
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master’s Thesis No. MCS-0004

Decision Support for Middleware
Performance Benchmarking

Tayyaba Azad

Course of Study: Computer Science M.Sc

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: M.Sc., M.A. Marigianna Skouradaki
Commenced: 2nd November 2015
Completed: 2nd May 2016

CR-Classification: H.4.1, K.6.2, D.2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/159514475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Along with the rapid development of computing systems, the heterogeneity amongst them
also increases. With the usage of middleware technologies, the systems work together in
a homogeneous environment and allow to integrate previously independent applications,
together with new developments. Along with the growing popularity of middleware sys-
tems, the performance and efficiency of their underlying technology becomes crucial for the
business. For that reason, applying benchmarks on such environments is highly required.
Current technologies and literature focus on building diverse benchmarks in order to test the
performance of the underlying middleware. The development of a standard benchmark for
middleware is extremely challenging, as one needs to realistically stress the different software
capabilities. However, information on how to do so, is generally missing, thus the users need
to arbitrarily make crucial design decisions.

This Master’s thesis aims at providing the means to ease the decision-making for selecting the
appropriate middleware benchmark and enables the user to make crucial design decisions
when the creation of a new middleware benchmark is intended. We propose the creation of
the first Decision Support System for middleware performance benchmarking, capable of
guiding the user through relevant components of a benchmark. The prototype is based on
current web technologies using the REST architectural style and it provides a decision support
approach for decision makers considering the creation of a new middleware benchmark or
selecting the right middleware benchmark of choice. At the end, we validate through use
cases to show that the functionalities of the system are accomplished successfully.

Key words: Benchmarking, Middleware, Decision Support, REST, Web Service

Acknowledgment

I would like to express my appreciation and gratitude to Prof. Dr. Dr. h. c. Frank Leymann
and especially my supervisor Marigianna Skouradaki from the Institute of Architecture of
Applications Systems (IAAS) at the University of Stuttgart who gave me this opportunity and
believed in my vision towards achieving the results of this work. Your support, encourage-
ment and advice have been affectionate while achieving the goals of my task.
I would also like to express my deep appreciation to my family. Words are not plentiful to
convey how grateful I am for the prayers and assistance of my mother, my father, my brother,
and my sisters.
I would also like to thank all the people who motivated and encouraged me to accomplish
my target. Special thanks to my friends Asfa and Elekci, your moral support has always been
deeply beneficial.

Contents

1 Introduction 1
1.1 Challenge Statement and Research Objectives 2
1.2 Thesis Outline . 2

2 Fundamentals 5
2.1 What is Middleware? . 5

2.1.1 Remote Procedure Call (RPC) . 6
2.1.2 Message-Oriented Middleware (MOM) 8
2.1.3 Workflow Management System (WfMS) 9
2.1.4 Enterprise Service Bus (ESB) . 9

2.2 What is Benchmarking? . 9
2.2.1 Standardised Middleware Benchmarks 11
2.2.2 SPEC JMS R© 2007 . 11
2.2.3 SPEC-JBB . 12
2.2.4 TPC-C . 13
2.2.5 TPC-E . 13

2.3 Performance Testing . 13
2.4 Decision Support Systems and Decision Support 14
2.5 Service-Oriented Architecture (SOA) . 14
2.6 Web Services . 15

2.6.1 SOAP . 16
2.6.2 Web Service Description Language (WSDL) 16
2.6.3 Universal Description, Discovery and Integration (UDDI) 16
2.6.4 RESTful Web Service . 16
2.6.5 Hypertext Transfer Protocol (HTTP) . 20

3 Related Work 25
3.1 Benchmark Architecture . 25
3.2 Current Trends with Middleware Benchmarking 26
3.3 Web-Based Decision Support Systems . 27

4 Concept and Specification 31
4.1 Requirement Analysis . 31
4.2 Use Cases . 32
4.3 Taxonomy . 34
4.4 Decision Point 1 - Middleware . 35
4.5 Decision Point 2 - Workload . 36
4.6 Decision Point 3 - Metric . 37
4.7 Decision Point 4 - Application Scenario . 38

iii

Contents

4.8 Decision Point 4.1 - Role . 39
4.9 Decision Point 5 - Hardware . 40
4.10 Decision Point 6 - Scalability . 40

5 Design 43
5.1 System Architecture . 43
5.2 Class Diagram . 44
5.3 RESTful API . 44

5.3.1 API Design . 45

6 Implementation 47
6.1 Technologies and Frameworks . 47

6.1.1 The MongoDB, Expressjs, Angularjs and Nodejs Stack (MEAN Tech-
nology) . 47

6.1.2 REST (Representational State Transfer) API 48
6.2 Prototypical Implementaion . 49

6.2.1 Methodology Description . 49
6.2.2 Knowledgebase . 50
6.2.3 Resource Model . 51
6.2.4 User Interface . 52
6.2.5 Use Cases and Query Results . 56

6.3 Installation and Configuration . 61

7 Validation and Evaluation 63
7.1 Validation of the Queries . 63
7.2 Validation of CRUD operations . 64
7.3 Validation of REST APIs . 65

8 Conclusion and Future Work 67
8.1 Further Research . 68

Bibliography 69

iv

List of Figures

1.1 Thesis Outline . 3

2.1 Middleware layer between the hardware layer and the application layer . . . 6
2.2 Activity flow during a RPC call between two networked machines 7
2.3 Steps Involved in the Process of Benchmarking 10
2.4 SOA Model . 15

3.1 Major Tasks involved in DSS . 29

4.1 Use Case diagram for DSS4MiddlewarePBenchmarking 33
4.2 Taxonomy on which the DSS4MiddlewarePBenchmarking is based on 34
4.3 Elaboration of Decision Point 1 - Middlware 35
4.4 Elaboration of Decision Point 2 - Workload . 36
4.5 Elaboration of Decision Point 3 - Metric . 37
4.6 Elaboration of Decision Point 4 - Application Scenario 38
4.7 Elaboration of Decision Point 4.1 - Role . 39
4.8 Elaboration of Decision Point 5 - Hardware . 40
4.9 Elaboration of Decision Point 6 - Scalability . 40

5.1 System Architecture of the Prototypical Implementation 43
5.2 Resource Model Representation in the Form of ER Diagram 44

6.1 Sequence Diagram for Use Case Retrieve Results 50
6.2 User Interface of the Prototypical Implementation 53
6.3 Body Area of the User Interface When no Specific Middleware is Selected . . 53
6.4 Body Area of the User Interface, MOM selected 54
6.5 Body Area of the User Interface, DBMS selected 55
6.6 Body Area of the User Interface, Additional Dynamic Group 55
6.7 Datatypes for Messages in a MOM-based System 57
6.8 Type and Measure of the Workload in a DBMS-based System 59
6.9 Existing Benchmark for Java Servers . 60

7.1 Validation of Use Case 1 . 63
7.2 Validation of Use Case 2 . 64
7.3 Validation of Use Case 3 . 64
7.4 Request and Response Using POSTMAN API Client 66

v

List of Figures

vi

List of Tables

2.1 HTTP Status Codes [W3S] . 21
2.2 Association of HTTP verbs with the corresponding CRUD action 22

4.1 Functional Requirements for the implementation 31
4.2 Non-Functional Requirements for the implementation 32
4.3 Overview of standardised benchmarks used in the taxonomy 35

6.1 Feature comparison of MySQL and MongoDB 51

vii

List of Tables

viii

List of Listings

6.1 Model Definition of a single Resource . 52
6.2 Additional Dynamic Group . 56

7.1 JSON Response format . 66

ix

1 Introduction

Benchmarking is known as the act of measuring quality, programs and performance of
different peers [A+15]. In order to attain performance characteristics from different systems
it is necessary to apply benchmarking. Moreover, it allows the comparison with standard
measurements of similar type. Previously, a number of middleware benchmarks have been
developed and applied in different sectors for performance testing and comparisons, they
did not fulfill the main requirements for a successful benchmark [SKBB09]. The main reasons
for their failure was the consideration of artificial workload not demonstrating a real-world
application scheme. Also, users of the benchmark could not adjust the workload flexibly in a
customised manner, where specific components of the MOM performance could be aimed.
For that reason being, standard benchmarks have to be introduced [SKBB09].

Event-based systems are used more often to construct loosely-coupled applications. Event-
based systems have gained attention in many areas of the industry, such as, manufacturing,
transportation, health-care and supply chain managements [KS09]. Along with the growing
popularity of event-based systems the performance and efficiency of the underlying tech-
nology becomes crucial for the business. For that reason, applying benchmarks on such
environments is highly required. [ASB10]. Therefore, these platforms have to be tested
using benchmarks to determine and justify their performance and scalability, thereby the
Quality of Service (QoS) requirements can be guaranteed. With benchmarking not only can
other platforms be compared and validated, but benchmarks can also be applied to review
the consequences of particular platform-based parameters on the overall system behaviour
[SKCB07]. Apart from comparing different products with the help of a standard workload,
developers can also recognise limitations and drawbacks that allow to identify further design
guidelines. Moreover, with the detailed comprehension of system usage under specified
loads, the scalability and the control of altering parameters can be assessed [ASB10].

In recent years, the usage of standadrised benchmarks have become generally acknowledged
in the field of performance evaluation and comparison [A+15]. These benchmarks are
provided by corporations like SPEC and TPC and are published under high concealment,
so outside parties have less chances to reuse internal processes and structures. With this
increasing development of middleware benchmarking it may be necessary to aid the decision-
making for benchmark users in terms of selecting the relevant benchmark.

1

1 Introduction

1.1 Challenge Statement and Research Objectives

The previous section described how the research field of decision support for middleware
benchmarking has been established. It also addressed the need of a decision support for
selecting the right middleware benchmark. Currently, the State of the Art is missing an
appropriate approach to provide decision support for middleware benchmarks.

A Decision Support System (DSS) that is considering different concerns regarding the relevant
decision points in the field of middleware benchmarking is unavailable. A convenient concept
that focuses on the involvement of application developers and stakeholders in regards to
classifying substantial decision points is needed.

The main contribution of this Master’s thesis is the first DSS for middleware benchmarking.
We acknowledge the necessity of having an overview of all available middleware benchmarks,
in order to filter the relevant information. To get an in depth knowledge of middleware
benchmarks, we focused on standardised benchmarks that were published on industry-
accepted consortia like Standard Performance Evaluation Corporation (SPEC) [SPE95] and
Transaction Processing Performance Council (TPC) [TPC92c]. With the help of verified
middleware benchmarks we were able to obtain the main structure and investigate the
behaviour of these benchmarks.

To summarise, the primary research objectives of this Master’s thesis is referring to the elabora-
tion, refinement and modeling of the functionalities involved in the DSS4MiddlewarePBenchmarking.

Research Objective Description

RO. 1 Outline the current trends on middleware benchmarking
and Decision Support Systems in regards to benchmarking

RO. 2 Identify decision points that are relevant for the construc-
tion of new middleware benchmarks

RO. 3 Analyse appropriate requirements for the implemetation of
the Decision Support System

RO. 4 Deliver a prototypical implementation of the Decision Sup-
port System

1.2 Thesis Outline

The remaining document follows the structure visualised in Figure 1.1. Chapter 1 provides
a brief description of the covered topics to the reader and mentions the problem statement.
Chapter 2 specifies the key concepts and terminologies required to get an elementary un-
derstanding of the covered topics. Then, in Chapter 3 the positioning of this thesis with
already existing and relevant work is provided. It also mentions the different research ap-
proaches and associated trials faced. The main functional and non-functional requirements
are covered in Chapter 4. This Chapter also identifies the set of functionalities supported

2

1.2 Thesis Outline

by the system. A brief system overview is also listed. Moreover, it illustrates the taxonomy
conducted through the literature review. Chapter 5 concentrates on the detailed description
of the system architecture including UML diagrams and the REST architectural paradigm.
Based on the previously mentioned taxonomy, the realisation phase of this Master’s thesis is
handled in Chapter 6. Used technologies and frameworks, as well as challenges faced while
implementing the application and performing configurations are also listed in this chapter.
In Chapter 7 the validation of the created web application is carried out with the help of
queries and screen shots of the system. Finally, in Chapter 8 the overall summary is provided
by stating the solutions for the research questions that arose initially. Furthermore, future
extensions and enhancements of the system are suggested.

Figure 1.1: Thesis Outline

3

1 Introduction

4

2 Fundamentals

2.1 What is Middleware?

Vinoski [Vin02] stated that with the expansion of computing and the number of devices
and computing solutions, the heterogeneity of the systems has grown considerably and
developers must address new and increasing integration problems. In order to make the
systems work together in a homogeneous environment, it is necessary to integrate previously
independent applications, together with new developments. The integration process deals
with legacy systems. However, legacy systems can only be accessed via a distinguished
interface and these systems do not permit any modifications. This development calls for a
new integration solution for each component incorporated within the system. Therefore, the
number of solutions and the number of complexity increases exponentially with the total
amount of components in the system. Furthermore, with the modification of one component,
all components that are associated to it must be adjusted accordingly in order to keep the
system working.

A majority of systems form a compilation of separate devices associated by a network. Each
specific device executes a function that invokes a local communication with the real world
and a remote communication with diverse systems. The field of implementation cover
decentralised manufacturing components, computer networks, telecommunication schemes
and continuously running power supplies. Krakowiak [Kra03] suggests that the previously
discussed problem can be solved with the usage of middleware systems (see Figure 2.1).
An effortless application development can be granted to the application developers and
integrators by contributing an universal programming concept, by covering the heterogeneity
and distribution of the fundamental hardware and operating systems and lastly, by concealing
low-level programming elements.

All applications employ intermediate software that is built above the operating system and
communication protocols with the goal to achieve the following functions:

1. Distribution remains unseen.

2. Heterogeneity of the different hardware parts, operating systems and communication
protocols remain unseen.

3. Homogeneous, effective and standard interfaces of the applications allow reusability,
portability, easy composition and interoperability for developers and integrators.

4. Preventing the struggle of duplication and ease of cooperation between applications is
achieved by having a number of common services that carry out different functions.

The dimensions of middleware can be distinguished as follows [Tig12]:

5

2 Fundamentals

Figure 2.1: Middleware layer between the hardware layer and the application layer

1. Tight vs. Loose Coupling

2. Small vs. Large Ranged

3. Language-Based vs. Language Independent

4. Synchronous vs. Asynchronous Communication

There are various approaches to enforce middleware systems in order to deal with the
integration question. The different types of middleware are described as follows [Tig12]:

2.1.1 Remote Procedure Call (RPC)

Marshall [Mar99] describes that the usage of RPC allows a distributed, synchronous com-
munication based on servers and clients. It is an extension to the local procedure call where
the called function can be located in a different address space than the calling function. Both
processes can either reside on the same system or may be distributed among different sys-
tems with a network connection between them. Due to the fact that the RPC is transport
independent, the physical and logical aspects of the data transmission structure is hidden
from the application. Moreover, applications are given the opportunity to use a collection
of transports. A RPC is comparable to a function call, where the calling parameters are sent
to the remote procedure and the caller expects a reply back. The communication with RPC
between two networked systems is carried out when the client program sends out a request,
in the role of a procedure call, to the server and waits. Processing of the thread is haltered
until either a response comes in, or a termination takes place. Upon arrival of the request the
server executes it with aid of the requested systems, and forwards the reply to the client. The
client program runs normally after the RPC call is wrapped up. Examples for an RPC include
connecting to a network file systems with computers that are not in possession of a hard
drive. Furthermore, when accessing a printer through a network, the computer indicates to

6

2.1 What is Middleware?

Figure 2.2: Activity flow during a RPC call between two networked machines

the printer what files and documents to print via an RPC. In Figure 2.2, the activity during a
RPC call is illustrated.

The main characteristics of RPC [The97]:

Dynamic binding betweeen the calling function and the called function is important as bind-
ing mostly revolves around the communication method between the client and server, where
the client institutes the binding via a specific protocol to a explicit endpoint and hosting
system.

Speculation about shared memory cannot be made due to the fact that RPC’s using input
and output parameters acquire copy-in and copy-out syntax. With the usage of copy-in
copy-out the specified reference is exclusively for the caller. When executing a function call
its parameters should not be reachable by another execution thread, if this is not the case the
parameter content has to be copied to a new reference not accessible by other threads. After
receiving the reply from the function call the contents of the new reference are restored to the
initial reference.

Individual failure incidents due to detachment of different systems. The concerns that arise
with physically distributed machines are naming and binding issues, security concerns,
protocol variance, remote system errors and issues with the network connection.

Contruction of a security framework, dependent on the used security protocols between
server and clients, is necessary since interactions between physically distributed machines
raise additional security problems. Moreover, further features for an access mechanism are
required.

7

2 Fundamentals

2.1.2 Message-Oriented Middleware (MOM)

Message-Oriented Middleware (MOM), which is a particular category of middleware, allows
communication between distributed software segments in a loosely coupled manner. This is
achieved, by applying the asynchronous communication pattern [SKBB09]. The methodology
behind MOM is that a middleman takes care of all incoming messages and sends theses
messages out to perhaps various message consumers. With the introduction of MOM message
producers can simply forward the message to MOM without having to stop processing in
order for the message to be processed and delivered, as MOM takes care of it. The main
advantages of decoupling the communication participants include that, firstly, the consumers
and producers can be unaware of each other, secondly, both parties do not have to stay active
throughout the communication, and lastly, they are not occupied when they send or receive
messages.

The standard interface to interact with enterprise MOM tools is called the Java Message Service
(JMS). The MOM server that provides the JMS API is called the JMS provider and applications
that interact with the JMS provider by exchanging messages are labeled as JMS clients.
There are two different types of clients, one that produces messages and one that consumes
messages. The JMS offers two messaging patterns: publish/subscribe (pub/sub) and point-to-
point(P2P) [SKAB09]. In P2P messaging a virtual communication channel is introduced, the
message queue. In this messaging model, messages are transmitted to a specified queue and
later, consumed and processed by a single receiver. However, with pub/sub, messages are
published to a topic and are retrieved from possibly multiple consumers. Each consumer
subscribes to the topic he is interested in, only then published messages can be received. The
party that provides messages is called publisher and the consumers that retrieve and process
the messages are called subscibers. The terminology for queues and topics is referred to as
destinations. There are different modes for the delivery of messages in JMS. Each of them is
defined in the JMS specification and includes different QoS aspects [SKBB09]:

Persistent/Non-Persistent With the persistent mode of message delivery, messages are stored
in a persistent storage, while they are waiting to be delivered. If a server crash would take
place, all messages that were not delivered are retrieved from the stable storage and are
ensured a once-and-only-once delivery. With the non-persistent mode, all pending messages
are stored in main memory buffers which is not a persistent storage. The advantage with
this delivery mode is, that there is only a low overhead of messages. The downfall is, that
all pending messages are lost if the server crashes. When using the non-persistent message
delivery mode, all messages are ensured a at-most-once delivery.

Durable/Non-Durable There are two different kind of message subscriptions in JMS. With the
usage of durable subscription, the subscriber receives all published messages, regardless of
being active or inactive. Non-durable subscription, on the other hand, only lets the subscriber
retrieve published messages when being active. Messages that are published during the
subscribers absence are failed to be delivered.

Transactional/Non-Transactional Each messaging session in JMS can be either transactional
or non-transactional. Transactions are defined as a combination of messages that are imple-

8

2.2 What is Benchmarking?

mented as a single atomic entity of work. A transaction can be split into two different groups:
local and distributed. Transactions that are local can only operate with messages that are
implemented on the JMS server. Transactions that are distributed are less limited and also
permit additional operations.

2.1.3 Workflow Management System (WfMS)

Workflow Management System (WfMS) is referred to a piece of software that provides
an environment where sequence of tasks, namely workflows, can be setup, executed and
monitored [T+04]. Orchestration is an important function of a WfMS, it coordinates the
operation of the separate components that comprise a workflow. The theoretical ground
workflow management is based on is the mathematical concept of petri nets. Workflows
are made up of a task and dependencies between them. For the initialisation of a task
the associated dependency condition has to be fulfilled. The main usage of WfMS is the
transparent planning and control over every part of the enterprise. The main focus is on the
interaction between different entities where information is shared.

2.1.4 Enterprise Service Bus (ESB)

The Enterprise Service Bus (ESB) is a message-based software architecture model that is
used for the design and implementations of interactions between software applications in
a Service-Oriented Architecture (SOA) [Men]. This integration is achieved by setting rules
and principles for integrating a number of applications together over its bus infrastructure.
Its main adoption is established in Enterprise Application Integration (EAI) of complex and
heterogeneous platforms. The main aim of an ESB is to present a simple and consistent
interface to end-users. Furthermore, it provides routing, invocation, and mediation services
in order to reliably handle the interactions of applications and services [Men].

2.2 What is Benchmarking?

A benchmark describes the quality measurement of an organisation’s products, programs
and strategies. It also engages in comparing key metrics of their operations to other similar
companies. With the use of benchmarks companies become more competitive. The compar-
ison with other companies allows to see the areas where the system is under-performing.
The main objectives of benchmarking can be described as follows [Inc16]: 1) Detection of
required improvements and the area where deficiencies are present 2) Inspection of the key to
high performance levels of other organisations 3) Enactment and application of the gathered
information to improve performance The main characteristics for a good benchmark can be
summarised as follows [Hup09]:

9

2 Fundamentals

1. Repeatable - Despite the fact of frequent growth and occurring changes of the underly-
ing technology, it is necessary to guarantee repeatability and consistency throughout
the benchmark.

2. Portable - The ability to have a single application that can support a broad spectrum of
other technologies. In practice, this cannot be achieved completely, however, benchmark
technologies can make different adjustments that provide a sufficient solution.

3. Verifiable - The results provided by a benchmark should have a high level of confidence,
meaning, they should be verifiable in terms of representing the actual performance of
the System Under Test (SUT).

4. Economical - To make sure that the developed benchmark is worth its investment. With
the growth of the complexity in computing systems, the supporting equipment become
more costly. However, the high cost of supporting tools in benchmarks is counted as
one of the main factors for a rejection of benchmark publishes.

In Figure 2.3 all steps included in a benchmarking process are defined [EK97]. The planning
phase is the starting point, where all activities that need to be benchmarked are identified.
The chosen activities should be measurable and easily comparable. Another activity this
phase includes is choosing the appropriate benchmark against which the performance can be
measured. The second step involves collecting data from the company that is providing the
benchmark. Once a sufficient amount of data is collected, it is important to apply extensive
analysis methods on this information. Some of the steps included are: data analysis, data
presentation and identifying performance gaps in the processes. The implementation phase
involves correcting the current state and aiming to reach to the expected state. A brief action
plan should also be defined that is describing the changes required and assuring that a
sufficient amount of resources is available in order to facilitate the changes. Finally, the
monitoring phase manages the evaluation of the benchmarking process at a regular basis and
takes care of necessary adjustments.

Figure 2.3: Steps Involved in the Process of Benchmarking

10

2.2 What is Benchmarking?

2.2.1 Standardised Middleware Benchmarks

There exists a number of organisations that provide standard benchmarks. Two most relevant
ones that focus on performance benchmarking are known as the Standard Performance
Evaluation Corporation (SPEC) and Transaction Processing Performance Council (TPC).

According to the specification provided by SPEC [SPE95], SPEC was created from few vendors
who saw the lack of genuine and uniform performance tests in the marketplace. The aim of
SPEC is to collect a valuable and straightforward set of metrics to separate potential systems.
A reliable test that is feasible to employ will provide valuable results to the marketplace.
SPEC provides the users with a predefined batch of source code to run on the system under
test. Later, the benchmarker can adjust the system according to own preferences.

According to the specification provided by TPC [TPC92c], TPC focuses on defining transaction
processing and database benchmarks and aims at providing verifiable performance data to
the industry. TPC regards a transaction to be a commercial exchange of goods, services or
money. Furthermore, a normal transaction, according to TPC, includes the updating of a
database system. The following sections summarise the most relevant benchmarks published
by these vendors.

2.2.2 SPEC JMS R© 2007

The SPEC JMS R© 2007 benchmark provides the assessment of performance for Message-
Oriented Middleware (MOM) servers based on JMS (Java Message Service). With the standard
workload and performance metrics it allows the benchmarker to achieve a competing product
observation. Moreover, it provides a comprehensive performance analysis of enterprise
messaging platforms. The performance analysis covers all components of the application
environment made up of the hardware, JVM software, database software, system network
and JMS server software. The benchmark offers two different dimensions for the metric; the
horizontal and vertical topology will be discussed in depth in the following.

MOM, discussed in 2, is a relevant technology in many sectors, such as supply chain manage-
ment, stock trading, online auctions and so forth. Furthermore, the publish-subscribe feature
of MOM is considered as the main ingredient in the area of latest software architectures and
technology, such as Service-Oriented Architecture (SOA) and Enterprise Application Integra-
tion (EAI). Nevertheless, innovative message-based applications undergo issues regarding
scalability and performance.

Bacon et al. [SKBB09] identified that most newly established event-driven management
for supply chain is immensely dependent on backend systems that support scalability and
efficiency. This will ease the effort to process obtained real-time data and the integration of
this data with enterprise applications and business processes. Sizable merchants usually have
a high message throughput, therefore the underlying MOM is expected to perform and scale
in a dependable manner.

11

2 Fundamentals

Goals and requirements

The main aim of SPEC JMS R© 2007 benchmark according to [SKBB09] and [SPE95] is to
support a standard workload and metrics in order to measure and evaluate how scalable
and how well JMS-based MOM platforms perform. Moreover, it provides an adaptable
scheme to analyse the performance of JMS. These points can be achieved when the following
requirements are fulfilled. First of all, users should be able to associate the examined behavior
to their own environments and applications. This is achieved by reflecting the workload
in a manner real-life systems are exercised. Secondly, the workload should have a level
of comprehensiveness, meaning that all platform features are provided that are usually
used in MOM, such as pub/sub and P2P. Thirdly, the workload should explicitly target the
performance and scalability measurements of the MOM server’s software and hardware units.
The workload should lessen the influence of other services and units that are involved in
the application scenario. Lastly, there should not be any scalability limitations within the
workload of SPEC JMS R© 2007. Users are able to increase the number of destinations (queues
and topics), the number of messages per destination can be increased or users can scale the
workload in a customised manner. The purpose of using this benchmark varies. It can be
used for marketing reasons by publishing and producing standard results. Also, a large
group of users has the intention to optimise and improve their platforms by analysing the
performance of specific MOM components. Another purpose can be for academic research,
where the scalability and performance is classified and could support the establishment of
highly efficient MOM servers.

Scenario roles

The application scenario for SPEC JMS R© 2007 involves the model of a supply chain for a
supermarket. The supermarket company, its stores, its distribution centers and its suppliers
are the different participants that are involved in this scenario. The requirements discussed in
the previous section are applied on this scenario. It allows a clear definition of interactions
that stress defined features of the JMS Servers. For instance, pub/sub or P2P communication
as well as diverse message types. Moreover, there are no limitations on scalability of the
workload, the number of supermarkets can be increased and the number of products offered
by a supermarket can also be increased.

2.2.3 SPEC-JBB

According to the specification provided for the SPECjbb R©2015 benchmark [SPE15], it pro-
vides the performance measurement based on the latest Java application features. It is
applicable to all organisations that are interested in measuring Java server performance. The
benchmark includes a model that illustrates a supermarket company with an IT infrastructure
that deals with point-of-sale requests, online purchases and data-mining operations. The
metric included in the benchmark is a pure throughput metric. SPECjbb R©2015 also supports
visualisation and cloud environments.

12

2.3 Performance Testing

2.2.4 TPC-C

According to [TPC92a] the TPC Benchmark C is an On-Line Transaction Processing (OLTP)
benchmark. It is an improved version of the previously published benchmarks due to
its multiple transaction types, more complexity in the database and the overall execution
structure. TPC-C includes five concurrent transactions of different types and complexity. The
involved database is made up of nine different types of tables with large sizes in regards to
recording and population. The TPC-C benchmark is measured in transactions per minute
(tpmC). It simulates a running computing environment where users execute transactions
against a database. The transactions contain entering and delivering orders, recording
payments, checking the status of orders, and monitoring the level of stock at the corresponding
warehouse. This benchmark is not restricted to a specific business area, but, rather speaks for
any market sector that manages, sells, or distributes a product or service.

2.2.5 TPC-E

The TPC-E is an On-Line Transaction Processing (OLTP) benchmark that resembles the OLTP
workload of a brokerage firm. The main target of the benchmark is the central database that
executes transactions associated to the company’s customer accounts. Despite the fact that
the business model covered in TPC-E is a brokerage firm, the benchmark can be used on
modern OLTP systems. The benchmark specifies the required combination of transactions
it should be able to handle. The TPC-E benchmark is measured in transactions per second
(tpsE). [TPC92b]

2.3 Performance Testing

Almeida et al. [DAM01] suggested that in order to determine the performance of Web services,
performance testing has to be applied. Furthermore, the main reason for performing tests is to
have a better understandability of the system when different workload conditions apply. With
the usage of performance testing the system behaviour representing the activity of real-world
users and scenarios can be constructed. There are three different types of performance tests
[DAM01]:

1. Load testing: With this approach, the answer to whether a system is reaching its expected
requirements is obtained. To achieve this, a simulated load is created for this purpose
of mimicking the expected behaviour of operations.

2. Stress testing: This approach tests whether a system can cope with a load heavier than
its performance requirements. Stress testing involves focusing on extreme conditions
that are heavier than the expected load.

3. Spike testing: This type of testing is used for rare occasions, as the load is considerable
higher than the average.

13

2 Fundamentals

2.4 Decision Support Systems and Decision Support

Decision Support System (DSS) is referred to an information system that maintains decision-
making tasks of a business or an organisation [PSB15]. DSSs contribute to the management,
planning and operation of an organisation by providing decisions for problems of dynamic
nature. The computation of DSS can be either fully computerised or human-based, there is
the possibility of having a mixture of both approaches. The different types of DSS can be
summarised as follows [PSB15]:

1. Data-driven DSS - provides access to large knowledge bases in order to extract infor-
mation.

2. Communication-driven DSS - supports the shared access on a specific task where more
than one person is involved in working on it.

3. Document-driven DSS - data is retrieved and manipulated in form of a document.

4. Knowledge-driven DSS - so called expert systems provide professional problem-solving
in terms of defined rules and procedures.

5. Model-driven DSS - provide functionality by offering different models, data and pa-
rameters are provided by the user.

The three different components inside a DSS are, the knowledge base where all relevant
information is stored, the model that defines different decision criteria and the user interface
that presents the required output [PSB15].

2.5 Service-Oriented Architecture (SOA)

A Service-oriented Architecture (SOA) is a paradigm that organises a set of functionalities as
specific services that are made available across the network in order to be accessed through
assigned interfaces. In general, SOA offers the means to match different needs and problems
with offered capabilities, by accessing and applying capabilities, and aggregating capabilities
to meet requirements. Services interactions can be represented using a description language.
SOA is also concerned with the concept of loose coupling and dynamic binding between
services. Furthermore, a system that is built upon the SOA architectural style must provide
easy discoverability of needs and capabilities and must provide a mechanism for the interaction
between consumers and providers. [LL09]

Apart from being an architecture regarding services, SOA also includes three different partici-
pants that interact with each other:

1. Service provider

2. Service discovery

3. Service requester

14

2.6 Web Services

Figure 2.4: SOA Model

The operations that are used amongst them when interaction takes place are publish, find, and
bind [BHM+04]. The tasks of a service provider involve hosting an application in form of
a service that is accessible through a network and making it available for consumption. In
order to identify these services, the service discovery agency offers a registry that contains
a centralised library for the services. One example for a service registry is UDDI, further
discussed in section 2.6.3. To sum it up, the service provider publishes the service in the registry,
where the service requester can find it. With the help of a so called ’service description’, the
service requester can bind with the service provider in order to access the invoked service.
The relationship of the three kinds of participants is illustrated in figure 2.4

The strong influence of SOA involves its beneficial attributes, such as, loosly joined services,
high interoperability of services and increase of re-usability due to well designed services.
SOA is a design principle that is not dependent on any technology or product. The possibility
of offering "full" SOA "packages" is impossible because different organisations have different
needs and requirements [Erl05]. SOA can be implemented using any service-based technology,
however, the most common implementation of SOA is Web Services [LL09].

2.6 Web Services

A web service is known as any service that is at located at a specific endpoint in the web.
Along with the evolution of web services, the maturity and potential of web services also
increased. Therefore, the adoption of the SOA design philosophy was required. Even though
most web services are based on the HTTP binding, the interoperability interaction of web
services is achieved with standards that are based on the Extensive Markup Language (XML).
The Simple Object Access Protocol (SOAP), the Web Service Description Language (WSDL)
and Universal Description, Discovery, and Integration (UDDI) are known to be the three most
popular web service standards [Ma05].

15

2 Fundamentals

2.6.1 SOAP

The Simple Object Access Protocol (SOAP) is a protocol-independent, XML-based protocol to
access available web services [Ma05]. SOAP provides the means to interact with applications
that are located on different operating systems, that use different technologies and program-
ming languages. For the transport mechanism SOAP supports HTTP or the Simple Mail
Transfer Protocol (SMTP). The message encapsulation format of SOAP includes an envelope,
unlimited number of Headers and only one body. The user’s XML data is included in the body,
whereas information about the service to be invoked is stored inside the envelope.

2.6.2 Web Service Description Language (WSDL)

WSDL is known to be the standard for service descriptions that are based on XML [Ma05]. The
full WSDL description consists of an application-level service description and the concrete
transport-dependent information. When using WSDL descriptions, requesters are able to
understand and access the corresponding service at specific service endpoints. The two
different aspects of the WSDL description exist due to the fact that similar application-level
service capabilities are often deployed at different endpoints and have contrasting access
protocol elements.

2.6.3 Universal Description, Discovery and Integration (UDDI)

UDDI defines a registry of web services and provides users the possibility to systematically
find service providers and technical information about services. It is equivalent to numbers in
a phone book [Ma05]. Service providers can dynamically insert services in the registry which
can later be exploited by the service requester. When the service requester uses a service’s
general description, a list of matching services is retrieved from the registry. To be precise, the
UDDI registry preserves a centralised database of services along with information about its
location, the service type, and provider information. Furthermore, a standard API for users
to query the database is provided. The application of UDDI internally in organisations has a
better use, as users can query the registry using well-known identifiers for required services.
When applying UDDI in a larger scope where human requests have to be matched to human
descriptions of a service, human interruption is inevitable [Ma05].

2.6.4 RESTful Web Service

When client programs want to interact with devices , databases and web services, the Appli-
cation Program Interface (API) is used [Mas11]. This API can be seen as a doorway between
the client program and server program to access the underlying data of exposed functions.
To form and design these APIs in order to facilitate the exchange of information, the Rep-
resentational State Transfer Protocol (REST) is used. REST was first introduced in 2000 by
Roy Fielding at the University of California, in his dissertation, "Architectural Styles and the

16

2.6 Web Services

Design of Network-based Software Architectures" [Fie00]. The benefit of a well-designed
REST API for web service developers and providers is the increasing interest of service
clients. Representational State Transfer (REST) is an architectural style that follows a set
of concepts and constraints. Therefore, web services or architectures that comply to these
REST constraints are known to be RESTful. This architectural style is used to design net-
worked applications and provides simple HTTP to make calls between different machines.
Rather than using complex mechanisms like SOAP- and Web Service Description Language
(WSDL), REST offers a lightweight and resource-oriented approach to expose services. The
architectural constraints mentioned in [Fie00] include:

Client-server: In order to achieve successful communication between entities, established
standards have to be followed. This allows the web communication system to bind these
entities. In the case of Client-Server interaction, despite of both parties being independently
implemented and deployed and using different languages or technologies, they have to
follow the established standards so communication between them can take place.

Uniform Interface: The need for uniform interfaces in regards to the interactions between the
different web components is extremely important. If the uniformity of the interfaces between
server, client and network interactions is not achieved, the communication system is likely to
fail. The following four constraints accomplish the uniformity of interfaces:

1. Identification of resources - With the definition of a global address space for the purpose
of resource and service discovery.

2. Manipulation of resources through representations - A particular resource can appear
in different representational styles to serve the needs of different clients.

3. Self-descriptive messages - Messages to be self-descriptive so that different representa-
tions can be extracted from them. Therefore, messages contain meta-data that defines
the resource state as well as the representation format and size.

4. Hypermedia as the engine of application state (HATEOAS) - This is achieved by stateful
interactions using hyperlinks. The state of a resource has to be included inside the
message itself rather than keeping it on the server.

Stateless: With the enforcement of this constraint the client is required to keep all the in-
formation that is necessary when interacting with the web server. With this approach the
server-side burden is reduced and scalability is facilitated

Cache: With the adoption of caching, some interactions are no longer required. This reduces
the latency of interactions and leads to improved efficiency, scalability and performance. The
caching of responses leads to high availability of responses. In the case of dynamic scaling of
resources, the cached data can effortlessly be assigned to newly created resources.

Layered System:

The approach of layered systems increases loose coupling across different layers by exposing
the internal layer exclusively to its immediate neighbouring layer and hereby enabling im-
proved evolution and reuse. The application of layered systems allows a hierarchical layering

17

2 Fundamentals

where component details are disclosed to intermediate layers with which the interaction
takes place. With the restriction of exposing information strictly to a single layer, the system
complexity is lessened and the self-sufficiency is encouraged.

Code-On-Demand:

Clients expect to understand and use the required code that is located on the server, therefore
a technology coupling between client and server is mandatory. The only optional constraint
of the REST paradigm is Code-On-Demand.

The architectural features that are supported by REST consist of [RESb][Mas11]:

1. Performance - Caching closer to the resource is empowered since Resources are uniquely
identified using a Uniform Resource Identifier (URI). This also leads to a rapid iden-
tification of resources. A resource can be described as a block of information that is
identified using a Uniform Resource Locator (URL). A resource can have different types
usually it is interpreted as a file, a query result generated dynamically or a document.

2. Scalability - With the help of this feature the growth in demand can be addressed. The
application of caching would permit to sidestep the origin server. The request itself
includes all the needed state information. Furthermore, the request is not dependent
on any particular server, meaning that the request can be fulfilled by any server that
can provide the required cache content. The request is spread across numerous servers
which leads to high scalability of the system.

3. Simplicity - For the implementation of a simple and understandable application it is
required to separate the concerns. The four verbs Create, Read, Update and Delete
(CRUD) discussed in section 2.6.5 enable an easy implementation.

4. Modifiability - This feature describes the ease at which changes can be done to an
architecture. REST also includes the feature of evolvability, extensibility, customisability
and re-usability.

5. Visibility - The enforcement of monitoring and regulation of interactions between
parts of an architecture, by another part of the architecture. This can be achieved by
introducing agents that keep track of information passed between services and clients.

6. Portability - All services must be platform and technology independent. This means,
that the application must be compatible to run on heterogeneous environments and
platforms. This approach increases the aspect of easy usability.

7. Reliability - This feature is described as the level of vulnerability to failure of services
and solutions within a system. In order to increase reliability inside an architecture,
it is necessary to avoid single points of failure. Furthermore, failover methods and
the monitoring of features that can dynamically address failure situations should be
enforced.

8. Data Independence - REST enables content negotiation where one resource can be
formatted in the capabilities the clients can offer. This allows to use the required format
for a resource.

18

2.6 Web Services

RESTful API Design

The means to access web services is referred to the Application Programming Interface (API).
Client programs are able to access the APIs that offer a set of functionalities that make the
interaction between computer programs possible [Mas11]. To be precise, client programs
communicate with web services through an API, where these web services are made available
over the web such as Amazon Simple Storage Service (S3) 1 that supports storage capabilities.
Therefore, a web API that is according to the REST architectural style is referred to a REST API.
When designing a REST API many principles have to be taken in account. Some practices
follow the HTTP standard, however, due to flexibility in the design of APIs, the design
can be oriented according to the functionalities that the service offers. The API points to a
resource, that means in order to access the resource a URI has to be designed. Furthermore,
the possibility to perform different actions on the resources, with the use of HTTP methods,
should be granted.

API Design Standard

In order to achieve consistency and understandability, a number of rules have been specified.
These rules contribute to a standardised and clean API, offered to clients. Moreover, designers
are provided with a guideline to follow when designing the API and do not fall into confusion
and doubts. The majority of these rules are considered to be a standard while some of the
rules have a freedom for slight modifications. The design rules for the construction of URI
scheme [Mas11][Agr15]:

1. Hierarchical relationships must be indicated using forward slash separators (/).

2. When naming the resources a forward slash should not be followed (/my-resource/).

3. When defining URI paths lowercase letters should be used throughout.

4. Selection mechanisms provided by HTTP should be used by REST clients rather than
including file extensions in URIs. Users should be encouraged to clearly mention the
expected response format.

5. The segment separated by forward slash must point to a unique resource within the
resource model of the REST API.

6. Document names 2 have to be composed using a singular noun while collection names
3 and store names 4 should be written as a plural noun.

7. The CRUD operations should not be used in URIs.

1https://aws.amazon.com/s3/
2A document name is pointing to a database record or an object instance e.g. http://api.fruit.restapi.com/
types/apple

3A collection resource is referred to a directory of resources e.g. http://api.fruit.restapi.com/types - where
the collection is referred to as types

4A store is referred to a repository created by clients e.g. PUT/fruits/3456/favourites/apple

19

http://api.fruit.restapi.com/types/apple
http://api.fruit.restapi.com/types/apple
http://api.fruit.restapi.com/types
PUT/fruits/3456/favourites/apple

2 Fundamentals

8. The inclusion of query components inside URIs allow for further filtering of collections
or stores. This is done by including a key-value pair in the query that specifies the exact
criteria that the response message should contain.

9. It is not allowed to use GET and POST methods to tunnel other request methods
meaning that they should not be used incorrectly as it would limit the client with less
HTTP terminology.

10. The method GET is used to retrieve a resource representation, PUT allows both, the
insertion and update of resources. It also provides a request message that defines the
expected changes. POST enables the creation of a new resource inside a collection.
Finally, DELETE simply removes a resource from its source.

11. It is not allowed to change the behaviour of HTTP methods using custom HTTP headers.
It is recommended that a specific resource is used to process a request using the required
HTTP method. The following should be avoided: POST /fruit/apple/colour HTTP/1.1
X-HTTP-Method-Override: PUT.

The rules mentioned above are crucial for the design of REST APIs in general. For that reason,
we considered the application of these rules on our REST APIs in Chapter 5 of this thesis.

2.6.5 Hypertext Transfer Protocol (HTTP)

HTTP is known to as a stateless protocol that is responsible for the transfer of representations
of resources over a network [F+99a]. HTTP is an underlying network protocol used by the
World Wide Web (WWW). It defines concerns about message formatting and transfer in a
precise manner. Furthermore, it provides a clear explanation for web servers and browsers
on how to respond to different commands. When a URl is entered in the browser, a HTTP
command is sent to the web server. This HTTP command instructs the web server to retrieve
and transmit the requested web page. REST and HTTP are closely associated to each other
where the CRUD operations (discussed in 2.6.5) are used together with REST. REST is not
fully restricted to the web but when it is used in the implementation of web-based systems,
it uses HTTP for interactions. HTTP executes each command independently without the
need to know the previous command or request, therefore, HTTP is known to be a stateless
protocol.

HTTP Status Code

HTTP status codes can be described as "standard response codes" which are displayed by
the server/client when an error takes place over the network during interaction. The main
purpose of HTTP status codes is to identify the cause of a problem when the web page is
not loading as expected. The HTTP status code is a combination of HTTP status code and
HTTP reason sentence, this combination is also known as the HTTP status line. The purpose
of the reason phrase is easy readability, where the user is provided with a short description of
the status code in text format. In general, the status codes demonstrate if a particular HTTP

20

2.6 Web Services

request has been processed successfully. There are five different categories for responses:
informational response, success response, redirection, client error and server error. In the
following Table 2.1, a list of some basic status codes is illustrated:

Status Code Status Text Description

100 Continue The server has received the request headers, and
the client should proceed to send the request
body.

200 OK The request is OK (this is the standard response
for successful HTTP requests).

201 Created The request has been fulfilled, and a new re-
source is created.

204 No Content The request has been successfully processed, but
is not returning any content.

303 See Other The requested page can be found under a differ-
ent URL.

401 Unauthorized The request was a legal request, but the server is
refusing to respond to it. For use when authen-
tication is possible but has failed or not yet been
provided.

404 Not Found The requested page could not be found but may
be available again in the future

500 Internal Server Error A generic error message, given when no more
specific message is suitable.

501 Not Implemented The server either does not recognize the request
method, or it lacks the ability to fulfill the re-
quest.

Table 2.1: HTTP Status Codes [W3S]

HTTP Methods

Data and functionality of resources in RESTful web services is exposed using URIs. These
URIs use the CRUD actions which are the four HTTP methods. In order to manage and
modify resources, GET, POST, PUT and DELETE is used. These methods allow to create,
retrieve, update and delete resources. The "uniform interface" constraint is primarily achieved

21

2 Fundamentals

by these HTTP verbs. A detailed description of these HTTP methods is provided below
[F+99a]:

HTTP method CRUD action

GET Retrieve a resource

POST Create a resource

PUT Update a resource

DELETE Delete a resource

Table 2.2: Association of HTTP verbs with the corresponding CRUD action

PUT

The HTTP PUT method is mainly used to update existing resources. This means, to put
new capabilities to a known resource URI with the information about these newly added
capabilities in the request body. However, when the resource ID is chosen by the client instead
of the server, the PUT method can also be used to create new resources. In other words, the
PUT is pointing to a URI that incorporates the information about a non-existing resource ID.
When the modification is successfully undertaken, the status code 200 or, when no respond is
expected, 204 is outputted. In the case of using PUT for the creation of resources, the status
code 201 is displayed upon success (see tale 2.1 for more details). As the client already set
the resource ID it is not required to include the link inside the location header when the
resource is created successfully. PUT can modify or create state on the server, therefore, it is
regarded to be unsafe. Additionally, PUT is considered to be idempotent, which means when
a resource is updated or created any number of following identical calls won’t have an impact
on the state of the resource. There are some cases where the PUT method is not regarded
as idempotent due to underlying logic. However, it is suggested to have idempotent PUT
methods. For non-idempotent request the POST method should be used.

POST

The main pupose of the HTTP POST method is the creation of new resources. Most of
the times the creation involves resources that are dependent on their parent resource e.g.
middleware contains different types of middleware. Therefore, when a new resource is created
the service makes sure that the new resource is associated to its parent by using and ID and
creating a new resource URI. When created successfully the status code 201 for CREATED is
displayed indicating that the request has been fulfilled and a new resource is created. Along
with the status code, a location header is also returned containing the link to the newly-created
resource.

GET

The HTTP GET method is used to retrieve or simply read a representation of a resource.
When applying the GET method and no error occurs in the result, a representation in XML

22

2.6 Web Services

or JavaScript Object Notation (JSON) is returned. Additionally, the HTTP response code
200 for OK is returned. In the case of client-side errors, either a status code of 400 for BAD
REQUEST or 404 for NOT FOUND is returned. In the case of a server-side error, 500 for
INTERNAL SERVER ERROR is outputted. According to the HTTP specification, using GET
together with HEAD, the modification of data is not permissible. This means that using both
as a combination, no risk of data corruption or modification occurs. Furthermore, they are
considered to be idempotent, multiple identical requests are considered to have the same
result as a single request.

DELETE

DELETE is used in order to remove a resource accessed by its URI. When a resource is deleted
successfully, the HTTP status 200 along with a response body is returned. The response body
contains the representation of the deleted resource. In the case of no associative content in the
requested URI, the status code 204 is returned. According to the HTTP specification, DELETE
is considered to be idempotent. A single deletion request removes the resource completely,
therefore, multiple calls of the same kind won’t make an influence.

23

2 Fundamentals

24

3 Related Work

This chapter introduces the main research fields related to this thesis, in order to assure a
common comprehension. In Section 3.2, we introduce recent techniques on middleware
performance benchmarking and components of middleware benchmarks. In Section 3.3, we
summarise web-based Decision Support Systems (DSS) in general, different existing DSS and
their offered functionalities. Subsequently, a short summary of the State of the Art in decision
support for middleware benchmarking is provided.

3.1 Benchmark Architecture

The vast and highly changing nature of the computing industry constantly requires new
benchmarks. According to Bacon et al. [SKBB09] to guarantee that applications are reaching
the Quality of Service (QoS) obligations, it is necessary that the underlying platforms are
tested with benchmarks, so that the performance and scalability can be measured. There
are numerous characteristics that have to be met by the benchmark in order for it to be
beneficial and dependable [Hup09]. Firstly, the stressed platform has to represent a real-
world application. Secondly, it must operate all crucial services that a platform offers and
it should provide some space to carry out performance comparisons. Lastly, the results of
the benchmark must allow reconstruction, so that the benchmark is reliable. It should also
prevent any implicit scalability constraints [A+15]. Additionally, in order to provide the
means for performance comparison, a benchmark needs to span over a considerable time
period [Hup09].

One important aspect in terms of benchmarking is the correct use of the benchmark results.
There are many projects that get devalued results due to generally known and avoidable
mistakes [A+15]. Arnold et al. [A+15] discovered that there are various benchmarks that use
an artificial workload which can easily lead to faulty or useless results, as it is challenging
to determine information about the performance of real applications from the outcome of
suchlike benchmarks. Therefore, Leymann et al. [SRL+15] suggested that an appropriate
workload should be found, that is comparable to realistic workload, in order to regulate this
issue.

Additionally, results have to be understood in the correct meaning. It is important that the
obtained results express the measured characteristics and do not lead to intervention of
other features. This can be achieved by letting the system under test reach to a steady state.
Another important guideline is that comprehensive configuration data is issued along with
the benchmark outcome. With this information different configuration adjustments can be
made. Moreover, middleware designers should be motivated to provide approved settings

25

3 Related Work

for particular applications and used workloads. This would lead to publication of correct and
relevant benchmark results.

Brebner et al. [B+05] identified that some of the concerns in regards to benchmarking is
the challenge of resources required to operate a benchmark, also required devices that will
perform the work, the temporal length for running the benchmark, and know-how needed to
comprehend the entire benchmark configuration. Most often the resource requirements are
excessive for benchmark conduction. In addition, the lifetime of the proficiency, as well as the
results is limited. For that reason, the outlay of the benchmark is expanded.

Lastly, another concern is how to manage the publication of benchmark results for auditing
and review. Sensitive information could arise new issues for the specific party or it could lead
to misinterpretation of information.

A good approach would be to maintain a knowledge base that would store all issues regarding
benchmarking, so engineers can avoid mistakes beforehand. Even with this idea difficulties
emerge, such as updating technique of this knowledge base. It would allow engineers to view
their benchmarking results in different perspectives. This kind of database would involve
concepts to solve concerns on reliability, credibility and anonymity of the benchmarking
outcomes. The associated complexity of universal data format needs to be determined in
order to ease the contribution of the results and engines to deal with them. [B+05]

Furthermore benchmarks can be a great support for monitoring and auditing reasons. Some
of the two main areas where benchmarks are applied are listed in the following:

1) Design of Middleware Benchmark can be used to construct the ideal middleware architec-
ture with regards to the available constraints such as memory capability, processing power or
network latency and throughput. The major aspect in this scenario is the effort to approve
models developed during the design phase [B+05].

2) Assessment of Middleware Another important use that can be achieved with bench-
marking is to evaluate middleware. In order to achieve this, the performance of different
middleware architecures and middleware configurations, is compared. Furthermore, it is
important to classify the scalability of the middleware. With this classification the benchmark-
ing performance of the middleware and its underlying systems can be indicated when the
limit of scalability is reached. [B+05].

3.2 Current Trends with Middleware Benchmarking

Despite the fact that middleware technology is widely spread there is still a lack of putting
middleware benchmarking in practice [B+05]. Some middleware developers use specific
testing suites that make it nearly impossible to compare the output with diverse middleware
implementations. Furthermore, middleware users employ simple testing suites where the
output can lead to misconceptions. To face these shortcomings it is important to have suc-
cessful standardised middleware benchmarks. The architecture of a benchmark is completely
dependent on the intended handling of the results [B+05].

26

3.3 Web-Based Decision Support Systems

These standardised benchmarks are made available by consortia that are accepted by the
market. The major goal of a benchmark consortium is, to provide the marketplace with
legitimate and beneficial performance metrics in order to examine the latest development
of IT components [SPE95][TPC92c]. Moreover, these organisations supply benchmarks for
system performance assessment in numerous application fields. The standard workload and
metrics provided aid the user to measure and evaluate the performance and scalability of
middleware platforms [SPE95].

The following fundamental prerequisites have to be met in exchange for a constructive and
dependable benchmark [Kou06]:

1. The workload used in the benchmark should represent real-world applications

2. It must handle all crucial services offered by platforms

3. It must provide a customisable spectrum for performance observation

4. The result produced by the benchmark should allow reproduction

5. It must not have any restrictions on the scalability

Some copyrighted benchmarks are available and have also been adopted for testing and
product comparison reasons, however, these benchmarks do not fulfill the requirements men-
tioned above [Act06][JBo06]. The reason for that is due to their usage of artificial workload
that does not represent real-world application schemes. Additionally, their focus lies on
stressing isolated features of the MOM rather than providing the overall Message-Oriented
Middleware (MOM) server performance [SKCB07].

MOM is widely adopted on modern information-driven applications such as supply chain
management that is event-driven, stock exchange and online auctions. In financial services
and enterprise applications, the usage of MOM is broadly applied. In order to support these
kind of applications in the commerce, the performance and scalability of the underlying
MOM platforms, play a significant role [SKCB07]. Therefore, a standardised benchmark from
the research and commercial aspect is necessary to assess the scalability and performance of
MOM [SKCB07]. A middleware implementation constructs a settled component for many
object-oriented systems. The scope of middleware implementations covers a wide range,
as discussed in Section 2.1. A crucial aspect of these implementations is their performance
under different circumstances and conditions. The results of this characteristic is beneficial
for middleware developers in terms of enhancing and promoting their product and for
middleware users in order to decide for the appropriate product [B+05].

3.3 Web-Based Decision Support Systems

Decision Support System (DSS) are currently highly developed where a variety of function-
alities is offered such as information collection, analysis, model construction, collaboration,
alternative assessment and decision implementation [BPS07]. Recent technologies in the field
of DSS consider the World Wide Web as their main platform for either providing DSS products

27

3 Related Work

or deploying DSS applications using the web browser interface as their client. The high de-
mand in the field of web is calling for strong attempts to further broaden the development and
implementation of web-based DSS in different sectors such as education, health care, private
companies, and government [BPS07]. According to Power [Pow04], the most widely used
approaches for DSSs are referred to data-driven and model-driven DSS. The main purpose of
data-driven DSS is to aid the organisation, analysis and retrieval of large amounts of data.
Model-driven DSS work with precise representations of decision models while providing
analytical help. According to Bhargava et al. [BPS07] the three other categories of DSS have
also gained popularity with the growth of web technologies. Communication-driven DSS
depend on electronic communications between different parties in order to achieve decision-
making. With the Web this type of DSS is granted with linking various decision makers
that are separated in space or time. Knowledge-driven DSS provide people like managers
suggestions and recommendations. Even this type is covered by the Web, where the audience
is a much bigger number. At last, the document-driven DSS provides managers document
retrieval and analysis by integrating storage and processing mechanisms.

The computation of DSS can be either Web-based or Web-enabled while different architectural
styles are possible [BPS07]. One example could be the scenario where the entire data collection,
decision models, algorithms and relevant information is stored on a Web server and is
accessed via a Web browser. The other possibility is to embed all required components on
the Web browser in order to support application specific decision support. For instance,
the Network-Enabled Optimization System (NEOS) Server provides optimisation solutions
over the Internet [CMM96]. NEOS receives optimisation problems from users and finds the
relevant optimisation solver. After computing all supplementary information that is required
by the solver, the initial optimisation problem is linked with the solver and the result is
presented.

There are many technologies available that support the implementation and deployment of
DSS. However, recent technologies used in the field of developing DSS involve Web services
and messaging protocols like SOAP and XML-related languages [BPS07]. There are different
tasks involved in the creation and usage of data- and model-driven DSS. With the usage of
Web services these tasks can be performed on a Web client. According to Sprague [SJ80] there
is a differentiation to consider between application-specific DSS and DSS generators. In the
case of application-specific DSS, a concrete decision problem is solved with the help of a data,
models and a user interface. DSS generators provide algorithms and different tools in order to
build new DSS. Figure 3.1 defines the 10 major tasks that are involved in building and using
data- and model-driven DSS [BPS07]. These DSS-related tasks that users can do through Web
browsers involve model instantiation, model execution, creation of analyses and reports , data
visualisation, query and retrieval, data analysis, model definition, data definition , analysis
definition, and user interface definition [HSC99]. On the one hand, the Web can be used
to facilitate DSS Information Platforms where information about vendors, methodologies
and products related to decision support technologies are offered [Pow02]. Examples for
this kind of decision support portals are DSSResources.com and DataWarehousing Online,
where information regarding optimisation of DSS and decision analysis is offered. On the
other hand, the Web can be utilised to provide application-specific decision support for

28

3.3 Web-Based Decision Support Systems

Figure 3.1: Major Tasks involved in DSS

arising decision problems [BPS07]. This is achieved by vendors like Lumina1 and TreeAge2

that provide capabilities to develop products that generate Web-based application-specific
DSS. Lumina, is specialised in selling desktop DSS generator that are based on influence
diagrams, furthermore, it provides the Analytica Decision Engine that offers developers to
create Web-based DSS applications [BPS07]. The TreeAge Software provides the means to
develop Internet-based decision-tree applications. Another Web-based DSS for the purpose
of structuring of analytical decision problems is the Web-HIPRE 3.

Currently, there are a number of web-based DSS available that serve different purposes. The
two areas that the DSS research can be divided in is the field of architectures and technologies
and, secondly, the field of applications and implementations. The DSS metadata model for
distributing DSS on the Web was developed by Gregg et al. [GGP02]. The steps towards
the development included to consider the capabilities of end users in order to find suitable
resources on the Web. After conducting an experiment, the authors concluded that a metadata
aids end users to find and comprehend a specific DSS functionality on the Web.
Bharati and Chaudhury [BC04] conducted an experimental research that pointed out impor-
tant factors that are required to achieve decision-making satisfaction in the field of Web-based
DS. The outcome of this empirical study reported that system quality and information quality
had an high impact on customers’ satisfaction, whereas information presentation did not
have a significant impact on decision-making satisfaction. Bharati and Chaudhury suggested
that developers of Web-based DSS should rather have their focus on system quality and
information quality, rather than on information presentation. In terms of system quality the
refinement should take place in regards to ease of use, convenience of access, and system
reliability. The information quality can be enhanced in regards to relevance, accuracy, com-
pleteness, and timeliness. Guentzer et al. [GMMS07] applied Structured Service Models in
order to help users to find information resources that are exposed as online services in the
scope of an Intranet. Due to the fact that the computing of similarity between two models

1http://www.lumina.com/
2https://www.treeage.com/
3http://hipre.aalto.fi/

29

http://www.lumina.com/
https://www.treeage.com/
http://hipre.aalto.fi/

3 Related Work

requires heavy computational processing, Guentzer et al. conducted a heuristic concept and
attained the performance characteristics from computational tests.

There is a high level of ongoing research in the field of Web-based DSS case studies and
developments of prototypical implementations [BPS07]. One example for a Web-based DSS
implementation is implemented by Ngai and Wat [NW05], where a risk analysis for the
e-commerce sector is provided. The prototype is a support for project managers that want to
identify, analyse, and prioritise risk involved in e-commerce developments. The Web browser
was used to present the DSS and the server maintained the models and the database. Even
in the area of health care decision-support is provided. Remko et al. [OvVSH16] designed a
Web-based DSS that guides patients to make suitable decisions in case of low back pain. The
system was validated by conducting online surveys.

To the extend of our knowledge this work implements the first decision support system in
the area of middleware benchmarking. Our work follows guidelines and recommendations
in regards to building a DSS pointed out by Bhargava et al. [BPS07]. The proposed DSS can
be classified as a knowledge-driven approach, where the decision-making is based on the
defined information stored in the database. We have conducted an extensive search on the
available State of the Art, however, we did not come across other decision support systems
for middleware benchmarking. The search included contents of the WWW as well as books
provided in the academic library of University of Stuttgart. The keywords and phrases used
in this extensive search are listed below:

• Decision Support for Benchmarking

• Decision Solving for Benchmarks

• Decision Support for Middleware Benchmarking

• Decision-Making in the field of Benchmarking

• DSS and benchmarks

• How to choose a Benchmark

• What is the Right Benchmark

• Selecting the Right Benchmark

30

4 Concept and Specification

This chapter provides a compressed list of requirements for the DSS4MiddlewarePBenchmarking,
classified as functional and non-functional requirements. It also details the use cases that
the system must cover. Moreover, we provide a brief description of the involved system
components and the overall system architecture. It also covers the taxonomy that our system
is built on and the methodology on how we conducted the information inside the taxonomy.

4.1 Requirement Analysis

This section deals with the functional and non-functional requirements that were considered
to be relevant for our Decision Support Framework. The following table (see Table 4.1)
describes the defined Functional Requirements (FR) and the second table (see Table 4.2) lists
the identified Non-Functional Requirements (NFR).

No. Requirement Description

FR-1 Visualisation of the Decision
Support System

Extract data from the
DSS4MiddlewarePBenchmarking in a human
recognisable manner in order to provide
solutions for decision-making in the matter of
Middleware Performance Benchmarking.

FR-2 Easy expansion of the deci-
sion tree through the UI

CRUD operations are provided for each table
inside the database and can be accessed in the
user interface level.

FR-4 Highlight relationship of ele-
ments

Upon selection of a specific criteria the system
should dynamically display additional options
if there is any nested hierarchy.

FR-5 Clear indication of selected
field

Upon selection of different check boxes, the out-
put must display a text that mentions the criteria
that were selected. This enables a good under-
standability.

Table 4.1: Functional Requirements for the implementation

31

4 Concept and Specification

No. Requirement Description

NFR-1 Usability The developer should specify all main and rel-
evant benchmark characteristics according to
the decision tree with an easy interactive inter-
face. The interface should be graphical, web-
based and user-friendly that allows querying the
knowledgebase. The software platform should
be self-explained to the user, where the user
knows exactly what the required steps are.

NFR-2 Consistency The decision support system should allow the
user to view the results of the selected criteria in
a consistent manner. The user interface and all
included operations should always behave the
same way.

NFR-3 Performance The knowledge base conducted from the deci-
sion tree should be exposed as a RESTful appli-
cation.

NFR-4 Web-based development Portability, cross-platform support and a user-
friendly interface have to be provided using web
programming language and related state-of-the-
art technologies

NFR-4 Easy installation The configuration and installation of the soft-
ware must be rapid and easy.

NFR-5 Well supported technologies For future extension and modification on the
source code latest technologies, clean coding
and detailed comments should be provided in
the implementation.

Table 4.2: Non-Functional Requirements for the implementation

4.2 Use Cases

After defining the functional and non-functional requirements in Section 4.1 the use cases
that the DSS4MiddlewarePBenchmarking must support are extracted. The system supports two
different types of users, system administrators and system users. The system administrator is
considered to be the more privileged one as it can perform all actions that users can perform
and additional actions exclusively for its role. Figure 4.2 illustrates a use case diagram
followed by a detailed definition of each use case.

32

4.2 Use Cases

NOTE: The term ’resource’ used in the use case diagram refers to the entities mentioned in the resource
model in 5.2.

Figure 4.1: Use Case diagram for DSS4MiddlewarePBenchmarking

33

4 Concept and Specification

4.3 Taxonomy

When comparing the different middleware benchmarks it was important to only include
relevant features into the taxonomy. The taxonomy includes features related to the workload
and other important features of each benchmark. Information that does not remain the same
was excluded from the taxonomy (e.g. specific software that the benchmark environment
should run on).

Figure 4.2: Taxonomy on which the DSS4MiddlewarePBenchmarking is based on

The taxonomy includes relevant information that is required for the creation of new middle-
ware benchmarks. Moreover, the information provided can also be used as an informative
source for middleware benchmarks. All information inside the taxonomy was taken from
four different standardised middleware benchmarks that are currently active (see Table 4.3).
Two of them were published by Standard Performance Evaluation Corporation (SPEC) while the

34

4.4 Decision Point 1 - Middleware

other two are part of the Transaction Processing Council (TPC).

Benchmark name Consortium Middleware

SPEC JMS R© 2007 SPEC Message-Oriented Middleware (MOM)

SPEC-JBB SPEC Java Server

TPC-C TPC Database Management System (DBMS)

TPC-E TPC Database Management System (DBMS)

Table 4.3: Overview of standardised benchmarks used in the taxonomy

Detailed contents of the main entities inside the taxonomy are explained in the following.
At first, most relevant decisions and their possible outcomes are introduced. Due to the
fact that all benchmarks have the same purpose of measuring performance characteristics
for middleware technologies, the structure of these benchmarks is overlapping in many
aspects. When comparing the different benchmarks it can be noticed that all of them contain
overlapping or similar information. Therefore, details that are relevant and identical within
the different benchmarks are combined into one entity. The main aspect that leads to combin-
ing the information into entities is the amount of information that can be generalised. The
description also includes the procedure on how the information conducted is grouped into
these entities.

4.4 Decision Point 1 - Middleware

The following chapter describes the elaborated Decision Point 1 regarding Middleware as
depicted in Figure 4.3.

Figure 4.3: Elaboration of Decision Point 1 - Middlware

35

4 Concept and Specification

Description

Currently, there are numerous middleware systems available. A few of them are covered
by standardised benchmarks and for some only custom benchmarks are available. When
comparing these middleware technologies, the different architectural features have to be con-
sidered, i.e. Workflow Management Systems deal with work flows whereas Message-Oriented
Middleware (MOM) uses messages. The five different middleware technologies mentioned in
Figure 4.3 were considered to be the most relevant and demanded in terms of benchmarking,
as Workflow Management Systems [RHW14] and Enterprise Service Bus [KS09] are involved
in current research topics. Furthermore, there are standardised benchmarks available for the
performance of Java Server [SPE15], Message-Oriented Middleware [SPE07] and Database
Management Systems [TPC92a] [TPC92b].

The accessing point of the decision support framework is selecting the required middleware
in order to retrieve additional features according to the selected middleware. There exists a
possibility to either select a single middleware and further render the additional features or
search the whole knowledgebase that includes information about all elaborated middleware
technologies.

4.5 Decision Point 2 - Workload

The following describes the elaborated Decision Point 2 regarding the different Workloads of
the conducted Benchmarks as depicted in Figure 4.4.

Figure 4.4: Elaboration of Decision Point 2 - Workload

Description

The main questions that arise in regard to the usage of benchmarks are [DAM01]: 1. How
many transactions can our system process per minute?; or 2. How many requests can the
system serve per second? In order to understand the benchmark results correctly, it is
important to understand the workload in a correct manner. Once the benchmark results are
interpreted as expected, the steps towards improving the system can be made. Therefore, the
inclusion of the workload as a selection criteria was necessary. Every benchmark consists of a

36

4.6 Decision Point 3 - Metric

workload, where workload is referred to the average amount of work handled by an entity
during a specified time. The best way to evaluate the performance for a specific system is
by applying actual workload on the platform and get a concrete measurement of the results
[DAM01]. The need of a correct workload is very important as pointed out by Avritzer et al.
[AW96]. As it is a crucial characteristic of a benchmark and it is covered by all conducted
benchmarks it was straightforward to aggregate it into one decision point. For the conducted
benchmarks different workload types could be identified. The information regarding the
different workloads was taken from the corresponding design documents provided by the
benchmark provider.

When selecting the type of the workload, the possible outcome of the decision can be the
different workload types for each benchmark. For instance, the workload type for the
SPECjms2007 benchmark is SPECjms2007@horizontal and SPECjms2007@vertical. The two
different types allow the users to configure and customise the workload based on their own
preferences [SKBB07]. In the case of the horizontal topology, the system is able to manage
an increasing amount of destinations (i.e. increased number of physical locations) while
maintaining the message traffic at each location. In terms of the vertical topology, the system
is able to handle an increasing amount of message traffic while maintaining the number of
physical locations.
The workload type in case of the TPC-C benchmark is transactions. The five transactions that
make up the workload are: New-order, Payment, Delivery, Order-Status and Stock-level [TPC92a].
The distribution of the execution time for each transaction varies. When selecting the measure
for the TPC-C benchmark the option transactions per minute is displayed.

4.6 Decision Point 3 - Metric

The following describes the elaborated Decision Point 3 regarding the different Metrics that are
part of the conducted Benchmarks as depicted in Figure 4.5.

Figure 4.5: Elaboration of Decision Point 3 - Metric

37

4 Concept and Specification

Description

One of the characteristics of a good benchmark is the usage of meaningful and understandable
metric [Hup09]. According to Alves et al. [AYV10], the usage of metrics provide a control
instrument in the field of software development and the maintenance progress. It can also be
intended to have a clear comparison and rating of software products. For instance, the metric
used for the SPECjbb2015 benchmark is referred to SPECjbb bops. This term can be easily
interpreted by the benchmark user that it represents Business Operations per Second [Hup09].
Another example is the metric of the TPC-C benchmark, namely tpmC. As it is a transactional
benchmark that is measuring throughput, it is measuring the Transactions per Minute.

4.7 Decision Point 4 - Application Scenario

The following chapter describes the elaborated Decision Point 4 regarding the different Appli-
cation Scenarios that are included inside each Benchmark as depicted in Figure 4.6.

Figure 4.6: Elaboration of Decision Point 4 - Application Scenario

Description

The application scenario in a benchmark should cover similar target audience. It is important
to assure that the benchmark can be suitable for a large number of users [Hup09]. Every
benchmark covers an application scenario that provides conceptual frameworks for a specific
area containing underlying components that are well-known for applications of this kind
[DAM01]. Furthermore, the application scenario should be chosen in a way that different
subsets of the functionality offered by the underlying technology are stressed [SKCB07]. All
conducted benchmarks cover a specific business model along with defined tasks that are
being fulfilled.

When selecting the model and task the available output is:

1. Wholesale supplier - TPC-C models an application that takes care of the orders involved
in a wholesale supplier [TPC92a].

38

4.8 Decision Point 4.1 - Role

2. Supply chain - SPECjms2007 models an application that involves the supply chain of a
supermarket company. It stresses different subsets of the capabilities provided by JMS
servers [SPE07].

3. Supermarket company IT infrastructure - SPECjbb2015 models different aspects of a
world-wide supermarket company [SPE15].

4. Brokerage firm - TPC-E models a brokerage firm that involves different customers that
work with different types of transactions. These transactions are related to functionali-
ties that are covered by a brokerage firm, such as, trades, market research, and account
inquiries [TPC92b].

4.8 Decision Point 4.1 - Role

The following chapter describes the elaborated Decision Point 4.1 regarding the different Roles
that are defined in the previously mentioned Application Scenarios as depicted in Figure 4.7.

Figure 4.7: Elaboration of Decision Point 4.1 - Role

Description

Each application scenario involves different roles that have a focus on different tasks. The
roles defined in the application scenario could be grouped according to the nature of their
tasks. We came up with the conclusion to group these tasks in two groups, namely admin and
(regular) user. Most of the conducted application scenarios had a clear distinguishing between
administrative tasks and normal operations, therefore, this solution was most suitable. For
instance, in the SPECjms2007 benchmark four different participants were involved in the
scenario [SPE07]. Firstly, the Company Headquaters, responsible for the accounting of the
company, can be classified as the admin of the scenario. The Distribution Centers, Supermarkets
and Suppliers are involved in tasks related to their capable functionalities, therefore these
were grouped as (regular) users.

39

4 Concept and Specification

4.9 Decision Point 5 - Hardware

The following chapter describes the elaborated Decision Point 5 regarding the Hardware
configuration for setting up the requirement of the System Under Test (SUT) in order to run a
Benchmark as depicted in Figure 4.8.

Figure 4.8: Elaboration of Decision Point 5 - Hardware

Description

Mostly benchmark users are clueless about the technical configurations of a benchmark.
Therefore, it was necessary to include the Hardware requirements needed to assure a smooth
benchmark experience. Furthermore, the use of hardware in a benchmark should be in a way
that can be closely related to the consumer environment [Hup09].

4.10 Decision Point 6 - Scalability

The following chapter describes the elaborated Decision Point 6 regarding Scalability of the
previously mentioned Workload of a benchmark as depicted in Figure 4.9.

Figure 4.9: Elaboration of Decision Point 6 - Scalability

40

4.10 Decision Point 6 - Scalability

Description

It is important the the benchmark tests can be applied to a broad spectrum of systems, in
regards to cost, performance, and configuration [DAM01].
For some of the benchmarks, the ability to scale the workload was provided. For instance in
the SPECjms2007 [SPE07] benchmark a natural way to scale the workload was provided. To
be precise, two different types of scaling was provided, the horizontal approach supported
scaling in terms of increasing the number of supermarkets. The other way to scale the workload
was the vertical approach, where the number of products sold in each supermarket could be
scaled.

41

4 Concept and Specification

42

5 Design

5.1 System Architecture

The prototypical implementation is developed as a single-page web application. In Figure
5.1 the system architecture is depicted showing the logical architecture in regards to the
different application layers with technologies used for each layer. The main part inside

Figure 5.1: System Architecture of the Prototypical Implementation

the prototype’s Presentation Layer are the bower libraries used. Bower is responsible for
the whole web platform and offers packages that contain scripts, CSS stylesheets, HTML
templates, images and fonts. Therefore, bower is mostly used for client-side work. Another
important component inside the business layer is called the Node Package Manager (NPM).
NPM is used in the context of JavaScript modules that are compatible for node. Furthermore,
the object modeling tool Mongoose that resides in the resource layer is also a module provided
by node.
The interaction between the business layer and the resource layer is done by sending HTTP
queries to the database and receiving responses in JSON-format. Inside the business layer the
interaction takes place with the presentation layer where the interaction takes place in form
of outgoing HTTP responses and incoming HTTP requests.

43

5 Design

5.2 Class Diagram

This section models the resources used in our system. A REST API involves the attachment
of linked resources. According to Fielding, "REST uses a resource identifier to identify the
particular resource involved in an interaction between components" [Fie00], therefore it is
necessary to define resources for a REST-based service.

The resource model specifies resources and the relation between them. The use of an ER
diagram displays the relation between them. Each entity also includes an object ID which
is automatically generated by MongoDB. The data type of IDs is provided by mongoose:
mongoose.Schema.ObjectId.

Figure 5.2: Resource Model Representation in the Form of ER Diagram

5.3 RESTful API

Previously, all design rules related to REST APIs are discussed intensively in section 2.6.4.
According to the resource model in Figure 5.2, the design of this API is constructed in terms
of identifying all resources available to the user. The communication between a client and as
server in a RESTful web service is based on an interaction of exposed resources on the server
side.

44

5.3 RESTful API

5.3.1 API Design

All resources covered by the implementation can be divided into two groups, one of them is
responsible for computational operations. The other type supports querying and viewing of
results. In order to uniquely identify each resource, an easy understandable URI is referred to
each resource. The structure of the URI is described as follows:

• The first part of the URI describes the resource that is addressed by the client. There-
fore, it can be /middlewares, /benchmarks or /workloads etc. These URIs illustrate set of
middlewares, benchmarks or workloads.

• The second part of the URI describes the ID for a specific resource where actions need
to be performed. In our example: /middlewares/1 would address the middleware where
ID equals to 1.

• In order to query the system in a deeper level using the ’filter down’ selection criteria
in the front-end, it is necessary to specify the function name and the input parameters.
The URI would be presented as: /api/benchmarks?populate=1&fields[]=consortium. This is
an example that displays the different consortia inside benchmarks.

Each resource implements the HTTP methods GET, PUT, POST and DELETE. The impacts of
a HTTP request on a resource is expressed below:

Note: For understandability the APIs related to the back-end are differntiated from the ones used in the
front-end with ’/api/’ prefix before mentioning the first part of the URI that is described above.

/api/resource (e.g. /api/middlewares/)

GET: displays the list of specified resources in the system. If a query is included in the URI,
the output will match the selection specified in the URI. All users can access this method in
our prototypical implementation.

PUT: updates already existing resources in the system. This is accessible to system adminis-
trators only.

POST: inserts a new specified resource to the system and the information is provided in the
body of the request. Only administrators can add a new specified resource in our system.

DELETE: deletes the specified resource. Only administrators are authorised to delete a
resource.

/api/resource/x (e.g. /api/middlewares/56eea9749c8471ce22e2c100)

Note: ’x’ is referred to a resource identifier

GET: lists the data of the resource that has identity X according to the scope of the request
placed by the user.

45

5 Design

PUT: updates the information of the resource that is identified by X. The planned insertion is
taken from the body of the request. Only administrators are authorised to update a resource.

POST: a new resource with identity X is added by an authorised system administrator.

DELETE: authorised system administrator deletes the resource with identity X

/api/resource/x/resource (e.g. /api/middlewares/56eea9749c8471ce22e2c100/workload

GET: lists the information of a resource with identity x associated to another resource. In our
case, when the user selects a specific middleware and also queries one hierarchy deeper by
selecting an additional feature.

PUT: not applicable.

POST: not applicable.

DELETE: not applicable.

/api/resource/x/resource?key=value (e.g. /api/benchmarks?populate=1&fields[]=consortium)

GET: displays the information of the resource with identity x and fulfilling the query string.
For our system, this is a URI designed for further in-depth querying of the system.

PUT: not applicable.

POST: not applicable.

DELETE: not applicable.

The rules concerning API design were discussed in detail in section 2.6.4. We considered
these rules when creating the APIs and used only nouns for the expressions. Furthermore,
we followed the design rules and provided a customised output for the user to ensure better
readability and usability.

46

6 Implementation

This section involves the realisation view of this Master’s thesis with the focus on the im-
plementation of the specified Decision Support System. In order to produce a successful
Decision Support Framework it is important to provide data to stakeholders that is available
and accessible for decision-making purposes. First of all, Next, technologies, frameworks
and illustrated system architecture are described. Later, the implementation is demonstrated
using screenshots showing the used data visualisation approach.

6.1 Technologies and Frameworks

For many years developers focused on the LAMP tool stack [Law05] (named after its con-
stituent parts: Linux Operating System, the Apache Web Server, relational MySQL database
and the scripting language PHP). In the past few years the new MEAN technology stack has
gained popularity in the development of web-applications. MongoDB, Express.js, Angular.js
and Node.js are based around the programming language JavaScript, therefore applications
based on MEAN do not need separate languages for front-end and back-end execution
environments [Mea14]. Despite the fact that originally JavaScript was mainly developed
for client side web programming, it has invaded the server-side programming by virtue
of environments like Node.js. In the following we examine the components of the MEAN
web development tool stack and show its appropriateness and advantages in the contents of
implementing RESTful web services.

6.1.1 The MongoDB, Expressjs, Angularjs and Nodejs Stack (MEAN Technology)

The implementation of our DSS4MiddlewarePBenchamrking was carried out using the MEAN
development. The MEAN technology stack is an open-source JavaScript Software stack that
allows the development of dynamic web applications. This acronym stands for the four
components it includes in the stack, namely: MongoDB, Express.js, Angular.js and Node.js.
With the help of this technology stack we were able to develop back-end services along with
a web-based user interface in the front-end. In the following, its constituent components are
described briefly [PJC15]:

1) MongoDB

Most web-services are based on a data storage which usually takes the form of a database
management system. Although relational database management solutions were commonly
provided, the tendency to use NoSQL type database has increased. The NoSQL database
MongoDB enables the storage of data that vary in structure in JSON-like documents. Similar
information is stored together to allow fast access through the MongoDB query language.

47

6 Implementation

MongoDB has a different approach to manage the documents and does not have a specific
language. The manipulation and querying of documents is accomplished using a very rich
set of operators that are composed with each other applying JSON structure. The comparison
of traditional relational database and NoSQL database is examined in table 6.1

2) Expressjs

Express.js provides a server framework for web applications, while it is built on the elemental
functionalities of Node. It provides the developer a mechanism to deal with web routing and
HTTP methods (discussed in section 2.6.5) with the use of a wrapper around an underlying
Node environment. With the usage of Express.js an easier and more refined solution is
granted than resolving these capabilities directly applying Node.

3) Angularjs

Angular.js (or just Angular) is a web application framework which offers a client-side frame-
work for MVC (Model-View-Controller)[LR01] single page web applications. Another pack-
age that we included in our system is the bootstrap. With the aid of this package a maximum
benefit from Angular can be achieved as it well-designed CSS elements that makes the design
of modern web content easy and smooth. The combination of this tool and the low-level
interface of Angular provides opportunities to create elegantly designed and powerful web ap-
plications which are able to utilise the web-services made available by the other components
in the technology stack.

4) Nodejs

The most important tool of the technology stack is called Node.js (mostly referred to just
Node). Node is a JavaScript execution environment on the server-side that is built on Google
Chrome’s V8 JavaScript runtime. It aids the development of concurrent and highly scalable
applications in a rapid manner. Web server environments that are either lightweight or even
high performance can be built using Node [C+15]. In the creation of web-service APIs it is an
optimal candidate. A number of leading companies in the market are using Node, PayPal
[Dic15] being one of them.

6.1.2 REST (Representational State Transfer) API

The Representational State Transfer (REST) is an architectural style that is applied on a
distributed hypermedia system. The adoption of this paradigm is increasing as it is considered
to be a clearer substitute to web services that are SOAP- and Web Services Description
Language (WSDL)-based [Rod]. The RESTful paradigm for web-services makes use of the
HTTP methods: POST, GET, PUT and DELETE[F+99b]. These HTTP operations allow the
mapping on to the fundamental CRUD database operations – Create, Read, Update and
Delete. With the construction of a simple URI the four HTTP methods can be linked to
functions that allow to Create, Read, Delete or Update entries inside a web-service. Any type
of authenticated user is able to consume this service afterwards. There are different types of
clients available, in our case the client is a web application.

48

6.2 Prototypical Implementaion

HTTP Status codes

For the implementation of the framework we also used HTTP status codes (see 2.6.5). These
status codes are standardised response codes that are outputted by the web server. With
the use of these codes we can diagnose the source of the problem when a web page or an
abject does not load as expected. There are two different types of groups to display errors;
4xx Client Error and 5xx Server Error. The additional groups are informational, confirming
success or redirecting. We applied the following list of status codes on our system [resa]:

1) 2xx Success

200 OK - This code means that the request has succeeded. The returned information depends
on what type of method was used in the request.

2) 4xx Client Error

400 Bad Request - When the server is not able to understand the request due to the syntax
being malformed. 404 Not Found - The request-URI cannot be matched to any resources by
the server.

3) 5xx Server Error

500 Internal Server Error - Generic error message when the server encounters an unpredictable
situation which prevented the normal processing of the request.

6.2 Prototypical Implementaion

The prototypical implementation of the DSS4MiddlewarePBenchamrking guides the user to the
conclusion of deciding which benchmark is more relevant.

6.2.1 Methodology Description

The following sequence diagram (see Figure 6.1) portrays the steps that lead to the rendering
of results on the user interface. First of all, the user selects different options and submits the
request on the user interface. The call is sent to a function of the Front-End Controller which
calls the method of the Service (Factory) that is responsible to send the request in form of a
HTTP request to the server. Once on the server, the call is matched against the existing APIs
defined as routes. If a matching URL is found, the call gets redirected to one of the methods
in the relevant Back-End Controller. In case of an error, the status code 500 for INTERNAL
SERVER ERROR is sent back to the Service (Factory). Upon success either the status code 200
for OK is sent or 404 for NOT FOUND. At the end, the response is forwarded to the Front-End
Controller which finally displays the response to the user.

49

6 Implementation

Figure 6.1: Sequence Diagram for Use Case Retrieve Results

6.2.2 Knowledgebase

The knowledgebase is made up of the data that is included inside the taxonomy mentioned
in section 4.3. For the implementation of our knowledge base the booming non-relational
database technology MongoDB is used. In the following table (see Table 6.1) a comparison
with the popular relational database management system (RDBMS) is made. The table con-
cludes on to why a non-relational solution is best suitable for our DSS4MiddlewarePBenchmarking
[Mon16].

All points mentioned above have led to the conclusion that MongoDB is in favour of the
DSS4MiddlewarePBenchmarking. Our system involves tables which have an irregular data
model, therefore a schemaless development was needed. With this approach new properties
could be introduced on the go without the need of performing schema evolutions and
data migration. Furthermore, as our system portrays a decision support system where it
is predictable that a great amount of querying is required in order to support the decision-
making, MongoDB is best suited for us as it is developer-friendly in regards to querying and
manipulating documents [Mon15].

Another reason why we chose MongoDB is that the adoption of MongoDB in the industry is
growing everyday and more and more companies are open to this fairly new technology. In
2013, eBay deployed their first Node.js web application based on MongoDB [Dic15].

50

6.2 Prototypical Implementaion

Feature MongoDB MySQL

Dynamic Schema Enables a dynamic schema that al-
lows adding tables on demand dur-
ing implementation.

Requires a strict schema for its
data model which means that
all tables should be created with
columns defined.

Data locality Related data is stored together to
provide fast query access which
omits the need of joining tables.

Multiple number of tables where
some queries require joining ta-
bles together.

Complexity Simplified development due to au-
tomatic mapping of MongoDB doc-
uments to object-oriented program-
ming languages.

Complex object-relational map-
ping (ORM) layer translating ob-
jects in code to relational tables.

Changeability Database schema is easily expand-
able with new requirements.

Small changes require more time
and effort.

Availability and
Scalability

Without any changes MongoDB
scales easily with no downtime.

Requires critical and custom en-
gineering effort.

RESTful
paradigm

Easily accessible via a RESTful
JSON API.

No simple access via REST ser-
vices, a much more complex SQL
API is required.

Data Manage-
ment

Querying and manipulation of data
requires a set of operators. The
unified representation is expressive
and easy to understand. Further-
more, no additional programming
language knowledge is required,
due to its self-explanatory nature.

The special purpose SQL pro-
gramming language is used to
manage data inside relational
database management systems.

Table 6.1: Feature comparison of MySQL and MongoDB

6.2.3 Resource Model

Our resource model described in section 5.2, highlights the resources and their interaction.
In regards to our implementation, the resources have been defined as single resources. The
interaction amongst them is highlighted by using IDs in order to relate resources to each other.
The listing 6.1 is shown to be consisting of the model definition for role resource with the
reference to the application scenario resource. They are mapped to our NoSQL database in
order to store relevant data like creating a role and then assigning the application scenario to it.
Despite the fact that we are using a schemaless database, these model definitions are provided
by mongoose for validation reasons, meaning that it prevents the storage of undefined data

51

6 Implementation

type inside resources. Furthermore, it is possible to define which fields are considered to be
required.

1 var mongoose = require('mongoose ');

2

3 module.exports = mongoose.model('Role ', {

4 type : {type : String , required: true},

5 number: {type : Number , required: true},

6 name : [{type : String}],

7 // reference of application scenario document

8 applicationScenario: {type: mongoose.Schema.ObjectId , required:

true , ref: 'ApplicationScenario '}

9 });

Listing 6.1: Model Definition of a single Resource

6.2.4 User Interface

The prototype is implemented as a RESTful web service fulfilling all non-functional require-
ments mentioned in section 4.1. According to the NFR-1 in table 4.2, the user interface should
have a qualitative usability with an easy interactive interface. The interface should be graph-
ical, web-based and user-friendly that allows querying the knowledgebase. The software
platform should be self-explained to the user, where the user knows exactly what the required
steps are.

In figure 6.2 the user interface of our DSS4MiddlewarePBenchamrking prototype is illustrated
were all main areas are highlighted accordingly. The Header area does not contain any
information regarding the functionality offered by the DSS4MiddlewarePBenchamrking but
rather contain general information such as heading. The sidebar provided at the left hand
side (i.e. sidebar admin) includes log in and CRUD operations that are provided for system
administrators. The majority of the screen is reserved for the selection area, where the user can
choose a combination of different check boxes and get the corresponding results displayed in
the divided result screen underneath.

The selection fields are divided into two different groups and an additional dynamic group
that only appears when a specific selection is made (see figure 6.6). The first group is
completely static, whereas the second group is partially static and some check boxes appear
dynamically. In the first group, the user is asked to select a specific middleware that he
is interested in. If there are not any preferences for a specific middleware the user can
simply select any which will show results for all middleware systems that are stored inside
the database 6.3). However, when selecting a specific middleware, the following groups
dynamically adjust, based on what information is stored inside the database for the selected
middleware.

52

6.2 Prototypical Implementaion

Figure 6.2: User Interface of the Prototypical Implementation

Upon selection of any in the first group, features that appear in the second group are the ones
covered by all middleware systems in general (see figure 6.3).

Figure 6.3: Body Area of the User Interface When no Specific Middleware is Selected

53

6 Implementation

When Message-Oriented Middleware (MOM) is selected in the first group, the following group
that covers the features automatically adjusts according to information related to MOM
(see figure 6.4). Accordingly, when Database Managements Systems (DBMS) is selected, only
features regarding to DBMS appear on the user interface for selection purposes (see figure
6.5). The dynamic group appears when the user is interested to know the user role mentioned

Figure 6.4: Body Area of the User Interface, MOM selected

inside the different application scenarios. Hereby, the selection is extended to an additional
group that provides the option to choose the application scenario of interest. However, the
expansion is not dependent on the selection of a specific middleware (see listing 6.2).

54

6.2 Prototypical Implementaion

Figure 6.5: Body Area of the User Interface, DBMS selected

Figure 6.6: Body Area of the User Interface, Additional Dynamic Group

55

6 Implementation

1 // on submit button click

2 // start with url ='/api

3 var url = "/api";

4 //check if a specific middleware is selected and it's not "any".

Append it to url.

5 if($scope.middlewareSelected && $scope.middlewareSelected !== '

any '){

6 url = url + "/ middlewares /"+ $scope.middlewareSelected

7 }

8 // the selection of the "feature group" selected is "user roles".

Append to url accordingly.

9 if($scope.featureSelected == "roles"){

10 if($scope.appScenarioSelected && $scope.appScenarioSelected !== "

any"){

11 url = "/api/application -scenarios /"+ $scope.appScenarioSelected+

"/roles"

12 }

13 else{

14 url = "/api/"+ "roles"

Listing 6.2: Additional Dynamic Group

6.2.5 Use Cases and Query Results

Our prototype creates the HTTP query upon selection of different fields on the front-end.
The predefined APIs include all combinations of each possible selection. Furthermore, the
different API designs that our system is capable to handle are provided in section 5.3. The
URLs can only contain queries that are constructed according to that design. In the following,
we provide examples on what shape the URLs take and how the corresponding user interface
is visualised.

Use Case 1

1. Query question: What are the data types that the messages inside my MOM-based system
can have?

2. HTTP query: localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1c/messages?
populate=1&fields[]=dataType

56

localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1c/messages?populate=1&fields[]=dataType
localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1c/messages?populate=1&fields[]=dataType

6.2 Prototypical Implementaion

3. Result displayed: Message has Data Type: TextMessage, ObjectMessage, StreamMes-
sage, MapMessage

4. Result in JSON:

1 "_id": "56 ef0de65f2f91fc163e8d3a",

2 "dataType ": [

3 "TextMessage",

4 "ObjectMessage",

5 "StreamMessage",

6 "MapMessage"

7]

5. Query visualisation on the user interface:

Figure 6.7: Datatypes for Messages in a MOM-based System

57

6 Implementation

Use Case 2

1. Query question: What types and measures of the workload have to be considered when
benchmarking a DBMS-based system?

2. HTTP query: localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1b/workloads?
populate=1&fields[]=type&fields[]=measure

3. Result displayed: Workload has Measure: Transaction-per-minute, Transaction-per-
second, Type: TpmC, tpsE.

4. Result in JSON:

1 "_id": "56 ef0de65f2f91fc163e8d23",

2 "measure ": [

3 "Transaction -per -minute",

4 "Transaction -per -second"

5],

6 "type": [

7 "TpmC",

8 "tpsE"

9]

5. Query visualisation on the user interface:

58

localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1b/workloads?populate=1&fields[]=type&fields[]=measure
localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1b/workloads?populate=1&fields[]=type&fields[]=measure

6.2 Prototypical Implementaion

Figure 6.8: Type and Measure of the Workload in a DBMS-based System

Use Case 3

1. Query question: What types and measures of the workload have to be considered when
benchmarking a DBMS-based system?

2. HTTP query: localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1a/benchmarks

3. Result displayed: Existing Benchmark of Java Server has Name : Specjbb2015 Consor-
tium : SPEC

4. Result in JSON:

1 "_id": "56 ef0de65f2f91fc163e8d20",

2 "middleware ": {

3 "name": "Java Server"

4 },

5 "name": "Specjbb2015",

6 "consortium ": "SPEC",

59

localhost:8080/api/middlewares/56ef0de65f2f91fc163e8d1a/benchmarks

6 Implementation

5. Query visualisation on the user interface:

Figure 6.9: Existing Benchmark for Java Servers

60

6.3 Installation and Configuration

6.3 Installation and Configuration

One important aspect that we seek in our design and implementation is a straightforward
installation of the framework in order to achieve a quick deployment. Therefore, we used
different package managers and the open source distributed version control system git [git].
The prerequisite for this framework is to have the full MEAN software technology stack
available.

The Node Package Manager (NPM) was used for installing Node.js modules and bower.js was
used to install front-end components like html, css and js. One of the file names included
in the .gitignore file is Node_modules(library home), when cloning the project repository from
Git for the first initialisation, the command npm install installs all dependencies from the
package.json file inside the, automatically generated, /Node_modules directory. Another file
name mentioned in .gitignore is the public/libs directory, when pulling the whole project from
Git for the first time, the command bower install installs all dependencies from the bower.json file
inside the public/libs directory that will also be created automatically. As these two directories
remain unchanged, it is best practice to avoid unnecessary load in terms of data transfers,
therefore the exclusion feature in git is convenient. This requires to run only two commands
when deploying the system for the first time and enables a speedy data transmission. The
details about these two dependency management tools are discussed in 6.1.1.

However, two aspects have to be considered every time the DSS4MiddlewarePBenchmarking is
started. Firstly, the MongoDB has to be started through the command line interface running
mongod.exe using its full path. Secondly, the server.js file has to run using the command node
server, this will display the port where the web application is made available on the localhost.
We worked on Ubuntu, Mac and Windows, therefore, the framework can be deployed on all
three platforms without complications.

61

6 Implementation

62

7 Validation and Evaluation

In this chapter, the prototype is validated with the help of POSTMAN API Client [pos]
according to the functionalities mentioned in the use cases in section 4.2. Furthermore, the
requirements discussed in section 4.1 must be fulfilled, thus the requirements need to be
validated. In order to achieve the validation, the responses received for specific requests are
matched with expected responses. A number of queries are defined and presented along with
their outputs.

7.1 Validation of the Queries

The following figures (figures 7.1, 7.2 and 7.3) validate the three use cases from section 6.2.5
using the postman API client. The descriptions about the queries and the expected results are
described in detail in section 6.2.5. All three use cases display the expected results and status
code 200 is displayed for the indication of success.

Figure 7.1: Validation of Use Case 1

63

7 Validation and Evaluation

Figure 7.2: Validation of Use Case 2

Figure 7.3: Validation of Use Case 3

7.2 Validation of CRUD operations

The operations to create, update and delete resources are also validated using the POSTMAN
API client. In the case of creating a resource, a POST method is used where it is necessary to
define the location of the new resource and include its content in the body section. When the
resource is successfully created, the status code 200 OK is displayed. In the case of updating a
resource, a PUT method is used together with the URL of the resource to be updated and the
content of required changes. Lastly, upon deletion of a resource, it is sufficient to define the
URL of the required resource to be deleted.

64

7.3 Validation of REST APIs

7.3 Validation of REST APIs

Different operations have been performed on the resources in order to investigate the re-
sponses. Therefore, the REST API Client postman [pos] is used for validation purposes (see
figure 7.4). The use cases defined in section 4.2 have led to the following responses:

1. Add, delete and update a resource - For the functionality of adding a new resource, a
POST method is required that contains the resource details along with a status code
that indicates success or failure of the request. In the case of removing a resource, a
DELETE method is requested and the status code. Similarly, for updating a resource,
PUT method is requested.

a) URL: /api/benchmarks
Method: POST
POST all parameters that are required for adding the corresponding resource
Status Code: 201 CREATED

b) URL: /api/benchmarks/:id
Method: DELETE
URL parameter includes the id of specific benchmark
Status Code: 200 OK

c) URL: /api/benchmarks/:id
Method: PUT
URL parameter contains the ID of the resource to be updated
Status Code: 200 OK

1. Retrieving results - For enabling to view results after selecting different criteria.

a) URL: /api/benchmarks?populate=1&fields[]=consortium
Method: GET
The response displays the information that is contained in the URL applied in
JSON format (see listing 7.1).
Status Code: 200 OK

65

/api/benchmarks
/api/benchmarks/:id
/api/benchmarks/:id
/api/benchmarks?populate=1&fields[]=consortium

7 Validation and Evaluation

b)
1 "_id": "56 ef0de65f2f91fc163e8d20",

2 "consortium ": "SPEC"

3 },

4 {

5 "_id": "56 ef0de65f2f91fc163e8d1f",

6 "consortium ": "SPEC"

7 },

8 {

9 "_id": "56 ef0de65f2f91fc163e8d1e",

10 "consortium ": "TPC"

11 },

12 {

13 "_id": "56 ef0de65f2f91fc163e8d1d",

14 "consortium ": "TPC"

Listing 7.1: JSON Response format

Figure 7.4: Request and Response Using POSTMAN API Client

66

8 Conclusion and Future Work

The application of benchmarks, in a specific sector, is a vital approach for continuous im-
provement in regards to the effectiveness. Not only does it provide the means to understand
the performance relatively close to competitors, it also enables the user to filter down into
performance gaps and identify areas for improvements. There are numerous benchmarks
on the market that are built for different softwares and hardwares. In terms of middleware
benchmarking, there are standardised and open-source benchmarks available. However, the
right selection of the required benchmark comes with the need of extensive research and
crucial design decisions. In this thesis we focus on providing the means to assist benchmark
users choose the suitable benchmark. We started by analysing standardised middleware
benchmarks in order to identify critical decision points. After identifying the decision points,
a taxonomy of the features and components in a benchmark was constructed. Lastly, a
web-based Decision Support System (DSS) was implemented on the basis of this taxonomy.
The DSS supports decision-making in terms of choosing the right features in the context of
middleware benchmarking. There are many functionalities that can be used in a combination
with web services, however, the main focus of easing the use of an application can be achieved
by using an architectural style which is modifiable, portable and simple. The REST paradigm
fulfills these aspects by allowing the user to identify the resources by using HTTP methods
along with the required URLs. Below the answers and notable findings to the Research
Objectives (RO) from Section 1.1 are stated.

Chapter 3 discussed the RO 1 1.1, since Section 3.1 described the benchmarking of middleware
in general. Section 3.2 outlined the current trends with middleware benchmarking where
the existing standard and open-source middleware benchmarks were addressed. Section
3.3 presented the need and features of DSS in general. Different types of DSS are depicted,
whereas the DSS4MiddlewarePBenchmarking is categorised as a knowledge-driven DSS, based
on the data in its knowledgebase. In regards to decision support systems in the field of
middleware benchmarking, a brief statement is provided was section 3.3 that described the
lack of this approach in the State of the Art.

In regards to the RO 2 1.1, Section 4.3 extensively covered all decision points which are
relevant for decision-making. Firstly, the overall taxonomy described the skeleton on which
the DSS is based on. Later, the focus laid on all relevant nodes inside the taxonomy. Each
decision point was considered with a graphical diagram and a description. Moreover, possible
outcomes of each decision point were also covered.

The answer to the RO 3 1.1 was discussed in Section 5.3 where the design rules for putting
the RESTful paradigm into practice were considered. All APIs included in the system
were designed according to the rules mentioned in that section. Furthermore, Section 4.1
investigated all functional and non-functional requirements that needed to be considered in
the implementation of the system.

67

8 Conclusion and Future Work

Finally, in regards to the RO 4 1.1, Chapter 6 covered all relevant aspects that needed to
be considered for the prototypical implementation. All technologies and frameworks used
for the system were described in Section 6.1. Alternatives that could have been considered
and why they were not applied are also listed. Section 6.2 included all main parts of the
implementation including screenshots. In Section 6.2.5 some functionalities provided by the
system were also visualised using three use cases where queries along with their query results
were shown.

8.1 Further Research

Based on this Master’s thesis further research aspects regarding the decision support system
for middleware benchmarking can be considered. The prototype developed in this thesis is a
first step towards the establishment of an actual decision support framework.

In future, a more comprehensive and refined development could be considered. Due to
the fact, that there was a literature gap in regards to middleware benchmarking as well as
DSS for benchmarking in general, it was a challenge to assemble the contrasting data into a
single knowledge base. However, we recommend to consider the expansion of the current
taxonomy into a complex taxonomy where information regarding hardware configuration of
the benchmark environment is also included. This means that information about concrete
platforms is also added, despite the fact that these platforms change over time, the system
could adapt manually to changing features. Later versions could also include more middle-
ware systems, in order to provide a richer decision-making tool. Furthermore, to improve the
data visualisation aspect the user interface can be designed in a more user-friendly way. The
output of query results can be implemented in a table format. Moreover, the process of this
work showed that selections made for certain decision points may constrain the selection in
other decision areas. These constraints have a possible impact on the overall decision-making
in the DSS4MiddlewarePBenchmarking. This problem can be addressed by further improving
the dynamic and multi-criteria selection approach.

68

Bibliography

[A+15] J. A. Arnold et al. How to Build a Benchmark. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering (ICPE ’15), pages 333–336.
ACM, 2015.

[Act06] JMeter Performance Test, 2006. http://activemq.apache.org/

jmeter-performance-tests.html.

[Agr15] S. Agrawal. A service-oriented and cloud-based statistical analysis framework. PhD
thesis, Stuttgart, Universitaet Stuttgart, Masterarbeit, 2015.

[ASB10] S. Appel, K. Sachs, and A. Buchmann. Towards Benchmarking of AMQP. In 4th
ACM International Conference on Distributed Event-Based Systems (DEBS’ 10), July
2010.

[AW96] A. Avritzer and E. J. Weyuker. Deriving Workloads for Performance Testing.
Softw. Pract. Exper., 26(6):613–633, 1996.

[AYV10] T. L. Alves, C. Ypma, and J. Visser. Deriving metric thresholds from benchmark
data. In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages
1–10, 2010.

[B+05] P. Brebner et al. Middleware benchmarking: approaches, results, experiences.
Concurrency and Computation: Practice and Experience, 17(15):1799 ––1805, Dec
2005.

[BC04] P. Bharati and A. Chaudhury. An empirical investigation of decision-making
satisfaction in web-based decision support systems. Decision support systems,
37(2):187–197, 2004.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and
D. Orchard. Web Services Architecture, W3C Working Group Note. World Wide
Web Consortium, Feb 2004.

[BPS07] H. K. Bhargava, D. J. Power, and D. Sun". Progress in Web-based decision
support technologies. Decision Support Systems, 43(4):1083 – 1095, 2007. Special
Issue Clusters.

[C+15] I. K. Chaniotis et al. Is Node.Js a Viable Option for Building Modern Web
Applications? A Performance Evaluation Study. Computing, 97(10):1023–1044,
Oct 2015.

[CMM96] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The Network-Enabled Optimization
System (NEOS) Server, 1996.

69

http://activemq.apache.org/jmeter-performance-tests.html
http://activemq.apache.org/jmeter-performance-tests.html

Bibliography

[DAM01] V. A. A. Daniel A. Menasce. Capacity Planning for Web Services: Metrics, Models,
and Methods, chapter Benchmarks and Performance Tests, pages 261–303. Prentice
Hall, 2001.

[Dic15] J. Dickey. Write Modern Web Apps with the MEAN Stack: Mongo, Express, AngularJS,
and Node.js (Develop and Design). 2015.

[EK97] D. Elmuti and Y. Kathawala. An overview of benchmarking process: a tool for
continuous improvement and competitive advantage. Benchmarking for Quality
Management & Technology, 4(4):229–243, 1997.

[Erl05] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

[F+99a] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. June 1999. http:

//www.hjp.at/doc/rfc/rfc2616.html.

[F+99b] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[Fie00] R. T. Fielding. REST: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[GGP02] D. G. Gregg, M. Goul, and A. Philippakis. Distributing decision support systems
on the WWW: the verification of a DSS metadata model. Decision Support Systems,
32(3):233 – 245, 2002.

[git] git. https://git-scm.com/.

[GMMS07] U. Guentzer, R. Mueller, S. Mueller, and R.-D. Schimkat. Retrieval for decision
support resources by structured models. Decision Support Systems, 43(4):1117–
1132, 2007.

[HSC99] K. Hemant, S. Suresh, and H. Craig. Beyond Spreadsheets: Software for Building
Decision Support Systems. IEEE Computer, 32(3):31–39, 1999.

[Hup09] K. Huppler. Performance Evaluation and Benchmarking: First TPC Technology
Conference, TPCTC 2009, Lyon, France, August 24-28, 2009, Revised Selected Papers,
chapter The Art of Building a Good Benchmark, pages 18–30. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[Inc16] W. Inc. benchmarking, 2016. http://www.businessdictionary.com/

definition/benchmarking.html.

[JBo06] JBoss. JBoss JMS New Performance Benchmark, 2006. https://developer.

jboss.org/welcome.

[Kou06] S. Kounev. Performance Engineering of Distributed Component-based Systems. Shaker
Verlag, 2006.

[Kra03] S. Krakowiak. What is Middleware. OW2 Consortium, 2003.

70

http://www.hjp.at/doc/rfc/rfc2616.html
http://www.hjp.at/doc/rfc/rfc2616.html
https://git-scm.com/
http://www.businessdictionary.com/definition/benchmarking.html
http://www.businessdictionary.com/definition/benchmarking.html
https://developer.jboss.org/welcome
https://developer.jboss.org/welcome

Bibliography

[KS09] S. Kounev and K. Sachs. Benchmarking and Performance Modeling of Event-
Based Systems. IT - Information Technology Heft 5 / 2009, 5, Sep 2009.

[Law05] G. Lawton. LAMP Lights Enterprise Development Efforts. Computer, 38(9):18–20,
2005.

[LL09] K. B. Laskey and K. Laskey. Service Oriented Architecture. Wiley Interdisciplinary
Reviews: Computational Statistics, 1(1):101–105, 2009.

[LR01] A. Leff and J. T. Rayfield. Web-Application Development Using the Mod-
el/View/Controller Design Pattern. In Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing (EDOC ’01), pages 118–127,
Washington, DC, USA, 2001. IEEE Computer Society.

[Ma05] K. J. Ma. Web services: what’s real and what’s not? IT Professional, 7(2):14–21,
Mar 2005.

[Mar99] D. Marshall. Remote Procedure Calls, May 1999. https://www.cs.cf.ac.uk/
Dave/C/node33.html.

[Mas11] M. Masse. Designing Consistent RESTful Web Service Interfaces. O’Reilly Media,
2011.

[Mea14] Mean. The Friendly and Fun Javascript Fullstack for your next web application,
2014. http://mean.io.

[Men] F. Menge. Enterprise Service Bus. https://programm.froscon.org/2007/

attachments/15-falko_menge_-_enterpise_service_bus.pdf.

[Mon15] Mongo. MySQL vs. MongoDB: Choosing a Data Management Solution, 2015.
https://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html.

[Mon16] Mongo. MongoDB and MySQL Compared, 2016. https://www.mongodb.com/
compare/mongodb-mysql.

[NW05] E. W. Ngai and F. Wat. Fuzzy decision support system for risk analysis in
e-commerce development. Decision support systems, 40(2):235–255, 2005.

[OvVSH16] W. Oude Nijeweme-d’Hollosy, L. van Velsen, R. Soer, and H. Hermens. Design
of a web-based clinical decision support system for guiding patients with low
back pain to the best next step in primary healthcare. In Proceedings of the 9th
International Joint Conference on Biomedical Engineering Systems and Technologies
(BIOSTEC 2016), volume 5: HEALTHINF, pages 229–239, Portugal, February
2016. SCITEPRESS ? Science and Technology Publications.

[PJC15] A. J. Poulter, S. Johnston, and S. Cox. Using the MEAN Stack to implement a
RESTful service for an Internet of Things Application. 2015.

[pos] postman. Postman REST API Client. http://www.ibm.com/developerworks/

library/ws-restful/.

71

https://www.cs.cf.ac.uk/Dave/C/node33.html
https://www.cs.cf.ac.uk/Dave/C/node33.html
http://mean.io
https://programm.froscon.org/2007/attachments/15-falko_menge_-_enterpise_service_bus.pdf
https://programm.froscon.org/2007/attachments/15-falko_menge_-_enterpise_service_bus.pdf
https://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html
https://www.mongodb.com/compare/mongodb-mysql
https://www.mongodb.com/compare/mongodb-mysql
http://www.ibm.com/developerworks/library/ws-restful/
http://www.ibm.com/developerworks/library/ws-restful/

Bibliography

[Pow02] D. Power. Decision Support Systems: Concepts and Resources for Managers. Quorum
Books, 2002.

[Pow04] D. J. Power. Specifying An Expanded Framework for Classifying and Describing
Decision Support Systems. The Communications of the Association for Information
Systems, 13(1):52, 2004.

[PSB15] D. J. Power, R. Sharda, and F. Burstein. Decision Support Systems. John Wiley and
Sons, Ltd, 2015.

[resa] rest. http://www.restapitutorial.com/httpstatuscodes.html.

[RESb] REST. REST Architectural Goals. http://whatisrest.com/rest_

architectural_goals/index.

[RHW14] C. Rock, S. Harrer, and G. Wirtz. Performance Benchmarking of BPEL Engines: A
Comparison Framework, Status Quo Evaluation and Challenges. In Proceedings
of the 26th International Conference on Software Engineering & Knowledge Engineering
(SEKE ’14), 2014.

[Rod] A. Rodriguez. http://www.ibm.com/developerworks/library/ws-restful/.

[SJ80] R. H. Sprague Jr. A framework for the development of decision support systems.
MIS quarterly, pages 1–26, 1980.

[SKAB09] K. Sachs, S. Kounev, S. Appel, and A. Buchmann. Benchmarking of Message-
oriented Middleware. In Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems (DEBS ’09), New York, NY, USA, 2009. ACM.

[SKBB07] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Workload characterization
of the SPECjms2007 benchmark. In Formal Methods and Stochastic Models for
Performance Evaluation, pages 228–244. Springer, 2007.

[SKBB09] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evaluation of
message-oriented middleware using the SPECjms2007 Benchmark. Performance
Evaluation, 66(8):410–434, Aug 2009.

[SKCB07] K. Sachs, S. Kounev, M. Carter, and A. Buchmann. Designing a Workload
Scenario for Benchmarking Message-Oriented Middleware. In Proceedings of the
2007 SPEC Benchmark Workshop, Austin, Texas, USA, January 2007. SPEC.

[SPE95] SPEC. Standard Performance Evaluation Corporation, 1995. https://www.spec.
org/spec/.

[SPE07] SPEC. SPECjms2007, 2007. https://www.spec.org/jms2007/.

[SPE15] SPEC. SPECjbb2015, 2015. https://www.spec.org/jbb2015/.

72

http://www.restapitutorial.com/httpstatuscodes.html
http://whatisrest.com/rest_architectural_goals/index
http://whatisrest.com/rest_architectural_goals/index
http://www.ibm.com/developerworks/library/ws-restful/
https://www.spec.org/spec/
https://www.spec.org/spec/
https://www.spec.org/jms2007/
https://www.spec.org/jbb2015/

Bibliography

[SRL+15] M. Skouradaki, H. D. Roller, F. Leymann, V. Ferme, and C. Pautasso. Techni-
cal Open Challenges on Benchmarking Workflow Management Systems. In
U. of Stuttgart, editor, Technical Report of the Symposum on Software Performance
(SOSP) 2014, pages 1–8. Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Stuttgart, January 2015.

[T+04] J. Tracey et al. Workflow Management System, Sep 2004. https://www.google.
com/patents/US6798413.

[The97] The Open Group. CDE 1.1: Remote Procedure Call, May 1997. http://pubs.

opengroup.org/onlinepubs/9629399/chap6.htm.

[Tig12] P. J. Y. Tigl. Middleware for Ubiquituous Computing, 2011-2012.

[TPC92a] TPC. TPC-C, 1992. http://www.tpc.org/tpcc/.

[TPC92b] TPC. TPC-E, 1992. http://www.tpc.org/tpce/.

[TPC92c] TPC. Transaction Processing Performance Council, 1992. http://www.tpc.org/
information/benchmarks.asp.

[Vin02] S. Vinoski. Where is middleware. Internet Computing, IEEE, 6(2):83–85, Mar 2002.

[W3S] W3SCHOOLS. HTTP Status Messages. http://www.w3schools.com/tags/ref_
httpmessages.asp.

All links were last followed on May 2, 2016

73

https://www.google.com/patents/US6798413
https://www.google.com/patents/US6798413
http://pubs.opengroup.org/onlinepubs/9629399/chap6.htm
http://pubs.opengroup.org/onlinepubs/9629399/chap6.htm
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://www.tpc.org/information/benchmarks.asp
http://www.tpc.org/information/benchmarks.asp
http://www.w3schools.com/tags/ref_httpmessages.asp
http://www.w3schools.com/tags/ref_httpmessages.asp

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, May 2, 2016 ——————————–
(Name)

	Introduction
	Challenge Statement and Research Objectives
	Thesis Outline

	Fundamentals
	What is Middleware?
	Remote Procedure Call (RPC)
	Message-Oriented Middleware (MOM)
	Workflow Management System (WfMS)
	Enterprise Service Bus (ESB)

	What is Benchmarking?
	Standardised Middleware Benchmarks
	SPEC JMS® 2007
	SPEC-JBB
	TPC-C
	TPC-E

	Performance Testing
	Decision Support Systems and Decision Support
	Service-Oriented Architecture (SOA)
	Web Services
	SOAP
	Web Service Description Language (WSDL)
	Universal Description, Discovery and Integration (UDDI)
	RESTful Web Service
	Hypertext Transfer Protocol (HTTP)

	Related Work
	Benchmark Architecture
	Current Trends with Middleware Benchmarking
	Web-Based Decision Support Systems

	Concept and Specification
	Requirement Analysis
	Use Cases
	Taxonomy
	Decision Point 1 - Middleware
	Decision Point 2 - Workload
	Decision Point 3 - Metric
	Decision Point 4 - Application Scenario
	Decision Point 4.1 - Role
	Decision Point 5 - Hardware
	Decision Point 6 - Scalability

	Design
	System Architecture
	Class Diagram
	RESTful API
	API Design

	Implementation
	Technologies and Frameworks
	The MongoDB, Expressjs, Angularjs and Nodejs Stack (MEAN Technology)
	REST (Representational State Transfer) API

	Prototypical Implementaion
	Methodology Description
	Knowledgebase
	Resource Model
	User Interface
	Use Cases and Query Results

	Installation and Configuration

	Validation and Evaluation
	Validation of the Queries
	Validation of CRUD operations
	Validation of REST APIs

	Conclusion and Future Work
	Further Research

	Bibliography

