
Implementation-Level Analysis of Cryptographic
Protocols and their Applications

to E-Voting Systems

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart

zur Erlangung der Würde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Enrico Scapin
aus Verona, Italien

Hauptberichter: Prof. Dr. Ralf Küsters
Mitberichter: Prof. Dr. Bernhard Beckert

Tag der mündlichen Prüfung: 11. Mai 2018

Institut für Informationssicherheit der Universität Stuttgart

2018

Abstract

Formal verification of security properties of both cryptographic operations, such as encryption,
and protocols based on them, such as TLS, has been the goal of a substantial research effort in
the last three decades. One fundamental limitation in the verification of these security properties
is that analyses are typically carried out at the design level and hence they do not provide reliable
guarantees on the implementations of these operations/protocols. To overcome this limitation, in
this thesis we aim at establishing formally justified cryptographic guarantees directly at the imple-
mentation level for systems that are coded in Java and use cryptography. Our approach is based
on a general framework for the cryptographic verification of Java programs (the CVJ framework)
which formally links cryptographic indistinguishability properties and noninterference properties.
In this way, it enables existing tools that can check standard noninterference properties, but a
priori cannot deal with cryptography, to also establish cryptographic privacy properties for Java
systems. The CVJ framework is stated and proven for a Java-like formal language which however
does not cover all the data types and features commonly used in Java programs. Moreover, the
framework originally supports only one cryptographic operation, namely public-key encryption.

The first contribution of this thesis is hence to extend and to instantiate the CVJ framework
in order to make it more widely applicable. We extend the underlying formal language with
some features of Java which have not been captured yet, such as concurrency, and we restate and
prove all the results of the framework to carry them over into this extended language. We then
further instantiate the framework with additional cryptographic operations: digital signatures and
public-key encryption, both now also including a public-key infrastructure, (private) symmetric
encryption, and nonce generation. The methods and techniques developed within the CVJ
framework are relevant and applicable independently of any specific tool employed. However, to
illustrate the usefulness of this approach, we apply the framework along with two verification
tools for Java programs, namely the fully automated static checker Joana and the interactive
theorem prover KeY, to establish strong cryptographic privacy properties for systems which use
cryptography, such as client-server applications and e-voting systems.

In this context, the second major contribution of this thesis is the design, the implementation,
and the deployment of a novel remote voting system called sElect (secure/simple elections). sElect
is designed to be particularly simple and lightweight in terms of its structure, the cryptography it
uses, and the user experience. One of its unique features is a fully automated procedure which
does not require any user interaction and it is triggered as soon as voters look at the election result,
allowing them to verify that their vote has been properly counted. The component of sElect which
provides vote privacy is implemented in Java such that we can establish cryptographic guarantees
directly on its implementation: by combining the techniques of the CVJ framework with a hybrid
approach for proving noninterference, we are able to show that the Java implementation ensures
strong cryptographic privacy of the votes cast with our proposed voting system.

1

sElect is therefore the first full-fledged e-voting system with strong cryptographic security
guarantees not only at the design level, but also on its implementation.

2

Kurzzusammenfassung

Die formale Verifizierung der Sicherheitseigenschaften von kryptographischen Operationen, wie
Verschlüsselung, und darauf basierenden Protokollen, wie TLS, war in den letzten drei Jahrzehn-
ten das Ziel umfangreicher Forschung. Eine grundlegende Einschränkung bei der Verifikation
von Sicherheitseigenschaften besteht darin, dass Analysen typischerweise auf der Entwurfsebene
durchgeführt werden und daher keine verlässlichen Garantien für die Implementierung bieten.
Um diese Einschränkung zu überwinden, zielt diese Arbeit darauf ab, formal untermauerte kryp-
tographische Garantien für Systeme, die in Java geschrieben sind und Kryptographie verwenden,
direkt auf der Implementierungsebene zu etablieren. Unser Ansatz basiert auf einem allgemeinen
Framework für die kryptographische Verifikation von Java-Programmen (das CVJ-Framework),
das kryptographische Ununterscheidbarkeitseigenschaften und Nichtinterferenzeigenschaften
formal miteinander verknüpft. Dieses Framework ermöglicht es bestehenden Tools, die bereits
Standard-Nichtinterferenzeigenschaften prüfen können, aber a priori nicht mit Kryptographie
umgehen können, auch kryptographische Privacy-Eigenschaften für Java-Systeme zu etablieren.
Das CVJ-Framework ist ausgelegt für eine Java-ähnliche formale Sprache, die jedoch nicht
alle in Java-Programmen üblichen Datentypen und Features abdeckt. Außerdem unterstützt das
Framework ursprünglich nur eine einzige kryptographische Operation, nämlich die Public-Key-
Verschlüsselung.

Der erste Beitrag dieser Arbeit ist daher die Erweiterung und Instanziierung des CVJ-Frame-
works, um es breiter anwendbar zu machen. Wir erweitern die zugrundeliegende formale Sprache
um einige Features von Java, die noch nicht erfasst wurden, wie z.B. Concurrency, und über-
arbeiten und beweisen alle Ergebnisse des CVJ-Frameworks, um sie in die erweiterte Sprache
zu übertragen. Anschließend instanziieren wir das Framework mit zusätzlichen kryptographi-
schen Operationen, nämlich digitale Signaturen und Public-Key-Verschlüsselung, die beide
nun auch eine Public-Key-Infrastruktur, (private) symmetrische Verschlüsselung und Nonce-
Generierung unterstützen. Die im Rahmen des CVJ-Framework entwickelten Methoden und
Techniken sind auch unabhängig von den verwendeten Werkzeugen relevant und anwendbar.
Um die Nützlichkeit des Ansatzes zu verdeutlichen, wenden wir das Framework zusammen mit
zwei Verifikationswerkzeugen für Java-Programme an, nämlich dem vollautomatischen statischen
Analysewerkzeug Joana und dem interaktiven Theorembeweiser KeY, um starke kryptogra-
phische Privacy-Eigenschaften für Systeme zu etablieren, die Kryptographie verwenden (wie
Client-Server-Anwendungen und E-Voting-Systeme).

In diesem Zusammenhang ist der zweite wichtige Beitrag dieser Arbeit das Design, die Um-
setzung und der Einsatz eines neuartigen Remote-Voting-System namens sElect (secure/simple
elections). sElect ist so konzipiert, dass es in Bezug auf seine Struktur, die verwendete Krypto-
graphie und die Benutzerfreundlichkeit besonders einfach und leichtgewichtig ist. Eine seiner
einzigartigen Eigenschaften ist ein vollautomatisches Verfahren zur Verfikation von Stimmabga-
ben. Die Komponente von sElect, die die Vertraulichkeit der Stimmabgabe gewährleistet, ist in

3

Java implementiert, so dass wir kryptographische Garantien direkt für die Implementierung eta-
blieren können: Durch die Kombination der Techniken des CVJ-Frameworks mit einem hybriden
Ansatz zum Nachweis der Nichtinterferenz können wir zeigen, dass die Java-Implementierung
eine starke kryptographische Vertraulichkeit der abgegebenen Stimmen mit unserem vorgeschla-
genen Abstimmungssystem gewährleistet.

Damit ist sElect das erste vollwertige E-Voting-System mit starker kryptographischer Sicherheit,
die nicht nur auf der Design-, sondern auch auf der Implementierungsebene garantiert ist.

4

Contents

Abstract 1

Kurzzusammenfassung 3

1. Introduction 9
1.1. Extension of the CVJ Framework . 12
1.2. Instantiation of the CVJ Framework . 13
1.3. Application of the CVJ Framework . 13
1.4. E-voting Systems and sElect . 15
1.5. Structure of the thesis . 16

I The CVJ Framework, a Framework for the Cryptographic Verification of Java
Programs 19

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings 21
2.1. Jinja+: A Java-like language . 22
2.2. Indistinguishability . 25
2.3. Simulatability and Universal Composition . 26
2.4. I-Noninterference, Noninterference in Open Systems 27
2.5. From I-Noninterference to Computational Indistinguishability 28
2.6. A Proof Technique for proving I-Noninterference 28

2.6.1. Communication through Primitive Types Only 29
2.6.2. Communication through Arrays, Simple Objects, and Exceptions . . . 31
2.6.3. Communication through Strings . 32

3. Extending the CVJ Framework to Java Concurrency 37
3.1. Concurrency in Java . 38
3.2. SyncJinja+ systems . 40

3.2.1. Single-Threaded Semantics of SyncJinja+ 40
3.2.2. Multi-Threaded Semantics of SyncJinja+ 41
3.2.3. Run of a SyncJinja+ program . 43

3.3. Indistinguishability . 44
3.3.1. Interfaces and Composition . 44
3.3.2. Environments . 45
3.3.3. Programs with security parameter . 46
3.3.4. Perfect Indistinguishability . 47
3.3.5. Polynomially Bounded Systems . 48

5

Contents

3.3.6. Computational Indistinguishability . 49
3.4. Simulatability and Universal Composition . 50
3.5. From Perfect to Computational Indistinguishability 53
3.6. Perfect Indistinguishability and Noninterference 55
3.7. From Noninterference to Computational Indistinguishability 57
3.8. From Single-Threaded to Multi-Threaded Programs 58

4. Instantiating and Applying the CVJ Framework 61
4.1. Public-Key Encryption with a Public Key Infrastructure 62

4.1.1. The Interface for Public-Key Encryption 63
4.1.2. The Ideal Functionality for Public-Key Encryption 64
4.1.3. The Realization of Ideal-PKIEnc . 66
4.1.4. Realization Result . 66

4.2. Digital Signatures with a Public Key Infrastructure 68
4.2.1. The Interface for Digital Signatures 68
4.2.2. The Ideal Functionality for Digital Signatures 69
4.2.3. The Realization of Ideal-Sig . 70
4.2.4. Realization Result . 70

4.3. Private Symmetric Encryption . 71
4.4. Nonce Generation . 72
4.5. Joana, a Static Checker for proving Noninterference 72
4.6. The Case Study: A Cloud Storage System . 73

5. Related Work and Discussion 79

II sElect, a Lightweight Verifiable Remote Voting System 85

6. E-voting Systems and their Security Properties 87

7. The sElect E-voting System and its main features 91
7.1. sElect in a nutshell . 91
7.2. Main features of sElect . 92

8. Design, Implementation, and Deployment of the sElect E-voting System 95
8.1. Design of sElect . 95
8.2. Implementation of sElect . 99
8.3. Deployment of sElect . 107

9. Formal Verification of the sElect E-voting System 111
9.1. Verification of the Mix Server . 111
9.2. A Hybrid Approach for Proving Noninterference of Java Programs 113
9.3. KeY, a Theorem Prover for sequential Java Programs 115
9.4. Applying the Hybrid Approach to Verify the Mix Server 119

6

Contents

10. Related Work and Discussion 123

11. Conclusion and Future Work 129

III Appendices 133

A. Security Notions for Cryptographic Schemes 135
A.1. IND-CCA2-secure Public-Key and Symmetric Encryption Schemes 135
A.2. EUF-CMA-secure Digital Signatures Schemes 136

B. The Jinja+ and SyncJinja+ languages 139
B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+ 143

B.1.1. Semantics Rules of Jinja . 143
B.1.2. Semantics Rules of the Jinja+ extension 148
B.1.3. Semantics Rules for the data type String 150
B.1.4. Semantics Rules of the SyncJinja+ extension 151

C. The Environment/Adversary 155

D. Real and Ideal Cryptographic Functionalities 157
D.1. The Public Key Infrastructure . 157
D.2. PKIEnc: Public Key Encryption with a Public Key Infrastructure 159

D.2.1. Ideal Functionality for Public Key Encryption without Corruption . . . 163
D.3. PKISig: Digital Signature with a Public Key Infrastructure 163

D.3.1. Ideal Functionality for Digital Signatures without Corruption 166
D.4. Private Symmetric Encryption . 167
D.5. Nonce Generation . 168

E. Case Studies 169
E.1. A Cloud Storage System . 169
E.2. An E-voting Machine with Auditing Procedures 176
E.3. The Mix Server of sElect . 181

F. Formal Proofs 187
F.1. Proof of Theorem 2.5 . 187
F.2. Proof of Equivalence Relation of ≡comp . 193
F.3. Proof of Theorem 3.6 . 195
F.4. Proof of Theorem 4.1 . 201

F.4.1. Proof of Lemma F.11 . 203
F.4.2. Proof of Lemma F.12 . 213

F.5. Proof of Theorem 4.2 . 216
F.5.1. The Functionality without Corruption 217
F.5.2. Proof of Lemma F.22 . 222

7

Contents

Bibliography 225

Academic Curriculum 243

8

1. Introduction

Security and correctness of software systems have become a fundamental problem for our society:
severe vulnerabilities are found in security critical applications and cryptographic protocols
used by hundreds of millions of people, e.g., for on-line transactions, and attacks compromising
millions of computers are reported in the news almost daily.

To address these issues, in the last three decades or so there has been a substantial research
effort in formally analyzing cryptographic operations, such as encryption, and protocols based
on them, such as TLS. Nevertheless, while severe vulnerabilities in widely used cryptographic
protocols keep on being uncovered (see, e.g., [APW09, ABD+15, BL16, VP17]), performing
security analyses on these protocols still remains a challenging and tricky task. We can distinguish
three main types of approach aiming at formally proving security properties of cryptographic
operations and/or protocols.

The first type is based on symbolic/Dolev-Yao models [DY83]. These models abstract from
cryptographic details by modeling messages as terms of some algebra and cryptographic primi-
tives as deterministic operations on that algebra. These terms are handled symbolically in the
proofs, i.e., they are never evaluated to bitstrings. Tools like ProVerif [Bla01] and Tamarin
[MSCB13] have been proposed to support symbolic analyses of various cryptographic properties,
such as secrecy and authentication. Although simple and efficient, these models suffer from
some limitations: the adversary they consider is restricted to be a non-deterministic state machine
defined as a set of rules for manipulating the terms of the specific algebra. Moreover, these
models make the unrealistic assumption of “perfect cryptography”, i.e., that cryptography cannot
be broken by any means.

The second type of approach is based on computational/cryptographic models [GM82b, Yao82],
where messages are concretely considered as bitstrings and cryptogtraphic primitives as functions
from bitstrings to bitstrings. In this more precise models, the adversary is defined as a probabilistic
polynomial-time Turing machine and the security of the cryptographic primitives is reduced to
well-known hard problems, such as factorization or discrete logarithm. Tools like CryptoVerif
[Bla06] and EasyCrypt [BGHB11] have been proposed to automatically construct game-based
cryptographic proofs [Mih04] of both cryptographic primitives and security protocols.

However, one fundamental limitation of both these two types of approach is that analyses
are typically carried out at the specification level, i.e., on the design level of the cryptographic
protocols, and hence, they do not provide reliable guarantees on the actual implementations of
such protocols. To overcome this limitation, over the last few years some approaches have been
developed in the domain of code-based provable security, where cryptographic analyses are
performed directly at the implementation level.

In this thesis, we focus in one of this last type of approach: we are concerned with the problem
of building computationally sound analyses of systems that are coded in Java and involve the
use of cryptography. More specifically, our aim is to establish formally justified cryptographic

9

1. Introduction

security guarantees for such systems on the implementation level, that is, directly for the running
Java code of these systems.

Our approach is based on a general framework for the cryptographic verification of Java
programs [KTG12a] (henceforth, we refer to this framework as the CVJ framework) which allows
us to carry out semantically sound cryptographic analyses of programs written in (a large fragment
of) Java. Due to its intrinsic entanglement, implementation-level analysis of cryptographic
properties has only recently gained the attention for practical programming languages and the CVJ
framework is currently the only approach to formally establish cryptographic security guarantees
for Java programs. The only other approach aiming at establishing cryptographic guarantees
directly at the implementation level is based on F* [SHK+16] and other closely related languages
(such as F# [Don15] and RF* [BFG+14]), a family of functional-first programming languages
built with the specific aim of program verification (see, e.g., [CB13, BFK+13, DFK+17] for
some works using this approach to verify cryptographic implementations).

The security guarantees that we want to establish on Java implementations containing crypto-
graphic operations are related to the concept of indistinguishability [GM82b]: Two systems S1
and S2 are considered to be indistinguishable if no probabilistic polynomially bounded adversary
is able to distinguish, with more than negligible probability, whether it interacts with S1 or
S2. For example, an encryption scheme is defined to be “secure” according to this notion if
no adversary is able to distinguish the encryption of the bit 0 from the encryption of the bit 1.
Indistinguishability plays a central role in precisely asserting the level of confidentiality of both
cryptographic operations and security protocols and it is in fact the most fundamental definition in
the formal evaluation of many security critical applications, such as anonymous communication,
secure message transmission, e-voting, etc.

To formally establish this definition on the code level, results within the CVJ framework
formally link indistinguishability properties with noninterference properties. Noninterference
is a confidentiality property for programs which characterizes secure information flow by the
requirement that private data stored in so-called “high variables” does not flow to public “low
variables” which can directly be observed by an attacker [GM82a].

Existing program analysis tools for checking noninterference properties cannot deal with
cryptography directly. In particular, the noninterference properties that they ensure are with
respect to unbounded adversaries, rather than probabilistic polynomially bounded adversaries,
the kind of adversaries considered in cryptography. Hence, if a message is encrypted and the
ciphertext is given to the adversary, the tools consider this to be an illegal information flow
(or a declassification), because a computationally unbounded adversary could in fact decrypt
the message. The approach taken in the CVJ framework to enable these tools to nevertheless
deal with cryptography and, in the end, to provide cryptographic security guarantees is to use
techniques from simulation-based security/universal composability (see, e.g., [Can00, PW01,
Küs06, KT13]). The central idea of this framework is to first analyze noninterference properties
for a Java program where cryptographic operations (such as encryption) are performed by so-
called ideal functionalities. Such functionalities typically provide guarantees even in the face
of unbounded adversaries and can often be formulated without probabilistic operations. One
central result of the CVJ framework is that, given that the Java program with ideal functionalities
enjoys noninterference, we can replace the ideal functionalities by their realizations (the actual

10

cryptographic operations) and then obtain strong cryptographic indistinguishability properties
for the original Java program, that is, the one without idealized components. The methods
and techniques of the CVJ framework are relevant and usable independently of any specific
application domain. In particular, they are not tailored to any specific cryptographic operation.
However, to show the applicability of this approach, the authors of [KTG12a] have proposed
an ideal functionality written in Java for public-key encryption, provided its realization, i.e., a
Java implementation of a real public-key encryption scheme, and proven their relation under
strong cryptographic assumptions. They have already presented a simple case study where clients
(whose number is determined by an active adversary) encrypt secrets under the public key of a
server and send them, over an untrusted network controlled by the active adversary, to a server
who decrypts these messages. Using the program analysis tool Joana [HS09a, GHM13], which is
a fully automatic tool for proving noninterference properties of Java programs, the client-server
application has been shown to be noninterferent (with the secrets stored in high variables) when
the ideal functionality is used instead of the real public-key encryption scheme. By the results of
the CVJ framework, this system then enjoys the desired indistinguishability property when the
ideal functionality is replaced by its realization, i.e., the real public-key encryption scheme.

Our contribution. Starting from the results and the aforementioned first application of the CVJ
framework, we make the following contributions:

1. We extend Jinja+, the formal language the framework is stated for, with some not yet modeled
features of Java: Java-interfaces, abstract classes, strings, and two features of Java concurrency,
namely thread creation and synchronized blocks. We then restate all the definitions and prove
all the results to carry them over into this extended language (see Section 1.1 below).

The extension of the CVJ framework with Java-interfaces, abstract classes, and strings has
been presented at the Workshop on Foundations of Computer Security (FCS 2015) [Sca15a]
and the technical report is available at [Sca15b]. The extension of the CVJ framework with
the two concurrency features is not yet published but presented in details in Chapter 3.

2. We make the CVJ framework more widely applicable by further instantiating it with real and
ideal functionalities for the most common cryptographic operations used in security critical
applications (see Section 1.2 below).

The instantiation with real and ideal cryptographic functionalities has been presented at the
3rd Conference on Principles of Security and Trust (POST 2014) [KSTG14a] and the technical
report is available at [KSTG14b]. The runnable code of these functionalities can be found in
[TSK13].

3. We illustrate the applicability of the CVJ framework by applying it to three non-trivial case
studies (see Section 1.3 below).

The first two non-trivial case studies the CVJ framework has been applied to are part
of a research paper presented at the 3rd Conference on Principles of Security and Trust
(POST 2014) [KSTG14a] and another research paper presented at the IEEE 28th Computer

11

1. Introduction

Security Foundations Symposium (CSF 2015) [KTB+15], respectively. For the latter research
paper, our contribution has been to provide the code for the case study as well as the code for
the “previous experiments” mentioned in the related work section of [KTB+15].

The full code of these two case studies as well as the instructions on how to use the employed
tools to carry out their analyses can be found in [STG13] and [STB+14a], respectively. The
code of the aforementioned “previous experiments” can be found in [STB+14b].

At the time of writing, the analysis of the third case study, namely the cryptographic core of
the sElect e-voting system (see below), is mostly finished but ongoing work. We refer the
reader to Chapter 9 for the full details. The code of this case study as well as the part of the
verification which has already been carried out can be found in [SHM17].

4. We introduce a novel remote e-voting system called sElect (secure/simple elections), which
starting from simply being a case study for the CVJ framework eventually evolved into a
full-fledged and already deployed remote e-voting system (see Section 1.4 below).

sElect has been presented at the IEEE 29th Computer Security Foundations Symposium
(CSF 2016) [KMST16a] and the technical report is available at [KMST16b]. Our proposed
implementation of the system and an election manager for its fast deployment can be found
in [SST16] and [SS16], respectively.

In the rest of the introduction, we discuss these contributions in more detail.

1.1. Extension of the CVJ Framework

The CVJ framework is stated and proven for a sequential language called Jinja+ and is proven
w.r.t. the formal semantics of this language. Jinja+ is a Java-like language that extends the
language Jinja [KN06] with some useful additional features of Java, such as arrays and the
primitive types int, boolean, and byte. Moreover, since the kind of systems considered in
cryptography are possibly randomized, Jinja+ also includes the primitive randomBit() returning
a random bit each time it is called.

In Chapter 2, we further extend Jinja+ with Java-interfaces, abstract classes, and the data type
String. Furthermore, in Chapter 3, we model two concurrent features of Java, namely thread
creation and synchronized blocks. While these features do not capture all the aspects of Java
concurrency, they are sufficient to model an interesting class of programs, such as multi-threaded
client-server applications. These extensions of Jinja+ result in an extended language called
SyncJinja+ whose small-step semantics comprehends 25 newly introduced reduction rules in
addition to the 70 already part of Jinja+. We then extend all the definitions, restate and prove all
the results of the CVJ framework to deal with the newly introduced types of values, multi-threaded
constructs, and semantics rules. In particular, to formally link cryptographic indistinguishability
properties to noninterference properties in a concurrent setting, we propose a novel notion of
noninterference for concurrent Java programs, which substantially differs from all the other
concurrent noninterference definitions present in the literature.

12

1.2. Instantiation of the CVJ Framework

An adversary running concurrently with an honest program can measure the runtime of that
program. Therefore, when extending the framework with concurrency, proving cryptographic
guarantees based on standard cryptographic assumptions would not be possible anymore: cryp-
tographic security definitions are usually stated as sequential games between the cryptographic
scheme and the adversary, and hence, they do not capture timing attacks. SyncJinja+ therefore
allows one to declare parts of the code to be executed atomically, i.e., without interleaving by any
other component of the modeled system, such as another thread or the scheduler.1 Then, the main
result of Chapter 3 is that if a single-threaded system R realizes another single-threaded system
F , then this realization carries over also to multi-threaded adversaries, as long as the assumption
of considering R and F atomic is maintained.

1.2. Instantiation of the CVJ Framework

The theorems proven within the CVJ framework are very general in that they guarantee that any
ideal functionality can be replaced by its realization. In particular, they are not tailored to any
specific cryptographic operation. However, to make the framework directly applicable to a wide
range of cryptographic software, i.e., software that uses cryptographic operations, in Chapter 4,
we further instantiate the CVJ framework with ideal functionalities formulated in Java for the
most common cryptographic operations:

(1) public-key encryption,

(2) digital signatures,

both with a public-key infrastructure for distributing the (public) keys among parties and both
handling possibly corrupted encryptors/signers,

(3) private symmetric encryption,

(4) nonce generation.

For each ideal functionality, we propose a corresponding real cryptographic operation also
implemented in Java and we prove, in the universal composability model, that this real imple-
mentation realizes the corresponding ideal functionality under strong cryptographic assumptions.
Once again, showing that a Java system using any of these ideal functionalities enjoys the nonin-
terference property implies establishing cryptographic indistinguishability for the same system
when the ideal functionalities are replaced by the corresponding real cryptographic operations.

1.3. Application of the CVJ Framework

To illustrate the applicability and the usefulness of the CVJ framework, besides the simple
client-server application proposed as a first case study, we use the aforementioned cryptographic
operations and ideal functionalities to develop and verify three other non-trivial applications:

1In our formalization, the scheduler is modeled as a separate, single-threaded Jinja+ program.

13

1. Introduction

(a) A cloud storage system allowing a user to store data on a remote server in such a way
that confidentiality of the data stored on the server is guaranteed even if the server itself is
malicious (see Section 4.6 and [STG13]).

(b) An e-voting machine which gathers all the votes, calculates the election result, and publishes
it, along with some other information for auditing, to a publicly available bulletin board (see
Section 9.3 and [STB+14a]).

(c) The component of the sElect e-voting system (see next section) hiding the link between the
voters’ encrypted ballots and their original choices, namely the mix server: upon receiving a
list of ballots encrypted with its public key, the mix server decrypts all the ciphertexts, shuffles
the decrypted ballots, and outputs them digitally signed (see Section 9.4 and [SST16]).

We used the results of the CVJ framework to establish cryptographic privacy properties on these
three case studies. In particular, for the cloud storage system we are interested in establishing
confidentiality of the messages stored on the remote server. For the two e-voting systems our aim
is instead to establish confidentiality of the votes cast by honest voters.

However, when checking noninterference properties in e-voting systems, the functional depen-
dency between the secret voters’ choices and the public outcome of the election raises additional
challenges in establishing cryptographic vote privacy. Due to the approximations employed, fully
automatic tools are in fact unable to establish functional properties on the programs they verify:
for instance, given an e-voting system, automatic tools cannot state whether two different vectors
of votes produce the same election result or not.

To cope with this problem, a hybrid approach for proving noninterference has been proposed
in [KTB+15] combining the convenience of using fully automatic tools, such as static checkers,
with the precision of interactive tools, such as theorem provers. The idea underlying this approach
is as follows. If the verification of noninterference of a program using an automatic tool fails
due to (what we think are) false positives, then additional code is added to the program in order
to make it more explicit for the automatic tool that there is no illegal information flow, and by
this, to avoid false positives. If the automatic tool now establishes that the extended program
enjoys the desired noninterference property, it remains to show that the extended program is a
conservative extension of the original program. Intuitively, this means that the additional code
did not change the behavior of the original program in an essential way, including, importantly,
noninterference properties. Proving that an extension is conservative requires to prove functional
properties of (parts of) the program and it can therefore only be performed by a more precise but
interactive theorem prover.

The verification of the case studies (b) and (c) has been carried out using a combination of
Joana and KeY [ABB+14], a program verification system for sequential Java which is based
on an interactive theorem prover for first-order dynamic logic (JavaDL) [Bec00]. The logical
calculus for JavaDL which allows for the functional verification with KeY precisely reflects the
semantics of sequential Java, i.e., it does not make any approximation. This however comes
at the price of a major human interaction in building such proofs. Therefore, on the one hand,
the precision of KeY is used to address the problem of the functional dependency between the
secret voters’ choices and the public outcome of the election. On the other hand, the high degree

14

1.4. E-voting Systems and sElect

of automation of Joana is used to quickly establish the noninterference property on the overall
voting systems.

1.4. E-voting Systems and sElect

Using e-voting systems as motivating examples and case studies for the methods and techniques
developed to perform cryptographic analyses on the code level also contributes to the active
research field of studying and verifying e-voting protocols. In the last decade or so, there has
been an extensive effort in formally defining the security properties that e-voting systems are
supposed to provide (see, e.g., [KTV10a, KTV10b, KTV11, BCG+15, CGK+16]):

(i) Privacy guarantees that nobody is able to tell how each voter voted.

(ii) Verifiability ensures the possibility to verify the correctness of the election result, even
if some components of the e-voting system or some election authorities are (partially)
malicious.

(iii) Accountability is a stronger form of verifiability which requires not only that a fraudulent
election result is detected but also that misbehaving parties are properly singled out and
held accountable.

(iv) Coercion-resistance protects voters against vote buying and vote coercion.

The formalization of these security properties has been used to perform cryptographic analyses
on several e-voting systems finding attacks and revealing some misconceptions concerning their
relations (see, e.g., [KTV10a, KTV10b, KTV10c, KTV11, CS11, KTV12b, ACW13, CEK+15,
KZZ15a, KMST16a, CCFG16, KZZ17, CDD+17, CW17]).

However, when deploying such systems, besides theoretical cryptographic analysis, many
other more practical aspects have to be taken into account, considering possible vulnerabilities,
implementation flaws, deployment misconfigurations, and so on. In addition, human actors
(voters, clerks, authorities, auditors, etc.) play also a central role in the overall electoral process,
making sociotechnical facets, such as usability, perceived security, and legal requirements, as
relevant as security technicalities during the design, the implementation, and the deployment
of such systems. To increase transparency and reliability in the overall electoral process, newly
proposed e-voting systems therefore strive also for simplicity and high usability: In this way,
their architecture can easily be understood even by non experts and human actors can take part in
the electoral process effortlessly.

Simplicity and usability were in fact the main requirements of sElect (simple/secure elections),
a novel remote voting system which we designed, implemented, and deployed in real-world
elections. sElect is meant for low-risk elections,2 such as elections within companies, clubs,
associations, etc., and it is designed to be particularly simple and lightweight in terms of its

2Low-risk elections are elections where coercion of human actors is unlikely and where there is no pragmatical need
to defend against sophisticated attacks on the voter supporting devices (VSDs; these are the devices that voters use
to cast their ballots).

15

1. Introduction

structure, the cryptography it uses, and the user experience. One of its unique features is a fully
automated procedure which does not require any user interaction and it is triggered as soon as
voters look at the election result, allowing them to verify that their vote has been properly counted.
In addition, voters can also make sure that their vote is in the final tally by manually checking
whether the verification code they have chosen themselves when casting their vote appears in the
election result along with their choice. Thanks to these two verification procedures, besides vote
privacy, sElect enjoys a high level of verifiability and accountability.

The use of encryption, digital signatures, and nonce generation as the sole cryptographic
primitives combined with the two forms of verification procedures makes the architecture of the
system and the overall voting process understandable also by non experts, potentially raising
the level of transparency and reliability perceived by the human actors involved in the electoral
process. Furthermore, sElect comes with a rigorous cryptographic analysis at design level with
respect to the three security properties mentioned above: privacy, verifiability, and accountability.
As shown in [KMST16a], despite its simplicity and high usability, the level of security of sElect
is comparable to other prominent remote voting systems, such as Helios [Adi08] (we refer the
reader to Chapter 10 for a comprehensive discussion between the two systems). However, since
the cryptographic analysis does not consider the actual code of the system but rather a more
abstract cryptographic model, implementation flaws and vulnerabilities can still go undetected.
Therefore, in Chapter 9 we employ the techniques of the CVJ framework in combination with the
aforementioned hybrid approach for proving noninterference to establish strong cryptographic
guarantees on the implementation of the mix server, the component of sElect which provides
vote privacy. While this analysis does not ensure the absence of any vulnerability, we are able to
guarantee that the proposed implementation provides strong cryptographic privacy of the votes
cast with sElect.

1.5. Structure of the thesis

The thesis is structured in two parts.
In the first part, we propose two extensions of the CVJ framework, its instantiations, and

its applications. More specifically, in Chapter 2, we extend Jinja+, the Java-like language the
framework is stated for, to Java-interfaces, abstract classes, and strings. We then recall the
main definitions and results of the CVJ framework, restating the only result which requires non
trivial modifications to carry it over into this extended language, namely a proof technique for
proving noninterference in open systems. In Chapter 3, we extend Jinja+ with two features
of Java concurrency, namely thread creation and synchronized blocks. Again, we restate and
prove all the results of the framework w.r.t. this concurrent language, introducing a novel notion
of noninterference which is suitable for our purposes. In Chapter 4, we instantiate the CVJ
framework with the most common cryptographic primitives and we illustrate the usefulness
of this instantiation by applying the framework along with the fully automatic tool Joana to
establish cryptographic privacy properties of a (non-trivial) cloud storage application, where
clients can store private information on a remote server. Finally, in the related work (Chapter 5) we
mainly discuss how our novel notion of concurrent noninterference relates to the other concurrent
noninterference definitions in the literature.

16

1.5. Structure of the thesis

In the second part, after introducing in Chapter 6 the problem of e-voting and the main security
properties of e-voting systems, we describe sElect [KMST16a, KMST16b], a novel verifiable
remote voting system, as well as the cryptographic analysis perfomed on its implementation.
In particular, after introducing, in Chapter 7, the main characteristics of sElect, in Chapter 8
we describe the components (Section 8.1), the development (Section 8.2), and the deployment
(Section 8.3) of our proposed e-voting system. In Chapter 9, we explain our efforts in establishing
strong cryptographic guarantees on the component of sElect which provides privacy of votes,
the mix server (Section 9.1). In particular, we explain the technique (Section 9.2), the tools
(Section 9.3), and the method (Section 9.4) employed to obtain these guarantees. In the related
work (Chapter 10), we compare sElect with the most prominent remote voting system in the
literature, the Helios voting system [Adi08].

In Appendix A, we present the formal definitions of the cryptographic assumptions which our
cryptographic functionalities and their realization results are based on. In Appendix B, we present
the language at the base of all our formal results, SyncJinja+, including all its 95 small-step
reduction rules. After explaining in Appendix C our modeling of the environment/adversary
in SyncJinja+, in Appendix D, we list the code of the real and ideal functionalities of the
cryptographic primitives the realization results are stated and proven for. The case studies
employing these functionalities and for which we established security guarantees on the code
level are listed in Appendix E. Finally, Appendix F contains all the formal proofs of the theorems
which are too long for being incorporated in the main body of the thesis.

17

PART I

The CVJ Framework, a Framework for the
Cryptographic Verification of Java Programs

19

2. Extending the CVJ Framework to Java-Interfaces,
Abstract Classes, and Strings

As already mentioned in the introduction, the CVJ framework considers the problem of establish-
ing security guarantees for Java-like programs which use cryptography. In particular, the CVJ
framework allows tools that can check standard noninterference properties [GM82a] but a priori
cannot deal with cryptography, in particular probabilities and polynomially bounded adversaries,
to establish cryptographic indistinguishability properties [GM82b], such as privacy properties,
for Java programs. The framework combines techniques from language-based information-flow
security [SM03] and universal composability [Can00, PW01, Küs06, KT13], a well-established
concept in cryptography. The idea is to first check noninterference properties for the Java program
to be analyzed where cryptographic operations (such as encryption) are performed within so-
called ideal functionalities. Such functionalities typically provide guarantees even in the face of
unbounded adversaries and can often be formulated without probabilistic operations. Therefore,
such analyses can be carried out by tools that a priori cannot deal with cryptography, as they
enforce security properties w.r.t. unbounded adversaries. Theorems within the framework now
imply that the Java program enjoys strong cryptographic indistinguishability properties when the
ideal functionalities are replaced by their realizations, i.e., the actual cryptographic operations.

The CVJ framework is formulated in [KTG12a] for a sequential language called Jinja+ and is
proven w.r.t. the formal semantics of this language. Jinja+ is a Java-like language that extends the
language Jinja [KN06] with, among others, arrays, the type byte, and the abort primitive. We
refer the reader to Appendix B for the details of the language.

To make this framework applicable to a wider class of Java programs, in this chapter we further
extend the syntax and the semantics of Jinja+ introduced in Section 2.1 with:

(i) Java-interfaces,

(ii) abstract classes,

(iii) strings.

Except for one result, namely a proof technique for checking noninterference in open systems,
all the definitions and results of the CVJ framework carry over easily to the extended language.
That is, the new types of values and the new rules of the augmented small-step semantics do not
affect the proof in a significant way. These definitions and results are therefore presented here in
a more simplified and informal way which should anyway suffice to follow the rest of the thesis.
We refer the reader to [KTG12a] for the details and to [KTG12b] for the proofs of all the results.

As to checking noninterference, many program analysis tools can only deal with closed Java
programs. The systems to be analyzed are, however, often open: they interact with a network
or use some libraries which are not necessarily trusted and, hence, are not part of the code to be

21

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

analyzed; instead, they are considered to be part of the environment with unspecified behavior. A
proof technique has therefore been proposed to reduce the problem of checking noninterference in
an open system to checking noninterference for a single (almost) closed system. Technically, this
result shows how to construct, for an open system S, a family of environments Ẽ~u parameterized
by an input sequence ~u, such that S is noninterferent if and only if S composed with Ẽ~u is
noninterferent for all ~u. Importantly, the latter property can be verified using existing tools for
program analysis. This result requires non-trivial modifications to model the exchange of data
between the system and the environment when also strings are involved: In fact, the exchange of
data through string references introduces subtle changes in the original result and, technically,
invalidates the main assumption the result is based on, i.e., the separation between the state of the
system and the state of the environment. In this chapter, we therefore extend the construction
of Ẽ~u to also handle the exchange of string references. Relying on the fact that the Java (Jinja+)
strings are immutable, we relax the state separation assumption, we adapt the proof in a non-trivial
way to work with the new (relaxed) assumption, and we finally reshape the proof technique for
proving noninterference in open systems taking into account string references, too.

2.1. Jinja+: A Java-like language

In this section, we present Jinja, a Java-like programming language with a formal semantics,
its extension Jinja+, which adds additional features that are useful in the context of the CVJ
framework, and finally the three aforementioned extensions: abstract classes, Java-interfaces, and
strings.

Jinja. Expressions in Jinja are constructed recursively and include: (a) creation of a new object,
(b) casting, (c) literal values (constants) of types boolean and int, (d) null, (e) binary operations,
(f) variable access and variable assignment, (g) field access and field assignment, (h) method call,
(i) blocks with locally declared variables, (j) sequential composition, (k) conditional expressions,
(l) while loop, (m) exception throwing and catching.

A program or a system is a set of class declarations. A class declaration consists of the name
of the class and the class itself. A class consists of the name of its direct superclass (optionally),
a list of field declarations, and a list of method declarations, where we require that different fields
and methods have different names. A field declaration consists of a type and a field name. A
method declaration consists of the method name, the formal parameter names and types, the
result type, and an expression (the method body). Note that there is no return statement, as a
method body is an expression; the value of such an expression is returned by the method. In
what follows, by a system we will mean a set of classes which is syntactically correct (can be
compiled), but possibly incomplete (can call methods of not defined classes). In particular, a
system can be extended to a program. By a program we will mean a complete program (one
that is syntactically correct and can be executed). We assume that a program contains an unique
static method main (declared in exactly one class); this method is the first to be called in a run.
Jinja comes equipped with a type system and a notion of well-typed programs. In this thesis we
consider only well-typed programs.

Following [KN06], we briefly sketch the small-step semantics of Jinja. The full set of rules
can be found in the appendix, Figures B.0, B.1, B.2, and B.3. A state s is a pair of heap

22

2.1. Jinja+: A Java-like language

1 class A extends Exception {

2 protected int a; // field with an access modifier

3 static public int[] t = null; // static field

4 static public void main() { // static method

5 t = new int[10]; // array creation

6 for (int i=0; i<10; i++) // loops

7 t[i] = 0; // array assignment

8 B b = new B(); // object creation

9 b.bar(); // method invocation

10 }

11 }

12 class B extends A { // inheritance

13 private int b;

14 public B() // constructor

15 { a=1; b=2; } // field assignment

16 int foo(int x) throws A { // throws clause

17 if (a<x) return x+b; // field access (a, b)

18 else throw (new B()); // exception throwing

19 }

20 void bar() {

21 try { b = foo(A.t[2]); } // static field access

22 catch (A a) { b = a.a; } // exception catching

23 }

24 }

Figure 2.1.: An example Jinja+ program (in Java-like notation).

h, a store l. A store is a map from variable names to values, l : Var → Val, where Val ::=
int | bool | loc | null | unit. A heap is a map from locations (we indicate them also as references
or addresses) to object instances, h : Loc→ Ob j. An object instance is a pair consisting of
a class name and a field table, Ob j : Name×Field. A field table is a map from field names
(which include the class where a field is defined) to values, Field : Name→Val. The small-step
semantics of Jinja is given as a set of rules (Rules B.1-B.54) of the form P ` 〈e,s〉 → 〈e′,s′〉,
describing a single step of the program execution (reduction of an expression). We will call 〈e,s〉
(and 〈e′,s′〉) a configuration. In this rule, P is a program in the context of which the evaluation is
carried out, e and e′ are expressions and s and s′ are states. Such a rule says that, given a program
P and a state s, an expression e can be reduced in one step to e′, changing the state to s′.

Jinja+. Jinja+ extends the Jinja language with: (a) the primitive type byte with natural conver-
sions from and to int, (b) arrays, (c) abort primitive, (d) static fields (with the restriction that
they can be initialized by literals only), (e) static methods, (f) access modifier for classes, fields,
and methods (such as private, protected, and public), (g) final classes (classes that cannot be
extended), (h) the throws clause of a method declaration.

Exceptions, which are already part of Jinja, are particularly critical for the security properties
stated in the CVJ framework because they provide an additional way information can be trans-
ferred from one part of the program to another. We assume Jinja+ programs have unbounded

23

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

memory. The reason for this modeling choice is that the formal foundation for the security
notions adopted in the CVJ framework are based on asymptotic security. This kind of security
definitions only makes sense if the memory is not bounded, since the security parameter grows
indefinitely. Furthermore, since the CVJ framework needs to consider also randomized program,
Jinja+ programs may use the primitive randomBit() that returns a random bit each time it is used.
Jinja+ programs that do not make use of randomBit() are (called) deterministic, and otherwise,
they are called randomized. Some constructs of Jinja+ are illustrated by the program in Figure 2.1,
where we use Java-like syntax (we will use this syntax as long as it translates in a straightforward
way to a Jinja/Jinja+ syntax).

Figures B.4, B.5 in the appendix contain the small-step rules for the Jinja+ extension: together
with the rules of Jinja (in Figures B.0, B.1, B.2, and B.3), they describe the small-step semantics
of Jinja+ as a set of rules (Rules B.1-B.70). A more comprehensive presentation of the Jinja+
extensions can be found in Appendix B, with the small-step semantics rule in Appendices B.1.1
and B.1.2.

Java-Interfaces and Abstract Classes. We extend the abstract syntax of a Jinja+ system to now
also include abstract classes and Java-interfaces.3 A system or a program is a triple of three lists:
a list of Java-interface declarations, a list of abstract class declarations, and a list of concrete
class declarations. Each declaration consists in the name of the Java-interface/class and the Java-
interface/class itself. An Java-interface consists in a list of its direct superinterfaces (optionally),
a list of its constant declarations, and a list of method signatures. A constant declaration consists
of a type, a constant name, and a literal of the appropriate type (the value of the constant). A
method signature consists of the method name, the formal parameter names and types, and the
result type. An abstract class consists of the name of its direct superclass (optionally), a list of the
implemented Java-interfaces (optionally), a list of field declarations, a list of method signatures
(commonly called abstract methods), and a list of method declarations. A field declaration
consists of a type and a field name. A method declaration consists in a method signature and in
an expression (the method body). Note that there is no return statement, as a method body is an
expression; the value of such an expression is returned by the method. A concrete class is defined
as an abstract class without the list of method signatures, i.e., all methods contain the body. In the
above definitions we assume that different syntactic categories (Java-interfaces, classes, constants,
fields, and methods) have different names. We assume that Java-interfaces and abstract classes
are provided by a compiler that, first, ensures that the policies expressed by these clauses are
respected (e.g., a concrete class implementing an interface indeed implements all its methods)
and then produces Jinja+ code without them. Regarding the Jinja+ rules (see Appendix B.1.2),
we extend the convention used in [KN06] that symbols C and D denote (concrete or abstract)
classes to denoting Java-interfaces, too. According to this convention, there are a few changes in
the interpretation of the expressions and predicates of the small-step semantics rules:

• In the expression new C corresponding to the creation of a new object we assume that a
compiler already enforced C to be a concrete class. Moreover, we require that the predicate

3We note that the concept of Java-interface follows the abstract type that is indeed used to specify interfaces in Java
and it is not to be confused with the concept of interface used in the CVJ framework (see Section 2.2).

24

2.2. Indistinguishability

P `C has-fields FDT s used in the object creation rule (Rule B.16) collects information
about the fields both in the class and in the Java-interface hierarchy.

• In the expression Cast C now C can be either a (concrete or abstract) class or an Java-
interface. Therefore, we extend the meaning of the predicate P ` D�∗ C (used in rules
B.17, B.18, B.31, B.39 and B.40): it means D is a subclass of C if C is a class, while D
implements C if C is an Java-interface.

• In the expression e.F{D} (field access) D can now either be the class or the Java-interface
where F is declared (in the latter case F is defined as a constant). In the expression
e.F{D} := e2 (field assignment) D can only be the (abstract or concrete) class where F is
declared. However, the rules where these expressions are evaluated (Rule B.3 and B.4)
remain unchanged.

• In the expression try e1 catch (C V) e2 we assume that a compiler already enforced C to
be a concrete class (which must extend the class T hrowable). Therefore, in rules B.39 and
B.40, the predicate P ` D�∗ C is indeed always interpreted as D is a subclass of C.

• The predicate P` C sees M : T s→ T = (pns, body) in D used in the rule B.24 is supposed
to look up for the method declaration of M in the class hierarchy and therefore now also in
abstract classes but obviously not in the Java-interfaces (since they contain only method
signatures).

The interpretation of the other expressions and rules remains the same as in [KN06].

Strings. We extend the language Jinja [KN06] with strings. We introduce a new value litS
detoning a string literal, i.e., a quoted sequence of characters representing a string value within
the source code. In the heap, we represent a string as a pair consisting of an array of the characters
in the string literal and its length. The extension of the (small-step) semantic rules to deal with
strings is quite straightforward and can be found in Figure B.6 of Appendix B.1.

2.2. Indistinguishability

We now define what it means for two Jinja+ systems to be indistinguishable by an environment
interacting with them. As already mentioned in the introduction of the thesis, indistinguishability
is a fundamental relation between systems which is interesting in its own right, for example, to
define privacy properties, and to define simulation-based security, as we will present in the next
section.

For this purpose, we first recall from [KTG12a] what we mean by an “interface” that a system
uses/provides, how systems are composed, and environments. We then present the notion of
computational indistinguishability which follows the spirit of definitions of (computational)
indistinguishability in the cryptographic literature (see e.g., [Can00, Küs06]), but, of course,
instead of interactive Turing machines, here we consider Jinja+ systems/programs.

Interfaces, Composition, and Environments. An interface I is defined like a (Jinja+) system
but where (i) all private fields and private methods are dropped and (ii) method bodies as well as

25

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

static field initializers are dropped. A system S implements an interface I, written S : I, if I is a
subinterface of the public interface of S, i.e., the interface obtained from S by dropping method
bodies, initializers of static fields, private fields, and private methods. We say that a system S
uses an interface I, written I ` S, if, besides its own classes, S uses at most classes/methods/fields
declared in I. We write I0 ` S : I1 for I0 ` S and S : I1. We also say that two interfaces are disjoint
if the sets of class names declared in these interfaces are disjoint.

For two systems S and T we denote by S ·T the composition of S and T which, formally,
is the union of (declarations in) S and T . Clearly, for the composition to make sense, we
require that there are no name clashes in the declarations of S and T . Of course, S may use
classes/methods/fields provided in the public interface of T , and vice versa.

A system E is called an environment if it declares a distinct private static variable result of
type boolean with initial value false. Given a system S : I, we call E an I-environment for S
if there exists an interface IE disjoint from I such that IE ` S : I and I ` E : IE . Note that E · S
is a complete program. The value of the variable result at the end of the run of E ·S is called
the output of the program E ·S; the output is false for infinite runs. If E ·S is a deterministic
program, we write E ·S true if the output of E ·S is true. If E ·S is a randomized program,
we write Prob{E ·S true} to denote the probability that the output of E ·S is true.

We assume that all systems have access to a security parameter (modeled as a public static variable
of a class SP). We denote by P(η) a program P running with security parameter η.

To define computational equivalence and computational indistinguishability between (proba-
bilistic) systems, we consider systems that run in (probabilistic) polynomial time in the security
parameter. We omit the details of the runtime notions used in the CVJ framework here, but note
that the runtimes of systems and environments are defined in such a way that their composition
results in polynomially bounded programs.

Let P1 and P2 be (complete, possibly probabilistic) programs. We say that P1 and P2 are
computationally equivalent, written P1 ≡comp P2, if |Prob{P1(η) true}−Prob{P2(η)
true}| is a negligible function in the security parameter η.4

Definition 2.1 (Computational Indistinguishability [KTG12a]). Let S1 and S2 be probabilistic
polynomially bounded systems. Then S1 and S2 are computationally indistinguishable w.r.t.
I, written S1 ≈I

comp S2, if S1 and S2 use the same interface I and for every bounded Jinja+
I-environment E for S1 (and hence, S2) we have that E ·S1 ≡comp E ·S2.

2.3. Simulatability and Universal Composition

We now define what it means for a system to realize another system, in the spirit of universal
composability, a well-established approach in cryptography. Security is defined by an ideal
system F (also called an ideal functionality), which, for instance, models ideal encryption,
signatures, MACs, key exchange, or secure message transmission. A real system R (also called
a real protocol) realizes F if there exists a simulator S such that no polynomially bounded

4As usual, a function f from the natural numbers to the real numbers is negligible, if for every c> 0 there exists η0
such that f (η)≤ 1

ηc for all η > η0.

26

2.4. I-Noninterference, Noninterference in Open Systems

environment can distinguish between R and S ·F . The simulator tries to make S ·F look like R
for the environment (see the subsequent sections for examples). More formally:

Definition 2.2 (Strong Simulatability (simplified) [KTG12a]). Let F and R be probabilistic
polynomially bounded systems which implement the same interface Iout and use the same interface
IE , except that in addition F may use some interface IS provided by a simulator. Then, we say
that R realizes F w.r.t. Iout , written R ≤Iout F or simply R ≤ F, if there exists a probabilistic
polynomially bounded system S (the simulator) such that R ≈Ioutcomp S ·F.

We notice that the relation ≤ is both reflexive and transitive (we refer the reader to [KTG12a]
for the formal proof).

A main advantage of defining security of real systems by the realization relation ≤ is that
systems can be analyzed and designed in a modular way: The following theorem implies that it
suffices to prove security for the systems R0 and R1 separately in order to obtain security of the
composed system R0 ·R1.

Theorem 2.1 (Composition Theorem (simplified) [KTG12a]). Let I0 and I1 be disjoint inter-
faces and let R0, F0, R1, and F1 be probabilistic polynomially bounded systems such that R0 ≤I0 F0
and R1 ≤I1 F1. Then, R0 ·R1 ≤I0∪I1 F0 ·F1, where I0∪ I1 is the union of the class, method, and
field names declared in I0 and I1.

2.4. I-Noninterference, Noninterference in Open Systems

The (standard) noninterference notion for confidentiality [GM82a] requires the absence of infor-
mation flow from high to low variables within a program. Here, we define noninterference for a
deterministic (Jinja+) program P with some static variables~x of primitive types that are labeled
as high. Also, some other static variables of primitive types are labeled as low. We say that P[~x] is
a program with high variables~x (and low variables). By P[~a] we denote the program P where the
high variables~x are initialized with values~a and the low variables are initialized as specified in P.

Now, noninterference for a deterministic program is defined as follows: Let P[~x] be a program
with high variables. Then, P[~x] has the noninterference property if the following holds: for all~a1
and~a2 (of appropriate type), if P[~a1] and P[~a2] terminate, then, at the end of their runs, the values
of the low variables are the same. Note that this defines termination-insensitive noninterference.

The above notion of noninterference deals with complete programs (closed systems). The
systems to be analyzed are, however, often open: they interact with a network or use some
libraries which are not necessarily trusted and, hence, are not part of the code to be analyzed;
instead, they are considered as part of the environment with unspecified behavior. Therefore, the
notion of noninterference is generalized to open systems as follows.

Definition 2.3 (Noninterference in an open system [KTG12a]). Let I be an interface and
let S[~x] be a (not necessarily closed) deterministic system with a security parameter and high
variables~x such that S : I. Then, S[~x] is I-noninterferent if for every deterministic I-environment
E for S[~x] and every security parameter η, noninterference holds for the system E ·S[~x](η), where
the variable result declared in E is considered to be the only low variable.

Note that here neither E nor S are required to be polynomially bounded.

27

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

2.5. From I-Noninterference to Computational Indistinguishability

The central theorem that immediately follows from (the more general) results proven within the
CVJ framework is the following.

Theorem 2.2 (The CVJ Theorem [KTG12a]). Let I and J be disjoint interfaces. Let F, R, S[~x]
be systems such that

i) R≤J F,

ii) not both S[~x] and F (and hence, R) contain the method main,

iii) S[~x] ·F is deterministic,

iv) S[~x] ·F : I (and hence, S[~x] ·R : I).

Now, if S[~x] ·F is I-noninterferent, then, for all ~a1 and ~a2 (of appropriate type), we have that
S[~a1] ·R ≈I

comp S[~a2] ·R.

The intuition and the typical use of this theorem is that the cryptographic operations that S needs
to perform are carried out using the system R (e.g., a cryptographic library). The theorem now
says that to prove cryptographic privacy of the secret inputs (∀ ~a1,~a2: S[~a1] ·R ≈I

comp S[~a2] ·R)
it suffices to prove I-noninterference for S[~x] ·F , i.e., the system where R is replaced by the
ideal counterpart F (the ideal cryptographic library). The ideal functionality F , which in our
case will model cryptographic primitives in an ideal way, can typically be formulated without
probabilistic operations and also the ideal primitives specified by F will be secure even in presence
of unbounded adversaries.

Therefore, the system S[~x] ·F can be analyzed by standard tools that a priori cannot deal with
cryptography (probabilities and polynomially bounded adversaries).

As mentioned before, F relies on the interface IE ∪ IS (which, for example, might include
an interface to a network library) provided by the environment and the simulator, respectively.
This means that when checking noninterference for the system S[~x] ·F the code implementing
this library does not have to be analyzed. Being provided by the environment/simulator, it is
considered completely untrusted and the security of S[~x] ·F does not depend on it. In other
words, S[~x] ·F provides noninterference for all implementations of the interface. Similarly, R
relies on the interface IE provided by the environment. Hence, S[~x] ·R enjoys computational
indistinguishability for all implementations of IE . This has two big advantages:

1. One obtains very strong security guarantees.

2. The code to be analyzed in order to establish noninterference/computational indistinguishabil-
ity is kept small, considering the fact that libraries tend to be very big.

2.6. A Proof Technique for proving I-Noninterference

Tools for checking noninterference often consider only a single closed program. However,
I-noninterference is a property of a potentially open system S[~x], which is composed with an

28

2.6. A Proof Technique for proving I-Noninterference

arbitrary I-environment. Therefore, in [KTG12a] a proof technique has been developed which
reduces the problem of checking I-noninterference to checking noninterference for a single
(almost) closed system. More specifically, it was shown that to prove I-noninterference for a
system S[~x] with IE ` S : I it suffices to consider a single environment Ẽ I,IE

~u (or Ẽ~u, for short) only,
which is parameterized by a sequence ~u of values. To keep Ẽ~u simple, the analysis technique
assumes some restrictions on interfaces between S[~x] and E. In particular, S[~x] and E should
interact only through primitive types, arrays, exceptions, and simple objects.

In Section 2.6.3, we reshape the proof technique to allow S[~x] and E to communicate through
strings, too.

2.6.1. Communication through Primitive Types Only

We now present how Ẽ~u is constructed in [KTG12a] when it interacts with a system S such that
(1) method main is defined in S and (2) IE ` S, for some interface IE , where all methods are static,
use primitive types only (for simplicity of presentation we will consider only the type int), and
have empty throws clause. Moreover, the kind of E we consider are not allowed to call methods
of S directly (formally, we require I to be /0). However, since S can call methods of E, this is not
an essential limitation.

For a finite sequence ~u = u1, . . . ,un of values of type int, we denote by Ẽ IE
~u the following

system. First, Ẽ IE
~u contains two static methods: untrustedOutput and untrustedInput, as

specified in Figure 2.2. The method untrustedInput returns consecutive values of~u and, after
the last element of~u has been returned, it returns 0. Note that the consecutive values returned by
this method are hardwired in line 9 (determined by~u) and do not depend on any input to Ẽ IE

~u . The
method untrustedOutput, depending on the values given by untrustedInput(), either ignores
its argument or compares its value to the next integer it obtains, again, from untrustedInput()

and stores the result of this comparison in the (low) variable result. The intuition is the following:
untrustedOutput will get, as we will see below, all the data the environment gets from S. If the
two variants of S (with different high values) behave differently, then there must be some point
where the environment gets different data from the two systems in the corresponding runs. By
choosing an appropriate~u this can be detected by untrustedOutput, which will assign different
values to result.

Finally, for every method declaration m in IE , the system Ẽ IE
~u contains the implementation of

m as illustrated by the example in Figure 2.3. This completes the definition of Ẽ IE
~u . The next

theorem states that, to prove I-noninterference, it is enough to only consider environments Ẽ IE
~u .

Theorem 2.3 ([KTG12a]). Let IE be an interface with only static methods of primitive (argument
and return) types as introduced above. Let S[~x] be a deterministic program such that main is
defined in S and IE ` S. Then, I-noninterference, for I = /0, holds for S[~x] if and only if for all
sequences~u noninterference holds for ẼIE

~u ·S[~x].

Automatic analysis tools, such as Joana [HS09b, GHM13], often ignore or can ignore specific
values encoded in a program, such as an input sequence~u. Hence, such an analysis of E IE

~u ·S[~x]
implies noninterference for all sequences~u, and by the theorem, this implies I-noninterference
for S[~x].

29

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

1 class Node {

2 int value;

3 Node next;

4 Node(int v, Node n) { value = v; next = n; }

5 }

6 private static Node list = null;

7 private static boolean listInitialized = false;

8 private static Node initialValue()

9 { return new Node(u1, new Node(u2, ...)); }

10 static public int untrustedInput() {

11 if (!listInitialized)

12 { list = initialValue(); listInitialized = true; }

13 if (list==null) return 0;

14 int tmp = list.value;

15 list = list.next;

16 return tmp;

17 }

18 static public void untrustedOutput(int x) {

19 if (untrustedInput()!=0) {

20 result = (x==untrustedInput());

21 abort();

22 }

23 }

Figure 2.2.: Implementation of untrustedInput and untrustedOutput in Ẽ IE
~u . We assume that class

Node is not used anywhere else.

24 static public int foo(int x) {

25 untrustedOutput(FOO_ID);

26 untrustedOutput(x);

27 return untrustedInput();

28 }

Figure 2.3.: Ẽ IE
~u : the implementation of a method of IE with the signature

static public int foo(int x), where FOO_ID is an integer constant serv-
ing as the identifier of this method (we assign different identifier to every
method)

30

2.6. A Proof Technique for proving I-Noninterference

2.6.2. Communication through Arrays, Simple Objects, and Exceptions

The result of the Theorem 2.3 has also been extended in [KTG12a] to cover some cases where E
and S exchange information non only through values of primitive types, but also arrays, simple
objects (object whose fields are not static and either of primitive types or of type byte[]), and
possible exceptions. Some conditions, however, have to be imposed on IE and the program
S. These conditions guarantee that, although references are exchanged between E and S, the
communication resembles exchange of pure data. More precisely, the result stated below works
for a restrict class of systems S. Let IE be the minimal interface such that IE ` S. On the one hand,
we impose on IE the following conditions:

E.1. Fields of classes in IE are non-static and either of primitive types, or simple objects, or
arrays of primitive types. Simple objects denote objects of classes defined in IE .

E.2. Methods of classes in IE are static. Their arguments and return values may be either of
primitive types, or simple objects, or arrays of primitive types.

E.3. Exceptions thrown by methods of classes in IE are either standard system exceptions or
exceptions defined in IE .

On the other hand, we impose on S the following condtions:

S.1. Whenever a simple object or an array (i.e. the reference to a simple object or to an array,
respectively) is passed to the environment, this reference is not used by S afterwards. This
property can be easily guaranteed by a syntactical restriction to pass only fresh copies of
these reference to the environment.

S.2. Whenever a method of IE returns a reference r the system S is only allowed to immediately
produce a fresh copy of r and not to use r afterwards.

S.3. For every try-catch statement in S of the form

try { ... } catch (C r) { B }

if C or a subclass of C is listed in the throws clause of some method in IE (and thus this
statement may potentially catch an exception thrown by E), then again S is only allowed to
immediately produce a fresh copy of r and not to use r afterwards.

For such programs, in [KTG12a] it has also been constructed a fixed Ẽ IE
~u such that it is enough to

consider only this system (for all~u). This system consists of the static methods untrustedInput
and untrustedOutput as defined above and, for every class C of IE , the declaration of C with the
implementation of (static) methods as illustrated by the example given in Figure 2.4.

This example illustrates the case when an array is returned. When an object of class D is to be
returned, then a fresh object of this class is created and the values of its fields that are specified in
IE are filled using untrustedInput, as for the array in the example. The following theorem is a
generalisation of Theorem 2.3 to the richer family of programs considered in this section.

31

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

1 class T extends Exception {};

2 class T1 extends T {};

3 class T2 extends T {};

4 static public byte[] foo(int x, byte t[]) throws T {

5 // consume the input:

6 untrustedOutput(FOO_ID);

7 untrustedOutput(x);

8 untrustedOutput(t.length);

9 for(int i=0; i<t.length; ++i)

10 untrustedOutput(t[i]);

11 // decide whether to throw an exception:

12 if(untrustedInput()==0) throw new T();

13 if(untrustedInput()==0) throw new T1();

14 if(untrustedInput()==0) throw new T2();

15 // determine the array to return:

16 int len = untrustedInput();

17 if (len<0) return null;

18 byte[] result = new byte[len];

19 for(int i=0; i<len; ++i)

20 result[i] = (byte) untrustedInput();

21 return result;

22 }

Figure 2.4.: Ẽ~u: the implementation of a method with the signature
static public byte[] foo(int x, byte[] t) throws T, where T 1 and T 2 are sub-
classes of T (there could be an arbitrary number of them) which are classes in
IE .

Theorem 2.4 ([KTG12a]). Let IE be an interface with only static methods of (arguments and
return) primitive types, arrays, simple objects, and exceptions with the restrictions E.1-E.3
introduced above. Let S be a system with the restrictions S.1-S.3 introduced above and with high
and low variables such that main is defined in S and IE ` S. Then, I-noninterference, for I = /0,
holds for S if and only if for all sequences~u as defined in Section 2.6.1 noninterference holds for
ẼIE

u ·S.

2.6.3. Communication through Strings

In this section, we further extend the proof technique for proving I-noninterference to deal with
the exchange of strings, too.

Although strings are commonly used to exchange data among components of a program,
the communication between the system and the environment through string references would
introduce subtle changes in Theorems 2.3 and 2.4 and, technically, invalidate the main assumption
these results are based on, i.e., the separation between the state of the system and the state of
the environment. Therefore, we need to extend the construction of Ẽ IE

~u with two other methods
handling the exchange of string references, too. Relying on the fact that Java (and Jinja+) strings

32

2.6. A Proof Technique for proving I-Noninterference

are immutable objects, i.e., their internal state remains unchanged after their creation, we relax
the state separation assumption and adapt the proof in a non-trivial way to work with the new
(relaxed) assumption. Based on this premise, we then restate the proof technique result for
proving I-noninterference taking into account string references, too.

We model the exchange of references of type String by extending the environment Ẽ IE
~u presented

above with the two static methods presented in Figure 2.5: The method untrustedOutputString

gets all string references passed by S to Ẽ IE
~u , whereas the method untrustedInputString de-

termines which string reference the environment passes on to S. We notice that these methods
rely on untrustedOutput and untrustedInput defined for primitive types and, hence, the se-
quence~u = u1, . . . ,un remains the same as defined in Section 2.6.1. More specifically, the method
untrustedInputString, depending on untrustedInput, either returns a new string (built calling,
character by character, untrustedInput) or it returns one of the strings previously exchanged
between the systems. In particular, each new string returned to S is previously added to a list
stringList containing all the strings exchanged between the two systems so far.

The method untrustedOutputString, besides adding its string argument to stringList,
forwards to untrustedOutput its length, then each one of its characters, and, finally, the result
of the comparison for reference equality between its string argument and each element in
stringList.

The intuition is the following: if two instances of S, say S[~a1] and S[~a2], which the environment
tries to distinguish behave differently, then there must be a point in the two runs where the
environment gets either two strings with different values or two strings whose references were
already been exchanged before (more precisely, at least one of them), but in different points of
the two runs. In the former case, there must be that either the length or at least one character of
the two strings is different. In the latter case, there must exist two elements at the same position
in stringList, whose comparison with the two strings the environment received give different
results. In any case, untrustedOutput will be invoked with different values, say the value x takes
at this point are b1 and b2, respectively. As for primitive types, by choosing an appropriate ~u,
this can be detected by untrustedOutput: ~u should be defined in such a way that the method
untrustedInput returns 1 at this point and that the value untrustedInput returns next is equals
to b1, say (b2 would also work). Then, in the run of the environment with S[~a1] at the variable
result will be assigned 1, while in the run with S[~a2] at the variable result will be assigned 0.
Hence, the environment successfully distinguished S[~a1] and S[~a2].

Methods of IE dealing with strings are implemented as the corresponding methods deal-
ing with primitive values: the arguments are forwarded to untrustedOutputString, whereas
untrustedInputString determines the returned value. The restrictions E.1 and E.2 presented in
Section 2.6.2 on IE must be updated to also include the data type string: fields of classes in IE , as
well as their methods’ arguments and return value, might be of type string too. In the restriction
S.2 also reported in Section 2.6.2, we do not require references of type strings returned to S to be
immediately copied and not used afterwards.

The system Ẽ IE
~u , introduced in Section 2.6.1, firstly extended in Section 2.6.2, and further

extended here to allow for the communication through strings, consists of the four static methods
untrustedInput, untrustedOutput, untrustedInputString, and untrustedOutputString,

33

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

1 class NodeList {

2 public class Node {

3 public String entry;

4 public Node next;

5 public Node(String entry) {

6 this.entry = entry;

7 this.next=null;

8 }

9 public Node head, last;

10 public void add(String entry) {

11 Node newEntry=new Node(entry);

12 if (head==null) head=last=newEntry;

13 else {last.next=newEntry; last=newEntry;}

14 }

15 }

16 private static NodeList stringList = null;

17 static public String untrustedInputString() {

18 int choice = untrustedInput();

19 if(choice==1){

20 int l=untrustedInput(); String s="";

21 for(int i=0; i<l; i++)

22 s += (char) untrustedInput();

23 if(stringList==null) stringList = new NodeList();

24 stringList.add(s);

25 return s;

26 } else if(choice==2){

27 if(stringList==null) return "";

28 for(NodeList.Node node=stringList.head; node!=null;

29 node=node.next)

30 if(untrustedInput()==1) return node.entry;

31 }

32 return "";

33 }

34 static void untrustedOutputString(String s) {

35 if(stringList==null)

36 stringList = new NodeList();

37 // values comparison

38 untrustedOutput(s.length());

39 for (int i = 0; i < s.length(); i++)

40 untrustedOutput(s.charAt(i));

41 // references comparison

42 for(NodeList.Node node=stringList.head; node!=null;

43 node=node.next)

44 untrustedOutput(s==node.entry ? 1:0);

45 stringList.add(s);

46 }

Figure 2.5.: Implementation of untrustedInputString and untrustedOutputString in Ẽ IE
~u . We notice

that these methods rely on methods untrustedInput and untrustedOutput pre-
sented in Figure 2.2. We assume that class NodeList is not used anywhere else.

34

2.6. A Proof Technique for proving I-Noninterference

1 class T extends Exception {};

2 class T1 extends T {};

3 class T2 extends T {};

4 class D { int y; String w; byte[] v; }

5 class Foo {

6 static public String[] fooExt(String s, D obj) throws T {

7 // consume the input:

8 untrustedOutput(0x100); // fooExt id

9 untrustedOutputString(s);

10 untrustedOutput(obj.hashCode());

11 untrustedOutput(obj.y);

12 untrustedOutputString(obj.w);

13 untrustedOutput(obj.v.length);

14 for (int i = 0; i<obj.v.length; i++)

15 untrustedOutput(obj.v[i]);

16 // decide whether to throw an exception:

17 if (untrustedInput()==0) throw new T();

18 if (untrustedInput()==0) throw new T1();

19 if (untrustedInput()==0) throw new T2();

20 // determine the object to return:

21 int length=untrustedInput();

22 String[] retStr = new String[length];

23 for(int i=0; i<length; ++i)

24 retStr[i]=untrustedInputString();

25 return retStr;

26 }

27 }

Figure 2.6.: Ẽ IE
~u : the implementation of the class Foo in IE with only a method whose signature is

static public String[] fooExt(String s, D obj) throws T, and where T, T1, T2, and D

are classes in IE , too. We assume that in Jinja+ (as in Java) each object has an unique
identifier provided by the method hashCode.

and, for every class C of IE , the declaration of C with the implementation of (static) methods as
illustrated by the example given in Figure 2.6.

We now state the novel result of this chapter, which is a generalization of Theorem 2.4 to the
case where the communication occurs, not only through primitive types, arrays, simple objects,
and exceptions, but also through strings.

Theorem 2.5. Let IE be an interface with only static methods of (arguments and return) primitive
types, arrays, simple objects, exceptions, and strings with the restrictions E.1-E.3 introduced in
Section 2.6.2 and extended above to deal with strings. Let S be a system with the restrictions
S.1-S.3 introduced in Section 2.6.2 and extended above to deal with strings and with high and
low variables such that main is defined in S and IE ` S. Then, I-noninterference, for I = /0, holds
for S if and only if for all sequences~u as defined in Section 2.6.1 noninterference holds for Ẽ IE

u ·S.

35

2. Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings

The proof of this theorem, as long with the state separation assumption and all the other lemmas
to demonstrate it, is stated in Appendix F.1.

S R

E
untrusted libraries
(networking,. . .)

∀
S F

E
untrusted libraries

(networking,
cryptographic

operations, . . .)

∀
S F

Ẽ

Noninterference of S[b] ·F · Ẽ~u
(proven by using tools)

I-noninterference of S[b] ·FS[false] ·R ≈I
comp S[true] ·R ⇐⇐

Figure 2.7.: The CVJ Framework: from Noninterference to Computational Indistinguishability.

Now, Figure 2.7 shows the complete picture of the CVJ framework where, by Theorems 2.5
and 2.2, tools for proving noninterference can be used to prove cryptographic privacy of a
system S that uses some cryptographic operations (real cryptographic functionalities) R and is
connected to untrusted libraries subsumed by the environment E (see the left-most system of
the picture). For simplicity of presentation, in Figure 2.7 we assume S to have only one high
boolean variable. By these theorems, to prove cryptographic privacy of this system (that is,
S[false] ·R ≈I

comp S[true] ·R), it is enough to show (classical) noninterference of the system
S[b] · F · Ẽ, where F are the ideal functionalities corresponding to R and Ẽ~u is the specific
environment given in Theorem 2.5. Note that F often uses cryptographic libraries. However, the
cryptographic guarantees are established by F itself (e.g., F might call an encryption function, but
with 0|m| instead of the actual message m, and hence, by the definition of F and independently of
the encryption function, the ciphertext will not reveal information about m, except for the length
of m). Therefore, the cryptographic libraries that F uses can be untrusted, and hence, provided by
the environment. Conversely, the cryptographic library implemented in R is supposed to realize
F . So, this library cannot be subsumed by the environment.

36

3. Extending the CVJ Framework to Java Concurrency

One of the main features of the Java programming language not covered by Jinja+ is Java
concurrency. In this chapter, we therefore extend the CVJ framework to deal with concurrency.
That is, we extend the Jinja+ language (see Section 2.1) to model concurrent Java programs and
then we make the CVJ framework applicable to this extended language. Java concurrency revolves
around threads, parallel strands of execution with shared memory, and offers different types
of synchronization between them. More specifically, we extend the sequential Jinja+ language
to model thread creation and only one type of synchronization mechanism, i.e, synchronized
blocks.5 We refer to this language as SyncJinja+.

To define runs of SyncJinja+ programs, we first extend the (single-threaded) Jinja+ semantics
with reduction rules for the language constructs modeling thread spawning and synchronized
blocks. We then propose a multi-threaded semantics describing the run of multi-threaded pro-
grams under a scheduler (defined as a separate, single-threaded Jinja+ program) arranging the
interleaving between the spawned threads. In a similar way as it has been done in [Loc12],
each multi-threaded reduction rule relies on the (extended) set of the single-threaded Jinja+
reduction rules describing the execution of each thread. Interaction between single-threaded and
multi-threaded semantics only happens through designated actions communicating either the
spawning of a new thread or the beginning/ending of a synchronized block.

An adversary running concurrently with an honest program can measure the runtime of a pro-
gram. Therefore proving cryptographic guarantees based on standard cryptographic assumption
would not be possible anymore: cryptographic security games, e.g., for defining IND-CCA2
security, are inherently sequential, and hence, they do not capture timing attacks. SyncJinja+
therefore allows one to declare parts of code to be executed atomically, i.e., without interleaving
neither of any other thread nor of the scheduler. We denote such code atomic and refer to
classes/systems/programs containing only atomic code as atomic classes/systems/programs.

Based on the definition of a run of a multi-threaded program (which may contain atomic code,
typically some cryptography related code), we then restate all the definitions and the results of
the CVJ framework presented in Sections 2.2-2.5 of Chapter 2.

The notion of computational indistinguishability which, in the spirit of the definitions of
indistinguishability in the cryptographic literature (see, e.g., [Can00, Küs06, HUMQ09]) defines
what it means for two SyncJinja+ systems to be indistinguishable from the point of view of a multi-
threaded adversary interacting with them. We also formalize the notion of strong simulatability
which, in the spirit of the simulation-based approach (see, again, [Can00, PW01, Küs06, KT13]),
defines what it means for a SyncJinja+ system to realize another SyncJinja+ system.

We then state and prove the composition theorem which informally says that if a SyncJinja+

5Modeling the other three types of synchronization mechanisms offered by Java, namely the wait-notify mechanism,
thread joining, and interrupts, would in principle be possible (it has been done, for example, in [Loc12]), but would
lead to a cumbersome representation of the multi-threaded state and hence of the multi-threaded semantic rules.

37

3. Extending the CVJ Framework to Java Concurrency

system R0 realizes a SyncJinja+ system F0 and a SyncJinja+ system R1 realizes a SyncJinja+
system F1, then the composed real system R0 ·R1 realizes the composed ideal system F0 ·F1. This
theorem allows us to replace ideal functionalities, formulated as SyncJinja+ systems, by their
realization, also formulated as SyncJinja+ systems, in more complex, composed systems. Thanks
to the composition theorem, we can show that if two SyncJinja+ systems that both use an ideal
functionality (e.g., an ideal cryptographic operation) are perfectly indistinguishable, then these
systems are computationally indistinguishable when the ideal functionality is replaced by its
realization, where perfect indistinguishability is defined just as computational indistinguishability
but for deterministic SyncJinja+ program and w.r.t. unbounded adversaries.

Finally, we propose a noninterference definition which extends the notion of (termination-
insensitive) noninterference for confidentiality [GM82a], requiring the absence of information
flowing from high to low variables, to multi-threaded SyncJinja+ systems. As in the single-
threaded setting, proving that this definition is equivalent to the definition of perfect indistin-
guishability allows us to assert that noninterference of a SyncJinja+ system which uses ideal
cryptographic functionalities implies computational indistinguishability of the same system using
their realizations.

An interesting question arising when extending the CVJ framework to concurrency is whether
and how a multi-threaded adversary is able to distinguish two single-threaded Jinja+ systems S1
and S2 which are indistinguishable w.r.t. a single-threaded adversary. We show that, under the
assumption that the two systems S1 and S2 are considered to be atomic, these two systems are
computational indistinguishable also from the point of view of a multi-threaded adversary. Thanks
to this result, we can also prove that if a single-threaded system R realizes a single-threaded
system F , then this realization carries over also to multi-threaded adversaries, as long as the
assumption of considering R and F atomic is maintained.

3.1. Concurrency in Java

In this section, we introduce the main concurrency features of Java. As reported in [Loc12], Java
concurrency revolves around threads, i.e., parallel strands of execution with shared memory. A
program controls a thread through its associated object of (a subclass of) class T hread. To spawn
a new thread, it allocates a new object of (subclass of) class T hread and invokes the start method.
The new thread will then execute the run method of the object in parallel with all the other threads.
Each thread can be only started once, otherwise an IllegalThreadState exception is thrown.
The thread terminates when run terminates, either normally or abruptly due to an exception.

Java offers four types of synchronization between threads: (1) locks, (2) wait sets, (3) joining,
and (4) interrupts. Every object has an associated monitor with a lock and a wait set.

(1) Locks are mutually exclusive, i.e., at most one thread can hold the lock at a time, but re-
entrant, i.e., each thread can acquire a lock multiple times. For locking, Java uses synchronized
blocks that take a reference to an object. A thread must acquire the lock before executing the
lock’s body, and releases the lock afterwards. If another thread already holds the lock, the
executing thread must wait until the other thread has released it. That is, synchronized blocks
on the same object never execute in parallel.

(2) To avoid busy waiting, a thread can suspend ifself to the wait set of an object by calling

38

3.1. Concurrency in Java

the object’s method wait declared in the class Ob ject. To enter the wait set, the thread must
have locked the object’s monitor and must not be interrupted (see below for the explanation
of interrupts): if the thread is interrupted, an InterruptedException is thrown. If successful,
the call also releases the monitor’s lock completely. The thread remains in the wait set until (i)
another thread interrupts or notifies it, or (ii) it wakes up spuriously.6 After having been removed
from the waiting set, the thread reacquires the lock on the monitor before its execution proceeds
normally (again, in case of interruption, an InterruptedException is thrown). The methods
notify and notifyAll remove one (unspecified) or all threads from the wait set of the call’s
receiver object. As in the case of the wait method, the calling thread must hold the lock on the
monitor. Thus, the notified thread continues its execution only after the notifying thread has
released the lock.

(3) When a thread calls join on another thread, it blocks until (i) the thread that the receiver
object identifies has terminated, (ii) another thread interrupts the joining thread (see below for
more explanation), or/and (iii) an optionally-specified (as parameter) amount of time has elapsed.
In the second case, an InterruptException is thrown; otherwise, it returns normally.

(4) Interruption provides asynchronous communication between threads. Calling the
interrupt method of a thread sets its interrupt status. If the interrupted thread is waiting
or joining, it aborts the operation throwing an InterruptException and clearing its interrupt
status. Otherwise, interruption has no immediate effect on the interrupted thread. However, class
T hread implements two methods to observe the interrupt status: the method isInterrupted

returns the interrupt status of the receiver object’s thread, while the method interrupted returns
the interrupt status of the receiver object’s thread and, in addition, resets its interrupt status.

All the other (not deprecated) constructs provided by Java to support concurrency are either
recommendations for the schedulers (the yield and sleep methods) or they can be expressed
with the four kinds of synchronization mechanisms introduced above. For instance, Java allows
one to declare volatile variables: when a thread reads from a volatile variable, it synchronizes
the access to this variable with all other threads sharing it. This can also be easily implemented
by protecting all accesses to shared data via locks. Other ways of synchronization, such as
invocation of the methods stop or suspend of objects of class T hread (or any subclass thereof),
are deprecated in the latest versions of the language.

Java also specifies how shared memory behaves under concurrent access, which is known as the
Java Memory Model (JMM). The Java Memory Model is based on Sequential Consistency (SC)
[Lam97]: There is a global notion of time, only one thread executes at a time, and every write to
a memory location immediately becomes visible to all threads. However, for efficiency reasons,
the JMM relaxes the SC memory model to allow for local caches and code optimization: if a
variable is shared between two threads and one thread performs a write operation on this variable,
this operation might still be in the processor’s local cache when the second thread performs
a read operation from the main memory. Similarly, compiler optimizations might reorder the
independent statements in each thread.

Nevertheless, the JMM provides the intuitive SC semantics under additional assumptions called

6The Java Virtual Machine allows spurious wake-ups to happen i.e., threads are woken up even if they are neither
interrupted nor notified by other threads. It is therefore a best coding practice to always call the wait method
inside a loop whose guard is the condition for which the thread is waiting.

39

3. Extending the CVJ Framework to Java Concurrency

data-race freedom (DRF) guarantees. A data-race occurs if two accesses to the same location are
conflicting, that is, if (i) they originate from different threads, (ii) at least one is a write, and (iii)
the location is not explicitly declared as volatile (or not protected by the same lock among all
threads). If the program contains no data races, the JMM ensures that it behaves like under SC.

3.2. SyncJinja+ systems

We extend the semantics introduced in the Section 2.1 in order to be able to model (runs of)
multi-threaded programs. In particular, we extend the Jinja+ language to model thread creation
and locks, i.e., synchronized blocks. As already mentioned in the introduction of this Chapter,
modeling also the wait-notify mechanism, thread joining, and thread interruption would in
principle be possible (it has been done, for example, in [Loc12]) but would lead to a cumbersome
representation of the multi-threaded state and hence of the multi-threaded semantic rules. We
leave the extension to the other synchronization mechanisms as future work.

In multi-threaded systems, a thread is a subset of the set of class declarations K of a program,
whose strand of execution can take place in parallel with other threads sharing the heap. We
define a thread pool Π as a map from thread identifiers T hreadID to pairs of expressions and
stores, Π : T hreadID→ Expr×Loc, where thread identifiers are defined as bit strings. Moreover,
we need to extend the definition of a state as a triple of the set of the stores inside Π, namely
{ltIDi |tIDi 7→ 〈etIDi , ltIDi〉 ∈ Π}, the shared heap and a lock. A lock is a map from references
(locations) to pair of thread identifiers and integers, lock : Loc→ dom(Π)× Int. We define their
range as a pair of thread identifiers and integers in order to fully model Java locks, which are
mutually exclusive and re-entrant: at most one thread may hold a lock at a time, but the same
lock may be acquired multiple times by the same thread.

In multi-threaded systems a configuration is therefore defined as a triple q = 〈Π,h, lock〉, and
a state as s = (L,h, lock), where L = {ltID0 , . . . , ltIDn} with n = |Π|.

To define the run of a multi-threaded system, we extend the single-step semantics of Jinja+
presented in Section 2.1 and we add a multi-threaded single-step semantics to model the inter-
leaving of individual threads (in a similar way as in [Loc12]), as well as the run of the scheduler
arranging the execution of them. That is, we now have two different kinds of semantic rules:
single-threaded semantic rules modeling the execution of each thread (and of the scheduler, too)
and multi-threaded semantic rules modeling the execution of the overall system.

3.2.1. Single-Threaded Semantics of SyncJinja+

The single-threaded semantics of SyncJinja+ is an extension of the semantics of Jinja+ [KTG12a].
The idea is that each rule of this semantics (Rules B.1-B.87) is provided with an action A ::=
/0 | Spawn(a) | Lock(a) |Unlock(a) that triggers a specific rule of the multi-threaded one (Rules
B.88-B.95). Depending on the single-threaded rule executed, the triggered multi-threaded rule
changes the expression and the local state of the thread performing the step of execution, and the
global heap. Depending on the action that the single-threaded rule transmits to the multi-threaded
one, a new thread is spawned or a lock is either acquired or released.

40

3.2. SyncJinja+ systems

In Figure B.7, Rules B.77-B.87 contain the language constructs which produce the thread ac-
tions: start(addr a) spawns a new thread starting from the class pointed by the location a (Rule
B.80), sync(addr a){e} acquires a lock on the location a (Rule B.81), and insync(addr a){e}
keeps the lock on the location a until the expression e is reduced to a value v, then it releases the
lock (Rule B.82). The other rules in Figure B.7 are subexpression reduction rules or exceptional
expression reduction rules of these constructors.

3.2.2. Multi-Threaded Semantics of SyncJinja+

The multi-threaded semantics of SyncJinja+ is given as a set of rules P ` 〈Π,h, lock〉 tIDk=⇒
〈Π′,h′, lock′〉. In this rule, P is a program in the context of which the evaluation is carried out.
Such a rule says that, given a program P, it exists a thread with tIDk as identifier such that
{tIDk 7→ 〈e, l〉} ∈Π and whose expression e can be reduced in one step to e′ changing: (1) the
local state from l to l′ such that Π′ = Π\{tIDk 7→ 〈e, l〉}∪{tIDk 7→ 〈e′, l′〉}, (2) the heap h and
the lock map lock to h′ and lock′, respectively.

However, Π usually contains several threads which can perform a step of execution. Hence,
we need to define a scheduler that decides within which thread the next computational step takes
place.

Definition 3.1. We define a scheduler as a single-threaded Jinja+ program S which declares
two public static variables: (1) actThreads containing the list of the active threads’ identifiers
at each scheduler invocation and (2) nextThread containing the identifier of the thread (in the
program running under this scheduler) which is going to execute the next step.

We note that, since S is a single-threaded Jinja+ system, its code does not contain any construct
introduced in SyncJinja+ (see Figure B.7) i.e., start, sync, and insync. That is, the run of the
scheduler takes place by the application of rules B.1-B.76.

The triple 〈Π,h, lock〉 defining a configuration of a multi-threaded system has to be extended
to express the configuration of the scheduler under which the system runs. That is, we add the
configuration of the scheduler S , 〈e,(l,h)〉, as a subscript of the configuration of the multi-
threaded system: 〈Π,h, lock〉〈e,(l,h)〉S . In what follows (and also in the semantic rules), whenever
we want to make explicit that a configuration, an expression, a store, a heap, or a variable belongs
to the execution of the scheduler, we add S as subscript of them. Since every multi-threaded
program P can be executed only under a scheduler S , we write PS to indicate a complete
program, where S is the scheduler that, at each step of the computation of P, establishes which
thread is going to execute the next step (i.e., it establishes the value of the variable nextThread).

Since not every thread could be able to progress (for instance, a thread could be waiting for
acquiring a lock owned by another one), we need to define the set of the threads which, at each a
point of the run, can perform a step of execution.

Definition 3.2. Given a configuration q = 〈Π,h, lock〉〈e,(l,h)〉S , we define an active thread as a
thread tIDk in Π which is able to progress, namely there exists a SyncJinja+ rule which can be

41

3. Extending the CVJ Framework to Java Concurrency

applied to the configuration q such that q
tIDk=⇒` q′ for some tIDk and q′ = 〈Π′,h′, lock′〉〈e,(l,h)〉S .

The subset of the active threads in q is then defined as:

Act(〈Π,h, lock〉) = {tIDk ∈ dom(Π)|∃q′ s.t. q
tIDk=⇒` q′}

Since in SyncJin ja+ we do not have the data type set but only the data type list, without
loss of generality, we assume that in the SyncJinja+ rules we can assign the set of bit strings
Act(〈Π,h, lock〉) to the variable actThreads, whose type is a list of bit strings. That is, the order
of the elements in the list actThreads is irrelevant.

Before explaining the multi-threaded semantic rules, we need to discuss another restriction:
Some part of the code of the multi-threaded program P must have to be executed atomically by
one thread, i.e., without the interleaving neither of other threads nor of the scheduler: That is, the
code implementing the cryptographic operations cannot be executed in parallel with the code of
other threads, since their security is defined by a sequential game between the encryption scheme
and the adversary, as, for instance, shown in Appendix A.1 for IND-CCA2-secure public key and
symmetric encryption schemes [BDPR98], and in Appendix A.2 for EUF-CMA-secure digital
signatures schemes [GMR88].

We have, therefore, to define a set of classes which enclose a specific part of the code that has
to be executed sequentially.

Definition 3.3. Given the set of class declarations K of a program, we define a set of atomic
classes A as a subset of the class declarations K (A⊆K) which contain only Jinja+ statements
and whose code must be executed atomically by the current thread, i.e., without any interleaving
neither of other threads nor of the scheduler. In the same way we define S a system atomic if it
only contains classes in A.

We note that atomic classes contain no start, no sync, and no insync and, therefore, during
their execution the thread remains always active.

In Figure B.7, rules B.88-B.95 define the multi-threaded semantics of SyncJinja+.
Rule B.88 manages the execution of the scheduler S : until the value of the variable

nextThreadS is null, we keep on reducing eS in a store where the value of the variable
actThreadsS is Act({Π,h, lock}), i.e., the list of the threads which can progress. Whenever the
scheduler sets the value of nextThreadS to the identifier of a thread (among those which can
progress), this thread performs the step by the application of one of the other rules.

If this step is performed by an expression which belongs to an atomic class, then the value
of nextThreadS remains unchanged (Rule B.90). That is, in the next step we keep on reducing
the expression of this thread. As already mentioned above, if ` ∈ A the sub expression which is
going to be reduced does not contain any construct introduced in SyncJinja+, i.e., the thread can
always progress (unless, obviously, the primitive abort is executed).

Rules B.89-B.94 define the execution of a thread which is not executing a code in an atomic
class. Depending on the thread action A ::= /0 | Spawn(a) | Lock(a) |Unlock(a), the specific
rule is executed. We notice that, after the execution of each rule, the value of the variable
nextThreadS is set again to null, i.e., the scheduler executes the next step by the application of
rule B.88.

42

3.2. SyncJinja+ systems

If, during the execution of a thread, we have to reduce the primitive abort, then all the threads
and the scheduler must abort their execution, leaving their states unchanged. That is, after the
execution of Rule B.95, both the thread which performed the step and the scheduler cannot
progress leading the whole program to halt.

3.2.3. Run of a SyncJinja+ program

We can now define a run of a SyncJinja+ program P under a scheduler S .

Definition 3.4 (Run under a scheduler). A run of a (possibly) randomized multi-threaded
program P under a scheduler S is a sequence of configurations obtained using both the single-
threaded and the multi-threaded semantics of SyncJinja+ (Rules B.1-B.95) from the initial
configuration q0 of the form

q0 = 〈{tID0 7→ 〈e0, l0〉},h0, lock0〉〈e0,(l0,h0)〉S ,

where:

• Concerning the program P, tID0 is the bit string identifying the (only) thread spawned
at the beginning, e0 =C.main, for C being the (unique) class where main is defined in P,
h0 = lock0 = /0 are respectively the empty heap and the empty lock map, and l0 is the store
mapping the static (global) variables to their initial values (if the initial value for a static
variable is not specified in the program, the default initial value for its type is used).

• Concerning the scheduler S , eS
0 = D.main, for D being the (unique) class where main is

defined in S , hS
0 is the empty heap of S , and lS0 is the store of S mapping actThreads

to tID0 (the identifier of the only thread present at the beginning), nextThread to null and
all the other static (global) variables to their initial values.

A randomized program induces a distribution of runs in the obvious way. Formally, such a
program is a random variable from the set {0,1}ω of infinite bit strings into the set of runs of
deterministic programs, with the usual probability space over {0,1}ω, where one infinite bit
string determines the outcome of randomBit(), and hence, induces exactly one run.

Based on the definition of the initial configuration q0 and on the multi-threaded semantics
defined in Figure B.7, we notice that:

– At the beginning of the computation the scheduler S starts running and it runs until it updates
the variable nextThread to the identifier of a thread in P which is going to execute the next
step (the first time nextThread= tID0 since tID0 is the only thread).

– After the thread executed the step, if this step has not been performed within an atomic class
(` 6∈ A), the scheduler reacquires the control of the run to compute the identifier of the thread
which is going to execute the following step.

– On the contrary, if this step is performed within an atomic class (` ∈A), then the current thread
continues its execution without being interrupted neither by another thread nor by the scheduler,

43

3. Extending the CVJ Framework to Java Concurrency

until the first step outside the atomic class is performed (i.e, the first instruction after the return
from a method of this class), when the scheduler is again allowed to take the control of the
execution in order to establish which thread is going to progress.

That is, unless some code belonging to atomic classes is executed, each step of the run of a
multi-threaded SyncJinja+ system S is interleaved with several steps of the scheduler S .

3.3. Indistinguishability

In a similar way as it has been done in Section 2.2, we now define what it means for two
SyncJinja+ systems to be indistinguishable by an environment interacting with them.

We first define interfaces that systems use/provide, how systems are composed, and environ-
ments. We then define two forms of indistinguishability, namely perfect and computational
indistinguishability. Since we consider asymptotic security, this involves to define programs that
take a security parameter as input and that run in polynomial time in the security parameter.

We note that our definitions of indistinguishability follow the spirit of definitions of (com-
putational) indistinguishability in the cryptographic literature (see e.g., [Can00, Küs06]), but,
of course, also here instead of interactive Turing machines, we consider SyncJinja+ system-
s/programs. In particular, the simple communication model based on tapes is replaced by rich
object-oriented interfaces between subsystems.

3.3.1. Interfaces and Composition

Before we define the notion of an interface, we emphasize that it should not be confused with the
concept of interfaces in Java: Although our definition harks back to the informal definition of
Java interfaces, we use here this term with a different, more theoretical connotation.

Definition 3.5. An interface I is defined like a (SyncJinja+) system but where (i) all private fields
and methods are dropped and (ii) method bodies as well as static field initializers are dropped.

If I and I′ are interfaces, then I′ is a subinterface of I, written I′ v I, if I′ can be obtained from
I by dropping whole classes (with their method and field declarations), dropping methods and
fields, dropping extends clauses, and/or adding the final modifier to class declarations.

Two interfaces are called disjoint if the set of class names declared in these interfaces are
disjoint.

If S is a system, then the public interface of S is obtained from S by (1) dropping all private
fields and methods from S and (2) dropping all method bodies and initializers of static fields.

Definition 3.6. A system S implements an interface I, written S : I, if I is a subinterface of the
public interface of S.

Clearly, for every system S we have that S : /0.

Definition 3.7. We say that a system S uses an interface I, written I ` S, if, besides its own classes,
S uses at most classes/methods/fields declared in I. We always assume that the public interface of
S and I are disjoint.

44

3.3. Indistinguishability

We note that if I v I′ and I ` S, then I′ ` S. We write I0 ` S : I1 for I0 ` S and S : I1. If I = /0,
i.e., I is the empty interface, we often write ` S instead of /0 ` S. Note that ` S means that S is a
program.

Definition 3.8. Interfaces I1 and I2 are compatible if there exists an interface I such that I1 v I
and I2 v I.

Intuitively, if two compatible interfaces contain the same class, the declarations of methods and
fields of this class in those interfaces must be consistent (for instance, a field with the same name,
if declared in both interfaces, must have the same type). Note that if I1 and I2 are disjoint, then
they are compatible. Systems that use compatible interfaces and implement disjoint interfaces
can be composed:

Definition 3.9 (Composition). Let IS, IT , I′S and I′T be interfaces such that IS and IT are disjoint
and I′S and I′T are compatible. Let S and T be systems such that not both S and T contain the
method main, I′S ` S : IS, and I′T ` T : IT . Then, we say that S and T are composable and denote
by S ·T the composition of S and T which, formally, is the union of (declarations in) S and T . If
the same classes are defined both in S and T (which may happen for classes not specified in IS

and IT), then we always implicitly assume that these classes are renamed consistently in order to
avoid name clashes.

We emphasize that the interfaces between subsystems as considered here are quite different and
much richer than the interfaces between interactive Turing machines considered in cryptography.
Instead of plain bit strings that are sent over tapes between different machines, objects can
be created, classes of another subsystem can be extended by inheritance, and data of different
types, including references pointing to possibly complex objects, can be passed between different
objects. Also, the flow of control is different. While in the Turing machine model, sending a
message gives control to the receiver of the message and this control might not come back to the
sender, in the object-oriented setting communication goes through method calls and fields. After
a method call, control comes back to the caller, provided that potential exceptions are caught and
the execution is not aborted.

We also emphasize that while a setting of the form ` S : I and I ` T i.e., in S ·T the system T
uses the interface I implemented by S, suggests that the initiative of accessing fields and calling
methods always comes from T , it might also come from S by using callback objects: T could
extend classes of S by inheritance, create objects of these classes and pass references to these
objects to S (by calling methods of S). Then, via these references, S can call methods specified in
T . (This, in fact, is a common programming technique.)

3.3.2. Environments

An environment will interact with one of two systems and it has to decide with which system
it interacted (see Definitions 3.13 and 3.19). Its decision is written to a distinct static boolean
variable result. That is, the environment plays the role the adversary plays in the cryptographic
security definitions: it tries to distinguish two systems which are supposed to be indistinguishable.

For multi-threaded programs we also consider the scheduler as defined in Definition 3.1. As
already mentioned in the previous section, in the indistinguishability definitions the scheduler is

45

3. Extending the CVJ Framework to Java Concurrency

also considered to be part of the adversary. We notice that the environment and the scheduler can
be treated as a single entity (the adversary) since, although the scheduler, when invoked, knows
only the identifiers of the currently active threads, it can establish a duplex communication with
the environment and then collude: The environment could transfer information to the scheduler,
for instance, by spawning either one or two threads to encode a zero or an one, respectively. The
scheduler could establish a communication with the environment, for instance, by keeping on
scheduling two threads where the scheduling of the first encodes a zero, whereas the scheduling
of the second an one.7

Definition 3.10. A (possibly multi-threaded) system E is called an environment if it declares a
distinct private static variable result of type boolean with initial value false.

In the rest of the Chapter, we (often implicitly) assume that the variable result is unique in
every Java program, i.e., it is declared in at most one class of a program, namely, one that belongs
to the environment.

Definition 3.11. Let S be a system with S : I for some interface I. Then an environment E is
called an I-environment for S if there exists an interface IE disjoint from I such that (i) IE ` S : I
and I ` E : IE and (ii) either S or E contains main.

Note that E and S, as in the above definition, are composable and E ·S is a program.

For single-threaded programs i.e., when both E and S are Jinja+ systems, E ·S already defines a
complete program, i.e., a runnable program. In this case, for a finite run of E ·S, we call the value
of result at the end of the run the output of E or the output of the program E ·S. For infinite runs,
we define the output to be false. If E ·S is a deterministic program, then we write E ·S true

if the output of E ·S is true. If E ·S is a randomized program, we write Prob{E ·S true} to
denote the probability that the output of E ·S is true.

For multi-threaded programs, i.e., if at least one between E and S contains multi-threaded
constructs introduced in SyncJinja+, the notation introduced remains basically the same with the
difference that now the program E ·S runs under a scheduler S . In this case, a complete program
is denoted as {E ·S}S .

Definition 3.12 (same interface). The systems S1 and S2 use the same interface if (i) for every
IE , we have that IE ` S1 iff IE ` S2, and (ii) S1 contains the method main iff S2 contains main.

Observe that if S1 and S2 use the same interface and we have that S1 : I and S2 : I for some
interface I, then every I-environment for S1 is also an I-environment for S2.

3.3.3. Programs with security parameter

As mentioned at the beginning of this section, we need to consider programs that take a security
parameter as input and run in polynomial time in this security parameter.

7The scheduler can establish a communication with the environment even if only one thread is available, using a
covert (timing) channel: In order to encode zero, the scheduler could, for instance, make the (only) thread run for
n steps whereas, to encode one, make this thread run for n+1 steps.

46

3.3. Indistinguishability

We require that for each program run under a scheduler S , the number of steps performed in
the run is a polynomial function in the security parameter. To ensure that all parts of a system
have access to the security parameter, we fix a distinct interface ISP consisting of (one class
containing) one public static final variable securityParameter. We assume that, in all the
considered systems/programs, this variable (after being initialized) is only read but never written
to. Therefore, all parts of the considered system can, at any time, access the same, initial value of
this variable. We fix the access of the scheduler S to the variable securityParameter (whose
value is the same as the securityParameter in the system) in the same way.

For a natural number η, we define a system SPη that implements the interface ISP by setting
the initial value of securityParameter to η. We do not fix here how this value is represented
because the representation is not essential for our results; it could be represented as a linked list
of objects or an array (see also the discussion below).

We call a system P such that ISP ` P a program with a security parameter or simply a program
if the presence of a security parameter is clear from the context. Note that by this, SPη ·P is also
a program, which we abbreviate by P(η).

As far as asymptotic security is concerned, although our framework works fine with the
definitions we have introduced so far, they are not perfectly aligned with the common practice of
programming in Java. More specifically, messages, such as keys, ciphertexts, digital signatures,
etc., are typically represented as arrays of bytes. However, this representation is bounded by the
maximal length of an array, which is the maximal value of an integer (int). Therefore, following
common programming practice, there would be a strict bound on, for example, the maximal size
of keys (if represented as arrays of bytes). Since we consider asymptotic security, the size of keys
should, however, grow with the security parameter.

One solution could be to use another representation of messages, such as lists of bytes. This,
however, would result in unnatural programs and we, of course, want to be able to analyze
programs as given in practice. Another solution could be to use concrete instead of asymp-
totic security definitions. However, most results in simulation-based security are formulated
w.r.t. asymptotic security, and hence, we would not be able to reuse these results and avoid, for
example, reproving from scratch realizations of ideal functionalities.

Therefore, we prefer the following solution.
We parameterize the semantics of SyncJinja+ with the maximal (absolute) value integers can

take. So, if P is a deterministic, possibly multi-threaded, complete program (i.e., it might include
the scheduler under which it runs), the run of P with integer size s ≥ 1 is a run of P where
the maximal (absolute) value of integers is s; analogously for randomized programs. We write
P s true if the output of such a run is true; analogously, we define Prob{P s true}. In our
asymptotic formulations of indistinguishability, the size of integers may depend on the security
parameter.

3.3.4. Perfect Indistinguishability

We now extend the notion of perfect indistinguishability introduced in [KTG12a] to a SyncJinja+
deterministic programs which run under a scheduler.

We say that a deterministic program P under a scheduler S terminates for integer size s, if the
run of P with integer size s is finite.

47

3. Extending the CVJ Framework to Java Concurrency

Definition 3.13 (Perfect indistinguishability). Let S1 and S2 be deterministic (possibly multi-
threaded) systems with a security parameter and such that S1 : I and S2 : I for some interface I.
Then, S1 and S2 are perfectly indistinguishable w.r.t. I, written S1 ≈I,MT

perf S2, if

i) S1 and S2 use the same interface and

ii) for every deterministic I-environment E for S1 (and hence, S2) with security parameter,
for every security parameter η, for every integer size s ≥ 1, and for every deterministic
scheduler S it holds that if {E ·S1(η)}S and {E ·S2(η)}S terminate for integer size s, then
{E ·S1(η)}S s true iff {E ·S2(η)}S s true.

We note that the notion of perfect indistinguishability introduced above is termination-
insensitive, i.e. it puts no restrictions on non-terminating runs. This (weak) form of perfect
indistinguishability, nevertheless implies computational indistinguishability (see Theorem 3.3).

3.3.5. Polynomially Bounded Systems

As already mentioned at the beginning of this section, in order to define the notion of compu-
tational indistinguishability we need to define programs, environments and schedulers whose
runtime is polynomially bounded in the security parameter. For this purpose, we fix now and for
the rest of this section a polynomially computable function intsize that takes a security parameter
η as input and outputs a natural number ≥ 1. We require that the numbers returned by this
function are bounded by a fixed polynomial in the security parameter. All notions defined in what
follows are parameterized by that function. However, due to ease of notion this will not be made
explicit.

Our runtime definitions follow the spirit of definitions in cryptographic definitions of simulation-
based security, in particular, [Küs06].

We start with the definition of bounded schedulers. The number of steps such a scheduler
performs in a run is bounded by a fixed polynomial independently of the scheduled program.

Definition 3.14 (Bounded scheduler). A (possibly) randomized scheduler S is called bounded
if there exists a polynomial q such that, for every SyncJinja+ program P with security parameter
η running under S and for every run of P(η)S (with integer size intsize(η)), the number of steps
performed in the code of S does not exceed q(η).

We define now almost bounded programs. These are programs that, with overwhelming
probability, terminate after a polynomial number of steps.

Definition 3.15 (Almost bounded). A SyncJinja+ program P with security parameter η is almost
bounded if for each bounded scheduler S , there exists a polynomial q such that the probability
that the sum of the length of a run of P(η) (with integer size intsize(η)) and of the length of a run
of S exceeds q(η) is a negligible function in η.8

8As usual, a function f from the natural numbers to the real numbers is negligible, if for every c> 0 there exists η0
such that f (η)≤ 1

ηc for all η > η0. A function f is overwhelming if 1-f is negligible.

48

3.3. Indistinguishability

It is easy to see that an almost bounded program P can be simulated by a probabilistic
polynomial time Turing machine that simulates at most q(η) steps of a run of P(η) (with integer
size intsize(η)) and produces output that is distributed the same up to a negligible difference.

We also define the notion of a bounded environment. As for bounded schedulers, the number
of steps such an environment performs in a run is bounded by a fixed polynomial independently
of the system the environment interacts with and on the scheduler under which the composed
program it is supposed to run.

Definition 3.16 (Bounded environment). An environment E is called bounded if there exists
a polynomial q such that, for every system S such that E is an I-environment for S (for some
interface I), for every bounded scheduler S and for every run of {E ·S(η)}S (with integer size
intsize(η)), the number of steps performed in the code of E does not exceed q(η).

The definitions of bounded scheduler and bounded environment make sense since both S and
E can abort a run by calling abort.

If an environment E is both bounded and an I-environment for some system S, we call E a
bounded I-environment for S. For the cryptographic analysis of systems to be meaningful, we
study systems that run in polynomial time (with overwhelming probability) with any bounded
environment and scheduler.

Definition 3.17 (Environmentally I-bounded). A system S is environmentally I-bounded, if
S : I, for each bounded I-environment E for S, the program E ·S is almost bounded.

It is typically easy to see that a system is environmentally I-bounded (for all functions intsize).
We note that environmentally I-bounded systems, as defined above, are reactive systems that

are free to process an unbounded number of requests of the environment E. In particular, a
reactive system S does not need to terminate after some fixed and bounded number of requests.
Clearly, every bounded I-environment, being bounded, will only invoke S a bounded number of
times. More precisely, the number of invocations the environment makes is bounded by some
polynomial in the security parameter.

3.3.6. Computational Indistinguishability

Having defined polynomially bounded systems and programs, we are now ready to define
computational indistinguishability of systems, where, again, we fix the function intsize. (However,
computational guarantees for Java programs will be independent of a specific function intsize.)
We start with the notion of a computationally equivalent programs.

Definition 3.18 (Computational Equivalence). Let P1 and P2 be (complete, possibly probabilis-
tic and multi-threaded) programs with security parameter η. Then P1 and P2 are computationally
equivalent, written P1 ≡comp P2, if |Prob{P1(η) intsize(η)true}−Prob{P2(η) intsize(η)true}|
is a negligible function in the security parameter η.

We notice that ≡comp is an equivalence relation (see Appendix F.2 for the proof). Moreover,
we hightlight that, in the above definition, P1 could for instance be a single-threaded Jinja+ system,
whereas P2 could represent a multi-threaded SyncJinja+ program P̂ running under a scheduler S .

49

3. Extending the CVJ Framework to Java Concurrency

That is, as long as, at the end of the two runs, the variable result is the same (up to negligible
probability), the two systems are said to be computationally equivalent.

Definition 3.19 (Computational indistinguishability). Let S1 and S2 be environmentally I-
bounded (possibly multi-threaded) systems. Then S1 and S2 are computationally indistinguishable
w.r.t. I, written S1 ≈I,MT

comp S2, if

i) S1 and S2 use the same interface, and

ii) for every bounded I-environment E for S1 (and hence, S2) and for every bounded scheduler
S we have that {E ·S1}S ≡comp {E ·S2}S .

This definition is typically applied to programs that do not use the statement abort. However,
our results also work in this case.

Moreover, we note that we do neither require S1/S2 nor E to necessarily be multi-threaded
systems: it is enough that one of them is multi-threaded to obtain a multi-threaded composed
program. This becomes relevant in the extension of the indistinguishability and simulatability
results already stated w.r.t. single-threaded adversaries. In Section 3.8, we formally state and prove
under which assumptions the level of security of a single-threaded systems remains unchanged
when composed with a multi-threaded adversary.

The above definition of indistinguishability is w.r.t. uniform environments. A definition
w.r.t. non-uniform environments (i.e., environments which use also some external interface) can
be obtained in a straightforward way by giving the environment additional auxiliary input (besides
the security parameter).

Furthermore, we point out that in the above definition two cases can occur: (1) main is defined
in E or (2) main is defined in both S1 and S2. In the first case, E can freely create objects of
classes in the interface I (which is a subset of classes of S1/S2) and initiate calls. Eventually, even
in case of exceptions, E can get back control (method calls return a value to E and E can catch
exceptions if necessary), unless S1/S2 uses abort. On the other hand, the kind of control E has
in the case (2), heavily depends on the specification of S1/S2. This can go from having as much
control as in case (1) to being basically a passive observer. For example, main (as specified in
S1/S2) could call a method of E and from then on E can use the possibly very rich interface I
as in case (1). The other extreme is that I is empty, say, so E cannot create objects of (classes
of) S1/S2 by itself, only S1/S2 can create objects of (classes of) E and of S1/S2. Hence, S1/S2 has
more control and can decide, for instance, how many and which objects are created and when E
is contacted. Still even in this case, if so specified, S1/S2 could give E basically full control by
callback objects (see Section 3.3.1). To further illustrate the richness of the interfaces compared
to Turing machine models, we also note that E could also extend classes of S1/S2 and by this, if
not properly protected, might get access to information kept in these classes.

3.4. Simulatability and Universal Composition

We now formulate what it means for a system to realize another system, in the spirit of the
simulation-based approach. As before, we fix a function intsize (see Section 3.3.5) for the rest of
this section. Typically, one would prove that one system realizes the other for all such functions.

50

3.4. Simulatability and Universal Composition

Our formulation of the realization of one system by another follows the spirit of strong
simulatability in the simulation-based approach (see e.g., [Küs06]). In a nutshell, the definition
says that, given (real) system R, it realizes an (ideal) system F if there exists a simulator S such
that R and S ·F behave almost the same in every bounded environment.

Definition 3.20 (Strong Simulatability). Let Iin, Iout , IE , IS be disjoint interfaces. Let F and R
be two (possibly multi-threaded) systems. Then R realizes F w.r.t. the interfaces Iout , Iin, IE , and
IS, written R≤(Iout ,Iin,IE ,IS), MT F or simply R≤MT F, if

i) IE ∪ Iin ` R : Iout and IE ∪ Iin∪ IS ` F : Iout;

ii) either both F and R or neither of these systems contain the method main;

iii) R is an environmentally Iout-bounded system (F does not need to be);

iv) there exists a (possibly multi-threaded) system S, the simulator, such that S does not contain
main, IE ` S : IS, S ·F is environmentally Iout-bounded, and R ≈Iout ,MT

comp S ·F.

The intuition behind the way the interfaces between the different components (environment,
ideal and real functionalities, simulator) are defined is as follows: Both R and F provide the same
kind of functionality/service, specified by the interface Iout . They may require some (trusted)
services Iin from another system component and some services IE from an (untrusted) environment,
for example, networking and certain other libraries. In addition, the ideal functionality F
may require services IS from the simulator S, which in turn may require services IE from the
environment. We recall from the discussion in Section 3.3.1 that the interfaces can be very rich,
as they model communication and method calls in both directions.

In the applications we envision F will typically be an ideal functionality for one or more
cryptographic primitives and its realization R will basically be the actual cryptographic schemes.

The notion of strong simulatability, as introduced above, enjoys important basic properties,
namely, reflexivity and transitivity, and allows one to prove a fundamental composition theorem.

To show these results, we need the following lemma.

Lemma 3.1. Let IE and I be disjoint interfaces and let S1 and S2 be environmentally I-bounded
systems such that S1 ≈I,MT

comp S2 (in particular, S1 and S2 use the same interface) and IE ` S1 : I,
and hence, IE ` S2 : I. Let E be a not necessarily bounded SyncJinja+ I-environment for S1 (and
hence, S2) with I ` E : IE such that E ·S1 is almost bounded. Then E ·S2 is almost bounded and
for each bounded scheduler S we have {E ·S1}S ≡comp {E ·S2}S .

Proof. Let I, IE , S1, S2, E, and S be given as stated in the lemma. We need to show that E ·S2 is
almost bounded and that {E ·S1}S ≡comp {E ·S2}S .

Since E ·S1 is almost bounded, for each bounded scheduler S there exists a polynomial p such
that the probability that the sum of the length of the run of the scheduler S and of the length of
the run of the system E ·S1 with security parameter η (and integer size intsize(η)) exceeds p(η)
is negligible. Now let us denote by [E] the system that is defined just as E, but which in addition
has a private static counter (defined in some new class in [E]) and where the code of E is modified
such that whenever a step in the code of E is performed (according to the small-step SyncJinja+
semantics), then the counter is increased. Once the bound p(η) is reached, [E] performs abort.

51

3. Extending the CVJ Framework to Java Concurrency

By construction of [E] it is easy to see that [E] is a bounded environment because [E] does not
simulate more than p(η) steps of E, where each step of E can be simulated in a number of steps
bounded by a constant. Also, [E] behaves exactly like E up to the point where the bound p(η) is
reached.

Let S be a bounded scheduler. As further explained below, from the construction of [E] we
obtain:

{E ·S1}S ≡comp {[E] ·S1}S ≡comp {[E] ·S2}S
≡comp {E ·S2}S .

The first equivalence holds because, since E ·S1 is almost bounded, E reaches the bound p(η)
when running with S1 only with negligible probability. Hence, the assignment of E and [E] to
result is the same with overwhelming probability.

The second equivalence is true because S1 ≈I,MT
comp S2, S is bounded and [E] is a bounded

I-environment for S1 and S2.
The third equivalence holds because in the system {E ·S2}S the bound p(η) is reached also

only with negligible probability: Otherwise, we could easily turn [E] into a bounded environment
E ′ that distinguishes S1 and S2, namely, E ′ works just as [E] but outputs true, i.e., assigns true
to the variable result if and only if the bound p(η) is reached. So, if, when E interacts with S2,
the bound were reached with non-negligible probability, E ′ could distinguish between S1 and S2.
It follows that E ·S2 is also almost bounded and that the last equivalence holds.

Now we can prove reflexivity and transitivity of strong simulatability. The proofs are similar to
those for Jinja+ systems in [KTG12a].

Lemma 3.2 (Reflexivity of strong simulatability). Let Iout , Iin, and IE be disjoint interfaces
and let R be a system such that IE ∪ Iin ` R : Iout and R is environmentally Iout-bounded. Then,
R≤MT R, i.e., R realizes itself.

Proof. We define S = /0 i.e., S does not contain any class, and immediately obtain that R ≈Iout ,MT
comp

R = S ·R.

Lemma 3.3 (Transitivity of strong simulatability). Let Iout , Iin, IE , I0
S , and I1

S be disjoint
interfaces and let R0, R1, and R2 be environmentally I-bounded systems. If R1 ≤(Iout ,Iin,IE∪I1

S ,I
0
S), MT

R0 and R2 ≤(Iout ,Iin,IE ,I1
S), MT R1, then R2 ≤(Iout ,Iin,IE ,I0

S∪I1
S), MT R0.

Proof. Under the assumption of the lemma, we know that there exist S0 and S1 such that IE ∪ I1
S `

S0 : I0
S , IE ` S1 : I1

S , S0 ·R0 and S1 ·R1 are environmentally Iout-bounded, and R1 ≈Iout ,MT
comp S0 ·R0

and R2 ≈Iout ,MT
comp S1 ·R1. We define S = S0 ·S1. Obviously, we have that IE ` S : I0

S ∪ I1
S . Now let

E be a bounded Iout-environment for R2 and let S be a bounded scheduler. Then, we obtain:

{E ·R2}S ≡comp {E ·S1 ·R1}S ≡comp {E ·S1 ·S0 ·R0}S
≡comp {E ·S ·R0}S .

The first equivalence holds because of our assumptions. For the second equivalence, first note
that {E ·S1 ·R1}S is almost bounded and R1 ≈Iout ,MT

comp S0 ·R0. By Lemma 3.1, we now obtain that
{E ·S1 ·S0 ·R0}S is almost bounded and that the second equivalence holds.

52

3.5. From Perfect to Computational Indistinguishability

In short, the following composition theorem says that if R0 realizes F0 and R1 realizes F1, then
the composed real system R0 ·R1 realizes the composed ideal system F0 ·F1. In other words,
in order to obtain security of a composed systems, it suffices to prove the realizations of its
components separately.

Theorem 3.1 (Composition Theorem). Let I0, I1, IE , I0
S , and I1

S be disjoint interfaces and let R0,
F0, R1, and F1 be systems such that R0≤(I0,I1,IE ,I0

S), MT F0, R1≤(I1,I0,IE ,I1
S), MT F1, not both R0 and R1

contain main, and R0 ·R1 are environmentally (I0∪ I1)-bounded. Then, R0 ·R1≤(I0∪I1, /0,IE ,I0
S∪I1

S), MT

F0 ·F1.

Proof. Under the assumptions of this theorem, there exist S0 and S1 such that IE ` Si : Ii
S, Si ·Fi is

environmentally Ii-bounded and Ri ≈Ii,MT
comp Si ·Fi for i ∈ {0,1}.

We define S = S0 ·S1, R = R0 ·R1, F = F0 ·F1, I = I0∪ I1, and IS = I0
S ∪ I1

S . In order to show
that R≤(I, /0,IE ,IS), MT F it suffices to prove that

(a) S ·F is environmentally I-bounded and

(b) R ≈I,MT
comp S ·F ;

the remaining conditions of Definition 3.20 are obvious.
Let E be a bounded I-environment for R, and let S be a bounded scheduler. Similarly to the

proof of Lemma 3.3, by Lemma 3.1 we obtain the following sequence of equivalences:

{E ·R}S = {E ·R0 ·R1}S
≡comp {E ·R0 · (S1 ·F1)}S
≡comp {E · (S0 ·F0) · (S1 ·F1)}S = {E ·S ·F}S ,

which imply Item (b).
By Lemma 3.1 we, in particular, get that all the above systems are almost bounded. Since

we quantified over all bounded I-environments for R (and hence, S ·F) it follows that S ·F is
environmentally I-bounded, thus Item (a) holds as well.

Note that with R0 ·R1 ≤(I0∪I1, /0,IE ,I0
S∪I1

S), MT F0 ·F1 we have that R0 ·R1 realizes F0 ·F1 also for
all subinterfaces of I0∪ I1.

For simplicity, Theorem 3.1 is stated in such a way that the trusted service that Ri may use is
completely provided by Ri−1, namely through Ii−1. It is straightforward (only heavy in notation)
to state and prove the theorem for the more general case that the trusted service is only partially
provided by the other system.

3.5. From Perfect to Computational Indistinguishability

We now prove that if two systems that use an ideal functionality are perfectly indistinguishable,
then these systems are computationally indistinguishable if the ideal functionality is replaced by
its realization.

53

3. Extending the CVJ Framework to Java Concurrency

As before, we fix a function intsize (see Section 3.3.5) for the rest of this section. The proof
is done via two theorems. The first says that if two systems that use an ideal functionality are
computationally indistinguishable, then they are also computationally indistinguishable if the
ideal functionality is replaced by its realization.

Theorem 3.2. Let I, J, IE , IS, and IP be disjoint interfaces with J v IP∪ I. Let F, R, P1, and P2
be systems such that

i) IE ∪ I ` P1 : IP and IE ∪ I ` P2 : IP;

ii) R≤(I,IP,IE ,IS), MT F, in particular, IE ∪ IP ` R : I and IE ∪ IP∪ IS ` F : I;

iii) P1 contains main iff P2 contains main;

iv) not both P1 and F (and hence, R) contain the method main;

v) F ·Pi and R ·Pi, for i ∈ {1,2}, are environmentally J-bounded.

Then, F ·P1 ≈J,MT
comp F ·P2 implies R ·P1 ≈J,MT

comp R ·P2.

Proof. Assume that F ·P1 ≈J,MT
comp F ·P2. In particular, F ·P1 and F ·P2 use the same interface

and, therefore, R ·P1 and R ·P2 use the same interface as well.
Let E be a bounded J-environment for R ·P1, and let S be a bounded scheduler. We need to

show that {E ·R ·P1}S ≡comp {E ·R ·P2}S .
Because R≤(I,IP,IE ,IS), MT F , there exists a simulator S such that IE ` S : IS, S ·F is environmen-

tally I-bounded and

R ≈I,MT
comp S ·F (3.1)

Now, because R ·Pi, i ∈ {1,2}, is environmentally J-bounded, the system E ·R ·Pi is almost
bounded. By (3.1) and Lemma 3.1 we can conclude that E ·S ·F ·Pi is almost bounded and

{E ·R ·Pi}S ≡comp {E ·S ·F ·Pi}S . (3.2)

As we have assumed that F ·P1 ≈J,MT
comp F ·P2, by Lemma 3.1 we obtain

{E ·S ·F ·P1}S ≡comp {E ·S ·F ·P2}S . (3.3)

Combining (3.2) and (3.3), we obtain {E · R · P1}S ≡comp {E · R · P2}S i.e., R · P1 ≈J,MT
comp

R ·P2.

For simplicity of presentation, the theorem is formulated in such a way that Pi, i ∈ {1,2}, uses
only I as a (trusted) service and F /R uses IP. It is straightforward to also allow for other external
services.

We now show that perfect indistinguishability implies computational indistinguishability.

Theorem 3.3. Let I be an interface and let S1 and S2 be deterministic, environmentally I-bounded
systems such that Si : I, for i ∈ {1,2}, and S1 and S2 use the same interface. Then, S1 ≈I,MT

perf S2

implies S1 ≈I,MT
comp S2.

54

3.6. Perfect Indistinguishability and Noninterference

Proof. Let E be a bounded I-environment for S1 (and hence, S2). For a finite bit string r, let Er

denote the deterministic system obtained from E by fixing its randomness by r in the following
way: The primitive randomBit() is replaced by a method (along with a new static field) declared
within Er such that the first |r| bits returned by the method are chosen according to r; all the
remaining bits returned by this method are 0. It follows with S1 ≈I,MT

perf S2 that (*) for all security
parameters η, for all r, for all integer sizes s≥ 1, and for all deterministic schedulers S such that
{Er ·S1(η)}S and {Er ·S2(η)}S terminate for integer size s it holds that {Er ·S1(η)}S s true

iff {Er ·S2(η)}S s true. This implies

{E ·S1}S ≡comp {E ·S2}S

because: By assumption, E ·S1 and E ·S2 are almost bounded. Hence, there exists a polynomial
p such that the probability that the length of a run (with integer size intsize(η)) of {E ·S1(η)}S
or {E ·S2(η)}S , both calculated as the sum of the length of the run of E ·Si∈{1,2}(η) and of S ,
exceeds p(η) is negligible. So in all runs, except for a negligible fraction, at most p(η) random
bits are needed. Moreover, for almost all bit strings r of length at most p(η) and integers of
size intsize(η), we have that the runs of {Er ·S1(η)}S and {Er ·S2(η)}S terminate for integer
size intsize(η). Now by (*) we know that for such r the output of the runs of {Er ·S1(η)}S and
{Er ·S2(η)}S with integer size intsize(η) is the same.

Hence S1 ≈I,MT
comp S2.

By combining Theorem 3.2 and Theorem 3.3, we obtain the desired result explained at the
beginning of this section.

Corollary 3.1. Under the assumption of Theorem 3.2 and moreover assuming that P1 ·F and
P2 ·F are deterministic systems, it follows that P1 ·F ≈J,MT

perf P2 ·F implies P1 ·R ≈J,MT
comp P2 ·R.

Recall that P1 ·R ≈J,MT
comp P2 ·R is (implicitly) defined w.r.t. the integer size function intsize(η).

However, since the statement P1 ·F ≈J,MT
perf P2 ·F does not depend on any integer size function,

we obtain that computational indistinguishability holds independently of a specific integer size
function.

3.6. Perfect Indistinguishability and Noninterference

In this section we relate the notion of perfect indistinguishability for multi-threaded SyncJinja+
systems (Definition 3.13) with a notion of noninterference also for multi-threaded SyncJinja+
systems.

This notion naturally extends the corresponding notion of (standard) noninterference for
confidentiality [GM82a] which requires the absence of information flowing from high to low
variables within a program. More precisely, we now extend the notion of noninterference for
Jinja+ programs introduced in [KTG12a] to SyncJinja+ programs. Let P be SyncJinja+ program
with some static variables~x of primitive types that are labeled as high. Also, some other static
variables of primitive types are labeled as low. We say that P[~x] is a program with high and low
variables. As in [KTG12a], by P[~a] we denote the program P where the high variables ~x are

55

3. Extending the CVJ Framework to Java Concurrency

initialized with values~a and the low variables are initialized as specified in P. We assume that
the length of~x and~a are the same and~a contains values of appropriate types; in such a case we
say that ~a is valid. Now, noninterference for a deterministic SyncJinja+ program is defined as
follows.

Definition 3.21 (Noninterference for SyncJinja+ programs). Let P[~x] be a deterministic
SyncJinja+ (hence, possibly multi-threaded) program with high and low variables. Then, P[~x]
has the noninterference property if the following holds: For all deterministic schedulers S , for
all valid~a1 and~a2, for all integer sizes s≥ 1, if P[~a1]S and P[~a2]S terminate for integer size s,
then at the end of these two runs, the values of the low variables are the same.

Similarly to the definition of perfect indistinguishability (Definition 3.13), the above definition
captures termination-insensitive noninterference for SyncJinja+ programs. We note that the
noninterference property is quite powerful: P could have just one high variable of type boolean.
Depending on the value of this variable P could run one of two systems S1 and S2, illustrating
that the noninterference property can be as powerful as perfect indistinguishability.

The above notion of noninterference deals with programs, i.e., closed systems. The systems to
be analyzed are, however, often open: they interact with a network or use some libraries which
are not necessarily trusted and, hence, are not part of the code to be analyzed; instead, they are
considered as part of the environment with unspecified behavior. Therefore, as part of the CVJ
framework [KTG12a], the notion of noninterference has been generalized to open systems i.e.,
systems not completely defined.

Definition 3.22 (Noninterference in an open system). Let I be an interface and let S[~x] be a
(not necessarily closed, but possibly multi-threaded) SyncJinja+ deterministic system with a
security parameter, high and low variables, and such that S : I. Then, S[~x] is I-noninterferent if
for every deterministic I-environment E for S[~x] and every security parameter η, noninterference
holds for the program E ·S[~x](η), where the variable result declared in E is considered to be a
low variable.

We now show that noninterference for SyncJinja+ is equivalent to perfect indistinguishability
as defined in Definition 3.13.

Theorem 3.4. Let S[~x] be as given in Definition 3.22 with no variable of S labeled as low (only
the variable result declared in the environment is labeled as low). Then, the following two
statements are equivalent:

a) I-noninterference holds for S[~x].

b) For all valid inputs~a1 and~a2 for S[~x], we have S[~a1] ≈I,MT
perf S[~a2].

Proof. Since S[~x] is I-noninterferent, for every deterministic I-environment E for S[~x] and every
security parameter η, noninterference holds for the system E · S[~x](η), where the parameters
~x denote the only high variables while result declared in E is the only low one. By the
definition of noninterference for SyncJinja+ programs (Definition 3.21), for all valid inputs~a1
and~a2, for all deterministic schedulers S , and for all integer sizes s≥ 1, if {E ·S[~a1](η)}S and

56

3.7. From Noninterference to Computational Indistinguishability

{E ·S[~a2](η)}S terminate for integer size s, then, at the end of these two runs, the values of the
low variables result are the same. This statement is anlogous to the statement in the notion of
perfect indistinguishability introduced in Definition 3.13, where S1(η) is S[~a1](η) and S2(η) is
S[~a2](η).

3.7. From Noninterference to Computational Indistinguishability

The first main result of this chapter immediately follows from the combination of Theorem 3.4
and Corollary 3.1.

Theorem 3.5 (The CVJ Theorem for SyncJinja+ systems). Let I and J be disjoint interfaces.
Let F, R, S[~x] be (possibly multi-threaded) SyncJinja+ systems such that

i) R≤J,MT F,

ii) not both S[~x] and F (and hence, R) contain the method main,

iii) S[~x] ·F is deterministic, and

iv) S[~x] ·F : I (and hence, S[~x] ·R : I).

Now, if S[~x] ·F is I-noninterferent, then, for all ~a1 and ~a2 (of appropriate type), we have that
S[~a1] ·R ≈I,MT

comp S[~a2] ·R.

Proof. Let F , R, and S[~x] be such that R≤J,MT F and not both S[~x] and F (and hence, R) contain
the method main. Let S[~x] ·F be a deterministic I-noninterferent system.

Then, by Theorem 3.4, for all valid inputs~a1 and~a2 for S[~x] we have S[~a1] ·F ≈I,MT
perf S[~a2] ·F .

Since S[~x] ·F is deterministic, not both S[~x] and F (and hence, R) contain main, and R≤J,MT F ,
by Corollary 3.1, we have that S[~a1] ·F ≈I,MT

perf S[~a2] ·F implies S[~a1] ·R ≈I,MT
comp S[~a2] ·R.

As for single-threaded systems, the typical use of this theorem is that the cryptographic
operations that S needs to perform are carried out using the system R (e.g., a cryptographic
library). The theorem now says that to prove cryptographic privacy of the secret inputs (∀ ~a1,~a2:
S[~a1] ·R ≈I,MT

comp S[~a2] ·R) it suffices to prove I-noninterference for S[~x] ·F , i.e., the system where R
is replaced by the ideal counterpart F (the ideal cryptographic library). The ideal functionality F ,
which in our case will model cryptographic primitives in an ideal way, can typically be formulated
without probabilistic operations and also the ideal primitives specified by F will be secure even
in presence of unbounded adversaries, the kind of adversaries considered in information-flow
security.

Therefore, as already mentioned in the introduction of this chapter, this result reduces the
problem of checking computational indistinguishability for a SyncJinja+ system that use real cryp-
tographic operations to checking noninterference for the same system, where the cryptographic
operations have been replaced by their ideal counterpart.

57

3. Extending the CVJ Framework to Java Concurrency

3.8. From Single-Threaded to Multi-Threaded Programs

Based on the definition of indistinguishability for Jinja+ systems presented in Section 2.2, we can
now state the second main result of this chapter which shows that, as long as a (environmentally
I-bounded) system S is considered to be atomic, every multi-threaded adversary interacting with
S through I is as powerful as a single-threaded one.

Theorem 3.6. Let S1 and S2 be two environmentally I-bounded Jinja+ (hence single-threaded)
systems such that they are computationally indistinguishable according to Definition 2.1:
S1 ≈I,ST

comp S2. Then, S1 and S2, if considered to be atomic, are computationally indistinguishable
also according to Definition 3.19, i.e., for every bounded multi-threaded SyncJinja+ I-environment
EMT for S1/S2 and for every bounded scheduler S , we have {EMT ·S1}S ≡comp {EMT ·S2}S .

We note that the assumption of considering S1 and S2 to be atomic is fundamental to ensure
(and to prove) their computationally indistinguishability property: The scheduler, which is
considered to be part of the adversary, could otherwise distinguish beetween them by simply
measuring the difference in the number of steps performed by these two systems. Furthermore,
as already mentioned in the introduction of this chapter, the systems we are interested in contain
cryptographic code whose security guarantees are based on cryptographic security games, e.g., for
defining IND-CCA2 security (see Appendix A), which are inherently sequential and hence they
do not capture timing attacks. To maintain these guarantees, the execution of the cryptographic
operations in S1 and S2 must therefore neither be interleaved by any another thread nor by the
scheduler.

Thanks to Theorem 3.6, whose proof can be found in Appendix F.3, we can also prove that if a
single-threaded system R realizes another single-threaded system F , then this realization carries
over also against multi-threaded adversaries, as lons as the assumption of considering R and F
atomic is maintained.

To properly state and prove the theorem, we need to first recall from [KTG12a] the notion of
strong simulatability for Jinja+ systems. We note that this notion has been already presented in
Chapter 2 (see Definition 2.2), but only in a simplified way.

Definition 3.23 (Strong Simulatability for Jinja+ systems [KTG12a]). Let Iin, Iout , IE , IS be
disjoint interfaces. Let F and R be two Jinja+ systems. Then R realizes F w.r.t. the interfaces Iout ,
Iin, IE , and IS, written R≤(Iout ,Iin,IE ,IS), ST F or simply R≤ST F, if

i) IE ∪ Iin ` R : Iout and IE ∪ Iin∪ IS ` F : Iout ,

ii) either both F and R or neither of these systems contain the method main,

iii) R is an environmentally Iout-bounded system (F does not need to be), and

iv) there exists a Jinja+ system S (the simulator) such that S does not contain main, IE ` S : IS,
S ·F is environmentally Iout-bounded, and R ≈Iout ,ST

comp S ·F according to Definition 2.1.

We are now able to state the theorem that allows us to carry over to SyncJinja+ also all
the realization results which are already stated and proven for Jinja+ systems, again under the
assumption that these systems are considered to be atomic.

58

3.8. From Single-Threaded to Multi-Threaded Programs

Theorem 3.7. Let R and F be two Jinja+ systems such that R realizes F according to Defini-
tion 3.23 i.e., R≤ST F. Then, if R and F are considered to be atomic, R realizes F also according
to Definition 3.20 i.e., R≤MT F.

Proof. We have to show that, if R ≤ST F and both R and F are atomic systems, there exists a
SyncJinja+ simulator S such that R ≈Iout ,MT

comp S ·F , for an interface Iout such that R is environmen-
tally Iout-bounded.

Since R ≤ST F , there exists a Jinja+ simulator S̃ such that R ≈Iout ,ST
comp S̃ ·F . Since Jinja+

programs are a subset of SyncJinja+ programs, we can set the SyncJinja+ simulator S to be
the Jinja+ simulator S̃, considering it as an atomic system. Then, R and S̃ ·F are atomic Jinja+
systems such that R ≈Iout ,ST

comp S̃ ·F . Hence, by Theorem 3.6, we can assert R ≈Iout ,MT
comp S̃ ·F . Since

all the other conditions of Definition 3.20 are the same as the conditions of Definition 3.23, we
can conclude R≤MT F .

59

4. Instantiating and Applying the CVJ Framework

Cryptographic primitives, such as symmetric and asymmetric encryption, digital signatures,
nonce generation, message authentication codes (MACs), Diffie-Hellmann key exchanges, key
derivation, commitment schemes, and so on, are essential building blocks of many security
protocols, such as TLS, SSH, IPsec, IEEE 802.11i,9 etc., broadly used nowadays to protect
the communication of sensible data over untrusted networks, such as the Internet. Due to
their relevance in security critical applications, in last years there has been a substantial effort in
(re)designing such cryptographic primitives in a modular way so that, once mathematically proven
secure under strong cryptographic assumptions (see Appendix A for some formal definitions of
these assumptions), they can securely be used as building blocks of more complex protocols. To
prove security properties of such protocols, one can then rely on proofs of security already stated
for the simpler cryptographic primitives without having to carry out every time a cumbersome
and tedious reduction proof from the higher-level protocol down to the cryptographic primitives
employed.

As already mentioned in the introduction, a feasible approach to design composable secure
protocols is based on simulation-based security, where modular security analyses are performed
within universal composability models (UC models; see, e.g., [Can00, PW01, Küs06, KT13]).
In these models, the higher-level components of a protocol are designed and analyzed based on
lower-level idealized components, called ideal functionalities. Universal composition theorems,
such as Canetti’s composition theorem [Can00] and Küsters’ composition theorems [Küs06], then
allow the replacement of the ideal functionalities by their realization. The resulting higher-level
components without idealized sub-components enjoy then the desired security properties. It is
also possible to show that the higher-level components realize ideal functionalities themselves, to
then, in turn, use these ideal functionalities as lower-level idealized components in even more
complex protocols.

While ideal functionalities and realization results for some cryptographic primitives mentioned
above have already been presented in the literature (see, e.g., [Can01, KT08a, KT09, KT11b,
KR17]), these functionalities are formulated in Turing machine models, making tool-assisted
analyses of security properties of the protocols based on them impractical.

In this chapter, we formulate in Java (more precisely, in Jinja+) ideal functionalities for the
cryptographic primitives which most commonly occur in cryptographic applications:

(1) public-key encryption (see Section 4.1),

(2) digital signatures (see Section 4.2),

both with a public-key infrastructure and both handling static corruption,

(3) private symmetric encryption (see Section 4.3),
9The IEEE 802.11i protocol is widely known as the “Wi-Fi Protected Access II” (WPA2) protocol.

61

4. Instantiating and Applying the CVJ Framework

(4) nonce generation (see Section 4.4).

More precisely, we instantiated the CVJ framework presented in [KTG12a] and extended in
Chapters 2 and 3 with the aforementioned functionalities so that they can actually be used to
analyze Java programs.10

Designing such functionalities and carrying out the proofs (w.r.t. the programming language
semantics) is non-trivial and requires some care since the interaction between different classes is
much more complex than between Turing machines, where in the former case we have to deal,
for example, with exceptions, inheritance, references to potential complex objects that can be
exchanged, and hence, the manipulation of one object can affect many other objects. Also, since
the ideal functionalities we propose are part of the (Java) programs to be analyzed, they should be
formulated in a “tool friendly” way. For example, for this reason, in our functionalities corruption
is modeled in a quite different way than it is typically done in the Turing machine models (see,
again, [KT08a, KT09, KT11b, KR17]).

For each ideal functionality mentioned above, we propose a corresponding real cryptographic
operation also implemented in Java and we prove, in the universal composability model and
w.r.t. the Jinja+ semantics, that this real implementation realizes the corresponding ideal function-
ality under strong cryptographic assumptions. The formulation in Java of these functionalities can
be found in Appendices D.2-D.5, with the corresponding (real and ideal) cryptographic library
provided in [TSK13].

To illustrate the usefulness and applicability of these proposed cryptographic functionalities, in
Section 4.6 we apply the framework along with the tool Joana (see Section 4.5), which allows
for the fully automatic verification of noninterference properties of Java programs, to establish
cryptographic privacy properties of a (non-trivial) cloud storage application, where clients can
store private information on a remote server.

4.1. Public-Key Encryption with a Public Key Infrastructure

We now propose an ideal functionality Ideal-PKIEnc, formulated in Java (Jinja+), for public-key
encryption with a public-key infrastructure (PKI). This functionality is an extension of the more
restricted public-key encryption functionality proposed in [KTG12a]. First, the functionality
proposed here allows a user to encrypt messages for a given party based on the identifier of this
party. The functionality uses the included public key infrastructure to obtain the public key of
the party registered under the given identifier. In contrast, to encrypt a message, the user of the
functionality without a public key infrastructure, have to provide a public-key herself, and hence,
take care of the correct binding of public keys to parties herself. Second, in the functionality
proposed here, we model static corruption, including dishonestly generated keys. For this, special
care was needed to make sure that the resulting functionality is “tool-friendly”.

We also provide an implementation (realization) of this ideal functionality, denoted by
Real-PKIEnc, in Java (Jinja+) and prove, within the CVJ framework, that this implementation
realizes the ideal functionality Ideal-PKIEnc under standard cryptographic assumptions.

10We note that the CVJ framework as presented in [KTG12a] already supports the functionality for public-key
encryption, but without modeling corruption and without a public-key infrastructure.

62

4.1. Public-Key Encryption with a Public Key Infrastructure

As already mentioned in the introduction of this chapter, the design of such functionalities
and the realization proofs pose additional challenges compared to the Turing machine based
formulations proposed in the cryptographic literature.

In the rest of this section, we first provide the interface for Ideal-PKIEnc, and hence, Real-PKIEnc.
Then, the actual ideal functionality and its realization are presented, along with a realization
theorem.

4.1.1. The Interface for Public-Key Encryption

In this section, we present the interface IPKIEnc of the ideal functionality Ideal-PKIEnc and its
implementation Real-PKIEnc and discuss the intended way of using it. The interface IPKIEnc is
specified as follows:

1 public class Encryptor {

2 public Encryptor(byte[] publicKey);

3 public byte[] encrypt(byte[] message);

4 public byte[] getPublicKey();

5 }

6 public final class Decryptor {

7 public Decryptor();

8 public byte[] decrypt(byte[] message);

9 public Encryptor getEncryptor();

10 }

11

12 // public key infrastructure interface

13 public class RegisterEnc {

14 public static void registerEncryptor(int id, Encryptor encryptor, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 public static Encryptor getEncryptor(int id, byte[] pki_domain)

17 throws PKIError, NetworkError;

18 }

Typical usage. The intended way for an honest user with identifier ID_A to create and register
her keys is the following:

19 Decryptor decryptor = new Decryptor();

20 Encryptor encryptor = decryptor.getEncryptor();

21 try {

22 RegisterEnc.registerEncryptor(ID_A, encryptor, PKI_DOMAIN);

23 }

24 catch (PKIError e) {} // registration failed: id already claimed

25 catch (NetworkError e) {} // network problems

Intuitively, an object of class Decryptor encapsulates a public/private key pair, generated when the
object is created (line 19 above). This object provides access to the method decrypt. The owner of
this object (that is, the party who has created it) is not supposed to share it with any other parties.
Instead, the owner of the decryptor shares an associated encryptor (obtained in line 20), which,
intuitively, encapsulates only the public key. More precisely, to make her public key available
within a PKI to other parties, the user registers the encryptor she has obtained (line 22). That is,
she registers her encryptor under her identifier (ID_A) and what we call a PKI domain (which is a

63

4. Instantiating and Applying the CVJ Framework

publicly known identifier used to distinguish keys registered for different purposes/applications).
This step may result in an error: i) if some key has been registered already under this identifier
and PKI domain (exception PKIError), or ii) if some network failure occurred, e.g., the registration
server was unavailable (exception NetworkError). We emphasize that we do not require the party
who wants to register a public key to provide a proof of possession (PoP) of the private key
corresponding to the public key.11 After an encryptor has been registered, it can be used by other
parties as follows:
26 try {

27 Encryptor encryptor = RegisterEnc.getEncryptor(ID_A, PKI_DOMAIN);

28 encryptor.encrypt(message);

29 } catch(PKIError e) {} // id has not been successfully registered

30 catch(NetworkError e) {} // network problems

The encryptor of the party registered under ID_A and PKI_DOMAIN is obtained in line 27 and used in
line 28 to encrypt a message. Note that a user can also obtain the public key encapsulated in the
encryptor, using the method getPublicKey.

Corruption. To model (static) corruption, we allow encryptors also to be created directly, without
creating associated decryptors, simply by providing an arbitrary bitstring pubk as the public key:
31 Encryptor enc = new Encryptor(pubk);

32 try {

33 RegisterEnc.registerEncryptor(ID, enc, PKI_DOMAIN);

34 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring pubk as a public key, including
dishonestly generated keys. This key can then be used by any other party (honest and dishonest)
to encrypt messages for the dishonest party, just like public keys of honest parties. Note that
since we do not require PoPs, a dishonest party can register any public key of another (possibly
honest) party under his identity. (As mentioned before, the literature on PKIs recommends that
applications should not rely on PoPs being performed [ANL03].)

An encryptor created in the above way is called corrupted. There is no corresponding (cor-
rupted) decryptor, because the adversary can run the decryption algorithm himself. For messages
encrypted with a corrupted encryptor (public key), no security guarantees are provided. (Jumping
ahead to Section 4.1.2, the functionality will hand the message to be encrypted with a corrupted
encryptor directly to the environment/adversary/simulator.)

We note that, as expected, when some party obtains an encryptor by the method
RegisterEnc.getEncryptor, the party does not know a priori whether the obtained encryptor is
corrupted (it has been generated directly) or uncorrupted (it has been generated via Decryptor).

4.1.2. The Ideal Functionality for Public-Key Encryption

We now present the ideal functionality for public-key encryption, Ideal-PKIEnc. This functionality
provides the interface IPKIEnc, introduced above, to its users (parties, environment) with ideal
implementations of the methods declared in IPKIEnc.
11In most applications, PoPs are not necessary and as argued in the literature (see, e.g., [ANL03]), applications should

be designed in such a way that their security does not depend on the assumption of such proofs being performed.

64

4.1. Public-Key Encryption with a Public Key Infrastructure

The functionality Ideal-PKIEnc is defined on top of the interface ICryptoLibEnc which contains
methods for key generation, encryption, and decryption:

35 public class CryptoLib {

36 public static KeyPair pke_generateKeyPair();

37 public static byte[] pke_encrypt(byte[] message, byte[] publicKey);

38 public static byte[] pke_decrypt(byte[] ciphertext, byte[] privKey);

39 }

The Ideal-PKIEnc expects the above methods to be implemented outside of Ideal-PKIEnc. In
the analysis of a system P[~x] which uses Ideal-PKIEnc (i.e., in the analysis of the system P[~x] ·
Ideal-PKIEnc), such methods have to be provided by the environment, and thus, are completely
untrusted. In particular, in the analysis of P[~x] · Ideal-PKIEnc the code for CryptoLib, which would
typically be very large, does not have to be analyzed. This tremendously simplifies the analysis
of P[~x] · Ideal-PKIEnc (see also the explanation in Section 2.6 and, in particular, the Theorem 2.5).

The basic idea of the implementation of Ideal-PKIEnc is that if a message m is to be encrypted
with an (uncorrupted) public key, then not m but a sequence of zeros of the same length as m
is encrypted instead, using method pke_encrypt of CryptoLib. By this, it is guaranteed that the
resulting ciphertext c does not depend on m, except for the length of m. The functionality stores
the pair (m,c) for later decryption. If some ciphertext c′ is to be decrypted, the functionality first
checks whether there exists a pair of the form (m′,c′) (the functionality guarantees that there is at
most one such pair). Then, m′ is returned as the plaintext. If no such pair exists (and hence, c′

was not created using the functionality), c′ is decrypted using method pke_decrypt of CryptoLib,
and the resulting plaintext is returned. More specifically, Ideal-PKIEnc works as follows.

On initialization of an object of the class Decryptor, a public/private key pair is created by
calling the key generation method of the class CryptoLib. At this point, the decryptor object also
creates an (initially empty) list of message/ciphertext pairs. This list is used as a look-up table for
decryption by the method decrypt of class Decryptor as sketched above.

Encryptors returned by the method getEncryptor of class Decryptor are objects of the class
UncorruptedEncryptor (which is a subclass of the class Encryptor). An encryptor object contains the
same public-key as the associated decryptor and shares (a reference to) the list of message/cipher-
text pairs with the associated decryptor. When method encrypt of such an encryptor is called with
a message m, the encryption method of class CryptoLib is called to encrypt a sequence of zeros of
the same length as m, resulting in a ciphertext c (ciphertexts seen before are rejected). Then, the
pair (m,c) is stored in the list and the ciphertext c is returned as the result of the encryption.

In contrast, a corrupted encryptor (i.e., an encryptor object created directly as in line 31
above, rather than being derived from a decryptor) implements encryptions simply by calling the
encryption method of the class CryptoLib using the bitstring (the public key) it has been provided
with upon creation. Note that in this case, no security guarantees are provided; the original
message instead of zeros is encrypted.

The methods for registering and obtaining encryptors in class RegisterEnc are implemented in a
straightforward way by Ideal-PKIEnc, using a list of registered encryptors along with associated
identifiers and domains.

The most important part of the code of Ideal-PKIEnc is listed in Appendix D.2; see [TSK13]
for the full code.

65

4. Instantiating and Applying the CVJ Framework

4.1.3. The Realization of Ideal-PKIEnc

We now provide the realization Real-PKIEnc of the ideal functionality Ideal-PKIEnc presented
above.

The functionality Real-PKIEnc builds on a public key infrastructure. A public-key infrastructure
is a trusted public key registry, where i) users can register their public keys under their identifiers
and (PKI) domains (in the sense of Section 4.1.1) and ii) users can obtain other users’ public
keys by providing the identifiers and domains of these users. The interface IPKI for the public key
infrastructure used by Real-PKIEnc is the following:

40 public class PKI {

41 static void register(int id, byte[] domain, byte[] pubKey)

42 throws PKIError, NetworkError;

43 static byte[] getKey(int id, byte[] domain)

44 throws PKIError, NetworkError;

45 }

The method register is supposed to throw PKIError if the provided user identifier and domain
pair has been claimed already, i.e., some other party has registered a key for the same identifier
and domain pair before. The same exception is supposed to be thrown by the method getKey

if the given identifier id has not been registered. Registering or fetching a public key typically
involves to contact a public-key server. If this fails, the NetworkError is thrown. When proving
that Real-PKIEnc realizes Ideal-PKIEnc we will assume that IPKI is properly implemented (see
Section 4.1.4 for details).

Now, based on IPKI, the different classes and methods provided by Real-PKIEnc are implemented
as presented next.

The methods registerEncryptor and getEncryptor of the class RegisterEnc work as follows. When
an encryptor is to be registered by the method registerEncryptor, its public key is registered in
the PKI using the method register. The method getEncryptor uses the method getKey to fetch the
corresponding public key and wraps it into an encryptor which is then returned.

The classes Encryptor and Decryptor of Real-PKIEnc are implemented in a straightforward way
using an encryption scheme: messages are simply encrypted/decrypted directly using such a
scheme. Note that whether an encryptor was obtained from a decryptor (using the method
getEncryptor) or whether it was created directly (as in line 31) leads to the same implementation,
namely, invoking the encryption function of the encryption scheme. The only difference is
that in one case the public/private key pair was created (honestely) within the class Decryptor of
Real-PKIEnc and in the other case the public key was created outside of Real-PKIEnc (possibly in
some dishonest way).

We refer the reader to Appendix D.2 as well as to [TSK13] for the code of Ideal-PKIEnc and
Real-PKIEnc.

4.1.4. Realization Result

We now show that Real-PKIEnc realizes Ideal-PKIEnc, provided that

i) the encryption scheme used in the implementation of Real-PKIEnc is IND-CCA2-secure
[BDPR98] and

66

4.1. Public-Key Encryption with a Public Key Infrastructure

ii) that the public-key infrastructure used by Real-PKIEnc works “properly”.

As for i), we note that IND-CCA2-security is a standard and widely used security notion
for public-key encryption schemes (see Appendix A.1 for its formulation). Similarly to ideal
functionality for public-key encryption proposed in the cryptographic literature, it has been shown
that IND-CCA2-security is necessary to realize Ideal-PKIEnc (see, e.g., [Can01, KT08a]).

As for ii), the behavior of a “proper public-key infrastructure” is formalized by an ideal
functionality Ideal-PKI, which operates in the obvious way: It maintains a list of registration
records, each consisting of an identifier, a domain, and a key (the code is given in Appendix D.2).
The adversary (simulator) is informed about registration requests and requests for obtaining public-
keys and can schedule when these requests are answered by Ideal-PKI (because in a realization
such requests typically involve communication over a network controlled by the adversary). We
assume the existence of some public-key infrastructure Real-PKI that realizes Ideal-PKI. Note
that there are various ways of realizing Ideal-PKI and that all of them will require certain trust
assumptions. For example, one could assume the existence of one or more honest certificate
authorities and that parties are provided with the (authentic) public keys of these authorities.
Typically, one would use some existing public-key infrastructure (with appropriate assumptions)
to realize Ideal-PKI. However, this is not the focus of this work. (In fact, proving the security of a
full-fledged PKI would be a challenging task by itself.). In our case study (see Section 4.6), we
consider a simple realization which involves a single certificate authority, the assumption being
that it in fact realizes Ideal-PKI.

With this, we can now state our main theorem for public-key encryption.

Theorem 4.1. If Real-PKIEnc uses an IND-CCA2-secure public-key encryption scheme and
Real-PKI≤IPKI Ideal-PKI, then Real-PKIEnc ·Real-PKI≤IPKIEnc Ideal-PKIEnc.

The proof of Theorem 4.1 is given in Appendix F.4. The proof is highly modular and leverages
such properties of the realization relation as the composition theorem, reflexivity, and transitivity.
In the proof, we split Ideal-PKIEnc and Real-PKIEnc into two parts: one providing encryption and
decryption and one providing key registration and retrieving. For the former part, we generalize
the result of [KTG12a] for public-key functionality without corruption and without PKI to the
case with corruption.

The IND-CCA2-secure public-key encryption scheme which we employ in [TSK13] is the
RSAES-OAEP scheme which is part of the PKCS #1 v2.2 family of standards [KJRM16]. It
combines the RSA algorithm [RSA78] with the Bellare and Rogaway’s Optimal Asymmetric
Encryption Padding (OAEP) method [BR95]. The asymmetric RSA encryption algorithm is used
only to exchange a session key among the parties which consecutively encrypt the data using the
more efficient AES symmetric encryption scheme. This technique of combining the convenience
of a public-key encryption algorithm with the efficiency of a symmetric encryption scheme is
usually called “hybrid encryption”.

The RSA-OAEP encryption scheme has been proven IND-CCA2-secure by Fujisaki et al. in
[FOPS01].

67

4. Instantiating and Applying the CVJ Framework

4.2. Digital Signatures with a Public Key Infrastructure

In this section, we propose an ideal functionality Ideal-Sig, formulated in Java (Jinja+), for
digital signatures with a public key infrastructure, where, again, we model corruption. We
also provide a real implementation Real-Sig of this functionality in Java (Jinja+) and prove,
in the CVJ framework, that it realizes Ideal-Sig. Just as for public key encryption, similar
functionalities for digital signatures have been proposed in the cryptographic literature before
(see, e.g., [Can04, KT08a]). But again, the new contribution here is that we provide a formulation
in Java, instead of the (simpler) Turing machine models, such that these functionalities can
actually be used to analyze Java programs. This is non-trivial and needs some care. We first
present the public interface of Ideal-Sig and Real-Sig.

4.2.1. The Interface for Digital Signatures

The public interface IPKISig of Ideal-Sig and Real-Sig (both have the same public interface) is as
follows:

1 public final class Signer {

2 public Signer();

3 public byte[] sign(byte[] message);

4 public Verifier getVerifier();

5 }

6 public class Verifier {

7 public Verifier(byte[] verifKey);

8 public boolean verify(byte[] signature, byte[] message);

9 public byte[] getVerifKey();

10 }

11 public class RegisterSig {

12 public static void registerVerifier(int id, Verifier verifier,

13 byte[] pki_domain) throws PKIError, NetworkError;

14 public static Verifier getVerifier(int id, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 }

Typical usage. Similarly to public-key encryption, the intended way for an honest user with
identifier ID_A to create and register her keys is the following:

17 Signer sig = new Signer();

18 Verifier ver = sig.getVerifier();

19 try {

20 SigEnc.registerVerifier(ID_A, ver, PKI_DOMAIN);

21 } catch (PKIError e) {} // registration failed: id already claimed

22 catch (NetworkError e) {} // network problems

Intuitively, an object of the class Signer encapsulates a verification/signing key pair, which is
generated when the object is created (line 17). It allows a party who owns such an object to sign
messages (this requires the signing key), using the method sign (of the class Signer). This party
can also obtain a Verifier object (line 18), which encapsulates the related verification key and
can be used (by other parties) to verify signatures via the method verify. Similarly to the case of

68

4.2. Digital Signatures with a Public Key Infrastructure

public-key encryption, such a verifier can be registered in the public-key infrastructure (line 20)
in order to make the verification key available to other parties. Again, we do not require a proof
of possession of the corresponding signing key.

After a verifier has been registered, it can be used by other parties to check whether a signature
signature is valid for a message message w.r.t. the verification key of (ID_A, PKI_DOMAIN) encapsulated
in verifier:

23 try {

24 Verifier verifier = RegisterSig.getVerifier(ID_A, PKI_DOMAIN);

25 verifier.verify(signature, message);

26 } catch(PKIError e) {} // id has not been successfully registered

27 catch(NetworkError e) {} // network problems

Corruption. To model (static) corruption, analogously to the case of public-key encyrption we
allow verifiers to be created directly, without creating associated signers, simply by providing an
arbitrary bitstring verif_key as the public key:

28 Verifier ver = new Verifier(verif_key);

29 try {

30 RegisterSig.registerVerifier(ID, ver, PKI_DOMAIN);

31 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring verif_key he wants as a
verification key, including dishonestly generated keys. This key can then be used by any other
party (honest and dishonest) to verify messages signed by the dishonest party, just like with
verification keys of honest parties. Note that since we do not require PoPs, a dishonest party
can register any verification key of another (possibly honest) party under his identity. A verifier
created in such a way is called corrupted. A corresponding signing object is not necessary as
the adversary can directly sign messages by himself using the matching signing key (if this key
is known to the adversary). Note that, given a verifier object, other parties cannot tell a priori
whether this verifier object is corrupted or not.

4.2.2. The Ideal Functionality for Digital Signatures

We now present the ideal functionality for digital signatures, Ideal-Sig. This functionality provides
the interface IPKISig, introduced above, to its users (parties, environment) with ideal implementa-
tions of the methods declared in IPKISig.

The functionality is defined on top of the interface ICryptoLibSig which contains methods for
key generation, signing, and verification. Analogously to the interface ICryptoLibEnc for public-key
encryption, these methods are supposed to be provided by the environment, and hence, are
completely untrusted. In particular, in the analysis of a system that uses Ideal-Sig, they do not
have to be analyzed, which, again, greatly simplifies the analysis task.

Now, Ideal-Sig works as follows. On initialization of an object of class Signer, a verifica-
tion/signing key pair is created by calling the key generation operation of the interface ICryptoLibSig.
A signer object also creates an (initially empty) list of signed messages; this list will be shared
with all associated verifiers (objects returned by getVerifier). When the method sign is called to
sign a message m, the signing procedure of ICryptoLibSig is called to sign m using the encapsulated

69

4. Instantiating and Applying the CVJ Framework

signing key. Before this signature is returned, the signed message m is added to the list of signed
messages.

A verifier object returned by the method getVerifier belongs to the class UncorruptedVerifier

(a subclass of the class Verifier) and it implements ideal verification as follows: the method
verify, when called to verify a signature s on a message m, first uses the verification procedure
of ICryptoLibSig to check if s is a valid signature on m w.r.t. the verification key encapsulated in the
verifier object. If this is the case, it additionally checks if m is in the list of signed messages (this
list, as mentioned before, is shared with the associated signer object). If this is true as well, the
method returns ‘true’. The idea behind this procedure is that, independently of how the signing
and verification algorithms work, the verification of a signature on some message succeeds only
if this message has been signed before (and hence, logged) using Ideal-Sig.

A (corrupted) verifier object created directly implements the verification procedure simply by
calling the verification method of ICryptoLibSig.

The methods for registering and obtaining verifiers in class RegisterSig are implemented in
a straightforward way by Ideal-PKIEnc, using a list of registered verifiers along with associated
identifiers and domains.

We refer the reader to Appendix D.3 as well as to [TSK13] for the code of Ideal-Sig and
Real-Sig.

4.2.3. The Realization of Ideal-Sig

The classes Verifier and Signer of the realization Real-Sig of the ideal functionality Ideal-Sig are
implemented in a straightforward way using a digital signature scheme: messages are simply
signed/verified directly using such a scheme. Analogously to the methods in EncPKI, the methods
registerVerifier and getVerifier of the class RegisterSig are based on the interface IPKI introduced
in Section 4.1.3.

The part of the code of Real-Sig for which we provide the realization result is listed in Ap-
pendix D.3, while the full library can be found in [TSK13].

4.2.4. Realization Result

We prove that Real-PKISig realizes Ideal-PKISig, provided that

i) the signature scheme used in the implementation of Real-PKISig is EUF-CMA-secure
[GMR88] and

ii) the public-key infrastructure used by Real-PKISig realizes the ideal functionality Ideal-PKI
(see Section 4.1.4).

Analogously to the case of public-key encryption, it has been shown that EUF-CMA-secure
signature schemes are necessary to realize Ideal-PKIEnc (see, e.g., [KT08a]). EUF-CMA-secure
schemes are also standard and widely used signature schemes (see Appendix A.2 for its formula-
tion).

Theorem 4.2. If Real-PKISig uses an EUF-CMA-secure signature scheme and Real-PKI≤IPKI

Ideal-PKI, then Real-PKISig ·Real-PKI≤IPKIEnc Ideal-PKISig.

70

4.3. Private Symmetric Encryption

The proof of this theorem is again highly modular and leverages such properties of the
realization relation as the composition theorem, reflexivity, and transitivity. The basic structure of
the proof is analogous to the one for public-key encryption. We split Ideal-PKISig and Real-PKISig
into two parts: i) signing and verification and ii) key registration and retrieving of verification keys.
The most involved part is to show that the real component for signing and verification realizes the
corresponding ideal component. Here we make use of an existing results in the cryptographic
literature, in particular [KT08a], and reduce the statement to a corresponding statement in the
Turing machine model. We refer to Appendix F.5 for details.

The EUF-CMA-secure signature scheme which we employ in [TSK13] is the RSASSA-PSS scheme
which is part of the PKCS #1 v2.2 family of standards [KJRM16]. It is a signature scheme with
appendix (SSA) based on the RSA algorithm [RSA78], where the signature of the message is
listed next to the message itself. To verify the signature it is necessary to have the message itself.
RSASSA-PSS is based on the EMSA-PSS encoding method which is based on the Bellare and
Rogaway’s Probabilistic Signature Scheme (PSS) [BR96].

Bellare and Rogaway also proved that the RSASSA-PSS signature scheme is EUF-CMA-secure
[BR96, Mih98].

4.3. Private Symmetric Encryption

In this section, we present an ideal functionality for what we call private symmetric encryption and
a realization of this functionality. Private symmetric encryption allows a user to encrypt messages
(using a symmetric encryption scheme) just for herself. She does not share the symmetric key
with other parties. This is useful, for example, to store confidential information on an untrusted
medium. Since keys do not have to be shared between parties, the functionality can be kept quite
simple.

The public interface ISymEnc of this functionality and its realization consists of only one class
SymEnc with two methods: encrypt and decrypt. These methods use a symmetric key generated
when an object of this class is created.

In the ideal functionality Ideal-SymEnc for private symmetric encryption, encryption and
decryption work analogously to the case of public-key encryption: a sequence of zeros is
encrypted instead of the given plaintext and the ciphertext obtained in this way is logged along
with the plaintext, which enables the functionality to recover this plaintext when the ciphertext
is to be decrypted. The realization Real-SymEnc simply uses the encapsulated key to encrypt
and decrypt messages using a symmetric encryption scheme. Clearly, there is no need to model
(static) corruption here: a dishonest party can simply perform private symmetric encryption by
himself. We refer the reader to Appendix D.4 as well as to [TSK13] for the code of Ideal-SymEnc
and Real-SymEnc.

Based on the implementation of Real-SymEnc and Ideal-SymEnc, we obtain the following result.

Theorem 4.3. If Real-SymEnc uses an IND-CCA2-secure symmetric encryption scheme, then
Real-SymEnc≤IPKIEnc Ideal-SymEnc.

We omit the proof here because it closely follows the one for public-key encryption only that it

71

4. Instantiating and Applying the CVJ Framework

is much simpler now, as we neither need to consider a public-key infrastructure nor corruption
(see [KT09] for a corresponding result in a Turing machine model).

4.4. Nonce Generation

In this section, we propose an ideal functionality and its realization for nonce generation, formu-
lated in Java (Jinja+). The property that the ideal functionality is supposed to provide is nonce
freshness, i.e., nonces returned by the functionality should always be different to the nonce that
have been returned so far (no collisions); unguessability of nonces is not intended to be modeled
by this functionality.

The public interface INonce for this functionality consists of one class NonceGen with one method
newNonce only, which is supposed to return a fresh nonce.

The ideal functionality Ideal-Nonce for nonce generation works as follows. The functionality
maintains an, initially empty, collection (formally, a static list) of nonces that have been returned
so far. When the method newNonce is called, the environment/simulator is asked to provide a
bitstring; more precisely, the method CryptoLib.newNonce(), which is supposed to be provided by
the environment is called. Then, the method newNonce checks whether the returned bitstring is fresh,
i.e., whether it does not already belong to the collection of returned nonces. If the nonce is indeed
fresh, the nonce is added to the collection and returned to the caller of the method. Otherwise,
the above process is repeated until a fresh nonce is returned by the environment/simulator. This
guarantees that Ideal-Nonce always outputs a fresh nonce.

In the realization Real-Nonce of Ideal-Nonce, if the method newNonce is called, a bitstring of the
length of the security parameter is picked uniformly at random and then returned to the caller.
More precisely, we assume the method CryptoLib.newNonce() called by Real-Nonce to work in this
way. We refer the reader to Appendix D.5 as well as to [TSK13] for the code of Ideal-Nonce and
Real-Nonce.

Now, it is easy to prove that Real-Nonce realizes Ideal-Nonce.

Theorem 4.4. Real-Nonce≤INonce Ideal-Nonce.

Proof. (Sketch) To prove this theorem, we let the simulator S work just like Real-Nonce, i.e.,
when asked to provide a new nonce by Ideal-Nonce, it picks a bitstring of the length of the security
parameter uniformly at random and returns this bitstring to Ideal-Nonce. Now, Real-Nonce cannot
be distinguished by any (polynomial bounded) environment from S · Ideal-Nonce unless Real-Nonce
produces a collision, which, however, happens with negligible probability only.

4.5. Joana, a Static Checker for proving Noninterference

Although the results of the CVJ framework are very general and not tailored to any specific tool,
to show the applicability of the framework, in [KTG12a] the tool Joana has been applied to
establish cryptographic privacy properties of a simple client-server architecture where messages
are sent encrypted over an untrusted the network.

72

4.6. The Case Study: A Cloud Storage System

Among the tools for checking noninterference, Joana12 [HS09a, GHM13] is a static checker for
the fully automatic analysis of noninterference properties of Java programs. A user needs to only
specify the high and low variables of a program.

Joana is based on the program analysis framework WALA (which stands for “The T. J. WAtson
Libraries for Analysis”13) which provides static analysis capabilities for Java bytecode. It
computes a conservative approximation of the information flow inside the program in form of
a Program Dependence Graph (PDG). Then, the PDG is checked for illegal information flows
using advanced dataflow analysis based on slicing, a program analysis technique which consists
in the computation of the set of all program statements that, at some point of the execution, may
affect the value of a specific variable.

If no illegal flow is found in the PDG, the program is guaranteed to be noninterferent. The
correctness of this implication has been verified with a machine-checked proof [Was10] which
includes formal specifications of PDGs and the slicing algorithm [WL10, WLS09].

The fully automatic analysis performed by Joana comes at the cost of potential false alarms due
to overapproximation. Joana leverages sophisticated flow-, context-, field- and object-sensitive
analysis techniques that help to reduce such false alarms, but it does not consider the actual values
of variables. For example, whenever a high variable is used in an expression, the value of the
expression is considered to contain high information—even if the value of the high variable does
not actually influence the result. Therefore, the high level of automation of Joana precludes the
possibility to check functional properties of the analyzed programs.

4.6. The Case Study: A Cloud Storage System

As a case study of the results presented in this chapter, we now describe the verification of a
cloud storage system implemented in Java. This system illustrates how the ideal functionalities
we have developed can be used to analyze an interesting and non-trivial Java program. As already
mentioned at the beginning of this chapter, except for the work in [KTG12a], where only a
much simpler Java program has been considered, there has been no other work on establishing
cryptographic (indistinguishability) properties for Java programs.

In what follows, we first provide a brief description of the cloud storage system program. Then
we state the (cryptographic) security property that we verify and, finally, report on the verification
process carried out using the tool Joana [HS09b, GHM13], which, as already mentioned, allows
for the fully automatic verification of noninterference properties of Java programs.

Design of the Cloud Storage System. We have implemented a cloud storage system that allows
a user (through her client application) to store data on a remote server such that confidentiality
of the data stored on the server is guaranteed even if the server is untrusted: data stored on the
server is encrypted using a symmetric key known only to the client.

More specifically, data is stored (encrypted with the symmetric key of a user) on the server
along with a label and a counter (a version number). When data is to be stored under some label,
a new (higher) counter is chosen and the data is stored under the label and the new counter; old

12The sourcecode of Joana and additional information is available at http://joana.ipd.kit.edu/.
13http://wala.sf.net/.

73

http://joana.ipd.kit.edu/
http://wala.sf.net/

4. Instantiating and Applying the CVJ Framework

Store
(1) C→ S : EncS(userID,SigC[STORE, label,counter,SymEnck(message)])

(2a) S →C : EncC(SigS[SignC,STORE_OK])
(2b) S →C : EncC(SigS[SignC,STORE_FAIL, lastCounter])

Retrieve
(3) C→ S : EncS(userID,SigC[RETRIEVE, label,counter])

(4a) S →C : EncC(SigS[SignC,RETRIEVE_OK,encryptedMsg,authToken])
(4b) S →C : EncC(SigS[SignC,RETRIEVE_FAIL])

Synchronization

(5) C→ S : EncS(userID,SigC[GET_COUNTER, label,nonce])
(6) S →C : EncC(SigS[SignC,LAST_COUNTER,serverCounter,nonce])

Figure 4.1.: Messages exchanged between the client and the server, where EncS(m) and EncC(m)
denote m encrypted under the public key of the server and the client, respectively.
Analogously, SigS[m] and SigC[m] denote the signatures of the server and the client,
respectively, on m, along with the message m itself. Finally, SymEnck(m) denotes
m encrypted under the symmetric key k. By SignC, we denote the signature (not the
signed message) of C in the previous message. For example, in (2a) SignC denotes
C’s signature in message (1).

data is still preserved (under smaller counters). Different users can have data repositories on
one server. These repositories are strictly separated. The system can be used to securely store
any kind of data. A user may use our cloud storage system, for example, to store her passwords
remotely on a server such that she has access to them on different devices.

Communication between a client and a server is secured and authenticated using functionalities
for public-key encryption and digital signatures. Moreover, the functionality for nonce generation
is essential to prevent replay attacks (when the client and the server run a sub-protocol to
synchronize counter values for labels).

Implementation of the Cloud Storage System. In our system, data is stored (encrypted) on the
server along with a label and a counter (a version number). When data is to be stored under some
label, a new (higher) counter is chosen and the data is stored under the label and the new counter;
old data is still preserved (under smaller counters). Different users can have data repositories on
one server. These repositories are strictly separated. The system can be used to securely store
any kind of data. A user may use our cloud storage system, for example, to store her passwords
remotely on a server such that she has access to them on different devices.

When created, client and server objects are provided with all necessary key material. In
particular, a client object is provided with a user ID and the corresponding public and private
encryption and signing keys as well as the symmetric key for encrypting data. The server obtains
its public and private encryption and signing keys.

The client class of our system offers two methods: store (with parameters message (data) and
label), to store data (message) under a chosen label (label), and retrieve (with the parameter

74

4.6. The Case Study: A Cloud Storage System

label), to retrieve data stored under a label (label). The client and the server internally maintain
the current counter. A counter recorded on the client for a label may differ from the one recorded
on the server since, for example, another instance of the client (with the same user ID) may have
stored further data on the server meanwhile. Store and retrieve actions therefore always start
with a synchronization step (see Figure 4.1, (5) and (6)) where the client asks the server for the
current counter for the considered label. If this value is higher than the one stored locally by the
client, the client updates its counter to this higher value. If the value is lower, the client throws an
exception. The nonce in messages (5) and (6) is used to prevent replay attacks.

Now, when the method store is invoked with parameters message and label, the client object,
after having synchronized the counter with the server (see above), sends message (1) in Figure 4.1
to the server, where counter is the current value of the counter for label obtained after synchro-
nization and k is a private key of the client (not shared with any other party). The client’s signature
in (1) is stored by the server along with label, counter, and the ciphertext SymEnck(message),
and is used later as an authentication token (when retrieving the data). The server may reply with
an error message (2b), indicating a counter error (some message has already been stored for the
given combination of counter and label). Otherwise, the server acknowledges that the storage
operation was successful (2a).

When the method retrieve is called with parameter label, the client sends, again after syn-
chronization with the server, message (3) to the server, where counter is the current value of the
counter for label after synchronization. The server can, again, respond with an error message (4b)
(indicating that there is no message stored under the given combination label/counter for that
user), or it responds with the message (4a), containing the encrypted data encryptedMsg stored
under label/counter and an authentication token authToken (see above), which proves to the client
that the response of the server is correct.

The code of the client can be found in Appendix E.1, while the full code of the system is
available in [STG13].

The Security Property. As mentioned above, the most fundamental security property of the
cloud storage system is confidentiality of the stored data. This property is supposed to be
guaranteed even if the server and all clients of other users may be dishonest and cooperate with
an active adversary.

To formulate this confidentiality property, we provide (besides the code of the client and the
server) a setup class with the method main, which gets a secret_bit as input. This method
models the interaction between the program of an honest client and the active adversary (the
environment).

The setup program takes the parameter secret_bit of type boolean as its input. This program,
first, creates a client (i.e. an object of class Client) and registers her public-key encryption and
signing keys in the public-key infrastructure. If this registration process succeeds, the setup
program enters its main loop where the adversary (the environment) determines, one by one, the
actions to be taken by the system by sending instructions to main. Except for the first instruction,
the following instructions can be sent by the adversary arbitrarily often.

– The adversary can decide to end the loop by sending a special end instruction.

– The adversary can register a corrupted encryptor and/or a corrupted verifier. In particular, he

75

4. Instantiating and Applying the CVJ Framework

can register such objects under the fixed identifier of the server. By this, the adversary is able to
fully subsume (impersonate) the server: he can decrypt messages encrypted for the server and
produce signatures of the server. Analogously, the adversary can register (and then subsume)
dishonest clients. Note that the adversary cannot register keys under the ID of the honest client
created at the beginning of the setup, because this ID is already taken.

– The adversary can pick an arbitrary label and an arbitrary message to be stored by the honest
client on the server, by calling client.store(label,message). More precisely, to do so, the
adversary, besides the label, provides a pair (m0,m1) of messages of the same length (if the
two messages do not have the same length, this step is aborted). Then, depending on the value
of the secret_bit, m0 or m1 is picked as message (the message to be stored).

– The adversary can choose to have the honest client retrieve a message for a given label (again,
determined by the adversary), using client.retrieve(label). The value of the returned
message is then ignored. However, notice that this step, according to the honest client program,
triggers an exchange of messages between the client and the server (adversary), which includes
the encrypted message.

By this, the adversary has full control over the network and over the actions taken by the honest
client. Moreover, it subsumes both the server and all dishonest clients.

The security property now requires that no (probabilistic polynomial-time) adversary is able
to determine the secret_bit, and hence, whether the data items in the first or in the second
component of the item pairs provided by the adversary are sent by the client. This specifies a strong
cryptographic privacy property, common in cryptography. Formally, this indistinguishability
property is stated as follows:

CSR[false] ≈ /0
comp CSR[true] (4.1)

where CSR[secret_bit] denotes the described system, consisting of the setup class and the
client class (see Appendix E.1 for the full code). The index R indicates that in this system the
cryptographic operations are carried out using the real cryptographic schemes (rather than ideal
functionalities).

We note that the computational indistinguishability relation in (4.1) uses the empty interface
I = /0. This means that the adversary (environment) cannot directly call methods of the client
object. As explained before, by the definition of the setup class, the environment can nonetheless
determine which actions are taken and when. We also point out that CSR is an open system which
uses some classes not defined within CSR, such as a network library. These classes are provided
by the environment and, therefore, are untrusted. Thus, property (4.1) implies confidentiality of
the stored messages no matter how such untrusted libraries are implemented.

Verification of the Security Property. In order to prove (4.1), by Theorem 2.2 it suffices to
show that

CSI[secret_bit] is I-noninterferent, (4.2)

where CSI denotes the system which coincides with CSR except that the real cryptographic
schemes are replaced by their ideal counterparts (ideal functionalities), i.e., Ideal-PKEnc, Ideal-Sig,

76

4.6. The Case Study: A Cloud Storage System

Ideal-SymEnc, and Ideal-Nonce. Since, as can easily been seen, CSI[secret_bit] satisfies the
conditions of Theorem 2.5, we can further reduce checking (4.2) to checking the following
property:

Ẽ~u ·CSI[secret_bit] is noninterferent for all~u, (4.3)

where the family of systems Ẽ~u, parameterized by a finite sequence of integers~u, is as described
in Section 2.6. This system can be automatically generated from CSI[secret_bit]. Also note that
by “noninterference” we mean standard termination-insensitive noninterference (see Section 2.4).
Altogether it suffices to prove (4.3) in order to obtain (4.1).

Joana is easily able to establish property (4.3). It takes about 17 seconds on a standard PC
(Core i5 2.3GHz, 8GB RAM) to finish the analysis of the program (with a size of 950 LoC).
Note that the actual running code of the distributed system is much bigger than what Joana needs
to analyze, because the code of the distributed system includes untrusted libraries, such as the
standard Java library for networking, which do not need to be analyzed, as already mentioned
above.

77

5. Related Work and Discussion

This part of the thesis contributes to the effort to develop techniques and methodologies in order
to prove security of implementations of cryptographic protocols.

Obtaining cryptographic guarantees for programs written in real-world programming languages
is a challenging and quite recent research field. In fact, in most of the work on language-based
analysis of cryptographic software the analysis is carried out based on a symbolic (Dolev-Yao)
model, without computational/cryptographic guarantees (see, e.g., [GP05, CD09, BFG10]). The
very few approaches aiming at cryptographic guarantees typically adopt one of the following:

1) They rely on symbolic analysis and then apply computational soundness results (see,
e.g., [BMU10, AGJ11]).

2) They derive formal models from the source code and analyze these models using specialized
tools for cryptographic verification, such as the tool CryptoVerif [Bla06] (see, e.g., [BJST08,
AGJ12]).

3) They derive source code from formal specifications (see, e.g., [CB12, CB13]).

An approach similar to the approach taken by the CVJ framework is the work by Fournet
et al. [FKS11] which aims at establishing computational indistinguishability properties for
a fragment of F# [Don15], a functional-first programming language appositely designed for
verification purposes. This approach is strongly based on type checking. Using this framework,
Bhargavan et al. [BFK+13] propose a modular implementation of the TLS protocol in F# and
verify its computational security using the typechecker F7 [BBF+08] for F#.

Other more recent works use a newly proposed programming language called F* [SHK+16], a
dialect of ML which bootstraps in both OCalm and F# and which is equipped with a verification
system based on dependent and refinement types.14 Security protocols such as TLS, multi-party
sessions, web-browser extensions, and other cryptographic constructions written in F* can be
mechanically proven secure using the typechecker and the SMT solver provided within this
language (see, e.g., [CB13, BFK+13, BFG+14, DFK+17] for some works using this approach to
verify cryptographic implementations).

The CVJ framework, in contrast, aims at using existing program analysis tools and techniques
to directly obtain cryptographic security guarantees for systems coded in Java, a programming
language not specifically designed for verification purposes. It is the only approach for the
cryptographic analysis of Java programs and it establishes general results for ideal functionalities
and their realizations in the universal composability paradigm [Can00, PW01, Küs06, KT13].
Depending on the cryptographic application to be verified, one can instantiate the CVJ framework

14A dependent type is a type whose definition depends on a value derived from an algebraic or a logical formula. A
refinement type is a type of the form x:t{ϕ}, where the refined type is the sub-type of t which is restricted to those
expressions e:t for which the logical formula ϕ[e/x] is valid.

79

5. Related Work and Discussion

with the required cryptographic primitives, as we have, for example, done in Chapter 4. In this
regard, we notice that universally composable functionalities for public-key encryption, digital
signature, private symmetric encryption, and nonce generation have already been proposed in the
literature (see, e.g., [KT08a, KT09]), but in a more generic Turing machine model rather than in
a practical programming language.

Finally, we note that the CVJ framework is not tailored to any specific tool: static checkers,
theorem provers, typesystems, or even manual proofs are, in principle, all valid possibilities for
establishing noninterference properties. However, to check noninterference properties of our case
studies, we primarily employ the static checker Joana. Among the tools for checking (standard)
noninterference of sequential Java programs, Joana is based on program dependency graphs
(PDGs) [HS09a]. Other tools, like, for instance, JIF [Mye99, MCN+01], perform information
flow analyses based on type systems. Others, like, for instance, KeY [ABB+05, ABB+14,
BHS07], are based on theorem proving and can check noninterference properties based on the
technique of self-composition (see Section 9.3 for more details on the KeY tool).

Chapter 3 contributes to the field of establishing confidentiality properties for concurrent
programs, extensively used, for instance, in operating systems and client-server applications.

In the context of language-based information-flow security, confidentiality properties are
usually defined by noninterference polices, all referring to the notion of noninterference for confi-
dentiality proposed by Goguen and Meseguer [GM82a] which requires the absence of information
flowing from private (high) inputs to public (low) variables. This notion has been extended in
various ways to address concurrent programs too (henceforth, we refer to noninterference for
concurrent programs also as “concurrent noninterference”).

The first major line of research formally defining concurrent noninterference lies on the
notion of possibilistic noninterference. Roughly speaking, a concurrent program is possibilistic-
noninterferent if in all its possible executions (i.e., executions where the spawned threads are
interleaved differently by the scheduler) the values of the private (high) variables do not affect
the values of the public (low) ones. Many definitions of possibilistic noninterference have been
proposed in the literature along with different techniques and criteria to enforce them (see,
e.g., [McL96, Man00, BC02, BDR04]). However, depending on what type of channels one
accepts as capable of transmitting leaks, a program which is possibilistic noninterferent may still
be vulnerable to:

1. Probabilistic Attacks, which may occur by running the program multiple times and by then
gathering statistical information over the private data from the distribution of the public
outcomes.

2. Refinement Attacks, which may occur by running the program under a predetermined scheduler
(e.g., an uniform one) in order to exclude a range of possible (public) outcomes and then infer
more precise information over the private data.

3. Timing Attacks, which may occur by running the program concurrently with an adversary able
to infer information on private data by measuring the runtime of its computation.

4. Termination Attacks, which may occur by running the program concurrently with an adversary
able to infer information on private data based on whether the computation of the program

80

terminates or not after a certain (fixed) number of steps. We note that termination attacks are
quite often considered to be a special case of timing attacks.

To address these typologies of attacks, concurrent noninterference definitions have been lifted to
be timing/termination-sensitive [VS97, Sab01], probabilistic [SV98, VS99, SS00], and scheduler-
independent [ZM03, MS10, PHN13], where these different proposed definitions are quite often
overlapping and usually coping with more than one typology of attack at a time. In a prominent
systematization of knowledge work on language-based information-flow security, Sabelfeld
and Myers [SM03] present a quite comprehensive overview of the variety of noninterference
definitions, both for sequential and concurrent programs, discussing their relations and their
limitations on the type of attack they are able or not to capture. More recent works, such as those
by Popescu et al. [PHN12, PHN13], cast in a single framework the different notions of concurrent
noninterference (possibilistic, probabilistic, and scheduler-independent) studying their relation
and under which assumptions one implies another.

The notion which is more and more becoming the reference definition for concurrent nonin-
terference is probabilistic noninterference [SV98, VS99, SS00, Sab03, Smi06]. This notion is
typically stated by considering the concurrent program as a random variable over all its possible
executions (traces) and by then assigning a probability on each trace caused by each possible input
vector~x. In this respect, a program is considered to be probabilistic-noninterferent if the sums
of all the probabilities on all the executions possibly generated by each pair of “low-equivalent
input vectors” (i.e., vectors whose public values are equivalent) are the same. We refer, for
instance, to [GS15] or to [BGH+16] for such a formal definition. On the positive side, we note
that this notion is intrinsically scheduler-independent, as it already considers all possible thread
interleavings. On the negative side, criteria to establish probabilistic noninterference are usually
too strict to be enforced on real-world programs. The most prominent criterion for establishing
this property, namely the Low-Security Observational Determinism (LSOD) [RWW94, ZM03],
has been implemented in the Joana verification tool [GS15]: However, even relaxed [GS15]
and improved [BGH+16] versions of this criterion are still too strict for being employed in the
fully automatic verification of any realistic multi-threaded Java program (see, e.g., the case study
in [BGH+16]). Therefore, in some works the notion of probabilistic noninterference has been
relaxed by providing so-called scheduler-independent noninterference definitions which, despite
the name, consider only a suitable class of schedulers, as, for example, the class of “robust
schedulers” [MS10] or of “noninterfering schedulers” [PHN13]. In this regard, we notice that the
proposed classes of schedulers always try to capture as many well-known schedulers as possible,
such as the uniform and the Round-Robin scheduler.

The variety of the different formalizations of concurrent noninterference suggests that there
might not be a definition which is suitable for every purpose. Instead, it seems that the choice of
such a definition depends on the particular application and/or on the specific runtime environment
where the program is supposed to be executed. In this context, our proposed notion of concurrent
noninterference for SyncJinja+ programs (Definition 3.21 in Section 3.6) is another way to
express confidentiality at the language level in case of a (Java) program executing concurrently.

Compared to the aforementioned notions of concurrent noninterference, our proposed definition
is:

i) a natural extension for multi-threaded programs of the noninterference notion already stated

81

5. Related Work and Discussion

for sequential programs which requires the absence of information flowing from private
(high) inputs to public (low) outputs [GM82a];

ii) tailored to a specific programming language, namely Java (more precisely, to the fragment
of Java falling into the SyncJinja+ language), and neither formulated for an abstract com-
putational model as in [MS10, PHN13] nor for a relatively simple concurrent language as
in [SS00, Sab03];

iii) made to capture both refinement and timing attacks (see items 2. and 3. above, respectively),
since neither the deterministic scheduler S (see Definition 3.21) nor the deterministic
adversary/enviroment E (see Definitions 3.22) has a predefined semantics; instances of S
and E could therefore measure the runtime of the honest program P and/or execute P in such
a way to infer information over its private data;

iv) less strict than the other considered notions because it does not impose any simulation, bisim-
ulation, or equivalence among the possible executions (traces) of the concurrent program.

In particular, regarding the latter point, we notice that our proposed definition is less strict
than the aforementioned low-security observational determinism (LSOD) criterion for checking
probabilistc noninterference [ZM03]: While the definition of LSOD requires that, for a program
which runs on two low-equivalent inputs, all possible traces are stepwise low-equivalent, our
proposed definition is less strict in the sense that it only requires that, at the end of the runs,
the value of the low variables are the same. On the positive side, this means that, compared
to probabilistic noninterference, our proposed definition should, in principle, hold for a more
reasonable class of multi-threaded programs. On the negative side, we neither capture termination
attacks (see item 4. above), as our notion is termination-insensitive, nor probabilistic attacks (see
item 1. above), as all the components involved, namely the honest program P, the scheduler S ,
and the environment E, are considered to be deterministic.

Regarding termination attacks, we however note that a termination-insensitive notion of
noninterference is necessary in case we want this property checked by automatic tools.

Regarding probabilistic attacks, we note that the aim behind such a definition has been to
propose a suitable notion of concurrent noninterference to then formally link it to the notion of
computational indistinguishability, which, as all the notions stated in cryptography, considers
probabilistic systems.

Our proposed definition of a scheduler (Definition 3.1 in Section 3.2.2) also differs from most
of the notions of schedulers proposed in the literature so far (see, e.g., [MS10, PHN13]). More
precisely, our definition is more general in the sense that it neither imposes a specific semantics
on the scheduler nor on the classes of schedulers it models (uniforms, round-robins, and so on).
Insted, we restrict the scheduler as follows:

– The class of programs the scheduler belongs to is the class of probabilistic polinonomially
bounded programs and its degree of parallelism is one. That is, we define the scheduler as a
bounded, possibly randomized single-threaded Jinja+ program.

82

– The quantity of information exchanged with the scheduled program is limited to the set of
threads which can execute the next step of computation (the so-called “active threads”, see
Definition 3.2).

As in the case of our proposed concurrent noninterference definition, our definition of scheduler
adds to the landscape of the different formalizations of runtime environment (i.e., the environment
where the concurrent program is supposed to be executed) another formalization of what the
scheduler is and of the quantity of information it exchanges with the scheduled program.

83

PART II

sElect, a Lightweight Verifiable Remote Voting
System

85

6. E-voting Systems and their Security Properties

Systems for electronic voting (e-voting systems) have been used in many countries for national
or municipal elections, for example, in the US, Estonia, India, Belgium, Switzerland, and Brazil,
as well as for so-called low-stake elections, i.e., elections within associations, societies, and
companies. There are two main categories of such systems. In the first category voters have to
go to a polling station in order to cast their vote either by filling in a paper ballot, which then
is scanned by an optical scan voting system, or by entering their vote directly to an electronic
voting machine, usually referred to as Direct-Recording Electronic (DRE) voting machines. In
the second category, called remote electronic voting, voters vote over the Internet using their
own devices (e.g., desktop computers or smartphones). In addition, there are hybrid approaches,
where voters, via an additional channel, such as mail, are provided with codes which they then
use to vote (code voting).

In this part of the thesis we focus on remote electronic voting, i.e., on Internet-based voting
systems. Compared to the other online services like e-banking or e-commerce, e-voting raises
additional challenges in both designing such systems and guaranteeing their security requirements.
This is mainly deriving from the following two issues:

– The need to verify the accuracy of the election while simultaneously providing the secrecy of
the ballots.

– The practical infeasibility of designing remote e-voting systems which truly protect against
voter coercion.

Unfortunately, most of the e-voting systems used in practice today do not provide a sufficient
level of security w.r.t. these two issues. In particular, voters have no guarantee that their votes
have been properly counted. Moreover, since e-voting systems are complex hardware/software
systems, both programming errors and security vulnerabilities can hardly be avoided: As for any
software/hardware systems, to guarantee the security of an e-voting system one has to defend the
system against all possible attacks, while it is sufficient for an attacker to find out one specific
vulnerability to manipulate an election undetectably. In addition, these systems might deliberately
be tampered with when deployed in elections. That is, when using e-voting systems, voters
generally do not have any guarantees that their votes were actually counted and that the published
result is correct, i.e., reflects the actual voters’ choices. In this respect, as also described in
[KT14], numerous problems with e-voting systems employed in legally binding elections have
been reported by the press. For instance, in [Com12] it has been described that in 2001, during
the Democratic primary elections in New Jersey’s Cumberland Country, a DRE voting machine
attributed votes to the wrong candidates due to programming errors and ended up declaring
the actual losers as winners of the election. Another example where attackers meddled in an
high-stake election possibly interfering with its outcome is the more recent 2016 United States
presidential election: several newspapers alluded to the actual possibility that Russian hackers

87

6. E-voting Systems and their Security Properties

altered the results of this election so much that they have in fact determined the final winner (see,
e.g., [New16] and [New17]).

These are just two examples of a long list of reports on miscounted votes or attacks on voting
machines due to server misconfigurations, hardware or software problems, or programming errors.
Moreover, the fact that voting systems can easily be manipulated by insiders and/or external
attackers has been demonstrated on various systems, for example on the Estonian e-voting system
[SFD+14, PCW14]. Again, such manipulations can often even allow attackers to undetectably
change the overall election results.

To address these problems, in the last decade or so there has been an intensive research effort
in formally defining the security properties e-voting systems should provide in order to then
systematically analyze such systems.

Privacy. The first security property that e-voting systems should provide is voters’ privacy
which informally means that no one should be able to tell how each voter voted, at least with
overwhelming probability (see, for instance, [KTV11] for a formal definition of privacy).

Verfiability. Besides voters’ privacy, modern e-voting systems strive for what is called verifia-
bility. This notion informally means that voters and possibly also external authorities should be
able to check both that the votes were properly counted and the integrity of the overall election.
Importantly, it should be possible to perform these checks even if one or more components of
the e-voting system has/have programming errors, misconfigurations, security vulnerabilities, or
is/are partially malicious.

While several (overlapping) definitions of verifiability have been proposed in the literature,15

the connotation of this security property is usually determined by three different notions:

i) Individual verifiability [SK95] refers to the possibility for each voter to check whether or
not her vote has been properly cast, collected, and counted.

ii) Universal verifiability [SK95] requires the possibility for any voter or interested auditor
to verify the integrity of the overall election result, even if voting systems/authorities are
(partially) untrusted.

iii) End-to-end verifiability [Jos87] more generically asserts that if some party, such as voting
authorities, deviates from the (e-voting) protocol in a “serious way”, then this deviation is
noticed by honest participants with high probability.

Since end-to-end verifiability is the most generic among the three aforementioned notions,
this property is usally the most desirable for e-voting systems to provide. Traditionally, the
standard technique to obtain end-to-end verifiability is to establish both individual and universal
verifiability, as it has been done in many prominent e-voting systems, such as Helios [Adi08] and
Scantegrity [CCC+08]. However, in [KTV11] it has been demonstrated that the combination of
individual and universal verifiability does not necessarily guarantee end-to-end verifiability. In
particular, it is possible to build e-voting protocols which can achieve an high level of end-to-end

15In a recent systematization of knowledge paper [CGK+16], most of the formal definitions of verifiability proposed
in the literature are reviewed, cast in a single framework, and detailed compared.

88

verifiability without universal verifiability, as it has been shown in [KMST16a] with the sElect
e-voting system.

Accountability. Recent studies have shown that accountability, an even stronger property than
verifiability, is desirable: Accountability not only requires that ballot manipulations is detected
but also that the misbehaving parties are singled out and correctly blamed. As demonstrated in
[KTV10b], verifiability is a weaker (and often too weak) form of accountability. For verifiability,
one requires only that, if some goal of the e-voting protocol is not achieved (e.g., the election
outcome does not correspond to how the voters actually voted), then at least one involved entity
will not accept such a run (i.e., the instantiated election process), but it is not required to blame
misbehaving parties. In contrast, accountability requires that misbehaving parties are also properly
blamed. It is very important that an e-voting scheme provides accountability, not only verifiability.
As verifiability is implied by accountability, it suffices to directly focus on accountability. In
practice, accountability requires two conditions to be satisfied:

– fairness, the protocol participants who are honest are never blamed;

– completeness, if, during a run, some desired goal of the protocol is not met — due to the
misbehavior of one or more protocol participants — then these participants who misbehaved
are singled out and correctly blamed.

As in the case of verifiability, the desired goal for voting protocols is that the published result of
the election corresponds to the actual votes cast by the voters. In this respect, the completeness
condition guarantees that if in a run of the protocol the published result of the election does not
correspond to the actual votes cast by the voters (a fact that must be due to the misbehavior of one
or more protocol participants), then one or more participants are held accountable; the fairness
condition guarantees that these participants are rightly held accountable.

Paper-based elections already include pragmatical mitigations to ensure some form of verifia-
bility, ranging from external observers which can watch the polling station throughout the election
process and scrutinize the count afterwards to rigorous auditing conducted transparently and
under observation. In contrast, e-voting systems typically enforce verifiability and accountability
in the following way: when voters cast their ballot, they are provided with some kind of receipt
which they can then use in combination with additional data published by the system besides the
election result to check that their votes were properly counted. However, since the use of receipts
could in principle brake voters’ privacy, further measures in designing such systems have to be
taken into account to ensure that, even in the presence of receipts, other parties would not be able
to tell how each voter voted, at least with some overwhelming probability.

Coercion-Resistance and Receipt-Freeness. Besides privacy and verifiability/accountability,
some e-voting systems also try to prevent vote buying and voter coercion, aiming at providing
another security property called coercion-resistance (see [KTV12a] for a formal definition of this
property). Intuitively, an e-voting system achieves coercion resistance if a coercer cannot tell
whether a voter cast her ballot following his instructions or not. In this respect, as also reported in
[CCFG16], coercion-resistance can only be pragmatically enforced by giving the possibility for
revoting, which is impractical in many scenarios.

89

6. E-voting Systems and their Security Properties

Clearly, coercion-resistance can easily clash with the way verifiability and accountability is
typically achieved: once the voter obtains some sort of receipt to check that her vote has been
properly counted, the coercer could simply obtain this receipt from the voter to make sure the
voter voted as requested. Given that designing remote voting systems which are truly coercion-
resistant is practically impossible (a coercer can, in principle, always threaten a voter at the
moment of using the voting device to cast her choice), some approaches aim instead at some
form of receipt-freeness (see, e.g., [BT94, SK95, Oka97, MN06]). Receipt-freeness ensures that
a voter cannot prove to anyone how she voted. In this respect, receipt-freeness can be seen as a
weaker form of coercion-resistance.

Overall, the design of practical e-voting systems is very challenging as many aspects and different,
somehow orthogonal security properties have to be taken into account. In addition, one has to
find a good balance between simplicity, usability, and security. This in turn very much depends
on various, possibly even conflicting requirements and constraints, such as: What kind of election
is targeted? National political election or elections of much less importance and relevance, e.g.,
within clubs or associations? Should one expect targeted and sophisticated attacks against voter
devices and/or servers, or are accidental programming errors the main threats to the integrity of
the election? Is it likely that the voters are coerced, and hence, should the system defend against
coercion? How heterogeneous are the computing platform of voters? Can voters be expected to
have or to use a second (trusted) device and/or install software? Is a simple verification procedure
important, e.g., for less technically inclined voters? Should the system be easy to implement and
deploy, e.g., depending on the background of the programmers? Should authorities and/or voters
be able to understand (to some extend) the inner workings of the system?

Since there does not seem to exist a “one size fits all” e-voting system, several different
remote voting systems have been proposed in the literature, especially those designed for low-risk
elections, such as elections within clubs and associations: for example, the prominent e-voting
system Helios [Adi08], but also Prêt à Voter [RBH+10], STAR-Vote [BBB+13], and Remotegrity
[ZCC+13], are designed to achieve vote privacy and verifiability, but do not offer concrete
protection against vote buying and voter coercion. Some other systems, such as Civitas [CCM08]
and Scantegrity [CCC+10], are designed to also achieve some level of coercion-resistance, i.e.,
they require that vote selling and voter coercion is prevented. Several of these systems have been
used in legally binding elections (see, e.g., [AdMPQ09, CCC+10, CRST14]).

In this part of the thesis, we propose a new practical and verifiable e-voting system, called
sElect (secure/simple elections). This system is meant for low-risk elections and it is designed to
be particularly simple and lightweight in terms of its structure, the cryptography it uses, and the
user experience.

90

7. The sElect E-voting System and its main features

sElect (secure and simple elections) is a remote e-voting system, which we implemented as a
platform independent web application16 and for which a detailed cryptographic security analysis
has been performed in [KMST16a] with respect to privacy of the votes as well as verifiability
and accountability. The system combines several concepts, such as verification codes (see, e.g.,
[DLM82]) and Chaumian mix nets [Cha81], in a novel way.

7.1. sElect in a nutshell

The main components of sElect are a voting platform (for which we propose an implementation
as a static web-page), a collecting server, and a cascade of mix severs. Moreover, all the data
outputted by these servers, such as the lists of voters, the intermediate, and the final results, are
collected by a publicly available bulletin board.

In the voting phase, every voter prepares her ballots using the voting platform. A ballot
contains the voter’s choice (for example, the name of the candidate chosen by the voter) and a
verification code, which is randomly generated by the system using cryptographic nonces. The
voting platform encrypts the choice along with the verification code several times with the public
key of each mix server, from the last to the first. The encrypted ballot is then submitted to the
collecting server which authenticates the voter and, if the authentication succeeds, replies by
sending back a digitally signed acknowledgment.

When the voting phase is over, the system enters the mixing phase. In this phase, the collecting
server outputs the list of ciphertexts to the first mix server which decrypts the outer encryption
layer, shuffles the inner ballots, and sends the signed result to the next mix server. Next, the
bulletin board reads the list of (unencrypted) ballots produced by the last mix server. It then
publishes the resulting list containing the voters’ choices along with the verification codes, in
alphabetical order and digitally signed. This list constitutes the official result of the election.

sElect is designed to provide privacy of the votes, as well as verifiability and accountability.

(i) Privacy is provided under the assumption that at least one of the mix servers is honest. The
steps taken by an honest mix server, by design, hide the link between its input and output
entries. Therefore, no one can associate the ballot of a given voter to her choice/identifier
pair in the final output.

(ii) Verifiability is achieved in a very direct way: once the result has been published, every
voter can simply check whether her verification code is included in the published election
result, along with her choice. For this mechanism to work, one needs to make sure that the
verification code is indeed randomly chosen and hence unique.

16A demo version of the system is available at https://select.sec.uni-stuttgart.de.

91

https://select.sec.uni-stuttgart.de

7. The sElect E-voting System and its main features

(iii) Accountability is provided by a fully automated verification procedure implemented within
the voting platform which does not require any user interaction and is triggered as soon as
the voter looks at the election result: cryptographic checks are performed and, if a problem
is encountered, the specific misbehaving party is singled out and binding evidence of this
misbehavior is produced to hold him accountable.

sElect is however not meant to defend against coercion and mostly tries to defend against
untrusted or malicious authorities, including inadvertent programming errors or deliberate manip-
ulation of servers, but excluding targeted and sophisticated attacks against voters’ devices.

7.2. Main features of sElect

We now sketch the main features of sElect, including several novel and unique features and
concepts which should be beneficial also for other systems. Besides the technical account
of sElect provided in the following paragraphs, a general discussion on sElect, including its
comparison with Helios, is provided in Chapter 10.

Fully automated verification. One of the important unique features of sElect is that it supports
fully automated verification. This kind of verification is carried out by the voter’s browser. It does
not require any voter interaction and is triggered as soon as a voter looks at the election result.
This is meant to increase verification rates and ease the user experience. As voters are typically
interested in the election results, combining the (fully automated) verification process with the
act of looking at the election result in fact appears to be an effective way to increase verification
rates as indicated by two small mock elections we performed with sElect (see Section 8.2). In
a user study carried out in [AKBW14] for various voting systems, automated verification was
pointed out to be lacking in the studied systems, including, for example, Helios. It seems that
our approach of automated verification should be applicable and can be very useful for other
remote e-voting systems, such as Helios, as well. Another important aspect of the automated
verification procedure of sElect is that it performs certain cryptographic checks and, if a problem
is discovered, it singles out a specific misbehaving party and produces binding evidence of the
misbehavior. This provides a high level of accountability and deters potentially dishonest voting
authorities.

Voter-based verification (human verifiability). Besides fully automated verification, sElect
also supports a very easy to understand manual verification procedure: a voter can check whether
a verification code she has chosen herself when casting her vote appears in the election result
along with her choice. As further discussed in Chapter 10, this simple procedure has several
obvious benefits. For example, it reduces trust assumptions concerning the voter’s computing
platform (for fully automated verification the voter’s computing platforms needs to be fully
trusted). Also voter’s can easily grasp the procedure and its purpose, essentially without any
understanding of the rest of the system, which should help to increase user satisfaction and
verification rates. On the negative side, such codes open the way for voter coercion (see also
Chapter 10).

Simple cryptography and design. Unlike other modern remote voting systems, sElect uses only
the most basic cryptographic operations, namely, public key encryption and digital signatures.

92

7.2. Main features of sElect

And, as can been seen from Section 8.1, the overall design and structure of sElect is simple as
well. In particular, sElect does not rely on any more sophisticated cryptographic operations, such
as zero-knowledge proofs, verifiable distributed decryption, universally verifiable mix nets, etc.
Our motivation for this design choice is twofold.

Firstly, we wanted to investigate what level of security (privacy, verifiability, and accountability)
can be obtained with only the most basic cryptographic primitives and a simple and user-friendly
design, see also below.

Secondly, using only the most basic cryptographic primitives has several advantages (but also
some disadvantages), as discussed in Chapter 10.

Design-level cryptographic security analysis. In [KMST16a], a rigorous cryptographic analy-
sis of the voting protocol of sElect has been performed with respect to end-to-end verifiability,
accountability, and privacy. Since quite rarely implementations of practical e-voting systems
come with a rigorous cryptographic analysis, this is a valuable feature by itself.

More precisely, the sElect voting protocol has been formally modeled in [KMST16a] based
on a general computational model which follows the one in [KTV10b, KTV11]. Then, based on
generic notions of (end-to-end) verifiability, accountability, and vote privacy (the first two formally
defined in [KTV10b], while the latter in [KTV11]) the level of security of the sElect voting
protocol has been formally established w.r.t. these three security properties: the cryptographic
analysis of sElect shows that its protocol enjoys a good level of security, given the very basic
cryptographic primitives it uses.

Remarkably, the standard technique for achieving (some level of) end-to-end verifiability
is to establish both individual and universal verifiability. In contrast, in [KTV11] it has been
shown that the combination of individual and universal verifiability does not guarantee end-to-end
verifiability. Instead, sElect demonstrates that one can achieve (a certain level of) end-to-end
verifiability, as well as accountability, without universal verifiability. This is interesting from a
conceptual point of view and may lead to further new applications and system designs.

Code-level analysis of privacy properties. Since confidentiality of the votes is the most impor-
tant security property an voting system is supposed to provide, besides establishing this properties
at the protocol level, one would prefer that e-voting systems come with privacy guarantees also
on their implementation.

As we further describe in Chapter 9, we employed the CVJ framework introduced, instantiated,
and extended in Part I in combination with a hybrid approach to prove noninterference (see
Section 9.2 and [KTB+15]) to guarantee that the implementation of sElect provides strong
cryptographic vote privacy. In order to establish noninterference properties directly on the
implementation level, we integrate the high-level of automation provided by static checkers, such
as the Joana tool [HS09a, GHM13], with the precision provided by theorem provers, such as the
KeY verification system [ABB+05, ABB+14, BHS07].

sElect is then the first full-fledged remote voting system running a cryptographic component
for which strong security guarantees have been formally established directly on code-level to
ensure confidentiality of the cast votes.

93

8. Design, Implementation, and Deployment of the sElect
E-voting System

In this chapter, we describe the components (Section 8.1), the development (Section 8.2), and
the deployment (Section 8.3) of the sElect e-voting system. In particular, in the latter section we
present two field tests to estimate the “verification ratio”, i.e., the percentage of voters which
seamlessly trigger the fully automated verification procedure introduced in Section 7.2.

8.1. Design of sElect

Our goal has been to design a particularly lightweight remote system which (still) achieves a
good level of privacy, verifiability, and accountability. The system is supposed to be lightweight
both from a voter’s point of view and a design/complexity point of view. For example, we do not
want to require the voter to install software or use a second device. Also, verification should be a
very simple procedure for a voter or should even be completely transparent to the voter.

The system combines several concepts, such as verification codes (see, e.g., [DLM82]) and
Chaumian mix nets [Cha81], in a novel way. One of the unique features of sElect is that it
supports a fully automated verification procedure which does not require any user interaction and
it is triggered as soon as a voter looks at the election result.

Cryptographic primitives. sElect uses only basic cryptographic operations: public-key en-
cryption and digital signatures. More specifically, the security of sElect is guaranteed for any
IND-CCA2-secure public-key encryption scheme and any EUF-CMA-secure signature scheme
(see Appendices A.1 and A.2, respectively), and hence, very standard and basic cryptographic
assumptions. Typically, the public-key encryption scheme will employ hybrid encryption17 so
that arbitrarily long messages and voter choices can be encrypted. We note that, for the privacy
property of sElect, the only requirement regarding the cryptographic schemes is that for every
public-key and for any two plaintexts of the same length, the public-key encryption scheme
always yields ciphertexts of the same length. This property seems anyway to be satisfied by all
practical schemes.

To simplify the protocol description, we use the following convention. First, whenever we say
that a party produces a signature on some message m, this implicitly means that the signature
is in fact computed on the tuple (elid, tag,m), where elid is an election identifier (different for
different elections) and tag is a tag different for signatures with different purposes (for example,

17A hybrid encryption scheme merges the convenience of an asymmetric (public-key) encryption scheme with the
efficiency and the flexibility of a symmetric encryption scheme: the public-key encryption scheme, computationally
more demanding, is used to only encrypt a freshly generated symmetric key which is then used with the symmetric
encryption scheme to encrypt the messages.

95

8. Design, Implementation, and Deployment of the sElect E-voting System

a signature on a list of voters uses a different tag than a signature on a list of ballots). Similarly,
every message encrypted by a protocol participant contains the election identifier.

Set of participants. The set of participants of the protocol consists of an append-only bulletin
board B, n voters v1, . . . ,vn and their voter supporting devices (VSDs) vsd1, . . . ,vsdn, a collecting
server CS, m mix servers M1, . . . ,Mm, and a voting authority VA. For sElect, a VSD is simply the
voter’s browser (and the computing platform the browser runs on).

We assume that there are authenticated channels from each VSD to the collecting server CS.
These channels allow the collecting server to ensure that only eligible voters are able to cast their
ballots. By assuming such authenticated channels, we abstract away from the exact method the
VSDs use to authenticate to the collecting server; in practice, several methods can be used, such
as one-time codes, passwords, or external authentication services such as single sign-on systems
(see Section 8.2 for a concrete instantiation).

We also assume that for each VSD there is one (mutual) authenticated and one anonymous
channel to the bulletin board B. Depending on the phase, the VSD can decide which channel to
use in order to post information on the bulletin board B. In particular, if something went wrong,
the VSD might want to complain anonymously (e.g., via a proxy) by posting data on the bulletin
board B that identifies the misbehaving party.

A protocol run consists of the following phases: the setup phase (where the parameters and
public keys are fixed), the voting phase (where voters choose their candidate and let their VSDs
create and submit the ballots), the mixing phase (where the mix servers shuffle and decrypt the
election data), and the verification phase (where the voters verify that their ballots were counted
correctly). These phases are now described in more detail.

Setup phase. In this phase, all the election parameters (the election identifier, list of candidates,
list of eligible voters, opening and closing times, etc.) are fixed and posted on the bulletin board
by VA.

Every server (i.e., every mix server and the collecting server) runs the key generation algorithm
of the digital signature scheme to generate its public/private (verification/signing) keys. Also,
every mix server M j runs the key generation algorithm of the encryption scheme to generate its
public/private (encryption/decryption) key pair (sk j, pk j). The public keys of the servers (both
encryption and verification keys) are then posted on the bulletin board B; proofs of possession of
the corresponding private keys are not required.

Voting phase. In this phase, every voter vi can decide to abstain from voting or to vote for
some candidate (or more generally, make a choice) mi. In the latter case, the voter indicates her
choice mi to the VSD. In addition, for verification purposes, a verification code ni is generated
(see below), which the voter is supposed to write down/store. At the end of the election, the
choice/verification code pairs of all voters who cast a vote are supposed to be published so that
every voter can check that her choice/verification code pair appears in the final result, and hence,
that her vote was actually counted. The verification code is a concatenation ni = nvoter

i ‖nvsd
i of

two nonces. The first nonce, nvoter
i , which we call the voter chosen nonce, is provided by the voter

herself, who is supposed to enter it into her VSD (in our implementation, see Section 8.2, this
nonce is a nine character string chosen by the voter). It is not necessary that these nonces are
chosen uniformly at random. What matters is only that it is sufficiently unlikely that different

96

8.1. Design of sElect

voters choose the same nonce. The second nonce, nvsd
i , is generated by the VSD itself, the

VSD generated nonce. Now, when the verification code is determined, the VSD encrypts the
voter’s choice mi and the verification code ni, i.e., the choice/verification code pair αi

m = (mi,ni),
under the last mix server’s public key pkm using random coins ri

m, resulting in the ciphertext
αi

m−1 = Encri
m

pkm
((mi,ni)). Then, the VSD encrypts αi

m−1 under pkm−1 using the random coins

ri
m−1, resulting in the ciphertext αi

m−2 = Enc
ri

m−1
pkm−1

(αi
m−1), and so on. In the last step, it obtains

αi
0 = Encri

1
pk1

(...(Encri
m

pkm
(mi,ni))...).

The VSD submits αi
0 as vi’s ballot to the collecting server CS on an authenticated channel. If the

collecting server receives a ballot in the correct format, then CS responds with an acknowledge-
ment consisting of a signature on the ballot αi

0; otherwise, it does not output anything. If the
voter/VSD tried to re-vote and CS already sent out an acknowledgement, then CS returns the old
acknowledgement only and does not take into account the new vote.

If a VSD does not receive a correct acknowledgement from the collecting server CS, the VSD
tries to re-vote, and, if this does not succeed, it files a complaint on the bulletin board using
the authenticated channel. If such a complaint is posted, it is in general impossible to resolve
the dispute and decide who is to be blamed: CS who might not have replied as expected (but
claims, for instance, that the ballot was not cast) or the VSD who might not have cast a ballot
but nevertheless claims that she has. Note that this is a very general problem which applies
to virtually any remote voting protocol. In practice, the voter could ask the VA to resolve the
problem.

When the voting phase is over, CS publishes two lists on the bulletin board, both in lexi-
cographic order and without duplicates and both signed by the collecting server: the list C0
containing all the cast valid ballots and the list LN containing the identifiers of all voters who cast
a valid ballot. It is expected that the list LN is at least as long as C0 (otherwise CS will be blamed
for misbehavior). Note that, with high probability, a ballot of an honest voter will be different
from the ballot of another honest voter, as their voter chosen nonces will be different (and if the
VSD is honest, also the VSD generated nonces). Ballots of dishonest voters might coincide with
those of other voters. Their ballots will then not be counted.

Mixing phase. The list of ciphertexts C0 posted by the collecting server is the input to the first
mix server M1, which processes C0, as described below, and posts its signed output C1 on the
bulletin board. This output is the input to the next mix server M2, and so on. We will denote
the input to the j-th mix server by C j−1 and its output by C j. The output Cm of the last mix
server Mm is the output of the mixing stage and, at the same time, the output of the election. It
is supposed to contain the plaintexts (m1,n1), ...,(mn,nn) (containing voters’ choices along with
their verification codes) in lexicographic order.

The steps taken by a mix server M j are as follows:
1. Input validation. M j checks whether C j−1 has the correct format, is correctly signed, arranged

in lexicographic order, and does not contain any duplicates. If this is not the case, it sends
a complaint to the bulletin board and stops its process (this in fact aborts the whole election
process and the previous server is blamed for misbehaving). Otherwise, M j continues with the
second step.

97

8. Design, Implementation, and Deployment of the sElect E-voting System

2. Processing. M j decrypts all entries of C j−1 under its private key sk j, removes duplicates, and
orders the result lexicographically. If an entry in C j−1 cannot be decrypted or is decrypted to a
message in an unexpected format, then this entry is discarded and not further processed. The
sequence of messages obtained in such a way is then signed by M j and posted on the bulletin
board as the output C j.

Verification phase. After the final result Cm has been published on the bulletin board B, the
verification phase starts. As mentioned in the introduction, a unique feature of sElect is that it
supports the following two forms of verification, explained next: (pure) voter-based verification,
and hence human verifiability, and (fully automated) VSD-based verification.

The first form is carried out by the voter herself and does not require any other party or any
device, and in particular, it does not require any trust in any other party or device, except that the
voter needs to be able to see the published result on the bulletin board. As we will see below, the
verification procedure is very simple.

VSD-based verification is carried out fully automatically by the voter’s VSD and triggered
automatically as soon as the voter takes a look at the final result, as further explained in Section 8.2.
It does not need any input from the voter. This is supposed to result in high verification rates
and further ease the user experience, as verification is performed seamlessly from the voter’s
point of view and triggered automatically. Under the assumption that VSDs are honest, it yields
verifiability, and even a high-level of accountability.

We now describe how these two forms of verification work in detail.
Voter-based verification. For voter-based verification, the voter simply checks whether her
verification code, which in particular includes the voter chosen nonce nvoter

i , appears next to her
choice in the final result list. That is, the voter should check that the final result list contains a
choice/verification code pair of the form (mi,nvoter

i ‖nvsd
i) where mi is her choice and nvsd

i is the
VSD generated nonce, which the voter could ignore (the voter might not trust its VSD). If this
is the case, the voter would be convinced that her vote was counted. A voter vi who decided to
abstain from voting may check the list LN to make sure that her name (identifier) is not listed
there.18 When checks fail, the voter would file a complaint.
VSD-based verification. For VSD-based verification, the voter’s VSD performs the verification
process fully automatically. In particular, this does not require any action or input from the user.
In our implementation, as further explained in Section 8.2, the VSD-based verification process is
triggered automatically whenever the voter goes to see the election result. Clearly, this kind of
verification provides security guarantees only if the VSD is honest, and hence, for this kind of
verification, the voter needs to trust her device. Making use of the information available to the
VSD, the VSD can provide evidence if servers misbehaved, which can then be used to rightfully
blame misbehaving parties. The VSD-based verification process works as follows. A VSD vsdi

checks whether the originally submitted plaintext (mi,ni) appears in Cm. If this is not the case,
the VSD determines the misbehaving party, as described below. Recall that a VSD which did
not obtain a valid acknowledgment from the collecting server was supposed to file a complaint

18Variants of the protocol are conceivable where a voter signs her ballot and the collecting server presents such a
signature in case of a dispute. This solution is conceptually simple. On the pragmatic side, however, it is not
always reasonable to expect that voters maintain keys and, therefore, here we consider the simpler variant without
signatures. Note that this design choice was also made in several existing and prominent systems, such as Helios.

98

8.2. Implementation of sElect

already in the voting phase. The following procedure is carried out by a VSD vsdi which obtained
such an acknowledgement and cannot find the plaintext (mi,ni) in Cm. First, the VSD vsdi checks
whether the ballot αi

0 is listed in the published result C0 of the collecting server CS. If this is not
the case, the VSD vsdi anonymously publishes the acknowledgement obtained from CS on the
bulletin board B which proves that CS misbehaved (recall that such an acknowledgement contains
a signature of CS on the ballot αi

0). Otherwise, i.e., if αi
0 is in C0, the VSD checks whether αi

1
is listed in the published result C1 of the first mix server M1. If C1 contains αi

1, the VSD vsdi

checks whether αi
2 can be found in the published result C2 of the second mix server M2, and so

on. As soon as the VSD vsdi gets to the first mix server M j which published a result C j that does
not contain αi

j (such a mix server has to exist), the VSD anonymously sends (j,αi
j,r

i
j) to the

bulletin board B. This triple demonstrates that M j misbehaved: the encryption of αi
j under pk j

with randomness ri
j yields αi

j−1, and hence, since αi
j−1 is in the input to M j, αi

j should have been
in M j’s output, which, however, is not the case.

We say that a voter vi accepts the result of an election if neither the voter vi nor her VSD vsdi

output a complaint. Otherwise, we say that vi rejects the result.

Remark 8.1. Note that the procedures for ballot casting and mixing are very simple. In particular,
a mix server needs to carry out only n decryptions. Using standard hybrid encryption based on
RSA and AES, it amounts to n RSA decryption steps (n modular exponentiations) and n AES
decryptions. This means that the mixing step is very efficient and the system is practical even for
very big elections: mixing 100000 ballots takes about 3 minutes and mixing one million ballots
takes less than 30 minutes with 2048-bit RSA keys on a standard computer/laptop.

8.2. Implementation of sElect

We have implemented sElect as a platform independent web application [SST16]. In order to vote,
voters simply use a browser to vote, without the need to install other software, browser extensions,
or plug-ins, and hence, they can vote on many platforms (desktop computers, smartphones,
etc.). In particular, voters visit a web site which serves what we call a voting booth. Except for
serving static files (HTML/CSS/JavaScript), the voting booth server does not play any role in the
voting process. All the computations, including in particular ballot creation and verification of
acknowledgements, are carried out locally on the voters’ machine within the browser. Votes only
leave the browser encrypted (as ballots), to be submitted to the authorization server. While for
the mock elections, only one server serving the voting booth was set up, the idea would be that a
voter can choose a voting booth of any organization/company she trusts or even set up her own
voting booth server.

Voters merely need a browser to vote and to verify their votes. In order to vote, voters go to a
web site that serves what we call a voting booth. More precisely, a voting booth is a collection
of static HTML/CSS/JavaScript files served by a so-called voting booth server. Other than that,
there is no interaction between the voter’s browser and the voting booth server: ballot creation,
casting, and verification are then performed within the browser, as explained below (of course for
ballot casting, the voter’s browser communicates with the collecting server). Ideally the voter can
choose, among different voting booth servers, the voting booth server that she trusts and that is

99

8. Design, Implementation, and Deployment of the sElect E-voting System

independent of the election authority. Voting booths might be run by different organizations as a
service and independently of a specific election (see also the discussion in Chapter 10). So what
abstractly was called a VSD in the previous sections, in our implementation comprises the voter’s
computing platform, including her browser as well as some voting booth server which the voter
picks and which serves the static HTML/CSS/JavaScript files to be executed. The JavaScript code
performs the actual actions of the VSD described in Section 8.1 within the browser and without
further interaction with the voting booth server. On a mobile device one could, for example,
also provide an app to the voter which performs the task of the VSD; again there might be more
apps from which the voter could choose. This of course assumes that the voter installs such an
app on her device. Since the idea is that a voting booth can be used independently of a specific
election, this is reasonable as well. In this case, the receipt with all the data required for the
VSD-based verification process could be even more permanently stored within the mobile app.
Furthermore, given that the typical voter usually owns a single mobile device for personal use, the
voter would typically use the same device both for casting her ballot and for checking the election
result, always triggering the fully automated verification procedure. This would consequently
increase the verification ratio which, as reported in [KMST16a], is directly related to the level of
verifiability and accountability provided by sElect.

In our implementation, we use only one authorization method: one time passwords. These are
sent to the voters’ e-mail addresses when voters initiate the voting process. However, it would
not be a problem to support different authorization methods.

After the authorization phase, a voter enters her vote in the browser (on the voting booth’s web
site) and then ballot creation and verification of positive or negative acknowledgment (see below)
are carried out locally within the voters’ browser. Votes only leave the browser as encrypted
ballots to be submitted to the collecting server. When submitting the ballot, the collecting server
is supposed to reply with a signed acknowledgment, verified by the voting booth, communicating
whether the server properly collected the cast ballot or not. In case the ballot is not correctly
collected, the collecting server sends a negative acknowledgment indicating the reason:

(1) Election already closed or not yet opened.

(2) Malformed request.

(3) Wrong election ID.

(4) Voter not eligible for such an election.

(5) Double voting attempt.

Furthermore, the voting booth might also report a network error in case the connection is down
or the collecting server is unreachable. Full receipts, i.e., all the information required for the
VSD-based verification process, are saved using the browser’s local storage (under the voting
booth server’s origin19): other web sites cannot access this information.

19In web applications, an origin is defined as a combination of the protocol used (HTTP or HTTPS), the domain
name, and the port number. Web-pages loaded under the same protocol, the same domain, and the same port
share the same origin. By an access control mechanism called Same-Origin Policy (SOP), browsers permit scripts
contained in a first web-page to access data in a second web-page only if the two pages share the same origin.

100

8.2. Implementation of sElect

We note that with this architecture the voting booth learns both the voter’s credentials and her
choice. To avoid these two pieces of information being learned by the same component of the
system, we propose a more sophisticated version of the voter supporting device (VSD) in which
another static page, the so-called authenticator, is downloaded in addition to the voting booth
client. We refer the reader for the paragraph “Separate autentication” below for all the details.

When the election is over, the voter is prompted to go to her voting booth again in order to
check the election result. When the voter opens the voting booth in this phase, it automatically
fetches all the necessary data and carries out the automated verification procedure; if the voter’s
ballot has not been counted correctly, cryptographic evidence against a misbehaving server is
produced, as described in Section 8.1. In addition to this fully automated check, the voter is given
the opportunity to visit the bulletin board (another web-page), where she can see the result and
manually check that her verification code is listed next to her choice.

User experience. We now describe and illustrate with screenshots the user experience of our
implementation of sElect.

In the simpler implementation, i.e., in the implementation where the authentication and the
casting of the votes are both operated by the voting booth, a user opens the voting booth (in a
browser) where she is asked for her e-mail address (Figure 8.1a). The voting booth forwards
this e-mail address to the collecting server which (if the voter is eligible) generates a one-time
password for the voter and sends it to her e-mail address. The user is then supposed to enter this
one-time password (copy and paste from her e-mail) in the voting booth web-page (Figure 8.1b).
Then, the user is asked to provide a random code of nine characters, which will be used as part of
the verification code (Figure 8.1c). Next, the user is prompted by the voting booth to make her
choice (Figure 8.1d). Then, the voting booth, in the background, generates a random verification
code, concatenates it with the code entered by the voter, and creates a ballot. This ballot is then,
along with the one-time password, sent by the voting booth to the collecting server. The server is
supposed to reply with an acknowledgement which is verified by the voting booth. After that,
the verification code is displayed to the voter, who can then copy her verification code or save it
as a picture (Figure 8.1e). Independently, the verification code along with the full receipt (the
data necessary to blame misbehaving parties in case something should go wrong) is stored in
the browser’s local storage, an HTML5 feature for permanently storing data within the user’s
browser. We note that data is stored in the local storage by origin and then, by the Same Origin
Policy (SOP), only JavaScript running under that origin can access this data. In our case, the idea
is that a voting booth runs in its own (HTTPS) origin, and hence, only (the JavaScript loaded
from) this voting booth can access the receipt stored in the user’s browser.

We emphasize that we deliberately wanted to keep the user interface very simple. Therefore,
only the verification code is shown to the voter (a concept voters should understand). The rest of
the receipt, which is used for accountability purposes, is stored and checked only by the voting
booth on the voter’s browser.

When the election is over, the voter is prompted to open her voting booth again, namely the
same web-page she used to vote. In our deployment, e-mails were sent to the voters informing
them that the result of the election was ready and that the voter can see the result and check
her verification code following a link to her voting booth. When the voter opens the voting
booth in this phase, it fetches the information stored in the browser’s local storage, which should

101

8. Design, Implementation, and Deployment of the sElect E-voting System

contain the full receipt, and the result of the election from the bulletin board, and then verifies
signatures and makes sure that the verification code is listed in the final result along with the
chosen candidate. If this is the case, the voter is informed that her vote has been counted correctly
(Figure 8.1f). Otherwise, the evidence for blaming a (dishonest) party is generated and the voter
is informed that the verification procedure failed. In particular, the complaint singles out the
misbehaving party and provides evidence of the misbehavior. For instance, in Figure 8.1g the
collecting server has been singled out as the misbehaving party. In addition to this fully automated
check (carried out as soon the voter visits her voting booth), the voter is given the opportunity to
visit the bulletin board, where she can see the result (Figure 8.1h) and manually check that her
verification code is listed next to her choice (Figure 8.1i).

Separate authentication. In order to ensure that no component of sElect learns both the voters’
identity and their choice, we propose a more sophisticated architecture and implementation of
the web-pages used by the voters to take part in elections. In this architecture, which is meant
to keep the user experience unchanged, the authentication of eligible voters is delegated to a
separate component, called the authenticator. We now describe how, during the voting phase,
this component interacts with the voting booth and the collecting server. We assume all these
components running on different origins.

1. When a voter opens the voting booth in her browser, an HTML/Javascript document
is retrieved from the collecting server’s origin inside an iframe20 of the voting booth
web-page.

2. The voting booth sends the election manifest (the file containing all the election’s
attributes and hence uniquely defining each election) to the HTML/Javascript document
embedded in the iframe. This document stores the election manifest in its session storage,
a HTML5 feature for storing data within the user’s browser until the page session ends
(i.e., the page/tab of the browser is closed). As the voting booth and the collecting server
run under different origins, the election manifest is exchanged using the postMessage(), a
method of the Window object21 allowing for cross-communication among origins.

3. The voting booth web-page is then automatically redirected to the authenticator web-page,
which also contains an iframe retrieving the same HTML/Javascript document retrieved
by the voting booth from the collecting server’s origin.

4. The authenticator allows the voter to execute the authentication procedure in the exact same
way as described in the previous paragraph (Figure 8.1a and 8.1b), with the only difference
being that the voter’s credentials are now sent to the page inside the iframe where they are
also stored in its session storage.

5. The authenticator web-page is, in turn, redirected back to the voting booth web-page where
the voter can now provide her part of the verification code (Figure 8.1c) and make her
choice (Figure 8.1d).

20iframe is an HTML tag which is used to embed another document within the current one.
21The Window object represents an open window/tab in a browser containing a DOM (Document Object Model)

document loaded in that window.

102

8.2. Implementation of sElect

6. The (multiple encrypted) ballot created by the voting booth is then sent to the iframe where
it is joined up with the voter’s credentials and sent to the collecting server using a POST
request.

7. The collecting server is supposed to send back a signed acknowledgement to the iframe

which, in turn, forwards it via a postMessage() the voting booth web-page. The voting
booth verifies it and, in case the ballot has been properly cast, invites the voter to save her
verification code (Figure 8.1e).

We notice that data in the session storage are stored per origin (as for the local storage), but
also per Window object: that is, only JavaScript running under that origin and within the same
Window object can access both the voter’s credentials and the ballot. Therefore, by the Same
Origin Policy (SOP) neither the voting booth nor the authenticator can have access to the session
storage of the page in their iframe, as it is loaded from the collecting server’s origin. (The only
possible way these components can exchange messages is through the postMessage() method of
the Window object which, as already mentioned above, allows for cross-communication among
different origins.) Moreover, it is also worth noticing that this architecture prevents the voters’
credentials and their ballots stored in the session storage of the iframe to be accessed by other
possible malicious web-pages loaded in a different tabs of the voter’s browser, since they would
be loaded on a different Window object.

However, this architecture leaves in principle open the possibility for another attack: an attacker
might load the HTML/JavaScript document retrieved from the collecting server in an iframe

of a different web-page, controlled by him. In this way, he could then forge the voting booth
and/or the authenticator web-page intercepting the voter’s credentials and/or her choice. In order
to defend against this attack, following [SS13], we perform some checks in the JavaScript code
allowing only web-pages which are loaded under a set of trusted origins (in our case, the voting
booth’s and authenticator’s origins) to successfully post messages to the iframe. In addition, for
browsers supporting the Content Security Policy (CSP),22 we set the Content-Security-Policy

HTTP header to instruct the browser to load pages within iframes only if their ancestors are
also loaded from the specific domains: in this case, the domains where the voting booth and the
authenticator reside.

Cryptographic schemes. The cryptographic operations used in the implementation of sElect
are part of the PKCS #1 v2.2 family of standards [KJRM16]:

• The RSAES-OAEP public-key encryption scheme for symmetric and asymmetric encryption
which, as already mentioned in Section 4.1, combines the RSA algorithm [RSA78] with
the Optimal Asymmetric Encryption Padding (OAEP) method [BR95]. Hybrid encryption
is employed in the sense that the asymmetric RSA encryption algorithm is used only to
exchange a session key among the parties which consecutively encrypt the data using a
more efficient symmetric encryption scheme: the AES (Advance Encryption Standard)
scheme is used in GCM mode23 with random initialization vector (IV) of 96 bit. For

22Content Security Policy (CSP) is a security measure defending against cross-site scripting (XSS), clickjacking, and
other code injection attacks.

23Galois/Counter Mode (GCM) is an authenticated encryption mode of operation for symmetric key block ciphers
with a block size of 128 bit. Besides confidentiality, it is designed to also provide data authenticity.

103

8. Design, Implementation, and Deployment of the sElect E-voting System

symmetric encryption with AES we use keys of 256 bits, while for asymmetric encryption
we use keys of 1024 bits.

• The RSASSA-PSS scheme for digital signature, based on the Probabilistic Signature Scheme
(PSS) proposed by Bellare and Rogaway [BR96]. As for public-key encryption, we use
keys of 1024 bit.

In the voting booth web-page running in the voter’s browser, we used the JavaScript
node-forge24 cryptographic library, whereas in the core of the mix server the Java Bouncy

Castle cryptographic library.25

We refer the reader to [SST16] for our implementation of sElect.

(a) (b)

(c) (d)

24https://digitalbazaar.com/forge/
25https://www.bouncycastle.org/

104

https://digitalbazaar.com/forge/
https://www.bouncycastle.org/

8.2. Implementation of sElect

(e) (f)

105

8. Design, Implementation, and Deployment of the sElect E-voting System

(g)

(h)

(i)

(j)

Figure 8.1.: Screenshots showing the user experience of our implementations of both sElect and
its election manager.

106

8.3. Deployment of sElect

8.3. Deployment of sElect

To obtain user feedback and, in particular, to get a first estimate of the verification ratio for the
fully automated verification, we carried out two mock elections.

We used a slightly modified version of the voting booth which allowed us to gather statistics
concerning the user behavior. We emphasize that these field tests were not meant to be full-fledged
and systematic usability studies, which we leave for future work.

The participants in our first mock election were students of our department (who voted for
the “Students’ Union Election”): 52 voters cast their ballots and 30 (out of 52) verification
codes/receipts were checked automatically by the voting booth. This gives a verification ratio of
57.7%.

The participants of our second mock election were researchers of a national computer science
project (who voted on their favorite text editor). In this case, we recorded 22 cast ballots and
13 (out of 22) verification codes/receipts were checked automatically, which gives a verification
ratio of 59.1%. Again, the overall verification ratio might be even higher considering possible
voter-based verification.

As one can see, the verification ratio was quite high in both cases (57.5% and 59.1%). In
fact, with such a high ratio, the dropping or manipulation of even a very small number of
votes is detected with very high probability, according to the results reported in [KMST16a]
and [KMST16b]. Moreover, in both these mock elections, we can expect that some number of
verification codes were checked manually, so the overall verification ratio might be even higher.
However, we do not have reliable data about voter-based verification.

We believe that for real elections one might obtain similar ratios: voters might be even more
interested in the election outcome than in a mock election and, hence, they would tend to check
the result and trigger the automated verification procedure.

To create a presentable demo version of the system and to ease its deployment, we have also
implemented a web-based “Election Manager” allowing for the creation, the customization, and
the removal of elections powered by sElect. The (static) web-interface is provided by a server
also implemented in node.js, while the creation, the removal, and the resumption (in case of
temporal dismission of the service) of elections are handled by python scripts. The NGINX web
server is used to handle all the incoming and outgoing traffic to the seven components of sElect
running for each election.

The user interface is also quite simple (see Figure 8.1j): an user can either set up a mock
election where all the election’s attributes (see item 1a) below) are already prestablished or set up
a custom election where she has to specify the election’s attributes using an HTML form. In any
case, the web-page triggers, on the back-end, the python script responsible for spawning a new
election. The script, receiving as input a JSON object containing all the attributes of the election
to be created, roughly performs the following steps:

1. It determines all the settings related to the election, namely:

a) the election’s attributes, namely:

– election lookup string (ELS), i.e., a string uniquely identifying each election,

107

8. Design, Implementation, and Deployment of the sElect E-voting System

– title of the election,
– description of the election,
– list of eligible voters,
– question of the election,
– further explanation of the question,
– list of choices,
– minimum number of choices per voter,
– maximum number of choices per voter,
– election starting time,
– election ending time,
– number of mix servers;

b) system and electoral flags, namely:

– userChosenRandomness:
the voter is prompted to insert a part of her verification code,

– showOtp:
the OTP is shown on the web-page to be directly inserted by the voter (only for the demo
and for testing),

– publishListOfVoters:
the list of voters who cast their ballot is published in the bulletin board,

– mockElection:
the election is a mock election where some mock voters have already cast their ballot,

– hidden:
the election does not appear on the web-page,

– separateAuthentication:
the voters’ authentication is delegated to the authenticator;

c) the cryptographic keys of each component;

d) the URL of each component;

e) the port each component will listen to;

f) the path to the file containing the list of confidential voters (in case all or part of the list of
eligible voters does not have to be made public).

2. It generates the file ElectionManifest.json which contains all the election’s attributes and
therefore uniquely defines each election (its hash is indeed the election ID shown on the
web-page).

3. In case of creation of a mock election, it sets up some ballots that mock voters are supposed to
have already cast.

4. It starts all the node.js servers of the non-static components of sElect, namely the collecting
server, the bulletin board, and the chain of mix servers. It then properly saves all the data
related to these servers, i.e., their process IDs, the ports they listen to, and the information of
the election (ELS, election ID, election description, starting time, and number of mix servers)
they are related to.

108

8.3. Deployment of sElect

5. It configures the NGINX web server with proxy servers for the collecting server, the bulletin
board, and the chain of mix servers. Each proxy server binds each node.js server listening to
a specific port to the external URL determined in step 1.; the voting booth and the authenticator
(if present) are instead configured to be served as static web-pages.

We note that, during the creation of an election, additional care is taken to put each component
on a different subdomain, i.e., on a different origin. This prevents the possibility for a component
to access data stored by another component within the voter’s browser: the access to the two
HTML5 web storages employed, namely the session and the local storage, is regulated by the
Same Origin Policy, which, as already explained in Section 8.2, allows scripts running in a first
web-page to access data on a second web-page only if the two pages share the same origin.

When the user clicks on a particular election, the election manager web-page shows a link to
the voting booth web-page which has to be forwarded to the eligible voters in order to make them
cast their ballot. Once the election is over, the voters are invited to check the election result by
visiting the same web-page they used to vote which then automatically triggers the verification
procedure (see Section 8.2 for more details).

The election manager allows also for closing an election in advance and for dismissing it
completely. In the latter case, another python script essentially shuts down the node.js servers
and removes both the proxy servers and the modules for serving the static pages from the NGINX
configuration file.

The sElect e-voting system has also been deployed for a more important election, where
members of a program committee were asked to choose up to three candidates as the invited
speaker of a security workshop. For this real-world election, we adopted the following deployment
choices:

• With the aim of smoothing the user experience as much as possible, we did not prompt the
voters to insert their part of the verification code (they had then to fully trust our voting
booth);

• We set up for the first time the separate authentication mechanism to obtain feedback on its
portability on different browsers.

Regarding the latter point, although we do not have reliable data about the portability of the
separate authentication mechanism, we note that (1) the separate authentication mechanism has
been implemented using only standard HTML5 components and features which are nowadays
supported by every browser and that (2) nobody in the program committee reported any problem
in interacting with the system.

We refer the reader to [SS16] for our implementation of the election manager.

109

9. Formal Verification of the sElect E-voting System

An important challenge related to systems of electronic voting is to formally analyze them in order
to establish whether and to what degree they satisfy the security properties they were designed to
guarantee (see the introduction of this part for the security properties).

Security vulnerabilities may occur at various levels.

(i) At the specification/design level: a system might be insecure by design, for example,
because certain critical messages are not signed nor encrypted.

(ii) At the implementation level: confidential information might leak because of programming
errors and security flaws (for instance, buffer overflow).

(iii) At the system level: certain software components might become compromised because of
system level attacks (for instance, buffer overflow, code injection, security misconfigurations,
insecure cryptographic storage, etc.).

(iv) At the hardware/physical level: confidential information might leak due to side channel
attacks (for example, timing attacks on smart cards) or hardware components (for example,
chips in a voting machine) might have been replaced by malicious ones.

As already reported in the introduction, most of the verification efforts for modern e-voting
systems have concentrated on the design level, performing cryptographic analysis on the protocol
of such systems (see, for example, [KTV10a, KTV10b, KTV10c, CS11, KTV11, KTV12b,
ACW13, CEK+15, KZZ15a, CCFG16, KZZ17, CW17]).

In this chapter, we present our efforts in extending such an analysis one step further, i.e., directly
at the implementation level. More specifically, our aim is to establish strong cryptographic privacy
of the votes the voters cast into the sElect voting system presented in Chapter 8. We note that
performing implementation-level analysis of code containing cryptographic operations is far
from being trivial: the only other similar line of research aims at providing securities guarantees
at some properly tuned implementations of the latest versions of the TLS protocol (see, e.g.,
[BFK+13, DFK+17]).

9.1. Verification of the Mix Server

Since the component of the sElect voting system supposed to provide confidentiality of the cast
votes is the Chaumian Mix-net (the original and simplest type of mix net introduced by David
Chaum in [Cha81]), we analyze the cryptographic core of one of the mix servers26 which, for

26We remind that a Chaumian Mix-net is defined as a chain of semantically equivalent mix servers each of whom,
upon receiving a list of messages encrypted with its public key, decrypts all the ciphertexts, shuffles the decrypted
messages, and outputs them signed.

111

9. Formal Verification of the sElect E-voting System

verification purposes, has been indeed implemented in Java (the bulk of the mix server is written
in node.js, instead).

Design and implementation of the Mix Server. The system consists in the cryptographic core
of the mix server of sElect (see Chapter 8) and of a setup class with the method main() which
reproduces, directly in Java, a cryptographic privacy game between the mix server and the
environment/adversary:

1) the adversary/environment is asked to produce two vectors of messages, under the conditions
that all messages are of the same length and the two vectors are permutations of the same set;

2) depending on a static boolean variable secret (the high value), one of the two vectors is
picked;

3) the messages of the chosen vector are first encrypted individually with the mix server’s public
key, then the resulting cyphertexts are concatenated and signed with the sender’s signing key;

4) the resulting string is then sent over the network to the mix server which, after checking its
integrity, decrypts each message, checks for the absence of duplicates, shuffles (sorts) the
decrypted messages, and finally outputs them in the proper format.

The code of the setup and of the core of the mix server of sElect can be found in Appendix E.3
and in [SHM17].

The Security Property. The most fundamental security property of the mix server is message
anonymity, i.e, the impossibility to link its output to its input. To formulate this security property,
we provide a setup class with the method main() which creates an instance of the mix server
including its cryptographic functionalities (Public Key Encryption and Digital Signature), let
the environment (adversary) determine two arrays of messages which must be a permutation of
the same set and, depending on the static boolean variable secret_bit, one of the two arrays is
picked. The concatenation of these messages, each of whom is encrypted with the mix server’s
public key, is then sent to the mix server which decrypts the messages, sorts, and outputs them in
the proper format.

Message anonymity means that, independently from which one of the two arrays is picked,
the attacker cannot tell the difference by observing the output of the mix server. Formally, this is
expressed by the following computational indistinguishability property:

MSReal[false] ≈ /0
comp MSReal[true]. (9.1)

That is, the two variants of the system are indistinguishable from the point of view of an adver-
sary who implements the networking, but does not (directly) call methods of MSReal[secret_bit]
with secret_bit ∈ {true, f alse}.
Verification Approach. Since the code falls into the Jinja+ fragment, by the results of the
CVJ Framework, to prove (9.1), it is enough to show I-noninterference of the variant of

112

9.2. A Hybrid Approach for Proving Noninterference of Java Programs

MSIdeal[secret_bit], i.e., where the real functionalities has been replaced by the ideal ones
and the secret_bit is considered to be the only high variable. That is:

Ẽ~u ·MSIdeal[secret_bit] is noninterferent for all~u. (9.2)

In principle, the automatic tool Joana presented in Section 4.5 is able to check properties
such as (9.2). However, when applied to check (9.2) for our particular program, Joana reports
an information flow from the high value secret_bit to the result of the mix server and from
this result to the low output. The reason for this alert is the overapproximation that Joana
employs. The result of the mix server does not actually depend on secret_bit, because main()

in MSIdeal[secret_bit] ensures that the two arrays of messages ~m1 and ~m2 are permutations of
the same set. Hence, to avoid this false positive, an analysis tool has to establish that the result of
the mix server corresponds to the sorted vector ~m1 (and, hence, to the sorted vector ~m2). This is
a non-trivial functional property, which – not surprisingly – is beyond what Joana and all other
fully automatic tools for checking noninterference can achieve.

In order to check (9.2), we therefore used the hybrid approach for proving noninterference
proposed by Küsters et al. [KTB+15]. We now briefly recall this hybrid approach in order to then
apply it to the verification of the mix server.

9.2. A Hybrid Approach for Proving Noninterference of Java Programs

The problem of checking noninterference properties of programs has a long tradition in the
field of computer security and, in particular, in language-based security [SM03]. Several tools
and approaches exist in the literature for checking noninterference. Some approaches, such
as type checking [VSI96, VS97], abstract interpretations [ACAE09], and program dependency
graphs (PDGs) [HS09a], with tools including JIF [MCN+01] and Joana (see Section 4.5) have
an high degree of automation, but they overapproximate the actual information flow, and hence,
may produce false positives. Other approaches—such as those based on theorem proving, with
tools such as KeY [ABB+05], Isabelle [Pau94], and Coq [BC04]—allow for precise analysis,
but need human interaction, and hence, the analysis is often time-consuming (see, e.g., [AB04,
BDR04, BNR08, SS12, Sch14]). Fully automatic tools are often preferable over interactive
approaches since with such tools program analysis is typically less time-consuming and might
require less expertise. However, if automatic tools fail due to false positives and the analysis
cannot further be refined by these tools, because, for example, the tools do not allow this or
run into scalability problems, the only option for proving noninterference so far is to drop the
automatic tools altogether and instead turn to fine-grained but interactive, and hence, more time-
consuming approaches, such as theorem proving. This “all or nothing” approach is unsatisfying
and problematic in practice.

Therefore, in [KTB+15], a tool independent hybrid approach has been proposed, which allows
one to use (fully) automated verification tools for checking noninterference properties as much as
possible and only resort to more fine-grained, but possibly interactive verification tools (typically
theorem provers) at places in a program where necessary. The latter verification requires checking
specific functional properties in (parts of) the program only, rather than checking the more

113

9. Formal Verification of the sElect E-voting System

involved noninterference properties. In this way, the advantages of automated, but imprecise, and
precise, but interactive tools are combined together to minimize the amount of work needed to
prove the absence of illegal information flow.

The hybrid approach is also stated and proven for the language Jinja+ presented in Section
2.1. As also explained in the introduction, the idea underlying this approach is as follows: If the
verification of noninterference of a program using an automatic tool fails due to (what we think
are) false positives (i.e., the automatic tool falsely claims some illegal flow of information), then,
following the rules of the approach, additional code is added to the program in order to make it
more explicit and more clear for the automatic tool that there is no illegal information flow, and
by this, avoid false positives. If the automatic tool now establishes that the extended program
enjoys the desired noninterference property, it remains to show that the extended program is
what it is called a conservative extension of the original program. Intuitively, this means that the
additional code did not change the behavior of the original program in an essential way. Proving
that an extension is conservative requires to prove functional properties of (parts of) the program
and it is typically carried out by an (interactive) theorem prover. The central property shown
for the hybrid approach is that if the extended program is noninterferent and is a conservative
extension of the original program, then the original program is noninterferent as well.

Constructing a Conservative Extension. Given a program P for which an illegal information
flow is reported by the automatic tool, we first provide an extension P′ of P. We do this following
the rule of the approach in such a way that

a) it is made (more) explicit for the automatic tool that there is no illegal information flow in P′

and

b) P′ extends P in what we call a conservative way.

In a nutshell, to construct a (conservative) extension of a program P, one adds an additional
component M to the program P. This component is constructed in such a way that its state is
isolated from the state of P. The component M is then used to collect some low data and explicitly
“kill” potential illegal information flow paths, as explained below. More formally, an extension of
a program P is defined in the following way.

Definition 9.1 (Extension [KTB+15]). Let P = P[~x] be a deterministic and closed (Jinja+)
program. An extension of P is a program P′ = P′[~x] obtained from P in the following way.

First, a new component M is added to P consisting of some number of classes with the following
properties:

(i) the methods and fields of the classes in M are static,

(ii) the arguments and the results of the methods of M are of primitive types,

(iii) the methods of M do not refer to classes defined in P (in particular, no methods and fields of
P are used in M),

(iv) all potential exceptions are caught inside M,

(v) all methods of M always terminate.

114

9.3. KeY, a Theorem Prover for sequential Java Programs

Second, P is extended by adding statements of the following form in arbitrary places within
methods of P:

(a) Output to M:

C. f (e1, . . . ,en) (9.3)

where C is a class in M with a (static) method f and e1, . . . ,en are expressions without side
effects.

(b) Input from M:

r =C. f (e1, . . . ,en), (9.4)

where C is a class in M, C. f is a (static) method with some (primitive) return type τ ,
e1, . . . ,en are expressions as above, and r is an expression that evaluates without side effects
to a reference of type τ . (Such an expression can, for example, be a variable or an expression
of the form o.x, where o is an object with field x.)

Now, one uses the automatic tool to verify that P′ is noninterferent. If the automatic tool still
fails to prove noninterference for P′, because of another false positive, one can further extend P′

in a conservative way, and so on. Once noninterference of P′ is established, it remains to verify
that P′ is in fact a conservative extension of P′. Since a conservative extension is a functional
property, to prove this property, the support of a more precise, but possibly interactive tool (e.g.,
a theorem prover) is needed. However, this should typically involve analyzing only a smaller
fragment of the overall program. Being a functional property, this approach is more practical than
to prove noninterference properties of the complete program.

If now noninterference and conservatism of P′ is established, due to the way the extension is
formally defined (see Definition 9.1) which implies (i) a state separation of the original program
P and of the extension M and (ii) that the additional statements added to P do not change the state
of P, we obtain noninterference of the original program P. More formally, in [KTB+15] it has
been stated and proven the following theorem.

Theorem 9.1. ([KTB+15]) Let P[~x] be a program with the variables ~x labeled as high and
variables ~y labeled as low. Let P′[~x] be a conservative extension of P[~x] such that in P′[~x]
again the variables in~x are labeled as high and those in~y are labeled as low. Then, if P′[~x] is
noninterferent, then so is P[~x].

While the hybrid approach is widely applicable—it is not tailored to specific tools or specific
applications, and the basic idea is quite independent of a specific programming language— in this
thesis we combine it with the results of the CVJ framework (see Part I) to establish cryptographic
privacy of the votes cast by sElect.

9.3. KeY, a Theorem Prover for sequential Java Programs

Although the hybrid approach is not tailored to any specific tools, to show its applicability, the
authors of [KTB+15] combined the fully automatic tool Joana (see Section 4.5) with the KeY
interactive theorem prover.

115

9. Formal Verification of the sElect E-voting System

KeY27 [ABB+05, ABB+14, BHS07] is an integrated program verification system, which tar-
gets sequential Java. At its core lies an interactive theorem prover for first-order dynamic
logic (JavaDL) [Bec00]. Program specifications can be given in the Java Modeling Lan-
guage (JML) [LBR98]. KeY provides both a stand-alone graphical user interface, intended
for interactive proofs, and an integration into the Eclipse platform, intended for push-button
proofs hiding the underlying prover architecture [HKHB14].

In dynamic logic [FL79, Har84], programs π give rise to modal operators [π] and 〈π〉. For
instance, the formula ϕ→ 〈π〉ψ intuitively means “if started in a state in which formula ϕ holds
and program π terminates, then in the final state formula ψ holds”. This means that the right-hand
side of this implication is equivalent to the weakest precondition of π w.r.t. ψ. Replacing 〈·〉
by [·] yields the weakest liberal precondition. Dynamic logic can be seen as a super-set of Hoare
logic [Hoa69]. In contrast to Hoare triples, however, programs are an integral part of formulae.
This allows one to write down more elaborate formulae, e.g., formulae with multiple programs or
existential quantification ranging over program states.

In particular, this expressivity allows for relational properties, such as noninterference, to
be expressed [SS12]. This technique has already been used to prove a simple e-voting system
noninterferent [Sch14]. However, information flow analysis based on theorem proving is rather
heavy-weight and requires a considerable amount of manual interaction, making its application
on real-world programs cumbersome, tedious, and time consuming.28

The sequent calculus for JavaDL that is built into KeY precisely reflects the semantics of
sequential Java, i.e., it does not use approximations. Thus, analysis techniques built on KeY
are precise. They do not report any false positives. Proofs can be automatic to a certain degree,
while the user can interact with the prover at any time. KeY can generate counter examples
and unit tests from failed proof attempts. KeY is different from general purpose (first-order or
higher-order) theorem provers (such as Isabelle [Pau94] or Coq [BC04]) in that KeY and its
calculus are tailor-made for Java verification. The semantics of Java is ‘built in.’ The program to
be analyzed is kept as part of formulas. Constructing a proof in KeY corresponds to symbolic
execution [Kin76]. This helps to keep JavaDL formulas and proof goals human-readable and,
thus, allows the user to understand the (sub-)proofs.

KeY supports modular verification based on the design by contract paradigm [Mey92]. Indi-
vidual methods are verified w.r.t. their contract, i.e., independently from the environment. For
every Java method, there is a separate proof. This ensures (preservation of) correctness of proofs
even in case the implementation of some other method is unknown or changed. It is essential
that contracts do not only contain pre- and post-condition pairs, which describe what an imple-
mentation is supposed to achieve, but also frame conditions [BMR93], which explicitly describe
what an implementation does at most do, i.e., what it does beyond what is already specified in the
post-conditions. Contracts are given in JML which integrates seamlessly into Java as it appears in
Java comments and uses a superset of Java expressions. An example on how to annotate Java
code with JML contracts can be found in Figure 9.1 of Section 9.4.

We now present the first Java system, namely an e-voting machine with auditing procedures,

27KeY is free software and can be downloaded from http://key-project.org/.
28The tediousness and inconvenience of using theorem provers to check noninterference properties was one of the

reasons why the hybrid approach has been conceived by the authors of [KTB+15].

116

http://key-project.org/

9.3. KeY, a Theorem Prover for sequential Java Programs

which we implemented with the aim of combining the fully automatic tool Joana (see Section 4.5)
and the KeY theorem prover to establish noninterference properties in the way proposed by the
hybrid approach. We note that this system has also been used as case study in [KTB+15].

Design and implementation of the E-voting Machine. The system involves a voting machine
which collects each voter’s choice an sends, encrypted, each vote plus some additional data for
auditing to an append-only bulletin board. Besides computing the election result and publishing
it to the bulletin board, the voting machine can also be triggered to publish the complete list of
internal (encrypted) log, also for auditing purposes. In fact, this voting machine maintains a vote
counter increased every time a ballot is cast and an operation counter increased every time an
operation is internally performed. The value of the latter counter is returned when a ballot is cast.
In addition, the voting machine allows for vote canceling: auditors can submit a vote and then
immediately delete it (clearly, the delete operation only increases the operation counter). In this
way, auditors can check that an entry which carries the same operation counter as the one given
to the auditors when they voted is indeed added to the bulletin board. By asking the machine to
output the internal log, the auditors can also make sure that the voting machine properly logged
this entry.

Besides the code of the voting machine and of the bulletin board, the program also contains a
setup class with the method main which defines a cryptographic privacy game, similar to games
in cryptography, except that this game is formulated in Java. To define this game, let ρ be a result
function which takes a multiset (or a vector) of choices/candidates and returns a result vector~v,
i.e., for every choice,~v contains an entry with the number of occurrences of this choice in the
given multiset. In the privacy game the environment (the adversary) can provide two vectors
~c0 and~c1 of choices of (honest and dishonest) voters such that the two vectors yield the same
result according to ρ, i.e., ρ(~c0) = ρ(~c1); otherwise the game is stopped immediately. Now, the
voters vote according to~cb, where b is a secret bit. The environment tries to distinguish whether
the voters voted according to ~c0 or to ~c1. In other words, it tries to determine the secret bit b.
We denote the Java program describing this game by EVreal[secret_bit], with b being the only
secret/high input.

The code of the setup, of the voting machine, and of the bulletin board can be found in
Appendix E.2 and in [STB+14a].

The Security Property. The most fundamental security property each e-voting system is sup-
posed to provide is of course privacy of the votes. More precisely, as reported in [KTB+15],
the security property for which we designed this e-voting machine is cryptographic privacy of
the votes of honest voters. Formally, this property is expressed by the following computational
indistinguishability property (see Part I):

EVreal[false] ≈ /0
comp EVreal[true]. (9.5)

That is, the two variants of the system are indistinguishable from the point of view of an adver-
sary who implements the network, but does not call (directly) methods of EVreal[secret_bit].
However, through the setup class, the adversary determines whether:

1. the next voter casts her ballot;

117

9. Formal Verification of the sElect E-voting System

2. an auditor casts a vote and then cancels it;

3. the voting machine outputs its internal log;

4. a message coming from the network is delivered to the bulletin board;

5. the bulletin board outputs its internally stored entries.

Once all the voters cast their ballots, the voting machine outputs the election result (see Ap-
pendix E.2 for the specification of the setup).

By the result of the CVJ framework and, in particular, by Theorem 2.2, to prove (9.5) it is
enough to show that

EVideal[secret_bit] is I-noninterferent, (9.6)

where I = /0 and EVideal denotes the system which coincides with EVreal except that the real
cryptographic operations are replaced by their ideal counterparts. More specifically, the real
cryptographic operations for public-key encryption and digital signatures are replaced by ideal
functionalities for these primitives, as provided in Chapter 4. The realization result in Chapter 4
shows that the real cryptographic operations realize the ideal functionalities. Hence, these
operations can indeed be replaced by their ideal counterparts.

Since, as can easily be seen, EVideal[secret_bit] satisfies the conditions of Theorem 2.4, we
can further reduce checking (9.6) to checking the following property:

Ẽ~u ·EVideal[secret_bit] is noninterferent for all~u, (9.7)

where the family of systems Ẽ~u, parameterized by a finite sequence of integers~u, is as introduced
in Section 2.6. This system can be automatically generated from EVideal[secret_bit].

Verification of the Security Property. In order to establish cryptographic privacy prop-
erties for this Java system it suffices, according to the CVJ framework, to verify that
Ẽ~u ·EVideal[secret_bit] is noninterferent. To establish noninterference, the fully automatic
tool Joana presented in Section 4.5 has been employed. However, due to the functional de-
pendency between the secret voters’ choices and the public outcome of the election, this tool
produces a false positive. Since establishing noninterference for the case study requires indeed to
prove a functional property of the e-voting machine, it is quite likely that all fully automatic tools
would fail. The system has therefore been extended with a conservative extension to avoid the
false positive. Joana can then easily prove that this extension indeed is noninterferent. Finally, to
prove that the extension is conservative, the software verification system KeY presented in this
section has been used. By the hybrid approach, this implies that the system (running with ideal
functionalities) is noninterferent. The CVJ framework then immediately yields cryptographic
privacy of the Java system when the ideal functionalities are replaced by the actual cryptographic
implementations.

118

9.4. Applying the Hybrid Approach to Verify the Mix Server

9.4. Applying the Hybrid Approach to Verify the Mix Server

Following the hybrid approach presented in Section 9.2 and the first case study where it has been
applied (see Section 9.3), in order to prove the property (9.2) for the mix server of sElect, we
provide an extension MS∗Ideal[secret_bit] of MSIdeal[secret_bit] which makes it more explicit
for Joana that there is no information flow. In the extension MS∗Ideal[secret_bit], we explicitly
state that what the mix server has to output is indeed the sorted array of messages ~m1. More
specifically, we obtain MS∗Ideal[secret_bit] from MSIdeal[secret_bit] as follows: The array
~m1 is sorted and stored on a static variable correctOutput. After the point in the code of the
mix server where the decrypted messages are sorted and stored in a local variable x, we add
the assignment x = correctOutput. If the mix server is implemented correctly, then the result
computed by the mix server (the list of decrypted and sorted messages) indeed is the same as
the result stored in correctOutput and, therefore, the additional assignment does not change the
state of the program. This is what in [KTB+15] is referred as a conservative extension.

Joana is now able to check noninterference of Ẽ~u ·MS∗Ideal[secret_bit] for all ~u. To show
Ẽ~u ·MSIdeal[secret_bit] noninterferent, what it is still remaining to be proven is that

Ẽ~u ·MS∗Ideal[secret_bit] is a conservative extension of Ẽ~u ·MSIdeal[secret_bit] for all~u.
(9.8)

We note that that this statement can be expressed with a functional property on Ẽ~u ·
MS∗Ideal[secret_bit]: the syntactic extensions in MS∗Ideal[secret_bit] are redundant, i.e.,
they do not semantically change the system MS∗Ideal[secret_bit] respect to the system
MSIdeal[secret_bit]. We refer the reader to Appendix E.3 for the declaration of the system
MS∗Ideal[secret_bit].

Following [KTB+15], we use the theorem prover KeY to prove the conservatism. Proving the
aforementioned functional property with KeY actually consists of two separate parts:

(a) We have to show that the result of the mix server is indeed a permutation of the list of
messages the mix server received, encrypted, as input.

(b) We have to show that certain invariants expressing well-formedness of the data structures
of the ideal functionalities hold and that there exists a relation between the input of the mix
server and the actual data structures from which the result of the mix server is computed.

The analysis with KeY of Part (a) is finished. This part involves 8 classes with 73 methods.
These methods were annotated with 761 lines of Java Modeling Language specification. The
complete KeY proof for Part (a) consists of 1576647 nodes in the proof trees (corresponding
to rule applications), 6402 of which were interactive (manual) steps required to construct these
proofs. In addition, 6 new reductions rules have been added to the theorem prover. KeY needs
about 1 hour for the automated parts of proof construction on a standard desktop PC.

Although the proofs for Part (b) are, in principle, less complex than those for Part (a), there
are more sub-proofs to consider. Thus, due to scalability issues, the generation of the proofs for
Part (b) requires more manual interaction than the generation of the proofs for Part (a): While

119

9. Formal Verification of the sElect E-voting System

straightforward, the analysis becomes then more tedious. At the time of writing, the proofs for
Part (b) are mostly finished but ongoing work.

1 /*@ public normal_behaviour

2 @ requires \dl_array2seq(ballots) == \dl_arrConcat(0, \dl_array2seq2d(sorted));

3 @ requires n == sorted.length;

4 @ ensures \dl_array2seq2d(\result) == \dl_array2seq2d(sorted);

5 @ ensures \fresh(\result);

6 @ assignable \nothing;

7 @*/

8 public byte[][] split(int n, byte [] ballots){

9 byte[][] messages = newArray(n);

10 byte[] bal = ballots;

11 int i = 0;

12 /*@ loop_invariant 0 <= i && i <= n && n == messages.length

13 @ && n == sorted.length && messages != sorted;

14 @ loop_invariant \dl_array2seq(bal) ==

15 @ \dl_arrConcat(i, \dl_array2seq2d(sorted)) && bal != null;

16 @ loop_invariant messages != null && (\forall int k; 0 <= k

17 @ && k < messages.length; messages[k] != null);

18 @ loop_invariant \fresh(messages);

19 @ loop_invariant (\forall int j; 0 <= j && j < i;

20 @ \dl_array2seq(messages[j]) == \dl_array2seq(sorted[j]));

21 @ assignable messages[*], bal;

22 @ decreases n - i;

23 @*/

24 while(i < n){

25 bal = split(messages, bal, i);

26 i++;

27 }

28 return messages;

29 }

Figure 9.1.: JML annotated method to split the concatenated ballots (this method relies on a
recursive method split not shown here). JML annotations appear as comments with
the special delimiter pair /*@ @*/. Lines 1-6. (before the method signature) state
the contract. Lines 2 and 3 impose a precondition, while lines 4 and 5 define a
postcondition. Termination and absence of exceptions is included by default as
stated by normal_behavior. Since the method contains an unbounded loop, we need
to annotate that as well in order to prove the contract. A loop invariant is given in
lines 12-20. To prove termination, we also have a variant clause in line 22.

To give a feel of the effort necessary to perform an analysis using KeY, Figure 9.1 displays
one of the Java methods that had to be analyzed: this method splits the concatenated ballots the
mix server receives as input. The code to be analyzed needs to be annotated with specifications,
i.e., pre- and post-conditions as well as loop invariants, which then need to be proven by KeY.
The latter, in general, might again require some human interaction if the prover cannot verify the

120

9.4. Applying the Hybrid Approach to Verify the Mix Server

conditions automatically. The annotated program and the proofs already generated with KeY are
available at [SHM17].

As mentioned above, for the conservative extension Ẽ~u ·MS∗Ideal[secret_bit], Joana easily
establishes the noninterference property

Ẽ~u ·MS∗Ideal[secret_bit] is noninterferent for all~u. (9.9)

Joana took about 5 seconds on a standard PC (Core i5 2.3GHz, 8GB RAM) to finish the
analysis of the program (with a size of 726 LoC). PDG computation took 3 seconds and only 2
seconds were needed to detect the absence of illegal flow inside the PDG. Note that the actual
running code of the mix server is much bigger than what Joana needed to analyze, because the
code embedded in the mix server of sElect includes untrusted libraries, such as a Java library for
cryptographic operation, which do not need to be analyzed, as already mentioned in Section 2.4.

Therefore, once the analysis with KeY is completed, by Theorem 9.1, we conclude that the
property (9.2) holds true. Thus, by the result of the CVJ framework, the cryptographic privacy
property (9.1) of the mix server follows as well.

Other possible approaches. KeY is able to prove noninterference properties itself, by using the
technique of self-composition [BDR04]. In particular, KeY would in principle be able to establish
the property (9.2) without the hybrid approach and therefore without the help of Joana or any
other fully automatic tool. However, verifying the code of the mix server only with KeY would
have eventually run in scalability problems due to the overwhelming amount of deductive steps
to generate proofs. More generally, as already reported in [KTB+15], checking noninterference
properties directly using interactive theorem provers would be very complex and time consuming
and, in fact, seems to be impractical for any realistic Java program.

There is another possible way of combining the high precision of deductive verification tools
with the efficiency of fully automatic static checkers: while in realistic programs it can happen
that the verification with interactive tools becomes infeasible, at the same time, parts of these
programs tend to be irrelevant with respect to the functional property to be proven. To remedy
this, a general technique called spec slicing has also been investigated in [KTB+15]. The idea
behind spec slicing is the following: If parts of the program do not influence the final state
w.r.t. the proof obligation, they can be safely removed and function verification can be performed
on the simpler program. Verification of this simpler program can then be performed without any
loss of precision but with possibly much less effort. The identification and removal of irrelevant
program parts can be performed by automatic tools based on program dependency graph (PDG)
like Joana. As reported in [KTB+15], this technique has already been applied to the e-voting
machine described in Section 9.3: parts of its implementation perform mere logging, which does
not affect the voting result and hence does not have any influence on the functional property
which has to be verified. The program dependency graph computed by Joana is used to read off
the separation of this component and mark it not relevant for the property to be verified. In this
way, KeY is used to prove the functional property on a simplified version of the program which
requires less reduction steps and it is therefore also less time consuming.

121

10. Related Work and Discussion

In this chapter, we first briefly mention further related work and then we provide a more detailed
discussion of the main features of sElect, including the limitations of the system.

The basic idea of combining the choice of a voter with an individual verification code has
already been mentioned in an educational voting protocol by Schneier [Sch96].

The F2FV boardroom voting protocol [ACW13] is based on the concept of verification codes
too. In that protocol, it is assumed that all voters are located in the same room and use their
devices in order to submit their vote-nonce pairs as plaintexts to the bulletin board. As pointed
out in [ACW13], F2FV is mainly concerned with verifiability, but not with privacy.

Several remote e-voting protocols have been proposed in the literature (see, e.g., [RS07, Adi08,
CCM08, RBH+10, ZCC+13, KZZ15a, GRCC15, RRI16]), with Helios [Adi08] being the most
prominent one.

We now first briefly sketch how Helios works and then in each paragraph but the last we
compare the features of sElect with those of Helios. In the last paragraph, we instead briefly
discuss the other cryptographic analyses performed on e-voting systems.

The Helios e-voting system. A voter, using her browser, submits a ballot (along with specific
zero-knowledge proofs) to a bulletin board. Afterwards, in the tallying phase, the ballots on
the bulletin board are tallied in a universally verifiable way, using homomorphic tallying and
verifiable distributed decryption. Helios uses so-called “Benaloh challenges” [Ben06] to ensure
that browsers encrypt the actual voters’ choices (cast-as-intended). For this, the browser, before
submitting the ballot, asks whether the voter wants to audit or cast the ballot. In the former
case, the browser reveals the randomness used to encrypt the voter’s choice. After that, the
voter should copy/paste this information to another (then trusted) device to check that the ballot
actually contains the voter’s choice. The voter is also supposed to check that her ballot appears
on the bulletin board, which together with the homomorphic tallying and verifiable distributed
(threshold) decryption then implies that the voter’s vote has been properly counted.

The protocol of Helios follows the general ideas of Cramer, Gennaro, and Schoenmak-
ers [CGS97] where the ElGamal cryptosystem [ElG85] is employed both for homomorphic
tallying and distributed decryption. To provide a non-interactive zero-knowledge proof of de-
cryption, Helios uses the Chaum-Pedersen protocol [CP92] in combination with the Fiat-Shamir
heuristic [FS86]. Furthermore, in the latest version of Helios, namely Helios v4, the data struc-
tures of the system have been modified to support, besides homomorphic tallying, a more flexible
mixnet-based tallying. While this feature has not been properly integrated into the Helios master
branch yet, the mix net workflow and the employable cryptographic protocols have already been
discussed and tested in [BGP11].

Fully automated verification. Fully automated verification is a main and unique feature of
sElect, which would also be very useful for other systems, such as Helios. This kind of verification

123

10. Related Work and Discussion

is performed without any interaction required from the voter, and hence, is completely transparent
to the user. In particular, the voter does not have to perform any cumbersome or complex task,
which thus eases the voter’s experience. This, and the fact that fully automated verification is
triggered when the voter visits the voting booth again (to later look up the election result on the
bulletin board), should also help to improve verification rates, as hinted at by the two small mock
elections discussed in Section 8.3. Moreover, this kind of verification importantly also provides a
high-level of accountability, as it is proven in [KMST16a, KMST16b].

Obviously, for fully automated verification we need to assume that (most of) the VSDs can be
trusted. Recalling from Section 8.2 we note that in our implementation of sElect a VSD consists
of the voter’s computing platform (hardware, operating system, browser) and the voting booth
(server), where the idea is that the voter can choose a voting booth she trusts among a set of
voting booths.

As mentioned, we assume low-risk elections (e.g., elections in clubs and associations) where
we do not expect targeted and sophisticated attacks against voters’ computing platforms.29

Also, as mentioned in Section 8.2, the idea is that several voting booth services are available,
possibly provided by different organizations and independently of specific elections, among
which a voter can choose one she trusts. So, for low-risk elections it is reasonable to assume that
VSDs are trusted. In addition, voter-based verification provides some mitigation for dishonest
VSDs (see also the discussion below).

It seems that even for high-stake and high-risk elections some kind of fully automated verifica-
tion might be better than completely relying on actions performed by the voter, as is the case for
all other remote e-voting systems. So other systems should profit from this approach as well.30

Voter-based verification (human verifiability). The voter-based (manual) verification can be
seen as an orthogonal mechanism as the fully automated verification procedure, which does
not assume trust in other parties or devices (except that the voter needs to be able to look at
the election outcome). This gives the voters direct understanding that their votes were actually
counted.

The level of verifiability provided by voter-based verification (manual checking of voter-
generated verification codes) has been analyzed in detail in [KMST16a, KMST16b].

On the positive side, voter-based verification provides a quite good level of verifiability, with
the main problem being clashes. With voter-based verification the voter does not have to trust any
device or party, except that she should be able to look up the actual election outcome on a bulletin
board, in order to make sure that her vote was counted (see also below). In particular, she does
not have to trust the voting booth (she chose) at all, which is one part of her VSD. Moreover, trust
on the voter’s computing platform (hardware, operating system, browser), which is the other part
of her VSD, is reduced significantly with voter-based verification: in order to hide manipulations,
the voter’s computing platform would have to present a fake election outcome to the voter. As
mentioned before, our underlying assumption is that (for low-risk elections) such targeted attacks

29For high-stake elections, such as national elections, untrusted VSD are certainly a real concern. This is in fact a
highly non-trivial problem which has not satisfactorily been solved so far when both security and usability are
taken into account (see, e.g., [GRCC15]).

30For high-risk elections one might have to take extra precautions for secretly storing the voter’s receipt in the voter’s
browser or on her computer.

124

are not performed on the voter’s computing platform. (Of course, voters also have the option to
look up the election result using a different device.)

Voter-based verification is also very easy for the voter to carry out and the voter easily grasps
its purpose. In particular, she can be convinced that her vote was actually counted without
understanding details about the system, e.g., the meaning and workings of universally verifiable
mix nets or verifiable distributed decryption. In other systems, such as Helios, voters must
have trust in the system designers and cryptographic experts in the following sense: when their
ballots appear on the bulletin board, then some universally verifiable tallying mechanism—which,
however, a regular voter does not understand—guarantees that her vote is actually counted.
Also, other systems require the voter to perform much more complex and cumbersome actions
for verifiability and they typically assume a second trusted device in order to carry out the
cryptographic checks, which altogether often discourages voters from performing these actions in
the first place. For example, Helios demands voters

i) to perform Benaloh challenges [Ben06];

ii) to check whether their ballots appear on the bulletin board.

However, regular voters often have difficulties understanding these verification mechanisms
and their purposes, as indicated by several usability studies (see, e.g., [AKBW14, KOKV11,
KKO+11, NORV14, OBV13, WH09]). Therefore, many voters are not motivated to perform
the verification, and even if they attempt to verify, they often fail to do so. Furthermore, the
verification process, in particular the Benaloh challenge, is quite cumbersome in that the voter
has to copy/paste the ballot (a long randomly looking string) to another, then trusted, device in
which cryptographic operations need to be performed. If this is done at all, it is often done merely
in a different browser window (which assumes that the voter’s platform and the JavaScript in the
other window is trusted), instead of a different platform.

On the negative side, verification codes could be easily misused for coercion (see the “Miti-
gating coercion resistance” paragraph). A voter could (be forced to) provide a coercer with her
verification code before the election result is published, and hence, once the result is published, a
coercer can see how the voter voted.31

We note, however, that in any case, for most practical remote e-voting systems, including
sElect and, for instance, Helios, there are also other simple, although perhaps not as simple,
methods for coercion. Depending on the exact deployment of these systems, a coercer might, for
example, ask for the credentials of voters, and hence, simply vote in their name. Also, voters
might be asked/forced to cast their votes via a (malicious) web site provided by the coercer, or
the coercer asks voters to run a specific software. So, altogether preventing coercion resistance is
extremely hard to achieve in practice, and even more so if, in addition, the system should still be
simple and usable. This is one reason that coercion-resistance was not a design goal for sElect.

Mitigating coercion resistance. The sElect voting system, just as Helios, was not designed to
provide coercion resistance and, in fact, in the current implementation, vote selling and voter

31In a quite recent work, a mitigation for this problem has been considered [RRI16]. However, this approach assumes,
among others, a public-key infrastructure for all the voters.

125

10. Related Work and Discussion

coercion is quite easy: a voter can simply forward her verification code to a coercer who can use
this code to check which candidate the voter voted for.

Still, to mitigate this problem to some extent and to make coercion less easy, one can consider
the following variants of sElect.

First, we can consider a variant where voter-based verification is dropped and the verification
codes are not shown to the voter (but only stored internally in the browser’s local storage). This,
of course, means that the verification would be done only automatically by the voting booth; the
voter could not carry out manual verification.

One can also consider a variant where the whole receipt, including the verification code (again
the voter’s part of the code would be dropped), is not computed and stored within the browser but
on the server site of the voting booth. In this variant, as opposed to the implemented variant, the
voting booth server plays an active role. In particular, it would perform the verification procedure
itself (or delegate this to another party).

Note that without trusting the voting booth, coercion resistance and even privacy would be
much harder to achieve. We emphasize that the voter is free to choose a voting booth she trusts,
and as discussed before, for low-risk and low-coercion elections trusting the voting booth (and
the client platform) will in many cases be reasonable.

Simple cryptography and design. Unlike other modern remote e-voting systems, sElect em-
ploys only the most basic and standard cryptographic operations, namely, public key encryption,
digital signatures, and nonce generation, while all other verifiable remote e-voting systems use
more sophisticated cryptographic operations, such as zero-knowledge proofs, verifiable dis-
tributed decryption, universally verifiable mix nets, etc. The overall design and structure of sElect
is simple as well. The motivation for our design choices were twofold: Firstly, we wanted to
investigate what level of security (privacy, verifiability, and accountability) can be achieved with
only the most basic cryptographic primitives and a simple and user-friendly design. Secondly,
using only the most basic cryptographic primitives has several advantages:

1. The implementation can use standard cryptographic libraries and does not need much exper-
tise on the programmers side. In fact, simplicity of the design and of the implementation
task is valuable in practice in order to avoid programming errors, as, for example, noted
in [AKBW14].

2. The implementation of sElect is also quite efficient in terms of implementation and perfor-
mances as already pointed out in Section 8.1.

3. sElect does not rely on setup assumptions. In particular, unlike other remote voting systems,
we do not need to assume common reference strings (CRSs) or random oracles. We note that
in [KZZ15a] and [KZZ15b] very complex non-remote voting systems were recently proposed
to obtain security without such assumptions.

4. Post-quantum cryptography could easily be used with sElect, as cryptographic algorithms
for public key encryption and digital signature that are secure against attacks of quantum
computers are already available (see, for example, the NTRU algorithm [HPS98] and its
Stehlé–Steinfeld version [SS11] for public-key encryption).

126

5. In sElect, the space of voters’ choices can be arbitrarily complex since, if hybrid encryption
is employed, arbitrary bit strings can be used to encode voters’ choices; for systems that use
homomorphic tallying (such as Helios) this is typically more tricky and requires to adjust the
system (such as certain zero-knowledge proofs) to the specific requirements.

On the downside, with such a very simple design one does not achieve certain properties
which could be obtained with more advanced constructions. For example, sElect, unlike for
instance Helios, does not provide universal verifiability (by employing, for example, verifiable
distributed decryption or universally verifiable mix nets). Universal verifiability can offer more
robustness as it allows one to check (typically by verifying zero-knowledge proofs) that all ballots
on the bulletin board are counted correctly. Every voter still has to check, of course, that her
ballot appears on the bulletin board and that it actually contains her choice (cast-as-intended and
individual verifiability).

Since sElect employs Chaumian mix nets, a single server could refuse to perform its task, and
hence, block the tallying. Clearly, those servers who deny their service could be blamed, which in
many practical situations should deter them from misbehaving. Therefore, for low-risk elections
targeted in this work, we do not think that such a misbehavior of mix servers is a critical threat in
practice. Other systems use different cryptographic constructions to avoid this problem, namely,
threshold schemes for distributed decryption and (universally verifiable) reencryption mix nets.

Bulletin board. We finally note that in the implementation of sElect, we consider an (honest)
bulletin board. This has been done for simplicity and is quite common; for example, the same is
done in Helios.32 The key property required is that every party has access to the bulletin board
and that it provides the same view to everybody. This can be achieved in different ways, e.g., by
distributed implementations, blockchain technologies, and/or observers comparing the (signed)
content they obtained from bulletin boards (see, e.g., [CS14]); such approaches are orthogonal to
the rest of the system, though.

Cryptographic analysis of e-voting systems. In Chapter 6, we have introduced the most fun-
damental security properties modern e-voting systems are supposed to achieve. As already
mentioned in the introduction of the thesis, the formalization of these security properties has been
used to perform cryptographic analyses on several e-voting systems finding attacks and revealing
some misconceptions concerning their relations (see, e.g., [KTV10a, KTV10b, KTV10c, KTV11,
CS11, KTV12b, ACW13, CEK+15, KZZ15a, KMST16a, CCFG16, KZZ17, CDD+17, CW17]).

However, such cryptographic analyses are typically performed on the design level, i.e., they do
not analyze the actual implementation of the e-voting systems, but only their higher-level protocol.
As already reported in Chapter 9, performing code-level verification on e-voting systems is far
from being trivial since analyses typically depend upon the combination of different kinds of
tools, some of whom requiring extensive human interaction for being properly employed.

The only analysis which has successfully been performed on the code of an e-voting system so
far is the analysis on the e-voting machine which we have indeed implemented for this kind of

32To partially cope with dishonest bulletin boards, in [CGGI14] it has been proposed a modified version of Helios,
called Helios-C, where a registration authority creates public/private key pairs for all voters. Voters sign their
ballots in order to prevent ballot stuffing even if the bulletin board is dishonest.

127

10. Related Work and Discussion

cryptographic verification (see Section 9.3 and [KTB+15]). The verification of the mix server of
sElect presented in Sections 9.1 and 9.4 shows that performing such analyses on (even parts of)
real-world e-voting systems remains a tedious and almost impractical task at the current status of
development of the employed tools.

128

11. Conclusion and Future Work

In this thesis, we have addressed the problem of establishing semantically sound cryptographic
guarantees on the implementation of systems that are coded in Java and use cryptography.

We have extended and properly instantiated a framework for the cryptographic verification
of Java programs, the CVJ framework, to make it applicable to a wider range of cryptographic
software, i.e., software that uses cryptographic operations. We extended Jinja+, the Java-like
formal language the framework is stated and proven for, with some not yet modeled features
commonly used in Java applications: Java-interfaces, abstract classes, and the data type String

in Chapter 2; two concurrency features of Java, namely thread creation and synchronized blocks,
in Chapter 3. Interesting future work would consist in enlarging SyncJinja+ with the other three
types of synchronization mechanisms, namely the wait-notify mechanism, thread joining, and
interrupts, in order to be able to exhaustively model all the possible multi-threaded Java programs.
However, modeling these other types of synchronization mechanisms would most likely not
change any result of the CVJ framework restated for our proposed multi-threaded language.

In Chapter 3, we have formally linked the notion of computationally indistinguishability
extended to multi-threaded SyncJinja+ systems to a novel noninterference definition also for
multi-threaded SyncJinja+ systems. This notion substantially differs from all the other concurrent
noninterference definitions in the literature, such as possibilistic and probabilistic noninterference.
That is, we add yet another formalization of concurrent noninterference to the plethora of notions
already stated in the literature (see, e.g., [PHN12, PHN13] for studies discussing and relating
them). Although our impression is that our proposed notion of noninterference is less strict than
those considered from the literature so far (which typically impose some form of simulation,
bisimulation, or equivalence among all possible traces), it would be interesting to investigate how
our notion formally relates with these other notions. For this purpose, one would have to first
generalize our notion to a more general computational model than the specific Java-like language
and then cast the different concurrent noninterference definitions in an unified and consistent
framework, in a similar way as done, for example, in [PHN12].

The lack of a unique and commonly agreed definition of concurrent noninterference unfortu-
nately also results in the scarcity of tools for checking this property in multi-threaded programs.
Joana is the only fully automatic verification tool allowing one to check some noninterference
properties in multi-threaded Java programs. In particular, Joana checks a specific criterion called
Low-Security Observational Determinism [RWW94, ZM03] which then implies probabilistic
noninterference for concurrent programs [VS99]. However, as already mentioned in Chapter 5,
even relaxed [GS15] and improved [BGH+16] versions of this criterion are still too strict for
being employed in the fully automatic verification of any realistic multi-threaded Java application
(see, e.g., the case study in [BGH+16]). Establishing criteria to check our less strict concurrent
noninterference definition and implementing them on verification tools for Java programs, such

129

11. Conclusion and Future Work

as Joana, would make the CVJ framework more easily applicable to also multi-threaded Java
applications.

In Chapter 4, we have instantiated the CVJ framework with the most common cryptographic
operations used in security critical applications: digital signatures and public-key encryption,
both also including a public-key infrastructure, private symmetric encryption, and nonce genera-
tion. For each real functionality implemented in Java, we have provided a corresponding ideal
functionality also coded in Java as well as a formal proof that the real functionality realizes its
ideal counterpart in the universal composability model and under strong cryptographic assump-
tions. Real and ideal functionalities for message authentication codes (MACs), different kinds of
Diffie-Hellmann key exchanges with perfect forward secrecy, and key derivation have already
been proposed in the universal composability framework (see, e.g., [KT11a, KT11b, KR17]), but
in a more generic Turing machine model. Providing a formulation of these functionalities in
the practical programming language Java, as well as their realization results, would be another
interesting future work. Based on these cryptographic functionalities, one could then build
higher-level protocols, such as secure and/or authenticated channel protocols, directly in Java.
Thanks to the high modularity offered by the composition theorems (Theorems 2.1 and 3.1), to
prove security properties of more complex protocols in the universal composability model, one
can rely on the realization results proposed for the simpler cryptographic functionalities, without
having to carry out every time reduction proofs from the high-level protocols down to the specific
cryptographic primitives employed.

To illustrate the usefulness of this approach, two verification tools for proving noninterference
of Java programs have been employed: the static checker Joana (see Section 4.5) and the theorem
prover KeY (see Section 9.3). Certainly, fully automatic tools like Joana are preferable over
interactive approaches, such as those based on theorem provers like KeY. However, if a fully
automatic tool fails in proving noninterference due to false positives and the analysis cannot
be further refined, instead of dropping this tool altogether, the hybrid approach proposed in
[KTB+15] allows one to use the automatic tool as much as possible and only resort to a more
precise (but also more time consuming) interactive tool at the point in the program where
necessary. This approach has been used in combination with the CVJ framework to establish
cryptographic vote privacy of an e-voting machine (see Section 9.3) and of the mix server of the
sElect e-voting system (see Section 9.4). To properly verify these case studies, several practical
improvements in the KeY verification system have been implemented and presented in [SS12]
and [Sch14].

Nevertheless, previous experiments on larger and structurally more complex e-voting systems
have shown that using the hybrid approach in combination with the CVJ framework to establish
privacy properties of non-trivial cryptographic applications remains a challenging and tedious task,
mainly because the employed tools are not mature enough to tame the intrinsic entanglement of
such applications. The code of these experiments can be found in [STB+14b]. Further developing
reduction rules and heuristics within KeY to more efficiently prove complex functional properties,
such as trace properties involving the different components of the system under verification,
would increase the applicability of the tool to more realistic Java programs as well. In the context
of easing the verification process, another interesting future work would be to further enhance the
synergy between theorem provers and automatic tools: On the one hand, theorem provers can be

130

used to eliminate the false positives reported by automatic tools. On the other hand, automatic
tools could also assist theorem provers to recognize the parts of the code which are irrelevant
w.r.t. the functional properties to be proven and which can hence be safely sliced off during the
verification process.

Altogether, further extending and instantiating the CVJ framework as well as improving
the tools for its application takes steps forward in providing implementations of cryptographic
protocols which come with strong cryptographic security guarantees.

In Chapter 8, we have also proposed a new practical e-voting system, sElect, which starting
from simply being a case study for the techniques developed within CVJ framework eventually
evolved into a full-fledged and already deployed remote e-voting system. sElect, which is intended
to be used in low-coercion environments, provides a number of novel features and, compared to
other remote e-voting systems, it is designed to be particularly simple and lightweight in terms
of its structure, the cryptography it uses, and the user experience. Some of the novel features
of sElect, such as the fully automated procedure for the seamless verification of proper vote
counting, can probably also be integrated into other systems or might inspire new design.

In the description of the proposed voting system (Section 8.1), we assume the existence
of an anonymous channel from the voting platform to the bulletin board so that, in case a
component misbehaves (removes or manipulates ballots), blaming evidence of this misbehavior
is anonymously published on the bulletin board. In the implementation of the system, we do not
however provide such a channel (see Section 8.2 and [SST16]). In case the voting platform is
implemented as a static web-page, an anonymous channel could only be set up by providing a
proxy server which receives the blaming evidences and forwards them to the bulletin board. App-
based voting platforms could instead use the Tor anonymity network for this purpose. Another
interesting future work related to the implementation of sElect concerns the extension of both the
voting protocol and the related web interface to also support elections with multiple questions,
different question types, and/or different “result functions” (algorithms to weigh the votes in the
final result).

sElect can easily be deployed on a single server instance using an election manager that we
have designed and implemented in [SS16]. However, to properly provide the security properties
sElect is supposed to guarantee, the different components of the system have to be deployed
on different machines, each of whom independent and not cooperating with the others. In this
context, it would also be interesting to build a distributed, anonymous network consisting of
several mix servers run by different, independent entities: when an election is closed, a routing
algorithm in the collecting server would set up a pathway through the mix net to properly dispatch
the result of the election to the bulletin board.

While we have already deployed sElect in three small field studies, namely two mock elections
and one real-world election (see Section 8.3), another relevant future work would be to perform a
systematic and broad usability study and to try out sElect in bigger and more relevant elections.

Finally, in Chapter 9, we have combined the techniques of the CVJ framework with the hybrid
approach for proving noninterference to establish cryptographic vote privacy directly on the
implementation of our proposed voting system. sElect is therefore the first full-fledged remote
voting system for which strong cryptographic security guarantees have been formally established
on the code level to ensure confidentiality of the cast votes.

131

PART III

Appendices

133

A. Security Notions for Cryptographic Schemes

In this chapter we present the cryptographic definitions to state the security of encryption and
signatures schemes.

Beforehand, we briefly recall what it means for a function to be negligible, overwhelming, and
bounded. As usual, a function f from the natural numbers to the interval [0,1] is negligible if, for
every c> 0, there exists `0 such that f (`)≤ 1

`c for all ` > `0. The function f is overwhelming if
the function 1− f is negligible. A function f is λ-bounded if, for every c> 0 there exists `0 such
that f (`)≤ λ+ 1

`c for all ` > `0.

A.1. IND-CCA2-secure Public-Key and Symmetric Encryption Schemes

After recalling the definition of a generic a public-key encryption scheme, we explain what
it means for a public-key encryption scheme to be secure against adaptive chosen chiphertext
attacks (IND-CCA2 security).

Definition A.1 (Public-Key Encryption schemes). A public-key encryption scheme consists of a
triple of algorithms (Gen,Enc,Dec), where

1. Gen, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter ` and returns a pair (pk,sk) of matching public and secret keys.

2. Enc, the encryption algorithm, is a probabilistic algorithm that takes a public key pk and a
message x ∈ {0,1}∗ to produce a ciphertext y.

3. Dec, the decryption algorithm, is a deterministic algorithm which takes a secret key sk and
a ciphertext y to produce either a message x ∈ {0,1}∗ or a special symbol ⊥ to indicate
that the ciphertext was invalid.

We require that for all (pk,sk) which can be output by Gen(1`), for all x ∈ {0,1}∗, and for all y
that can be output by Encpk(x), we have that Decsk(y) = x. We also require that Gen, Enc and
Dec can be computed in polynomial time.

Definition A.2 (Encryption of vectors). Let (Gen,Enc,Dec) be a public-key encryption scheme.
Let x = (x1, ...,xn) and y = (y1, ...,yn) be vectors of entries in {0,1}∗. We write

Encpk(x) = (Encpk(x1), ...,Encpk(xn))

Decsk(y) = (Decsk(y1), ...,Decsk(yn))

for every public key pk and every secret key sk.

We now present what it means for an encryption scheme to satisfy the “Indistinguishability
under an Adaptive Chosen Chiphertext Attack” (IND-CCA2) property.

135

A. Security Notions for Cryptographic Schemes

Definition A.3 (Challenger). Let (Gen,Enc,Dec) be a public-key encryption scheme. The chal-
lenger C is a probabilistic polynomial-time algorithm that takes a bit b as well as a key pair
(pk,sk) and that serves two types of queries:

1. For a vector of messages y, the challenger returns the decryption of y, that is Decsk(y).

2. For a pair of vectors of messages (x0,x1) where both vectors have the same size and all
messages at the same position in the vectors have the same length, the challenger encrypts
xb under pk and returns the vector of ciphertexts, that is Encpk(xb).

Definition A.4 (IND-CCA2-security [BDPR98]). Let (Gen,Enc,Dec) be a public-key encryption
scheme with security parameter ` and let C be the challenger. Then the encryption scheme
(Gen,Enc,Dec) is IND-CCA2-secure, if for every polynomially bounded adversary A who never
submits decryption queries for (parts of) a vector of messages y previously returned by a challenge
query, we have that

Prob{(pk,sk)← Gen(1`);b′← AC(1,pk,sk)(1`, pk);b′ = 1}
−Prob{(pk,sk)← Gen(1`);b′← AC(0,pk,sk)(1`, pk);b′ = 0}

is a negligible function in `.

A.2. EUF-CMA-secure Digital Signatures Schemes

After recalling the definition of a generic a digital signature scheme, we explain what it means
for a digital signature scheme to be existentially unforgeable against adaptive chosen-message
attacks (EUF-CMA security).

Definition A.5 (Digital Signature schemes). A digital signature scheme consists of a triple of
algorithms (Gen,Sig,Ver), where

1. Gen, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter ` and returns a pair (sk, pk) of matching secret and public keys.

2. Sig, the signing algorithm, is a (possibly) probabilistic algorithm that takes a private key
sk and a message x ∈ {0,1}∗ to produce a signature σ.

3. Ver, the verification algorithm, is a deterministic algorithm which takes a public key pk, a
message x ∈ {0,1}∗ and a signature σ to produce a boolean value.

We require that for all (sk, pk) which can be output by Gen(1`), for all x ∈ {0,1}∗, and for all σ
that can be output by Sigsk(x), we have that Versk(x,σ) = true. We also require that Gen, Sig and
Ver can be computed in polynomial time.

We now present what it means for a digital signature scheme to satisfy the “Existential
Unforgeability under an Adaptive Chosen-Message Attack” (EUF-CMA) property.

136

A.2. EUF-CMA-secure Digital Signatures Schemes

Definition A.6 (EUF-CMA-security [GMR88]). Let (Gen,Sig,Ver) be a signature scheme with
security parameter `. Then the signature scheme is existentially unforgeable under adaptive
chosen-message attacks (EUF-CMA-secure) if for every probabilistic polynomial-time algorithm
A who has access to a signing oracle and who never outputs tuples (x,σ) for which x has
previously been signed by the oracle, we have that

Prob{(sk, pk)← Gen(1`);(x,σ)← ASigsk(·)(1`, pk);Verpk(x,σ) = true}

is negligible as a function in `.

137

B. The Jinja+ and SyncJinja+ languages

At the basis of the formal results of the CVJ framework lies the language Jinja+ that extends Jinja
[KN06] with:

– the primitive type byte with natural conversions from and to int;

– arrays;

– abort primitive;

– static fields (with the restriction that they can be initialized by literals only);

– static methods;

– access modifier for classes, fields, and methods (such as private, protected, and public);

– final classes (classes that cannot be extended);

– the throws clause of a method declaration (that declare which exceptions can be thrown by a
method).

For the last three extensions—access modifiers, final classes, and throws clauses—we assume
that they are provided by a compiler that, first, ensures that the policies expressed by access
modifiers, the final modifier, and throws clauses are respected and then produces pure Jinja+
code (without access modifiers, the final modifier, and throws clauses). In the similar manner, we
can deal with constructors: a program using constructors can be easily translated to one without
constructors (where creation and initialisation of an object is split into two separate steps).

The remaining extensions are described below:

Primitive types. The Jinja language, as specified in [KN06], offers only boolean and integer
primitive types. For our purpose, we find it useful to also include type byte with natural
conversions from and to int. Also, the set of operators on primitive types is extended to
include the standard Java operators (such as multiplication). This extensions can be done in very
straightforward way and, thus, we skip its detailed description.

Arrays. We will consider only one-dimensional arrays (an extension to multi-dimensional arrays
is then quite straightforward; moreover multi-dimensional arrays can be simulated by nested
arrays). To extend the Jinja language with one-dimensional arrays, we adopt the approach of
[NvO98].

First, we extend the set of types to include array types of the form τ[], where τ is a type. Next,
we extend the set of expressions by:

139

B. The Jinja+ and SyncJinja+ languages

(i) creation of new array: new τ[e], where e is an expression (that is supposed to evaluate to
an integer denoting the size of the array) and τ is a type;

(ii) array access: e1[e2];

(iii) array length access: e.length;

(iv) array assignment: e1[e2] := e3.

For this extension, following [NvO98], we redefine a heap to be a map from references to
objects, where an object is either an object instance, as defined above, or an array. An array is a
triple consisting of its component type, its length l, and a table mapping {0, . . . , l−1} to values.

Extending (small-step) semantic rules to deal with arrays is quite straightforward.

The abort primitive. Expression abort, when evaluated, causes the program to stop. (Techni-
cally this expression cannot be reduced and causes the program execution to get stuck.)

Static methods and fields. Fields and methods can be declared as static. However, as can be seen
below, to keep the semantics of the language simple, we impose some restrictions on initializers
of static fields.

A static method does not require an object to be invoked. The syntax of static method call is
C.f(args), where C is the name of a class that provides f.

Extending Jinja with with static methods is straightforward. The rule for static method
invocation is very similar to the one for non-static method invocation: the difference is that the
variable this is not added to the context (block) within which the method body is executed (a
static method cannot reference non-static fields and methods).

We assume that static fields can be initialized only with literals (constants) of appropriate
types. If there is no explicit initializer, then a static variable is initialized with the default value
of its type. For example, while static int x = 7 and static int[] t are valid declarations, the
declaration static A a = new A() and static int y = A.foo() are not.

Dealing with more general static initializers is not difficult in principle, but it would require a
precise—and quite complicated—model of the initialisation process, the complication we want
to avoid.

Extending Jinja with static fields requires only a very little overhead: for a static field f declared
in class C we introduce a global variable C.f (note that names of this form do not interfere with
names of local variables and method parameters). These global variables are initialized before
actual program (expression) is executed, as described in the definition of a run below.

Exceptions. A method declaration can contain a throws clause in which classes of exceptions
that can be propagated by the method are listed. Such a clause can be omitted, in which case the
above mentioned list is considered empty. When the meaning of throws clauses is considered,
standard subtyping rules are applied (if class A is listed in such a clause, then the method can
propagate exceptions of class A or any subclass of A).

As mentioned, we assume that the compiler (or a static verifier) statically checks whether the
program complies with throws clauses.

140

Unlike in Java, however, we can assume without loss of generality that all exceptions must be
declared in a throws clause if they are propagated by a method (in the Java terminology, we can
say that all exceptions are checked). This will give us more control on the information which is
passed between program components.

We consider the following hierarchy of standard (system) exceptions. In the root of this
hierarchy we place (empty) class Exception. We require that only object of this class (and its
subclasses) can be used as exceptions. Class SystemException, also empty, is a subclas of class
Exception, and is a base class for the following system exceptions (exceptions which are not
thrown explicitly, but may occur in result of some standard operations on expressions):
ArrayStoreException — trown to indicate an attempt to store an object of the wrong type into

an array,
IndexOutOfBoundsException — thrown to indicate that an array has been indexed with an index

being out of range,
NegativeArraySizeException — thrown to indicate an attempt to create an array with negative

size,
NullPointerException — thrown if the null reference is used when an object is required,
ClassCastException — thrown to indicate an illegal cast.

We will assume that the above classes are predefined, and can be used in any program.

For completeness of the presentation, in this section we summarize all the rules of Jinja+. We
start with rules of Jinja, following [KN06] (see this paper for the details on the used symbols). In
particular, the syntactical convention used in these rules is that an application of a function f to
an argument a is denoted by f a.

The rules assume a function binop that provides semantics for operations on atomic types. The
exact definition of this function depends on the maximal size of integers that we consider (recall
that we consider different variants of semantics for different size of integers given by intsize(η)
where η is the security parameter).

Rules of Jinja+. There are two points where the rules diverge from the ones of [KN06]. First,
as we assume unbounded memory, we do not have rules which throw OutOfMemoryError (and we
assume that (new-Addr h) is never None). Second, we added labels to rules. These labels allow
us to count the number of steps performed within (by) a given class or subsystem.

A label D in a step
〈e,s〉 A−→D 〈e′,s′〉

means, informally, that the step was executed by the code of class D (the meaning of the symbol
A on top of the arrow is explained in the next section). More precisely, the expression that was
selected to be reduced by an elementary rule comes from a method of D. We use the label ε
if the origin of the reduced expression is not known (because, at that point, the context of this
expression is not known; typically this label is overwritten by a subexpression reduction rule for
blocks, that is Rules (B.8)–(B.10)).

To define labeling of transitions, labels are also added to blocks that are obtained from the
method call rules (B.24) and (B.61) (a block is labeled by the name of the class from which the
body of the method comes). Then, the labels of transitions are, roughly speaking, inherited from
the innermost block within which the reduction takes place.

141

B. The Jinja+ and SyncJinja+ languages

Now, for the run of a program P with a subsystem S, we say that a step 〈s1,e1〉 A−→D 〈s2,e2〉 is

performed by S and write 〈s1,e1〉 A−→S 〈s2,e2〉, if D is the name of a class defined in S.

Subexpression reduction rules (Figure B.0) describe the order in which subexpressions are
evaluated. The relation [→] it the extension of→ to expression list (· is the list constructor).

One particular type of expression is a block expression of the form {V : T ; e}C or {V : T ; V :=
Val v; e}C, where V is a local variable (whose scope is this block) of type T and, in the second
variant, with value Val v, e is an expression (e can access the local variable V), and C is a class
name (denoting that the block originates from the code of the class C).

In a block {V : T ; e}C we keep reducing e in a store where V is undefined (i.e, set to “None”),
restoring the original binding of V after each step (Rule B.8). Once the store after the reduction
step binds V to a value v, this binding is remembered by adding an assignment in front of the
reduced expression, yielding {V : T ; V := Val v; e}C (Rule B.9). The final rule (Rule B.10)
reduces such block.

Expression reduction rules (Figure B.1) are applied when the subexpressions are sufficiently
reduced. In rule (B.24) for method invocation, the required nested block structure is built with
the help of the auxiliary function blocks:

blocksC([], [], [],e) = e

blocksC(V ·V s,T ·T s,v · vs,e) =

= {V : T ; V :=v; blocksC(V s,T s,vs,e)}C

(where · is the list constructor and [] denotes the empty list).

Exceptional reduction and exception propagation rules (Figure B.2 and B.3) describe how
exception are thrown and propagated.

Note that we do not have a rule reducing abort. That means that, if this expression is to be
reduced, the execution gets stuck.

The rules given in Figure B.4 and B.5 are the additional rules of Jinja+ concerning static method
invocation and arrays. Figure B.6 describes instead the extension of the (small-step) semantic
rules for the String data type.

SyncJinja+, a multi-threaded and synchronized Java-like language. We extend Jinja+ in
order to model runs of multi-threaded programs.

Following [Loc12], we extend the Jinja+ semantics with rules to reduce the constructs intro-
duced in SyncJinja+, namely start, sync, and insync (Rules B.77-B.87, Figure B.7). These rules
produce the thread actions A ::= /0 | Spawn(a) | Lock(a) |Unlock(a) which are then propagated
to all the other subexpression reduction rules of Jinja+.

We then define the rules of the interleaving (multi-threaded) semantics for SyncJinja+ which
models the run of a multi-threaded program P under a scheduler S .

In order to model the multi-threaded execution we need to introduce a new kind of exception:
IllegalThreadState is thrown to indicate an attempt to spawn a thread from an object of
(subclass of) class T hread which was already used for spawning another thread (see Rule B.92).

142

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

B.1.1. Semantics Rules of Jinja

P ` 〈e,s〉 A−→` 〈e′,s′〉
P ` 〈Cast C e,s〉 A−→` 〈Cast C e′,s′〉

(B.1)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈V := e,s〉 `→ 〈V := e′,s′〉

(B.2)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e.F{D},s〉 `→ 〈e′.F{D},s′〉

(B.3)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e.F{D} := e2,s〉 `→ 〈e′.F{D} := e2,s′〉

(B.4)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈Val v.F{D} := e,s〉 `→ 〈Val v.F{D} := e′,s′〉

(B.5)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e� bop� e2,s〉 `→ 〈e′� bop� e2,s′〉

(B.6)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈Val v1� bop� e,s〉 `→ 〈Val v1� bop� e′,s′〉

(B.7)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = None ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
g(`,D)→ 〈{V : T ;e′}D,(h′, l′(V := l V))〉

(B.8)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = v ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
g(`,D)→ 〈{V : T ; V := Val v;e′}D,(h′, l′(V := l V))〉

(B.9)

P ` 〈e,(h, l(V := v))〉 `→ 〈e′,(h′, l′)〉 l′ V = v′

P ` 〈{V : T ;V := Val v;e}D,(h, l)〉
g(`,D)→ 〈{V : T ; V := Val v′;e′}D,(h′, l′(V := l V))〉

(B.10)

143

B. The Jinja+ and SyncJinja+ languages

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e.M(es),s〉 `→ 〈e′.M(es),s′〉

(B.11)

P ` 〈es,s〉 [`→] 〈es′,s′〉
P ` 〈Val v.M(es),s〉 `→ 〈Val v.M(es′),s′〉

(B.12)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e;e2,s〉 `→ 〈e′;e2,s′〉

(B.13)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈if (e) e1 else e2,s〉 `→ 〈if (e′) e1 else e2,s′〉

(B.14)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈e · es,s〉 [`→] 〈e′ · es,s′〉

P ` 〈es,s〉 [`→] 〈es′,s′〉
P ` 〈Val v · es,s〉 [`→] 〈Val v · es′,s′〉

(B.15)

Figure B.0.: Subexpression reduction rules for Jinja. We define g(`,D) = D, if `= ε; otherwise
g(`,D) = `. The predicate assigned V e is defined as: assigned V e ≡ ∃ v e′. e =
V := Val v; e′ The relation [→] is the extension of→ to expression lists.

144

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

new-Addr h = a P `C has-fields FDT s

P ` 〈new C,(h, l)〉 /0−→ε 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉
(B.16)

hp s a = (D, f s) P ` D�∗ C

P ` 〈Cast C (addr a),s〉 −→ 〈addr a,s〉
(B.17)

P ` 〈Cast C null,s〉 −→ 〈null,s〉 (B.18)

lcl s V = v

P ` 〈Var V,s〉 −→ 〈Val v,s〉
(B.19)

P ` 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉 (B.20)

binop (bop,v1,v2) = v

P ` 〈Val v1� bop� Val v2,s〉 −→ 〈Val v,s〉
(B.21)

hp s a = (C, f s) f s(F,D) = v

P ` 〈addr a.F{D},s〉 −→ 〈Val v,s〉
(B.22)

hp a = (C, f s)

P ` 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉
(B.23)

hp s a = (C, f s) P ` C sees M : T s→ T = (pns, body) in D |vs|= |pns| |T s|= |pns|
P ` 〈addr a.M(map Val vs),s〉 −→ 〈blocksD(this · pns, Class D ·T s, addr a · vs, body),s〉

(B.24)

P ` 〈{V : T ; Val u}D,s〉 D→ 〈Val u,s〉 (B.25)

P ` 〈{V : T ; V := Val v; Val u}D,s〉 D→ 〈Val u,s〉 (B.26)

P ` 〈Val v; e2,s〉 −→ 〈e2,s〉 (B.27)

P ` 〈if(true) e1 else e2,s〉 −→ 〈e1,s〉 (B.28)

P ` 〈if(f alse) e1 else e2,s〉 −→ 〈e2,s〉 (B.29)

P ` 〈while(b) c,s〉 −→ 〈if(b) (c; while(b) c) else unit,s〉 (B.30)

Figure B.1.: Expression reduction rules for Jinja

145

B. The Jinja+ and SyncJinja+ languages

hp s a = (D, f s) ¬ P ` D�∗ C

P ` 〈Cast C(addr a),s〉 /0−→ε 〈THROW ClassCastException, s〉
(B.31)

P ` 〈null.F{D},s〉 /0−→ε 〈THROW NullPointerException, s〉 (B.32)

P ` 〈null.F{D} := Val v,s〉 /0−→ε 〈THROW NullPointerException, s〉 (B.33)

P ` 〈null.M(map Val vs),s〉 /0−→ε 〈THROW NullPointerException, s〉 (B.34)

P ` 〈e,s〉 A−→` 〈e′,s′〉
P ` 〈throw e,s〉 A−→` 〈throw e′,s′〉

(B.35)

P ` 〈throw null,s〉 /0−→ε 〈THROW NullPointerException,s〉 (B.36)

P ` 〈e,s〉 A−→` 〈e′,s′〉
P ` 〈try e catch (C V) e2,s〉 A−→` 〈try e′ catch (C V) e2,s′〉

(B.37)

P ` 〈try Val v catch (C V) e2,s〉 /0−→ε 〈Val v,s〉 (B.38)

hp s a = (D, f s) P ` D �∗ C

P ` 〈try Throw a catch (C V) e2,s〉 /0−→ε 〈{V : Class C; V := addr a; e2},s〉
(B.39)

hp s a = (D, f s) ¬ P ` D �∗ C

P ` 〈try Throw a catch (C V) e2,s〉 /0−→ε 〈Throw a,s〉
(B.40)

Figure B.2.: Exceptional expression reduction for Jinja

146

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

P ` 〈Cast C (throw e),s〉 /0−→ε 〈throw e,s〉 (B.41)

P ` 〈V := throw e,s〉 /0−→ε 〈throw e,s〉 (B.42)

P ` 〈throw e.F{D},s〉 /0−→ε 〈throw e,s〉 (B.43)

P ` 〈throw e.F{D} := e2,s〉 /0−→ε 〈throw e,s〉 (B.44)

P ` 〈Val v.F{D} := throw e,s〉 /0−→ε 〈throw e,s〉 (B.45)

P ` 〈throw e � bop� e2,s〉 /0−→ε 〈throw e,s〉 (B.46)

P ` 〈Val v1 � bop� throw e,s〉 /0−→ε 〈throw e,s〉 (B.47)

P ` 〈{V : T ; Throw a}D,s〉 D→ 〈Throw a,s〉 (B.48)

P ` 〈{V : T ;V := Val v; Throw a}D,s〉 D→ 〈Throw a,s〉 (B.49)

P ` 〈throw e.M(es),s〉 /0−→ε 〈throw e,s〉 (B.50)

P ` 〈Val v.M(map Val vs @ (throw e · es′)),s〉 /0−→ε 〈throw e,s〉 (B.51)

P ` 〈throw e; e2,s〉 /0−→ε 〈throw e,s〉 (B.52)

P ` 〈if(throw e) e1 else e2,s〉 /0−→ε 〈throw e,s〉 (B.53)

P ` 〈throw(throw e),s〉 /0−→ε 〈throw e,s〉 (B.54)

Figure B.3.: Exception propagation rules for Jinja.

147

B. The Jinja+ and SyncJinja+ languages

B.1.2. Semantics Rules of the Jinja+ extension

P ` 〈es,s〉 [A−→`] 〈es′,s′〉
P ` 〈D.M(es),s〉 A−→` 〈D.M(es′),s′〉

(B.55)

P ` 〈e,s〉 A−→` 〈e′,s′〉
P ` 〈e[e2], s〉 A−→` 〈e′[e2], s′〉

(B.56)

P ` 〈e,s〉 A−→` 〈e′,s′〉
P ` 〈(Val v)[e], s〉 A−→` 〈(Val v)[e′], s′〉

(B.57)

P ` 〈D.M(map Val vs @ (throw e · es′)),s〉 /0−→ε 〈throw e,s〉 (B.58)

P ` 〈(throw e)[e′],s〉 /0−→ε 〈throw e,s〉 (B.59)

P ` 〈e′[throw e],s〉 /0−→ε 〈throw e,s〉 (B.60)

Figure B.4.: Subexpression reduction and exception propagation rules for Jinja+.

148

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

P ` D has-static M : T s→ T = (pns, body) |vs|= |pns| |T s|= |pns|
P ` 〈D.M(map Val vs),s〉 /0−→ε 〈blocksD(pns,T s,vs, body),s〉

(B.61)

n≥ 0, new-Addr h = a

P ` 〈new τ[intg(n)], (h, l)〉 /0−→ε 〈addr a,(h(a 7→ initArr(τ ,n)), l)〉
(B.62)

P ` 〈null.F{D},s〉 /0−→ε 〈THROW NullPointerException, s〉 (B.63)

n< 0

P ` 〈new τ[intg(n)], (h, l)〉 /0−→ε 〈THROW NegativeArraySizeException, (h, l)〉
(B.64)

h a = (τ ,m, t), 0≤ n< m, h t(n) = v

P ` 〈(addr a)[intg n], (h, l)〉 /0−→ε 〈Val v, (h, l)〉
(B.65)

h a = (τ ,m, t), ¬(0≤ n< m),

P ` 〈(addr a)[intg n], (h, l)〉 /0−→ε 〈THROW IndexOutOfBoundsException, (h, l)〉
(B.66)

h a = (τ ,m, t),

P ` 〈(addr a).lenght, (h, l)〉 /0−→ε 〈intg m, (h, l)〉
(B.67)

h a = (τ ,m, t), 0≤ n< m, isOfType(v, τ), t ′ = arrayUpdate(t,n,v)

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 /0−→ε 〈unit, (h(a 7→ (τ ,m, t ′)), l)〉
(B.68)

h a = (τ ,m, t), ¬(0≤ n< m),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 /0−→ε 〈THROW IndexOutOfBoundsException, (h, l)〉
(B.69)

h a = (τ ,m, t), 0≤ n< m, ¬isOfType(v, τ),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 /0−→ε 〈THROW ArrayStoreException, (h, l)〉
(B.70)

Figure B.5.: (Exceptional) expression reduction rules for Jinja+, where: Function initArr(τ ,n)
returns an array of length n with elements initialized to the default value of type τ .
Expression P ` D has-static M : T s→ T = (pbs,body) means that in program P,
class D contains declaration of static method M with argument types T s, return type
T , formal arguments pbs, and the body body.

149

B. The Jinja+ and SyncJinja+ languages

B.1.3. Semantics Rules for the data type String

new-Addr h = a

P ` 〈litS str, 〈h, l〉〉 /0−→ε 〈addr a,〈h(a 7→ initString(str)), l〉〉
(B.71)

h(a1) = (ch1,m1), h(a2) = (ch2,m2), new-Addr h = a3, ch3 = concat(ch1,ch2)

P ` 〈(addr a1)+(addr a2),〈h, l〉 /0−→ε 〈(addr a3),〈h(a3 7→ (ch3,m1 +m2)), l〉〉〉
(B.72)

h(a) = (ch,m)

P ` 〈(addr a).lenght(), 〈h, l〉〉 /0−→ε 〈intg m,〈h, l〉〉
(B.73)

h(a) = (ch,m), 0≤ n< m, ch[n] = c

P ` 〈(addr a).charAt(intg n),〈h, l〉〉 /0−→ε 〈char c,〈h, l〉〉
(B.74)

h(a) = (ch,m), ¬(0≤ n< m)

P ` 〈(addr a).charAt(intg n),〈h, l〉〉 /0−→ε 〈THROW IndexOutOfBoundsException,〈h, l〉〉
(B.75)

h(a) = (ch,m), new-Addr h = a′

P ` 〈(addr a).getBytes(),〈h, l〉〉 /0−→ε 〈addr a′,〈h(a 7→ encodeToByte(ch,m), l〉〉
(B.76)

Figure B.6.: Expression reduction rules for the String data type, where: Function initString(str)
returns a pair of an array ch containing the charachers of the string literal str and
its length m. Function concat(ch1,ch2) creates a new array of characters where the
latter array ch2 is concatenated to the former one ch1. Function encodeToByte(ch,m)
converts the string (ch,m) in a new array of bytes.

150

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

B.1.4. Semantics Rules of the SyncJinja+ extension

P ` 〈e,(h, l)〉 A−→` 〈e′,(h′, l′)〉
P ` 〈start(e),(h, l)〉 A−→` 〈start(e′),(h′, l′)〉

(B.77)

P ` 〈e1,(h, l)〉 A−→` 〈e′1,(h′, l′)〉
P ` 〈sync(e1){e2},(h, l)〉 A−→` 〈sync(e′1){e2},(h′, l′)〉

(B.78)

P ` 〈e,(h, l)〉 A−→` 〈e′,(h′, l′)〉
P ` 〈insync(a){e},(h, l)〉 A−→` 〈insync(a){e′},(h′, l′)〉

(B.79)

P ` 〈start(addr a),(h, l)〉 Spawn(a)−−−−−→ε 〈unit,(h, l)〉 (B.80)

P ` 〈sync(addr a){e},(h, l)〉 Lock(a)−−−−→ε 〈insync(a){e},(h, l)〉 (B.81)

P ` 〈insync(a){Val v},(h, l)〉 Unlock(a)−−−−−→ε 〈Val v,(h, l)〉 (B.82)

P ` 〈start(null),(h, l)〉 /0−→ε 〈THROW NullPointerException,(h, l)〉 (B.83)

P ` 〈sync(null){e},(h, l)〉 /0−→ε 〈THROW NullPointerException,(l,h)〉 (B.84)

P ` 〈start(Throw a),(h, l)〉 /0−→` 〈Throw a,(l,h)〉 (B.85)

P ` 〈sync(Throw a){e},(h, l)〉 /0−→` 〈Throw a,(h, l)〉 (B.86)

P ` 〈insync(a){Throw a1},(h, l)〉
Unlock(a)−−−−−→ε 〈Throw a1,(h, l)〉 (B.87)

Figure B.7.: Rules for the extension to SyncJinja+.

151

B. The Jinja+ and SyncJinja+ languages

lS (nextThread) = null P ` 〈e,(h, l(actThreads := Act(〈Π,h, lock〉)))〉S /0−→` 〈e′,(h′, l′)〉S
P ` 〈Π,h, lock〉〈e,(l,h)〉S =⇒` 〈Π,h, lock〉〈e′,(l′,h′)〉S

(B.88)

lS (nextThread) = tIDk P ` 〈e,(h, l)〉 /0−→` 〈e′,(h′, l′)〉 ` 6∈ A

P ` 〈Π∪{tIDk 7→ 〈e, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒` 〈Π∪{tIDk 7→ 〈e′, l′〉},h′, lock〉〈e,(l(nextThread:=null),h)〉S

(B.89)

lS (nextThread) = tIDk P ` 〈e,(h, l)〉 /0−→` 〈e′,(h′, l′)〉 ` ∈ A

P ` 〈Π∪{tIDk 7→ 〈e, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒` 〈Π∪{tIDk 7→ 〈e′, l′〉},h′, lock〉〈e,(l,h)〉S

(B.90)

lS (nextThread) = tIDk P ` 〈e,(h, l)〉 Spawn(a)−−−−−→ε 〈e′,(h′, l′)〉
h(a) = (C, f s) P ` C �∗ T hread tID j 6∈ dom(Π)∪{tIDk} l′′ := static(l)

P ` 〈Π∪{tIDk 7→ 〈e, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒ε 〈Π∪{tIDk 7→ 〈e′, l′〉}∪{tID j 7→ 〈a.run(), l′′〉},h′, lock〉〈e,(l(nextThread:=null),h)〉S

(B.91)

lS (nextThread) = tIDk P ` 〈eJstart(a);e0K,(h, l)〉
Spawn(a)−−−−−→ε 〈e′,(h′, l′)〉

h(a) = (C, f s) P ` C �∗ T hread tID j ∈ dom(Π)∪{tIDk}
P ` 〈Π∪{tIDk 7→ 〈eJstart(a);e0K, l〉},h, lock〉〈e,(l,h)〉S

tIDk=⇒ε 〈Π∪{tIDk 7→ 〈eJTHROW IllegalThreadState;e0K, l〉}},h, lock〉
〈e,(l(nextThread:=null),h)〉S

(B.92)

lS (nextThread) = tIDk P ` 〈e,(h, l)〉 Lock(a)−−−−→ε 〈e′,(h′, l′)〉

a 6∈ dom(lock)∨ fst(lock(a)) = tIDk lock′ :=

{
lock(a 7→ (tIDk,0)) i f a 6∈ dom(lock)
lock(a 7→ (tIDk,snd(lock(a))+1) else

P ` 〈Π∪{tIDk 7→ 〈e, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒ε 〈Π∪{tIDk 7→ 〈e′, l′〉},h′, lock′〉〈e,(l(nextThread:=null),h)〉S

(B.93)

152

B.1. Small-Step Semantics of Jinja, Jinja+, and SyncJinja+

lS (nextThread) = tIDk P ` 〈e,(h, l)〉 Unlock(a)−−−−−→ε 〈e′,(h′, l′)〉

lock′ :=

{
lock \{a 7→ (tIDk,0)} i f snd(lock(a)) = 0
lock(a 7→ (tIDk,snd(lock(a))−1) else

P ` 〈Π∪{tIDk 7→ 〈e, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒ε 〈Π∪{tIDk 7→ 〈e′, l′〉},h′, lock′〉〈e,(l(nextThread:=null),h)〉S

(B.94)

lS (nextThread) = tIDk

P ` 〈Π∪{tIDk 7→ 〈abort, l〉},h, lock〉〈e,(l,h)〉S
tIDk=⇒ε 〈Π∪{tIDk 7→ 〈unit, l〉},h, lock〉〈unit,(l,h)〉S

(B.95)

Figure B.7.: Expression reduction rules for the multi-threaded semantics of SyncJinja+, where:
Π is the current thread pool (with abuse of notation we also refer to Π as the
thread pool minus the thread whose identifier is the bit string tIDk), while A ::=
/0 | Spawn(a) | Lock(a) |Unlock(a) are the possible thread actions which the single-
threaded semantics has to transmit to the multi-threaded one, Rules B.88-B.95. The
only objects through which a new thread can be spawned are either objects of class
T hread or its subclasses: We assume this policy being statically enforced at compile
time. Moreover, we assume that each object of class T hread has an unique bit string
(for instance, the object’s hash code value) used as thread identifier. Expression
eJe0K makes explicit that e0 is the expression in the innermost block of e, i.e., the
(sub)expression of e which is going to be reduced in the next step. Functions fst(a,b)
and snd(a,b) return the first and the second element of a pair, respectively. Function
static(l) returns the static fields in l, i.e., the subset of the map l containing those
elements whose variable names are of type D. f , for some class D.

153

C. The Environment/Adversary

In all the ideal functionalities and in all the case studies for which we established noninterference
properties, we make use of the class Environment which plays the role of the active adversary
in the universal composability model: Besides controlling the network, the adversary also
subsumes the not necessarily trusted external libraries (e.g., the libraries implementing the
cryptographic primitives) and, depending on the scenario, other dishonest parties such as dishonest
clients, voters, or servers. Therefore, in the analysis of our case studies what we identify as the
environment/adversary is not only the class Environment, but also all the external libraries and
entities interacting with the code under verification. The methods of this classes become then
wrappers passing their arguments to the class Environment and returning the data returned, in
turn, from the Environment. An example of how these methods are implemented is already given
in Figures 2.3 and 2.4 of Section 2.6.1 and in Figure 2.6 of Section 2.6.3.

In what follow, we present the interface of the eight methods through which the communication
with the Environment occurs.

1 // data passed to the Environment

2 public static void untrustedOutput(int x);

3 public static void untrustedOutputString(String s);

4 public static void untrustedOutputLong(long y);

5 public static void untrustedOutputMessage(byte[] t);

6

7 // data returned from the Environment

8 public static int untrustedInput();

9 public static String untrustedOutputString();

10 public static long untrustedInputLong();

11 public static byte[] untrustedInputMessage();

The methods untrustedOutput, untrustedInput, untrustedOutputString, and
untrutedInputString are specified in Figure 2.2 of Section 2.6.1 and in Figure 2.5 of
Section 2.6.3, since their implementation is part the proof technique for proving I-noninterference
and it is essential to prove its results, namely Theorems 2.3, 2.4, and 2.5. Instead,
the methods untrustedOutputLong, untrustedInputLong, untrustedInputMessage, and
untrustedOutputMessage are not specified anywhere else, since they straightforwardly relying
on the methods untrustedInput and untrustedOutput. In particular, untrustedInputMessage
and untrustedOutputMessage are used for the communication through the byte array data type
which is used in all the cryptographic operations and in all the exchange of data through the
network. For the sake of completeness, we provide here their implementation.

1 public static byte[] untrustedInputMessage() {

2 int len = untrustedInput();

3 if (len<0) return null;

4 byte[] returnval = new byte[len];

5 for (int i = 0; i < len; i++)

155

C. The Environment/Adversary

6 returnval[i] = (byte) untrustedInput();

7 return returnval;

8 }

9

10 public static void untrustedOutputMessage(byte[] t) {

11 untrustedOutput(t.length);

12 for (int i = 0; i < t.length; i++) {

13 untrustedOutput(t[i]);

14 }

15 }

1 public static long untrustedInputLong(){

2 int x1=untrustedInput(); // first 32 bits

3 int x2=untrustedInput(); // last 32 bits

4 return (long) x2 << 32 | x1 & 0xFFFFFFFFL;

5 }

6

7 public static void untrustedOutputLong(long y){

8 untrustedOutput((int) y); // first 32 bits

9 untrustedOutput((int) y >> 32); // last 32 bits

10 }

156

D. Real and Ideal Cryptographic Functionalities

We present here the implementation in Java of the cryptographic functionalities discussed in
Chapter 4. In what follows, we note that we omit the declarations of:

– the method getZeroMessage that for a integer n returns a message of length n consisting of zeros;

– the method copyOf that returns a copy of the given message;

– the class MessagePairList that stores pairs of messages an offers the following methods: add (to
add a message pair), contains (to check, for a message m, whether there is a pair (m′,m) in the
list), and lookup (which, for a message m, returns m′ as above, if it exists).

– the class CryptoLib which, for the real functionalities, provides the actual implementation of
the cryptographic operations, while for the ideal functionalities, is implemented as part of the
environment (see Appendix C).

The implementation of these methods and classes as well as of all the cryptographic functionalities
listed below can be found in [TSK13].

Finally, we notice that the code exhibited here falls into the fragment of Java captured by the
extensions of the Jinja language presented in Appendix B.

D.1. The Public Key Infrastructure

Ideal Functionality.
1 public class IdealPKI {

2

3 static void register(int id, byte[] domain, byte[] key) throws PKIError, NetworkError {

4 if (Environment.untrustedInput()==0) throw new NetworkError();

5 if (registered(id, domain)) throw new PKIError();

6 entries.add(id, domain, key);

7 }

8 static byte[] getKey(int id, byte[] domain) throws PKIError, NetworkError {

9 if (Environment.untrustedInput()==0) throw new NetworkError();

10 byte[] key = entries.getKey(id, domain);

11 if (key == null) throw new PKIError();

12 return key;

13 }

14 static private boolean registered(int id, byte[] domain) {

15 return entries.getKey(id, domain) != null;

16 }

17 /// IMPLEMENTATION ///

18 private static class Entry {

19 final int id;

157

D. Real and Ideal Cryptographic Functionalities

20 byte[] domain;

21 byte[] key;

22

23 Entry(int id, byte[] domain, byte[] key) {

24 this.id = id;

25 this.domain = domain;

26 this.key = key;

27 }

28 }

29 private static class EntryList {

30 private static class Node {

31 Entry entry;

32 Node next;

33 Node(Entry entry, Node next) {

34 this.entry = entry;

35 this.next = next;

36 }

37 }

38

39 private Node first = null;

40

41 void add(int id, byte[] domain, byte[] key) {

42 first = new Node(new Entry(id,domain,key), first);

43 }

44 byte[] getKey(int id, byte[] domain) {

45 for(Node node=first; node!=null; node = node.next)

46 if (node.entry.id==id && MessageTools.equal(node.entry.domain, domain))

47 return node.entry.key;

48 return null;

49 }

50 }

51 static private EntryList entries = new EntryList();

52 }

Real Functionality.
1 public class RealPKI {

2

3 public static class Error extends Exception {}

4

5 private static PKIServer pki = null;

6

7 public static void useRemoteMode() {

8 pki = new PKIServerRemote();

9 System.out.println("Working in remote mode");

10 }

11

12 public static void useLocalMode() {

13 pki = new PKIServerLocal();

14 System.out.println("Working in local mode");

15 }

16

17 public static void register(int id, byte[] domain, byte[] pubKey)

18 throws Error, NetworkError {

158

D.2. PKIEnc: Public Key Encryption with a Public Key Infrastructure

19 if (pki==null){

20 System.err.println("ERROR: PKI not initialized!\n"

21 + "Call ‘RealPKI.useRemoteMode’ or ‘RealPKI.useLocalMode’ first.");

22 }

23 pki.register(id, domain, pubKey);

24 }

25

26 public static byte[] getKey(int id, byte[] domain)

27 throws Error, NetworkError {

28 if (pki==null)

29 System.err.println("ERROR: PKI not initialized!");

30 return pki.getKey(id, domain);

31 }

32 }

For the class RealPKI we omit the declaration of the Java-interface PKIServer as well as of the
classes PKIServerRemote, which allows one to register and retrieve a public key over the network,
and PKIServerLocal, which instead maintains the (id, publicKey) pairs on a local database. The
declaration of these classes and interface can be found in [TSK13].

D.2. PKIEnc: Public Key Encryption with a Public Key Infrastructure

Ideal Functionality.
1 public class Encryptor {

2 protected byte[] publicKey;

3 public Encryptor(byte[] publicKey) {

4 this.publicKey = publicKey;

5 }

6 public byte[] encrypt(byte[] message) {

7 return copyOf(CryptoLib.pke_encrypt(copyOf(message),

8 copyOf(publicKey)));

9 }

10 public byte[] getPublicKey() {

11 return copyOf(publicKey);

12 }

13 protected Encryptor copy() {

14 return new Encryptor(publicKey);

15 }

16 }

—

1 public final class UncorruptedEncryptor extends Encryptor {

2 private Decryptor.EncryptionLog log;

3

4 UncorruptedEncryptor(byte[] publicKey, Decryptor.EncryptionLog log) {

5 super(publicKey);

6 this.log = log;

7 }

8 public byte[] encrypt(byte[] message) {

9 byte[] randomCipher = null;

159

D. Real and Ideal Cryptographic Functionalities

10 while(randomCipher==null || log.containsCiphertext(randomCipher)) {

11 randomCipher = copyOf(CryptoLib.pke_encrypt(getZeroMessage(message.length),

12 copyOf(publicKey)));

13 }

14 log.add(copyOf(message), randomCipher);

15 return copyOf(randomCipher);

16 }

17 protected Encryptor copy() {

18 return new UncorruptedEncryptor(publicKey, log);

19 }

20 }

—

21 public class Decryptor {

22 private byte[] publicKey;

23 private byte[] privateKey;

24 private EncryptionLog log;

25

26 public Decryptor() {

27 KeyPair keypair = CryptoLib.pke_generateKeyPair();

28 this.privateKey = copyOf(keypair.privateKey);

29 this.publicKey = copyOf(keypair.publicKey);

30 this.log = new EncryptionLog();

31 }

32 public byte[] decrypt(byte[] message) {

33 byte[] messageCopy = copyOf(message);

34 if (!log.containsCiphertext(messageCopy)) {

35 return copyOf(CryptoLib.pke_decrypt(copyOf(privateKey), messageCopy));

36 } else {

37 return copyOf(log.lookup(messageCopy));

38 }

39 }

40 public Encryptor getEncryptor() {

41 return new UncorruptedEncryptor(publicKey, log);

42 }

43 }

—

44 public class RegisterEnc {

45 public static void registerEncryptor(Encryptor encryptor, int id,

46 byte[] pki_domain) throws PKIError, NetworkError

47 {

48 if(RegisterEncSim.register(id, pki_domain, encryptor.getPublicKey()))

49 throw new NetworkError();

50 if(registeredAgents.fetch(id, pki_domain) != null)

51 throw new PKIError();

52 registeredAgents.add(id, pki_domain, encryptor);

53 }

54 public static Encryptor getEncryptor(int id, byte[] pki_domain)

55 throws PKIError, NetworkError

56 {

57 if(RegisterEncSim.getEncryptor(id, pki_domain))

58 throw new NetworkError();

160

D.2. PKIEnc: Public Key Encryption with a Public Key Infrastructure

59 Encryptor enc = registeredAgents.fetch(id, pki_domain);

60 if (enc == null)

61 throw new PKIError();

62 return enc.copy();

63 }

64

65 public static class PKIError extends Exception { }

66

67 /// IMPLEMENTATION

68 private static class RegisteredAgents {

69 private static class EncryptorList {

70 final int id;

71 byte[] domain;

72 Encryptor encryptor;

73 EncryptorList next;

74 EncryptorList(int id, byte[] domain, Encryptor encryptor,

75 EncryptorList next) {

76 this.id = id;

77 this.domain = domain;

78 this.encryptor= encryptor;

79 this.next = next;

80 }

81 }

82 private EncryptorList first = null;

83

84 public void add(int id, byte[] domain, Encryptor encr) {

85 first = new EncryptorList(id, domain, encr, first);

86 }

87

88 Encryptor fetch(int ID, byte[] domain) {

89 for(EncryptorList node = first; node != null; node = node.next) {

90 if(ID == node.id && MessageTools.equal(domain, node.domain))

91 return node.encryptor;

92 }

93 return null;

94 }

95 }

96

97 private static RegisteredAgents registeredAgents = new RegisteredAgents();

98 }

Real Functionality.
1 public class Encryptor {

2 private byte[] publicKey;

3

4 public Encryptor(byte[] publicKey) {

5 this.publicKey = publicKey;

6 }

7 public byte[] encrypt(byte[] message) {

8 return copyOf(CryptoLib.pke_encrypt(copyOf(message),

9 copyOf(publicKey)));

10 }

11 public byte[] getPublicKey() {

161

D. Real and Ideal Cryptographic Functionalities

12 return copyOf(publicKey);

13 }

14 }

—

15 public class Decryptor {

16 byte[] publicKey;

17 byte[] privateKey;

18

19 public Decryptor() {

20 KeyPair keypair = CryptoLib.pke_generateKeyPair();

21 this.privateKey = copyOf(keypair.privateKey);

22 this.publicKey = copyOf(keypair.publicKey);

23 }

24 Decryptor(byte[] pubk, byte[] prvkey) {

25 this.publicKey = pubk;

26 this.privateKey = prvkey;

27 }

28 public byte[] decrypt(byte[] message) {

29 return copyOf(CryptoLib.pke_decrypt(copyOf(message),

30 copyOf(privateKey)));

31 }

32 public Encryptor getEncryptor() {

33 return new Encryptor(copyOf(publicKey));

34 }

35 }

—

36 public class RegisterEnc {

37 public static void registerEncryptor(Encryptor encryptor, int id,

38 byte[] pki_domain) throws PKIError, NetworkError

39 {

40 try {

41 PKI.register(id, pki_domain, encryptor.getPublicKey());

42 } catch (PKI.Error e) {

43 throw new PKIError();

44 }

45 }

46 public static Encryptor getEncryptor(int id, byte[] pki_domain)

47 throws PKIError, NetworkError

48 {

49 try {

50 byte[] key = PKI.getKey(id, pki_domain);

51 return new Encryptor(key);

52 } catch (PKI.Error e) {

53 throw new PKIError();

54 }

55 }

56

57 public static class PKIError extends Exception { }

58 }

162

D.3. PKISig: Digital Signature with a Public Key Infrastructure

D.2.1. Ideal Functionality for Public Key Encryption without Corruption

1 public final class Encryptor {

2 private Decryptor.EncryptionLog log;

3

4 Encryptor(byte[] publicKey, Decryptor.EncryptionLog log) {

5 super(publicKey);

6 this.log = log;

7 }

8

9 public byte[] encrypt(byte[] message) {

10 byte[] randomCipher = null;

11 while(randomCipher==null || log.containsCiphertext(randomCipher)) {

12 randomCipher = copyOf(CryptoLib.pke_encrypt(getZeroMessage(message.length),

13 copyOf(publicKey)));

14 }

15 log.add(copyOf(message), randomCipher);

16 return copyOf(randomCipher);

17 }

18

19 protected Encryptor copy() {

20 return new Encryptor(publicKey, log);

21 }

22 }

We notice that this code has already been presented in [KTG12a]. The class Decryptor is as in the
functionality with corruption (see Appendix D.2).

D.3. PKISig: Digital Signature with a Public Key Infrastructure

Ideal Functionality.
1 public class Verifier {

2 protected byte[] verifKey;

3

4 public Verifier(byte[] verifKey) {

5 this.verifKey = verifKey;

6 }

7 public boolean verify(byte[] signature, byte[] message) {

8 return CryptoLib.verify(message, signature, verifKey);

9 }

10 public byte[] getVerifKey() {

11 return copyOf(verifKey);

12 }

13 protected Verifier copy() {

14 return new Verifier(verifKey);

15 }

16 }

17 public final class UncorruptedVerifier extends Verifier {

18 private Signer.Log log;

19

20 UncorruptedVerifier(byte[] verifKey, Signer.Log log) {

163

D. Real and Ideal Cryptographic Functionalities

21 super(verifKey);

22 this.log = log;

23 }

24 public boolean verify(byte[] signature, byte[] message) {

25 return CryptoLib.verify(message, signature, verifKey)

26 && log.contains(message);

27 }

28 protected Verifier copy() {

29 return new UncorruptedVerifier(verifKey, log);

30 }

31 }

32 final public class Signer {

33 private byte[] verifKey;

34 private byte[] signKey;

35 private Log log;

36

37 public Signer() {

38 KeyPair keypair = CryptoLib.generateSignatureKeyPair();

39 this.signKey = copyOf(keypair.privateKey);

40 this.verifKey = copyOf(keypair.publicKey);

41 this.log = new Log();

42 }

43 public byte[] sign(byte[] message) {

44 byte[] signature = CryptoLib.sign(copyOf(message), copyOf(signKey));

45 if (signature == null) return null;

46 if(!CryptoLib.verify(copyOf(message), copyOf(signature), copyOf(verifKey)))

47 return null;

48 log.add(copyOf(message));

49 return copyOf(copyOf(signature));

50 }

51 public Verifier getVerifier() {

52 return new UncorruptedVerifier(verifKey, log);

53 }

54 }

55 public class RegisterSig {

56

57 public static void registerVerifier(Verifier verifier, int id,

58 byte[] pki_domain) throws PKIError, NetworkError

59 {

60 if(RegisterSigSim.register(id, pki_domain, verifier.getVerifKey()))

61 throw new NetworkError();

62 if(registeredAgents.fetch(id, pki_domain) != null)

63 throw new PKIError();

64 registeredAgents.add(id, pki_domain, verifier);

65 }

66 public static Verifier getVerifier(int id, byte[] pki_domain)

67 throws PKIError, NetworkError

68 {

69 if(RegisterSigSim.getVerifier(id, pki_domain)) throw new NetworkError();

70 Verifier verif = registeredAgents.fetch(id, pki_domain);

71 if (verif == null)

72 throw new PKIError();

164

D.3. PKISig: Digital Signature with a Public Key Infrastructure

73 return verif.copy();

74 }

75

76 public static class PKIError extends Exception { }

77

78 /// IMPLEMENTATION ///

79 private static class RegisteredAgents {

80 private static class VerifierList {

81 final int id;

82 byte[] domain;

83 Verifier verifier;

84 VerifierList next;

85 VerifierList(int id, byte[] domain, Verifier verifier,

86 VerifierList next)

87 {

88 this.id = id;

89 this.domain = domain;

90 this.verifier = verifier;

91 this.next = next;

92 }

93 }

94

95 private VerifierList first = null;

96

97 public void add(int id, byte[] domain, Verifier verif) {

98 first = new VerifierList(id, domain, verif, first);

99 }

100 Verifier fetch(int ID, byte[] domain) {

101 for(VerifierList node = first; node != null; node = node.next) {

102 if(ID == node.id && MessageTools.equal(domain, node.domain))

103 return node.verifier;

104 }

105 return null;

106 }

107 }

108

109 private static RegisteredAgents registeredAgents = new RegisteredAgents();

110 }

Real Functionality.
1 public class Verifier {

2 private byte[] verifKey;

3

4 public Verifier(byte[] verifKey) {

5 this.verifKey = verifKey;

6 }

7 public boolean verify(byte[] signature, byte[] message) {

8 return CryptoLib.verify(copyOf(message), copyOf(signature), copyOf(verifKey));

9 }

10 public byte[] getVerifKey() {

11 return copyOf(verifKey);

12 }

13 }

165

D. Real and Ideal Cryptographic Functionalities

—

14 public class Signer {

15 byte[] verifKey;

16 byte[] signKey;

17

18 public Signer() {

19 KeyPair keypair = CryptoLib.generateSignatureKeyPair();

20 this.signKey = copyOf(keypair.privateKey);

21 this.verifKey = copyOf(keypair.publicKey);

22 }

23 Signer(byte[] verifKey, byte[] signKey) {

24 this.verifKey = verifKey;

25 this.signKey = signKey;

26 }

27 public byte[] sign(byte[] message) {

28 byte[] signature = CryptoLib.sign(copyOf(message), copyOf(signKey));

29 return copyOf(signature);

30 }

31 public Verifier getVerifier() {

32 return new Verifier(verifKey);

33 }

34 }

—

35 public class RegisterSig {

36 public static void registerVerifier(Verifier verifier, int id,

37 byte[] pki_domain) throws PKIError, NetworkError

38 {

39 try {

40 PKI.register(id, pki_domain, verifier.getVerifKey());

41 } catch (PKI.Error e) {

42 throw new PKIError();

43 }

44 }

45 public static Verifier getVerifier(int id, byte[] pki_domain)

46 throws PKIError, NetworkError

47 {

48 try {

49 byte[] key = PKI.getKey(id, pki_domain);

50 return new Verifier(key);

51 } catch (PKI.Error e) {

52 throw new PKIError();

53 }

54 }

55

56 public static class PKIError extends Exception { }

57 }

D.3.1. Ideal Functionality for Digital Signatures without Corruption

1 public final class Verifier {

166

D.4. Private Symmetric Encryption

2 private Signer.Log log;

3

4 Verifier(byte[] verifKey, Signer.Log log) {

5 super(verifKey);

6 this.log = log;

7 }

8 public boolean verify(byte[] signature, byte[] message) {

9 // verify both that the signature is correct

10 // and that the message has been logged as signed

11 return CryptoLib.verify(message, signature, verifKey)

12 && log.contains(message);

13 }

14 protected Verifier copy() {

15 return new Verifier(verifKey, log);

16 }

17 }

The class Signer is as in the functionality with corruption (Appendix D.3).

D.4. Private Symmetric Encryption

Ideal Functionality.
1 public class SymEnc {

2 private byte[] key;

3 private EncryptionLog log;

4

5 public SymEnc() {

6 key = CryptoLib.symkey_generateKey();

7 }

8 public byte[] encrypt(byte[] plaintext) {

9 byte[] randomCipher = null;

10 while(randomCipher==null || log.containsCiphertext(randomCipher)) {

11 randomCipher = copyOf(CryptoLib.symkey_encrypt(copyOf(key),

12 getZeroMessage(plaintext.length)));

13 }

14 log.add(copyOf(plaintext), randomCipher);

15 return copyOf(randomCipher);

16 }

17 public byte[] decrypt(byte[] ciphertext) {

18 if (!log.containsCiphertext(ciphertext)) {

19 return copyOf(CryptoLib.symkey_decrypt(copyOf(key), copyOf(ciphertext)));

20 } else {

21 return copyOf(log.lookup(ciphertext));

22 }

23 }

24 }

Real Functionality.

1 public class SymEnc {

2 private byte[] key;

3

4 public SymEnc() {

167

D. Real and Ideal Cryptographic Functionalities

5 key = CryptoLib.symkey_generateKey();

6 }

7 public byte[] encrypt(byte[] plaintext) {

8 return CryptoLib.symkey_encrypt(copyOf(key), copyOf(plaintext));

9 }

10 public byte[] decrypt(byte[] ciphertext) {

11 return CryptoLib.symkey_decrypt(copyOf(key), copyOf(ciphertext));

12 }

13 }

D.5. Nonce Generation

Ideal Functionality.
1 public class NonceGen {

2 public NonceGen() {

3 }

4 public byte[] newNonce() {

5 byte[] nonce = null;

6 // keep asking for a nonce until we get a fresh value

7 while(nonce==null || log.contains(nonce)) {

8 nonce = CryptoLib.newNonce();

9 }

10 log.add(nonce); // log the nonce

11 return nonce;

12 }

13 }

Real Functionality.

1 public class NonceGen {

2 public NonceGen() {

3 }

4 public byte[] newNonce() {

5 return CryptoLib.newNonce();

6 }

7 }

168

E. Case Studies

In this section, we present the part of code of the case studies which have been proved being
noninterferent either only by the fully automatic tool Joana or by combining Joana with the
interactive theorem prover KeY.

As for the cryptographic functionalities, we notice that all the code exhibited here falls into the
fragment of Java captured by the extensions of the Jinja language presented in Appendix B.

E.1. A Cloud Storage System

In this section, we report the full code of the setup and of the client, the two main classes which
have been formally verified (along with the cryptographic functionalities proposed in Appendices
D.2-D.5 and the class modeling the environment in Appendix C) by the Joana tool.

The Setup class.
1 public class Setup {

2 public static final int HONEST_CLIENT_ID = 100;

3

4 public static void main(String args[]) {

5 setup(true);

6 }

7

8 public static void setup(boolean secret_bit) {

9 // Create and register the client

10 // (we consider one honest client; the remaining clients will be subsumed

11 // by the adversary)

12 SymEnc client_symenc = new SymEnc();

13 Decryptor client_decryptor = new Decryptor();

14 Signer client_signer = new Signer();

15 Client client = null;

16 try {

17 RegisterEnc.registerEncryptor(client_decryptor.getEncryptor(),

18 HONEST_CLIENT_ID, Params.PKI_ENC_DOMAIN);

19 RegisterSig.registerVerifier(client_signer.getVerifier(),

20 HONEST_CLIENT_ID, Params.PKI_DSIG_DOMAIN);

21 client = new Client(HONEST_CLIENT_ID, client_symenc,

22 client_decryptor, client_signer, new NetworkReal());

23 } catch (RegisterEnc.PKIError e) { // encryptor registration failed -- id already registered

24 return;

25 } catch (RegisterSig.PKIError e) { // verifier registration failed -- id already registered

26 return;

27 } catch (NetworkError e) { // registration failed -- problems with the connection

28 return;

29 }

30

169

E. Case Studies

31 while(Environment.untrustedInput() != 0) {

32 // the adversary decides what to do:

33 int action = Environment.untrustedInput();

34 switch (action) {

35 case 0: // client.store

36 byte[] label = Environment.untrustedInputMessage();

37 byte[] msg1 = Environment.untrustedInputMessage();

38 byte[] msg2 = Environment.untrustedInputMessage();

39 if (msg1.length != msg2.length) break;

40 byte[] msg = new byte[msg1.length];

41 for (int i=0; i<msg1.length; ++i) {

42 try {

43 msg[i] = (secret_bit ? msg1[i] : msg2[i]);

44 } catch (Exception e) { }

45 }

46 try {

47 client.store(msg, label);

48 } catch(Exception e) {}

49 break;

50 case 1: // client.retrieve

51 label = Environment.untrustedInputMessage();

52 try {

53 client.retrieve(label); // the result (the retrieved message) is ignored

54 }

55 catch(Exception e) {}

56 break;

57 case 2: // registering a corrupted encryptor

58 byte[] pub_key = Environment.untrustedInputMessage();

59 int enc_id = Environment.untrustedInput();

60 Encryptor corrupted_encryptor = new Encryptor(pub_key);

61 try {

62 RegisterEnc.registerEncryptor(corrupted_encryptor, enc_id, Params.PKI_ENC_DOMAIN);

63 } catch (Exception e) {}

64 break;

65 case 3: // registering a corrupted verifier

66 byte[] verif_key = Environment.untrustedInputMessage();

67 int verif_id = Environment.untrustedInput();

68 Verifier corrupted_verifier = new Verifier(verif_key);

69 try {

70 RegisterSig.registerVerifier(corrupted_verifier, verif_id, Params.PKI_DSIG_DOMAIN);

71 } catch (Exception e) {}

72 break;

73 }

74 }

75 }

76 }

The Client class.
77 public class Client {

78 private SymEnc symenc;

79 private Decryptor decryptor;

80 private Signer signer;

81 private Verifier verifier;

170

E.1. A Cloud Storage System

82 private Encryptor server_enc;

83 private Verifier server_ver;

84

85 private int userID;

86 private LabelList lastCounter;

87 private NonceGen nonceGen;

88

89 private NetworkInterface net;

90

91 public Client(int userID, SymEnc symenc, Decryptor decryptor, Signer signer, NetworkInterface net)

92 throws RegisterEnc.PKIError, RegisterSig.PKIError, NetworkError {

93 this.symenc = symenc;

94 this.decryptor = decryptor;

95 this.signer = signer;

96 this.verifier = signer.getVerifier();

97 this.server_enc = RegisterEnc.getEncryptor(Params.SERVER_ID, Params.PKI_ENC_DOMAIN);

98 this.server_ver = RegisterSig.getVerifier(Params.SERVER_ID, Params.PKI_DSIG_DOMAIN);

99 this.userID = userID;

100 this.net=net;

101 lastCounter = new LabelList(); // for each label maintains the last counter

102 nonceGen = new NonceGen();

103 }

104

105 public void store(byte[] msg, byte[] label) throws NetworkError, StorageError {

106 int serverLastCounter = getServerLastCounter(label);

107 int ourCounter = lastCounter.get(label);

108 // note that if ’label’ has not been used yet, lastCounter.get(label) returns -1

109 if(serverLastCounter<ourCounter)

110 // the server is misbehaving (his counter is expected to be higher)

111 throw new IncorrectReply();

112 else if(serverLastCounter>ourCounter){

113 // we aren’t up to date with the current counter stored in the server

114 lastCounter.put(label, serverLastCounter);

115 throw new CounterOutOfDate();

116 }

117 // otherwise they are the same!

118 int counter = ourCounter+1;

119

120 byte[] encrMsg = symenc.encrypt(msg);

121

122 // Encoding the message that has to be signed: (STORE, (label, (counter, encMsg)))

123 byte[] counter_msg = MessageTools.concatenate(MessageTools.intToByteArray(counter), encrMsg);

124 byte[] label_counter_msg = MessageTools.concatenate(label, counter_msg);

125 byte[] store_label_counter_msg = MessageTools.concatenate(Params.STORE, label_counter_msg);

126 /* HANDLE THE SERVER RESPONSE

127 * Expected server’s responses (encrypted with the client’s public key):

128 * ((signClient, STORE_OK), signServer) or

129 * ((signClient, (STORE_FAIL, lastCounter)), signServer)

130 * where:

131 * - signServer: signature of all the previous tokens

132 * - signClient: signature of the message for which we are receiving the response

133 * - lastCounter: the higher value of the counter associated with label, as stored by the server

134 */

171

E. Case Studies

135 ServerResponse response = sendPayloadToServer(store_label_counter_msg);

136 // response.info is either (STORE_OK, {}) or (STORE_FAIL, lastCounter)

137 if(Arrays.equals(response.tag, Params.STORE_OK)){ // message successfully stored

138 // we can save the counter used to send the message

139 lastCounter.put(label, counter);

140 return;

141 }

142 else if(Arrays.equals(response.tag, Params.STORE_FAIL)){

143 // the server hasn’t accepted the request, because it claims

144 byte[] serverCounter = response.info; // to have a higher counter for this label

145 if(serverCounter.length!=4)

146 // since lastCounter is supposed to be a integer, its length must be 4 bytes

147 throw new IncorrectReply();

148 serverLastCounter = MessageTools.byteArrayToInt(serverCounter);

149 if (serverLastCounter<=counter)

150 // the server is misbehaving (his counter is expected to be higher)

151 throw new IncorrectReply();

152 else if (serverLastCounter>counter){

153 // we aren’t up to date with the current counter stored in the server

154 lastCounter.put(label, serverLastCounter);

155 throw new CounterOutOfDate();

156 }

157 }

158 else

159 throw new IncorrectReply();

160 }

161

162 public byte[] retrieve(byte[] label) throws NetworkError, StorageError {

163 int counter = getServerLastCounter(label);

164 // pick the last the counter we stored

165 int ourCounter = lastCounter.get(label);

166 // note that if ’label’ has not been used yet, lastCounter.get(label) returns -1

167 if(counter<ourCounter)

168 // the server is misbehaving (his counter is expected to be higher)

169 throw new IncorrectReply();

170 if(counter<0)

171 // if counter<0 now we are sure that the server doesn’t have anything under this label

172 return null;

173 // create the message to send

174 byte[] label_counter = MessageTools.concatenate(label, MessageTools.intToByteArray(counter));

175 byte[] retrieve_label_counter = MessageTools.concatenate(Params.RETRIEVE, label_counter);

176 /* HANDLE THE SERVER RESPONSE

177 * Expected server’s responses (encrypted with the client’s public key):

178 * ((signClient, (RETRIEVE_OK, (encMsg, signEncrMsg))), signServer) or

179 * ((signClient, RETRIEVE_FAIL, {}), signServer)

180 * where:

181 * - signServer: signature of all the previous tokens

182 * - signClient: signature of the message for which we are receiving the response

183 * - signEncMsg: the signature of ((STORE, (label, (counter, encrMsg)))

184 */

185 ServerResponse response = sendPayloadToServer(retrieve_label_counter);

186 // response.inf is either (RETRIEVE_OK, (encMsg, signEncrMsg)) or (RETRIEVE_FAIL,{})

187

172

E.1. A Cloud Storage System

188 // analyze the response tag

189 if(Arrays.equals(response.tag, Params.RETRIEVE_OK)){

190 byte[] encrMsg = MessageTools.first(response.info);

191 byte[] signMsg = MessageTools.second(response.info);

192 // check whether the signMsg is the signature for the STORE request with encrMsg

193 // which is of the form (STORE, (label, (counter, encrMsg)))

194 byte[] counter_msg = MessageTools.concatenate(MessageTools.intToByteArray(counter), encrMsg);

195 byte[] label_counter_msg = MessageTools.concatenate(label, counter_msg);

196 byte[] store_label_counter_msg = MessageTools.concatenate(Params.STORE, label_counter_msg);

197 if(!verifier.verify(signMsg, store_label_counter_msg))

198 // the server hasn’t replied with the encrypted message we requested

199 throw new IncorrectReply();

200 // everything is ok; decrypt the message and return it

201 return symenc.decrypt(encrMsg);

202 }

203 else if(Arrays.equals(response.tag, Params.RETRIEVE_FAIL)){

204 // The server claims that it counldn’t retrieve the message.

205 // But because the ’counter’ is saved only after the server acknowledges

206 // that the message was successfully stored, it should not happen.

207 throw new IncorrectReply();

208 }

209 else

210 throw new MalformedMessage();

211 }

212

213 private class ServerResponse {

214 byte[] tag;

215 byte[] info;

216

217 ServerResponse(byte[] tag, byte[] info) {

218 this.tag = tag;

219 this.info = info;

220 }

221 }

222

223 /**
224 * Retrieve from the server the highest counter related to (clientID, label)

225 * If there isn’t any counter related to this pair, return -1

226 */

227 private int getServerLastCounter(byte[] label) throws NetworkError, StorageError {

228 // pick a nonce

229 byte[] nonce = nonceGen.newNonce();

230 byte[] label_nonce=MessageTools.concatenate(label, nonce);

231 byte[] store_label_nonce=MessageTools.concatenate(Params.GET_COUNTER, label_nonce);

232 ServerResponse response = sendPayloadToServer(store_label_nonce);

233 // analyze the response tag

234 if(!Arrays.equals(response.tag, Params.LAST_COUNTER))

235 throw new MalformedMessage();

236 byte[] lastCounter_nonceResp = response.info;

237 byte[] lastCounter = MessageTools.first(lastCounter_nonceResp);

238 byte[] nonceResp = MessageTools.second(lastCounter_nonceResp);

239 if(!Arrays.equals(nonce, nonceResp))

240 throw new IncorrectReply();

173

E. Case Studies

241 if(lastCounter.length!=4)

242 throw new MalformedMessage();

243 return MessageTools.byteArrayToInt(lastCounter);

244 }

245

246 /**
247 * Sign the payload, add userID, encrypt with PKE and send everything to the server.

248 * Decrypt and validate the server response.

249 */

250 private ServerResponse sendPayloadToServer(byte[] payload)

251 throws MalformedMessage,

252 NetworkError {

253 // sign the message with the client private key

254 byte[] signClient = signer.sign(payload);

255 byte[] msgWithSignature = MessageTools.concatenate(payload, signClient);

256 // encrypt the (userID, ([payload], clientSign)) with the server public key

257 byte[] msgToSend = server_enc.encrypt(MessageTools.concatenate(

258 MessageTools.intToByteArray(userID), msgWithSignature));

259 // Shape of msgToSend:

260 // (userID, ([payload], signClient))

261 // where signClient is the signature of [payload]

262

263 // send the message to the server

264 byte[] encryptedSignedResp = net.sendRequest(msgToSend);

265 // Decrypt the validate the message in order to make sure

266 // that it is a response to the client’s request.

267 return decryptValidateResp(encryptedSignedResp, signClient);

268 }

269

270 /**
271 * Decrypt the message, verify that it’s a response of the server to our request

272 * (otherwise an exception is thrown).

273 */

274 private ServerResponse decryptValidateResp(byte[] encryptedSignedResponse,

275 byte[] signRequest) throws MalformedMessage {

276 // decrypt the message with the client private key and parse it

277 byte[] signedResponse = decryptor.decrypt(encryptedSignedResponse);

278 byte[] payload = MessageTools.first(signedResponse);

279 byte[] signServer = MessageTools.second(signedResponse);

280 // if the signature isn’t correct, the message is malformed

281 // (note that the signature is incorrect even if one or both messages are empty)

282 if (!server_ver.verify(signServer, payload))

283 throw new MalformedMessage();

284 // check whether this is a response to the client’s request as identified by signRequest

285 byte[] signatureClient = MessageTools.first(payload);

286 if(!Arrays.equals(signatureClient, signRequest))

287 throw new MalformedMessage();

288 byte[] response = MessageTools.second(payload);

289 // response should be of the form (tag, info), where info may be empty

290 return new ServerResponse(MessageTools.first(response), MessageTools.second(response));

291 }

292

293 public class StorageError extends Exception {}

174

E.1. A Cloud Storage System

294 /**
295 * Exception thrown when the response is invalid and demonstrates that the server

296 * has misbehaved (the server has be ill-implemented or malicious).

297 */

298 public class IncorrectReply extends StorageError {}

299 /**
300 * Exception thrown when the response of the server does not conform

301 * to an expected format (we get, for instance, a trash message or a response

302 * to a different request).

303 */

304 public class MalformedMessage extends StorageError {}

305 /**
306 * Exception thrown when the server is not able to store the message we sent to it, e.g.

307 * because it has always an higher counter related to our label.

308 */

309 public class StoreFailure extends StorageError {}

310 /**
311 * Exception thrown when the lastCounter provided by the server is higher than our counter.

312 * Before throwing this exception we should update our counter to the server one.

313 */

314 public class CounterOutOfDate extends StorageError{}

315 /**
316 * List of labels.

317 * For each ’label’ maintains an counter representing

318 * how many times the label has been used.

319 */

320 static private class LabelList {

321 static class Node {

322 byte[] key;

323 int counter;

324 Node next;

325

326 public Node(byte[] key, int counter, Node next) {

327 this.key = key;

328 this.counter = counter;

329 this.next = next;

330 }

331 }

332 private Node firstElement = null;

333

334 public void put(byte[] key, int counter) {

335 for(Node tmp = firstElement; tmp != null; tmp=tmp.next)

336 if(Arrays.equals(key, tmp.key)){

337 tmp.counter = counter;

338 return;

339 }

340 firstElement = new Node(key, counter, firstElement);

341 }

342

343 public int get(byte[] key) {

344 for(Node tmp = firstElement; tmp != null; tmp=tmp.next)

345 if(Arrays.equals(key, tmp.key))

346 return tmp.counter;

175

E. Case Studies

347 return -1; // if the label is not present, return -1

348 }

349 }

350 }

E.2. An E-voting Machine with Auditing Procedures

In this section, we present the code of the setup, of the voting machine, and of the bulletin
board, the three main classes which, along with the cryptographic functionalities proposed in
Appendices D.2-D.5 and the class modeling the environment in Appendix C, have been formally
verified by the combination of Joana and KeY. In what follows, we omit the declaration of the
class EntryQueue which contains the following methods:

– add to add a byte array entry;

– getEntries to return a byte array containing the concatenation of all the entries added so far.

The full version of the code is available at [STB+14a].

The Setup class.
1 public class Setup {

2 private static VotingMachine VM;

3 private static BulletinBoard BB;

4 // one secret bit

5 private static boolean secret;

6 // the correct result

7 static int[] correctResult; // CONSERVATIVE EXTENSION

8

9 private static int[] createChoices(int numberOfVoters, int numberOfCandidates) {

10 final int[] choices = new int[numberOfVoters];

11 for (int i=0; i<numberOfVoters; ++i) {

12 choices[i] = Environment.untrustedInput();

13 }

14 return choices;

15 }

16

17 private static int[] computeResult (int[] choices, int numberOfCandidates) {

18 int[] res = new int[numberOfCandidates];

19 for (int i=0; i<choices.length; i++)

20 ++res[choices[i]];

21 return res;

22 }

23

24 private static boolean equalResult(int[] r1, int[] r2) {

25 for (int j= 0; j<r1.length; j++)

26 if (r1[j]!=r2[j]) return false;

27 return true;

28 }

29

30 public static void main (String[] a) throws Throwable {

176

E.2. An E-voting Machine with Auditing Procedures

31 // Determine the number of candidates and the number of voters:

32 int numberOfCandidates = Environment.untrustedInput();

33 int numberOfVoters = Environment.untrustedInput();

34 if (numberOfVoters<=0 || numberOfCandidates<=0)

35 throw new Throwable(); // abort

36 // Create and register decryptor/encryptor of auditors:

37 Decryptor audit_decryptor = new Decryptor();

38 Encryptor audit_encryptor = audit_decryptor.getEncryptor();

39 RegisterEnc.registerEncryptor(audit_encryptor, Params.AUDITORS_ID, Params.ENC_DOMAIN);

40 // Create and register signer/verifier of the voting machine

41 Signer vm_signer = new Signer();

42 Verifier vm_verifier = vm_signer.getVerifier();

43 RegisterSig.registerVerifier(vm_verifier, Params.VOTING_MACHINE_ID, Params.SIG_DOMAIN);

44 // Create the voting machine and the bulletin board:

45 VM = new VotingMachine(numberOfCandidates, audit_encryptor, vm_signer);

46 BB = new BulletinBoard(vm_verifier);

47

48 // let the environment determine two vectors of choices

49 int[] choices0 = createChoices(numberOfVoters, numberOfCandidates);

50 int[] choices1 = createChoices(numberOfVoters, numberOfCandidates);

51 // check that those vectors give the same result

52 int[] r0 = computeResult(choices0, numberOfCandidates);

53 int[] r1 = computeResult(choices1, numberOfCandidates);

54 if (!equalResult(r0,r1))

55 throw new Throwable(); // abort if the two vectors do not yield the same result

56

57 // store correct result

58 correctResult = r1; // CONSERVATIVE EXTENSION

59

60 // the main loop

61 final int N = Environment.untrustedInput();

62 // the environment decides for how long the system runs

63 int voterNr = 0;

64 for(int i=0; i<N; ++i) {

65 int action = Environment.untrustedInput();

66 switch(action) {

67 // Importantly, the vote collection is done directly in the method collectBallot (without

68 // first sending the choice to any server).

69 case 0: // the next voter votes

70 if (voterNr<numberOfVoters) {

71 int choice = secret ? choices0[voterNr] : choices1[voterNr];

72 VM.collectBallot(choice);

73 ++voterNr;

74 }

75 break;

76 case 1: // make the voting machine publish the current (encrypted) log

77 VM.publishLog();

78 break;

79 case 2: // audit (this step altogether should not change the result)

80 int audit_choice = Environment.untrustedInput();

81 int sqnumber = VM.collectBallot(audit_choice);

82 Environment.untrustedOutput(sqnumber);

83 VM.publishLog();

177

E. Case Studies

84 VM.cancelLastBallot();

85 break;

86 case 3: // deliver a message to the bulletin board

87 byte[] request = Environment.untrustedInputMessage();

88 BB.onPost(request);

89 break;

90 case 4: // make the bulleting board send its content over the network

91 BB.onRequestContent();

92 break;

93 }

94 }

95 // make the voting machine publish the result (only if all the voters have voted)

96 if (voterNr == numberOfVoters)

97 VM.publishResult();

98 }

99 }

The VotingMachine class.
100 public class VotingMachine {

101 public class InnerBallot {

102 public final int votersChoice;

103 public final int voteCounter;

104 public final long timestamp;

105

106 public InnerBallot(int choice, int counter, long ts) {

107 votersChoice = choice;

108 voteCounter = counter;

109 timestamp = ts;

110 }

111 }

112

113 public class InvalidVote extends Exception {}

114 public class InvalidCancelation extends Exception {}

115

116 private final Encryptor bb_encryptor;

117 private final Signer signer;

118 private int numberOfCandidates;

119 private int[] votesForCandidates;

120 private int operationCounter, voteCounter;

121 private EntryQueue entryLog;

122 private InnerBallot lastBallot;

123

124 public VotingMachine(int numberOfCandidates, Encryptor bb_encryptor,

125 Signer signer) {

126 this.numberOfCandidates=numberOfCandidates;

127 this.bb_encryptor=bb_encryptor;

128 this.signer=signer;

129 votesForCandidates = new int[numberOfCandidates];

130 entryLog = new EntryQueue();

131 operationCounter=0;

132 voteCounter=0;

133 lastBallot=null;

134 }

178

E.2. An E-voting Machine with Auditing Procedures

135

136 public int collectBallot(int votersChoice) throws InvalidVote {

137 if (votersChoice < 0 || votersChoice >= numberOfCandidates)

138 throw new InvalidVote();

139 // increase the vote for the corresponding candidate

140 votesForCandidates[votersChoice]++;

141 // create a new inner ballot

142 lastBallot = new InnerBallot(votersChoice, ++voteCounter, Timestamp.get());

143 // log and send a new entry

144 logAndSendNewEntry(Params.VOTE);

145 return operationCounter;

146 }

147

148 public void cancelLastBallot() throws NetworkError, InvalidCancelation {

149 if(lastBallot==null)

150 throw new InvalidCancelation();

151 votesForCandidates[lastBallot.votersChoice]--;

152 logAndSendNewEntry(Params.CANCEL);

153 lastBallot = null;

154 }

155

156 public void publishResult() throws NetworkError {

157 signAndPost(Params.RESULTS, getResult(), signer);

158 }

159

160 public void publishLog() throws NetworkError {

161 signAndPost(Params.LOG, entryLog.getEntries(), signer);

162 }

163

164 private void logAndSendNewEntry(byte[] tag) {

165 byte[] entry = createEncryptedEntry(++operationCounter, tag, lastBallot, bb_encryptor, signer);

166 entryLog.add(copyOf(entry));

167 try {

168 signAndPost(Params.MACHINE_ENTRY, entry, signer);

169 } catch (Exception ex) {}

170 // this may cause an NetworkError, but even if we do not get any exception,

171 // there is no guarantee that the entry was indeed delivered to the bulletin board,

172 // so we ignore the problem

173 }

174 /**
175 * Create and return the new entry:

176 * (operationCounter, ENC_BB{ TAG, timestamp, voterChoice, voteCounter})

177 */

178 private byte[] createEncryptedEntry(int operationCounter, byte[] tag,

179 InnerBallot inner_ballot, Encryptor encryptor, Signer signer) {

180 byte[] vote_voteCounter = concatenate(

181 intToByteArray(inner_ballot.votersChoice),

182 intToByteArray(inner_ballot.voteCounter));

183 byte[] ballot = concatenate(longToByteArray(inner_ballot.timestamp),

184 vote_voteCounter);

185 byte[] tag_ballot= concatenate(tag, ballot);

186 byte[] encrMsg = encryptor.encrypt(tag_ballot);

187 byte[] entry = concatenate(intToByteArray(operationCounter), encrMsg);

179

E. Case Studies

188 return entry;

189 }

190 /**
191 * Sign_VM [TAG, timestamp, message]

192 */

193 private static void signAndPost(byte[] tag, byte[] message,

194 Signer signer) throws NetworkError {

195 long timestamp = Timestamp.get();

196 byte[] tag_timestamp = concatenate(tag, longToByteArray(timestamp));

197 byte[] payload = concatenate(tag_timestamp, message);

198 byte[] signature = signer.sign(payload);

199 byte[] signedPayload = concatenate(payload, signature);

200 NetworkClient.send(signedPayload, Params.DEFAULT_HOST_BBOARD,

201 Params.LISTEN_PORT_BBOARD);

202 }

203

204 private byte[] getResult() {

205 int[] _result = new int[numberOfCandidates];

206 for (int i=0; i<numberOfCandidates; ++i) {

207 int x = votesForCandidates[i];

208 // CONSERVATIVE EXTENSION:

209 // PROVE THAT THE FOLLOWING ASSINGMENT IS REDUNDANT

210 x = Setup.correctResult[i];

211 _result[i] = x;

212 }

213 return formatResult(_result);

214 }

215

216 private static byte[] formatResult(int[] _result) {

217 String s = "Result of the election:\n";

218 for(int i=0; i<_result.length; ++i) {

219 s += " Number of votes for candidate " + i + ": " + _result[i] + "\n";

220 }

221 return s.getBytes();

222 }

223 }

The BulletinBoard class.
224 public class BulletinBoard {

225 Verifier verifier;

226 EntryQueue entryLog;

227

228 public BulletinBoard(Verifier verifier) throws NetworkError {

229 this.verifier=verifier;

230 entryLog= new EntryQueue();

231 }

232 /*
233 * Reads a message, checks if it comes from the voting machine, and,

234 * if this is the case, adds it to the maintained list of messages.

235 */

236 public void onPost(byte[] request) throws NetworkError {

237 byte[] message = first(request);

238 byte[] signature = second(request);

180

E.3. The Mix Server of sElect

239

240 if(verifier.verify(signature, message))

241 entryLog.add(request);

242 }

243 /*
244 * Output its content, that is the concatenation of

245 * all the message in the maintained list of messages.

246 */

247 public byte[] onRequestContent() throws NetworkError {

248 return entryLog.getEntries();

249 }

250 }

E.3. The Mix Server of sElect

In this section, we present the Java implementation of the cryptographic core of the mix server
of sElect and of the setup class which, along with the cryptographic functionalities proposed in
Appendices D.2-D.5 and the class modeling the environment in Appendix C, are in the process of
being formally verified by the combination of Joana and KeY.

The Setup class.
1 public final class Setup {

2 private static boolean setEquality(byte[][] arr1, byte[][] arr2) {

3 if(arr1.length!=arr2.length) return false;

4 byte[][] a1=MessageTools.copyOf(arr1);

5 byte[][] a2=MessageTools.copyOf(arr2);

6 Utils.sort(a1, 0, a1.length);

7 Utils.sort(a2, 0, a2.length);

8 for(int i=0;i<a1.length;i++)

9 if(!MessageTools.equal(a1[i],a2[i]))

10 return false;

11 return true;

12 }

13

14 private static boolean secret; // the HIGH value

15

16 public static void main (String[] a) throws Throwable {

17 Decryptor mixDecr = new Decryptor();

18 Encryptor mixEncr = mixDecr.getEncryptor();

19 Signer mixSign = new Signer();

20 Signer precServSign = new Signer();

21 Verifier precServVerif = precServSign.getVerifier();

22

23 byte[] electionID = Environment.untrustedInputMessage();

24 MixServer mixServ = new MixServer(mixDecr, mixSign, precServVerif, electionID);

25

26 // let the adversary choose how many messages have to

27 // be sent to the mix server

28 int numberOfMessages = Environment.untrustedInput();

29 // let the adversary decide the length of the messages

30 // all the messages must have the same length:

181

E. Case Studies

31 int lengthOfTheMessages = Environment.untrustedInput();

32 // let the environment determine the two arrays of messages

33 byte[][] msg1 = new byte[numberOfMessages][];

34 byte[][] msg2 = new byte[numberOfMessages][];

35 for(int i=0; i<numberOfMessages; ++i){

36 msg1[i] = Environment.untrustedInputMessage();

37 msg2[i] = Environment.untrustedInputMessage();

38 if(msg1[i].length!=lengthOfTheMessages || msg2[i].length!=lengthOfTheMessages)

39 throw new Throwable();

40 }

41 // the two vectors must be two permutations of the same set

42 if(!setEquality(msg1, msg2))

43 throw new Throwable();

44

45 // CONSERVATIVE EXTENSION

46 ConservativeExtension.storeMessages(msg1);

47

48 // encrypt each message, along with the election ID as expected by the mix server

49 byte[][] encrMsg = new byte[numberOfMessages][];

50 for(int i=0; i<numberOfMessages; ++i){

51 byte[] msg = secret ? msg1[i] : msg2[i];

52 byte[] msg = new byte[lengthOfTheMessages];

53 for (int j=0; j<msg.length; j++) {

54 byte b1 = msg1[i][j];

55 byte b2 = msg2[i][j];

56 byte b = secret ? b1:b2;

57 msg[j] = b;

58 }

59 encrMsg[i] = mixEncr.encrypt(MessageTools.concatenate(electionID, msg));

60 }

61 Utils.sort(encrMsg, 0, encrMsg.length);

62

63 byte[] asAMessage=Utils.concatenateMessageArray(encrMsg, encrMsg.length);

64 // add election id, tag and sign

65 byte[] elID_ballots = MessageTools.concatenate(electionID, asAMessage);

66 byte[] input = MessageTools.concatenate(Tag.BALLOTS, elID_ballots);

67 byte[] signatureOnInput = precServSign.sign(input);

68 byte[] signedInput = MessageTools.concatenate(input, signatureOnInput);

69

70 // send the message over the network, controlled by the adversary

71 Environment.untrustedOutputMessage(signedInput);

72 // retrieve the message from the network

73 byte[] mixServerInput=Environment.untrustedInputMessage();

74

75 // let the mix server process the ballots

76 byte[] mixServerOutput=mixServ.processBallots(mixServerInput);

77

78 // send the output of the mix server over the network

79 Environment.untrustedOutputMessage(mixServerOutput);

80 }

81 }

The MixServer class.

182

E.3. The Mix Server of sElect

82 public class MixServer {

83

84 private final Signer signer;

85 private final Decryptor decryptor;

86 private final Verifier precServVerif;

87 private final byte[] electionID;

88

89 public static class MalformedData extends Exception {

90 public int errCode;

91 public String description;

92 public MalformedData(int errCode, String description) {

93 this.errCode = errCode;

94 this.description = description;

95 }

96 public String toString() {

97 return "Mix Server Error: " + description;

98 }

99 }

100

101 public static class ServerMisbehavior extends Exception {

102 public int errCode;

103 public String description;

104

105 public ServerMisbehavior(int errCode, String description) {

106 this.errCode = errCode;

107 this.description = description;

108 }

109

110 public String toString() {

111 return "Previous Server Misbehavior: " + description;

112 }

113 }

114

115 public MixServer(Decryptor decryptor, Signer signer,

116 Verifier precServVerif, byte[] electionID) {

117 this.signer = signer;

118 this.decryptor = decryptor;

119 this.electionID = electionID;

120 this.precServVerif = precServVerif;

121 }

122

123 public byte[] processBallots(byte[] data) throws MalformedData, ServerMisbehavior {

124 byte[] tagged_payload = MessageTools.first(data);

125 byte[] signature = MessageTools.second(data);

126 if (!precServVerif.verify(signature, tagged_payload))

127 throw new MalformedData(1, "Wrong signature");

128 byte[] tag = MessageTools.first(tagged_payload);

129 if (!MessageTools.equal(tag, Tag.BALLOTS))

130 throw new MalformedData(2, "Wrong tag");

131 byte[] payload = MessageTools.second(tagged_payload);

132 byte[] el_id = MessageTools.first(payload);

133 if (!MessageTools.equal(el_id, electionID))

134 throw new MalformedData(3, "Wrong election ID");

183

E. Case Studies

135 byte[] ballotsAsAMessage = MessageTools.second(payload);

136

137 ArrayList<byte[]> entries = new ArrayList<byte[]>();

138 byte[] last = null;

139 int numberOfEntries = 0;

140 for(MessageSplitIter iter = new MessageSplitIter(ballotsAsAMessage);

141 iter.notEmpty(); iter.next()) {

142 byte[] current = iter.current();

143 if (last!=null && Utils.compare(last, current)>0)

144 throw new ServerMisbehavior(-2, "Ballots not sorted");

145 if (last!=null && Utils.compare(last, current)==0)

146 throw new ServerMisbehavior(-3, "Duplicate ballots");

147 last = current;

148 byte[] decryptedBallot = decryptor.decrypt(current);

149 if (decryptedBallot == null){

150 System.out.println("[MixServer.java] Decryption failed for ballot #" + numberOfEntries);

151 continue;

152 }

153 byte[] elID = MessageTools.first(decryptedBallot);

154 if (elID!=null || MessageTools.equal(elID, electionID))

155 entries.add(MessageTools.second(decryptedBallot));

156 else

157 System.out.println("[MixServer.java] Ballot #" + numberOfEntries + " invalid");

158 ++numberOfEntries;

159 }

160 byte[][] entr_arr = new byte[entries.size()][];

161 entries.toArray(entr_arr);

162 Utils.sort(entr_arr, 0, numberOfEntries);

163

164 /** CONSERVATIVE EXTENSION:

165 * PROVE THAT THE FOLLOWING ASSINGMENT IS REDUNDANT

166 */

167 entr_arr = ConservativeExtension.retrieveSortedMessages();

168

169 // format entries as one message, and the proper tags, and sign the result

170 byte[] entriesAsAMessage = Utils.concatenateMessageArray(entr_arr, numberOfEntries);

171 byte[] elID_entriesAsAMessage = MessageTools.concatenate(electionID, entriesAsAMessage);

172 byte[] result = MessageTools.concatenate(Tag.BALLOTS, elID_entriesAsAMessage);

173 byte[] signatureOnResult = signer.sign(result);

174 byte[] signedResult = MessageTools.concatenate(result, signatureOnResult);

175

176 return signedResult;

177 }

178 }

The ConservativeExtension class.
179 public class ConservativeExtension{

180 private static byte[][] messages;

181

182 public static void storeMessages(byte[][] msg){

183 messages=MessageTools.copyOf(msg);

184 }

185 public static byte[][] retrieveSortedMessages(){

184

E.3. The Mix Server of sElect

186 sort(messages, 0, messages.length);

187 return messages;

188 }

189

190 private static void sort(byte[][] byteArrays, int fromIndex, int toIndex) {

191 if(fromIndex>=0 && toIndex<=byteArrays.length && fromIndex<toIndex){

192 for(int sorted=fromIndex+1; sorted<toIndex; ++sorted){

193 byte[] key=byteArrays[sorted]; // the item to be inserted

194 // insert key into the sorted sequence A[fomIndex, ..., sorted-1]

195 int i;

196 for(i=sorted-1; i>=fromIndex && Utils.compare(byteArrays[i], key)>0; --i)

197 byteArrays[i+1]=byteArrays[i];

198 byteArrays[i+1]=key;

199 }

200 }

201 }

202 }

185

F. Formal Proofs

F.1. Proof of Theorem 2.5

The proof of Theorem 2.5 is quite similar to the proof of Theorem 2.3 which can be found in
[KTG12b]. The main difference is in the communication through strings, where indeed string
references are exchanged, leading E and S to share part of their state. However, since strings are
immutable objects, i.e., their internal state cannot be modified after their creation, the part of the
shared state of a system cannot be modified by the other one.

We note that the six assumptions E.1-E.3 and S.1-S.3 (presented in Section 2.6.2 and extended
to deal with strings in Section 2.6.3) on the interface IE and on the system S respectively guarantee
that—even if, technically, some references are exchanged between E and S—the communication
between them is, effectively, as if only pure values were exchanged.

We first introduce the notation in order to highlight how the communication between S and
E occurs when, besides primitive types, also strings, simple objects, arrays, and exception are
involved. Let IE and S be as in the Theorem 2.5. Let /0 ` E : IE be an environment for S. We
represent the run ρ of E ·S as:

ρ= A1[s1,x1]B1[t1,y1]A2[s2,x2] . . .Bn−1[tn−1,yn−1]An[sn,xn],

where the square brackets contain all the information that is passed between the two systems.
Thanks to the restrictions S.1 and S.2 on simple objects and arrays, we can assume that, except

for producing a fresh copy of them, E and S only share string references. We can then define the
components of ρ in the following way:

• si is the state of the run at the end of the segment Ai, i.e., where the code of S is executed.

• xi = (Ci,mi,~ai) is a tuple denoting the call of the method mi of the class Ci defined in E
with arguments ~ai. The arguments vector ~ai records primitive types, strings, values of
arrays of primitive types (not the references of these arrays though), or values of simple
objects (but, again, not their references), i.e., collections of all values of the fields of objects
whose classes are defined in IE .

• ti is the state of the run at the end of the Bi segment, i.e., where the code of E is executed.

• yi is the value returned by the method Ci.mi of E to S. Again, yi may be a primitive value,
a string, or a value either of an array (of primitive types), or of a simple object.

Furthermore, given a state s, let s|S be the part of s the system S can access and, similarly, let s|E
be the part of s accessible by the environment E.

The following Lemma is an extension of a result, so called, state separation of E and S
introduced in [KTG12a]: intuitively, for a representation of a run as above, Bi does not change

187

F. Formal Proofs

the part of the state that can be reached from S and, similarly, Ai does not change the part of the
state that can be reached from E.

Lemma F.1 (State separation). Let S and E be two systems like in Theorem 2.5 and whose run
ρ is defined as above. Then, for each i ∈ {1, . . . ,n−1} we have:

1. si|S = ti|S,

2. ti|E = si+1|E .

Proof. (Sketch) The first statement asserts that the part of the state accessible by S is, at the end
of each segment Ai of the run, equal to the part of the state accessible by S at the end of the
following segment Bi. Similarly, the second statement asserts that the part of the state accessible
by E is, at the end of each segment Bi of the run, equal to the part of the state accessible by E at
the end of the following segment Ai+1.

Although simple objects, arrays, and exceptions are passed between the system S and the
environment E, in Sections 2.6.2 and 2.6.3 we imposed some restrictions which guarantee that the
communication between S and E actually resembles exchange of only primitive values and string
references. In particular, imposing that only fresh copies of references (different from strings)
are passed to the enviorment and that every reference (different from string) the environment
returns to the system is immediately cloned and not used afterwards allows us to conclude that
E and S do not share any of this kind of references (except S to clone them when it receives
them). Without loss of generality, we can therefore assume that the systems E and S exchange
only primitive values or string references.

Since in Jinja+ (as in Java) data is passed by value, both primitive values and string references
are copied when they are exchanged between these systems. However, while if only primitive
values are exchanged, the part of the state accessible by E is disjoint from the part of the state
accesible by S, in case of communication through strings, the system receiving references of
data type string would, in theory, be able to access the part of the state accessible from the other
system too. Nevertheless, since in Jinja+ (and in Java) string objects are immutable and without
any field, the system which receives their references cannot modify them. Therefore, in any case,
at the end of each segment of the run, the part of the state accessible by the system which is
going to execute the next segment has remained unchanged as it was at the beginning the last
segment.

Because of this state separation, we can obtain two lemmas asserting that the part of the state
accessible by each system and the values this system, at the end of each segment of its run, passes
to the other one depend solely on the values exchanged between them so far.

Let us first introduce some notation and definitions. Let ρ and ρ̂ be the runs of two systems,
for example E ·S and E · Ŝ. As already introduced before, xi/x̂i and yi/ŷi denote, respectively, the
calls of the method mi of the class Ci defined in E with arguments~ai/~a′i and the values returned
by them. We remember that they both record either primitive values or string references.

Let f : R̂→ R be a bijection from R̂ to R, where R̂ and R are subsets of the set of all string
references, such that for each r̂ and r such that f (r̂) = r, their string values are the same. We
denote it as r ∼ f r̂. We extend the domain of f to expressions, states, configurations, and tuples

188

F.1. Proof of Theorem 2.5

xi/x̂i. We do it, in the standard way, by structural isomorphism. That is, for example, e∼ f ê holds
if and only if e and ê are (syntactically) equal, up to references occurring as their corresponding
subexpressions which need to be in the relation∼ f , too. For primitive values v/v̂, we write v∼ f v̂,
if simply v = v̂.

Let f : R̂ f → R f and f ′ : R̂ f ′ → R f ′ be two congruences. We say that f ′ is compatible with f if
for each r ∈ R̂ f ∩ R̂ f ′ , we have f (r) = f ′(r). Moreover, we say that f ′ is an extension of f (or,
alternatively, f is a restriction of f ′) if f ′ is compatible with f , and, in particular, R̂ f ⊆ R̂ f ′ .

Lemma F.2. Let S1, S2 be two systems like the system S in Theorem 2.5 and let E be an I-
environment for both S1 and S2. Let ρ be the run of E · S1 and ρ̂ be the run of E · S2. If
there exists a bijection f : R̂ f → R f , where R̂ f and R f denote the sets of all references in
{x̂1, . . . , x̂k, ŷ1, . . . , ŷk−1} and in {x1, . . . ,xk,y1, . . . ,yk−1} respectively, such that

x1 ∼ f x̂1, . . . ,xk ∼ f x̂k and y1 ∼ f ŷ1, . . . ,yk−1 ∼ f ŷk−1,

then, there exists a bijection f ′ : R̂ f ′ → R f ′ , where R̂ f ′ and R f ′ denote the sets of references in the
domains of the heaps of t̂k|E and tk|E respectively, such that

tk|E ∼ f ′ t̂k|E and yk ∼ f ′ ŷk,

where f ′ is compatible with f .

Proof. By the premise of the lemma we know that there exists a bijection f such that for
each i ∈ {1, . . . ,k} we have xi ∼ f x̂i and for each j ∈ {1, . . . ,k− 1} we have y j ∼ f ŷ j. By
the inductive hypothesis, we can assert that if there exists a bijection g : R̂g → Rg such that
for each i ∈ {1, . . . ,k− 1} we have xi ∼g x̂i and for each j ∈ {1, . . . ,k− 2} we have y j ∼g ŷ j,
then there exists a bijection g′ : R̂g′ → Rg′ , compatible with g, such that tk−1|E ∼g′ t̂k−1|E and
yk−1∼g′ ŷk−1. We define the function g as a restriction of f , where R̂g and Rg denote all references
in {x̂1, . . . , x̂k−1, ŷ1, . . . , ŷk−2} and {x1, . . . ,xk−1,y1, . . . ,yk−2}, respectively. Then, we also have
the function g′ as above where R̂g′ and Rg′ denote the sets of references in the domains of the
heaps of t̂k|E and tk|E , respectively. Moreover, as by Lemma F.1 tk−1|E = sk|E and t̂k−1|E = ŝk|E ,
we can assert sk|E ∼g′ ŝk|E .

We want to show that g′ is compatible with f . We will prove that for each â ∈ R̂g′ ∩ R̂ f , â is
in R̂g too. Then, since f is an extension of g, we have f (â) = g(â) and, since g is compatible
with g′, f (â) = g(â) = g′(â), i.e., f and g′ are compatible. The only references which may be in
R̂ f ∩ R̂g′ but not in R̂g are those that are in x̂k. Let â be a reference of the method call denoted by x̂k
which is also in R̂g′ . Then, by the defintion of R̂g′ , â is in the domain of the heap of t̂k−1|E = ŝk|E .
In particular, if â is ŷk−1, by the definition of f and g′, we have f (ŷk−1) = yk−1 = g′(ŷk−1).
Otherwise we notice that, as â is part of x̂k, â is also in the domain of the heap of ŝk|S. Since all
references in the domain of the heap of ŝk were uniquely created in a (previous) point of the run
ρ̂ and since in the domains of the heap of ŝk|E and ŝk|S there are only those references that can
be reached by E and S respectively, â must have been created by one of the two systems and
then passed to the other one either in a previous method call x̂1, . . . , x̂k−1 or in a value ŷ1, . . . , ŷk−2
previously returned. That is, by the definition of g, â is in R̂g too.

The segments Bk and B̂k start with (ez[{e′k}Ck],sk) and (êz[{ê′k}Ck], ŝk) respectively, where
{ek}Ck /{ê′k}Ck are the blocks obtained by the static method call rule (Rule B.61 of Jinja+)

189

F. Formal Proofs

applied to the call described by xk/x̂k. In particular, {e′k}Ck = {V1 : T1, . . . ,Vn : Tn;V1 :=
a1, . . . ,Vn := an;e}Ck and {ê′k}Ck = {V1 : T1, . . . ,Vn : Tn;V1 := â1, . . . ,Vn := ân;e}Ck , where for
each j ∈ {1, . . . , l} we have a j ∼ f â j and e is the body of the method mk of E. Then,
since f and g′ are compatible, we can assert ({e′k}Ck ,sk|E) ∼h ({ê′k}Ck , ŝk|E) for a bijection
h : {â1, . . . , ân} ∪ R̂g′ → {a1, . . . ,an} ∪ Rg′ defined in the following way: (i) h(r) = f (r) if
r ∈ {â1, . . . , ân}; (ii) h(r) = g′(r) if r ∈ R̂g′ \ {â1, . . . , ân}. That is, h maps references in x̂k
to references in xk and references in the heap of ŝk|E to references in the heap of sk|E . We notice
that h is compatible with both f and g′, and therefore also with g.

As applicability of no Jinja+ rule depends on the particular value of references and as the
blocks {e′k}Ck /{ê′k}Ck are syntactically the same up to the references in their initial assignments,
the rules applied in these blocks depend solely on e. Let

(e0,u0)→ (e1,u1)→ ··· → (el,ul),

be the segment Bk where its expressions are cut off from the set of classes belonging to S
and where only the part of the state that E can modify is taken into account. In particular,
(e0,u0) = ({e′k}Ck ,sk|E) and (el,ul) = ({yk}Ck , tk|E). Let

(ê0, û0)→ (ê1, û1)→ ··· → (êl, ûl),

be the segment B̂k pruned in the same way as Bk, where (ê0, û0) = ({ê′k}Ck , ŝk|E) and (êl, ûl) =
({ŷk}Ck , t̂k|E).

We show that for each pair of configurations q j/q̂ j in the two (sub-)runs defined above, there
exists a bijection h j : R̂ j → R j such that qi = (e j,s j) ∼h j (ê j, ŝ j) = q̂ j and such that h j is a
extension of the bijection h j−1 among (e j−1,s j−1) and (ê j−1, ŝ j−1). We do it by induction on the
number of steps of execution.

Base case: j = 0. As we know ({e′k}Ck ,sk|E)∼h ({ê′k}Ck , ŝk|E), we have h0 = h.
Inductive Step: Let us assume, by the inductive hypothesis, that there exists a bijection

h j : R̂ j→ R j for 0< j < n such that (e j,u j)∼h j (ê j, û j) and such that h j is an extension of h j−1.
Since (e j,u j)→ (e j+1,u j+1) and (ê j, û j)→ (ê j+1, û j+1), we prove that there exists a bijection
h j+1 : R̂ j+1→ R j+1 such that (e j+1,u j+1)∼h j+1 (ê j+1, û j+1) and R̂ j ⊆ R̂ j+1. We distinguish four
cases depending on the behavior of the Jinja+ rule applied in the j-th step of computation:

a) The effect of the rule on the state is directly inherited from the reduction step of a subexpression
in the hypotheses the rule (this case holds for all the subexpression reduction rules of Jinja+).
In this case, there exist two subexpressions e and ê of the expressions e j and ê j respectively,
whose reduction step directly determines the states u j+1/û j+1. Since h j is defined by structural
isomorphism, (e,u j) and (ê, û j) are under the bijection h j too. By the inductive hyphothesis,
the configurations resulting from the reduction step of the subexpressions e/ê are under a
bijection h j+1 which extends h j. Hence, since h j+1 is also defined by structural isomorphism,
we can assert that the configurations (e j+1,u j+1) and (ê j+1, û j+1) are under the bijection h j+1,
too.

b) The rule creates a new reference in the state of computations (Rules B.16, B.62, B.71, B.72,
B.76 of Jinja+). In this case, in (e j+1,u j+1) and (ê j+1, û j+1) occur two fresh references a and

190

F.1. Proof of Theorem 2.5

â unused in u j and û j, respectively. Since, by the inductive hypothesis, h j is an extension of
h0 = h, and, by the definition of h, dom(h) is the union of references in x̂k with references in
the heap of û0 = ŝk|E , then dom(h j) differs from dom(h0) solely in the set of references which
have been created in the segment B̂k so far, i.e., which are in the heap of û j but not in the heap
of û0. Therefore, if â is not in the heap of û j, then it is not even in dom(h j) = R̂ j. We can then
extend the bijection h j to another bijection h j+1 in the following way: (i) R̂ j+1 = R̂ j ∪{â};
(ii) for each r ∈ R̂ j, we have h j(r) = h j+1(r); (iii) a = h j+1(â). Since all the other references
remain unchanged, we can conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1).

c) The rules update an entry in the state of computations (Rule B.20 of Jinja+ performs an
update on the store, whereas Rules B.23 and B.68 perform an update on the heap). In these
(three) rules, the expressions e j and ê j are reduced to e j+1 and ê j+1 by trimming the updating
value off. Therefore, since no new references occur in e j+1/ê j+1, we have e j+1 ∼h j ê j+1.
Furthermore, the states u j/û j are updated with values which are in e j/ê j and hence, in case
these values are references, already under the bijection h j. Therefore, the entries updated
remain under the same bijection h j, by which we can conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1),
where h j+1 = h j.

d) The rule leaves the state of the configurations unchanged: this case holds for all the expression
reduction rules and all the exception propagation rules of Jinja+ not mentioned in the previous
two items. Here, if in e j+1/ê j+1 occur new references, they must have been in u j/û j and
therefore under the bijection h j. (This case could for example happen in the field access rule,
Rule B.22, if the field is not of primitive type.) We can then assert e j+1 ∼h j ê j+1. Moreover,
since their states remain unchanged, we can conclude (e j+1,u j+1)∼h j+1 (ê j+1, û j+1), where
h j+1 = h j.

Therefore, since in each step j of these two runs the configurations are under a bijection h j

extending the initial bijection h0 = h, at the end of the segments Bk/B̂k there exists a bijection
hl , which extends h, such that ({yk}Ck , tk|E)∼hl ({ŷk}Ck , t̂k|E). We can then set f ′ = hl to obtain
tk|E ∼ f ′ t̂k|E and yk ∼ f ′ ŷk.

In order to conclude the proof, we have to show that f ′ is compatible with f . The bijection f ′

is an extension of h which is compatible with f . Hence, f ′ is also compatible with f .

Lemma F.3. Let S be like in Theorem 2.5 and let E1 and E2 be two I-environments for S. Let
ρ be the run of E1 · S and ρ̂ be the run of E2 · S. If there exists a bijection f : R̂ f → R f , where
R̂ f and R f denote the sets of all references in {x̂1, . . . , x̂k, ŷ1, . . . , ŷk} and in {x1, . . . ,xk,y1, . . . ,yk}
respectively, such that

x1 ∼ f x̂1, . . . ,xk ∼ f x̂k and y1 ∼ f ŷ1, . . . ,yk ∼ f ŷk,

then, there exists a bijection f ′ : R̂ f ′ → R f ′ , where R̂ f ′ and R f ′ denote the sets of references in the
domains of the heaps of ŝk+1|S and sk+1|S respectively, such that

sk+1|S ∼ f ′ ŝk+1|S and xk+1 ∼ f ′ x̂k+1,

where f ′ is compatible with f .

191

F. Formal Proofs

Proof. (Sketch) The proof of this Lemma is somewhat complementary to the proof of Lemma
F.2: the segments Ak+1/Âk+1 we are considering now are two sequences of n configurations of
S pairwise equal, up to those references which have been exchanged with E1 and E2 so far and
which are, by the hypothesis of the Lemma, under the bijection f .

By following the same inductive reasoning as in the proof of the Lemma F.2, there exist
two bijections g and g′ such that, respectively, g is defined as a restriction of f to the domain
containing all references in {x̂1, . . . , x̂k+1, ŷ1, . . . , ŷk+1} and g′ maps references in the domain of
the heap of ŝk|S = t̂k|S to references in the domain of the heap of sk|S = tk|E . Therefore, we can
assert that the two initial configurations (ez, tk)/(êz, t̂k) of the segments Ak+1/Âk+1, pruned from
the part of the state not accessible from S, are under a bijection h defined, as in the other lemma,
piecewise by f and g′. (Bijections f and g′ are compatible since all references in R̂ f ∩ R̂g′ are in
the domain of g too; see the corresponding reasoning in the proof of Lemma F.2 for details.)

As applicability of no Jinja+ rule depends on the particular value of references, the same
rule is applied in each step of Ak+1 and Âk+1. Therefore, by induction on the number of
steps we can assert that, at the end of the two segments, there exists a bijection f ′, com-
patible with f , among their final (pruned) configurations, (ez+n[Ck+1.mk+1(~ak+1)],sk+1|S) and
(êz+n[Ck+1.mk+1(~a′k+1)], ŝk+1|S), where (Ck+1,mk+1,~ak+1) = xk+1 and (Ck+1,mk+1,~a′k+1) = x̂k+1,
respectively. (Again, see the final part of the proof of Lemma F.2 for details.)

We can now prove the main theorem of our extension. Thanks to the assumptions on the com-
ponents of the run ρ, we remind that only primitives values and string references are exchanged
between S and E.

Proof of Theorem 2.5. Implication from left to right is obvious. So let us assume that, I-
noninterference does not hold for S. It means that there exists an I-environment E for S such
that noninterference does not hold for E ·S, i.e., there are valid~a1 and~a2 such that the run ρ of
E ·S[~a1] and the run ρ̂ of E ·S[~a2] give different results.

We can define a sequence~u such that the system Ẽ~u behaves exactly like E and it is therefore
able to distinguish between S[~a1] and S[~a2]. Since the value of result in a state s is part of s|E ,
we conclude from Lemma F.2, that there exists an index k such that xρk and xρ̂k are not under a
bijection. Let k be the first such index. Note that, from Lemma F.2, we also know xρi ∼ f xρ̂i and
yρi ∼ f yρ̂i for i ∈ {1, . . . ,k−1} and for a bijection f . Let us assume that what breaks the bijection
are the first arguments zρ and zρ̂ in the calls described by xρk and xρ̂k , respectively (for the other
cases the proof is very similar).

We can now define the sequence~u which determines the behavior of Ẽ~u as a sequence containing
only zeros with the following exceptions:

• For each primitive value vi that E returns to S[~a1], let l be the index such that ul is the
element of ~u determining the i-th primitive value that Ẽ~u returns to S[~a1]. We then set
ul = vi.

• Each string reference ri that E returns to S[~a1] can be either a reference already exchanged
between E and S[~a1] before or a freshly exchanged one. In the system Ẽ~u ·S[~a1], let p be
the integer such that up decides whether to return a freshly created string or a string stored
in stringList (see listing in Figure 2.5).

192

F.2. Proof of Equivalence Relation of ≡comp

If ri is a freshly exchanged reference, we set up to 1, up+1 to the length of ri and each u j

for j ∈ {p+2, . . . , p+ |ri|+1} to the integer corresponding to the (j− p−2)-th character
of ri. Otherwise, if ri was already exchanged before the last segment of execution of E, let
assume this reference is the j-th element of stringList. We set up to 2 and up+ j to 1.

• The arguments zρ and zρ̂ brake the bijection either because their values are different or
because they point to different references in s|E . In the system Ẽ~u · S[~a1], if zρ and zρ̂

are primitive values, then let q be the integer such that uq decides whether to test these
arguments (they are then compared to uq+1 to determine the result). We set uq to 1 and
uq+1 to zρ.

Contrariwise, if zρ and zρ̂ are string references, we distinguish the following three cases:

1) If the two string values have different lengths, let l be the integer such that ul decides
whether to test their lengths. We then set ul to 1 and ul+1 to the length of zρ.

2) Otherwise, if the two string values differ from at least one character, let p be the
integer such that up decides whether to test the j-th character of zρ, the first one
which differs from the j-th character of zρ̂. We set up to 1 and up+1 to the integer
corresponding to the j-th character of zρ.

3) Finally, if there exists (at least) an element of stringList whose reference compari-
son with zρ gives a different result to the reference comparison with zρ̂, let q be the
integer such that uq decides whether to test the result of the comparison between zρ/zρ̂

and the aforementioned element of stringList. We set both uq and uq+1 to 1.

• As mentioned, for all remaining i we set ui = 0.

In order to complete the proof, it is enough to show that Ẽ~u ·S[~a1] and Ẽ~u ·S[~a2] give different
results.

Let σ be the run of the system Ẽ~u ·S[~a1] and σ̂ be the run of the system Ẽ~u ·S[~a2]. Therefore,
by the definition of~u, we have that there exist two bijections g and h such that xρi ∼g xσi , yρi ∼g yσi
and xρ̂i ∼h xσ̂i , yρ̂i ∼h yσ̂i for i ∈ {1, . . . ,k− 1}. Then, by Lemma F.3, there exist two bijections
g′ and h′, compatible with g and h respectively, such that xρk ∼g′ xσk and xρ̂k ∼h′ xσ̂k : In particular,
zρ = g′(zσ) and zρ̂ = h′(zσ̂). Since, by the construction of Ẽ~u, we know that there not exists a
bijection f such that zρ = f (zρ̂), then there neither exists a bijection f ′ such that zσ = f ′(zσ̂). In
fact, if the bijection f ′ existed, it should be defined as f ′ = (g′)−1 ◦ f ◦h′, i.e., the composition of
the inverse of g′ with (the nonexistent) f , composed with h′. We can then conclude that zσ and
zσ̂ are not under a bijection either. Therefore, by the definition of ~u, the variable result is set
to true in Ẽ~u ·S[~a1] and to false in Ẽ~u ·S[~a2], after which both systems terminate (the abort is
executed immediately after the assignment). Hence, we show that these systems give different
results which completes the proof.

F.2. Proof of Equivalence Relation of ≡comp

The proof of the equivalence relation of ≡comp (as defined in Definition 3.18) is completely
trivial, except for the transitive relation. The intuition for the transitive relation is as follows: We

193

F. Formal Proofs

have three probability measures on the outcomes of three different SyncJinja+ systems such that
both the difference between the first and the second and the difference between the second and
the third are negligible, i.e., asymptotically close to zero. Then, the difference between the first
and the third is negligible too.

We anyway provide the proof of the equivalence relation of ≡comp via the following three
lemmas.

Lemma F.4 (Reflexivity of Computational Equivalence). Let P1 be a (complete, possibly
probabilistic and multi-threaded) programs with security parameter η. Then, P1 ≡comp P1, i.e.,
P1 is computational equivalent to itself.

Proof. We have |Prob{P1(η) intsize(η)true}−Prob{P1(η) intsize(η)true}|= 0. Then, accord-
ing to the definition of a negligible function, for every c > 0, there exists η0 = 0 such that
|Prob{P1(η) intsize(η)true}−Prob{P1(η) intsize(η)true}|= 0≤ 1

ηc for all η > η0.

Lemma F.5 (Symmetry of Computational Equivalence). Let P1 and P2 be (complete, possibly
probabilistic and multi-threaded) programs with security parameter η. If P1 ≡comp P2, then
P2 ≡comp P1.

Proof. Since P1 ≡comp P2, according to the definition of a negligible function, we have that for ev-
ery c> 0, there exists η0 such that |Prob{P1(η) intsize(η)true}−Prob{P2(η) intsize(η)true}| ≤
1
ηc for all η > η0. Since both Prob{P1(η) intsize(η)true} and Prob{P2(η) intsize(η)true} are two
probability measures and hence two real numbers in the interval [0,1], we have

|Prob{P1(η) intsize(η)true}−Prob{P2(η) intsize(η)true}|
= |Prob{P2(η) intsize(η)true}−Prob{P1(η) intsize(η)true}|.

Then for every c > 0, η0 is also such that |Prob{P2(η) intsize(η)true} −
Prob{P1(η) intsize(η)true}| ≤ 1

ηc for all η > η0. Then, by Definition 3.18, P2 ≡comp P1.

Lemma F.6 (Transitivity of Computational Equivalence). Let P1, P2, and P3 be (complete,
possibly probabilistic and multi-threaded) programs with security parameter η. If P1 ≡comp P2
and P2 ≡comp P3, then P1 ≡comp P3.

Proof. To simplify the notation, let us firstly define the probability measure on the outcome of a
system Pi with security parameter η as follows:

Prob{Pi(η) intsize(η)true}= xi(η).

As, by the premise of the lemma, we know P1 ≡comp P2 and P2 ≡comp P3, according to the
definition of negligible functions, we have that for every c > 0, there exist η0 and η1 such that
|x1(η)−x2(η)| ≤ 1

ηc for all η > η0 and |x2(η)−x3(η)| ≤ 1
ηc for all η > η1. To assert P1 ≡comp P3,

according to Definition 3.18, we have to show that for every c > 0, there exists η2 such that
|x1(η)− x3(η)| ≤ 1

ηc for all η > η2.

194

F.3. Proof of Theorem 3.6

Let c> 0. We define η̂ = max(η0,η1). Since we have

|x1(η)− x3(η)| ≤ |x1(η)− x2(η)|+ |x2(η)− x3(η)| ≤
2
ηc for all η > η̂,

we can identify η2 to be the largest natural number less than or equal to η̂ · c
√

2.
It directly follows that for each c> 0 there exists η2, where η2 = bη̂ · c

√
2c, such that

|x1(η)− x3(η)| ≤
1
ηc for all η > η2.

F.3. Proof of Theorem 3.6

In order to prove the Theorem 3.6, we have to show that for each atomic (hence Jinja+) environ-
mentally I-bounded system S, for each bounded SyncJinja+ I-environment EMT for S, and for
each bounded scheduler S , there exists a bounded Jinja+ I-environment EST , such that

{EMT ·S}S ≡comp EST ·S. (F.1)

Then, since by the premises of the theorem we know that for each single-threaded Jinja+
I-environment EST for S1/S2 we have

EST ·S1 ≡comp EST ·S2, (F.2)

by combining (F.1) and (F.2), by transitivity of the computational equivalence relation, we obtain

{EMT ·S1}S
(F.1)≡comp EST ·S1

(F.2)≡comp EST ·S2

(F.1)≡comp {EMT ·S2}S . (F.3)

Given a multi-threaded (bounded) environment EMT running under a scheduler S , we now
show the relation (F.1) by defining a single-threaded (bounded) environment EST which simulates
the run of both EMT and S . We then represents the runs of S composed either with EMT and S
or with EST and, finally, we correlate two possible runs of these two (complete) programs to then
assert that they output the same result with the same probability, up to some negligible function.

Let S be an atomic environmentally I-bounded system, EMT a bounded SyncJinja+ I-
environment, and S a bounded scheduler. Since the runs of S, EMT , and S are all bounded by
a polynomial p, we can fix the finite bit strings rS, rEMT , and rS so that Srs , EMT

rMT
, and SrS (to

simplify the notation from now on we indicate the systems as Sr, EMT
r , and Sr, respectively)

denote the deterministic systems obtained from S, EMT , and S , respectively, by fixing their
randomness with rS, rEMT , and rS in the following way: The primitive randomBit() is replaced by
a method (along with a new static field) declared within Sr, EMT

r , and Sr, respectively, such that

195

F. Formal Proofs

the first |rS|, |rEMT |, and |rS | bits are chosen according to rs, rEMT , and rS , respectively; all the
remaining bits returned by this method are 0. That is, the deterministic program {EMT

r ·Sr}Sr

denotes exactly one run.
Since, by the premises of the theorem, S is considered to be an atomic system, in the run of
{EMT

r ·Sr}Sr all the code of S is executed within the same thread, i.e., without interleaving of
the run neither of any other thread spawned by the environment nor of the scheduler. Therefore,
with abuse of notation, we can assert that the run of {EMT

r · Sr}Sr is equivalent to the run of
{EMT

r }Sr ·Sr.

Simulating EMT and S . We now define a bounded Jinja+ I-environment EST
r whose composi-

tion with Sr reproduces the run of {EMT
r }Sr ·Sr, for a finite bit string rEST .

In what follows, we assume the method main defined in S. The case where main is defined
in EMT is similar. EST is defined in such a way that it also contains no main and it encodes the
multi-threaded SyncJinja+ configuration 〈Π,h, lock〉〈e,(l,h)〉 of EMT and S in its single-threaded
configuration 〈e,(l,h)〉. At the beginning of the computation, the only available thread starts
executing the code of Sr without interleaving of the scheduler. Whenever Sr calls an external
method in the code of EM

r , the same method of EST
r is also called though the interface I, since

both EMT
r and EST

r are defined to be I-environments for S. Then, for each reduction step taken,
either by S or by a thread of EMT , according to the multi-threaded semantics rules of SyncJinja+
(Rules B.88-B.95), the corresponding expression (either of the scheduler or of the corresponding
thread) encoded in the configuration of EST

r is also reduced according to the single-threaded
semantics of Jinja+ (Rules B.1-B.87). The multi-threaded state encoded in EST is then updated
accordingly. That is, EST

r simulates each reduction step performed either by EMT
r or by S , by

applying the same semantic rule at each step of the computation. The only single-threaded rules
of SyncJinja+ which do not have any counterpart in Jinja+ are the rules which produce the thread
actions (rules B.77-B.87, Figure B.7).

a) Whenever the language construct start(e) is to be reduced in a thread of EMT
r , EST

r first
reduces the expression e to the reference addr a. Then, another thread is added to the thread
pool of the multi-threaded configuration encoded in the single-threaded configuration of
EST : The initial expression of this new thread is a call of the (only) method run() of the
object of (a subclass of) the class T hread pointed by the location addr a. In the caller thread,
start(addr a) is reduced to unit, instead. The store l of the new thread is initialized as the
store of the only thread present at the beginning of the computation, i.e., it takes only the
static variables of the caller thread. The shared heap h and the lock map lock encoded in the
single-threaded configuration of EST remain unchanged.

b) Whenever the language construct sync(e1){e2} is to be reduced in a thread of EMT
r , EST first

reduces the expression e1 to the reference (location) addr a. Then, EST makes sure that this
thread can acquire the lock on the object pointed by the location addr a. That is, EST

r checks,
in the lock map lock encoded in its state, that no other thread has already acquired the lock on
this object.

If the thread cannot acquire the lock, this thread cannot progress, i.e., there are no rules of the
multi-threaded semantics which can be applied and then, in the multi-threaded computation,

196

F.3. Proof of Theorem 3.6

the scheduler does not schedule this thread until the lock on this object is released by the thread
which was holding it. Since EST

r is defined in such a way that each step of the multi-threaded
computation of EMT

r and Sr is simulated by the computation of EST
r , the corresponding thread

in the multi-threaded configuration encoded in EST
r is also not scheduled until the lock is

released.

Otherwise, if the thread can acquire the lock, the lock map lock is updated either by adding the
entry with the identifier of this thread (in case the thread is acquiring the lock for the first time)
or by incrementing the number of lock acquisitions by this thread on the entry related to this
reference (in case the thread has already acquired this lock). Once EST

r updates the lock map
lock encoded in its state, it reduces the expression sync(addr a){e} to insync(addr a){e}.

c) Whenever the language construct insync(addr a){e} is to be reduced in a thread of EMT
r ,

EST
r keeps on reducing the expression e to either Val v or Throw a′. Then, it removes the lock

on the object pointed by addr a from the lock map lock encoded in its state by decreasing the
number of lock acquisitions on the entry related to this reference; in case the number of lock
acquisitions is zero, it removes this entry.

In the simulation of the run of EMT under S , EST maintains the value of its variable result to
the value of the variable result encoded in the multi-threaded state of EMT .

We now define the bit string rEST . The length of this (finite) string is such that |rEST | =
|rEMT |+ |rS |. Whenever in the run of {EMT

r }Sr the i-th random bit is chosen according to the
j-th bit of rEMT , the i-th element of the bit string rEST is set to the same value: rEST [i] := rEMT [j].
Instead, whenever in the run of {EMT

r }Sr the i-th random bit is chosen according to the k-th bit
of rS , the i-th element of the bit string rEST is set to the same value: rEST [i] := rS [k].

Then, since rEST is a finite bit string and since EST simulates the same number of steps
performed by EMT and S (which are both bounded systems), we can assert that EST

r is bounded
too.

To show the result relating the (deterministic) runs of {EMT
r ·Sr}Sr and EST

r ·Sr, we first need
to introduce some notation concerning the runs and the states of the two programs.

Representing runs. We can split the (deterministic) run ρ of {EMT
r ·Sr}Sr into segments:

ρ= Aλ1
1 [x1,s1]B

λ2
1 [y1, t1,u1] . . .B

λ2m−2
m−1 [xm−1,sm−1,um−1]

Aλ2m−1
m [xm,sm]Bλ2m

m ,

where m is the number of method calls in the code of S to methods defined in EMT , such that:

– Every Aλ j
i is a sequence of configurations (sub-run) where only the code of S is executed.

That is, since S is atomic, its run is neither interleaved by the run of the scheduler nor of
by the run of any thread spawned by EMT . Every Aλ j

i ends with a configuration of the form
qk = 〈Πk ∪{tID0 7→ 〈ei[Ci.mi(~ai)], li〉},hk, lockk〉 where Ci defined in E and Ci.mi(~ai) is the
subexpression which is about to be rewritten. We denote the tuple (Ci,mi,~ai) by xi and the
state (Lk,hk, lockk) by si, where ltID0 in Lk is such that ltID0 = li.

197

F. Formal Proofs

– Every Bλ j
i is a sequence of configurations (sub-run) where the code of EMT and of the scheduler

S is executed. In each Bλ j
i block, the initial configuration of the thread tID0 which starts

executing the code of EMT is of the form 〈ei[{e′i}Ci], li〉, where {e′i}Ci is the block obtained by
the static method call rule applied to Ci.mi(~ai) (it depends only on Ci, mi, and~ai). Every Bλ j

i ,
except for the last one, ends with a configuration qn = 〈Πn∪{tID0 7→ 〈ei[{yi}Ci], l j〉},hn, lockn〉
where yi is a value (the value returned by the method denoted by xi). We denote the state
(Ln,hn, lockn) by ti, where ltID0 in Ln is such that ltID0 = l j. Moreover, since in each Bi block
also the code of the scheduler is executed, we denote its (single-threaded) state at the and the
block by ui = (lS ,i,hS ,i).

– For each j ∈ {1, . . . ,2m}, every λ j indicates the number of steps executed in the run ρ before
the beginning of the segment Aλ j

b j/2c or Bλ j

b j/2c.

Similarly, we represent the (deterministic) run ρ̃ of the system EST ·S as

ρ̃= Ãλ̃1
1 [x̃1, s̃1]B̃

λ̃1
1 [ỹ1, t̃1] . . . B̃

λ̃2m−2
m−1 [x̃m−1, s̃m−1]Ãλ̃2m−1

m [x̃m, s̃m]B̃λ̃2m
m ,

where m is the (same) number of method calls in the code of S to methods defined in EST , such
that:

– Every Ãλ̃ j
i is a sequence of configurations where the code of S is executed. Every Ãλ̃ j

i ends
with a configuration of the form q̃k = 〈ẽi[Ci.mi(~ai)],(l̃i, h̃i)〉 where Ci defined in S and Ci.mi(~ai)
is the subexpression which is about to be rewritten. We denote the tuple (Ci,mi,~ai) by x̃i and
the state (l̃i, h̃i) by s̃i.

– Every B̃λ̃ j
i is a sequence of configurations where the code of EST is executed. In each B̃λ̃ j

i block,
the initial configuration is of the form 〈ẽi[{e′i}Ci],(l̃i, h̃i)〉, where {e′i}Ci is the block obtained
by the static method call rule applied to Ci.mi(~ai) (it depends only on Ci, mi, and ~ai). Every

B̃λ̃ j
i , except for the last one, ends with a configuration qn = 〈ẽi[{ỹi}Ci],(l̃ j, h̃ j)〉 where ỹi is a

value (the value returned by this method). We denote the state of (l̃ j, h̃ j) by t̃i.

– For each j ∈ {1, . . . ,2m}, every λ j indicates the number of steps executed in the run ρ before

the beginning of the segment Ãλ̃ j

b j/2c or B̃λ̃ j

b j/2c.

Let f be a bijection from references of EST · S to references of {EMT · S}S . We say that x̃i

matches xi w.r.t. f , written x̃i ∼ xi, if, for each variable v j in xi, there exists a variable ṽ j in x̃i

such that

• ṽ j = v j, if ṽ j and v j are primitive values;

• ṽ j = f (v j), if ṽ j and v j are references.

In a similar way, we can say ỹi ∼ yi.

Representing states. Let s = (L,h, lock) be a multi-threaded SyncJinja+ state that occurs in
EMT

r ·Sr, where L = {ltID1 . . . , ltIDn}. By s|EMT = (L|EMT ,h|EMT , lock|EMT) we denote the part of

198

F.3. Proof of Theorem 3.6

the state that is accessible from EMT through the variables that EMT uses. For each store ltIDi

in LEMT , we leave in the domain of ltIDi |EMT only the variables of ltIDi that EMT can access; if
ltIDi |EMT = /0, we remove ltIDi from L|EMT .

In the domains of h|EMT and lock|EMT we leave only those references that can be reached from
the variables in the stores in L|EMT , where, for each ltIDi |EMT in L|EMT , a reference can be reached
from ltIDi |EMT if one of the following holds:

• it is stored in one of the variables of ltIDi |EMT ,

• it is stored in a field of an object that can be reached from ltIDi |EMT .

In an analogous way, we define s|S = (L|S,h|S, lock|S). In particular, since in EMT · S the only
thread which runs the code of S is tID0, L|S = {ltID0 |S}. Moreover, since S is atomic and hence
its code contains no language constructs introduced in SyncJinja+ (start, sync, and insync), we
have lock|s = /0 and lock|EMT = lock.

Let s̃ = (l̃, h̃) be a single-threaded Jinja+ state that occurs in EST ·S. As for the multi-threaded
state, by s̃|EST = (h̃|EST , l̃|EST) we denote the part of the state accessible from EST , whereas by
s̃|S = (l̃|S, h̃|S) the part of the state accessible from S.

Assuming there are no clashes neither between variables’ names in the stores inside L|EMT nor
between these stores and the store lS of u, we say that the single-threaded state s̃|EST represents
both the multi-threaded state s|EMT and the single-threaded state u of the scheduler, written
s̃|EST

r
|= s|EMT

r
∪ u, if there exists a bijection f from references of EMT and of S to references

EST such that:

– The values of both the variables in L|EMT := {ltID0 |EMT , . . . , ltIDn|EMT } and in lS are—up to
mapping f —the same as the value of the corresponding variable in l̃|EST . (We notice that l̃|EST

always contains more variables than l|EMT , e.g., the variables necessary to encode the whole
multi-threaded configuration.)

– The references in h|EMT and hS point—up to mapping f —to the same objects of the corre-
sponding references in h̃|EST . (As in the previous item, h̃|EST always contains more references
than h|EMT .)

– There exists a data structure in s̃|EST (e.g., a list) which, for each a ∈ dom(lock|EMT), contains a
reference ã such that ã = f (a) and which records the thread identifier that has acquired the
lock on the object pointed by ã, along with the number of lock acquisitions.

Finally, let s̃|S = (l̃|S, h̃|S) and s|S = (ltID0 |S,h|S) being the state accessible from S of the
programs EST ·S and {EMT ·S}S , respectively. Let f be a bijection f from references of EST ·S
to references of {EMT ·S}S . We say that s̃|S matches s|S w.r.t. f , written s̃|S ∼ s|S, if

• for each variable vi in ltID0 |S, there exists a variable ṽi in l̃|S such that

– ṽi = vi, if ṽi and vi are primitive values,

– ṽi = f (vi), if ṽi and vi are references;

• for each reference ai in h|S, there exists a reference ãi in h̃|S such that ai = f (ãi).

199

F. Formal Proofs

Relation between SyncJinja+ and Jinja+ runs. We now state two lemmas, namely Lemma F.8
and Lemma F.7 which will allow us to relate the SyncJinja+ run ρ of {EMT ·S}S and the Jinja+
run ρ̃ of EST ·S.

Lemma F.7. Let ρ and ρ̃ be the runs of {EMT ·S}S and EST ·S respectively, as defined above.

Let Bλ j
i and B̃λ̃ j

i be two segments where the code of {EMT}S and EST are executed, respectively.
Then, for each SyncJinja+ configuration qk of the run ρ such that k ∈ {λ j, . . . ,λ j+1}, there exists
a sequence of Jinja+ configurations q̃o, . . . , q̃o+ξ (where the number ξ is fixed for each SyncJinja+
reduction rule whose application led to qk) in ρ̃ such that:

1) o,o+ ξ ∈ {λ̃ j, . . . , λ̃ j+1},

2) (l̃o+ξ|EST , h̃o+ξ|EST) |= (Lk|EMT ,hk|EMT , lockk)∪ (lS ,k,hS ,k).

Lemma F.8. Let ρ and ρ̃ be the runs of {EMT ·S}S and EST ·S respectively, as defined above.

Let Ãλ̃ j
i /Aλ j

i be two segments where the code of S is executed. Then, the steps executed in Ãλ̃ j
i and

Aλ j
i are λ̃ j+1− λ̃ j = λ j+1−λ j in both segments and for each k ∈ {λ̃ j, . . . , λ̃ j+1} and for each

o ∈ {λ j, . . . ,λ j+1}, we have that the Jinja+ configuration q̃k and the SyncJinja+ configuration
qo are such that:

1) l̃k|S ∼ ltID0,o|S,

2) h̃k|S ∼ ho|S.

These two lemmas, which, similarly to the Lemmas F.2 and F.3 above, can be proven by
induction on the number of steps of execution, allow us to prove the following result which relates
the SyncJinja+ run ρ of {EMT ·S}S and the Jinja+ run ρ̃ of EST ·S.

Lemma F.9. Let ρ and ρ̃ be the runs of {EMT ·S}S and EST ·S respectively, as defined above.
Then, for each i ∈ {1, . . . ,m} the following holds:

(a) s̃i|S ∼ si|S,

(b) t̃i|EST |= ti|EMT ∪ui,

(c) x̃i ∼ xi and ỹi ∼ yi.

Proof. (Sketch) Item (a) states that, at the end of each segment Ãi/Ai (the segments in ρ̃/ρ where
the code of S is executed), the part of the state accessible from S is the same in both runs ρ̃/ρ.
That is, the part of the single-threaded state s̃|S = (l̃S, h̃S) accessible from S in the Jinja+ run ρ̃ is
equivalent to the multi-threaded state s|S = {L|S,h|S, lock|S} accessible from S in the SyncJinja+
run ρ.

Since in the SyncJinja+ run ρ S is executed atomically and since, by Definition 3.4, the (only)
thread spawned at the beginning of the run ρ, namely tID0, contains, at the beginning of ρ,
the SyncJinja+ expression e0 referencing to the method main of S, we have that lock|S = /0 and

that L|S = {ltID0 |S}. Moreover, by Lemma F.8, in each segment Ãλ̃ j
i /Aλ j

i where the code of S is

200

F.4. Proof of Theorem 4.1

executed, for each k ∈ {λ̃ j, . . . , λ̃ j+1} and for each o∈ {λ j, . . . ,λ j+1}, we have that l̃k|S ∼ ltID0,o|S
and h̃k|S ∼ ho|S. We can then assert that, at the end of the two segments Ãλ̃ j

i /Aλ j
i , we have

si|S = {Li|S,hi|S, locki|S}= {{ltID0,i|S},hi|S, /0}= (ltID0,i|S,hi|S)∼ (l̃i|S, h̃i|S) = s̃i|S.

Item (b) states that the Jinja+ system EST correctly simulates the run of the SyncJinja+ system
EMT and of the scheduler S . By Lemma F.7, at the end of each segment B̃λ̃i

i /Bλi
i , the part of

the single-threaded state accessible from EST represents both the part of the multi-threaded state
accessible from EMT and the state of the scheduler.

Item (c) states that in the Jinja+ run ρ̃, EST and S exchange exactly the same data exchanged
by EMT and S in the SyncJinja+ run ρ:

– x̃i ∼ xi holds since it represents a method call performed by the code of S in both ρ̃ and ρ. By

Lemma F.8, at the end of each segment Ãλ̃ j
i /Aλ j

i , there exists a bijection among s̃|S and s|S. As
the parameters of the method call of x̃i and xi are part of s̃|S and s|S, respectively, the same
bijection can be used to assert x̃i ∼ xi.

– ỹi ∼ yi holds since EST encodes the multi-threaded configuration of {EMT}S and simulates
each reduction step executed either by a thread of EMT or by the scheduler S . By Lemma F.7,

at the end of each segment B̃λ̃ j
i /Bλ j

i , the part of the single-threaded state accessible from EST

represents both the part of the multi-threaded state accessible from EMT and the state of the
scheduler: t̃i|EST |= ti|EMT ∪ui. Since, by the definition of |=, for each variable v in ti|EMT , there
exists a variable ṽ in t̃i|EST such that ṽ∼ v, and since ỹi ∈ t̃i|EST and yi ∈ ti|EMT , we can conclude
that ỹi ∼ yi.

We can now observe that a direct consequence of Lemma F.9 (more precisely, of the fact
that t̃i|EST represents ti|EMT , Item (b), and that, from the point of view of S, EST simulates the
execution of EMT under S , Item (c)) is that the final value of variable result in ρ and ρ̃ is the
same and, therefore, these two runs output the same result.

As all four systems EMT , S , S, and EST are bounded, there exists a polynomial p such that
the probability that the length of the longest run (parameterized with integer size intsize(η)),
among the runs of {EMT ·S(η)}S and of EST ·S(η), exceeds p(η) is negligible. So in all runs,
except for a negligible fraction, at most p(η) random bits are needed. Moreover, for almost all
bit strings rEMT , rS , rS, and rEST of length at most p(η) and for all integers of size intsize(η),
we have that the runs of {EMT

r · Sr(η)}Sr and EST
r · Sr(η) terminate for integer size intsize(η).

Now, since for all random bit strings rEMT , rS , rS, and rEST and for all security parameters η,
both {EMT

r ·Sr(η)}Sr and EST
r ·Sr(η) output the same result, we can conclude that the programs

{EMT ·S}S and EST ·S output true with the same probability, up to a negligible function.

F.4. Proof of Theorem 4.1

As we have mentioned in Section 4.1.4, the proof of Theorem 4.1 is highly modular and leverages
such properties of the realization relation stated in Section 2.2 as the composition theorem,

201

F. Formal Proofs

reflexivity, and transitivity. Due to this modular proof technique, we can even make use of the
result proven in [KTG12a] for the public-key functionality without corruption and without a PKI.

First, we observer that the ideal functionality Ideal-PKIEnc can be split in the following way:

Ideal-PKIEnc = Ideal-PKEnc · Ideal-RegEnc ,

where Ideal-PKEnc and Ideal-RegEnc are defined as follows:

Ideal-PKEnc consists of the classes Encryptor and Decryptor of Ideal-PKIEnc, as introduced in
Section 4.1.2. Let IPKEnc denote the public interface of these classes. That is, IPKEnc

coincides with IPKIEnc, as defined in Section 4.1.1, excluding the interface of the class
RegisterEnc.

Ideal-RegEnc consists of the class RegisterEnc of Ideal-PKIEnc. Let IEncPKI denotes the public
interface of this class. That is, the interface IPKIEnc, as defined in Section 4.1.1, restricted to
the public interface of the class RegisterEnc.

Similarly, Real-PKIEnc can be split in the following way:

Real-PKIEnc = Real-PKEnc ·Real-RegEnc ,

where Real-PKEnc and Real-RegEnc are defined as follows:

Real-PKEnc consists of the classes Encryptor and Decryptor of Real-PKIEnc, as introduced in
Section 4.1.3. Note that the public interface of Real-PKEnc is IPKIEnc, and hence, it is the
same as the one for Ideal-PKEnc.

Real-RegEnc consists of the RegisterEnc of Real-PKIEnc. Note that the public interface of
Real-RegEnc is IEncPKI, and hence, it is the same as the one for Ideal-RegEnc.

Now, we prove the following sequence of realization relations:

Real-PKIEnc ·Real-PKI = Real-PKEnc ·Real-RegEnc ·Real-PKI

≤IPKIEnc Real-PKEnc ·Real-RegEnc · Ideal-PKI (F.4)

≤IPKIEnc Real-PKEnc · Ideal-RegEnc (F.5)

≤IPKIEnc Ideal-PKEnc · Ideal-RegEnc = Ideal-PKIEnc (F.6)

From this, by transitivity of the realization relation, Theorem 4.1 follows. Now, we establish each
of the above relations.

Lemma F.10. Relation (F.4) holds true, that is

Real-PKEnc ·Real-RegEnc ·Real-PKI≤IPKIEnc Real-PKEnc ·Real-RegEnc · Ideal-PKI .

Proof. This relation easily follows from the assumption that Real-PKI≤IPKI Ideal-PKI, the compo-
sition theorem, and reflexivity of the realization relation. Indeed, by reflexivity of realization
relation, we have that

Real-PKEnc ·Real-RegEnc≤IPKIEnc Real-PKEnc ·Real-RegEnc.

202

F.4. Proof of Theorem 4.1

Note that IPKIEnc = IPKEnc ∪ IEncPKI. Together with Real-PKI ≤IPKI Ideal-PKI, by the composition
theorem we immediately obtain that

Real-PKEnc ·Real-RegEnc ·Real-PKI≤IPKIEnc∪IPKI Real-PKEnc ·Real-RegEnc · Ideal-PKI

which implies (F.4), since if a relation holds for one interface, then also for all of its subinterfaces.

Lemma F.11. The relation (F.5) holds true, that is

Real-PKEnc ·Real-RegEnc · Ideal-PKI≤IPKIEnc Real-PKEnc · Ideal-RegEnc.

The two systems are very similar: the main difference is that in the ideal system (the one
on the right hand-side) encryptors are stored directly (in a collection of registered encryptors),
while in the real system (the one on the left hand-side) public keys are stored instead with
wrapping/unwrapping of public keys in encryptors when necessary. Therefore, the relation holds
true even if unbounded environments try to distinguish the two systems. The proof of this lemma
is given in Appendix F.4.1.

Finally, relation (F.6) follows immediately by the following fact and again using the composi-
tion theorem and reflexivity of realization relation, similarly to the proof of Lemma F.10.

Lemma F.12. Real-PKEnc≤IPKEnc Ideal-PKEnc

We prove Lemma F.12 by reducing it to the result from [KTG12a], where similar functionalities,
but without corruption are considered. In the proof we use the fact that corrupted encryptors can
be simulated directly by an environment. The proof is given in Appendix F.4.2.

F.4.1. Proof of Lemma F.11

In this section, we prove that

Real-PKEnc ·Real-RegEnc · Ideal-PKI≤IPKIEnc Real-PKEnc · Ideal-RegEnc.

In order to do this, we need to show that there exists a simulator Sim such that

S = Real-PKEnc ·Real-RegEnc · Ideal-PKI ≈IPKIEnc
comp Sim ·Real-PKEnc · Ideal-RegEnc = S̃

Let Sim be the simple forwarding simulator that translates calls to the simulator interface of
Ideal-RegEnc (that is class RegisterEncSim) into calls to the simulator interface of Ideal-PKI (class
PKISim):

public class RegisterEncSim {

public static boolean register(int id, byte[] domain, byte[] publicKey) {

return PKISim.register(id, domain, publicKey);

}

public static boolean getEncryptor(int id, byte[] domain) {

return PKISim.getKey(id, domain);

}

}

203

F. Formal Proofs

We are able to prove the stronger property

S ≈IPKIEnc
perf S̃

that is, the two systems are perfectly indistinguishable, that is indistinguishable by an unbounded,
deterministic adversary (see [KTG12a] for details). For this, let us take an arbitrary deterministic
IPKIEnc-environment E for S (and hence for S̃). To complete the proof, it remains to show that

E ·S ≡perf E · S̃ (F.7)

which simply means that the environment E in the runs of both E ·S and E · S̃ outputs the same
value.

On the intuitive level the above statement is quite straightforward. Indeed, the systems S and S̃,
from the point of view of any environment E, realize very similar computations with the only
difference being how they implement registration of encryptors. In the system S, public keys are
kept in a collection (along with user identifiers); those keys are retrieved from an encryptor by
method registerEncryptor and, conversely, wrapped into a newly created encryptor by method
getEncryptor. In the system S̃, on the other hand side, encryptors are stored directly (along with
user identifiers). Method registerEncryptor simply adds such an encryptor (along with a user
identifier) into a collection, when method getEncryptor retrieves an appropriate encryptor and
returns a newly created copy of it. These computations produce the same result, up to the internal
state of the component S/S̃. In other words, the state of the computations in the considered
systems is the same from the point of view of the environment and so, in particular, the value of
variable result (which is determined by the environment) at the end of the runs is the same in
both systems.

To formalize the intuitive argument given above, we need to introduce some notation.

Structure of states in a run. A configuration q of Jinja+, as defined in [KTG12a], is of the form
(e,s), where e is a Jinja+ expression and s is a state. A state is a pair (h, l) of a heap and a store.
A heap is a mapping from references (addresses) to object instances and a store is a mapping
from variable names to values. A value can be either a reference or a value of a primitive type.

One particular type of expression is a block expression of the form {V : T ; e}C or {V : T ; V :=
Val v; e}C, where V is a local variable (whose scope is this block) of type T and, in the second
variant, with value Val v, e is an expression (e can access the local variable V), and C is a class
name (denoting that the block originates from the code of the class C).

In general, an expression can contain many blocks as its subexpression. However, when we
study expressions that occur in actual runs, it turns out that they have a simpler form, where all
blocks are located on one path. Formally, let

q0 = 〈e0,〈h0, l0〉〉 `→ 〈e1,〈h1, l1〉〉 `→ ···

be a run with the initial state s0 = 〈h0, l0〉. By the definition of the initial state [KTG12a, KTG12b],
h0 is empty and l0 bounds the static variables of the program to their initial values (and no other
variables). By inspecting the rules of Jinja+ (see Appendix B.1), one can see that, for every
i = 0,1, . . . ,

204

F.4. Proof of Theorem 4.1

– li bound only static variables,

– for every subexpression e of ei (including ei) either e contains no block as its subexpression
or e is of the form E[b], where E contains no block and b is a block. That is, e can contain,
directly, at most one block (although b can contain other blocks).

The definitions and results given below assume that expressions originate from runs of Jinja+
systems and therefore they are of the above form.

By C[·] we denote an expression context (that is, an expression with a hole) and by C[e] we
denote the expression obtained by replacing the hole by e.

We can now state the two following lemmas.

Lemma F.13. 〈e,(h, l)〉 −→ 〈e′,(h′, l′)〉 if and only if e contains no block.

The proof can be easily done by structural induction, considering all possible rules of Jinja+
(Appendix B.1) that produce a reduction step with label −.

Lemma F.14. If 〈e,(h, l)〉 D→ 〈e′,(h′, l′)〉, then

• e is of the form C[e0], where e0 is a block expression of class D without blocks;

• 〈e0,(h, l)〉 D→ 〈e′0,(h′, l′)〉;

• e′ = C[e′0].

Again, this lemma can be easily proven by structural induction.

Pruning. Let C be a set of classes (intuitively, representing a subprogram) and e be an expression.
We define a pruning operator subC (e) in such a way that it removes from e all those parts that
come from classes not in C and only leaves the code originating in C . Formally, we define
subC (e) as follows:

– if e contains no block, then subC (e) = e,

– if e is not a block, but contains one, that is e = E[b], then subC (e) = E[subC (b)],

– if e = {V : T ; e′}D with D ∈ C , then subC (e) = {V : T ; subC (e′)}D (and similarly for
e = {V : T ; V := Val v; e′}D),

– if e = {V : T ; e′}D with D /∈ C , and e′ contains no blocks, then subC (e) =⊥.

– if e = {V : T ; E[b]}D, where b is a block with D /∈ C , then subC (e) = sub(b),

Corresponding states. As it has already been stated, our goal is to show that (F.7) holds true.
The systems S and S̃ we consider in this equivalence share the component Real-PKEnc and it will
be useful for the remainder of the proof to use the following notation. Let E ′ denote E ·Real-PKEnc
(that is, E ′ is the environment enlarged by the shared functionality Real-PKEnc), let

T = Real-RegEnc · Ideal-PKI,

T̃ = Ideal-RegEnc ·Sim.

205

F. Formal Proofs

Using this notation, (F.7), that is the equivalence to be proven, can be represented as

E ′ ·T ≡perf E ′ · T̃ (F.8)

Let q = 〈e,(h, l)〉 be a configuration of E ′ ·T and q̃ = 〈ẽ,(h̃, l̃)〉 be a configuration of E ′ · T̃ .
We say that a bijection f : R1→ R2, where R1 and R2 are subsets of the set of all references, is

an (h, h̃)-congruence, if for all r, r̃ such that r̃ = f (r) one of the following conditions holds true:

(i) Both r and r̃ point to objects of the same class C defined in E ′ and for every field m of C,
either (a) both r′ = h(r).m and r̃′ = h̃(r̃).m have the same primitive value or (b) both r′ and
r̃′ are references and r̃′ = f (r′).

(ii) Both r and r̃ point to an array of the same type T and the same length l such either (a) T
is a primitive type and r and r̃ contain the same values or (b) T is a class and, for every
i ∈ {0, . . . , l− 1} and every pair of corresponding references r′ = h(r)[i] and r̃′ = h̃(r̃)[i],
we have r̃′ = f (r′).

Let f be an (h, h̃)-congruence. For primitive values v, ṽ, we write v≡ f ṽ, if simply v = ṽ. For
references r, r̃, we write r ≡ f r̃, if r̃ = f (r). Finally, we extend the relation ≡ f to expressions by
the structural isomorphism, that is e≡ f ẽ holds if and only if e and ẽ are (syntactically) equal, up
to references occurring as their corresponding subexpressions which need to be in the relation
≡ f .

We also define l ≡ f l̃ to be true if, intuitively, the state of E ′ (given by static variables of E ′)
is the same up to reference renaming f and the state of T and T̃ , although different, represent
essentially the same store of registered encryptors. Formally, we put l ≡ f l̃ if and only if

(a) For every static variable x defined in E ′ we have l(V)≡ f l̃(V).

(b) Static variable IdealPKI.entries (defined in T) and static variable RegisterEnc.registeredAgents

(defined in T̃) contain information which is strictly corresponding in the following sense.

First let us observe that IdealPKI.entries points to a list of entries, each containing id of type
int, and domain and key of type byte[]. Similarly, RegisterEnc.registeredAgents points to a
list of entries, each containing id of type int, domain of type byte[], and domain of type
Encryptor.

Now, for we require that, for all values id, domain, and key, where id is an integer and
domain and key are arrays of bytes, the following equivalence holds: the list pointed to by
IdealPKI.entries contains a tuple with values (id, domain, key) if and only if the list pointed
to by RegisterEnc.registeredAgents contains a tuple with values id, domain and an encryptor
containing key as its public key (that is its field publicKey points to an array containing the
bitstring key).

We say that q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉 are corresponding, if there exists a (h, h̃)-congruence
f such that

1. subE ′(e)≡ f subE ′(ẽ),

206

F.4. Proof of Theorem 4.1

2. l ≡ f l̃.

Condition 1 above means that the expressions e and ẽ (representing the code being executed),
when stripped off the code originatin in T /T̃ , are the same (up to reference renaming). Condition
2 says that the state, as given by static variables, is the same, up to reference renaming an up to
(not-essential) differences in how T and T̃ store public keys.

We will sometimes write that q and q̃ are f -corresponding to make it explicit which congruence
is used.

Lemma F.15. Let q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉 be f -corresponding configurations for an
(h, h̃)-congruence f . Let q −→ q′ and q̃ −→ q̃′. Then q′ = 〈e′,(h′, l′)〉 and q̃′ = 〈ẽ′,(h̃′, l̃′)〉 are
f ′-corresponding for an (h′, h̃′)-congruence f ′ which is an extension of f .

Proof. First of all, we prove that the Jinja+ rules applied to q and to q̃ are indeed the same. By
Lemma F.13, since 〈e,(h, l)〉 −→〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 −→〈ẽ′,(h̃′, l̃′)〉, e and ẽ contain no blocks.
Therefore, by the definition of the pruning operator, we have subE ′(e) = e and subE ′(ẽ) = ẽ and
hence, since they are f -corresponding, we have e≡ f ẽ. Moreover, the f -corresponding relation
means also l ≡ f l̃.

The relation≡ f between expressions implies that e and ẽ are syntactically equal, up to reference
occurring as their corresponding subexpressions. Since applicability of no Jinja+ rule depends on
the particular values of references, the same rule is applied to 〈e,(h, l)〉 and to 〈ẽ,(h̃, l̃)〉.

We can now prove the q′ and q̃′ are also corresponding, depending on the Jinja+ rule applied to
both q and q̃.

Rule B.1. In this case we have

q = 〈Cast C e1,(h, l)〉 −→ 〈Cast C e′1,(h
′, l′)〉= q′

and analogously
q̃ = 〈Cast C ẽ1,(h̃, l̃)〉 −→ 〈Cast C ẽ′1,(h̃

′, l̃′)〉= q̃′,

where, by the premise of the rule,

〈e,(h, l)〉 −→ 〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 −→ 〈ẽ′,(h̃′, l̃′)〉.

By definition of ≡ f (which is by structural isomorphism), we have e1 ≡ f ẽ1 and, therefore,
〈e1,(h, l)〉 and 〈ẽ1,(h̃, l̃)〉 are also f -corresponding. Therefore, by the inductive hypothesis,
there exists an (h′, h̃′)-congruence f ′ such that 〈e′1,(h′, l′)〉 and 〈ẽ′1,(h̃′, l̃′)〉 are f ′-corresponding,
where f ′ is an extension of f . By the definition of ≡ f ′ , we conclude that configurations
〈Cast C e′1,(h

′, l′)〉 and 〈Cast C ẽ′1,(h̃
′, l̃′)〉 are also f ′-corresponding.

Rule B.16. We have

q = 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉= q′

and
q̃ = 〈new C,(h̃, l̃)〉 −→ 〈addr ã,(h̃(ã 7→ (C, init-fields FDT s)), l̃)〉= q̃′,

207

F. Formal Proofs

where a and ã are fresh references (that is, references unused in h and h̃, respectively).
We extend (h, h̃)-congruence f to an (h′, h̃′)-congruence f ′ in the following way: (i) dom(f ′) =

dom(f)∪{a}; (ii) ∀r ∈ dom(f), f (r) = f ′(r); (iii) ã = f ′(a). By the definition of ≡ f ′ , we have
a≡ f ′ ã. Furthermore, since the rule leaves the stores l and l̃ unchanged, l ≡ f ′ l̃. Therefore, q′

and q̃′ are f ′-corresponding.

Rule B.20. We have

q = 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉= q′

and
q̃ = 〈V := Val ṽ,(h̃, l̃)〉 −→ 〈unit,(h̃, l̃(V 7→ ṽ))〉= q̃′

with l ≡ f l̃ by the lemma’s hypothesis. Since q ≡ q̃, by the definition of ≡ f (which is by
structural isomorphism), we also have v ≡ f ṽ and, since l′ = l(V 7→ v) and l̃′ = l̃(V 7→ ṽ), we
also have l′ ≡ f l̃′. Therefore, since the rule leaves unchanged the heaps h and h̃, q′ and q̃′ are
f ′-corresponding where f ′ = f .

Rule B.23. We have

q = 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉= q′

and

q̃ = 〈addr ã.F{D} := Val ṽ,(h̃, l̃)〉 −→ 〈unit,(h̃(ã 7→ (C, f s((F,D) 7→ ṽ))), l̃)〉= q̃′.

Since q≡ q̃, by the definition of ≡ f (which is by structural isomorphism), we have a≡ f ã and
v≡ f ṽ. The rule changes the heaps h, h̃ in such a way that the fields F{D} of the references a,ã
are updated with the values v, ṽ, respectively:

h′ = h(a 7→ (C, f s((F,D) 7→ v)))

and
h̃′ = h̃(ã 7→ (C, f s((F,D) 7→ ṽ))).

Since the two fields are updated with the corresponding values v, ṽ, they remain corresponding
also after the application of the rule. Therefore, by the definition of ≡ f , the (h, h̃)-congruence f
is also an (h′, h̃′)-congruence. Since the rule leaves unchanged the stores l and l̃, 〈e′,(h′, l′)〉=
〈unit,(h′, l)〉 and 〈ẽ′,(h̃′, l̃′)〉= 〈unit,(h̃′, l̃)〉 are f ′-corresponding where f ′ = f .

Rule B.24. In this case we have q = 〈addr a.M(map Val vs),(h, l)〉 and analogously q̃ =
〈addr ã.M(map Val ṽs),(h̃, l̃)〉. By the definition of f -corresponding and of ≡ f , we have a≡ f ã
and vs≡ f ṽs. Therefore both a and ã point to objects of the same class C defined in E ′.

By the premise of the rule we have “P ` C sees M : T s→ T = (pns, body) in D”, which
means that method M called for an object of class C (which is the actual class of the object a that
we call M for) is defined in class D as (pns,body), where pns are the parameters of the method

208

F.4. Proof of Theorem 4.1

and body is its body). Now, when configuration q is considered, P = E ′ ·T ; when q̃ is considered,
P = E ′ · T̃ . One can see that in both these cases, the above relation gives the same pns and body.
This is because, as we have noted, class C is defined in E ′ and this component does not refer to
T /T̃ .

Therefore
e′ = blocksD(this · pns, Class D ·T s, addr a · vs, body)

and
ẽ′ = blocksD(this · pns, Class D ·T s, addr ã · ṽs, body)

respectively.
Since a ≡ f ã and vs ≡ f ṽs, by the definition of ≡ f (which is by structural isomorphism),

we have e′ ≡ f ẽ′. Furthermore, since the rule does not change the state i.e., (h, l) = (h′, l′)
and (h̃, l̃) = (h̃′, l̃′) respectively, also l′ ≡ f l̃′ holds. Therefore 〈e′,(h′, l′)〉 and 〈ẽ′,(h̃′, l̃′)〉 are
f ′-corresponding where f ′ = f .

We consider the remaining rules only quickly, as the reasoning they require is either trivial or
similar to the cases discussed above.

• Rules B.2-B.7, B.11-B.15, B.35, B.37, B.55-B.57 can be proven by following the inductive
reasoning (rule induction) for the rule B.1, since they also perform just a reduction step in
one of their subexpressions.

• Rules B.8, B.9, B.10 cannot be applied to q and q̃ because the function g(`,D), which
defines the transition’s label of these rules, never returns −.

• Rules B.17, B.19, B.21, B.22, B.31, B.39, B.40, B.64-B.67, B.69,B.70 can be proven by
following the reasoning for rule B.24 since they also leave the state of the configurations un-
changed: (h, l) = (h′, l′) and (h̃, l̃) = (h̃′, l̃′) respectively. Therefore, the (h′, h̃′)-congruence
f ′ is such that f ′ = f .

• Rules B.18, B.27-B.30, B.32-B.34, B.36, B.38, B.41-B.47, B.50-B.54, B.58-B.60, B.63
can be proven by following the reasoning for rule B.24 because also these rules leave the
state of the configurations unchanged (hence, f ′ = f) and, moreover, they are trivial to
prove since they do not have any premise (as in case of rule B.20).

• Rules B.25, B.26, B.48, B.49 cannot be applied to q and q̃ because their transition’s label
is D.

• Rule B.61 can be proven by following the reasoning for rule B.24, with the only difference
that, since the method D.M is static, the local variable this does not appear as argument of
the auxiliary block function.

• Rule B.62 can be proven by following the reasoning for rule B.16: since also in this case
two new array references a and ã are created inside their heaps h and h̃ respectively, the
(h, h̃)-congruence f must be extended in the same way i.e., with a (h′, h̃′)-congruence f ′

such that a ∈ dom(f ′) and ã = f ′(a).

209

F. Formal Proofs

• Rule B.68 can be proven by following the same reasoning of rule B.23: two array references
r = h(a)[n] and r̃ = h̃(ã)[n] are updated, but also in this case the (h, h̃)-congruence f
remains unchanged for (h′, h̃′) i.e., f ′ = f .

E ′-configurations. We say that a configuration q is an E ′-configuration, if E ′ has control at q,
i.e. q `→ q′ for ` ∈ E ′.

Let q be an E ′-configuration. We write q 7→ q′, if q′ is also an E ′-configuration and

q
`0→ q1

`1→ ··· `n−1→ qn
`n→ q′

where (`0 ∈ E ′ and) `i /∈ E ′ for i ∈ {1, . . . ,n}, that is q1, . . . ,qn are not E ′-configurations. (Note
that the special case of the above definition is when q′ is obtained from q in one step). As we can
see, q′ is the first E ′-configuration after q.

Now one can prove that two E ′ configurations q and q̃ that are corresponding reduce in one step
to configurations which are also corresponding:

Lemma F.16. Let q and q̃ be corresponding E ′-configurations. Let q→ q′ and q̃→ q̃′. Then q′

and q̃′ are also corresponding.

Proof. Let q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉. Since they are E ′-configurations, we have

〈e,(h, l)〉 D→ 〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 D̃→ 〈ẽ′,(h̃′, l̃′)〉, respectively, with D, D̃ ∈ E ′. By Lemma
F.14, we then have:

– e = C[e0], where e0 is a block expression of class D without nested blocks;

– ẽ = C̃[ẽ0], where ẽ0 is a block expression of class D̃ without nested blocks;

– 〈e0,(h, l)〉 D→ 〈e′0,(h′, l′)〉 and e′ = C[e′0];

– 〈ẽ0,(h̃, l̃)〉 D̃→ 〈ẽ′0,(h̃′, l̃′)〉 and ẽ′ = C̃[ẽ′0].

Since 〈e,(h, l)〉 and 〈ẽ,(h̃, l̃)〉 are corresponding configurations, we have subE ′(C[e0]) ≡ f

subE ′(C̃[ẽ0]) for some (h, h̃)-congruence f and hence, by the definition of pruning operator,
subE ′(C)[subE ′(e0)] ≡ f subE ′(C̃)[subE ′(ẽ0)]. By the definition of ≡ f (which is by structural
isomorphism), we then have:

– subE ′(C)≡ f subE ′(C̃) and

– subE ′(e0)≡ f subE ′(ẽ0).

Therefore 〈e0,(h, l)〉 and 〈ẽ0,(h̃, l̃)〉 are also f -corresponding and D = D̃, because D, D̃ ∈ E ′ and,
hence, the block expressions e0 and ẽ0 are preserved by subE ′ . Furthermore, since e0 and ẽ0
contain no block as their proper subexpressions, by the definition of pruning operator, we have
subE ′(e0) = e0 and subE ′(ẽ0) = ẽ0 and therefore e0 ≡ f ẽ0.

210

F.4. Proof of Theorem 4.1

The relation ≡ f between expressions implies that e0 and ẽ0 are syntactically equal, up to
reference occurring as their corresponding subexpressions. But, since aplicability of Jinja+
rules does not depend on particular values of references, the same block rule is applied to both
〈e0,(h, l)〉 and 〈ẽ0, h̃, l̃)〉.

We now prove that 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding for an (h′, h̃′)-congruence
f ′ which is an extension of f . We need to distinguish the following cases, depending on the block
rule applied to e0 (and thus to e′0).

(a) Rule B.8, B.9: we have e0 = {V : T ;e1}D, where neither e1 = Val u nor e1 = Throw a,
and g(`,D) = D.

(b) Rule B.25: we have e0 = {V : T ; Val u}D.

(c) Rule B.48: we have e0 = {V : T ; Throw a}D.

(d) Rule B.10: we have e0 = {V : T ;V := Val v;e1}D, where neither e1 = Val u nor
e1 = Throw a, and g(`,D) = D.

(e) Rule B.26: we have e0 = {V : T ; V := Val v}D.

(f) Rule B.49: we have e0 = {V : T ;V := Val v; Throw a}D.

Let us consider the case (a) and (b); the case (d) is analogous to case (a), whereas the cases (c),
(e) and (f) are analogous to case (b) and, moreover, trivial because the rules do not assume any
premise and do not change the state of the configurations.

Case (a): We have e0 = {V : T ;e1}D and ẽ0 = {V : T ; ẽ1}D. Furthermore, by definition of ≡ f ,
we have e1 ≡ f ẽ1 and hence 〈e1,(h, l)〉 and 〈ẽ1,(h̃, l̃)〉 are f -corresponding.

The block rule applied is either B.8 or B.9. Let us consider the rule B.8; reasoning for the other
other is analogous. Since e1 and ẽ1 do not contain any blocks, by Lemma F.13

〈e1,(h, l(V := None)〉 −→ 〈e′1,(h′, l′1)〉 with l′ = l′1(V := l V) (F.9)

and

〈ẽ1,(h̃, l̃(V := None)〉 −→ 〈ẽ′1,(h̃′, l̃′1)〉 with l̃′ = l̃′1(V := l̃ V). (F.10)

By Lemma F.15, 〈e′1,(h′, l′1)〉 and 〈ẽ′1,(h̃′, l̃′1)〉 are f ′-corresponding for an (h′, h̃′)-congruence
f ′ which is an extension of f . It implies subE ′(e′1)≡ f ′ subE ′(ẽ′1) and l′1 ≡ f ′ l̃′1. Therefore, by the
definition of l′ in (F.9) and l̃′ in (F.10), we have

l′ ≡ f ′ l̃′. (F.11)

By the definition of ≡ f ′ (which is by structural isomorphism), we have

{V : T ; subE ′(e′1)}D ≡ f ′ {V : T ; subE ′(ẽ′1)}D, (F.12)

and, hence, by the definition of the pruning operator, we obtain

subE ′(e′0) = subE ′({V : T ;e′1)}D)≡ f ′ subE ′({V : T ; ẽ′1}D) = subE ′(ẽ′0). (F.13)

By relations (F.11) and (F.13), 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are also f ′-corresponding.

211

F. Formal Proofs

Case (b): We have e0 = {V : T ; Val u}D and ẽ0 = {V : T ; Val ũ}D. Furthermore, by the
definition of ≡ f , we have Val u≡ f Val ũ. The block rule applied is B.25, where 〈e′0,(h′, l′)〉=
〈Val u,(h, l)〉 and 〈ẽ′0,(h̃′, l̃′)〉 = 〈Val ũ,(h̃, l̃)〉, respectively. In particular, since l ≡ f l̃ (by the
lemma’s hypothesis) and since l′ = l and l̃′ = l̃, we also have l′ ≡ f l̃′.

Therefore 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding, where f ′ = f .

We have proven that 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding. In particular, it means
that subE ′(e′0) ≡ f ′ subE ′(ẽ′0). Since subE ′(C) ≡ f subE ′(C̃) and f ′ is an extension of f , by the
definition of the pruning operator, we have

subE ′(e′) = subE ′(C)[subE ′(e′0)]≡ f ′ subE ′(C̃)[subE ′(ẽ′0)] = subE ′(ẽ′). (F.14)

By (F.11) and (F.14), we conclude that q′ = 〈e′,(h′, l′)〉 and q̃′ = 〈ẽ′,(h̃′, l̃′)〉 are corresponding,
which completes the proof.

Now we are ready to prove the following statement.

Lemma F.17. Let q0 be the initial configuration of the run of E ′ · T and q̃0 be the initial
configuration of the run of E ′ · T̃ . Let q1, . . . ,qn and q̃1, . . . , q̃n be configurations such that
q0 7→ q1 7→ · · · 7→ qn and q̃0 7→ q̃1 7→ · · · 7→ q̃m where qn and q̃m are final configuration (i.e.
configuration that do not reduce). Then n = m and, for all i ∈ {0, . . . ,n}, the configurations qi

and q̃i are corresponding.

Proof. We will prove a more general fact, than the one stated in the lemma, allowing q0 and q̃0 to
be any corresponding E-states (not necessarily the initial ones). The proof proceeds by induction
on the number of E ′-blocks—that is block expressions of the form {. . .}C with C ∈ E ′—in q0
(and q̃0), where to prove that the statement is true for configurations with a given number of
E ′-blocks, we assume that it holds true for configurations with bigger numbers of E ′-blocks.

If q and q̃ are corresponding and q 7→ q′ where q′ is obtained from q in one step, then q̃ 7→ q̃′

where q̃′ is obtained also in one step. Moreover, by Lemma F.16, the configurations q′ and q̃′ are
corresponding. Therefore, to complete the proof, it is enough to consider the remaining case (i.e.,
if q′ is not obtained from q in one step) and show that calls to the (public) methods of T and T̃ do
not brake this property. We consider, on the case by case basis, all calls from E ′ to methods of
T /T̃ (that is to registerEncryptor and to getEncryptor) made in corresponding states and show that
they end in corresponding states as well. Here we present the reasoning only for the former case
(the proof for getEncryptor proceeds in a similar way).

Method registerEncryptor with arguments encryptor, id, pki_domain:
First, we can observe (by inspecting the code of this method in T /T̃ , see Appendix D.2 and D.2),
these methods do not change the state of E ′ which formally means, that they preserver condition
(a) of the definition of corresponding states. Therefore, it is enough to show that a call to this
method also preserves condition (b) of this definition.

This call, in both systems T and T̃ makes three steps:

1. Method PKI.register is called with arguments id, the PKI domain pki_domain, and k, where
k is the public key stored in encryptor.

212

F.4. Proof of Theorem 4.1

Indeed, in the system T , the control is immediately handed over to PKISim.register (with
arguments id, pki_domain, k; see line 41), where method PKISim.register is called with the
same arguments. In the system T̃ , on the other hand, the first things that happens is the
call to register method of class RegisterEncSim (line 48, Appendix D.2) with arguments id,
pki_domain, and k. By the definition of the simulator, this call is directly translated into the
corresponding call to method PKISim.register.

As this is the first action in both systems, the configurations of the systems T /T̃ ′ when this
method is called remain corresponding. Hence, by the inductive hypothesis, the state of
these systems after the call are corresponding as well. This includes the return value from
the method call (as this value has been determined by E ′ in corresponding states).

Finally, in both systems, if the return value from the call to PKISim.register is true (which
is, as we have noticed, the same in both systems), exception NetwokError is thrown. If this is
the case, the method call is aborted in corresponding states. Otherwise, the systems enter
the next step in corresponding states.

2. It is checked if a key has already been registered for the given id and pki_domain (line 5 for
the system T and line 50 for the system T̃).

One can notice, again, that this step does not change the state of the system and therefore
preserves correspondence of states of T /T̃ . Moreover, by condition (b) of the definition of
corresponding states, the result of this step is the same in both systems. Therefore either
both T and T̃ throw PKIError in corresponding states, or both T and T̃ enter the next step in
corresponding states.

3. A public key/encryptor is registered under id and pki_domain.

This is done in line 6 for the system T and in line 52 for the system T̃ . One can see, by
inspecting the code of the invoked methods, that the only part of the state that is changed
are the collections considered in condition (b) of the definition of corresponding states. So,
condition (a) of this definition is preserved by this step. Moreover, the changes made to the
considered collections are such that condition (b) is also preserved after this step. Hence,
the states of T and T̃ after this step are still corresponding.

Now we can complete the proof of Lemma F.11. By the above lemma, the final configurations
of (E ·S) = (E ′ ·T) and (E · S̃) = (E ′ · T̃) (that is, respectively, qn and q̃m, as defined in the lemma)
are corresponding, which means, in particular, that the state of E ′, which includes the variable
result in those configurations is the same. Therefore the environment outputs the same result in
both cases.

F.4.2. Proof of Lemma F.12

In this section, we provide the proof of the realization result for public-key encryption:

213

F. Formal Proofs

Real-PKIEnc≤IPKIEnc Ideal-PKIEnc. (F.15)

In our previous paper [KTG12a] we considered the case without corruption. In this paper,
we consider an extended case with (static) corruption: in our Jinja+ implementation, we model
corruption by allowing the direct creation of Encryptor objects with an arbitrary public key
provided by the adversary.

We structure the proof in the following way: first we discuss the functionalities without
corruption by referencing to a result obtained in [KTG12a] and then, based on this result, we
consider the case with corruption and prove Lemma F.12.

The Functionalities without Corruption.

The real functionality of public key encryption without corruption, as considered in [KTG12a]
coincides with the real functionality with corruption we consider in this paper. The ideal func-
tionality for public key encryption without corruption, as considered in [KTG12a], is, however,
different. We will denote it by Ideal-PKEnc−.

Similarly, the interface they implement (again, as considered in [KTG12a]) will be denoted by
I−PKEnc. For completeness, we recall this interface (note that the difference to IPKEnc is the lack of
the constructor of class Encryptor):

1 public final class Decryptor {

2 public Decryptor();

3 public Encryptor getEncryptor();

4 public byte[] decrypt(byte[] message);

5 }

6 public final class Encryptor {

7 public byte[] getPublicKey();

8 public byte[] encrypt(byte[] message);

9 }

We have the following result proven in [KTG12a]:

Lemma F.18. Real-PKEnc≤I−PKIEnc Ideal-PKEnc−

The Functionalities with Corruption.

Now, using the result just discussed, we prove (F.15). That is, we show that there exists a
probabilistic polynomially bounded simulator S such that for each polynomially bounded IPKEnc-
environment E we have (Section 2.3):

E ·Real-PKEnc ≡comp E ·S · Ideal-PKEnc (F.16)

In order to reduce this proof to the case without corruption, we take an arbitrary IPKEnc-environment
E and construct a new I−PKEnc-environment E− out of it. This environment E− consists of the
following parts:

214

F.4. Proof of Theorem 4.1

1. A copy of the code of the class Encryptor from the real functionality renamed EncryptorCorr.
(Note that the code of class Encryptor in the real functionality and the ideal is identical).

2. A new class EncryptorWrapper which is meant to wrap either an object of class Encryptor of
the interface I−PKEnc (objects of this class are returned by PKI.Decryptor.getEncryptor()), or an
object of class EncryptorCorr, as introduced above.

1 public class EncryptorWrapper {

2 Encryptor enc;

3 EncryptorCorr encCorr;

4

5 public EncryptorWrapper(Encryptor enc) {

6 this.enc=enc;

7 this.encCor=null;

8 }

9 public EncryptorWrapper(EncryptorCorr encCorr) {

10 this.encCorr=encCorr;

11 this.enc=null;

12 }

13 public byte[] encrypt(byte[] message) {

14 if(enc!=null)

15 return enc.encrypt(message);

16 else

17 return encCorr.encrypt(message);

18 }

19 public byte[] getPublicKey(){

20 if(enc!=null)

21 return enc.getPublicKey();

22 else

23 return encCorr.getPublicKey();

24 }

25 }

3. A copy of the code of E modified in the following way:

(a) every expression where an encryptor is obtained by a decryptor i.e.,
decryptor.getEncryptor()

is replaced by
new EncryptorWrapper(decryptor.getEncryptor())

(b) every expression where a corrupted encryptor is directly created i.e.,
EncryptorCorr(pubk)

is replaced by
new EncryptorWrapper(new EncryptorCorr(pubk));

The reason for using the wrapper class is to make it possible to treat objects of two, formally
unrelated classes (the encryptor class provided by the environment and the encryptor class
provided by the functionality) in a uniform way.

Using this construction, we can state the two following lemmas.

Lemma F.19. E ·Real-PKEnc ≡comp E− ·Real-PKEnc

215

F. Formal Proofs

sketch. The proof is quite straightforward and it it follows by the construction of E−. The class
EncryptorCorr contains a copy of the code of class Encryptor of Real-PKEnc. Furthermore, the
wrapper and the modified version of E perform the same actions (up to additional relaying steps
of the wrapper class).

The presented above reasoning can be strictly formalized, as it has been in the proof of
Lemma F.11. The difference to the proof of Lemma F.11 is that now we cannot prove perfect
indistinguishability of the considered system, but the following property (which is still stronger
than the one postulated in the lemma): the considered systems behave in exactly the same way
from the point of view of an unbounded (but possibly probabilistic) adversary, for the same
sequence of random coins.

In a very similar way we can prove the following result.

Lemma F.20. E ·S · Ideal-PKEnc ≡comp E− ·S · Ideal-PKEnc−

Now we are ready to complete the proof of Lemma F.12. From Lemma F.18, we know that
Real-PKEnc ≤I−PKEnc Ideal-PKEnc− i.e., exists a probabilistic polynomially bounded simulator S
such that for each polynomially bounded I−PKEnc-environment E− we have (Section 2.3):

E− ·Real-PKEnc ≡comp E− ·S · Ideal-PKEnc− (F.17)

Therefore, we obtain:

E ·Real-PKEnc
Lemma F.19≡comp E− ·Real-PKEnc

(F.17)≡comp E− ·S · Ideal-PKEnc−

Lemma F.20≡comp E ·S · Ideal-PKEnc (F.18)

F.5. Proof of Theorem 4.2

The proof of Theorem 4.2 is, as it is in the case of the realization result for PKIEnc, modular
and uses such properties of the realization relation as the composition theorem, reflexivity, and
transitivity.

We begin with analyzing the structure of the ideal and real functionalities we consider. The
ideal functionality consists of the following components:

Ideal-Sig — the (ideal) implementation of digital signatures, i.e. classes Verifier and Signer, as
described in Section 4.2.2. Let ICryptoLibSig denote the public interface of this component.

Ideal-SigPKI — the (ideal) implementation of verifier registration, that is of the class RegisterSig.
Let ISigPKI denotes the public interface of this component.

Similarly, the real functionality for PKISig consists of the following components:

Real-Sig — the (real) implementation of classes Verifier and Signer, as sketched in Section 4.2.3.
Note that the public interface of this component is ICryptoLibSig, as in the case of Ideal-Sig.

216

F.5. Proof of Theorem 4.2

Real-SigPKI — the (real) implementation of verifier registration, that is RegisterSig. This imple-
mentation uses the next component, Real-PKI, and only wraps/unwraps verification keys
into/from verifiers. Note that the public interface of this component is ISigPKI.

Real-PKI — The real implementation of the functionality for the public key infrastructure (see
Section 4.1.3).

Now, proving Theorem 4.2 can be reduced (in an analogous way as in the proof of Theorem 4.1)
to proving the following two facts:

Lemma F.21. Real-Sig ·Real-SigPKI · Ideal-PKI ≤IPKISig Real-Sig · Ideal-SigPKI.

The proof of this lemma is very similar to the proof of Lemma F.11 given in Appendix F.4.1.

Lemma F.22. Real-Sig≤IPKISig Ideal-Sig.

The rest of this section is devoted to proving this lemma. We organize this proof in a similar
way to the proof of Lemma F.12. First, we discuss the case without corruption, where the
adversary (the environment) cannot create verifiers with arbitrary verification keys. Then we
extend the proof to the case with (static) corruption, where the adversary can directly create
verifiers with an arbitrary verification keys.

F.5.1. The Functionality without Corruption

As in the proof of Lemma F.12, we denote ideal functionality without corruption as Ideal-Sig−

(see Appendix D.3.1 for the code). Similarly, the interface the real and ideal functionalities for
digital signatures without corruption implement is denoted by I−CryptoLibSig.

1 public final class Signer {

2 public Signer();

3 public byte[] sign(byte[] message);

4 public Verifier getVerifier();

5 }

6 public class Verifier {

7 public boolean verify(byte[] signature, byte[] message);

8 public byte[] getVerifKey();

9 }

Note that the only difference to the interface ICryptoLibSig is the lack of the constructor of the class
Verifier.

To prove the following theorem we use here a proof technique similar to those used in
[KTG12a]: we reduce the problem to the corresponding problem stated in the Turing Machine
representation in order to use a result from [KT08a, KT08b].

Lemma F.23. Real-Sig≤I−PKISig Ideal-Sig−

Proof. Before we give the proof, we want to point out some critical points and assumptions that
are used in this proof.

217

F. Formal Proofs

1. First, we assume that we have a correct implementation of an EUF-CMA-secure (existential
unforgeability under adaptive chosen-message attacks) digital signatures scheme (we do not
prove correctness of this implementation). We assume that, in particular, the above mentioned
implementation does not fail (i.e. always returns the expected result) unless the expected result
is too big to fit within an array (recall that the maximum size of an array depends on the
security parameter and the function intsize).

We also assume that this signature scheme is such that the length of a signature is the
(polynomially computable) function of the length of the signed message and vice versa.

2. It is critical to assume that the Jinja+ program has unbounded memory, as otherwise the
asymptotic notion of security our results are based upon does not make sense.

Now, we shortly present an ideal functionality F and a real functionality R for digital
signatures in the Turing machine model following [KT08a, KT08b].

TM functionalities. Different instances of functionalities are distinguished by different id-s, sent
with each request. The functionalities accept the following requests (where the request is written
on the input tape of a TM):

1. Initialization-Signer: The functionality is supposed to return a verification key vk.

2. Initialization-Verifier The functionality responds with the message “comleted”.

3. Signature-Generation(m): The functionality is supposed to sign m using the stored signing
key and return the signature σ.

4. Signature-Verification(vk, m, σ): The functionality is supposed to verify that σ is a valid
signature for the message m under the verification key vk.

Both the real and the ideal functionalities, on initialization, obtain a corruption bit. As already
explained at the beginning of this section, because for now we handle the case without corruption
i.e., in our simulation, the environment never corrupts functionalities, we will skip the description
of actions of these functionalities if this bit is set to 1.

The real functionality R, on initialization (be it Initialization-Signer or Initialization-Verifier),
generates a fresh verification/signing key pair and returns the verification key. Then, it uses
the signing key to sign messages, and the key vk provided in the verification request to verify
messages.

The ideal functionality, on creation, asks the environment (the simulator) for verification and
signing algorithms as well as a verification (public) and a signing (private) key. On signing
requests, it (similarly to the considered Jinja+ functionality) computes a signature for the mes-
sage provided using the given signing algorithm and private key. Then, by using the recorded
verification algorithm and public key, it checks whether the signature verifies or not. If this check
fails, it returns an error message. Otherwise, it records the message provided (to prevent forgery)
and returns the signature. On verification, if the key vk is the same as the verification key stored
in the functionality, it verifies the signature σ for m using the provided vk and checks that m has
been stored as signed; see [KT08a, KT08b] for details.

218

F.5. Proof of Theorem 4.2

We want to prove that Real-Sig realizes Ideal-Sig− w.r.t. I−PKISig. In this proof we will use a result
from [KT08a, KT08b] that R realizes F . Let S be the simulator used in the realization proof
in [KT08a, KT08b]. The simulator for Ideal-Sig− we will use in the proof is S = EUF-CMA, as
described above.

Let E be a bounded-environment with I−PKISig ` E.

Simulating E . We define a Turing machine ME that simulates E. Clearly, every complete Jinja+
program can be simulated by Turing machine. Moreover, if a program is bounded (for a given
intsize), then its simulation is also polynomial (recall that a run with security parameter η uses
integers of maximal size intsize(η); operations on integers of this size can be polynomially
simulated by a Turing machine).

In our case, however, the system E we consider is not a complete Jinja+ program; it interacts
with another system (such as Real-Sig or Ideal-Sig−). Therefore we assume that ME communicates
with another Turing machine (or more generally, a system of Turing machines).

The machine ME is defined in such a way that it maintains a representation of a Jinja+ state,
the state of E. In this representation, references are represented by consecutive identifiers. We
distinguish two types of references: those pointing to an internal object, that is instances of a
classes defined in E or an arrays, and those pointing to an external object which can be either
instances of Signer or Verifier. For each reference to an internal object, a representation of this
object is maintained by ME . For references to external objects this is not the case (some additional
information, however, is stored along with these references; see below). A method call for an
internal reference is modelled internally by ME ; a method call to an external object is realized by
triggering another Turing Machine.

When the simulation of E by ME if finished, this machine outputs the value of the (simulated)
variable result.

Method invocations for external references are simulated in the following way:

1. Creating a new instance of Signer: ME creates a new instance of Signer (Turing Machine)
by sending the Initialization-Signer request with a fresh identifier id. This identifier will be
used as the reference to this object. ME waits then for a response containing a verification key.
This key is stored together with id.

2. Signer.getVerifier for an object represented by id: ME creates a new instance of Verifier
(TM) by sending the Initialization-Verifier request with id and a fresh identifier id′, which will
serve as the reference to this object. The identifier id′ is stored together with id.

3. Signer.sign for an object represented by id and array m: ME sends Signature-Generation
request to machine id with the data stored under m, and waits for the response. A response is
a sequence of bytes. ME simulates creation of a new array and copies the obtained byte-sting
to this array.

4. Verifier.verify for an object represented by id′ and two arrays m and σ: ME retrieves
the verification key associated with id′ and uses it in the request Signature-Verification along
with id′ and the data stored under both m (the message) and σ (the signature). A response is
one bit. ME retrieves the response.

219

F. Formal Proofs

5. Verifier.getVerifKey for an object represented by id′: ME retrieves the verified key
associated with the Verifier (without any external call).

Representing runs. Let T be either the system Real-Sig or the system (S · Ideal-Sig−). Let u be
a random input (a sequence of bits) and η be a security parameter. The (deterministic) finite run ρ
of E ·T with random input u and security parameter η can be represented as

A1[s1,x1]B1[t1,y1]A2 · · ·Bn−1[tn−1,yn−1]An[sn]

where

– Every Ai is a part of the run (a sequence of configurations) where only expressions originating
from E are reduced, i.e. all the transitions in Ai are labelled with names of classes defined
in E. Every Ai, except for the last one, ends with a state of the form (ei[e′i],si) where the
subexpression e′i is about to be rewritten by a method invocation rule.

– Every Bi is a part of run where only expressions originating from T are reduced. It begins with
(ei[{e′′i }D],si), where {e′′i }D is the block obtained by applying the method invocation rule to e′i
for some class D defined in T (it depends only on e′i), and ends with (ei[{vi}D], s̄i), where vi is
a value (that is return by the method).

– si and ti are the states after Ai and Bi, respectively.

– By xi we denote the invocation data consisting of the name of the called method and the values
passed as arguments (if an argument is of type byte[] then xi contains the values in the array,
not the reference to this array). This data is determined by ei and si.

– By yi we denote the return value (again, if an array is returned, then yi contains the values in
this array, not the reference). This return value is determined by vi and ti.

Similarly, we represent the (deterministic) execution ρ̃ of the system of Turing Machines ME |MT

with random input u and security parameter η, where ME is defined above and MT is either R or
(S |F) as

Ã1[s̃1, x̃1]B̃1[t̃1, ỹ1]Ã2 · · · B̃n−1[t̃n−1, ỹn−1]Ãn[sn]

where

– Every Ãi is a part of the run of the system where ME is active. Every Ãi, except for the last one,
ends with ME sending data x̃i to MT (and activating MT).

– Every B̃i is a part of the run of the system where MT is active. It ends with MT sending a
response ỹi back to ME .

– s̃i is the state of ME after Ãi (notice the difference to si which was the state of the whole system
after Ai).

– t̃i is the state of MT after B̃i (notice, as above, the difference to ti).

220

F.5. Proof of Theorem 4.2

Let s = (h, l) be a Jinja+ state that occurs in the run ρ of E ·T . We want to define the part of the
state s that “belongs” to E and the part that “belongs” to T .

We define h|E to be the restriction of h to only those references that, in the run ρ, have been
created by E or have been obtained by E as a return value from a call to T . By h|T we denote
the restriction of s to the remaining references, that is the references in the run ρ that have been
created by T but not returned to E.

We define l|E to be the restriction of l to those (static) variables that are accessible from E.
Similarly, l|T denotes the restriction of l to those static variables that are accessible from T . Note
that these restrictions are disjoint except for the read-only security parameter (T does not access
any static fields of E; E does not access any static fields of T).

We take s|E = (h|E , l|E) and s|T = (h|T , l|T).
Let s̃ be a Jinja+ state as represented by ME and s be a (real) Jinja+ state. We say that

s̃ represents s = (h, l), written s̃ |= s, if there is a function f from identifiers (that represent
references in ME) to (Jinja+) references (addresses) such that

– the domain of h is f (X) where X is the set of identifiers used by ME to represent references,

– if r̃ ∈ X , then the representation of the object pointed by r̃ agrees with the object pointed
by r = f (r̃) (in the Jinja state) in the following sense: (i) corresponding fields (in the TM
representation and in the Jinja object) of primitive types have the same values, (ii) if a field of
the TM representation contains an identifier id, then the corresponding field of the Jinja object
contains f (id).

– The values of variables in l are—up to mapping f —the same as the values in the TM represen-
tation of l.

We say that x̃i matches xi, where x̃i and xi are as above, if the requests x̃i is the translation of
the method invocation xi, as specified in the simulation process above. In a similar way, we can
say that a response ỹi matches yi.

Relation between Jinja runs and TM runs. Now we are ready to relate the runs of the corre-
sponding Jinja programs and Turing machine systems, as introduced above.

Lemma F.24. For every random input u and every security parameter η (and Ai, Ãi, . . . as above)
we have:

(a) si|E = ti|E and ti|T = si+1|T ,

(b) x̃i matches xi,

(c) ỹi matches yi,

(d) s̃i |= si|E ,

(e) t̃i |= ti|T ,

221

F. Formal Proofs

Item (a) states that sub-states of E and T are separated (the execution of Ai does not changes
what T can access and the execution of Bi does not change what E can access).

Items (b) and (c) state that the components E and T in the Jinja run and the corresponding
components in the TM system exchange exactly the same data, up to the provided translation.

Item (d) states that ME correctly simulates E (which is given by the definition of ME).
Item (e) states that the Jinja+ program T is functionally equivalent to the corresponding Turing

Machine MT . In particular, for the same input, R produces the same data as Real-Sig and S |F
produces the same data as S · Ideal-Sig−. This is given by the definition of these systems.

In the reasoning below, we leverage the fact that, without loss of generality, we can assume that
E, when connected with T , never makes requests to T that fail (i.e. never makes method calls
that return null). This is because E can compute the expected size of the output message (recall
that we assumed that the length of a plaintext and a corresponding ciphertext are polynomially
related). Therefore E can predict potential failure and avoid requests that would fail (E does not
lose any information by not executing these requests, as it knows the result up front).

Now, we can observe that a direct consequence of the above lemma (more precisely, of the
fact that s̃n |= sn|E) is that the final value of variable result in ρ and ρ̃ is the same and, therefore,
these (finite) runs output the same result. As it holds for all random input u and all security
parameters η, up to some negligible function, the system E ·Real-Sig outputs true with the same
probability the system ME |R outputs 1 and the system E ·S · Ideal-Sig outputs true with exactly
the same probability the system ME |S |F outputs 1. Now, as we know that ME |R ≡ME |S |F ,
it follows that the probability that true is output by E ·Real-Sig and by E ·S · Ideal-Sig is the same
up to some negligible value.

F.5.2. Proof of Lemma F.22

As in the realization proof for public-key encryption, we take an ICryptoLibSig-environment E and we
construct a I−CryptoLibSig-environment E ′ which consists of (1) a copy of the class Verifier (renamed
as VerifierCorr), (2) a wrapper class VerifierWrapper providing unified access to corrupted and
uncorrupted verifiers, and (3) an appropriately aligned copy of E (as in Appendix F.4.2). Using
this construction, we obtain results analogous to Lemmas F.19 and F.20:

Lemma F.25. E ·Real-Sig ≡comp E ′ ·Real-Sig

Lemma F.26. E ·S · Ideal-Sig ≡comp E ′ ·S · Ideal-Sig−

From Lemma F.23 we know that Real-Sig ≤I−PKISig Ideal-Sig−, i.e. there exists a probabilistic
polynomially bounded simulator S such that for each polynomially bounded I−PKISig-environment
E ′ we have (Section 2.3):

E ′ ·Real-Sig ≡comp E ′ ·S · Ideal-Sig− (F.19)

222

F.5. Proof of Theorem 4.2

Therefore we obtain

E ·Real-Sig
Lemma F.25≡comp E ′ ·Real-Sig

(F.19)≡comp E ′ ·S · Ideal-Sig−

Lemma F.26≡comp E ·S · Ideal-Sig (F.20)

which completes the proof of Lemma F.22.

223

Bibliography

[AB04] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form.
In SAS, pages 100–115, 2004.

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool. Software and System Modeling,
4:32–54, 2005.

[ABB+14] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph
Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai Herda, Vladimir
Klebanov, Wojciech Mostowski, Christoph Scheben, Peter H. Schmitt, and Mattias
Ulbrich. The key platform for verification and analysis of Java programs. In
Dimitra Giannakopoulou and Daniel Kroening, editors, Verified Software: Theories,
Tools, and Experiments (VSTTE 2014), number 8471 in Lecture Notes in Computer
Science, pages 1–17. Springer-Verlag, 2014.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé,
Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin,
and Paul Zimmermann. Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[ACAE09] Mauricio Alba-Castro, María Alpuente, and Santiago Escobar. Abstract Certi-
fication of Global Non-interference in Rewriting Logic. In Frank S. de Boer,
Marcello M. Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors, Formal
Methods for Components and Objects - 8th International Symposium (FMCO 2009).
Revised Selected Papers, volume 6286 of Lecture Notes in Computer Science, pages
105–124. Springer, 2009.

[ACW13] Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling. Analysis of an elec-
tronic boardroom voting system. In E-Voting and Identify - 4th International
Conference, Vote-ID 2013, Guildford, UK, pages 109–126, 2013.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In Paul C. van Oorschot, editor,
Proceedings of the 17th USENIX Security Symposium, pages 335–348. USENIX
Association, 2008.

[AdMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jaques Quisquater.
Electing a University President Using Open-Audit Voting: Analysis of Real-World

225

Bibliography

Use of Helios. In USENIX/ACCURATE Electronic Voting Technology (EVT 2009),
2009.

[AGJ11] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Extracting and verifying
cryptographic models from C protocol code by symbolic execution. In Yan Chen,
George Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS 2011), pages 331–
340. ACM, 2011.

[AGJ12] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Computational verification
of C protocol implementations by symbolic execution. In Ting Yu, George Danezis,
and Virgil D. Gligor, editors, ACM Conference on Computer and Communications
Security, pages 712–723. ACM, 2012.

[AKBW14] Claudia Z. Acemyan, Philip T. Kortum, Michael D. Byrne, and Dan S. Wallach. Us-
ability of voter verifiable, end-to-end voting systems: Baseline data for helios, prêt à
voter, and scantegrity II. In 2014 Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections, EVT/WOTE ’14. USENIX Association, 2014.

[ANL03] N. Asokan, Valtteri Niemi, and Pekka Laitinen. On the Usefulness of Proof-of-
Possession. In Proceedings of the 2nd Annual PKI Research Workshop, pages
122–127, 2003.

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext Recovery
Attacks against SSH. In IEEE Symposium on Security and Privacy (S&P 2009),
pages 16–26. IEEE Computer Society, 2009.

[BBB+13] Susan Bell, Josh Benaloh, Mike Byrne, Dana DeBeauvoir, Bryce Eakin, Gail
Fischer, Philip Kortum, Neal McBurnett, Julian Montoya, Michelle Parker, Olivier
Pereira, Philip Stark, Dan Wallach, , and Michael Winn. STAR-Vote: A Secure,
Transparent, Auditable, and Reliable Voting System. USENIX Journal of Election
Technology and Systems (JETS), 1:18–37, August 2013.

[BBF+08] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Sergio Maffeis. Refinement Types for Secure Implementations. In Proceedings
of the 21st IEEE Computer Security Foundations Symposium, CSF 2008, pages
17–32. IEEE Computer Society, 2008.

[BC02] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs and
thread systems. Theoretical Computer Science, 281(1-2):109–130, 2002.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. Sok: A comprehensive analysis of game-based ballot privacy definitions.

226

Bibliography

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
pages 499–516. IEEE Computer Society, 2015.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In H. Krawczyk,
editor, Advances in Cryptology, 18th Annual International Cryptology Conference
(CRYPTO 1998), volume 1462 of Lecture Notes in Computer Science, pages 549–
570. Springer, 1998.

[BDR04] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure Information Flow
by Self-Composition. In 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004), pages 100–114. IEEE Computer Society, 2004.

[Bec00] Bernhard Beckert. A dynamic logic for Java Card. In Proceedings, 2nd ECOOP
Workshop on Formal Techniques for Java Programs, Cannes, France, pages 111–
119, 2000.

[Ben06] Josh Benaloh. Simple verifiable elections. In 2006 USENIX/ACCURATE Electronic
Voting Technology Workshop, EVT’06, Vancouver, BC, Canada, 2006.

[BFG10] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular verifi-
cation of security protocol code by typing. In Manuel V. Hermenegildo and Jens
Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2010), pages 445–456. ACM, 2010.

[BFG+14] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verification for
cryptographic implementations. In The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 193–206, 2014.

[BFK+13] Karthikeyan Bhargavan, Cedric Fournet, Markulf Kohlweiss, Alfredo Pironti, and
Pierre-Yves Strub. Implementing TLS with Verified Cryptographic Security. In
IEEE Symposium on Security and Privacy (S&P 2013). IEEE Computer Society,
2013.

[BGH+16] Joachim Breitner, Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting.
On Improvements Of Low-Deterministic Security. In Frank Piessens and Luca Vi-
ganò, editors, Principles of Security and Trust , POST 2016, pages 68–88. Springer
Berlin Heidelberg, 2016.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-Aided Security Proofs for the Working Cryptographer. In Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in
Computer Science, pages 71–90. Springer, 2011.

227

Bibliography

[BGP11] Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based elections
with Helios. In USENIX/ACCURATE Electronic Voting Technology (EVT 2011),
2011.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. Number 4334 in Lecture Notes in
Computer Science. Springer, 2007.

[BJST08] Bruno Blanchet, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Computa-
tionally Sound Mechanized Proofs for Basic and Public-key Kerberos. In Masayuki
Abe and Virgil D. Gligor, editors, Proceedings of the 2008 ACM Symposium on
Information, Computer and Communications Security (ASIACCS 2008), pages
87–99. ACM, 2008.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript Collision Attacks: Breaking
Authentication in TLS, IKE, and SSH. In 23nd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, 2016.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 82–96. IEEE Computer Society, 2001.

[Bla06] Bruno Blanchet. A Computationally Sound Mechanized Prover for Security Proto-
cols. In IEEE Symposium on Security and Privacy (S&P 2006), pages 140–154.
IEEE Computer Society, 2006.

[BMR93] Alexander Borgida, John Mylopoulos, and Raymond Reiter. “. . . and nothing else
changes”: The frame problem in procedure specifications. In Victor R. Basili,
Richard A. DeMillo, and Takuya Katayama, editors, Proceedings of the 15th
International Conference on Software Engineering, Baltimore, Maryland, USA,
May 17-21, 1993, pages 303–314. IEEE Computer Society / ACM Press, 1993.

[BMU10] Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally sound
verification of source code. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS 2010), pages 387–398. ACM, 2010.

[BNR08] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declas-
sification policies and modular static enforcement. IEEE Symp. on Security and
Privacy, pages 339–353, 2008.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption — How
to encrypt with RSA. In Alfredo De Santis, editor, Advances in Cryptology,
EUROCRYPT 1994, Workshop on the Theory and Application of Cryptographic
Techniques, volume 950 of Lecture Notes in Computer Science, pages 92–111.
Springer, 1995.

228

Bibliography

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures -
How to Sign with RSA and Rabin. In Advances in Cryptology - EUROCRYPT

’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 399–416,
1996.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing (STOC 1994), pages 544–553. ACM Press, 1994.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Technical Report 2000/067, Cryptology ePrint Archive, 2000. Available
at http://eprint.iacr.org/2000/067 with new versions from December 2005
and July 2013.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science (FOCS 2001), pages 136–145. IEEE Computer Society, 2001.

[Can04] Ran Canetti. Universally Composable Signature, Certification, and Authentication.
In Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW-
17 2004), pages 219–233. IEEE Computer Society, 2004.

[CB12] David Cadé and Bruno Blanchet. From computationally-proved protocol specifi-
cations to implementations. In Seventh International Conference on Availability,
Reliability and Security, Prague, ARES 2012, Czech Republic, August 20-24, 2012,
pages 65–74, 2012.

[CB13] David Cadé and Bruno Blanchet. Proved Generation of Implementations from
Computationally Secure Protocol Specifications. In David A. Basin and John C.
Mitchell, editors, Principles of Security and Trust - Second International Confer-
ence (POST 2013), volume 7796 of Lecture Notes in Computer Science, pages
63–82. Springer, 2013.

[CCC+08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-
niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sher-
man. Scantegrity II: End-to-End Verifiability for Optical Scan Election Sys-
tems using Invisible Ink Confirmation Codes. In USENIX/ACCURATE Elec-
tronic Voting Technology (EVT 2008). USENIX Association, 2008. See also
http://www.scantegrity.org/elections.php.

[CCC+10] Richard Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex,
Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily
Shen, Alan T. Sherman, and Poorvi L. Vora. Scantegrity II Municipal Election at
Takoma Park: The First E2E Binding governmental Elecion with Ballot Privacy. In
USENIX Security Symposium/ACCURATE Electronic Voting Technology (USENIX
2010). USENIX Association, 2010.

229

http://eprint.iacr.org/2000/067
http://www.scantegrity.org/elections.php

Bibliography

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. Bele-
niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, 2016.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
Secure Voting System. In 2008 IEEE Symposium on Security and Privacy (S&P
2008), pages 354–368. IEEE Computer Society, 2008.

[CD09] Sagar Chaki and Anupam Datta. ASPIER: An automated framework for verifying
security protocol implementations. In Proceedings of the 22nd IEEE Computer
Security Foundations Symposium (CSF 2009), pages 172–185. IEEE Computer
Society, 2009.

[CDD+17] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, Benedikt
Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-Checked Proofs of
Privacy for Electronic Voting Protocols. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 993–1008, 2017.

[CEK+15] Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei, and Cyrille
Wiedling. Type-based verification of electronic voting protocols. In Principles of
Security and Trust - 4th International Conference, POST, 2015.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.
Election Verifiability for Helios under Weaker Trust Assumptions. In Proceedings
of the 19th European Symposium on Research in Computer Security (ESORICS’14),
LNCS, Wroclaw, Poland, 2014. Springer.

[CGK+16] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. SoK: Verifiability Notions for E-Voting Protocols. In IEEE 37th
Symposium on Security and Privacy (S&P 2016), pages 779–798. IEEE Computer
Society, 2016.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Op-
timally Efficient Multi-Authority Election Scheme. In Advances in Cryptology
— EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, volume 1233 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[Cha81] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[Com12] http://www.computerworld.com/s/article/9233058/Election_watchdogs_

keep_wary_eye_on_paperless_e_voting_systems, October 30th 2012.

[CP92] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In 12th
Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’92, 1992.

230

http://www.computerworld.com/s/article/9233058/Election_watchdogs_keep_wary_eye_on_paperless_e_voting_systems
http://www.computerworld.com/s/article/9233058/Election_watchdogs_keep_wary_eye_on_paperless_e_voting_systems

Bibliography

[CRST14] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. vVote:
a Verifiable Voting System (DRAFT). CoRR, abs/1404.6822, 2014. Available at
http://arxiv.org/abs/1404.6822.

[CS11] Véronique Cortier and Ben Smyth. Attacking and Fixing Helios: An Analysis of
Ballot Secrecy. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, pages 297–311, 2011.

[CS14] Chris Culnane and Steve A. Schneider. A peered bulletin board for robust use in
verifiable voting systems. In IEEE 27th Computer Security Foundations Symposium,
CSF 2014, pages 169–183. IEEE, 2014.

[CW17] Véronique Cortier and Cyrille Wiedling. A formal analysis of the Norwegian
E-voting protocol. Journal of Computer Security, 25(1):21–57, 2017.

[DFK+17] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko,
Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, Karthikeyan Bhargavan,
Jianyang Pan, and Jean Karim Zinzindohoue. Implementing and proving the TLS
1.3 record layer. In IEEE Symposium on Security and Privacy, San Jose, CA, USA,
pages 463–482, 2017.

[DLM82] Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt. Cryptographic Proto-
cols. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H.
Landweber, editors, Proceedings of the 14th Annual ACM Symposium on Theory of
Computing (STOC 1982), pages 383–400. ACM, 1982.

[Don15] Don Syme and Adam Granicz and Antonio Cisterino. Expert F# 4.0. Apress, 2015.

[DY83] Danny Dolev and Andrew C. Yao. On the Security of Public-Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[FKS11] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based
cryptographic verification. In Yan Chen, George Danezis, and Vitaly Shmatikov, ed-
itors, Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS 2011), pages 341–350. ACM, 2011.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, April 1979.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-
OAEP Is Secure under the RSA Assumption. In Joe Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 260–274.
Springer, 2001.

231

http://arxiv.org/abs/1404.6822

Bibliography

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
pages 186–194, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[GHM13] Jürgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for Information Flow
Control in Java Programs - A Practical Guide. In Proceedings of the 6th Working
Conference on Programming Languages (ATPS’13), Lecture Notes in Informatics
(LNI) 215. Springer Berlin / Heidelberg, February 2013.

[GM82a] Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
Proceedings of IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[GM82b] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In Proceedings of the 14th
Annual ACM Symposium on Theory of Computing (STOC), pages 365–377, 1982.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[GP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic Protocol Analysis
on real C code. In Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, volume 5, pages 363–379. Springer, 2005.

[GRCC15] Gurchetan S. Grewal, Mark Dermot Ryan, Liqun Chen, and Michael R. Clarkson.
Du-Vote: Remote Electronic Voting with Untrusted Computers. In IEEE 28th
Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July,
2015, pages 155–169, 2015.

[GS15] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic
security. International Journal of Information Security, 14(3):263–287, 2015.

[Har84] David Harel. Dynamic logic. In Dov Gabbay and Franz Guenther, editors, Hand-
book of Philosophical Logic, Volume II: Extensions of Classical Logic, pages
497–604. D. Reidel Publishing Co., Dordrecht, 1984.

[HKHB14] Martin Hentschel, Stefan Käsdorf, Reiner Hähnle, and Richard Bubel. An in-
teractive verification tool meets an IDE. In Gianluigi Zavattaro Elvira Albert,
Emil Sekerinski, editor, Proceedings of the 11th International Conference on
Integrated Formal Methods, LNCS, pages 55–70. Springer, September 2014.

[Hoa69] Charles A. R. Hoare. An Axiomatic Basis for Computer Programming. Communi-
cations of the ACM, 12(10), 1969.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, Third International Symposium,

232

Bibliography

ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

[HS09a] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs. Int.
J. Inf. Sec., 8(6):399–422, 2009.

[HS09b] Christian Hammer and Gregor Snelting. Flow-Sensitive, Context-Sensitive, and
Object-sensitive Information Flow Control Based on Program Dependence Graphs.
International Journal of Information Security, 8(6):399–422, December 2009.

[HUMQ09] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Polynomial Runtime
and Composability. Technical Report 2009/023, Cryptology ePrint Archive, 2009.
Available at http://eprint.iacr.org/2009/023.

[Jos87] Josh D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University,
1987.

[Kin76] James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976.

[KJRM16] Burt Kaliski, Jakob Jonsson, Andreas Rusch, and Kathleen M. Moriarty. PKCS #1
RSA Cryptography Specifications Version 2.2. Technical report, RFC Editor, 2016.
https://www.rfc-editor.org/info/rfc8017.

[KKO+11] Fatih Karayumak, Michaela Kauer, Maina M. Olembo, Tobias Volk, and Melanie
Volkamer. User Study of the Improved Helios Voting System Interfaces. In 1st
Workshop on Socio-Technical Aspects in Security and Trust, STAST 2011, pages
37–44. IEEE, 2011.

[KMST16a] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. sElect: A
Lightweight Verifiable Remote Voting System. In IEEE 29th Computer Security
Foundations Symposium (CSF 2016), pages 341–354. IEEE Computer Society,
2016.

[KMST16b] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. sElect: A
Lightweight Verifiable Remote Voting System. Technical report, Cryptology ePrint
Archive, Report 2016/438, 2016. Available at http://eprint.iacr.org/2016/
438.

[KN06] Gerwin Klein and Tobias Nipkow. A Machine-Checked Model for a Java-Like
Language, Virtual Machine, and Compiler. ACM Trans. Program. Lang. Syst.,
28(4):619–695, 2006.

[KOKV11] Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and Melanie Volkamer.
Usability Analysis of Helios - An Open Source Verifiable Remote Electronic
Voting System. In Hovav Shacham and Vanessa Teague, editors, 2011 Electronic

233

http://eprint.iacr.org/2009/023
https://www.rfc-editor.org/info/rfc8017
http://eprint.iacr.org/2016/438
http://eprint.iacr.org/2016/438

Bibliography

Voting Technology Workshop / Workshop on Trustworthy Elections, EVT/WOTE
’11. USENIX Association, 2011.

[KR17] Ralf Küsters and Daniel Rausch. A framework for universally composable diffie-
hellman key exchange. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, pages 881–900, 2017.

[KSTG14a] Ralf Küsters, Enrico Scapin, Tomasz Truderung, and Jürgen Graf. Extending
and Applying a Framework for the Cryptographic Verification of Java Programs.
In Martín Abadi and Steve Kremer, editors, Principles of Security and Trust -
Third International Conference, POST 2014, volume 8414 of Lecture Notes in
Computer Science, pages 220–239. Springer, 2014. A full version is available at
http://eprint.iacr.org/2014/038.

[KSTG14b] Ralf Küsters, Enrico Scapin, Tomasz Truderung, and Jürgen Graf. Extending
and Applying a Framework for the Cryptographic Verification of Java Programs.
Technical Report 2014/38, IACR Cryptology ePrint Archive, 2014. Available at
http://eprint.iacr.org/2014/038.

[KT08a] Ralf Küsters and Max Tuengerthal. Joint State Theorems for Public-Key Encryption
and Digital Signature Functionalities with Local Computation. In Proceedings
of the 21st IEEE Computer Security Foundations Symposium (CSF 2008), pages
270–284. IEEE Computer Society, 2008.

[KT08b] Ralf Küsters and Max Tuengerthal. Joint State Theorems for Public-Key Encryption
and Digital Signature Functionalities with Local Computation. Technical Report
2008/006, Cryptology ePrint Archive, 2008. Available at http://eprint.iacr.
org/2008/006.

[KT09] Ralf Küsters and Max Tuengerthal. Universally Composable Symmetric Encryption.
In Proceedings of the 22nd IEEE Computer Security Foundations Symposium (CSF
2009), pages 293–307. IEEE Computer Society, 2009.

[KT11a] Ralf Küsters and Max Tuengerthal. Composition Theorems Without Pre-
Established Session Identifiers. In Y. Chen, G. Danezis, and V. Shmatikov, editors,
Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS 2011), pages 41–50. ACM, 2011.

[KT11b] Ralf Küsters and Max Tuengerthal. Ideal Key Derivation and Encryption in
Simulation-based Security. In Aggelos Kiayias, editor, Topics in Cryptology –
CT-RSA 2011, The Cryptographers’ Track at the RSA Conference 2011, Proceed-
ings, volume 6558 of Lecture Notes in Computer Science, pages 161–179. Springer,
2011.

[KT13] Ralf Küsters and Max Tuengerthal. The IITM Model: a Simple and Expressive
Model for Universal Composability. Technical Report 2013/025, Cryptology ePrint
Archive, 2013. Available at http://eprint.iacr.org/2013/025.

234

http://eprint.iacr.org/2014/038
http://eprint.iacr.org/2008/006
http://eprint.iacr.org/2008/006
http://eprint.iacr.org/2013/025

Bibliography

[KT14] Ralf Küsters and Tomasz Truderung. Security in E-Voting. it - Information
Technology, 56(6):300–306, 2014.

[KTB+15] Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten,
and Martin Mohr. A Hybrid Approach for Proving Noninterference of Java Pro-
grams. In Cédric Fournet, Michael W. Hicks, and Luca Viganò, editors, IEEE
28th Computer Security Foundations Symposium, CSF 2015, pages 305–319. IEEE,
2015.

[KTG12a] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A Framework for the Cryp-
tographic Verification of Java-like Programs. In 25th IEEE Computer Security
Foundations Symposium (CSF 2012), pages 198–212. IEEE Computer Society,
2012.

[KTG12b] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A Framework for the Cryp-
tographic Verification of Java-like Programs. Cryptology ePrint Archive, Report
2012/153, 2012. http://eprint.iacr.org/2012/153.

[KTV10a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-based Definition
of Coercion-Resistance and its Applications. In 23th IEEE Computer Security
Foundations Symposium, CSF 2010, pages 122–136. IEEE Computer Society, 2010.

[KTV10b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Definition
and Relationship to Verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS 2010), pages 526–535. ACM, 2010.

[KTV10c] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Proving Coercion-Resistance
of Scantegrity II. In Miguel Soriano, Sihan Qing, and Javier López, editors, Pro-
ceedings of the 12th International Conference on Information and Communications
Security (ICICS 2010), volume 6476 of Lecture Notes in Computer Science, pages
281–295. Springer, 2010.

[KTV11] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, Privacy, and
Coercion-Resistance: New Insights from a Case Study. In 32nd IEEE Symposium
on Security and Privacy (S&P 2011), pages 538–553. IEEE Computer Society,
2011.

[KTV12a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-Based Definition of
Coercion-Resistance and its Applications. Journal of Computer Security (special
issue of selected CSF 2010 papers), 20(6/2012):709–764, 2012.

[KTV12b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash Attacks on the Verifi-
ability of E-Voting Systems. In 33rd IEEE Symposium on Security and Privacy
(S&P 2012), pages 395–409. IEEE Computer Society, 2012.

[Küs06] Ralf Küsters. Simulation-Based Security with Inexhaustible Interactive Turing
Machines. In Proceedings of the 19th IEEE Computer Security Foundations

235

http://eprint.iacr.org/2012/153

Bibliography

Workshop (CSFW-19 2006), pages 309–320. IEEE Computer Society, 2006. See
http://eprint.iacr.org/2013/025/ for a full and revised version.

[KZZ15a] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. DEMOS-2: scalable
E2E verifiable elections without random oracles. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-6, 2015, pages 352–363, 2015.

[KZZ15b] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - Proceedings, Part II, volume 9057
of Lecture Notes in Computer Science, pages 468–498. Springer, 2015.

[KZZ17] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. An efficient E2E
verifiable e-voting system without setup assumptions. IEEE Security & Privacy,
15(3):14–23, 2017.

[Lam97] Leslie Lamport. How to make a correct multiprocess program execute correctly on
a multiprocessor. IEEE Trans. Computers, 46(7):779–782, 1997.

[LBR98] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a Java Modeling Lan-
guage. In Formal Underpinnings of Java Workshop (at OOPSLA ’98), 1998.

[Loc12] Andreas Lochbihler. A Machine-Checked, Type-Safe Model of Java Concurrency:
Language, Virtual Machine, Memory Model, and Verified Compiler. PhD thesis,
Karlsruher Institut für Technologie, Fakultät für Informatik, 2012.

[Man00] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In Proceedings
of the 13th IEEE Computer Security Foundations Workshop, CSFW ’00, Cambridge,
England, UK, July 3-5, 2000, pages 185–199, 2000.

[McL96] John McLean. A General Theory of Composition for a Class of “Possibilistic”
Properties. IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

[MCN+01] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantien Zheng, and Steve
Zdancewic. JIF: Java Information Flow (software release), July 2001. http:

//www.cs.cornell.edu/jif/.

[Mey92] Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51,
October 1992.

[Mih98] Mihir Bellare and Phillip Rogaway. PSS: Provably Secure Encoding Method for
Digital Signatures. Technical report, IEEE Working Group, 1998. Available at
http://grouper.ieee.org/groups/1363/.

[Mih04] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the
Security of Triple Encryption. IACR Cryptology ePrint Archive, 2004:331, 2004.

236

http://eprint.iacr.org/2013/025/
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
http://grouper.ieee.org/groups/1363/

Bibliography

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Voting With Ev-
erlasting Privacy. In C. Dwork, editor, Advances in Cryptology - CRYPTO 2006,
26th Annual International Cryptology Conference, Proceedings, volume 4117 of
Lecture Notes in Computer Science, pages 373–392. Springer, 2006.

[MS10] Heiko Mantel and Henning Sudbrock. Flexible Scheduler-Independent Security.
In Computer Security - ESORICS 2010, 15th European Symposium on Research
in Computer Security, Athens, Greece, September 20-22, 2010, volume 6345 of
Lecture Notes in Computer Science, pages 116–133. Springer, 2010.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In Natasha Sharygina and
Helmut Veith, editors, Computer Aided Verification - 25th International Conference
(CAV 2013), volume 8044 of Lecture Notes in Computer Science, pages 696–701.
Springer, 2013.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 228–241. ACM, 1999.

[New16] http://nymag.com/daily/intelligencer/2016/11/activists-urge-

hillary-clinton-to-challenge-election-results.html, November 22th
2016.

[New17] https://www.nytimes.com/2017/06/01/world/europe/vladimir-putin-

donald-trump-hacking.html, June 1st 2017.

[NORV14] Stephan Neumann, Maina M. Olembo, Karen Renaud, and Melanie Volkamer.
Helios Verification: To Alleviate, or to Nominate: Is That the Question, or Shall we
Have Both? In Andrea Ko and Enrico Francesconi, editors, Electronic Government
and the Information Systems Perspective - Third International Conference, EGOVIS
2014. Proceedings, volume 8650 of Lecture Notes in Computer Science, pages
246–260. Springer, 2014.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is Type-Safe — Definitely. In
POPL, pages 161–170, 1998.

[OBV13] Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer. Mental Models of
Verifiability in Voting. In James Heather, Steve A. Schneider, and Vanessa Teague,
editors, E-Voting and Identify - 4th International Conference, Vote-ID 2013, volume
7985 of Lecture Notes in Computer Science, pages 142–155. Springer, 2013.

[Oka97] Tatsuaki Okamoto. Receipt-Free Electronic Voting Schemes for Large Scale
Elections. In B. Christianson, B. Crispo, T. M. A. Lomas, and M. Roe, editors,
Proceedings of the 5th International Workshop on Security Protocols, volume 1361
of Lecture Notes in Computer Science, pages 25–35. Springer, 1997.

237

http://nymag.com/daily/intelligencer/2016/11/activists-urge-hillary-clinton-to-challenge-election-results.html
http://nymag.com/daily/intelligencer/2016/11/activists-urge-hillary-clinton-to-challenge-election-results.html
https://www.nytimes.com/2017/06/01/world/europe/vladimir-putin-donald-trump-hacking.html
https://www.nytimes.com/2017/06/01/world/europe/vladimir-putin-donald-trump-hacking.html

Bibliography

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer-Verlag, 1994.

[PCW14] http://www.pcworld.com/article/2154000/estonian-electronic-

voting-system-vulnerable-to-attacks-researches-say.html and
https://estoniaevoting.org/, May 12th 2014.

[PHN12] Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Proving concurrent nonin-
terference. In Certified Programs and Proofs - Second International Conference,
CPP 2012, pages 109–125, 2012.

[PHN13] Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Noninterfering schedulers -
when possibilistic noninterference implies probabilistic noninterference. In Algebra
and Coalgebra in Computer Science - 5th International Conference, CALCO 2013,
Warsaw, Poland, September 3-6, 2013. Proceedings, pages 236–252, 2013.

[PW01] Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive
Systems and its Application to Secure Message Transmission. In IEEE Symposium
on Security and Privacy, pages 184–201. IEEE Computer Society, 2001.

[RBH+10] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
The Prêt à Voter Verifiable Election System. Technical report, University of Luxem-
bourg, University of Surrey, 2010. http://www.pretavoter.com/publications/
PretaVoter2010.pdf.

[RRI16] Peter Y. A. Ryan, Peter B. Roenne, and Vincenzo Iovino. Selene: Voting with
transparent verifiability and coercion-mitigation. Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,
2016.

[RS07] Ronald L. Rivest and Warren D. Smith. Three Voting Protocols: ThreeBallot, VAV
and Twin. In USENIX/ACCURATE Electronic Voting Technology (EVT 2007),
2007.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[RWW94] A. William Roscoe, Jim Woodcock, and Lars Wulf. Non-interference through
determinism. In Computer Security - ESORICS 94, Third European Symposium on
Research in Computer Security, Brighton, UK, pages 33–53, 1994.

[Sab01] Andrei Sabelfeld. The Impact of Synchronisation on Secure Information Flow in
Concurrent Programs. In Perspectives of System Informatics, 4th International
Andrei Ershov Memorial Conference, PSI 2001, Akademgorodok, Novosibirsk,
Russia, July 2-6, 2001, Revised Papers, pages 225–239, 2001.

238

http://www.pcworld.com/article/2154000/estonian-electronic-voting-system-vulnerable-to-attacks-researches-say.html
http://www.pcworld.com/article/2154000/estonian-electronic-voting-system-vulnerable-to-attacks-researches-say.html
https://estoniaevoting.org/
http://www.pretavoter.com/publications/ PretaVoter2010.pdf
http://www.pretavoter.com/publications/ PretaVoter2010.pdf

Bibliography

[Sab03] Andrei Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation.
In Perspectives of Systems Informatics, 5th International Andrei Ershov Memorial
Conference, PSI 2003, Akademgorodok, Novosibirsk, Russia, July 9-12, 2003,
Revised Papers, pages 260–274, 2003.

[Sca15a] Enrico Scapin. A Proof Technique for Noninterference In Open Systems. Workshop
on Foundations of Computer Security (FCS), 2015. Affiliated with IEEE CSF 2015,
http://software.imdea.org/~bkoepf/FCS15/.

[Sca15b] Enrico Scapin. A Proof Technique for Noninterference In Open Systems. Technical
report, University of Trier, 2015.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley& sons, New York, 1996.

[Sch14] Christoph Scheben. Program-level Specification and Deductive Verification of
Security Properties. PhD thesis, Karlsruhe Institute of Technology, 2014.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J. Alex Halderman. Security Analysis of the Estonian
Internet Voting System. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 703–715. ACM, 2014.

[SHK+16] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. De-
pendent types and multi-monadic effects in F*. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 256–270. ACM,
2016.

[SHM17] Enrico Scapin, Mihai Herda, and Martin Mohr. Verification of the Mix Server of sE-
lect, 2017. Available at https://github.com/escapin/MixServerVerification.

[SK95] Kazue Sako and Jue Kilian. Receipt-Free Mix-Type Voting Scheme — A practical
solution to the implementation of a voting booth. In Advances in Cryptology —
EUROCRYPT ’95, International Conference on the Theory and Application of
Cryptographic Techniques, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer-Verlag, 1995.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow Secu-
rity. IEEE Journal on Selected Areas in Communications, special issue on Formal
Methods for Security, 21(1):5–19, 2003.

[Smi06] Geoffrey Smith. Improved typings for probabilistic noninterference in a multi-
threaded language. Journal of Computer Security, 14(6):591–623, 2006.

239

http://software.imdea.org/~bkoepf/FCS15/
https://github.com/escapin/MixServerVerification

Bibliography

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded
programs. In IEEE 13th Computer Security Foundations Workshop, CSFW 2000,
pages 200–214. IEEE, 2000.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 27–47, 2011.

[SS12] Christoph Scheben and Peter H. Schmitt. Verification of information flow proper-
ties of Java programs without approximations. In Formal Verification of Object-
Oriented Software, LNCS 7421, pages 232–249. Springer, 2012.

[SS13] Sooel Son and Vitaly Shmatikov. The Postman Always Rings Twice: Attacking
and Defending postMessage in HTML5 Websites. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013. The Internet Society, 2013.

[SS16] Enrico Scapin and William Standard. An Election Manager for sElect, 2016.
Available at https://github.com/escapin/ElectionManager.

[SST16] Enrico Scapin, William Standard, and Tomasz Truderung. sElect: Secure and
Simple Elections, 2016. Available at https://github.com/escapin/sElect.

[STB+14a] Enrico Scapin, Tomasz Truderung, Daniel Bruns, Michael Kirsten, and Martin
Mohr. An E-Voting Machine with Auditing Procedures, 2014. Available at https:
//github.com/escapin/EVotingMachine.

[STB+14b] Enrico Scapin, Tomasz Truderung, Daniel Bruns, Christoph Scheben, and Jürgen
Graf. E-voting Case Studies, 2014. Available at https://github.com/escapin/
EVotingVerif.

[STG13] Enrico Scapin, Tomasz Truderung, and Jürgen Graf. A Cloud Storage System
with strong cryptographic guarantees, 2013. Available at https://github.com/
escapin/CloudStorageSystem.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded
imperative language. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, pages 355–364, 1998.

[TSK13] Tomasz Truderung, Enrico Scapin, and Andreas Koch. A Library of Cryptographic
Operations: A Real and Ideal Java Implementation, 2013. Available at https:
//github.com/escapin/CVJFunct.

[VP17] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce
Reuse in WPA2. In Proceedings of the 24nd ACM SIGSAC Conference on Computer
and Communications Security, 2017.

240

https://github.com/escapin/ElectionManager
https://github.com/escapin/sElect
https://github.com/escapin/EVotingMachine
https://github.com/escapin/EVotingMachine
https://github.com/escapin/EVotingVerif
https://github.com/escapin/EVotingVerif
https://github.com/escapin/CloudStorageSystem
https://github.com/escapin/CloudStorageSystem
https://github.com/escapin/CVJFunct
https://github.com/escapin/CVJFunct

Bibliography

[VS97] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In 10th Computer Security Foundations Workshop (CSFW ’97), June
10-12, 1997, Rockport, Massachusetts, USA, pages 156–169, 1997.

[VS99] Dennis Volpano and Geoffrey Smith. Probabilistic Noninterference in a Concurrent
Language. Journal of Computer Security, 7(1), 1999.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[Was10] Daniel Wasserrab. From Formal Semantics to Verified Slicing - A Modular Frame-
work with Applications in Language Based Security. PhD thesis, Karlsruher Institut
für Technologie, Fakultät für Informatik, October 2010.

[WH09] Janna-Lynn Weber and Urs Hengartner. Usability Study of the Open Audit Voting
System Helios, 2009. Available at http://www.jannaweber.com/wp-content/
uploads/2009/09/858Helios.pdf.

[WL10] Daniel Wasserrab and Denis Lohner. Proving Information Flow Noninterference
by Reusing a Machine-Checked Correctness Proof for Slicing. In 6th International
Verification Workshop - VERIFY-2010, July 2010.

[WLS09] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On PDG-Based Noninterfer-
ence and its Modular Proof. In Proceedings of the 4th Workshop on Programming
Languages and Analysis for Security, pages 31–44. ACM, June 2009.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

[ZCC+13] Filip Zagórski, Richard Carback, David Chaum, Jeremy Clark, Aleksander Essex,
and Poorvi L. Vora. Remotegrity: Design and Use of an End-to-End Verifiable
Remote Voting System. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, Applied Cryptography and Network
Security - 11th International Conference, ACNS 2013, volume 7954 of Lecture
Notes in Computer Science, pages 441–457. Springer, 2013.

[ZM03] Steve Zdancewic and Andrew C. Myers. Observational Determinism for Concurrent
Program Security. In IEEE Computer Security Foundations Workshop - CSFW,
pages 29–. IEEE Computer Society, 2003.

241

http://www.jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf
http://www.jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf

Academic Curriculum

January 2017 - January 2018 University of Stuttgart, Germany.
Ph.D. student at the Institute of Information Security.
Ph.D. supervisor: Prof. Dr. Ralf Küsters.

December 2012 - December 2016 University of Trier, Germany.
Ph.D. student at the Chair for Information Security and Cryptography.
Ph.D. supervisor: Prof. Dr. Ralf Küsters.

October 2010 - October 2012 University of Verona, Italy.
Master of Science in “Ingegneria e Scienze Informatiche”.
Thesis: Field-Sensitive Unreachability and Non-Cyclicity Analysis,

supervised by Prof. Dr. Nicola Fausto Spoto.

January 2010 - June 2010 Queen Mary University of London, UK.
Exchange semester as Erasmus student.

September 2006 - October 2010 University of Verona, Italy.
Bachelor of Science in “Informatica Multimediale”.
Final Project: Architectures and Implementations of Single Sign-On Systems,

supervised by Prof. Dr. Luca Viganò.

243

	Abstract
	Kurzzusammenfassung
	Introduction
	Extension of the CVJ Framework
	Instantiation of the CVJ Framework
	Application of the CVJ Framework
	E-voting Systems and sElect
	Structure of the thesis

	I The CVJ Framework, a Framework for the Cryptographic Verification of Java Programs
	Extending the CVJ Framework to Java-Interfaces, Abstract Classes, and Strings
	Jinja+: A Java-like language
	Indistinguishability
	Simulatability and Universal Composition
	I-Noninterference, Noninterference in Open Systems
	From I-Noninterference to Computational Indistinguishability
	A Proof Technique for proving I-Noninterference
	Communication through Primitive Types Only
	Communication through Arrays, Simple Objects, and Exceptions
	Communication through Strings

	Extending the CVJ Framework to Java Concurrency
	Concurrency in Java
	SyncJinja+ systems
	Single-Threaded Semantics of SyncJinja+
	Multi-Threaded Semantics of SyncJinja+
	Run of a SyncJinja+ program

	Indistinguishability
	Interfaces and Composition
	Environments
	Programs with security parameter
	Perfect Indistinguishability
	Polynomially Bounded Systems
	Computational Indistinguishability

	Simulatability and Universal Composition
	From Perfect to Computational Indistinguishability
	Perfect Indistinguishability and Noninterference
	From Noninterference to Computational Indistinguishability
	From Single-Threaded to Multi-Threaded Programs

	Instantiating and Applying the CVJ Framework
	Public-Key Encryption with a Public Key Infrastructure
	The Interface for Public-Key Encryption
	The Ideal Functionality for Public-Key Encryption
	The Realization of Ideal-PKIEnc
	Realization Result

	Digital Signatures with a Public Key Infrastructure
	The Interface for Digital Signatures
	The Ideal Functionality for Digital Signatures
	The Realization of Ideal-Sig
	Realization Result

	Private Symmetric Encryption
	Nonce Generation
	Joana, a Static Checker for proving Noninterference
	The Case Study: A Cloud Storage System

	Related Work and Discussion

	II sElect, a Lightweight Verifiable Remote Voting System
	E-voting Systems and their Security Properties
	The sElect E-voting System and its main features
	sElect in a nutshell
	Main features of sElect

	Design, Implementation, and Deployment of the sElect E-voting System
	Design of sElect
	Implementation of sElect
	Deployment of sElect

	Formal Verification of the sElect E-voting System
	Verification of the Mix Server
	A Hybrid Approach for Proving Noninterference of Java Programs
	KeY, a Theorem Prover for sequential Java Programs
	Applying the Hybrid Approach to Verify the Mix Server

	Related Work and Discussion

	Conclusion and Future Work
	III Appendices
	Security Notions for Cryptographic Schemes
	IND-CCA2-secure Public-Key and Symmetric Encryption Schemes
	EUF-CMA-secure Digital Signatures Schemes

	The Jinja+ and SyncJinja+ languages
	Small-Step Semantics of Jinja, Jinja+, and SyncJinja+
	Semantics Rules of Jinja
	Semantics Rules of the Jinja+ extension
	Semantics Rules for the data type String
	Semantics Rules of the SyncJinja+ extension

	The Environment/Adversary
	Real and Ideal Cryptographic Functionalities
	The Public Key Infrastructure
	PKIEnc: Public Key Encryption with a Public Key Infrastructure
	Ideal Functionality for Public Key Encryption without Corruption

	PKISig: Digital Signature with a Public Key Infrastructure
	Ideal Functionality for Digital Signatures without Corruption

	Private Symmetric Encryption
	Nonce Generation

	Case Studies
	A Cloud Storage System
	An E-voting Machine with Auditing Procedures
	The Mix Server of sElect

	Formal Proofs
	Proof of Theorem 2.5
	Proof of Equivalence Relation of comp
	Proof of Theorem 3.6
	Proof of Theorem 4.1
	Proof of Lemma F.11
	Proof of Lemma F.12

	Proof of Theorem 4.2
	The Functionality without Corruption
	Proof of Lemma F.22

	Bibliography
	Academic Curriculum

