp.com/RelationalDatabase"></ccp:hasTarget>

</ccp:PRDConsiderAfter>

hasSource hasTarget

Figure 5.3: A Pattern Relation Descriptor contained in a separate document, describes a
relationship between the two pattern individuals Stateless Component and
Relational Database

that describe all required steps to actually combine those patterns. Today, the information
about relations to other patterns is mostly documented in pattern documents themselves.
Falkenthal et al. criticizes that this makes it hard to maintain the pattern language, as
changes may require rewrites in the related patterns. Therefore they suggest to extract
these information from the patterns themselves and attach it directly to the links that
interrelate the patterns.

In order to extract the additional documentation about the relationship between two
patterns from the pattern documents itself into a separate document, we introduce the
concept of a Pattern Relation Descriptor (PRD). The Pattern Relation Descriptor describes
the a semantic relation between two patterns as well as additional information about the
relationship in a separate document. In OWL, we describe this concept by means of an OWL
class PatternRelationDescriptor. In addition more specif types of PRDs can be described
that are subclasses of the generic class PatternRelationDescriptor. For example a subclass
PRDAlternative could classify instances PRDs that describe the relationship alternative.

An individual of the class PatternRelationDescriptor is always linked to two individuals
of the class Pattern and acts thereby as connector between two individuals of the class
Pattern. The direction of the relationship can be defined by object properties hasSource
and hasTarget, whose domain is represented by PatternRelationDescriptor and range is
represented by Pattern. Information about the relationship can be linked to an PRD
individual via the concept of owl properties. This information can contain literal values that
are linked via datatype properties but also external resources such as images or graphics
that are linked via object properties. The information provided by PRD can be aggregated
by a machine reader that parses the information and presents it in a human readable
format. For example, the additional information about a relationship could be presented as
a tooltip that appears if a user hovers over a link contained in digital pattern document.
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An example of a Pattern Relation Descriptor is depicted in Figure 5.3. There the individual
PRD of the class PRDConsiderAfter describes a relationship between the individuals State-
less Component and Relational Database. The object properties hasSource and hasTarget
express that the direction of the relationship is from the individual StatelessComponent to
the individual RelationalDatabase. Furthermore, the PRD provides additional information
that describes the context of the relationship in human readable form and provides a link
to a resource that illustrates the concepts.

5.3 Ontological representation of Solution Languages

In order to guarantee that pattern and pattern languages are applicable for many different
use-cases, patterns abstract and generalize solution knowledge in a technology and imple-
mentation agnostic way. As a consequence, the solutions provided by patterns can mostly
not be applied one-to-one to specific use cases.

Falkenthal et al. [FL17] criticizes that this lack of guidance about how to implement
a pattern in a concrete use-case specific context leads to immense manual effort and
reimplementation of already existing solutions. To overcome this problem they introduced
the concept of Concrete Solutions. Concrete solutions are linked to patterns and provide
use-case specific implementations of the abstractly described solution documented by the
pattern. The solution knowledge provided by a concrete solution depends on the domain of
application. For example in the domain of software development a concrete solution could
provide code, which can be directly used by programmers to be integrated in their software
application. For example a Java developer faced with the problem of implementing the
Observer Design Pattern described by the Gang of Four Patterns [Gam95] could reuse an
existing concrete solution of the Observer Design Pattern written in Java. Depending on
the domain concrete solutions are not necessarily program code or other digital artifacts,
instead they can also be represented as tangible artifacts. For example, in the domain of
costumes in movies as described by Barzen et al. [BL15] a concrete solution could be a
costume in a wardrobe.

5.3.1 Concrete Solution Descriptor

Patterns may be linked to multiple concrete solutions, each providing a concrete implemen-
tation of the pattern for a specific use-case. For example the Observer Design Pattern, could
not only be linked to an existing concrete solution implemented in Java, but also to existing
concrete solutions implemented in other programming languages such as, JavaScript, Hy-
pertext Preprocessor (PHP), and C#. A superhero costume pattern may be linked to various
existing costumes in a wardrobe such as Superman costume, a Batman costume, and an
Iron man costume. Since many existing concrete solutions can be linked to a pattern, a
pattern user need guidance to select a proper concrete solution that can be applied in the
context of his use-case.
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To provide a means to select proper concrete solutions we introduce the concept of a
Concrete Solution Descriptor (CSD). A Concrete Solution Descriptor acts as connector
between a pattern and a Concrete Solution that needs to be linked to a pattern. They
provide a means to guide the selection of a proper Concrete Solution by providing additional
information that is not contained in the Concrete Solution itself. Those information may
contain different selection criteria as well as information about the location of the Concrete
Solution. For example, the information about the location of the concrete solution artifact
could be expressed through an Internationalized Resource Identifier (IRI) [M D05]. The
resource identified by the IRI can be anything that has an identity [BFM98], for example a
digital artifact such as an electronic document, an image, or a video but also tangible objects
such as a book in a library or a costume in a wardrobe. In addition, the Concrete Solution
Descriptor provides an abstraction level that provides a consistent means to represent this
information independent from the representation form of the linked concrete solution
artifact.

Figure 5.4 illustrates how a Concrete Solution Descriptor can be described in form of RDF
triples in order to provide the information in a machine readable format. There the individ-
ual AwsELB of the class ConcreSolutionDescriptor describes properties about a concrete
solution artifact. The css:hasPattern object property describes that the concrete solution
artifact is related to the pattern ElasticLoadBalancer. The object property ccp:hasCSArtifact
describes the location of the concrete solution artifact in form of an IRI. Moreover additional
selection criteria are provided in form of datatype properties to describe the platform of
the concrete solution can be applied to as well as the format the solution is written in.
Furthermore it provides a short description about the intend of the concrete solution artifact
in human readable format. Due to the fact that the data is described in form of RDF triples,
the SPARQL query language can be used to programmatically retrieve Concrete Solutions
based on given query parameters. For example a software system that implements SPARQL
functionalities could be used to retrieve all concrete solution artifacts for a Elastic Load
Balancer that are implemented for AWS.

5.3.2 Guide Navigation through Concrete Solutions

The sum of all concrete solutions that are linked to patterns of a pattern language builds
the solution space of the pattern language [FL17]. The concrete solutions of a solution
space are linked to patterns, but they are not linked to each other. As a consequence, if a
user selects a concrete solution he has no guidance to navigate through the set of all further
relevant concrete solutions. Instead navigation is only possible on the level of patterns
by navigating through the pattern language. This can be time consuming and frustrating,
especially if users have their conceptual solutions already defined and want quickly browse
through the available concrete solutions. Moreover if users want to combine multiple
concrete solution they face the problem, that an understandable documentation is missing
on how to actually combine these concrete solutions [FL17].

To solve this problem, Falkenthal et al. [FL17] propose, the concept of Solution Languages
that provide a means to organize concrete solutions analogously to pattern languages
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P CSCSD

<ccp:ConcreteSolutionDescriptor rdf:about="AwsELB">
<ccp:platform>AWS<ccp:platform>
<dc:format>JSON<dc:format>
<dc:description>Creates a Load Balancer entity in your AWS CloudFormation template<dc:description>
<ccp:hasPattern rdf:resource="ElasticLoadBalancer"></ccp:hasPattern>
<ccp:hasCSArtifact rdf:resource="http://ccp.com/code/elasticLB.json"></ccp:hasCSArtifact>
</ccp:ConcreteSolutionDescriptor>

<ccp:CloudComputingPattern rdf:about="ElasticLoadBalancer " >
<ccp:patternName>Elastic Load Balancer </ccp:patternName>

</ccp:CloudComputingPattern>

hasPattern hasCSArtifact

Figure 5.4: A Concrete Solution Descriptor (CSD) described using RDF acts as connector
between a pattern (P) and a concrete solution artifact (CS) and provides
important information about the concrete solution in a machine processable
format

organize patterns. They identify the following three capabilities that need to be provided by
a Solution Language: (i) navigation between concrete solutions, (ii) navigation guidance
to find relevant further concrete solutions, (iii) and capabilities to document relevant
knowledge about dependencies between concrete solutions, for example knowledge about
aggregation steps that are required to combine two concrete solutions. Following they
state that the capabilities (i) and (ii) can be realized by semantic links between concrete
solutions. Based on a semantic link a user can decide if a specific further concrete solution
is relevant for his use-case or not. For example a semantic link between two concrete
soltutions could indecate that those are alternatives, it also indicate that the concrete
solutions are different variants, for example two concrete solutions written in different
programming languages. A semantic link may also indicate that two individual concrete
solutions can be aggregated with or can not be aggregated with.

Whereas (i) and (ii) can be enabled by the use of semantically typed links between concrete
solutions, the capabilities provided by the concept of semantic link are sufficient to enable
(iii). Therefor, Falkenthal et al. introduce the concept of a Concrete Solution Aggregation
Descriptor (CSAD). They describe the concept CSAD as follows: "CSADs are the means
to add arbitrary documentation about how to aggregate concrete solutions to a Solution
Language." [FL17]. However, important details about dependencies between concrete
solutions are not limited to aggregation details. For example, if two concrete solutions
are different variants the user is not interested in aggregation details instead he may need
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information details about the existing differentiators. Therefor we extend this concept by a
more general concept of a Concrete Solution Relationship Descriptor (CSRD).

A CSRD allows to annotate a link between concrete solutions with additional information
that describe important details about the dependency of two concrete solutions. This
concept is analogously to the concept of the PRD on the level of pattern described in
Section 5.2. For example, the information contained in a CSRD could provide textual
documentation that describe the different working steps that are required to combine the
individual concrete solutions. It could also provide other forms of useful documentation
such as pictures for a visual instruction of the individual working steps, or a sketch to
illustrate the artifact that forms as a result of the aggregation. The content provided by
the CSRD depends on the domain of the concrete solutions, e.g to guide the aggregation
of two concrete solutions that are programming code, the CSRD could provide additional
code snippets that need to be added and could provide detailed description about manual
working steps required for the aggregation. In the domain of urban design the content of a
CSRD may describe how to combine artifacts like street trees, plants and flowers, which
are in this case concrete solutions, to create urban parks in cities.

The information provided by the CSRD is not limited to aggregation details, but could
contain arbitrary important information details about a dependency between two concrete
solutions. In case of two existing variants of concrete solutions the CSRD could provide
documentation details about the existing differentiators. For example, a CSRD describing
the dependency between an existing Superman costume and a Batman costume that are
both variants of concrete solution of a superhero pattern in a pattern language for costume
in movies, may differentiate the variants by providing a list of comics these costumes are
applicable.

In OWL this concept can be described by an OWL class ConcreteSolutionRelationDescriptor.
Subclasses of this class could define more specific types of ConcreteSolutionDescriptors.
For example, an subclass CSRDAggregation could define the specific subset of CSRD that
describes the relationship can be aggregated with between two concrete solutions. Based on
the semantic classification of CSRD types a machine reader could select specific instances of
CSRD based on given parameters. For example, a machine reader could select all instances
of CSRD that describe the relationship can be aggregated with between a concrete solution
CS1 and other CS that exist in the concrete solution space of a pattern language. Object
properties can be defined to describe which concrete solutions are related by the CSRD.
For example a object property aggregates could link all instances of concrete solutions to
CSRD that are part of the aggregation. Moreover additional information could be described
by means of datatype properties and object properties that are linked to the instance of a
CSRD. Figure 5.5 depicts an example of an CSRD described using RDF and OWL. For sake of
simplicity the RDF data contained in the documents that describe the CSDs are not depicted.
The described CSRD is an instance of the OWL class CSRDAggregation. The object property
ccp:aggregates links the CSRD to two instances of CSD. Additional information is linked
to the CSRD by means of datatype properties. The datatype property ccp:preCondition is
used to describe preconditions that need to be fulfilled for the aggregation. The datatype
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CS1

CSD

CS2

CSDCSRD

<ccp:CSRDAggregation rdf:about="AwsELBStatelessComponentAggregation">
<ccp:preCondition>AWS::AutoScaling::LaunchConfiguration</ccp:preCondition>
<ccp:preCondition>AWS::ElasticLoadBalancing::LoadBalancer</ccp:preCondition>
<ccp:aggregationDescription>

* Create AWS:AutoScaling::AutoScalingGroup 
* Define LaunchConfigurationName and LoadBalancerName 

</ccp:aggregationDescription>
<ccp:aggregates rdf:resource="AwsELB"></ccp:aggregates>
<ccp:aggregates rdf:resource="AwsStatelessComponent"></ccp:aggregates>
</ccp:CSRDAggregation>

aggregates aggregates

Figure 5.5: A Concrete Solution Relation Descriptor (CSRD) described using RDF acts
as connector between two Concrete Solution Descriptors (CSD) and provides
important information about their relationship in a machine processable format

property ccp:aggregationDescription describes the different manual working steps needed
for the aggregation.

Figure 5.6 illustrates the overall view of the concepts described in this chapter. For sake of
simplicity, the RDF data contained in the documents is not illustrate in Figure 5.6. There,
each document contains RDF data that describes machine readable informations about
patterns, PRD, CSD, CSRD and their relations to other resources on the web. Together, the
form a machine processable network of linked data, which describes a pattern language
and solution language.
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PA PB

PC

PD
PE

Pattern Language 

CS1

CS4 CS5

CS2
CS3

CSD

CSD CSD

CSD
CSD

CSRD

CSRD

CSRD

CSRD

PRD

PRD

PRD

PRD

Figure 5.6: Distributed RDF documents describe information about pattern, concrete solu-
tions and their relations in form machine readable linked data that represents
information about a pattern and solution language
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This chapter describes the architecture of an IT-based pattern and solution repository
for publishing, authoring and browsing pattern and solution languages on the semantic
web. The pattern repository allows users to publish information about patterns, concrete
solutions and their relations in form of RDF data on the web. Furthermore, the pattern
repository provides functionalities to retrieve RDF data that describes information about
patterns, concrete solutions and their relations from distributed source and visualize the
information in human readable documents.

In the following the software system will be referred to as Semantic Pattern and Solution
Repository - SePaSoRe

In the context of usability (NFR1) SePaSoRe considers the fact that authors and users of
pattern and solution languages often have deep expertise in their domain but little in the
domain of information technology. Hence, they are likely not familiar with the concepts of
the Semantic Web Standards, nor do they know how to operate a server that stores the RDF
documents. SePaSoRe aims to abstract the technologies of the Semantic Web Standards
that are used to describe information about pattern, concrete solutions, and their relations.
This allows users with little knowledge in information technology to apply the concepts
of the semantic web to describe and share knowledge in form of pattern and solution
languages.

6.1 Architecture

The block diagram shown in Figure 6.1 uses the Fundamental Modeling Concepts (FMC)1

notation [KGT05] to represent a model of the static compositional structure of the SePaSoRe.
The overall architecture of SePaSoRe can be divided in the following major building blocks,
(i) a GitHub repository as data hosting platform, (ii) the SePaSoRe Client running as a
single-page application in the browser, and (iii) the SePaSoRe Service hosted as a stateless
service. In the following these building blocks will be discussed in detail.

1http://www.fmc-modeling.org/
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Figure 6.1: Architecture of SePaSoRe

6.1.1 SePaSoRe Client

To guarantee a high degree of platform compatibility (NFR2) the SePaSoRe Client is a
single-page application that runs entirely in the browser. It provides capabilities to edit
and browse pattern languages in the Semantic Web of Pattern and Solution languages.
The client consist of (i) a Pattern and Solution Language Editor, for authoring pattern
documents, concrete solution documents, and their relations, (ii) a GitHub Service that
interacts with a specified GitHub Repository (iii) a RDF Store, that holds a RDF Graph
representation of a given pattern and solution language, (iv) a Semantic Web Service that
interacts with the SePaSoRe Services and access the RDF Store, and (v) a Browser to visually
browse through pattern languages and solution languages contained in the RDF Store.

The purpose of the Pattern and Solution Language Editor is to provide a graphical user
interface (GUI) that abstract the Semantic Web Standards, which are used as data model
for pattern and solution languages in the Semantic Web of Pattern and Solution Languages.
It enables user with little knowledge of the RDF Syntax to create and edit information
about patterns, concrete solutions, and their interrelations in form of RDF data. In order to
provide an easy-to-read and easy-to-write plain text formating syntax for pattern documents,
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we decided to use Markdown2. A user can edit the content of a pattern via a Markdown
editor that is provided by the GUI. Additionally a user can create semantic relations to
existing pattern documents via a select box menu. Afterwards the Pattern Editor parses the
information to create a valid RDF representation of the pattern.

In the context of Support Querying of Pattern and Concrete Solution Documents (FR5) an
RDF Store is used as database for the RDF Graph representation of the pattern language.
The RDF Store supports the SPARQL query language for the storage and retrieval of triples.
With the RDF Store we can run SPARQL queries against the RDF graph to retrieve the
subset of triples that matches given query parameters. The Semantic Web Service is used
to interact with the RDF Store. It provides functionalities to retrieve and process RDF
data.

The purpose of the Pattern and Solution Language Browser is to provide a GUI to visually
browse the pattern and solution language which is stored as an RDF graph in the RDF
Store. The information contained in the RDF triples are parsed and visualized in human
readable form. The triples that contain information about relationships between patterns
and/or concrete solutions are visualized as hyperlinks that can be used to navigate to
related documents. In the context of Allow to Annotate Semantic Links with Additional
Information (FR2), additional information about the relation is visualized in a pop-up that
appears if a user hovers over the hyperlink.

In the context of Support Querying of Pattern and Concrete Solution Documents (FR5) the
GUI of the Pattern Language Browser provides functionality to search specific patterns
based on given parameters. In consideration of usability (NFR1) the GUI abstracts the
SPARQL query language that is used for retrieval of triples contained in the RDF Store.

6.1.2 GitHub Repository

In the context of Provide Collaboration Functionalities (FR6) and Support Versioning of
Pattern and Solution Languages, we decided to use GitHub repositories as a hosting platform
for the files that contains data of pattern and solution languages. This files can be RDF
documents that contains information in form of RDF triples, but also other files that provide
informations about patterns and concrete solution, such as images, or programming code.
In this way SePaSeRo can utilize the version control and collaboration functionalities
provided by GitHub.

In addition, GitHub Pages3 is used to host the SePaSeRo Client directly from the GitHub
repository. This means there is no need for users to set up any database or server. Moreover,
due to the fact that GitHub offers free public repositories the services of the SePaSeRo can
be provided without any costs for users. Furthermore, tenant specific access permissions
on the repositories can be directly handled by GitHub. For example, a GitHub repository

2https://daringfireball.net/projects/markdown/
3https://pages.github.com/
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owned by an organization restricts write access for members of the organization. In order
to provide such tenant specific instances of SePaSeRo for a single user or group of users,
their need to exist a dedicated GitHub repository for each tenant. To achieve this SePaSeRo
uses the forking functionality provided by GitHub. A fork of an existing repository creates
an copy that is totally independent from the original repository. For example. a build
version of the SePaSeRo Client can be hosted in a public GitHub repository. To obtain a
working copy, users just need to fork the repository and activate the settings for GitHub
Pages.

6.1.3 SePaSoRe Service

In the context the same-origin policy implemented by current web browsers, JavaScript
code that runs in the browser is prevented from making requests against a different origin
than the one from which it was served. This contradicts Support Pattern Languages Consist-
ing of Distributed Pattern Documents (FR3) and Support Solution Languages Consisting of
Distributed Solution Documents (FR4) that requires that the information about pattern and
solution languages must not be centrally stored in a single repository. Instead the infor-
mation can be distributed over the web. For example, the information can be distributed
over different GitHub repositories owned by different organizations or individuals. This
motivated the extraction of specific components into an self-contained hosted stateless
service.

The block diagram shown in Figure 6.2 illustrates the compositional structure of the
SePaSoRe Service, that consists of (i) an RDF Graph Crawler, (ii) a Vocabulary Reader, (iii)
a Representational State Transfer (REST)ful HTTP API that provides access to a set of
functionalities provided by the SePaSoRe Service.

The purpose of the RDF Graph Crawler is to crawl the information about patterns, concrete
solutions and their relations from distributed sources that together form a pattern and
solution language. The Crawler service starts with a list of URLs that reference RDF
documents. The pattern crawler retrieves the RDF triples contained in the documents and
identifies all objects represented as URL reference and adds them to the list of URLs to visit,
called the crawl frontier. This processes is recursively applied to the URLs contained in the
crawl frontier until no new URLs are found. The RDF triples found during this process gets
combined to form a RDF graph representation of a pattern and solution language.

The purpose of the Vocabulary Reader is to read and an analyze an OWL vocabulary which
defines pattern types, and other concepts described in Chapter 5, such as types of Pattern
Relationship Descriptors, or types of Concrete Solution Descriptors, that can be used to
describe pattern and solution languages. Thereby it extracts all classes, properties and their
relations described in the vocabulary.
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SePaSoRe Client

Vocabulary ReaderRDF Graph Crawler
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RESTfull HTTP API
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Semantic Web

Figure 6.2: Compositional Architecture of SePaSoRe Service
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This the chapter describes how a prototypical implementation of the Semantic Pattern
and Solution Repository - SePaSoRe, described in Chapter 7, has been made. Thereby, this
chapter also describes how the web ontology language (OWL) has been used to implement
a vocabulary that formally defines the concepts of pattern and solution languages described
in Chapter 5. In the context of the prototypical implementation a subset of the Cloud
Computing Patterns, by Fehling et al. had been used as an exemplary pattern language.

7.1 Exemplary Pattern Language

In the context of the prototypical implementation, a subset of the Cloud Computing Patterns,
by Fehling et al. had been used as an exemplary pattern language. This section gives an
overview of the properties and structure of this pattern language.

The patterns described in the cloud computing pattern language are all structured according
to the same format. For the sake of simplicity the original pattern structure was reduced to
the following properties:

• A Pattern Name, which is used to identify the pattern

• An Intent, which shortly describes the intent of the pattern

• An Icon, as a graphical representation

• A Driving Question, which states the problem answered by the pattern

• A Context, which describes the environment and forces that leads to the problem.
This section may also contain references to other patterns.

• A Solution, which explains how the pattern solves the problem

• Related Patterns, describing interrelations to other patterns.

The pattern language uses the semantic links see also, consider after, alternative, and known
use to interrelate patterns.

The cloud computing patterns aims to provide a broad range of patterns on how to achieve
common cloud related goals. The relevance of the different patterns contained in the cloud
computing pattern language may differ depending on the specific use case of the pattern
language reader. For example, a software architect or developer that want to use cloud
offerings to host his application may use the pattern language to learn about cloud offerings
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and to find out which cloud offerings meet the application specific requirements. An IT
infrastructure manager who wants to build a Platform as a Service (PaaS) offering, may
search for different patterns, those that provide knowledge about cloud properties that
need to be fulfilled by PaaS offerings.

In order to support pattern users by finding relevant cloud computing patterns for their
use case, the patterns in the cloud computing pattern languages are subdivided into
different pattern categories, whereas each category covers a specific area of concern.
The patterns contained in the cloud computing pattern language are subdivided into the
pattern categories, Cloud computing fundamentals, Cloud offerings, Cloud application
architectures, Cloud application management, and Composite cloud applications. This
creates a semantic classification of the patterns contained in the pattern language into
pattern types. Moreover, it creates a hierarchy between those pattern types.

7.2 SePaSoRe Vocabulary

This section describes how the web ontology language (OWL) has been used to create a
vocabulary that formally define different types of patterns and related concepts described
in Chapter 5, such as types of Pattern Relation Descriptors, Concrete Solution Descriptors
and Concrete Solution Relation Descriptors, that can be used to describe pattern languages
and solution languages in a machine readable format. In the following this vocabulary will
be referred as Semantic Pattern and Solution Repository - SePaSoRe vocabulary.

7.2.1 Taxonomy of Pattern Types

The complete taxonomy of pattern types defined by the SePaSoRe vocabulary is illustrated
in Figure 7.1. There, all ellipses represent classes and all edges represent rdfs:subClassOf
predicates. The most general pattern type is defined by the class Pattern which is a direct
subclass of owl:Thing. All other classes that define pattern types are direct or indirect
subclasses of the class Pattern, which tells a machine reader, that all individuals of those
classes are also individuals of the class Pattern. Moreover the concept of a general class
Pattern that classifies all pattern types, guarantees the extensibility of the knowledge
base defined by the vocabulary. The defined pattern types can be extended in other
vocabularies by defining new pattern types that are subclasses of the class Pattern. For
example a vocabulary that define pattern types in the domain of costumes in films, may
extend the pattern types described by the Pattern Language Vocabulary by defining a class
CostumePattern as subclass of the class Pattern.

7.2.2 Property Restrictions on Pattern Types

As mentioned in Section 7.1, the cloud computing patterns follow a certain format that
must be adhered to. To define the format of pattern types in OWL, we used the concept of
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CloudComputingPattern

CloudComputingFundamental
Pattern

Pattern

CloudOfferingPattern CloudApplicationArchitecture 
Pattern

CloudApplicationManagement 
Pattern

CompositeCloudApplication
Pattern 

owl:Thing

Figure 7.1: Taxonomy of the classes that define pattern types in the SePaSoRe Vocabulary,
all edges represent rdfs:subCLassOf predicates

property restrictions on classes. Listing 8 shows an excerpt of the vocabulary that defines
property restrictions in form of cardinality constraints. For sake of brevity, only a subset of
the property restrictions are shown in Listing 8. There, we specify CloudComputingPattern
to be a class with exactly one patternName, exactly one intent, and exactly one context.
The property constraints defined on classes had been used in the implemented prototype
to create a flexible pattern editor in form of a GUI that gets automatically configured
based on the pattern type of the instance should be created. For example, the editor for a
cloud computing pattern has one input field for the pattern name, one for the intent of the
pattern, one for the context, and so forth.
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1 <owl:Class rdf:ID="CloudComputingPattern">

2 <rdfs:subClassOf>

3 <owl:Restriction>

4 <owl:onProperty rdf:resource="#patternName"/>

5 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

6 </owl:Restriction>

7 </rdfs:subClassOf>

8 <rdfs:subClassOf>

9 <owl:Restriction>

10 <owl:onProperty rdf:resource="#intent"/>

11 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

12 </owl:Restriction>

13 </rdfs:subClassOf>

14 <rdfs:subClassOf>

15 <owl:Restriction>

16 <owl:onProperty rdf:resource="#context"/>

17 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

18 </owl:Restriction>

19 </rdfs:subClassOf>

20 ...

21 </owl:Class>

Listing 8: Excerpt of the SePaSoRe vocabulary, that defines an class CloudComputingPattern
and a set of property restrictions in form of cardinality constraints

7.2.3 Pattern Relation Descriptor (PRD)

Figure 7.2 illustrates the taxonomy of PRD types defined by the SePaSoRe vocabulary,
where all ellipses represent classes and all edges represent rdfs:subClassOf predicates.
The SePaSoRe vocabulary defines the root class PatternRelationDescriptor. In addition
the vocabulary defines subclasses that define specific types of PRDs classified by the
semantic relationship described by the PRD. In order to express the direction of the
relationship, the vocabulary defines the object properties hasSource and hasTarget, whose
domain is represented by PatternRelationDescriptor and range is represented by Pattern,
as well as the object properties isTargetOf and isSourceOf whose domain is represented
by Pattern and range is represented by PatternRelationDesctiptor. In addition, property
restrictions in form of cardinality constraints had been used, which define that the class
PatternRelationDescriptor has exactly one property hasSource and exactly one property
hasTarget.

7.2.4 Concrete Solution Descriptor (CSD)

To describe the concept of a Concrete Solution Descriptor the vocabulary defines an OWL
class ConcreteSolutionDescriptor. Additionally the vocabulary defines the object property
implementsPattern, whose domain is represented by ConcreteSolutionDescriptor and range
is represented by Pattern. In order to link an individual of ConcreteSolutionDescriptor to
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KnownUse

PRD

SeeAlso Alternative ConsiderAfter

owl:Thing

Figure 7.2: Taxonomy of the classes that define types of PRDs in the SePaSoRe Vocabulary,
all edges represent rdfs:subCLassOf predicates

an concrete solution artifact the vocabulary defines the datatype property hasCSArtifact,
whose domain is represented by ConcreteSolutionDescriptor and range is represented by
xsd:String. We decided to represent the property hasCSArtifact as datatype property, due
to fact that a concrete solution artifact is most likely not described as an OWL individual.
Moreover it must not be a digital artifact, but can also be an physical artifact. The hasC-
SArtifact as defined in the vocabulary provide a means to link any location descriptor of a
concrete solution artifact, that can be described in form of a xsd:string, to an ConcreteS-
oluionDescriptor. In addition, property restrictions in form of cardinality constraints had
been used, which define that the class PatternRelationDescriptor has exactly one property
implementsPattern and exactly one property hasCSArtifact.

7.2.5 Concrete Solution Relation Descriptor (CSRD)

Figure 7.3 illustrates the taxonomy of CSRD types defined by the SePaSoRe vocabulary.
There all ellipses represent classes and all edges represent rdfs:subClassOf predicates.
The vocabulary defines the root class CSRD. In addition the vocabulary define the two
specific types CSRDAggregation and CSRDAlternative as subclass of the general type
CSRD. The purpose of individuals of CSRDAggregation is to describe an aggregation
between two concrete solutions. To link the concrete solutions that need to aggregated,
the vocabulary defines the object property aggregatesCS, whose domain is represented by
CSRDAggregation and range is represented by ConcreteSolutionDescriptor. In addition,
the vocabulary defines the datatype properties precondition and aggregationDescription,
whose domain is represented as CSRDAggregation and range is represented as xsd:string.
Those properties can be used to describe additional information in form of human readable
text. For example, they can be used to describe preconditions that need to be fulfilled and
different aggregation steps that need to be done.
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CSRD

CSRDAggregation CSRDAlternative

owl:Thing

Figure 7.3: Taxonomy of the classes that define types of CSRDs in the SePaSoRe Vocabulary,
all edges represent rdfs:subCLassOf predicates

7.3 SePaSoRe

This section describes the prototypical implementation of SePaSoRe. First it describes
the technology decisions that has been made to implement the prototype. Subsequent it
describes the software architecture of the prototype.

7.3.1 Technology Decisions

This section describes the technology decisions that had been made in the context of
the prototypical implementation of SePaSoRe. First this section describes the technology
decisions made for the prototypical implementation of the SePaSoRe Service. Subsequent
it describes the technology decisions made for the prototypical implementation of the
SePaSoRe Client.

SePaSoRe Service

The prototype of the SePaSoRe Service had been developed in Java. As an application
framework, we decided to use the Spring Framework1 in order to build a Java-based
web application. Further, in the context of rapid implementation of the prototype with
minimal configuration efforts, we decided to use Spring Boot2 to create a standalone,

1https://spring.io/
2https://projects.spring.io/spring-boot/
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self-contained Spring based Application. In the context of build automation and package
management, we decided to use Apache Maven3 as build automation tool, as well as to
manage dependencies. In the context of implementing semantic web and linked data
functionalities such as retrieving and processing RDF data, we decided to use the Java
framework Apache Jena4. Apache Jena is composed of different APIs that interact together
and provide a rich set of functionalities to process RDF data.

We decided to use the technologies Java, the Spring Framework and Apache Maven because
the development team had existing knowledge and experience in using them. Further, we
decided to use Apache Jena because it provides stable and rich functionalities for processing
RDF data.

SePaSoRe Client

The prototype of the SePaSoRe Client had been developed in TypeScript, which is a typed
superset of JavaScript5 that compiles to plain JavaScript. In the context of developing a
single-page application that runs in the browser, we decided to use Angular6 as an web
application framework. In the context of providing a convenient and responsive design
of the graphical user interface, we decided to use the CSS framework Twitter Bootstrap7.
In the context of package management, we decided to use npm8 as a package manager
for JavaScript libraries. In the context of providing SPARQL functionalities in the browser,
we decided to use the JavaScript library rdfstore-js9, which is a implementation of an RDF
graph store with support of SPARQL query language.

7.3.2 Software Architecture

This section describes the software architecture of the prototype. This section uses the C4
model to describe and communicate the software architecture of the prototype at different
levels of detail, starting from a high-level system context into a more detailed container
view up to a decomposition of the components into containers [Bro15].

The system context is shown in Figure 7.4. The prototype allows users to browse and
edit pattern and solution languages. Thereby it uses a GitHub repository as data store
for the create files. We decided to limit the file types in our prototyping to files that are
RDF documents that contain informations about patterns, concrete solutions and their
relations. The prototype communicates via HTTP with the GitHub API and does create,
read, update, and delete (CRUD) operations on the files stored in the repository. Further,

3https://maven.apache.org/
4https://jena.apache.org/
5https://developer.mozilla.org/bm/docs/Web/JavaScript
6https://angular.io/
7https://getbootstrap.com/
8https://www.npmjs.com/
9https://github.com/antoniogarrote/rdfstore-js
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the prototype reads and interprets RDF data from the semantic web. The semantic web
describes the totality of linked data in form of RDF data on the web, this also includes
the RDF data hosted on the GitHub repository. Thereby the RDF data that the prototype
consumes distinguish between two types. First it reads and analyzes the classes, properties
and relations described in the SePaSoRe vocabulary. Second it crawls an RDF Graph that
describes information about a pattern and solution language in form of linked data.

The containers of the prototype are illustrate in Figure 7.5. The prototype consists of the
SePaSoRe Service and the SePaSoRe Client as described in Chapter 6. The SePaSoRe Service
has been implemented as a standalone and self-contained Java application based on Spring
Boot. Moreover it uses the semantic web framework Apache Jena to read and analyze RDF
data. The SePaSoRe Client has been implemented as JavaScript and Angular single-page
web application. It uses HTTP as a communication protocol to use the functionalities
provided by the SePaSoRe Service. In the following we will decompose those containers
further and describe the major structural building blocks in form of components.

SePaSoRe Service

Zooming into the SePaSoRe Service identifies the three components (i) REST Controller, (ii)
Vocabulary Service, (iii) Crawler Service as illustrated in Figure 7.6:

The REST Controller, which is a Spring REST Controller, implements a RESTful HTTP
API. The API provides the following interfaces that exposes functionalities of the SePaSoRe
Service:

api/getVocabulary expects an URL of an OWL vocabulary as parameter and returns the
classes, properties and their relationships as JavaScript Object Notation (JSON) data.

api/getRDFGraph expects a list of URLs of RDF data that act as seed to crawl an RDF
graph from distributed sources. It returns the crawled RDF Graph.

The Vocabulary Service, which is a Spring Service, implements the functionalities to read
and analyze an OWL vocabulary. It uses functionalities provided by the Jena Ontology API
to extract all the classes, properties and relations contained in a given OWL vocabulary into
a JSON data model.

The Crawler Service is implemented as a Spring Service. It uses functionalities of the
Apache Jena core RDF API to read an analyze RDF data. It crawls RDF data from distributed
sources, that describes information about pattern, concrete solutions and their relations.
The crawled graph represents represents a pattern and solution language. To crawl all
relevant RDF documents, the crawler proceeds as follows: (i) the Crawler Service starts
with a list of URLs that references RDF documents, (ii) the Crawler Service retrieves the
triples contained in the documents and identifies all objects represented as URL references
that had not been visited yet and adds them to a list of URLs to visit. This process is
recursively applied to the list of URLs to visit until no new URLs are found.
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Figure 7.4: System Context diagram of SePaSoRe

Figure 7.5: Container diagram of SePaSoRe
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Figure 7.6: Component diagram of SePaSoRe Service

SePaSoRe Client

Zooming into the SePaSoRe Client identifies the components (i) HTTP Service, (ii) GitHub
Service, (iii) RDFStore Service, (iv) Editor Component, (v) Browser Component:

The HTTP Service is a Angular Service, which implements functionalities to perform HTTP
request against the API of the SePaSoRe Service. The functionalities provided by the HTTP
Service are used by the Editor Component and Browser Component to retrieve information
about RDF data.

The GitHub Service implements functionalities to perform HTTP requests against the API
provided by GitHub. It implements the functionalities to create, read, update and delete
files on a specified GitHub repository.

The RDFStore Service implements the logic to query specific data from an RDF graph. It
uses the JavaScript library rdfstore-js to store an RDF graph in the browser. Further the
library is used to perform SPARQL queries against the RDF graph to retrieve RDF data
based on given parameters.

The Editor Component implements the logic for authoring and relating pattern and
concrete solution documents. It provides its functionalities via a graphical user interface in
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which a user can edit the information of the pattern via Markdown editor that provides
features for formating and highlighting text. We decided to use Markdown as a markup
language due to its easy-to-read and easy-to-write syntax. Moreover it can be directly
converted into HTML and embedded into a web page. Relations between pattern and
concrete solutions can be create via a graphical user interface, that provides a set of
available relation types via a dropdown menu. A search field allows the user to search for
the document that needs to be linked. The available pattern types and relationship types
that can be create are derived from the classes and properties described in the SePaSoRe
vocabulary. In addition, the Pattern Component implements logic to transform the pattern
or concrete solution document created by a user into individuals of the classes described in
the SePaSoRe vocabulary that represent and express the information in form of linked RDF
triples.

The Browser Component implements the logic for visualizing the information contained
in the RDF graph, received from the SePaSoRe Service. It processes the RDF data, extracts
the information and creates human browsable pattern and concrete solution documents.
Further it provides a graphical user interface that allows users to search patterns based
on search parameters. In order to retrieve patterns based on the search parameters, the
Browser Component uses the SPARQL functionalities provided by the RDFStore Service.
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The work proposed a concept of using Semantic Web Standards to describe information
about patterns, concrete solutions and their relations in form of linked data on the web,
which forms a distributed machine-readable representation of pattern and solution lan-
guages. Further, the work proposed a concept of an IT-based pattern and solution repository
for publishing authoring and browsing pattern languages on the semantic web, introduced
as SePaSoRe. SePaSoRe provides a graphical user interface that abstracts the underlying
technologies of the semantic and allows users to publish and browse information about of
patterns, concrete and their solutions in form of RDF data.

The use cases and requirements that SePaSoRe must provide are derived from former
research in the area of pattern language repositories as well as from the assignment tasks
as formulated by the proposal of the thesis. SePaSoRe should provide a means to define
semantic links between pattern and concrete solution documents that are not only human
readable but also processable by machines (FR1). Moreover, it should be possible provide
detailed documentation about relationships of patterns and concrete solutions, which is
directly attached to the relationship (FR2). In the context of implementing the vision of
living networks of patterns, patterns and concrete solutions must be not stored centrally
but can be distributed over various locations and authored by different people (FR3)
(FR4). The fact that a large amount of patterns makes it hard for users to find patterns by
hand, motivates the representation of patterns in a machine processable form that allows
machine-based retrieval of patterns (FR5).

Chapter 5 argues that the fact that pattern languages and solution languages consist of
knowledge that is shared across a community makes them by nature distributed and
inconsistent. Therefore, it proposes the use of Semantic Web Standards to create a formal
and machine processable representation of pattern languages and solution languages that
can be shared and reused across software systems. Thereby the section showed how OWL
can be used to create a vocabulary that defines concepts and relationships needed to
describe and represent pattern languages in form of machine-readable RDF data.

Chapter 6 shows the architecture of SePaSoRe consisting of the SePaSoRe Service hosted
as a stateless service and the SePaSoRe Client running as a single-page application in the
browser. In the context of collaboration and version control of documents it proposes
to utilize GitHub repositories as data store and hosting platform for the files created by
SePaSoRe.

In the end Chapter 7 describes how a prototypical implementation of SePaSoRe has been
made. In the context of the implementation an OWL vocabulary, introduced as SePaSoRe
vocabulary, has been created. The SePaSoRe vocabulary formally define different types
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of patterns and related concepts that had been described in Chapter 5, such as types of
Pattern Relation Descriptors, Concrete Solution Descriptors, and Concrete Solution Relation
Descriptors, that can be used to encode RDF data with semantic metadata.

Currently the a build version of the SePaSoRe Client and the SePaSoRe vocabulary is hosted
on a GitHub repository. A single instance of SePaSoRe Service is hosted in the cloud. As
future work, research should be done, to show, if the functionalities of the SePaSoRe Service
could be also implemented by the SePaSoRe Client. This would allow running the software
entirely in the browser.

Further future work could test the functionalities of SePaSoRe in real-world use cases to
gather feedback about the functionalities from the pattern community.
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