
Institute of Software Technology

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 62

Model Counting of String

Constraints for Probabilistic

Symbolic Execution

Yannic Noller

Course of Study: Softwaretechnik

Examiner: Dr. rer. nat. Antonio Filieri

Supervisor: Dr. rer. nat. Antonio Filieri

Commenced: 2015/10/28

Completed: 2016/04/15

CR-Classification: D.2.4, D.2.5, F.4.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/159514468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Probabilistic symbolic execution is a static analysis technique aiming at quantifying the
probability of a target event occurring during a program execution; it exploits symbolic
execution to identify the conditions on the program inputs leading to the occurrence of the
target event and then model counting to quantify their probability. While efficient methods
exist for model counting of numeric constraints, only limited results have been obtained
for counting string constraints. The constraints are indeed first encoded in a corresponding
accepting automaton; then the number of accepting paths of the automaton is quantified
via a convenient generating function. The encoding in the form of automata limits the ex-
pressiveness of the formalism used for constraint specification to constructs mappable into
automata, for an exact model count. Furthermore, the encoding of disjunctions requires the
parallel composition of the automata representing the disjuncts, leading to an exponential
growth in the size of the resulting automata.

This thesis introduces the usage of SMT solvers to count the models of a string con-
straint by leveraging a standard smtlib interface. Several algorithms for both exact and
approximate model counting of string constraints are defined and compared. The different
solutions are implemented on top of the SMT solver CVC4 and evaluated on a set of estab-
lished benchmarks, demonstrating the increased expressiveness with respect to previous
approaches and improved performance on several classes of problems.

iii

Zusammenfassung

Probabilistic Symbolic Execution ist eine statische Analysetechnik, um die Eintrittswahr-
scheinlichkeit eines Ereignisses in der Programmausführung zu bestimmen. Es verwendet
dazu eine Kombination der herkömmlichen Symbolic Execution und dem Zählen von
Modellen. Symbolic Execution extrahiert die Pfadbedingungen, die notwendig sind, um zu
dem Ereignis zu gelangen. Indem man die Anzahl Möglichkeiten berechnet, diese Bedin-
gungen zu erfüllen, kann die Eintrittswahrscheinlichkeit des Ereignisses bestimmt werden.
Während für das Zählen von Modellen für numerische Bedingungen schon effiziente
Methoden publiziert wurden, existieren für das Zählen von Bedingungen mit Zeichen-
ketten zurzeit nur eingeschränkte Möglichkeiten. Die existierenden Techniken basieren
auf der Konstruktion von endlichen Zustandsautomaten, deren Sprache die erfüllenden
Zeichenketten akzeptieren. Die Anzahl Modelle ergibt sich durch die Bestimmung der
Anzahl akzeptierender Pfade in diesen Automaten. Diese Reduktion des Problems schränkt
die Teilmenge an formulierbaren Bedingungen ein, für welche die exakte Anzahl Modelle
bestimmt werden kann. Des Weiteren führen komplexe Bedingungen mit Verkettung von
Disjunktionen zu einer Zustandsexplosion im konstruierten Automaten.

Diese Thesis stellt ein Verfahren vor, das mit Hilfe von sogenannten SMT Solvern,
die Anzahl Modelle von Bedingungen mit Zeichenketten bestimmen kann. Es wurden
mehrere Algorithmen entwickelt, die unter Verwendung einer standardisierten SMT Solver
Schnittstelle die exakten also auch approximativen Mengen an Modellen berechnen können.
Als Implementierungsgrundlage wurde der SMT Solver CVC4 verwendet. Die Evaluation
des entwickelten Forschungsprototyps mit etablierten Benchmarktests zeigt die erweiterte
Ausdrucksfähigkeit der SMT-basierenden Verfahren gegenüber den existierenden Ansätzen.
Außerdem können bestimmte Problemklassen nun effizienter gelöst werden.

v

Contents

1 Introduction 1
1.1 Model Counting for String Constraints . 1
1.2 Goals . 2
1.3 Document Structure . 2

2 Background 5
2.1 (Probabilistic) Symbolic Execution . 5
2.2 Model Counting . 6
2.3 Solving String Constraints . 8

3 Model Counting with SMT Solvers 13
3.1 Survey of Approaches . 13
3.2 Survey of Solution Algorithms . 14

4 Implementation 29
4.1 Implementation Decisions . 29
4.2 Problems . 30
4.3 Constraint Parsing . 31
4.4 Algorithms . 32

5 Evaluation 35
5.1 Existing Benchmarks . 35
5.2 Comparison with Automata-Based Model Counters 36
5.3 Comparison of Solution Algorithms . 45

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 55

Bibliography 57

vii

Chapter 1

Introduction

1.1 Model Counting for String Constraints

Probabilistic symbolic execution (PSE) [Geldenhuys et al., 2012] is a recent static analysis
technique for reasoning about quantitative properties of a program, such as its reliabil-
ity [Filieri et al., 2013]. In general, PSE can be used to quantify the probability of a target
event occurring during a program execution. PSE relies on the combination of conventional
symbolic execution [King, 1976] and solution space quantification techniques. Symbolic
execution is used to identify the path conditions, i.e., a set of constraints on the program
input, whose satisfaction by input values would determine the target event to manifest
during the execution of the program. In finite domains the quantification can be achieved
via model counting. Model counting techniques are used to determine the number of solu-
tions (models) satisfying a given constraint. When the number of inputs satisfying a given
path condition is computed, the probability of an input triggering the target event can be
computed too, possibly taking into account the expected distributions of the inputs [Filieri
et al., 2013].

While efficient methods exist for model counting of numerical constraints (e.g., LattE
[Loera et al., 2004] for linear integer constraints and qCoral [Borges et al., 2014] for floating
point constraints), only limited results have been obtained for counting the models of
string constraints. The state of the art for model counting of string constraints is based
on the construction of finite state automata (FSA) that accept the language defined by the
constraints (e.g., ABC [Aydin et al., 2015]) and then counting the number of accepting paths
of the automaton, which corresponds to the number of solutions of the constraints. Since
an FSA can only represent constraints that may reduced to regular expressions, this model
counting approach provides limited expressiveness. A broader classes of constraints can be
handled by counting the models of a relaxation of non-regular constraints (which can be
accepted by FSA); however, the result would in this case be an upperbound on the number
of solutions, which may not fit for several analysis applications. Furthermore, the need to
reduce the constraints to a corresponding accepting FSA limits the possibility of combining
string constraints with other useful commonly used for program analysis, e.g., bounding
the length of a string with the result of an integer operation. Finally, constraints with
complex combinations of disjunctions and string concatenations lead to an exponential
growth in the size of the resulting automata [Aydin et al., 2015], which in turn lead to a

1

1. Introduction

combinatorial explosion of the number of paths and a may make the counting prohibitive.
Besides extending the applicability of PSE, model counting of string constraints has

several applications, especially in security (e.g., Luu et al. [2014]). For example model
counting can be used to quantify the strength of a secure password or the probability of
information leakage from program execution.

Model counting problems for propositional boolean constraints, #SAT, have been pro-
posed in literature (e.g., extending DPLL solution algorithms as in [Gomes et al., 2009]). A
similar thread of research is investigating the possibility of counting the models of SMT
constraints, #SMT (e.g., Chistikov et al. [2015]). The definition of SMT theories for the
satisfiability of string constraints is paving a new way for the application of #SMT results
to model counting problems for string constraints. These approaches have the potential of
overcoming the limitations of current model counting approaches, both by extending their
expressiveness beyond the constraints mappable to FSA and by allowing the combination
of multiple theories within the same constraint.

1.2 Goals

The goal of this thesis is the exploration and evaluation of #SMT procedures for model
counting for string constraints. A prototypical implementation of the studied #SMT proce-
dures has also been developed to evaluate the comparison of the different approaches on a
set of established benchmark.

1.3 Document Structure

The remaining thesis is structured in two parts: the first part includes Chapters 2, and 3,
covering the theoretical background, the description of the investigated model counting
approaches from literature, and the definition of specialized variations for counting the
models of string constraints; the second part includes Chapters 4, 5, and 6, discussing
the practical implementation, the evaluation of the different approaches, and the conclusion.

Chapter 2 Background contains the necessary background on probabilistic symbolic execu-
tion and surveys the state of the art of model counting and string constraint solving.

Chapter 3 Model Counting with SMT Solvers defines the proposed approaches and theories
for model counting of string constraints using SMT solvers.

Chapter 4 Implementation describes the implementations details of all the approaches, in-
cluding the design decision that have been made.

2

1.3. Document Structure

Chapter 5 Evaluation evaluates and compares the different approaches, identifying strengths
and limitations of each of them.

Chapter 6 Conclusions and Future Work presents some concluding remarks and sketches the
directions for future research.

3

Chapter 2

Background

This chapter starts with an overview about (probabilistic) symbolic execution, which
represents the main application scope of model counting. The subsequent part reviews
the state of the art of model counting and focuses on its application to string constraints.
Additionally, the chapter includes some benchmarks that are commonly used in the area of
model counting of string constraints.

2.1 (Probabilistic) Symbolic Execution

Symbolic execution (SE) was first introduced by King [1976] and means the execution of
the program with symbolic instead of concrete inputs. Instead of having one execution
path, SE generates an execution tree that contains different execution paths. It introduces
a path condition (PC) for every branching point in the program e.g. if-statements and
loop conditions. By solving these path conditions it is possible to generate test inputs
to meet certain coverage criteria like path coverage. Symbolic execution builds the PCs
incrementally during its execution and tries to avoid paths that are not reachable, i.e. paths
with an unsatisfiable path condition. SE uses an SMT solver to solve the PCs.

One of the main reasons behind the success of symbolic execution is that in the last
decade a dramatic increase took place in the computational power of modern computers.
Efficient decision procedures were developed by using this new achievements (see Orso
and Rothermel [2014]).

Although symbolic execution had a great success, it still has some problems that need
to be solved. Constraint solving can be very difficult for complex constraints like non-
linear constraints or constraints with native calls, which cannot be solved by SMT solvers.
Therefore dynamic symbolic execution techniques were developed to solve such constraints by
using a combination of symbolic and concrete execution (see e.g. directed automated random
testing (DART) by Godefroid et al. [2005]). Another problem is the path explosion for e.g.
loops or recursive function calls, which can be tackled with bounded symbolic execution
techniques with a bound on the search depth.

Probabilistic symbolic execution (PSE) by Geldenhuys et al. [2012] is an extension of the
classical SE by assigning probabilities to the program paths. This additional information
enables the probabilistic analysis of programs and can, for example, be used to find bugs
by using the most likely or unlikely path, to calculate code coverage probabilities for test

5

2. Background

cases and to calculate the probability of bugs. PSE can also be used for a reliability analysis
by using the probability of successful paths (see Filieri et al. [2013]). Geldenhuys et al.
stated that probabilistic symbolic execution can be performed by a combination of symbolic
execution and model counting. The following equation shows how the probability of a
path constraint can be calculated:

Pr(c) :=
#c
#D

(2.1)

where #c represents the number of solutions that satisfy the constraint c and #D represents
the size of the domain (which is assumed to be greater than zero).

2.2 Model Counting

Model counting means to determine the number of solutions for a logical formula. Gomes
et al. [2009] describe multiple approaches for model counting that can be divided into two
groups: exact and approximate model counting. Based on Gomes et al. these approaches are
presented in the following sections.

Exact model counting

The earliest practical approach for model counting was based on DPLL-style exhaustive
search. DPLL denotes Davis–Putnam–Logemann–Loveland and the DPLL-algorithm is a com-
plete, backtracking-based search algorithm for deciding the satisfiability of propositional
logic formulas in conjunctive normal form (CNF), i.e. for solving the CNF-SAT problem.
The model counter CDP by Birnbaum and Lozinskii [1999] computes the model count for a
n-variable formula by exploring the complete search tree. As in the backtracking-based
DPLL search, variables are selected iteratively and unsatisfiable branches are pruned. While
DPLL search only tries to find out whether the formula is satisfiable, CDP tries to find the
exact count of models for the given formula. Algorithm 1 is the recursive version of the CDP

algorithm to count the models for a given formula F: If the current formula contains the
empty clause, then it is unsatisfiable and the model count is zero. If all clauses are satisfied
in the current formula, regardless from the number of assigned variables, then it returns
the number 2n�t, i.e. the number of all possible assignments to the unassigned boolean
variables. The function returns the sum of the recursive calls, in which a selected variable
was assigned to TRUE and FALSE.

The DPLL approach can also be used to calculate partial counts, i.e. upper or lower
bounds. Gomes et al. mention several optimization approaches. For example, the disjoint
components in F can be identified by using component analysis. These components can
be solved separately and the results can be merged by multiplication. This approach is
implemented in the model counter Relsat by Bayardo and Pehoushek [2000]. Another
optimization is the caching of results for reappearing sub formulas, e.g. the research by
Bacchus et al. [2003].

6

2.2. Model Counting

Input : A CNF formula F over n variables; the recursion depth t initially set to 0
Output : #F, the model count of F
begin

UnitPropagate(F);
if F has an empty clause then return 0;
if all clauses of F are satisfied then return 2n�t;
x Ð SelectBranchVariable(F);
return CDP(F|x, t + 1) + CDP(F|

 x, t + 1);
end

Algorithm 1: Exact model counting with model counter CDP, called as CDP(F, 0) [Birn-
baum and Lozinskii, 1999]

Another approach for exact model counting is called Knowledge Compilation and means
the compilation/conversion of the given CNF formula into another logical form. By using
resources and effort for the conversion, this new form is meant to provide some advantage
in terms of retrieving the model count, i.e. it is capable of deducing the model count more
efficient than the original form. For example Darwiche [2004] introduced the compiler c2d,
which converts a given CNF into a form that is a strict superset of ordered binary decision
trees (BDDs) called d-DNNF. The properties of this form encourage model counting by
performing a topological traversal of the underlying acyclic graph.

Approximate model counting

Based on the fact that most model counting methods handle a problem within combinatorial
search space, they might not scale up to larger problem sizes. Therefore, it might be easier
and more suitable to provide lower or upper bounds for the model count. This is called
approximate model counting. Gomes et al. mention that many applications of model counting
do not even care about an exact count, as long as they get a sort of quality factor for the
estimation. Thus one can divide approximate model counting methods into two groups:
estimations without guarantees and with guarantees.

Approximate model counting without guarantees: Wei and Selman [2005] introduced
their model counter ApproxCount that uses local search with Markov Chain Monte Carlo
(MCMC) sampling to compute an approximate number of models for a given formula.
The basic idea originate from Jerrum et al. [1986]. They reduce model counting for F to a
simpler formula. Assume one could sample the satisfying assignments (near-)uniformly.
Then select a variable x and look for the truth value that occurs more often in the sample
data, e.g. this would be TRUE. Then build the simpler formula F+ = F|x=TRUE. This process
can be repeated recursively until the resulting simplified formula can be counted by exact

7

2. Background

model counting methods. For the complete sample data we can count the number of
satisfying assignments devoted as M and we can count the satisfying assignments where
x is set TRUE devoted as M+. Based on the fraction γ = M+

M , the model count of F is
(approximately) 1

γ � F+ (assuming γ � 0). The result of this method depends on how
good one can sample (near-)uniformly. The method does not provide any guarantee for the
model count. According to Gomes et al. ApproxCount is, compared to exact model counters,
extremely fast and has been shown to provide very good estimates.

Gogate and Dechter [2007] introduced their model counter SampleMinisat, which uses
DPLL-based SAT solvers to build backtrack-free search spaces, i.e. without unsatisfiable
branches, completely or approximately. Their approach uses the importance sampling
technique by Rubinstein [1981]. According to Gomes et al. SampleMinisat can provide very
good estimates of the model count when the formula is within the reach of DPLL-based
methods.

Approximate model counting with guarantees: Based on the presented model counter
ApproxCount Gomes et al. [2007] developed the model counter SampleCount, which uses
sampling with a modified and randomized strategy. This model counter provides provable
lower bounds on the total model count with high confidence (probabilistic) correctness
guarantees. The underlying sampler is not used to select the variable and to compute the
multiplier γ, but to determine the order of how to select the variables. The goal is to select
variables so that the search space is divided most evenly.

Another, totally different, method for model counting is called XOR-streamlining and
was presented by Gomes et al. [2006] with the model counter MBound. It adds non-redundant
constraints to the original problem to focus the search on a subspace. This technique called
streamlining constraints was shown to be successful in solving very hard combinatorial
design problems. By hoping that the narrowed problem still contains solutions, it might
be solved much easier than the original one. MBound works as follows: Like the name
suggests, XOR constraints are added repeatedly to the formula as additional CNF clauses.
The constraints are chosen randomly. This extended formula is checked with a state-of-
the-art SAT solver for satisfiability. Intuitively, every random XOR constraint cuts the
solution space approximately half. So if the extended formula is still satisfiable and s XOR
constraints were added, then the original formula must have at least of the order of 2s

models. By repeating the addition of s constraints in t experiments one can show that there
is probabilistic correctness guarantee of 1� 2�αt that the original formula has at least 2s�α

satisfying assignments for any α ¡ 0. There are approaches to increase the efficiency by e.g.
using an exact model counter instead of the SAT solver.

2.3 Solving String Constraints

The presented model counting techniques in the previous chapter 2.2 were developed for
propositional formulas and the ideas cannot be mapped easily to string constraints. For

8

2.3. Solving String Constraints

example the model counter SampleCount selects variables to assign a value of the alphabet
(here TRUE or FALSE) to them. Selecting a variable in string constraints would mean selecting
a character at a position in the string. This can be done, but then the string represents an
AND combination of all characters. This means that it is necessary to select characters for
all positions before stopping the selection and before be able to check the satisfiability of
the generated string. In propositional formulas it is possible to simplify the constraint to
a CNF. In order to evaluate the CNF to TRUE, it is sufficient to find an assignment for a
subset of the variables that satisfies all clauses. Then the model count for this path can be
calculated via 2number o f not assigned variables. Assuming that we can evaluate the formula to
TRUE without selecting many variables, this is very time efficient. This method does not
work for string variables. Hence, there is a need for other methods and technologies that
are described in the following section.

2.3.1 Automata-Based Counting

Yu and Cova [2008] proposed a new automata-based algorithm to do string analysis on
PHP programs to identify security vulnerabilities. Their work can be divided into two parts:
They developed a front-end that translates the PHP program into a flow graph. This flow
graph is an abstract representation of the program to be able to do programming language
independent string manipulations. Secondly, they developed an algorithm to analyze and
transform the flow graph into a finite state automaton (FSA). The FSA is updated according
to the string manipulation along the control flow, by accepting the regular language that
summarizes all possible values of the string expression. At the end they generate for each
string expression the intersection between the accepted strings, i.e. the built FSA, and the
set of attacking strings. An empty intersection means that the PHP program is proven to
be vulnerable free, otherwise the algorithm terminates with a violating counter example.
Yu et al. implemented a prototype tool called STRing AutomatoN GEneratoR (STRANGER) and
showed how to build an FSA to accept string expressions. That supported other researchers
in that area, for example Aydin et al. [2015].

Luu et al. [2014] introduced, based on the work by Flajolet and Sedgewick [2009] on
analytic combinatorics, the idea to leverage generating functions for model counting of string
constraints. Their tool String Model Counter (SMC) transforms the given constraint into its
own constraint language and produces a generating function. This function can be used to
calculate the number of satisfying string values. The SMC constraint language is expressive
enough to model constraints arising in real world JavaScript applications and UNIX C
utilities. Luu et al. evaluated their results on an application to assess the strength of a new
password in case the old password was revealed by an attacker and the attacker knows the
constraints for the new password.

Similarly, Aydin et al. [2015] recently presented their automata-based model counter
for string constraints called ABC. Their technique consists of two steps: (1) Construction
of an automaton for accepting the satisfying values for the given variable and string
constraint. (2) Given the automaton they generate a function that computes the number of

9

2. Background

accepting values based on the length bound. Their constraint language can handle regular
language queries, word equation with concatenation and replacement as well as arithmetic
constraints on string length (see Table 5.4). ABC is at the moment the most efficient and
most applicable model counter of string constraints. Hence, it is used as comparison in
chapter 5.

2.3.2 SMT Solvers

Satisfiability Modulo Theories (SMT) problems are a decision problems for logical formulas
with respect to combinations of background theories expressed in first-order logic. In-
tuitively SMT solvers solve SAT problems for logical formulas in predicate logic. These
predicates can represent boolean variables but also variables of the mentioned background
theories. Background theories can be e.g. the theory of integers, the theory of real numbers
and the theory of strings.

Liang et al. [2014] introduced their technique for solving mixed theory constraints
including strings and linear integer arithmetics. Their approach can be integrated into the
DPLL(T) framework Nieuwenhuis et al. [2006] that combines an SAT solver with multiple
specialized theory solvers for conjunctions of constraints over a certain theory, here linear
integer arithmetics, strings and regular languages. They support a constraint language
that includes quantifier-free constraints over unbounded strings with length and regular
language membership. Liang et al. use an already existent, standard solver for linear integer
arithmetic constraints and a new solver for string and regular language constraints. By
applying various abstract derivation rules to the initial constraint inputs they check the
consistency (and hence the satisfiability) of the constraints. The solvers are combined via
the Nelson-Oppen theory combination [Nelson and Oppen, 1979], where entailed equalities
are communicated between these solvers, i.e. here terms about the length of string variables
generated via rules that are mentioned above. Liang et al. implemented the approach
within their SMT solver CVC4. They did an experimental comparison with the string solvers
Z3-STR [Zheng et al., 2013] and Kaluza [Saxena et al., 2010] showing that their solver is
highly competitive with them.

Phan and Malacaria [2015] investigated SMT procedures for model counting with
respect to a set of boolean variables. They proposed the idea to use Blocking Clause methods
and a Depth-First-Search for model counting. Phan et al. built their prototype aZ3 on top
of the SMT solver Z3. They showcased their solver with the Quantitative Information Flow
analysis (see Phan and Malacaria [2014]).

2.3.3 Open Challenges

After the preliminary research on model counting of string constraints and to the best of the
thesis author’s knowledge there are no approaches besides the ones in the above presented
sections. Therefore, state of the art approaches for model counting of string constraints
use a reduction to other decision problems like the extraction of the generating function

10

2.3. Solving String Constraints

for an automaton. This includes drawbacks like the resource-intensive construction of
the automaton, which might lead to serious performance bottlenecks. More specifically,
automata-based approaches have the restriction to work only on linear constraints and
solving on linear arithmetics is not possible or at least not efficient. The construction
of an automaton for disjunctions leads to an exponential growth in state space, which
is also called state explosion. Automata-based approaches can be used only on string
constraints and do not provide the opportunity to mix different kinds of constraints, e.g.
string constraints and numeric constraints. A more general approach is needed to cover all
conditions in a program.

11

Chapter 3

Model Counting with SMT Solvers

This chapter describes the various possibilities on how to count models with SMT solvers,
also denoted as #SMT. It is divided in two parts: section 3.1 contains the general discussion
of the different approaches and section 3.2 contains the the pseudo code and the discussion
of various algorithms that are able to count models using the SMT API functions.

3.1 Survey of Approaches

This section contains the description of the three approaches on how an SMT solver can be
used for model counting: (i) adjusting the string model generation of the SMT solver, (ii)
using the SMT API and (iii) use constraint files as external input for the SMT solver.

3.1.1 SMT Model Generation

An SMT solver has the functionality to produce a model for a satisfiable formula. The
Blocking Cause Method (see chapter 3.2.2) uses this functionality, but in quite inefficient
manner like later described. In order to use this functionality in an efficient way, it is
necessary to adjust the generation of the models directly on the search tree of the SMT
solver. Unfortunately, this part of the solver is not well documented (e.g. for Z3-STR [Zheng
et al., 2013] and CVC4 [Barrett et al., 2011; Liang et al., 2014]), so it would be very cumbersome
to follow this approach.

3.1.2 SMT API Usage

An SMT solver provides the API functions presented in Table 3.1 to use it for the incremental
solving of constraints. These operations can be used to assert a value for the string variable
for that the models should be counted. Then the formula can be checked whether it is still
satisfiable and afterwards the original formula can be restored via the stack mechanism. It
is also possible to incrementally check a string value for satisfiability. This means that the
SMT solver acts like a oracle in the search for string models.

13

3. Model Counting with SMT Solvers

Table 3.1. API of SMT solver.

Operation Description
Push() Create a backtracking point.
Pop() Backtrack to the previous point.
Assert(f) Assert formula f into the solver.
Check() Check satisfiability of the asserted formula.
Model(var) Get model of the last check for variable var.

3.1.3 Constraint File Adjustment

In case an SMT solver does not provide the above presented API or the API is not accessible
(e.g. the API support is missing for a certain programming language), then it is also possible
to add the assertion that would have been made via the Assert() function, directly to the
constraint file. Obviously, this leads to an immense overhead of I/O operations.

3.1.4 Selection of the Research Approach

Due to fact that the SMT Model Generation is not well documented and the Constraint File
Adjustment leads to an immense overhead of I/O operations, this thesis focuses on model
counting of string constraints with the SMT API Usage. Nevertheless at the beginning
of this thesis the Constraint File Adjustment was used to check the feasibility of #SMT
because the APIs of the SMT solvers were not fully accessible. The following section 3.2
provides the corresponding algorithms that search string models by using the an SMT
solver as oracle.

3.2 Survey of Solution Algorithms

This section contains several algorithms that were identified during the research on how
to use the API of an SMT solver for model counting of string constraints with a fixed
length bound. They can be summarized in four categories: the Random Search Method
(see chapter 3.2.1) that simply generates randomly string values and check the satisfiability
for them, the Blocking Clause Method (see chapter 3.2.2) that uses the functionality of an
SMT solver to produce models, Depth-first Search Methods (see chapters 3.2.3, 3.2.4 and
3.2.5) that systematically investigate the search tree and Monte Carlo Methods (see chapter
3.2.6) that kind of use a directed search. All of them can be executed in the environment
algorithm, shown in Algorithm 2, which does a precheck of the constraint satisfiability and
the satisfiability of the given length bound.

14

3.2. Survey of Solution Algorithms

Input : the formula F; the lengthBound for the string models
Output : #F, the model count of F
begin

Assert(F);
Assert(length(x) ¤ lengthBound);
if (Check() � SAT) then

error("the constraint is not satisfiable");
return 0;

end

count = RandomSearch(..) / BlockCount(..) / DFS(..) / MCTS(..) / ... ;

return count;
end

Algorithm 2: Environment Algorithm
As already mentioned, these algorithms have different characteristics that leads to that

there are constraints for which one of them is more suitable than the others. The discussion
of this characteristics is summarized in the chapter 5.3 Comparison of Solution Algorithms.

3.2.1 Random Search

The Random Search algorithm (see Algorithm 3) is meant to be a baseline for the per-
formance of the other algorithms. It generates randomly string values and checks their
satisfiability for the given variable and formula. It is the most naive approach to search for
string models of a constraint. As input it requires the calculation budget, e.g. a time bound,
the string variable for which the models are counted and the length bound of the string
variable. As output it produces a lower bound for the model count of the given formula.
Since this approach is very naive and is no systematic search, there are no checks whether
there are remaining models that were not checked yet. So in principle, the algorithm runs
forever, up to the point there is no remaining budget.

The function randomChooseLength(lengthBound) chooses the length for current iteration
with the probability:

p(length) :=
|A|length

∑
lengthBound
i=0 |A|i

(3.1)

where A is the alphabet. Therefore the length with the most possible string values is
the most likely one to be chosen. The function randomChooseAlphabetCharacter() chooses
uniformly distributed a character from the alphabet A. In this thesis Random Search is
only used with a time bound to get an impression how the other algorithms perform,

15

3. Model Counting with SMT Solvers

but it is also possible to use Random Search as approximate model counting algorithm.
Therefore you have to calculate the necessary number of tested string values to get a
statistical significant result or to assess statistical significance afterwards.

Input : the calculation budget; the string variable x for which the models are
counted; the lengthBound

Output : #F, the model count of F
begin

count := 0;
while (enough remaining budget) do

length := randomChooseLength(lengthBound);

value := "";
for (i=0; i<length; i++) do

value += randomChooseAlphabetCharacter();
end

if (value not already checked) then
Push();
Assert(x = value);
if (Check() = SAT) then

count++;
end
Pop();

end
end
return count;

end

Algorithm 3: Random Search, called as RandomSearch(budget, x, lengthBound)

Darbon et al. [2006] show that the sample size can be calculated as:

N :=
ln(2

δ)

2ε2 (3.2)

in order to get an estimated model count for the probability equation:

Pr(|estimate� actualValue| ¤ ε) ¥ 1� δ (3.3)

where δ is called the confidence parameter and ε is called the approximation parameter. They
use an simplified version of the Chernoff-Hoeffding bounds [Hoeffding, 1963].

One can assess the statistical significance of the approximate model count by using the

16

3.2. Survey of Solution Algorithms

idea of "hit-or-miss" (HM-MC) (see e.g. Robert and Casella [2005]). The variance of the
ratio between the number of satisfiable string values and the total number of generated
string values can be used as accuracy measurement. As shown in Equation 2 of Borges et al.
[2015] the variance decreases with the number of samples and this increases the accuracy.

3.2.2 Blocking Clause Algorithm

The Blocking Clause algorithm (see Algorithm 4) exploits the functionality of the SMT
solver to produce models. The idea is to iteratively ask for a model and then add it negated
to the actual formula. This avoids to produce a model twice. As input it requires the string
variable for which the models are counted. An optional input is the calculation budget, e.g.
a time bound. Without a calculation budget the Blocking Clause produces the exact model
count. With a calculation budget the Blocking Clause produces a lower bound of the model
count (or the exact count if the budget is large enough). Since it adds more constraints
continuously, the solving time for the next model increases with each step.

Input : the calculation budget; the string variable x for which the models are
counted

Output : #F, the model count of F
begin

count := 0;
while (Check() = SAT & enough remaining budget) do

count++;
m := Model(x);
Assert(x�m);

end
return count;

end

Algorithm 4: Blocking Clause, called as BlockingClause(budget, x)
The algorithm does not use the API operations Push() and Pop() because it iteratively
builds a new constraint and never needs to backtrack to a previous state of the asserted
formula.

3.2.3 Depth-First Search Algorithms

The standard Depth-First Search algorithm (see Algorithm 5) investigates systematically
the total search space. It iterates the complete alphabet for every position in the string
value. Therefore the algorithm uses the well known recursive depth-first search with back-
tracking. Before investigating a path, the algorithm checks whether the current prefix of

17

3. Model Counting with SMT Solvers

the string value is satisfiable. This enables the efficient pruning of the unsatisfiable search
space. The algorithm requires as input the current recursion depth (starting with 0), the
maximum recursion depth (= length bound), the current string value (starting with the
empty string) and the string variable for which the models are counted. An optional input
is the calculation budget, e.g. a time bound. Without a calculation budget the DFS produces
the exact model count. With a calculation budget the DFS produces a lower bound of the
model count (or the exact count if the budget is large enough).

Input : the current recursion depth; the maximum recursion depth (= length
bound) maxDepth; the calculation budget; the current string value toCheck;
the string variable x for which the models are counted

Output : #F, the model count of F
begin

if (budget exhausted) then
return 0;

end

count := 0;
Push();
Assert(prefix(x) = toCheck);
if (Check() � SAT) then

Pop();
return 0;

end
Assert(x = toCheck);
if (Check() = SAT) then

count++;
end
Pop();

if (depth < maxDepth) then
for (letter in alphabet) do

count += DFS(depth+1, maxDepth, budget, toCheck+letter, x);
end

end
return count;

end

Algorithm 5: Depth-First Search, called as DFS(0, lengthBound, budget, "", x)

To check the satisfiability the presented pseudo code always uses a full variable check,

18

3.2. Survey of Solution Algorithms

e.g. Assert(x = "pass123") or Assert(prefix(x) = "code"), and the Push() and Pop() operations
to reset the solver’s formula. There are also other ways to do that, e.g. asserting characters
for positions with a CharAt() operation, but this would assume that all SMT solver support
this string operation. That is why the presented pseudo code tries to stay general. Chapter
4 discusses various implementation variants.

3.2.4 Randomized DFS

Since the standard DFS algorithm performs an exhaustive search and the scalability of
DFS is limited (see chapter 5.2.1), it is worthwhile to investigate methods that search only
in a subset of the search space. One way is to randomize the DFS on various parts. The
randomization results in an estimated model count that is sufficient for many practical
cases (see chapter 2.2). The following three sections show approaches on the randomiza-
tion of backtracking, extracted and adjusted from Parízek and Lhoták [2011] and Lynce
and Marques-Silva [2007]. These three approaches resulted in two algorithms that were
implemented for this thesis. They are described in the chapter 4 Implementation.

Randomized Alphabet

The simplest randomization approach for DFS is to randomize the order of the traversed
alphabet for every for loop (see Algorithm 6). This will make no difference for an exhaustive
search without a budget, but with a budget the DFS with randomized alphabet will find
on average more models. The alphabet get randomized uniformly, so there is no need for
an extra parameter.

...

if (depth < maxDepth) then
for (letter in randomize(alphabet)) do

count += DFS(depth+1, maxDepth, budget, toCheck+letter, x);
end

end
...

Algorithm 6: Extension of the Depth-First Search algorithm for the randomized alphabet.

Randomized Character Selection

A way to reduce the search space is to randomly skip characters. An efficient way to do that
is to skip letters with a given probability and continue with the next one (see Algorithm 7).
Therefore the standard DFS needs as additional input the probability s for that a character
is skipped. The resulting model count is a lower bound approximation.

19

3. Model Counting with SMT Solvers

Input : ...; factor s that is used to skip a character
...

for (letter in alphabet) do
if (random() < s) then

continue;
end
count += DFS(depth+1, maxDepth, budget, toCheck+letter, x);

end
...

Algorithm 7: Extension of the Depth-First Search algorithm for skipping characters
randomly.

Randomized Backtracking

Another way to reduce the search space is to randomly extend the step size for backtrack-
ing. This can be done by backtracking again after a previous backtrack step with a given
probability (see Algorithm 8). Therefore the standard DFS needs as additional input the
probability b for that the backtracking size is extended. The resulting model count is a
lower bound approximation.

Input : ...; factor b that is used to backtrack randomly more than one step
...

for (letter in alphabet) do
count += DFS(depth+1, maxDepth, budget, toCheck+letter, x);
if (random() < b) then

break;
end

end
...

Algorithm 8: Extension of the Depth-First Search algorithm for backtracking randomly
more than one step.

Nevertheless, the above presented randomization techniques do not lead to a uniformed
sampling of the search space because shorter strings are generated with a higher probability
than longer ones. Therefore it is not possible to guarantee the resulting estimated model
count. The next section DFS with Uniform Sampling tackles this problem.

20

3.2. Survey of Solution Algorithms

3.2.5 DFS with Uniform Sampling

In order to achieve an uniform sampling, and therefore be able to guarantee the estimated
model count, the Algorithm 9 first generates the set of feasible string values, i.e. string
values that are satisfiable as prefix of the given string variable, and then checks only a
subset of it for satisfiability. The algorithm requires as input the length bound of the string
variable, the string variable for which the models are counted and the sampling ratio. An
optional input is the calculation budget, e.g. a time bound. Without a calculation budget
and a sampling ratio equals to 1.0 the DFS with Uniform Sampling produces the exact
model count. With a calculation budget or a sampling ration other than 1.0 the DFS with
Uniform Sampling produces an approximated model count that can be lower, higher or
equal the actual model count. Similar as described in chapter 3.2.1 Random Search the
sample size and hence the sample ratio can be calculated for statistical significance.

Input : the lengthBound; the calculation budget; the string variable x for which
the models are counted; the sampling ratio

Output : #F, the model count of F
begin

feasibleStrings := calculateFeasibleStrings(0, lengthBound, budget, "", x);
sampleSet := calculateSubSet(feasibleStrings, ratio);
count := 0;
for (value in sampleSet) do

Push();
Assert(x = value);
if (Check() = SAT) then

count++;
end
Pop();

end
return count

|sampleSet| � | f easibleStrings|;
end

Algorithm 9: Depth-First Search with uniformed Sampling, called as DFS_sam-
pled(lengthBound, budget, x, ratio)

The function calculateFeasibleStrings(..) performs a standard depth-first search and returns
all string values that are visited during the execution and that are satisfiable as the prefix
of the given string variable. This set of strings is called feasible strings. The function calcu-
lateSubSet(..) samples the feasible strings according to the given sampling ratio uniformly.

21

3. Model Counting with SMT Solvers

At the end the approximated count is calculated via the formula:

approxCount :=
|sat elements o f sampleSet|

|sampleSet| � | f easibleStrings| (3.4)

3.2.6 Monte Carlo Tree Search

All the above presented algorithms lack in one characteristic: they do not search in certain
direction for satisfiable strings, but they do a systematical investigation of the search space.
The here presented Monte Carlo Tree Search algorithm (MCTS) is an adoption of the Monte
Carlo Tree Search with a UCB tree selection policy (see e.g. Browne et al. [2012]) and does
provide such a directed search. Since the algorithm is quite complex, it is presented in five
parts that are described in the following paragraphs.

The function MCTS(..) (see Algorithm 10) represents the actual algorithm and calls the
other parts. It calls the procedure resetStatistics() to reset all counters and temporary lists
that are used to calculate the scores or to avoid generating a string value twice. The function
checkSat(..) is a shortcut for the sequence of Push(), Assert(), Check() and Pop() calls to check
the satisfiability of the given string value. The function chooseMostLikelyTerminationLength() is
used to determine the termination length for the current iteration by using the information
of previous runs. As input the algorithm requires the length bound of the string variable,
the string variable for which the models are counted, the number of models that are
used for the initialization of the search direction and the exploration factor c that is used
for the calculation of the scores. An optional input is the calculation budget, e.g. a time
bound. Without a calculation budget the algorithm produces the exact model count. With a
calculation budget produces a lower bound of the model count.

The function initSearchDirection(..) (see Algorithm 11) initializes the search direction
by generating models via the Blocking Clause Method and using them as input for the
function backpropagate(..). Therefore the calculation of the scores get influenced in direction
of the already checked models. As input the algorithms requires the number of models
that should be generated. As output the algorithm returns the number of actual generated
models, which can be smaller than the requested number if the formula does not provide
so much models.

The procedure backpropagate(..) (see Algorithm 12) is used to store the information of
the already checked string values to influence calculation of the scores and hence the later
search direction. It uses the arrays N that stores the number of visits per string value and
Q that stores the number of visits per string value if the checked value was satisfiable. As
input the algorithm requires the checked string value and the result of the satisfiability
check.

The function generateNextStringValue(..) (see Algorithm 13) generates the next string
value that will be checked with the requirement not to choose a string twice. This algorithm
operates recursively based on DFS, but in order to find the next letter it does not iterate
the alphabet, but calls the function chooseNextCharacter(..). As input it requires the current

22

3.2. Survey of Solution Algorithms

string value (starting with the empty string), the current recursion depth (starting with
zero), the maximum recursion depth, i.e. the termination depth for this iteration, and the
exploration factor c. As output it returns the generated string value or one of the following
error codes: EXHAUSTED if there is no remaining letter that can be chosen for the given prefix
or UNSAT_PREFIX if the given prefix is not satisfiable.

The function chooseNextCharacter(..) (see Algorithm 14) calculates the scores for the
possible next letters for the given prefix and returns the letter with the highest score. There
are three heuristics to calculate the score of a letter that was not chosen yet to append
the given prefix: (1) First Exploration that first explores all possible letters before choosing
one again, (2) First Play Urgency that first tries to exploit the already used letters and (3)
Most Likely Position that is the First Play Urgency for letters that were not chosen yet for the
current position and otherwise it chooses the letter that was chosen most successfully for
this position. The algorithm requires as input the prefix of the searched letter, the current
size of the prefix, the maximum length of the searched string and the exploration factor. As
output it produces the next character or the error code EXHAUSTED if there is no letter left for
the given prefix. If the letter was already chosen for the prefix, then the score is calculated
by the following formula:

score :=
Q(pre f ix + letter)
N(pre f ix + letter)

+ c�

√
2 ln N(pre f ix)

N(pre f ix + letter)
(3.5)

This equation is based on the heuristic proposed by Auer et al. [2002] and is the simplest
policy for calculating the upper confidence bound (UCB), which is popular from the fields
global optimization and machine learning. The left part encourages the exploitation of
the already collected information and the right part encourages the exploration of the
non-visited parts of the search tree.

23

3. Model Counting with SMT Solvers

Input : the lengthBound; the calculation budget; the string variable x for which
the models are counted; the number of initial models mInit; the
exploration factor c

Output : #F, the model count of F
begin

resetStatistics();
count := 0;

if (checkSAT("")) then // Check empty string.

count++;
end

tmpCount := initSearchDirection(mInit); // Initializes search direction.

if (tmpCount � mInit) then return count + tmpCount;
else count += tmpCount;

while (enough remaining budget) do
terminationLength := chooseMostLikelyTerminationLength();
if (no remaining termination length) then break;
chosenString := generateNextStringValue("", 0, terminationLength, c);
if (chosenString has no error value) then

isSat := checkSAT(chosenString);
if (isSat) then

count++;
end
backpropagate(chosenString, isSat);

else if (chosenString = EXHAUSTED) then
prune termination length;
continue;

else if (chosenString = UNSAT_PREFIX) then
prune termination length;
continue;

else error("Should not occur!");
end
return count;

end

Algorithm 10: Adjusted Monte Carlo Tree Search with a UCB tree selection policy (=
Upper Confidence Bounds for Trees UCT), called as MCTS(lengthBound, budget, x, mInit,
c)

24

3.2. Survey of Solution Algorithms

Input : the number of initial models mInit
Output : the number of models generated for initialization
begin

count := 0;
Push();
sat := true;
while (sat & count < mInit) do

model := Model(x);
count++;
backpropagate(model, true);
Assert(x � model);
sat := Check();

end
Pop();
return count;

end

Algorithm 11: Initialization of the search direction for MCTS, called as initSearchDirec-
tion(mInit)

Input : the string value that need to be backpropagated; the satisfiability (isSat) of
the given value

begin
currentString := value;
while (currentString � empty) do

N(currentString) += 1;
if isSat then

Q(currentString) += 1;
end
remove last character of currentString;

end
N("") += 1;

end

Algorithm 12: Backpropagation of checked values, called as backpropagate(value, sat)

25

3. Model Counting with SMT Solvers

Input : the current string value currentStr; the current recursion depth; the
maximum recursion depth terminationDepth; the exploration factor c

Output : generated string value or the error value EXHAUSTED and UNSAT_PREFIX

begin
if (checkPrefixSat(currentStr) then

if (depth < terminationDepth) then

letter := chooseNextCharacter(currentStr, depth, terminationDepth, c);
while (letter has no error value) do

chosenString := generateNextStringValue(currentStr + letter, depth +
1, terminationDepth, c);

if (chosenString has no error value) then return chosenString;
else if (chosenString = EXHAUSTED) then

// Look for other letter.

else if (chosenString = UNSAT_PREFIX) then
prune chosen letter for the termination depth;

else error("Should not occur!");

letter := chooseNextCharacter(currentStr, depth, terminationDepth,
c);

end

if (letter = EXHAUSTED) then
remember that currentString exhausted for terminationDepth;
return EXHAUSTED;

else error("Should not occur!");

else return currentStr;
else return UNSAT_PREFIX;

end

Algorithm 13: Generation of next string value, avoids generating a string value twice,
called as generateNextStringValue("", 0, targetLength, c)

26

3.2. Survey of Solution Algorithms

Input : the prefix of the string that should be appended with the next character;
the current size of the prefix (depth); the maximum length of the string
that need to be generated (terminationDepth); the exploration factor c

Output : the selected character or the error value EXHAUSTED

begin
scores := [];
for (letter in possible next characters) do // some characters may be pruned

if letter is last letter to be added and prefix+letter was already checked then
continue; // -> skip letter

else if prefix+letter was identified as exhausted for terminationDepth then
continue; // -> skip letter

else if letter is the last but one to be added and prefix+letter is exhausted then
continue; // -> skip letter

end

if N(prefix+letter) = 0 then // choose one of the heuristics

// 1. First Exploration Heuristic

score := MAX_VALUE;

// 2. First Play Urgency Heuristic

score := 0;

// 3. Most Likely Position Heuristic

if letter was never chosen for this position then
score := 0;

else
score := number o f letter chosen f or this position and value was satis f iable

number o f letter chosen f or this position ;
end

else

score := Q(pre f ix+letter)
N(pre f ix+letter) + c�

√
2 ln N(pre f ix)

N(pre f ix+letter)

end
scores(letter) := score;

end

if scores is empty then return EXHAUSTED;
else return argmax(scores);

end

Algorithm 14: Selection of the next character in order to generate the next string value,
called as chooseNextCharacter(prefix, depth, terminationDepth, c)

27

Chapter 4

Implementation

This chapter contains several decisions and problems regarding the implementation of the
presented model counting techniques. The remaining part shows how the implementation
was performed and describes the various algorithms that were implemented as research
prototypes.

4.1 Implementation Decisions

SMT Solver

One of the most important decision for the implementation of the developed algorithms
(see chapter 3.2) is the selection of the underlying SMT solver. Like described in chapter
2.3.2 there are currently two powerful SMT solvers for string constraints, namely CVC4

[Barrett et al., 2011; Liang et al., 2014] and Z3-STR [Zheng et al., 2013]. In contrast to CVC4,
Z3-STR does not contain the string solving theory in the actual solver core. However, the
authors currently work on this, but at the moment Z3-STR is only available as an extension
of the not up-to-date version 4.1.1 of the Z3 SMT solver. The instructions how to build and
use Z3-STR can be found on its GitHub page1. In order to be able to use the SMT solver, it
has to provide a certain API that can be called by other programs. CVC4 provides bindings
for the programming languages Java and C++. This is not provided by the latest version
of Z3-STR. Due to the needed API support and the fact that CVC4 is at the moment the
most efficient SMT solver for strings (see Aydin et al. [2015]), it is used as implementation
basis for the developed algorithms. The instructions on how to build CVC4 from source
and to enable the language bindings are described on their wiki page2. The nightly build
version cvc4-2016-02-25 (a prerelease version of CVC4-1.5) was used for the presented
implementation.

Programming Language

Based on the language binding support of CVC4 the set of usable programming languages is
strongly limited to Java and C++. Since the developed #SMT procedures may be deployed

1https://github.com/z3str/Z3-str
2http://cvc4.cs.nyu.edu/wiki/Building_CVC4_from_source

29

https://github.com/z3str/Z3-str
http://cvc4.cs.nyu.edu/wiki/Building_CVC4_from_source

4. Implementation

in the verification tool JavaPathFinder3 and the Java community provides a lot of useful
libraries e.g. for the handling of SMT constraints, this programming language was selected
for the implementation of the research prototype.

Platform

The algorithms were implemented on ubuntu 14.04 LTS as it was necessary to build CVC4

manually to get the latest version that supports the latest string solving techniques and
to generate the needed language bindings. Doing this, is much more easier on a linux
machine than on a windows machine.

4.2 Problems

API Support

Discovering the API support of both solvers CVC4 and Z3-STR was a big challenge because it
is not clearly documented. So manually investigation and reverse engineering was required
to understand the full API and its capabilities. Python API support exists for some older
version of Z3-STR, however, this was not implemented by the actual authors. The latest
version of Z3 itself offers API support for a couple of languages like C, C++, .NET, Java and
Python. For example Phan and Malacaria [2015] use the Java binding of Z3 to count models
with respect to a set of boolean variables. But since Z3-STR does use an older version of Z3,
this support is not accessible. CVC4 does support an API for Java and C++, but the libraries
for the latest version are not published, so another core requirement was to manually build
CVC4 and enable the generation of the language bindings.

Bugs in SMT Solvers

Besides their great functionality both SMT solvers CVC4 and Z3-STR contain several unsolved
bugs/difficulties that are hard to work around. For example Z3-STR cannot solve the
constraint in Listing 4.1 and answers with UNKNOWN, in contrast to CVC4 that answers with SAT

(reported as issue4). Therefore the string operation StartsWith cannot be used for checking
incrementally strings in a DFS algorithm based on Z3-STR. Such a problem can be solved
by using a combination of another string operations, like described in Listing 4.2.

Another, more difficult problem, are appearing segmentation faults in the native code
of the solvers. This happens for both of them, but especially Z3-STR has problems with the
call of the Push() and Pop() operations (reported as issue5). Although the solver API is
provided robustly by CVC4, random segmentation faults happen, resulting in programmatic

3http://babelfish.arc.nasa.gov/trac/jpf
4https://github.com/z3str/Z3-str/issues/8
5https://github.com/z3str/Z3-str/issues/12

30

http://babelfish.arc.nasa.gov/trac/jpf
https://github.com/z3str/Z3-str/issues/8
https://github.com/z3str/Z3-str/issues/12

4.3. Constraint Parsing

restarts of the solver. This is cumbersome during the evaluation of the algorithms as the
counter often needs to be restarted manually. Such problems are difficult and can be solved
actually only by the developers.

Listing 4.1. SMT-LIBv2 constraint file that is not solvable with Z3-STR but with CVC4.

1 (declare-fun x () String)

2
3 (assert (= (str.len x) 2))

4 (assert (str.in.re x (re.* (re.range "a" "z"))))

5 (assert (str.prefixof "a" x))

Listing 4.2. SMT-LIBv2 constraint file showing the simulation of the string operation Prefix/StartsWith
with the string operation Concat and two additional string variables.

1 ...

2
3 (declare-fun x () String)

4 (declare-fun y1 () String)

5 (declare-fun y2 () String)

6
7 ; x as concatenation of y1 and y2

8 (assert (= x (str++ y1 y2)))

9
10 ; prefix check as y1 assignment

11 (assert (= y1 "<prefix-value>"))

12
13 ...

4.3 Constraint Parsing

Using CVC4 as binary file it provides the functionality to read SML2-LIBv2 constraint files
as input. In order to be able to add programmatic constraints later via Java, e.g. for the
incremental counting, it is necessary to have the constraints as internal Expression objects.
The Java language binding for CVC4 does not provide this functionality, so it was necessary
to write a tiny parser, which reads the SML2-LIBv2 constraint files and generates internal
Expression objects. Therefore the parser reuses the reading capability of CVC4 Command

objects.

31

4. Implementation

4.4 Algorithms

The following sections describe in which way the solution algorithms in chapter 3.2 were
implemented. All of the implemented algorithms assume that the constraint contains
the string variable x for that the models shall be counted. Furthermore all implemented
algorithms assume that y1 and y2 are free variables in the constraint because they are used
for the Concat-Trick described in the above section 4.2. As budget parameter the algorithms
use a time bound specified in seconds.

Random Search

The Random Search algorithm was implemented following straight the pseudo code pre-
sented in chapter 3.2.1. This algorithm is used in the evaluation as baseline for the other
algorithms: every search algorithm should at least perform as good as the pure random
generation of string values.

Blocking Clause Method

The implementation of the Blocking Clause algorithm follows straight the pseudo code
presented in chapter 3.2.2. The string model retrieved by CVC4 contains quotation marks
that need to be removed for the further usage.

Depth-First Search

The standard DFS algorithm is implemented following straight the pseudo code in chapter
3.2.3. It is is used for the scalability analysis of DFS methods for model counting of string
constraints, but not for the comparison between the different solutions algorithms because it
does not provide more insights than the DFS with randomized alphabet, which is described
in the next section.

The randomized DFS from chapter 3.2.4 is separated in two algorithms. One of them is
called Depth-First Search with randomized Alphabet, which only adds the idea from chapter
3.2.4 to the code of the standard DFS. The other is called Randomized Depth-First Search,
which adds to the standard algorithms all randomization ideas of chapter 3.2.4: the ran-
domized alphabet, the randomized character selection and the randomized backtracking.

The implementation of the Depth-First Search with uniform sampled feasible Strings algo-
rithm follows straight the pseudo code presented in chapter 3.2.5. The function calculateSub
Set(..) is implemented as Reservoir Sampling [Vitter, 1985]. The runtime of the sampling
procedure is compared to the remaining runtime too short (see chapter 5.3 Comparison of
Solution Algorithms) hence it makes no difference for the total runtime whether the sampling
is done by a simpler sampling mechanism.

32

4.4. Algorithms

Adjusted Monte Carlo Tree Search

The implementation of the Adjusted Monte Carlo Tree Search algorithm follows straight
the pseudo code presented in chapter 3.2.6. The Most Likely Position heuristic was imple-
mented in order to calculate the score for the next letter because it performed best in the
experiments.

33

Chapter 5

Evaluation

In order to evaluate the performed research, it is necessary to compare the developed
methods with the already existing ones. As described in chapter 2 Background there is
currently only one approach to perform model counting of string constraints, namely
automata-based counting. Therefore, this chapter shows the comparison of SMT-based
counting and automata-based counting. In model counting there are two main categories
that need to be evaluated:

1. How fast can the models be counted? Ñ Performance

2. What kind of constraints can be handled with the model counter? Ñ Expressiveness

Additionally it is necessary to compare the various solution algorithms that were identified
during the research. It must be evaluated which of them is the most suitable one for what
kind of constraints.

All presented evaluations were executed on a virtual machine with an i7-3517U processor
(1.90 GHz x2, 1.7 GB memory) running Virtual-Box ubuntu 14.04 LTS 32-bit, hosted with
an i7-3517U processor (1.90 GHz x4, 4 GB memory) running Windows 7 Professional Service
Pack 1 64-bit.

The remainder of this chapter is organized as follows. Section 5.1 shows the existing
benchmarks that are used in model counting of string constraints. Section 5.2 shows the
evaluation procedure and results for the two categories Performance and Expressiveness.
Section 5.3 shows the evaluation of the various solution algorithms.

5.1 Existing Benchmarks

Like shown in Aydin et al. [2015] there are benchmarks like ASE by Kausler and Sherman
[2014] and Kaluza Small/Big by Saxena et al. [2010] that contain thousands of string
constraints that can be used to evaluate #SMT. The Kaluza benchmarks are taken from
JavaScript programs and contain string operations like: regular expression membership,
concatenation, string equality and length. ASE benchmarks are from Java programs and
represent server-side code. They contain additionally constraint with the string operations:
replace, indexof, contains, begins, ends and substring. These benchmarks can be used to

35

5. Evaluation

compare the performance with to the model counter ABC [Aydin et al., 2015] and SMC [Luu
et al., 2014].

5.2 Comparison with Automata-Based Model Counters

The comparison of automata-based model counting and the presented approaches for
SMT-based model counting is presented for the two main categories Performance and
Expressiveness.

5.2.1 Performance

The performance of automata-based approaches is orders of magnitude faster for counting
regular expression constraints than SMT-based approaches. For example Listing 5.1 shows
an simple SMT-LIBv2 constraint input file with a regular expression. Table 5.1 shows the
comparison of the standard DFS algorithm (see chapter 3.2.3) and the automata-based
approach ABC [Aydin et al., 2015].

Listing 5.1. SMT-LIBv2 input for a scalability evaluation.

1 (declare-fun x () String)

2
3 (assert (str.in.re x (re.* (re.range "a" "z"))))

Table 5.1. Runtime results for scalability example (|A|=26, time bound = 3600 sec) comparing the
standard DFS algorithm (see chapter 3.2.3) and the automata-based approach ABC [Aydin et al., 2015].

Length #m=state space Time (sec)
DFS ABC

1 27 0.447 0.195
2 703 7.387 0.196
3 18,279 1403.119 0.211
4 475,255 stopped after time bound 0.262

with model count: 29,392

DFS cannot keep up with automata-based counting for regular expression constraints.
Furthermore the results in Table 5.1 show that the scalability of exhaustive search methods
like DFS is very limited in the number of models, respectively the total solution space.
Based on the example above, an exhaustive search can’t handle constraints with more than
approximately 18,000 models.

Nevertheless, there are special cases in which the automata-based approach takes a lot
of time to calculate the generating function, especially the calculation of the determinants

36

5.2. Comparison with Automata-Based Model Counters

is very computing expensive (see e.g. the Equation 20 in Aydin et al. [2015]). For example
if the input constraint is very complex, i.e. many unions and concatenations, so that
the calculation of the generating function is expensive, and the model count is zero, i.e.
the constraint is not satisfiable, then #SMT is very fast compared to the automata-based
approach. Listings 5.2 shows such an example and Table 5.2 shows the corresponding
runtime results.

Listing 5.2. SMT-LIBv2 constraint file that leads to bad a performance of automata-based approaches.

1 (declare-fun x1 () String)

2 (declare-fun x2 () String)

3 (declare-fun x3 () String)

4 (declare-fun x4 () String)

5 (declare-fun x5 () String)

6 (declare-fun x6 () String)

7 (declare-fun a1 () String)

8 (declare-fun a2 () String)

9 (declare-fun x () String)

10
11 (assert (str.in.re x1 (re.+ (re.range "a" "c"))))

12 (assert (str.in.re x2 (re.+ (re.range "0" "1"))))

13 (assert (str.in.re x3 (re.+ (re.range "e" "l"))))

14 (assert (str.in.re x4 (re.+ (re.range "x" "z"))))

15 (assert (str.in.re x5 (re.+ (re.range "3" "7"))))

16 (assert (str.in.re x6 (re.+ (re.range "a" "u"))))

17 (assert (or (= a1 x1) (or (= a1 x2) (= a1 x3))))

18 (assert (or (= a2 x4) (or (= a2 x5) (= a2 x6))))

19 (assert (= x (str.++ a1 a2 x1 x2 x3 x4 x5 x6)))

Table 5.2. Runtime results for the input constraint of Listing 5.2, length bound = 2, comparing the
standard DFS algorithm (see chapter 3.2.3) and the automata-based approach ABC [Aydin et al., 2015].

Technique Model Count Time (sec)
DFS 0 0.152
ABC 0 31.573

The benchmarks presented in chapter 5.1, which were used by ABC for the evaluation,
are not applicable for a direct comparison to SMT-based counting because the length
bounds that were used by ABC cannot be handled by #SMT, they are simply to large. They
used a length bound of 50 characters with an alphabet size of 256 for both benchmarks,
ASE and Kaluza Small/Big. Since the performance comparison makes not sense for these

37

5. Evaluation

benchmarks, the following representative selection of ASE and Kaluza benchmarks show
that #SMT at least can handle the kind of constraints. The Listings 5.3 and 5.4 show
extracted ASE benchmark SMT-LIBv2 constraint files of the programs Natural CLI and
Math Quiz Game. The Listings 5.5 and 5.6 show Kaluza benchmark SMT-LIBv2 constraint
files. The Table 5.3 show the runtime results for these benchmark files with the standard
DFS algorithm (see chapter 3.2.3). (The constraints were slightly adjusted to have a variable
called x that will be counted.)

Listing 5.3. Extracted ASE SMT-LIBv2 constraint file of the program Natural CLI.

1 (declare-fun x () String)

2 (declare-fun s55 () String)

3 (declare-fun i37_55_1_f () Int)

4 (assert (not (= (str.substr x 0 i37_55_1_f) s55)))

5 (declare-fun s62 () String)

6 (declare-fun i37_62_1 () Int)

7 (declare-fun i37_62_2 () Int)

8 (assert (not (= (str.substr x i37_62_1 i37_62_2) s62)))

9 (declare-fun s69 () String)

10 (declare-fun i37_69_1_f () Int)

11 (assert (not (= (str.substr x 0 i37_69_1_f) s69)))

12 (declare-fun s76 () String)

13 (declare-fun i37_76_1 () Int)

14 (declare-fun i37_76_2() Int)

15 (assert (not (= (str.substr x i37_76_1 i37_76_2) s76)))

16 (declare-fun s121 () String)

17 (assert (= s121 "..."))

18 (assert (not (= x s121)))

19 (declare-fun s1728 () String)

20 (assert (= s1728 "..."))

21 (assert (not (= x s1728)))

22 (declare-fun s1730 () String)

23 (assert (= x s1730))

Listing 5.4. Extracted ASE SMT-LIBv2 constraint file of the program Math Quiz Game.

1 (declare-fun x () String)

2 (declare-fun s741 () String)

3 (assert (= s741 "y"))

4 (assert (not (= x s741)))

5 (declare-fun s744 () String)

6 (assert (= s744 "/restart"))

7 (assert (not (= x s744)))

38

5.2. Comparison with Automata-Based Model Counters

8 (declare-fun s747 () String)

9 (assert (= s747 "n"))

10 (assert (not (= x s747)))

11 (declare-fun s750 () String)

12 (assert (= s750 "/quit"))

13 (assert (not (= x s750)))

14 (declare-fun s753 () String)

15 (assert (= s753 "/clear"))

16 (assert (not (= x s753)))

17 (declare-fun s756 () String)

18 (assert (= s756 "/setfont"))

19 (assert (not (str.contains x s756)))

20 (declare-fun s759 () String)

21 (assert (= s759 "/say"))

22 (assert (not (str.contains x s759)))

23 (declare-fun s762 () String)

24 (assert (= s762 "/setsize"))

25 (assert (not (str.contains x s762)))

26 (declare-fun s765 () String)

27 (assert (= s765 "/help"))

28 (assert (not (= x s765)))

29 (declare-fun s768 () String)

30 (assert (= s768 "/?"))

31 (assert (not (= x s768)))

Listing 5.5. Kaluza (sat, small) SMT-LIBv2 constraint file 1001.corecstrs.readable.smt2.

1 (declare-fun I0_2 () Int)

2 (declare-fun I0_6 () Int)

3 (declare-fun PCTEMP_LHS_1 () Int)

4 (declare-fun PCTEMP_LHS_2 () Int)

5 (declare-fun T0_2 () String)

6 (declare-fun T0_6 () String)

7 (declare-fun T1_2 () String)

8 (declare-fun T1_6 () String)

9 (declare-fun T2_2 () String)

10 (declare-fun T2_6 () String)

11 (declare-fun T3_2 () String)

12 (declare-fun T3_6 () String)

13 (declare-fun T4_2 () String)

14 (declare-fun T4_6 () String)

15 (declare-fun T5_2 () String)

39

5. Evaluation

16 (declare-fun T5_6 () String)

17 (declare-fun T_2 () Bool)

18 (declare-fun T_3 () Int)

19 (declare-fun T_5 () Bool)

20 (declare-fun T_6 () Bool)

21 (declare-fun T_SELECT_1 () Bool)

22 (declare-fun T_SELECT_2 () Bool)

23 (declare-fun x () String)

24
25 (assert (= T_SELECT_1 (not (= PCTEMP_LHS_1 (- 1)))))

26 (assert (ite T_SELECT_1

27 (and (= PCTEMP_LHS_1 (+ I0_2 0))(= x (str.++ T0_2 T1_2))

28 (= I0_2 (str.len T4_2))(= 0 (str.len T0_2))(= T1_2 (str.++ T2_2 T3_2))

29 (= T2_2 (str.++ T4_2 T5_2))(= T5_2 "GoogleAdServingTest=")(not

30 (str.in.re T4_2 (re.++ (str.to.re "G") (str.to.re "o") (str.to.re "o")

31 (str.to.re "g") (str.to.re "l") (str.to.re "e") (str.to.re "A")

32 (str.to.re "d") (str.to.re "S") (str.to.re "e") (str.to.re "r")

33 (str.to.re "v") (str.to.re "i") (str.to.re "n") (str.to.re "g")

34 (str.to.re "T") (str.to.re "e") (str.to.re "s") (str.to.re "t")

35 (str.to.re "="))))) (and (= PCTEMP_LHS_1 (- 1))(= x (str.++ T0_2 T1_2))

36 (= 0 (str.len T0_2))(not (str.in.re T1_2 (re.++ (str.to.re "G")

37 (str.to.re "o") (str.to.re "o") (str.to.re "g") (str.to.re "l")

38 (str.to.re "e") (str.to.re "A") (str.to.re "d") (str.to.re "S")

39 (str.to.re "e") (str.to.re "r") (str.to.re "v") (str.to.re "i")

40 (str.to.re "n") (str.to.re "g") (str.to.re "T") (str.to.re "e")

41 (str.to.re "s") (str.to.re "t") (str.to.re "=")))))))

42 (assert (= T_2 (not (= PCTEMP_LHS_1 (- 1)))))

43 (assert T_2)

44 (assert (= T_3 (+ PCTEMP_LHS_1 20)))

45 (assert (= T_SELECT_2 (not (= PCTEMP_LHS_2 (- 1)))))

46 (assert (ite T_SELECT_2

47 (and (= PCTEMP_LHS_2 (+ I0_6 T_3))(= x (str.++ T0_6 T1_6))(= I0_6

48 (str.len T4_6)) (= T_3 (str.len T0_6))(= T1_6 (str.++ T2_6 T3_6))

49 (= T2_6 (str.++ T4_6 T5_6)) (= T5_6 ";")(not (str.in.re T4_6

50 (str.to.re ";")))) (and (= PCTEMP_LHS_2 (- 1)) (= x (str.++ T0_6 T1_6))

51 (= T_3 (str.len T0_6))(not (str.in.re T1_6 (str.to.re ";"))))))

52 (assert (= T_5 (= PCTEMP_LHS_2 (- 1))))

53 (assert (= T_6 (not T_5)))

54 (assert T_6)

40

5.2. Comparison with Automata-Based Model Counters

Listing 5.6. Kaluza (sat, small) SMT-LIBv2 constraint file 1095.corecstrs.readable.smt2.

1 (declare-fun I0_3 () Int)

2 (declare-fun I0_7 () Int)

3 (declare-fun PCTEMP_LHS_1 () Int)

4 (declare-fun PCTEMP_LHS_2 () Int)

5 (declare-fun T0_3 () String)

6 (declare-fun T0_7 () String)

7 (declare-fun T1_3 () String)

8 (declare-fun T1_7 () String)

9 (declare-fun T2_3 () String)

10 (declare-fun T2_7 () String)

11 (declare-fun T3_3 () String)

12 (declare-fun T3_7 () String)

13 (declare-fun T4_3 () String)

14 (declare-fun T4_7 () String)

15 (declare-fun T5_3 () String)

16 (declare-fun T5_7 () String)

17 (declare-fun T_1 () Bool)

18 (declare-fun T_3 () Bool)

19 (declare-fun T_4 () Bool)

20 (declare-fun T_6 () Bool)

21 (declare-fun T_7 () Bool)

22 (declare-fun T_SELECT_1 () Bool)

23 (declare-fun T_SELECT_2 () Bool)

24 (declare-fun x () String)

25
26 (assert (= T_1 (not (= "" x))))

27 (assert T_1)

28 (assert (= T_SELECT_1 (not (= PCTEMP_LHS_1 (- 1)))))

29 (assert (ite T_SELECT_1

30 (and (= PCTEMP_LHS_1 (+ I0_3 0))(= x (str.++ T0_3 T1_3))(= I0_3

31 (str.len T4_3))(= 0 (str.len T0_3))(= T1_3 (str.++ T2_3 T3_3))

32 (= T2_3 (str.++ T4_3 T5_3))(= T5_3 "?")(not (str.in.re T4_3

33 (str.to.re "?")))) (and (= PCTEMP_LHS_1 (- 1))(= x

34 (str.++ T0_3 T1_3))(= 0 (str.len T0_3))(not (str.in.re T1_3

35 (str.to.re "?"))))))

36 (assert (= T_3 (= PCTEMP_LHS_1 (- 1))))

37 (assert (= T_4 (not T_3)))

38 (assert T_4)

39 (assert (= T_SELECT_2 (not (= PCTEMP_LHS_2 (- 1)))))

40 (assert (ite T_SELECT_2

41

5. Evaluation

41 (and (= PCTEMP_LHS_2 (+ I0_7 0))(= x (str.++ T0_7 T1_7))(= I0_7

42 (str.len T4_7))(= 0 (str.len T0_7))(= T1_7 (str.++ T2_7 T3_7))

43 (= T2_7 (str.++ T4_7 T5_7))(= T5_7 "#")(not (str.in.re T4_7

44 (str.to.re "#")))) (and (= PCTEMP_LHS_2 (- 1))(= x

45 (str.++ T0_7 T1_7))(= 0 (str.len T0_7))(not (str.in.re T1_7

46 (str.to.re "#"))))))

47 (assert (= T_6 (= PCTEMP_LHS_2 (- 1))))

48 (assert (= T_7 (not T_6)))

49 (assert T_7)

Table 5.3. Runtime results for a representative selection of ASE and Kaluza benchmarks executed
with the standard DFS algorithm (see chapter 3.2.3), |A|=94, time bound = 3600 sec.

Benchmark File Length Bound Model Count Time (sec)
Natural CLI 1 95 25.263
Natural CLI 2 1,432 stopped after time bound
Math Quiz Game 1 93 0.703
Math Quiz Game 2 8,928 424.775
Math Quiz Game 3 27,185 stopped after time bound
1001.corecstrs.readable 21 1 33.368
1001.corecstrs.readable 22 2 stopped after time bound
1095.corecstrs.readable 2 2 2.623
1095.corecstrs.readable 3 146 stopped after time bound

5.2.2 Expressiveness

The expressiveness of a solver or model counter is limited by the constraint language it
supports. Table 5.4 shows the comparison of the following solvers/model counters: Z3-STR
by Zheng et al. [2013], CVC4 by Barrett et al. [2011] including the extension for strings by
Liang et al. [2014], ABC by Aydin et al. [2015], the latest version of ABC by Aydin et al. [2016]
that is currently under development, denoted as ABC+, and SMC by Luu et al. [2014]. Since
the presented #SMT approaches are implemented in CVC4 (see chapter 4 Implementation), it
is interesting how far the automata-based approaches can support the constraint language
of CVC4. As described in the table, the latest version of ABC supports more than SMC, so the
focus in the remained of this chapter is on ABC. It supports the same string operations
like CVC4, except for the regular expression operations Plus and Range, but these can be
expressed with combination of the operations Star, Union and StringEquation.

42

5.2. Comparison with Automata-Based Model Counters

Table 5.4. Constraint language comparison for: Z3-STR [Zheng et al., 2013], CVC4 [Barrett et al., 2011]
including the extension for strings [Liang et al., 2014], ABC [Aydin et al., 2015], the latest version of ABC
[Aydin et al., 2016] that is currently under development, denoted as ABC+, and SMC [Luu et al., 2014].
(•) = SMC does not provide an operation called IndexOf, but the operation strstr that can represent the
same functionality

String Operation Z3-STR CVC4 ABC ABC+ SMC
Concat • • • • •
Length • • • • •
Substring • • •
IndexOf • • • • (•)
StartsWith • • • •
EndsWith • • • •
Replace • • • •
CharAt • • •
StringEquation • • • • •
Contains • • • • •
Split •
Regex • • • • •

- Star • • • • •
- Plus • •
- Union • • • • •
- Range • •
- Concat • • • • •
- In • • • • •

Although ABC and CVC4 support the same constraint language, they do not have the same
expressiveness with respect to the constraints, for which they can calculate an exact model
count. Aydin et al. [2015] identifies three classes of constraints:

1. Single-variable constraints contain at most one string variable and therefore cannot
support the string operations Concatenation, Length comparison of two variables, CharAt,
Substring and Replace. For the remaining operations the exact count can be calculated.

2. Pseudo-relational constraints are multi-variable constraints, but there is at most one
variable which appears in more than one clauses of a CNF formula. This variable is
called projection variable and always need be on the left hand side of the constraint.
This constraints can be counted exactly.

3. Relational constraints are multi-variable constraints with more than one variable in-
volved in multi-variable clauses. For these constraints only an upper bound can be
calculated (= over-approximation of the truth-set) by ABC because these multi-variable
clauses generate a cycle in constraint evaluation.

43

5. Evaluation

CVC4 can calculate for all three cases an exact model count, in the boundaries of its scalability
scope (see chapter 5.2.1). The following Listing 5.7 shows an SMT-LIBv2 constraint file for
a relational constraint that can be counted with #SMT and Table 5.5 contains the runtime
results for counting variable x.

Listing 5.7. SMT-LIBv2 input for a relational constraint

1 (declare-fun x () String)

2 (declare-fun y () String)

3 (declare-fun z1 () String)

4 (declare-fun z2 () String)

5
6 (assert (str.in.re x (re.+ (str.to.re "a"))))

7 (assert (= y (str.++ z1 x)))

8 (assert (= x (str.++ y z2)))

Table 5.5. Runtime results for the relational constraint (|A|=52, length bound = 5)

Algorithm Model Count Time (sec)
Blocking Clause 5 0.28
DFS (randomized alphabet) 5 0.283
MCTS (init=10, c=0.1) 5 0.55

Additionally, CVC4 can combine various theories in the constraints, that ABC can’t support.
The following Listing 5.8 shows an SMT-LIBv2 constraint file that contains a mixed-theory
constraint with the theory Strings, Linear Integer Arithmetics and Arrays. The Table 5.6 shows
the runtime results for counting variable x.

Therefore the presented model counter based on CVC4 has a greater expressiveness than
automata-based model counters because it supports the calculation of the exact model
count for relational constraints and it supports multi-theory constraints.

Table 5.6. Runtime results for the mixed-theory constraint (|A|=52, length bound = 15)

Algorithm Model Count Time (sec)
Blocking Clause 1 1.704
DFS (randomized alphabet) 1 59.283
MCTS (init=10, c=0.1) 1 2.18

44

5.3. Comparison of Solution Algorithms

Listing 5.8. SMT-LIBv2 input for a mixed-theory constraint constraint

1 (declare-fun x () String)

2 (declare-fun y () String)

3
4 (declare-fun a1 () (Array Int String))

5
6 (assert (str.in.re x (re.+ (str.to.re "a"))))

7 (assert (= (mod (str.len x) 3) 0))

8
9 (assert (str.in.re y (re.+ (str.to.re "c"))))

10 (assert (= (mod (str.len y) 5) 0))

11
12 (assert (= (store a1 0 x) a1))

13 (assert (= (store a1 1 y) a1))

14 (assert (= (str.len (select a1 0)) (str.len (select a1 1))))

Note: For all presented string operations in Table 5.4 ABC calculates the model count with
respect to one variable. In order to support the counting of multiple independent variables
they can construct various automata and combine later the counts via multiplication. The
#SMT approach does calculate the model count with respect to one variable as well. The
ideas on how to count formulas with respect to multiple variables are summarized in
chapter 6.2 Future Work.

5.3 Comparison of Solution Algorithms

The presented solution algorithms (see chapter 3.2 and 4.4) need to be compared in order to
find the best one or to be able to recommend one of them for a certain constraint situation.
In the remainder of the chapter, the following algorithms get compared to each other:

� Random Search, later denoted as Random Search (see chapter 3.2.1).

� Blocking Clause Algorithm, later denoted as Blocking Clause (see chapter 3.2.2).

� Depth-First Search with randomized Alphabet, later denoted as DFS (randomized al-
phabet) (see chapter 3.2.4).

� Depth-First Search with uniform sampled feasible Strings, later denoted as DFS
(sampled) (see chapter 3.2.5).

� Randomized Depth-First Search, later denoted das DFS (randomized) (see chapter 3.2.4).

� Adjusted Monte Carlo Tree Search, later denoted as MCTS (see chapter 3.2.6).

45

5. Evaluation

The Tables 5.7 and 5.8 show the model count characteristics of each algorithm without/with
exceeding the calculation budget.

Table 5.7. Model count characteristics of every evaluated algorithm (without exceeding budget).
Random Search is here only applicable with exceeding calculation budget. (•) means that the result
is not fixed.

Algorithm Exact Approximate Unspecified
Lower Bound Upper Bound

Random Search •
Blocking Clause •
DFS (randomized alphabet) •
DFS (sampled, ratio=1.0) •
DFS (sampled, ratio<1.0) (•) (•) (•)
DFS (randomized, s<1, b<1) •
MCTS •

Table 5.8. Model count characteristics of every evaluated algorithm (with exceeding budget). (•)
means that the result is not fixed.

Algorithm Exact Approximate Unspecified
Lower Bound Upper Bound

Random Search •
Blocking Clause •
DFS (randomized alphabet) •
DFS (sampled, ratio=1.0) •
DFS (sampled, ratio<1.0) (•) (•) (•)
DFS (randomized, s<1, b<1) •
MCTS •

46

5.3. Comparison of Solution Algorithms

Three evaluation examples were identified to cover different constraint situation, in where
one of the algorithms outperforms the others.

Evaluation Example 1: Huge search space, but only a few models.

The first evaluation example represents a huge search space with only a few models that
are on the bottom of the search tree, so that all algorithms that need to traverse the tree
until they reach the bottom, take a long time to find all models. Listing 5.9 shows the
SMT-LIBv2 input for the first evaluation example.

Listing 5.9. SMT-LIBv2 input for evaluation example 1

1 (declare-fun x () String)

2
3 (assert (or

4 (= x "aaaaaaaaa") (or

5 (= x "bbbbbbbbb") (or

6 (= x "ccccccccc") (or

7 (= x "ddddddddd") (or

8 (= x "eeeeeeeee")

9 (= x "fffffffff")))))))

Table 5.9. Runtime results for evaluation example 1 (|A|=52, length bound = 10, #m=6), the total
runtime for DFS (sampled) is calculated by collecting strings + building subset + checking satisfiability.
(µ is the mean, σ is the standard deviation, averaged over 10 runs)

Algorithm Model Count Time (sec)
Random Search (t=15 sec) µ = 0, σ = 0.0 fixed time bound
Random Search (t=30 sec) µ = 0, σ = 0.0 fixed time bound
Blocking Clause µ = 6, σ = 0.0 µ = 0.088, σ = 0.008
DFS (randomized alphabet) µ = 6, σ = 0.0 µ = 13.463, σ = 0.493
DFS (sampled, ratio=0.5) µ = 5.8, σ = 1.887 µ = 13.062, σ = 0.126

(13.024 + 0.001 + 0.037)
DFS (sampled, ratio=0.8) µ = 5.7, σ = 1.187 µ = 13.077, σ = 0.332

(13.015 + 0.001 + 0.061)
DFS (sampled, ratio=1.0) µ = 6, σ = 0.0 µ = 12.952, σ = 0.255

(12.87 + 0.001 + 0.081)
DFS (randomized, s=0.01, b=0.001) µ = 4.3, σ = 1.418 µ = 10.251, σ = 2.423
MCTS (init=10, c=0.1) µ = 6, σ = 0.0 µ = 0.139, σ = 0.032
MCTS (init=5, c=0.1) µ = 6, σ = 0.0 µ = 12.072, σ = 0.224

The runtime results for evaluation example 1 are shown in Table 5.9. For a small number of

47

5. Evaluation

models the Blocking Clause is highly efficient. DFS has to iterate all possible string values
that needs much more time, so Blocking Clause outperforms DFS for this situation. The
result for MCTS with an initialization of 10 models is as fast as Blocking Clause because
there are only 6 models in total and MCTS uses Blocking Clause to generate the initial
models. For a smaller initial model count it is marginal faster than DFS (randomized
alphabet), which is probably caused by the small number of models. For this small number
of models the DFS (sampled) is not relevant faster than the DFS (randomized alphabet).
DFS (randomized) produces a good lower bound in a better time than the DFS (randomized
alphabet), but without any guarantees. The Random Search counts zero models in the time
bound in that the other algorithms succeeded to find all models. The search space with
∑10

i=0 52i = 147, 389, 519, 791, 195, 392 string values is too large to find these six models with
a complete randomized string generation in a comparable time.

Evaluation Example 2: Large search space, large model count, feasible for DFS.

The second evaluation example represents a large search space with lots of models that
can be counted with a DFS algorithm. The large number of models should avoid that
Blocking Clause can count them in a comparable time. Additionally this example shows
the efficiency of the DFS variants. Listing 5.10 shows the SMT-LIBv2 input for the second
evaluation example. The runtime results are shown in Table 5.10. DFS (randomized alpha-
bet) can handle such constraints very efficient and is faster than MCTS. MCTS is the worst
performing algorithm of the systematic search algorithms. The calculation overhead of
MCTS to avoid the multiple selection of the same string value decreases the performance
to find efficiently all models for this kind of scenario. DFS (sampled, ratio=0.5) gets a very
good approximation of the model count, and even DFS (randomized) gets a good model
count although it is not guaranteed. The Blocking Clause is for an exhaustive search of
such a model counts not usable because the runtime is more than an hour. Although the
search space with ∑5

i=0 52i = 387, 659, 013 string values is a lot of smaller than in example
1, the Random Search cannot find any of the 483 models in a comparable time.

Listing 5.10. SMT-LIB v2 input for evaluation example 2

1 (declare-fun x () String)

2
3 (assert (str.in.re x

4 (re.++

5 (re.opt (str.to.re "d"))

6 (re.+ (re.range "a" "c"))

7)

8))

48

5.3. Comparison of Solution Algorithms

Table 5.10. Runtime results for evaluation example 2 (|A|=52, length bound = 5, #m=483, time
bound = 3600 sec), the total runtime for DFS (sampled) is calculated by collecting strings + building
subset + checking satisfiability. (µ is the mean, σ is the standard deviation, averaged over 10 runs)

Algorithm Model Count Time (sec)
Random Search (t=180 sec) µ = 0, σ = 0.0 fixed time bound
Random Search (t=3600 sec) µ = 0, σ = 0.0 fixed time bound
Blocking Clause µ = 379.3, σ = 27.673 stopped after time bound
DFS (randomized alphabet) µ = 483, σ = 0.0 µ = 66.563, σ = 2.306
DFS (sampled, ratio=0.5) µ = 481.7, σ = 1.418 µ = 64.779, σ = 1.418

(58.574 + 0.001 + 6.204)
DFS (sampled, ratio=0.8) µ = 482.3, σ = 0.458 µ = 69.524, σ = 1.23

(59.324 + 0.001 + 10.199)
DFS (sampled, ratio=1.0) µ = 483, σ = 0.0 µ = 70.25, σ = 2.181

(57.663 + 0.001 + 12.586)
DFS (randomized, s=0.01, b=0.001) µ = 395.8, σ = 70.555 µ = 47.251, σ = 12.628
MCTS (init=10, c=0.1) µ = 483, σ = 0.0 µ = 178.092, σ = 8.139
MCTS (init=5, c=0.1) µ = 483, σ = 0.0 µ = 183.898, σ = 9.795

Evaluation Example 3: Large search space, biased distributed models.

The third evaluation example represents a large search space that include biased distributed
models, i.e. that there are models for every path so that a DFS needs a lot of time to iterate
all paths, but there is one sub space of the search tree that includes extraordinary more
models than the others. Assuming a good initialization, MCTS counts more models than
DFS (randomized alphabet) for a small time bound: DFS (randomized alphabet) will take
some time to find the rich subtree, MCTS will find it faster because it focuses its search
direction and does not iterate the total search tree. Listing 5.11 shows the SMT-LIBv2 input
for the third evaluation example: for all characters in the alphabet except of "z" there is only
one solution per each, but if the path beginning with "z" is chosen, then there are plenty of
models. The runtime results are shown in Table 5.11 and 5.12. The evaluation example 3
shows that MCTS is much more efficient than DFS for a small time bound like 30 seconds
(see Table 5.12), but for a large time bound like one hour (see Table 5.11) all DFS variants
outperform MCTS. For the first time the DFS (sampled) algorithm produces extraordinary
results. For the large time bound it outperforms all other algorithms and for the small the
time bound it outperforms the other DFS variants. The reason is that DFS (sampled) can
generate much more string values in the same time and therefore it is more likely that
it visits string values in the rich subset. MCTS has a big calculation overhead for large
time bounds. For small time bounds it can use the initialization as a good search direction
and focuses on similar models. Surprisingly, Blocking Clause outperforms MCTS for large
time bounds and for small time bounds it is even better than DFS. This raises the question

49

5. Evaluation

whether it is worthwhile to investigate the SMT String Value Generation (see chapter 3.1.1)
for model counting, even if its cumbersome and highly complex (see chapter 6.2 Future
Work). Like in example 1 and 2 the Random Search cannot handle the large search space.

Listing 5.11. SMT-LIB v2 input for evaluation example 3

1 (declare-fun x () String)

2
3 (assert (or

4 (str.in.re x (re.++ (str.to.re "z") (re.* (re.range "a" "c")))) (or

5 (= x "aaaaaaaaa") (or (= x "bbbbbbbbb") (or (= x "ccccccccc") (or

6 (= x "ddddddddd") (or (= x "eeeeeeeee") (or (= x "fffffffff") (or

7 (= x "ggggggggg") (or (= x "hhhhhhhhh") (or (= x "iiiiiiiii") (or

8 (= x "jjjjjjjjj") (or (= x "kkkkkkkkk") (or (= x "lllllllll") (or

9 (= x "mmmmmmmmm") (or (= x "nnnnnnnnn") (or (= x "ooooooooo") (or

10 (= x "ppppppppp") (or (= x "qqqqqqqqq") (or (= x "rrrrrrrrr") (or

11 (= x "sssssssss") (or (= x "ttttttttt") (or (= x "uuuuuuuuu") (or

12 (= x "vvvvvvvvv") (or (= x "wwwwwwwww") (or (= x "xxxxxxxxx") (or

13 (= x "yyyyyyyyy") (or (= x "AAAAAAAAA") (or (= x "BBBBBBBBB") (or

14 (= x "CCCCCCCCC") (or (= x "DDDDDDDDD") (or (= x "EEEEEEEEE") (or

15 (= x "FFFFFFFFF") (or (= x "GGGGGGGGG") (or (= x "HHHHHHHHH") (or

16 (= x "IIIIIIIII") (or (= x "JJJJJJJJJ") (or (= x "KKKKKKKKK") (or

17 (= x "LLLLLLLLL") (or (= x "MMMMMMMMM") (or (= x "NNNNNNNNN") (or

18 (= x "OOOOOOOOO") (or (= x "PPPPPPPPP") (or (= x "QQQQQQQQQ") (or

19 (= x "RRRRRRRRR") (or (= x "SSSSSSSSS") (or (= x "TTTTTTTTT") (or

20 (= x "UUUUUUUUU") (or (= x "VVVVVVVVV") (or (= x "WWWWWWWWW") (or

21 (= x "XXXXXXXXX") (or (= x "YYYYYYYYY") = x "ZZZZZZZZZ")

22))

50

5.3. Comparison of Solution Algorithms

Table 5.11. Runtime results for evaluation example 3 (|A|=52, length bound = 9, #m=9892, time
bound = 3600 sec), the total runtime for DFS (sampled) is calculated by collecting strings + building
subset + checking satisfiability. (µ is the mean, σ is the standard deviation, averaged over 10 runs)

Algorithm Model Count Time (sec)
Random Search (t=3600 sec) µ = 0, σ = 0.0 fixed time bound
Blocking Clause µ = 525.3, σ = 12.884 stopped after time bound
DFS (randomized alphabet) µ = 287.5, σ = 287.924 stopped after time bound
DFS (sampled, ratio=0.5) µ = 755.4, σ = 19.268 stopped after time bound
DFS (sampled, ratio=0.8) µ = 750.5, σ = 15.5 stopped after time bound
DFS (sampled, ratio=1.0) µ = 759.6, σ = 17.345 stopped after time bound
DFS (randomized, s=0.01, b=0.001) µ = 398.2, σ = 324.489 stopped after time bound
MCTS (init=10, c=0.1) µ = 231.5, σ = 66.793 stopped after time bound
MCTS (init=5, c=0.1) µ = 231.5, σ = 112.399 stopped after time bound

Table 5.12. Runtime results for evaluation example 3 (|A|=52, length bound = 9, #m=9892, time
bound = 30 sec), the total runtime for DFS (sampled) is calculated by collecting strings + building subset
+ checking satisfiability. (µ is the mean, σ is the standard deviation, averaged over 10 runs)

Algorithm Model Count Time (sec)
Random Search (t=30 sec) µ = 0, σ = 0.0 fixed time bound
Blocking Clause µ = 68, σ = 0.0 stopped after time bound
DFS (randomized alphabet) µ = 1.6, σ = 0.49 stopped after time bound
DFS (sampled, ratio=0.5) µ = 2.2, σ = 1.077 stopped after time bound
DFS (sampled, ratio=0.8) µ = 1.8, σ = 0.4 stopped after time bound
DFS (sampled, ratio=1.0) µ = 2, σ = 0.0 stopped after time bound
DFS (randomized, s=0.01, b=0.001) µ = 1.4, σ = 0.49 stopped after time bound
MCTS (init=10, c=0.1) µ = 37.2, σ = 3.487 stopped after time bound
MCTS (init=5, c=0.1) µ = 13, σ = 0.0 stopped after time bound

51

Chapter 6

Conclusions and Future Work

This chapter contains the conclusion about the performed research and the resulting
recommendations. Additionally it contains the description of the possible future work.

6.1 Conclusions

This thesis explored and evaluated #SMT procedures for model counting of string con-
straints. Two classes of approaches for #SMT have been investigated (see Section 3.1): (i)
SMT Model Generation, adjusting the internal model generation of the SMT solver to
produce all possible models (ii) SMT API Usage, using the standard smtlib operations
(operation Push(), Pop(), Assert(), Check(), Model()) to construct an oracle, checking whether
a specific string instance satisfies a constraint, and combine it with enumeration or search
search procedures for candidate models to be checked (iii) Constraint File Adjustment,
tweaking the smtlib input files for an efficient interaction with the SMT solver when an
API is not available.

SMT Model Generation is an enumeration approach quickly overwhelmed by the
complexity of numerous and increasingly complex verification tasks to be solved for the
generation of the models. Exploiting the SMT solver as an oracle and combining it with
appropriate enumeration or search procedures can avoid this complexity bottleneck for
both exact and approximate solutions. For simplicity, this thesis is focused on the use of an
SMT API; its results can be straightforwardly extended to interacting with the solver via
constraint input files.

Several enumeration and search algorithms have been investigated for the generation
string values as possible models for the given logical formula. An SMT solver has been
used as an oracle to assess the satisfiability of these. There are currently two SMT solvers
that can handle string constraints, namely CVC4 [Barrett et al., 2011; Liang et al., 2014] and
Z3-STR [Zheng et al., 2013] (see Section 2.3.2). CVC4 has been adopted for the implementation
of the algorithms because it provides the necessary API functions, and API in Java, and it
demonstrated to be usually faster than Z3-STR in practice.

Seven algorithms have been implemented and evaluated: Random Search, Blocking
Clause, standard Depth-First Search, Depth-First Search (randomized alphabet), Depth-First Search
(sampled), Depth-First Search (randomized) and Adjusted Monte Carlo Tree Search.

The evaluation consists of two parts: (i) the comparison of #SMT with automata-based

53

6. Conclusions and Future Work

model counting, which represents the state of the art of model counting of string constraints
(e.g. ABC [Aydin et al., 2015]) and (ii) the comparison of the various algorithms.

As shown in Section 5.2, the performance of automata-based model counting, in terms
of average execution time, is orders of magnitude better than #SMT. However, several
classes of constraints that can be solved faster by #SMT, namely those involving a wide
use of disjunction and concatenation operations (leading to an exponential growth of the
automata) or complex unsatisfiable constraints (where a possibly large automata has to be
built before realizing it contains no accepting paths).

Another comparison point is the expressiveness of the model counters, where #SMT
outperforms automata-based approaches. The counter ABC, as representative of the state
of the art in automata-based model counting, can handle only constraints with regular
expressions, linear word equations, and the string operations presented in Table 5.4.
Furthermore, for certain classes of these constraints, called relational constraints, automata-
based model counting can only only an upper bound for the actual number of models. In
contrast #SMT can calculate an exact model count for them, though possibly at a higher
cost in terms of execution time. Additionally, #SMT can handle mixed-theory constraints
based on the capabilities of the underlying SMT solver.

The Random Search algorithm (Section 3.2.1) was meant to represent a baseline for the
evaluation: a search algorithm should perform better than just randomly picking string
values. The evaluation data show that Random Search cannot handle the very large solution
spaces of usual string constraints. This is further confirmed observing that all the other
algorithms outperformed Random Search during the evaluation.

The Blocking Clause algorithm (Section 3.2.2) is one of the most naive approaches
to perform model counting. Nevertheless it can outperform the other algorithms for
constraints with a very small number of models in a huge search space.

The Standard Depth-First Search algorithm (Section3.2.3) is only used as implementation
basis for the other DFS variants. For an exhaustive search, i.e. without a calculation budget,
the standard DFS performs comparably to Depth-First Search (randomized alphabet).

The Depth-First Search (randomized alphabet) algorithm (Section 3.2.4) is a variant of the
standard DFS where the prefix tree modeling all the possible assignments to a string variable
is traversed in a randomized order. Due to its systematic and exhaustive search, Depth-
First Search (randomized alphabet) represents an intuitive exact model counting solution.
However, since it does not follow an informed search strategy, it may be outperformed by
other search approaches able to exploit additional information about the distribution of the
models in the search space, whether provided by the user or learnt automatically during
the search.

The Depth-First Search (randomized) algorithm (Section 3.2.4) represents a full randomized
version of DFS producing a lower bound approximation of the model count without
guarantees. It is suitable if the time is a very crucial factor because it produces similar
model counts as Depth-First Search (randomized alphabet) in a shorter time. Since it does
not provide any guarantees about the approximation, it might not be suitable for the

54

6.2. Future Work

evaluation of critical properties.
The Depth-First Search (sampled) algorithm (Section 3.2.5) produces an approximate

model count by uniformly sampling all feasible (i.e., prefix satisfiable) strings. Since it can
generate more string values than the Depth-First Search (randomized alphabet) in the same
time interval, it allows to count the solutions for constraints where Depth-First Search
(randomized alphabet) exceeds the time bound.

The Adjusted Monte Carlo Tree Search (MCTS) algorithm (Section 3.2.6) is a directed
search algorithm; it is initialized with a set of models generated by the SMT solver and
it automatically extends the search, possibly covering the whole state space. For MCTS,
it is possible to trade off exploration for exploitation by tuning the parameters of the
algorithm. In the evaluation, it only outperformed the DFS variants for non-uniform model
distributions and a short time bound. However, for these constraints, the Blocking Clause
performed even better than MCTS.

In conclusion there is not a best performing algorithm for any possible constraint.
Indeed, different algorithm performs better or worse for different classes of constraints.
A combination of algorithms operating on independent clauses of a complex constraint
might provide a better combined solution to the problem. However, the investigation of
this possibility is left as future work, and briefly sketched in the next section.

6.2 Future Work

There is no single string model counting algorithm that outperforms the others for every
possible constraints. Automata-based model counting is usually the way to go when the
constraint can be represented by a regular expression; however, this class of constraints is
significantly restrictive. Furthermore, computationally demanding automata constructions
might be a waste of time when the constraint to analyze is unsatisfiable; these cases can
on the other be handled efficiently by #SMT. A preliminary analysis procedure might be
devised to decide for each constraint (or independent clause of a constraint) what is the
most efficient algorithm for counting its solutions. The preliminary analysis may also be
used to reduce the size of the search space by pruning out regions trivially unsatisfiable.

The presented techniques for #SMT are limited on counting string constraints on one
variable. Their extensions to the multi-variables case requires dealing with a significantly
increased complexity, which can possibly make the discussed algorithms too inefficient in
practice. There are two cases for multi-variable constraints: (i) constraints with independent
variables and (ii) constraints with intertwined variables. The first case can be solved by
counting separately for every independent variable and then multiplying the independent
counts. The second case is more complex because it requires to consider the possible
dependencies among string variables. For example, a combination via the string operation
Concat can be dealt with by introducing a new variable that represents the concatenation;
however, for an exact count, the concatenation of all the possible values for the two
substring has to be considered, leading to a combinatorial explosion of the search space.

55

6. Conclusions and Future Work

This would require improving the discussed algorithms to efficiently handle the various
types of dependency.

As shown in the evaluation chapter, the Blocking Clause algorithm can outperform the
other algorithms for a constraint with a small number of models in a huge search space, or
for biased distributed of the models in the search space, given enough computation time.
This shows that the model generation procedures of an SMT solver can be quite efficient;
hence it might be worth to investigate the modification of these procedures to directly
generate multiple models, bypassing the need of invoking the API methods for each new
model.

56

Bibliography

[Auer et al. 2002] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, 2002. ISSN 1573-0565.

[Aydin et al. 2015] A. Aydin, L. Bang, and T. Bultan. Automata-based model counting
for string constraints. In D. Kroening and C. S. Pasareanu, editors, Computer Aided
Verification, volume 9206 of Lecture Notes in Computer Science, pages 255–272. Springer
International Publishing, 2015. ISBN 978-3-319-21689-8.

[Aydin et al. 2016] A. Aydin, L. Bang, and T. Bultan. Automata-based model counting
string solver. In Graduate Student Workshop on Computing. Computer Science, UCSB, 2016.

[Bacchus et al. 2003] F. Bacchus, S. Dalmao, and T. Pitassi. DPLL with caching: A
new algorithm for #sat and bayesian inference. Electronic Colloquium on Computational
Complexity (ECCC), 10(003), 2003.

[Barrett et al. 2011] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Computer Aided Verification: 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, chapter CVC4, pages 171–177.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-22110-1.

[Bayardo and Pehoushek 2000] R. J. Bayardo and J. D. Pehoushek. Counting models using
connected components. In In Proceedings of the AAAI National Conference, pages 157–162,
2000.

[Birnbaum and Lozinskii 1999] E. Birnbaum and E. L. Lozinskii. The good old davis-
putnam procedure helps counting models. J. Artif. Int. Res., 10(1):457–477, June 1999.
ISSN 1076-9757.

[Borges et al. 2014] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and W. Visser.
Compositional solution space quantification for probabilistic software analysis. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 123–132, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8.

[Borges et al. 2015] M. Borges, A. Filieri, M. d’Amorim, and C. S. Păsăreanu. Iterative
distribution-aware sampling for probabilistic symbolic execution. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
866–877, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8.

57

Bibliography

[Browne et al. 2012] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):1–43, March 2012. ISSN 1943-068X.

[Chistikov et al. 2015] D. Chistikov, R. Dimitrova, and R. Majumdar. Tools and Algorithms
for the Construction and Analysis of Systems: 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings, chapter Approximate Counting in SMT and
Value Estimation for Probabilistic Programs, pages 320–334. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015. ISBN 978-3-662-46681-0.

[Darbon et al. 2006] J. Darbon, R. Lassaigne, and S. Peyronnet. Approximate probabilistic
model checking for programs. In Proceedings of the IEEE 2nd International Conference
on Intelligent Computer Communication and Processing (ICCP’06), Technical University of
Cluj-Napoca, Romania, Sept. 2006.

[Darwiche 2004] A. Darwiche. New advances in compiling cnf into decomposable negation
normal form. In In ECAI, pages 328–332, 2004.

[Filieri et al. 2013] A. Filieri, C. S. Pasareanu, and W. Visser. Reliability analysis in symbolic
pathfinder. In 35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, pages 622–631, 2013.

[Flajolet and Sedgewick 2009] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cam-
bridge University press, 2009.

[Geldenhuys et al. 2012] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic sym-
bolic execution. In International Symposium on Software Testing and Analysis, ISSTA 2012,
Minneapolis, MN, USA, July 15-20, 2012, pages 166–176, 2012.

[Godefroid et al. 2005] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. SIGPLAN Not., 40(6):213–223, June 2005. ISSN 0362-1340.

[Gogate and Dechter 2007] V. Gogate and R. Dechter. Approximate counting by sampling
the backtrack-free search space. In Proceedings of the 22Nd National Conference on Artificial
Intelligence - Volume 1, AAAI’07, pages 198–203. AAAI Press, 2007. ISBN 978-1-57735-323-
2.

[Gomes et al. 2006] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new
strategy for obtaining good bounds. In Proceedings of the National Conference on Artificial
Intelligence, volume 21, page 54. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2006.

[Gomes et al. 2007] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. From
sampling to model counting. In IJCAI, pages 2293–2299, 2007.

58

Bibliography

[Gomes et al. 2009] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In
Handbook of Satisfiability, pages 633–654. 2009.

[Hoeffding 1963] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[Jerrum et al. 1986] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169
– 188, 1986. ISSN 0304-3975.

[Kausler and Sherman 2014] S. Kausler and E. Sherman. Evaluation of string constraint
solvers in the context of symbolic execution. In ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages
259–270, 2014.

[King 1976] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):
385–394, 1976.

[Liang et al. 2014] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T)
theory solver for a theory of strings and regular expressions. In Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 646–662, 2014.

[Loera et al. 2004] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice
point counting in rational convex polytopes. Journal of Symbolic Computation, 38(4):1273 –
1302, 2004. ISSN 0747-7171. Symbolic Computation in Algebra and Geometry.

[Luu et al. 2014] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for
constraints over unbounded strings. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, page 57, 2014.

[Lynce and Marques-Silva 2007] I. Lynce and J. Marques-Silva. Random backtracking in
backtrack search algorithms for satisfiability. Discrete Applied Mathematics, 155(12):1604
– 1612, 2007. ISSN 0166-218X. SAT 2001, the Fourth International Symposium on the
Theory and Applications of Satisfiability Testing.

[Nelson and Oppen 1979] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, Oct. 1979. ISSN
0164-0925.

[Nieuwenhuis et al. 2006] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving sat and
sat modulo theories: From an abstract davis–putnam–logemann–loveland procedure to
dpll(t). J. ACM, 53(6):937–977, Nov. 2006. ISSN 0004-5411.

59

[Orso and Rothermel 2014] A. Orso and G. Rothermel. Software testing: A research
travelogue (2000–2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
pages 117–132, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2865-4.

[Parízek and Lhoták 2011] P. Parízek and O. Lhoták. Model Checking Software: 18th
International SPIN Workshop, Snowbird, UT, USA, July 14-15, 2011. Proceedings, chapter Ran-
domized Backtracking in State Space Traversal, pages 75–89. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. ISBN 978-3-642-22306-8.

[Phan and Malacaria 2014] Q.-S. Phan and P. Malacaria. Abstract model counting: A novel
approach for quantification of information leaks. In Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’14, pages 283–292, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2800-5.

[Phan and Malacaria 2015] Q.-S. Phan and P. Malacaria. All-solution satisfiability modulo
theories: Applications, algorithms and benchmarks. In Availability, Reliability and Security
(ARES), 2015 10th International Conference on, pages 100–109, Aug 2015.

[Robert and Casella 2005] C. Robert and G. Casella. Monte Carlo statistical methods.
Springer-Verlag New York, Inc., 2005.

[Rubinstein 1981] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley &
Sons, Inc., 1981.

[Saxena et al. 2010] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for javascript. In 31st IEEE Symposium on Security and
Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 513–528, 2010.

[Vitter 1985] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11
(1):37–57, Mar. 1985. ISSN 0098-3500.

[Wei and Selman 2005] W. Wei and B. Selman. A new approach to model counting. In
F. Bacchus and T. Walsh, editors, Theory and Applications of Satisfiability Testing, volume
3569 of Lecture Notes in Computer Science, pages 324–339. Springer Berlin Heidelberg, 2005.
ISBN 978-3-540-26276-3.

[Yu and Cova 2008] F. Yu and M. Cova. String analysis, 2008.

[Zheng et al. 2013] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver
for web application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 114–124, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2237-9.

Bibliography

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and refer-
ences than the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of an-
other examination procedure. I have not published this work in
whole or in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

61

	1 Introduction
	1.1 Model Counting for String Constraints
	1.2 Goals
	1.3 Document Structure

	2 Background
	2.1 (Probabilistic) Symbolic Execution
	2.2 Model Counting
	2.3 Solving String Constraints
	2.3.1 Automata-Based Counting
	2.3.2 SMT Solvers
	2.3.3 Open Challenges

	3 Model Counting with SMT Solvers
	3.1 Survey of Approaches
	3.1.1 SMT Model Generation
	3.1.2 SMT API Usage
	3.1.3 Constraint File Adjustment
	3.1.4 Selection of the Research Approach

	3.2 Survey of Solution Algorithms
	3.2.1 Random Search
	3.2.2 Blocking Clause Algorithm
	3.2.3 Depth-First Search Algorithms
	3.2.4 Randomized DFS
	Randomized Alphabet
	Randomized Character Selection
	Randomized Backtracking

	3.2.5 DFS with Uniform Sampling
	3.2.6 Monte Carlo Tree Search

	4 Implementation
	4.1 Implementation Decisions
	4.2 Problems
	4.3 Constraint Parsing
	4.4 Algorithms
	Random Search
	Blocking Clause Method
	Depth-First Search
	Adjusted Monte Carlo Tree Search

	5 Evaluation
	5.1 Existing Benchmarks
	5.2 Comparison with Automata-Based Model Counters
	5.2.1 Performance
	5.2.2 Expressiveness

	5.3 Comparison of Solution Algorithms

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

