
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Master Thesis Nr. MCS-0005

A study on the relationship
between FindBugs warnings,
metrics and expert judgments

Ling Xu

Course of Study: Computer Science

Examiner: Prof. Dr. Stefan Wagner
Supervisor: Dipl. -Ing. Jan-Peter Ostberg

Commenced: 2015-11-04
Completed: 2016-05-04

CR-Classification: D.2.7, D.2.8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/159514476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Acknowledgment

Hereby, I would like to extend my sincere gratitude to everyone who has helped me in
the past six months.

First and foremost, I would like to thank Prof. Dr. Stefan Wagner in Institute of Soft-
ware Technology, provides me this meaningful research topic. I am very grateful to
my supervisor in Universität Stuttgart, Jan-Peter Ostberg, for organizing bi-/weekly
meetings with me. I got many instructions about applying the research methodologies
and many relevant, valuable literatures from him.

Furthermore, I would like to thank Andreas Maier, my supervisor in NTTDATA for
continuous guidance and giving useful suggestions in the writing part, and also all the
colleagues involved in the interviews, who are willing to share their precious experi-
ence with me. Thank for the company for offering the access to some resources.

In the end, I would like to thank my family for great encouragement and continual
support throughout the study life in Germany.

i



Abstract

The usage of static code analysis tools is one of the techniques to help to inspect the
software quality. Many types of research have been made to evaluate such tools, but
the investigate on what the analysis report further indicates and how these tools are
applied in the industrial case is less concerned. This paper presents the study on three
project cases in an IT Consultant company, where Findbugs, a bug pattern detection
tool and SonarQube, a code quality monitoring tool are used in the development team.
First, the correlation between 6 bug pattern categories and 5 source code metrics are
investigated. The statistical analysis of the data extracted from tools has shown the
most of the correlations are only specific to certain project. The result is partially dif-
ferent from expert judgments. Second, we decompose the maintainability into several
characteristics, and a set of metrics measured by SonarQube are chosen to predict each
of them on the basis of the practical experience. Third, the importance of metrics about
test coverage and complexity is considered to be not constant among different types of
projects.

Keywords: static source code analysis, software metrics, Findbugs, SonarQube, Main-
tainability

ii



Abbreviations

Source Code Metric
LOC Lines Of Code
CLD Comment Line Density
CPLX Complexity
CVR Coverage
EC Efferent Coupling

Findbug bug category
MT Correctness Multithreaded Correctness
MC Vulnerability Malicious code vulnerability
PERF Performance

Others
Spearman’s rho Spearman’s rank correlation coefficient

iii





Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1. Introduction 1
1.1. Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background 7
2.1. Code analysis tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Findbugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2. SonarQube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Selected software quality - Maintainability . . . . . . . . . . . . . . . . . 9
2.3. Selected software metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Study Design 15
3.1. Projects and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3. Research question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Data collection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1. Quantitative data collection . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2. Qualitative data collection . . . . . . . . . . . . . . . . . . . . . . . 21

4. Implementation 23
4.1. Quantitative data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1. SonarQube Database structure . . . . . . . . . . . . . . . . . . . . 25
4.1.2. Local database structure . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3. Building an automatic data collection system . . . . . . . . . . . . 31

v



Contents

4.1.4. Web UI of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2. Qualitative Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1. First-round Interview . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2. Second-round Interview . . . . . . . . . . . . . . . . . . . . . . . . 40

5. Discussion - RQ1 43
5.1. Different versions approach . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2. Different projects approach . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6. Discussion - RQ2 57
6.1. Coding of the interview notes . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2. RQ 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3. RQ 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7. Conclusion and Outlook 69

Appendices 73

A. Table creation script in local database 75

Bibliography 79

vi



1. Introduction

1.1. Motivation and Goal

The study of the software quality assessment has been conducted for many years. Soft-
ware quality is an abstract and multidimensional concept[1]. It refers to the quality in
different fields of software engineering, e.g. in software design level, product oper-
ational level, test processing level. Suppose that we discuss ‘quality’ with different
roles. From the buyers’/consumers’ perspective, ‘quality’ is an intangible term, they
will think in an economical and time-saving way. The software is a good product if it
could conform with their business expectations and there is no severe breakdown in
usage. From the perspective of developing teams, they will think about this issue in a
more technical way, e.g. whether the software meets with all of the specifications pro-
posed by customers, how to make the software more user-friendly. During developing
software, quality could be taken into consideration in every stage of whole software
life cycle, i.e. design, requirements, implementation, testing, maintenance[2]. As for
qualities of which aspects, the suitable evaluation time to be chosen and the way to
evaluate the quality, these main issues in regard to quality assessment remain to be
discussed without stop.

In this thesis, we intend to focus on one of software quality objects - product(source
code) rather than cover broad topics in software engineering. Nowadays, several dif-
ferent methods are often used to judge the product quality[3].

• Adding testing management to see whether the software system or every single
functionality work well without any defect.

• Code review in the initial phase. Sometimes, the code writers do not examine
the code by themselves over and over due to restricted thoughts, but forward it
to the fellow programmers to check it for mistakes. It largely depends on their
practical experience.

1



CHAPTER 1. INTRODUCTION

• Checking with detailed software specification.

• Utilizing automatic static analysis tools. We run a static analysis on the source
code, which means that the code will be examined without code execution. Af-
terwards, the analysis report is generated by such tools. Choosing this way, we
can find out more bad codings than by manual inspections. However, the feature
of ‘completeness’ results in some disadvantages as well. It is time-consuming in
going through every warning, even for the possibility of false positives.

The goal of doing this study is to investigate the application of static code analysis
tools, one of above methods mentioned to inspect the quality of the source code, in
the enterprise environment. Many research works mainly used either the quantitative
technique, which typically performs statistical analysis, or the qualitative technique,
which gains information from human side [4]. In this study, we intend to apply both
techniques. The combination can improve the empirical evaluation by balancing one
limitation of one type with another’s strength[5].

The term ‘source code metric’ is introduced in to present a degree of attributes of source
codes. Metrics help to make software measurable and provide us a quantitative per-
spective to know about the internal facts of the product[6].

We first collect the data independently by different approaches. Through analyzing
different types of data, we desire to know about causes of the bugs detected by Find-
bugs. Moreover, we also intend to study which measured metric may indicate the
software external quality. Therefore, the conclusion helps to make quality assessment
easier and give guidance to improve the quality in the future.

1.2. Research questions

Following questions are intended to solve in this thesis.

• RQ1 Whether the diagnosis result from Findbugs has a significant correlation with spe-
cial metrics?

Findbugs locates the bug patterns in the code, which results in the potential de-
fects in a software program or the system. Although the existence of bad codes
is not the only factor influencing the software quality and the project still may
be built and deployed successfully even with these error-prone codes, we cannot

2



CHAPTER 1. INTRODUCTION

neglect and should take efforts to fix them. Because the fewer bugs there are, the
less risk the system has to fall down. Hence, for the further maintenance, we will
not spend much time in locating the origin of failure.

With the aid of the code analysis tool, we could find out violations of program-
ming rules sets at an earlier stage. In this thesis, we select Findbugs as the code
analysis tool. These found violations are classified into bug pattern categories.
We try to answer whether the rule violations in the sources code reported by
such tool has a correlation with codes’ internal attributes. Then we further infer
what kind of the source code easily contains bug patterns.

• RQ2 How is the software metric related to software quality (maintainability)?

As DeMarco puts forward that ‘you cannot control what you cannot measure’ [7],
the term ‘software metrics’ is introduced to quantify product internal characteris-
tics. Project managers and developers are able to track the status in a measurable
perspective and make some improvement according to it instead of difficultly-
recorded and subjective feelings. Metrics could be deployed in a large scale of
aspects concerned with software engineering, such as metrics for requirement
definition, metrics for project management, metrics for source code, metrics for
the test process, etc[6]. Here, due to the research point, we mainly focus on the
product metrics.

Maintenance is an important step in the development process. The software
should be easier to be modified according to bugs or new requirement to improve
performance. So, for the company, maintainability will be taken into considera-
tion because of limited time, employees and most important, money in the future
development. So, how to evaluate software maintainability is a worthy topic. In
context, does software metrics, which expose the features of code in a quantita-
tive way, provide a more persuasive basis for the evaluation? If we can find out
such link between them, there is no doubt that it is efficient to help to judge the
maintainability.

To go into this problem comprehensively, we divide it into two sub-questions.

– RQ 2.1 Which metrics are suitable to indicate software maintainability?

In this paper, three project cases in an IT Consultant company are our re-
search objects. An effective approach intends to be raised to help develop-
ers to judge the project’s maintainability. A Set of metrics are available to be

3



CHAPTER 1. INTRODUCTION

chosen as quality indicators.

– RQ 2.2 Whether the importance of some metrics, regardless of the quality aspect, is
same among different projects?

In the enterprise, the application and users of several projects are quite dis-
tinct, which will result in the difference in their software architectures. For
example, some online shopping software faces million-users business, the
user-friendly interface and ability to deal with concurrent orders are re-
quired. Some accounting software manages complex transaction flow. Soft-
ware architects will put forward various implementation emphases. Through
doing this research, we try to analyze the generalization of metrics selection
problem. When making the quality judgment in different projects, could we
apply the same metric set?

1.3. Related work

Many related research works cover parts of above questions. They settle the problems
from the smaller but deeper perspective.

S. Wanger et al.[8] make a research on Findbugs, PMD, the bug pattern tools for Java in
an industrial case. This paper shows the results of cost-efficiency, effectiveness, fault-
proneness in using these two tools. This paper helps to know about the performance
of the static code analysis tools.

André [9] in his master thesis discusses an approach to studying the correlation be-
tween bug pattern categories in Findbugs and source code metrics in two Java open-
source projects Axis and Tomcat. With the help of the PASW statistical tool, he finds
that the bug pattern category ‘Performance’ has the strong correlation with the most
source code metrics and the category has the weak correlation with some other met-
rics.

Lots of paper illustrates models for measuring software maintainability.

One work[10] of Don C. et al. compares five methodologies to quantify software main-
tainability from some metrics, such as hierarchical multidimensional assessment mod-
els, polynomial regression models, aggregate complexity measures, etc.

A. Kaur et al.[11] suppose a model which is a prominent enhancement on the basis of

4



CHAPTER 1. INTRODUCTION

the existing Oman and Hagemeister classical maintainability index model [12] (Equa-
tion 1.1) at the University of Idaho. A combination of predicted metrics is proposed
in this paper. Except for the original metrics in O&H Model, Lines of Code, Cyclo-
matic Complexity, Percentage line of comments and Halstead Volume, there are about
another ten new added metrics used for calculating the MI value.

Maintainability Index [12] = 171 − 3.42 ∗ In(avg Halstead Volumn)

−16 ∗ In(avg Lines o f Code)

−0.23 ∗ (avg Cyclomatic Complexity)

+0.99 ∗ (avg Comment Lines)

(1.1)

The research from W. Li et al.[13] focuses on the validation of several software metrics
in maintenance work, which are used in the object-oriented programs.

There are not so many researches, deploying subjective evluation techniques. Among a
few studies, Dennis [14] uses a subjective method to relate seven complexity metrics to
the maintenance activity and see if what the metric exposes is consistent with practical
experience. The result presents that growth in complexity agrees with performance
done in the projects.

1.4. Outline

This thesis is organized as followed.

Chapter 2 introduces the usage of tools, Findbugs and SonarQube as the static code
analysis tools used in the thesis and gives the definition and importance of maintain-
ability, especially the reason why we chose this quality aspect. At last, the software
metrics are defined in a formal way, helping readers to have ideas how the source
codes are quantified with some examples.

Chapter 3 compares the study projects in the company we decide to follow. Next, we
give the study designs corresponding to each research question and a general explana-
tion how both the quantitative data and qualitative data are collected for supporting
conclusions.

Chapter 4 shows the whole implementation process. In this thesis, the implementation
is mainly the activities to collect data. First, Data is gathered from the much measure-

5



CHAPTER 1. INTRODUCTION

ment information (e.g. the metrics and the detected bug pattern) of the source code,
which is stored in a huge Sonar Database. We talk about how we establish a local
automatic data gathering system in order to search for the most important data we
require and give a visualization result in convenient of observation. Second, this chap-
ter also describes how the qualitative data is collected through the interviews with the
developers.

In Chapter 5 and Chapter 6, based on the quantitative and qualitative data we have
got in the Chapter 4, we make the data analysis and answer each research question
separately. Also, some restrictions we met in the implementation are thrown out to
reflect the problems we have met.

Finally in the last chapter 7, the conclusion of the study is drawn, together with the
possible future research direction for more exploitation in the application of static code
analysis.

6



2. Background

2.1. Code analysis tools used

2.1.1. Findbugs

Findbugs [15] is a static analysis tool, developed by the University of MaryLand. It
is an open source project, which helps to examine around 400 potential bugs in Java
bytecode. Users either runs it in its Swing interface or integrate Findbugs as the plug-in
into many platforms, e.g. Eclipse IDE, SonarQube, Maven, Jenkins.

As the definition of static analysis, Findbugs analyze the code without executing it.
Strictly speaking, it is not a testing tool, since it does intend to consider about the busi-
ness logic in the project. It aims to find out the violations of some programming rules
that Findbugs thinks developers should not code in this way. Normally, these bugs
detected out are subtle and easily neglected when doing programming. Chances are,
the project can be built up successfully with them in a compilation period. However,
remaining bugs still have hidden defects among the source code in the running envi-
ronment. So, we require sophisticated analysis tools.

There are several bug pattern categories in Findbugs. Our study focuses on the re-
lationship between a bug pattern category and metrics. The definition of each bug
pattern category is shown in Table 2.1[15, 16]. In this paper, Findbugs as the plugin
embedded in the SonarQube detects the potential bugs.

2.1.2. SonarQube

SonarQube is an open platform for continuously inspecting code quality. It covers
seven axes in the quality: Architecture & design, Comments, Duplications, Unit tests,

7



CHAPTER 2. BACKGROUND

Findbugs

Bug pattern
category

Definition Examples

Bad practice Bad coding that vi-
olates recommended
rules.

ES: Comparison of String objects using == or
!=
When we want to compare whether two strings
represent the same word or sentences, it is un-
suitable to use == or !=, which in fact compare
the object references. Instead, the equals(Object)
method is better.

NP: Non-null field is not initialized
The non-null field is not initialized in the con-
structor or is not initialized before the usage.

Correctness Coding mistakes, e.g.
impossible casting,
always the same
return in control flow
statements.

NP: Null pointer dereference
A NullPointerException may happen due to the
dereference when the code is executed.

Nm: Confusing method names
Some method namings differ by word capitaliza-
tion.

Malicious
code vulner-
ability (MC
Vulnerabil-
ity)

incorrect fields expo-
sure

May expose internal representation by return-
ing reference to mutable object
Returning a reference to a mutable object value
stored in one of the object’s fields exposes the in-
ternal representation of the object.

Performance
(PERF)

Wrong boxing oper-
ation, usage of non-
static classes.

Bx: Method invokes inefficient Number con-
structor
Initializing an Integer object, either use new In-
teger(int) or Integer.valueOf(int). The latter is
preferable because of faster processing speed
and no object allocation.

Dodgy Code Code that is confus-
ing, and error-prone.

BC: Unchecked/unconfirmed cast
Before doing the object casting, the casting feasi-
bility is not checked or confirmed.

Multithreaded
correctness
(MT Correct-
ness)

Thread synchroniza-
tion issues.

STCAL: Call to static DateFormat
DateFormats are inherently not safe for multi-
threaded use

Table 2.1.: Findbugs Category Definition[15, 16]

8



CHAPTER 2. BACKGROUND

Complexity, Coding rules, Potential Bugs. It supports more than 20 programming lan-
guages including C#, C++, Java, Javascript, PHP, etc. Another important feature is that
SonarQube integrates with standard Application Lifecycle Management components
such as Git, SVN, JIRA.

All the static code analysis in this thesis is initially done by SonarQube. It performs
the metric measurements in the scope of the project, subproject, package, class from
above axes and records the metrics history. One of the axes - Potential bugs is detected
by the embedded externals plugins, e.g. PMD, Checkstyle, Findbugs. That is to say,
SonarQube applies all the coding patterns rule as these plugins define. We could also
filter the analysis result according to one plugin.

Figure 2.1.: Seven axes of SonarQube Code analysis [17]

The SonarQube used by current development team was initiated since 2012. In the
dashboard, we find that there are 18 projects used to be deployed in the SonarQube,
although only three of them are still under consistent analysis. Others are stopped
because of the termination of the development work.

2.2. Selected software quality - Maintainability

IEEE Std 1219-1998 defines software maintenance as “Modification of a software prod-
uct after delivery to correct faults, to improve performance or other attributes, or to adapt the

9



CHAPTER 2. BACKGROUND

product to a modified environment.” [18].

To specify maintenance activities in more details, they are classified into four kinds
[19]. Figure 2.2 demonstrates Hans[20]’s research result of the proportion of each kind
to the total amounts.

Figure 2.2.: Distribution of maintenance activities

1. Corrective maintenance Modifying the software product after delivery to correct
found bugs or solve breakdown problems. Normally, users will report these is-
sues to developers. Through diagnosing some logs, the cause is located and fixed
correspondingly.

2. Adaptive maintenance Modifying the software product after delivery to make
it adaptable and runnable in a new environment. For example, the old pro-
gram developed ten years ago was designed to run on the server equipped with
less memory and capacity. Obviously, these low resource configurations are not
able to follow up the increasing business demand currently. Consequently, it
may be required to immigrate to another operation systems. Alternatively, the
source code repository changes from Git or SVN. Any interaction with other OSs,
Database Management Systems, network protocols, etc., is viewed as adaptive
maintenance.

3. Perfective maintenance As the word indicates, the software is to be modified
after delivery to improve the performance. There is no such kind of product sat-
isfying everyone. It has the potential to increase the processing speed, to beautify
the user interface, or to consider more user cases in order to offer more services,
etc.

4. Preventive maintenance It belongs to high-level maintenance. The software is

10



CHAPTER 2. BACKGROUND

modified to redesign the internal structure or interface in consideration of laying
the solid basis for the further development or maintenance work. This requires
the developers to have enough foresight to predict the diversity in the future.

With years’ accumulation of the practices on the software development, software main-
tainability becomes a more and more significant concern in the industry. Robert L.
Glass [21] points out that the activities of maintenance take a larger share of the soft-
ware budget than the activities in the development phase. Maintenance mainly occu-
pies about 40 to 80 percentage (60 percentage on average) of the total software cost.
The costs are affected by the service life of the product, the architectural framework
of the product, the update of the equipment and new technologies, the professional
capability of employees.

The software never stops to conform with changes and to be a better, reliable one. If
a software product proves to be useful in practice and contented by product buyers,
they are willing to pay money to extend new functionalities. IT service providers have
the ability to make continuous development it in a cheaper and time-saving way when
the software product is maintainable. This advantage is absolutely attractive, resulting
in a win-win relationship.

So, to judge the maintainability is one of the major factors in evaluating the software
quality. Moreover, in the thesis, we principally choose software maintainability as the
concerned aspect instead of going deep into software quality to boundless topics.

2.3. Selected software metrics

The concept of ‘Metrics’ allows us to quantify an object to a degree according to some
defined rules. Then, we can easily trace the status of current product or process by
reviewing values[6].

Software metrics are deployed in many areas of software engineering and can mainly
be classified into three categories: product metrics, process metrics, and project met-
rics. As mentioned in RQ2, we only discuss product metrics here. This category of
metrics shows the internal characteristics of the product from its size, complexity, de-
sign features.

Therefore, developers can evaluate software by these objective data - metrics, with
some rule, not just describing it with some ‘ambiguous’ adjectives. For example, we

11



CHAPTER 2. BACKGROUND

say that the complexity of this business case is higher that that one. This sentence is
rather confusing, raising several questions. First, how complexity is defined here. It
refers to many possible outcomes or refers to the program’s logic is confusing. Sec-
ond, how to compare ‘complexity’. Can man’s instinct tell us this is complicated or
simple?

These measurements of the software product at any stage of software development
lifecycle are worth studying ranging from requirement statement to ongoing working
process. These metrics are then used to estimate/predict product costs, schedules and
to evaluate productivity and product quality[22].

Following product metrics are selected as several characteristics we are going to re-
search on the product. The measurement of these metrics is referred to the definition
given by SonarQube[17].

Lines of code (LOC) This metric is a product attribute from the aspect of the physical
size. It shows us the number of total non-blank lines in a class file (i.e. those
lines contain at least one letter which is neither a whitespace nor a tabulation).
The reason we skip the blank line is that it does not contribute to the same effort
like the one presenting complex algorithms or functional issues. Sometimes, it
estimates the programming productivity or maintainability. For example, the
company could use total lines of code to compare the scales of different projects
or to see the trends in a project during the developing process. Within a class file,
we can also make a deeper analysis to find out whether the size will influence the
occurrence of bugs.

Comment line density (CLD) Although typing comments for variables, methods has
no influence on software running, it greatly helps developers to maintain the
software. Especially, when the company takes over the project which used to
be developed by others a long time ago, it is important for them to get quickly
familiar with its business cases by reading the documentation. Reviewing the
code line by line is also a possible approach, but it costs much time. Comment
Line Density represents the percentage of comment lines in the whole class file.
It is chosen as metric instead of a direct count of comment lines because it is
hard to make the judgment of the completeness of documentation just by the
number. A small-scale class with a few comment lines might also contain the
readable description. The calculation of comment line density in a class file shows

12



CHAPTER 2. BACKGROUND

as below.

Density o f comment lines =
Comment lines

(Lines o f code + Comment lines) ∗ 100
(2.1)

McCabe’s cyclomatic complexity (CPLX) Cyclomatic complexity tells us how many
independent paths are there in a program. The function is split into different
flows in Java by adding decision-making statements, such as if , if-else and switch.
Each method has a minimum complexity, i.e. 1. In Accessors (Getters) and Muta-
tors (Setters), CPLX equals to 0. A program with high complexity values needs to
be handled carefully. Developers should know very well about the logic behind,
the activities should be performed under which conditions.

Calculating of McCabe’s cyclomatic complexity for a single class [23]:

cc = E − N + 2 (2.2)

Where:

E = the number o f edges o f the graph
N = the number o f nodes o f the graph

For example:

Figure 2.3.: McCabe’s cyclomatic complexity calculation example

Coverage (CVR) In SonarQube tool, Coverage is defined as a mix of line coverage
and Condition coverage[17]. This provides a more accurate answer about how
many percentages of the source code has been covered by the unit tests[6]. Es-
pecially, in some service beans with complicated business logic, it is necessary to
implement testing codes. Then, we run our tests when we build the project or we
utilize the plugin in IDE, e.g. JUnit. We are checking whether we have got the
expected results. Higher coverage value gives us more confidence of success in a
real running environment because more cases are taken into consideration to be

13



CHAPTER 2. BACKGROUND

exercised by testing.

Coverage = (CT + CF + LC )/(2 ∗ B + EL) (2.3)

Where[17]

CT = conditions that have been evaluated to ‘true’ at least once
CF = conditions that have been evaluated to ‘false’ at least once
LC = covered lines = lines_to_cover - uncovered_lines
B = total number of conditions
EL = total number of executable lines (lines_to_cover)

Efferent coupling (EC) A coupling metric belongs to software package metrics, which
target at the usage in the object oriented language. One of the characteristics
of such programming language different than others is that every data item is
treated as an object that may inherit other objects or implements interfaces, and
also invoke the variables, functions in other class. So one class may depend on
others, or be depended on by others.

Efferent coupling measures the number of other data types which a class imports.
This includes inheritance, interface implementation, parameter types, variable
types, and exceptions[24]. From the following code snippet, the class Car has
both a HAS-A and IS relationship. The car is composed of many parts, such as an
engine and wheels. Engines and wheels are also specific data types, which there
might couple with many other attributes. What’s more, the car’s color might be
red, yellow, blue. These alternative colors are listed in the enumeration data type
Color.

public Class Car {
private Engine engine ;
private Lis t <Wheel> wheels ;
private Color c o l o r ;

}

14



3. Study Design

In the section 1.2, we have listed two research questions to be solved in this thesis.
Now, we set up study designs for them.

3.1. Projects and context

Three projects which have been being mainly developed in NTT DATA, a IT Ser-
vice provider, recent years are selected as the study projects. Each project team con-
sists of around eight team members, including a software architect, a requirement
engineer, several developers and testers. They all are implemented, built and de-
ployed in Java Enterprise Environment(J2EE)[25]. Many J2EE standard service in-
terfaces, such as Java Database Connectivity(JDBC), Enterprise Java Bean(EJB), Java
Persistent API(JPA), JavaServer Faces(JSF), are used as main technologies. The devel-
opment team applies the Agile development management and release a Sprint version
every two or three weeks.

Project A Project A is a repository, the central instance administrating, storing and
providing flashware, delta updates or map data to vehicles of some automotive brand
worldwide. The logic behind each use case is rather complicated. Some of the use
cases result in more than ten possible responses. It refers to many verifications of the
request schema, resources, and hash code validation. Until now, the project attains the
level with 30,200 lines of code and 410 classes and will be continued working on in the
future.

Project B Project B is a relatively larger and maturer project, which has been conducted
for several years. It centralizes the flashware calculation for electronic control units
(ECU) integrated into vehicles. The client tier provides Eclipse Rich Client Platforms.
The latest version contains around 120,000 lines of code.

Project C This project provides business cases regarding flashing and coding processes

15



CHAPTER 3. STUDY DESIGN

Table 3.1.: Brief projects’ introduction
Project LOC #packages #Classes

Project A 30461 51 419
Project B 41612 98 530
Project C 46181 123 576

of the After-Sales for several vehicle categories. Clients can connect to this system
and submit different requests via HTTPS protocol. So, different from previous two
projects, the presentation tier is of better design. The development of this project was
terminated in May 2015. The last version contains approximate 46,000 code lines and
576 classes.

3.2. Research Question 1

RQ1 Whether the diagnosis result from Findbugs has a significant correlation with special
metrics?

For this question, at first, we investigate the correlation between two objects via the sta-
tistical technique. We depict the cross factorial design which was used in Andre[9]’s
work. Here, software metrics and bug pattern category are set as two independent fac-
tors. A level is a subdivision of a factor. We choose six bug pattern categories defined
by Findbugs and five interested metrics. So, in this case, metrics have five levels and
bug patterns have six levels. We cross each metric with each category.

Their correlation relationship will be expressed as a quantitative value - Spearman’s
rank correlation coefficient[26]. In statistics, Spearman’s rho is abbreviated as the Greek
character ρ(rho). It is a nonparametric measure of statistical dependence between two
variables. It presents how the relationship is between two variables by using a mono-
tonic function. The input is at least two sets of a pair of values. The output is ρ with
a P-Value (which measures the observed sample results about a statistical model). If ρ

exceeds the predefined threshold and P-Value indicates highly statistical significance,
we think there exists a strong correlation between two variables. Many online calcula-
tors or power statistical computing softwares, such as IBM SPSS, R, etc. can be chosen
to get the correlation coefficient value.

The correlation coefficient between ρ is calculated on the basis of the selected classes.
In one class, its internal attributes defined as metrics are measured by SonarQube as

16



CHAPTER 3. STUDY DESIGN

well as the number of detected bug patterns. Table 3.2 presents the types of data in the
class file, which could be collected from SonarQube.

Any two columns of data are chosen for paired data. If the number of sample classes is
denoted by n, the bivariate distribution (X,Y) is denoted by sample values (x1,y1),(x2,y2),
... ,(xn,yn)[26]. Here, we set the factor Metric as X, the factor Category as Y.

As a result, a 5*6 matrix will be generated. Each number in the matrix stands for the
correlation of one corresponding category and metric. Table 3.3 reflects the correlation
matrix between each metric and each category happening in Project * at a time point.

Table 3.2.: Information contained classes in one project case
Metrics Number of bugs

Metric 1 Metric 2 ... Pattern Category 1 Pattern Category 2 ...
Class A
Class B

...

Table 3.3.: Correlation coefficients matrix - Project * - Version *
Findbugs bug pattern categories

Correcteness Bad
practice

MT
correctness Doddy PERF MC

vulnerability

metrics

LOC
CLD
CPLX
CVR
EC

We intend to analyze the relationship from two dimensions as Figure 3.1 presents.

Figure 3.1.: Two approaches design

17



CHAPTER 3. STUDY DESIGN

Different versions approach Project A is selected as the research object that matches
the selection criteria because of continuous development till now. In the thesis-writing
period, the measurement of project A takes place three times. In the end, we can get
three matrixes. The sample classes in each matrix are the same, i.e. the classes in
Project A. During different versions, source codes are changed due to the addition
of new functionality and code modification. Following this approach, we are able to
see the tendency of the coefficient values in order to find out whether this correlation
relationship will be strengthened or weaker or keep stable along with the development
of the software.

Different projects approach Projects are measured and bug detected in different pe-
riods due to manual configuration. Project A, B are measured after each new version
delivery. Project C is measured every day. We decide to select the last revision in
2015 for three projects. For each project, a matrix can be generated based on classes
in that project, containing some bugs, which are worth being picked as sampling data.
The ‘perfect’ null-bug classes are not able to reveal the relationship between bugs and
metrics.

As a result, three matrixes for three projects respectively are generated. We can observe
that:

1. How is the correlation relationship between metrics and bug pattern categories
in each project

2. Through comparison among different projects, we can find out whether such
correlation is only specific to a certain project or could be concluded in general
cases.

Except for analyzing the correlations obtained from a quantitative measure of Spear-
man’s rank correlation correlations, expert judgment is introduced in assisting verify-
ing the conclusion. The usage of the subjective evaluation is motivated by the impor-
tance of the years’ experience in software developing. Experts have the sharp judg-
ment to know what the result of analysis tools indicates and what kind of bad codes
are easy to contain bug pattern. We compare their evaluation with the actual correla-
tion data we get from quantitative research. Two different research results might not
be identical. We need to find out which of conclusions they can reach an agree, which
they can not and why.

18



CHAPTER 3. STUDY DESIGN

3.3. Research question 2

RQ2 How is the software metric related to software quality (maintainability)?

The relationship between software metrics and maintainability could be probed into
with the quantitative research or qualitative research. A Quantitative research places
emphasis on objective measurements. Normally, we can get the result in the form
of the statistical or numerical values. Differently, a qualitative research generates the
exploratory output (usually in words).

Coding approach Carolyn B. Seaman raised a technology calling ‘coding’ in empirical
software engineering in her paper [27]. Coding is a combination of both quantitative
and qualitative methods. The main idea of this technology is to extract out data of
quantitative variables from qualitative information.

We are going to code the interview conversation notes. By means of transforming
experts’ subjective perspectives into straightforward and accurate data, we could get
quantitative results, which are easier for the further data processing. During the inter-
views, several topics concerned with quality assessment are expanded. Developers are
expected to answer them with their rich experience. But, We can obtain quantitative
values directly as well. For example, we could invite the interviewees to do grading on
the degree of correlation between selected software metrics and maintainability. These
metrics are Lines of code, Comment lines density, Complexity, Test success density,Coverage.
They will give the mark between 1 and 5. 1 means the weakest correlation, on the other
hand, 5 means the strongest correlation. If the majority agree on the same type, we can
draw the conclusion that which metrics are suitable to indicate maintainability.

3.4. Data collection procedure

3.4.1. Quantitative data collection

All measured data we intend to extract and refine are stored in SonaeQube Database.

The potential bugs are detected by Findbugs-plugin, which is embedded in the Sonar-
Qube. all found bugs are stored into a table ‘RULES_FAILURES’ in the database.
Joined with Table ‘RULES’, the bugs detected by the Findbugs plugin are filtered out.

19



CHAPTER 3. STUDY DESIGN

Table 3.4.: table ‘RULES_FAILURES’ and ‘RULES’
RULES_FAILURES

id
snapshot_id
rule_id

failure_level
message
line
cost
created_at
checksum

int
int
int
int
varchar(4000)
int
decimal(3,2)
time
varchar(1000)

RULES
id

plugin_rule_key
plugin_name
prority
plugin_config_key
name

int
varchar(200)
varchar(250)
int
varchar(500)
varchar(200)

Table 3.5.: table ‘PROJECT_MEASURES’
PROJECT_MEASURES

id
value
project_id
metric_id
snapshot_id

rule_category_id

int
decimal(3,2)
int
int
int
int

The metrics are measured by SonarQube system. All the information concerned with
metrics whatever in the level of project, component, package, class are stored in table
‘PROJECTS_MEASURES’ (The table schema shows in Table 3.5). Research samples are
classes in three mentioned projects, we can filter classes by selecting its ‘project_id’.

Finally, joining table ‘RULES_FAILURES’ and ‘PROJECT_MEASUARES’ with the key
column ‘snapshot_id’, following information in each class could be got from Sonar-
Qube as shown in Table 3.2.

Problem

After five-year usage, there are millions of entries in the table ‘PROJECT_MEASUARES’.
Moreover, in the database design, there are many references among tables. After typ-
ing SQL query for joining ‘PROJECT_MEASURES’ and ‘RULES_failure’ and other rela-
tive tables, we can not get the output as we expect because of ‘java.lang.OutOfMemory-
Error:Java heap space’ error.

20



CHAPTER 3. STUDY DESIGN

Solution

In order to solve this problem, we decide to establish an automatic data collection
system locally.

We need to make clear how tables and their schemas in SONAR database are structured
at first, then, extract data we actually make use of and store them into a new local
database. Therefore, it will be quicker to join the multiple tables on a smaller scale.

Besides, we can also further process these extracted data and make mining out more
useful information possible.

3.4.2. Qualitative data collection

Interviewing is chosen as the technique for gathering qualitative data. Three develop-
ers, who are working in NTT DATA and are also involved in these projects, are our
interviewees. Each developer may have their own ideas of using static code analy-
sis tools in evaluating software quality. Learning their practical experience helps to
inquire about how software maintenance works in practice.

The interview will be taken separately and last for forty-five minutes. First of all, an
invitation is sent to them to inform of the interview date, place, also attached with the
interview goal and topics to be discussed. Then, around ten questions are designed
to be asked during the interview. What’s more, considering that we should guide
developers to think in a relatively academic way and give an answer in accordance
with our expectation.

Before the interview, we prepare some visual reports, i.e. line charts, tables, about
data describing project’s attributes. Developers could be fast familiar with project’s
situation in the interview instead of reviewing the code. We hope that their judgments
could be given based on the powerful evidence. Conversation records are taken in
order to write interviews report and fetch essential viewpoints afterwards.

21





4. Implementation

In the chapter 3, we give the study designs to each research question and list out which
data we need to gather in order to help to derive out the final conclusion. This chapter
mainly describes how we gather these quantitative or qualitative data.

4.1. Quantitative data collection

In the development team of NTT DATA, the mature continuous integration system
is deployed for the benefit of the automatic implementation in building, testing and
managing projects in a specific period.

In this integration system shown in Figure 4.1, the developers synchronize with oth-
ers’ work by maintaining their codes in the version control system - SVN. The codes
are committed to SVN after the completion of the new task or the modification of the
previous code. Jenkin, the continuous integration server, has a trigger on the reposi-
tory, ca every five minutes. Then, it checkouts the project code from SVN and makes
a normal continuous build on it. Developers could also manually start it step in GUI.
Jenkins triggers SonarQube periodically due to the project configuration. For exam-
ple, Jenkins asks SonarQube to inspect code quality in Project C nightly. SonarQube in
version v.2.11 was first established in the company in 2012.

Until now, around 20 projects have been deployed in this platform. Except for the
finished projects, three active projects are left currently. Due to different configurations,
they are measured in fixed period or after each delivery. The each project is measured
in a detailed way. SonarQube drills down each project into many levels, in the scope
of projects, components, packages, classes.

Figure 4.2 shows general metrics of Project A in the version of 1.2.0.3 measured on
09 Mar 2016. In the set of widgets. We can quantify the project by these values in
categories of size, comment, complexity, coverage, test, violations, etc.

23



CHAPTER 4. IMPLEMENTATION

Figure 4.1.: Continous integration deployment in company

Figure 4.2.: SonarQube UI of project metrics

Then we step into the portal further, we can observe the metrics in the scope of class as
Figure 4.3 displays. Some different from the metrics in the scope of project, the metrics
which are specially defined for the class are taken at the same time. For example, in
the ‘Source tab’, we can also see the metrics called Public API, Number of Children, Depth
in Tree, Response for Class. Another important thing is that in ‘Violation’ subpage, each
bug detected by Findbugs Plugin, PMD Plugin, Checkstyle plugin, etc. is highlighted
with red color. We can also filter out the interested bug category in the drop-down
menu.

Figure 4.3.: SonarQube UI of class metrics

24



CHAPTER 4. IMPLEMENTATION

Each information displaying in the user interface is data stored in the SonarQube
Database. There are 110 available metrics and thousand of rules provided by Sonar-
Qube. Each metric and bug detection rule will be applied to all the classes in each
project at every measurement point. As a result, the data storage grows linearly. For
the convenience of analyzing data we principally focus on, it is necessary to extract out
part of data from massive records in the database.

Figure 4.4.: Data processing step

4.1.1. SonarQube Database structure

After having access to SonarQube database in the company, we make a remote con-
nection by a SQL Client. Each table including its primary keys, foreign keys and other
attributes is reviewed, especially together with the references with other tables. Fig-
ure 4.5 presents the part of data modeling structure of the SonarQube database. Some
tables concerning with the widget configuration in the web user interface are omitted
here.

Table ‘PROJECTS’ Every measurement object is viewed as a ‘project’ in this table. It
may be the entire project, then recursively deep inside, a component, a package
and last the small unit - class. The type of the measurement object is marked in
the column ‘qualifier’. The column ‘root_id’ shows the project id of the top level,
i.e. project level.

Table ‘METRICS’ This table lists the metrics SonarQube will measure on each item in
Table ‘projects’. We can find metric’s name, the full description, and unit of the
measurement.

Table ‘SNAPSHOTS’ The word ‘snapshot’ means one view of status repository as it
was at a particular time for the purpose of revision control in software devel-
opment [28]. As mentioned in the former chapter, the projects are measured in
some period. Although the SonarQube web interface shows the newest situation,
it also keeps some historical data in the database for the convenience of tracking
the changes. Thus, we are able to tell differences among revisions of the same
measurement item by the unique snapshots id.

25



CHAPTER 4. IMPLEMENTATION

Figure 4.5.: SonarQube Database structure

26



CHAPTER 4. IMPLEMENTATION

Table ‘PROJECT_MEASURES’ This table plays an central role in the database. All
actual metric values are stored there. Each row tells us the value of one metric for
one version of measurement item. For example, a class in a project has been taken
snapshots for six times in one month. For each time, there are 50 metrics applied
for this class. As a result, total 300 rows are inserted for this class monthly. The
record for one time measurement is very complete, so the capacity of this table is
high. Currently, there are five millions of entries in this table.

Table ‘RULES’ Each embedded plugin in the SonarQube defines plentiful violation
rules for possible bugs, bad coding styles and flaws. Now, the plugin ‘Findbugs’,
‘checkstyle’, ‘pmd’ are configured in SonarQube. Total 742 rules are provided by
them.

Table ‘RULES_PROFILES’ Users have an option to select sets of rules in Table ‘rules’,
which they think are more meaningful to examine the code quality. The name of
the rule group is put here.

Table ‘ACTIVE_RULE’ Related to the above table description, table ‘active_rule’ gives
out which rules among all are activated in one rule profile.

Table ‘RULES_FAILURES’ All the rules violation information is found here. The fig-
ure 4.3 is a visualization of boring data entry in the database. It helps to answer
the question, which line of which version of class violates which rule. Further-
more, the violation is graded, from 0 to 4. This table is used to help to gather
bug information, however, unfortunately, after each measurement of a project,
the original data will be overwritten. Then, we can only check the bugs in the
current version.

4.1.2. Local database structure

Figure 4.6 displays local database schema. The designing goal is to simply the original
SonarQube database, in order to extract out most needed information and also reduce
the number of joins among several tables.

Table ‘PROJECTS’ This table contains every measurement entry in the level of project,
whose qualifier is ‘TRK’ in 2015. As we know, projects are measured accord-
ing to different period. So, we distinguish different versions from unique ‘re-
fer_snapshot_id’.

27



CHAPTER 4. IMPLEMENTATION

Figure 4.6.: Local Database structure

28



CHAPTER 4. IMPLEMENTATION

Datasets from SonarQube database:

SELECT l e s s . id as REFER_SNAPSHOT_ID, l e s s . c r e a t e d _ a t as
CREATED_AT, l e s s . p r o j e c t _ i d as REFER_PROJECT_ID ,
p r o j e c t s . name as PROJECT_NAME

FROM (SELECT ∗ FROM SNAPSHOTS WHERE DATE( c r e a t e d _ a t )
>=‘2015−01−01 ’ and q u a l i f i e r = ‘TRK ’ ) as l e s s , PROJECTS

WHERE l e s s . p r o j e c t _ i d = p r o j e c t s . id ;

Table ‘CLASS_ENTRY’ This lists every measurement entry in the level of class, whose
qualifier is ‘CLA’. Classes have different versions due to code changes among
different version. So, the column ‘refer_snapshot_id’ is set uniquely as same as
the project. What’s more, we can know about which version of project the class
belongs to, through its attribute - ‘refer_root_project_snapshot_id’.

Datasets from SonarQube database:

SELECT l e s s . id AS REFER_SNAPSHOT_ID, l e s s . root_snapshot_id
AS REFER_PROJECT_SNAPSHOT_ID , l e s s . p r o j e c t _ i d AS
REFER_CLASS_ID , l e s s . r o o t _ p r o j e c t _ i d as
REFER_ROOT_PROJECT_ID , p r o j e c t s . name AS CLASS_NAME

FROM (SELECT ∗ FROM SNAPSHOTS WHERE DATE( c r e a t e d _ a t )
>‘2015−01−01 ’ and q u a l i f i e r = ‘CLA ’ ) AS l e s s , PROJECTS
WHERE l e s s . p r o j e c t _ i d = p r o j e c t s . id ;

Table ‘BUGS_PATTERN_ENTRY’ It stores all the programming rules or bug pat-
tern rules defined by external plugins in the current active rule profile. It is worth
mentioning that setting severity for each rule is helpful to filter the bugs by its
level, providing another perspective to classify the bugs for the later research.

Datasets from SonarQube database:

SELECT r . id AS REFER_BUG_PATTERN_ID, r . plugin_rule_key AS
RULE_KEY, r . name AS PATTERN_NAME, ar . f a i l u r e _ l e v e l AS
SEVERITY , r . plugin_name AS PLUGIN_NAME

FROM RULES r , ACTIVE RULES ar
WHERE r . id = ar . r u l e _ i d and ar . p r o f i l e _ i d =11;

Table ‘BUGS_ENTRY’ All the potential bugs detected out by external plugin ‘Find-
bugs’ are stored here. Each bugs belongs to one class of the certain version. That

29



CHAPTER 4. IMPLEMENTATION

is mean, we do not only just identify the bug by the class name, otherwise,it will
occur duplicated rows if the bug still remains in the later version. So, we also
add the column ‘refer_snapshot_id’ as well to indicate the class of certain ver-
sion. By using the key ‘refer_bug_entry_id’, we can track the detailed violation
information in table ‘BUGS_PATTERN_ENTRY’.

What’s more, the original table ‘RULES_FAILURES’ in SonarQube database will
refresh itself after each code analysis instead of keeping the historical data. We
need to gather bugs several times and add new entries in ‘BUGS_ENTRY’.

Datasets from SonarQube database:

SELECT r f . id AS REFER_BUG_ENTRY_ID , r f . snapshot_id AS
REFER_SNAPSHOT_ID, r f . r u l e _ i d AS RULE_ID , ru . name as
PATTERN_NAME, r f . f a i l u r e _ l e v e l AS FAILURE_LEVEL

FROM RULES_FAILURES rf , RULES ru
WHERE r f . r u l e _ i d = ru . id and ru . plugin_name = ‘ findbugs ’

Table ‘STATISTICAL_METRICS’ We select several interested metric whatever is for
the level of class or the level of project.

Due to large redundancy data in table ‘PROJECT_MEASURES’ in the SonarQube
database, it takes much time to go through the whole table and filter out part of
data.

This table joins table ‘BUG_ENTRY’ with the key ‘refer_snapshot_id’. Finally, we
could both metrics and bugs information in one class as Table 3.2 designs.

Datasets from SonarQube database:

SELECT snapshot_id as REFER_SNAPSHOT_ID, metr ic_ id as
REFER_METRIC_ID , value as VALUE, id as REFER_MEASURE_ID

FROM PROJECTS_METRICS
WHERE metr ic_ id in ( 3 , 1 5 , 2 0 , 3 4 , 3 6 , 6 0 , 6 1 , 2 1 , 8 0 )

30



CHAPTER 4. IMPLEMENTATION

Figure 4.7.: local data gathering system

4.1.3. Building an automatic data collection system

Goal

As we have summarized in the last section 4.1.1, there are a vast amount of data in
the SonarQube database, it will take much time to filter out required data from tables,
even will cause heap space out of memory problem when we need to handle ‘SQL join’
among several tables.

The primary goal to set up data gathering system is that we could extract part of data
from the original data source and store them in the form of new data structures in
another database through the operation in a user interface. This user interface can also
show some meaningful statistic results after doing some data processing.

We set up a web application system for data gathering and visualization. The used
architectural framework is built up as Figure 4.7 shows.

System Specification

Following tools and technologies used:

JDK 1.7.0 Java Development Kit provides the platform for Java Standard Edition,
Java Enterprise Edition, implementing cross-platform compatibility - "Write once,
compile anywhere". The version 1.7.9 is downloaded from Oracle official site

31



CHAPTER 4. IMPLEMENTATION

[29]. Then we set JAVA_HOME environment variable in local advanced system
settings.

MySQL Community Server 5.7 MySQL is an open-source relational database man-
agement system. Structured Query Language (SQL) is used as the language for
handle the record in the database. Self-defined tables will be created in the local
database. Therefore, data selection is quicker and easy to handle.

Glassfish 3 server Glassfish as Java EE Application server framework offers a server
environment to run web application. Normally, user could access the application
with an absolute URL in the localhost.

Further more, we need to configure both remote Sonar JDBC data source and lo-
cal JDBC data source in Glassfish in order to implement the database connectivity
in the web application.

Java Server Faces JSF is a standardized component-based User Interface technology
in Java EE. We utilize its components to generate the menu, buttons, tables and
graphic charts with Ajax technology in the front end.

Java Persistence API JPA is a Java specification for doing the mapping between Java
objects and a relational database [30]. It gives us a way to manage the data in
the java program, including inserting, updating, selecting, deleting data in the
database. The manager called ‘Entity manager’ is responsible for persisting the
connective context with one database.

Eclipse IDE It is an integrated development toolkit. In the workspace, we can write
the code with help of many auxiliary plugins. Then we export this web applica-
tion into a WAR file, that later will be deployed in the Glassfish Server. Impor-
tantly, we need to import external jar packages, e.g. support for JSF 2.0 and JPA
in the jar library.

These steps will be done concretely in building up the data gathering system:

1. Support tools installation and configuration

a) MySQL 5.7 is downloaded from the official website. In MySQL 5.7 Com-
mand Line Client, we initialize one database called ‘METRIC_DB’ and cre-
ate a user who is granted privileges required for the database operations.
The JDBC URL of connecting to a MySQL server in the localhost is

32



CHAPTER 4. IMPLEMENTATION

jdbc:mysql//localhost:3306/METRIC_DB

b) Glassfish is downloaded from the official website. Start the glassfish, and
login the glassfish admin console, located at localhost:4848. Then we set up
two JDBC connections in Glassfish. First is for remote SonarQube database.
Second is for local MySQL database. In the left side of console, we expand
the tree -> Resources -> JDBC -> JDBC connection pools. The we created
connections for each database. Following properties is needed for configu-
ration: pool name, resource type, driver class name, database URL, user and
password.

2. Programming

a) Design the schema and references of tables in the local database. The ‘create
table TABLE_NAME’ scripts are attached in the appendix A.

b) According to each table’s structure in both local and remote database, we
create corresponding JPA entity objects, which persist states with a whole/-
part of tables in the relational database.

c) Create the entity managers, who control the persistence context and entities.

d) Create the transformation classes, responsible for converting one data struc-
ture into another.

e) Build the front-end for the web application. We could observe following
information, essentially speaking, we visualize the status of entity objects.

For each research project,

• The tendency of seven metrics in the project level in 2015 are separately
shown as a line chart. More specifically, we pick the first measurement
entry for each month, as a result, twelve data samples for one project are
chosen. then we can see how project metrics have varied in the whole
year.

• As we have mentioned in the former chapter, bugs detected by Findbugs
plugin are divided into several categories. In each category subpage, we
find out those classes, whose contains at least one bug belonging to that
category. First, a bar chart is generated, displaying the distribution of
the classes, i.e. how many classes have only one bug in that bug pattern,

33



CHAPTER 4. IMPLEMENTATION

how many classes have two bugs, have three, four... Second, a table
lists class metrics for each error-prone class. Last, an array represents
the Spearman’s rank correlation coefficients between every metric and
current bug pattern category.

f) Select appropriate gathering time points. Due to the configuration of the
remote SonarQube database, although after each measurement, the project
metrics will always be kept, the record of class metrics and bugs will be
refreshed. In our local database, we intend to keep all the data at different
gathering points. For project A, the project will be entirely measured after
every delivery. So, the data gathering is performed right after that, normally
monthly.

3. Data analysis

When gathering data once for a certain project, a matrix like Figure 3.3 is formed.
As we have designed in Chapter 3, we could compare matrices of the same
project but in different versions, or compare matrices among different projects.
Through analyzing why the element in the matrixes displays like this, we expect
to answer the research questions.

4.1.4. Web UI of the system

After we complete the programming part, the project is exported as WAR file. Then in
the Glassfish Administration console, we deploy the war file on the web server. The
link to the web application is http://pc45722:8080/MetricsDataAnalysisProject/.

In the left navigation bar, all three projects are listed, and the hyperlink of pages for
metrics in system level and bugs information can be chosen in the toggleable menu.

• Metrics in project level

Clicking ‘ProjectMetrics’ in the drop-down list, Figure 4.8 is the result of the
project metrics in project A. Each graph presents the tendency of one project met-
ric in 2015. We find out that this project is under continuous development in 2015.
The scale of the project becomes larger and larger because of the increasing value
of LINES OF CODE. The total COMPLEXITY rises with the size of the project as
well. The average complexity among classes, i.e. CLASS_COMPLEXITY varies
between 6 and 8 unsteadily. The RULES_COMPLIANCE is stable around 94%

34



CHAPTER 4. IMPLEMENTATION

Fi
gu

re
4.

8.
:W

eb
U

I-
Pr

oj
ec

tA
-P

ro
je

ct
m

et
ri

cs
in

20
15

35



CHAPTER 4. IMPLEMENTATION

although more codes are added. Towards COVERAGE, as a whole, this metric is
growing despite of small ups and downs in the second half of 2015.

The project metrics of other two projects are also available for the observation.
Here is not described in detail.

• Bugs and metrics information in class files

In the right-top panel of bug information page, nine command buttons are listed
to click for the subpage about the statistical data under particular bug pattern
category of Findbugs.

Figure 4.9 is an example of ‘Correctness’ bugs found in Project A at version A. As
we design, the samples are classes in that version of project. From this page, we
get following information.

Figure 4.9.: Web UI example - Project A - Version A - Bug Category ‘CORRECTNESS’

1. The bar chart displays that three classes contain only one ‘Correctness’ bug,
two classes contain two ‘Correctness’ bugs, one class contains five ‘Correct-
ness’ bugs.

2. The upper table lists the metric information for total six classes. Among
them, CLD (Comment Line Density) is value in the unit of percentage. For
each class with at least one Correctness bug, we could inspect its class met-
rics and the number of Correctness bug. If we intend to review the code in
a class, we fetch it ‘class_id’, then search its class name in the local database

36



CHAPTER 4. IMPLEMENTATION

system by ‘SELECT * FROM class_entry WHERE refer_class_id = class_id’
SQL statement.

3. The lower table gives the result of correlation coefficients between pattern
category ‘Correctness’ and each metric in this version of project. It is shown
that the Correctness correlates positively in various degrees with LOC, CPLX,
CVR, EC and correlates negatively with CLD.

Doing similar operation, other bug pattern correlation situations are dis-
played on the screen for research.

4.2. Qualitative Data Collection

We conduct ‘Interview’ as a qualitative data collection method. This is an efficient ap-
proach to gain the firsthand practical information about any issue during the software
development process. The result of qualitative methods is richer and contains much
more information than of quantitative methods[27].

We has made two rounds of interview in total. The first one takes place around in
the end of January. It aims to collect developers’ impressions or viewpoints on some
research objects. The second one takes place at the beginning of April. Before that, we
should have gained the conclusions about our research questions after finishing the
analysis based on automatic data gathering system talked about in the Section 4.1 and
results in the first-round interviews. The objective is to refine our current conclusions.

Figure 4.10.: Qualitative Data Collection Process

4.2.1. First-round Interview

The main steps in the whole process:

1. Preparation

37



CHAPTER 4. IMPLEMENTATION

a) Setting the interview goal and topics

First, to make clear what we want to know about from developers, the out-
line is written down. Here, two topics are the focus of the interview. (1) the
usage of static code analysis (2) the practice of maintainability.

Due to the limitation of the duration - 45 minutes, around 10 questions (Fig-
ure 4.11 lists) covering above topics are designed. We hope that all the re-
sponses are open-ended, not simply given by yes/no.

In addition, in order to remind of the whole flow and avoid ambiguity when
asking the question, we make a PowerPoint slide, including the questions
and vivid graphs to help understand. And all the materials (e.g. correla-
tion results calculated in Sec 4.1, the UI for data gathering system), used for
demonstration are examined through once before the interview. Otherwise,
you may waste time on searching them and feel overwhelmed.

b) Selecting the interviewees

Three developers in NTT DATA, who all have more than five-year devel-
oping experience and engage in projects for a long time, are selected as the
candidates. The interview is made separately for them.

c) Making an appointment of interview date

The invitation is sent to each of them, attached with the proposed date and
time, also with the aims of interviews.

2. Face-to-Face interview

We ask for the permission to record the conversation in the interview.

a) Opening

At the beginning of the interview, a brief introduction about the research
work being conducted currently is presented to the developer. Then, it is
more helpful for them to participate fully in the certain topics quickly.

b) Questions and answers

We follow the designed flow, ask the developers questions. At the same
time, simple snippets are written down on the papers if some viewpoints
arouse the interest, which is worth deeper discussion and thoughts. Some

38



CHAPTER 4. IMPLEMENTATION

Figure 4.11.: Designed interview questions

39



CHAPTER 4. IMPLEMENTATION

unforeseen questions will flexibly be put forwards according to the response
from the interviewees.

What’s more, for RQ1, we expect to let developers give the evaluation of the
correlation by themselves as much as possible. It is hard for them to cover
every bug patterns, metrics because of limited experience. In the local data
collection system, we have already got three matrixes for either approach.
We look into them as well. In some case, the developer will have doubts
about the computed value, e.g. why one correlation drops between two
versions. We check the specific information in the UI of our system and
review the code. The developer could express his conjecture of the change.

From the perspective of the interviewees, they might tend to give answers
out of the scope we expected. Then, we should cut off them politely when
the talking topics have wandered too far.

c) Summary

At the end of the interview, we give the feedback to the developer about
self-understanding of the central theme.

3. Post-mortem processing

After each interview, we need to deal with lots of information in time. We retro-
spect the record and make the transcript. The transcript aids in sorting the key
points. Every 45-minute conversation content will be converted to a couple of
sheets of A4 papers. It is insignificant to neglect the written skills here since it
makes no sense to make many efforts to consider how to organize plenty of oral
expressions in a precise way.

Then, we go to the most important step ‘coding’[27] to extract variables in quan-
titative values from the interview notes. Coding produces more precise quan-
titative date. In principal, it is restricted to simple, objective, straightforward
information.

4.2.2. Second-round Interview

We also invite the developers, who are involved at the first time. The whole proce-
dure is same as what we have done in the first-round interview, but the emphasis of

40



CHAPTER 4. IMPLEMENTATION

questions raised are quite different.

We come straight to the point in the second-round interview. After first-round inter-
views, we collect the viewpoints from all the interviewees and utilize the method of
‘Coding’ to make a summary in the form of graph. The graph is used to show the de-
veloper not only how his/her opinions are interpreted by the coder, but also what the
other developers have responded to the same question. ‘Coding’ results are in essence
subjective, because it is still done manually. Imprecise expressions and comprehen-
sion may cause incorrect codes. As a result, developers may approve or reject part of
results.

For two sub-questions of RQ2, we show them the proposal answers and seek for agree-
ment.

Last, we refine our conclusion after the second-round interview.

41





5. Discussion - RQ1

RQ1 Whether the diagnosis result from Findbugs has a significant correlation with special
metrics?

As mentioned in Chapter 3, there are two designed approaches to research on the cor-
relation. For each approach, we are going to draw the conclusion based on:

Statistical results Three correlation matrixes should be gained in either approach. We
can observe the correlation values directly from the local data collection sys-
tem. The high Spearman’s rho theoretically proves the strong correlation and
vice versa. Though reviewing some source codes, we intend to analyze in a pure
technique way why the computed correlation is like that.

Experts’ evaluation In the interview, the evaluation of the correlation between certain
bug pattern and metrics has been made by experts. A part of it may agree with
the computed correlation result or may not agree with. We will analyze the rea-
son behind the distinction.

5.1. Different versions approach

Table 5.2, Table 5.3, Table 5.4 are correlation matrixes generated from three versions of
Project A. The collection period is approximately every two months. Depending on
the report of the correlation computing tools, we mark out the existence of the strong
relationship.

Table 5.5, Table 5.6 calculate the differences between two adjacent versions, toghther
with the number of bug patterns changed in the certain pattern category.

After gainning the access to the JIRA in the company - an issue tracking platform in
the agile development, we check the change log to view what issues have been done

43



CHAPTER 5. DISCUSSION - RQ1

between two adjacent versions. There are 6 types selection, Bugs, Epic, Story, Incident,
Task, Sub-task, which will be labeled to any issue.

From Version A to Version B, 3 issues type of bugs, 1 issue type of story, 2 issues type
of tasks for delivery are updated. From Version B to Version C, 2 issues types of bugs,
1 issues type of tasks for delivery are updated. Also combined with the commit log in
remote SVN repository, we can find that the development of work in this project in the
past several months is not so heavy. Most of them belongs to fix the bugs detected in
the former version.

Table 5.1.: General information in three versions of Project A
Version Build date LOC

Version A 11th Dec 2015 29911
Version B 11th Feb 2015 30249
Version C 4th Apr 2015 30654

5.1.1. Data analysis

Table 5.2.: Correlation coefficients ρ - Project A - Version A
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Dodgy PERF MC

vulnerability

metrics

LOC 0,525 NaN 1 0,694 0,131 0,244
CLD - 0,309 NaN 1 0,283 0,219 0,224
CPLX 0,617 NaN 1 0,667 0,219 - 0,487
CVR 0,262 NaN 1 0,134 0,044 0,264
EC 0,741 NaN 1 - 0,031 - 0,176 - 0,052

Table 5.3.: Correlation coefficients ρ - Project A - Version B
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Dodgy PERF MC

vulnerability

metrics

LOC 0.442 0.137 1 0,666 0.001 0,244
CLD - 0.626 - 0.411 1 0.130 - 0.101 0,224
CPLX 0.286 - 0.138 1 0,620 - 0.051 - 0,487
CVR -0.211 - 0.358 1 0,057 - 0.154 0,264
EC 0.038 - 0.420 1 - 0.126 - 0.356 - 0,052

44



CHAPTER 5. DISCUSSION - RQ1

Table 5.4.: Correlation coefficients ρ - Project A - Version C
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Dodgy PERF MC

vulnerability

metrics

LOC 0.362 0.204 1 0,666 - 0.045 0,244
CLD - 0.615 - 0.408 1 0.130 - 0.091 0,224
CPLX 0.287 - 0.204 1 0,620 0.000 - 0,487
CVR - 0.170 - 0.338 1 0,026 - 0.161 0,264
EC 0.018 - 0.424 1 - 0.127 - 0.364 - 0,052

Table 5.5.: Correlation coefficient differences - Project A - between Version A and Ver-
sion B

Increase in correlation coefficients (%)

bugs LOC CLD CPLX CVR EC

Correctness +7 - 15.8 102.6 -53.6 -180.5 94.9
Bad practice +3
MT Correctness 0 0 0 0 0 0
Dodgy +3 -4.0 -54.1 -7.0 -57.5 306
PERF +3 -100 -146.1 -123.3 -450 102
MC Vulnerability 0 0 0 0 0 0

Table 5.6.: Correlation coefficient differences - Project A - between Version B and Ver-
sion C

Increase in correlation coefficients (%)

bugs LOC CLD CPLX CVR EC

Correctness +2 - 18.1 -2 -0.1 -19.4 -52.6
Bad practice -2 48.9 -0.1 47.8 -5.6 -1.0
MT Correctness 0 0 0 0 0 0 0
Dodgy 0 0 0 0 -54.4 0.1
PERF +1 460 -9.9 100 -4.5 -0.1
MC Vulnerability 0 0 0 0 0 0 0

45



CHAPTER 5. DISCUSSION - RQ1

Statistical value analysis

Following points are observed from above tables. We give them the reasons after doing
some code review.

1. Some correlations are not consider to be strong, although their ρ values are rela-
tively high.

Many references of Spearmann’s correlation defines that if the absolute value of
ρ is larger than 0.5, then we draw the conclusion that this value indicates strong
relationship. But in the Table 5.2, Table 5.3, Table 5.4, some correlation coefficients
exceed the critical points, for example, the relationship between CPLX and Cor-
rectness in Version A, the relationship between EC and Correctness in Version A,
however, they are not highlighted.

The reason is that their accompanied P-Value, larger than chosen significance
level (0,05), fails to reject the null hypothesis. To explain in an understandable
way, in some case, the p-value reaches 0.25 despite the high ρ, which means that
the sample data can not provide enough convincing evidence to prove the strong
correlation. There is still very low possibility to draw a conclusion for such strong
relation relationship, but just by chance.

2. The appearance of NaN between Bad practice and any metrics in Version A

In computing, NaN stands for Not A Number. NaN is used in the floating-point
standard. For example, it is caused by the calculation of dividing any number
by 0. In version A, there is seven classes, containing Bad practice bug pattern.
Moreover, all of them just have one. Based on the principle of Spearman’s rho, it
is not necessary to rank these bug number in order, because they all tie for first
place. Consequently, the denominator of the equation appears 0 in this situation.

3. ρ values between Multithreaded Correctness and any metrics in all versions are
equal to 1.

Although ρ values are equal to 1, the perfect case for a strongest positive relation-
ship, we fail to correlate Multithreaded Correctness and any metrics. At the time we
got these numbers from UI, the output of such ’perfectness’ is under suspicion.
Consequently, we check the class information table in the UI of data collection
system. It turns out that the sample data are too few, only two cases. One class
have one Multithreaded Correctness bug, another has two Multithreaded Correctness.

46



CHAPTER 5. DISCUSSION - RQ1

Whatever the metrics value is, ρ will always be equal to 1 or -1 because there are
only two ranking possibilities totally. Moreover, also, no more Multithreaded Cor-
rectness bug patterns were created in the latter versions, so we gain the illusion of
stable strong correlation.

We will not accept this column data as the evidence to derive any result.

4. Significant change in correlation between CPLX and Correctness, between EC and
Correctness from Version A to Version B

To figure out the reason, we reviewed code. In Version B, two classes with seven
Correctness bugs are added. Now, there are 8 classes with Correctness bugs. After
observation, the business logic is very simple both classes. The bugs number
rank 2nd and 3rd respectively among 8 classes, however their rank in complexity
7th and 8th respectively among 8 classes, same as ranking in efferent coupling
metric. Thus it strongly contradicts the result given in version A, which shows
the strong positive correlation between Correctness and CPLX, between Correctness
and EC.

Tracing the incentive of Correctness bugs, same bugs ‘(Possible) Null pointer
dereference’ are shown. The developer deployed the static class System.out-
/System.err in many places in convenient of showing a testing message in local
console. This violates the Findbugs defined the rule.

5. Strong correlation between LOC/CPLX and Doddy in all versions. The relation-
ship is stable with the development of the projects. 14 classes are taken as sam-
ples, so we can say the number of samples is enough to be used in calculating the
statistical results.

After reviewing those files, the truth is same as the correlation values indicate
that the larger, the more complex class is, the more Doddy Code it contains.

6. More stable relationship in Version B and Version C

Comparing Table 5.5 and Table 5.6, we find that the difference between Version
B and Version C is not obvious than between Version A and Version B. In reality,
concluded from Table 5.1, the size of a project increases linearly. Nevertheless,
the number of bugs in each category seems to change irregularly.

7. The correlation between MC vulnerability and any metrics keeps the same in these
three versions.

47



CHAPTER 5. DISCUSSION - RQ1

This phenomenon shows that the not a new MC vulnerability bug pattern are pro-
duced and also not an existing MC vulnerability bug pattern is fixed. Actually, in
the Findbugs definition, this category occupies small portion in all. We infer that
the chance of generating such bug pattern is little.

Experts’ evaluation

In the interview, we first showed the developers above three tables. We looked into
how the correlation changes during the development process. They gave their evalua-
tion of correlation results in the different versions approach.

1. The correlation relationship should be stable.

In these three version, there is no particular task of improving the code quality
by referring to a warning given by Findbugs. So, not so many bug patterns have
been fixed. As a result, few codes have been refactored. Thus, they make an
estimation that the correlation values should vary slightly.

As a matter of fact, the reason of causing the instability is that new classes with
bad codes are added based on the last version. The relationship between the
number of bug patterns and metrics in the new-added class are not in accordance
with the previous correlation result. For example, developers are surprised with
the huge change in the correlation value between EC and Correctness.

We think that with the development of the software, it is difficult for experts to pre-
dict how many bug patterns, an added class with certain attribute (i.e., metric) will
produce.

5.1.2. Restrictions

The result of this approach is hindered by the limitation of resources and uncontrol-
lable factors.

First, as the background described above, there are not so many development issues in
these three versions because of few new requirements of this project temporarily. So,
the data analysis result can not reflect the normal developing situations well.

Second, in the first proposal of study design, we should track the developing process

48



CHAPTER 5. DISCUSSION - RQ1

for three months. After every data collection, we report to the developers and discuss
how to deal with the Findbugs warning in the next version, then observe changes in
the metrics and changes in correlation value. Unfortunately, this design is given up, in
consideration of the team’s willingness to spend more time and budget in optional and
research-based issues, which may also have an impact on routines since it relates to the
code submission to remote SVN, the build in Jenkins and SonarQube. The criteria to
implement this design is not mature.

5.2. Different projects approach

5.2.1. Data analysis

Table 5.7, Table 5.8, Table 5.9 are correlation matrixes generated from three projects
on the same collection date. The highlighted cells presents the strong correlation after
calculating Spearman’s rho.

Table 5.7.: Correlation coefficients ρ - Project A
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Doddy PERF MC

vulnerability

metrics

LOC 0,525 NaN 1 0,694 0,131 0,244
CLD - 0,309 NaN 1 0,283 0,219 0,224
CPLX 0,617 NaN 1 0,667 0,219 - 0,487
CVR 0,262 NaN 1 0,134 0,044 0,264
EC 0,741 NaN 1 - 0,031 - 0,176 - 0,052

Table 5.8.: Correlation coefficients ρ - Project B
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Dodgy PERF MC

vulnerability

metrics

LOC - 0,289 0,007 / 0,246 0,756 0,052
CLD - 0,000 0,081 / - 0,382 - 0,630 0,300
CPLX - 0,289 - 0,136 / 0,296 0,756 - 0,078
CVR - 0,645 - 0,032 / 0,081 - 0,433 0,156
EC - 0,889 0,247 / 0,088 0,805 -0,074

49



CHAPTER 5. DISCUSSION - RQ1

Table 5.9.: Correlation coefficients ρ - Project C
Findbugs bug pattern category

Correcteness Bad
practice

MT
correctness Dodgy PERF MC

vulnerability

metrics

LOC 0,406 0,466 0,616 0,130 0,206 0,365
CLD 0,072 0,176 - 0,154 -0,216 - 0,084 - 0,023
CPLX 0,444 0,431 0,763 0,013 0,249 0,093
CVR 0,240 - 0,394 0,000 - 0,052 0,155 0,119
EC 0,192 0,201 - 0,079 0,186 0,084 0,336

Statistical value analysis

1. Malicious Code Vulnerability does not correlate with every metric in all projects.

In this category, only two kinds of bugs have been detected, ‘May suppose inter-
nal representation by returning a reference to mutable objects’ and ‘May suppose
internal representation by incorporating a reference to mutable objects’. These
kinds of bugs happen, when we give the object reference to a new object in-
stance, if the original object is modified, the new instance is modified as well
with it unintentionally[31]. Following code snippet 5.1 shows this problem.

Figure 5.1.: Code example of returning reference to mutable objects

After searching for classes, containing such bugs, we find out almost of them be-
long to DTO files. DTO stands for Data Transfer Object programming pattern.
The usage of DTO classes is to encapsulate the business data in order to easy ex-
change among different tiers[32] . The structure of such class is clear, i.e. variables
and setter and getter’ methods to modify and check the value of variables. So,
it is likely that bugs in pattern of malicious vulnerability are generated in DTO
because of ‘setting’ some variables when the variable field is an object rather than
primitive data type such as int, char, boolean.

50



CHAPTER 5. DISCUSSION - RQ1

We conclude that this bug pattern does not have strong correlation with any met-
ric for the following reasons. (1) Such bug occurrence largely depends on how
many variables in object type are used, then no matter with LOC of the source
file. (2) The comments of setting and getting methods are simple, automatically
generated by Eclipse. The number of comment lines for methods is related with
the number of the variables. So, CLD is relatively even. (3) CPLX in DTO usu-
ally equals to 0. Because we only write the accessors (Getters) and the mutators
(Setters) instead of functions. (4) In case of EC metrics, it is hard to verify, be-
cause if the variable type is in object type, it may either be from JRE library, e.g.
‘java.util.Date’ or other classes in other packages. It is an unstable factor.

2. Stronger correlation between Performance and every metric in Project B than in
other projects

We find that, in those class files that this phenomenon is largely related with
project property. Compared to other two projects, this project needs many ma-
nipulations of the complicated data structure. There is a special component in
Project B, which is used to visualize the datasets stored in the database. First, due
to the application of Java Persistence API technique, the entries in the database
are mapped into the Java objects and then the further transformation will be done
. Normally, we import a JS library to generate attractive graphs. So, such library
has the requirement on the data type. Thus, Performance bugs are likely to happen
when handling with different data types, e.g. initialization of the static Integer,
Double objects or application of the Hashmap data structure.

3. All of the bug pattern categories have no correlation with CLD in all projects.

This observation result infers that adding comments in the file whatever more or
less will not prevent the appearance of bad codes, even though it helps to make
the intention of classes, methods, fields clear.

4. Stronger correlation between Dodgy and LOC in Project A than in other projects

After reviewing the code, ‘uncheck/unconfirmed casting’ bugs occupy large part
in Dodgy. In all three projects, they contain a common component – JAXB service,
which can make it easier to access XML files from Java programs. Some classes
are to map response/request in form of XML into Java object via public API.
Normally, these APIs accept parameter objects or return objects in generic type.
When we need to cast concrete Java object into generic type or cast generic type

51



CHAPTER 5. DISCUSSION - RQ1

into a concrete Java object, you must confirm if an object is an instance of an object
type. In Project A, due to many requirements of such mappings, developers will
put similar methods in one class file and program them in the similar coding
snippets. As result, it is very likely to cause the same bug frequently in one class.

If a class has many bugs (abnormal value) in the same pattern, for example, the
class is a data access object that accesses the operation interface to database, then
the functions in the class are coded in the same way, it is usual that the developer
makes the same mistake everywhere.

5. Stronger correlation between Bad practice and LOC,CPLX,CVR in Project C than
in other projects

The column Bad practice in the matrix of Project A has been analyzed in the first
approach. The reason of showing ‘NaN’ is that all classes have only one Bad
practice bug, thus we are not able to rank these classes. In project B, 20 of 24
classes have one or two Bad practice bugs, although their metrics vary a lot. So,
the correlation is relatively weaker.

Experts’ evaluation

Like RQ1.1, in the interview process, we also showed the developers above three
tables, they gave their estimation or judgment of correlation results in the different
projects approach.

1. Any pattern category should correlate with LOC.

The explanation they gave is very simple, “The larger the class file is, the more
bad codes the programmers will write down possibly.”. However, the result of
statistic data does not totally support this viewpoint. Table 5.7, Table 5.8, Table
5.9 presents that the strong correlation occurring between LOC with any metric
cannot be generalized, but the values show the high possibility.

Correctness bug pattern is the biggest category among the all[16]. The rule reg-
ulations are made with most confidence of the improper codes. Unlike the bug
patterns in other categories, the appearance of Correctness bugs does not restrict
to a certain type of the class file. They are common bad/improper usage of basic
Java packages, e.g. all the types (String, Integer, Array, etc,.) in java.long.object.
However, the probability of the occurrence of some bug patterns depends on the

52



CHAPTER 5. DISCUSSION - RQ1

properties of the project. If there exists more data management in the database,
the issue of transient and serialization in Bad practice may happen. Alterna-
tively, if the project contains UI components with Date selector, the static issue
belonging to MT Correctness may happen in DTO class and controller in MVC
architecture.

Another point, programmers tend to copy the snippet codes in the same class file
or in different files if they want to implement same logic. Then, bad code will be
copied as well. So, from our data gathering system, we can check out that not a
few classes have more than 4 bugs in the same category, even the size of them is
not so large. The origin is that the same bug pattern is detected out repeatedly.

It is a misunderstanding that the bugs in the small files must be few. So, when
developers review the code, they should not skip some classes because of their
size as a matter of course, but make a judgment on the file type at first.

2. Dodgy Code should correlate with CPLX

Referring to the definition of the bug pattern in table 2.1, Dodgy Code are con-
cerned with the error-prone codes. However, for the majority, this description is
still very confusing. According to developers, only two or three bug patterns in
this category are relatively remarkable in practice, because they have experience
that such bug patterns are very likely to happen during the programming.

We find that developers are more familiar with casting issues and control flow
issues in category Dodgy Code. Then, from their perspective, Dodgy Code may
occur in those methods in scenarios of upcasting/downcasting, which is required
if we implement inheritance, e.g. for specifying the thrown exception type or for
converting a superclass of file processing into a particular subclass (i.e.AddFile,
ModifyFile, PurgeFile) under some criteria. Normally, such class files are used to
implement business logic, resulting in the high complexity. This statement is in
accordance with the third point we have put forwards in the above section.

3. There may be weaker correlation between CVR and some bug patterns in the
project, which includes front-end component.

The front-end component must include some classes files that are used for trans-
mitting data between the presentation layer and business logic layer. During de-
velopment, it is not necessary and not easy to write the test cases for such classes.
Then, that the coverage percentage of them equals to 0%, which they think may

53



CHAPTER 5. DISCUSSION - RQ1

disturb the correlation result.

The three matrixes almost meet with the manual estimation, especially in Project
C.

4. Correctness and Dodgy Code may correlate with EC

The coupling number tells the interdependence[33] between different modules.
Developers give a conjecture that more type of classes in other package are im-
ported, which may predict the fault-prone due to incorrect controlling access,
reference/dereference defined by above two categories.

However, the correlation values cannot entirely support their judgments. The
correlation result only shows unclear Correctness’s relationship with EC. After
further code reviews of the sample classes, the reason why the actual value does
not achieve empirical expectation is that 90% classes have one or two Dodgy Code
bugs, although their EC will vary from 0 to 23 in uneven distribution. The fact
data fails to provide evidence that if the class more depends on externalities, it
will produce more bad codes.

5. Developers have relatively fewer knowledge on Performance and MC Vulnerability

These two categories make up a small portion of the total bug patterns, contain-
ing 27, 15 rules separately in 400. In general, their bugs are more dedicated in
limited fields that could be counted on the fingers. Even so, we have observed
the total number of bugs detected under these categories are not less than other
large categories.

Although they are easily neglected because of the minority, the importance is
equivalent.

5.2.2. Restrictions

In this approach, we do not exclude any abnormal value. For example, in Project B,
the correlation between Correctness and any metrics are all negative, which also has
aroused developers’ interest. After reviewing the code, we find that among five sam-
ple classes, one 27-line classes with 3 Correctness bugs messes up the Spearman Rank-
ing correlation. This case may also exist somewhere else but is hindered by seemingly
innocuous data samples. Although the appearance of such class is a small probability

54



CHAPTER 5. DISCUSSION - RQ1

event, it may largely influence the value of some correlation, further influences our
judgment. It is better to exclude the distinctive data sample in the calculation. How-
ever, then, We also meet with another difficulty about to how to select appropriate
samples.

5.3. Summary

For RQ1, we have applied two approaches to analyze the correlation between Findbugs
warning categories with common software metrics.

First, we tracked three versions of a project in the past six months to see whether the
correlation will change during the development. We find that in this selected indus-
trial case, in the situation of not heavy development tasks, 80% relationships still keep
stable. This result is agreed with by both the data in correlation matrixes and expert
judgment.

Second, through the comparison of correlation values among three projects, the result
shows that most of the correlation cannot be generalized due to various system archi-
tectures. Accompanied with the empirical investigation from developers in the project
team, their given judgment partly is not consistent with the statistical measurement
(i.e., calculating Spearman’s rho). The bias is caused by (1) incomplete knowledge
of bug pattern definition (2) inadequate consideration of the influence by the system
composition.

However, it is still reasonable to accept both subjective and objective results, because
they reveal the truth but one from the aspect of the statistical calculation, another from
the aspect of empiricism in practice.

55





6. Discussion - RQ2

6.1. Coding of the interview notes

Figure 6.1 visualizes the results of the coding. In the interview, several aspects con-
cerned with maintainability are concentrated on. The second level codes, Judgment,
Implementation period, Activities, Correlations with metrics composes the top
level Maintainability.

Judgment aggregates the codes about how the expert judges whether the project is in a
maintainable status. Thus, we use codes to make a summary of properties that a main-
tainable project should have. The sentence like ‘In a long term, we are interested in the
software architecture is developed in a proper way’ is coded as Good architecture. A
viewpoint ‘I would like to make software configurable that I can change the software
at runtime, or restart the server, but without any change in the code’ said by one de-
veloper, is coded as Configurability. The java doc issue was repeatedly mentioned
among all the developers. They expressed the same meaning but in different words,
‘when we take over an old project, if there is no java doc or quotation, I have no idea
what this class or class is used for in a short time’ or ‘Comments helps to quickly fa-
miliar with the new code’. We code this issue as Readability. Few bugs stands for
the opinion that if there are many failures in the runtime caused by bugs, the software
must not be maintainable. The code Shared components related with the section, ‘We
are persisting the maintenance for many projects currently, that we put the source code
for a component in a code base. Then we do not have to copy it everywhere’. The rel-
evant viewpoints are also mentioned frequently. For example, another developer said,
it is helpful to build a table template, and applied in many web pages.

Activities aggregates the codes about what activities the expert will do to improve
the maintainability. The code Document supplements is used to summarize the sen-
tence ‘I will add more comments or documents for the further development.’. The
notes have the statements such like ‘I will add more testing to make it maintainable’,

57



CHAPTER 6. DISCUSSION - RQ2

Figure 6.1.: Coding result of maintainability

58



CHAPTER 6. DISCUSSION - RQ2

then we code it as More testing. Moreover, next, Bug fixing highlights the sentence
‘For me, bug fixing is an importance issue to implement maintainability.’. However,
this code is relatively controversial. There is another point saying that even if you fix
all the bugs, the quality may still be very poor. These two opinions do not conflict with
each other because bug fixing can help to improve to some extent from the aspect of
defects caused by programming styles, but cannot ensure it will help in other logical
factors. One phenomenon shows that developers mention that through examining the
code whatever by him/herself or the fellows in the same team, they rely on the manual
judgment of status of the project and make corresponding plans to improve the quality
in some way. For such idea, we code it as Code reviewing.

Implementation Period aggregates the codes about how often the developer will con-
sider maintaining the software. Some developer said that if there were not so enough
budget, we would not spend much time on this issue. Thus, we interpret in such way
that when the Requirement of maintaining the software is distributed to the devel-
opment team by the cooperation partner, then the realization of maintainability as a
separate task will be put on a schedule. Another sentence expressed by another de-
veloper shows that it depends on the software development process models. In the
waterfall pattern, maintenance is the final step in the whole process. However, now,
we implement in an agile way. It may take place in the middle. For the above points,
we add codes In the end and Intermediary.

Correlation with metrics aggregates the codes about how the developers make the
judgments on the correlation between the maintainability with given metrics. Then, its
child level consists of codes, Correlation with LOC, Correlation with CLD,
Correlation with CPLX, Correlation with LCOM4, Correlation with CVR,
Correlation with Package tangle index, which aggregates the correlation result for
each metric.

In the interview, the developers are asked to grade the correlation between the metrics
and maintainability to avoid some confusing expressions such as some comparative
word ‘more’,‘most’ etc. We assume that the lowest grade is 1, the highest is 5. Then,
we do the directly mapping between the grade number and level of correlation. Grade
of 5 corresponds to the Strong correlation. Grade of 3,4 corresponds to the Moderate
correlation. Grade of 1,2 is for the Weak correlation. Also, we would like to let devel-
opers provide the reason why they make such grading.

Correlation with LOC contains code Strong and Moderate. The reason for grading

59



CHAPTER 6. DISCUSSION - RQ2

LOC to the high grade is that many lines imply more functions internally. How-
ever, another viewpoint says that it depends on the scope of the projects or what
the class does and I will give the medium value.

Correlation with CLD also contains code Strong and Moderate. Higher density means
more comments are written for the classes/methods/variables. In the future, it
makes other developers easier to understand what they are used for. The neu-
tral attitude raises ‘Yes if there are no comment lines, it is difficult to maintain
the code. However, sometimes you do not need so many texts. Reading text is
time-consuming’.

Correlation with CPLX covers all the level of correlation, Strong, Moderate and Weak.
The unbalanced situation is caused by developers’ different depth of considera-
tion. To speaking in a general way, the strong correlation is due to prevent the
bugs/defects in the future. If we explore this issue further to the level of class,
the situation will be technically divided into two parts, the usage of ‘if-else’ and
‘switch’. Sentences are like, ‘for switch statement, I will give 0, for if-else state-
ment, I will give 5’.

Correlation with LCOM4 only contains the code Not clear. Surprisingly, all the de-
velopers have no idea about this metrics, although, in many academic researches,
the term ‘Lack of Cohesion of Method’ are often referred in the object-oriented
programming. It is worth further knowing why the popularity of this metric is
low in the enterprise and whether it is necessary to bring it in.

Correlation with CVR contains the single code as well Strong. The developers have
lots to say anything related with testing. They left a deep impression on repeating
the importance of tests many times in the interview. High test coverage means
the greater extent to which that the source code in the projects has been tested
under the simulation case.

Correlation with Package tangle index contains the code ‘Strong’. The metric is
not included in the set of given metrics we first prepared in the interview. It
is put forwards by the software architect in particular. He uses this metric to
control the project in the component-level. He thinks that the appearance of cyclic
dependence is bad for the further maintenance work because if in the future, one
piece of code needs to be refactored, this action will implicate other codes in
another components. We must take care of the dependency relationship.

60



CHAPTER 6. DISCUSSION - RQ2

6.2. RQ 2.1

RQ 2.1 Which metrics are suitable to indicate software maintainability?

6.2.1. Results

In the first-round interview, the question is designed to ask interviewees the correlation
between the general term - maintainability and metrics.

From the coding result, we have known that the application of maintainability in prac-
tice covers a few fields. We think it is necessary to map maintainability into different
concrete pointcuts rather than a abstract concept. In order to specify the main objective,
we break down it into several characteristics. In addition to the explanation of grading
in the first-round, we try to associate the aspect where the developers made the eval-
uation with a particular characteristic. Each characteristic is composed of lower level
criterias. This is how we propose a correlation assumption on metrics.

The top level is divided based on the code Judgment, which aggregates interviewees’
opinion of from which aspects they make a judgment on the maintainability of the
software.

Then in the second-round interview, we make a further discussion about the accuracy
of the proposal and refine it. Figure 6.2 shows the tiered structure of the maintainability
evaluation model after two-round interviews. Table 6.1 specifies the reason why the
selected metric is related with one of the characteristics.

Figure 6.2.: Designed hierarchy in maintainability

61



CHAPTER 6. DISCUSSION - RQ2

6.2.2. Restrictions

Generally speaking, quantitative data analysis is not complete and more subjective.
The whole ‘coding’ process is done by the thesis writer alone. Due to the time con-
straints, the coding result has not been reviewed by others. The reviewers do not nec-
essarily have to be professionals since coding depends on the capability of the text
comprehension to a large extent. In principle, it is better to assign the interview tran-
scripts to fellows or friends. The fixation of the coding part should be performed at
least two rounds to ensure objectivity.

Second point, the classification of the main subject - Maintainability is dispersive and
used expressions in Level 2 (e.g. Architecture, Bugs ) seem not be formalized in a
standard way. Currently, we have simply summarized five characteristics from all
interviewee’s response about how they judge maintainability. If the more are involved,
it is inappropriate to list all of them in this level. For more precise classification, another
level called sub-objective could be added upon Level 2. The terms applied to the new
level could be defined concerning the quality model of ISO 9216 [34].

Last point, as many papers [11, 12, 35, 10] have proposed, the multi-metric polynomial
is used for measuring the numeric data of maintainability. For each involved metric, its
weight of influence is considered. Here, for this question, we discuss about from which
aspects the chosen metrics are related with maintainability but lack in the analysis of
its impact degree.

6.3. RQ 2.2

SonarQube [17] is the main quality management platform used in the company. De-
velopers trace the status of the project by looking at the information shown in GUI.

In the interview, we have acquired the following impression when asking RQ 2.2. First,
the metrics are necessary to check regularly during the development process; Second,
that regard to properties of various projects, although developers have their evalua-
tion standard, there is no fixed value most metrics must reach except that Test Success
Density should always be 100%. Moreover, for each project, the emphasis of the obser-
vation is partly different because of various components in the architecture.

62



CHAPTER 6. DISCUSSION - RQ2

Table 6.1.: Suitable metrics for maintainability evaluation

Characteristic Description Related
Metrics Reason

Reusability
A component created could
be shared by many projects.
Then we do not copy the
source code anywhere. For
example, in the company,
a component is used for
producing the unified
request frame, making cross
communication possible.

LOC
Decides the scope of the
component, The larger it is,
the more difficult it is to reuse.

CPLX

Decides the logic inside
the component. The higher
values indicates more control
flows, the reusability should
be applied discreetly.

CLD
Helps to understand what
the class/method/fields are
used for.

Configurability
Easy to be deployed in
another platform without
too much changes in the
code

LOC
More codes may contain
more internal/exteranl
dependencies

CPLX

High CPLX indicates more
consideration of necessity of
each flow in the new
environment

CVR

High CVR means that the
product is trusty and
predicts the possbility of high
success rate will also happen
somewhere else.

Architecture
A clear and hierarchical
folder structure; Well
designed Interface; In OO
programs, implementation
in inheritance and
polymorphism

CPLX

High CPLX may result in
more errors in complicated
logics and this metrics decides
corresponding testing amount.

CVR

Low CVR causes more
chances of bugs in the codes.
Then the system is easy to
break down.

Package
Tangle
Index

The cyclical dependencies
among packages should be
avioded. Otherwise, the layers
in the architecture becomes
fuzzy

Bugs Less system failures caused
by bad codes CVR

High CVR means more
methods are tested.
Bugs could be prevented
earlier in the test cases.

Readability

Fast familiar with the
project by reading the
comments/docs rather than
reviewing the code

CLD

High CLD means more texts
are written with the purpose
of making code easier to
understand.

63



CHAPTER 6. DISCUSSION - RQ2

6.3.1. Results

RQ 2.2 Whether the importance of some metrics, regardless of the quality aspect, is same
among different projects?”

Following texts are concerned with the concrete analysis of RQ 2.2. We select the met-
rics in the scope of project that developers usually keep an eye on.

Lines of code Yes. This metric determines the scale of the project. Many views define
whether the project is the small/medium/large one by measuring the project
size.

What’s more, when a project is under the regular development process, e.g. bi-
weekly sprint period, LOC of which should grow with stability. Figure 6.3a is
an example of this case. The size of Project A is nearly doubled in the last year.
However, for those projects, if there is not any new requirement but some main-
tenance work, such as bug fixing, increasing the process speed, LOC of them is
relatively stable. We can infer from Figure 6.3b, lots of tasks in Project B con-
centrates in the first half of 2015, but seems to stop new implementations since
August.

LOC is a good indicator of the scope of project and development trend not matter
for what kind of project.

Comment line density Yes. CLD reflects readability of the project as we have analyzed
in RQ2.1. The code complemented with some amount of comments whatever in
the Java classes or in the configuration files, or in HTML/CSS files are all helpful
to make the project understandable.

Coverage No. When we referred to this metric, the developers responded with ‘Well, it
depends...’ at the beginning. As we see in the Figure 6.4, this metric differentiates
a lot from about 15% to 62% among three projects. When we raised the doubt
about the low value in Project C, the developers have thought that this value is
still reasonable and acceptable here, CVG is meaningless if the project has many
UI implementation. Many web components will cause more data encapsulation
by using accessors and mutattors also some input validation in the controller
class file in the MVC architectural pattern. So, it is hard to estimate how it will
affect the test coverage in the whole project. However, for the pure backend
application, CVG is an unneglectable indicator. Higher value is expected. So, for

64



CHAPTER 6. DISCUSSION - RQ2

(a) LOC - Project A

(b) LOC - Project B

(c) LOC - Project C

Figure 6.3.: Projects’ LOC change in 2015

65



CHAPTER 6. DISCUSSION - RQ2

(a) CVR - Project A

(b) CVR - Project B

(c) CVR - Project C

Figure 6.4.: Projects’ CVR change in 2015

66



CHAPTER 6. DISCUSSION - RQ2

this metric, developers’ concern level differs among types of projects.

Complexity Per File No. As we did the coding shown in Figure 6.1, the evaluation
of this metric is controversial. The count of the independent path is not totally
acknowledged in the case of ‘switch’ statement. If a programmer has usual prac-
tice to apply this control flow, then the general average of the complexity of the
whole project will be bound to be higher. On the other hand, some classes, e.g.
the type of DTO, UI controller, or service invoking, containing lots of ‘simple
’methods can not also reflect the inner complexity level, although CPLX values
are still high.

Rules compliance Yes. This percentage shows how the codes in the project comply
with recommended programming rules. The value is expected to be as high as
possible in each project. If this metric is not so high, developers will consider to
take actions to improve it. In SonarQube, the BLOCKER bug pattern with the
highest warning priority should not occur in any situation. One developer men-
tioned that the goal of Rules compliance is more than 80% approximately. All of
three projects exceed this ‘lower bound’, especially two of them almost approach
96%.

6.3.2. Restrictions

The same restriction mentioned in RQ2.1, the ‘coding’ result presents the coder’s sum-
mary on interview transcripts. Second, we have chosen three studied projects that do
not cover a plenty of architecture examples. So, the analysis of the metrics’ importance
is based on interviewees’ perspective on the projects they are working with.

6.4. Summary

In this chapter, we mainly talk about how to utilize metrics to evaluate the maintain-
ability of the project. In the interview with the developers, they have shared their
viewpoints from different aspects of maintainability, e.g. the definition, the mainte-
nance activities, judgments. According to the coded word, we split maintainability
into several characteristics and then correlate each of them with suitable metrics. For
RQ2.2, we select often-observed metrics in the project-level measured by SonarQube.

67



CHAPTER 6. DISCUSSION - RQ2

We find that the importance of CVR and CPLX Per File are not same for developers
among different types of projects.

68



7. Conclusion and Outlook

The objective behind this study is to explore topics of the evaluation of the source code
quality. In the company, except for the direct review the code, developers also make
use of the static code analysis tool to get comprehensive knowledge about the objective
facts of the project and therefore make the judgment of the quality on the basis of
the analysis report. Here, we particularly use the term ‘metric’ to present a standard
measurement of these internal source code facts. This thesis helps to make a deeper
investigation on what kind of information the static code analysis tool accompanied
could reveal.

Both the quantitative and qualitative methods are applied to solve two research ques-
tions. First, we set up an automatic collection system to gather, process metrics and
bugs information, which are stored in the remote SonarQube database. This system
shows us a visualization analysis of bug patterns distribution, metric tendency, etc in
the chosen projects and provide the statistical calculation result. Second, the interviews
with developers have been held to collect their experience of applying the code anal-
ysis tools in the working environment. The ‘coding’ method is used to interpret the
interview transcript.

Chapter 1 first introduced a popular research field currently of studying three main
questions ‘what’,‘how’,‘where’ concerned with software quality. And we pointed out
that we restricted the research orientation into source code quality. Among approaches
in evaluating code quality, we were motivated to make a research on the relationship
among usage of the static code analysis tool, metrics, expert judgments. Two research
questions were put forwards in order to be solved in the thesis.

Chapter 2 gave the detailed description of Findbugs, SonarQube, the analysis tools
used in the later chapters and gave the proper definition of maintainability and several
metrics in regard to how we measure the code with a standard rule.

Chapter 3 discussed about the study designs separately. For RQ1, we would like to
compare the correlation matrixes from two dimensions to see whether the correlation

69



CHAPTER 7. CONCLUSION AND OUTLOOK

between the occurance of bugs and code metrics will vary in the long development
period and will vary among different projects. And we also expected to see how ex-
perts will think about what the reports given by Findbugs, SonarQube implicate. For
RQ2, we would use ‘coding‘ method to convert the interview notes into the simplified
codes.

Chapter 4 presented how we built up an automatic data collection system to gather
quantitative information, such as bugs, metric data and how we conducted the inter-
view to gather qualitative information, which is the developers’ experience in judging
the quality.

Chapter 5 gave the discussion about RQ1. Through the calculation of exact correla-
tion values between code metrics and the occurrence of bugs classified in Findbugs
categories, we find that, first, the most correlation keeps stable in the Project A in the
past three months of development duration as manual judgments from the developers
involved in the team. Second, the most correlation is hard to be generalized among
projects because of various system architectures. However, in the interviews, develop-
ers gives some contradictory opinions. The main reason is that although the practical
experience gives them more sharp judgments of how the correlation should be like,
it is impossible for them to take all of the cases in Findbugs into consideration. They
normally focus on the most frequent cases instead of all. We can not say, between the
subjective result and the objective result, which one is more acceptable. The objective
result lacks flexibility and practicality, and another one is too subjective, which can not
be supported by powerful evidence.

Chapter 6 gave the discussion about RQ2. After doing ‘coding’ of interviews’ notes, we
have gained a comprehensive knowledge about maintainability from its definition, ac-
tivities, judgment, correlation with metrics. We resolve maintainability into five char-
acteristics for the sack for the diverse application of the maintenance work. We relate
each of them with sets of applied metrics which could be often observed by developers
in SonarQube. We have also concluded that the importance of metric CVR and CPLX
per file varies among projects.

Several issues are raised for the further research work.

In this thesis, we classify the bugs pattern by its property into a defined category. In
the interview, we got the usage feedback from developers that they normally fix the
bugs according to the level of severity. In SonarQube portal, there is a widget about
the summary of potential bugs, showing the total number of each level. We can further

70



CHAPTER 7. CONCLUSION AND OUTLOOK

investigate the correlation between bugs in the category of severity and code metrics.
If we are able to conclude what kinds of class file are easy to incur possible threatening
bugs, we can prevent its appearance during development and review phase.

Furthermore, some metrics we have applied are considered to be out of date in the
evaluation of maintainability [36]. In the future, we can explore new metrics and verify
its feasibility.

71





Appendices

73





A. Table creation script in local
database

−− T a b l e BUGS_ENTRY
CREATE TABLE BUGS_ENTRY (

ID i n t NOT NULL AUTO_INCREMENT,
REFER_BUG_ENTRY_ID i n t NOT NULL,
REFER_SNAPSHOT_ID i n t NOT NULL,
RULE_ID i n t NOT NULL,
PATTERN_NAME varchar ( 2 0 0 ) NOT NULL,
PATTERN_CATEGORY varchar ( 5 0 ) NOT NULL,
FAILURE_LEVEL i n t NOT NULL,
CONSTRAINT BUGS_ENTRY_pk PRIMARY KEY ( ID )

) ;

−− T a b l e BUGS_PATTERN_ENTRY
CREATE TABLE BUGS_PATTERN_ENTRY (

ID i n t NOT NULL AUTO_INCREMENT,
PATTERN_NAME varchar ( 2 0 0 ) NULL,
RULE_KEY varchar ( 2 0 0 ) NULL,
SEVERITY i n t NULL,
PLUGIN_NAME varchar ( 2 0 ) NULL,
REFER_BUG_PATTERN_ID i n t NULL,
CONSTRAINT BUGS_PATTERN_ENTRY_pk PRIMARY KEY ( ID )

) ;

−− T a b l e CLASS_ENTRY
CREATE TABLE CLASS_ENTRY (

ID i n t NOT NULL AUTO_INCREMENT,
REFER_CLASS_ID i n t NOT NULL,
CLASS_NAME varchar ( 2 0 0 ) NULL,

75



APPENDIX A. TABLE CREATION SCRIPT IN LOCAL DATABASE

REFER_PROJECT_SNAPSHOT_ID i n t NOT NULL,
REFER_ROOT_PROJECT_ID i n t NOT NULL,
REFER_SNAPSHOT_ID i n t NOT NULL,
CONSTRAINT CLASS_ENTRY_pk PRIMARY KEY ( ID )

) ;

−− T a b l e PROJECTS
CREATE TABLE PROJECTS (

ID i n t NOT NULL AUTO_INCREMENT,
PROJECT_NAME varchar ( 1 0 0 ) NOT NULL,
CREATED_AT date NULL,
REFER_PROJECT_ID i n t NOT NULL,
REFER_SNAPSHOT_ID i n t NOT NULL,
CONSTRAINT PROJECTS_pk PRIMARY KEY ( ID )

) ;

CREATE TABLE STATISTICAL_METRICS (
ID i n t NOT NULL AUTO_INCREMENT,
VALUE decimal ( 3 0 , 2 0 ) NULL,
REFER_MEASURE_ID b i g i n t NOT NULL,
REFER_SNAPSHOT_ID b i g i n t NOT NULL,
REFER_METRIC_ID b i g i n t NOT NULL,
CONSTRAINT STATISTICAL_METRICS_pk PRIMARY KEY ( ID )

) ;

c r e a t e view view_swr_bugs AS
(SELECT swr . REFER_CLASS_ID ,

bugs . REFER_SNAPSHOT_ID,
bugs .PATTERN_CATEGORY,
count ( ∗ ) AS NUM
from (
s e l e c t REFER_SNAPSHOT_ID, REFER_CLASS_ID from

c l a s s _ e n t r y where REFER_ROOT_PROJECT_ID = ’
11860 ’

) as swr , bugs_entry as bugs
where swr . REFER_SNAPSHOT_ID = bugs .

REFER_SNAPSHOT_ID GROUP BY bugs .
REFER_SNAPSHOT_ID, bugs .PATTERN_CATEGORY) ;

76



APPENDIX A. TABLE CREATION SCRIPT IN LOCAL DATABASE

c r e a t e view view_vponline_bugs AS
(SELECT swr . REFER_CLASS_ID ,

bugs . REFER_SNAPSHOT_ID,
bugs .PATTERN_CATEGORY,
count ( ∗ ) AS NUM
from (
s e l e c t REFER_SNAPSHOT_ID, REFER_CLASS_ID from

c l a s s _ e n t r y where REFER_ROOT_PROJECT_ID = ’
8829 ’

) as vpo , bugs_entry as bugs
where vpo . REFER_SNAPSHOT_ID = bugs .

REFER_SNAPSHOT_ID GROUP BY bugs .
REFER_SNAPSHOT_ID, bugs .PATTERN_CATEGORY) ;

c r e a t e view view_aaservice_bugs AS
(SELECT swr . REFER_CLASS_ID ,

bugs . REFER_SNAPSHOT_ID,
bugs .PATTERN_CATEGORY,
count ( ∗ ) AS NUM
from (
s e l e c t REFER_SNAPSHOT_ID, REFER_CLASS_ID from

c l a s s _ e n t r y where REFER_ROOT_PROJECT_ID = ’
10821 ’

) as ass , bugs_entry as bugs
where ass . REFER_SNAPSHOT_ID = bugs .

REFER_SNAPSHOT_ID GROUP BY bugs .
REFER_SNAPSHOT_ID, bugs .PATTERN_CATEGORY) ;

77





Bibliography

[1] STEPHEN H, Kan: Metrics and Models in software quality engineering. Pearson Edu-
cation, Inc., 2003

[2] PATEL, J. ; LEE, R. ; KIM, H. K.: Architectural View in Software Development
Life-Cycle Practices. In: 6th IEEE/ACIS International Conference on Computer and
Information Science (ICIS 2007), 2007, S. 194–199

[3] AYEWAH, N. ; HOVEMEYER, D. ; MORGENTHALER, J. D. ; PENIX, J. ; PUGH, W.:
Using Static Analysis to Find Bugs. In: IEEE Software 25 (2008), Sept, Nr. 5, S.
22–29. http://dx.doi.org/10.1109/MS.2008.130. – DOI 10.1109/MS.2008.130.
– ISSN 0740–7459

[4] Qualitative research methods. http://www.ccs.neu.edu/course/is4800sp12/
resources/qualmethods.pdf

[5] CARAVALHO, Soniya ; WHITE, Howard: Combining the quantitative and qualitative
approaches to poverty measurement and analysis. The World bank

[6] FENTON, Norman E. ; PFLEEGER, Shari L.: Software Metrics: A Rigorous and
Practical Approach. 2nd. Boston, MA, USA : PWS Publishing Co., 1998. – ISBN
0534954251

[7] DEMARCO, Tom: Controlling Software Projects: Management, Measurement & Esti-
mation. New Jersey : Yourdon Press, 1982

[8] WAGNER, S. ; DEISSENBOECK, F. ; M.AICHNER ; J.WIMMER ; M.SCHWALB: An
Evaluation of Two Bug Pattern Tools for Java. In: Software Testing, Verification, and
Validation, 2008 1st International Conference on, 2008, S. 248–257

[9] SANTOS CUNHA, Andre A.: An Empirical Investigation of Source Code Metrics and
FindBugs Warnings, FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO
PORTO, Diplomarbeit, 2010

79

http://dx.doi.org/10.1109/MS.2008.130
http://www.ccs.neu.edu/course/is4800sp12/resources/qualmethods.pdf
http://www.ccs.neu.edu/course/is4800sp12/resources/qualmethods.pdf


Bibliography

[10] DON COLEMAN, Bruce Lowther Paul O. Dan Ash A. Dan Ash: Using Metrics to
evaluate software system maintainability.

[11] KAUR, A. ; KAUR, K. ; PATHAK, K.: A proposed new model for maintainability
index of open source software. In: Reliability, Infocom Technologies and Optimization
(ICRITO) (Trends and Future Directions), 2014 3rd International Conference on, 2014,
S. 1–6

[12] PAUL OMAN, Jack R. H.: Construction and testing of polynomials predicting
software maintainability. In: Journal of Systems and Software - Special issue of the best
papers from the Oregon Workshop on Software Metrics (1993)

[13] W.LI ; S, Henry: Maintenance metrics for the object oriented paradigm. In: Soft-
ware Metrics Symposium, 1993. Proceedings,. First International, 1993, S. 52 60

[14] DENNIS KAFURA, Geereddy R. R.: The use of software complexity metrics in
software Maintenance, 1987

[15] Evaluation of FindBugs - The static analysis tool that finds bugs. (2009)

[16] DAVID HOVEMEYER, William P.: Using FindBugs in Anger / York College. –
Forschungsbericht

[17] SonarQube. http://www.sonarqube.org/

[18] ; Software Engineering Standards Committee of the IEEE Computer Society (Ver-
anst.): IEEE Standard for Software Maintenance. 1998

[19] LIENTZ, Bennett P. ; SWASON, E. B.: Software Maintenance Management. Addison-
Wesley Longman Publishing Co., Inc., 1980

[20] VLIET, Hans van: Software Maintenance. (2008)

[21] GLASS, Robert L.: Frequently Forgotten Fundamental Facts about Software Engi-
neering. In: IEEE Software (2001), May/June

[22] MILLS, Everald E.: Software Metrics. (December 1988)

[23] Definitions of Mc Cabe Cyclomatic complexity. http://www.chambers.com.au/
glossary/mc_cabe_cyclomatic_complexity.php

[24] Efferent Coupling. https://en.wikipedia.org/wiki/Efferent_coupling

80

http://www.sonarqube.org/
http://www.chambers.com.au/glossary/mc_cabe_cyclomatic_complexity.php
http://www.chambers.com.au/glossary/mc_cabe_cyclomatic_complexity.php
https://en.wikipedia.org/wiki/Efferent_coupling


Bibliography

[25] J2EE - Java 2 Platform Enterprise Edition. http://www.webopedia.com/TERM/J/
J2EE.html

[26] Spearman’s rank correlation. (2007), December. http://www.mei.org.uk/files/
pdf/spearmanrcc.pdf

[27] SEAMAN, Carolyn B.: Qualitative Methods in Empirical Studies of Software En-
gineering. In: Software Engineering, IEEE Transactions 25 (Jul/Aug 1999), S. 557 –
572

[28] Snapshot. https://en.wikipedia.org/wiki/Snapshot

[29] Java Downlaod site. http://www.oracle.com/technetwork/java/
javase/downloads/java-archive-downloads-javase7-521261.html#
jdk-7u79-oth-JPR

[30] ORACLE: The Java EE 6 Tutorial. 2013. – Forschungsbericht

[31] FindBugs Bug Descriptions. http://findbugs.sourceforge.net/
bugDescriptions.html

[32] Data transfer object. https://en.wikipedia.org/wiki/Data_transfer_object

[33] POSHYVANYK, D. ; MARCUS, A.: The Conceptual Coupling Metrics for Object-
Oriented Systems. In: 2006 22nd IEEE International Conference on Software Mainte-
nance, 2006. – ISSN 1063–6773, S. 469–478

[34] HEITLAGER, I. ; KUIPERS, T. ; VISSER, J.: A Practical Model for Measuring Main-
tainability. In: Quality of Information and Communications Technology, 2007. QUATIC
2007. 6th International Conference on the, 2007, S. 30–39

[35] OMAN, Hagemeister J. P: Metrics for assessing a software system’s maintainabil-
ity, 1992

[36] OSTBERG, J. P. ; WAGNER, S.: On Automatically Collectable Metrics for Software
Maintainability Evaluation. In: Software Measurement and the International Confer-
ence on Software Process and Product Measurement (IWSM-MENSURA), 2014 Joint
Conference of the International Workshop on, 2014, S. 32–37

81

http://www.webopedia.com/TERM/J/J2EE.html
http://www.webopedia.com/TERM/J/J2EE.html
http://www.mei.org.uk/files/pdf/spearmanrcc.pdf
http://www.mei.org.uk/files/pdf/spearmanrcc.pdf
https://en.wikipedia.org/wiki/Snapshot
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html#jdk-7u79-oth-JPR
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html#jdk-7u79-oth-JPR
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html#jdk-7u79-oth-JPR
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html
https://en.wikipedia.org/wiki/Data_transfer_object




List of Figures

2.1. Seven axes of SonarQube Code analysis [17] . . . . . . . . . . . . . . . . 9
2.2. Distribution of maintenance activities . . . . . . . . . . . . . . . . . . . . 10
2.3. McCabe’s cyclomatic complexity calculation example . . . . . . . . . . . 13

3.1. Two approaches design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Continous integration deployment in company . . . . . . . . . . . . . . . 24
4.2. SonarQube UI of project metrics . . . . . . . . . . . . . . . . . . . . . . . 24
4.3. SonarQube UI of class metrics . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4. Data processing step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5. SonarQube Database structure . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6. Local Database structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7. local data gathering system . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8. Web UI - Project A - Project metrics in 2015 . . . . . . . . . . . . . . . . . 35
4.9. Web UI example - Project A - Version A - Bug Category ‘CORRECTNESS’ 36
4.10. Qualitative Data Collection Process . . . . . . . . . . . . . . . . . . . . . . 37
4.11. Designed interview questions . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1. Code example of returning reference to mutable objects . . . . . . . . . 50

6.1. Coding result of maintainability . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2. Designed hierarchy in maintainability . . . . . . . . . . . . . . . . . . . . 61
6.3. Projects’ LOC change in 2015 . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4. Projects’ CVR change in 2015 . . . . . . . . . . . . . . . . . . . . . . . . . 66

83





List of Tables

2.1. Findbugs Category Definition[15, 16] . . . . . . . . . . . . . . . . . . . . . 8

3.1. Brief projects’ introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Information contained classes in one project case . . . . . . . . . . . . . . 17
3.3. Correlation coefficients matrix - Project * - Version * . . . . . . . . . . . . 17
3.4. table ‘RULES_FAILURES’ and ‘RULES’ . . . . . . . . . . . . . . . . . . . 20
3.5. table ‘PROJECT_MEASURES’ . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1. General information in three versions of Project A . . . . . . . . . . . . . 44
5.2. Correlation coefficients ρ - Project A - Version A . . . . . . . . . . . . . . 44
5.3. Correlation coefficients ρ - Project A - Version B . . . . . . . . . . . . . . . 44
5.4. Correlation coefficients ρ - Project A - Version C . . . . . . . . . . . . . . 45
5.5. Correlation coefficient differences - Project A - between Version A and

Version B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6. Correlation coefficient differences - Project A - between Version B and

Version C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.7. Correlation coefficients ρ - Project A . . . . . . . . . . . . . . . . . . . . . 49
5.8. Correlation coefficients ρ - Project B . . . . . . . . . . . . . . . . . . . . . 49
5.9. Correlation coefficients ρ - Project C . . . . . . . . . . . . . . . . . . . . . 50

6.1. Suitable metrics for maintainability evaluation . . . . . . . . . . . . . . . 63





Declaration

I hereby declare that the work presented in this thesis
is entirely my own and that I did not use any other
sources and references than the listed ones. I have
marked all direct or indirect statements from other
sources contained therein as quotations. Neither this
work nor significant parts of it were part of another ex-
amination procedure. I have not published this work
in whole or in part before. The electronic copy is con-
sistent with all submitted copies.

place, date, signature


	Acknowledgment
	Abstract
	Abbreviations
	Introduction
	Motivation and Goal
	Research questions
	Related work
	Outline

	Background
	Code analysis tools used
	Findbugs
	SonarQube

	Selected software quality - Maintainability
	Selected software metrics

	Study Design
	Projects and context
	Research Question 1
	Research question 2
	Data collection procedure
	Quantitative data collection
	Qualitative data collection


	Implementation
	Quantitative data collection
	SonarQube Database structure
	Local database structure
	Building an automatic data collection system
	Web UI of the system

	Qualitative Data Collection
	First-round Interview
	Second-round Interview


	Discussion - RQ1
	Different versions approach
	Data analysis
	Restrictions

	Different projects approach
	Data analysis
	Restrictions

	Summary

	Discussion - RQ2
	Coding of the interview notes
	RQ 2.1
	Results
	Restrictions

	RQ 2.2
	Results
	Restrictions

	Summary

	Conclusion and Outlook
	Appendices
	Table creation script in local database
	Bibliography

