
Theoretical Investigations

of Atom Tunneling

in the Interstellar Medium

Von der Fakultät Chemie der Universität Stuttgart

zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Jan Meisner
aus Waiblingen

Hauptberichter Prof. Dr. Johannes Kästner
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Abstract

Chemical kinetics, i.e., the investigation of chemical reactivity, reaction rates,

and conditions, is a traditional field of physical chemistry. In the last decades

the determination of kinetic parameters, in particular reaction rate constants, is

increasingly being carried out with the aid of quantum chemical computations.

These data, often complementary to experimentally determined values, provide

new insights into physical chemical phenomena.

IRC Algorithm

The minimum energy path between two structures at the minimum of the electronic

potential is crucial for the elucidation of chemical reaction mechanisms. In this

thesis, the background and implementation of a Hessian-based predictor-corrector

algorithm to optimize intrinsic reaction coordinates (IRCs) are described. For that,

an established algorithm was modified in order to avoid matrix diagonalizations,

which improves the scaling with respect to the system size.

Atom Tunneling

The quantum mechanical tunneling effect enables particles to pass a potential

energy barrier, even when the total energy is lower than the height of the barrier.

As the tunnel effect is of quantum nature and depends on the mass of the particle,

it is particularly pronounced for the time-evolution of very light particles such as

electrons or hydrogen atoms.

The tunnel effect emerges in chemistry because in particular the light hydrogen

atoms behave as quantum objects. Atom tunneling enables chemical reactivity

at cryogenic temperatures where classically there is not enough energy available

to overcome a barrier. This is manifested in a curvature of the Arrhenius plot.



VI

Eventually, the rate constant becomes even temperature-independent at very low

temperatures. Because of the mass-dependence, the reaction rate decreases when

the atom of interest is substituted by a heavier isotope, for example deuterium in

case of hydrogen atoms. This is called kinetic isotope effect (KIE).

Dual-Level Instanton Method

A broad variety of computational methods exists to calculate reaction rate con-

stants that include atom tunneling. Instanton theory has become an established

method as it is a suitable compromise between computational efficiency and ac-

curacy. In instanton theory, the most likely tunneling path is optimized for each

temperature and the quantum fluctuations around the path are approximated har-

monically. The computationally most demanding steps are the path optimization

and the calculation of Hessian matrices along the tunneling path. This restricts

the applicability of electronic structure methods. In this thesis, a dual-level in-

stanton method is presented, where the optimization of the tunneling path and

the evaluation of the 2nd derivatives are carried out using a fast, but computation-

ally less precise method. Subsequently, a more sophisticated electronic structure

method is used to recalculate the potential energy along the tunneling path. It

is shown that the rate constants obtained by the dual-level approach agree well

with those obtained by exclusively using the more accurate potential. This can

significantly save amounts of computational time and may even enable the use of

some electronic structure methods because neither gradients nor 2nd derivatives of

the more accurate potential are necessary.

Water Formation in the Interstellar Medium

One of the most important molecules in the universe is water. It is assumed to

be crucial for the development of life. Since water molecules have been detected

in the interstellar medium, different possible routes of water formation have been

discussed starting from oxygen atoms, molecular oxygen, or ozone molecules.

One key reaction starting from the successive hydrogenation of oxygen atoms is

the reaction

H2 + OH→ H + H2O.



This reaction can occur in the gas phase or on surfaces, which are often coated

with water ice. In this thesis, quantum mechanical calculations are used in or-

der to quantify the impact of atom tunneling on the reaction rate constants at

temperatures below 200 K. For that, the instanton method was used on a fitted

potential hypersurface of UCCSD(T)-F12/AVTZ quality. Kinetic isotope effects

for all possible H/D substitution patterns were calculated. These values can be

used in combination with interstellar H/D abundance ratios to make statements

about the history or origin of astronomical objects.

Furthermore, the impact of a water ice surface on this reaction was studied. Re-

action rate constants for two relevant surface mechanisms, the Eley–Rideal mecha-

nism and the Langmuir–Hinshelwood mechanism, have been calculated. For that,

a multiscale QM/MM framework based on rigorously benchmarked density func-

tional theory and the TIP3P force field was used. For this particular reaction,

the surrounding water molecules barely have any influence on the potential en-

ergy along the reaction coordinate. Therefore, the surface effects can be described

implicitly by taking into account that rotation is restricted on a surface in the

calculation of kinetic isotope effects.
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Zusammenfassung

Chemische Kinetik, die Untersuchung von chemischer Reaktivität beziehungsweise

den dazugehörigen Geschwidigkeitskonstanten und Reaktionsbedingungen, gehört

zu den fundamentalen Gebieten der physikalischen Chemie. Das Feld ist von

zentraler Bedeutung und Gegenstand aktueller Forschung. Die Bestimmung von

kinetischen Parametern, vor allem Geschwindigkeitskonstanten, wird in den letzten

Jahrzehnten zunehmend computergestützt durchgeführt. Die dabei gewonnenen

Ergebnisse ermöglichen neue Einsichten in physikalisch-chemische Prozesse und

die Optimierung bestehender chemischer Reaktionen.

IRC-Algorithmus

Um eine Aussage über chemische Reaktionsmechanismen zu treffen, ist der Pfad

kleinster potentieller Energie zwischen zwei Potentialminima sowie die dazugehöri-

ge Übergangsstruktur entscheidend. Im Rahmen dieser Arbeit wurde ein hessema-

trixbasierter Predictor-Corrector-Algorithmus zur Optimierung von intrinsischen

Reaktionskoordinaten (IRCs) implementiert. Hierbei wurde ein literaturbekannter

Algorithmus modifiziert, so dass Matrixdiagonalisierungen vermieden werden, was

die Skalierung des Algorithmus’ verbessert.

Der Tunneleffekt

Der quantenmechanische Tunneleffekt ermöglicht es Teilchen, eine Potentialbar-

riere zu überwinden, obwohl sie nicht über ausreichend Energie verfügen. Da der

Tunneleffekt von quantenmechanischer Natur ist und von der Masse des tunneln-

den Teilchens abhängt, spielt er vor allem für die Bewegung kleinster Teilchen wie

Elektronen eine bedeutende Rolle.
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Der Tunneleffekt tritt jedoch auch bei chemischen Reaktionen auf, da sich

Atome, insbesondere die leichten Wasserstoffatome, ebenfalls quantenmechanisch

verhalten. Dies ermöglicht Reaktivität auch bei tiefsten Temperaturen, wie sie

beispielsweise im interstellaren Raum vorkommen, was sich in einer Krümmung

des Arrheniusplots äußert. Bei sehr tiefen Temperaturen kann die Reaktions-

geschwindigkeitskonstante sogar temperaturunabhängig sein. Durch die Massen-

abhängigkeit des Tunneleffekts führt eine Substitution von Wasserstoff durch Deu-

terium oft zu einer signifikanten Abnahme der Reaktionsgeschwindigkeit. Dies

wird als kinetischer Isotopeneffekt (KIE) bezeichnet.

Duallevel-Instantonmethode

Es gibt eine große Auswahl an Methoden zur Berechnung von Reaktionsgeschwin-

digkeitskonstanten unter Berücksichtigung des Tunnelns von Atomen. Die in den

letzten Jahren zunehmend verwendete Instantonmethode stellt einen hervorragen-

den Kompromiss von Genauigkeit und Rechenzeit dar. Hierbei wird für jede

Temperatur der statistisch wichtigeste Tunnelpfad optimiert und die Quanten-

fluktuationen um diesen Pfad werden harmonisch genähert. Die rechentechnisch

aufwendigen Schritte sind zum einen die Optimierung des Pfades, zum anderen

die Berechnung der zweiten Ableitung des Potentials entlang des Pfades. Hier-

durch ist die Auswahl der zur Verfügung stehenden Elektronenstrukturmethoden

eingeschränkt. In dieser Arbeit wird eine Duallevel-Instantonmethode präsentiert,

bei der die Pfadoptimierung und die Berechnung der Hessematrizen mit einer ef-

fizienten Methode durchgeführt wird. Anschließend wird mit einer genaueren,

rechenzeitintensiveren Elektronenstrukturmethode die potentielle Energie entlang

des Tunnelpfades neu berechnet. Es wird gezeigt, dass die mit diesem Duallevel-

Ansatz erhaltenen Geschwindigkeitskonstanten gut mit den Werten übereinstim-

men, die man durch ausschließliche Verwendung des genaueren Potentials erhält.

Dadurch wird erheblich an Rechenzeit eingespart und die Verwendung mancher

Elektronenstrukturmethoden erst ermöglicht, da für das genauere elektronische

Potential keine Gradienten oder gar zweiten Ableitungen nötig sind.



Wasserbildung im Interstellaren Medium

Eines der bedeutendsten Moleküle des Universums ist Wasser, da es nach heutiger

Auffassung essenziell für die Entstehung von Leben ist. Seit Wasser durch tele-

skopische Beobachtungen im interstellaren Medium gefunden wurde, stellt sich die

Frage nach der Wasserentstehung bei den im Weltall vorherrschenden Bedingun-

gen.

Ein möglicher Syntheseweg beinhaltet die Schlüsselreaktion

H2 + OH→ H + H2O.

Diese Reaktion kann in der Gasphase oder auf mit Wassereis beschichteten Ober-

flächen ablaufen. In dieser Arbeit wird durch quantenmechanische Berechnungen

gezeigt, dass der Tunneleffekt die Reaktionsgeschwindigkeit unterhalb von 200 K

signifikant erhöht und damit maßgeblich zur Reaktivität beiträgt. Hierfür wurde

die Instantonmethode und eine gefittete Potentialhyperfläche auf UCCSD(T)-F12a-

Level verwendet. Kinetische Isotopeneffekte für alle möglichen H/D-Kombina-

tionen wurden berechnet, mit welchen unter Berücksichtigung des HDO/H2O-

Verhältnisses Aussagen über den Aufbau von astronomischen Objekten treffen

zu können.

Weiterhin wurde der Einfluss einer Wassereisoberfläche auf diese Reaktion un-

tersucht und Reaktionsgeschwindigkeitskonstanten für zwei relevante Oberflächen-

prozesse, den Eley–Rideal- und den Langmuir–Hinshelwood-Reaktionsmechanis-

mus, berechnet. Hierfür wurde ein QM/MM-Multiskalenansatz basierend auf

der Kombination von einem mit hochgenauen Korrelationsmethoden sorgfältig

geprüften Dichtefunktional und einem TIP3P-Kraftfeld verwendet. Im speziellen

Fall dieser Reaktion haben die umgebenden Wassermoleküle einen verschwinden-

den Einfluss auf den Verlauf der potentiellen Energie entlang der Reaktionskoor-

dinate. Daher konnten Oberflächeneffekte in einer neu entwickelten Methode im-

plizit beschrieben werden, um die bei beiden Reaktionsmechanismen auftauchen-

den kinetischen Isotopeneffekte zu berechnen.
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Kästner and Bettina Nestl

“Asymmetric Ketone Reduction by Imine Reductases”, ChemBioChem, 18,

253–256 (2017)
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Part I

Introduction





1 Introduction

The aim of theoretical chemistry is to rationalize or predict properties of molecules

and chemical phenomena. In its early years analytical concepts based on symmetry

and elementary simplifications of the electronic structure, such as the Hückel ap-

proximation or Hund’s rules, were developed. After the Schrödinger equation was

proposed in 1926 the Born–Oppenheimer[3] and Hartree–Fock[4] approximations

followed soon in 1927 and 1930, respectively. The foundation of modern quantum

chemistry was layed with the Valence-bond and molecular orbital theories.

Computational chemistry utilizes computer simulations to solve or assist in solv-

ing chemical problems. The first computer program packages have been written in

the 1960’s and 1970’s using punch cards. Some of them are even still in use today

– after conversion to modern programming languages. With the increase of com-

putational performance and the first commercially available quantum chemistry

program packages, computational chemistry reached its adulthood

The current research in both theoretical and computational chemistry deals with

the development of methods with a better accuracy-to-cost ratio, i.e., either reduc-

ing the necessary computational effort or improving the quality of the calculations.

In this respect, one example that has been used in this thesis is the development of

multiscale models the Nobel prize in 2013 was awarded to Martin Karplus, Michael

Lewitt, and Arieh Warshel for the development of multiscale models for complex

Parts of this Chapter have been used in:
Atom Tunneling in Chemistry Jan Meisner and Johannes Kästner Angew. Chem. Int. Ed.
55, 5400–5413 (2016), see reference 1, Copyright 2016 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.
Comparison of Classical Reaction Paths and Tunneling Paths studied with the Semiclassical
Instanton Theory Jan Meisner, Max N. Markmeyer, Matthias U. Bohner, and Johannes
Kästner Phys. Chem. Chem. Phys. 19, 23085–23094 (2017), reproduced from Ref. 2 with
permission from the PCCP Owner Societies, and
Quantum Chemical Simulations for Astrochemistry Jan Meisner in Proceedings of the 3rd

bwHPC-Symposium Sabine Richling, Martin Baumann, Vincent Heuveline (Eds.) (2017)



4 1 Introduction

chemical systems, multiscale simulations were honored just recently. The applica-

tion of established quantum chemical methods to relevant questions in chemistry

and related fields, or prediction of other chemical phenomena are nowadays a

helpful complement to experiments.

1.1 Atom Tunneling

In physical and theoretical chemistry, several nuclear quantum effects can be found.

While the discretization of the energy levels leads to line spectra, the zero-point

energy and the tunnel effect can influence chemical reactivity.

In classical physics, the total energy of a particle needs to be at least as high as

the potential energy to overcome a potential energy barrier. In chemistry, this bar-

rier might stem from the energy necessary to break a chemical bond. In quantum

mechanics, however, quantum objects can be described by wave functions Ψ and

the squared modulus |Ψ|2 is the probability of finding the particle. Approaching

a region where the potential energy is higher than the total energy, the amplitude

of the particle wave decays exponentially. Quantum objects can penetrate and

pass areas which would classically be forbidden. The wave function – and thus the

probability of finding a particle – on the other side of a barrier is not zero.

While phenomenological descriptions appeared earlier, the effect was discov-

ered and understood in 1927 by Hund.[5] Subsequently, Gamow[6] and Gurney &

Condon[7] used the tunnel effect independently of each other to explain the α de-

cay of atomic nuclei. It was understood early on that the process of tunneling

can contribute to chemical reaction rates in addition or as an alternative to the

thermal barrier crossing.

For a rectangular barrier, as shown in figure 1.1, the wave function can be easily

analyzed. In the classically forbidden region, the amplitude of the wave function

decays exponentially. The analytical solution shows that the exponential decay

of the wave amplitude depends on m, the mass of the quantum object, EA, the

height of the barrier, but stronger on x, the penetration depth, i.e., the width of

the barrier. For classical reactions, the height of the energy barrier, EA, is the most

dominant parameter when calculating the probability of a particle to overcome the

barrier. When atom tunneling plays a role, the barrier width ∆x is at least equally
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Figure 1.1 Wave function tunneling through a rectangular barrier. The equation
above the barrier shows the analytical behavior of the wave function within a rect-
angular barrier. Adapted from Ref. 1 with permission from Angew. Chem. Int. Ed. 55,
5400–5413 (2016). Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

important: As can be intuitively seen in Fig. 1.1, a thinner barrier would lead to

a smaller decay of the wave function and thus to a larger probability to find the

particle on the right hand side of the barrier. This leads to the effect of corner

cutting,[8] i.e., the tunneling particle travels through a region of higher potential

energy at the expense of a reduced barrier width. This effect is shown in Fig. 1.2

for the reaction of HCl and Cl atoms.[2]

At room temperature atom tunneling is mostly restricted to hydrogen atoms.

However, in principle, many atoms of a molecule can tunnel during a chemical

reaction:[1] A typical reaction path involves the movement of multiple atoms and,

thus, even the effective mass can change during a chemical reaction.

This makes it nearly impossible to assign a specific mass to a certain reaction.

At lower temperatures atom tunneling enables chemical reactions that would oth-

erwise be impossible.

The mass-dependence of the tunneling rate leads to large kinetic isotope ef-

fects (KIEs), when e.g. substituting a 1H atom by a deuterium atom (heavy

hydrogen; 2D). A KIE is defined as the ratio of the reaction rate constant of two
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Figure 1.2 Corner cutting in the reaction of HCl + Cl: At low temperature the corner
cutting leads to a significant reduction of the total path length. The picture of the
molecular system shows the classical reaction path (white path) and the tunneling path
(calculated with the instanton method) at 50 K (from red to green to blue). Reproduced
from Ref. 2 with permission from the PCCP Owner Societies.

isotopologues (or isotopomers) of a reaction where the rate constant of the lighter

isotopologue, kH , is divided by the rate constant of the heavier one, kD:

KIE =
kH

kD

(1.1)

This even without tunneling leads to KIEs larger than one. Values < 1 are called

inverse isotope effects and can occur when the vibrational adiabatic barrier is

higher for the molecular system containing e.g. protium than for the deuterated

case.[1,9] In the case of chemical reactions where one single atom – mostly a hydro-

gen atom – is transferred, e.g. in sigmatropic [1,5] H-shifts or hydrogen abstraction

reactions, one can distinguish between a primary KIE and secondary KIEs: The
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Figure 1.3 Typical temperature regimes of a chemical reaction where atom tunneling
plays a role for two isotopologues. Upper part: the logarithm of the rate constant
is plotted against the inverse temperature, called Arrhenius plot. Lower part: The
resulting logarithmic KIE as a function of inverse temperature. Adapted from Ref. 1
with permission from Angew. Chem. Int. Ed. 55, 5400–5413 (2016). Copyright 2016
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

primary KIE is defined as arising from the substitution of the transferred atom

by the heavier isotope. Secondary KIEs are defined as arising from substitution

of other atoms than the transferred one by the heavier isotope. Enhanced KIEs

are the main experimental indicator that atom tunneling is happening. The KIE

is a suitable probe to examine atom tunneling experimentally because it can be

measured directly. A typical example of the temperature dependence of reaction

rate constants and (primary) KIEs is shown in Fig. 4.1.
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Since the discovery of this quantum effect, atom tunneling and its relevance for

chemistry has been covered in many reviews and even textbooks. The textbook

by Bell is one of the most cited references[10] and other books and review articles

followed.[1,11–16] More recent review articles deal with special aspects like atom-

tunneling in enzymes[17–19] or methods to calculate tunneling rates.[20–23] It has

to be noted that quantum effects like tunneling also occur in areas other than

chemistry. For instance, electrons tunnel much more readily than atoms due to

their lower mass. This enables scanning tunneling microscopy, tunnel junctions,

and tunnel diodes. These manifestations are not discussed in this thesis, as it is

focused on the atom tunneling in chemistry, in particular astrochemical reactions.

1.2 Astrochemistry

Astrochemistry describes the formation, distribution, and destruction of chemical

substances in space. Large-scale astrochemical models, for instance, help to explain

where to expect high abundances of a particular molecule. Noteworthy features

when considering reactions and reaction rates in the interstellar medium (ISM) are

the low particle density, the strong radiation fields, and generally the large range

of temperatures. Even so, there are nearly 200 different molecular species detected

in the interstellar medium (not including atoms and isotopologues).[24]

During the different stages of star formation, the chemical reaction conditions

vary. An overview of some interstellar objects occurring in the course of star

formation and the chemical conditions therein is given in table 1.1. The process

of star formation is quite well understood for low-mass stars.

Star formation is assumed to start with diffuse clouds. In these nebula, the

density is not high enough to effectively shield the molecules from radiation and

therefore, ionized species are predominant. Diffuse clouds can condense due to

the gravitational force. As a result of gravitation, diffuse clouds can evolve and

result into so-called dense clouds. The name is derived from the fact that they are

so dense that visible light from objects behind it is absorbed thus making these

objects appear dark in the sky. The temperature in dense clouds is lower because

the interstellar radiation can not pervade the cloud and many molecules freeze out

on the dust grain surface. Interstellar clouds can collapse, resulting in prestellar
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cores. Because of the higher density and the low temperature, the relevance of

surface reactions increases. Eventually, a core evolves into a protostar, a young star

with a high temperature that is still accreting mass from the surrounding molecules

in the remaining molecular cloud. While the outer part of the protostellar envelope

remains cold, the center heats up. Subsequently, a protoplanetary disk can form

which is an accretion disk for the young star. It is assumed that ice and dust

grains accrete to planetesimals due to electrostatic and gravitational forces, hence

forming a planetary system as we know it from our own solar system.

In general, the particle density in the interstellar medium is rather low. Hydro-

gen is by far the most abundant atom. In diffuse clouds, temperatures are around

100 K and can be as low as 10 K in dark clouds.[25] Thus, chemical reactions can

occur only if they are either barrierless, for instance, radical-radical reactions or if

the barrier is tunneled through.

Many bimolecular reactions can take place via a pre-reactive minimum, a van-

der-Waals complex in the entrance channel before the barrier. The encounter

complex can directly decay because of excess energy released when the complex

is formed or the energy dissipates to other particles if the pressure is high enough

or the particles are adsorbed on a surface. In the latter case, the life time of the

encounter complex increases with decreasing temperature, because thermal energy

is required in order to break the complex. Therefore, more attempts to react can

Table 1.1 Types of interstellar and circumstellar molecular clouds and their particle
densities and temperatures. The table is modified from Dishoeck et al. (reference 25).

Name typ. density (cm−3) typ. temp. (K)
Diffuse cloud 102 30–100
Dense dark cloud 103 10–20
Prestellar core ≥ 105 8–15
Protostar
(inner) 107–109 > 100
(outer) 104–107 8–100
Protopl. disk
(inner) 109–1015 100–3000
(outer) 106–1010 10–500
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be made. In combination with atom tunneling, the increased lifetime can even lead

to increasing rate constants at decreasing temperature. Experimental evidence for

this counter intuitive effect exists in several cases, for example for the gas-phase

reactions

H2 + NH+
3 → NH+

4 + H[26]

and

CH3OH + OH → CH3O + H2O.[27]

Besides interstellar gas-phase chemistry, reactions can also take place on the

surface of dust grains.[28,29] These can consist of silicaceous or carbonaceous com-

pounds and are usually coated by frozen water, methane, carbon monoxide, and

other small molecules.[28] The coated dust grains have three main effects on chem-

ical reactivity. Reactive species are adsorbed by the dust grains and the local

concentration increases. The grains can work as an energy sink and stabilize prod-

ucts of exothermic reactions, which would otherwise decay directly due to the

excess energy. Finally, surfaces can work as catalysts by changing the reaction

mechanism or the potential energy along the reaction path.

An example set of tunneling enhanced reactions is the sequential hydrogen ad-

dition to CO, a key route for the formation of methanol in space, for which strong

H/D-KIEs have been found.[30–32] For the hydrogenation of formaldehyde leading

to methoxy radicals, tunneling is also important.[33,34]

In space, the amount of D atoms incorporated in molecules is enhanced with

respect to a statistical distribution based on the D/H atom fraction.[35–37] For both

methanol[38] and formaldehyde,[34] this can partially be explained by tunneling: the

lighter protium can be abstracted by a hydrogen atom to form H2, while deuterium

remains bound to the CHxO fragment. Subsequent barrierless recombination with

another protium or deuterium atom leads to deuterium enrichment, see Fig. 1.4.
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Figure 1.4 Reaction network for the deuteration of methanol. The abstraction of
protium is facilitated via a tunneling mechanism, the abstraction of deuterium is much
slower. Adapted from Ref. 1 with permission from Angew. Chem. Int. Ed. 55, 5400–
5413 (2016). Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

1.2.1 Interstellar Water Formation

Since the discovery of interstellar water in 1969 in the orion nebula,[39] there has

been an ongoing debate about water formation under the prevalent conditions

in space. Meanwhile it is known that water is the main component of inter-

stellar ices.[29,40,41] The typical abundances of molecular species in dense regions

of the ISM can only be explained with considering the surface formation of wa-

ter. The formation of water in the interstellar medium was studied extensively

experimentally,[42–52] by means of modeling with different varieties of kinetic Monte

Carlo,[53–58] and using different rate equation models.[59–61] In principle, water can

be formed in the gas phase and on the surface of dust grains. For surface reac-

tions, the grain can act as a third body absorbing the excess energy of exothermic

reactions.[62] An O–H-reaction subnetwork proposed by Tielens and Hagen,[28] and
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updated by Cuppen et al.[47] and Lamberts et al.,[50,58](Fig. 1.5) shows that three

main routes for the water formation under interstellar conditions exist: subsequent

hydrogenation starting from oxygen atoms, molecular oxygen (O2), or ozone (O3).

Different routes can dominate water formation, depending on the chemical condi-

tions of the interstellar object of interest.

H

H2

Figure 1.5 Schematic representation reaction network as obtained in reference 47.

The direct hydrogenation of O atoms by H atoms[42,63,64],

O + H→ OH (R 1)

is barrierless and assumed to occur in regions where surfaces can remove the excess

reaction energy and where H atoms are more abundant than H2 molecules.[53] The

reaction of O atoms with molecular hydrogen, H2, is assumed to be of minor

importance due to the endothermicity of the reaction.[50,60,65]
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O2 molecules can be hydrogenated twice to form HO2 radicals and subsequently

H2O2:

O2 + H→ HO2 (R 2)

HO2 + H→ H2O2 (R 3)

In the gas phase, again, these reactions are not possible because of the excess

heat of reaction and instead of reaction (R 3), two OH radicals are produced via

the decomposition of activated H2O2:[66,67]

H2O∗2 → 2 OH (R 4)

In principle, this can also take place in the solid state. The two OH radicals

can then re-form H2O2 or react to H2O + O. It was shown experimentally[49] and

by means of instanton theory[68] that hydrogen peroxide can react with hydrogen

atoms under interstellar conditions and thanks to atom tunneling forms water and

an OH radical:

H2O2 + H→ H2O + OH (R 5)

The third route starts from ozone, O3, which can be hydrogenated to form O2

molecules and OH radicals,

O3 + H→ O2 + OH. (R 6)

This reaction was experimentally shown to take place at 10 K under interstellar

ice analog conditions.[48]

Reaction (R 1), reaction (R 4), reaction (R 5), and reaction (R 6) all produced

OH radicals. These can recombine with H atoms,

H + OH→ H2O, (R 7)

which is an exothermic, barrierless process, or react with molecular hydrogen,

H2 + OH→ H2O + H . (R 8)
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Reaction (R 8) is exothermic with a high energy barrier of 17.5 kJ mol−1 (ex-

perimentally determined[69,70]) to 24 kJ mol−1 (computationally determined[71,72]).

However, it was found experimentally that reaction (R 8) takes place on water sur-

faces even at 10 K.[65] The relative abundances of H atoms, H2 molecules, and O

atoms in the gas phase and on surfaces determine which reaction produces OH and

subsequently, whether reaction (R 7) or reaction (R 8) is predominant. Cuppen and

Herbst[53] compared the reaction with other routes of water formation under vari-

ous different conditions. Reactions (R 1) and (R 7), the reaction of atomic oxygen

with atomic hydrogen, dominate under the conditions in diffuse and translucent

cloud with rather low particle density. Reaction (R 8) seems to become important

under the conditions of cold dense cores.

For further background information on interstellar water chemistry and chemi-

cal processes on interstellar amorphous solid water, the reader is referred to refer-

ences 25 and 73.

1.3 Outline of the Thesis

In part II, the theory and methodology behind the calculation of reaction rate

constants used in this thesis is introduced. Mostly, existing methodology has been

used, but the following improvements and developments are introduced in this

work:

• A modified Bulirsch–Stoer Hessian predictor-corrector algorithm to calcu-

late intrinsic reaction coordinates (IRCs) of chemical reactions based on the

algorithm by Hratchian et al.[74] The algorithm introduced here avoids ma-

trix diagonalization and therefore scales with lower than third power of the

system size. The implementation into the DL-FIND optimization library[75]

is described in chapter 3. The algorithm is used for all IRC calculations

described here and was published in reference 2.

• An implicit surface model to mimic the influence of a surface on chemical

reactions is introduced in section 5.2. The implicit surface model was used

in chapter 10 to calculate reaction rate constants and kinetic isotope effects.

The work is published in reference 76.
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• A novel dual-level ansatz of instanton theory is presented and the perfor-

mance demonstrated by three different test cases in chapter 8.

Part III focuses on the chemical reaction H2 + OH → H2O + H:

• The reaction was studied in the gas phase rigorously in chapter 9 and rate

constants are provided down to 50 K. Kinetic isotope effects are calculated

for all possible H/D combinations.

• In chapter 10, the reaction is investigated on an ice surface. The catalytic

effect of the surface and the impact of atom tunneling are discussed. Reac-

tion rate constants for two surface mechanisms are presented for all possible

isotope patterns.

In chapter 11, the content of the thesis is discussed and concluded.





Part II

Methods





2 Basic Theory

On the microscopic scale of quantum mechanics, objects can be described by wave

functions Ψ which follow the time-dependent Schrödinger equation

i~
∂

∂t
Ψ = Ĥ Ψ. (2.1)

Here, ~ is the so-called reduced Planck’s constant and Ĥ is the Hamilton operator

corresponding to the kinetic and potential energies of all particles of the system.

In the time-independent form of the Schrödinger equation, Ψk is an eigenstate of

the Hamilton operator and the corresponding eigenvalue is the total energy Ek of

the state: 
Ĥ︷ ︸︸ ︷

T̂nuc + T̂el + V̂nuc,nuc + V̂el,el + V̂nuc,el︸ ︷︷ ︸
Ĥel

Ψk = EkΨk. (2.2)

The subscripts el and nuc stand for terms involving electrons or nuclei and T̂ and

V̂ denote the operators of the kinetic and potential energy, respectively.

The wave function Ψ describes the physical quantum state of a system and the

square of its absolute value can be interpreted as the probability density ρ(x, t) of

finding the quantum object at a position x at a time t.

ρ(x, t) = |Ψ(x, t)|2 (2.3)

The Born-Oppenheimer approximation is perhaps the most prominent approxi-

mation commonly made in quantum mechanics: Due to the lower mass of electrons,

they possess a significantly higher kinetic energy and are therefore assumed to fol-

low the motion of the atomic nuclei instantaneously. That means, figuratively, that

the motion of the electrons and the nuclei are decoupled. The Born-Oppenheimer



20 2 Basic Theory

approximation leads to the separability of the electronic wave function ψkel and the

nuclear wave function χknuc:

Ψk = ψkel χ
k
nuc (2.4)

The electronic wave function ψkel is the solution of the electronic Schrödinger

equation,

Ĥel ψel = Vel ψel, (2.5)

which depends on the nuclear coordinates only parametrically. The eigenvalues

of the electronic Schrödinger equation Vel, for a given set of nuclear coordinates,

serve as potential for the nuclear Schrödinger equation(
T̂nuc + Vel

)
χknuc = Ekχk. (2.6)

From here on, the index el will be omitted for the eigenvalues of the electronic

Schrödinger equation.

An analytical solution of equation (2.5) is only possible for a few very simple

cases. For all other systems, further approximations have to be made, which are

more or less accurate. The field of electronic structure theory, which is concerned

with improving the approximative methods in solving equation (2.5), has a long

tradition and is a vital topic. As this thesis is not concerned with electronic

structure theory itself but rather with applying efficient state-of-the-art methods

in order to obtain the electronic potential Vel(x), the reader is referred to reviews

which have recently been published.[77–80]

Every one of the N nuclei has three degrees of freedom. After subtraction of

three degrees of freedom for each translation and rotation of the whole molecular

system, the electronic potential Vel(x) is a multidimensional surface of 3N − 6

dimensions, 3N − 5 dimensions for linear systems. Minima of the hypersurface

correspond to stable structures and metastable intermediates. A connection be-

tween two minimum structures can be interpreted as a possible reaction pathway

belonging to a chemical reaction. In the following section, the determination of

accurate reaction paths by means of a modified Hessian based predictor-corrector

is presented.
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One of the most appropriate ways to determine the reaction path is to follow the

intrinsic reaction coordinate (IRC),[81] which is the minimum-energy path in mass-

weighted Cartesian coordinates. The calculation of IRCs is crucial in theoretical

and computational chemistry to understand the chemical mechanism of a reaction.

It has become a standard procedure during the computational investigation of

chemical reactions. The geometry corresponding to the highest potential energy

along the IRC is a first order saddle point of V (x), called transition structure (TS).

The IRC can be used to determine if the transition structure actually connects two

minima. Usually, the IRC is calculated by first optimizing the transition structure

and then following the steepest-descent minimum energy path in both directions.

For this purpose, a broad variety of different methods has become available since

its original definition in 1970.[82–87] Alternatively, the calculation can be carried

out by using different formulations of the nudged elastic band method[88–90] or the

string method.[91,92] Both of these methods can in principle calculate the whole

IRC including the transition structure simultaneously but are computationally

very demanding. For a complete overview of the literature, the reader is referred

to a recent review article.[93] Here, an implementation of a modified version of

Hratchian’s Hessian predictor-corrector,[74] details thereof and improvements on

the implementation are presented.

Parts of this Chapter have been used in:
Comparison of Classical Reaction Paths and Tunneling Paths studied with the Semiclassical
Instanton Theory Jan Meisner, Max N. Markmeyer, Matthias U. Bohner, and Johannes
Kästner Phys. Chem. Chem. Phys. 19, 23085–23094 (2017). The content is adapted from
Ref. 2 with permission from the PCCP Owner Societies.
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3.1 Hessian-Predictor-Corrector Algorithm

The evaluation of the IRC begins at a saddle point of first order, the transition

structure (TS), and follows the negative gradient, −g(x), of the potential energy

surface (PES):
dx

ds
= − g(x)

|g(x)|
(3.1)

Here ds is an infinitesimally small element of the arc along the minimum-energy

path in mass-weighted Cartesian coordinates.

The algorithm reported here is a modified version of the Hessian predictor-

corrector scheme (HPC) by Hratchian et al..[74] In summary, a comparably fast

integration method (here, the explicit Euler integration) is applied as a first esti-

mation, the so-called predictor step. After that, a more sophisticated method is

used to improve this first estimation, called corrector step. The latter is deter-

mined by means of a modified Bulirsch–Stoer (mBS) integrator as described by

Hratchian et al.,[74] which was further modified here. The original Bulirsch–Stoer

algorithm is described well elsewhere,[94] but the implemented modifications will

be sketched out below. Analogously to the Euler-predictor-corrector (EulerPC)

presented by Hratchian et al.,[95] matrix diagonalization is avoided. Additionally,

quadratic information is already included in the predictor step.

3.1.1 Predictor Step

The original HPC algorithm proposed by Hratchian et al.[74] uses the Local Quad-

ratic Approximation (LQA),[83,84] which is a Taylor series of the PES truncated

after the quadratic term:

g(x) = gi + Hi∆xi, (3.2)

where gi = g(xi) and Hi = H(xi) are the gradient and Hessian matrix at the

geometry xi of the ith step of the IRC calculation and

∆xi = x− xi. (3.3)

In this case, a substitution scheme can be used to solve equation (3.1) ana-

lytically by the introduction of an independent parameter: dx
dt

= −g(t) using
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dt
ds

= |g0 + H0∆x| as suggested by Page and McIver.[83,84] For this purpose, the

Hessian matrix has to be diagonalized to obtain the eigenvalues and correspond-

ing eigenvectors. To avoid the diagonalization, the predictor step of the HPC was

changed to a plain explicit Euler integration as in the EulerPC algorithm.[95,96]

This leads to a predictor step of

x
[P ]
i+1 = xi −∆s

g(xi)

|g(xi)|
(3.4)

where ∆s is the step size of the IRC calculation.

In the implementation reported here, the Hessian matrix Hi is used to include

quadratic information for the predictor step. Instead of the analytical solution

as proposed in the original Hessian predictor-corrector scheme,[74] which would

include the diagonalization of the Hessian matrix, the simple explicit Euler method

using the energy expression

V (x) = V (xi) + ∆xTi g(xi) +
1

2
∆xTi H(xi)∆xi (3.5)

is applied. This was already suggested in the work on LQA by Page and McIver[84]

as an alternative for the analytic solution of equation (3.1) using the substitution

described above.

The Euler integration for the predictor step is done until

|∆xi| ≥ ∆s. (3.6)

The obtained geometry defines the next predictor point x
[P ]
i+1. The steps in the

Euler integration are chosen sufficiently small:

∆Euler =
∆s

250
(3.7)

Once equation (3.6) is still not fulfilled after 500 Euler steps, it can be assumed that

the minimum is reached. In that case, the IRC search algorithm is considered to be

completed. The potential energy V (x
[P ]
i ) and the gradient g(x

[P ]
i+1) are computed

at the predictor geometry x
[P ]
i+1. Hessian updates are done to get an estimation of

the Hessian H(x
[P ]
i+1).[97]
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This new implementation into DL-FIND[75] avoids matrix diagonalization and

therefore scales lower than O(N3).

3.1.2 Corrector Step

For the corrector step, the modified Bulirsch–Stoer algorithm (mBS) is used.[98–100]

The basic principle of the mBS algorithm is to use a locally fitted surface and

apply an explicit integration method on it, which is repeated with a smaller step

size. In the original Bulirsch–Stoer algorithm the modified midpoint method was

applied.[98,99] The explicit Euler integration was shown to perform significantly

better[74] and is therefore chosen in this work.

The Euler integration uses the quadratic information at the current predictor

step x
[P ]
i+1 and at the last predictor step x

[P ]
i . For this purpose, a distance weighted

interpolant surface (DWI) of the form

VDWI(x) =
∑

j∈{i,i+1}

Tj(x) wj(x) (3.8)

is constructed. The derivation of the DWI-gradients is shown in the appendix in

chapter 12. Here, Tj(x) are the Taylor expansions of quadratic order around xj

and wj(x) are the weights of the respective Taylor expansion. The weights are

coordinate-dependent and decay with the nth power of ∆xj:
[74]

wi(x) =
|∆xi+1|n

|∆xi|n + |∆xi+1|n
(3.9)

wi+1(x) =
|∆xi|n

|∆xi|n + |∆xi+1|n
. (3.10)

In recent literature it was argued that the energy function has to decay with

a higher order than quadratic.[101] Therefore, the implementation presented here

follows the proposed n = 4 value. The energy and gradient of the corrector step

xi+1 is given using the DWI-energy expression in equation (3.8), because it can be

assumed that the DWI describes the region around the predictor reasonably well.

Once completed, the Euler integration is repeated using a smaller step size. Both

integration results are used to extrapolate the coordinates to an infinitely small
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step size. For this purpose the Richardson extrapolation scheme is used.[94,98] The

idea of the Richardson extrapolation is outlined in the appendix in chapter 13. If

the error of the extrapolated coordinates is smaller than the threshold of 10−6 a.u.

the extrapolated integration result, i.e., the thus obtained coordinates, will be

used as the corrector step. If the error is still larger than the threshold, the Euler

integration is repeated with an even smaller step size and the integration is done

again. This is done using Neville’s scheme[94,96] obtaining k different integration

results (coordinates) T1,i after performing k different integrations with different

step sizes ∆si. The Richardson extrapolation of Ti,j and Ti,j+1 leads to the result

Ti+1,j, as can be seen in Fig. 3.1. For the first Euler integration a step size of

Figure 3.1 Neville’s scheme used for the Richardson extrapolation. The Tij represent
the integration result of step size ∆sj after extrapolation to (j−1)th order. Reproduced
from Ref. 2 with permission from the PCCP Owner Societies.

∆s
50

is used. For the succeeding Euler integrations, the step size is halved in each

following iteration of the mBS algorithm.

The same criterion as in the predictor step is used: if after an Euler-integration

length of 2 ·∆s the coordinates do not differ by more than ∆s it is assumed that

the minimum is found. Because of oscillations around the minimum, the Bulirsch–

Stoer algorithm will not be successful in this case. Thus, the Euler integration is

simply repeated using a step size smaller by a factor of 10. As the mBS integrator

is performed on a fitted DWI surface, this approach is feasible.
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3.1.3 First Step

Figure 3.2 Left: consequence of an inaccurate TS location and a comparably small
step size: the initial displacement ∆s should lead to descent to the left, but the Euler
integration in the LQA will proceed downhill to the right. Right: a more accurately
optimized TS structure avoids that problem. Reproduced from Ref. 2 with permission
from the PCCP Owner Societies.

At the TS geometry xTS, the gradient vanishes and the tangent of the IRC is

given by the transition mode xTSmode. The sign of xTSmode decides if the IRC

towards the reactants or the products is to be computed. The starting point of

the IRC search algorithm is chosen as

x0 = xTS +
∆s

2
· xTSmode (3.11)

If the TS is not perfectly optimized and the error in the location of xTS is larger

than ∆s/2, the starting point x0 ends up on the wrong side of the barrier, see

Fig. 3.2.

To be able to pre-determine the IRC direction by the sign in equation (3.11)

an additional numerical trick is introduced: the scalar product of the IRC step,

xstep, and the transition mode at the TS geometry, xTSmode, is calculated. If

xTTSmode · xstep is negative, the angle between xTSmode and xstep is larger than 90◦,

which implies that the direction of this step is opposite to the desired direction

xTSmode. In this case the projection of the initial transition mode vector onto the

actual step is added twice:

xcorrected step = xstep − 2
(
xTTSmode · xstep

)
xTSmode (3.12)
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This trick is a simple step in the direction of the transition structure and corre-

sponds to one step of standard TS-optimizers after finding the correct eigenmode.

Here, the transition vector of the approximate transition structure is used. This

is a reasonable choice as the previously found transition structure can be assumed

to be close to the true saddle point.

This chapter focused on the calculation of IRCs, which are necessary for the

determination which chemical elementary reactions proceed. In the next chap-

ter, reaction kinetics are discussed, i.e., the question how fast these elementary

reactions take place.
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Chemical kinetics is the study of rates of chemical reactions. This includes the

investigations of how different conditions affect the reaction rates and the time-

dependence of the concentrations of the different species involved in a chemical

reaction network, which is the topic of this section. Different theoretical and

computational methods to obtain rate constants are outlined, leading to the ex-

planation of semiclassical instanton theory. Finally, a new dual-level approach to

instanton theory is proposed.

The reaction rate R of the chemical reaction in equation (4.1), in this case a

bimolecular reaction, can be described by the ordinary differential equation (4.2).

A + B→ C + D (4.1)

R = −d[A]

dt
= −d[B]

dt
=

d[C]

dt
=

d[D]

dt
= k [A][B] = . . . (4.2)

Here, A and B are the reactants and C and D are the products. Brackets stand

for the respective concentrations. The proportionality constant k is called the

reaction rate constant and has the units of s−1 for unimolecular reactions, l
mol

s−1

or cm3 s−1 for bimolecular reactions.

In most cases one is not simply faced with a single reaction, but several dif-

ferent reactions that form reaction cascades including side- and back reactions,

pre-reactive equilibria, and other features. All of them together can form a reac-

tion network with several thousands or tens of thousands of ordinary differential

equations like equation (4.2). In astrochemistry for instance, the largest reaction

networks are listed in databases and contain at least all observed species,[102,103]

i.e., additional hypothetical species which are assumed to exist and their deuter-

ated counterparts are used with a large variety of possible reactions between them.



30 4 Chemical Kinetics

The time-dependence of the atomic and molecular concentrations lead to a large

ordinary differential equation system to be solved.[25,104] This can be done by ei-

ther explicit integration or by assuming the steady-state conditions to be fulfilled.

In recent years, a few reviews about this topic emerged to which the reader is

referred.[61,104,105]

The reaction rate constant k is independent of the concentrations of the reac-

tants, however, it depends on the temperature T . Phenomenologically, the tem-

perature dependence of the rate constant often follows the Arrhenius law[106,107]

k(T ) = A exp

(
−EA
RT

)
(4.3)

with A being an attempt frequency and R the ideal gas constant. A plot of ln(k)

against 1/T is called an Arrhenius plot and the negative slope of an Arrhenius

plot times R defines the activation energy:

EA = −R
(
∂ ln(k)

∂(1/T )

)
(4.4)

For high temperatures, the activation energy is nearly temperature independent

and the Arrhenius plot is normally linear. Using statistical thermodynamics,

Eyring’s equation can be derived:

k(T ) =
kBT

h
exp

(
−∆G‡

RT

)
(4.5)

where kB is Boltzmann’s constant, h is Planck’s constant, and ∆G‡ is the Gibb’s

free activation enthalpy, i.e. the difference in free enthalpy between the transition

state and the reactant state, which is itself temperature dependent.

For lower temperatures, when atom tunneling plays an increasingly important

role, the Arrhenius plot shows deviations from linearity and EA changes depend-

ing on the temperature. For exothermic temperatures, the activation energy is

supposed to vanish, i.e.

lim
T→0

(
∂ ln(k)

∂1/T

)
= 0 (4.6)
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because at T = 0 K all particles on the reactant’s side of the barrier tunnel from

the ground state, a process which is temperature independent.[108,109] In the course

of this thesis, exothermic means a negative potential reaction energy ∆V < 0,

without any zero-point vibrational or thermal corrections. For endothermic reac-

tions, i.e., ∆V > 0, the reactant’s ground state has lower energy than the product

state, therefore only thermally activated tunneling can occur.[108] Here, the Arrhe-

nius plot is also not linear when tunneling is important, see Fig. 4.1. However, the

activation energy tends to the endothermicity ∆V at low temperatures,

lim
T→0

(
∂ ln(k)

∂1/T

)
= ∆V (4.7)

lo
g
(k

)

exothermic
endothermic

0

E
A

classical intermediate deep tunneling

Figure 4.1 Arrhenius plot (above) and corresponding activation energy (below) for
an exothermic and an endothermic reaction.
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To fit k(T ) to a broad temperature region, other expressions are often used,

where the parameters are merely fit parameters. Kooij’s equation,[110]

k(T ) = α

(
T

300 K

)β
exp

(
− γ
T

)
(4.8)

is often used in astrochemical and atmospherical models, (e.g. UMIST Database

for Astrochemistry[102]) but does not give the correct low-temperature value for

EA.[111] Zheng et al. suggested a new analytical form[112]

k = A

(
T

300 K

)n
exp

(
−E
R

(T + T0)

(T 2 + T 2
0 )

)
(4.9)

with four fitting parameters A, n, E, and T0. Although Equation (4.9) leads to

the correct behavior of the activation energy for T → 0, the low temperature limit

for the reaction rate itself goes to zero. This is not valid for exothermic reactions

where the temperature independent ground state[108,109] tunneling leads to

lim
T→0

(k(T )) = const. (4.10)

It was therefore suggested[113,114] to extend equation (4.9) for exothermic reactions

to obtain

k = A

(
T + T0

300 K

)n
exp

(
−E
R

(T + T0)

(T 2 + T 2
0 )

)
(4.11)

and an activation energy of

EA = E
T 4 + 2TT 3 − T 2

0 T
2

(T 2
0 + T 2)

2 + nR
T 2

T0 + T
(4.12)

This thesis focuses on the determination of the reaction rate constants k(T ) and

their temperature dependence. The rate constants can be obtained by means of

computational chemistry using different assumptions, which will be explained in

section 5. Before that, different reaction mechanisms will be outlined in the next

section.
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4.1 Reaction Mechanisms

4.1.1 Gas Phase Reactions

Before discussing the reaction mechanisms that involve a surface, the reactivity in

the gas phase has to be considered in the example of a bimolecular reaction,

A(g) +B(g)

kgas,bi−−−→ Products (4.13)

Here, the reaction rate constant kgas,bi is bimolecular and has the units l mol−1 s−1

or cm3 s−1. Similar expressions result for unimolecular or termolecular reactions.

The reaction rate, i.e., the rate of product formation, is

Rgas,bi = kgas,bi[A][B] (4.14)

with [A] and [B] being the concentrations of the respective species.

In exothermic reactions, the bond formation releases kinetic energy, which is

most probably concentrated in the stretching mode involving the newly formed

bond. It might also be possible that the newly formed products are in an elec-

tronically excited state. In this case, the energy is partially stored as excitation

energy and partially as vibrational energy. This energy can be transformed into

molecular vibrations or, if the reaction results in two particles, in kinetic energy.

Without any energy redistribution, the excess energy will lead to destruction of

the products and the reactants will be re-formed. There are different possibilities

of how to stabilize the products of exothermic reactions:

• The newly formed species is big and has enough internal degrees of freedom

which are anharmonically coupled to the modes where the excess energy is

located. Then, the product(s) can thermalize internally and dissociation is

less likely. The molecules detected in the interstellar medium and studied

hereinafter are typically rather small and are comprised of just a few atoms,

which makes this mechanism rather unfavorable.
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• The product can lose the excess energy by colliding with another particle M

in a three-body reaction,[115]

A+B +M → Products +M∗, (R 9)

where the collision partner M∗ is vibrationally excited after the reaction.

This mechanism is only efficient when the total particle density is high

enough as the reaction rate is of third order. For this purpose, the colli-

sion partner M can be any particle, as the excess energy is transformed into

translational (kinetic) energy.

• On a surface, the excess energy can dissipate to the surface atoms.[116] This

mechanism is similar to the three-body interaction. The released energy is

transformed into substrate phonons.[117]

• When the product lives long enough, there is also the chance of a radiative

emission via a photon.[118]

For gas-phase reactions it has to be noted that, in general, A and B form a

distinct pre-reactive complex (PRC) on a minimum of the potential energy hyper-

surface. In the PRC, A and B are in close vicinity to each other, but have not yet

overcome the barrier to form any products, see Fig. 4.2.

The lower energy of the PRC compared to the separated reactants can stem

from hydrogen bonds, dipole-dipole interactions, Van-der-Waals forces, or other

attractive interactions. In the context of this thesis the formation of the PRC is

always assumed to be barrierless.

A(g) +B(g) 
 PRC
kgas,uni−−−−→ Products (R 10)

Here, the last reaction step stands for the conversion of the PRC to the products

and is formally unimolecular:

Rgas,uni = kgas,uni[PRC] (4.15)
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+

V

Figure 4.2 Schematic potential energy along the reaction coordinate of an exothermic
reaction. The separated reactants form a slightly stabilized pre-reactive complex (PRC)
and the transition structure is the highest point in potential energy. In the case of an
exothermic reaction, the product complex is lower in energy than the reactants. Here, the
hydrogen atom transfer in the reaction of H2 and OH radicals is used as an example.[72]

In equilibrium, the concentration of the PRC can be expressed by the difference

in free enthalpy, ∆G = G(PRC)−G(A)−G(B),

[PRC]

[A][B]
∝ Keq = exp

(
−∆G

RT

)
(4.16)

with Keq being the equilibrium constant, Keq has to be unitless. Therefore, [PRC]
[A][B]

is multiplied by the standard concentration with the numerical value of 1. The

reaction rate reads

Rgas,uni = kgas,uni[A][B] exp

(
−∆G

RT

)
. (4.17)

Depending on the energy relative to the separated products, the PRC can be

interpreted as an intermediate. The lifespan of the PRC is dominated by different

factors, as it may also decay back to the separated reactants A and B due to the

excess interaction energy. The stabilization mechanisms rely on energy dissipation.

There are different reaction mechanisms possible in surface chemistry.[119] Two

of them, the Eley–Rideal mechanism and the Langmuir–Hinshelwood mechanism,

will be introduced in this section.
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4.1.2 The Eley–Rideal Mechanism

Figure 4.3 Eley–Rideal reaction mechanism. One particle is first adsorbed on a sur-
face. A second one impinges from the gas phase and the products are directly formed.

The Eley–Rideal (ER) mechanism was proposed by D.D. Eley and E. Rideal in

1938[120,121], see Fig. 4.3. It is supposed that one particle A is adsorbed on the

surface and thermalizes:

A(g) −→ A(ads) (R 11)

After that, another molecule comes directly from the gas phase and reacts with

the adsorbed molecules forming the products:

A(ads) +B(g)
kER−−→ Products (R 12)

The products may either stay adsorbed on the surface or desorb if enough kinetic

energy is available. In this thesis, the processes after the formation of the chemical

bonds, such as desorption or heat dissipation, are not considered because they do

not alter the potential energy barrier and thus, do not influence the reaction rate.

It is assumed that the adsorption is barrierless or at least very fast and that the

step of chemical bond breaking is rate-determining. Reaction (R 12) can formally

be seen as a bimolecular reaction between the molecules B in the gas phase and

the molecule adsorbed on the surface.
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4.1.3 The Langmuir–Hinshelwood Mechanism

Figure 4.4 Langmuir–Hinshelwood reaction mechanism. Both particles are adsorbed
on a surface. They remain adsorbed, meet by diffusion and react to the products.

The Langmuir–Hinshelwood mechanism (LH, see Fig. 4.4) was suggested by

I. Langmuir in 1921[122] and further developed by C. Hinshelwood in 1926.[123]

The first step of the LH mechanism is the adsorption of both species A and B

separately:

A(g) −→ A(ads) (R 13)

B(g) −→ B(ads) (R 14)

The two reactant molecules thermalize, can diffuse on the surface until they meet

and then form a pre-reactive complex (PRC). As described above, the PRC can

decay to form the reaction products:

A(ads) +B(ads) −→ [A · · ·B](ads)
kreact−−−→ Products (R 15)

The reaction rate of the Langmuir–Hinshelwood mechanism, RLH, can thus be

described as the product of the rate with which they meet each other and the

probability that they react when they have met:

RLH = Rdiff · Preact (4.18)
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The former is directly related to the diffusion constants of both species on the

surface, kdiff,A and the concentration of binding sites, [sites]:

Rdiff = (kdiff,A + kdiff,B)
[A][B]

[sites]
(4.19)

When the two particles meet, there is a wide range of different possible physical

processes which can happen. The molecules can react to the products, diffuse

without further interaction, or even desorb from the surface. The reaction proba-

bility, Preact, describes this competition of processes and is the ratio of the actual

reaction rate constant and all possible processes of the particles:

Preact =
kreact∑
i

ki
≈ kreact

kreact + kdiff,A + kdiff,B + kdes,A + kdes,B

(4.20)

Here, the diffusion and desorption constants, as well as the reaction rate constants,

kreact, are formally unimolecular. The values of kdiff,I and kdes,I , depend on the

interaction of the particle I and the surface. When neglecting the process of

desorption, which is typically much slower than diffusion,[119] the LH-reaction rate

is

RLH = (kdiff,A + kdiff,B)
kreact

kreact + kdiff,A + kdiff,B

[A][B]

[sites]
. (4.21)

The reaction rate constants kER and kreact can be provided by ab initio calculations.

In chapter 5 different methods to calculate the actual values of the reaction rate

constants are discussed.
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Constants

This section focuses on the different rate theories used in this thesis. Starting from

one of the most basic rate theories, transition state theory, the calculation of ther-

mal reaction rate constants is explained. Different tunneling correction schemes

are introduced, ending with the description of instanton theory, the presentation of

a new dual-level ansatz of instanton theory, and the performance of this approach.

In this thesis, canonical rate theories are used throughout. In principle, the Rice–

Ramsperger–Kassel–Marcus theory (RRKM theory)[124–126] or other approaches

can be used to calculate cumulative reaction probabilities P (E) and obtain the

corresponding canonical rate constants by the Laplace transformation[127–129]

k(T ) =
1

2π~QRS

∫ ∞
−∞

P (E)e−βEdE, (5.1)

where β = 1
kBT

is the reciprocal temperature and QRS is the partition function of

the reactant state, see section 5.1.1. A microcanonical approach can be used, in

principle, to calculate reaction rate constants at very low temperatures. This is

helpful when the PRC is assumed to be out of thermal equilibrium, e.g. because

of the low-pressure environment in the interstellar medium.

5.1 Transition State Theory

One of the simplest techniques to calculate reaction rates is transition state the-

ory (TST). Transition state theory, formerly also referred to as activated-complex

theory, was mainly developed by Eyring, Evans, and Polanyi.[130,131] In TST, the

configuration space is divided into a reactant region and a product region sepa-
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rated by a closed dividing (hyper-)surface, the transition state (TS). An example

for a projection into a two-dimensional configuration space can be seen in Fig. 5.1.

There, the TS is a one dimensional hypersurface, i.e., a one dimensional line di-

viding the two-dimensional configuration space in the reactants and the products.

Transition state theory is based on various different approximations and assump-

tions:

Figure 5.1 Projection of a potential hyper surface. Thin solid lines show isoenergetic
configurations. Solid points stand for (meta) stable structures and the thick solid line
connecting them is the minimum-energy path. The dashed line represents the dividing
surface, the transition state. The hollow point on the MEP is the 1st order saddle point.

• The Born-Oppenheimer approximation and the separability of the electronic

motion from the nuclear motion leads to a potential energy hyper surface.

The nuclei can propagate from one minimum structure to another, which

represents a chemical reaction, see section 4. It follows that the reaction has

to be electronically adiabatic in the vicinity of the transition state, which is

the dynamical bottleneck, although versions of non-adiabatic transition state

theory exist.[132–134]

• It is assumed that the reactant molecules are thermally equilibrated. The

energies of the reactant molecules can be described by a Boltzmann distri-

bution. It is also assumed that the transition state is in equilibrium with the

reactant state.
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• If a molecule crosses the TS region, it will react to the products and not

recross the TS again.

• In classical TST the motion along the reaction coordinate is furthermore

treated classically and is assumed to be separated from the motions perpen-

dicular to it.

As the nuclear motion is treated classically in most TST formulations, neither

atom tunneling nor non-classical reflections are included. The quantization of e.g.

the vibrational and rotational energy levels is taken into account by means of the

corresponding quantum mechanical partition functions. The TST rate expression

can be derived by means of thermodynamical equilibrium between the transition

state and the reactants:[130,131]

kTST =
kBT

h

QTS

QRS

(5.2)

where Q denotes the canonical partition function.

Different formulations of TST exist, which are based on further assumptions of

e.g. how to calculate the partition function of the reactant and transition state.

One of the most prominent versions is harmonic transition state theory (HTST). In

HTST the transition state is assumed to be centered on the first order saddle point,

i.e., the transition structure.∗ For the calculation of the partition functions for the

HTST rate constants, the rigid-rotor-harmonic-oscillator approximation is used.

In variational transition state theory (VTST) the position of the dividing surface

is varied to minimize the reaction rate and the recrossing which is neglected in

TST.[135,136] Transition state theory and the different versions have been extensively

reviewed in the last decades.[137–139]

Semiclassical instanton theory can also be understood as a transition state the-

ory as explained in section 6. In the following, the calculation of the partition

function of reactant state and transition state within HTST are explained.

∗Unfortunately, transition state and transition structure share the same acronym, TS.
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5.1.1 Partition Function of the Reactants and Transition State

The HTST reaction rate constant is proportional to the ratio of the partition

functions of transition state and reactant state, see equation (5.2). Therefore, it

is crucial to calculate both QTS and QRS accurately and also with the same level

of precision to benefit from error cancellation.

In the canonical ensemble, i.e., when the system is in thermal equilibrium and

the temperature T , volume V , and the particle number N are conserved, the

partition function is the sum over all quantum states weighted by the Boltzmann

factor:

Q =
states∑
i=0

e
− Ei

kBT (5.3)

Here, degenerate states have to be summed up explicitly. The probability of finding

a particle in state i with corresponding energy Ei is

pi =
e
− Ei

kBT

Q
. (5.4)

In HTST it is assumed that the electronic, translational, rotational, and vibrational

contributions to the total energy are decoupled from each other. Based on this,

it directly follows that the different contributions of the partition function are

separable and the total partition function can be written as

Q = Qel ·Qtrans ·Qrot ·Qvib (5.5)

For unimolecular reactions, the reactant state is the PRC. In the case of bi-

molecular reactions, it is assumed that the two separated reactants do not interact

with each other before the course of reaction and thus, the product of the partition

functions of both reactants is used:

QRS = QA ·QB (5.6)

For the first-order saddle point, the same expressions for the individual con-

tributions are valid except for the vibrational partition function: As there is one

negative eigenvalue of the Hessian matrix corresponding to the negative curvature
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of the potential in the direction of the transition mode, there is one mode less to

sum over.

In the following the different assumptions and approximations are shown.

5.1.2 Electronic Partition Function

The Born-Oppenheimer approximation leads to the separability of the electronic

and the nuclear wave functions. The electronic partition function is determined

by the number of electronic eigenstates accessible at the respective temperature,

i.e., when the first excited state is energetically far away, the electronic partition

function is simply the level of degeneracy of the electronic ground state. If there

are low lying electronically excited states, one has to take them into account by

weighting them with the Boltzmann factor,

Qel =
∑
n

gn exp

(
−Vel,n

kBT

)
, (5.7)

where Vel,n is the electronic energy of the nth state and gn is the corresponding level

of degeneracy which may be the spin degeneracy of 2S+ 1 or stem from molecular

symmetry.

5.1.3 Translational Partition Function

The partition function for molecules in the gas phase is usually approximated using

the three-dimensional particle-in-a-box model. For large box sizes, the energy

levels are closer and the summation over all energy levels n can be replaced by an

integral:

Qtrans ≈
∫ ∞

0

exp

(
−

(n2
x + n2

y + n2
z)h

2

8mL2kBT

)
dnxdnydnz =

(
mkBT

2π~2

) 3
2

· V (5.8)

where m is the mass of the particle and V = L3 is the volume of the box.
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5.1.4 Rotational Partition Function

In principle there is a coupling between rotational and vibrational motion caused

e.g. by centrifugal expansion of the molecules. Such rotational-vibrational cou-

plings can be accounted for by calculation of the vibrational energy levels using

an effective potential depending on the rotational quantum number J .[140] A cost-

effective alternative for this rigorous approach is J-shifting introduced by Bowman

in 1991.[141] In this approach, the potential energy for J = 0 is used throughout

and the approximation of a rigid rotor is then used to calculate the impact of

molecular rotation explicitly, i.e., the rotational partition function.

In most cases, the rotational partition function is treated like the translational

partition function the energy levels of the rotational states are assumed to lie close

together and the sum is replaced by an integral. For diatomic molecules this leads

to

Qrot,cl =
1

σ

∫ ∞
0

gJ exp

(
−BJ(J + 1)

kBT

)
dJ (5.9)

leading to

Qrot,cl =
1

σ

kBT

B
(5.10)

Here, gJ = 2J + 1 is the degeneracy of the rotational energy level J and B = ~2
2µr2e

is the so-called rotational constant. µ and re are the reduced mass and the equilib-

rium distance between the two atoms, respectively. The formula can be extended

for polyatomic molecules although there is no closed form available for asymmetric

tops.[142] To account for symmetry, the result of the integral is divided by the sym-

metry factor, σ, which is the product of the orders of the rotational subgroups of

the molecular point group.[143] It follows σ(C2v) = 2 for e.g. water, σ(C∞v) = 1, for

hetero–diatomics, σ(D∞h) = 2, for homo–diatomics, and σ(C1) = 1 for molecules

without any rotational symmetry. For bigger molecules, the moments of inertia

become larger and therefore the energy levels lie closer together. The same value

for the diatomic rotational partition function is also obtained by the phase space

integral of a rigidly rotating rod, i.e., the classical rotational partition function.

For most molecules and temperatures the integral approximation is justified.

Nevertheless, if the moment of inertia, I is small, and the rotational temperature
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θr = B
kB

is small compared to the temperature of the system, the rotational energy

levels are no longer close enough and the integral approximation is not valid.

Furthermore, for homo-diatomics the correct symmetry of the nuclear spin wave

function has to be considered accordingly to the spin-statistics theorem:

Ψ(1, 2) = ±Ψ(2, 1) (5.11)

The wave function has to be antisymmetric for an exchange of two fermions (such

as protons with half-integer spin SH = 1
2
) and symmetric for an exchange of two

bosons (such as deuterons with an integer spin of SD = 1). The electronic and

vibrational wave functions are always symmetric with respect to an interchange

of two identical nuclei and the translational wave function is independent of the

nuclei. Therefore the rotational and nuclear spin wave functions determine the

symmetry of the total wave function. For a diatomic molecule, the rotational

wave function, ψrot is antisymmetric for odd values of J and is symmetric for even

values of J .

For H2 the two nuclear spins can either couple to a symmetric triplet state or to

an antisymmetric singlet state. The former spin isomer is called ortho-hydrogen

(o-H2) and possesses three possible nuclear spin states. The singlet spin isomer is

called para-hydrogen (p-H2) and possesses one possible spin state. As the ortho-

para transition is forbidden without external spin-lattice relaxation, one can regard

H2 to be a mixture of ortho- and para- molecules.[144]

To ensure the correct symmetry of the total wave function, ortho-hydrogen can

only have rotational wave functions with an odd value of J and para-hydrogen can

only have rotational wave functions with an even value. When accounting for the

right nuclear spin symmetry, the symmetry number σ is not to be included as this

was just introduced ad hoc to account for the nuclear spin symmetry implicitly.

To make the values obtained by this summation comparable to the ones obtained

by the classical rotational partition function, Qrot,cl (which includes the factor 1
σ
),

the summation over all states has to be divided by the total number of nuclear
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spin states which is four in the case of H2 molecules. It follows for the rotational

partition function of an H2 molecule

Qrot,H2
=

1

4

even∑
J=0

gJ exp

(
−BJ(J + 1)

kBT

)
+

3

4

odd∑
J=1

gJ exp

(
−BJ(J + 1)

kBT

)
. (5.12)

For D2 molecules (both nuclei being bosons) the wave function has to be symmetric

with respect to the exchange of both nuclei, which leads to the rotation partition

function of

Qrot,D2
=

6

9

even∑
J=0

gJ exp

(
−BJ(J + 1)

kBT

)
+

3

9

odd∑
J=1

gJ exp

(
−BJ(J + 1)

kBT

)
. (5.13)

The factors 1
4

and 3
4

of para- and ortho-H2 as well as 6
9

and 3
9

of para- and

ortho-D2 alternate. The high-temperature limit averaging over all J-states results

in a prefactor of 1
2

= 1
σ

due to nuclear spin symmetry.
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Figure 5.2 Ratio of the quantum mechanical rotational partition functions of H2, D2,
and HD and the rotational partition functions of the corresponding classical rotors. For
the quantum mechanical rotors, the J states are summed up explicitly and ortho-/para-
nuclear spin symmetry is included. For the calculation of the partition function of the
classical rotors, equation (5.10) was used.
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In Fig. 5.2 the temperature dependence of Qrot

Qrot,cl
for H2, HD, and D2 is shown.

It can be seen that for these three molecules the classical-rotor approximation

is valid down to a temperature of 100 K. For lower temperatures the quality of

the classical-rotor approximation becomes poorer. At 100 K the induced error is

around 10-15 % but increases to a factor of 3.3 for HD at 20 K.

5.1.5 Vibrational Partition Function

Molecular vibrations are approximated by harmonic oscillators leading to the vi-

brational energy of

Evib =

Nmodes∑
i=1

(
vi +

1

2

)
~ωi (5.14)

which includes the zero-point energy. For non-linear molecules the number of

modes is Nmodes = 3N − 6, and for linear molecules, Nmodes = 3N − 5, where N is

the number of atoms. Due to the harmonic approximation the vibrational modes

are uncoupled. The partition function can be expressed in closed form:

Qvib =

Nmodes∏
i=1

exp
(
− ~ωi

2kBT

)
1− exp

(
− ~ωi

kBT

) (5.15)

The harmonic approximation can be assumed to perform well enough for most

chemical reactions although anharmonicity have been shown to affect rate con-

stants slightly.[145,146] For example, the mode related to the motion of the two

reactants against each other in the PRC is expected to be affected by anharmonic-

ity.

5.2 An Implicit Surface Model

In section 4.1 the ER and LH mechanisms of surface chemistry are discussed and

expressions for the reaction rates have been given. For astrochemical surface chem-

istry, several effects of the surface on chemical reactivity have to be considered:[68,76]

1. For strongly exothermic reactions, the excess heat of reaction can dissipate

into an ice bulk when the reaction proceeds on a surface. As TST assumes
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thermal equilibrium during the whole reaction, the excess heat of reaction is

assumed to be removed instantly.

2. Due to the low-pressure environment in the interstellar medium, the local

concentration of reactive species is higher on the surface. The expression

for the reaction rates depending on the concentration of reacting species is

discussed in 4.1.

3. The reaction path can be altered due to the interactions of the adsorbed

molecular system and the surface. When the effective energy barrier is re-

duced, e.g. by splitting up into several elementary reaction steps, a classical

catalytic effect occurs. For some chemical reactions, atomistic ab initio cal-

culations reveal that the potential energy along the reaction path hardly

changes when the surface is involved, i.e., there is just a negligible classical

catalytic effect.

4. The mobility of the adsorbed molecules is restricted, in particular translation

and rotation.

The restrained mobility on the surface can be taken care of by mimicking the

effect of the ice surfaces on the partition function.[68,76] For unimolecular reactions

the surface system under study is assumed to not perform any rotational motion as

the surface has a high total mass and moment of inertia. The rotational partition

function can then assumed to be constant during the reaction:

Q TS
rot

Q RS
rot

= 1 (5.16)

This approach is labeled implicit surface model. For a unimolecular reaction, it can

be assumed that the moments of inertia stay rather constant during the reaction,

because the whole system consisting of the surface atoms and the ad-atoms, is

accounted for in molecular simulations. The translational partition function does

not change for unimolecular reactions, see equation (5.8).

For bimolecular reactions following the ER mechanism, the rotational and trans-

lational partition functions of the adsorbed molecule and the transition state are as-
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sumed to be equal in the implicit surface model. Only the rotation and translation

of the incoming particle are considered in the reactant state, see reaction (R 12).

The implicit surface model can be used by performing calculations on a gas-

phase structural model and mimicking a surface reaction when the potential energy

during the chemical reaction is not affected by the surface environment. This is

only valid when there is no classical catalytic effect involved. This can be checked

using small molecular clusters in the vicinity of the reactants.

5.3 Tunneling Corrections

In principle, the rigorous solution of the time-dependent Schrödinger equation, e.g.

in the form of wave packet dynamics,[147] the multi-configuration time-dependent

Hartree (MCTDH) approach[148–151] or other approaches[152,153] are the most accu-

rate way of handling nuclear quantum effects such as atom tunneling. Neverthe-

less, these methods can only be applied for small model systems and a strongly

restricted number of degrees of freedom. For this reason, HTST or VTST reaction

rates are often calculated and the nuclear quantum effects are accounted for by

multiplication of the TST rate constant with a tunneling correction factor κ.[1]

One of the the simplest correction schemes is to assume a particular shape of

the potential energy barrier for which κ can be calculated analytically. These

forms of the potential energy barrier are rather simple, such as rectangular or

parabolic barriers.[154] The latter is sometimes referred to as Bell’s tunneling cor-

rection. Somewhat more realistic models for potential energy barriers are the

Eckart barrier[155] and Zero-curvature-tunneling.[156,157]. They are designated as

one-dimensional tunneling corrections as they assume the tunneling path to be

identical to the minimum-energy path.[1,21]

When atom tunneling is more pronounced, the tunneling path tends to be short-

ened at the expense of a slightly higher potential energy, which is called the corner

cutting effect.[2,8] This is taken into account in so-called multidimensional tunnel-

ing methods.[1,136,158] One of the most popular and successful methods to calculate

approximative tunneling rate constants is the small-curvature tunneling correc-

tion (SCT).[159] In SCT the tunneling path is approximated by the path of the

concave-side turning points for the stretch vibration of the vibrational ground
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state orthogonal to the reaction coordinate. The shortening of the tunneling path

is pushed to extremes in the large-curvature tunneling correction (LCT),[160,161]

which approximates the tunneling path by a linear path from reactants’ potential

well to products’ potential well. The microcanonically optimized multidimen-

sional tunneling method, µOMT, takes into account that the optimal tunneling

path is somewhere between the two extreme cases, the minimum-energy path and

a straight line between reactants and products. This is achieved by calculating

the energy-dependent transmission probabilities evaluated by the SCT and LCT

method at a given energy, taking the larger one and Boltzmann averaging to obtain

the tunneling correction factor κ.[136,162,163]
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The accurate description of atom tunneling is crucial for the calculation of pre-

cise reaction rate constants. An efficient yet accurate method to incorporate atom

tunneling in calculations is semiclassical instanton theory.[127,164–167] Instanton the-

ory can be understood as a quantum mechanical analog to (semi-) classical TST,

thus, referred to as harmonic quantum transition state theory.[23,168–170] The appli-

cability of instanton theory to the quantification of atom tunneling in molecular

systems has been frequently demonstrated in the past decade.[1,38,128,171–182] The

idea of instanton theory is to optimize the most likely tunneling path, the so-called

instanton, and calculate the quantum mechanical partition function within the har-

monic approximation. It does not require the full potential energy hypersurface,

but can be used with so called on-the-fly direct dynamics calculations, this means,

the energies, 1st and 2nd derivatives of the electronic potential are evaluated when

necessary. The theoretical background is outlined in the following section.

Following the Imaginary F premise[165,166,183,184] the decay rate of a system can

be calculated to be

k = −2

~
Im(F ) (6.1)

with the free energy F depending on the (complex) partition function Q:

F = − 1

β
ln(Q) ≈ − 1

β

Im(Q)

Re(Q)
(6.2)

Here, the dominating real part of the partition function is related to the reactant

and the imaginary part of the partition function belongs to the instanton.[184,185]

This leads to an expression similar, but not equivalent, to the TST rate equation,

see equation (5.2):[185]

k =
2

β~
Qinst

QRS

(6.3)
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with QRS = Re(Q) and Qinst = Im(Q) being the partition function of the reactant

state and the instanton, respectively.[186]

6.1 Representation of the Partition Function as

Path Integral

In classical mechanics there is only one possible path for the propagation of a

particle. In Feynman’s interpretation of quantum mechanics, all possible paths

contribute to the probability of an event.[187]

The contributions of all paths have to be summed up, even unlikely ones, which

are obviously classically forbidden, have to be considered. The propagation of a

particle from xi to xf , can be expressed by the path integral representation of the

Schrödinger propagator

〈xf |e−
i
~ ĤT |xi〉 =

∫ xf

xi

Dx(t)e−
i
~S[x(t)]. (6.4)

Here,
∫
Dx has the meaning of integration over all paths and S[x(t)] is the action

of the respective path x(t). Note, that x (bold italic), as used before, stands for

positions of a molecular system, i.e., a point on the potential hypersurface, and x

(bold upright) stands for paths on the potential energy hypersurface.

In general, the canonical partition function of a quantum mechanical ensemble

is given by the trace of the Boltzmann operator,

Q = tr
[
e−βĤ

]
=

∫ +∞

−∞
dx 〈x|e−βĤ |x〉 . (6.5)

The position representation is similar to equation (6.4) and the partition function

can be expressed as a path integral:

Q =

∫ +∞

−∞
dx

∫ x(τ=β~)=xf≡xi

x(τ=0)=xi

Dx e−
1
~SE[x] (6.6)
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Because the trace in equation (6.5) only operates on the diagonal elements of the

density matrix, only closed paths have to be taken into account. Here, SE is the

Euclidean action functional given by

SE[x(τ)] =

∫
dτ

(
m

2

(
dx(τ)

dτ

)2

+ V (x(τ))

)
, (6.7)

after a Wick rotation[188] from the real time to the imaginary time, it→ τ = β~.

The paths x(τ) can therefore also be interpreted as classical motion in the

inverted potential −V (x) where the start and end points have to be identical. In

order to evaluate

Q =

∫
dx

∫
Dx exp

(
−1

~

∫ β~

0

dτ

(
m

2

(
dx(τ)

dτ

)2

+ V (x(τ))

))
, (6.8)

the path has to be discretized and the integration approximated. Here, the path

x is discretized first. After that, the integration of equation (6.7) is approximated

harmonically to calculate the partition function, equation (6.8).

6.2 Discretization of the Feynman Path

The discretization is performed by finite differences. The path x is split into P

segments of equal distance in imaginary time, ∆τ = β~
P

. In its discretized form,

the path consists of P images on the N -dimensional hypersurface. The derivative
dx(τ)

dτ
was discretized by finite differences. For P → ∞ the path integral and

the expression of the action are exact. The functional SE[x(τ)] transforms into a

function of all (N · P ) coordinates of the P different images of the path:

SE =
P∑
k=1

(
P

2β~
(yk − yk−1)2 +

β~
P
V (yk)

)
=
S0

2
+ Spot (6.9)

where the cyclic constraint y0 = yP , mass-weighted coordinates yk =
√
mxk and

the abbreviations

S0 =
P

β~

P∑
k=1

(yk − yk−1)2, (6.10)
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and

Spot =
β~
P

P∑
k=1

V (yk). (6.11)

have been used.

6.3 Partition Function of the Instanton

After the discretization, the partition function reads

Q =

∫ ∞
−∞

dN ·Py exp

(
−SE(y1,y2, . . . ,yP )

~

)
(6.12)

The resulting (N · P )-dimensional integral can be solved using Laplace’s method.

For that, SE(y) is expanded into a Taylor series around a stationary point of

Euclidean action:

SE(y) = SE(ystat) +
dSE

dy
∆y +

1

2
∆yTS′′∆y +O(∆y3) (6.13)

where ∆y = y − ystat is the deviation of a path y from the path with stationary

Euclidean action and S′′ = d2SE

dy2 is the Hessian matrix of the Euclidean action.

The steepest descent method requires a path with stationary Euclidean action

with respect to the position of the path y, i.e., dSE

dy
= 0.

The transition state in instanton theory is the instanton. This is the closed

Feynman path which is a 1st order saddle point of the Euclidean action SE[x].

Thus, the instanton optimization is reduced to a saddle point search in N · P
dimensions.[23,189,190]

Equation (6.9) can be rewritten as

SE = β~
P∑
k=1

(
kspring

2

(
yk − yk−1

)2
+
V (yk)

P

)
(6.14)

by defining an artificial spring constant kspring(β) = P
(β~)2

. The whole closed path

can therefore be understood as a chain of P images which are connected by tem-

perature dependent Hookean springs and move classically in the potential V (y)
P

,
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often called ring-polymer. Instanton theory is applicable only for temperatures

below the crossover temperature[191]

TC =
~ω

2πkB

, (6.15)

where ω is the absolute value of the imaginary frequency at the transition struc-

ture. The crossover temperature is mass-dependent as ω is mass-dependent, too.

In many cases, TC can be used as a first indication at which temperature atom

tunneling becomes important. If ω is larger than 1300 cm−1, atom tunneling can

be expected to be relevant at room temperature. At temperatures higher than

TC, the spring forces between the individual images are too strong and the ring-

polymer collapses to the transition structure. For temperatures below TC, the

kspring becomes weaker and the instanton spreads out. For exothermic reactions

and T → 0 K, the instanton reaches the reactant state coordinate.

In the discretized form, the instanton is a closed Feynman path with pairwise

identical coordinates. The instanton, more precisely, the path between the turning

points of the instanton, i.e., the half of the instanton , can also be considered the

most likely tunneling path, i.e., the region in configuration space the molecule tun-

nels through. In general, instantons deviate from the IRC due to the corner cutting

effect as explained in the previous section. The instanton and the steepest-descent

paths on the potential energy hypersurface, starting from the instanton’s turning

points, can be considered as the most likely trajectory at a certain temperature,

called tunneling reaction path. For temperatures above TC, when the instanton

collapses to the transition structure, the IRC, is also the tunneling reaction path.

At lower temperatures, the instanton, and therefore the tunneling reaction path,

deviate qualitatively from the IRC, see Fig. 6.1.

As ystat is a stationary point of Euclidean action, the first derivative, dSE

dy
, van-

ishes. Equation (6.12) turns into a multidimensional Gaussian integral and results

in

Q = I1 · I2 ·
√

(π~)NP−2∏NP
l=3 λl

e−SE(ystat)/~ (6.16)

where λl are the eigenvalues of S′′. The terms I1 and I2 stand for the integration

over the first and second modes of the instanton, respectively, since the Gaussian
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q
Me

dCH

Figure 6.1 Projection of instanton paths and the classical path on two coordinates
for a hydrogen transfer reaction with TC = 414 K, see reference 2. The black solid
line represents the minimum-energy path, the IRC. Colored lines represent instantons at
different temperatures. The instantons spread out at lower temperatures. The dotted
lines correspond to steepest-descent paths starting from the instantons’ turning points.
Adapted from Ref. 2 with permission from the PCCP Owner Societies.

integration only holds for λl > 0. Therefore, the two eigenvalues λ1 and λ2 need

special attention: Since the instanton is a 1st order saddle point of the Euclidean

action, one eigenvalue λ1 is negative. This integral can be solved using analytical

continuation. Another eigenvalue λ2 = 0 is related to a cyclic permutation of the

P images, i.e., yk → yk+i, The integration of these two modes is shown in the

literature in detail[164,192,193] and leads to

I1 =
i

2

√
π~
|λ1|

(6.17)

and:

I2 =
P√

2

√√√√ P∑
k=1

(yk − yk−1)2 (6.18)
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6.4 Partition Function of the Reactant State

The closed Feynman paths of the reactant state are simply collapsed to the min-

imum geometry of the potential energy hypersurface V (x) for all temperatures.

This path is also a minimum of the action surface SE and all N ·P eigenvalues λRS
l

are positive. This makes the steepest-descent integration applicable to all degrees

of freedom and it follows for the reactant state’s partition function

QRS =

√
(π~)NP∏NP
l=1 λ

RS
l

e−SE[yRS]/~ (6.19)

with

SE[yRS] = Spot[y
RS] = β~ V (yRS). (6.20)

6.5 Rate Expression of the Instanton

Inserting the partition functions of the instanton and the reactant state into the

rate expression, equation (6.3), the reaction rate constant can be calculated to be

k̃inst =

√
S0P

2πβ~2

√ ∏NP
l=1 λ

RS
l∏′NP

l=1 |λinst
l |

exp

(
−S0(yinst)

2
− Spot(yinst) + Spot(yRS )

~

)
(6.21)

where the prime on the product sign of the instanton’s eigenvalues stands for the

exclusion of λ2, which is the eigenvalue corresponding to the cyclic permutation of

the images, see equation (6.18).

This rate expression does not account for molecular translation and rotation,

yet. To achieve this, the rate has to be multiplied with the corresponding partition

functions

kinst = k̃inst ·
Qtrans,inst

Qtrans,RS

· Qrot,inst

Qrot,RS

(6.22)

For this purpose, the rotational and translational partition functions are calculated

as described in section 5.1.1 and the instanton is assumed to be a super-molecule

consisting of all atoms of all images with their mass divided by P .
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The calculation of the electronic potential is often the most time-consuming step

in theoretical investigations. For this reason, a less demanding computational

method is often used for geometry optimizations and Hessian calculations, while

the energy is recalculated applying a more accurate electronic structure method.

The underlying assumption is that the faster method is still able to produce the

right molecular geometries for reactants, transition structure, and products. The

harmonic frequencies and zero-point energies can be corrected by multiplication

with scaling factors.[194] The results obtained in this way generally agree very

well with results obtained with the more accurate electronic potential. Dual-level

approaches or even multilevel approaches are also used for the calculation of po-

tential energy hypersurfaces which can be used for e.g. computational vibrational

spectroscopy.[195] Rate calculations using different tunneling corrections such as

SCT and µOMT also utilized a dual-level ansatz successfully.[196–198]

The applicability of the instanton method increased in 2011 with the publica-

tion of the quadratically converging Newton-Raphson (NR) instanton optimizer

by Rommel et al..[189] Before that, instanton paths were often guessed or approxi-

mated using further assumptions to avoid the large amount of ab initio calculations

necessary for the accurate determination of the instanton.[199–202] With the avail-

ability of the NR optimizer, instantons could be optimized for molecular systems

with many degrees of freedom.[38,128,176–182,189,203]

Still, for calculations of reaction rate constants, Hessians along the whole in-

stanton path have to be calculated in order to calculate the quantum fluctuations

around the instanton path, yinst. Therefore, most computational applications were

limited in the accuracy of the underlying electronic potential due to the high com-

putational demand of the Hessian calculation.[38,176,177,181,182]
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In this thesis, a dual-level instanton approach is proposed. First the instanton

is optimized for one or several temperatures using a relatively efficient on-the-fly

electronic structure method. The Hessians are provided along the instanton using

the same potential. Then, single point energy calculations are performed for V (y)

using a more sophisticated electronic structure method. Here, the assumption is

that the basic electronic potential is able to reproduce the shape of the instantons

qualitatively well. The recalculated electronic energies correct the error caused by

the inaccuracy of the electronic potential. This is shown by the blue coloring and

emphasized with a box in equation (7.1):

kDual
inst =

√
S0P

2πβ~2

√ ∏NP
l=1 λ

RS
l∏′NP

l=1 |λinst
l |

exp

−S0(yinst)
2
− Spot (yinst ) + Spot (yRS )

~


(7.1)

Hitherto, different studies combined approximate instanton methods with dual-

level approaches.[200,201,204] If an instanton is not optimized rigorously on the same

potential the Hessians are calculated with, the reliability of the eigenvalues is ques-

tionable, because the Euclidean action is not stationary and the steepest-descent

method is not applicable. Here, for the first time, instantons are optimized in all

dimensions using a basic ab initio electronic potential V (x) i.e., being true 1st

order saddle points of SE. A more sophisticated method is then used to correct

Spot. This approach results in correct eigenvalues λinst
l (λinst

1 < 0 and λinst
2 = 0),

as the Hessian of the action, S ′′, is evaluated around a true stationary point of

SE, This is valid for the instantons and the reactant state. At first glance, a re-

maining inaccuracy seems to persist, namely the erroneous vibrational frequencies

of the basic, efficient potential. A correction factor applied to the frequencies is,

however, not necessary, because the error in the 2nd derivatives of the electronic

potential is approximately systematic and therefore cancels out nearly totally, see

equation (7.1).

In section 8 the results of the dual-level instanton method are compared with

conventional instanton calculations.



Part III

Results





8 Performance of the Dual-Level

Instanton Method

This part demonstrates the applicability of the dual-level instanton method. Here,

the focus lies on the comparison of the dual-level instanton theory with conven-

tional instanton theory. As absolute values of the reaction rate constants are of

less importance for this study, no comparison with literature values is done.

Three different molecular systems were used to illustrate the performance of the

dual-level instanton approach: the isomerization of HNC to HCN, an intramolec-

ular [1,5] hydride shift, and the bimolecular hydrogen atom transfer reaction of

NH2 + H2 → NH3 + H. For each system, reaction rate constants were calculated

using the dual-level approach and are compared to the results of the conventional

instanton theory at both the basic and accurate electronic potential.

For dual-level approaches in quantum chemistry, the nomenclature

MethodA/basis setA//MethodB/basis setB

is used. Here, A labels the level of theory and basis set of the accurate elec-

tronic potential and B refers to the basic potential. For simplicity, the basis set

declaration is omitted in the shorthand notation.

MethodA//MethodB

8.1 Computational Details

All geometry optimizations including IRCs and instantons as well as rate cal-

culations were performed using the DL-FIND optimization library interfaced to

Chemshell.[205,206] Instantons were optimized until the maximum component of
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the gradient is smaller than 1 · 10−8 a.u. (scaled relative to the electron’s mass)

using the adapted, quadratically convergent Newton–Raphson algorithm.[189,190]

The CCSD(T)-F12[207,208] calculations were performed using molpro[209] with de-

fault settings. In all cases, the cc-pVDZ-F12 basis set was used.[210] All DFT

calculations were performed with Turbomole version 7.0.1[211]. SCF energies were

converged to an accuracy of 10−9 Hartree on an m5 multi grid.[212]

For the isomerization of HNC to HCN and for the [1,5] sigmatropic rearrange-

ment, 200 and 100 images, respectively, were used for all temperatures. For the

reaction of NH2 + H2, 154 images were used to discretize the whole paths when

using DFT. For the instantons calculated on CCSD(T)-F12 level, 40 images were

used down to 219 K, 78 images down to 131 K, and 154 and 306 images for 119 K

and 109 K, respectively.

8.2 Isomerization Reaction HNC → HCN

The isomerization of HNC to HCN is a standard model system for e.g. test-

ing optimization algorithms.[85,213–215] It is a unimolecular prototype reaction with

well-defined reactant state structure (HNC) and product state structure (HCN).

Furthermore, the three-atomic system is small enough to carry out full CCSD(T)-

F12/cc-pVDZ-F12[207,210,216] instanton calculations. For the basic potential, B3LYP,

one of the most frequently used density functionals[217–222] was used in combination

with the def2-SVP basis set.[223]

The reaction energies of both electronic potentials, ∆V , deviate by approxi-

mately 5 kJ mol−1, see table 8.1. The potential activation barrier VA of B3LYP is

higher than the CCSD(T)-F12 potential activation barrier by only 6.6 kJ mol−1.

The crossover temperatures, i.e., the negative curvatures at the corresponding

transition structures, are also quite similar and deviate by just 15.9 K, that

is ≈ 6 %.

The potential energy along the IRC was calculated for both electronic potentials,

see Fig. 8.1. Additionally, CCSD(T)-F12 single point calculations were performed

on the IRC obtained with the B3LYP potential, shown as blue crosses. That

potential energy curve overlaps with the potential energy along the IRC of the
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CCSD(T)-F12 potential. This indicates that the IRC coordinates are geometrically

close together.

Fig. 8.2 shows Arrhenius plots obtained by conventional instanton theory us-

ing both electronic potentials as well as the CCSD(T)-F12//B3LYP-dual-level

method. For B3LYP and the dual-level method, reaction rate constants down

to 60 K were calculated. Due to the high computational demand, conventional

CCSD(T)-F12 instanton calculations for lower temperatures than 100 K could not

be performed. Due to the higher potential energy barrier, the B3LYP reaction rate

constants are lower than the CCSD(T)-F12 reaction rate constants by a factor 51.4

at 200 K and by a factor 961.1 at 100 K. The reaction rate constants obtained by

the dual-level method are higher than the CCSD(T)-F12 rate constants only by a

factor between 2.0 and 2.5, see Fig. 8.2. Thus, here the CCSD(T)-F12//B3LYP-

dual-level method resembles the results obtained with conventional CCSD(T)-F12

instanton calculations.

8.3 Intramolecular 1,5-H-Shift

In sigmatropic rearrangements, tunneling was observed in many cases. Suprafa-

cial [1,5] sigmatropic rearrangements were studied exhaustively, using derivatives

of 1,3(Z)-pentadiene.[224,225] Although it was initially unclear whether or not atom

tunneling plays a crucial role in these reactions,[226,227] various studies have con-

Table 8.1 Potential energy barriers VA, potential reaction energies ∆V and the respec-
tive values corrected by zero-point energy, EA, and ∆E for the reaction HNC → HCN.
All energies are in kJ mol−1. The crossover temperatures TC are given in K.

Basic Potential Refined potential Dual-level
Method B3LYP CCSD(T)-F12
Basis set def2-SVP cc-pVDZ-F12
VA 142.8 136.2 136.2
∆V −57.2 −62.6 −62.4
EA 128.9 123.5 122.4
∆E −60.8 −65.5 −66.0
TC 257.0 272.9
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Figure 8.1 Potential energy along the IRCs of the B3LYP potential (black) and the
CCSD(T) potential (blue). The black crosses indicate CCSD(T)-F12 single point energy
calculations on the B3LYP IRC. The energy of the reactant (HNC) calculated on the
respective potential was set to zero.

firmed its involvement.[1,178,225,228–232] The [1,5] sigmatropic rearrangement of 1,3(Z)-

hexadiene to 2(E),4(Z)-hexadiene, Fig. 8.3, is therefore an appropriate test system

for the dual-level instanton method.

Two distinct density functionals, the BP-86 GGA functional[217–220,233] and the

BHLYP hybrid functional,[217–221,234] were applied to obtain different electronic

potentials: both with the 6-31G* basis.[235]

The potential activation energy obtained by BHLYP is more than 56.8 kJ mol−1

higher than the one obtained by the BP86 functional. This is attributed to the

high amount (50 %) of exact exchange in the BHLYP functional. Without further

references it is difficult to judge which functional performs better for this particular

reaction. However, the two functionals are eminently suitable to demonstrate

the applicability of the dual-level method in cases where the reaction barrier is

significantly underestimated by the basic potential. In this context, it has to be

mentioned that, although the reaction barriers obtained by the two functionals

disagree, the potential reaction energies agree within 2.8 kJ mol−1, see table 8.2.
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Figure 8.2 Above: Arrhenius plots calculated with the instanton method of the re-
action HNC → HCN. Black: B3LYP potential. Blue: CCSD(T)-F12 potential. The
dashed blue curve corresponds to the dual-level instanton results, i.e., instantons opti-
mized on the B3LYP electronic potential and the energies corrected by CCSD(T)-F12
single point calculations. Below: Absolute value of the relative error with respect to the
conventional CCSD(T)-F12 results.

Using the dual-level approach (BHLYP//BP86) the potential energy along the

IRC is successfully preserved, as can be seen in Fig. 8.4.

Instanton rate constants were calculated for a temperature range from 300 K

to 100 K using the two density functionals as well as the BHLYP//BP86 dual-

level combination. The lower energy barrier of the BP86 potential compared to the

BHLYP potential leads to higher reaction rate constants by more than eight orders

of magnitude throughout the whole temperature range. The curvatures of all

Arrhenius plots in Fig. 8.3 are strikingly similar keeping in mind that the crossover

Figure 8.3 [1,5] H shift in the sigmatropic rearrangement reaction of 1,3-hexadiene to
2,4-hexadiene.
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temperatures differ by more than 20 %. Despite the qualitative difference of both

functionals, the BHLYP//BP86 dual-level approach reproduces the BHLYP rate

Table 8.2 Potential energy barriers VA, potential reaction energies ∆V and the respec-
tive values corrected by zero-point energy, EA and ∆E for the sigmatropic rearrangement
reaction of 1,3-hexadiene to 2,4-hexadiene (Fig. 8.4). All energies are in kJ mol−1. The
crossover temperatures TC are given in K.

Basic Potential Refined potential Dual-level
Method BP86 BHLYP
Basis set 6-31G* 6-31G*
VA 110.6 167.4 166.3
∆V −18.0 −15.2 −15.3
EA 100.3 156.4 155.9
∆E −18.9 −16.4 −16.3
TC 308.8 394.7
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Figure 8.4 Potential energy along the IRCs of the BP86 potential (black) and the
BHLYP potential (blue) for the sigmatropic [1,5] hydride shift in Fig. 8.4. The blue
crosses indicate BHLYP single point energy calculations on the BP86-IRC. The energy
of the reactant calculated on the respective potential was set to zero.
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Figure 8.5 Arrhenius plots calculated with the instanton method of the reaction sig-
matropic rearrangement reaction (Fig. 8.4). Black: BP86 potential. Blue: BHLYP
potential. The dashed blue curve corresponds to the dual-level instanton results, i.e.,
instantons optimized on the BP86 electronic potential and the energies corrected by
BHLYP single point calculations.

constants successfully. with obtained values differing by less than one order of

magnitude.

8.4 Bimolecular Reaction NH2 + H2 → NH3 + H

Finally, the dual-level ansatz is tested on the hydrogen atom transfer reaction NH2

+ H2 → NH3 + H. This five-atomic test system with eleven electrons can also be

handled fully on CCSD(T)-F12/cc-pVDZ-F12 level using conventional instanton

theory.

Two basic electronic potentials of different quality are used: BHLYP/def2-SVP

and BHLYP/6-31G*, see table 8.3. The crucial difference in the two basis sets is the

absence of polarization functions for hydrogen atoms in the 6-31G* basis, which

plays an important role when describing hydrogen atom transfer reactivity.[173]

Besides that, the two basis sets differ also in the description of the nitrogen atom,



70 8 Performance of the Dual-Level Instanton Method

Table 8.3 Potential energy barriers VA, potential reaction energies ∆V and the respec-
tive values corrected by zero-point energy, EA and ∆E for the reaction NH2 + H2 →
NH3 + H. All energies are in kJ mol−1. The crossover temperatures TC of the pure
electronic potentials are given in K.

Basic Pot I Basic Pot. II Refined Pot. Dual I Dual II
Method BHLYP BHLYP CCSD(T)-F12
Basis set def2-SVP 6-31G* cc-pVDZ-F12
VA 35.5 48.4 41.5 40.7 40.7
∆V −15.1 −2.8 −22.0 −23.2 −23.2
EA 44.2 53.6 48.8 49.3 45.9
∆E −0.8 +8.7 −8.0 −9.0 −11.6
TC 355.9 410.8 355.8

but this is expected to be of minor importance. All three electronic potentials

used here differ qualitatively in the reaction energetics, see table 8.3.

On CCSD(T)-F12 level, the electronic and vibrational adiabatic reaction ener-

gies are −22.0 kJ mol−1 and −8.0 kJ mol−1, respectively. During the reaction,

an N–H bond is formed and an H–H bond is broken, leading to a large difference

in zero-point vibrational energy for the reactants and products. Both BHYLP

potentials underestimate the exothermicity with and without zero-point energies.

On BHLYP/6-31G* level, the vibrationally adiabatic reaction energy is even pos-

itive. Therefore, the functional is not able to describe the reaction qualitatively

correctly.

The CCSD(T)-F12 single point energy calculations along the IRC calculated on

BHLYP/def2-SVP level resembles the energy along the CCSD(T)-F12 IRC well

enough in the region of the transition structure, see Fig. 8.6. It can therefore be

assumed that BHLYP/def2-SVP is sufficiently accurate to serve as an underlying

electronic potential. For the CCSD(T)-F12 single point energy calculations along

the IRC calculated on BHLYP/6-31G* level, the highest point in energy is at

IRC ≈ −0.2. This indicates that the 1st order saddle points of the electronic

potential hypersurfaces deviate from each other. Indeed, the geometric parameters

of the three potentials deviate, see table 8.4. The N–H and the H–H distances at

the 1st order saddle points of the BHLYP/6-31G* potential deviate by more than
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twice as much from the CCSD(T)-F12 potential than the corresponding values of

the 1st order saddle points of the BHLYP/def2-SVP potential.

The reaction rate constants obtained with conventional instanton theory as well

as the corresponding dual-level methods are shown in Fig. 8.7. The BHLYP/def2-

SVP functional leads to higher reaction rate constants by a factor of 9–12 through-

Table 8.4 Geometric parameters of the transition structures. The values of dN–H, the
distance between the transferred hydrogen atom and the nitrogen atom and dH–H, the
distance between the two hydrogen atoms of the H2 molecule, are given in Å. The values
of ]H–N–H are in degrees.

Basic Pot I Basic Pot. II Refined Pot.
dN–H 1.30 1.27 1.33
dH–H 0.90 0.91 0.88
]H–N–H 99.1 100.4 98.0
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Figure 8.7 Reaction rate constants of the reaction NH2 + H2 → NH3 + H calculated
using the three different electronic potentials discussed in the text. Hollow points stand
for the corresponding dual-level methods.

out the temperature range of 300–110 K, caused by the lower potential activation

barrier. The CCSD(T)-F12//BHLYP/def2-SVP-Dual-level method successfully

leads to reaction rate constants deviating only by a factor of less than 2 from

the results obtained by conventional instanton theory using the CCSD(T)-F12

potential.

As the BHLYP/6-31G* potential overestimates the potential activation barrier,

the reaction rate constants are too low compared to the CCSD(T)-F12 results. In

this case, the dual-level methods fails and the resulting reaction rate constants are

off by even more then the ones calculated using the pure BHLYP/6-31G* potential.

This error can be explained by the qualitatively wrong reaction profile of the

BHLYP/6-31G* potential, which predicts the reaction to be nearly isoenergetic

without considering zero-point energy and even endothermic when including zero-

point energy. A qualitatively wrong potential energy hypersurface leads to an

incorrect distribution of the images along the instanton path.

The image distributions of the CCSD(T)-F12 and BHLYP/def2-SVP instantons

are comparable and most of the images are located on the side of the reactants.
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For both potentials, the image with the highest potential energy is on the part of

the instanton close to the product valley (the 59th image for for BHLYP/def2-SVP

and the 64th image for CCSD(T)-F12 of 77 images for the half instanton). For the

BHLYP/6-31G* instanton, the 42nd image has the highest potential energy, see

Fig. 8.8.
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Figure 8.8 Potential energy and image distribution of the instantons optimized on the
three different electronic potentials at T = 119 K. As the instanton is a closed Feynman
path, i.e., covers the same line in configuration space twice, only one half of the used
images are shown. The energy of the BHLYP/def2-SVP and BHLYP/6-31G* curves is
shifted by 40 and 80 kJ mol−1, respectively. For clarity, just every third image is shown
and lines connection 25%, 50%, and 75% of the corresponding instantons are drawn.

In this case, not only is the potential energy along the instanton path with

respect to the reactant state described incorrectly, but the image distribution is

also wrong. This error is not corrected by the dual-level approach.
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8.5 Summary

The dual-level instanton approach can be used to calculate reaction rate constants

which are nearly as accurate as the rate constants obtained by conventional in-

stanton calculations performed on the refined potential. All optimizations and

Hessian calculations are carried out using the basic, underlying potential. Addi-

tionally, only single point energy calculations of the refined potential along the

instanton path are necessary. This evidently corrects for the largest part of the er-

rors by improving the value of Spot in equation (7.1). The instanton geometry yinst

and therefore the values of S0 (see equation (6.10)) are not changed and assumed to

be described well enough by the basic potential. The dual-level approach performs

astonishingly well in the three cases examined above. The method still works well

when the activation barrier of the basic potential, one of the most crucial param-

eters when considering reaction rate constants, differs by more than 40% from the

one obtained with the refined potential. In cases where the geometry of the tran-

sition structure is described incorrectly, it can be assumed that the reaction and,

hence, tunneling paths are also described wrongly. This could be demonstrated

for the reaction of NH2 + H2 using the BHLYP/6-31G* electronic potential. In

this case, the potential energy landscape is described wrongly leading to a failure

of the dual-level instanton theory. Summarized, the dual-level approach should

be used with care, but seems to be a legitimate correction as long as the basic

potential describes the chemical reaction qualitatively correct.



9 The Reaction

H2 + OH → H2O + H

9.1 Introduction

The reaction contributes to fundamental processes in atmospheric chemistry, as-

trochemistry, and combustion.[236–238] The reaction on a surface is discussed in

chapter 10 and this chapter focuses on the reaction in the gas phase. A number

of studies on this reaction, theoretical[71,239–245] as well as experimental,[69,246–249]

have been performed down to 200 K. For an overview of previous experimental

and theoretical results, the reader is referred to reviews.[250,251]

As the reaction is one of the prototype reactions for four-atomic systems, a vari-

ety of potential energy surfaces (PES) have been published.[252–257] Recently, global

potential energy surfaces fitted by a neural network to UCCSD(T)-F12a/AVTZ

data were published [258]. One of these PES, labels NN1, was shown to give reliable

results in, e.g., the study of the mode specificity of the H + HOD reaction.[243]

Therefore, the NN1 PES was applied here as well. Various studies on thermal

reaction rate constants for the reaction have appeared.[71,245,259] One example are

the semiclassical transition state theory (SCTST) calculations of Nguyen et al.[260]

who even investigated reaction rate constants of all isotopologues.[71] However, it

seems that this is the first study which provides rate calculations on the NN1

PES. Furthermore, no rate calculations for temperatures below 200 K have been

performed before this study.

∗Parts of this Chapter have been used in:
Reaction rates and kinetic isotope effects of H2 + OH→ H2O + H, Jan Meisner and Johannes
Kästner, J. Chem. Phys. 144, 174303 (2016), see reference 72 and the content is adapted
with permissions. Copyright (2016) American Institute of Physics.
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In this study the temperature dependence of the reaction rate constants is inves-

tigated and the tunneling effect is quantified. For that, canonical variational theory

with microcanonical optimized multidimensional tunneling (CVT/µOMT)[162,163]

was used along with zero curvature tunneling (ZCT),[261,262] small curvature tun-

neling (SCT),[159] large curvature tunneling (LCT),[160,161,263] and microcanonical

optimized multidimensional tunneling (µOMT)[162,163] calculations down to 50 K.

Instanton rate constants have been calculated down to 100 K.

The results are compared to published experimental and computational values.

Furthermore, the temperature dependence for the rate constants for all eight pos-

sible isotopologue reactions and the resulting kinetic isotope effects (KIEs) have

been studied. At low temperatures (≤ 100 K), tunneling dominates the reaction

rate. The nuclear mass has a high impact on the tunneling probability leading to

large kinetic isotope effects (KIEs).

9.2 Computational Details

The different H/D isotopologues are labeled as H1H2OH3 such that the reaction

reads H1H2 + OH3 → H1 + H2OH3. DDOH therefore corresponds to a reaction of

OH with D2 while HDOH corresponds to the reaction HD + OH → H + DOH.

For the reaction H2 + OH → H2O + H containing protium only (HHOH), the

crossover temperature is TC = 276.2 K, while it is 204.2 K for the per-deuterated

reaction (DDOD).

All calculations in this chapter were performed using the NN1 PES[258], which

was interfaced with DL-FIND.[75] Instantons were optimized starting from the

classical transition structure or by starting from an already optimized instanton of

similar temperature using the adapted Newton–Raphson algorithm implemented

in DL-FIND.[189,190] The convergence criterion for the instanton optimization on

the NN1 PES was set to 5 · 10−11 a.u. for the maximal component of the gradient.

Here, mass-weighted coordinates and gradients with the masses in atomic units,

i.e., relative to the electron mass, have been used, which influences the convergence

criterion.

The OH radical possesses a degenerate electronic ground state. Only one of the

electronic states is reactive with respect to the reaction with H2. This was taken
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into account in the rate expression.[264,265] Vibrational modes were described by

the harmonic approximation around Feynman path. The translational partition

function was in all cases approximated by the one of the ideal gas. Rotational

partition functions were obtained from classical rigid rotors which is a valid ap-

proximation for the temperature region in this part of the study, see section 5.1.1.

The symmetry numbers σH2 = 2, σHD = 1 , and σD2 = 2 were taken into account.

The full closed Feynman paths were represented by 512 images. Convergence

with respect to the number of images was tested at the most severe case with the

largest distances between adjacent images, the all-H reaction (HHOH) at 100 K.

In this case, the rate constant obtained with 4096 images for the full path devi-

ated by only 0.4 % from the value obtained with 512 images. Smaller deviations

can be expected at higher temperature or for heavier isotopologues. Thus, the

discretization can be considered to be converged with respect to the number of

images.

Below 100 K, the instanton path for HHOH stretches into the pre-reactive min-

imum with parts of the path below the energy of the separated reactants, see

Fig. 9.1. Since this may lead to unphysical results,[129] instanton rates are re-

ported only down to 100 K for H-transfer reactions. For the D-transfer the whole

instanton path remains above the reactants’ energy for T > 80 K. Thus, instanton

rates for D-transfer reactions are reported down to 80 K.

The aim of this study is low-temperature rate constants and can therefore not

be achieved solely using instanton theory. For this reason, ZCT, SCT, LCT, and

µOMT calculations have been performed based on canonical variational transition

state theory (CVT)[20,136] by interfacing the NN1 PES[258] with POLYRATE.[266,267]

For the LCT calculations, the action integrals (θ integrals) and the sine of the angle

between the minimum energy path and the tunneling path were interpolated to

2nd order. The ZCT, SCT, LCT, and µOMT calculations have been carried out

down to 80 K in steps of 5 K and an additional rate calculation was performed at

50 K.
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Figure 9.1 Potential energy along the instanton path at 130 K (left) and 80 K (right)
relative to the energy of the separated reactants. At 130 K the whole instanton path
is above the reactant’s energy. At 80 K its ends are below that value. Pictures of the
corresponding instantons are inserted. Reprinted with the permission from J. Chem.
Phys. 144, 174303 (2016), Copyright (2016) American Institute of Physics.

9.3 Reaction Profile

For bimolecular reactions, it is generally possible that a pre-reactive complex

(PRC) can lead to an increase of the reaction rate constant with decreasing temper-

ature. This effect was studied experimentally in the reaction of HBr and OH radi-

cals as well as in the reactions with nitric acid or alcohols and OH radicals.[27,268,269]

In these cases, the non-covalent interactions between the two reactants stem from

the dipole moments and polarizabilities of the reacting molecules. In contrast to

that, H2 is neither very polarizable nor has a permanent dipole moment. The

impact of the PRC is thus expected to be minor compared to the other cases

mentioned above unless the temperature is much lower than considered here.

The relevant stationary points on the potential energy surface of the title reac-

tion are depicted in Fig. 9.2. Relative to the separated reactants, H2 and OH, the

potential energy on the NN1 PES is −2.11 kJ mol−1 for the PRC, 22.50 kJ mol−1

for the transition structure (TS), and −68.08 kJ mol−1 for the products (H +

H2O). The imaginary harmonic frequency is 1206i cm−1 on the NN1 PES.

The zero-point energy and therefore the vibrationally adiabatic ground state

energies of PRC, TS as well as the value of the crossover temperature TC depend on
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Figure 9.2 Potential energy profile of the reaction H2 + OH → H2O + H. Rela-
tive to the separated reactants, the pre-reactive complex has a potential energy of
−2.1 kJ mol−1, the transition structure 22.5 kJ mol−1 and the separated products
−68.1 kJ mol−1. Reprinted with the permission from J. Chem. Phys. 144, 174303
(2016), Copyright (2016) American Institute of Physics.

the masses of the nuclei. For reactions with deuterium, the crossover temperature

is significantly reduced, see table 9.1. It is barely affected by the deuteration of

other hydrogen atoms than the transferred one.

Table 9.1 ZPE corrected energies of the corresponding characteristic points of the PES
in kJ mol−1 relative to the separated reactants. The crossover temperature TC is given
in K. EA refers to the activation energy, the energy difference between TS and PRC.
For comparison, the values of EA determined by Nguyen et al., reference 71 is given.
Reprinted with the permission from J. Chem. Phys. 144, 174303 (2016), Copyright
(2016) American Institute of Physics.

PRC TS EA EA(ref 71) Tc
HHOH 0.54 24.76 24.22 24.41 276.2
HHOD 0.41 23.50 23.09 23.19 276.1
DHOH 0.30 24.13 23.82 23.74 266.0
DHOD 0.17 22.84 22.67 22.48 265.8
HDOH 0.20 25.86 25.66 25.37 208.9
HDOD 0.04 24.57 24.53 24.12 208.8
DDOH −0.04 25.65 25.69 25.16 204.3
DDOD −0.22 24.31 24.53 23.86 204.2
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9.4 Reaction Rate Constants

The rate constant of the reaction of H2 and OH has been measured several times

using different techniques, see Fig. 9.3 and the references therein. The Arrhenius

plot already shows a noticeable curvature at 300 K and below,[246,248], a clear sign

that the reaction is influenced by atom tunneling. Experimental rate constants

are available from 1000 K down to 200 K.[69,246–249] The sets of rate constants of

the previous studies agree quite well, typically within 20–30%.
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Figure 9.3 Reaction rate constants for HHOH compared to literature data. Experi-
mental data: “�” data from reference 248, “�” data from reference 69, “N” data from
reference 246; computational data: “�” data from reference 245, “©” data from ref-
erence 260, “♦” data from reference 259, and UMIST 2012 values from reference 102.
Reprinted with the permission from J. Chem. Phys. 144, 174303 (2016), Copyright
(2016) American Institute of Physics.

A large variety of computational studies has been performed of this system.

Among them, full-dimensional quantum dynamics calculations on the Schatz–

Elgersma PES[252,253] by Matzkies in 1998 and Manthe in 2000[245,259] using the

multi-configuration time-dependent Hartree (MCTHD) approach. At T = 300 K,

the lowest temperature covered by close-coupling calculations employing a rigor-

ously correct statistical sampling scheme for the rotational degrees of freedom,[245]

their calculations overestimate the experimental rate constants by about a factor
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of 2. In an earlier work,[259] they calculated rate constants down to 200 K, which

are more than an order of magnitude higher than the experimental value.[248] In

general, MCTDH calculations are expected to be rather accurate. In this case, the

large deviations of the MCTDH results from the experimental ones can be trace

back to the quality of the Schatz–Elgersma PES. This makes it difficult to compare

these values with the instanton rate constants presented here. Better agreement

with the experimental values was achieved by Nguyen et al.[260] by applying semi-

classical transition-state theory (SCTST) on a level of electronic structure theory

which is comparable to the one used for the NN1 PES. At 200 K they underesti-

mate the experimental rate constant by a factor of 1.43, which can be assumed to

lie within the experimental error bar. They furthermore showed that SCT gives

significantly higher reaction rate constants at lower temperatures compared to

SCTST calculations.[260]

The rate constants calculated using HTST, LCT, µOMT, and instanton the-

ory, are depicted in Fig. 9.3. For the values of the rate constants calculated us-

ing µOMT, and instanton theory, see tables 14.1 to 14.4 in the appendix. As

expected[38] instanton theory overestimates the rate constant close to TC. Agree-

ment is improved at lower temperature. At 220 K the instanton rate constant

(8.9 ·10−17 cm3 s−1) is just slightly lower by a factor of 0.98 than the results of flash

photolysis resonance-fluorescence by Orkin et al.[248]. At 200 K, the lowest tem-

perature at which comparison is possible, the instanton rate is lower by just 14 %.

A high accuracy of instanton theory can be expected at lower temperature[38].

As in this reaction the SCT rate constant is always higher than the one ob-

tained by LCT, the µOMT result is virtually indistinguishable from the SCT

results. Therefore no graph for SCT is shown in Fig. 9.3. At temperatures below

300 K, CVT/LCT (and ZCT) agrees well with instanton theory whereas SCT and,

thus µOMT, give significantly higher values. At 200 K µOMT overestimates the

reaction rate constants by a factor of 2.0, see table 9.2 and Fig. 9.3.

For comparison, Fig. 9.3 includes the rate constant calculated by accounting

for the vibrational zero-point energy, but not for tunneling (dotted line labeled as

TST). As expected, it describes the rate constant very well at high temperatures

(above 400 K) but deviates significantly below that temperature.
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Table 9.2 Reaction rate constants k in cm3 molecule−1 s−1 at 200 K obtained by
different methods. Experimental values are from reference 248. Reprinted with the per-
mission from J. Chem. Phys. 144, 174303 (2016), Copyright (2016) American Institute
of Physics.

Method k
Experimental 4.3 ·10−16

Instanton NN1 3.78 ·10−16

CVT/µOMT 8.65 ·10−16

CVT/SCT 8.65 ·10−16

CVT/LCT 4.38 ·10−16

CVT/ZCT 3.50 ·10−16

CVT 1.38 ·10−17

TST 1.63 ·10−17

9.5 Kinetic Isotope Effects

All eight possible isotopologues were investigated. Reaction rate constants were

calculated using instanton theory and µOMT. The rate constants are shown in

Fig. 9.4. Values of the KIEs at 160 K and 100 K (both instanton and µOMT), and

50 K (µOMT) are given in table 9.3. For the values of the reaction rate constants

of all isotopologues see tables 14.1 to 14.4 in the appendix.

Down to 160 K the curvature of the resulting Arrhenius plot in Fig. 9.4 is neg-

ligible for isotopologues with D-transfer. Defazio et al. already mentioned that

tunneling may be of less importance in the DDOH case.[270] This is certainly true

in the temperature range where experimental data is available, i.e., above 210 K.

At lower temperatures, more precisely below about 100 K, the reactions of all

isotopologues are dominated by tunneling. A direct comparison between the in-

stanton calculations and experimental data is impossible for any of the deuterated

cases, as no data is available below TC. Above 50 K a clear primary KIE, i.e.,

depending on the mass of the atom to be transferred, is measurable.

The KIE can stem from differences in zero-point energies or might be caused

by atom tunneling.[9,271,272] One may, of course, question whether the harmonic

approximation for zero-point energies is good enough to estimate rate constants at

such low temperatures. However, the calculated vibrational adiabatic barriers of
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Figure 9.4 Temperature dependence of the reaction rate constants of all H/D isotopo-
logues calculated with the instanton method (above) and with CVT/µOMT (below).
Reprinted with the permission from J. Chem. Phys. 144, 174303 (2016), Copyright
(2016) American Institute of Physics.

the isotopologues agree well (with a deviation of less than 0.7 kJ mol−1) with the

literature values obtained by the more elaborate HEAT protocol,[71] see table 9.1. It

was shown previously[71] that including anharmonicity changes the corresponding

barrier height by less than 0.33 kJ mol−1.
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Table 9.3 Kinetic isotope effects at 150 K, 100 K, and 50 K with respect to HHOH.
Reprinted with the permission from J. Chem. Phys. 144, 174303 (2016), Copyright
(2016) American Institute of Physics.

Instanton µOMT
Isotopes 160 K 100 K 160 K 100 K 50 K
HHOH 1.00 1.00 1.00 1.00 1.00
DHOH 3.19 3.95 3.37 4.99 6.89
HHOD 0.649 0.561 0.828 0.732 0.610
DHOD 1.99 2.04 2.58 3.19 3.42
HDOH 41.5 224 49.1 176 382
DDOH 30.2 225 32.4 172 558
HDOD 23.9 108 35.4 109 216
DDOD 17.1 104 22.3 95.3 229

Apart from the primary KIE, secondary KIEs are observed. The deuteration

of the hydroxy radical (OD) increases the reaction rate, leading to inverse KIEs.

Depending on the deuteration of the other sites, OD increases the rates by factors

of 1–3, see table 9.3. The main reason for this effect is that the heavier deuterium

atom lowers EA of the transition state by reducing the zero-point energy of the

deformation modes of the two molecules with respect to each other.

The reaction rate constants obtained with CVT/µOMT are higher than the ones

obtained with instanton theory by a factor of 4.2 for HHOH and 5.4 for HDOH

at 100 K. It is obvious from Fig. 9.3 and table 9.2 that CVT/µOMT generally

overestimates the reaction rate constants for this reaction. Apart from that, the

rate constants seem to follow the same trends, in particular the KIEs obtained by

both methods agree reasonably well, see table 9.3.

Instanton theory provides a dominant tunneling path for each specific temper-

ature. At low temperature, that path is almost temperature-independent. The

atoms contribute quite differently to that tunneling path. Geometries and the

energy along the instanton path are depicted in Fig. 9.1. In the low-temperature

limit for HHOH, the hydrogen atom to be transferred is delocalized over 1.34 Å, the

hydrogen atom hat remains isolated after the reaction is delocalized over 0.80 Å.

Both oxygen and hydrogen of OH contribute to the tunneling a lot less, they are
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delocalized over 0.14 and 0.21 Å, respectively. Deuteration changes these contribu-

tions: for HDOH, the transferred deuterium is delocalized over only 1.25 Å while

the other tunneling path length remain almost unchanged (0.77, 0.15, and 0.21 Å).

Primary H/D-KIEs of > 200 at 50 K have been found using CVT/µOMT. At

even lower temperature than reported here, the KIE can be expected to be at least

similarly strong. Consequently, a significant influence of this reaction and its KIE

on the deuterium fractionation of molecules in the interstellar medium is expected.

9.6 Summary

Reaction rate constants of the reaction H2 + OH→ H + H2O have been calculated

down to 100 K using instanton theory and down to 50 K using CVT/µOMT on the

NN1 PES[258] for all H/D isotopologues. Atom tunneling sets in at about 250 K

for H-transfer and at about 200 K for D-transfer. A significant primary H/D KIE

of about 200 is found at 100 K and of 300–600 at 50 K. Secondary effects, some

of them inverse due to vibrational zero-point energy, are smaller and negligible

in this case. The reaction rate constants at these temperatures are significantly

higher than the ones implemented in the UMIST data base.[102]

At 80–50 K the reaction rate constants of the H-transfer become almost temper-

ature-independent due to atom tunneling. The presented results clearly indicate

that the reaction is relevant for processes in the interstellar medium at even lower

temperatures, even when deuterium is transferred instead of protium.





10 H2 + OH → H2O + H on an Ice

Surface

10.1 Introduction

As discussed in section 1.2, the reaction

H2 + OH→ H2O + H (R 8)

is supposed to be one of the main reactions transforming OH radicals to inter-

stellar water. It was experimentally found that reaction (R 8) takes place at the

cryogenic temperature of 10 K due to quantum mechanical tunneling of atoms.[65]

even though the gas phase reaction exhibits a barrier of 17.5 kJ mol−1.[70]

This part of the thesis is structured as follows: First, a benchmark was per-

formed to find a suitable electronic potential by comparing the quality with highly

correlated calculations on UCCSD(T)-F12 level.[207,208] Furthermore, the water ice

surface and the organization of the QM/MM setup, as well as the computational

details of the reaction rate calculations are described. After that, different binding

sites and binding energies of the OH radical on the ice surface as well as accom-

panying activation energies, transition structures, and IRCs are shown. Reaction

rate constants for the Eley–Rideal and the Langmuir–Hinshelwood mechanisms

were given using semiclassical instanton theory to include multidimensional atom

tunneling. The results are compared to those in the gas phase and the impact of

∗Parts of this Chapter have been used in:
Atom Tunneling in the Water Formation Reaction H2 + OH → H2O + H on an Ice Surface,
Jan Meisner, Thanja Lamberts, and Johannes Kästner ACS Earth Space Chem 1, 399–410
(2017), see reference 76 and the content is adapted with permissions. Copyright 2017 Americal
Chemical Society.



88 10 H2 + OH → H2O + H on an Ice Surface

surfaces on the reactivity is discussed. Kinetic isotope effects for all eight possible

permutations of exchanging hydrogen for deuterium are shown as well. The last

section discusses the implications to astrochemistry, gives fits of the rate constants

to a modified Arrhenius equation, and concludes the chapter.

10.2 Computational Details

10.2.1 Choice of the Electronic Potential

In order to obtain reliable reaction rate constants, the method to calculate the

underlying electronic potential has to be as accurate as possible. Instanton cal-

culations using highly correlated wave function methods are too time consuming,

so density functional theory (DFT) was applied to describe the QM part of this

part of the thesis. For this purpose, an extensive benchmark of the most common

functionals and basis sets has been performed, which be seen in the appendix.

The BHLYP functional[217,218,220,221,234] in combination with the def2-SVPD basis

set[273] was found to describe the reaction well. It has also previously been found to

describe astrochemical reactions with open-shell molecules properly.[274,275] Thus

BHLYP is used in the remainder of this chapter.

To include the environment, i.e., the water surface, a QM/MM framework was

used applying the ChemShell interface.[205,206] The QM part can be polarized by

means of electrostatic embedding into the MM charges. All geometry optimizations

and reaction rate calculations were done with DL-FIND.[75] The visualization of the

molecules and ice surface was done using Visual Molecules Dynamics (VMD).[276]

10.2.2 Surface Model and QM/MM setup

The (0001) surface of hexagonal ice Ih minimizing the surface free energy, as de-

scribed by Fletcher,[277] was used, where the hydrogen atoms are ordered. The

structure of the bare surface can be seen in Fig. 10.1 The majority of solid water

in the interstellar medium is expected to be amorphous. Nevertheless, the con-

clusions obtained by using a crystalline surface can be generalized to amorphous

water ice or small water clusters for this particular reaction.
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The structural model consisted of a hemisphere with a radius of 25 Å comprised

of 1151 water molecules. The MM part was described by the TIP3P potential.[278]

For the QM part, five adjoining water hexagons of the top layer were used: 19

water molecules and the adsorbed atoms. Geometry optimizations included all

Figure 10.1 QM/MM setup of the Fletcher surface.[277] The solid ball-and-stick-
molecules represent the QM region while the transparent ones represent the MM re-
gion. All MM water molecules within a radius of 15 Å are allowed to move and rotate.
Reprinted with the permission from ACS Earth Space Chem 1, 399–410 (2017). Copy-
right (2017) American Chemical Society.



90 10 H2 + OH → H2O + H on an Ice Surface

water molecules within a radius of 15 Å around the center of the hemisphere (261

molecules) as active atoms, the other H2O molecules were frozen. All in all, 2349

variables are to be optimized for the bare surface. For the calculations of IRCs,

a step size of 0.05 mass-weighted atomic units was used. Instantons and the

corresponding Hessians have been calculated with a reduced dimension: here, only

the adsorbed atoms/molecules and the hexagon of the six closest water molecules

were flexible.

The instanton rate calculations are computationally very demanding. Therefore,

the implicit surface model was used to obtain rate constants of the eight possible

H/D isotopologues.

10.2.3 Reaction Rate Calculations and Tunneling

To calculate reaction rate constants including atom tunneling, instanton theory

was used. Vibrational modes are included harmonically around the Feynman path.

The rotational partition functions of the reactants and the images of the instantons

were approximated by those of rigid rotors. The translational partition function

was included within the approximation of an ideal gas. Rotational partition func-

tions were obtained from classical rigid rotors and the rotational partition function

of the whole instanton was calculated to be the geometric mean value of the rota-

tional partition functions of all images. The symmetry number σH2 = σD2 = 2 was

taken into account when calculating the rotational partition function of the H2 and

D2 molecules for bimolecular reaction rates.[136] For the reactions with HD and for

unimolecular reaction rates in general, σ = 1 was used, because the rotation of

adsorbed molecular hydrogen is hindered by the surface.

For the reaction on the Fletcher surface, the closed Feynman path was dis-

cretized with 40 images down to 175 K and with 78 images down to 80 K. For the

instanton calculations using the implicit surface model, (of all isotopologues), 200

images were used for the whole temperature range. Instantons were considered

to be converged when all components of the nuclear gradient were smaller than

1 · 10−8 a.u.. Instanton calculations were performed at temperatures below the

crossover temperature of 280 K ± 5 K (depending on the binding site). Because of

the existence of a pre-reactive minimum, below a particular, mass-dependent tem-
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Figure 10.2 Structures of the adsorbed OH radical (blue) on the Fletcher surface. All
binding sited are shown from top and side perspectives. Left: Hollow, Middle: Bridged,
Right: Top. Reprinted with the permission from ACS Earth Space Chem 1, 399–410
(2017). Copyright (2017) American Chemical Society.

perature, the tunneling energy is lower than the potential energy of the separated

products for bimolecular reaction rates. At that temperature, canonical instanton

theory becomes unreliable.[129] Therefore, bimolecular reaction rates can only be

provided for 110 K and higher temperatures for the reaction H2 + OH → H +

H2O.

10.3 Binding Sites and Energies

Three different binding sites of OH on the Fletcher surface could be identified,

which are shown in Fig. 10.2. The corresponding adsorption energies with and

without harmonically approximated vibrational zero-point energies have been cal-

culated, see table 10.1. For all binding sites, zero-point energy reduces the binding

energy by around 16 kJ mol−1 because the OH–surface complex has additional

vibrational modes. The harmonic approximation can be assumed to overestimate

the zero-point energy, which leads to an underestimation of the corresponding

adsorbtion energy.
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Table 10.1 Adsorption energies of OH on the Fletcher surface and hydrogen bond
distances. Vads and Eads denote the adsorbtion energy without and with zero point
energy, respectively. The hydrogen-bond lengths d1 to d4 are explained in Fig. 10.2.
Energies are given in kJ mol−1, distances in Å. Reprinted with the permission from ACS
Earth Space Chem 1, 399–410 (2017). Copyright (2017) American Chemical Society.

Vads Eads d1 d2 d3 d4

Hollow 57.0 40.5 1.77 2.22 2.27
Bridged 55.6 39.7 1.77 1.99 3.89
Top 48.1 32.1 2.11 2.36 1.78

In the first binding site, the OH radical is located directly in the middle of a water

hexamer where it accepts hydrogen bonds from two of the dangling hydrogen atoms

and donates a hydrogen bond to the O atom of a water molecule of the surface.

This binding site will be called hollow. The binding energy is 40.5 kJ mol−1

including zero-point energy.

In a similar binding site the OH radical is also hydrogen-bound to the oxygen

atom of a water molecule and to one dangling hydrogen atom of the surface, see

Fig. 10.2. The third hydrogen bond is absent, i.e., the OH radical bridges two

surface water molecules. This binding site is called bridged. As this binding site is

rather similar to the hollow one, the binding energy is only slightly smaller with

39.7 kJ mol−1.

In the third binding site the OH radical is located on top of one of the water

molecules. Because of that, this binding site will be called top. The OH radical

also accepts two hydrogen bonds from the surface and donates one. The binding

energy of this site is with 32.1 kJ mol−1 lower than for the hollow and bridged

binding sites. These values are nicely in the range of experimentally determined

desorption energies on silicate surfaces of 1656–4760 K (13.8–39.6 kJ mol−1).[279]
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10.4 Reaction Barriers

One possibility for the reaction of the OH radical with molecular hydrogen on the

ice surface is the Eley–Rideal (ER) mechanism, in which one species is adsorbed

on the surface and the other one is approaching from the gas phase, see section 4.1.

Table 10.2 Reaction barriers including zero-point energies and geometric parameters
of the transition structures. The label bi denotes that the barrier is given with respect
to the separated reactants, i.e., OH(ads) and H2(g). The label uni indicates barriers
with respect to the respective pre-reactive complexes. The O–H distance of the newly
formed bond, the H–H distance of the original H2 molecule, and the H–O–H angle of the
newly formed water molecule are denoted by dO–H, dH–H, and ](H–O–H), respectively.
All values are in kJ mol−1, all distances in Å, and ](H–O–H) in degrees. Reprinted
with the permission from ACS Earth Space Chem 1, 399–410 (2017). Copyright (2017)
American Chemical Society.

Hollow Bridged Top Gas Phase
Edirect
A,bi 24.2 24.7 24.3 25.4

Erotated
A,bi 49.3 45.7

Edirect
A,uni 22.5 24.1 22.4 24.4

dO–H 1.33 1.33 1.33 1.36
dH–H 0.83 0.83 0.84 0.82
](H–O–H) 99.2 99.7 98.7 96.8

The binding energy of OH radicals is much higher than the binding energy of H2

molecules (3.6–4.6 kJ mol−1; 440–555 K).[119] Therefore, the reaction of adsorbed

OH radicals with H2 molecules directly from the gas phase is investigated here:

OHads + H2(g) → H2O + H. (R 17)

For the products the label indicating the aggregate state was omitted, as this work

focuses on the chemical reaction forming H2O molecules and the physical processes

after that are not treated here. For each binding site of OH one corresponding

transition structure was found. These transition structures are called direct here-

inafter, and the transition structure of the direct-hollow binding site can be seen

in Fig. 10.3. The vibrational adiabatic reaction barriers with respect to the sep-

arated reactants (potential energy barriers including zero-point energy) of these
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Figure 10.3 Transition structure of the direct-hollow binding site. QM atoms are
shown as balls and sticks, MM atoms as transparent sticks. Reprinted with the per-
mission from ACS Earth Space Chem 1, 399–410 (2017). Copyright (2017) American
Chemical Society.

transition structures lie between 24.2 and 24.7 kJ mol−1, see table 10.2. This is

just slightly lower than the adiabatic reaction barrier of the gas phase reaction of

25.4 kJ mol−1 (from separated reactants). Here it should be emphasized that all

reaction barriers are very similar, independently of the corresponding adsorbtion

energies, although the latter vary over 8 kJ mol−1. This is in agreement with what

is found for reactions on amorphous solid water.[180]

Another type of transition structures was found, in which the hydrogen atom

of the OH radical points away from the surface and the H2 molecule approaches

via a path closer to the surface. The [OH· · ·H2] complex possesses similar internal

coordinates as in the direct transition structures, but is rotated with respect to

the ice surface, see Fig. 10.4. For these rotated transition structures, the adiabatic

reaction barriers are 49.3 and 45.7 kJ mol−1 for the hollow and the top binding
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site, respectively. The transition structure of the rotated-hollow binding site is

shown in Fig. 10.4. No rotated transition structure was found for the bridged

binding site. The barriers via rotated transition structures are much higher than

those via the direct transition structures, which can be seen in Fig. 15.2 in the

appendix. For this reason, it is expected that the rotated transition structures

result in much lower rates and from here, just the direct transition structures are

considered further.

Figure 10.4 Transition structure of the rotated-hollow binding site. QM atoms are
shown as balls and sticks, MM atoms as transparent sticks.

The potential energy along the IRCs of the different binding sites has been

calculated, see Fig. 10.5. The ends of the IRCs define pre-reactive complexes

(PRCs). Those are geometries in which an H2 molecule is loosely bound to the

surface in the vicinity of the OH radical. These structures are used as reactant

structures to calculate the unimolecular activation energies shown in table 10.2.

The potential energy curves along the IRCs belonging to the different bind-

ing sites are almost indistinguishable from the one of the gas-phase reaction, see
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Figure 10.5 Potential energy V of the intrinsic reaction coordinates (IRCs) of the hol-
low, top, and the bridged binding site compared with the gas-phase reaction. Reprinted
with the permission from ACS Earth Space Chem 1, 399–410 (2017). Copyright (2017)
American Chemical Society.

Fig. 10.5. This shows again that the surface has negligible influence on the po-

tential energy along the reaction path. During the reaction, any changes in the

hydrogen bond length remain below 0.2 Å, see Fig. 10.6. Overall, a classical cat-

alytic effect is minimal: the activation barrier is almost unaltered and the reaction

mechanism is unchanged. This can be explained by the adsorption energy dur-

ing the reaction. In typical heterogeneous catalysis the molecules are activated

through interactions with the surface in a way that the energy of the transition

structures with respect to the energy of the reactant structure is reduced. These

interactions are either forming new chemical bonds or causing a shift in electron

density. In the case discussed here, the OH radical forms three hydrogen bonds

in the adsorption process and these three hydrogen bonds are retained during the

whole reaction. Therefore, the adsorption energies of the reactant structure and

the transition structure are virtually the same and the potential energy of the reac-

tion remains comparable to the gas phase. Reaction with an OH radical bound via

four hydrogen bonds is impossible due to steric hindrance. Therefore, the maximal
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Figure 10.6 The black, red, blue curves correspond to the change in the O–H hydrogen
bond lengths during the reaction in the hollow, bridged, and top binding site, respectively.
The labeling follows that of Fig. 10.2. Reprinted with the permission from ACS Earth
Space Chem 1, 399–410 (2017). Copyright (2017) American Chemical Society.

number of hydrogen bonds to a reactive OH is always three, independent of the

existence of e.g. cavities for surface defects. It can, therefore, be assumed that

amorphous solid water ices behave similarly in terms of negligible catalytic effects.

Note, that any processes after the formation of the chemical bonds, like desorp-

tion or dissipation, are not covered in this thesis because they they do not influence

the rate. The kinetic bottleneck in the water formation from H2 molecules and

OH radicals is the H–H bond breaking which is described here.

10.5 Reaction Rate Constants for the Eley–Rideal

Mechanism

In the Eley–Rideal (ER) mechanism, one particle (a molecule or an atom) ph-

ysisorbs on the surface and thermalizes there. Another particle impinges from the

gas phase and directly reacts with the pre-adsorbed particle to form the products.

This study focuses on reaction (R 17) where an OH radical is adsorbed and the
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Figure 10.7 Arrhenius plot of the bimolecular (Eley–Rideal) reaction rate constants.
Instanton theory is used if not stated otherwise. Surface reaction rates are calculated for
the direct-hollow reaction path. Reprinted with the permission from ACS Earth Space
Chem 1, 399–410 (2017). Copyright (2017) American Chemical Society.

H2 molecule comes in from the gas phase, since OH has a higher adsorption en-

ergy. The incoming H2 molecule reacts with the OH-surface system in what can

formally be seen as a bimolecular reaction. Instantons were calculated from 250 K

to 110 K. For comparison, reaction rate constants using the approximation of an

Eckart-shaped barrier have also been calculated.

As the reaction profiles of all three direct transition structures and IRCs are

nearly identical, only reaction rate constants of the direct-hollow transition struc-

ture have been calculated. Due to high computational costs the active region for

the instanton calculations was reduced to the one water hexamer below the ad-

sorbed OH radical. The resulting adiabatic activation energy of 24.11 kJ mol−1 is

almost equal to the 24.19 kJ mol−1 obtained for the full active region.

The resulting reaction rate constants are compared to the gas-phase data cal-

culated on the same potential energy surface in the Arrhenius plot in Fig. 10.7.

The rate constants including tunneling correction via the Eckart barrier and those

obtained by transition state theory without tunneling are shown for comparison.

The implicit surface model is able to reproduce the rate constants of the explicit
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surface calculations up to factors of 3.6 and 2.7 at 275 K and and 110 K, respec-

tively. This indicates that for reactions without a classical catalytic effect, the

implicit surface model is a promising approximation. Numeric values for the rate

constants are available in the appendix in table 15.3.

10.6 Reaction Rate Constants for the

Langmuir–Hinshelwood Mechanism

In the Langmuir–Hinshelwood (LH) mechanism, both particles are adsorbed on

the surface and diffuse until they meet. If they approach each other, they form a

PRC. This PRC can either react or decay by diffusion or desorption of one or both

reactants. The reaction of a PRC to the products is a unimolecular process. Thus,

Langmuir–Hinshelwood reactions are characterized by unimolecular rate constants.

These unimolecular reaction rate constants are calculated for the hollow binding

site.

The adiabatic activation barriers for the LH mechanism in all binding sites are

given as Edirect
A,uni in table 10.2. The resulting unimolecular rate constants kreact are

shown in Fig. 10.8 and in table 15.4 in the appendix. Instantons were calculated

down to 80 K. At even lower temperatures, more images would be required to

obtain converged reaction rate constants which would render the computations

too expensive.

The rate constants from the implicit surface model agree within one order of

magnitude with those from the full ice surface model, see Fig. 10.8. The results of

the standard gas-phase model and the (gas-phase) calculations using the implicit

surface model are closer for the unimolecular reaction than for the bimolecular

calculations. The reason for that is that in the unimolecular case, the implicit

surface model merely assumes that the rotational partition function of the PRC is

the same as the one of the transition structure (e.g. that both do not rotate), while

their rotation is taken into account in the gas phase. As both PRC and transition

structure have similar rotational partition functions (they include the same atoms),

the neglect of this term is of minor importance. In the bimolecular case, the

implicit surface model removes translation and rotation of one reactant (OH) and
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Figure 10.8 Arrhenius plot of the unimolecular Reaction rate constants. Surface reac-
tion rates were calculated around the direct-hollow reaction pathway. Reprinted with the
permission from ACS Earth Space Chem 1, 399–410 (2017). Copyright (2017) American
Chemical Society.

the transition state, which is a much larger alteration of the rate constant. Note,

that due to the inhibited rotation of the H2 molecule in the PRC the symmetry

number σ = 1 was used for the explicit and implicit surface calculations.

10.7 Kinetic Isotope Effects

The implicit surface model was used to calculate kinetic isotope effects (KIEs)

for all eight possible deuteration patterns. Bimolecular and unimolecular reac-

tion rate constants are shown in Fig. 10.9 and Fig. 10.10, respectively. When

substituting protium atoms with deuterium atoms, the crossover temperature re-

duces significantly as a result of a smaller imaginary frequency and, therefore,

a smaller crossover temperature. Thus, the rate constants are reported here for

200 K and below. For bimolecular reaction rates, the temperature below which the

tunneling energy is lower than the potential energy of the asymptotic reactants

changes with the mass, too. Here and in Fig. 10.9 and Fig. 10.10 the isotope
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patterns are labeled H1H2OH3 as previously defined, so that the reaction reads

H1H2 + OH3 → H1 + H2OH3. DDOH therefore corresponds to a reaction of OH

with D2 while HDOH corresponds to the reaction HD + OH → H + DOH.

Table 10.3 Obtained parameters as described by equation (4.9) for the bimolecular
reaction rate constants (above) and the unimolecular rate constants (below). Reprinted
with the permission from ACS Earth Space Chem 1, 399–410 (2017). Copyright (2017)
American Chemical Society.

Bimol. HHOH HHOD DHOH DHOD
A[cm3s−1] 6.91·10−14 8.96·10−14 1.82·10−14 2.29·10−14

γ[K] 1430.0 1373.0 1449.8 1372.1
T0 [K] 147.7 151.8 142.7 143.4
Bimol. HDOH HDOD DDOH DDOD

A[cm3s−1] 1.99·10−14 2.41·10−14 2.27·10−14 2.81·10−14

γ[K] 1749.8 1655.6 1794.0 1701.4
T0[K] 123.5 123.7 122.6 123.4

Unimol. HHOH HHOD DHOH DHOD
A[s−1] 7.64·1010 4.77·1010 6.82·1010 4.36·1010

γ [K] 1339.9 1247.9 1351.6 1265.7
T0[K] 153.2 145.2 141.0 134.1

Unimol. HDOH HDOD DDOH DDOD
A[s−1] 7.90·1010 4.91·1010 7.06·1010 4.45·1010

γ[K] 1674.0 1579.1 1704.2 1611.8
T0[K] 122.4 117.6 116.3 111.9

In both the bimolecular and unimolecular cases, the primary KIE is as large

as two orders of magnitude, but also depends on the isotope pattern of the other

two hydrogen atoms. For the bimolecular case, the KIEs are similar to the ones

reported in the gas phase in section 9. Here, the secondary KIEs again play a

smaller role. In all cases, secondary KIEs are smaller than 10. Like in the gas

phase study, an inverse KIE occurs when substituting OH by OD. This small

inverse secondary KIE of about 2–3 is caused by differences in the zero-point

energy.[1,9,271,272] In the unimolecular case, the primary KIEs are ≈ 5 at 200 K and

increase to ≈ 300 at 60 K. The secondary KIEs play an even smaller role than in

the bimolecular case and no inverse KIE is present, see Fig. 10.10.
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10.8 Summary

In this chapter, chemical reaction rate constants of the reaction of hydroxyl rad-

icals with molecular hydrogen on an Ih ice surface have been presented. For this

purpose, instanton theory on a thoroughly benchmarked QM/MM potential energy

surfaces was used. Reaction rate constants from 275 K down to 110 K for the ER

mechanism (bimolecular) and down to 60 K for the LH mechanism (unimolecular)

have been calculated. For both mechanisms, a fit of parameters to equation (4.9),

was performed to obtain a continuous expression of k(T ).

To summarize the most important results:

• For the reaction of H2 and OH radicals, an ice surface just barely influences

the potential energy along the reaction path, i.e., there is no classical cat-

alytic effect. The most important transition structures and reaction paths

are comparable to the ones in the gas phase. It follows that the adiabatic

energy barriers (24–25 kJ mol−1) are similar to the barrier of the gas phase

reaction (25.4 kJ mol−1).

• Due to the absence of a classical catalytic effect, the implicit surface model is

used to successfully mimic the surface reactions. The reaction rate constants

obtained in this way differ at most by a factor of 9.3 from the ones calculated

on a full ice surface model.

• Three different binding sites on the Ih surface have been found. Their binding

energies lie between 32 and 41 kJ mol−1.

• Kinetic isotope effects have been calculated for all possible isotope substitu-

tion patterns. Exchanging the H to be transferred to D leads to a decrease

in the rate constant of 2–3 orders of magnitude. Secondary KIEs are at most

half an order of magnitude.





11 Conclusion

The understanding of the chemical reaction mechanism, i.e., the dissection of a

chemical process into several elementary reactions, is crucial for the understand-

ing of chemical reactivity. In the last decades, computations based on quantum

mechanical or (semi-) empirical methods have increasingly been used to elucidate

reaction mechanisms. In this context, it can be understood as the connection of

the reactant structure and the product structure of the potential energy hyper

surface.

An essential part of a computational study is therefore the determination of the

path of least potential energy connecting two minimum structures. The minimum

energy path in mass-weighted Cartesian coordinates is called intrinsic reaction co-

ordinate (IRC). In this thesis, a new Hessian-based predictor-corrector algorithm

was implemented into the DL-Find optimization library[75] based on an existing

algorithm.[74,96] The modified algorithm avoids matrix diagonalization and there-

fore scales with less than O(N3), N being the number of atoms, and is suitable

for IRC calculations of large systems. Throughout the whole thesis, all reaction

paths were calculated using the newly implemented IRC optimizer.

The rate constant of a chemical reaction depends on the mechanism, i.e., the

elementary reaction steps, and the corresponding barrier heights. A classical parti-

cle can overcome the barrier only if it possesses sufficient kinetic energy, otherwise,

it will be reflected. In quantum mechanics, however, objects can tunnel through a

potential energy barrier due to the wave nature of a quantum object. The tunnel

effect is mass-dependent, and therefore essential to include when describing the

motion of light particles such as electrons. Light atoms, such as hydrogen, that

can tunnel through potential energy barriers, enhancing chemical reactivity. This

mainly concerns proton or hydrogen atom transfer reactions, but heavy elements

have also been observed to be involved in the tunnel process. Reactions where
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atom tunneling is important show a curved Arrhenius plot and the rate constant

is temperature independent at very low temperatures for exothermic reactions.

The mass-dependence of the tunnel effect leads to strong kinetic isotope effects

(KIEs), which is the ratio of the rate of the light isotopologue divided by the rate

of the heavier one. The KIE is a sensitive experimentally accessible probe for

tunneling and therefore of fundamental interest.

In chapter 5 to 6 different methods to calculate reaction rate constants including

atom tunneling are described, ranging from transition state theory to semiclassical

instanton theory. In semiclassical instanton theory, the most likely tunneling path,

the instanton, is optimized for each temperature. The instanton is a first order

saddle point of the Euclidean action. Instanton theory, which is based on Feynman

path integrals, provides an accurate and robust tool to calculate rate constants for

chemical reactions and is capable of including several dozens of atoms. However,

the most computationally expensive steps, the instanton optimization, which need

a large amount of energy and gradient evaluations, and the calculation of second

derivatives of the potential energy along the path, restrict the availability of the

instanton method.

In this thesis, a dual-level instanton approach is presented, where exactly those

computational bottlenecks are avoided using a computationally efficient potential.

Subsequently, a more accurate electronic structure method is applied to recalculate

the potential energy along the tunneling path and at the reactant structure. The

accuracy of this approach is tested on three different chemical reactions: the uni-

molecular rearrangement reaction of HNC to HCN, a sigmatropic hydride transfer

reaction and the bimolecular hydrogen atom transfer of hydrogen molecules and

NH2 forming ammonia and H atoms. In all of these three cases, the dual-level

method corrects the error of the basic potential and yields rate constants close

to the ones obtained by exclusive use of the accurate potential. As no 1st and

2nd derivatives of the refined potential are necessary, but only single point en-

ergy calculations are performed, highly accurate electronic structure methods like

explicitly correlated coupled cluster (UCCSD(T)-F12) can now be used in combi-

nation with instanton theory. It is shown that the basic potential has to describe

the reaction energy qualitatively correctly. If this is not the case, the distribution
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of the images of the discretized Feynman path is distorted and so is the value of

S0. This can not be corrected by means of a better potential energy hyper surface.

The reaction

H2 + OH→ H2O + H (R 8)

is one of the main water formation routes in the interstellar medium, in partic-

ular in cold dense cores. In this thesis, reaction rate constants of the gas phase

reaction have been carried out using instanton theory and canonical variational

theory with microcanonical optimized multidimensional tunneling (CVT/µOMT)

The rate constants are in excellent agreement with experimental values at tem-

peratures down to 200 K. At lower temperatures, down to 50 K, reaction rate

constants are calculated for which no experimental values are available. Further-

more, kinetic isotope effects (KIEs) have been calculated for all possible isotope

patterns. The KIE for the subsitution of the transferred hydrogen atom by a deu-

terium atom is 176 at 100 K and 382 at 50 K. The secondary KIEs are smaller

and stem partially from differences in zero-point energy.

In this thesis, the influence of a water ice surface on reaction reaction (R 8) was

investigated. For that, density functional theory rigorously benchmarked against

highly accurate correlation methods (UCCSD(T)-F12) in combination with the

TIP3P force field in a QM/MM setup was used. Three different binding sites of the

OH radical with adsorption energies of 32.1–40.5 kJ mol−1 have been found. The

potential energy along the reaction coordinate is barely affected by the chemical

environment of the water molecules. The reason of this absence of a classical

catalytic effect is that the transition structure is not stabilized because all hydrogen

bonds are already formed in the reactant complex. Therefore, the influence of the

surface was taken into account by the implicit surface model, which modifies the

rotational and translational partition functions during the reaction. Reaction rate

constans using instanton theory down to 100 K for the Eley–Rideal mechanism

and down to 60 K for the Langmuir–Hinshelwood mechanism are presented. For

both mechanisms, KIEs of all possible H/D patterns have been calculated, showing

the same trends as the gas-phase calculations.

This work presents values of reaction rate constants which can be used for astro-

chemical modeling. The gas-phase rate constants are important for the simulation
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of chemical reaction networks in protoplanetary discs while the reaction rates for

the surface reactions are crucial for the water formation in dense molecular clouds.

The kinetic isotope effects differ from the ones used in kinetic data bases and can

help to model the HDO/H2O ratio in the interstellar medium.
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Appendix





12 Gradient of the DWI Surface

The DWI-Energy is given as

EDWI(x) = T1(x)w1(x) + T2(x)w2(x) (12.1)

where 1 and 2 stand for the old respective new predictor coordinates, respectively.

Thus, the gradient is simply

∇EDWI(x) = ∇T1(x)w1(x) (12.2)

+T1(x)∇w1(x)

+∇T2(x)w2(x)

+T2(x)∇w2(x)

The gradients of the Taylor expansions are obtained quite intuitively:

∇T1(x) = g(x1) + H(x1)∆x1 (12.3)

with

∆xi = x− xi. (12.4)
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The derivative of the squared distance with respect to coordinate x(k) is

∂

∂x(k)
|∆x2|2n =

∂

∂x(k)

(√∑
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(k)
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)2
)2n

(12.5)
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Thus, the gradient is

∇|∆x2|2n = 2n
(
|∆x2|2

)n−1
(x− x2) (12.6)
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The gradient of the weights is:

∇w1(x) = ∇
(

|∆x2|2n

|∆x1|2n + |∆x2|2n

)
(12.7)

=
∇|∆x2|2n · (|∆x1|2n + |∆x2|2n)− |∆x2|2n · ∇ (|∆x1|2n + |∆x2|2n)

(|∆x1|2n + |∆x2|2n)2

=
∇|∆x2|2n · |∆x1|2n − |∆x2|2n · ∇|∆x1|2n

(|∆x1|2n + |∆x2|2n)2

=
2n|∆x2|2n−2(x− x2) · |∆x1|2n − |∆x2|2n · 2n|∆x1|2n−2(x− x1)

(|∆x1|2n + |∆x2|2n)2

=
2n (|∆x1||∆x2|)2n−2

(|∆x1|2n + |∆x2|2n)2

[
(x− x2) · |∆x1|2 − |∆x2|2 · |(x− x1)

]





13 Richardson Extrapolation

The series acceleration method of Richardson extrapolation is outlined here. The

idea is to reduce the formal order of error by using another, smaller stepsize. In the

case of the Hessian-based predictor-corrector algorithmus, the integration is carried

out with the explicit Euler method within the Local Quadratic Approximation

(LQA). This is a method of 0th order and, thus, the result has an error of first

order with respect of the step size h. The integration result with the stepsize h,

x(h) is expanded in a Taylor series of orders of h, leading to the expression

x(h) = a0 + h a1 +O(h2) (13.1)

where a0 = x(h = 0) is the unknown, desired value without error in the step size,

a1 the linear coefficient and so forth. If the calculation is repeated with a smaller

step size kh, where 0 > k > 1, the result

x(kh) = a0 + kha1 +O((kh)2) (13.2)

is obtained. The linear term can be eliminated:

x(kh)− k · x(h) = a0 (1− k) +O(h2)⇒ a0 ≈
x(kh)− k · x(h)

1− k
(13.3)

The approximate value of a0 is, thus, a result with an error of second order in h.

This result can be reused in the Neville scheme see Fig. 3.1.

To further improve the result, the error of 2nd order has to be eliminated. For

this iterative process, we assume this solution having a step size of kh.
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In general, a method of (p− 1)th order has an error of pth order in stepsize:

x(h) = a0 + hpap +O(hr) (13.4)

The remaining error is of order r with r > p. If we are interested in the reduction

of the hp term, we use a similar formula:

a0 ≈
x(kh)− kp · x(h)

1− kp
(13.5)



14 Rate Constants for the

Gas-Phase Reaction

Table 14.1 Reaction rate constants for the H-transfer calculated with the instanton
method on the NN1 PES. Temperature in K, rate constants in cm3 molecule−1 s−1.

T [K] HHOH HHOD DHOH DHOD
100 9.05 · 10−18 1.61 · 10−17 2.29 · 10−18 4.43 · 10−18

105 1.07 · 10−17 1.87 · 10−17 2.75 · 10−18 5.20 · 10−18

110 1.26 · 10−17 2.17 · 10−17 3.31 · 10−18 6.15 · 10−18

115 1.49 · 10−17 2.54 · 10−17 4.01 · 10−18 7.35 · 10−18

120 1.78 · 10−17 2.98 · 10−17 4.87 · 10−18 8.75 · 10−18

130 2.53 · 10−17 4.15 · 10−17 7.25 · 10−18 1.27 · 10−17

140 3.65 · 10−17 5.85 · 10−17 1.10 · 10−17 1.86 · 10−17

150 5.10 · 10−17 8.30 · 10−17 1.77 · 10−17 2.92 · 10−17

155 6.55 · 10−17 1.02 · 10−16 2.08 · 10−17 3.37 · 10−17

160 8.05 · 10−17 1.25 · 10−16 2.53 · 10−17 4.06 · 10−17

165 9.40 · 10−17 1.44 · 10−16 3.15 · 10−17 5.00 · 10−17

170 1.14 · 10−16 1.72 · 10−16 3.93 · 10−17 6.15 · 10−17

175 1.38 · 10−16 2.07 · 10−16 4.90 · 10−17 7.60 · 10−17

180 1.68 · 10−16 2.50 · 10−16 6.10 · 10−17 9.35 · 10−17

185 2.05 · 10−16 3.03 · 10−16 7.60 · 10−17 1.16 · 10−16

190 2.51 · 10−16 3.68 · 10−16 9.50 · 10−17 1.43 · 10−16

195 3.08 · 10−16 4.48 · 10−16 1.19 · 10−16 1.77 · 10−16

200 3.78 · 10−16 5.45 · 10−16 1.49 · 10−16 2.20 · 10−16

210 5.75 · 10−16 8.20 · 10−16 2.37 · 10−16 3.44 · 10−16

220 8.90 · 10−16 1.26 · 10−15 3.82 · 10−16 5.50 · 10−16

230 1.39 · 10−15 1.95 · 10−15 6.20 · 10−16 8.85 · 10−16

240 2.19 · 10−15 3.04 · 10−15 1.00 · 10−15 1.41 · 10−15

250 3.36 · 10−15 4.63 · 10−15 1.55 · 10−15 2.17 · 10−15
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Table 14.2 Reaction rate constants for the D-transfer calculated with the instanton
method on the NN1 PES. Temperature in K, rate constants in cm3 molecule−1 s−1.

T [K] HDOH DDOH HDOD DDOD
80 1.35 · 10−20 3.07 · 10−20 1.25 · 10−20 3.01 · 10−20

84 1.66 · 10−20 3.70 · 10−20 1.56 · 10−20 3.66 · 10−20

88 2.06 · 10−20 4.48 · 10−20 1.95 · 10−20 4.49 · 10−20

92 2.56 · 10−20 5.50 · 10−20 2.47 · 10−20 5.55 · 10−20

96 3.20 · 10−20 6.75 · 10−20 3.14 · 10−20 6.95 · 10−20

100 4.03 · 10−20 8.35 · 10−20 4.02 · 10−20 8.70 · 10−20

105 5.40 · 10−20 1.10 · 10−19 5.50 · 10−20 1.17 · 10−19

110 7.25 · 10−20 1.45 · 10−19 7.55 · 10−20 1.58 · 10−19

115 9.80 · 10−20 1.92 · 10−19 1.10 · 10−19 2.24 · 10−19

120 1.40 · 10−19 2.71 · 10−19 1.50 · 10−19 3.01 · 10−19

130 2.53 · 10−19 4.74 · 10−19 2.95 · 10−19 5.70 · 10−19

135 3.48 · 10−19 6.45 · 10−19 4.20 · 10−19 8.65 · 10−19

140 4.85 · 10−19 8.85 · 10−19 6.00 · 10−19 1.13 · 10−18

145 6.80 · 10−19 1.22 · 10−18 8.65 · 10−19 1.60 · 10−18

150 9.55 · 10−19 1.70 · 10−18 1.25 · 10−18 2.28 · 10−18

155 1.36 · 10−18 2.39 · 10−18 2.00 · 10−18 3.27 · 10−18

160 1.94 · 10−18 3.37 · 10−18 2.67 · 10−18 4.72 · 10−18

165 2.80 · 10−18 4.81 · 10−18 3.92 · 10−18 6.85 · 10−18

170 4.04 · 10−18 6.90 · 10−18 5.80 · 10−18 1.01 · 10−17

175 5.85 · 10−18 9.95 · 10−18 8.55 · 10−18 1.47 · 10−17

180 8.55 · 10−18 1.43 · 10−17 1.26 · 10−17 2.14 · 10−17

185 1.23 · 10−17 2.05 · 10−17 1.82 · 10−17 3.08 · 10−17

190 1.75 · 10−17 2.90 · 10−17 2.61 · 10−17 4.39 · 10−17

195 2.47 · 10−17 4.06 · 10−17 3.73 · 10−17 6.25 · 10−17
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Table 14.3 Reaction rate constants for the H-transfer calculated with CVT/µOMT
on the NN1 PES. Temperature in K, rate constants in cm3 molecule−1 s−1.

T [K] HHOH HHOD DHOH DHOD
50 1.25 · 10−17 2.05 · 10−17 1.82 · 10−18 3.65 · 10−18

55 1.35 · 10−17 2.16 · 10−17 2.01 · 10−18 3.93 · 10−18

60 1.47 · 10−17 2.31 · 10−17 2.26 · 10−18 4.28 · 10−18

65 1.62 · 10−17 2.49 · 10−17 2.56 · 10−18 4.72 · 10−18

70 1.80 · 10−17 2.71 · 10−17 2.94 · 10−18 5.25 · 10−18

75 2.02 · 10−17 2.98 · 10−17 3.39 · 10−18 5.95 · 10−18

80 2.27 · 10−17 3.29 · 10−17 3.95 · 10−18 6.75 · 10−18

90 2.93 · 10−17 4.12 · 10−17 5.45 · 10−18 8.90 · 10−18

100 3.85 · 10−17 5.25 · 10−17 7.70 · 10−18 1.21 · 10−17

110 5.15 · 10−17 6.85 · 10−17 1.11 · 10−17 1.67 · 10−17

120 6.95 · 10−17 9.05 · 10−17 1.61 · 10−17 2.34 · 10−17

130 9.45 · 10−17 1.21 · 10−16 2.35 · 10−17 3.32 · 10−17

140 1.30 · 10−16 1.63 · 10−16 3.45 · 10−17 4.73 · 10−17

150 1.80 · 10−16 2.21 · 10−16 5.05 · 10−17 6.75 · 10−17

160 2.48 · 10−16 3.00 · 10−16 7.35 · 10−17 9.60 · 10−17

180 4.69 · 10−16 5.45 · 10−16 1.53 · 10−16 1.92 · 10−16

200 8.65 · 10−16 9.75 · 10−16 3.03 · 10−16 3.67 · 10−16

220 1.53 · 10−15 1.68 · 10−15 5.70 · 10−16 6.65 · 10−16

240 2.60 · 10−15 2.78 · 10−15 1.01 · 10−15 1.14 · 10−15

250 3.34 · 10−15 3.53 · 10−15 1.31 · 10−15 1.47 · 10−15

298 9.60 · 10−15 9.70 · 10−15 3.97 · 10−15 4.23 · 10−15

300 1.00 · 10−14 1.01 · 10−14 4.10 · 10−15 4.40 · 10−15

400 4.94 · 10−14 4.67 · 10−14 2.09 · 10−14 2.09 · 10−14

600 3.15 · 10−13 2.93 · 10−13 1.38 · 10−13 1.30 · 10−13

800 1.01 · 10−12 8.80 · 10−13 4.24 · 10−13 3.89 · 10−13

1000 2.18 · 10−12 1.88 · 10−12 9.30 · 10−13 8.35 · 10−13

1250 4.48 · 10−12 3.81 · 10−12 1.95 · 10−12 1.75 · 10−12

1500 7.80 · 10−12 6.60 · 10−12 3.46 · 10−12 3.10 · 10−12

2000 1.82 · 10−11 1.53 · 10−11 8.20 · 10−12 7.35 · 10−12
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Table 14.4 Reaction rate constants for the D-transfer calculated with CVT/µOMT
on the NN1 PES. Temperature in K, rate constants in cm3 molecule−1 s−1.

T [K] HDOH HDOD DDOH DDOD
50 3.27 · 10−20 5.80 · 10−20 2.24 · 10−20 5.45 · 10−20

55 3.71 · 10−20 6.50 · 10−20 2.63 · 10−20 6.15 · 10−20

60 4.28 · 10−20 7.45 · 10−20 3.14 · 10−20 7.15 · 10−20

65 5.00 · 10−20 8.70 · 10−20 3.83 · 10−20 8.45 · 10−20

70 5.95 · 10−20 1.03 · 10−19 4.75 · 10−20 1.01 · 10−19

75 7.15 · 10−20 1.23 · 10−19 5.95 · 10−20 1.24 · 10−19

80 8.75 · 10−20 1.49 · 10−19 7.60 · 10−20 1.53 · 10−19

90 1.36 · 10−19 2.26 · 10−19 1.28 · 10−19 2.44 · 10−19

100 2.19 · 10−19 3.54 · 10−19 2.23 · 10−19 4.04 · 10−19

110 3.63 · 10−19 5.70 · 10−19 4.00 · 10−19 6.90 · 10−19

120 6.10 · 10−19 9.35 · 10−19 7.25 · 10−19 1.21 · 10−18

130 1.04 · 10−18 1.55 · 10−18 1.33 · 10−18 2.12 · 10−18

140 1.78 · 10−18 2.57 · 10−18 2.42 · 10−18 3.72 · 10−18

150 3.02 · 10−18 4.26 · 10−18 4.34 · 10−18 6.50 · 10−18

160 5.05 · 10−18 7.00 · 10−18 7.65 · 10−18 1.11 · 10−17

180 1.38 · 10−17 1.81 · 10−17 2.22 · 10−17 3.04 · 10−17

200 3.47 · 10−17 4.35 · 10−17 5.80 · 10−17 7.60 · 10−17

220 8.00 · 10−17 9.60 · 10−17 1.36 · 10−16 1.71 · 10−16

240 1.70 · 10−16 1.97 · 10−16 2.91 · 10−16 3.53 · 10−16

250 2.41 · 10−16 2.75 · 10−16 4.12 · 10−16 4.93 · 10−16

298 1.01 · 10−15 1.07 · 10−15 1.71 · 10−15 1.91 · 10−15

300 1.07 · 10−15 1.13 · 10−15 1.80 · 10−15 2.01 · 10−15

400 8.40 · 10−15 8.15 · 10−15 1.36 · 10−14 1.37 · 10−14

600 8.60 · 10−14 7.75 · 10−14 1.35 · 10−13 1.29 · 10−13

800 3.21 · 10−13 2.80 · 10−13 5.05 · 10−13 4.68 · 10−13

1000 7.80 · 10−13 6.70 · 10−13 1.25 · 10−12 1.14 · 10−12

1250 1.75 · 10−12 1.49 · 10−12 2.86 · 10−12 2.58 · 10−12

1500 3.23 · 10−12 2.72 · 10−12 5.40 · 10−12 4.81 · 10−12

2000 8.00 · 10−12 6.70 · 10−12 1.36 · 10−11 1.20 · 10−11



15 Details of the Calculations of the

Surface Reaction

15.1 Choice of the Electronic Potential

To obtain a reliable electronic potential for the rate calculations, firstly, the station-

ary points (pre-reactive complex, transition state structure, and product state) and

the separated reactants were optimized on highly accurate UCCSD(T)-F12[207,208]

level using an aug-cc-pVTZ basis set[280] to ensure a basis set size close to the basis

set limit.[207] A restricted open shell Hartree-Fock (ROHF) wave function was used

as reference for the UCCSD(T)-F12 calculations. This electronic potential leads

to a pre-reactive complex, a transition state structure, and a product state with

energies of −2.07 kJ mol−1, 22.52 kJ mol−1, and −67.93 kJ mol−1, respectively,

with respect to the separated reactants. The barrier relative to the pre-reactive

complex is, thus, 24.58 kJ mol−1.

Single point energy calculations with various functionals (B3LYP,[217–222] B97-

D,[281] BHLYP,[217,218,220,221,234] BP86,[217–220,233] M06-2X,[282] PBE0,[217,218,283,284,284]

PBEh-3C,[285] PBE,[217,218,283,284] TPSSH,[217,218,283,286,287] TPSS,[217,218,283,286] and

VWN[219]) and basis sets have been performed and compared. For the function-

als where Grimme’s dispersion correction was feasible, the influence of the D3

dispersion correction scheme[288] was tested. The values have been compared to

the UCCSD(T)-F12 values in order to find the most suitable density functional

to describe the reaction. The resulting relative energies can be seen in table S 1

and S 2. The most suitable density functional in terms of accuracy-to-cost ratio

was found to be BHLYP[217,218,220,221,234] in combination with the def2-SVPD basis

set.[273] Dispersion correction in general only has minor effect and, in the case of
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BHLYP/def2-SVPD, deteriorated the quality of the potential, in particular in the

region around the pre-reactive complex.

The errors in the depth of the potential well and the barrier height are only

0.11 kJ mol−1 and 0.32 kJ mol−1, respectively. The curvature around the transition

state structure, which is important to elucidate the impact of tunneling, results in

an imaginary frequency of 1259.6 i cm−1. At the DFT level this value is 56.9 i cm−1

larger than the UCCSD(T)-F12 reference of 1202.8 i cm−1.
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Additionally, the energies of the intrinsic reaction coordinates (IRCs) at UCCSD(T)-

F12 and BHLYP level are compared. In Fig S15.1 electronic energies of both meth-

ods along the corresponding IRC are ploted relative to the separated reactants’

energies. The shapes of both electronic potentials are very similar in the region of

the transition state structure which is the important region for reliable studies of

reaction rate constants and atom tunneling.[1]

In the region around the reactants’ valley and on the product side of the barrier

up to the point where the energy becomes lower than the reactants’ energy both

curves are still surprisingly similar.

-3 -2 -1 0 1 2 3 4

Intrinsic Reaction Coordinate (IRC) in amu
1/2

 Bohr
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UCCSD(T)-F12/aug-cc-pVTZ

Figure 15.1 Comparison of the energies of the intrinsic reaction coordinates (IRCs)
calculated with UCCSD(T)-F12/aug-cc-pVTZ and BHLYP/def2-SVPD. The energies
are relative to the energy of the separated reactants.
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15.2 Comparison of the IRCs of Intrinic Reaction

Coordinates of direct and rotated Reaction

Pathways

Figure 15.2 Potential energy along all intrinsic reaction coordinates (IRCs) found on
the ice surface. The three direct reaction pathways deviate only marginally from the gas-
phase reaction, as can be seen in the inset. The reaction pathways via rotated transition
state structures are significantly longer than in the direct cases because of the lengthy
OH rotation movement.
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15.3 Rate Constants for the Reaction

H2 + OH → H2O + H on an Ice Surface

Table 15.3 Bimolecular reaction rate constants for the Eley–Rideal mechanism on the
ice surface, in the gas phase, and using the implicit surface model as described in the
main text. All rate constants are in cm3 s−1.

T [K] Surface Gas Phase Impl. Surface
110 1.39·10−18 2.45·10−17 5.81·10−19

112.5 1.52·10−18

120 1.98·10−18 3.33·10−17 7.80·10−19

125 2.45·10−18

130 4.60·10−17 1.06·10−18

138 4.11·10−18 6.43·10−17 1.47·10−18

150 6.39·10−18 9.08·10−17 2.06·10−18

165 1.55·10−16 3.47·10−18

175 1.29·10−17

180 2.70·10−16 5.97·10−18

200 3.49·10−17 5.75·10−16 1.26·10−17

225 9.11·10−17 1.52·10−15 3.28·10−17

250 2.51·10−16 4.11·10−15 8.75·10−17
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Table 15.4 Unimolecular reaction rate constants for the Langmuir–Hinshelwood mech-
anism on the ice surface, in the gas phase, and using the implicit surface model as
described in the main text. All rate constants are in s−1.

T [K] Surface Gas Phase Impl. Surface
60 5.47·105 5.12·105

65 5.38·105 5.16·105

70 5.46·105 5.34·105

75 5.67·105 5.67·105

80 2.06·105 6.00·105 6.12·105

90 2.37·105 7.00·105 7.41·105

100 2.85·105 8.53·105 9.35·105

105 3.15·105

110 3.51·105 1.08·106 1.22·106

120 4.37·105 1.40·106 1.63·106

125 5.08·105

130 1.86·106 2.23·106

137.5 7.38·105

140 2.50·106 3.08·106

150 1.01·106 3.42·106 4.32·106

165 5.57·106 7.30·106

175 1.61·106

180 9.26·106 1.25·107

200 3.50·106 1.86·107 2.63·107

225 7.51·106 4.60·107 6.77·107

250 1.73·107 1.16·108 1.78·108
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15.4 Rate Constants using the Implicit Surface

Model

Table 15.5 Bimolecular reaction rate constants in cm3 s−1 for the H-transfer for the
Eley–Rideal mechanism calculated using the implicit surface model. For T ≤ 250 K,
instanton theory and for T ≥ 300 K, the Eckart approximation was used.

T[K] HHOH HHOD DHOH DHOD
100 1.05·10−18 6.97·10−20 1.75·10−19

110 5.81·10−19 1.34·10−18 9.42·10−20 2.27·10−19

120 7.80·10−19 1.74·10−18 1.30·10−19 3.03·10−19

130 1.06·10−18 2.31·10−18 1.83·10−19 4.15·10−19

140 1.47·10−18 3.12·10−18 2.63·10−19 5.80·10−19

150 2.06·10−18 4.28·10−18 3.81·10−19 8.23·10−19

165 3.47·10−18 7.01·10−18 6.81·10−19 1.43·10−18

180 5.97·10−18 1.18·10−17 1.24·10−18 2.53·10−18

200 1.26·10−17 2.41·10−17 2.80·10−18 5.55·10−18

225 3.28·10−17 6.11·10−17 7.91·10−18 1.52·10−17

250 8.75·10−17 1.59·10−16 2.26·10−17 4.24·10−17

300 2.74·10−16 4.66·10−16 6.78·10−17 1.18·10−16

333 4.95·10−16 8.11·10−16 1.23·10−16 2.05·10−16

375 9.29·10−16 1.47·10−15 2.30·10−16 3.71·10−16

429 1.81·10−15 2.75·10−15 4.48·10−16 6.97·10−16

500 3.66·10−15 5.39·10−15 9.10·10−16 1.37·10−15

600 7.80·10−15 1.11·10−14 1.94·10−15 2.83·10−15

750 1.77·10−14 2.45·10−14 4.46·10−15 6.31·10−15

1000 4.48·10−14 6.06·10−14 1.15·10−14 1.59·10−14
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Table 15.6 Bimolecular reaction rate constants in cm3 s−1 for the D-transfer for the
Eley–Rideal mechanism calculated using the implicit surface model. For T ≤ 200 K,
instanton theory and for T ≥ 300 K, the Eckart approximation was used.

T[K] HDOH HDOD DDOH DDOD
80 3.28·10−22 1.09·10−21

90 8.40·10−22 2.50·10−21 5.26·10−22 1.65·10−21

100 1.37·10−21 3.90·10−21 8.93·10−22 2.65·10−21

110 2.33·10−21 6.32·10−21 1.58·10−21 4.48·10−21

120 4.08·10−21 1.07·10−20 2.90·10−21 7.89·10−21

130 7.34·10−21 1.86·10−20 5.45·10−21 1.44·10−20

140 1.35·10−20 3.34·10−20 1.05·10−20 2.69·10−20

150 2.55·10−20 6.12·10−20 2.06·10−20 5.13·10−20

165 6.78·10−20 1.58·10−19 5.82·10−20 1.40·10−19

180 1.86·10−19 4.20·10−19 1.68·10−19 3.90·10−19

200 7.41·10−19 1.62·10−18 6.99·10−19 1.57·10−18

300 1.93·10−17 3.38·10−17 1.85·10−17 3.30·10−17

333 4.21·10−17 7.07·10−17 4.08·10−17 6.98·10−17

375 9.43·10−17 1.52·10−16 9.26·10−17 1.52·10−16

429 2.17·10−16 3.36·10−16 2.16·10−16 3.40·10−16

500 5.14·10−16 7.68·10−16 5.21·10−16 7.90·10−16

600 1.27·10−15 1.83·10−15 1.31·10−15 1.93·10−15

750 3.33·10−15 4.67·10−15 3.54·10−15 5.05·10−15

1000 9.66·10−15 1.32·10−14 1.07·10−14 1.48·10−14
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Table 15.7 Unimolecular reaction rate constants in s−1 for the H-transfer for the
Langmuir–Hinshelwood mechanism calculated using the implicit surface model. For
T ≤ 250 K, instanton theory and for T ≥ 300 K, the Eckart approximation was used.

T[K] HHOH HHOD DHOH DHOD
60 5.12·105 3.42·105 1.59·105 1.09·105

65 5.16·105 3.66·105 1.67·105 1.24·105

70 5.34·105 4.02·105 1.80·105 1.40·105

75 5.67·105 4.43·105 1.99·105 1.61·105

80 6.12·105 4.95·105 2.23·105 1.88·105

90 7.41·105 6.32·105 2.92·105 2.58·105

100 9.35·105 8.24·105 3.96·105 3.61·105

110 1.22·106 1.10·106 5.50·105 5.12·105

120 1.63·106 1.50·106 7.82·105 7.37·105

130 2.23·106 2.06·106 1.13·106 1.07·106

140 3.08·106 2.87·106 1.66·106 1.58·106

150 4.32·106 4.03·106 2.45·106 2.34·106

165 7.30·106 6.82·106 4.48·106 4.28·106

180 1.25·107 1.17·107 8.28·106 7.89·106

200 2.63·107 2.44·107 1.90·107 1.80·107

225 6.77·107 6.24·107 5.38·107 5.05·107

250 1.78·108 1.62·108 1.53·108 1.42·108

300 5.19·108 4.56·108 4.37·108 3.88·108

333 9.12·108 7.76·108 7.73·108 6.64·108

375 1.64·109 1.35·109 1.39·109 1.16·109

429 2.98·109 2.39·109 2.56·109 2.06·109

500 5.52·109 4.28·109 4.75·109 3.72·109

600 1.03·1010 7.78·109 8.93·109 6.80·109

750 1.94·1010 1.43·1010 1.70·1010 1.27·1010

1000 3.71·1010 2.68·1010 3.32·1010 2.42·1010
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Table 15.8 Unimolecular reaction rate constants in s−1 for the D-transfer for the
Langmuir–Hinshelwood mechanism calculated using the implicit surface model. For
T ≤ 200 K, instanton theory and for T ≥ 300 K, the Eckart approximation was used.

T[K] HDOH HDOD DDOH DDOD
60 1.41·103 1.15·103 3.99·102 3.39·102

65 1.63·103 1.41·103 4.85·102 4.36·102

70 1.93·103 1.74·103 6.04·102 5.67·102

75 2.34·103 2.19·103 7.68·102 7.46·102

80 2.89·103 2.79·103 9.97·102 9.96·102

90 4.63·103 4.65·103 1.75·103 1.82·103

100 7.79·103 8.03·103 3.21·103 3.41·103

110 1.36·104 1.43·104 6.09·103 6.57·103

120 2.45·104 2.60·104 1.19·104 1.29·104

130 4.53·104 4.82·104 2.35·104 2.56·104

140 8.55·104 9.11·104 4.74·104 5.17·104

150 1.64·105 1.74·105 9.64·104 1.05·105

165 4.46·105 4.73·105 2.84·105 3.08·105

180 1.24·106 1.31·106 8.46·105 9.08·105

200 5.02·106 5.24·106 3.64·106 3.86·106

300 1.26·108 1.12·108 9.69·107 8.69·107

333 2.68·108 2.30·108 2.10·108 1.81·108

375 5.74·108 4.76·108 4.58·108 3.82·108

429 1.24·109 9.94·108 1.01·109 8.13·108

500 2.69·109 2.09·109 2.23·109 1.75·109

600 5.84·109 4.41·109 4.96·109 3.78·109

750 1.27·1010 9.37·109 1.12·1010 8.27·109

1000 2.80·1010 2.02·1010 2.55·1010 1.85·1010
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Núñez, E.; Vázquez, S. A.; Ŕıos, M. A. J. Phys. Chem. A 2007, 111, 719–

725.

[68] Lamberts, T.; Samanta, P. K.; Köhn, A.; Kästner, J. Phys. Chem. Chem.
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116, 13682–13689.

[204] Smedarchina, Z.; Siebrand, W.; Fernández-Ramos, A. J. Chem. Phys. 2012,

137, 224105.

[205] Sherwood, P. et al. J. Mol. Struct. (THEOCHEM) 2003, 632, 1–28.

[206] Metz, S.; Kästner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. WIREs

Comput. Mol. Sci. 2014, 4, 101–110.

[207] Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106.

[208] Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, 241101.

[209] Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. WIREs
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