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Chapter 1

Introduction

Effective interactions between colloidal particles in critical solvents. . . The scientific back-

ground evoked by this title may be clear to the expert reader; at the same time, the

concepts may also be just simple enough to be understandable for the scientific interested

layman. A short introduction of the general ideas and the historical context is therefore

provided.

A critical solvent is not necessarily a particular solvent. For example, the “best known”

liquid, water1, exhibits a critical point at 374 ◦C and 22064MPa = 221 bar [1]. By varying

the temperature T or the pressure p of a sample of water, its state can change from solid

(ice) to liquid (water) to gas (vapor). Along a so-called coexistence line in terms of p

and T , water is found to coexist at the same time as vapor and liquid. If one crosses

this line, a transition from the liquid to the gas state (or vice versa) occurs; the change

from one state to the other is actually characterized by the jump in density ρ between the

high density of the liquid and the low density gaseous phase. This is called a first-order

phase transition. Note that the coexistence line ends at the critical point. Beyond this

critical point, the substance no longer exhibits qualitatively different phases. Instead,

in this so-called fluid phase, the density changes continuously. Thus, the critical point

separates two regimes: one with only a single phase, and another with two coexisting

phases. Finally, there is a special path: By changing p and T along the coexistence, at

first two phases coexist, but upon closing in on the critical point, their densities approach

each other and crossing the critical point, the two phases continuously merge into a single

fluid. This is a second-order or continuous phase transition.

Surprisingly, this holds also for different types of liquids: A binary liquid mixture

is a mixture of two components (typically of water and an oil), with a miscibility gap

(explained below). In this case, the phases are characterized by their composition c,

instead of the density ρ for a gas-liquid transition. Considering the phase diagram of the

mixture in terms of mixing composition c and temperature T , there is a regime in which

1Clearly, this accounts only for the amount of everyday contact and disregards the scientific complexity
of water.
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8 1. Introduction

the two constituent liquids are not miscible and demix into two phases, e.g., one finds a

water-rich and an oil-rich phase separated by an interface. This miscibility gap may end

in one or two critical points. Thus, there are two types of critical points: A lower critical

point for which the demixing occurs above the critical temperature and the one phase

region exists below, as well as an upper critical point for which, conversely, the two phase

separation occurs below the critical temperature. A number of binary mixtures exhibit a

closed-loop miscibility gap, i.e., the upper critical point is above the lower critical point

with respect to the temperature. Interesting phenomena can be observed at temperatures

close to the critical points. Note that at a critical point, phase transitions are always

second order and continuous.

The critical opalescence has been described as a clouding effect occurring in experi-

ments on liquefying carbon dioxide by T. Andrews in 1869 [2] close to the critical tem-

perature. It was then qualitatively explained by M. v. Smoluchowski [3] as evidence in

favor of the kinetic gas theory, by associating it with scattering at density fluctuations

in the liquid in reminiscence of the Rayleigh scattering of light at particles in the at-

mosphere, which was then quantitatively confirmed by Einstein [4]. As the difference

in density or concentration between the two phases vanishes towards the critical point,

the fluctuations in density increase. The range over which the density is correlated is

given by the bulk correlation length ξ, which is typically microscopically small in liquids,

but becomes macroscopically large around the critical point. Specifically, the correlation

length ξ attains the same order of magnitude as the wave length of visible light, leading

to scattering of the light at the fluctuations and, overall, to the turbidity of the liquid.

Even more surprisingly, the basic principles of critical phase transitions apply not only

to liquids, but also to completely different physical systems such as ferromagnets and su-

perconductors. For example, in a ferromagnetic material (i.e., an ordinary magnet) the

atomistic magnetic dipoles are aligned, so that overall there is a non-zero magnetization.

In a paramagnetic material, the magnetic dipoles are unordered so that overall no net

magnetization results. The presence of an external magnetic field induces an alignment of

these magnetic dipoles, so that the material becomes temporarily “magnetic”. However,

the magnetization is lost again once the external field vanishes. For an uniaxial ferro-

magnet, the magnetic dipoles can only align along one axis. For a range of temperatures,

there are two possible ground states, either all dipoles are aligned upwards, or all are

aligned downwards. Above a critical temperature, the Curie temperature Tc, the magne-

tization vanishes and the material becomes paramagnetic. The two ordered ground states

may coexist at the same time in different regions within the material which are known as

Weiss domains. This description is analogous to the previous liquid phase transition and

the correspondence translates also to the mathematical relations, e.g., the density is now

replaced by the total magnetization m. The total magnetization behaves as m ∼ |T −Tc|
β

as a function of temperature T > Tc close to the critical temperature Tc, with a so-called
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critical exponent β > 0, whereas m = 0 for T < Tc. The exact same relation holds for the

composition difference φ = c − cc in a binary mixture, with cc being the composition at

the critical point, and for the difference ρl−ρg between the density ρl of the liquid and the

density ρg of the gas in a gas-liquid phase transition. Remarkably, the exponent β even

has the same numerical value in these cases. As such, β is one of the so-called universal

critical exponents, and the associated quantity is denoted as the order parameter of the

system.

It turns out that critical phenomena can be classified into only a small number of

universality classes that exhibit the same critical exponents. Since very different systems

such as fluids, liquid mixtures or uniaxial ferromagnets, which have nothing in common

microscopically, behave similarly, this suggests that only some collective, macroscopic

properties are relevant for the critical phenomena. Historically, this motivated the search

for phenomenological models, pioneered by Landau [5], to describe such phase transitions.

Remember that the crossover from microscopic to macroscopic size is a feature of the bulk

correlation length ξ. As a consequence, the universal behavior can be described in terms

of scaling functions depending only on scaling variables which are ratios of the relevant

macroscopic length scales of the system and of the correlation length ξ.2

Continuing with the explanation of the title, colloidal particles are not uniquely de-

fined. The term traces back to T. Graham [6] who distinguished the diffusion of certain

dispersions as gelatine-like and called them colloids (from Greek κóλλα meaning glue) in

contrast to the crystallization behavior of other solutions. Generally, today [7] one con-

siders as a colloidal suspension those solutions with a subdivision into microscopic solvent

components (molecules) and particles or droplets with a mesoscopic size of nanometers

to ten micrometers [(10−9 – 10−5) m] [8–10]. This is similar to the definition of sand,

which is not one specific mineral, but any granular material with particle sizes two orders

of magnitude below and up to a few millimeters [9]. While “colloid” originally referred to

the dispersion in total, in modern usage it is usually meant as a short form of colloidal par-

ticle, i.e., it denotes the immersed particles of the colloidal dispersion. Aerosol, emulsion,

foam, and suspension are, among others, names for the different combinations of gaseous

or liquid solvent medium and gaseous, liquid or solid solute components [10]. The solvent

medium itself can be of complex molecular structure and may even contain multiple com-

ponents, surfactants, ions or other particles smaller than the colloidal regime. This thesis

focuses on colloidal particles in critical solvents, for which universality holds, so that no

particular solvent needs to be specified. However, in view of experimental measurements,

binary liquid mixtures represent the most convenient realizations.

2It is a wonder to behold that nature is offering this universal behavior, allowing for simple, yet
general and powerful theories. On the other hand, the universal behavior follows unambiguously from
the mathematical descriptions, so that one may conclude that nature had no other choice. This thesis
cannot provide anything to the philosophical question which came first, however it owes everything to
the fact that such beautiful relations exist.
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With such broad definitions, it is clear that countless direct and effective interactions

may affect the colloidal particles depending on the solvent; also several interactions can

be present at the same time. Direct interactions are those directly between the colloids

themselves. A colloid will also interact with the solvent, typically via a microscopic in-

teraction. The response of the solvent may then also affect a second colloid, giving rise

to an indirect or effective interaction between the colloids. However, this distinction is

often not very productive since the same fundamental force can lead to both types of

interaction: The Coulomb interaction between charged colloids is a direct interaction in

vacuum, but in a solvent electric double layers of solvent ions effectively screen the interac-

tion. Another prominent example of colloidal interactions is the van der Waals interaction

between the atoms of the colloids, which, together with the aforementioned screened elec-

trostatic interaction, is combined into the Derjaguin-Landau-Verwey-Overbeek (DLVO)

potential [11]. Additionally, when intermediate solute particles are present, entropic deple-

tion forces occur [12]. Within this thesis, particular interest is set on the critical Casimir

forces appearing for temperatures in the vicinity of the critical point of the solvent. The

name refers to the quantum-mechanical Casimir effect predicted in 1948 by Hendrik B. G.

Casimir [13]. He surmised that two perfectly conducting metal plates in vacuum experi-

ence an attractive force as the space between them is still filled with vacuum fluctuations.

These fluctuations are however bounded by the metal plates, so that only specific modes

fit inside. On the outside, there is no restriction on the spectrum of the modes, leading to

a pressure against the plates. The strength of this Casimir force is so small that it took

nearly half a century to reach the necessary experimental precision in order to measure

the Casimir force [14].

In analogy, it was realized by M. E. Fisher and P.-G. de Gennes [15] that the con-

finement of a critical solvent will result analogously in a thermodynamic critical Casimir

force between the surfaces due to the confinement of the critical solvent fluctuations.

However, there are a number of unique features compared to the quantum-mechanical

Casimir effect. The critical Casimir effect can both be attractive as well as repulsive,

depending on the chemical properties of the surfaces. In the case of a binary liquid mix-

ture, the surfaces have an adsorption preference for one of the components in the solvent,

e.g., they are either hydrophilic or hydrophobic. Furthermore, the distance-dependence

of the critical Casimir forces changes upon approaching the critical point. Whereas it

decays exponentially with distance away from the critical point, at criticality it turns into

a power law and becomes long-ranged. Additionally, the critical Casimir force inherits

the property of universality from the critical solvent, thus it can be expressed in terms of

scaling functions. Whereas most other interactions cannot be controlled in the experiment

after preparation of the particles, the strength of the critical Casimir interaction can be

fine-tuned by minute temperature changes.

The first experimental evidence for critical Casimir forces was provided only indirectly
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by studying the thickness of thin wetting films in classical binary liquid mixtures [16,17]

near demixing, as well as in mixtures of 3He / 4He [18, 19] and liquid 4He close to their

normal-superfluid transition [20,21]. Corresponding Monte Carlo simulations for the film

geometry [22–27] are in very good quantitative agreement with the experiments. The first

direct measurement of the critical Casimir effect [28] was performed by monitoring opti-

cally the thermal motion of a single spherical colloid, immersed in a binary liquid mixture

of water and 2,6-lutidine close to demixing and near a chemically homogeneous substrate.

The experimental results are in excellent agreement with corresponding theoretical pre-

dictions [28–30], which make use of the Derjaguin approximation (DA) [31] with Monte

Carlo (MC) simulation results for the film geometry as input. A full MC simulation for

the sphere-wall geometry has been performed only recently [32]. Other theoretical studies

rely on field-theoretical methods [33–37].

If two colloids of similar surface chemistry are brought close to one another, a liquid

bridge between the two colloids can form [38]. This bridging transition is another distinct

phenomenon resulting also from confinement and can be thought of as being analogous to

capillary condensation, in which the vapor condensates at a pressure below the saturation

vapor pressure (see, e.g., Refs. [39, 40]). In recent years, studies have been carried out

which have examined the bridging transition for spherical particles by using local field

theory [41, 42], density functional theory (DFT) [43–45], and Monte Carlo simulations

[46, 47]. Similarly, a gas-bridge has been observed for solvophobic block-shaped particles

using DFT [48].

Attractive forces between the colloidal particles can lead to aggregation. With a

view on applications, undirected and irreversible aggregation is usually not a favorable

result. Early experiments showed a reversible aggregation occurring around the lower

critical point of binary liquid mixtures [49–51], though theoretical interpretation remained

inconclusive [52], see also Refs. [53, 54] for reviews.

Recent research interest has risen in “designing” colloidal particles for self-assembly,

i.e., the reversible and directed aggregation into specific structures, which may have vast

applications. In a sense, if colloidal particles are the analogue of sand, the ultimate goal is

to build colloidal sandcastles by self-assembly of the particles. For this reason, strong ex-

perimental and theoretical interests emerged in patchy colloidal particles with chemically

heterogeneous surface properties and in Janus particles with “two faces” — a topic which

has been popularized by the Nobel prize lecture of de Gennes [55]. These particles have

the potential to be building blocks for directed self-assembly of new materials, such as

the Kagome open-lattice structure [56–58]. Topical reviews concerning both experimen-

tal and theoretical aspects of patchy particles are provided in Refs. [59] and [60]. From

an experimental point of view, the fabrication of such particles poses a research chal-

lenge in itself [61–63], followed by the experimental observation of their (self-)assembly

behavior [56, 64,65].
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In principle, any anisotropic surface structure gives rise to an orientation dependent

behavior caused by surface mediated interactions, e.g., due to surface charges [66, 67]

or critical fluctuations. In this sense, the critical Casimir effect is a viable candidate

to achieve controlled self-assembly, as demonstrated experimentally by the trapping of

homogeneous colloids adjacent to chemically patterned substrates [68, 69], in very good

agreement with corresponding theoretical predictions [69, 70].

The study of Janus particles exposed to the critical Casimir effect represents a rather

new research issue, encompassing a few promising experimental investigations [71,72]. The

critical Casimir effect provides a controllable effective interaction which can be directed

by both attraction and repulsion between the patches of the particles, depending on the

design and surface treatment of the particles. The surfaces can also be modified in order

to change boundary conditions for the order parameter of the underlying continuous phase

transition of the solvent, e.g., by producing a surface with only weak adsorption preference

for one of the two species forming the binary liquid solvent [73].

With the purpose to discuss in detail the effective interactions between colloidal par-

ticles in critical solvents, the thesis is organized as follows: In chapter 2, this broad

introduction is refined by providing in short form the necessary theoretical relations. It

is divided into universal theoretical models, and those additional descriptions necessary

to comprehend experimental results. The following chapters present results which in part

have been worked out in consultation with other scientists (named in the publication list

below) and which have been published. Based on this context, the first person plural

we is used for the author. In chapter 3, the critical Casimir forces, torques and effective

potentials of a cylindrical Janus particle are calculated in the presence of a substrate. The

results are directly relevant for chapter 4 concerning the pair interaction between Janus

spheres. After this view on critical Casimir interactions, another effective interaction is

discussed in chapter 5 by considering the bridging transition occurring between colloidal

particles and comparing it in strength with the critical Casimir interaction. Finally in

chapter 6, the theory is put to test by analyzing an experimental realization. The limits

of the comparison are documented as well as where good agreement with the theoreti-

cal critical Casimir interaction is achieved. The work is summarized in chapter 7, and

a possible outlook to further research is given. For reference, Appendices A and B lay

out explicitly the Derjaguin approximation and derive the scaling function of the force

and the potential for two homogeneous cylinders and for two Janus spheres, respectively.

For the interested reader not versed in the mathematical models that have formed the

fundamental understanding of phase transitions, brief discussions are offered in Appendix

C. However, the latter are not necessary in order to derive the main results of this thesis.
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Soft Matter 13, 5233 (2017)

• As Ref. [77]: M. Labbé-Laurent, A. D. Law, and S. Dietrich,

Liquid bridging of cylindrical colloids in near-critical solvents,

J. Chem. Phys 147, 104701 (2017)
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Chapter 2

Theoretical and Experimental

background

2.1 Theory

2.1.1 Scaling laws in the bulk

In the case of a gas-liquid phase transition, the density difference between the phases

(ρl − ρg) ∼ |T − Tc|
β vanishes at Tc. At coexistence, the pressure of the gas and the

pressure of the liquid phase are the same. We may express this using the equation of

state p(ρ) as the condition p(ρg) = p(ρl). Away from the critical point, this can only hold

true if the pressure curve has an inflection point in-between the two densities ρg and ρl,

i.e., there is a point at which ∂2p
∂ρ2

= 0. The critical point is obtained from [78]

∂p

∂ρ

∣∣∣∣
T

=
∂2p

∂ρ2

∣∣∣∣
T

= 0. (2.1)

The isothermal compressibility is defined as κT = 1
ρ

∂ρ

∂p

∣∣∣
T

[78], which in consequence

means κT → ∞ at the critical point. This has the physical meaning that any small change

in pressure will lead to a large change in density, so that any small, local perturbation

gives rise to large density fluctuations – which become visible in the form of critical

opalescence. The isothermal compressibility also adheres to a power law κT ∼ |T −
Tc|

−γ, with the critical exponent γ. These power laws derive from the thermodynamic

potential of the system. (In fact, the original classification of phase transition as first,

second and higher order was numbered according to which consecutive derivative of the

thermodynamic potential is discontinuous [79].) Thus, by definition the free energy F

cannot be analytic (i.e., infinitely differentiable), but must contain a non-analytic part,

i.e., it can be separated into a regular, analytic part Freg and a singular part Fsing. Only

the singular part determines the critical exponents.

15
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In order to bear out these relations, it was postulated by B. Widom [80] that the free

energy density f = Fsing/V of the singular part takes a homogeneous form, that is

f(bp1ω1, b
p2ω2, . . .) = bd f(ω1,ω2, . . .), (2.2)

where ωi are not yet specified dimensionless variables (called scaling fields) and pi are the

associated scaling dimensions. This holds also for the specific choice b = ω
−1/p1
1 , such that

bp1ω1 = 1, and

f(ω1,ω2, . . .) = ω
d/p1
1 f

(
1,

ω2

ω
p2/p1
1

, . . .

)
. (2.3)

In the notation of the Ising model, ω1 = t = (T − Tc)/Tc and ω2 = h are the only

relevant fields, so that the Widom scaling hypothesis is given by [79–81]

f(t, h) = td/p1 f

(
1,

h

t∆

)
(2.4)

with ∆ = p2/p1. Thus, the free energy is restricted to a functional form that can be

rendered using a scaling function of a single dimensionless parameter.

The consequences of the homogeneous form are quite profound, as it establishes rela-

tions between the exponents of all thermodynamic quantities derived from the free energy:

1. Magnetization: m = −∂f
∂h

(2.2)⇒ bp2 m(bp1t, bp2h) = bd m(t, h).

For an uniaxial ferromagnet, the magnetization represents the so-called order pa-

rameter (OP). The same role is fulfilled by the difference in density (ρl − ρg) for

the gas-liquid phase transition and by the concentration difference (c − cc) for the

demixing phase transition.

• The magnetization is non-vanishing only for t < 0, so that the choice b =

(−t)−1/p1 is a real number. For zero bulk-field h = 0, we obtain

m(t, 0) = (−t)−(p2−d)/p1m(−1, 0). (2.5)

If this is compared with the expected power law m(t) ∝ (−t)β (see Table 2.1),

and taken as the definition of the critical exponent β, we obtain β = (d−p2)/p1.

• On the critical isotherm t = 0, we may set b = h−1/p2 , yielding

m(0, h) = h(d−p2)/p1m(0, 1). (2.6)

One expects the power law m(h) ∝ h1/δ, from which we find 1/δ = (d−p2)/p1.

We can additionally identify the exponent ∆ in Eq. (2.4) as ∆ = p2/p1 = βδ.
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Exponent Quantity Scaling d=3 [82] d=4 [81]

α specific heat ch ∼ |t|−α 0.11 0

β

magnetization (ferromagnet) m ∼ |t|β

0.326 1/2density diff. (gas-liquid) (ρl − ρg) ∼ |t|β

concentration diff. (demixing) (c− cc) ∼ |t|β

γ
susceptibility χ ∼ |t|−γ

1.237 1
isothermal compressibility κT ∼ |t|γ

δ equation of state
m ∼ h1/δ

4.789 3
(ρl − ρg) ∼ |∆p|1/δ

η pair correlation function C(r) ∼ r−(d−2+η) 0.0364 0

ν correlation length ξ ∼ |t|−ν 0.6301 1/2

Table 2.1: Overview of the critical exponents for the Ising universality class. Values in
d = 3 are based on Monte-Carlo simulations listed in Ref. [82] and analytic results for
d = 4 correspond to mean field or Landau theory [81]. The quantities depend on the fields
t = (T − Tc)/Tc and h. The critical exponent β is associated with the order parameter
(OP) of the specific system.

2. Susceptibility: χT = ∂m
∂h

= −∂2f
∂h2

(2.2)⇒ bp2 χT (b
p1t, bp2h) = bd χT (t, h).

As before, we set b = t−1/p1 . For vanishing bulk-field h = 0, one finds

χT (t, 0) = t−(2p2−d)/p1χT (1, 0). (2.7)

Defining the critical exponent γ via the power law χT ∝ t−γ leads to γ = (2p2−d)/p1.

3. The specific heat Ch = ∂U
∂T

∣∣
h

can also be derived from the free energy f = (U −
T S)/V via ∂(βf)

∂β
= U/V , so that

Ch = −V T
∂2f

∂T 2
= −V T

Tc

∂2f

∂t2
(2.2)⇒ b2p1 Ch(b

p1t, bp2h) = bd Ch(t, h). (2.8)

As expected, a scaling law follows by setting b = (−t)−1/p1

Ch(t, h) = t−(2p1−d)/p1Ch(1, 0) ∝ t−α, (2.9)

with the critical exponent α = 2− d/p1.

Making use of these scaling relations, the free energy is commonly expressed as

f(t, h) = t2−α g

(
h

t∆

)
(2.10)

with ∆ = βδ and an universal scaling function g(x) = f(1, x). Evidently, the critical
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exponents are not independent, but are related by so-called scaling relations. For a

system with two relevant scaling variables, only two are independent and the remaining

ones follow from [79,81,83]

γ/β = δ − 1 Widom’s identity, (2− η)ν = γ Fisher’s identity, (2.11)

α + 2β + γ = 2 Rushbrooke’s identity, 2− α = dν Josephson’s identity, (2.12)

α + β(δ + 1) = 2 Griffiths’ identity, (2.13)

The Josephson’s identity is notable in that it is a hyperscaling relation containing the

dimension d of the system. It is valid only for d ≤ du below the upper critical dimension

du. Above the upper critical dimension, the Ising model crosses over into the mean field

theory (presented below), which does not adhere to Josephson’s identity. The critical

exponents and their values for the Ising universality class are listed in Table 2.1.

Close to the critical point of a fluid, thermal fluctuation become correlated over macro-

scopic distances and are, to a large extent, independent of microscopic details. Upon

approaching the critical demixing point Tc of a binary liquid mixture at its critical con-

centration, the bulk correlation length diverges as ξ(t) ∼ |t|−ν , with the critical exponent

ν ≃ 0.63 in d = 3 and ν = 1/2 in d = 4 (see Table 2.1).

Generally, the correlation length ξ is a function of both t and h = 0. By dimensional

arguments, close to the critical point the singular contribution to the free energy density

must scale with the correlation length as f(t, h) ∼ ξ−d. Thus, based on the scaling

hypothesis Eq. (2.10), the bulk correlation length ξ depends on both scaling fields t and

h, and close to the bulk critical point can be written in the scaling form

ξ(t, h) = ξt Ξ±

(
|Σ| =

ξt

ξh

)
, (2.14)

where ξt(t) = ξ
(0)
t,±|t|

−ν and ξh(h) = ξ
(0)
h |h|−ν/(βδ) are the solvent correlation lengths as

functions of the individual fields, and the universal bulk scaling function Ξ± satisfies

Ξ±(|Σ| → ∞) = 1 and Ξ±(|Σ| → 0) = |Σ|−1. The sign of t is chosen such that t > 0

corresponds to the homogeneous, mixed state, whereas t < 0 corresponds to the two

phase region. Many experiments are performed advantageously in binary liquid mixtures

with a lower critical point [28, 29, 68, 69, 71, 72, 84]; in this case one has t = (Tc − T )/Tc.

The functional form of Ξ±(|Σ|) depends on the sign ± of t, but not on the sign of the

bulk scaling variable Σ. Similarly, the amplitudes ξ
(0)
t,± reflect the sign of t and are non-

universal, but their ratio Rξ = ξ
(0)
t,+/ξ

(0)
t,− = 1.96 in d = 3 [82] and Rξ =

√
2 in d = 4 [85] is

universal. The amplitude ξ
(0)
h is also non-universal; ν, β, and δ are standard bulk critical

exponents, see Table 2.1. The scaling variable Σ is further related to the OP φ, which is

the direct experimental control parameter in the case of binary liquid mixtures (for which

φ = c − cc). This is expressed by the equation of state, which close to the critical point
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takes the scaling form [82]

h = D sign(φ) |φ|δ F±

(
sign(t) |tB/φ|1/β

)
, (2.15)

where F±(|X| = |tB/φ|1/β) is a universal scaling function and ± refers to the sign of t. D

and B are non-universal amplitudes that depend on the definition of the order parameter

φ. For example, B is defined via the near-critical behavior of the OP on the coexistence

curve:

φb(t → 0−, h = 0) = B |t|β . (2.16)

D, B, and the correlation length amplitudes ξ
(0)
t,± and ξ

(0)
h are related to each other by

universal amplitude ratios such that only two of them are independent [36,82]. To linear

order in X, the universal scaling function F±(|X|) has the form F±(|X|) = 1 ± |X|,

capturing the crossover between the critical behavior at t = 0 and h = 0 [82]. In terms of

the scaling variables Σ and X, the equation of state takes the scaling form

sign(Σ) |Σ|βδ/ν = (Rχδ/Q2)
δ/(δ−1)(Q+

ξ /Q
c
ξ)

βδ/ν sign(X) |X|−βδ F±(|X|), (2.17)

where Rχ, Q2, Q
+
ξ , and Qc

ξ are universal amplitude ratios [82].

2.1.2 Finite size scaling

In a confined system, e.g., in the film geometry bounded by two walls a and b of area A

with distance D between them, the singular contribution to free energy close to criticality

is supplemented by additional terms in the form

lim
A→∞

Fsing(t, h;ha, hb;D)

A
= Df(t, h)+fs(t, h;ha)+fs(t, h;hb)+δf(t, h;ha;hb;D), (2.18)

where f(t, h) is the bulk, per volume contribution from the enclosed volume V = AD,

fs(t, h;ha,b) are two individual surface contributions from each wall, and δf(t, h;ha;hb;D)

is a true finite-size contribution. Generically, in binary liquid mixtures, surfaces have a

preference for one of the components of the mixture. Such an adsorption preference

belongs to the normal surface universality class and is captured by a surface field ha,b,

which is the analogue to the bulk field h. The strong adsorption limit ha,b → ±∞
is typically denoted in short form by a (+) and (−) notation representing the sign of

the surface field and indicating which component is preferred. For brevity, we omit the

discussion of a surface enhancement c relevant in other surface universality classes.

This allows to define a solvent-mediated force F between two walls from the excess
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part of the free energy via

F = −∂F ex

∂D
= −∂(F − V f)

∂D
, (2.19)

where f is the bulk free energy density of the solvent and F is the total free energy of the

solvent. Remember that F contains both singular and regular contributions. The critical

Casimir force F (Cas) is the singular contribution to F , which emerges upon approaching

the bulk critical point of the solvent. The associated critical Casimir potential is found

from

V (Cas)(D, . . .) ≡
∫ ∞

D

dz F (Cas)(z, . . .). (2.20)

According to finite size scaling theory, in the vicinity of its bulk critical point, not only

the bulk and surface free energy contribution exhibit a scaling form, but also the finite-

size contribution δf , which can be written in terms of a universal scaling function that

depends only on the shape of the sample and on coarse features of the system, summarized

by universality classes.

With respect to the experiment analyzed in chapter 6 (see also Ref. [76]), and similar

studies [28, 29, 68, 69, 71, 72, 84], the relevant scaling fields of the near-critical solvent are

t = (Tc −T )/Tc (for a lower lower-critical point) and the bulk ordering field, h, conjugate

to the order parameter φ. The bulk field h is proportional to the deviation of the chemical

potential difference ∆µ = µa − µb of the two species a and b from its critical value, i.e.

h ∼ ∆µ−∆µc. Each point in the solvent phase space is uniquely defined by t and h. (Note

that the use of the scaling fields of the Ising model is not exact due to the lack of symmetry

between coexisting fluid phases; the actual scaling fields are linear combinations of t and

h, which we neglect here). For the demixing phase transition of a binary liquid mixture,

the OP φ is proportional to the deviation of the composition ca of species a from its value

ca,c at the critical point, i.e. φ = ca − ca,c. The composition ca = ̺a/(̺a + ̺b) is defined

by the number densities ̺α, α ∈ {a, b} of the molecules of species a and b, respectively.

Generally one may leave out the explicit a dependence as this choice is arbitrary and write

φ = c− cc. The OP can be controlled experimentally by changing the mass or the volume

fraction of one of the components of the mixture. The conjugate bulk field h cannot be

changed directly, but is also controlled via φ according to Eq. (2.15). Note that zero bulk

field h = 0 corresponds to φ = 0, i.e., the composition c is at its critical value cc.

Accordingly, the critical Casimir force is described by an universal scaling function

uniquely determined by the bulk universality class [82] (here: Ising), the surface univer-

sality class [86,87] (here: normal transition with symmetry-breaking boundary conditions

(+) and (−)), the spatial dimensional (here: d = 3 and d = 4 in mean field theory), and

the geometry of the confinement [81,88, 89] (here: cylinders, spheres, and planar walls).
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In the case of the film geometry with two flat, parallel, homogeneous, strongly adsorb-

ing and macroscopically large walls at distance D, renormalization group theory predicts

the following form for the critical Casimir force F(a,b) per area of the wall at zero bulk

field h = 0 [90]:
F(a,b)(D, T )

A
= kBT

1

Dd
k(a,b)(Θ = sign(t)D/ξ±), (2.21)

where the subscript (a, b) indicates the pair of boundary conditions (BC) (a) = (±) and

(b) = (±) characterizing the two walls. In the absence of a bulk ordering field and for

infinitely strong surface fields, the scaling function k(a,b) depends only on a single scaling

variable, which is given by the sign of the reduced temperature t and the film thickness

D in units of the bulk correlation length ξ± (with ± taken for t ≷ 0; for simplicity, the

index t is omitted for h = 0 so that ξt(t) ≡ ξ± and ξ
(0)
t,± ≡ ξ±0 ). Note that the scaling

variable Θ = sign(t)D/ξ± contains distinct denominators ξ±0 for t ≷ 0. We emphasize

that Eq. (2.21) describes the behavior of the singular contribution to the effective force

acting on the confining walls, in addition to any background forces.

At the critical point T = Tc, ξ± diverges and the scaling function of the force k(a,b)

between two walls reduces to an universal number referred to as the critical Casimir

amplitude (see Ref. [81]; the notation differs slightly)

k(a,b)(D/ξ± = 0) = ∆(a,b), (2.22)

which leads to an algebraic decay ∼ D−d of the critical Casimir force as a function of

the film thickness. In contrast, away from criticality the critical Casimir force decays

exponentially as a function of D/ξ±. For the symmetry-breaking BCs (−,−) or (+,−)

valid for binary liquid mixtures and for t > 0, the critical Casimir force is expected to

decay as (see Refs. [29, 70, 91])

k(+,±)(l/ξ+ ≫ 1) = A±

(
D

ξ+

)d

exp(−D/ξ+), (2.23)

where A± are universal amplitudes [29]. Note that the force is the same for equal BCs

and we define the shorthand k‖ := k(+,+) = k(−,−) for the scaling function between two

identical, parallel walls.

Consequently, the critical Casimir potential between identical spherical particles a

surface-to-surface distance D = r− 2R apart and at off-critical concentrations is given by

a scaling function that depends on three scaling variables, which can be written as [92]

V (Cas)(D, . . .) = kBT
R

D
Φ

(ss)
(+,+)

(
Θ = sgn(t)

D

ξt
,∆ =

D

R
,Σ = sgn(th)

ξt

ξh

)
, (2.24)

where ξt(t ≷ 0) = ξ
(0)
t,±|t|

−ν and ξh = ξ
(0)
h |h|−ν/(βδ) are the solvent correlation lengths
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governing the exponential decay of the solvent bulk two-point OP correlation function

along the specific paths t → 0± for h = 0, and h → 0 for t = 0, respectively, and ± refers

to the sign of t. The thermodynamic paths of fixed solvent composition are particularly

experimentally relevant. Thus we take the convention to write the scaling function Φ of

the critical Casimir potential as a function of the scaling variables Θ, ∆, Σ rather than

Θ, ∆, Λ = sgn(h)D/ξh used in Ref. [93]. The specific geometries studied in the following

chapters give rise to additional parameters and Φ is decorated with corresponding symbols.

The scaling function of the potential between spherical colloids can in principle be cal-

culated using different techniques: numerically within mean field theory (MFT), Monte-

Carlo simulations (MC) and semi-analytically using Derjaguin approximation (DA). The

computation time of the mean field minimization (explained in more detail below), as well

as Monte-Carlo simulations, scales with the size of the simulation volume and quickly be-

comes prohibitively long for spherical particles. So far, only the sphere-plate geometry has

been calculated using MC simulations [32]. In contrast, the critical Casimir force for the

film geometry can be readily determined by using mean field theory within the framework

of Landau-Ginzburg theory [91]. Some results beyond mean field theory are also available,

e.g., from MC simulations [22–24, 94–96] or within the extended de Gennes-Fisher local

functional method [93,97, 98].

For this reason, we calculate the scaling function of the critical Casimir potential for

spherical particles using a combination of these methods: The Derjaguin approximation

is used to relate the scaling function of the potential between spherical particle to the

scaling function of the force in the film geometry [29,31,35] via

Φ
(ss,d=3)
(+,+) (Θ,∆ → 0,Σ) = π

∫ ∞

1

dx(x−2 − x−3)k
(d=3)
‖ (xΘ,Σ). (2.25)

The scaling function of the force k(d=3)
‖ as a function of the composition-dependent scaling

variable Σ is calculated using the “dimensional” approximation introduced in Ref. [92].

Within that approximation, the scaling function k
(d=3)
‖ (Θ,Σ) is constructed such that for

h → 0 it reduces exactly to k
(d=3)
‖ (Θ,Σ = 0) and for fixed values of Θ its functional form

is the one obtained from mean field theory (d = 4):

k
(d=3)
‖ (Θ,Σ) =

k
(d=4)
‖ (Θ,Σ)

k
(d=4)
‖ (Θ,Σ = 0)

k
(d=3)
‖ (Θ,Σ = 0). (2.26)

We take k
(d=3)
‖ (Θ,Σ = 0) from MC simulation data [23, 24] and assume that within

the mean field expressions k
(d=4)
‖ (Θ,Σ), the scaling variables involve the critical bulk

exponents in spatial dimension d = 3. Thus the approximation concerns only the shape

of the scaling function itself, which typically depends on the spatial dimension only mildly.

The function k
(d=4)
‖ (Θ,Σ) is calculated within mean field theory.
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2.1.3 Mean field theory

Within MFT, the bulk and surface critical phenomena belonging to the Ising universality

class are described by the standard Landau-Ginzburg-Wilson fixed point Hamiltonian

[86,87]

H[φ(r)] =

∫

V

ddr

(
1

2
(∇φ(r))2 +

τ

2
(φ(r))2 +

u

4!
(φ(r))4 − hφ(r)

)

+

∫

∂V

d(d−1)s
( c
2
(φ(s))2 − hsφ(s)

)
, (2.27)

which is a functional of the order parameter (OP) profile φ(r) of the fluid such as the

difference between the local concentration of one of the two species and its critical value

in a binary liquid mixture. The Hamiltonian consists of a volume term representing a

d-dimensional liquid-filled volume V and a term describing the confining surface ∂V of

this volume, e.g., provided by the surfaces of colloids immersed in the binary mixture,

with φ(r)|∂V = φ(s) evaluated at the boundary ∂V . Within MFT, the parameter τ is

proportional to the reduced temperature t as τ = t/(ξ+0 )
2 [81], while the coupling constant

u > 0 ensures the stability of H[φ(r)] for t < 0 in the demixed phase; u is dimensionless in

d = 4. The bulk field h is proportional to the deviation of the chemical potential difference

∆µ = µA − µB of the two species A and B from its critical value, i.e., h = ∆µ − ∆µc.

Except for chapter 6, which concerns off-critical concentrations, we focus on being at

the solvent phase coexistence or in the single phase region of the solvent at the critical

concentration, so that h = 0. The surface enhancement c and the symmetry breaking

surface field hs determine the BC. Within the normal surface universality class c = 0 and

the two fixed point values are hs = ±∞, which is the generic one for liquids and expresses

the preference of a colloid surface for one of the two species of the binary liquid mixture.

This leads to a divergence of φ → ±∞ at the surface of the colloids corresponding to

what is denoted as the (+) and (−) BC [87]. Concerning the numerical implementation,

the divergence is realized by obtaining values of the OP close to the surface by use of a

short distance expansion [99, 100] and setting these as Dirichlet boundary conditions for

the minimization. Within MFT, only the order parameter configuration with the largest

statistical weight exp (−H[φ(r)]) is considered and fluctuations of the order parameter are

neglected, which corresponds to a saddle-point approximation. Within this approximation

the free energy follows from δH[φ]/δφ|φ=〈φ〉 = 0. The MFT order parameter profile defined

as m = 〈φ〉/B minimizes the Hamiltonian H, where B =
√

6/u/ξ+0 within MFT is the

non-universal amplitude of the bulk order parameter at coexistence φb = B |t|β, with

β = 1/2 in d = 4 and β ≃ 0.33 in d = 3. MFT captures correctly the critical behavior

above the upper critical dimension dc = 4, with logarithmic corrections in d = 4. In the

context of renormalization group theory, the MFT results represent also the leading order

contribution within an expansion in terms of ǫ = 4− d. There are only two independent
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non-universal bulk amplitudes [86, 87], such as B and ξ+0 .

For a film confined by two planar walls, the MFT scaling functions of the critical

Casimir force have been determined analytically [91] and, inter alia, the critical Casimir

amplitudes for symmetry breaking BC have been found as ∆(+,+) = ∆(−,−) = −∆(+,−)/4 =

−24[K(1/
√
2)]4 u−1 = −283.61 u−1 where K is the complete elliptic integral of the first

kind.

For the geometries studied here within MFT, the Hamiltonian H[φ] has been mini-

mized numerically using a three-dimensional finite element method [101] in order to obtain

the order parameter profiles. The system is assumed to be translationally invariant along

an extra dimension in d = 4. The critical Casimir forces are determined directly from the

order parameter profile using the stress-tensor method [36, 91,102].

2.1.4 Derjaguin approximation

The Derjaguin approximation (DA) is a common technique to extend theoretically results

for planar geometry, which can be derived directly, to curved objects, which are more

common in practice. This approximation builds on the additivity of forces. Accordingly,

a curved surface is sliced into infinitesimally small surface elements and the total force

is calculated by summing up the individual planar wall-wall contributions k(a,b) from the

surface elements vis-à-vis, with (a) and (b) indicating the BC at the two surfaces. In the

case of a spherical object, its surface is divided into thin rings of radius ρ [29,35], whereas

the surface of cylindrical objects is decomposed into parallel pairs of infinitesimally narrow

stripes at lateral positions ±ρ [74, 103]. For both types of objects, the distance of each

element from a planar wall is given by D(ρ) = D + R(1 −
√
1− ρ2/R2), where D is the

closest distance between the particle surface with radius R and the planar wall. Since

the DA holds only in the limit of large particle radii R, i.e., ∆ = D/R → 0, it is

often [29,35,103] used in conjunction with the further “parabolic distance approximation”

D(ρ) ≈ D(1 + ρ2/(2RD)). For comparison, the surface-to-surface distance D(ρ) = D +

2R(1−
√

1− ρ2/R2) either between two spheres or between two cylinders increases twice

as fast with ρ; correspondingly, within the “parabolic distance approximation” one has in

these two cases D(ρ) ≈ D(1 + ρ2/(RD)). As a basic example, the DA for two cylindrical

particles is explicitly shown in Appendix A.

For Janus particles, the basic DA approach remains the same. However, for them the

force contribution switches spatially between k(+,+) = k(−,−) and k(+,−) = k(−,+) due to the

variation of the BC across the surface(s). Assuming again additivity and neglecting edge

effects, the summation over these force contributions can be performed after appropriately

subdividing the surface and grouping the surface elements according to the various pairs

of BC. For the quite involved case of two Janus spheres the procedure is outlined in

Appendix B.
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The DA for these geometries is based on the scaling function of the force for the film

geometry. For d = 4 this is adopted directly from our independent MFT calculations for

two parallel walls. In d = 3 the scaling function of the force for the film geometry has

been obtained from MC simulations [23, 24, 27, 94, 104]. Here, we rely on the numerical

estimate referred to as “approximation (i)” in Figs. 9 and 10 of Ref. [24]. The systematic

uncertainty of the overall amplitude of these scaling functions can, in the worst case,

reach up to 10%–20% [24], which also affects our predictions. However, the impact on the

scaling functions normalized by the critical amplitude ∆(+,+) is greatly reduced and only

on the relative level of at most 5% [103].

It has been shown that the DA is most reliable for t ≥ 0 [32, 74], whereas for (+,−)

BC and t < 0 clear deviations from the DA occur, which can be explained in terms of the

formation of an interface surrounding the particles [74].

2.2 Experimental non-universal contributions

2.2.1 Correlation length

The effective self-diffusion coefficient of the binary mixture is related to the size of the

correlated regions ξ via a relation analogous to Stokes-Einstein relation for Brownian

particles, but depending intricately on additional microscopic details. Notably, close to

the critical point, the diffusion coefficient decomposes into a critical and a background

contribution [105],

D = Dc +Dbg, (2.28)

similar to the viscosity that likewise separates into a critical and background part,

η = ηbg + ηc. (2.29)

Bhattacharjee et. al. [106] have worked out a crossover function H that relates η to ηbg,

η

ηbg

= exp(z H(Q0 ξ, qD/qc)), (2.30)

where z = 0.065 is a critical exponent (prediction from mode-coupling theory in good

agreement with experiments), Q0 a system-dependent wave number and qD/qc is the

ratio of two wave numbers; qD/qc → ∞ corresponds to the case of a dominant back-

ground contribution whereas qD/qc → 0 to the case of vanishing background. The

dependence of the crossover function H in Eq. (2.30) is obtained using the relation
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Figure 2.1: Effective self-diffusion coefficients for a binary mixture of 3-methylpyridine
(3MP) and heavy water (D2O) at different compositions, as a function of the normal-
ized temperature distance from the phase-coexistence temperature Tcx. Original data of
Ref. [76] acquired through dynamic light scattering of solvent fluctuations. The normal-
ized second-order autocorrelation functions of the measured intensity exhibit a decay time
τ , which is related to the self-diffusion coefficient via D = q2τ , with q being the diffraction
vector given in Ref. [76].

Q−1
0 = (1/2) e4/3

(
q−1
c + q−1

D

)
[106–108], from which the substitutions

qD ξ �→ 1

2
e4/3 Q0 ξ

(
1 +

qD
qC

)
, (2.31)

qC ξ �→ 1

2
e4/3 Q0 ξ

(
1 +

(
qD
qC

)−1
)

(2.32)

in terms of Q0 ξ and qD/qC follow. We assume that around the critical point the crossover

function H depends on the thermodynamic state only via ξ in the first variable, i.e. the

ratio qD/qc = const. is independent of φ and T . For qD/qc ≪ 1, which holds for the

present experimental system, the crossover function H depends only weakly on qD/qc.

Using Eqs. (2.29) and (2.30) one can derive the expressions for the diffusion coefficient.

The critical part is given by [105,108,109]

Dc =
R kBT

6π η ξ
K(q ξ)

(
1 + b2(q ξ)2

)z/2
, (2.33)

where η is the full viscosity, and R ≈ 1.05 is a universal dynamic amplitude ratio [107,108],

K(x) = 3/(4x2)[1+x2+(x3−x−1) arctan x] is the Kawasaki function [110], and Ref. [108]

suggests the value b = 0.55 for the correction to scaling. The background contribution to

the diffusion coefficient is given by [105,108,109]

Dbg =
kBT

16 ηbg ξ

1 + (q ξ)2

qc ξ
. (2.34)
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From this it is possible to rewrite the complete expression for the diffusion coefficient

D(ξ,φ, T ;Q0, qD/qC) =
kBT

6π ηbg(φ, T ) ξ

[
R

K(q ξ) (1 + b2(q ξ)2)
z/2

exp(z H(Q0 ξ, qD/qc))

+
1 + (q ξ)2

8
6π

e4/3 Q0 ξ (1 + (qD/qC)−1)

]
, (2.35)

as a function of ξ, φ and T , depending also on the known, universal constants R and z

and the a priori not known non-universal quantities ηbg, Q0 and the ratio qD/qc. ηbg can

be determined as function of T and φ by extrapolating off-critical measurements to the

critical region, as in Ref. [111].

We are thus left with a relation with three unknowns: ξ, Q0 and qD/qc, which we solve

via numerical root finding, by determining iteratively the correlation length ξ that yields

the same diffusion coefficient as experimentally determined; see Fig. 2.1 for data taken

from Ref. [76] and used in chapter 6. For the details of the specific implementation, see

Appendix 6.A.

2.2.2 From strong to weak adsorption preferences

The scaling form of the critical Casimir potential in Eq. (2.24) is valid for strongly adsorb-

ing particles in the limit hs = ±∞, whereas for weakly adsorbing particles, the scaling

function of the potential depends also on the surface field hs. (Specifically, Eq. (2.10) is

extended such that the surface free energy fs(t, h;hs) = t2−α gs
(
h|t|−∆, hs|t|

−∆s
)

depends

on a scaling variable hs|t|
−∆s where ∆s is a surface counterpart to the gap critical exponent

∆ [87]. Typically, the value of the surface field cannot be quantified in the experiment;

for simplicity, we will make no distinction between hs and the scaling variable.)

Theoretical and MC simulation results for the film geometry indicate [73, 112–114]

that though the amplitude of the critical Casimir force decreases, the shape of the scaling

function k‖ does not vary significantly with hs. Hence, within mean field theory and in

d = 4 the dependence on hs at the critical concentration (Σ = 0) can be reduced to a

re-mapping [73]

k
(d=4)
‖ (Θ,Σ;hs) = sd k

(d=4)
‖ (s−1

Θ,Σ) (2.36)

with a rescaling parameter s = s(hs).1 To the best of our knowledge, it has not been

studied yet whether such a rescaling holds in d = 3 and for off-critical concentrations,

though we expect a similar result but with a parameter s(hs, h) that depends also on the

bulk ordering field h.

1Note that Ref. [73] uses the notation r for the rescaling variable (instead of s), with rsd for the short

distance approximation, and y =
(

D
ξt

)1/ν
for the argument of the scaling function, which is mapped via

y → r−1/νy. In our notation Θ = D
ξt

, the mapping reads Θ → s−1Θ
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Figure 2.2: (a) Scaling function Φ
(ss,d=3)
(+,+) of the critical Casimir potential as obtained

by rescaling according to Eq. (2.36) with s = 0.84 (solid lines) for several values of Σ.
Rescaling mimics the case of particles with weak surface fields (note that it is exact only
for Σ = 0 in d = 4). The same effect can be achieved by using the temperature offset
toff = 0.14 (dashed lines) – at least for the exponentially decaying tails of the scaling
function. (b) The two rescaling methods with the same values, but shown for the pair
potential Eq. (2.41). The scaling variable Σ has been replaced by the composition c (see
section 2.2.3).

We show the scaling function Φ
(ss,d=3)
(+,+) for the scaling parameter s = 0.84 and (+,+)

BCs in Fig. 2.2(a) (solid lines). The experimentally accessible range of the scaling function

is usually limited to its exponential tail [28, 84, 115]. In this range, we found that one

may mimic the rescaling using an effective temperature offset toff that shifts the relative

temperature according to

t′ =
Tc − Texp +∆Toff

Tc

= t+ toff, (2.37)

combining effects of a weak surface field and any small remaining temperature uncer-

tainties: While the rescaling (solid lines) and the temperature offset (dashed lines) have

different functional form close the critical point Θ = 0, they give the same exponential

decay for Θ ≫ 1. We show the resulting pair potentials in Fig. 2.2(b), where we have

added the electrostatic repulsion present in the charge-stabilized colloidal system, see

next section. Within the range of Θ explored in the experiment, the two approaches are

indiscernible. We will employ toff as a fitting parameter; any finite value of toff should be

understood as indicating the presence of weak surface fields that corresponds to a rescal-

ing of the scaling function of the CCP. This rescaling is expected to depend on the bulk

field h, and therefore on the composition of the solvent.
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2.2.3 Effective pair potentials

Besides the critical Casimir forces, there are other interactions between the colloidal

particles, including van der Waals attraction and hard-core as well as screened electrostatic

repulsion of the charge-stabilized particles. Because of the large length-scale ratio between

the colloidal particles and the solvent molecules, one can ignore the discrete nature of the

solvent and use a simplified pair potential model as a background interaction potential.

This background potential represents the regular part of the free energy, which depends

on the system and microscopic details. For the comparison with experiments in chapter

6, the repulsive contribution is modeled based on the widely used Yukawa potential of

particles charge-stabilized against flocculation [9, 116,117]:

V
(el)
rep (D)

kBT
= U (el)

rep (D) = U0
exp(−κD)

κ(D + 2R)
, D = r − 2R > 0. (2.38)

where the Debye screening length κ−1 =
√
ǫkBT/(e2

∑
i ρi) (see, e.g. Ref. [118]), with e

the elementary charge, ǫ the permittivity of the solvent relative to vacuum, and ρi the

number density of ions, sets the range of the repulsion. A simplified, purely exponential

form of the repulsive pair potential,

V (el)
rep (D)/(kBT ) = U (el)

rep (D) = A exp(−κD), (2.39)

is often used for suspensions in which κ−1 ≪ R for distances 2R > D > R + κ−1, for

which all curvature effects associated with the spherical geometry of the colloidal particles

effectively drop out [11,119]. The corresponding condition κ−1 ≪ R is practically satisfied

for the experimentally relevant systems for which the Debye length is of the order of 10 nm

and the colloidal size of the order of 1µm. The amplitude A is given by [9]

A = U0/(2κR) = 2π(ǫǫ0)
−1
Υ

2κ−2R/(kBT ), (2.40)

where ǫ0 is the permittivity of the vacuum, and Υ is the surface charge density of the

colloidal particles.

The amplitude of the van der Waals dispersion forces is given by the Hamaker constant,

which depends on the dielectric properties of the materials involved in the experiment un-

der consideration [118]. In index-matched colloidal suspensions, this amplitude is strongly

reduced and the contribution will not be considered in chapter 6.

Our pair potential model for colloidal particles interacting in near-critical solvents

due to screened electrostatic and critical Casimir forces hence corresponds to the sum of
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Eqs. (2.38) and (2.24):

U(r) =




∞, D < 0

U
(el)
rep (D) +

R

D
Φ

(ss,d=3)
(+,+) (Θ,∆ → 0,Σ), D > 0.

(2.41)

Using this effective pair potential, we can calculate the second virial coefficient B2,

which for dilute suspensions is a useful measure of the strength of the attraction and

may be a useful measure for predicting of the onset of colloid aggregation. For radially

symmetric spherical particles [78], B2 is calculated from the pair potential using

B2 = 2π

∫ ∞

0

dr r2 [1− exp(−U(r))] . (2.42)

B2 occurs in the expansion of pressure p in terms of the number density ρ of the colloid

p(ρ)/(kBTρ) = 1+B2ρ+ . . . as a leading correction to the ideal gas pressure. It has been

shown that an extended law of corresponding states can be applied to colloidal suspensions

with short-ranged interactions [120, 121], meaning that different systems exhibit approx-

imately the same thermodynamic behavior if they have the same value for the reduced

second virial coefficient B∗
2 = B2/B

(hs)
2 , independent from details of the pair interaction.

Here, B(hs)
2 = 2πd3/3 is the second virial coefficient of a hard-sphere reference system with

diameter d. For systems with a soft-core repulsion and an attractive contribution, as is

the case here, the reference system is commonly chosen to be a hard-core interaction with

an effective diameter deff > 2R in order to incorporate effectively the soft-core repulsion.

The separation of the pair potential into a repulsive and attractive part is not unique. We

follow the Weeks, Chandler, and Andersen [122] (WCA) separation into an attraction

Ua(r) =




Umin, r ≤ rmin

U(r), r > rmin,
(2.43)

where Umin = U(rmin) is the minimum of the pair potential, and a repulsion

Ur(r) =




U(r)− Umin, r ≤ rmin

0, r > rmin.
(2.44)

The effective diameter is given by the repulsive contribution via [78]

deff =

∫ ∞

0

dr [1− exp(−Ur(r))] . (2.45)

Only a few attractive model interactions allow to calculate B2 analytically. For the sticky

hard-sphere model [123] of vanishing interaction range and strength given by the inverse
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stickiness parameter τ , one finds B∗
2 = 1− 1/(4τ). A gas-liquid phase transition is found

for values of τ smaller than a critical value, leading to B∗
2 < B∗

2,c = −1.212 [124]. Though

critical Casimir interactions are long-ranged (algebraically decaying with distance) right

at the critical point, in the experimentally studied regime near the critical point, the

interaction is short-ranged (exponentially decaying with distance). We can thus evaluate

the “stickiness” of the particles by comparison of the experimental results for B∗
2 with the

sticky hard-sphere model in the form of B∗
2,c.
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Chapter 3

Critical Casimir interaction between a

cylindrical colloid and a substrate

The analysis in this chapter follows Fig. 3.1 by first stating from literate the case of a ho-

mogeneous cylindrical particle above a substrate with a chemical step, then by introducing

a Janus particle of type A (formally defined below) above a homogeneous substrate before

considering a type A Janus particle above a substrate step, which will later connect to the

case of two Janus particles. For type B, we first revisit the case of a homogeneous cylinder

above a substrate with a chemical step and calculate the torque acting on the particle.

This configuration can then be used as a building block to construct the situation of a

type B Janus particle above a striped substrate.

We briefly clarify the ambiguous definition of a (hyper-)cylinder in higher dimensions

(d ≥ 4). In the present context, a cylinder in d = 4 is a geometrical object with radius

R and two lengths L and L4, defined by the volume x2 + y2 ≤ R2, 0 ≤ z ≤ L and

0 ≤ w ≤ L4, where w is the coordinate in the extra dimension and L4 is the length in

that direction1. We will use the (d − 2) dimensional length L in order to denote L = L

in d = 3 and L = L× L4 in d = 4.

The Janus character due to the BCs at the surface of a cylinder can be realized in

two distinct ways in d = 3 [see Fig. 3.1] and in three ways in d = 4. The two possibilities

in d = 3 are evident with the chemical step, separating two domains of BCs, either

running along the length of the cylinder, cutting it into two half-cylinders [type A, see

Fig. 3.1(b)], or perpendicular to the length of the cylinder, cutting it in two cylinders of

half the length [type B, see Fig. 3.1(d)]. We will demonstrate that the latter case can

be constructed within DA by a straightforward combination of two cylinders (see also

Ref. [74]). The third case, occurring for a cylinder in d = 4, has the step in the BCs in

1Another definition of the volume of a hypercylinder would be x2 + y2 + z2 ≤ R2, 0 ≤ w ≤ L4,
which we dismiss for formal reasons: The projection of this object onto three dimensions renders a sphere
instead of a cylinder. Thus this object does not fulfill the expectation for a basic extension of a cylinder
from three to four dimensions.

33
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Figure 3.1: Illustration of the geometries and the boundary conditions (BCs) considered
in this chapter, divided by the two different realizations (denoted as type A and B) of a
cylindrical Janus particle in d = 3: (a) Sideview sketches of all types of configurations
considered working towards Janus type A in Sec. 3.1: chemically homogeneous cylinder
vs. substrate with a chemical step — Type A Janus cylinder vs. homogeneous substrate
— Type A Janus cylinder vs. substrate with a chemical step (same as in (b)). (b)
Sec. 3.2: Janus cylinder of type A with the chemical step along the cylinder axis, shown
in proximity and parallel to a planar substrate. The orientation of the Janus cylinder is
given by the angle ϑ between the normal of the equatorial plane of the Janus cylinder
and the substrate normal. The substrate features a chemical step parallel to the cylinder
at which the adsorption preference of the substrate changes discontinuously along the
lateral direction x from (−) BC at x < 0 to (+) BC at x ≥ 0. (c) Towards the second
variant in Sec. 3.3: cylinder of radius R and length L at a surface-to-surface distance
D to a chemical step with the cylinder axis being rotated by an angle α ∈ [0, π/2] with
respect to the chemical step at x = 0. (d) Sec. 3.4: Janus cylinder of type B with the
chemical step perpendicular to the axis of the cylinder, close to a periodically striped
substrate. The Janus cylinder exhibits opposing (+) and (−) BCs at its two halves, and
the substrate consists of stripes of width L1 with (−) BC neighboring stripes of width L2

with (+) BC such that the periodicity is P = L1 + L2. Moreover, the cylinder is rotated
by an angle α with respect to the chemical steps of the stripes. The vertical projection
of the cylinder onto the substrate surface forms a 2R× L rectangle (dashed lines). In all
cases with at least one chemical step on the substrate, the center of the colloid is located
at x = X with respect to the step and z = D +R, while the y coordinate is irrelevant.

the extra dimension, rendering two equal sized hypercylinders with different BCs. This

is of limited practical use regarding the comparison with results in d = 3. We therefore

restrict our description to the “natural” choices in d = 3, denoted as types A and B.
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3.1 Janus cylinder (type A) above a homogeneous sub-

strate

3.1.1 Implications of the DA

In order to set the stage, we recall from previous works the case of a chemically homo-

geneous cylinder close to a substrate with a chemical step (see Fig. 3.1(a)). The lateral

position of the cylinder axis relative to a chemical step in parallel on the substrate is

denoted by X (compare Fig. 3.1(b)). Moreover, we always consider the cylinder to be

parallel to the substrate (and to the step). The critical Casimir force F
(cs)

(X,D,R, T )

between a homogeneous cylindrical particle of length L and radius R, and a substrate

with a step, at a lateral position X, has the scaling form (see Eq. (D1) in Appendix D of

Ref. [103])

F
(cs)

(X,D,R, T ) = kBT
L

Rd−1

K
(cs)

(Ξ,∆,Θ)

∆d−1/2
, (3.1)

with the dimensionless scaling variables Ξ = X/
√
RD, ∆ = D/R, and Θ = ±D/ξ±(T )

(with sign(Θ) = sign(t)) in d dimensions. The scaling function K
(cs)

(Ξ,∆,Θ) of the force

F
(cs) can be decomposed as [103]

K
(cs)

(Ξ,∆,Θ) =




K

(cs)
(+,+)(∆,Θ)−∆K

(cs)
(|Ξ|,∆,Θ) for Ξ > 0,

K
(cs)
(+,−)(∆,Θ) +∆K

(cs)
(|Ξ|,∆,Θ) for Ξ ≤ 0,

(3.2)

where (see Eq. (D3) in Ref. [103])

K
(cs)
(+,±)(∆ → 0,Θ) =

√
2

∫ ∞

1

dα
k(+,±)(αΘ)

αd
√
α− 1

(3.3)

is the scaling function of the force within DA for a homogeneous cylindrical particle (+

or −) close to a homogeneous substrate (+ or −), and thus does not depend on Ξ. (Note

that K(cs)
(+,±) is

√
2 larger than the scaling function of the force between two homogeneous

cylinders derived within DA in Appendix A, see Eq. (A.2).) The scaling function k(+,±)

for the slab geometry serves as an input, which is obtained either from MFT calculations

for the film geometry in d = 4 or from an interpolation of MC data provided in Ref. [24]

for d = 3. The choice of signs in Eq. (3.2) reflects Ξ ≷ 0, chosen such that the direction

of positive X points to the side of the step with the same BC as the colloid (see Fig. 3.1)

which is (+) in the present notation.

The excess scaling function ∆K
(cs) involving the step position X is given within DA



36 3. Cylindrical colloid and substrate

by (see Eq. (D6) in Ref. [103])

∆K
(cs)

(|Ξ|,∆ → 0,Θ) =
1√
2

∫ ∞

1+Ξ2/2

dα
∆k(αΘ)

αd
√
α− 1

, (3.4)

where ∆k = k(+,+) − k(+,−) < 0 is the difference between the slab scaling functions for

distinct BCs, which is negative for all temperatures Θ. Note that ∆K
(cs) depends only

on the absolute value of the scaled distance Ξ, because the inverted position is equivalent

to a switch of the BCs of the step, which is covered by Eq. (3.2).

As a function of the scaled temperature Θ, in Fig. 3.2(a) we compare the scaling func-

tion of the force K
(cs) obtained within DA for d = 4 via Eqs. (3.2)–(3.4) (dashed curves)

with the corresponding full MFT results (solid lines) determined by numerical minimiza-

tion of the Ginzburg-Landau-Wilson Hamiltonian given in Eq. (2.27) for this particular

geometry and BCs. As expected from Ref. [103], in Fig. 3.2(a) the DA scaling function

approximates the full MFT results well for the geometry of a homogeneous cylinder above

a substrate step, shown for various scaled step positions Ξ on both sides of the step.

In accordance with the second sketch in Fig. 3.1(a), we now go beyond the previous

works and consider a Janus cylinder, but placed above a homogeneous substrate. The

corresponding critical Casimir force F
(cs)

(ϑ,∆,Θ) depends on the orientation angle ϑ

(Fig. 3.1(b)) of the Janus cylinder. The scaling form remains the same as in the previous

case, i.e.,

F
(cs)

(ϑ, D,R, T ) = kBT
L

Rd−1

K
(cs)

(ϑ,∆,Θ)

∆d−1/2
. (3.5)

Comparing in Fig. 3.1(a) the sketch for the case of a homogeneous cylinder near a

stepped substrate with the case of a Janus cylinder above a homogeneous substrate, one

realizes that for a suitable orientation ϑ of the Janus cylinder the same pairings of BC

between the substrate and the particle enter the DA. Projecting the equatorial plane of a

Janus cylinder onto a homogeneous substrate yields a distance X = XJ = R cosϑ between

the (left) edge of the projection and the projection of the cylinder axis (Fig. 3.1(b)).

Conversely, the projection of the axis of a homogeneous cylinder onto a substrate with

a chemical step renders a distance X between them (Fig. 3.1(b)). Choosing X = XJ =

R cosϑ, within DA the sums of the surface elements vis-à-vis for these two configurations

are the same and thus yield the same force. In terms of the present scaling function

the relation X = XJ translates into cosϑ = Ξ
√
∆. This implies that within DA the

scaling function K
(cs) of the force between a Janus cylinder and a homogeneous substrate

follows from Eqs. (3.2–3.4) upon substituting X = R cosϑ therein. Figure 3.2(b) shows

for a Janus cylinder next to a homogeneous wall as function of the scaled temperature Θ

the full MFT results (solid lines) for various orientations ϑ (chosen independently from

Fig. 3.2(a)). The corresponding DA scaling functions are shown as dashed lines. In

Fig. 3.2(b), for the same distance ∆ = 1/5, the DA scaling functions appear to deviate
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Figure 3.2: (a) Scaling function K
(cs) of the force between a homogeneous cylindrical

particle above a substrate with a chemical step at various scaled lateral positions Ξ. (b)
Scaling function of the force K

(cs) between a Janus cylinder and a homogeneous substrate
for various orientations ϑ. The full MFT results are shown as solid lines, whereas the
corresponding DA scaling functions are shown as dashed lines. The DA yields a qualita-
tively adequate approximation for the MFT scaling functions, with varying quantitative
deviations in (a) and (b).

slightly more from the corresponding full MFT results than those in Fig. 3.2(a).

In order to asses quantitatively the difference between DA and full MFT, it is more

suitable to compare the corresponding scaling functions K
(cs) and K

(cs) of the force for

fixed scaled temperature Θ as function of the scaling variable Ξ = X/
√
RD, which either

corresponds to the lateral position X of the axis of a homogeneous cylinder relative to

a chemical step on the substrate, or to the orientation cosϑ = Ξ
√
∆ of a Janus cylinder

above a homogeneous substrate. Accordingly, for the two scaled temperatures Θ = 1

and Θ = 5.65 in Fig. 3.3 we show the full MFT scaling function K
(cs)

(Ξ,∆,Θ) of the

force for the homogeneous cylinder-step geometry [Eq. (3.1)] as solid lines and the full

MFT scaling function K
(cs)

(ϑ,∆,Θ) of a Janus cylinder next to a homogeneous substrate

[Eq. (3.5)] as dashed lines. In the spirit of the aforementioned equivalence within DA,

the orientation angle ϑ of the Janus cylinder is related to the distance X between the

projected axis of a homogeneous cylinder and the chemical step at the wall via the DA

relation Ξ = ∆−1/2 cosϑ. For ∆ = 1 in Fig. 3.3(a), there is a visible difference between

the two scaling functions. However, for ∆ = 1/5 in Fig. 3.3(b), which is closer to the DA

limit ∆ ≪ 1, the difference is considerably smaller. For comparison, in gray the scaling

function of the force within DA is shown, which approximates both MFT scaling functions

for ∆ ≪ 1.

Thus it appears that the MFT results of both geometries approach each other in

the limit of ∆ → 0. This raises the question whether the relation between the two

configurations, as implied by DA, reflects a more general foundation beyond DA.
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Figure 3.3: Comparison of the scaling functions of the force K
(cs) between a homogeneous

cylinder above a chemical step on the substrate (solid lines) and K
(cs) for a Janus cylinder

above a homogeneous substrate (dashed lines). The DA (valid for ∆ ≪ 1) implies the same
scaling function in both cases (gray lines), provided the tilt angle ϑ of the Janus cylinder
(see Fig. 3.1(b)) is related to the scaled step position on the substrate as Ξ = ∆−1/2 cosϑ.
The full mean field results for K(cs) (step) and K

(cs) (Janus) are shown for ∆ = 1 in (a) and
∆ = 1/5 in (b), each for the two scaled temperatures Θ = 1 (red) and Θ = 5.65 (green).
From (a) it can be seen that within full MFT the correspondence between the case of a
homogeneous cylinder above a chemical step on the substrate and a Janus particle above
a homogeneous substrate does not hold in general. It holds roughly for Θ = 5.65 and
further away from Tc, but not close to Tc (such as for Θ = 1). However, for ∆ = 1/5 in
(b), i.e., close to the DA limit of ∆ ≪ 1, the correspondence of the two scaling functions
within DA carries over to the MFT results. As a guide to the eye, visualizations of the
geometry corresponding to certain values of Ξ are provided at the top of the panels.

3.1.2 Comparison of forces in terms of order parameter profiles

Contrary to the DA, the MFT minimization technique renders equilibrium order parame-

ter profiles for each scaled temperature Θ. Nonetheless, the DA implies a certain structure

of the order parameter profile, even though in general it is ignorant concerning the profile.

The reduced MFT order parameter profiles m(r) for a homogeneous cylinder above a

chemical step are depicted in Fig. 3.4(a) for Θ = 1 and in Fig. 3.4(b) for Θ = 5.65. In this

example, the geometric parameters have been chosen such that D = R, i.e., ∆ = 1; the

colloid with (+) BC is positioned at X = −0.9R on the left side of the step with opposite

(−) BC there, and the cylinder axis is normal to the cut plane of the order parameter

profiles, which are invariant along the cylinder axis. The profiles are taken for Θ > 0 at

the critical concentration, i.e., in the mixed phase, in which the order parameter differs

from zero primarily only near the surfaces. Due to the opposing BCs on the colloid and on

the left half of the substrate surface, the profile must cross zero (green line), although this

does not indicate the formation of an actual interface. The gray line represents the zero

crossing (at the same temperature) of the profile between a homogeneous particle and a
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(b)Θ = 5.65, ∆ = 1
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(d)Θ = 5.65, ∆ = 1

ϑ

Figure 3.4: Reduced order parameter profiles m as obtained from MFT in d = 4 and in
units of the amplitude B of the bulk order parameter φb = B |t|1/2. The values of the
order parameter are color coded, with red for positive values and blue for negative values,
following the convention for the BCs in Fig. 3.1. For Θ = 1 (a) depicts a homogeneous
cylinder with (+) BC at X = −0.9R above a substrate with a chemical step between (+)
BC for x > 0 and (−) BC for x < 0. Panel (b) features the same geometry at Θ = 5.65,
i.e., further away from Tc. For comparison, in (c) a Janus cylinder above a homogeneous
substrate with (+) BC is shown for Θ = 1 and in (d) for Θ = 5.65. The orientation of
the Janus cylinder is taken as ϑ = 130◦, so that cosϑ = −0.64. We have included certain
isolines of the profile as a guide to the eye. The green line represents the zero crossing of
the profiles, which has a special significance discussed in the main text. The gray curve
indicates the zero crossing expected (at the same temperate) for the profile in the case
that both the particle and the substrate are homogeneous, but with opposite BC.

homogeneous substrate, but with opposing BCs. In the case of a chemical step on the

substrate, the DA implicitly assumes that the order parameter profile follows that for a

homogeneous substrate up to the lateral position x = 0 of the step (Figs. 3.4(a) and (b)).

Generally, Figs. 3.4(a) and (b) show that the actual zero crossing (green) follows closely

the homogeneous case (gray), as assumed by the DA, up to a certain lateral position.
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Figure 3.5: A generic sketch depicting the essential features of a Janus cylinder at distance
D above a homogeneous substrate, tilted by an angle ϑ, akin to Figs. 3.4(c) and (d). An
example for the actual zero crossing line of the order parameter profile, as found within
full MFT, is shown in green. The zero crossing implied by the DA is shown in gray (solid
light gray line, light and dark gray vertical dotted lines). In DA, the zero crossing is
taken into account up to the scaled position Ξ = ∆−1/2 cosϑ of the step in BC of the
Janus particle, projected onto the substrate along the normal of the substrate (dark gray
dotted line). The improved DA relation Ξ̃(ϑ) in Eq. (3.6) follows the same principle, but
applied to a fictitious particle of increased radius R+pD, with the rescaling parameter p,
resulting in the solid light gray zero crossing line and the light gray vertical dotted line.
The inset provides a magnified view of the relevant features.

However, the point of deviation between the green and the gray lines occurs at a lateral

position which is to the left of the step position, because the actual zero crossing line

(green) smoothly bends towards the step. The curvature of this bending depends on the

temperature and broadens upon increasing the correlation length (i.e., decreasing Θ).

In Fig. 3.4(c) [(d)], the configuration of a Janus cylinder above a homogeneous sub-

strate is shown in comparison to (a) [(b)], for the scaled temperature Θ = 1 [Θ = 5.65].

The orientation ϑ of the Janus cylinder has been chosen such that the configuration (a)

[(b)] and the configuration (c) [(d)] yield forces within MFT which are approximately

equal to each other. For both scaled temperatures, this was found to be the case for

ϑ ≈ 130◦, which deviates significantly from the DA relation ϑ = cos−1(X/R) = 154◦ for

X/R = −0.9. Such a deviation is expected to occur away from the DA limit of ∆ ≪ 1

[compare Figs. 3.3(a) and (b)]. For the Janus particles, we find that the zero crossing of

the profiles (green line) again follows the one for a homogeneous colloid (gray line), but

now bending towards the Janus equator on the particle. A systematic analysis reveals

that one always finds equal values of the force in MFT for the step on the surface and

for the Janus particle whenever the bending and the extension of the zero crossing line

are closely mirroring each other in the two geometries. The reason for the equality of

these forces within MFT goes right back to Eq. (2.27). The Hamiltonian depends on the

gradient of the order parameter profile, which relates to the bending of the zero line, but

only via its square, which is independent of the direction of the bending. In Figs. 3.4(c)



3. Cylindrical colloid and substrate 41

and (d) there is also an upper green zero crossing line, which is absent in (a) and (b).

This line contributes only little to the force because it is relatively straight and because

in that region the order parameter is small.

Based on the knowledge of the full MFT order parameter profiles, we construct a

phenomenological relation beyond the DA relation of Ξ = ∆−1/2 cosϑ, which seeks to

incorporate the bending of the zero crossing line. The base of this idea follows from

Ref. [74], where a similar principle was used successfully in order to reconcile DA with

MFT results.

In Fig. 3.5, we sketch the essential features of a Janus cylinder of radius R, close to

a homogeneous wall at distance D; the actual zero crossing line of the order parameter

profile is shown in green (which is taken from Fig. 3.4(c), but here serves to represent a

generic case), and the zero crossing implied by DA is shown as a solid light gray line. The

dotted, vertical dark gray line indicates the original DA relation, which cuts off the solid

gray zero crossing line (of the homogeneous system with opposing BC at the colloid and

substrate surface) at the projected position of the Janus equator. The visual agreement

of the zero crossing lines can be improved by considering the DA for a fictitious scaled

colloid (the blue and red semi-rings), with an effective radius of R̃ = R + pD and an

effective surface-to-surface distance D̃ = (1 − p)D, so that the zero crossing line follows

the solid light gray line. This yields an improved scaled position (dotted, vertical light

gray line)

Ξ̃(ϑ) = ∆̃
−1/2 cos(ϑ) =

√
1

1− p
·

√
1

∆
+ p cos(ϑ), (3.6)

where p is a free parameter which describes the rescaling of the particle size.

Independently, we have calculated the scaling functions of the force within full MFT as

function of the position X of a homogeneous cylinder relative to a stepped substrate and

for the orientation ϑ for the Janus cylinder, at fixed scaled temperatures Θ and distances

∆. Via linear interpolation within the two MFT scaling functions, we have extracted

those values of X and ϑ for which both scaling functions of the force render the same

value, which in turn renders a relation between the numeric values of ϑ and X. The

proposed model Ξ̃(ϑ) in Eq. (3.6) can be checked against this discrete set {Ξ,ϑ}. We note

that the projected, scaled step position Ξ̃ is proportional to ∆̃−1/2 > ∆−1/2 for p > 0, i.e.,

for the same orientation ϑ, the scaled step position Ξ̃ is larger than Ξ. However, for values

of Ξ ≫ 1, the scaling function of the force saturates (see Fig. 3.3) and relating Ξ and ϑ

numerically via the force within MFT becomes rather error-prone. This discredits fitting

assumptions beyond linear order. However, the relation in Eq. (3.6), linearized around

ϑ ≈ π
2

by using cos(ϑ) ≈ π
2
− ϑ, results in a reasonable fit for p ≈ 1/4. Within fitting

errors, the fit parameter p does not depend noticeably on the scaled temperature Θ and

the scaling variable ∆. The value of the rescaling parameter p = 1/4 is in line with the

presentation in Fig. 3.5, as it places the surface of the fictitious colloid halfway between
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Figure 3.6: Same as Fig. 3.3 but replacing Ξ by Ξ̃ = ∆̃−1/2 cosϑ (Eq. (3.6) with p = 1/4)
for K

(cs). In this case, the correspondence between the scaling functions of the two
configurations and holds within full MFT, for values of ∆ outside the DA limit
∆ ≪ 1.

the physical particle and the zero crossing line.

For comparison, Fig. 3.6 demonstrates the improved performance of the phenomeno-

logical relation Ξ̃ = ∆̃−1/2 cosϑ in Eq. (3.6) with p = 1/4 compared with that of the

approach used in Fig. 3.3, even for ∆ = 1.

As a final remark, we emphasize that, in the above approach, within DA we counted

the force to be normal to the substrate. An approach alternative to the DA considers

the forces to be normal to the surface of the particle [125], which, however, leads to the

same formal expressions for the critical Casimir forces. The improved DA relation in

Eq. (3.6) can be interpreted as a partial consideration of forces directed normal to the

particle surface, with p being a weighting factor for the two force directions (see Fig. 3.5).

3.2 Janus cylinder (type A) above a chemical step

Here we analyze fully the case depicted in Fig. 3.1(b) of a single cylindrical Janus particle

floating above a chemical step on the substrate. The cylindrical particle is taken to be

oriented horizontally and all chemical steps are parallel to each other. Within DA, the

configuration of a Janus particle above a step relates to the case of two walls each endowed

with a chemical step, shifted with respect to each other [126], but accounting for distinct

distance relations between the surface elements appearing in DA. Since the presence of

two chemical steps can have a profound effect on the order parameter profile, one has to

check whether this spoils the usefulness of the relation introduced in Eq. (3.6).

Within DA and for special configurations, the scaling function of the force K
(cs)

(ϑ,Ξ,

∆ ≪ 1,Θ) between a chemical step on the substrate and a Janus particle with orientation

ϑ and its center shifted by Ξ = X/
√
RD from the substrate step, attains certain limiting
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expressions. For an upright orientation ϑ = 0 it has the same value as the scaling function

K
(cs)

(Ξ,∆ ≪ 1,Θ) of the force between a homogeneous cylinder and a stepped substrate.

If the Janus cylinder is positioned far away from the step, i.e., Ξ ≫ 1, K(cs) reduces to the

scaling function of a Janus cylinder above a homogeneous substrate, so that K(cs)
(ϑ,Ξ →

∞,∆ ≪ 1,Θ) = K
(cs)

(ϑ,∆ ≪ 1,Θ) = K
(cs)

(Ξ(ϑ),∆ ≪ 1,Θ) (where Ξ(ϑ) = ∆−1/2 cosϑ

or is given by Eq. (3.6); analogously for Ξ → −∞).

Thus, similar to K
(cs) in Eqs. (3.2) and (3.3), the scaling function K

(cs) can be de-

composed as K
(cs)

(ϑ,Ξ,∆,Θ) = K
(cs)
(+,±) ∓∆K

(cs)
(ϑ, |Ξ|,∆,Θ), where K

(cs)
(+,±) again refers

to the scaling function of the force between a homogeneous cylinder and a homogeneous

substrate (the rules when to use the upper and lower signs depend on ϑ and Ξ; see below):

K
(cs)
(+,±)(∆ ≪ 1,Θ) =

√
2

∫ 1+∆−1/2

1

dα
k(+,±)(αΘ)

αd
√
α− 1

. (3.7)

However, here the rhs of Eq. (3.7) carries a finite upper limit of integration, i.e., without

explicitly setting ∆ → 0. But the expression is still valid only in the DA limit ∆ ≪ 1.

The dependence on nonzero values of ∆ ensures consistency with the scaling function

of the excess force ∆K
(cs)

(ϑ, |Ξ|,∆ ≪ 1,Θ). The latter depends on the position of the

Janus cylinder relative to the substrate step (again only via the scaled absolute value

|Ξ| of the distance) and on the orientation ϑ ∈ [−π, π). The sign of the position Ξ and

the sign of the orientation ϑ can be chosen according to different conventions. Here, the

coordinates are chosen such that ϑ > 0 rotates the normal of the equatorial plane of the

Janus particle towards that side of the substrate which has the same BC, i.e., here, the

rotation is counter-clockwise towards the side Ξ < 0 (see Fig. 3.1(b)). We note that the

force is invariant under reflection at the plane normal to the substrate and containing the

cylinder axis (ϑ → −ϑ, Ξ → −Ξ and exchange of BC on the substrate), i.e., K(cs)
= K

(cs).

Utilizing this symmetry, the decomposition reads

K
(cs)

(ϑ,Ξ,∆,Θ) =




K

(cs)
(+,+)(∆,Θ)−∆K

(cs)
(ϑ, |Ξ|,∆,Θ) for Ξ(ϑ)Ξ > 0,

K
(cs)
(+,−)(∆,Θ) +∆K

(cs)
(−ϑ, |Ξ|,∆,Θ) for Ξ(ϑ)Ξ ≤ 0.

(3.8)

(Note that, as indicated, in Eq. (3.8), only in the first factor of the conditions, Ξ is

replaced by Ξ(ϑ) = ∆−1/2 cosϑ or, alternatively, by Eq. (3.6).) The condition Ξ(ϑ)Ξ ≷ 0

considers in which direction the Janus cylinder is tilting (e.g., Ξ(ϑ) ∝ cosϑ > 0 ⇒
upwards) and over which side of the step it levitates (via Ξ). Additionally, the equivalences

k(+,+) = k(−,−) and k(+,−) = k(−,+) of the interaction between homogeneous, planar, and

parallel walls lead to an invariance of the scaling function K
(cs) upon inverting the normal

of the particle, i.e., ϑ → ϑ ± π (such that ϑ ∈ [−π, π)) and exchanging the BC of the

substrate step (but without changing the position Ξ), so that K
(cs)

= K
(cs).
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The excess scaling function ∆K
(cs) is obtained from the careful DA summation of the

corresponding surface elements:

∆K
(cs)

(ϑ,Ξ,∆ ≪ 1,Θ) =

{
+1, if |Ξ(ϑ)| < |Ξ| or ϑ < 0,

−1, otherwise

}

×

(
1√
2

∫ 1+∆−1/2

1+Ξ(ϑ)2/2

dα
∆k(αΘ)

αd
√
α− 1

− sign(ϑ)√
2

∫ 1+∆−1/2

1+Ξ2/2

dα
∆k(αΘ)

αd
√
α− 1

)
, (3.9)

which has the structure of the difference between two expressions, resembling the scaling

function corresponding to the chemical step on the substrate as in Eq. (3.4). The intricate

prefactor effectively exchanges Ξ(ϑ) ↔ Ξ if |Ξ(ϑ)| ≥ |Ξ|, which affects the sign only if

ϑ ≥ 0. Note that ∆K
(cs) depends on ϑ only via the sign and via |Ξ(ϑ)| ∝ | cosϑ|. One

can verify that both the symmetry operations of reflection (ϑ → −ϑ) as well as inversion

(ϑ → ϑ ± π such that ϑ ∈ [−π, π)) yield the same result for the excess scaling function,

i.e., that ∆K
(cs)

(−ϑ, . . .) = ∆K
(cs)

(ϑ ± π, . . .). Note that neither reflecting the position

Ξ → −Ξ nor exchanging the BC affects ∆K
(cs), but only K

(cs).

In Fig. 3.7, we compare the DA with the full MFT results for the scaling function K
(cs)

for two separations ∆ = 1 in (a) and ∆ = 1/5 in (b), with the step on the substrate fixed at

Ξ = 0 (red sets of squares and lines). Within DA, this represents a peculiar configuration

in that the orientations ϑ = ±π/2 of the Janus particle correspond to configurations in

which both the step on the particle and the one on the substrate share a common vertical

plane (see the sketches below the horizontal axis). At ϑ = −π/2, due to opposing BC

between all DA surface elements, the force (red lines) is repulsive (> 0). For ∆ = 1,

around ϑ = −π/2 the DA result slightly overestimates the MFT result. Similarly, the

special orientation at ϑ = π/2 leads to an attractive force (< 0); here, however, and for

∆ = 1, DA clearly underestimates the MFT results. The cusplike shape of the scaling

function around the maximum and minimum is an artifact of the DA; MFT renders a

smooth and broader curve. In general, the MFT results are slightly more attractive and

less repulsive than predicted by DA. Nonetheless, for ∆ ≪ 1 [Fig. 3.7(b)] DA and MFT

agree rather well, even at ϑ = ±π/2. This is reassuring because for these orientations the

shortcomings of the DA are particularly pronounced. As implied by the DA and in view

of its reliability, the overall shape of the scaling function K
(cs)

(ϑ,Ξ = 0,∆ → 0,Θ), within

MFT and as a function of ϑ, is consistent with the dependence of the scaling function of

the force between two patterned, planar substrates on a lateral shift (see Ref. [126]).

We point out that the DA curves shown in Fig. 3.7 are based on the improved relation

given by Eq. (3.6). For the original DA relation Ξ(ϑ) = ∆−1/2 cosϑ, the agreement

between DA and MFT turns out to be poorer in Fig. 3.7(a), i.e., for ∆ = 1, but remains

comparable to the good agreement evident in Fig. 3.7(b), i.e., for ∆ = 1/5 (see also

Fig. 3.3). We find that the explicit dependence on ∆ introduced by Eqs. (3.6) and (3.7)
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Figure 3.7: (a) Scaling function K
(cs) of the force between a Janus cylinder and a step

on the substrate (in red), as a function of the particle orientation ϑ for Ξ = 0. The solid
lines represent the results within DA, whereas the squares correspond to numerical MFT
results for a separation ∆ = D/R = 1. The green lines and triangles represent the scaling
function K

(cs) of the force which corresponds to the case of a homogeneous substrate, or
equally, to the case of a step that is far away from the particle, i.e., |Ξ| ≫ 1 [see Eq.
(3.2)]. (b) The same, but for ∆ = 1/5. Both in (a) and (b), the MFT values of the
scaling functions K(cs)

(+,+) and K
(cs)
(+,−) [Eq. (3.7)] for the fully attractive (< 0) and repulsive

(> 0) cases, respectively, of a homogeneous cylinder and substrate are indicated by dotted
golden lines. At the top of the panels, we indicate configurations with the Janus cylinder
above a homogeneous substrate corresponding to certain points of the green curve for
Ξ ≫ 1. Similarly, at the bottom of the panels, configurations are shown with the Janus
particle directly above the step corresponding to the red curve, i.e., Ξ = 0.

does not improve the agreement between DA and MFT for the strongly attractive or

repulsive configurations: in Fig. 3.7(a) see the difference between the green line and the

green symbols as well as the dotted golden lines which refer to MFT results for K(cs)
(+,+) < 0

and K
(cs)
(+,−) > 0. However, the dependence on ∆ of the MFT scaling functions for the

case of a homogeneous cylinder and substrate has a different cause [74]. Within DA, a

dependence on ∆ has been introduced via the DA relation Ξ(ϑ) = ∆−1/2 cosϑ or via

Eq. (3.6) along with the dependence on ϑ. Thus, the good agreement between the slopes

of the DA and MFT scaling functions shown in Fig. 3.7 as a function of ϑ for different ∆

indicates the consistency of these relations beyond the DA limit.

From these findings we conclude that the DA, although for ∆ � 1 it deviates quan-

titatively from the MFT results in d = 4, exhibits no basic flaws. In fact, studying the

implication of the use of the DA in this section has revealed that the parameters Ξ and

ϑ, associated with the positions of the chemical steps on the substrate and on the Janus

cylinder, are related according to Ξ(ϑ) = ∆−1/2 cosϑ. The modified scaling variable Ξ̃(ϑ)

(Eq. (3.6)) improves quantitatively the agreement with the full MFT results. We consider

these properties as a justification for the continued study of critical Casimir interactions

based on the DA, even in the case of Janus particles.
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3.3 Critical Casimir torque on a homogeneous cylinder

As outlined, we once more visit the case of a homogeneous cylindrical particle close to

a substrate with a chemical step. The critical Casimir potential can be obtained from

the force F
(cs) (Eq. (3.1)), via V

(cs)
(D, . . .) ≡

∫∞
D

dz F (cs)
(z, . . .). With now considering

additionally a dependence on the angle α as shown in Fig. 3.1(c), the critical Casimir

potential can be written in the scaling form

V
(cs)

(X,α, D,R, L, T ) = kBT
LR1/2

Dd−3/2
Φ

(cs)
(Ξ,α,Θ,∆,L ) (3.10)

with the scaling variables Ξ = X/
√
RD and L = L/

√
RD. The scaling function of the

potential for the step geometry

Φ
(cs)

(Ξ,α,Θ,∆,L ) =
Φ

(cs)
(a<,b)(Θ,∆) + Φ

(cs)
(a>,b)(Θ,∆)

2

+
Φ

(cs)
(a<,b)(Θ,∆)− Φ

(cs)
(a>,b)(Θ,∆)

2
ω(a<|a>,b)(Ξ,α,Θ,∆,L ), (3.11)

is conveniently written using a relative scaling function ω(a<|a>,b) of the chemical step

between the scaling functions of the laterally homogeneous substrates

Φ
(cs)
(a,b)(Θ,∆ → 0) =

∞∫

1

dz
K

(cs)
(+,±)(∆ → 0, zΘ)

zd−1/2
= 2

√
2

∞∫

1

dν
√
ν − 1 ν−d k(a,b)(Θν), (3.12)

which are attained for X → ±∞. (Note that, following from the scaling function K
(cs)
(+,±) of

the force in Eq. (3.3), Φ(cs)
(a,b) for a cylindrical particle above a substrate is larger by a factor√

2 than the scaling function of the potential Φ(cc)
(a,b) between two homogeneous cylinders

in Eq. (A.7).) Thus, ω(a<|a>,b) crosses over from +1 at Ξ → −∞ to −1 at Ξ → +∞. The

full result for the relative scaling function ω(a<|a>,b) was derived previously in Refs. [74]

and [127].

Since the critical Casimir potential depends on the angle α between the axis of the

cylinder and the chemical step, a critical Casimir torque τ (cs) acting on the particle arises.

The torque is a vector in the direction of the substrate normal with τ
(cs)

= d
dα
V

(cs) as the

only nonzero component. The orientation of the particle being parallel to the chemical

step corresponds to α = 0◦, while an orthogonal orientation corresponds to α = 90◦, so

that a positive torque τ
(cs), i.e., an increase of V

(cs) upon an increase of α, leads to a

preferred parallel alignment and negative torques to the preference of the perpendicular

orientation.

Based on Eq. (3.10), the critical Casimir torque acting on the cylindrical particle can
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be written in the following scaling form:

τ
(cs)

(X,α, D,R, L, T ) = kBT
LR1/2

Dd−3/2
Ms(Ξ,α,Θ,∆,L ), (3.13)

where the scaling function Ms follows from Eq. (3.11) to be

Ms(Ξ,α,Θ,∆,L ) =
Φ

(cs)
(a<,b)(Θ,∆)− Φ

(cs)
(a>,b)(Θ,∆)

2

d

dα
ω(a<|a>,b)(Ξ,α,Θ,∆,L ). (3.14)

Now within this thesis, based on the expressions for ω(a<|a>,b) in Refs. [74, 127], we have

newly derived the alignment of a cylindrical colloid close to a chemical step as presented

in the following. The dependence on the relative position X/L = Ξ/L is illustrated in

Fig. 3.8 where we present the scaling function Ms as obtained within the DA for d = 3 as a

function of the rotation angle α with the temperature fixed at its critical value, i.e., Θ = 0.

The relative position X/L = Ξ/L is independent of the aspect ratio L/R = L
√
∆ of

the particle; therefore the shape of the particle affects the torque only through the scaling

variable L = L/
√
RD. For negative values of Ξ, the scaling function can be obtained via

a point reflection, i.e., Ms(Ξ < 0, · · · ) = −Ms(−Ξ, · · · ).

Our results show that for large aspect ratios L/R (i.e., rod-like particles), for which

L ≫ 1, the torque acting on the colloid is positive for 0 < X/L = Ξ/L < 0.5 and

basically vanishes for X/L = Ξ/L > 0.5 for all rotation angles α ∈ [0, π/2]. As can be

seen in Fig. 3.8(a) for a particle with L = 10, the torque vanishes when the particle is

orientated parallel (α = 0◦) or perpendicular (α = 90◦) relative to the chemical step on

the substrate. For X/L > 0, the torque is positive and reaches a maximum value at an

intermediate angle, so that the orientation with α = 0 is stable against rotations of the

particle, whereas the perpendicular orientation is unstable and thus the rod-like particles

with L = 10 prefer to orientate themselves parallel to the chemical step. For X/L < 0,

due to its above mentioned antisymmetry, the torque is negative, so that in this case the

orientation with α = 90◦ is stable against rotations of the particle, whereas the parallel

orientation becomes unstable, in contrast to the case X/L > 0. As shown in Fig. 3.8(b),

for smaller aspect ratios L/R and L ≃ 4 the torque changes sign upon varying the

position Ξ/L of the colloid. The torque is positive if the particle is close to the step and

the maximal strength of the torque first increases with the relative position Ξ/L , but then

decreases and finally the torque changes into the opposite direction. This sensitivity of the

orientation with respect to the geometrical features is due to the comparable length scales

of the particle length L and the radius R. For disk-like particles with L � 2 as shown

in Fig. 3.8(c), we find that for X/L > 0 the torque is mostly negative for all orientations

of the particle, so that in this case the perpendicular orientation is the preferred one,

whereas for X/L < 0 the torque is positive and the parallel colloidal orientation is the

preferred one. Our results obtained within the DA for L = 2 indicate a change of sign
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Figure 3.8: Scaling function Ms(Ξ,α,Θ = 0,∆ → 0,L ) for the torque in d = 3 spatial
dimensions as obtained within the DA as a function of the orientation α of the colloid
relative to a chemical step [Fig. 3.1(c)]. The suitably normalized scaling function is shown
for three different aspect ratios of the cylindrical colloids, i.e., for L = L/

√
RD = 10

in (a), for L = 4 in (b), and for L = 2 in (c) as well as for various lateral distances
Ξ/L = X/L > 0 from the chemical step. For negative values of Ξ, the scaling function
can be obtained via a point reflection, i.e., Ms(Ξ < 0, · · · ) = −Ms(−Ξ, · · · ). The solvent
is considered to be at its bulk critical point Θ = 0. For rod-like particles as in (a), we find
for 0 < X/L = Ξ/L < 0.5 the torque to be always positive, which leads to a preferred
alignment parallel to the chemical step, as sketched right next to the graph. On the other
hand for disk-like particles, as for L = 2 in (c), the torque is negative for positive values
of X/L, so that the colloid self-aligns perpendicular to the chemical step, as indicated
in the sketch next to the graph. For the intermediate case L = 4 in (b) we find both
negative and positive values of the critical Casimir torque for X/L > 0, depending on
the lateral position of the colloid. (The sketches next to the graphs correspond to aspect
ratios L/R = L

√
∆ obtained for ∆ = D/R = 0.25.)

of the critical Casimir torque at angles α = α0 � 70◦ for 0.1 < Ξ/L < 0.5. However, for

larger values of α > α0 the magnitude of the scaling function Ms is very small compared

with the Casimir amplitude |∆(+,+)|.

In order to analyze the rotational orientation of the cylinder and its statistical char-

acteristics with respect to thermal fluctuations in more detail, we investigate the planar
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Figure 3.9: Planar nematic order parameter S [Eq. (3.15)] for a cylindrical colloid close
to a chemical step as obtained within the DA for d = 3 and ∆ = D/R = 1/4 as a
function of the lateral particle position X in units of its length L. The solvent is taken
to be at its bulk critical point Θ = 0. For rod-like particles with L = 10 in (a), upon
increasing X the nematic order parameter S changes abruptly from S ≃ −1 to S ≃ +1
at Ξ = 0, corresponding to a change from a preferred colloid orientation perpendicular to
the step to an orientation parallel to the step. Both configurations are very stable against
thermal fluctuations. At |Ξ/L | ≃ 0.5 in (a) S again changes sign but it attains only small
values for |Ξ/L | > 0.5, corresponding to a weak preference of the colloid orientation, and
tends to a uniform angular distribution (S = 0) for |Ξ/L | � 1. For a shorter cylinder
with L = 4, in (b) the behavior for small values of |Ξ/L | is similar as in (a), but the
alignment at |Ξ/L | ≃ 0.5 becomes very pronounced; S is close to −1 for Ξ/L = 0.5
which corresponds to a strong orientational alignment of the cylinder perpendicular to the
chemical step. For disk-like particles with L = 2, L = 2.25, and L = 2.5 the behavior of
S is different. Upon lowering L the order parameter extrema close to Ξ/L = 0 disappear
and the angular distribution becomes almost uniform (i.e., |S| is small). On the other
hand the alignment at |Ξ/L | ≃ 0.5 is pronounced, but with the opposite preference of
the orientations as compared with the case L = 10 and |Ξ/L | < 0.5 in (a). The sketches
next to the graphs, correspond to aspect ratios L/R = L

√
∆ = L /2.

nematic order parameter S defined as [128,129]

S ≡ 〈cos(2α)〉 = 1

N

π/2∫

0

dα cos(2α) exp


−

V
(cs)

(X,α, D,R, L, T )

kBT


 , (3.15)
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where the normalization constant is given by N=
∫ π/2

0
dα exp

(
−βV

(cs)
(X,α, D,R, L, T )

)
.

S = 1 corresponds to perfect alignment of the cylindrical colloid parallel to the chemical

step (α = 0), whereas S = −1 corresponds to perfect alignment perpendicular to the step

(α = 90◦). Isotropic orientation is characterized by S = 0. In Fig. 3.9 the nematic order

parameter S as obtained within the DA for Ξ = 0 and ∆ = 1/4 is shown for the same

values of L as in Fig. 3.8 as a function of the relative position X/L = Ξ/L . As can

be inferred from Fig. 3.9(a), a rod-like particle with L = 10 exhibits a strong rotational

alignment when its center is close to the chemical step. Whereas for −0.5 � Ξ/L < 0

the cylinder is strongly aligned perpendicular to the step due to the critical Casimir

torque, it abruptly changes orientation upon crossing the chemical step at Ξ = 0. For

0 < Ξ/L � 0.5 the cylinder is aligned parallel to the step, exploiting fully the attractive

critical Casimir interaction between surfaces of same chemical preference. At |Ξ/L | ≃ 0.5

the nematic order parameter S again changes its sign. However, for 0.5 � |Ξ/L | � 1 the

magnitude of S is rather small and vanishes for |Ξ/L | ≃ 1, corresponding to a uniform

angular distribution.

For a reduced cylinder length L = 4, the change of the sign of S at |Ξ/L | ≈ 0.5

becomes much more pronounced [see Fig. 3.9(b)]. Whereas close to the chemical step at

Ξ = 0 the behavior of the order parameter S resembles the one for L = 10 in Fig. 3.9(a)

(but less abruptly), a strong orientational alignment of the cylinder perpendicular to

the step (S = −1) develops at Ξ/L ≃ 0.5. In addition for Ξ/L � −0.5 the degree

of orientational order is higher than the corresponding one of the rod-like particle with

L = 10 in Fig. 3.9(a). Thus, as a function of its lateral position a cylindrical particle

of reduced length L = 4 exhibits various changes of its preferred orientation parallel or

perpendicular to the chemical step.

For even smaller values of L , i.e., disk-like particles, the strong orientational alignment

close to Ξ/L = 0 disappears in that the nematic order parameter S acquires a small

amplitude, as can be inferred from Fig. 3.9(c). In addition, S flips upon lowering L ,

such that for L = 2 the particles align with their axis parallel to the step for Ξ < 0

and perpendicular to it for Ξ > 0. Moreover, the change between these two orientations

as function of Ξ is much smoother as compared with the case of rod-like particles in

Fig. 3.9(a). This is due to the relatively small strength of the critical Casimir torque

for small values of Ξ/L , as shown in Fig. 3.8(c). A change of sign of Ms(α) and the

accompanying reversal of stability of the corresponding configurations signal the presence

of competing minima in the free energy landscape. For Fig. 3.9(c) those are very shallow

in units of kBT and therefore easily washed out by thermal fluctuations.

For a disk-like particle with a reduced length L = 2 Fig. 3.10 illustrates the tem-

perature dependence of the orientational order parameter profile S(X/L) by comparing

the system at bulk criticality Θ = 0 [Fig. 3.10(a)] and off criticality Θ = 3 [Fig. 3.10(b)].

As discussed above in Fig. 3.9(c), in Fig. 3.10(a) for Θ = 0 the critical Casimir torque
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Figure 3.10: Planar nematic order parameter S [Eq. (3.15)] for a cylindrical colloid close
to a chemical step as obtained within the DA for d = 3, ∆ = D/R = 1/4, and L = 2 as
a function of the lateral particle position X in units of its length L. For such a disk-like
particle we find a preferred parallel [perpendicular] orientation of the particle axis relative
to the chemical step for Ξ/L < 0 [Ξ/L > 0] at the bulk critical point (Θ = 0) in (a)
[same as in Fig. 3.9(c)]. On the other hand, for a high temperature corresponding to
Θ = 3 in (b), the nematic order parameter changes sign at Ξ = 0 and |Ξ/L | ≈ 0.4.
Thus, for |Ξ/L | � 0.4 the preferential orientation of the disk-like particle switches upon
varying temperature.

leads to a preferential alignment of the cylinder axis parallel to the chemical step for

Ξ < 0 and perpendicular to the step for Ξ > 0. However, for Θ = 3 in Fig. 3.10(b) the

nematic order parameter S changes sign at Ξ = 0 and at |Ξ/L | ≈ 0.4. Thus, whenever

the perpendicular [parallel] orientation is the preferred one at the bulk critical point for

|Ξ/L | � 0.4 as sketched in Fig. 3.10(a), the disk-like colloid prefers a parallel [perpen-

dicular] orientation at higher temperatures as sketched in Fig. 3.10(b). Accordingly, the

orientation of a disk-like colloid near a chemical step can be reversibly and continuously

switched by minute temperature changes. We attribute this behavior to the fact that the

ratio of the strengths of the critical Casimir forces in the film geometry for (+,−) and

(−,−) BCs varies as function of Θ. Whereas close to Tc the critical Casimir force for

(+,−) BCs is much stronger than for (−,−) BCs, both become comparable in strength

for Θ ≫ 1. However, the maximal absolute value of the nematic order parameter S for

Θ = 3 in Fig. 3.10(b) is rather small so that the degree of orientational order is low.

Upon increasing Θ the nematic order parameter S vanishes gradually and the angular

distribution of the colloids becomes uniform.

We note that within the DA the range of the effective interaction of the colloid with

the substrate along the direction normal to the cylinder axis tends to be overestimated

due to the parabolic distance approximation D(ρ) ≈ D(1 + ρ2/(2RD)) (see Sec. 2.1.4).
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However, this is less important far away from criticality because the scaling function of

this potential decays exponentially with respect to the surface-to-surface distance between

the particle and the substrate, and within DA contributions of surface elements at the

ends of the cylinder become negligible. On the other hand, within DA we expect the

torque to be underestimated in the regime of disk-like particles. However, it has been

found in Ref. [74] that the ratio between the scaling functions the force K
(cs)
(+,−)(Θ =

0,∆,L )/K
(cs)
(−,−)(Θ = 0,∆,L ) for cylinders of finite length is maintained constant even

for small values of L ∼ 1. Thus, we expect that these deficiencies of the DA do not affect

the sign of the torque and the qualitative results for the particle orientation presented

above for L ≥ 2, concerning the distinct behavior of rod-like and disk-like particles.

3.4 Janus cylinder (type B) close to a periodically striped

substrate

Knowledge of the critical Casimir potential of a cylinder near a chemical step allows

one, within DA, to describe more complex geometrical features of the chemical boundary

conditions on the substrate and on the colloid. Here, we consider a pattern of chemical

stripes, which are alternating periodically along the x direction. The pattern consists

of stripes of width L1 with (a1) BC neighboring stripes of width L2 with (a2) BC such

that the periodicity is given by P = L1 + L2. The coordinate system is chosen such that

x = 0 corresponds to the lateral center of a stripe with (a1) BC. Due to the assumed

additivity of the forces underlying the DA, within this approximation the critical Casimir

potential of a Janus particle as in Fig. 3.1(d) with its center located at a lateral position

x = X at a distance D from such a patterned substrate can be constructed by considering

two homogeneous cylinders of half the particle length L/2 and summing their scaling

functions given in the preceding section. We consider this case as an example of certain

experimentally relevant geometries, which are difficult to treat even within MFT.

The critical Casimir potential V (cs)
p acting on a Janus cylinder exhibits the following

scaling form:

V (cs)
p (L1, P,X,α, D,R, L, T ) = kBT

LR1/2

Dd−3/2
Φ

(cs)
p (Λ,Π,Ξ,α,Θ,∆,L ), (3.16)

where Λ = L1/
√
RD and Π = P/

√
RD are, compared with the single chemical step, two

additional scaling variables describing the stripe width and the periodicity, respectively,

and Φ
(cs)
p is the corresponding universal scaling function.

Since the stripe pattern and the surface of the Janus particle are combinations of the

(+) and (−) BCs it is convenient to follow Eq. (3.11) and introduce the normalized scaling
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Figure 3.11: Scaling function of the critical Casimir potential ωp(Λ,Π,Ξ,α,Θ = 0,∆ →
0,L ) [Eq. 3.18] within DA for d = 3 and Θ = 0 acting on a Janus cylinder with opposite
(+) and (−) BCs (red and blue areas, respectively) and of reduced length L = L/

√
RD =

20 near a chemically patterned substrate. The substrate is periodically patterned with
(a1) = (−) BC on one kind of stripes (white areas) and (a2) = (+) BC on the other
kind of stripes (shaded areas). Due to this choice of the BCs, the red (blue) part of the
Janus cylinder is attracted by the shaded (white) stripes and repelled by the others. The
geometry of the pattern is characterized by Π = P/

√
RD = 5 and Λ = L1/

√
RD = 5/2,

where L1 = L2 = P/2 = L/8 is the width of the stripes. The Janus cylinder, located at
lateral position X (so that X = 0 corresponds to the center of a stripe with (−) BC), is
rotated by an angle α ∈ [−π/2, π/2] relative to the translationally invariant direction of
the stripes. The normalized scaling function ωp ∈ [−1, 1] is shown in (a) as a function
of α for the two colloid positions X = 0 (Ξ = 0, yellow curve) and X = P/4 (Ξ = 5/4,
green curve and illustrated by the sketched cylinder). The greyish curves are semi-circles
around the green dot. Accordingly, for each point on the green line one can infer the
corresponding angle α by drawing the green arrow footed at X �= 0. Consequently, the
angles belonging to points on the yellow line can be read off from the yellow arrow which,
however, is footed at X = 0. Thus green and yellow data points belonging to the same
angle α are not radially connected. Since ωp(X = 0) = 0, as explained in the main text,
the yellow line coincides with the semi-circle around the green dot corresponding to the
zero of ωp. In (b) the angularly averaged value ωp(X) of ωp for orientations α ∈ [0, π/2]
is shown in red. For the other scaling variables fixed, ωp represents the critical Casimir
potential as function of the lateral colloid position X, independent of the orientation of the
colloid. This average exhibits extrema at the edges of the chemical stripes. The sketched
Janus particle corresponds to the configuration of minimal energy both with respect to
its orientation (see the green line) and its lateral position (see the red line).

function ωp(Λ,Π,Ξ,α,Θ,∆,L ) ∈ [−1, 1] such that

Φ
(cs)
p Λ,Π,Ξ,α,Θ,∆,L ) =

1

2

(
Φ

(cs)
(+,−)(Θ,∆) + Φ

(cs)
(−,−)(Θ,∆)

)

+
1

2

(
Φ

(cs)
(+,−)(Θ,∆)− Φ

(cs)
(−,−)(Θ,∆)

)
ωp(Λ,Π,Ξ,α,Θ,∆,L ). (3.17)
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Without loss of generality, here we limit the rotation angle α between the chemical steps of

the stripes and the axis of the Janus cylinder to the range α ∈ [−π/2, π/2] (see Fig. 3.11).

Moreover, we restrict ourselves to the symmetry-breaking BCs (a1) = (−) and (a2) = (+)

on the substrate as well as on the two halves of the Janus cylinder. We note that, within

DA, ωp is independent of this particular choice of BCs.

Within the DA, the scaling functions for the critical Casimir force and the correspond-

ing potential can be constructed via suitably adding and subtracting scaling functions for

the step geometry, analogous to the case of a sphere as described in detail in Ref. [103].

For the sake of brevity, we focus on the normalized scaling function ωp [Eq. (3.17)] of the

critical Casimir potential:

ωp(Λ,Π,Ξ,α,Θ,∆ → 0,L ) =
∞∑

n=−∞

{
ω(+|−,−)

(
Ξ− L

2
sin(α) + nΠ+ Λ

2
,α,Θ,∆ → 0, L

2

)

−ω(+|−,−)

(
Ξ+ L

2
sin(α) + nΠ+ Λ

2
,α,Θ,∆ → 0, L

2

)

−ω(+|−,−)

(
Ξ− L

2
sin(α) + nΠ− Λ

2
,α,Θ,∆ → 0, L

2

)

+ω(+|−,−)

(
Ξ+ L

2
sin(α) + nΠ− Λ

2
,α,Θ,∆ → 0, L

2

)}
.

(3.18)

The sum over ω(+|−,−)(Ξ,α,Θ,∆,L ) (see Refs. [74, 127]) with appropriate combinations

of the first scaling variable takes into account all stripes from x = −∞ to x = ∞, and

considers four contributions to the potential: the half of the Janus particle with (−) BC

interacting with stripes of (+) and (−) BCs, and the other half of the Janus cylinder with

(+) BC, which also interacts with stripes of (+) and (−) BCs; here we exploit the fact

that the potentials for (+,+) and (−,−) BCs are the same.

The resulting scaling function of the potential ωp as obtained within the DA (∆ → 0)

for d = 3 and Θ = 0 is shown in Fig. 3.11 for a cylinder of reduced length L = 20 and for

a substrate pattern with L1 = L2 and P = L/4, so that Π = 5 and Λ = 5/2. According

to our analysis above, for these parameters we expect the DA to provide a good estimate

for the critical Casimir force.

Within the DA, for a Janus particle located opposite to the center of one stripe,

i.e., at X = 0, the scaling function ωp of the critical Casimir potential comprises terms

ω(+|−,−)

(
±Ξ̃1,2,α,Θ,∆ → 0, L

2

)
, where Ξ̃1 = L

2
sin(α) + nΠ + Λ

2
and Ξ̃2 = L

2
sin(α) +

nΠ − Λ

2
. Since the scaling function ω(+|−,−) is an odd function of Ξ̃1,2 and n ∈ Z, there

are always two terms in the sum in Eq. (3.18) which cancel each other. Therefore, the

scaling function ωp vanishes for Ξ = 0 and thus the critical Casimir potential does not

depend on the orientation of the particle as shown by the yellow curve in Fig. 3.11(a).

Due to Eqs. (3.12) and (3.17), this corresponds to the potential [Eq. (3.16)] being the
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Figure 3.12: Expectation value 〈α〉 (red curve) and the corresponding standard devi-
ation σα (blue dashed curve) of the angular probability distribution function p(α) ∝
exp(−Φp/(kBT )) of the same Janus cylinder and for the same parameters as in Fig. 3.11;
there the cylinder is centered at Ξ = Π/4. The dotted blue line denotes the value of the
standard deviation σuni of the uniform distribution, up to which, in the present system,
σα grows for specific scaled lateral positions close to Ξ = mΠ/2 with m ∈ Z. In the insets
the green areas are limited by the full green curves 〈α〉±σα and visually indicate the areas
of the most probable rotation angles α close the lateral positions Ξ = 0 and Ξ = Π/2.

simple average of the potentials of homogeneous cylinders near homogeneous substrates:

V (cs)
p (L1, P,X = 0,α, D,R, L, T ) =

[
V

(cs)
(+,+)(D,R, T ) + V

(cs)
(+,−)(D,R, T )

]
/2. (3.19)

However, these positions of the colloid center directly above a stripe center are unstable

against lateral shifts, which can be inferred from, e.g., the yellow square in Fig. 3.11(b),

where we show the value ωp(Ξ) of the scaling function ωp averaged over the tilt angles

α ∈ [0, π/2] (red curve). Therefore ωp describes the orientationally averaged critical

Casimir potential acting on the colloid as a function of its lateral position X. The critical

Casimir potential becomes minimal for particle positions at the edges of the stripes, e.g.,

X = L1/2 = P/4, and with an orientation α > 0 of the Janus particle such that the

overlap of the stripes and of the projected surfaces of the cylinder with equal BCs is

maximal, as shown in Fig. 3.11 (a) by the green curve. As a function of α there are also

secondary and higher order local minima of the potential, with their number increasing

for more elongated particles or thinner stripes. From our analysis we find, depending on

the particle length and the stripe periodicity, ⌈L/(2P )⌉ minima, where ⌈. . .⌉ indicates the

ceiling function.

Equation (3.19) is also obtained in the limit Π = P/
√
RD → 0, so that for (infinitely)

narrow stripes the angular dependence of the critical Casimir potential disappears. How-

ever, we note that for relatively narrow stripes one has to expect significant deviations
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from the DA due to the increasing interference of the effects of the chemical steps on the

order parameter profile across the stripes. Within MFT in Ref. [103] the range of validity

of the DA has been assessed for the case of a spherical colloid next to a periodically pat-

terned substrate. Indeed, in Ref. [130] it has been found within a study based both on MC

simulations and MFT for the film geometry, that very narrow stripes of alternating (+)

and (−) BCs combine to an effective symmetry-preserving Dirichlet (o) BC. Nonetheless,

for the relatively large value Π = 5 as shown in Fig. 3.11, we expect the DA to be reliable.

The critical Casimir potential V (cs)
p provides the angular probability distribution func-

tion p(α) ∝ exp(−βV
(cs)
p ) characterizing the orientational fluctuations of the cylindrical

colloid. Distinct from the case of a homogeneous cylinder near a single chemical step, for

which we have found a preference for either the parallel or the perpendicular orientation,

here we observe local minima of the potential (see the green curve in Fig. 3.11). In order to

determine both the preferential particle orientation and the degree of orientational order

we calculate the moments of the angular probability distribution function as functions of

the reduced lateral position Π of the center of the cylinder:

〈αn〉 = 1

N

π/2∫

−π/2

dα αn e
−V

(cs)
p
kBT , (3.20)

where the normalization constant is given by N =
∫ π/2

−π/2
dα exp

(
−βV

(cs)
p

)
. In the follow-

ing, we employ the usual definitions of the expectation value of α as the first moment 〈α〉
and the standard deviation of the angular distribution σα =

√
〈α2〉 − 〈α〉2. For compari-

son, the expectation value and the standard deviation of the uniform distribution in the

interval [−π/2, π/2] is 〈α〉uni = 0 and σuni = π/(2
√
3), respectively. These quantities are

depicted in Fig. 3.12 for the same parameters and the same geometry as in Fig. 3.11, i.e.,

for a reduced length L = 20 of the Janus particle and a periodicity Π = 5 of the stripes.

The expectation value 〈α〉 is shown in red. It is nearly constant for roughly 48% of the

first period (i.e., 48% of the range Ξ ∈ [−Π/4, 3Π/4]) and attains a value 〈α〉 ≈ 0.191

(〈α〉 ≈ 11◦) at Ξ = Π/4. This nicely agrees with the calculated location α = α0 = 0.192

of the first minimum as a function of α of the critical Casimir potential at Ξ = Π/4

and for this particular set of parameters. For Ξ > Π/2 the resulting graph is the mirror

image of that for 0 < Ξ < Π/2. Only within a range of 2% of the interval of the period

Ξ ∈ [−Π/4, 3Π/4] the expectation value 〈α〉 deviates noticeably from either α0 or −α0.

In Fig. 3.12 the standard deviation σα is plotted as a blue dashed line. It turns out

to be remarkably small for a broad range of values of Ξ, indicating in that range a very

narrow angular distribution around the expectation value. However, for positions close to

the centers of the stripes, i.e., Ξ = mΠ/2 with m ∈ Z, the standard deviation increases,

in the present system, up to the value of the uniform distribution σuni. Consequently,

within this 2% range around the centers of the stripes the variation of the expectation
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value 〈α〉 does not indicate a change of the orientation but rather a loss of alignment. As

a more intuitive visualization, in Fig. 3.12 we also draw 〈α〉±σα as full green curves, with

the encompassed area shown in light green, indicating the range of the most probable

rotation angles α. This emphasizes that the Janus particle aligns itself very precisely at a

certain angle relative to the pattern, which depends on the stripe width and periodicity,

but quite insensitive to the lateral position. Only very close to the center of each stripe the

orientation is uniformly distributed. But this is an unstable configuration, as illustrated

in Fig. 3.11. When the particle is moved laterally over the pattern by external means, its

orientation flips between only two preferred alignments ±α0.

3.5 Conclusions

First, we have calculated the critical Casimir force acting on a single cylindrical Janus

particle of type A in the presence of a homogeneous substrate (see Fig. 3.1) both by using

the Derjaguin approximation (DA), and by applying mean field theory (MFT), which is

valid in d = 4 spatial dimensions.

The DA implies a close relation between the critical Casimir forces for distinct geome-

tries. Indeed, a comparison of DA with results from full MFT in d = 4 reveals that, in the

limit ∆ = D/R → 0 of the ratio of the distance D and radius R, the DA holds equally

both for the force between a Janus cylinder and a substrate and for the force between

a homogeneous cylinder and a substrate with a chemical step (see Fig. 3.2). However,

as shown in Fig. 3.3, the MFT scaling functions for the two geometries are distinct for

nonzero ∆. This caused us to address the question whether the relation between these

two geometries has any merit beyond the limit ∆ → 0 in which DA holds.

The DA makes implicit assumptions about the OP profile based on the one between

a homogeneous particle and a homogeneous substrate with opposing BC and at the same

temperature. We have have inspected the MFT order parameter profiles shown in Fig. 3.4

and found that the isoline φ(r) = 0 indeed follows closely the profile for homogeneous

surfaces, however it smoothly bends towards the particle or the substrate, which is unac-

counted for within DA. An improved model has been introduced by applying the DA for

a fictional, scaled colloid in order to incorporate the bending of the isoline into DA by fiat

(see Fig. 3.5). The improvement achieved using this relation is demonstrated in Fig. 3.6.

Thus, the correspondence between these two configurations holds with some modification

also within MFT

The correspondence of Janus particles and chemical steps on a substrate is also relevant

for Section 3.2 which discusses the scaling function of the force between a Janus cylinder

and a substrate with a chemical step. The MFT scaling function in Fig. 3.7 for a Janus

cylinder and a step at a lateral position X = 0 is qualitatively similar to the dependence of

the scaling function of the force between two patterned substrates on a lateral shift [126].
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This configuration reveals a deficiency of DA: For an orthogonal orientation of the Janus

particle, i.e., when the Janus equator faces the substrate at ϑ = ±π/2, within DA the

scaling function of the force exhibits cusplike extrema of attraction or repulsion as a

function of the particle orientation, whereas the MFT results are smooth. However, for

∆ = 1/5, i.e., close to the DA limit ∆ → 0, the agreement between DA and full MFT is

surprisingly good even for this pathological case (see Fig. 3.7(b)).

In Sec. 3.3, we have revisited the homogeneous cylindrical particle above a chemical

step. The anisotropy shape induces a critical Casimir torque acting on the cylindrical

particle. From our analysis we have found that this torque can align the colloid parallel

or perpendicular to the chemical step, depending on the lateral distance from the step,

the combination of BCs of the substrate and the colloid, as well as its aspect ratio (see

Fig. 3.8). In order to analyze the degree of orientational order we have investigated the

planar nematic order parameter S [Figs. 3.9 and 3.10]. The alignment behavior changes

in an intricate matter with length of the cylinder, from rod-like particles to disk-like

particles.

We have then considered the type B cylindrical Janus particle. In Sec. 3.4 we have

made use of the general expressions for the critical Casimir potential derived within DA in

order to study the effective interaction between a cylindrical Janus particle and a chem-

ically striped substrate. The effective potential V (cs)
p [Eq. (3.16)] of the colloid exhibits

several maxima and minima depending on the position and the orientation of the particle

[Fig. 3.11], so that its preferred axial alignment is rotated relative to the chemical stripes

and shifted laterally with respect to the center of the stripes. We have characterized the

degree of the orientational order using the standard deviation σα of the angular probabil-

ity distribution function, which is surprisingly small except for colloid positions very close

to the centers of the chemical stripes. A cylindrical Janus particle located at the center

of a chemical stripe can rotate de facto freely; but this is an unstable configuration with

respect to the lateral position. The most favorable configuration is achieved when the

particle center is positioned at the edge of a stripe and aligned as depicted in Fig. 3.11.

For this particle orientation, the degree of orientational order is very high and insensitive

to small fluctuations of the particle position (see Fig. 3.12).

In summary, the present analysis shows that upon approaching the critical point of

the solvent, elongated colloidal particles can be reversibly aligned in a designed way via

minute temperature changes by suitably choosing the geometrical parameters of the setup.

Our results provide a means to predict the alignment of homogeneous cylindrical colloids

and Janus cylinders near chemically patterned substrates. Previously, it has been demon-

strated experimentally that chemically homogeneous spherical colloidal particles can be

reversibly trapped above a chemically patterned substrate via critical Casimir interactions

in binary liquid mixtures [68–70, 103]. Using a similar setup, cylindrical colloidal parti-

cles with homogeneous and Janus surfaces properties may be trapped laterally as well as
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oriented in a designed way, which can be adjusted by the geometrical parameters of the

substrate pattern and minute temperature changes.
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Chapter 4

Critical Casimir interaction between

Janus spheres

Reassured by the result that DA can be used reliably for describing the force acting on

a single Janus particle near a substrate, in this chapter we determine the force and the

effective potential between two Janus particles.

The case of two cylindrical Janus particles has already been derived before this thesis

in earlier work, see Refs. [75, 131]. We only summarize the findings in the interest of the

reader, as subsequent work builds upon these results, and we consider it more comprehen-

sible to first introduce a geometry with reduced complexity. Some outlook to spherical

Janus particles was already given in Ref. [131]. However, a conclusive analysis of the

scaling functions of the force and pair potential between Janus spheres is now provided

in this chapter. In view of the experimental interest in such Janus particles, in the fol-

lowing figures we depict the scaling function in d = 3. This is accomplished by taking the

wall-wall scaling functions k(a,b), which are needed as input for the DA, from Ref. [24],

i.e., from numerical simulations in d = 3.

4.1 Reminder: Janus cylinders

For reasons of simplicity, let us assume the long axes of the two cylinders to be parallel to

each other, i.e., the positions and rotations of the cylinders are confined to a plane. This

amounts to consider effectively discs in a two-dimensional system but with interactions

corresponding to an embedding solvent in d = 3.

The scaling form of the critical Casimir force between such two Janus cylinders is

given by

F
(cc)

(ϑ1,ϑ2, D,R, T ) = kBT
L

Rd−1

K
(cc)

(ϑ1,ϑ2,∆,Θ)

∆d−1/2
. (4.1)

Within DA, the force F (cc) between two Janus cylinders orientated top-to-bottom [(ϑ1,ϑ2) =

61
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(a) (b)

Figure 4.1: Sketch of the geometry for the Derjaguin approximation concerning the force
between two Janus cylinders ❧1 and ❧2 for ϑ2 > 0 in (a) and ϑ2 < 0 in (b). The
cylinder axes are supposed to extend out of the plane of view. The angles ϑ1 and ϑ2 of
the orientation are relative to the axis connecting the centers of the two particles. All
orientations can be mapped onto the principal domain ϑ1,2 → ϑ̂1,2 ∈ [−π/2, π/2). The
middle parts show the unrolled surfaces of the Janus cylinders opposing each other. The
construction of the DA for two Janus cylinders is akin to the interaction between two
structured substrates interacting [126, 132], considering, however, only that portion of
the chemical structure which ranges from −R to +R, i.e., from −∆−1/2 to +∆−1/2 in
terms of the scaling variable, and using the appropriate local surface-to-surface distance.
In its straightforward version, the DA projects the Janus equators to step positions at
Ξ1,2 ≡ Ξ(ϑ1,2) = ∆−1/2 cos(ϑ1,2). Additionally, depending on sign(ϑ1 ϑ2), either the left or
the right edge of the equatorial plane enters into the projection, leading to opposite step
positions ±Ξ1,2.

(0, 0) and (±π,±π)], bottom-to-bottom [(0,±π)], or top-to-top [(±π, 0)], is identical to

the force between two homogeneous cylinders F
(cc)
(a,b) (see Eq. (A.2) in Appendix A), with

(a, b) as the BC of the sides facing each other (compare Fig. 4.1). The scaling function

of the force between two Janus cylinders K
(cc) can be expressed relative to the scaling

function K
(cc)
(+,±) between two homogeneous cylinders as

K
(cc)

(ϑ1,ϑ2, D,R, T ) =




K

(cc)
(+,−)(∆,Θ) +∆K

(cc)
⊘⊘ (ϑ̂1, ϑ̂2,∆,Θ), for Ξ(ϑ1)Ξ(ϑ2) > 0,

K
(cc)
(+,+)(∆,Θ)−∆K

(cc)
⊘⊘ (ϑ̂1, ϑ̂2,∆,Θ), for Ξ(ϑ1)Ξ(ϑ2) < 0

(4.2)

with Ξ(ϑi) = ∆−1/2 cosϑi and where, without loss of generality, reduced angles ϑ̂1,2 =

ϑ1,2 ∓ π such that ϑ̂1,2 ∈ [−π/2, π/2) are used. Note that a shift of ±π amounts to

reflecting the normals n1 and n2 at the corresponding equatorial plane of particle ❧1

and ❧2 , respectively. The subscript of the excess scaling function ∆K
(cc)
⊘⊘ (ϑ̂1, ϑ̂2,∆,Θ) is

not colored in order to emphasize that only the reduced angles enter. The subscript of

the forces K
(cc)

= K
(cc)
(+,−) and K

(cc)
= K

(cc)
(+,+) between homogeneous particles have been

colored in order to visualize the BC.
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For homogeneous particles, the limit ∆ → 0 , in which DA holds, can be carried out

explicitly. However, in order for the separation in Eq. (4.2) to be consistent, both scaling

functions K
(cc)
(+,∓) and ∆K

(cc)
⊘⊘ need to retain their dependence on ∆. Nonetheless, the

scaling functions within DA are expected to hold only for small but nonzero ∆; keeping

the dependence on ∆ is not necessarily a refinement (see Sec. 3.2).

The scaling function ∆K
(cc)
⊘⊘ is constructed from the sum of surface elements as sketched

in Fig. 4.1. This is similar to the case of two opposing structured substrates [126, 132],

but with the appropriately varying distance between the surface elements. For simplic-

ity, we use the DA projection Ξ(ϑ1,2) = ∆−1/2 cos(ϑ1,2), instead of the improved relation

discussed in Sec. 3.2. The complete scaling function of the force is found to be given by

∆K
(cc)
⊘⊘ (ϑ1,ϑ2,∆,Θ) = ∆k(cc)(|Ξ(ϑ1)|,∆,Θ) + sign(ϑ1 ϑ2)∆k(cc)(|Ξ(ϑ2)|,∆,Θ), (4.3)

with a pseudo-step scaling function (compare Eq. (3.4))

∆k(cc)(Ξ,∆,Θ) =
1

2

∫ 1+∆−1

1+Ξ2

dα
∆k(αΘ)

αd
√
α− 1

. (4.4)

We point out the similarity between Eqs. (3.9) and (4.3). However, in comparison, the

sign-prefactor in Eq. (3.9) is superseded by the imposed restriction | cosϑ1| ≤ | cosϑ2|.

Moreover, the factor −sign(ϑ1) is replaced by sign(ϑ1 ϑ2); a configuration ϑ1 > 0 and

ϑ2 > 0 results in a projected step-step configuration with opposite signs for the step

positions Ξ(ϑ1) and Ξ(ϑ2) (see Fig. 4.1(a)), thus, compared to Eq. (3.9), changing the

sign of the term. This concise representation of ∆K
(cc)
⊘⊘ in terms of the sign function is

possible only for the reduced domain ϑ̂1,2 ∈ [−π/2, π/2).

4.2 Janus spheres

The effective interaction between parallel, cylindrical Janus particles was conveniently

described by only two orientational degrees of freedom ϑ1 and ϑ2. While this constrained

setup poses an additional experimental challenge, the behavior of spherical colloids can,

instead, be studied straightforwardly. Therefore, in the following we determine the scaling

function of the force and of the effective potential between two spherical Janus particles,

without constraints on the orientation.

We consider a conventional sphere in d = 3, for which the Janus characteristics are

unambiguous. In d = 4, we consider a three-dimensional sphere extended along an extra

dimension with a length L4, which is formally called a hyper-cylinder (rather than a

hyper-sphere). This definition is distinct from the hyper-cylinder discussed before. In the

context of spheres, L denotes L = 1 in d = 3 and L = L4 in d = 4.
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4.2.1 Scaling function of the force

The force between two Janus spheres depends, in principle, on their orientation vectors

n1 and n2 and the vector r12 connecting their centers1. The force takes the scaling form

F
(ss)

(n1,n2, r12, R, T ) = kBT
L

Rd−2

K
(ss)

(n1,n2, r̂12,∆,Θ)

∆d−1
, (4.5)

where for the scaling function, the connecting vector r12 = (D+2R) r̂12 = R(∆+2)r̂12 is

expressed in terms of the surface-to-surface distance D along the direction r̂12 = r12/|r12|.

Note that in the case of two spheres, at Tc the force decays as ∆−(d−1) with distance [29],

compared to ∆−(d−1/2) for the force between two cylinders (see Appendix A and Refs. [75,

77]). Within DA, the force F
(ss) between two Janus spheres with α = 0, orientated

top-to-bottom [(ϑ1,ϑ2) = (0, 0) and (±π,±π)], bottom-to-bottom [(0,±π)], or top-to-top

[(±π, 0)], is identical to the force between two homogeneous spheres F
(ss)
(a,b) with (a, b) as

the BC of the sides facing each other. Thus, we decompose the scaling function K
(ss)

of the force into a part given by the scaling function K
(ss)
(+,±) between two homogeneous

spheres [29]

K
(ss)
(+,±)(∆,Θ) = π

∫ 1+∆−1

1

dαα−d k(+,±) (αΘ) , (4.6)

and an excess scaling function ∆K
(s)
⊘⊘:

K
(ss)

(n1,n2, r̂12,∆,Θ) = K
(ss)
(+,+)(∆,Θ)−∆K

(ss)
⊘⊘ (n1,n2, r̂12,∆,Θ). (4.7)

This leaves one with the arbitrary choice of whether to relate ∆K
(ss)
⊘⊘ to K

(ss)
(+,+)(∆,Θ)

or K
(ss)
(+,−)(∆,Θ); we follow the definition in Eq. (4.7). Note that it is not necessary to

express ∆K
(ss)
⊘⊘ in terms of reduced angles, because as a spherical coordinate ϑ1,2 ∈ [0, π]

is a reduced angle by definition. Again, the uncolored subscript emphasizes invariance

with respect to the shift ϑi → ϑi ± π.

Determining completely the excess scaling function ∆K
(ss)
⊘⊘ requires careful consid-

erations of all possible orientations. It turns out that within DA, the force necessarily

depends only on the relative coordinates, because the interaction is expressed via the

overlap of surface elements projected along the connecting vector r12. This is worked out

in detail in Appendix B, using spherical coordinates n1 = (φ1,ϑ1) and n2 = (φ2,ϑ2). Thus

the interaction depends only on the polar angles ϑ1 and ϑ2, and the dependence on φ1

and φ2 reduces to one on the angle difference α = φ2 − φ1 (see Fig. 4.2). For comparison,

1We only consider orientations of the Janus spheres in d = 3 and disregard the possible, but contrived
case of orientations in d = 4 which would violate the invariance in the extra dimension.
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Figure 4.2: Generic sketch of the orientations of the Janus spheres ❧1 and ❧2 defining the
azimuthal angle α = φ2 − φ1, and the polar angles ϑ1 and ϑ2 of the relative coordinate
system which has the z-axis aligned with the vector r12 and orientated such that φ1 = 0.
Left: side view with a slight perspective in order to depict α. Right: top view of the same
configuration, with n

(p)
i the projection of ni onto the xy plane. The DA considers pairs

of surface elements projected along r12, thus effectively representing a top-down view.
Rotating the frame of reference, so that φ1 �= 0 but α = φ2 − φ1 is kept constant, does
not affect the interaction in that case.

we briefly consider the pair potential between two point dipoles of strength µ:

V (dip) = − µ2

r312
[3 (n1 · r̂12) (n2 · r̂12)− n1 · n2] (4.8)

Written similarly in the relative coordinate system connecting the two dipoles, these

render ni · r12 = cosϑi and n1 · n2 = cosϑ1 cosϑ2 + sinϑ1 sinϑ2 cos(φ1 − φ2). Thus,

concerning the dependence on the orientations, the critical Casimir interaction between

two Janus spheres exhibits the same level of complexity as the dipole-dipole interaction.

Here, we provide the excess scaling function ∆K
(ss)
⊘⊘ as a function of ϑ1, ϑ2, and the

relative coordinate α (see Appendix B):

∆K
(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ) = πH ((cosϑ1) (cosϑ2))

∫ 1+∆−1r2s

1

dx x−d
∆k (xϑ)

− sign ((cosϑ1) (cosϑ2))

×

[∫ 1+∆−1r2s

1+∆−1 cos2 ϑ1

dx arccos

(
| cotϑ1|

√
1

∆(x− 1)
− 1

)
x−d

∆k (xΘ)

+ c(α,ϑ1,ϑ2)

∫ 1+∆−1r2s

1+∆−1 cos2 ϑ2

dx arccos

(
| cotϑ2|

√
1

∆(x− 1)
− 1

)
x−d

∆k (xΘ)

]

+ α

∫ 1+∆−1

1+∆−1r2s

dx x−d
∆k (xΘ) . (4.9)

Note that one has ∆k = k(+,+)−k(+,−) < 0. The first term with the Heaviside step function

H ((cosϑ1) (cosϑ2)) as a prefactor effectively switches between the limiting cases of top-to-

bottom, bottom-to-bottom or top-to-top. Additionally, ∆K
(ss)
⊘⊘ depends non-trivially on

α,ϑ1, and ϑ2, inter alia, via the dimensionless radius rs = Rs(α,ϑ1,ϑ2)/R (see Eq. (B.8))
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of a particular ring of surface elements occurring within DA in the subdivision of the

surfaces. The projection of the equatorial steps of both Janus spheres onto a common

plane, normal to the axis connecting the colloids, results in two half-ellipses corresponding

to each configuration. The surface ring with radius Rs intersects the projections of the

equatorial steps of both Janus spheres in a single point. Thus, the scaled radius rs is

defined as rs =
√
x2 + y2, with the intersection point (x, y) of the two ellipses determined

by a particular solution of a system of two equations. For details, we refer to Appendix

B.

Certain configurations of the two Janus particle give rise to forces which consist of

force contributions of the same strength, but of opposite signs. All these cases can be

subsumed by Eq. (4.9) via the common prefactor sign ((cosϑ1) (cosϑ2)) and via the sign

picking function c(α,ϑ1,ϑ2) defined in Eq. (B.10).

The scaling function K
(ss)

(α,ϑ1,ϑ2,∆,Θ) of the force (see Eqs. (4.7) and (4.9); also

Appendix B) is shown in Fig. 4.3 for various configurations with α = 0, i.e., φ1 = φ2. In

accordance with Fig. 4.2, α = 0 implies that the two orientation vectors n1 and n2 lie in

the same plane, so that the corresponding equatorial planes are rotated with respect to

each other (ϑ1 �= ϑ2), but not tilted. On first sight, the scaling functions of the force for

Janus spheres and for Janus cylinders appear to be qualitatively very similar (compare

Ref. [75]). Quantitatively, the force between spheres appears to be stronger than the force

between parallel cylinders. However, one has to take into account that the force between

two Janus cylinders is proportional to their length. A fair comparison of the strengths

of the forces requires to consider a cylinder length which is comparable with the size of

the sphere, i.e., L ≈ 2R. In this case the force between two parallel cylinders is stronger.

Additionally, the scaling function for Janus spheres decays slightly faster as function of

Θ. Generally, the scaling function of the force between two Janus spheres is slightly more

sensitive to small rotations of one particle than the one for cylinders.

4.2.2 Scaling function of the effective potential

As stated in Eq. (2.20), the effective potential between two Janus spheres of radius R can

be determined from the critical Casimir force in the relative coordinate system according

to

V
(ss)

(n1,n2, r12 = (D + 2R)ez, R, T ) =

∫ ∞

D

dz F (ss)
(n1,n2, r12 = (z + 2R)ez, R, T ).

(4.10)

After inserting Eq. (4.5), this can be cast into the scaling form

V
(ss)

(n1,n2, r12 = (D + 2R)ez, R, T ) = kBT
L

Rd−3

Φ
(ss)

(α,ϑ1,ϑ2,∆,Θ)

∆d−2
. (4.11)
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Figure 4.3: The normalized scaling function of the force K
(ss) between two Janus spheres

within DA in d = 3, as a function of Θ = D/ξ+ for several orientations. (a) Configurations

with ϑ1 = 0 for the orientation of the left particle ❧1 for various orientation angles ϑ2 of
the right particle ❧2 , as visualized in the legend. (b) The case of ϑ1 = π/2 for various
orientations ϑ2 of the second particle. In order to provide a simple initial view on the
scaling function, the azimuthal angle α is set to α = 0, i.e., φ1 = φ2, which restricts the
orientation vectors n1 and n2 to lie in a common plane.

Following Eq. (4.7), the scaling function Φ
(ss) of the potential is divided up into the two

contributions

Φ
(ss)

(α,ϑ1,ϑ2,∆,Θ) = Φ
(ss)
(+,+)(∆,Θ)−∆Φ

(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ), (4.12)

where

Φ
(ss)
(+,±)(∆,Θ) =π

∫ ∞

1

dx (x− 1)x−d k(+,±)(xΘ)

− π

∫ ∞

1+∆−1

dx (x− 1−∆
−1) x−d k(+,±)(xΘ) (4.13)

is the scaling function of the potential between two homogeneous spheres, and ∆Φ
(ss)
⊘⊘ is the

Janus-induced excess scaling function. In view of the known expression for Φ
(ss)
(+,±)(∆ →

0,Θ) [29,35], we again retain the explicit dependence on ∆ in the scaling function of the

homogeneous case for reasons of consistency with the orientation dependent excess scaling

function in Eq. (4.12). The previous caveats regarding the dependence on ∆ within DA

apply here, too.

Upon inserting the scaling function K
(ss) of the force into Eqs. (4.10)-(4.13), the excess
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scaling function of the potential is given by (see Appendix B.2)

∆Φ
(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ) =πH ((cosϑ1) (cosϑ2))∆u(ss)(r2s , 0,∆,Θ)

− sign ((cosϑ1) (cosϑ2))
[
∆v(ss)(r2s ,ϑ1,∆,Θ) (4.14)

+ c(α,ϑ1,ϑ2)∆v(ss)(r2s ,ϑ2,∆,Θ)
]

+ α∆u(ss)(1, r2s ,∆,Θ)

with c(α,ϑ1,ϑ2) defined by Eq. (B.10) and where

∆u(ss)(a, b,∆,Θ) =

∫ ∞

1+b/∆

dy (y − 1− b/∆) y−d
∆k(yΘ)

−
∫ ∞

1+a/∆

dy (y − 1− a/∆) y−d
∆k(yΘ) (4.15)

and (see Eq. (B.8) concerning rs)

∆v(ss)(r2s ,ϑ,∆,Θ) =∆
−1

∫ 1+r2s/∆

1+cos2 ϑ/∆

dy g
(
∆(y − 1),ϑ

)
y−d

∆k (yΘ)

+∆
−1

∫ ∞

1+r2s/∆

dy g(r2s ,ϑ) y
−d

∆k (yΘ) (4.16)

are excess scaling functions of Janus spheres (vaguely analogous to the chemical step-like

scaling functions for Janus cylinders). The integrand of the latter scaling function ∆v(ss)

contains a geometry specific expression

g(u,ϑ) =

∫ u

cos2 ϑ

dw arccos

(
| cotϑ|

√
1

w
− 1

)
(4.17)

= u arccos

(
| cotϑ|

√
1

u
− 1

)
− | cosϑ| arccos

(
| cscϑ|

√
1− u

)
, cos2 ϑ ≤ u.

The free energy landscape of the scaling function Φ
(ss) of the pair potential between

two Janus spheres can be presented in a single plot only as a function of two variables,

but not for the full set α,ϑ1,ϑ2 of three variables. Accordingly, in Fig. 4.4 we choose to

show the scaling function of the pair potential between Janus spheres for the two values

α = 0 and α = π. For α = 0, in the range ϑ1 > 0 the scaling function of the potential is

qualitatively very similar to the one for cylinders (see Ref. [75] for a detailed comparison).

On the other hand, for Janus spheres, the case of α = π in Fig. 4.4 is similar to the

one of ϑ1 < 0 for Janus cylinders. Obviously, in spherical coordinates an orientation

vector with α = π and ϑ1 ∈ [0, π] lies in the same plane as an orientation vector with

α = 0, and can be mapped to a cylindrical angle ϑ1 ∈ [−π, 0]. The scaling function of
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Figure 4.4: The scaling function Φ
(ss) of the effective pair potential between two Janus

spheres in d = 3 for α = π and α = 0 presented (a) as a free energy landscape in terms
of ϑ1 and ϑ2 for a fixed scaled temperature Θ = 1, and (b) as a function of ϑ1 along the
two paths ϑ2 = π/2 (red dashed line) and ϑ2 = π/4 (green dashed line). At the top of
the panel, the geometric configurations indicate those which correspond to points of the
green curve; configurations corresponding to the red curve are indicated at the bottom.
Note that for α = π in (a) and (b) the horizontal axes are inverted in order to emphasize
the geometric correspondence of α = π and ϑ1 > 0 in spherical coordinates to ϑ1 < 0
in cylindrical coordinates. An increase of α affects the potential only within a limited
angular range around ϑ1 = ϑ2 = π/2, changing the potential in that range from being
attractive (α = 0) to being repulsive (α = π). This means that upon increasing α the
potential gradually develops a potential barrier (see the red curve in (b)).

the pair potential between Janus spheres is also dominated by the attractive minima and

the repulsive plateaus of interaction (Fig. 4.4(a)). The variation of the relative azimuthal

angle α affects the potential only locally around ϑ1 = ϑ2 = π/2. Upon increasing α,

the potential energy smoothly changes from having the potential minima connected by a

valley to having the plateaus bridged.

With the scaling function of the potential at our disposal, inter alia we are able to

elucidate a certain experimental aspect. A general issue concerning experimental studies of

colloidal aggregation consists of the influence of the unavoidable presence of a substrate.

It can be used deliberately, e.g., for the gravity induced formation of a monolayer of

homogeneous particles on the bottom wall of the sample. Experimentally, the particles

can be prevented from sticking to the substrate by applying a surface treatment of the

substrate such that it becomes repulsive at small distances between the particles and the

wall. For Janus particles, the experimental situation can be more intricate. Typically, the

interaction with the wall is biased towards favoring one side of the colloid over the other.

If the attractive interaction with the wall dominates over the inter-particle interaction

(or similarly, if the substrate is repulsive towards only one of the two sides of the Janus

particle), a scenario can prevail according to which all Janus particles orientate with one

and the same side towards the substrate.

Within this line of reasoning, let us suppose that the interaction with the substrate
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Figure 4.5: Angularly averaged and normalized scaling function Φ
(ss) of the effective pair

potential for two Janus particles, which are considered to be at equal height above a
substrate (not depicted), but far enough so that the influence of the substrate is weaker
than that of the pair interaction between the particles. The orientations n1 and n2 are
tilted by a common angle γ towards the substrate and out of the plane which contains both
particles centers and is parallel to the substrate. However, the influence of the substrate
is taken to be isotropic in the remaining lateral directions. This is supposed to mimic a
typical experimental setup. Thus, we consider the average 〈Φ(ss)〉 taken over n1 and n2

(see the main text), such that the tips of n1 and n2 form circles lying in a common plane
parallel to the substrate surface (see the inset). The influence of the externally imposed
tilt γ on the effective pair potential is visualized by the dependence on γ of the averaged
scaling function 〈Φ(ss)〉 (red curve) and its standard deviation σ with respect to the scaling
function for γ = 0 (green curve; see the main text). For γ → 0 the average approaches
the simple mean (Φ

(ss)
(+,+) + Φ

(ss)
(+,−))/2 of attraction and repulsion of homogeneous spheres

(upper gray curve). For γ = 90◦ the Janus equators are tilted such that they are parallel
to the substrate and thus unaffected by rotations around the normal of the substrate,
leading to an average Φ

(ss)
(+,+) (lower gray curve). All quantities are normalized by |∆(+,+)|.

has been reduced substantially, but is still present, resulting in a small biased tilt of all

Janus particles relative to the substrate normal. Depending on the setup, this tilt might

be barely noticeable, but would still affect the experimental determination of the effective

pair potential between the particles.

In Fig. 4.5, we show the scaling function of the effective potential between two Janus

spheres, which are tilted by a common angle γ relative to the axis connecting the centers

of the two particles, due to the effects of a hypothetical substrate below the particles and

parallel to the axis. Within this model, the horizontal components of the orientations

n1 and n2 of the two Janus spheres are distributed isotropically in a plane parallel to

the substrate; but the tilt γ is fixed to a given value, corresponding to an equilibrium

configuration of the Janus colloids relative to the substrate. Thus, the tips of n1 and n2

fluctuate on circles in a plane parallel to the substrate. Note that for γ > 0 a rotation

of the whole configuration around the normal of the plane corresponds to a non-trivial
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trajectory in the three-dimensional space of the relative spherical coordinates α,ϑ1,ϑ2, so

that determining the average 〈Φ(ss)
⊘⊘ 〉 requires knowledge of the full scaling function of the

potential. Due to problems associated with the multivalued nature of the transformation

functions, we refrain from providing an explicit parametrization of the orientations n1

and n2 in terms of the new coordinates which would include γ. Instead, for a fixed value

of the tilt angle γ, we evaluate the scaling function Φ
(ss) numerically on a discretized set

of 64 × 64 orientations n1 and n2, each of them describing a circular path on the unit

sphere. The set is expressed in terms of Cartesian coordinates and then transformed into

spherical coordinates determining α,ϑ1, and ϑ2.2 The average 〈Φ(ss)
(α,ϑ1,ϑ2)〉n1,n2 of

the scaling function Φ
(ss) of the effective potential, i.e., the arithmetic mean of the data

set, is plotted as a function of the tilt angle γ, together with the standard deviation σ =√〈(
Φ

(ss) − 〈Φ(ss)〉γ=0

)2〉
relative to the averaged scaling function for γ = 0. For γ = 0,

the average is taken such that both n1 and n2 describe a great circle on each sphere. They

can be parameterized unambiguously by the relative coordinates α = 0, 0 ≤ ϑ1,2 ≤ π,

and α = π, 0 < ϑ1,2 < π (i.e., both free energy landscapes shown in Fig. 4.4(a) enter

into the mean value), resulting within DA in the average
(
Φ

(ss)
(+,+) + Φ

(ss)
(+,−)

)
/2 due to the

symmetry of the potential.

The presence of a planar substrate effectively leads to a tilt γ > 0. In the extreme case

of a strongly dominant substrate force, a tilt of γ = 90◦ towards the substrate rotates

the two Janus equators into a configuration in which both of them are parallel to the

substrate surface. In this case, the rotation around the normal of the substrate does

not affect the pair interaction, so that always equal boundary conditions face each other.

Accordingly, within DA, the average is simply given by Φ
(ss)
(+,+). Figure 4.5 tells that even

intermediate tilt angles γ do not alter the effective interaction drastically. Up to γ ≈ 30◦

the mean value and the standard deviation remain rather constant and small, respectively.

The deviations become significant only above γ ≈ 45◦, which can be expected to be an

experimentally detectable tilt. For smaller angles γ, ignoring the tilt entirely turns out

to be a safe approximation.

The weak influence of small tilt angles on the appearance of the effective pair poten-

tial is associated with the flat plateaus in the energy landscape of the scaling function

of the potential (see, e.g., Fig. 4.4(a)). However, the proper average takes fully into ac-

count the trough- and ridge-like extrema occurring for orthogonal orientations (see, e.g.,

Fig. 4.4(b)). This shows that the critical Casimir interaction is not only rather insensitive

to small tilts for specific configurations, but even for a statistical ensemble of orientations.

2Although the transformation (x, y, z) → (α,ϑ1,ϑ2) also involves inverse trigonometric functions,
which are multivalued within the principal domains α ∈ [0, 2π) and ϑi ∈ [0,π] the only points which give
rise to ambiguities are the “north” and “south” pole at ϑi = 0 and ϑi = π, for which the value of α is
completely arbitrary. However, for tilt angles γ > 0 these poles do not lie on the circular paths of n1 and
n2 and therefore are avoidable by this transformation.
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However, experimentally observed aggregation structures may be driven by additional ef-

fects not captured by the DA-based effective pair potential, such as the occurrence of

order parameter bridges between the particles (see chapter 5 and Ref. [77]). Thus, the

aggregation of Janus particles into a complex spatial structure should still be analyzed

carefully by taking into account the relevance of substrate induced tilting beyond the DA.

4.3 Comparison with other model potentials

Here, we compare two well-known model interactions in their ability to render correctly

the properties of the critical Casimir interaction between Janus spheres. The Kern-Frenkel

model (KF) [133] for patchy particles has been used before to explain qualitatively the

interaction between Janus particles (e.g., [57,134–138]), even under the critical Casimir ef-

fect [71]. However, note that in Ref. [71], the two sides of the particles are both hydrophilic,

but to different degrees, in contrast to our description of a hydrophilic/hydrophobic chem-

ical step on the particle, and thus lacking the strong repulsive forces present for our Janus

particles. The KF model is well-studied and successful, yet rather simple and intuitive, so

that it is imperative to study whether it is already well-suited to describe the full critical

Casimir interaction. A large benefit of the KF model is that it provides unambiguous def-

initions for the range of the interaction, the interaction strength, and the patch-size. Note

that the interaction range of the critical Casimir effect grows with increasing correlation

length ξ(t → 0) as a function of the reduced temperature t = (T − Tc)/Tc and diverges

at Tc. Simultaneously, the amplitude of the interaction, given by a scaling function, in-

creases non-monotonically towards T → Tc. In the spirit of the ‘law of corresponding

states’ [121,139], for comparison we will define the corresponding range and patch-size of

the critical Casimir interaction in terms of the KF parameters such that both interaction

yield the same second virial coefficient.

As illustrated in Appendix B, we may exchange the language of the problem, and

decide to call the blue side ‘north’ and the red side ‘south’, without change to the physical

interaction itself. Having this directionality, we can fully replace the information about

the BC of the Janus particles with a vector from south to north. Thus, we may arbitrarily

reformulate the critical Casimir interaction between Janus particles as one between hard

spheres with some special dipole moment embedded. The pair potential between two

dipoles decays as ∼ 1/r3 (see Eq. (4.8)), which is different from the decay ∼ 1/(r − 2R)

of the critical Casimir interaction between spheres at T = Tc. Nonetheless, employing

methods valid for the dipole-dipole interaction for the critical Casimir interaction may be

more appropriate than a model that can only capture interactions of finite range such as

the KF. Regarding the orientation dependence, the two model potentials are quite distinct,

as sketched in Fig. 4.6, with the KF model being very sharp in contrast to the smooth

dipole-dipole potential. The aim of the proposed model potentials is to reproduce the
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Figure 4.6: Schematic pair potentials for (a) the modified Kern-Frenkel model with a half-
opening angle at the maximum δ = 90◦, and (b) the dipole-dipole interaction (Eq. (4.8))
at fixed distance and temperature, plotted as an energy landscape for the orientations ϑ1

and ϑ2 analogously to Fig. 4.4.

angular dependence of the critical Casimir potential for fixed distance and temperature,

i.e., the energy landscape shown in Fig. 4.4. Therefore, we will explore the distinctive

features of the critical Casimir interaction between Janus spheres in terms of the Kern-

Frenkel model as well as using methods established for the dipole-dipole interaction.

Generally, the dependence on the particle orientations is most conveniently expressed

for all interaction types in the relative coordinate system where the z axis points along

the vector connecting the two particle centers, i.e., r12 = (D + 2R)ez, where D is the

surface-to-surface distance and R is the radius of the Janus spheres. The dependence on

the orientations n1 = (φ1,ϑ1) and n2 = (φ2,ϑ2) relative to the connecting axis reduces

to a dependence on the azimuthal angle α = φ2 − φ1 and the polar angles ϑ1 and ϑ2.

In this section, the alternatively scaled temperature Θ∗ = R/ξ = Θ/∆ will be used in

order to discuss the distance and temperature dependence of the critical Casimir potential

separately, and we will only consider the case d = 3.

For a purposeful model that can be adopted to describe an experimental realization,

we will make use of three variations of the effective pair potential (Eq. (2.41)):

U
(Cas)

(n1,n2, r12, R, T ) = U (el)
rep (D) +

R

D
Φ

(ss)
(α,ϑ1,ϑ2,∆ → 0,Θ∗

∆), (4.18)

U
(Cas)
attr (D,R, T ) = U (el)

rep (D) +
R

D
Φ

(ss)
(+,+)(∆ → 0,Θ∗

∆), (4.19)

U (Cas)
rep (D,R, T ) = U (el)

rep (D) +
R

D
Φ

(ss)
(+,−)(∆ → 0,Θ∗

∆). (4.20)
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4.3.1 Kern-Frenkel model

In order to capture the basic properties of the critical Casimir interaction between the

considered Janus particles, we require a modified Kern-Frenkel model, such that

U
(KF)

(n1,n2, r12) =





U
(KF)
attr (r12)

if n1 · r12 > cos δ ∧ −n2 · r12 > cos δ,

or − n1 · r12 > cos δ ∧ n2 · r12 > cos δ,

U
(KF)
rep (r12) otherwise,

(4.21)

where

U
(KF)
attr (r12) =





∞ r12 ≤ σ,

−ǫa σ < r12 ≤ λaσ,

0 r12 > λaσ

(4.22)

is a square-well potential with range λa and depth ǫa; otherwise

U (KF)
rep (r12) =





∞ r12 ≤ σ,

ǫr σ < r12 ≤ λrσ,

0 r12 > λrσ

(4.23)

is a square-shoulder potential with range λr and strength ǫr. Note how this specifically

models particles carrying two patches (A and B) at opposite sides with the same half-

opening angle δ, resulting in the energy landscape shown in Fig. 4.6(a). The patches

are attractive to the same kind on another particle (A-A, B-B), but repulsive for the

other type (A-B, B-A). This is in contrast to the conventional case for the KF model of

a one-patch particle without repulsion, i.e., U (KF)
rep = 0 (see, e.g., Refs [57, 134–138]). For

the attractive part U (KF)
attr , the depth of the square-well ǫa is chosen to be the same as the

minimum Umin of the critical Casimir potential between homogeneous spheres, see section

2.2.3. As will be shown below, it is usually sufficient to set the strength ǫr of the repulsion

to some large value.

Within the KF model, the second virial coefficient (Eq. (2.42) with U(r) → U
(el)
rep +

U
(KF)) can be evaluated analytically, which carries over to our modified Kern-Frenkel.

However, it is insightful to first consider only the purely attractive square-well interaction

U
(KF)
attr with no dependence on the orientation. In this case, the second virial coefficient

B
(attr)
2 is given by

B
(attr)
2

B
(hc)
2

= 1− (λ3
a − 1)(eǫa − 1), (4.24)

where B
(hc)
2 = 2

3
πσ3

eff is the second virial coefficient of the (effective) hard-core part due

to the excluded volume.

Similarly, the purely repulsive square-shoulder interaction U
(KF)
rep would lead to a second
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Figure 4.7: (a) Visualization of the parameters of the modified Kern-Frenkel model used to
reproduce the critical Casimir potential between Janus spheres with an exemplary, short-
ranged electrostatic repulsion. (b) Effective patch size of spherical Janus particles in the
modified Kern-Frenkel model obtained for A = 160 and κR = 25 along a thermodynamic
path Θ∗ → 0 approaching the critical point. With tetramer we indicate the region of the
phase diagram in which the attractive patches are geometrically large enough to allow
for a configuration with “bonds” to three neighboring particles. Similarly, in the trimer

region, only two neighbor bonds fit inside the solid angle of the patch.

virial coefficient

B
(rep)
2

B
(hc)
2

= 1− (λ3
r − 1)(e−ǫr − 1) ≈ λ3

r for ǫr ≫ 1, (4.25)

i.e., B(rep)
2 = λ3

r B
(hc)
2 =

2

3
π(λrσeff)

3.

Thus, for sufficiently large shoulder strength ǫr, B
(rep)
2 amounts to an enlarged, effective

excluded volume of diameter λr σeff.

Clearly, the reduced second virial coefficient B∗
2 = B2/B

(hc)
2 of the full modified Kern-

Frenkel model will contain a mixture of the contributions that amounted to B
(attr)
2 and

B
(rep)
2 . Based on the conditions in Eq. (4.21), this can be written using the coverage

parameter χ = (1− cos δ)/2 of the one-patch model, so that

B∗
2 = 1− 2χ2(λ3

a − 1)(eǫa − 1) + (1− 2χ2)(λ3
r − 1). (4.26)

Note that 2χ2 is the fraction of attractive configurations, with the factor 2 because of the

two attractive patch combinations A-A and B-B, and 1− 2χ2 is consequently the fraction

of repulsive configurations.

These relation allow us to establish successively the parameters ǫa,λa,λr and χ of

the modified Kern-Frenkel model corresponding to the critical Casimir interaction for a

given temperature Θ∗: ǫa is chosen to be the same as the potential minimum Umin of

effective potential in Eq. (4.19). The interaction range la is then chosen such that B
(attr)
2

corresponds to the value calculated based on Eq. (2.42) for U(r) → U
(Cas)
attr . Similarly,
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the interaction range of the repulsion lr is chosen to yield for B
(rep)
2 the same value as

Eq. (2.42) but with U(r) → U
(Cas)
rep . Lastly, χ can be fixed to yield the same reduced

second virial coefficient B∗
2 using U

(Cas), with Φ
(ss) from Eq. (4.11)). These parameters

are visualized in Fig. 4.7(a) for an exemplary electrostatic repulsion.

As expected we find that the interaction ranges λa and λr increase with the correlation

length. Although the behavior tends to break down close to Tc, where the actual inter-

action becomes long-ranged and cannot be captured anymore by a finite range model. It

is worth pointing out again that close to Tc the scaling function of the potential Φ(cc)
+,+ de-

pends non-monotonically on the temperature Θ∗. This leads to a non-monotonic relation

between Θ∗ and the potential depth ǫa. Thus, in contrast to theoretical studies of the

Kern-Frenkel model, where ǫa is treated as an effective temperature itself, in the context

of the critical Casimir interaction ǫa does not fulfill the same role.

In Fig. 4.7(b) we plot the phase diagram of |Umin| = ǫa and the half-opening angle

δ (via χ = (1 − cos δ)/2) along a thermodynamic path with decreasing Θ∗, which corre-

sponds to a path of increasing T towards a lower critical point Tc in the experiment. The

parameters of the electrostatic repulsion have been chosen as A = 160 and κR = 25. The

resulting path shows a non-trivial trend: far away from the critical point, the interaction

strength ǫa is small, and the attractive patches have an effective patch size of 2δ � 180◦,

as expected from the Janus surface property. For a simple, qualitative argument, we

consider states with a potential depth ǫa > 3 kBT as “bonded”, as it has been argued that

this leads to colloidal aggregation [84]. Closer to the critical point, the effective patch

size decreases. For purely geometrical reasons, a transition from a tetramer to a trimer

state is expected to occur when the half-opening attains values below 60◦, for which the

particle can accommodate only two neighbor bonds.

The curve is continued for Θ∗ < 2 for the sake of completeness, showing apparently a

re-entry into the tetramer phase. However, one cannot draw credible conclusions based

on this. Below Θ∗ < 2, the critical Casimir interactions, both attraction and repulsion,

become long-ranged in the practical sense that the numerical results starts to dependent

on the (unavoidable) large distance cutoff value. Aside from the numerical problems, it

is evident that a model with finite interaction range cannot truly capture the behavior

close to Tc.

Experimentally, probing this phase transition must be done with extreme care; for

example, considering Janus spheres of radius R = 500 nm immersed in a binary mixture

with ξ0 = 0.2 nm (the value for water and 2,6-lutidine), the effective temperature Θ∗ = 5,

which is well within the trimer state, amounts to being as close as 16mK from the criti-

cal point. For larger particles which are more convenient experimentally, the temperature

range becomes even smaller. The thermodynamic path shown in Fig. 4.7(b) is severely

shifted upon varying the parameters of the electrostatic repulsion. For increasing ampli-

tude of the repulsion, as well as increasing the Debye length, the tetramer state appears
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to be more stable. This signals that the transition is indeed driven by the critical Casimir

forces, but may be overshaded by a dominant close range repulsion. A full analysis of

this dependence has not been performed within this thesis; the scope has been limited to

establishing that the KF model is a valid simplification of the critical Casimir potential

away from Tc when the interaction is short-ranged.

4.3.2 Generalized dipole-dipole model

Interaction potentials of the form V (n1,n2, r12)/(kBT ) = U(n1,n2, r12), which depend on

three orientations (of the two particles and the connecting axis), can be expanded into a

complete set of basis functions Ψl1l2l given by the rotational invariants

Ψl1l2l(n1,n2,n) =

l1∑

m1=−l1

l2∑

m2=−l2

l∑

m=−l

C(l1l2l,m1m2m)Y m1
l1

(n1)Y
m2
l2

(n2)Y
m∗
l (n) (4.27)

where C(l1l2l,m1m2m) denote the Clebsch-Gordan coefficients and Y m
l (n) the spherical

harmonics.

In general, the expansion follows

U(n1,n2, r12) =
∑

l1≥0

∑

l2≥0

l1+l2∑

l=|l1−l2|

ul1l2l Ψl1l2l, (4.28)

though some rotational invariants Ψl1l2l vanish due to the selection rules of the Clebsch-

Gordan coefficients. Inversely, the coefficients ul1l2l for a given potential U(r12,n1,n2) are

calculated from

ul1l2l(r12) =
4π

2l + 1

∫∫

Ω

dn1

∫∫

Ω

dn2 U(n1,n2, r12 = r12n)Ψ
∗
l1l2l

(n1,n2,n), (4.29)

where Ψ∗
l1l2l

denotes the complex conjugate of Ψl1l2l. Note the two solid angle integrals

over all directions Ω. The dipole-dipole pair potential (Eq. (4.8)), when expressed in

rotational invariants, consist of only a single contribution

U (dip)(n1,n2, r12n) = − 8π3/2

√
15/2

µ̃2

r312
Ψ112(n1,n2,n) = u112(r12)Ψ112(n1,n2,n). (4.30)

Note that the electrostatic repulsion within the effective pair potential is independent

of the orientation and will only contribute to the coefficient u000 corresponding to Ψ000.

Thus, one can evaluate coefficients of higher order based on the critical Casimir potential

alone. For the critical Casimir potential U (ss)
= V

(ss)
/(kBT ) between two Janus spheres,

using the semi-analytical form in Eqs. (4.11ff.), the expansion coefficients in rotational

invariants require numerical evaluation. Though in principle we have to deal with an
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infinite series of coefficients, we can conclude a certain structure based on symmetries of

the interaction. While the attractive and repulsive contributions to the critical Casimir

potential are of different absolute strength, this only enters the coefficient u000 of Ψ000 as

an orientation independent shift. The higher order terms of U (ss) must change sign with

inversion of one particle orientation, that is,

[
U

(ss)
(−n1,n2, r12n)− u000 Ψ000

]
!
= (−1)

[
U

(ss)
(n1,n2, r12n)− u000 Ψ000

]
, (4.31)

since this corresponds to the swap of the two BCs on particle 1. From the definition of

the rotational invariants in Eq. (4.27) and the properties of the spherical harmonics, it

follows that the rotational invariants are symmetric or anti-symmetric under this operation

depending on l1, i.e.,

Ψl1l2l(−n1,n2,n) = (−1)l1Ψl1l2l(−n1,n2,n). (4.32)

As the same holds true for l2, U
(ss) can consist only of terms with l1 odd and l2 odd,

except for l1 = l2 = 0.3

Higher order terms represent additional anisotropic contributions. The terms of lowest

order allowed by the Clebsch-Gordan coefficients are Ψ000,Ψ110 and Ψ112. The coefficients

for the terms Ψ22x vanish by the inversion argument. For symmetry conditions under

exchange n1 ↔ n2 of the two particles, the next higher order terms with indices (l1, l2, l) =

(1, 3, 2) and (3, 1, 2) are not independent and share the same coefficient, which can be

expressed in a combined basis function Ψ132 = (Ψ132 + Ψ312)/2. The same holds true

for (1, 3, 4) and (3, 1, 4). The next allowed terms with symmetric indices are (l1, l2, l) =

(3, 3, 0), (3, 3, 2), (3, 3, 4), (3, 3, 6).

The coefficients for the critical Casimir potential in d = 3 follow from Eq. (4.29)

together with Eq. (4.11); they may be factorized analogously to the scaling form such

that ul1l2l = ∆−1 ũl1l2l. The first few coefficients ũl1l2l, calculated numerically, are shown

in Fig. 4.8. Note that the coefficients adopt the dependence on ∆ and Θ∗ from the scaling

function, whereas the orientation dependence is encoded by the rotation invariants. In

Fig. 4.8(a), we show the absolute contributions of the expansion terms as a function of the

scaled temperature Θ∗ = R/ξ at a fixed distance ∆ = 1/2, together with the rotational

invariant basis functions Ψl1l2l(φ1=0,ϑ1=0,φ2=0,ϑ2=0,φ=0,ϑ=0, r12=(5/2)R), i.e., for

the case that both particles are orientated along the z axis as well as the vector connecting

the particle centers. This highlights that the zeroth coefficient amounts to the mean value

of the scaling functions
(
Φ

(ss)
(+,−) − Φ

(ss)
(+,+)

)
/2, since the average 〈Ψl1l2l〉n1,n2 = 0 vanishes

for l1, l2 > 0. As the given orientation of Janus particles is repulsive, the remaining

3Note that this symmetry does not apply to the Mayer function fM (n1,n2, r12n) =

exp(−U
(Cas)

(n1,n2, r12n))− 1 (Eq. (4.18)), which enters the second virial coefficient B2.
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Figure 4.8: (a) Absolute contributions of the coefficients and rotational invariant basis
functions Ψl1l2l(φ1=0,ϑ1=0,φ2=0,ϑ2=0,φ=0,ϑ=0, r12=(5/2)R), representing the case of
both particles being positioned and orientated in-line along the z axis, as function of
Θ∗ = R/ξ = Θ/∆ at fixed distance ∆. In this case, the complete expansion is expected to
yield the repulsive homogeneous scaling function Φ

(ss)
(+,−) (see red curve in the inset). The

zeroth order (red dashed curve in main panel) reproduces the average of the (+,+) and
(+,−) scaling functions (red solid curve), while the sum of the higher order terms (blue
dashed curve; calculated up to (3, 1, 4)) approximates the remainder (blue solid curve in
the main panel). (b) Numerically calculated values for the lowest order coefficients ũl1l2l

of the scaling function of the potential between Janus spheres as function of Θ∗ up to the
order (l1, l2, l) = (3, 1, 4) at fixed distance ∆ = 1/2.

expansion terms must amount to
(
Φ

(ss)
(+,−) + Φ

(ss)
(+,+)

)
/2. Indeed, in sum the terms up to

(3, 1, 4) produce a good approximation of the scaling functions. The scaling function

Φ
(ss)
(+,±) themselves are shown in the inset as a reminder. The actual values of the lowest

order coefficients are similarly shown in Fig. 4.8. Note how the curves are reminiscent of

the scaling functions, but appear to be always monotonic.

As a simple model, we formulate a generalized dipole-dipole interaction with only the

lowest order expansion coefficients u000, u110 and u112

U (gdd)(n1,n2, r12 = r12 n, ) = u000(r12)Ψ000(n1,n2,n)

+ u110(r12)Ψ110(n1,n2,n) + u112(r12)Ψ112(n1,n2,n) (4.33)

which is a generalization of the dipole-dipole potential and a first-order approximation of

the critical Casimir interaction. The treatment of the critical Casimir interaction in terms

of a generalized dipole-dipole model allows to consider some aspects that are not covered

by the Kern-Frenkel model. For example, two Janus colloids side by side (ϑ1 = ϑ2 = π/2),

such that their equators are in line, are affected by strongly attractive critical Casimir

forces (see the dip in Fig. 4.4(a) and (b)). For the closely related situation of a Janus

colloid above a substrate with a chemical step (see Fig. 3.7), it has been verified that

such a configuration is a potential minimum using both DA and MFT in d = 4, however,

the sharp kink is smoothed out in the MFT results. Within the modified Kern-Frenkel
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model, these states are considered to be repulsive by definition, as the attractive patches

have a coverage χ ∈ [0, 1/2], so that attractive configurations are in the minority. (An

alternative model that assumes the repulsive contribution to be in the minority fails to

reproduce the full second virial coefficient B∗
2 of the critical Casimir interaction between

Janus particles.)

Note that specific configurations may stabilize highly ordered phases and thus affect

the phase behavior of Janus colloids. A phase with polar order, in which all Janus colloids

are aligned along one axis, could be stabilized by the critical Casimir interaction along

the equators, despite repulsive contributions along the orientation axes. In this picture,

repulsive and attractive configurations are interchanged in comparison with the dipole-

dipole interaction. We now evaluate analytically the energetic stability of a phase with

polar order for the generalized dipole-dipole model.

Within the generalized model, the dipole-dipole interaction is described by coefficients

u000 = 0, u110 = 0 and u112 = −(8π3/2/
√

15/2)(µ2/r312) < 0, whereas we find from

numerical evaluation for the critical Casimir interaction u000 > 0, u110 < 0 and u112 >

0 ∀ Θ∗ ≥ 0. As the coefficients carry different signs for the two interactions, it is insightful

to consider the second virial coefficient in order to find fundamental implications of the

signs for the lowest-order coefficients. To that end, we follow the procedure in Refs. [140,

141].

Analogously to the potential, the Mayer function fM = e−U − 1 can be expanded in

rotational invariants

fM(n1,n2, r12n) =
∑

Λ

fΛ(r12)ΨΛ(n1,n2,n) (4.34)

with the distance-dependent coefficients fΛ(r12), using the shorthand notation Λ = {l1, l2, l}.

Assuming that the number density ρ(r,n) can be factorized as ρ(r,n) = ρ(r)α(r,n)

into a spatial dependent term ρ(r) and a normalized orientation dependent term α(r,n)

(i.e., the probability to find any angle is
∫

dnα(r, n) = 1, irrespective of r), it follows that

the second virial coefficient is given by

B2[α(n)] = B
(hc)
2

− 1

2V

∫

V

dr1

∫

V \Vσ

dr2

∫∫

Ω

dn1

∫∫

Ω

dn2 α(r1,n1)α(r2,n2) fM(n1,n2, r2 − r1) (4.35)

where the integral over the position r2 of the second particle leaves out the volume Vσ =

{r2 ∈ R
d | |r2 − r1| < σ} excluded by the first particle and already encoded in B

(hc)
2 . It

is handy to concomitantly expand the orientation distribution function using Legendre
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polynomials, so that

α(ri,ni) =
∞∑

li

αli(ri)Pli(cosϑi). (4.36)

Inserting both Eqs. (4.34) and (4.36) into B2 in Eq. (4.35) yields

B2 = B
(hc)
2 − 1

2V

∫

V

dr1

∞∫

σ

dr12 r
2
12

∫∫

Ω

dn
∑

l1l2Λ

αl1(r1)αl2(r1 + r12n)fΛ(r12)

×

∫∫

Ω

dn1

∫∫

Ω

dn2 Pl1(cosϑ1)Pl2(cosϑ2)ΨΛ(n1,n2,n). (4.37)

The latter integrals can be evaluated by expressing the Legendre polynomials Pl(cosϑ)

in terms of Y 0
l (ϑ, 0) and applying the orthogonality relation of the spherical harmonics.

This results in

B2 = − 1

2V

∫

V

dr1

∞∫

σ

dr12 r
2
12

∫∫

Ω

dn
∑

l1l2l

4πC(l1l2l, 000)√
(2l1 + 1)(2l2 + 1)

× αl1(r1)αl2(r1 + r12n)fl1l2l(r12)Y
0
l (n). (4.38)

For the lowest order terms, evaluating the Clebsch-Gordan coefficients C(l1l2l, 000) and

Y 0
l (n) yields

B2 =

B
(iso)
2︷ ︸︸ ︷

B
(hc)
2 − 1

2

∫ ∞

σ

dr12 r
2
12 (4π)

3/2 α2
0 f000(r12)

+
1

2V

∫

V

dr1

∞∫

σ

dr12 r
2
12

∫∫

Ω

dn
4π

3

1√
3
α1(r1)α1(r1 + r12n) f110(r12) (4.39)

− 1

2V

∫

V

dr1

∞∫

σ

dr12 r
2
12

∫∫

Ω

dn
4π

3

√
2

3
α1(r1)α1(r1 + r12n) f112(r12)

×

√
5

16π

(
3 cos2 ϑ− 1

)
.

The first two terms are the only ones not vanishing for isotropic phases, for which α0 =

1/(4π) is the only non-vanishing coefficient, so that we refer to them as B(iso)
2 . All following

higher order terms determine the stability of an anisotropic phase with respect to the

isotropic phase.

The coefficients f000, f110 and f112 have been calculated numerical using the critical

Casimir potential directly. Additionally, it is possible to obtain analytical expressions

relating the coefficients of the Mayer function to the coefficients u000 to u112 of the gen-

eralized dipole-dipole interaction. For brevity, the full derivation is omitted, but follows
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analogously to Ref. [140] by including the terms of the generalized dipole-dipole interac-

tion.

In an anisotropic but homogeneous phase, αl are a scalar coefficients, and in Eq. (4.39)

the third term with f112 vanishes, while the second term attains the form ∼ α2
1 f110(r12).

The polarization of a phase is determined by p ∝
∫

dnα(n)n = 4π
3
α1, and thus propor-

tional to α1. For the dipole-dipole potential with u000 = 0, u110 = 0 and u112 < 0, one

obtains f110 ≤ 0 and f112 ≥ 0. Due to the sign of f110, for a polar phase with α1 �= 0, this

reduces the second virial coefficient such that

⇒ B2 − B
(iso)
2 ≤ 0. (4.40)

Thus, the polar phase minimizes the free energy compared to the isotropic phase in the

case of a dipole-dipole interaction. This is a necessary, but not a sufficient condition.

However, the stability of a ferroelectric phase in a system with a dipolar phase is known

[141,142], and in line with this argument.

In contrast, for the critical Casimir potential with u000 > 0, u110 < 0 and u112 >

0 ∀ Θ∗ ≥ 0, one finds f110 ≥ 0 and f112 ≤ 0. The resulting signs of the expansion

coefficients of the Mayer function lead to the opposite behavior for the free energy, i.e.,

according to Eq. (4.39),

⇒ B2 − B
(iso)
2 ≥ 0. (4.41)

For the critical Casimir potential, any phase with a polarization, i.e., α1 �= 0, has a higher

free energy than the isotropic phase, making it thermodynamically unstable.

As a follow-up step, one may consider spatially ordered phases for which the coefficients

αl of the orientation distribution function are αl �= 0 for l > 1. However, structured

phases such as observed in Ref. [71] are likely described by a series of coefficients that

cannot be truncated at low orders. Nonetheless, we hope for this basic formalism to

provide a foundation for more extensive numerical computations and simulations of the

phase behavior, for example by applying density functional theory using a number of

pre-computed coefficients for the critical Casimir potential.

4.4 Conclusions

In this chapter, we have discussed the scaling function of the force between two Janus

spheres in a relative coordinate system as a function of three spherical coordinates α =

φ2 − φ1, ϑ1, and ϑ2 (Fig. 4.2). The details of the derivation, accounting for all possible

orientations, are provided in Appendix B. The result for the scaling function of the force

is shown in Fig. 4.3. We find that the force between two Janus spheres can be attractive

or repulsive, depending on their orientations. The strongest attraction is found in the

case of the two Janus spheres facing each other with the same face, whereas the strongest
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repulsion occurs when they are orientated in line. The force is rather insensitive against

tilts out of these two configurations. Based on the scaling function of the force we have

also determined the scaling function of the effective pair potential between two Janus

spheres. Since it is a function of three spherical coordinates, one cannot visualize, within

a single plot, the full dependencies of the potential. In Fig. 4.4, we present it as an

energy landscape in terms of the particle orientations ϑ1 and ϑ2 for the two cases α = 0

and α = π. There are two shallow and stable minima in the potential energy, which

are connected by a narrow trough representing counter-rotating orientations of the Janus

particles. The large plateaus of repulsive orientational states corresponding to opposing

BC yield a checkerboard landscape pattern. For 0 < α < π the scaling function of the

effective potential varies primarily only around orientations ϑi = π/2 for the two particles

i = {1, 2} (Fig. 4.4). However, the pronounced plateau structure is largely unaffected by

changes of α.

We have used the scaling function of the effective potential in order to address the

special experimental situation in which the particle positions and orientations are confined

to a plane parallel to the planar surface of a substrate, however such that the substrate

does not alter the pair interaction among the particles. Using the full pair interaction

potential, we have analyzed how the effective influence of the substrate, incorporated as

an externally imposed common tilt γ of all Janus particles, changes the effective pair

interaction among the Janus particles. The deviations turn out to be small for tilts

γ � 30◦ and still acceptable for γ � 45◦ (Fig. 4.5). Under this condition, concerning the

interaction among the particles the substrate induced interaction can be discarded.

Thus our findings are to a certain extent compatible with the on-off “bond-like” inter-

action underlying the popular Kern-Frenkel model [133]. However, the critical Casimir po-

tential carries both attractive and repulsive contributions. Since the repulsion is stronger

than the attraction, less than half of all configurations are actually attractive (see Fig. 4.4),

despite the overall Janus character. The effective pair potential can be used to characterize

the thermodynamic properties of suspensions of Janus particles with a critical solvent via

integrals of the effective potential over both orientations and the radial distance. However,

in practical terms the numerical integration over all orientations and the distance between

the particles results in problematically long runtimes. In order to make progress, we have

laid out the foundation for expanding the critical Casimir pair potential in terms of the

Kern-Frenkel (KF) model and a generalized dipole-dipole interaction in Sec. 4.3 (com-

pare Fig. 4.6 with Fig. 4.4). The Kern-Frenkel model provides clear model parameters

for the interaction strength, interaction range and the effective patch size (see Fig. 4.7).

The long-ranged behavior and non-monotonic strength of the critical Casimir potential

cannot be straightforwardly captured by the KF model. As a more aptly alternative,

we have introduced the expansion of the critical Casimir potential in terms of rotational

invariants, leading to a generalized dipole-dipole interaction. Analytic comparison with
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the dipolar interaction reveals opposite behavior in the second virial coefficient, which can

be traced to the different signs of the coefficients (see Fig. 4.8). This scheme can be suit-

ably extended for numerical evaluation (e.g., density functional theory) or (Monte-Carlo)

simulations.



Chapter 5

Beyond Casimir: Liquid bridging

between colloids

In the preceding chapters, we have focused on the critical Casimir force as the singular

contribution to the force close to the critical point. However, the contribution of liquid

bridges to the force had already been pointed out in the first reports of the direct mea-

surement of critical Casimir forces [28,29]. In this chapter, we study in detail the interplay

between the two forces as obtained from MFT by minimizing Eq. (2.27). We focus on the

case of the solvent being at solvent phase coexistence, so that h = 0. In order to stabilize

selectively the bulk β-phase, we consider the limit h → 0−, so that the coexistence line is

approached from that side which is slightly poor in the A component. In order to mini-

mize Eq. (2.27) numerically, we use an effectively two-dimensional adaptive finite element

method [101] which uses quadratic interpolation in order to obtain a smooth order pa-

rameter profile [143]. We have performed the minimization iteratively (i.e., by recycling

the finite element mesh of the previous solution in order find the next one) as a function

of the reduced temperature t and we have compared these results with non-iterative ones

in order to check for any hysteresis effects. We emphasize that although we have varied

the reduced temperature t stepwise, the results correspond to a set of equilibrium order

parameter profiles. In an experimental setting, they would be obtained at best by very

slowly heating or cooling the sample and waiting for equilibration. Therefore these results

represent a sequence of static behaviors and are not dynamic in any sense. The iteration

can be implemented all the same by stepwise changes of the distance D. However, we

expect a quasi-static experimental realization of this protocol to be much more difficult.

We have inferred the force acting on the colloids from the numerically determined

order parameter profiles, by first calculating the effective interaction potential and then

taking the derivative with respect to the separation D. The stress tensor method is not

viable for the present case because the interfaces forming near the colloids exhibit large

order parameter gradients which are prone to significant numerical errors.

As illustrated in Fig. 5.1, we consider two cylindrical colloidal particles of equal radius

85
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Figure 5.1: Cross-section of the system under study. It consists of two cylindrical colloids
of radius R with a preference for the adsorption of the α (A-rich, colored in red) phase,
surrounded by the β (B-rich, colored in blue) phase. In the bulk the phases α and β

coexist. The system is fixed at the critical composition and at reduced temperatures
t = (T − Tc)/Tc < 0. The surface-to-surface separation is denoted as D. The colloids are
aligned parallel to each other. Thus we investigate the effective interaction between the
two colloids for different separations, i.e., we study the dependence of the interaction on
z for temperatures below the critical point (t < 0). The colloids are taken to be small
enough so that gravitational effects are negligible.

R which are translationally invariant along the y direction. At a given temperature in

the two-phase α-β coexistence region of the solvent, the colloids are fixed to be parallel

and only their surface-to-surface separation D is allowed to vary. We assume that the

cylindrical colloids strongly prefer the α phase. Thus the global minimum of the free

energy has them surrounded by a macroscopic α phase, in coexistence with a colloid-free

β phase. However, there is a broad and stable local minimum in which the colloids are

trapped in the β phase, sufficiently far away from the α-β interface, so that the interface

is located outside our numerical calculation box (e.g., according to Ref. [143] the effective

potential of a single colloid changes notably only close to the interface, and remains

constant if the colloid is placed deeply within either phase). We note that in Refs. [45]

and [48] analogous situations have been studied for cylindrical particles and block-shaped

particles in a solvent close to gas-liquid coexistence, respectively. Our assumption of

strong adsorption on the surface of the colloids corresponds to the case of complete wetting

or drying, i.e., a contact angle of zero or 180◦, respectively. Note that the notions of a

liquid-bridge and a gas-bridge are the natural ones in the context of a solvent exhibiting

a gas-liquid phase transition; both cases are consistently described by the contact angle

between the particle surface and the liquid. While arbitrary, we choose to associate the

preference for the α-phase with zero contact angle and wetting by the liquid. In the case
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of a binary liquid mixture, one may find an α-like (rich in component A) or a β-like bridge

(rich in B), depending on the adsorption preference of the colloids, which is visualized by

the contact angle. Occasionally, we shall call the α-bridge a “liquid”-bridge as a means to

invoke the broader context.

5.1 A framework for finite-size scaling

First, we extend our notation of finite-size scaling to incorporate interfacial contributions

and define modified scaling functions. Close to the critical point, |t| ≪ 1, and at the

critical composition of the binary liquid mixture, the free energy Ω of the system (the

symbol Ω is used in order to avoid confusion with the force F ) can be decomposed into

a singular contribution and a non-singular background term [81] Ω = Ωsing + Ωnonsing.

Within the critical regime, Ωsing is expected to exhibit finite size scaling. We provide a

framework discussing this finite size scaling for the effective potential and for the force

between two colloidal particles using the definitions illustrated by Fig. 5.1. The singular

contribution to the total free energy is the sum of three separate, identifiable contributions

(compare with Eq. 2.18):

Ωsing = Ωb + 2 Ω
(β)
s,c + Ωi, (5.1)

where Ωb is the bulk free energy, Ω(β)
s,c is the surface free energy of each colloid in the β

phase, and Ωi is the effective interaction, which includes the critical Casimir interaction.

The critical behavior of the bulk and surface contributions of the total free energy is well-

known and exhibits scaling. Note that in Eq. (5.1) there are no additional contributions

from the side edges of the sample. We adopt periodic boundary conditions along the

axes of the cylinders and the sample is taken to be large enough so that the bulk values

corresponding to the β phase are attained in the other two directions.

The bulk free energy Ωb is proportional to the volume Vβ filled by the liquid phase β

of the binary liquid mixture. Therefore the bulk free energy takes the following form:

Ωb = kBT
Vβ

ξd+

a−b
α(1− α)(2− α)

, (5.2)

where a−b is a universal number. Its value depends on whether Vβ is expressed in units of ξd+
or ξd− (see Sec. IV in Ref. [144] as well as Ref. [145] and note that a−b here equals − (Rξ)

d a−b
with a−b as introduced in Eq. (4.11) in Ref. [144]) and α is the universal critical exponent

of the bulk specific heat capacity. (Here and in the following we omit those correction

terms of the free energy which are generated by additive renormalization [144].) The total

volume filled by the liquid phase β is given by the total volume of the system minus the



88 5. Beyond Casimir: Liquid bridging between colloids

volume of the two cylindrical colloids of radius R:

Vβ = L ×
(
LxLz − 2 πR2

)
, (5.3)

where Lx,z are the extensions of the β phase along the x and z direction (see Fig. 5.1)

and L is the extension of the system along the invariant directions, i.e., L(d = 3) = Ly

and L(d = 4) = Ly L4.

From inserting both ξ+ = Rξ ξ
−
0 |t|

−ν and Eq. (5.3) into Eq. (5.2), one finds that the

bulk free energy scales as

Ωb

kBT
=

LxLz − 2 πR2

(ξ−0 )
d

L
a−b

α(1− α)(2− α)
R−d

ξ |t|dν , (5.4)

which provides the first term in Eq. (5.1).

The surface free energy Ω
(β)
s,c of a single colloid in the bulk β phase is given by [143]

Ω
(β)
s,c = kBT

Ac

ξd−1
+

ϑβ(R/ξ−), (5.5)

where Ac = L×2πR is the surface area of one cylindrical colloid and ϑβ is a universal scal-

ing function. The above expression can be rewritten in order to illustrate the temperature

dependence of the surface free energy of the colloid:

Ω
(β)
s,c

kBT
=

2πR

(ξ−0 )
d−1

Lϑβ

(
R

ξ−0 Rξ

|t|ν
)

R
−(d−1)
ξ |t|(d−1)ν . (5.6)

Combining Eqs. (5.4) and (5.6) yields the total singular free energy of the system:

Ωsing

kBT
=

LxLz − 2 πR2

(ξ−0 )
d

L
a−b

α(1− α)(2− α)
R−d

ξ |t|dν (5.7)

+ 2×
2πR

(ξ−0 )
d−1

Lϑβ

(
R

ξ−0 Rξ

|t|ν
)

R
−(d−1)
ξ |t|(d−1)ν

+ Ωi/kBT.

The last part, Ωi, is the contribution to the free energy which originates from the finite

separation between the colloidal particles and thus represents the effective interaction

between them. According to finite size scaling, this effective potential can be written in

scaling form as [36]
Ωi

kBT
=

L

Rd−2
G

(
∆ =

D

R
,Θ− =

R

ξ−

)
, (5.8)

where D is the surface-to-surface distance between the colloidal particles, R is the radius of

a single colloid (see Fig. 5.1), and ξ− is the correlation length (for T below Tc). Note that

the choice of the scaling form and of the scaling variables is not unique. In this chapter,
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we have opted for the choice ∆ = D/R and Θ− = R/ξ− because it allows one to discuss

separately the distance and the temperature dependence, and with a view on experiments,

the radius R can be considered as being fixed. The scaling form given by Eq. (5.8) holds

generally for any geometric object in d dimensions which has a characteristic size R in 2

directions but is invariant in d−2 directions. At the critical point the distance dependence

of the corresponding scaling function G(∆,Θ− = 0) for the effective interaction follows

the power law ∼ ∆−(d−3/2) which is borne out by the scaling form (see Appendix A)

Ωi

kBT
=

L

Rd−2

Φ
(cc)
(+,+)(∆,Θ = Θ−∆)

∆d−3/2
. (5.9)

The cylinder-specific scaling function Φ
(cc)
(+,+) has the property Φ

(cc)
(+,+)(∆,Θ = 0) = const.,

i.e., it does not contain the aforementioned divergence for ∆ → 0. In this chapter, it

will turn out to be beneficial to use the scaling form given by Eq. (5.8) which keeps

the whole distance dependence within the scaling function. The relation G(∆,Θ−) =

∆−(d−3/2)Φ
(cc)
(+,+)(∆,Θ−∆) from Eqs. (5.8) and (5.9) still allows the comparison with other

presentations in this thesis and in the literature.

Due to the dependence of Ωi on the separation D between the colloids, an effective

critical Casimir force Fsing emerges, which acts on the particles along the z-direction (see

Fig. 5.1):

Fsing = −∂Ωi

∂D
= −kBT

L

Rd−1

∂

∂∆
G (∆,Θ−) , (5.10)

= kBT
L

Rd−1
K (∆,Θ−)

with the scaling function K(∆,Θ−) = ∆−(d−1/2)K
(cc)
(+,+) found in Appendix A. In the

following, the scaling function K of the force will be investigated as a function of tem-

perature. In order to make progress in determining the effective potential and thus the

force acting between the colloidal particles, we resort to mean field theory as described

in Sec. 2.1.3 in order to be able to describe explicitly the order parameter distribution

around the colloids.

5.2 Two particle order parameter profiles

We start our study by presenting the distribution of the order parameter φ for the binary

solvent in the presence of two cylindrical, parallel colloidal particles. The explicit spatial

variations of φ are calculated within MFT, see Sec. 2.1.3, and discussed along the lines

presented in Sec. 5.1. Beyond such explicit (and thus approximate) calculations, for the

present system under study, the theory of finite size scaling states that below but close to
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the critical point the order parameter exhibits the scaling form [36]

φ(r, t) = B |t|β P±

(
x

ξ±
,
z

ξ±
;∆=

D

R
,Θ±=

R

ξ±
=

R

ξ±0
|t|ν
)
, (5.11)

where B is the non-universal amplitude of the bulk order parameter with β ≃ 0.33 in

d = 3 and β = 1/2 in d = 4 as one of the standard bulk critical exponents. D denotes the

surface-to-surface distance between the two colloids of equal radius R and (x, z) are the

coordinates of a point in the surrounding liquid. For the given geometry, we conveniently

choose the coordinate system such that the y-axis is aligned with the axes of the parallel

cylinders, so that φ is independent of that translationally invariant direction. The z-axis

connects the centers of the two colloids (see Fig. 5.1) and the origin (0, 0) is located at

the center of the “bottom” particle (assuming the reader is holding the page upright).

We remark that for T ≥ Tc the order parameter vanishes far away from the colloids and

exhibits critical adsorption as described by the scaling function P+(x/ξ+, z/ξ+;∆,Θ+)

[99]. At T = Tc, in Eq. (5.11) both scaling functions P± render the same, unique order

parameter distribution.

In this study, we focus on the phase-separated region T < Tc. The boundary conditions

are chosen such that the surfaces of the colloids strongly prefer the α phase, whereas far

from the colloids the coexisting β phase prevails. In Fig. 5.2, P−(x/ξ−, z/ξ−;∆,Θ−) is

shown for the rescaled temperature Θ− = 16.1 at the rescaled surface-to-surface distance

∆ = 2.35. Two distinct profiles can be found, one in which the two particles are connected

by an A-rich liquid bridge in Fig. 5.2(a), and one where each colloid is covered by a wetting-

like layer of the α phase, the thickness of which is finite due to the curvature of the colloid

surfaces [146]. At the given rescaled distance ∆ = 2.35, the two configuration have the

same free energy. However, the bridged state (a) is more stable for smaller separations

or upon approaching the critical point. In reverse, the separated state prevails for larger

separations and further away from Tc. The two profiles in Fig. 5.2 have been obtained

along two thermodynamic paths, moving away from Tc in (a) and approaching Tc in (b).

Quantitatively, in the α phase one has φα = B|t|β (with B > 0), so that φβ = −B|t|β.

Accordingly, far from the colloids P− reduces to the value −1 (see Eq. (5.11)). In the

presence of a liquid bridge (Fig. 5.2(a)), a sharp α-β interface is formed around both

colloidal particles, the position of which can be described by the implicit equation P− = 0.

Within that bridge, the scaling function P− attains the bulk value of the α phase, P− = 1.

The liquid bridge exposes partially the preferred α phase to the colloids, thus reducing the

surface free energy. The total free energy is counterbalanced by the additional interfacial

energy required in order to maintain the bridge. Figure 5.2(b) shows that, at the transition

distance between the bridged and separated state, the two separate wetting layers around

the particles are de facto circularly symmetric, indicating that at this temperature the

particles do not strongly interact with each other, in a way which is visibly distorting the
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Figure 5.2: Scaling function P−(x/ξ−, z/ξ−) describing the order parameter profile around
two colloids for Θ = R/ξ− = 16.1 at the rescaled distance ∆ = D/R = 2.35 corresponding
to the first-order transition between the (a) bridged and (b) separated configuration. The
surfaces of the gray colloids prefer the α phase (P− > 0, red color) whereas far from the
colloids the β phase prevails (P− = −1, blue color). Within the numerical procedure,
the actual OP profile is not resolved inside a shell of radii R and 1.05R (white ring)
due to the divergence of P− → ∞ at the surface of the colloids. Instead, in this shell
the analytic expression for the asymptotic behavior of the profile [99] is used. The black
dashed iso-lines correspond to P− = 0. Within the liquid bridge in (a), the scaling function
P−(x/ξ−, z/ξ−) follows mostly the bulk value of the α phase, i.e., P− = 1 (see the rather
uniform orange color).

A-rich fluid encasing each of the two colloids.

Note that the straight, flat shape of the bridge is not an artificial feature of the

method, but a particular feature of the cylindrical geometry itself. In order to provide

a short rationale, one has to realize that the cylinders extend out of the figure plane

and thus the interface stretches along the y-direction by a length Ly. Any bending of

the straight interface into the gap between the cylinders, such that the interface would

wrap more closely around them, increases the arc length s =
∫
ds(z) and the surface

area Ac = Ly s ≥ Ly l compared to the straight bridge of length l. In contrast, for

spherical colloids, a bridge forms with a thinner neck between the particles, which bends

inwards [38, 43–45, 47, 49, 147–154]. Considering a very sharp interface, the liquid bridge

connecting the two spheres is a solid of revolution, e.g., a cylinder with radius Rc for

a straight bridge or a “body” with varying radius r(z). According to Guldin’s theorem,

the surface area of a solid of revolution with length l is given by As = 2π l r, where

r = (1/l)
∫ l

z=0
r(z) ds(z) is the radial distance of the centroid of the profile r(z). Evidently,

a tapering of the radial profile decreases the radial distance of the centroid and thus the

surface area As = 2π l r ≤ 2π l Rc decreases compared to that of the straight bridge.

Thus the surface free energy contribution, which is proportional to the surface area of the
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Figure 5.3: The same as Fig. 5.2 but for Θ− = 8.0 at the transition distance ∆ = 3.48,
with the bridged configuration in (a) and the separated one in (b). Note that upon
approaching Tc, i.e., for Θ− → 0 the correlation length ξ− increases, resulting in a smaller
scale of the plot. Still, in units of ξ−, the halos around the particles are larger than in
Fig. 5.2 and the transition distance has increased noticeably. For even smaller values
of Θ−, the transition distance exceeds the plot range and requires also larger numerical
calculation boxes.

interface, is minimized by profiles which are very different for two cylinders and for two

spheres. Although cylindrical colloids are more difficult to realize experimentally, large

elongated colloids can be fabricated and their physical properties can be studied (see, e.g.,

Refs. [155–158]). Within the present theoretical study, it turns out that they provide a

particularly clear model system which allows one to identify the main effects associated

with bridge formation.

We now consider the case in which the system is closer to the critical point Tc. Upon

decreasing the rescaled temperature of the system to Θ− = 8.0 (see Fig. 5.3), the transition

distance increases to ∆ = 3.48 along with the increasingly long-ranged correlations. The

halos around the two colloids extend farther out, and the interfacial region, both of the

bridge and around the cylinders, is more smeared out. Moving even closer to Tc, i.e.,

Θ− → 0, these trends become even more pronounced: the transition distance then exceeds

the plot range and the interface between the α- and β-rich phases becomes smeared out

over a range comparable to the size of the colloids; accordingly the bridge becomes less

clearly visible.
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5.3 Distance dependence of the scaling function for the

effective potential

We now turn our attention to the effective potential between the two colloidal particles,

in the bridged and the ruptured state. As already mentioned in Sec. 5.1, the singular

part of the effective potential takes the form given by Eqs. (5.7) and (5.8). This form

of the scaling function G is suitable for studying the dependence on the distance D of

the effective potential Ωi acting between the colloidal particles. The MFT results for the

bridged states, obtained by using numerical minimization as described in Sec. 2.1.3, are

shown in Fig. 5.4.

In Fig. 5.4(a), for the rescaled temperatures Θ− = 12.25, 6.00, and 0.45, we show

the scaling function G as a function of ∆, normalized by the critical Casimir amplitude

k(+,+)(0) = ∆(+,+) = −283.61 u−1 (i.e., the amplitude of the critical Casimir force between

two equal, symmetry breaking, parallel plates at the critical temperature — see Ref. [91]

for further details) so that the results are independent of the dimensionless, unspecified

coupling parameter u. The data corresponding to the system furthest from the critical

point, i.e., for Θ− = 12.25, clearly reflect three stages of the evolution of the liquid bridge.

(i) For large separations ∆ ≫ 1, one finds G > 0 for the bridged state. Since the surface

free energy 2Ω
(β)
s,c of two separate colloids is not included in Ωi/(kBT ) =

(
L/R(d−2)

)
G, a

vanishing value G = 0 corresponds to the free energy of the completely separated state.

Thus for ∆ ≫ 1 the bridged state is only metastable compared to the separated state.

In order to further illustrate this metastability, for Θ− = 12.25 we have followed the

separated state along the reverse thermodynamic path beyond the transition distance at

which the two free energy branches intersect. The resulting free energy of the separated

state is very small and varies only very weakly. Upon lowering D this state adheres to

very small values of G until it suddenly jumps onto the lower free energy branch of the

stable, bridged state (see the vertical dashed line). Note that the bridged and separated

states have actually been obtained along two thermodynamic paths, moving away from

Tc and approaching Tc, respectively, which renders the metastability upon varying the

distance D between the colloids, provided scaling holds.

(ii) For intermediate rescaled distances 0.5 < ∆ < 2.5, the scaling function G increases

linearly upon increasing ∆. This is a clear signature of the effective potential being

dominated by the surface free energy contribution of the α-β interface, which encloses

the bridge, because the surface area increases linearly upon stretching the interface. (The

concomitant increase of the bridge volume does not generate a free energy cost because the

two bulk phases α and β are in thermal equilibrium.) In fact, the slope ∂G/∂∆ = −K of

the scaling function matches exactly the interfacial tension contribution Kσ to the scaling

function K of the force (see Eq. (5.10)).

In order to verify this, we start by identifying within MFT the interfacial contribution
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Figure 5.4: Normalized scaling function G (Eq. (5.8)) of the effective potential between
two cylindrical parallel colloids. In (a) G is plotted as a function of ∆ for three rescaled
temperatures Θ−. The data points are numerical MFT results. The red data points,
which form a line with a significant slope, correspond to the free energy branch of the
bridged state. The red data points close to zero correspond to the weak interaction of the
separated configuration. The bridged state prevails upon increasing D from small values
whereas the separated state prevails upon decreasing D from large values. The thin
vertical dashed line at ∆ ≃ 1.27 serves as a guide for the eye indicating the corresponding
hysteretic behavior. (Its pendant, dropping off to zero from the positive part of the red
line, is located at ∆ > 3 which has not been reached numerically and thus is not shown.)
For Θ− = 6.00 and Θ− = 0.45 for reasons of clarity only the data for the bridged state
are shown. Note that here the surface free energy 2Ω

(β)
s,c is subtracted from the definition

of G (see Eqs. (5.1) and (5.8)), so that G = 0 corresponds to the free energy of the
state of two completely separate colloids. The transition distance Dt/R is determined
by G = 0 so that Dt(Θ− = 12.25)/R ≃ 2.7. Upon increasing D, the bridged state may
extend beyond the transition point given by the position of the intersection of the two
branches. On the other hand, the separated state may exist as a metastable state for the
two colloids pushed together closer than the transition distance. The intermediate region
is dominated by the cost of stretching the interface enclosing the bridge which leads to
the linear increase of G; the slopes match perfectly with the surface tension contribution
to the force (see Eq. (5.14) and the thick dashed lines). See the main text for an in-
depth discussion of this functional behavior. (b) The same data as in (a) but here |G| is
shown on double-logarithmic scales for separations ∆ � 1. The open symbols represent
full, numerical data, and the solid colored lines are the Derjaguin approximations thereof.
There is a tendency of the MFT results and of the Derjaguin approximation to more
closely follow, on these scales, a straight line for Θ− → 0, i.e., T → Tc. This indicates
the power law G(∆ → 0) ∝ ∆−(d−3/2) (see Eqs. (5.8) and (5.9)), i.e., ∝ ∆−5/2 for d = 4
(black dashed line). For further discussions see the main text.

to the force for a rigid interface. Increasing the separation between the cylinders by an

infinitesimal amount dD increases the interface area by dA = 2L dD, which corresponds

to adding two rectangular stripes of area ∝ dD each. In accordance with Eq. (5.10) the

interfacial tension is

σ =
dΩi

dA
=

1

2L

dΩi

dD
= −1

2

kBT

Rd−1
K. (5.12)

Near Tc the interfacial tension scales as σ = σ0 |t|
(d−1)ν where σ0 is a non-universal am-
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plitude [159]. The interfacial tension can be written in terms of quantities introduced in

Sec. 5.1:
σ

kBT
= Rσ

(
ξ+0
)−(d−1)

|t|µ, (5.13)

where Rσ = 4
√
2u−1 = 4

√
2 |∆(+,+)|/283.61 and µ = (d − 1)ν = 3/2 for d = 4 [143].

Therefore, the interfacial tension contribution to K can be written as

−Kσ =
2Rσ

Rd−1
ξ

(
R

ξ−

)d−1

=
Rσ√
2
(Θ−)

3 =
|∆(+,+)|

70.9
(Θ−)

3, (5.14)

in terms of the scaling variable Θ− and using Rξ =
√
2 in d = 4. In Fig. 5.4(a) the linear

relation (−Kσ)∆ is indicated by thick dashed lines for each rescaled temperature Θ−. The

slopes agree perfectly with the numerical results, considering especially that Kσ/∆(+,+)

depends only on Θ− and the a priori fixed amplitude (70.9)−1. This confirms that the

interface tension is the dominant contribution to the scaling function G of the potential

for intermediate separations ∆.

(iii) At very close separations (∆ ≤ 0.5), there is a strongly attractive force ∝ ∂G
∂∆

which is stronger than the one required to stretch, upon increasing ∆, the area of the

α-β interface enclosing the bridge. The enhancement of the effective potential is found

to be driven by the critical Casimir effect. Since the deviations become significant only

for ∆ = D/R → 0, corresponding to the limit of large colloids, due to their small cur-

vature the surfaces resemble two planar parallel walls. One expects that in this limit

the effective potential for two colloids can be expressed in terms of the critical Casimir

forces in the film geometry. This approach can be implemented by using the so-called

Derjaguin approximation (see, e.g., Refs. [69, 70, 74]). For two cylinders with the same

adsorption preference immersed in a near-critical solvent, the effective potential is given

by (see Eq. (5.8))
Ωi

kBT
=

L

Rd−2
G(∆,Θ−), (5.15)

where

G(∆,Θ−) = ∆
−(d−3/2)

Φ
(cc)
(+,+)(∆,Θ = Θ−∆), (5.16)

and within DA the scaling function of the potential is found to be

Φ
(cc)
(+,+)(∆,Θ) = 2

∞∫

1

dη
√
η − 1 η−d k(+,+)(ηΘ)

− 2

∞∫

1+∆−1

dη
(√

η − 1−∆
−1/2

)
η−d k(+,+)(ηΘ), (5.17)

where k(+,+) is the scaling function of the CCF between two planar walls with equal
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(+) boundary condition [103]. The full details of the Derjaguin approximation for two

cylinders are presented in Appendix A. In Fig. 5.4(b) we plot the effective potential for

small interparticle separations and compare it with the Derjaguin approximation for two

cylinders (note the double-logarithmic scales of the axes which facilitate to resolve the

observed behavior). The agreement between the numerical data (open symbols) and the

analytical prediction obtained via the Derjaguin approximation (solid lines) is very good

for all three rescaled temperatures studied in the range ∆ < 1. The emergence of long-

ranged correlations upon approaching Tc, i.e., Θ → 0 gives rise to the intuitive expectation

that the Derjaguin approximation is valid even for ∆ � 1. Indeed, this behavior becomes

more pronounced for the rescaled temperature Θ− = 0.45, i.e., closer to Tc. Here, the

agreement is very good, even for larger values of ∆. The power-law behavior ∝ ∆−(d−3/2)

of the effective potential emerges clearly, as predicted by the DA. This observation is also

in agreement with the down-shift of the critical point which occurs for finite size systems

undergoing capillary condensation: [160] For symmetry breaking boundary conditions

at the surfaces, the film critical point is shifted both in temperature (towards lower

Tc(D) < Tc(∞) = Tc,bulk) and composition of the solvent such that for small separations

between the colloids, i.e., for ∆ � 0.5, CCF are present even for temperatures which can

be considered as being not close to the bulk critical point of the solvent. For larger ∆,

this behavior crosses over to the regime linear in ∆ within which the free energy cost of

stretching the interface of the bridge dominates the effective potential.

Considering again Fig. 5.4(a), for the intermediate rescaled temperature, Θ− = 6.00,

the trends in behavior are qualitatively very similar to those in the previous case Θ− =

12.25. The major difference is that close to Tc the strength of the effective interaction,

which is the magnitude of the scaling function G(∆ → 0), is reduced. For the temperature

closest to the critical point, i.e., Θ− = 0.45, there is a very gradual increase of the effective

potential upon increasing ∆. Therefore, upon approaching the critical point Θ− = 0, the

distinction between the three regimes discussed above becomes blurred.

In sum, we have found that for cylindrical, parallel colloidal particles connected by a

liquid bridge the effective interaction potential exhibits three distinct regimes concerning

its dependence on the surface-to-surface distance. There is a power-law behavior at small

distances caused by slab-like CCF, which crosses over to a linear regime reflecting the

stretching of the interfacial area of the bridge, followed by a rupturing of the liquid bridge

connecting the colloids. Upon approaching Tc, these regimes become less distinct. The

clear distinguishability of these three regimes is a virtue of the cylindrical geometry. As

discussed briefly, in the case of two spheres a stable bridge forms which has a thinner

neck between the colloids. In this latter case stretching the associated interface does

not result in a linear increase of the surface free energy and thus the scaling function

G of the effective potential is not a linear function of the separation ∆. This more

complicated dependence may mask the critical Casimir contribution. Furthermore, MFT
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Figure 5.5: (a) The MFT scaling function P
(s)
− (v = z/R;Θ− = R/ξ−) (Eq. (5.19)) of

the order parameter at the outside of a single colloid as function of the distance z along
x = 0 in units of the particle radius R, for various rescaled temperatures Θ− = R/ξ−.
The colloidal particle is indicated by the gray region v = z/R < 1. Each color and
line style represents an order parameter profile for a given rescaled temperature Θ−. At
z = R + la, the scaling function crosses P

(s)
− (s = la;Θ−) = 0 so that la is the adsorption

layer thickness. (b) Same as (a), but in terms of the scaling variable s, i.e., (z−R) scaled
in units of the correlation length ξ−. Close to the surface of the particle, in the regime
of strong adsorption, i.e., s < 1, the scaling functions P

(s)
− (s;Θ−) for different rescaled

temperatures Θ− collapse onto the short distance approximation given in Eq. (5.20), the
leading order of which depends on s only (black dashed curve). On the other hand, around
the emerging α-β interface, i.e., z ≈ R + la, this is not the case. This shows that P

(s)
− is

a scaling function depending indeed on two independent scaling variables.

does not capture fluctuation effects. The first-order transition between the bridged and

the separated state is expected to be smeared out due to finite-size induced fluctuations

[161–163], to the effect that the adsorbed volume around and between the colloids changes

sharply but continuously over a small range of ∆, instead of doing so abruptly. We shall

address this point in more detail in Sec. 5.6 after the discussion of the mean field results

for the bridging transition.

5.4 Single particle order parameter profiles

From the previous view of the order parameter profiles and the scaling function G of the

effective potential, it is evident that for each rescaled temperature Θ− there is one critical

separation Dt for which the free energy of the bridged and the separated state are equal,

implying a first-order bridging transition. Thus, a complete description of the bridging

transition cannot be an inherent property of the coupled two-particle state only, but must

also take into account the state of two separated single-colloids.

Before discussing in detail the first-order bridging transition, we first consider the

feature of the “halos” which grow around the separated colloids upon approaching Tc.

As seen in Figs. 5.2(b) and 5.3(b), for D � Dt the order parameter distribution around
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each colloid is visually unaffected by the presence of the other colloid. In the absence of

colloids and surfaces and in the phase separated regime t < 0 in which the two phases

coexist, the mean field bulk values of the order parameter are given by 〈φ〉α,β = ±B |t|1/2,

or in terms of the scaling function, by P− = ±1. Generally, the superposition of two

single-particle order parameter profiles φs provides a reliable estimate of the two-particle

order parameter profile only for two distant colloidal particles:

φ(r, t) ≈ [(φs(r, t)− 〈φ〉β] + [φs(r− r12, t)− 〈φ〉β] + 〈φ〉β (5.18)

for D = |r12|− 2R → ∞,

where r12 is the vector connecting the centers of the two colloids; note that φs(|r| →
∞, t) = 〈φ〉β. For finite distances, even in the separated state the halos around the two

colloids still interact with each other via mutual deformation of the halos. This is not

captured by Eq. (5.18). However, this interaction is exponentially small away from Tc.

As it turns out, for Θ− ≫ 1 this decomposition into two single-particle profiles is valid

down to the transition distance Dt. In this non-critical regime, D = Dt is large compared

to the extension of the halos in the single-particle profiles.

The order parameter profile φs(r, t) around a single cylindrical colloid exhibits the

scaling form

φs(r = {x, y, z}, t) = B |t|β P
(s)
−

(
s =

√
x2 + z2 −R

ξ−
;Θ− =

R

ξ−

)
, (5.19)

with the origin (x = 0, z = 0) located at the center of the colloid. Using the relations

u/6 = 1/(Bξ+0 )
2, τ = −|t|/(

√
2 ξ−0 )

2, and ξ+0 =
√
2 ξ−0 (see Sec. 2.1.3) the scaling function

P
(s)
− can be expressed in terms of m− as P

(s)
− = m−/

√
|τ | which does not depend on the

non-universal MFT parameter u. In order to proceed, we have to analyze as a function of

temperature the thickness of the wetting layer formed by the α phase, which encapsulates

the single colloid. Without loss of generality, we can simplify the notation by considering

the scaling function P
(s)
− (s = (z − R)/ξ−;Θ− = R/ξ−) at a given rescaled temperature

Θ− along the z axis at x = 0.

In Fig. 5.5 we show this cut of the MFT scaling function P
(s)
− (s;Θ−) for a single particle

as a function of the rescaled temperature Θ−. The surface of the particle strongly prefers

the α phase, so that P
(s)
− (s → 0;Θ−) = +∞. Far away from the particle surface, i.e., for

z ≫ R, the order parameter φs smoothly approaches its bulk value corresponding to the

β phase, which implies a decay of the scaling function towards P (s)
− (s → ∞;Θ−) = −1. In

Fig. 5.5(a), the scaling function P
(s)
− is shown as a function of the scaling variable v = z/R.

Closer to the critical point, i.e., for smaller values of Θ−, the length scale on which the

order parameter approaches its bulk value P
(s)
− = −1 increases significantly, illustrating

that the thickness of the wetting layer around the colloid increases as the temperature
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approaches Tc. This is accompanied by a decrease of the slope of the scaling function as

a function of z, so that the bulk value corresponding to the β phase is also attained more

slowly upon approaching Tc. In contrast, Fig. 5.5(b) depicts the spatial variation of P (s)
−

in terms of the correlation length ξ− using the scaling variable s = (z − R)/ξ−. In the

regime dominated by the strong adsorption close to the surface of the particle, the family

of scaling functions for different rescaled temperatures Θ− collapses onto a single curve.

This regime is well captured by the short-distance approximation for the normalized MFT

order parameter m(z → 0, R, τ) [36, 99]. For the scaling function P
(s)
− = m−/

√
|τ | of a

single cylinder embedded in spatial dimensions d = 4 one has

P
(s)
−

(
s =

z −R

ξ−
→ 0;Θ−

)
≈ 2

s
+

s

6
− 1

3
s/Θ− +

5

36
(s/Θ−)

2 . (5.20)

The leading order of the short distance approximation is ∝ s−1, so that the range of

the strong adsorption behavior scales proportionally to ξ− (see the black dashed curve in

Fig. 5.5(b)).

However, upon approaching Tc the total adsorption layer thickness la, which takes

into account also the thickness of the emerging α-β interface around the colloid, increases

weaker than the bulk correlation length ξ− (see the numerical data in the upper panel of

Fig. 5.6(a)). Divided by ξ−, the extent of the adsorption layer formed by the α phase does

not attain a constant but diminishes upon decreasing Θ−, i.e., moving towards the critical

point (see the numerical data in the lower panel of Fig. 5.6(a)). In order to quantify the

temperature dependent changes in the adsorption layer, we define the total adsorption

layer thickness la via the zero-crossing criterion P
(s)
− (s = la/ξ−;Θ−) = 0. The dependence

of la on Θ− is shown in Fig. 5.6(a).

These numerical data can be rationalized analytically by considering the limit ξ− ≪ R

or Θ− ≫ 1. In this limit of being further away from Tc the adsorption layer turns into

a wetting film with a quasi-sharp α-β interface. The cost of free energy to keep this

interface, at α-β coexistence, at a prescribed distance from the cylindrical colloid surface

is given by the effective interface potential Vinter(l) = Vrep(l) + Vc(l). In leading order

Vrep(l) = v0 L e−l/ξ− , with an energy per length v0 > 0, describes the effective repulsion of

the interface from the surface, in accordance with complete wetting at a planar wall. At

curved surfaces, this growth of l is counterbalanced by the free energy cost of extending

the area of the interface: [162] Vc(l) = σ[2π(R + l) − 2πR]L = 2πσ lL where σ is the

surface tension of the free α-β interface (Eq. (5.13)). The equilibrium adsorption layer

thickness la minimizes Vinter(l), resulting in [41,162,164]

la = ξ− ln(a/ξ−), or
la
R

=
1

Θ−
ln
(
Θ−

a

R

)
, for ξ− < a,Θ− ≫ 1, (5.21)

with the length a = v0/(2πσ) [162]. Figure 5.6(a) demonstrates that in the limit Θ ≫ 1,
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the numerical data indeed approach the result in Eq. (5.21) (see the dashed green lines).

Interestingly, Fig. 5.6(b) shows that within the region (z − R)/la � 0.5 the order

parameter profile exhibits features which strongly resemble those of the order parameter

profile of the free α-β interface. Inserting the mean field interface m between the two

coexisting bulk phases [143, 159], with the interface positioned at z = R + la, into the

scaling function P− = m−/
√

|τ | yields the form

P−(z) = − tanh

(
z − (R + la)

2ξ−

)
= − tanh

(
la
2 ξ−

(
z −R

la
− 1

))
. (5.22)

Note that P− = ±1 corresponds to the two coexisting bulk phases. In Fig. 5.6(b),

Eq. (5.22) is indicated by a black dashed line, which follows closely the profile of the

adsorption layer around a single colloid. The second expression in Eq. (5.22) indicates

that in terms of (z − R)/la in Fig. 5.6(b), la does not only determine the position of the

adsorption layer interface, but also the width of the interface profile via la/ξ−. However,

as seen in the lower panel of Fig. 5.6(a), the logarithmic corrections turn out to vary only

slightly within the inspected range of the rescaled temperature Θ−, so that in Fig. 5.6(b)

the width of the total adsorption layer remains rather similar. For Θ− → 0, it is expected

that la ∝ ξ− without logarithmic correction [162,164], which is in line with the deviations

of la from Eq. (5.21) closer to the critical temperature (see Fig. 5.6(a)). However, due to

numerical constraints we cannot fully resolve this change in behavior for Θ− ≪ 1.

Thus, the single-particle profile can be viewed as being composed of the profile cor-

responding to the wall-α interface, dominated by the boundary condition and the cor-

responding short distance approximation (Eq. (5.20)), and the free α-β interface profile

(Eq. (5.22)). At this stage, by using the total adsorption layer thickness la taken from

the single colloidal system, the issue arises whether this composite profile allows one to

predict the distance Dt at which the liquid bridge between two colloids breaks.

5.5 Bridging transition

Having discussed the two-colloid order parameter profiles for the bridged and the sepa-

rated state as well as the single-colloid profile, which approximates the separated two-

colloid state (see Eq. (5.18)), we turn to the analysis of the transition distance Dt between

the two configurations. Considering the scaling function G of the effective potential (see

Fig. 5.4), it is evident that for each rescaled temperature Θ−, there is a single separation

Dt, for which the free energy of the bridged and the separated state are equal, leading

to a first-order bridging transition. According to Fig. 5.4, the transition distance Dt is

determined by the zero of G(Dt/R,Θ−) = 0. (Strictly speaking, G = 0 corresponds to the

completely separated state with macroscopically large distances D. At the finite distance

D = Dt, G = 0 corresponds only approximately to the separated state, equivalent in
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Figure 5.6: (a) The adsorption layer thickness la as determined via P
(s)
− (s = la/ξ−;Θ−) = 0

from the OP profiles of a single particle (green triangles), shown in units of the radius
R in the upper panel and in units of the correlation length ξ− in the lower panel. Away
from the critical point, i.e., for Θ− ≫ 1, the adsorption layer thickness increases as
la/R ≈ (1/Θ−) ln(Θ− a/R) (dashed green curve; see Eq. (5.21)). The length a depends
on the system-specific repulsion strength and interface tension (see the derivation in the
main text). We have found a/R = 11.15 from a fit to the adsorption layer thickness.
The thickness la deviates from a linear dependence on the correlation length ξ− (dashed
black line in the upper panel or a constant in the lower panel) by a logarithmic correction
highlighted in the lower panel. This reinforces the expected observation that the scaling
variable s = (z−R)/ξ− is not sufficient to describe the full single-particle profile. (b) The
single-colloid profiles as in Fig. 5.5, but scaled in units of the adsorption layer thickness la.
By construction, the interface crosses zero at (z−R)/la = 1 for all rescaled temperatures
Θ−. Notably, in these units the width of the interface is very similar for a wide range
of values of Θ−. For distances not too close to the surface the adsorption layer strongly
resembles the free α-β interface profile (dashed black curve), which has a tanh functional
form and a width of la/ξ− (see Eq. (5.22)). The weak dependence of la/ξ− on Θ− leaves the
width of the adsorption layer profile to be very similar within the range of temperatures
shown here.

spirit to Eq. (5.18), which holds for Θ− ≫ 1.) Upon decreasing Θ−, the intersection of G

with the abscissa moves to larger values of ∆ = D/R, which poses an issue as the size of

the numeric calculation box has to be increased accordingly. However, even in the case

that the transition distance Dt between the bridged and the separated state exceeds the

chosen size of the calculation box, it nonetheless can readily be obtained also for values

of the rescaled temperature Θ− � 1 by extrapolating linearly the regime dominated by

the interfacial tension and thus finding the zero of G(Dt/R,Θt) = 0.

By employing this procedure, we have obtained the transitions distances Dt(Θ−) in

Fig. 5.7(a), which constitute a phase diagram: At a fixed rescaled temperature (vertical

dashed line), for small distances D < Dt, the two colloids are connected by a bridge.

Upon increasing the distance D beyond Dt, a first-order transition to the separated state

occurs. On the other hand, for a fixed distance (dashed horizontal line), far away from

Tc, i.e., Θ− ≫ 1, one finds two separate particle profiles (if D > Dmin, which is discussed
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Figure 5.7: (a) Phase diagram with the transition distance Dt(Θ−) marking the first-
order transition between the separated and the bridged states. Upon varying the rescaled
temperature Θ− → 0, a bridge forms between two colloids upon crossing Dt. However,
for small separations D < Dmin, the bridged state occurs independent of the temperature
around Tc. The vertical dashed line indicates the case Θ− = 12.25 studied in Fig. 5.4
and the horizontal dashed line indicates the case ∆ = 2.7 studied in Fig. 5.10. (b) The
transition distance Dt(Θ−) (red symbols) and the adsorption layer thickness la (green
symbols; the green dashed line represents Eq. (5.21)) as a function of Θ− in a double-
logarithmic plot. In the non-critical limit Θ− ≫ 1, Dt tends to follow the geometric
prediction of Dt ≈ π la + (π − 2)R (dashed red curve). The geometric model is expected
to break down close to Tc. An additional argument valid in the critical regime of small
Θ− limits the highest order of an expansion of Dt in terms of Θ− = R/ξ− to the second
order (see the blacked dashed line and the main text).

below). Upon approaching the critical temperature, as the correlation length ξ− grows,

a first-order transition occurs to the bridged state. Of course, both realizations can be

performed in reverse, i.e., decreasing the distance D at fixed Θ− and moving away from

Θ− = 0 at a fixed distance D. The two directions for changing the temperature correspond

to the two thermodynamic paths actually used (see the main text devoted to Fig. 5.4) in

order to obtain the metastable branches seen in Fig. 5.4(a).

There is a minimum distance Dmin, below which only the bridged state occurs. This

corresponds to a non-critical, geometric situation in which close to contact of the two

cylinders, i.e., for D → 0, due to their curvature an inward groove is formed on each

side of the composite body, which is bridged and filled completely by the phase favored

by the colloids, reminiscent of capillary condensation and wedge wetting [165, 166]. For

near-critical order parameter distributions in such structures see Refs. [167,168].

In Fig. 5.7(b) we show the transition distance Dt, and for comparison the adsorption

layer thickness la, on double-logarithmic scales. At non-critical conditions away from Tc,

it is possible to construct a geometric model for the bridging transition: For two single-

particle profiles, the adsorption layers generate an interfacial area of Asep = 2×2π(R+la)L,

where L is the length of the cylindrical particles and where the acronym sep stands for
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“separated”. On the other hand, for the bridged state seen in Figs. 5.2(a) and 5.3(a), the

structure of the two outer halves is still very similar to the adsorption layer halos around

the separated particles, which amounts to an area Ab,1 ≈ Asep/2; the acronym b stands

for “bridged”. The difference is only the straight bridge, which has an interfacial area of

Ab,2 = 2 × (D + 2R)L. For D = Dt, the free energy of the bridged and the separated

state are required to be equal. If we attribute this free energy solely to the interfacial free

energies σ(Ab,1+Ab,2) and σAsep, respectively, this leads to 2×(Dt+2R)L = 2π(R+ la)L,

so that

Dt = π la + (π − 2)R. (5.23)

We note that this relation has been obtained similarly in Ref. [45] also for two cylinders

and that Eq. (4.2) in Ref. [43] provides a related expression for the case of two spheres.

Furthermore, Ref. [48] derives an analogue of the Kelvin equation based on a macroscopic

thermodynamic picture, which holds more generally for any contact angle and bulk field

h �= 0 (i.e., chemical potential difference ∆µ �= 0), but is specific to block-shaped particles.

In comparison with our results, the effective block size b∗ in Ref. [48] can be identified

with half the circumference π(R+ la) formed by the adsorption layer around one colloid.

We emphasize that the transition distance Dt distinguishes the two possible config-

urations of the two-colloid state. Within the geometric estimate of Eq. (5.23), Dt is

determined solely by properties of the single-particle profile, namely the adsorption layer

thickness la and the radius R. This estimate is indicated by the dashed red line in

Fig. 5.7(b), which is asymptotically approached by Dt (red symbols) for Θ− ≫ 1. Away

from criticality, i.e., for Θ− → ∞ the adsorption layer thickness la becomes microscopically

small, i.e., la → 0, but the surfaces remain strongly adsorbing. Within this approximation

and in this limit, we arrive at Dmin = lim
la→0

Dt = (π − 2)R. Thus, having the two colloids

in contact, i.e., D = 0, amounts to being below the bridging transition, corresponding to

the filling of a completely wetted wedge (with contact angle θ = 0). For comparison, la
(green symbols) and its approximated expression in Eq. (5.21) (green dashed line) are also

shown in Fig. 5.7(b). Thus, the surprising answer to the pending question of the previous

section is, that it is possible to predict the transition distance based on single-particle

properties, at least in a low-order estimate.

In contrast, for Θ− → 0 as expected the geometric interpretation fails. Upon ap-

proaching the critical point, the surface tension σ decreases as σ ∝ ξ
−(d−1)
− ∝ |t|(d−1)ν (see

Eq. (5.13)), so that for t → 0 the contributions to the free energy from the interfacial

tension vanish. Accordingly, another contribution to the free energy takes over. Even

though the profiles lack a clear interface at T = Tc, the single-order parameter profiles

of two colloids cannot be brought too close without raising an energetically unfavorable

overlap.

In view of the linear variation of G in Fig. 5.4, we determine Dt by linearly extrapo-
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lating Ωi ∼ G. From G(Dt/R,Θ−) = 0, it follows that

(−Fσ)Dt + Ω
(b)
0 = 2Ω(β)

s,c , (5.24)

with the force Fσ = kBT LR−(d−1)Kσ (see Eq. (5.10)) and an extrapolated offset contri-

bution Ω
(b)
0 for the bridged configuration.

Equation (5.24) implies (see Eq. (5.14))

Dt =
2Ω

(β)
s,c − Ω

(b)
0

(−Fσ)
∼ Θ

−(d−1)
− (2Ω(β)

s,c − Ω
(b)
0 ). (5.25)

Since the slope of Ωi with respect to D in the bridged state decreases to zero for t → 0, the

extrapolated offset Ω
(b)
0 acquires a physical meaning because it attains the same value as

the free energy of the bridged state at infinite separation, i.e., Ωi(D → ∞,Θ− = 0) = Ω
(b)
0 .

Furthermore, at infinite separation and at t = 0, the separated and the bridged state have

the same free energy because the break in symmetry disappears at T = Tc and the α and

β-phases become indistinguishable. Thus, it follows that 2Ω
(β)
s,c − Ω

(b)
0 → 0 for t → 0 so

that one can propose the expansion ansatz 2Ω(β)
s,c −Ω

(b)
0 = d1 Θ−+d2 Θ

2
−+d3 Θ

3
−+O

(
Θ4

−
)

which fulfills this limiting behavior. For d = 4, this leads to the expansion

Dt = c1 Θ
−2
− + c2 Θ

−1
− + c3 +O (Θ−) , Θ− → 0, (5.26)

for the transition distance Dt. Thus, it follows that in leading order the divergence of

the transition distance is proportional to Θ
−2
− . Note that one expects for the adsorption

layer thickness la ∝ ξ− ∝ Θ
−1
− for Θ− → 0, so that the next-to-leading order term ∝ Θ

−1
−

of Dt corresponds to la. In this sense, Eq. (5.26) is a generalization of the geometrical

approximation in Eq. (5.23), but limited to the next higher order ∝ Θ
−2
− . This is shown

by the black dashed line in Fig. 5.7(b), in excellent agreement with the enhancement of

Dt for Θ− → 0. Still, we must remark that the argument based on the vanishing break in

symmetry at T = Tc assumes the bulk behavior for the surrounding liquid which, however,

is only an approximation. The asymptotic limit R/ξ− → 0 is tantamount to the case of

the vanishing radius R of the cylindrical particles. However, one does not obtain the bulk

system for infinitely thin cylinders. The presence of the two particles effectively alters

the critical point of the surrounding liquid and the order parameter deviations near the

surfaces do not vanish in the limit R/ξ− → 0 [143].

In sum, the behavior of the transition distance Dt provides the phase diagram of the

bridging transition. Generally, for large separations D and large deviations from Tc, the

separated state is the thermodynamically stable configuration. For close distances and

close to Tc, the two colloids are connected by a bridge consisting of the preferred phase.

In principle, within MFT the transition between the two states is always first order. A
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specific feature of cylindrical colloids is that even away from Tc, with microscopically thin

adsorption layers around the colloids, but at bulk coexistence, this bridge is stable for

all Θ− > 0 if the separation is smaller than Dmin = (π − 2)R. According to Ref. [45], a

deviation from bulk coexistence alters the slope of Dmin with respect to R.

5.6 Fluctuation effects

As mentioned before, MFT neglects fluctuation effects, which will smear out the first-order

bridging transition [43, 161–163]. The excess adsorption is an adequate order parameter

for the first-order bridge-separation transition. It is given by the integrated density of

component A around the two colloids, relative to the density of the separated configura-

tion. Thus, the OP is zero in the separated state and attains a finite value (depending

on the rescaled temperature) upon bridge formation. The adsorbed volume forming the

bridge between the particles scales with the (d − 2) dimensional length of the cylindri-

cal particles; thus it is quasi-two-dimensional for d = 4 and quasi-one-dimensional in

d = 3. Within the Ising universality class, for d ≤ dlc, i.e., below the lower critical di-

mension dlc = 2, finite size effects destroy long-ranged order. Following Privman and

Fisher [161], in an effectively cylindrical geometry of finite size, at the pseudo-coexistence

of the macroscopically-sized separated and bridged states, one has to account for config-

urations in which the bridge along the length L of the cylinders (d = 3) disintegrates into

alternating domains of the bridged and separated phases, correlated over a length ξ‖ ≪ L

(see Fig. 5.8). For such an inhomogeneous system the OP for the bridge-separation tran-

sition varies sharply, but continuously upon approaching the transition line Dt(Θ−) in

Fig. 5.7(a), smearing out the first-order bridging transition.

Even though in principle the first-order transition is rounded and shifted, this may

experimentally be not detectable. Here we briefly discuss the expected implications in the

experimentally relevant case d = 3 (which is also more severely affected by fluctuations

than the case d = 4; for d > 4 fluctuation effects become negligible). In this context,

based on Ref. [161], one has to take into account terms in the partition function which

correspond to configurations which are neglected within mean field theory and thus give

rise to subdominant contributions to the partition function. To this end we assume that

the (partially) bridged state is the configuration which is energetically disfavored and

neglected by MFT, and we adopt a simple two-state description with the partition sum

Z̃ = e−Ω̃s/kBT + e−Ω̃b/(kBT ), (5.27)

where Ω̃s ≈ 2Ω
(β)
s,c (compare Eqs. (5.5) and (5.6)) is the geometric approximation of the

free energy of the separated state and likewise Ω̃b is that of the (partially) bridged state.

Note that in this section, all quantities with a tilde correspond to the respective, purely
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Figure 5.8: Idealized schematic cut along the vertical midplane containing the axes of the
two colloids. The α-like bridge (red) between the macroscopically large cylindrical col-
loids (gray) is segregated into domains of partially bridged configurations and of partially
separated configurations. The latter ones are indicated as blue inclusions of varying sizes
with a mean length ξ‖. The length L of the cylinders is much larger than the depicted
section. On the left and on the right panels, the two different domains are compared with
each other in the plane normal to the axes of the cylinders. The symmetry axes of the
colloids, spanning the image plane of the central panel, are indicated by black lines. The
two competing areas Ãsep (to the left of the center, consisting of two separated, equal-sized
parts) and Ãb (to the right of the center) are indicated in all three views by white dashed
border lines. Ãsep consists of two semi-cylinders of length ξ‖ and with arc length π(R+ la).
The projection (black arrows in the outer panels) of the two semi-cylinders onto the mid-
plane (vertical dashed line) renders two white rectangles of projected size ξ‖ × (R + la)

in the central panel. The area Ãb consists of two rectangles of size ξ‖ × (D + 2R) which
translates into one white rectangle of projected size ξ‖ × (D + 2R) in the central panel.
Ãsep and Ãb are areas extending along the colloid axes. The cross-sectional area Ãi of the
interface, which is normal to the colloid axes, between the domains is the one enclosed
by the dashed full white and the dotted pale white border lines in the right panel. In the
side panels, Ãi consists of a back and a front side as well, corresponding, however, to the
left and the right domain interface, respectively. For Ãi, the positions of the front and
the back side are marked by the two arrows at the top of the central panel.

geometric, approximation illustrated in Fig. 5.8. Accordingly, the relative probability p̃b

of the bridged state is

p̃b =
e−Ω̃b/(kBT )

Z̃
=

e−(Ω̃b−Ω̃s)/(kBT )

1 + e−(Ω̃b−Ω̃s)/(kBT )
=

e−∆Ãσ/(kBT )

1 + e−∆Ãσ/(kBT )
, (5.28)

with a Boltzmann factor exp(−(Ω̃b − Ω̃s)/(kBT ))= exp(−∆Ã σ/(kBT )) giving the proba-

bility of forming finite domains of α-like bridges along the cylinders (instead of a single,

fully connected bridge consisting of the α phase); ∆Ã is the change of the interfacial

area upon forming an α-like domain of length ξ‖ within an otherwise β-filled, separated

configuration; σ is the α-β surface tension. Following the same geometric argument which
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preceded Eq. (5.23) (such as considering only the inward oriented parts of the adsorp-

tion layers), a separated domain has an interfacial area Ãsep = 2 × π(R + la)ξ‖ around

the colloids (see the correspondingly labeled area in Fig. 5.8; the factor two accounts

for both colloids). A bridged domain has an area Ãb = 2 × (D + 2R)ξ‖ accounting

for both sides of the bridge volume (see Fig. 5.8). The presence of a domain gener-

ates two α-β interfaces normal to the axial direction. Its corresponding surface area is

Ãi = 2× [(D+2R)(2(R+ la))− π(R+ la)
2] (see the indented area with dashed full white

and dotted pale white border lines in the right panel of Fig. 5.8; this is the difference of

area between a rectangle and two semi-circular discs). Thus the insertion of a domain of

length ξ‖ is accompanied by a change in area given by ∆Ã = Ãb − Ãsep + Ãi.

Specifically, at the transition distance D = Dt (Eq. (5.23)), the Boltzmann factor re-

duces to exp(−2π(R+la)
2σ/(kBT )). Far away from the critical point, la is microscopically

small, so that one arrives at the “simple macroscopic” estimate exp(−2πR2σ/(kBT )) (see

Malijevsky and Parry [45]). In the vicinity of the bridging transition D = Dt ±∆D, the

Boltzmann factor amounts to exp(−(2∆D ξ‖ + 2π(R+ la)
2 + 4(R+ la)∆D)σ/(kBT )). In

the relevant case in which the length scales are of order ∆D ≪ R ≪ ξ‖, the last term

4(R+ la)∆D represents a small correction which depends also on the precise shape of the

domains, which we will neglect. This implies that the probability of the bridged state p̃b

follows a Fermi function (or logistic function)

p̃b =
e−(2∆Dξ‖+2π(R+la)2)σ/(kBT )

1 + e−(2∆Dξ‖+2π(R+la)2)σ/(kBT )
=:

e−(∆D+ω)/δ

1 + e−(∆D+ω)/δ
, (5.29)

from which one can infer a rounding δ := (kBT )/(2σξ‖), which is the distance between

the position of the inflection point at (∆D = −ω, p̃b = 1/2) and the position of the

point at which the probability has dropped to (1 + e)−1 or has risen to e(1 + e)−1, and

a shift ω := π(R + la)
2/ξ‖ of the transition point (see the solid curve in Fig. 5.9). On

the other hand, one can reverse the argument and consider the probability ∝ exp(−(Ω̃s−
Ω̃b)/(kBT )) of interstitial, β-like domains within a bridged state. The change of the

interfacial area upon forming a β-like domain of length ξ‖ embedded in an α-like bridge

configuration is ∆Ã = Ãsep − Ãb + Ãi; note that the areas Ãi of the two domain walls do

not change sign. The resulting probability of interstitial domains is p̃i = (e(∆D−ω)/δ)/(1+

e(∆D−ω)/δ). Thus the probability to observe an unperturbed bridge is p̃b = 1 − p̃i =

(e−(∆D−ω)/δ)/(1 + e−(∆D−ω)/δ), which features an inverse shift of −ω, so that, due to the

finite-size fluctuations, the transition exhibits hysteresis (see the dashed curve in Fig. 5.9).

This has been found before in simulations, e.g., in Ref. [163]. It has also been found that

the hysteresis is much more important than the rounding.

In order to give an estimate, we consider the ratio ǫ = (2πR2σ)/(kBT ) of the domain

interface energy at Dt and the thermal energy; note that ǫ ≈ ω/δ for la → 0, i.e., far

away from Tc. Using Eq. (5.13) for σ with Rσ = 0.377 in d = 3 [169], Rξ = 1.96 [82],
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Figure 5.9: Probability distribution p̃b of the bridged configuration as a function of the
separation ∆D = D−Dt around the bridging transition at Dt. The hysteretic shift ω and
the rounding δ are defined in the main text. Starting with a large separation ∆D ≫ ω

(solid red curve), i.e., deeply in the separated state, the probability of forming a bridge
is vanishingly small and increases only after passing the transition distance ∆D = 0 due
to the additional cost of forming the interfaces between the α and β-like domains. In
reverse, starting with two particles close to each other (∆D ≪ −ω), the probability of
the bridged state is effectively one (dashed red curve). The α-filled bridge disintegrates
for ∆D > 0, also retarded due to the cost of forming the interfaces between the domains.

and, e.g., a moderate value of Θ− = 3 for the rescaled temperature, the energy cost for

interstitial domains within the liquid bridge amounts to 5.4 kBT , so that further away

from Tc, the hysteresis shift is much larger than the rounding, i.e., ω ≫ δ for Θ− ≫ 1.

The shift ω scales inversely with the correlation length ξ‖ along the axes of the cylinders.

Using the transfer matrix method for a cylindrical Ising spin system, it has been shown

that ξ‖ = ξ− exp
(
(Ãi σ)/(kBT )

)
for Ãi/ξ

d−1
− ≫ 1 [161, 170], i.e., the parallel correlation

length ξ‖ scales exponentially with the cross-sectional area Ãi. From this, the hysteresis

shift is estimated to be

ω

R
=

πR

ξ−
e−(Ãiσ)/(kBT ) =

π

Θ−
e−ǫ ≈ 4.7× 10−3 for Θ− = 3. (5.30)

Thus, for particles with radii of the order of micrometer, the transition as a function of

distance D is rounded on the scale of nanometers. Thus the transition is still expected to

appear to be sharp for Θ− > 3.

Upon approaching Tc, the energy cost ǫ is expected to decrease due to the vanishing

of the surface tension σ(Θ → 0) ∝ Θ2
−. Furthermore the adsorption layer thickness

la ∝ ξ− ∝ Θ
−1
− is expected to grow algebraically for Θ− → 0 whereas ξ‖ is known to

attain a constant at T = Tc [161]. However, these scaling behaviors will not hold once,

e.g., the adsorption layer thickness reaches the size of the system. In this case, the finite-

size effects will play a dominant role. It has been found beyond mean field theory as well



5. Beyond Casimir: Liquid bridging between colloids 109

as experimentally (see Ref. [171] and references therein) that the power-law behavior of

critical adsorption is pre-empted by capillary condensation. Therefore we conclude that

in order to fully resolve the nature of the bridging transition very close to the bulk critical

point, it is necessary to improve the present analysis beyond mean field theory. This is

left to further research.

5.7 Dependence of the scaling functions on rescaled

temperature

Finally, it is worthwhile to study in more detail the dependence of the scaling functions

G(∆,Θ−) of the effective potential and K(∆,Θ−) of the force as a function of the rescaled

temperature Θ− = R/ξ−. The discussion of these scaling functions as functions of ∆ =

D/R (see Fig. 5.4) corresponds to paths along a vertical line in the phase diagram shown

in Fig. 5.7(a). Instead, we now consider horizontal paths through the phase diagram.

There are still similarities between the two representations. Again, by definition, the

surface free energy 2Ω
(β)
s,c of two single colloids is subtracted from the scaling function G

of the effective potential, so that the separated state corresponds to G = 0 (apart from

exponentially small interaction contributions in the separated state). Ω(β)
s,c is independent

of the distance ∆, but does depend on the rescaled temperature Θ−.

In Fig. 5.10 we show the scaling function G in the bridged state for three rescaled

separations ∆ = 3.2, 2.7, and 1.5. For all three curves one has G < 0 for Θ− → 0, so

that the bridge state turns out to be energetically stable close to the critical point. For

the smallest rescaled separation ∆ = 1.5 considered in Fig. 5.10, the scaling function

G remains negative throughout and no transition to the separated state is observed.

For ∆ = 2.7, the curve of the scaling function G bends upwards, resulting in a zero

G(∆,Θ
(t)
− ) = 0 at Θ

(t)
− = 12.25, for which a first-order transition to the separated state

occurs (see Fig. 5.4(a) for Θ− = 12.25). For Θ− > 12.25, following this thermodynamic

path, the bridged state remains meta-stable with G > 0. The same holds for ∆ = 3.2,

only with a lower transition temperature Θ
(t)
− ≈ 10. Upon increasing the separation ∆,

Θ
(t)
− shifts to smaller values.

The scaling function K = −∂G/∂∆ of the force has already been introduced in the

discussion of Fig. 5.4. There, it has been demonstrated that for ∆ > 1 the force is

dominated by the interfacial surface tension and not by the critical Casimir force. Now,

we focus on the crossover between these two forces. Thus, in Fig. 5.11 we show the scaling

function K as a function of the rescaled temperature Θ− for several small separations

∆ < 1. As expected, far away from criticality, i.e., for Θ− ≫ 1, the interfacial tension

plays the dominant role, which leads to the behavior K ∼ (Θ−)
3 in d = 4 (see Eq. (5.14)

and the black dashed line in Fig. 5.11). Upon increasing ∆, this behavior prevails even
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Figure 5.10: Normalized scaling function G of the effective potential between two cylindri-
cal, parallel colloids connected by a liquid bridge as a function of the rescaled temperature
Θ−. Note that also the surface free energy of two separated colloids 2Ω

(β)
s,c depends on

Θ−. However, according to the definition of G (Eqs. (5.1) and (5.9)), this contribution
is subtracted and corresponds to the dashed line G = 0. This is similar to Fig. 5.4,
although there 2Ω

(β)
s,c is constant as function of ∆. For small separations ∆ = D/R,

e.g., for the green curve with ∆ = 1.5, the bridged state has a significantly lower free
energy than the state forming two separate adsorption layers; for cylinder separations
D < Dmin = (π − 2)R, i.e., if close to contact, one has G(∆ < (π − 2),Θ−) < 0 for
all rescaled temperatures Θ−. For increasing separations ∆ (black and red curve), the
bridged state has a lower free energy (G < 0) only within a range 0 < Θ− < Θ

(t)
− , where

Θ
(t)
− is defined by G(∆,Θ

(t)
− ) = 0. For rescaled temperatures Θ− > Θ

(t)
− , the bridged state

has a higher free energy than the separated state. The black curve ∆ = 2.7 corresponds to
the horizontal dashed line in Fig. 5.7(a). The free energy branches with G > 0 correspond
to metastable bridge states.

down to values of Θ− less than 10. Note that here we have chosen the scaling variables

∆ = D/R and Θ− = R/ξ− in view of potential experimental realizations. Equivalent

choices are ∆ = D/R and Θ̃ = D/ξ (used, e.g., in Refs. [29, 36, 103]), in terms of which

D → 0 and ξ → ∞ correspond to the same limit Θ̃ → 0. Conversely, the interfacial

tension dominates over the critical Casimir effect away from criticality, i.e., for Θ̃ ≫ 1,

which we have discussed already twice for ∆ ≫ 1 (see Sec. 5.3) and for Θ− ≫ 1 here in

Sec. 5.7.

On the other hand, for Θ− → 0 the interfacial tension σ vanishes so that for small

∆ the critical Casimir force K(∆,Θ−) = ∆−(d−1/2)K
(cc)
(+,+), as obtained from the Der-

jaguin approximation (see Eq. (A.2) in Appendix A) becomes dominant. The solid color

lines in Fig. 5.11 point out that for Θ− → 0 the signature of the critical Casimir force

clearly emerges. Specifically, as a function of Θ−, the scaling function attains a constant

value −K(∆ → 0,Θ− = 0)/|∆(+,+)| = ∆−7/2
∫∞
1

dβ (β − 1)−1/2 β−d = (5π/16)∆−7/2 (see

Eq. (A.2)), which depends on ∆ only. As stated in Sec. 2.1.3, the stress tensor method

is not suitable for the present case, and K is simply calculated by taking the numerical
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Figure 5.11: Scaling function K of the force (Eq. (5.10)) between two cylindrical, parallel
colloids in close proximity to each other (i.e., ∆ = D/R < 1). In this case, a liquid
bridge is always formed. Thus, the force is attractive (i.e., −K is positive). It is shown
normalized by the critical Casimir amplitude ∆(+,+) of the slab geometry. The symbols
represent the numerical MFT data and the dashed black line shows the expected interfacial
contribution as given by Eq. (5.14), which is proportional to (Θ−)

3 for d = 4. Upon
increasing the intercolloidal separation ∆, the force is under the dominant influence of
the interfacial tension σ even down to values of Θ− less than 10. For small Θ− and ∆ < 1,
the critical Casimir force (solid curves) starts to emerge and becomes dominant, with the
force saturating at the values −K(∆ → 0,Θ− = 0)/|∆(+,+)| = (5π/16)∆−7/2 at criticality.
In the limit Θ− → 0 we find very good agreement between the DA of the critical Casimir
force (solid lines) and our fully numerical calculations.

derivative of the free energy with respect to D. We note that KDA does not contain any

adjustable free parameters; nonetheless there is excellent agreement with the numerical

MFT calculations, providing a stringent test of the latter.

5.8 Conclusions

We have analyzed within MFT (d = 4) the effective interactions between two parallel,

cylindrical colloids of radius R immersed in a binary liquid mixture (consisting of A and B

particles) close to and below its critical consolute point, i.e., at coexistence of the phases

α and β rich in A and B particles, respectively. Generically, the two identical colloids

have a preference for one of the two species of the binary liquid mixture. This leads to

strong critical adsorption of, say, the α phase at the surface of the colloid. Here, we have

considered the largely stable local minimum in which the colloids are engulfed by the less

preferred β phase, far away from the free α-β interface (which can form but outside of our

numerical calculation box). Instead, the α-β interface forms an adsorption layer which

remains bound to the colloid surface or to a pair of colloids (see Fig. 5.1).

Using finite-size scaling theory, in Sec. 5.1 we have decomposed the free energy of the
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system into bulk, surface, and interaction contributions, each characterized by a universal

scaling function. We have calculated the singular contribution to the free energy in the

vicinity of the critical point by varying the rescaled temperature Θ− = R/ξ−, where ξ−

is the bulk correlation length, and numerically minimizing the Hamiltonian in Eq. (2.27),

from which we concomitantly obtain the equilibrium MFT order parameter profile. Via

analyzing the free energy of the system, we have calculated the effective potential and the

force between the colloids mediated by the near critical solvent. In this context, our main

findings are as follows:

The scaling function P− (Eq. (5.11)) of the two-particle order parameter profiles de-

pends sensitively on the surface-to-surface distance D between the particles and tem-

perature (see Figs. 5.2 and 5.3), exhibiting a local α-β interface that encapsulates both

particles either individually (separated state) or as a pair (bridged state).

By analyzing the dependence of the scaling function G of the effective interaction po-

tential on the distance between the two colloids (shown in Fig. 5.4), we find that there

are three regimes: At close separations, critical Casimir forces dominate; at intermediate

separations the extension of the liquid bridge leads to a region in which the influence of

the α-β interfacial tension dominates; and finally a third regime in which the liquid bridge

is meta-stable compared to the separated state and eventually ruptures. We have ana-

lytically derived the Derjaguin approximation for the interaction between two cylinders,

which is in very good agreement with the numerical MFT results and confirms that at

small separations ∆ = D/R < 1 critical Casimir forces dominate. Additionally, for vari-

ous rescaled temperatures Θ− the slope of G with respect to ∆, in the region dominated

by the interfacial tension effect, agrees very well with the decrease of the surface tension

σ upon decreasing Θ− = R/ξ− → 0.

To a large extent, in the less-critical regime Θ− ≫ 1, the transition distance Dt of

the liquid bridge can be expressed in terms of single-colloid profiles (see Figs. 5.5 and

5.6). To this end, the features of the single-particle order parameter profiles, captured

by the scaling function P
(s)
− (z) (Eq. (5.19)), have been investigated. We have found that

the adsorption layer in single-particle profiles essentially consists of the wall-α interface,

well described by a short distance approximation (Eq. (5.20)), joint together with the free

α-β interface profile (Eq. (5.22)). The adsorption layer thickness la turns out to be the

relevant quantity to describe the single-colloid state.

We have determined the transition distance Dt unambiguously from the zero of the

scaling function G of the effective potential in the bridged state, which in the relevant

range depends linearly on the separation ∆ = D/R. The transition distance Dt divides

the phase diagram in Fig. 5.7(a) into two distinct domains: For large D and away from

Tc, the separated state is the stable configuration. For small separations ∆ or close to

Tc, the colloids are connected by a bridge formed by the preferred α phase. Away from

criticality, i.e., for Θ− ≫ 1, a geometric model based on the adsorption layer thickness la
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yields a reasonable approximation for the transition distance Dt (see Fig. 5.7(b)).

The influence of finite-size induced fluctuation effects, which are not captured within

our MFT approach, has been discussed. Inter alia, finite size causes a shift and rounding

of phase transitions. In the present context this implies that the excess adsorption of

the species favored by the colloids is expected to increase sharply, but continuously. This

is due to the entropically favored presence of alternating domains of the two coexisting

phases instead of having a macroscopically large single phase, as shown schematically in

Fig. 5.8. According to our estimates this rounding and the shift of the transition proba-

bility (Fig. 5.9) are too small to be experimentally detectable for rescaled temperatures

Θ− � 3. This range still features the discussed critical Casimir contribution.

We have also studied the scaling function G of the effective potential for the bridged

state as a function of the rescaled temperature Θ− (see Fig. 5.10). For small distances ∆,

the bridged state is stable, i.e, G < 0, for all rescaled temperatures Θ−. Upon increasing

∆, the bridged state becomes meta-stable compared to the separated state at a transition

temperature Θ
(t)
− . Finally, we have studied the temperature dependence of the effective

force K between two colloids for various small separations D whilst they are still connected

by a liquid bridge (see Fig. 5.11). Far from the critical point, the influence of the interfacial

tension resulting from the extension of the interface dominates the overall force. As the

temperature approaches Tc, critical Casimir forces start to emerge and, as a function of

Θ− → 0, the overall force levels off at a constant value, which is in very good agreement

with the Derjaguin approximation for K(∆ → 0,Θ− = 0).
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Chapter 6

Colloidal aggregation in terms of pair

potentials

In an experiment realization, several attractive and repulsive forces may affect the col-

loids and the source of an aggregation force may not straightforwardly attributed to the

critical Casimir effect alone. These forces include direct interactions and other solvent-

mediated forces besides the critical Casimir interaction. A regime of colloidal aggregation

around the critical point, in terms of temperature T and concentration c, was already

observed in early experiments in Refs. [49–51], and found to be asymmetric with strong

aggregation occurring on that side of the critical composition cc poor in the component

preferred by the colloids. The critical Casimir potential is theoretically known to depend

strongly on the composition of the solvent [93], as well as on the strength of the surface

fields [73]. The adsorption preference of the colloids leads to the formation adsorption

layers around the particles, which may also interact and form liquid bridges. As seen

in chapter 5, critical Casimir forces and adsorption layers occur simultaneously; for cer-

tain configurations in terms distance, temperature, and additionally the strength of the

bulk and surface fields, either the interaction between adsorption layers or the critical

Casimir interaction dominate, and the cross-over between them is continuous. However,

the critical Casimir interaction can be distinguished by its scaling behavior as obtained

from finite-size theory. Similar to pre-wetting, a bridging transition is known to occur

also below the phase-coexistence in the homogeneous solvent phase at off-critical concen-

trations, see Refs. [28, 29] in the context of critical Casimir forces, Refs. [49–51, 54] for

early reports, Refs. [53, 54] for reviews and, e.g., [172, 173] for more recent experimental

studies. Note that some studies refer to the collective forces in the vicinity of the solvent

phase separation as solvent-mediated forces, and that the term “critical Casimir force”

has not been in use at the time of the earlier references, as mentioned in Ref. [54].

As such, the influence of the critical Casimir interaction at off-critical compositions is

not well-established experimentally. Recent experiments [115,174] directed at the critical

Casimir interaction in dilute suspensions of microgel particles showed the effect of solvent

115
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composition for two representative off-critical compositions. The theoretical modeling

within these studies accounted only for the asymptotic exponential form of the critical

Casimir potential, valid for large ratios r/ξ, and the fitted correlation length was in large

disagreement with values expected from literature (e.g., Refs. [175,176]). Mohry et al. [93]

improved on this by accounting for the solvent-composition dependence of the critical

Casimir potential and using ξ
(0)
t extracted from data for the same solvent in Ref. [105].

At this stage, it became evident that an accurate comparison of experimental mea-

surements for the colloidal interaction and theoretical predictions needed appropriate

knowledge of the solvent phase diagram and correlation length. Hence, we conducted a

theoretical study of an experimental realization performed by S. Stuij, T. Kodger, and

P. Schall in a coordinated effort. Here, only those experimental details necessary for the

theoretical description will be introduced; for more details the reader is referred to the

joint work in Ref. [76].

6.1 Description of the experiment

The colloidal particles are copolymer particles which match the density of the binary

liquid mixture, so that the influence of gravity is negligible. The polymer particles are

rigid with a hydrophilic surface. The particle diameter is determined to be d = 2.12µm

by confocal microscopy, with a polydispersity of ∼ 3%. The surface charge density was

determined independently by electrophoresis measurements to be Υ = −0.17 e nm−1. The

colloidal particles are suspended in a binary liquid mixture of 3-methylpyridine (3MP)

and heavy water (D2O) with different weight fraction c of 3MP in the range of 23.5% to

33%. In order to have a well-defined ion concentration, 1 mM KCl salt was added. The

Debye screening lengths of each composition is determined using the Clausius-Mossotti

relation to calculate the relative permittivity and the known ion concentration, and found

to vary only slightly around a value of κ−1 = 6nm. The colloid volume fraction was kept

at a low value of ∼ 0.5%.

6.2 Radial distribution function

Confocal microscopy is used to image the particles and study the temperature and com-

position dependent particle pair correlation function g(r) that indicates the probability

of finding a particle at a distance r from a reference particle relative to the ideal gas

distribution. For calibration, the aggregation temperature Ta for each composition was

first determined by increasing the temperature in steps of 0.1 ◦C, noting when aggregation

occurs and then taking the average of the last two temperatures for Ta.

Particle centers are then located in the horizontal plane using a Python adaptation of

a standard particle tracking algorithm [177, 178]. Though confocal microscopy allows to
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scan a three-dimensional sample through consecutive focus layers, particles would diffuse

significantly during during the scanning time of a layer and thus tracking was restricted

to two dimensions. It was shown in [179] that if care is taken to discriminate out-of-plane

features, 2D data is able to reproduce the actual g(r) as accurately as 3D data. Further

concerns are noted in Ref. [76].

To study particle pair potentials, we link experimental and predicted pair correlation

functions via the low-density relation g(r) ≈ e−U(r), i.e., we approximate the potential

of mean force with the effective pair potential. Focus is set first on data taken at 3K

below the critical temperature, where critical Casimir interactions are vanishingly small

and the pair potential is dominated by the electrostatic repulsion. The inverse Debye

screening length κ estimated from the added 1mM salt and the dissociated particle surface

charges is κ−1 ∼ 6 nm (varying slightly with temperature and composition, which we take

into account), which should yield a sharp increase in the g(r) as shown in Fig. 6.1(a)

(green curve). In contrast, the experimental g(r) determined from particle tracking is

much softer. This softness arises from the locating uncertainty, the polydispersity of the

particles, and the effective slice thickness. To incorporate these effects we compare the

experimental pair correlation function with the projected theoretical function gproj(r
′ =

{x′, y′, z′})

gproj(r
′) =

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx f{0,σz}(z)f{y′,σ}(y)f{x′,σ}(x)g(

√
x2 + y2 + z2), (6.1)

in which the probability distributions f{x′,σ}(x), f{y′,σ}(y) and f{0,σz}(z) account for the

uncertainty in the two horizontal directions and the vertical direction, respectively, with

the in-plane spreads σ = σx = σy being equal. To incorporate the different sources of

uncertainty, we model them using the normal distributions

f{µ,σ}(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (6.2)

with mean µ and width σ. Note that we enforce g(r < d) = 0, so that no configurations

with physically overlapping pairs contribute to the integral, though the projected result

may appear to have particle overlap. The three-dimensional integral in Eq. (6.1) can

be straightforwardly evaluated numerically, yet, the kernel of three normal distributions

lends itself to apply a Monte-Carlo integration, where each set of random numbers can

be interpreted as one realization in the experiment.

As seen in Fig. 6.1(a), this uncertainty indeed makes the g(r) look much softer. We

determine the values of the broadening parameters by fixing σz = 6σ based on the optical

spreads and varying σ till a good agreement is obtained for Fig. 6.1(a). For a vanishing

critical Casimir interaction this seems to be σ/d = 0.067. This number is very reasonable

given the horizontal locating uncertainty of 75 nm and the particle size variation due to
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Figure 6.1: Influence of the positional uncertainty in particle tracking on the pair corre-
lation function g(r). The experimental tracking results (red points) are for c = 28%. (a)
∆T = 3 K, for which the interaction is dominated by the electrostatic repulsion. The
green curve Σ/d → 0 represents the electrostatic repulsion as modeled by Eq. (2.41), with
the inverse Debye length κ being ∼ 6 nm. The theory predicts a much sharper step than
indicated by the experimental results. However, incorporating positional uncertainties
due to polydispersity, optical shifts and the limited resolution of the digitized images,
using Eq. (6.1) with an uncertainty σ = σx = σy in the image plane and σz = 6σ for
the vertical resolution, results in a good agreement for σ/d = 0.05 (cyan curve) and
σ/d = 0.067 (=̂1 px; blue curve). (b) Close to the critical point (red points: ∆T = 0.4K),
the strong critical Casimir attraction results in a peak of the pair correlation function g(r)
at r/d ≃ 1. The theoretical model Eq. (2.41) (σ/d → 0; green curve) shows only some
agreement for r/d > 1. When incorporating the positional uncertainties with σ/d = 0.05
and σ/d = 0.067 (cyan and blue curve), the shape of the peak changes and resembles
more closely the experimental results. Around the peak, we indicate the estimated error.
The lateral error in the plot represents ∆r = 1 px and the error ∆g is given by the stan-
dard deviation of the g(r) values between sets calculated using different cutoffs for the
brightness in the algorithm.

polydispersity of ∼ 60 nm, giving a total variance of ∼ 135nm corresponding to σ/d ∼
0.0675. Also σz = 6σ ∼ 0.8µm is smaller than the limit for the half-width of the effective

slice thickness of 1.6µm, but comparable to the particle radius. More accurate fitting of

the tracking uncertainties is hardly justified given the limited statistics and noise affecting

the pair correlation function g(r).

The broadening of the g(r) holds also when critical Casimir forces act between the par-

ticles. As an example, we show pair correlations at temperatures close to Tc in Fig. 6.1(b)

(red points), where we compare the experimental data with pair correlations computed

from the full pair potential of Eq. (2.41). Due to the critical Casimir attraction, the pair

correlation function develops a strong peak close to r/d = 1 (green curve). When incor-

porating the tracking uncertainty with σ/d = 0.05 (light blue), and σ/d = 0.067 (dark

blue), the correlation peak broadens, yielding good agreement with the experimental data.

The figure suggests that the smaller uncertainty σ � 0.05d = 106 nm leads to better fit,

while Fig. 6.1(a) suggested that far below Tc, when the repulsion is dominant, the larger
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Figure 6.2: Coexistence curve and correlation length of the binary solvent determined by
dynamic light scattering. (a) Phase separation temperature as defined from the minimum
of the diffusion coefficient. The coexistence curve is theoretically expected to follow
φb = B |t|β from Eq. (2.16), where B is a non-universal amplitude specific to the solvent.
The error bars indicate the limited temperature resolution given by ∆T . We find good
agreement for B = 0.6 and for the critical point at Tc = 37.26 ◦C, c = 27.7% (cross
symbol). (b) Correlation length ξ as a function of t = (Tc−T )/Tc for various compositions.
For compositions around cc ≈ 28%, the correlation length clearly follows the power law
ξ
(0)
t,± |t|−ν , with ξ

(0)
t,+ = 0.44 nm found from the numerical minimization. Curves for off-

critical compositions bend downwards, as expected.

uncertainty of σ = 0.067d = 141 nm describes the data best. Since our interest lies in

capturing the critical Casimir attraction, in the following, we generally adopt a value of

σ/d = 0.05 for comparison with the experimental results.

We note that a measure insensitive to these experimental inaccuracies is given by the

virial coefficient that is unaffected by the experimental broadening: In the low-density

limit where g(r) ≈ e−U(r), the second virial coefficient is related to the radial distribution

function via B2 =
∫
V
dr [1− g(r)]. One can verify that for any normalized and symmetric

distribution function for f{µ,σ} in Eq. (6.1), the virial coefficient of the broadened distri-

bution gproj, B2,proj =
∫
V
dr [1− gproj(r)], is identical to B2. Hence, despite the choice and

disparity between g(r) and gproj(r) as input, there is only one unique thermodynamically

relevant B2. We have also confirmed this numerically.

6.3 Solvent phase diagram and correlation length

The solvent phase diagram extracted from dynamic light scattering is shown in Fig. 6.2(a).

The phase separation temperatures can indeed be fitted with the bulk coexistence relation

φb = c − cc = B |t|β from Eq. (2.16). For the fit, we have fixed the critical exponent

β = 0.3265 to its theoretical value [82], and left the amplitude B and the coordinates of

the critical point (cc, Tc) as adjustable parameters. Note that the values presented here are

not based solely on fitting of the experimental coexistence data, but from a combination
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Figure 6.3: The ratio Ξ̃(φ, t) = ξ(φ, t)/ξt, i.e. the correlation length ξ(φ, t) normalized
by the scaling law ξt = ξ

(0)
t,± |t|−ν . This is analogous to the scaling function Ξ(|Σ|) in

Eq. (2.14), except plotted for y = |φ|/|t|β instead of the scaling variable Σ. There are
two limiting cases, Ξ̃(y → 0) = 1 and Ξ̃(y → ∞) = |Σ|−1. For the latter, y → ∞, the
experimental results of Ξ̃ are in good agreement with the linear approximation of the EOS
for Σ in Eq. (6.3) (black dashed curve), even for intermediate values of y.

with further analysis below. We find B = 0.6, close to the amplitude B ≃ 0.5 [93] derived

from the phase diagram of the pure 3MP-D2O binary mixture [180]. The coordinates of

the critical point cc = 0.277, Tc = 37.26 ◦C are slightly shifted from the literature values

of cc = 0.28 and Tc ≈ 38.5 ◦C [105, 111, 180] due to the presence of salt [181, 182], which

is known to lower the phase separation temperature.

We show the scaling of the correlation length upon approaching the critical tempera-

ture in Fig. 6.2(b). At the critical composition cc, the correlation length follows the Ising

power-law scaling, while for c �= cc it deviates increasingly from this divergence, as ex-

pected. Although the divergence at the critical composition was achieved by construction

(as explained in Section 2.2.1 and Appendix 6.A), nevertheless the success of the method

is still compelling since the hereby calculated correlation length ξ(φ(h, t), t) reproduces

the full scaling behavior with respect to solvent composition.

To show this, we consider the correlation length ξ(φ, t) normalized by that at the

critical composition, Ξ̃(φ, t) = ξ(φ, t)/ξt; this ratio is analogous to the scaling function

Ξ(|Σ|) in Eq. (2.14), but with φ and t as independent variables. Note that the relation

Σ(φ, t), such that Ξ̃(φ, t) = Ξ(|Σ(φ, t)|), corresponds to knowing the equation of state.

In the linear form in Eq. (2.17), Σ depends only on X = t|B/φ|1/β. By introducing the

variable y = |φ|/|t|β given directly by the experimental state, we recast this as X =

±|B/y|1/β, where the sign depends on t. This variable allows us to approach the critical

point along the two relevant thermodynamic paths: for y → 0, i.e., |φ| ≪ |t|β, the critical

point is approached along the critical composition (φ=0) by varying the temperature

t → 0; in this case one expects ξ(φ=0, t) = ξt and Ξ̃(y → 0) = 1. For y → ∞, where
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Figure 6.4: Pair correlation function g(r) for solvent composition c = 28%, close to
the critical composition, for different temperatures. The experimental results (symbols
and error bars) are compared to results of the pair potential model Eq. (2.41) using the
dimensional approximation for the scaling function Θ(d=3,Derj), and using Eq. (6.1) to
account for the experimental broadening (solid lines). A temperature offset of ∆Toff ≈
0.55K was used to account for the weak hydrophilic adsorption preference of the particles.

|φ| ≫ |t|β, the critical point is approached along the critical isotherm (t=0) through

variations of composition φ → 0. One expects that in this limit (see Eq. (2.17))

Ξ̃(y → ∞) = |Σ|−1 = B̃ y−
ν
β F±

(
|B/y|1/β

)− ν
βδ (6.3)

with the amplitude [92]

B̃ = (Rχδ/Q2)
− ν

β(δ−1)
(
Qc

ξ/Q
+
ξ

)
B

ν
β

that contains a combination of several universal amplitude ratios. We check these predic-

tions by plotting Ξ̃ as a function of y in Fig. 6.3, and find very good agreement in both

limits. While we cannot fully follow the limit y → ∞ as this thermodynamic path is not

practical in the experiment, we find that already y > 0.1 is sufficiently large for Ξ̃(y) to

start approaching the linear approximation of |Σ|−1. The scaling function F±(|B/y|
1/β) in

this approximation contains the non-universal amplitude B, which we take as B = 0.6 as

determined from the coexistence curve, indicating the fundamental correspondence based

on the EOS. For the amplitude B̃ we obtain from simple fitting B̃ = 0.15, in good agree-

ment with the value B̃ = 0.145 obtained with B = 0.6 and the amplitude ratios given in

Ref. [82].
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Figure 6.5: (a) and (b): Pair correlation function g(r) for the off-critical compositions
c = 26.5% (with ∆Toff = 0.7K) and c = 29.5% (with ∆Toff = 0.18K). The experimental
results (points) are compared to the dimensional approximation (solid lines). (c) and (d)
Theoretically predicted pair potentials V (r) for the same composition.

6.4 Pair potential and virial coefficient

Building upon this consistent description of the bulk properties of the liquid mixture, we

now turn to the critical Casimir interactions between suspended particles. We first focus

on the critical composition. Particle pair correlation functions for various temperatures

are shown in Fig. 6.4. For this critical composition, we can fit all pair correlations with a

single parameter ∆Toff that accounts for the finite surface fields, as explained in section

2.2.2. Best agreement with the dimensional approximation model (solid lines) is obtained

for ∆Toff = 0.55K or a rescaling parameter s = 0.78, corresponding to a value of hs ≈ 70

for the the scaling variable of the surface field based on the short distance approximation

described in Ref. [73] (see also footnote 1 on page 27). Since this approximation is valid

for hs � 10 and the universality class of the surface boundary conditions switches from

the normal to the special transition for hs → 0, it appears the observed particles are

moderately weak and still adhere to the normal universality class.

We now exploit the full solvent-composition dependence. For 3MP-rich compositions

(c > cc), the particles aggregate as far as 1 ◦C below the critical temperature, indicating



6. Colloidal aggregation in terms of pair potentials 123

(T
−
T
c
)
[K

]

c

Ta

Tcx

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.24 0.26 0.28 0.3 0.32 0.34

phase-separated
region

one phase
region

colloidal
aggregation

Figure 6.6: Phase diagram showing the coexistence curve Tcx and the experimentally
observed aggregation points Ta, compared to the B2 isoline with the critical value
B∗

2,crit = −1.2 of the sticky sphere model. The critical point is marked by a cross symbol.
Within the shaded area, colloids aggregate and the pair potential cannot be measured
experimentally. In the hatched part, B∗

2 is determined based on a polynomial extrapola-
tion of toff beyond the experimental range, which may not resemble the actual shape of
the colloidal aggregation region. The black dotted curve indicates the aggregation line
predicted for strongly adsorbing particles.

strong attraction, while for 3MP poor compositions (c < cc), this temperature interval of

aggregation is very small and diminishes until aggregation is no longer observed. This is

in agreement with the well-known fact that the attraction is strong in solvents poor in the

component preferred by the particles. To compare with theoretical predictions, we take

advantage of the internally calibrated correlation length to compute the critical Casimir

attraction, and we add the electrostatic repulsion obtained from pair correlation measure-

ments sufficiently far from Tc. In principle, there are no other remaining parameters in

the case of strong adsorption. To account for the weak hydrophilic adsorption preferences

of our particles, we again use the effective temperature offset toff, which depends on the

solvent composition. We find that even for off-critical compositions we can fit all pair

correlation functions for the different temperatures using the single parameter toff varying

systematically with composition. We show examples of measured and predicted pair cor-

relation functions for a composition to the left and right of the critical point in Fig. 6.5. In

both cases, good agreement is observed for all temperatures. The resulting predicted pair

potentials are also shown. Note the difference in horizontal scale between the observed

radial distributions and the predicted pair potentials due to the experimental broadening.

The particle aggregation behavior provides an independent check of the validity of the

model based on the colloidal state not affected by any quantitative uncertainties of particle

tracking. Theoretically, we can predict where aggregation occurs from the second virial

coefficient B2 (see Sec. 2.2.3) following the argument in Ref. [92], while experimentally,
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Figure 6.7: Composition and temperature dependence of the reduced second virial coeffi-
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map in the temperature-composition plane indicates theoretically predicted, and colored
symbols experimental B∗
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cc, and the critical point (cross symbol). (b) B∗

2 values as a function of temperature along
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2 = 0 and B∗
2 = −1.2, marking,

respectively, the crossover from repulsion to attraction, and the critical value of the sticky
spheres model.

we can observe the onset of aggregation directly. We compare the theoretical curve for the

onset of aggregation, as obtained from the critical value B∗
2 = −1.2 of the sticky sphere

model, with the experimental aggregation points in Fig. 6.6. Very good agreement is

observed. In particular, the asymmetry of the aggregation region is very well reproduced.

We also indicate the aggregation region predicted for the case of strong adsorption, i.e. for

vanishing toff (black dashed curve). As expected, it extends further below Tc, as strongly

adsorbing particles exhibit a stronger attraction. Yet, the shape of the aggregation region,

especially its pronounced asymmetry, does not change qualitatively.

We investigated particle pair interactions just below aggregation in more detail. Tak-

ing advantage of the fact that the virial coefficient is unaffected by the experimental

broadening as it is based on the integrated pair potential, we can compare virial coeffi-

cients computed from the raw measured g(r) directly with theoretical predictions without

any need to account for experimental inaccuracy and particle polydispersity. In fact, one

can show that any distorting influence described by normalized symmetric distribution

functions, such as the optical broadening, leaves the second virial coefficient unchanged

(see Sec. 6.2). We therefore compute experimental B2 values directly by numerically inte-
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Figure 6.8: Pair potential u(r) predicted by the dimensional approximation, for different
compositions at fixed temperature Tc − T = 1.0K (a) and Tc − T = 0.8K (b).

grating the measured g(r). Specifically, we calculate the reduced second virial coefficient

B∗
2 = B2/B

(hs)
2 (see Sections 2.2.3 and 6.2) in the low-density limit, by numerically in-

tegrating B2 = 2π
∫∞
0

dr r2 (1 − g(r)). In order to treat the limited experimental data

range, we assume g(r < r0) = 0 below the smallest distance r0 of the data set, and we

apply a smoothing factor to g(r) for large separations.

Experimental and theoretical values of B∗
2 in the entire temperature-composition plane

are compared in Fig. 6.7(a). The color map indicates the theoretically predicted values,

while colored dots along the experimental compositions (dashed lines) indicate the mea-

sured values. Good qualitative agreement is observed. For quantitative comparison, we

plot B∗
2 values as a function of temperature in Fig. 6.7(b). The bottom panel shows B∗

2

values superimposed for the different solvent compositions, while the top panel shows

the same data shifted vertically for clarity, providing a perspective view of the B∗
2 values

above the temperature-composition plane. Experimental data (dots) and theoretical pre-

dictions (lines) show very good agreement for all compositions. The values B∗
2 = 1 far

below the critical temperature indicate the system is dominated by a short-range repul-

sion, described by an effective hard-core model. Starting from T − Tc ∼ 1K at solvent

compositions of around c ∼ 30%, B∗
2 quickly drops to negative values, indicating the

rise of an attractive critical Casimir interaction. This is in line with previous studies

of the virial coefficient close to the critical point [183]. The comparison based directly

on the raw measurements provides good evidence that it is indeed the critical Casimir

interactions that underlie the colloidal attraction in the investigated solvent composition

range. Hence, this direct comparison suggests that not only at the critical composition,

but also at these off-critical compositions, the attraction is described in terms of a critical

Casimir force rather than by wetting effects. Yet, at even higher off-critical compositions,

wetting effects are expected to eventually take over and dominate the attraction as clearly

observed in Ref. [28].

We finally highlight the composition dependence of particle interactions by showing
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the theoretically calculated pair potentials for two fixed temperatures in Fig. 6.8. As

already observed for the virial coefficients, the strongest attraction occurs for compositions

c = 29.5 − 31%, well above the critical composition cc = 27.7%. For ∆T = 1.0K

(Fig. 6.8(a)), the interaction is still small at c = 28% ≈ cc and below, whereas at higher

composition c > cc, the critical Casimir force leads to a notable attractive potential

well. The depth of the potential minimum for c = 29.5% becomes close to −3 kBT ,

but no aggregation is yet observed (compare Fig. 6.6). For ∆T = 0.8K (Fig. 6.8(b)),

the depth of the potential minimum has increased considerably, exceeding −3 kBT for

c = 29.5% and c = 31.0%, leading to aggregation in the experiment. For the critical

composition c = 28% and below, the attraction is still small. We find that the criteria

B∗
2 � 1.2 of the sticky sphere model provides a quantitatively good estimate for the onset

of aggregation, while the earlier, simple criteria that the depth of the potential minimum

exceeds −3 kBT [84], is qualitatively in line with our findings, but may not provide a

quantitatively reliable estimate.

Furthermore, Fig. 6.8 reports the parameters ∆Toff for each composition for which

we have obtained the best agreement between the experimental g(r) and the theoretical

predictions. As discussed in section 2.2.2, ∆Toff is an effective rescaling in the case of

weakly adsorbing particles. Thus, the same systematic trend carries over to the scaling

parameter s(hs, h). To our knowledge, the dependence of s on h has not been studied

yet (see Ref. [73] for s(hs) = s(hs, h = 0)). Our measurements indicate a systematic

dependence that itself is asymmetric around the critical composition, i.e., the behavior

depends strongly on the signs of hs and h. Further studies could focus on the dependence

of colloidal aggregation on the strength of the surface adsorption.

6.5 Conclusions

As a field test for the theoretical pair potential model in Eq. (2.41), we have investi-

gated the interactions of colloidal particles in near-critical binary solvent at off-critical

compositions in the context of an actual experimental realization. Experimentally, the

colloids have been monitored through a laser-scanning confocal microscope, which takes

two-dimensional images of an illuminated focal plane within the three-dimensional sample

cell. The particle centers have then been located in the horizontal plane by a standard

tracking algorithm [178]. The pair correlation function g(r) is inferred from the probabil-

ity of finding a particle at distance r from a reference particle. A number of optical and

experimental limitations have affected the resulting pair correlation function (diffusion of

particles during scanning time, noise, accuracy of the algorithm, poly-dispersity, and the

effect of the non-zero focal thickness in vertical direction). As these effects are expected

to be independent of temperature, at least within the range of a few degrees, a measure-

ment 3K below the lower critical point serves as a reference of the repulsive interactions,
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without the influence of the critical Casimir attraction (Fig. 6.1). The determined g(r)

has been much smoother than expected, in contrast to the model with hard-core repulsion

and electrostatic repulsion. For that, the Debye length κ−1 for the binary liquid mixture

of 3-methylpyridine and heavy water with 1mM salt was estimated to be around 6 nm

and the surface charge density was determined independently by electrophoresis mea-

surements to be Υ = −0.17 e nm−1. The discrepancy can be resolved by considering a

projected gproj(r
′) (Eq. (6.1)) which accounts for the uncertainties in x, y, and z direction

using normal probability distributions around the true particle position, with standard

deviations σ = σx = σy within the plane and σz perpendicular to the focal plane. An

in-plane distribution width between σ/d = 0.05 and 0.067, i.e., σ = (106–141) nm based

on the diameter d = 2.012µm of the colloids, corresponds well to the observed pair cor-

relation function. This is also in agreement with the sum of the individual estimates of

the experimental uncertainties, amounting to 135 nm.

Thus, for a robust comparison between theory and experiment which avoids fitting, we

have followed the strategy to determine independently all parameters entering the scal-

ing variables of the dimensionless effective potential U(r) (Eq. (2.41)), to assume the

low-density limit g(r) = e−U(r), and then to apply the same broadening effect to the

theoretical pair potential via gproj(r
′).

The equation of state for the critical solvent depends only on two non-universal ampli-

tudes, as other non-universal amplitudes are related to each other via universal amplitude

ratios. A purposeful choice is the amplitude ξ
(0)
t of the correlation length ξt(t) = ξ

(0)
t |t|−ν

at the critical concentration, and the amplitude B which enters into the shape of the

coexistence curve φb(t) = B |t|β. The values of these amplitudes are determined from

dynamic light scattering (DLS) measurements of the solvent without colloids and from

observing the phase separation of the solvent, respectively (see Figs. 6.2 and 6.3). Note

that DLS in fact provides the self-diffusion coefficient, which is related to the correlation

length via the intricate relations presented in Appendix 6.A.

Finally, it was required to incorporate the weak adsorption preference of the colloids.

It is known that, at the critical concentration, the profiles for weak surface fields can be

mapped to the strong adsorption case by rescaling of the scaling function [73]. However,

to the best of our knowledge it has not been studied how such a relation is modified

for being at off-critical concentrations. Within the experimentally accessible range, an

effective temperature offset approximates the weak adsorption to a good degree (see the

discussion in Sec. 2.2.2).

Thus having established the values of all scaling variables, we have been able to com-

pare the projected pair correlation functions from the experiment and theory close to the

critical point, for different temperatures and concentrations in Figs. 6.4 and 6.5(a,b). The

unmodified theoretical pair potentials are shown in Fig. 6.5(c,d).

The second virial coefficient B2 is found to be a more accurate quantity, which is
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largely insensitive to the experimental inaccuracies, see the discussion in Sec. 6.2. The

law of corresponding states can be applied in order to compare this with the critical,

normalized value B∗
2 = −1.2 of the sticky spheres model below which aggregation is

observed. This critical value successfully identifies the region of colloidal aggregation

induced by the critical Casimir attraction in Fig. 6.6. Furthermore, we have made a

comparison in Fig. 6.7 between B∗
2 as a function of temperature T and composition c as

obtained in theory (colored surface) and from the experiment (data points) in a three-

dimensional surface plot, from a top-view in (a), an elevated side perspective in the top

panel of (b) and a full side view in the lower panel.

Thus, we conclude it is possible to accurately reproduce the experimentally measured

pair correlations in the vicinity the critical point based on a simple effective pair poten-

tial comprised of hard-core interaction, electrostatic repulsion and the critical Casimir

attraction.

6.A Appendix: Calculation of the correlation length

6.A.1 Implementation

The computational task at hand is determining from Eq. (2.35) inversely the correlation

length ξ that yields the same diffusion coefficient as experimentally determined. Apart

from the known experimental state (φ, T ), the arguments Q0 and qD/qc are unknown and

need to be determined simultaneously. In order to find optimal values for Q0 and qD/qc

we implement an iterative approach inspired by Ref. [105]. In our approach we assume Q0

and qD/qc to be independent of φ and T . This means that the dependence of viscosity on

the closeness to critical point is fully described by the ξ. We then determine the optimal

Q0 and qD/qc values as the ones that give the best agreement of the resulting ξ with the

power law ξt = ξ
(0)
t,+ |t|−ν for compositions around c ≈ 0.28. More specifically, we minimize

the least-square deviation of the logarithmic values
∑

i

(
log ξi − log

(
ξ
(0)
t,+

∣∣∣Tc−Ti

Tc

∣∣∣
−0.63

))2

,

for all {ξi, Ti} data points of the 27.25% and 28% samples. Note that we fix the critical

exponent ν = 0.63 but leave ξ(0)t,+ to be optimized. Close to the critical point, as the value of

the diffusion coefficient drops, the relative experimental error increases significantly; due

to the sensitivity of our procedure to these errors, we disregard samples with t < 10−4.

One interesting observation is that the procedure becomes more resilient against these

experimental errors for R > 1, indicating that the critical part of the diffusion coefficient

as given in Eq. (2.33) is different from a simple Stokes-Einstein relation (R = 1). As

consistency checks, we have tested three variants: first, we have varied only Q0 for qD/qc =

0, i.e. for vanishing background, with the additional constrain that Q0 ξ
(0)
t,+ = 0.15. This

value was taken from Ref. [111] where it was found by fitting to experimental data of the

critical contribution to the viscosity. We find an optimal fit with Q0 = 0.36nm−1 and
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Figure 6.9: Estimated viscosity of the present mixture 3MP / heavy water with 1mM
KCl at the critical weight fraction c ≈ 0.28, based on values from the fitting procedure of
the diffusion coefficient (see appendix). The experimental values of Ref. [111] are for the
pure binary mixture without salt.

ξ
(0)
t,+ = 0.42 nm. In the second case, we have minimized for both Q0 and ξ

(0)
t,+, still keeping

qD/qc = 0. This yields Q0 = 0.22 nm−1 and ξ
(0)
t,+ = 0.435 nm, so that Q0 ξ

(0)
t = 0.096.

Lastly, we have allowed for a finite value of qD/qc, yielding the best agreement with

Q0 = 0.17 nm−1, ξ(0)t,+ = 0.44 nm and qD/qc = 0.235, so that Q0 ξ
(0)
t,+ = 0.075. In order to

validate our approach we note that the values for Q0 ξ
(0)
t,+ that we obtain in the second and

third case are not far removed from this in the first case; small changes can be expected

because our mixtures contain salt [105, 182]. The resulting viscosities for the present

mixture are shown in Fig. 6.9. Overall our estimates are slightly below the viscosity data

of Ref. [111] for the pure binary mixture 3MP-D2O. Still, we find reassurance in the overall

agreement, since estimating the viscosity is not the primary focus of this procedure.

6.A.2 Corrections to the critical diffusion coefficient

Here, we argue why the expression given by Eq. (2.35), which is dominated by the critical

part in Eq. (2.33), reproduces the behavior of the measured diffusion coefficient given in

Fig. 2.1(b). In literature, Eq. (2.33) is often called a (pseudo-)Stokes-Einstein relation,

especially when setting R = 1 [107]. However, this is more of an analogue than a rigorous

statement, as the self-diffusion of the OP is not governed by the same relation as the

Brownian motion. If we naïvely assume the Stokes-Einstein relation in which the radius

of the Brownian particles is replaced with the size of the correlated scattering features,

i.e., the correlation length ξ, so that

D =
kBT

6πηξ
, (6.4)
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we obtain inconsistent results: as we know that ξ is a power law of t close to Tc, we would

then expect that D also follows a power law, i.e., a straight line in Fig. 2.1. However,

we find that instead D flattens out and approaches a constant value upon decreasing

t. In contrast, saturation of D is captured correctly by Eq. (2.33). In the critical limit

x = q ξ ≫ 1 one has K(x) ∝ x [184] and H(Q0 ξ → ∞, qD/qc) = ln(Q0 ξ) [106], so that

lim
ξ→∞

Dc =
R kBT

6π ηbg Qz
0 ξ

1+z
bz(q ξ)1+z = const., (6.5)

leading to a saturation of the diffusion coefficient at T = Tc, as observed in the ex-

periments. Note that it is sufficient to look at Dc to explain this saturation since the

background Dbg given by Eq. (2.34) becomes negligible for large ξ. Dbg contributes to

the deviation from a power law that is observed for large t, due to effects of the viscosity

on a different, non-critical temperature scale.

For our fitting procedure, we have used newer estimates that give as the value of the

universal amplitude R = 1.05 [107, 108]. This slight deviation from 1 is of significant

importance. Since lim
ξ→∞

Dc = const., the diffusion coefficient becomes insensitive to the

actual value of the correlation length, but is still proportional to the universal amplitude

R. Conversely, in our procedure we find for R = 1 widely varying results for the corre-

lation length ξ, amplifying small experimental errors of the diffusion coefficient. These

issues are significantly reduced for R = 1.05, supporting the finding that the universal

amplitude R > 1. In consequence, there is no particular limit in which the Stokes-Einstein

relation in Eq. (6.4) can be obtained from Eq. (2.33).



Chapter 7

Summary and Outlook

This thesis presents investigations into effective interactions between colloidal particles in

critical solvents. In this chapter, in addition to the conclusions at the end of each chapter,

the findings are summarized in its entirety. As it seems impossible to cover such a topic

exhaustively, a possible outlook to further research is also given.

After a basic introduction in chapter 1 and a discussion of the necessary theoretical

background in chapter 2, the main results have been presented. To start off, in chapter

3, specific interest has been taken in the critical Casimir interaction between chemically

structured colloids and substrates. The chapter is sectioned according to the different

geometries sketched out in Fig. 3.1. A distinction between two types of cylindrical Janus

particles has been drawn: type A, which features a step in the surface boundary conditions

(BCs) along the length of the cylinder, cutting it into two half-cylinders, and type B,

which is divided perpendicular to the length of the cylinder, cutting it in two cylinders

of half the length. For the type A Janus cylinder, the critical Casimir force acting on a

single such particle (see Sec. 3.1) has first been calculated both by using the Derjaguin

approximation (DA) and by applying mean field theory (MFT). Figs. 3.2 and 3.3 compare

the scaling functions of the force for a Janus cylinder (type A) above a homogeneous

substrate with the scaling function for a homogeneous cylinder above a substrate with

a chemical step, both in DA and MFT, as a function of the scaled temperature Θ =

D/ξ(t) (Fig. 3.2) and the scaled position Ξ of the particle (Fig. 3.3). The construction

principle of the DA suggests that these configuration are analogous to each other, and good

agreement is in fact also found within MFT in the DA limit ∆ → 0. This relation has been

further studied by inspecting the order parameter (OP) profiles in these configurations

as obtained from MFT, see Fig. 3.4. A phenomenological relation for the DA has been

proposed, which has been obtained by applying the DA to a fictional, scaled colloid

(Fig. 3.5) in order to account for the shape of the OP profiles. The improvement has

been demonstrated in Fig. 3.6. Thus, the additive nature of the DA has been further used

131
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with the expectation that it holds qualitatively, and to some degree quantitatively, also in

MFT. The correspondence of a type A Janus particle and chemical steps on a substrate

has been used in section 3.2 for the combination of a cylindrical Janus particle above

a chemically stepped substrate. Fig. 3.7 compares the results for the scaling function

of the force obtained from DA and within MFT, with good agreement for the smaller

distance ∆ = D/R = 1/5. Before directly studying the type B Janus particle, the case

of a homogeneous cylinder above a substrate with a chemical step (Sec. 3.3) has been

revisited, now with a view on the critical Casimir torque acting on the particle, which

has been derived from the critical Casimir potential using the DA. The scaling function

of the torque, shown in Fig. 3.8, changes sign depending on the lateral distance from the

step, the combination of BCs, as well as the aspect ratio of the cylindrical particle. This

torque aligns the colloid parallel for positive values or perpendicular for negative values.

The orientational order, as seen in Figs. 3.9 and 3.10, has been further investigated for

different lengths of the particle, from rod-like particles to disk-like ones, using the planar

nematic order parameter S. It has been experimentally demonstrated in binary liquid

mixtures that homogeneous spherical colloidal particles can be reversibly trapped above a

chemically patterned substrate via critical Casimir interactions [68–70,103]. Together with

the present study of alignment, this has prompted a particular perspective on the type

B Janus particle: In Sec. 3.4, the critical Casimir potential derived within DA has been

used in order to study the effective interaction between a cylindrical Janus particle and

a chemically striped substrate. The angular and position dependent part of the scaling

function of potential ωp [Eq. (3.16)] exhibits several maxima and minima (Fig. 3.11).

The alignment has been characterized using the standard deviation σα of the angular

probability distribution function, from which a characteristic and well defined rotation

angle α followed (Fig. 3.12), so that the Janus particle is preferentially rotated relative

to the chemical stripes and shifted laterally with respect to the center of the stripes.

Based on this analysis within DA, it should be possible to achieve a controlled, reversible

alignment of type B Janus particles using a similar setup as in previous experiments.

In chapter 4, the study has been extended to critical Casimir interactions between two

Janus particles. The case of two Janus cylinders (type A) had already been worked out

before [75,127], but a short reminder has been given for clarity. The focus has then been

put on Janus spheres, which have been described in a relative coordinate system as a

function of three spherical coordinates α = φ2 − φ1, ϑ1, and ϑ2 (see Fig. 4.2). The details

of the DA for Janus spheres are given in Appendix B. The resulting scaling function

of the force as a function of the scaled temperature Θ = D/ξ(t) is shown in Fig. 4.3.

Depending on the orientation of the two Janus spheres, the critical Casimir force can

be attractive or repulsive. The strongest attraction is found in the case of the two Janus

spheres facing each other with the same face, whereas the strongest repulsion occurs when
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they are lined up. The scaling function of the effective pair potential then follows from

the force. In order to gain another perspective on the scaling function of the potential,

it is presented in Fig. 4.4 as an energy landscape in terms of the particle orientations

ϑ1 and ϑ2 for the two cases α = 0 and α = π, for fixed temperature and distance.

There are two flat and stable minima in the potential energy, which are connected by

a narrow valley (which represents counter-rotating orientations of the Janus particles).

The large plateaus of repulsive orientational states corresponding to opposing BC yield a

checkerboard landscape pattern. Varying the angle α affects the scaling function of the

effective potential only around orientations ϑ1,2 = π/2, but does not alter the structure

of plateaus and plains.

The knowledge gained of the scaling function of the effective potential has then been used

to study a common experimental situation in which the particle positions and orientations

are confined to a plane parallel to the planar surface of a substrate. Fig. 4.5 visualizes

the analysis of how the effective influence of the substrate, incorporated as an externally

imposed common tilt γ of all Janus particles, changes the effective pair interaction among

the Janus particles. The deviations turn out to be small for tilts γ � 30◦ and still

acceptable for γ � 45◦. Under this condition, concerning the interaction among the

particles, the substrate induced interaction can be discarded.

In view of the desire to employ the critical Casimir potential in numerical computations

(e.g., density functional theory) or simulations (e.g., Monte-Carlo) of the phase behavior,

the foundation for an expansion in terms of the Kern-Frenkel (KF) model and a generalized

dipole-dipole interaction has been laid out in Sec. 4.3 (compare Fig. 4.6 with Fig. 4.4).

The KF model provides clear parameters for the interaction strength, interaction range

and the effective patch size (see Fig. 4.7), but turns out to be of limited use close to the

critical point. Alternatively, an expansion of the critical Casimir potential in a rotational

invariant basis has been introduced, leading to a generalized dipole-dipole interaction in

terms of the orientational order (the coefficients are depicted in Fig. 4.8).

Up to this point, explicit calculations of the critical Casimir force and potential have been

based solely or additionally on the DA. Now in chapter 5, in order to capture effective

interactions beyond the critical Casimir interaction, the Hamiltonian in Eq. (2.27) has

been minimized numerically for two parallel, cylindrical colloids of radius R in a near-

critical solvent at two-phase coexistence, from which one obtains the free energy and the

corresponding equilibrium MFT order parameter profiles. In the terminology of binary

liquid mixtures, the colloids have a preference for one of the two components of the

solvent. This leads to the formation of an adsorption layer of the preferred phase around

the colloids, as sketched in Fig. 5.1. In the global minimum of the free energy, the

colloids are immersed in the preferred α phase; however, there is a largely stable local

minimum in which the colloids are engulfed by the less favored β phase and located
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far away from the α-β interface. It turns out that the scaling function P− [Eq. (5.11)]

of the two-particle order parameter profiles (see Figs. 5.2 and 5.3) features a local α-β

interface that encapsulates both particles either individually (separated state) or as a

pair (bridged state), depending on the surface-to-surface distance D and temperature,

with a first-order phase transition between the two states. Three regimes clearly manifest

themselves in the scaling function G of the effective interaction potential as a function of

the distance (shown in Fig. 5.4): At close separations, critical Casimir forces dominate;

at intermediate separations the extension of the liquid bridge leads to a region in which

the influence of the α-β interfacial tension dominates; and finally a third regime in which

the liquid bridge is meta-stable compared to the separated state and eventually ruptures.

By comparison, the first regime at small separations ∆ = D/R < 1 is in very good

agreement with the DA for the critical Casimir potential between two cylinders. In the

second regime, the slope of G with respect to ∆ matches the surface tension contribution

to the force, confirming that the effective potential is dominated by the cost of extending

the interfacial area. Finally, the liquid bridge ruptures and the third regime corresponds

to two separated particles, with the scaling function G being de facto independent of

distance. To a large extent, in the less-critical regime Θ− ≫ 1, the transition distance Dt

of the liquid bridge can be expressed in terms of single-colloid profiles (see Figs. 5.5 and

5.6). It turns out that the adsorption layer in single-particle profiles essentially consists of

the wall-α interface, well described by a short distance approximation [Eq. (5.20)], joint

together with the free α-β interface profile [Eq. (5.22)] for which the adsorption layer

thickness la is the relevant quantity. The transition distance Dt has been unambiguously

determined from the zero-crossing of the scaling function G of the effective potential in

the bridged state. Fig. 5.7(a) presents the phase diagram of the liquid bridge, which is

divided by Dt into two distinct domains: For large ∆ and away from Tc, the separated

state is the stable configuration. For small separations ∆ or close to Tc, the colloids are

connected by a bridge formed by the preferred α phase. Away from criticality, i.e., for

Θ− ≫ 1, a geometric model based on the adsorption layer thickness la yields a reasonable

approximation for the transition distance Dt [see Fig. 5.7(b)]. Beyond the present mean

field treatment, finite-size induced fluctuation are expected to cause a shift and rounding of

the phase transition. This has been discussed specifically for the geometry of two parallel

cylinders, see Fig. 5.8. According to the presented estimates, the smearing and the shift

of the transition probability (Fig. 5.9) are too small to be noticeable in the experiment for

rescaled temperatures Θ− � 3. This range still features the critical Casimir contribution

discussed above. Furthermore, the scaling function G of the effective potential for the

bridged state has been studied as a function of the rescaled temperature Θ− (see Fig. 5.10),

reproducing the phase transition temperature Θ(t)
− , as well as the temperature dependence

of the scaling function K of the effective force between two colloids for various small

separations D (see Fig. 5.11). The latter has highlighted again both the influence of the
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interfacial tension resulting from extending the liquid bridge as well as the critical Casimir

force for Θ− → 0.

As a field test for the theoretical pair potential model in Eq. (2.41), in chapter 6 the inter-

actions of colloidal particles in near-critical binary solvent at off-critical compositions have

been investigated in comparison with an actual experimental realization. Experimentally,

the colloids have been monitored through a laser-scanning confocal microscope, which

takes two-dimensional images of an illuminated focal plane within the three-dimensional

sample cell. The pair correlation function g(r) is inferred from the probability of finding

a particle at distance r from a reference particle. A number of optical and experimen-

tal limitations have affected the resulting pair correlation function (diffusion of particles

during scanning time, noise, accuracy of the algorithm, poly-dispersity, and the non-zero

focal thickness in vertical direction). The influence on the pair correlation function has

briefly been studied in Fig. 6.1. The determined g(r) has been much smoother than ex-

pected, in contrast to the model with hard-core repulsion and electrostatic repulsion. The

discrepancy can be resolved by considering a projected gproj(r
′) [Eq. (6.1)] which accounts

for the uncertainties in x, y, and z direction using normal probability distributions around

the true particle position, with standard deviations σ = σx = σy within the plane and σz

perpendicular to the focal plane. An in-plane distribution width between σ/d = 0.05 and

0.067, i.e., σ = (106–141) nm based on the diameter d = 2.012µm of the colloids, corre-

sponds well to the observed pair correlation function. This is also in agreement with the

sum of the individual estimates of the experimental uncertainties, amounting to 135 nm.

Thus, for a robust comparison between theory and experiment which avoids fitting, the

strategy was to determine independently all parameters entering the scaling variables of

the dimensionless effective potential U(r) [Eq. (2.41)], to assume the low-density limit

g(r) = e−U(r), and then to apply the same broadening effect to the theoretical pair po-

tential via gproj(r
′).

The equation of state for the critical solvent depends only on two non-universal ampli-

tudes, as other non-universal amplitudes are related to each other via universal amplitude

ratios. A purposeful choice is the amplitude ξ
(0)
t of the correlation length ξt(t) = ξ

(0)
t |t|−ν

at the critical concentration, and the amplitude B which enters into the shape of the co-

existence curve φb(t) = B |t|β (ν and β are standard bulk critical exponents). The values

of these amplitudes are determined from dynamic light scattering (DLS) measurements

of the solvent without colloids and from observing the phase separation of the solvent,

respectively (see Figs. 6.2 and 6.3). Note that DLS actually yields the self-diffusion coef-

ficient, which is related to the correlation length via the intricate relations presented in

Appendix 6.A. Finally, it has been necessary to incorporate the weak adsorption prefer-

ence of the colloids. It is known that at the critical concentration the profiles for weak

surface fields can be mapped to the strong adsorption case by rescaling of the scaling func-
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tion [73]. However, as far as presently known, it has not been studied how such a relation

is modified for being at off-critical concentrations. Within the experimentally accessible

range, an effective temperature offset describes approximately the weak adsorption, see

the discussion in Sec. 2.2.2. Thus having established the values of all scaling variables,

it was possible to compare the projected pair correlation functions from the experiment

and from theory close to the critical point, for different temperatures and concentra-

tions in Figs. 6.4 and 6.5(a,b). The unmodified theoretical pair potentials are shown in

Fig. 6.5(c,d). A more accurate measure, which is rather insensitive to the experimental

inaccuracies, is found in the second virial coefficient B2, see the discussion in Sec. 6.2.

The law of corresponding states can be applied in order to make a comparison with the

critical, normalized value B∗
2 = −1.2 of the sticky spheres model below which aggregation

is observed. This critical value successfully identifies the region of colloidal aggregation

induced by the critical Casimir attraction in Fig. 6.6. Furthermore, a comparison between

the values B∗
2 of theory (colored surface) and experiment (data points) has been made in

the form of a three-dimensional surface plot (Fig. 6.7).

As listed before, the results have been published ahead of this thesis. In order to present

a more coherent train of thought, the content in this thesis has been rearranged compared

to the chronological publication list: Sections 3.1 and 3.2 can be found in Ref. [75],

sections 3.3 and 3.4 in Ref. [74]. Chapter 4 is also part of Ref. [75]. Chapter 5 is

published as Ref. [77]. Chapter 6 is based on Ref. [76], which contains additional details

about the experimental setup.

In conclusion, all studies performed during this thesis corroborate that effective inter-

actions are capable to accurately describe the behavior of colloidal particles in critical

solvents. Within the description of effective interactions, the solvent is not considered ex-

plicitly, but rather as an effective background captured by the parameters of the effective

pair potential, and there is no coupling between individual interactions, such as the critical

Casimir interactions and electrostatic repulsion. The resulting forces are assumed to be

additive. Note that the geometries under consideration have been simple pairs (chapters

3, 4, and 5), or at most dilute suspension dominated by pairwise interactions (chapter

6). It is known that for the critical Casimir force, many-body contributions can amount

up to 25% of the total force [185–187]. It has also been found that ion-solvent coupling

plays an important role in the case of electrostatic interactions and critical Casimir in-

teractions [188, 189]. In the case of opposing BCs on the particle surfaces, the coupling

gives rise to an attractive contribution to the otherwise repulsive interactions. This does

not influence the experiment presented in chapter 6 which employs only one type of par-

ticle with a uniform BC. However, one expects such deviations to be relevant for Janus

particles.
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Figure 7.1: Sketch of a pistachio or pacman particle, imagined as a continuation of the
present research by superimposing tilted Janus spheres on top of each other and combining
their effective interactions.

Nonetheless, considering that highly sophisticated particle “designs” are experimentally

available (triblock Janus spheres [56], variations of patchy particles [63], raspberry-like

particles [190], Mickey Mouse particles [191], and dumbbells [192]), effective interactions

remain important for the basic assessment of the phase behavior in dilute systems. Due

to the additive nature of the Derjaguin approximation, new particle types can be con-

structed from already known geometries. As an outlook, consider the pistachio or pacman

particle depicted in Fig. 7.1. It can be viewed as consisting of two (graphically) super-

imposed Janus particles. By correct summation of surface elements, an additive effective

interaction can be constructed again. Experimentally, the fabrication of such a particle

can be achieved using evaporation techniques, by which half of an originally homogeneous

particle is coated with another surface layer (boundary condition). Tilting the parti-

cle, e.g., by alignment in an external magnetic field, and depositing a second, rotated

hemisphere is expected to produce a surface structure as depicted. In this rare case, the

theoretic model of combining the interaction of Janus particles is actually an imitation of

the manufacturing step.

It appears that further research is not limited by imagination, but only by the increas-

ing complexity both in the theoretical models and the experimental fabrication. Thus,

every incremental addition to the knowledge of effective interactions between structured

colloidal particles may serve as the basis for further investigations.
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Zusammenfassung und Ausblick

Diese Doktorarbeit behandelt effektive Wechselwirkungen zwischen kolloidalen Teilchen in

kritischen Lösungen. In diesem Kapitel werden die Ergebnisse, zusätzlich zu den Schluss-

folgerungen (Conclusions) am Ende jedes Kapitels, in ihrer Gesamtheit zusammengefasst.

Da es ausgeschlossen scheint ein solches Thema erschöpfend wiederzugeben, wird auch ein

möglicher Ausblick auf weitere Forschung gegeben.

Nach einer grundsätzlichen Einführung in Kapitel 1 und einer Diskussion des notwen-

digen theoretischen Hintergrundes in Kapitel 2, wurden die wesentlichen Ergebnisse

präsentiert. Zum Einstieg wurde in Kapitel 3 das Augenmerk auf die kritische Casi-

mir Wechselwirkung zwischen chemisch strukturierten Kolloiden und Substraten gelegt.

Das Kapitel teilt sich gemäß der verschiedenen Geometrien auf, die in Abb. 3.1 skizziert

sind. Es wurde zwischen zwei Typen von zylindrischen Janus-Teilchen unterschieden: Typ

A besitzt eine Stufe in den Randbedingungen (boundary conditions; BCs) entlang der

Längsachse des Zylinders, unterteilt ihn also in zwei Halbzylinder. Typ B ist quer zur

Längsachse des Zylinders geteilt, ist also aus zwei Zylindern der halben Länge zusammen-

gesetzt. Für den Typ A Janus-Zylinder wurde zunächst die kritische Casimir-Kraft, die

auf einzelnes Teilchen wirkt, berechnet (siehe Abschnitt 3.1), sowohl mit der Derjaguin-

Näherung (DA) als auch mittels der Molekularfeldtheorie (MFT). Abb. 3.2 und 3.3 ver-

gleichen die Skalenfunktionen der Kraft für einen Janus-Zylinder (Typ A) über einem

homogenen Substrat mit der Skalenfunktion für einen homogenen Zylinder über einem

Substrat mit einer chemischen Stufe, sowohl in DA als auch MFT, als Funktion der ska-

lierten Temperatur Θ = D/ξ(t) (Abb. 3.2) und der skalierten Position Ξ des Teilchens

(Abb. 3.3). Das Konstruktionsprinzip der DA legte nahe, dass diese Konfigurationen ana-

log zueinander sind und tatsächlich fand sich eine gute Übereinstimmung auch mit der

MFT im Grenzfall ∆ → 0 der DA. Dieser Zusammenhang wurde weiterhin anhand der aus

der MFT gewonnenen Profile des Ordnungsparameters (OP) in den betreffenden Konfigu-

rationen untersucht, siehe Abb. 3.4. Es wurde eine phänomenologische Relation angeregt,

die der Form der OP-Profile Rechnung trägt, und die sich ergibt, wenn man die DA auf

ein fiktives, skaliertes Kolloid (Abb. 3.5) anwendet. Die Verbesserung wurde in Abb. 3.6

demonstriert. Folglich konnte die additive Natur der DA im Weiteren ausgenutzt wer-

139
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den, in der Erwartung, dass sie auch für MFT qualitativ zutrifft und im begrenzten Maße

auch quantitativ. Die Übereinstimmung zwischen Typ A Janus-Zylindern und chemischen

Stufen auf einem Substrat wurde anschließend in Abschnitt 3.2 für die Kombination ei-

nes zylindrischen Janus-Teilchens über einem chemisch abgestuften Substrat verwendet.

Abb. 3.7 vergleicht die sich aus DA und MFT ergebenden Skalenfunktionen der Kraft

und zeigt gute Übereinstimmung bei dem kleineren Abstand von ∆ = D/R = 1/5. Vor

den Typ B Janus-Teilchen wurde zunächst noch einmal der Fall eines homogenen Zylin-

ders über einem Substrat mit einer chemischen Stufe betrachtet (Abschnitt 3.3). Diesmal

wurde das kritische Casimir-Drehmoment ausgewertet, das auf ein Teilchen wirkt, und

das aus dem kritischen Casimir-Potential in DA abgeleitet wurde. Die Skalenfunktion des

Drehmoments, wie in Abb. 3.8 zu sehen, wechselt das Vorzeichen in Abhängigkeit des

lateralen Abstands von der Stufe, von der Kombination der BCs und dem Längenverhält-

nis der zylindrischen Teilchen. Das Drehmoment richtet das Kolloid für positive Werte

parallel aus und senkrecht für negative Werte. Weiterhin wurde, wie in Abb. 3.9 und

3.10 zu sehen, die Orientierungsordnung mittels des nematischen Ordnungsparameters

S für verschiedene Längen des Teilchens (stäbchenförmig bis hin zu Scheiben) unter-

sucht. Zuvor war schon in binären Flüssigkeitsmischungen experimentell gezeigt worden,

dass sich homogene, kugelförmige kolloidale Teilchen über chemisch gestreiften Substra-

ten mit kritischen Casimir-Kräften reversibel einfangen lassen [68–70, 103]. Zusammen

mit der vorliegenden Untersuchung gab dies den Anlass, Janus-Teilchen des Typs B ge-

zielt nach diesem Gesichtspunkt zu untersuchen: In Abschnitt 3.4 wurde das kritische

Casimir-Potential in DA abgeleitet, um die effektiven Wechselwirkungen zwischen einem

zylindrischen Janus-Teilchen und einem chemisch gestreiften Substrat zu untersuchen.

Die Winkel- und Positionsabhängigkeit der Skalenfunktion des Potentials ωp [Gl. (3.16)]

weist mehrere Maxima und Minima auf (Abb. 3.11). Das Ausrichtungsverhalten wurde

über die Standardabweichung σα der Winkelverteilung charakterisiert, woraus sich ein

kennzeichnender Winkel α ergab (Abb. 3.12), so dass sich das Janus-Teilchen in Bezug

auf die chemische Stufe bevorzugt in diesem Winkel ausrichtet und sich zur Mitte der

Stufe lateral verschoben aufhält. Aus dieser Analyse auf Basis der DA folgt der Schluss,

dass es möglich wäre in einem ähnlichen Aufbau wie in früheren Experimenten auch eine

kontrollierte, reversible Ausrichtung von Janus-Teilchen des Typs B zu erzielen.

In Kapitel 4 wurden die Untersuchungen auf kritische Casimir-Wechselwirkungen zwi-

schen zwei Janus-Teilchen erweitert. Der Fall zweier Janus-Zylinder (Typ A) war bereits

zuvor ausgearbeitet worden [75,127]. Der Fokus lag anschließend auf Janus-Kugeln, welche

in einem relativen Koordinatensystem beschrieben wurden, das von drei Kugelkoordina-

ten α = φ2−φ1, ϑ1 und ϑ2 abhängt (siehe Abb. 4.2). Die Details der DA für Janus-Kugeln

wurden in Appendix B abgehandelt. Die resultierende Skalenfunktion der Kraft als Funk-

tion der skalierten Temperatur Θ = D/ξ(t) wurde in Abb. 4.3 gezeigt. Abhängig von



Zusammenfassung und Ausblick 141

der Ausrichtung der beiden Janus-Kugeln kann die kritische Casimir-Kraft attraktiv oder

repulsiv ausfallen. Die stärkste Attraktion ergibt sich im Fall, dass sich die beiden Kugeln

mit derselben Seite gegenüberstehen, während die stärkste Repulsion dann auftritt, wenn

sie in einer Linie ausgerichtet sind. Die Skalenfunktion des effektiven Paarpotentials folgt

dann aus der Kraft. Um eine weitere Sichtweise auf die Skalenfunktion des Potentials zu

gewinnen, ist selbige in Abb. 4.4 als Energielandschaft bezüglich der Winkel ϑ1 und ϑ2 für

die beiden Fälle α = 0 und α = π dargestellt, bei konstanter Temperatur und konstantem

Abstand. Es zeigten sich zwei flache und stabile Minima in der potentiellen Energie, die

durch ein schmales Tal verbunden sind (welches gegenläufig rotierende Orientierungen der

Janus-Teilchen darstellt). Die großen Plateaus entsprechen repulsiven Ausrichtungen mit

gegensätzlichen BCs, woraus sich ein Schachbrettmuster in der Energielandschaft ergibt.

Eine Veränderung des Winkels α beeinflusst die Skalenfunktion des effektiven Potentials

nur bei Ausrichtungen in der Nähe von ϑ1,2 = π/2, verändert die grundsätzliche Struktur

von Plateaus und Talflächen allerdings nicht.

Das gewonnene Wissen über die Skalenfunktion des effektiven Potentials wurde dann

angewendet, um eine verbreitete experimentelle Situation zu studieren, bei der die Teil-

chenposition und Orientierungen auf eine Ebene beschränkt sind, die parallel zur Sub-

stratoberfläche liegt. Abb. 4.5 visualisiert die Analyse über den effektiven Einfluss des

Substrats auf die Wechselwirkung, der als von außen erzwungene Neigung γ aller Janus-

Teilchen beschrieben wird. Die Abweichung des effektiven Paarpotentials erweist sich als

klein für Neigungen γ � 30◦ und als vertretbar für γ � 45◦. Unter dieser Bedingung kann

die Wechselwirkung des Substrats bei Betrachtungen der Paarwechselwirkungen vernach-

lässigt werden.

Mit dem Anliegen, das kritische Casimir-Potential auch in numerischen Berechnungen

(z.B. in der Dichtefunktionaltheorie) oder in Simulationen (z.B. Monte-Carlo) einsetzten

zu können, um das Phasenverhalten auszuwerten, wurde in Abschnitt 4.3 die Grundlage

für eine Entwicklung im Sinne des Kern-Frenkel (KF) Modells und im Sinne eines verall-

gemeinerten Dipol-Potentials gelegt (vgl. Abb. 4.6 mit Abb. 4.4). Das KF-Modell liefert

eindeutige Parameter für die Wechselwirkungsstärke und -reichweite sowie die effektive

Patch-Größe (siehe Abb. 4.7), weist jedoch Einschränkungen in der Nähe des kritischen

Punkts auf. Als Alternative wurde die Entwicklung des kritischen Casimir-Potentials

in eine rotationsinvariante Basis vorgestellt, welche zu einem verallgemeinerten Dipol-

Potential bezüglich der Orientierungsordnung führt (die Koeffizienten sind in Abb. 4.8

dargestellt).

Bis zu diesem Punkt wurden explizite Berechnungen der kritischen Casimir-Kraft oder des

Potentials stets vollständig oder zusätzlich mit der DA durchgeführt. Um effektive Wech-

selwirkungen über die Casimir-Wechselwirkungen hinaus zu erfassen, wurde in Kapitel 5

der Hamiltonian in Gl. (2.27) numerisch für zwei parallele, zylindrische Kolloide mit Radi-
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us R in einer nahezu kritischen Lösung bei Zweiphasenkoexistenz minimiert, wodurch man

die Freie Energie und die entsprechenden MFT Gleichgewichtsprofile des OP erhält. Mit

den Begrifflichkeiten von binären Flüssigkeitsmischungen gesprochen, besitzen die Kolloi-

de eine Präferenz für eine der beiden Komponenten der Lösung. Das führt zur Ausbildung

einer Adsorptionsschicht der bevorzugten Phase um die Kolloide herum, wie in Abb. 5.1

skizziert. Im globalen Minimum der Freien Energie sind die Kolloide in der bevorzugten

α-Phase gelöst, allerdings existiert ein weitgehend stabiles, lokales Minimum in dem die

Kolloide in der missliebigen β-Phase, weit von der α-β Grenzfläche entfernt, eingeschlos-

sen sind. Es zeigte sich, dass die Skalenfunktion P− [Gl. (5.11)] des Zwei-Teilchen-Profils

des Ordnungsparameters (siehe Abb. 5.2 und 5.3) eine lokale α-β Grenzfläche aufweist,

die entweder beide Teilchen einzeln (getrennter Zustand) oder als Paar (Brückenzustand)

umschließt, je nach Oberflächenabstand D und Temperatur. Dazwischen tritt ein Phasen-

übergang erster Ordnung auf. In der Skalenfunktion G des effektiven Wechselwirkungspo-

tentials zeigten sich drei eindeutige Bereiche als Funktion des Abstands (siehe Abb. 5.4):

Bei kleinen Abständen überwiegen die kritischen Casimir-Kräfte; bei mittleren Abständen

führt die Dehnung der Flüssigkeitsbrücke zu einem Bereich, in dem die α-β Grenzflächen-

spannung dominiert; und zuletzt ein dritter Bereich in dem die Flüssigkeitsbrücke nur

noch metastabil gegenüber dem getrennten Zustand ist und reißt. Im Vergleich stimmt

der erste Bereich mit kleinen Abständen ∆ = D/R < 1 hervorragend mit der DA des

kritischen Casimir-Potentials überein. Im zweiten Bereich entspricht die Steigung von G

bezüglich ∆ genau dem Beitrag der Grenzflächenspannung zur Kraft, was bestätigt, dass

das effektive Potential von der Dehnung der Grenzfläche bestimmt wird. Schließlich reißt

die Flüssigkeitsbrücke und der dritte Bereich entspricht zwei einzelnen Teilchen; dort ist

die Skalenfunktion G faktisch nicht mehr vom Abstand abhängig. Im weniger kritischen

Bereich Θ− ≫ 1 ließ sich der Übergangsabstand Dt, bei dem die Flüssigkeitsbrücke ausge-

bildet wird, größtenteils durch Ein-Teilchen-Profile vorhersagen (siehe Abb. 5.5 und 5.6).

Es zeigte sich, dass die Adsorptionsschicht in den Ein-Teilchen-Profilen im Wesentlichen

aus einer Wand-α Grenzfläche besteht, die gut durch die Short-Distance-Approximation

beschrieben wird [Gl. (5.20)], in Verbindung mit einer freien α-β-Grenzfläche [Gl. (5.22)],

welche durch die Adsorptionsschichtdicke la gekennzeichnet ist. Der Übergangsabstand

Dt wurde eindeutig aus dem Nulldurchgang der Skalenfunktion G mit Flüssigkeitsbrücke

bestimmt. Abb. 5.7(a) zeigt das Phasendiagramm mit den, durch Dt aufgeteilten, zwei Zu-

ständen der Flüssigkeitsbrücke: Für große ∆ und abseits von Tc ist der getrennte Zustand

der stabile. Für kleine Abstände ∆ oder nahe bei Tc sind die Kolloide durch eine Flüssig-

keitsbrücke, bestehend aus der bevorzugten α-Phase, verbunden. Abseits vom kritischen

Punkt, d.h. wenn Θ− ≫ 1, ließ sich Dt sinnvoll durch ein geometrisches Model nähern,

das auf der Adsorptionsschichtdicke la basiert [siehe Abb. 5.7(b)]. Über die gegenwärtige

Molekularfeldtheorie hinaus steht zu erwarten, dass Fluktuationen, die aus der endlichen

Größe des Volumens resultieren (Finite-Size Effekte), den Phasenübergang verschieben
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und ausschmieren. Dies wurde konkret für diese Geometrie mit zwei parallelen Zylindern

diskutiert, siehe Abb. 5.8. Den dargelegten Abschätzungen zu Folge, sind die Aufwei-

chung und die Verschiebung der Übergangswahrscheinlichkeit bei Temperaturen Θ− � 3

zu klein, um experimentell beobachtbar zu sein. Dieser Temperaturbereich weist dennoch

die angesprochenen Beiträge der kritischen Casimir-Kraft auf. Des Weiteren wurde die

Skalenfunktion G des effektiven Potentials noch als Funktion der skalierten Tempera-

tur Θ− im Brückenzustand (Abb. 5.10) untersucht, wobei sich die Übergangstemperatur

Θ
(t)
− abbildete, sowie für verschiedene, kleine Abstände D die Temperaturabhängigkeit

der Skalenfunktion K der effektiven Kraft zwischen zwei Teilchen (Abb. 5.11). Letzteres

verdeutlichte erneut den Einfluss der Grenzflächenspannung durch Dehnung der Flüssig-

keitsbrücke, als auch die kritische Casimir-Kraft für Θ− → 0.

Als Praxistest für das theoretische Paarpotential aus Gl. (2.41) wurden in Kapitel 6 die

Wechselwirkungen zwischen kolloidalen Teilchen in einer kritischen binären Mischung bei

nicht-kritischen Zusammensetzungen mit einer tatsächlichen experimentellen Realisierung

verglichen. Im Experiment wurden die Kolloide durch ein Laser-Konfokalmikroskop beob-

achtet, welches zweidimensionale Bilder aus einer beleuchteten Fokusebene innerhalb der

dreidimensionalen Probe aufnahm. Die Paarkorrelationsfunktion g(r) ist durch die Wahr-

scheinlichkeit bestimmt, ein Teilchen in einem Abstand r von einem Referenzteilchen zu

finden. Eine Reihe von optischen und experimentellen Einschränkungen beeinträchtigten

die resultierende Paarkorrelationsfunktion (Diffusion der Teilchen während der Aufnah-

me, Rauschen, Genauigkeit des Algorithmus, Polydispersität und die endliche Fokusbrei-

te in vertikaler Richtung). Der Einfluss auf die Paarkorrelationsfunktion wurde anhand

Abb. 6.1 besprochen. Die beobachtete g(r) Funktion fiel deutlich weicher aus, als auf-

grund der harten Wechselwirkung und der elektrostatischen Abstoßung zu erwarten war.

Diese Diskrepanz erklärt sich, wenn man eine Projektion gproj(r
′) [Gl. (6.1)] betrachtet,

welche die Unsicherheiten in x, y und z-Richtung mit Normalverteilungen um die wahre

Teilchenposition beschreibt, samt Standardabweichungen σ = σx = σy innerhalb der Fo-

kusebene und σz vertikal dazu. In der Ebene stimmt eine Verteilungsbreite von σ/d = 0,05

und 0,067, was bei einem Durchmesser d = 2,012µm der Kolloide σ = (106–141) nm ent-

spricht, gut mit der beobachteten Paarkorrelationsfunktion überein. Diese passt auch zur

Summe der einzelnen, geschätzten experimentellen Unsicherheiten, die sich auf 135 nm

beläuft.

In der Absicht einen robusten Vergleich zwischen Theorie und Experiment ohne Fitting

zu schaffen, bestand die Strategie darin, unabhängig alle Parameter zu bestimmen, die

in Skalenvariablen des dimensionslosen effektiven Potentials U(r) [Gl. (2.41)] eingehen,

den Grenzfall g(r) = e−U(r) kleiner Dichte anzunehmen und dann mittels gproj(r
′) densel-

ben Aufweichungseffekt auf das theoretische Paarpotential anzuwenden. Die Zustandsglei-

chung des kritischen Lösungsmittels hängt nur von zwei nicht-universellen Amplituden ab,
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da weitere nicht-universelle Amplituden über universelle Verhältnisse in Relation zueinan-

der stehen. Eine zweckdienliche Wahl besteht in den Größen ξ
(0)
t , welches die Amplitude

der Korrelationslänge ξt(t) = ξ
(0)
t |t|−ν an der kritischen Konzentration darstellt, und B,

welches die Breite der Koexistenzkurve φb(t) = B |t|β festlegt (ν und β sind dabei kriti-

sche Exponenten). Die Werte dieser Amplituden wurden mit Dynamischer Lichtstreuung

(Dynamic light scattering; DLS) in der Lösung ohne Kolloide gemessen, respektive durch

Messung der Phasenseparation der Mischung (siehe Abb. 6.2 und 6.3). Genauer gesagt lie-

ferten die DLS Messungen den Selbstdiffusionskoeffizienten, der mit der Korrelationslänge

über die etwas verschlungenen Formeln in Appendix 6.A verbunden ist. Schließlich war

es noch erforderlich, die schwache Adsorptionspräferenz der Kolloide zu berücksichtigen.

Für die kritische Konzentration ist bekannt, dass sich die Profile bei schwachen Oberflä-

chenfeldern auf den Fall starker Adsorption durch eine Umskalierung der Skalenfunktion

abbilden lassen [73]. Allerdings wurde es, soweit bekannt, noch nicht untersucht, wie sich

der Zusammenhang bei Zusammensetzungen abseits der kritischen Konzentration verhält.

Innerhalb des experimentell zugänglichen Temperaturbereichs genügte ein Temperaturoff-

set, um die schwache Adsorption zu berücksichtigen, wie in Abschnitt 2.2.2 beschrieben.

Mittels der so bestimmten Werte aller Skalenvariablen war es möglich, die projizierte Paar-

korrelationsfunktion aus der Theorie mit dem Experiment für verschiedene Temperaturen

und Konzentrationen nahe dem kritischen Punkt in den Abbildungen 6.4 und 6.5(a,b) zu

vergleichen. Die reinen, theoretischen Paarpotentiale werden in Abb. 6.5(c,d) gezeigt. Eine

präzisere Größe, die wenig von den experimentellen Ungenauigkeiten abhängt, fand sich

in dem zweiten Virialkoeffizienten B2, wie in Abschnitt 6.2 geschildert. Das Gesetz der

übereinstimmenden Zustände (law of corresponding states) konnte hier angewendet wer-

den und erlaubte den Vergleich mit dem kritischen, normierten Wert B∗
2 = −1.2 aus dem

Model haftender harter Kugeln, unterhalb dessen Aggregation auftritt. Wie in Abb. 6.6

zu sehen, ermöglicht es der kritische Wert, den Bereich der kolloidalen Aggregation zu be-

stimmen. Darüber hinaus wurden in Abb. 6.7 die Werte von B∗
2 aus der Theorie (farbige

Fläche) und dem Experiment (Datenpunkte) in einem dreidimensionalen Oberflächenplot

verglichen.

Wie angegeben wurden diese Ergebnisse bereits wissenschaftlich veröffentlicht. Im Sinne

einer stringenteren Darstellung wurde die Reihenfolge in dieser Abhandlung jedoch ge-

genüber der chronologischen Veröffentlichung umgestellt: Abschnitte 3.1 und 3.2 finden

sich in Referenz [75] wieder, die Abschnitte 3.3 und 3.4 in Ref. [74]. Kapitel 4 ist eben-

so Teil von Ref. [75]. Kapitel 5 wurde als Ref. [77] veröffentlicht. Kapitel 6 entstammt

Referenz [76], die noch weitere Details über den experimentellen Aufbau enthält.

Im Rückblick unterstreichen die innerhalb dieser Arbeit durchgeführten Untersuchungen,

dass effektive Wechselwirkungen zur Beschreibung von kolloidalen Teilchen in kritischen
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Abbildung 7.1: Zeichnung eines Pistazien- oder Pacman-Teilchens, das als Erweiterung
dieser Arbeit gesehen werden kann, indem man zwei gedrehte Janus-Teilchen bildlich
übereinander legt und ihre effektiven Wechselwirkungen kombiniert.

Lösungen geeignet sind. Bei der Beschreibung durch effektive Wechselwirkungen wird das

Lösungsmittel nicht explizit berücksichtigt, sondern nur als effektiver Hintergrund, der

durch die Parameter des effektiven Potentials erfasst wird. Darüber hinaus besteht kei-

ne Kopplung zwischen den einzelnen Wechselwirkungen, wie zum Beispiel zwischen der

kritischen Casimir-Wechselwirkung und der elektrostatischen Repulsion. Die resultieren-

den Kräfte wurden als additiv angenommen. Bei den besprochenen Geometrien handelt

es sich entsprechend um einfache Paare (Kapitel 3, 4, und 5) oder um eine verdünnte

Suspension, bei denen die paarweise Wechselwirkung dominiert (Kapitel 6). Für die kri-

tische Casimir-Kraft ist bekannt, dass die Mehrteilchen-Wechselwirkung bis zu 25% der

gesamten Kraft ausmachen kann [185–187]. Es hat sich auch gezeigt, dass die Kopplung

von Ionen und Lösungsmittelteilchen eine bedeutende Rolle zwischen der elektrostatischen

Repulsion und der kritischen Casimir-Kraft spielt [188, 189]. Bei gegensätzlichen Rand-

bedingungen auf den Teilchenoberflächen kommt es zu einem attraktiven Beitrag zu den

ansonsten repulsiven Kräften. Dies hat allerdings keinen Einfluss auf das Experiment in

Kapitel 6, in dem nur ein einziger Teilchentyp mit einheitlicher Oberfläche verwendet

wurde. Für Janus-Teilchen können solche Abweichungen dagegen relevant sein.

Nichtsdestotrotz bleiben effektive Wechselwirkungen wertvoll für grundlegende Einschät-

zungen des Phasenverhaltens in verdünnten Systemen, besonders für hochkomplexe

“Designer”-Teilchen, die es schon experimentell gibt (Triblock Janus-Kugeln [56], vers.

Varianten von Patchy-Teilchen [63], Himbeer-Teilchen [190], Mickey-Mouse-Teilchen [191]

und Hanteln [192]). Aufgrund der additiven Herangehensweise bei der Derjaguin-Näherung

lassen sich neue Teilchenformen aus bereits bekannten Geometrien konstruieren. Als Aus-

blick sei auf das in Abb. 7.1 dargestellte Pistazien- oder Pacman-Teilchen verwiesen. Es

lässt sich auch als graphische Übereinanderlagerung zweier Janus-Teilchen sehen. Mit-

tels der richtigen Abzählung von Oberflächenelementen lässt sich erneut eine additive,

effektive Wechselwirkung konstruieren. Für Experimente lässt sich ein solches Teilchen

mit Aufdampftechniken herstellen; dabei wird die Hälfte eines ursprünglich homogenen

Teilchens mit einer anderen Oberflächenschicht (Randbedingung) überzogen. Neigt man

das Teilchen, zum Beispiel mit Hilfe eines äußeren Magnetfeldes, und trägt dann eine



146 Zusammenfassung und Ausblick

zweite halbkugelförmige Schicht auf, erhält man die dargestellte Form. In diesem seltenen

Fall imitiert die theoretische Herleitung der kombinierten Wechselwirkung sogar die reale

Anfertigung.

Es scheint gar so, als ob die zukünftige Forschung nicht durch die Vorstellungskraft be-

schränkt wird, sondern nur durch die zunehmende Komplexität der theoretischen Modelle

und der experimentellen Herstellung. Daher stellt auch jede schrittweise Erweiterung des

Wissens um effektive Wechselwirkungen zwischen strukturierten kolloidalen Teilchen eine

mögliche Basis weiterer Forschung dar.



Appendix A

Derjaguin approximation for two

cylinders

The Derjaguin approximation (DA) allows one to determine the force between two close

objects with curved surfaces in terms of the corresponding forces between parallel, planar

plates. To this end the surfaces are subdivided into infinitesimal, flat surface elements.

Assuming additivity of the forces between these elements provides an integral expression

for the force between curved objects in terms of the force between two planar walls.

In the case of two parallel cylinders, the DA cuts the two surfaces into parallel, in-

finitesimally thin stripes [74, 103]. Thus, each surface is parameterized by a continuous

parameter ρ, tracking two parallel stripes at positions ±ρ from the axis of each par-

ticle. The distance between two adjacent surface elements on two colloids is given by

L(ρ) = D+2R−2
√

R2 − ρ2, where D is the shortest surface-to-surface distance between

the two cylinders and R is the radius common to both particles. The DA is valid for

D ≪ R, i.e., ∆ = D/R → 0. In this limit one can employ the so-called “parabolic

distance approximation” [29, 35,103] L(ρ) ≈ D (1 + ρ2/(RD)).

A visualization of these two distance formulae is shown in Fig. A.1(a) for a fixed

distance ∆ = D/R = 0.3. For this medium-sized distance, which is not particularly close

to the DA limit ∆ → 0, the resulting difference for the scaling functions K(cc)
(a,b) between the

above two distance formulae is still small (see Fig. A.1(b) and details below), even close

to Tc, i.e., for Θ± → 0, where the underlying interaction is long ranged. The deviations

are more noticeable in the case of opposing boundary conditions (+,−) at the surfaces

of the particles. Here, however, we focus on particles with equal boundary conditions

(+,+), for which the agreement is very good.

Based on the scaling functions k(a,b) of the critical Casimir force between two planar

walls with boundary characteristics a and b, respectively, the force between two cylinders

follows from integrating the force acting on each surface area element ds(ρ) = 2dρ, per
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Figure A.1: (a) Sketch of the geometrical aspects of the DA. The force between two
cylindrical colloids (gray areas with surfaces as black lines) is calculated by assuming
additivity of the forces between infinitesimally small and planar surface elements. Ad-
ditionally, we approximate the true distance L(ρ) between the surface elements by the
so-called “parabolic distance approximation” indicated by the dashed red curves and the
light red areas. (b) The normalized DA scaling function K

(cyl)
(a,b) of the force between two

cylinders (see Eq. (A.2)), in d = 4 for the boundary conditions (a, b) = (+,±), as obtained
either via the true distance formula L(ρ) = D + 2R − 2

√
R2 − ρ2 (black and green solid

lines), or via the “parabolic distance approximation” L(ρ) ≈ D (1 + ρ2/(RD)) (red and
golden dashed lines) for a fixed scaled surface-to-surface distance ∆ = D/R = 0.3.

generalized length L of the cylinders,

F
(cc)
(a,b)(D,R, T ) = kBTL

R∫

0

2dρ

L(ρ)d
k(a,b)

(
±
L(ρ)

ξ±

)
, (A.1)

where the sign in the argument of k(a,b) and the index of ξ± are given by the sign of

t = (T − Tc)/Tc (for an upper critical point).

Inserting L(ρ) ≈ D (1 + ρ2/(RD)) into Eq. (A.1), together with two consecutive inte-

gral substitutions ρ → α = ρ/
√
RD and α → β = 1 + α2, results in

F
(cc)
(a,b)(D,R, T )

= kBTL
R1/2

Dd−1/2

∫ 1+∆−1

1

dβ (β − 1)−1/2 β−d k(a,b)

(
±β

D

ξ±

)
(A.2)

=
kBTL

Rd−1

1

∆d−1/2

∫ 1+∆−1

1

dβ (β − 1)−1/2 β−d k(a,b)(±βΘ)

︸ ︷︷ ︸
K

(cc)
(a,b)

(∆,Θ)

where K
(cc)
(a,b)(∆,Θ) is the DA scaling function of the force and Θ = D/ξ± is the rescaled

temperature. The results of the numerical integrations, based on the MFT data in d = 4
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for the film scaling function k(a,b) [91], are shown in Fig. A.1(b).

The effective potential V (cc)
(a,b) can be obtained from the force according to the relation

V
(cc)
(a,b)(D,R, T ) =

∫ ∞

D

dz F
(cc)
(a,b)(z, R, T ) (A.3)

and expressed in the scaling form

V
(cc)
(a,b)(D,R, T )

kBT
=

L

Rd−2

Φ
(cc)
(a,b)

(
∆ = D

R
,Θ = D

ξ±

)

∆d−3/2
(A.4)

with the scaling function Φ
(cc)
(a,b) of the potential within DA

Φ
(cc)
(a,b)(∆,Θ) = ∆

d−3/2

∫ ∞

∆

d∆′ K
(cc)
(a,b)(∆

′, (∆′/∆)Θ)

(∆′)d−1/2
=

∫ ∞

1

dζ
K

(cc)
(a,b)(ζ∆, ζΘ)

ζd−1/2
. (A.5)

We insert the scaling function of the critical Casimir force K
(cc)
(a,b) from Eq. (A.2) into

Eq. (A.5) and consider the limit ∆ → 0 in the upper limit of integration. This renders

the scaling function of the potential

Φ
(cc)
(a,b)(∆ → 0,Θ) =

∫ ∞

1

dζ

∫ ∞

1

dβ
1

ζd−1/2
(β − 1)−1/2 β−d k(a,b)(±β ζ Θ). (A.6)

This expression can be simplified by employing the substitution β → η = β ζ. After

changing the order of integration and by using the relation
∫∞
1

dζ
∫∞
ζ

dη =
∫∞
1

dη
∫ η

1
dζ,

the result of the second integration is
∫ η

1
dζ (η − ζ)−1/2 = 2

√
η − 1, so that

Φ
(cc)
(a,b)(∆ → 0,Θ) = 2

∫ ∞

1

dη
√
η − 1 η−dk(a,b)(±ηΘ). (A.7)

If, instead, the finite integration limit 1 + ∆−1 in Eq. (A.2) is kept, the calculation

of the potential can be performed similarly, but with an additional term in the scaling

function Φ
(cc)
(a,b) of the potential, resulting in the scaling function

Φ
(cc)
(a,b)(∆,Θ) = 2

∞∫

1

dη
√
η − 1 η−d k(a,b)(ηΘ)

− 2

∞∫

1+∆−1

dη
(√

η − 1−∆
−1/2

)
η−d k(a,b)(ηΘ). (A.8)
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Appendix B

Derjaguin approximation for two Janus

spheres

B.1 Scaling function of the effective force

Concerning the geometry of two homogeneous, i.e., isotropic spheres, the Derjaguin ap-

proximation consists of subdividing their surfaces into infinitesimal thin rings of area

2πρ dρ, parameterized by their radius ρ [29]. This has been used successfully in several

studies, such as Refs. [29, 35, 103], generally in conjunction with the so-called “parabolic

distance approximation” for the local distance L(ρ) between surface elements of the two

colloids:

L(ρ) = D + 2R− 2
√

R2 − ρ2 ≈ D

(
1 +

ρ2

RD

)
. (B.1)

Building on that, for Janus spheres the corresponding step in BC has to be incorporated

additionally, depending on the particle orientations. Within DA, the overlap of pairs of

surface elements on both spheres is determined after the projection along the vector r12

connecting the centers of the two spheres. We choose to express this geometry in terms

of a local coordinate system, the z axis of which passes through the centers of the two

colloids, so that r12 = (D + 2R) r̂12 with r̂12 = (0, 0, 1) (see Fig. 4.2). The orientations of

the colloids can be represented by orientation vectors n1 and n2, which can be chosen to

point either into the direction of the (+) (red) or the (−) (blue) side. As far as the figures

in the main text are concerned, the orientation vector is chosen to point towards the (−)

(blue) cap. However, regarding the general approach in the present appendix, we shall

use the more abstract notions of “north” and “south”, which are supposed to underscore

the arbitrariness of this choice.

Without loss of generality, we define the coordinate system such that the orientation

of the first particle has an azimuthal angle φ1 = 0 and a polar angle ϑ1; the orientation

(α,ϑ2) of the second particle is taken relative to the “prime meridian” of the first (i.e.,

α = φ2 − φ1). Rotations of the coordinate system while keeping (α,ϑ1,ϑ2) fixed do
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not change the interaction between the particles. Still, there remains a choice in the

numbering of the particles. We implement this such that | cosϑ1| < | cosϑ2|, as it shortens

the notation below; otherwise one can exchange the labels (1) and (2) and rotate the frame

of reference around the y axis by 180◦ (see Fig. 4.2).

The orientations n1,2 and two mirror points r1 and r2 on the surface of colloid 1 and

2, respectively, are parameterized within the relative coordinate system by

n1 =



sinϑ1

0

cosϑ1


 , n2 =



cosα sinϑ2

sinα sinϑ2

cosϑ2


 , (B.2)

r1 = R



cosφ sinϑ

sinφ sinϑ

− cosϑ


 , r2 = R



cosφ sinϑ

sinφ sinϑ

cosϑ


 , (B.3)

where ϑ1 is the polar angle of the first particle, (α,ϑ2) are the azimuthal and polar angle

of the second particle, and (φ,ϑ) are the spherical coordinates of the vectors r1 and r2 of

a pair of surface elements, where r1 and r2 are mirror images of each other with respect

to the midplane orthogonal to r̂12 = ez, such that (r1)z = −(r2)z (see Fig. B.1). After

the projection into the midplane by using the orthogonal projection matrix

Pz =



1 0 0

0 1 0

0 0 0


 , (B.4)

surface elements with equal distance from their mirror element on the other particle form

a ring with polar coordinates (ρ = R sinϑ,φ) and a fixed value of ϑ.

The force between the Janus spheres, as constructed within DA, depends on the com-

bination of BC for a pair of surface elements. A selected pair of of surface elements will

share the “northern” BC if r1 · n1 > 0 and r2 · n2 > 0. Likewise, they will both have the

“southern” BC if r1 · n1 < 0 and r2 · n2 < 0, otherwise the surface elements have different

BCs.

In our parameterization and with f1(φ) := r1 · n1 = − cosϑ cosϑ1 + cosφ sinϑ sinϑ1

and f2(φ) := r2 ·n2 = cosϑ cosϑ2+cos(α−φ) sinϑ sinϑ2, the two conditions above read

same BC (“north”) ⇔ f1(φ) > 0 ∧ f2(φ) > 0 or (B.5a)

same BC (“south”) ⇔ f1(φ) < 0 ∧ f2(φ) < 0. (B.5b)

There are two more conditions representing opposing BC, with opposite signs of f1(φ) ≷ 0

and f2(φ) ≶ 0. For any value of φ, one and only one of these four conditions is fulfilled.

Thus, these four conditions hold in four intervals. Determining the zeroes of f1 and f2 as
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Figure B.1: Two Janus spheres within the Derjaguin approximation. The two orientations
of the two particles are given by the direction vectors n1 and n2 which are normals of the
respective equatorial planes. In the relative coordinate system, given by the axis through
the centers of both particles, the orientations can be represented by the two polar angles
ϑ1 and ϑ2 and the relative azimuthal angle α; for simplicity, here we depict the case α = 0
in which the two equatorial planes are rotated with respect to each other but not tilted
(see Fig. 4.2 for a reduced schematic drawing with α �= 0). A pair of surface elements at
r1(φ,ϑ) and r2(φ,ϑ) on the two Janus spheres, such that they are mirror images of each
other, i.e., (r1)z = −(r2)z, share the same “northern” BC if r1 · n1 > 0 and r2 · n2 > 0.
Likewise, two surface elements share the same “southern” BC if r1 ·n1 < 0 and r2 ·n2 < 0;
otherwise for the selected pair of surface elements the BC on the two Janus spheres differ.
Surface elements at r1 and r2 with equal distance between them (dotted line parallel
to the axis through the centers of both particles and connecting the tips of r1 and r2)
form a ring with radius ρ = R cosϑ (here, the inner black circle) which is shown in the

midplane between the particles. The equatorial steps of the Janus spheres ❧1 and ❧2
form half-ellipses when projected onto the same midplane. The vectors b1 and b2 lie in
the equatorial plane of the corresponding particles and thus are orthogonal to n1 and n2,
respectively. Their direction is chosen to point to that point on each equator which is
closest in sight of the opposite particle. The projections b

(p)
1 and b

(p)
2 of the vectors b1

and b2, respectively, onto the midplane render the semi-minor axes of the half-ellipses.

functions of φ renders four possible values, separating the intervals (note that four points

naturally enclose three closed intervals, and one more interval due to the periodicity in

φ):

f1(φ) = 0 ⇒
{

φ1 = arccos(cotϑ cotϑ1), (B.6a)

φ2 = − arccos(cotϑ cotϑ1) (+2π); (B.6b)

f2(φ) = 0 ⇒
{

φ3 = α− arccos(− cotϑ cotϑ2) (+2π), (B.6c)

φ4 = α + arccos(− cotϑ cotϑ2). (B.6d)
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Strictly speaking, Eq. (B.5) has an infinite number of solutions, because any solution

shifted by ±2π is also a solution. With (+2π) we indicate that φ2 and φ3 may need to be

shifted such that all four given solutions are the relevant ones within the principal interval

[0, 2π].

Figure B.2 puts the meaning of these four values of φ given by Eq. (B.6) into proper

perspectives. Figure B.2 shows a schematic (top-down) plan view of the geometry shown

in Fig. B.1 which is rendered by the projection matrix Pz for four different values of

α and with additional details, visualizing how the projected surface elements entering

the DA are partitioned by Eq. (B.6) (compare also Fig. 4.2). The spherical colloids are

drawn with non-occluding outlines and the equatorial step is indicated only partially. The

projection of the equatorial steps between the “north” and the “south” Janus BC on each

sphere results in two ellipses. This follows from noting that the two equators can be

parameterized as circles pi = (cosφi, sinφi, 0), tilted by a rotation matrix

Ri =



1 0 0

0 cosϑi − sinϑi

0 sinϑi cosϑi


 . (B.7)

One finds that Pz ·Ri·pi = (cosφi, cosϑi sinφi, 0) fulfills the ellipse equation x2

a2
+ y2

b2
= 1 for

a = 1 and b = | cosϑi|. Of the two elliptical projections, we draw only that half facing the

other colloid, resulting in two half-elliptical curves, which are intersecting for 0 < α < π

(i.e., they do not intersect for α = 0 and α = π). The semi-minor axes of the half-ellipses

are indicated by the projections b
(p)
1 and b

(p)
2 of the vectors b1 and b2, respectively,

which have a projected length of R cosϑ1,2 and form the angle π − α between them. The

projected Janus steps divide the circular area of radius R into four regions (blue, white,

red, white); a selected ring of fixed radius ρ = R sinϑ (corresponding to the color colored

circle in Fig. B.2) is divided into four arcs by points with the polar coordinates (ρ,φ1) to

(ρ,φ4). In the case of small α as shown in Fig. B.2(a), the numbering of the values φ1

to φ4 given in Eq. (B.6) corresponds to a clockwise counting of the intersections of the

ring with the projected Janus steps (i.e., the half-ellipses). However, the order of their

occurrence changes upon increasing α towards π (see Figs. B.2(a)–(d)).

Within DA, the force due to each ring of surface elements of equal distance between

them is proportional to its arc length and to the force between parallel walls correspond-

ing to the respective combination of the BC. In Fig. B.2(a), the blue curve, representing

a common “northern” BC, has an arc length of (φ2 − φ1)ρ, whereas the red arc repre-

sents a common “southern” BC with an arc length of (φ4 − φ3)ρ. In this case, using

the relation arccos(−x) = π − arccos(x), the total arc length of equal BC amounts to

[2π − 2 arccos (cotϑ cotϑ1)− 2 arccos (cotϑ cotϑ2)] ρ.

The number and the order of the intersections between a ring of equidistant surface
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(a) (b)

(c) (d)

Figure B.2: A top-down plan view, as rendered by the projection matrix Pz, of the
geometry of two Janus spheres, which is the same as in Fig. B.1, but highlights the
significance of the angles φ1 to φ4 of the DA procedure given in Eq. (B.6). The two
half-elliptical curves running through 1 and 2 and through 3 and 4, respectively, represent
the projection of the Janus equators onto the midplane. Their semi-minor axes are given
by the projections b(p)

1 and b
(p)
2 of the vectors b1 and b2, respectively, shown in Fig. B.1,

which enclose the angle π−α. The full gray circles have radii |b(p)
i |. Here, the parameters

of the particle orientations n1,2 (⊥ b1,2) are ϑ1 = π/3 and ϑ2 = π/4, and α is varied
from (a) α = 0.7, (b) α = π/2, and (c) α = 2.1 to (d) α = 3.0. In this projection,
two surface elements forming a pair at r1 and r2 lie on top of each other, rendering a
single point within the circular area. The projected area, indicated in blue, corresponds
to those pairs of surface elements which share the “northern” BC. Likewise, the projected
area within which both surface elements feature the “southern” BC is indicated in red.
The white areas correspond to pairs of surface elements with opposite BC. As a function
of φ and for a fixed value of ϑ, in projection the pairs of surface elements form a ring
of radius ρ = R sin(ϑ) (see Fig. B.1). We depict the case ϑ = 1 so that ρ = 0.84R
(color-coded ring). The points 1 to 4 mark the intersections of the color-coded ring with
the projected equatorial steps of the BC, which are given by the polar coordinates (ρ,φ1)
through (ρ,φ4). Both the thick red and the thick blue arcs of this ring represent equal BC
on both particle surfaces, whereas those arcs being half blue and half red correspond to
opposite BC. Additional explanations, such as the meaning of Rs, are given in the main
text.

element pairs and the projected Janus equators depends on the radius of the ring. For

ρ < R cosϑ1 (the inner gray circle in Fig. B.2 indicates ρ = R cosϑ1), the ring does not

cross the projected steps in BC at all. For R cosϑ1 < ρ < R cosϑ2, there are two points of

intersection (we recall that the labels ❧1 and ❧2 are chosen such that | cosϑ1| < | cosϑ2|).

Starting from ρ = R cosϑ2 (indicated by the outer gray circle), for ρ > R cosϑ2 there

are four points of intersection. However, at a specific radius ρ = Rs (gray dashed line in

Fig. B.2), the two half-ellipses intersect and the order of the values φ1 . . .φ4 changes (e.g.,
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compare the order of the intersections in Figs. B.2(a) and (b)).

The dimensionless radius rs = Rs/R =
√
x2 + y2 is determined by the intersection

point (x, y) of the two semi-ellipses, which is found from a solution of the general problem

of the intersection between two co-centric ellipses: the first ellipse (x/a1)
2 + (y/b1)

2 = 1

and the second ellipse (x/a2)2+(y/b2)
2 = 1 rotated by an angle α. Within their parametric

representations the intersections follow from

(
x

y

)
=

(
a1 cos t1

b1 sin t1

)
!
=

(
a2 cos t2 cosα− b2 sin t2 sinα

a2 cos t2 sinα + b2 sin t2 cosα

)
. (B.8)

Equation (B.8) is a system of two equations for the two unknowns t1 and t2, which

become functions of a1, b1, a2, b2, and α. For the present situation, and with x and y

giving rise to a dimensionless factor
√

x2 + y2 of the radius R, the problem reduces to

the special case in which the semi-major axes are a1 = a2 = 1 (i.e., the semi-major axes

are touching the circle of radius R) and the semi-minor axes are the projected lengths

b1 =
∣∣b(p)

1

∣∣/R = |cos(ϑ1)| and b2 =
∣∣b(p)

2

∣∣/R = |cos(ϑ2)|. While in principle this system

of equations can be solved analytically, it is not guaranteed that all solutions are real,

because in degenerate cases (e.g., for α = 0 or α = π and b1 = b2, or b1 = b2 = 1, or

b1 = b2 = 0) the number of physically acceptable solutions can be less than four. In

the non-degenerate cases, out of these four general solutions of the intersection of two

ellipses, only one gives the intersection of two half-ellipses. We have followed a pragmatic

approach by solving Eq. (B.8) numerically within an a priori chosen interval of t2 in order

to preselect the appropriate solution for the half-ellipses 1. We note that our definition

enforces the relation | cosϑ1| < | cosϑ2|, so that the dimensionless radius rs corresponding

to the point of intersection between the two half-ellipses is bounded by | cosϑ2| ≤ rs ≤ 1,

because any point on the second ellipse has a radial distance from its center, the value of

which lies between the semi-minor axis b2 = cosϑ2 and the semi-major axis a2 = 1, and

so does the point of intersection.

Using this procedure, we have constructed the force between two Janus spheres within

DA by integrating the force between the rings of surface elements of radius ρ, with attrac-

tive and repulsive contributions proportional to the respective four arc lengths determined

by φ1 . . .φ4 in Eq. (B.6), and using the numerically determined radius Rs = Rs(α,ϑ1,ϑ2)

for each configuration, which governs the occurrence of the attractive and repulsive force

contributions (depending on ρ ≶ Rs) by interchanging the order of φ1 . . .φ4. A thor-

ough investigation of all geometric configurations reveals that the excess force takes the

1This also allows us to use optimized numerical root finding algorithms operating within an
interval in which the function changes sign. We have chosen Brent’s root finding method,
http://mathworld.wolfram.com/BrentsMethod.html, which is implemented in the SciPy library
http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.brentq.html.
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following form

∆F
(ss)
⊘⊘ (n1,n2, r12 = (D + 2R)ez, R, T )

=
kBT

Dd

[∫ Rs

0

dρ ρ
2πH ((cosϑ1) (cosϑ2))

(L(ρ)/D)d
∆k

(
L(ρ)

ξ±

)

− sign ((cosϑ1) (cosϑ2))

×

∫ Rs

R cosϑ1

dρ ρ
2 arccos ((sign(cosϑ1))(cotϑ)(cotϑ1))

(L(ρ)/D)d
∆k

(
L(ρ)

ξ±

)

− c(α,ϑ1,ϑ2)sign ((cosϑ1) (cosϑ2))

×

∫ Rs

R cosϑ2

dρ ρ
2 arccos ((sign(cosϑ2))(cotϑ)(cotϑ2))

(L(ρ)/D)d
∆k

(
L(ρ)

ξ±

)

+

∫ R

Rs

dρ ρ
2α

(L(ρ)/D)d
∆k

(
L(ρ)

ξ±

)]
, (B.9)

with ρ = R sinϑ and cotϑ = cosϑ
sinϑ

=

√
1−sin2 ϑ

sinϑ
= R

ρ

√
1− ρ2

R2 , for r12 = (D+2R)ez and n1,2

in relative coordinates (see Eq. (B.2)). The occurrence of various expressions in Eq. (B.9)

can be rationalized as follows: The combined arc length of equal BC is generally of the

form ±φ4∓φ3±φ2∓φ1 (i.e., different combinations of the signs). According to Eq. (B.6),

additional shifts of 2π might be required to ensure φi ∈ [0, 2π). In fact the term 2π occurs

only for rings of surface elements with radii ρ < Rs, provided (cosϑ1) (cosϑ2) ≥ 0, which

is expressed by the limits of integration of the first term in Eq. (B.9) (see below also the

note regarding the second and third term). Similarly, the azimuthal angle α contributes

in total as 2α to the arc length if ρ > Rs, but it does not contribute if ρ < Rs, leading to

the fourth and last term in Eq. (B.9). The second and third term reproduce the functional

dependence of the arc length on ϑ(ρ) and ϑ1,2. The changes of sign of the argument in the

arccos functions in Eq. (B.6) generalize to sign(cosϑ1,2) in Eq. (B.9) due to the relation

2 arccos(−x) = 2π − 2 arccos(x). Note that the shift of 2π re-enters the first term; in

Eq. (B.9) the first term reflects the notation in the second and third term. Analogously

to the geometry of two Janus cylinders, we find a dependence of the sign of the second

and third term on the sign of (cosϑ1) (cosϑ2). Furthermore, the sign picking function

c(α,ϑ1,ϑ2) is given by

c(α,ϑ1,ϑ2) =





sign(cosα), if (cosϑ1) (cosϑ2) = 0,

1, if α ≤ arccos (−(tanϑ2) (cotϑ1)) ≤ πH ((cosϑ1) (cosϑ2))

or πH ((cosϑ1) (cosϑ2)) ≤ arccos (−(tanϑ2) (cotϑ1)) ≤ α,

−1 otherwise,
(B.10)

with the restriction that α is replaced by 2π − α if α > π.
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Finally, the scaling function of the excess force is found from Eq. (B.9) by using the

distance function L(ρ) within the “parabolic distance approximation” L(ρ) = D
(
1 + ρ2

RD

)

and by applying the substitution ρ → x = 1 + ρ2

RD
with dx = 2ρ

RD
dρ, which leads to

L(x) = Dx, cotϑ =
√

1
∆(x−1)

− 1, and

∆K
(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ) = πH ((cosϑ1) (cosϑ2))

∫ 1+∆−1r2s

1

dx x−d
∆k (xϑ)

− sign ((cosϑ1) (cosϑ2))

×

[∫ 1+∆−1r2s

1+∆−1 cos2 ϑ1

dx arccos

(
| cotϑ1|

√
1

∆(x− 1)
− 1

)
x−d

∆k (xΘ)

+ c(α,ϑ1,ϑ2)

∫ 1+∆−1r2s

1+∆−1 cos2 ϑ2

dx arccos

(
| cotϑ2|

√
1

∆(x− 1)
− 1

)
x−d

∆k (xΘ)

]

+ α

∫ 1+∆−1

1+∆−1r2s

dx x−d
∆k (xΘ) . (B.11)

with the abbreviation rs = Rs/R, and the replacement of (sign(cosϑ1,2)) cotϑ1,2 =

| cotϑ1,2|, which holds in the domain of definition of the polar angles, i.e., for ϑ1,2 ∈ [0, π].

B.2 Scaling function of the effective potential

The effective potential can be determined from the force in the relative coordinate system

according to

V
(ss)

(n1,n2, r12 = (D + 2R)ez, R, T ) =

∫ ∞

D

dz F (ss)
(n1,n2, r12 = (z + 2R)ez, R, T )

(B.12)

= kBT
L

Rd−2

∫ ∞

D

dz
K

(ss)
(α,ϑ1,ϑ2, z/R, z/ξ±)

(z/R)d−1
.

Substitution of z = D z̃ with dz = D dz̃ yields

V
(ss)

(n1,n2, r12 = (D + 2R)ez, R, T )

= kBT
L

Rd−3
∆

−(d−2)

∫ ∞

1

dz̃
K

(ss)
(α,ϑ1,ϑ2, z̃∆, z̃Θ)

z̃d−1
. (B.13)

This can be cast into the scaling form

V
(ss)

(n1,n2, r12 = (D + 2R)ez, R, T ) = kBT
L

Rd−3

Φ
(ss)

(α,ϑ1,ϑ2,∆,Θ)

∆d−2
, (B.14)
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with the scaling function Φ
(ss)
⊘⊘ of the effective potential,

Φ
(ss)

(α,ϑ1,ϑ2,∆,Θ) = Φ
(ss)
(+,+)(∆,Θ)−∆Φ

(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ), (B.15)

where

Φ
(ss)
(+,±)(∆,Θ) =π

∫ ∞

1

dx (x− 1)x−d k(+,±)(xΘ)

− π

∫ ∞

1+∆−1

dx (x− 1−∆
−1) x−d k(+,±)(xΘ) (B.16)

is the scaling function of the potential between two homogeneous spheres [29], with an

explicit dependence on ∆ retained (in spite of the underlying DA limit ∆ → 0) for

consistency with the dependence on ∆ of the orientation dependent term ∆Φ
(ss)
⊘⊘ .

In order to obtain the excess scaling function ∆Φ
(ss)
⊘⊘ one has to integrate ∆K

(ss)
⊘⊘ from

Eq. (B.11) in accordance with Eq. (B.13). The integral of ∆K
(ss)
⊘⊘ features two generic

types of integrals (here, omitting the tilde of the integration variable):

I1 ≡
∫ ∞

1

dz
1

zd−1

∫ 1+a/(z∆)

1+b/(z∆)

dx x−d
∆k (x zΘ) (B.17)

with the first and last contribution to this integral [compare Eqs. (B.11) and (B.13)] being

described by a = r2s , b = 0 and a = 1, b = r2s , respectively, and

I2 ≡
∫ ∞

1

dz
1

zd−1

×

∫ 1+r2s/(z∆)

1+cos2 ϑ1,2/(z∆)

dx arccos

(
| cotϑ1,2|

√
1

(z∆)(x− 1)
− 1

)
x−d

∆k (x zΘ) . (B.18)

We represent integral I1 by the function

I1 ≡ ∆u(ss)(a, b,∆,Θ)

=

∫ ∞

1

dz
1

zd−1

[∫ ∞

1+b/(z∆)

dx x−d
∆k (x zΘ)−

∫ ∞

1+a/(z∆)

dx x−d
∆k (x zΘ)

]
. (B.19)

With the substitution x → w = z∆ (x− 1) so that dw = z∆ dx one has

∆u(ss)(a, b,∆,Θ) = ∆
−1

∫ ∞

1

dz
1

zd

[∫ ∞

b

dw
(
1 +

w

z∆

)−d

∆k
(
z
(
1 +

w

z∆

)
Θ

)

−
∫ ∞

a

dw
(
1 +

w

z∆

)−d

∆k
(
z
(
1 +

w

z∆

)
Θ

)]
(B.20)
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and with the substitution z → y = z + w/∆ with dy = dz one finds

∆u(ss)(a, b,∆,Θ) = ∆
−1

[∫ ∞

b

dw
∫ ∞

1+w/∆

dy y−d
∆k (yΘ)

−
∫ ∞

a

dw
∫ ∞

1+w/∆

dy y−d
∆k (yΘ)

]
. (B.21)

After switching the order of the integrations according to

∫ ∞

b

dw
∫ ∞

1+w/∆

dy =

∫ ∞

1+b/∆

dy
∫

∆(y−1)

b

dw (B.22)

the integration over w can be carried out, resulting in

∆u(ss)(a, b,∆,Θ) =

∫ ∞

1+b/∆

dy (y − 1− b/∆) y−d
∆k(yΘ)

−
∫ ∞

1+a/∆

dy (y − 1− a/∆) y−d
∆k(yΘ). (B.23)

Integral I2 is represented by the function

I2 ≡ ∆v(ss)(rs,ϑ,∆,Θ)

=

∫ ∞

1

dz
1

zd−1

[∫ ∞

1+cos2 ϑ/(z∆)

dx arccos

(
| cotϑ|

√
1

(z∆)(x− 1)
− 1

)
x−d

∆k (x zΘ)

−
∫ ∞

1+r2s/(z∆)

dx arccos

(
| cotϑ|

√
1

(z∆)(x− 1)
− 1

)
x−d

∆k (x zΘ)

]
. (B.24)

As before, we first use the substitution x → w = z∆ (x− 1) with dw = z∆ dx, followed

by the substitution z → y = z + w/∆ with dy = dz. This renders

∆v(ss)(rs,ϑ,∆,Θ)

= ∆
−1

[∫ ∞

cos2 ϑ

dw
∫ ∞

1+w/∆

dy arccos

(
| cotϑ|

√
1

w
− 1

)
y−d

∆k (yΘ)

−
∫ ∞

r2s

dw
∫ ∞

1+w/∆

dy arccos

(
| cotϑ|

√
1

w
− 1

)
y−d

∆k (yΘ)

]
. (B.25)

We recall that the semi-minor axes of the two half-ellipses are given by b1,2 = | cosϑ1,2|

and that rs denotes the distance of the intersection point between the half-ellipses from

the symmetry axis of the two particles. Obviously, the intersection point cannot be closer

to the common origin than any semi-minor axis, so that | cosϑ1| ≤ rs and | cosϑ2| ≤ rs.

Based on Eq. (B.11), we need to evaluate ∆v(ss)(rs,ϑ,∆,Θ) for ϑ = ϑ1 and ϑ = ϑ2. For
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that reason, we consider only the case | cosϑ| ≤ rs and reorder the integrals:

∫ ∞

cos2 ϑ

dw
∫ ∞

1+w/∆

dy −
∫ ∞

r2s

dw
∫ ∞

1+w/∆

dy

=

∫ ∞

1+cos2 ϑ/∆

dy
∫

∆(y−1)

cos2 ϑ

dw −
∫ ∞

1+r2s/∆

dy
∫

∆(y−1)

r2s

dw

︸ ︷︷ ︸
∫
∆(y−1)

cos2 ϑ
dw −

∫ r2s
cos2 ϑ

dw

(B.26)

=

∫ 1+r2s/∆

1+cos2 ϑ/∆

dy
∫

∆(y−1)

cos2 ϑ

dw +

∫ ∞

1+r2s/∆

dy
∫ r2s

cos2 ϑ

dw

so that finally

∆v(ss)(rs,ϑ,∆,Θ) = ∆
−1

∫ 1+r2s/∆

1+cos2 ϑ/∆

dy g
(
∆(y − 1),ϑ

)
y−d

∆k (yΘ)

+∆
−1

∫ ∞

1+r2s/∆

dy g(r2s ,ϑ) y
−d

∆k (yΘ) , | cosϑ| ≤ rs, (B.27)

and

g(u,ϑ) =

∫ u

cos2 ϑ

dw arccos

(
| cotϑ|

√
1

w
− 1

)
(B.28)

=

[
w arccos

(
| cotϑ|

√
1

w
− 1

)
+ | cosϑ| arcsin

(
| cscϑ|

√
1− w

)
]u

cos2 ϑ

= u arccos

(
| cotϑ|

√
1

u
− 1

)
− | cosϑ| arccos

(
| cscϑ|

√
1− u

)
, cos2 ϑ ≤ u.

Note that g(u = cos2 ϑ,ϑ) = 0. Concerning the derivation of Eq. (B.28) we leave out the

detailed case analysis for the sign of cotϑ, which in the end, can be subsumed by taking

the absolute values as stated in Eq. (B.28). Putting the results together, the excess scaling

function of the potential is given by

∆Φ
(ss)
⊘⊘ (α,ϑ1,ϑ2,∆,Θ) = πH ((cosϑ1) (cosϑ2))∆u(ss)(r2s , 0,∆,Θ)

− sign ((cosϑ1) (cosϑ2))
[
∆v(ss)(r2s ,ϑ1,∆,Θ)

+ c(α,ϑ1,ϑ2)∆v(ss)(r2s ,ϑ2,∆,Θ)
]

+ α∆u(ss)(1, r2s ,∆,Θ). (B.29)



162 B. Derjaguin approximation for two Janus spheres



Appendix C

Theoretical models of critical systems

Much of the work presented in this thesis, aiming at describing behavior near the critical

point of a binary liquid mixture, has been obtained using, or at least compared to, results

of mean field theory.

In an enlightening discussion with the experimental collaborators that provided the

data for chapter 6, the innocent question “How can one obtain a fluctuation-induced

force [the critical Casimir force] within mean field theory, which supposedly neglects

fluctuations?” popped up. Much of the doubt is rooted in the loose definitions of what

mean field means and what fluctuations are. Sometimes in physics, one has to concede

that all the elaborate verbal descriptions cannot replace a mathematical precise model.

Since certain models are so fundamental to all understanding of critical phenomena, this

appendix is devoted to a concise, but sufficient derivation of critical phenomena within,

and fluctuations beyond mean field theory.

C.1 Ising model

The Ising model is a mathematical model for the total interaction between N points in a

connected graph, which interact via a single property of the points, called spin, that has

either the value +1 or −1, in analogy to the magnetic spin of atoms. The most general

Hamiltonian of the Ising model is defined as

H = −1

2

N∑

i,j=1

Jijsisj − h

N∑

i=1

si. (C.1)

Here, the points labeled i and j interact via their spin values si = ±1 and exchange

energies Jij (a N × N matrix), the sign of which determines whether pairs with the

same spin or pairs with opposing spins lower the energy. The spins may couple to an

external field h that promotes one spin value. Typically, instead of a general graph, one is

interested in the specific Ising model for the d-dimensional regular lattice. Furthermore,
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often only the nearest-neighbor interaction with Jij = J for i and j denoting adjacent

points in the lattice, and Jij = 0 for non-adjacent points, is considered, so that the name

Ising model often stands totum pro parte for the Hamiltonian

H = −J
∑

〈i,j〉
sisj − h

N∑

i=1

si, (C.2)

where 〈i, j〉 denotes all distinct pairs of nearest neighbors. Here, we will also simply refer

to Eq. (C.2) as the Ising model.

The thermodynamic behavior of the system follows from the discrete partition sum

Z =
∑

{si}
e−βH , where the sum runs over all sets {si} of combinations of the spin values

si. Of course, the order of the combinatorial sets is not important, so that partition sum

can be written more explicitly as

Z =
∑

{si}

e−βH =
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

exp


βJ

∑

〈i,j〉
sisj + βh

N∑

i=1

si,


 . (C.3)

The Ising model is straightforward to solve analytically in a 1D chain. In two dimensions,

an analytic solutions is known only for h = 0, as first derived by Onsager [193]. For

non-zero field h �= 0 solutions can be obtained numerically. For d = 3 dimensions, no

exact results are available. For d ≥ 4, the mean field approximation becomes valid and

predicts the exact critical exponents of the Ising model (see Table 2.1).

In order to present a clear notation, we define three closely related but distinct quan-

tities that can be confusing to the unprepared reader:

1. the magnetization of a single realization: m({si}) :=
1
N

∑
i

si.

2. the local magnetization of a specific site i: mi := 〈si〉 =
∑

si=±1

si p(si).

Note that for an infinite, regular lattice, i.e., with invariance under translation by

lattice vectors, all points are equivalent, so that mi = mj ∀ i, j

3. the equilibrium global magnetization: m = 1
N

∑
i

mi =
1
N

∑
i

〈si〉 = 〈m({si})〉.
That means the average of all local magnetizations is the same as averaging the

magnetization of all realization.

Let us rewrite the spin values on each site using the deviation δsj from the local

magnetization mj, i.e., sj = mj + δsj = m + δsj. For a homogeneous bulk system,

the local magnetization is equivalent to the global magnetization m. In consequence,

averaged over all realizations the fluctuations cancel out, i.e., 〈δsj〉 = 0. On the other

hand, the average of the fluctuations in a particular realization is 1
N

∑
i δsi = m({si}) −

m, i.e., the difference between the magnetization of this particular realization and the
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equilibrium magnetization. The core of the mean field approximation is to assume that

the magnetization of all realizations remain close to the equilibrium magnetization, i.e.,

fluctuations from the equilibrium are small, so that |m({si})−m| ≤ 1
N

∑
i |δsi| ≪ 1.

Now, the Ising Hamiltonian Eq. (C.2) can be rewritten as a sum over all lattice points

indexed by i, interacting with its nearest neighbors j ∈ n.n.(i), so that

H = −J

2

N∑

i

∑

j∈n.n.(i)

si(m+ δsj)− h

N∑

i=1

si. (C.4)

A factor 1/2 is needed to correct for double counting of pairs. Substituting also si = m+δsi

and m δsj = msj −m2, one has

H = −J

2

N∑

i

∑

j∈n.n.(i)

(msi +msj −m2 + δsi δsj)− h

N∑

i=1

si

= N
zJ

2
m2 −

N∑

i

(h+ zJm)si − J
∑

〈i,j〉
δsi δsj, (C.5)

where the coordination number z = 2d gives the number of nearest neighbor in a d-

dimensional lattice. Note that an individual spin fluctuation δsi is limited to δsi =

±1−m ∈ [−2, 2]. The quadratic fluctuations can be estimated to be

∣∣∣
∑

〈i,j〉
δsiδsj

∣∣∣ ≤ 1

2

N∑

i

|δsi|
∣∣∣
∑

j∈n.n.(i)

δsj

︸ ︷︷ ︸
∈[−2z,≤2z]

∣∣∣ <
N∑

i

|δsi|z ≪ Nz, (C.6)

by employing the assumption that
∑

i |δsi| ≪ N . Thus the sum of quadratic fluctuations

is small compared to the other two terms.

Accordingly, the approximated mean field Hamiltonian

HMF = N
zJ

2
m2 −

N∑

i

(h+ zJm)si (C.7)

has a form as if each spin si interacts independently with an effective mean field hMF =

h+ zJm, without any interaction between the spins. From this, the mean field partition
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sum easily follows

ZMF = e−βNzJm2/2
∑

{si}

eβ(h+zJm)
∑

i si = e−βNzJm2/2
∑

{si}

∏

i

eβ(h+zJm)si

= e−βNzJm2/2
∏

i

(
eβ(h+zJm) + e−β(h+zJm)

)
(C.8)

= e−βNzJm2/2 (2 cosh (β(h+ zJm)))N ,

and in consequence the free energy of the mean field Ising model

FMF

N
= −kBT

N
logZMF =

zJ

2
m2 − kBT log (2 cosh (β(h+ zJm))) . (C.9)

There remains one issue of consistency: The effective field hMF = h + zJm is on one

hand the field generating the equilibrium magnetization m, but also depending itself on

the resulting magnetization. For a physical solution, the self-consistency condition

m = 〈si〉 =
∑

si=±1

si p(si) with p(si) =
eβ(h+zJm)si

∑
si=±1 e

β(h+zJm)si

=
eβ(h+zJm) − e−β(h+zJm)

eβ(h+zJm) + e−β(h+zJm)
= tanh(β(h+ zJm)) (C.10)

must be fulfilled. Here, the local magnetization was identified to be equal with the global

magnetization. Equivalently, the global magnetization as an average over all realizations

follows from

m = 〈m({si})〉 =
1

ZMF

∑

{si}

m({si}) e
−βHMF

=
1

βNZMF

∂ZMF

∂h
=

1

βN

∂

∂h
logZMF = tanh(β(h+ Jzm)), (C.11)

giving the same result. It is worthwhile to note that for the mean field Ising model

0 = (βN)−1 ∂
∂h

logZMF −m
Eq. (C.9)

= (zJβN)−1 ∂
∂m

logZMF. Thus ∂
∂m

FMF = 0 and the mean

field magnetization m minimizes also the free energy FMF. In turn, fluctuations out of

equilibrium raise the free energy.

One can verify that without an external field (h = 0), the self-consistency Eq. (C.10)

always possesses the trivial solution m = 0, which is the only solution for βzJ < 1. For

βzJ > 1, two symmetric, non-trivial solutions appear. This leads one to define the critical

temperature Tc = zJ/kB, above which the system exhibits a homogeneous magnetization

m = 0, and below which a spontaneous symmetry break into one of two configurations

with m = ±|m| �= 0 occurs. The fundamental result that such a phase transition exists

is incorrect in d = 1, but correctly predicts the situation in d ≥ 2. The estimate of the

critical temperature via MFT is quantitatively off, but becomes increasingly accurate for
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higher dimensions d. The inaccuracy can be pinpointed to the assumption underlying the

mean field approximation: For the lattice Ising model, the number of nearest-neighbors

z = 2d increases with the number of dimension d. With more neighbors taken into

account, the local average of neighboring spins becomes closer to the global average (the

mean field). For low dimensionality local fluctuations can be significant and even destroy

global order.

C.2 Landau theory

Interestingly, the equilibrium magnetization m turns into a continuous variable in the

thermodynamic limit N → ∞. This motivates the search for an a priori field-theoretic

Hamiltonian, which exhibits the same features as the Ising Hamiltonian, but with a con-

tinuous variable φ, the so-called order parameter (OP), which replaces the magnetization.

Historically, the structure of such a Hamiltonian was proposed phenomenologically by

Landau [5] in 1937 based on the symmetries of the original Hamiltonian to be

H = tφ2 + uφ4 − hφ+O[φ6] (C.12)

for a bulk order parameter φ. This was motivated by the observation that many differ-

ent systems behave similarly close to critical point, thus microscopic details cannot be

important and only the gross features of the system play a role. The Ginzburg-Laundau

Hamiltonian includes local variations of the order parameter via gradient terms ∇φ(r),

leading to the functional

H =

∫
dr
[s
2
(∇φ(r))2 + tφ(r)2 + uφ(r)4 − hφ(r) +O

[
(∇2φ)2, (∇φ)2φ2,φ6

]]
. (C.13)

Using this ansatz as a working basis is very powerful. However, one does not know a

priori how the phenomenological coefficients s, t, u depend on microscopic model parame-

ters, as well as thermodynamic parameters such as temperature and pressure. Therefore,

we will take a short detour, which details how to arrive at the Ginzburg-Laundau Hamil-

tonian starting from the Ising model in order to establish firmly that both Hamiltonians

belong to the same universality class.

The partition sum, based on the most general form of the Ising Hamiltonian in

Eq. (C.1), can be written in vector and matrix notation as

Z =
∑

{si}

exp

(
1

2
stJ̃s+ h̃s

)
(C.14)

with an N ×N matrix J̃ with entries J̃ij = βJij and a scaled unit vector with all compo-

nents h̃i = βh. A way towards a continuous OP is provided by the Hubbard-Stratonovich
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transformation

√
det(A−1) exp

(
1

2
stA−1s

)
=

N∏

i=1

∫ ∞

−∞

dxi√
2π

exp

(
−1

2
xtAx+ xts

)
, (C.15)

which allows to write the partition sum as an integral over the auxiliary vector x, with

the matrix determinant expressed by

√
det(A−1) =

N∏

i=1

∫ ∞

−∞

dxi√
2π

exp

(
−1

2
xtAx

)
. (C.16)

One may realize that, when read from right to left, this is simply an identity holding for

multi-dimensional Gaussian integrals. Here it is not used to solve the integral, but as a

transformation from which one obtains the partition function

Z =

N∏
i=1

∞∫
−∞

dxi√
2π

exp
(
−1

2
xtJ̃−1x

) ∑
{si}

exp
(
(h̃+ x)ts

)

√
det(J̃)

. (C.17)

The sum over all spin configurations can be exactly evaluated

∑

{si}

exp
(
(h̃+ x)ts

)
=

N∏

i=1

∑

{si}

exp ((βh+ xi)si) =
N∏

i=1

2 cosh(βh+ xi)

= exp

(
N∑

i=1

log (2 cosh(βh+ xi))

)
, (C.18)

so that in short

Z =

N∏
i=1

∞∫
−∞

dxi√
2π

exp (−βH)

√
det(J̃)

, with

H = kBT
1

2
xtJ̃−1x− kBT

N∑

i=1

log (2 cosh(βh+ xi)) . (C.19)

Since only exact identities have been used, the partition function Z describing a contin-

uous valued model is identical to the partition sum Z of the Ising model with discrete

values si = ±1. So far, the nature of the spin is not relevant to the thermodynamic

behavior.
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It is not necessary to determine det(J̃) in order to evaluate expectation values such as

〈xi〉 =
∏N

i=1

∫∞
−∞

dxi√
2π

xi exp (−βH)
√

det(J̃)Z

Eq. (C.17)
=

(
∂
∂si

− βh
)
Z

Z

Eq. (C.14)
=

∑
{si}

(J̃s)i exp
(

1
2
stJ̃s+ h̃s

)

∑
{si}

exp
(

1
2
stJ̃s+ h̃s

) (C.20)

= 〈(J̃s)i〉 =
〈∑

j

J̃ijsj

〉
=
∑

j

J̃ij〈sj〉 =
∑

j

J̃ijmj.

Thus, the auxiliary vector x has a physical meaning as the components are closely related

to the local magnetization mj of each site j. One can make us of that and define an OP

φ = J̃−1x, so that xi =
∑

j J̃ijφj and 〈φ〉i = mi. Substituting this into Eq. (C.19), one

finds the Hamiltonian

H =
1

2

∑

i,j

Jijφiφj − kBT
N∑

i=1

log

(
2 cosh

(
β
(
h+

∑

j

Jijφj

)))
. (C.21)

We emphasize once more that the real-valued order parameter φi has the same expectation

value 〈φi〉 at each site i as the local magnetization of spins in the Ising model. In the limit

N → ∞, the results in Eqs. (C.19) and (C.21) hold by identifying lim
N→∞

∏N
i=1

∫∞
−∞

dxi√
2π

with

the functional integration
∫
Dφ.

Exact transformations have served us well up to now, but eventually approximations

need to be introduced in order to make progress. Around the critical point, with h → 0,

one expects φj to be also small. We expand the Hamiltonian up to fourth order φ4
j and

linear in h using log(2 cosh(x)) ≈ log 2 + x2/2− x4/12:

H =
1

2

∑

i,j

Jijφiφj − kBT

N∑

i=1

[
log 2 +

β2

2

(∑

j

Jijφj

)2
− β4

12

(∑

j

Jijφj

)4
]

− kBT
N∑

i=1

β2h
(∑

j

Jijφj

)
. (C.22)

From afar, one may start to recognize the quadratic and quartic structure of the Landau

Hamiltonian. Still, the OP φi is defined only on lattice sites, whereas the aim is to

arrive at a continuous field theory. A well-defined way of smearing out the lattice can

be implemented in Fourier space. The necessary Fourier transforms into the reciprocal

lattice with lattice vectors k are given by

φi =
1√
N

∑

k

eik·ri φk, Jij =
1

N

∑

k

eik·(ri−rj) Jk, δk−k ′ =
1

N

∑

i

ei(k−k ′)·ri , (C.23)
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which produce

∑

j

Jijφj =
1√
N

∑

k

eik·riJkφk, (C.24)

∑

i

∑

j

Jijφjφi =
∑

k

Jkφkφ−k, (C.25)

∑

i

(∑

j

Jijφj

)2
=
∑

k

JkJ−kφkφ−k, (C.26)

∑

i

(∑

j

Jijφj

)4
=

1

N

∑

k1,k2,k3,k4

δk1+k2+k3+k4Jk1Jk2Jk3Jk4 φk1φk2φk3φk4 . (C.27)

Since φi and Jij are real and J(−r) = J(r), the Fourier transformed Hamiltonian reduces

to

H =−NkBT log 2− β
√
NhJk=0φk=0 +

1

2

∑

k

(Jk − βJ2
k)φkφ−k

+
β3

12N

∑

k1,k2,k3,k4

δk1+k2+k3+k4Jk1Jk2Jk3Jk4 φk1φk2φk3φk4 . (C.28)

For the nearest-neighbor interaction on d-dimensional lattice, Jk can be expanded in

orders of k = {k1, . . . , kd} as

Jk =
∑

i

eik·riJ(ri) =
d∑

n=1

[
Jeikna + Je−ikna

]
=

d∑

n=1

2J cosh(kna)

≈
d∑

n=1

2J

(
1 +

(kna)
2

2

)
= zJ

(
1 +

k2a2

z

)
(C.29)

Within Eq. (C.28), Jk occurs in the form of

Jk − βJ2
k ≈ zJ(1− βzJ)− zJ(1− 2βzJ)

k2a2

z

≈ kBTc

(
T − Tc

T

)
+ kBTc

k2a2

z
, (C.30)

which is expanded also in quadratic order and re-expressed using Tc = Jz/kB and T ≈ Tc.

It can be reasoned that this expansion is of general form for any short-ranged, molecular

interaction. Finally, everything can be neatly substituted in order to yield the Hamiltonian

in Fourier space

βH[{φk}] ≈ f0 − β2h0φk=0 +
1

2

∑

k

(
τ + sk2

)
φkφ−k

+
u

4!

∑

k1,k2,k3,k4

δk1+k2+k3+k4Jk1Jk2Jk3Jk4 φk1φk2φk3φk4 . (C.31)
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As a means to keep the notation concise, we have avoided to indicate specifically that the

reciprocal lattice vector k is finite, limited in magnitude to the range L−1 < |k| < a−1,

where L is the system size and a is the lattice spacing. However, one may introduce a

intermediate, mesoscopic value and split the partitions function into contributions from

wave numbers k< smaller than, and wave numbers k> larger than Λ, so that

Z ∼
N∏

i=1

∫ ∞

−∞

dφi√
2π

exp (−βH[{φi}]) =
∏

L−1<|k|<a−1

∫ ∞

−∞

dφk√
2π

exp (−βH[{φk}])

=
∏

L−1<|k<|<Λ

∫ ∞

−∞

dφk<√
2π

∏

Λ<|k>|<a−1

∫ ∞

−∞

dφk>√
2π

exp (−βH[{φk<}, {φk>}]) . (C.32)

When the Hamiltonian is expanded in orders of k, one may choose to separate it into

terms with small k< and large k>. (Note this is strictly true for the φkφ−k term, but a

wishful approximation for the φk1φk2φk3φk4 term. It is the power of the Renormalization

Group theory to deal with the non-Gaussian term and to trace how it alters the critical

behavior.) Around equilibrium, the most important contributions are expected to come

from fluctuations with large wavelength, i.e., small wavenumber k, whereas sharply vary-

ing fields with large wavenumbers k are supposedly suppressed. If so, and the lattice

spacing a is much smaller than the range of these fluctuations, one can place the cut-

off Λ such that the dominant contributions are contained within the first factor and the

partition function reads

Z ≈
∏

L−1<|k<|<Λ

∫ ∞

−∞

dφk<√
2π

exp (−βH<[{φk<}]) :=

∫
Dφ exp (−βH<[{φ}]) . (C.33)

The consequence of dropping the ultraviolet contributions with |k>| > Λ is that

the Fourier back transform results in a continuous, smoothed real-space OP φ(r) =
1
V

∑
k e

ik·riφk, which effectively interpolates the OP over a mesoscopic region Λ−d > ad.

Using φk =
∫

ddr e−ik·rφ(r) and 1
V

∑
k e

ik(r−r ′) = δ(r− r ′), one obtains the corresponding

Landau-Ginzburg-Wilson Hamiltonian

βH< =

∫
ddr

[
f0 +

s

2
(∇φ(r))2 +

τ

2
φ(r)2 +

u

4!
φ(r)4 − h0φ(r)

]
. (C.34)

The name acknowledges the work of K. G. Wilson employing iterative momentum-cutoffs

in the Renormalization Group theory [194]. Note that the upper cutoff is not a pure

technicality. While it should raise doubts when a theory depends on the chosen cutoff

value, it is meaningful here. One cannot expect any continuous theory to still hold on the

atomic level. The cutoff is a reminder that this an effective macroscopic theory.

Despite this effort, the functional integration in Eq. (C.33), with the Ginzburg-Landau-

Wilson Hamiltonian in Eq. (C.34) is far from being easily solvable. The form of Eq. (C.33)
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lends itself to apply the saddle-point approximation (method of steepest descent), so that

the partition sum is approximated by the contribution with the largest statistical weight

exp (−βH[φ]). The dominant contribution comes from the minimum of the Hamiltonian

∂H[φ]/∂φ|φ=〈φ〉 = 0. Note how the saddle-point approximation is equivalent to the self-

consistency equation of the mean field Ising model. Thus, we are again on the level of a

mean field theory, but for a continuous field. Conceptually, the dependence of the mean

field theory on the magnetization is replaced by the order parameter φ(r), representing

locally course-grained spins.

C.3 Gaussian approximation

In order to go beyond the mean field approximation, one can include fluctuations around

the equilibrium profile in quadratic order. We start from the Hamiltonian

H[φ(r)] =

∫

V

ddr
1

2
(∇φ(r))2 +

τ

2
φ(r)2 +

u

4!
φ(r)4 − h(r)φ(r). (C.35)

In contrast to Eq. (C.34), we have dropped the constant term f0 as it cancels out in

the calculation of any expectation value; specifically it does not alter 〈φ〉. The external

field h0 → h(r) is now allowed to be spatially varying. For convenience, we further set

s = 1 without loss of generality (the whole integrand can be normalized by 1/s in order

to achieve this, which is then compensated by a rescaling of r. As the partition function

weights all possible OP profiles φ(r) in a functional integral, this does not affect the result).

Consider a small perturbation δφ(r) of the OP in real space from the bulk value φ0, i.e.,

φ(r) = φ0+ δφ(r), inserted into Eq. (C.35). Then retaining only φ(r)4 ≈ φ4
0+4φ3

0 δφ(r)+

6φ2
0 (δφ(r))

2 and applying a continuous Fourier transform φ(r) = 1√
2π

d

∫
ddq φ(q) eiq·r

yields

H[φ(q)] =V
[τ
2
φ2
0 +

u

4!
φ4
0 − h(q = 0)φ0

]
+
[
τφ0 +

u

6
φ3
0

]
δφ(q = 0)

−
∫

ddq h(q)δφ(−q) (C.36)

+

∫
ddq

[
1

2
|q|2 +

τ

2
+

u

4
φ2
0

]
δφ(q)δφ(−q).

Note that, as before, there is an implicit ultraviolet cutoff Λ and Eq. (C.36) represents

an expansion to the highest order in which there is no coupling between different q-

contributions, so that the momentum-space cutoff can be applied straightforwardly.

The mean field bulk solution for h(r) = h(q) = 0 and δφ(r) = δφ(q) = 0 is obtained
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from the saddle-point approximation, i.e., ∂H/∂φ0 = τ φ0 + u/6φ3
0 = 0, to be

φ0 =




0 for τ > 0,
√
−6τ/u for τ < 0.

(C.37)

Plugging this back into Eq. (C.36) and substituting yields the form

H[φ(q)] = H0 +

∫
ddq

1

2

[
|q|2 + ξ−2

]
δφ(q)δφ(−q)−

∫
ddq h(q)δφ(−q). (C.38)

with H0 =




0 for τ > 0,

−3
2
τ2

u
− h(q = 0)

√
−6τ

u
for τ < 0

and ξ =




1/
√
τ for τ > 0,

1/
√
−2τ for τ < 0.

(C.39)

At fixed τ = T − Tc, the additive constant H0 is not important for determining the

fluctuations δφ(q). In the current context, ξ is merely a mathematical substitution for

τ . The reader may anticipate its physical relevance, which will be addressed below.

Eq. (C.38) is quadratic, so the partition function Z =
∫
Dφ exp(−βH) is of Gaussian

form, which allows the use of helpful identities.

For the most simple Gaussian integral, the relation

I1 :=

∫ ∞

−∞
dx e−

a
2
x2+b x =

√
2π

a
e

b2

2a (C.40)

holds. This extends straightforwardly to multiple coordinates, using the vector x = {xi}

with i ∈ {1, . . . , n}, giving the n-dimensional Gaussian integral

In :=

∫ ∞

−∞

∏
dxi exp

(
−1

2
xtG−1x+ btx

)

= det(2πG)1/2 exp

(
1

2
btGb

)
(C.41)

where G−1 is a diagonalizable real symmetric matrix.

The idea arises to replace the vector with a function φ in the continuous limit n → ∞ in

order to derive the corresponding Gaussian functional integral. We will skip the rigorous

mathematical definition of functional integration. Instead, for a familiar access, let us

borrow the Dirac notation from quantum mechanics, so that xt → 〈φ| is a bra-vector and
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x → |φ〉 is a ket-vector, and

I∞ :=

∫
Dφ exp

(
−1

2
〈φ|G−1|φ〉+ 〈b|φ〉

)

= det(2πG)1/2 exp

(
1

2
〈b|G|b〉

)
. (C.42)

This mere change in notation carries with it the concept of generalizing the vector

space of real numbers to the Hilbert space of square-integrable functions, without giving

a rigorous treatment. (Note that the Hamiltonian in Eq. (C.35) can only be evaluated

for square-integrable functions anyway.) The scalar products and operators involved are

evaluated for functions as follows

〈b|φ〉 =
∫

dr 〈b|r〉〈r|φ〉 =
∫

dr b(r)∗φ(r), (C.43)

G|φ〉 =
∫

dr ′ G|r ′〉〈r ′|φ〉 =
∫

dr ′ G(r, r ′)φ(r ′), and (C.44)

〈φ|G|φ〉 =
∫

dr
∫

dr ′ 〈φ|r〉〈r|G|r ′〉〈r ′|φ〉 =
∫

dr
∫

dr ′ φ(r)∗ G(r, r ′)φ(r ′). (C.45)

The inverse of G is defined by the relation

∫
dr ′ G−1(r, r ′)G(r ′, r ′′) = δ(r− r ′′), (C.46)

which is the extension of G−1G = 1 where 1 is the unity matrix (or unity operator), itself

defined by the property 1|φ〉 = |φ〉 ⇔
∫

dr ′ δ(r− r ′)φ(r ′) = φ(r).

The determinant detG is a bit problematic to generalize to a functional determinant,

as it scales proportionally to the rank n of the matrix G, i.e., the functional determinant

tends to infinity. However, in the relevant quantities the functional determinant can be

canceled out by proper normalization.

The quadratic contribution 〈φ|G−1|φ〉 to the Hamiltonian can be identified with∫
ddq 1

2
[|q|2 + ξ−2] |δφ(q)|2 or 1

2

∫
dr [(∇φ(r))2 + ξ−2φ(r)2] in real space. Integrating by

parts gives
∫

dr [(∇φ(r))2 + ξ−2φ(r)2] =
∫

dr φ(r) (−∇2 + ξ−2)φ(r). Note that we assume

the surface of integration space to be at infinity and that φ(r) decays sufficiently fast, so

that ∇φ(r → ∞) = 0. Rewriting this as 1
2

∫
dr
∫

dr ′ φ(r ′)δ(r− r ′) (−∇2 + ξ−2)φ(r), one

finds

G−1 = δ(r− r ′)
(
−∇2 + ξ−2

)
. (C.47)

Plugging this back in Eq. (C.46), one gets the relation for the proper operator G

(
−∇2 + ξ−2

)
G(r, r ′′) = δ(r− r ′′), (C.48)

which produces the definition of the Green’s function G to the differential operator
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(−∇2 + ξ−2). Note that G(r, r ′′) = G(r− r ′′) is translation invariant.

Correspondingly, one obtains in Fourier space

Z = det(2πG)1/2e−βH0

×

∫
Dφ exp

(
−1

2

∫
ddq δφ(q)∗

[
|q|2 + ξ−2

]
δφ(q) +

∫
ddq h∗(q)δφ(q))

)
(C.49)

= det(2πG)1/2e−βH0 exp

(
1

2

∫ d

dq
h∗(q)h(q)

|q|2 + ξ−2

)
.

Thus, within the Gaussian approximation the partition function is fully determined and

the free energy follows to be

F = −kBT logZ = H0 −
kBT

2
log (det(2πG))− kBT

2

∫
ddq

h∗(q)h(q)

|q|2 + ξ−2
. (C.50)

For the logarithm of the functional determinant, the following relation of the matrix

determinant holds: log (det(2πG)) = − log
(
det

(
G−1

2π

))
= −tr log

(
G−1

2π

)
, which leads to

F = H0 +
kBT

2

∫
ddq

(2π)d
log(|q|2 + ξ−2)− kBT

2

∫
ddq

h∗(q)h(q)

|q|2 + ξ−2
. (C.51)

C.4 Correlations

We are mainly interested in the excess of the two-point correlation function 〈φ(r)φ(r ′)〉
of the OP beyond the trivial, uncorrelated estimate 〈φ(r)〉2, i.e.,

〈φ(r)φ(r ′)〉 − 〈φ(r)〉2 = 〈δφ(r)δφ(r ′)〉. (C.52)

In terms of Fourier transformed wavevectors, the excess correlation function is given by

〈δφ(r)δφ(r ′)〉 =
〈∫

ddq1√
2π

d
δφ(q1) e

iq1·r

∫
ddq2√
2π

d
δφ(q2) e

iq2·r ′

〉

=

〈∫
ddq1√
2π

d

∫
ddq2√
2π

d
δφ(q1)δφ(q2) e

iq1·r12ei(q1+q2)·r ′

〉
(C.53)

with r12 = r−r′. Translation invariance requires that 〈δφ(r)δφ(r ′)〉 = 〈δφ(r12)δφ(0)〉 ∀r′,
from which it follows that

〈δφ(r)δφ(r ′)〉 =
∫

ddq1√
2π

d

∫
ddq2√
2π

d
〈δφ(q1)δφ(q2)〉 eiq1·r12δ(q1 + q2)

=

∫
ddq
√
2π

d
〈δφ(−q)δφ(q)〉 eiq·r12 . (C.54)
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In the case of a constant external field h, one can easily calculate the expectation value of

the OP from 〈φ〉 = ∂
∂h

logZ. Similarly, for a spatially varying field, using functional deriva-

tion, this generalizes to 〈φ(q)〉 = δ
δh(q)

logZ = h(q)
|q|2+ξ−2 and 〈φ(−q)φ(q)〉 = δ2 logZ

δh(q)δh(−q)
=

1
|q|2+ξ−2 . Thus, the excess correlation function of the OP is given by the Fourier transform

C(r) = 〈φ(r)φ(0)〉 − 〈φ(r)〉2 =
∫

ddq

(2π)d
eiq·r

|q|2 + ξ−2
. (C.55)

The actual calculation Eq. (C.55) is complicated by the appropriate Jacobian for

the d-dimensional integration. One can express the integration in general spherical

coordinates for n dimensions using xn = cos(θn−1), xn−1 = sin(θn−1) cos(θn−2), . . . ,

x2 = sin(θn−1) sin(θn−2) . . . sin(θ2) sin(φ) and x1 = sin(θn−1) sin(θn−2) . . . sin(θ2) cos(φ),

where the naming convention is broken on purpose for φ instead of θ1, in reminiscence of

the spherical coordinates in d = 3. Thus,

C(r) =

∫
dq qd−1 1

(2π)d

∫ 2π

0

dφ
∫ π

0

dθ2 sin(θ2)· · ·
∫ π

0

dθn−1 sin
n−2(θn−1)

eiq|r| cos(θn−1)

q2 + ξ−2
.

(C.56)

The integrations over φ, θ2, . . . , θn−2 can be expressed as Kd := Sd/
∫ π

0
dθn−1 sin

n−2(θn−1)

where Sd is the surface of the d-dimensional sphere (i.e., the integral over all coordinates

except the radial coordinate q). Since

Sd =
2 πd/2

Γ
(
d
2

) and
∫ π

0

dθn−1 sin
n−2(θn−1) =

√
π Γ

(
d−1
2

)

Γ
(
d
2

) ⇒ Kd =
2 π(d−1)/2

Γ
(
d−1
2

) . (C.57)

Substitution z = q|r| yields

C(r) =
Kd

(2π)d

∫
dz
r

zd−1

rd−1

∫ π

0

dθn−1 sin
n−2(θn−1)

eiz cos(θn−1)

z2/r2 + ξ−2

=
Kd

(2π)d
r−(d−2)

∫
dz zd−1

∫ π

0

dθn−1 sin
n−2(θn−1)

eiz cos(θn−1)

z2 + η2
with η = r/ξ

=
Kd

(2π)d
r−(d−2)

∫
dz zd−1

√
πJ d−2

2
(z)Γ

(
d−1
2

)

(
z
2

) d
2
−1

(z2 + η2)
, (C.58)

with the Bessel function of the first kind J and the Gamma function Γ,

C(r) =
1

(2π)d/2
r−(d−2)

∫
dz zd/2

J d
2
−1(z)

(z2 + η2)

=
1

(2π)d/2
r−(d−2) η

d
2
−1 K d

2
−1(η)

=
1

(2π)d/2
ξ1−

d
2 r1−

d
2 K d

2
−1(η), (C.59)
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where K is the modified Bessel function of the second kind.

Naturally, d = 3 is an especially relevant case, for which one obtains simply

C(r) =
1

4π

e−r/ξ

r
. (C.60)

In general dimensions, it is insightful to consider two limits of the analytic Bessel functions:

η = r/ξ ≪ 1 (approaching the critical point) and η = r/ξ ≫ 1 (far away from the critical

point). In these two cases, one finds the limiting behaviors

C(r) =





Γ
(
d
2
− 1
)

4 πd/2
r−(d−2) r/ξ ≪ 1,

ξ2−d

2 (2π)
d−1
2

e−r/ξ

(r/ξ)
d−2
2

r/ξ ≫ 1

(C.61)

Evidently, the purely mathematical substitution of ξ finally attains a physical relevance

as the length on which the correlation between two points decays for large distances.

Therefore, ξ is called the correlation length. This role can be formally defined via

ξ := − lim
r→∞

r

logC(r)
. (C.62)

Applied to either Eq. (C.59) or Eq. (C.61), the limit exists for all dimensions d > 2. For

d = 2, one finds the peculiar result

C(r) =
1

2π
K0(r/ξ) ∼ log(r/ξ) for ξ → ∞. (C.63)

Close to the critical point (i.e., for ξ → ∞), C(r) diverges for large r with a leading

order of log(r), in contrast to the algebraic decay r−(d−2) for d > 2. The divergence

of the two-point correlation for large distances in d ≤ 2 is understood to indicate that

the fluctuation are not localized around an equilibrium value, but instead lead to non-

localized waves traveling through the system. These so-called Goldstone modes occur in

any system exhibiting spontaneous breakdown of continuous symmetries. Furthermore,

the Mermin-Wagner theorem states that continuous symmetries cannot be spontaneously

broken in systems with short-range interactions for dimensions d ≤ dlc = 2 smaller than

the lower critical dimension dlc, as the hypothetical ordered phase would be destroyed by

such Goldstone modes. Note that the lattice Ising model has only discrete symmetry and

thus still features a phase transition in d = 2, with the lower critical dimension being

dlc = 1.
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C.5 Linear response and stress tensor

Let us consider a practical example of the saddle-point or mean field approximation

∂H[φ]/∂φ|φ=〈φ〉 = 0 using Eq. (C.35) for H[φ]. The associated Euler-Lagrange equation

(ELE) for the mean field profile φ0 in the case of vanishing bulk field h(r) = 0 is found

to be
δH[φ(r)]

δφ(r)

∣∣∣∣
φ=φ0

=
(
τ φ(r) +

u

6
φ(r)3

)
−∇ ·∇φ(r) = 0. (C.64)

In the saddle-point approximation, the integral over all configuration in the partition

function is approximated by

Z =

∫
Dφ exp(−βH[φ(r)]) ≈ exp(βH[φ0]). (C.65)

For simplicity, we assume that the profile is inhomogeneous only in z direction and

invariant in the other directions, so that the ELE simplifies to

φ′′
0(z) = τ φ0(z) +

u

6
φ3
0(z). (C.66)

Evidently, the bulk solution with φ′′
0(z) = 0 is φb = ±

√
6
u
(−τ) for τ < 0. These

solutions represent the two phases below the critical point. One may imagine a particular

inhomogeneous solution that features two coexisting phases, such that φ0(z → −∞) =

−
√

6
u
(−τ) and φ0(z → ∞) =

√
6
u
(−τ), which translates into boundary conditions for

the differential equation Eq. (C.66).

A well educated guess is given by the ansatz φ0(z) = A tanh
(

z
2 ξ

)
. Note that both A

and ξ are, at this stage, undetermined coefficients. The differential equation is solved for

A =
√

6
u
(−τ) and ξ = (−2τ)−1/2.

This result requires some interpretation: φ0(z) ∼ tanh(z/(2 ξ)) is an equilibrium pro-

file obtained in saddle-point approximation, without accounting for fluctuation at all.

Other than the choice of the symbol ξ, there is no immediate link to perturbations in

any of the parameters. Still, we identify the same result as for the correlation length

ξ = (−2τ)−1/2 found in Gaussian approximation (see Eqs. (C.39) and section C.4). One

may come to the realization that it is impossible to have an equilibrium interface profile

that varies on a smaller scale than the critical fluctuations; such a profile would be dis-

torted immediately by the fluctuations. Any equilibrium profile must leave “room” for the

fluctuation and can only vary on the scale of the correlation length ξ of the fluctuations.

This is a fundamental consequence of the fluctuation-response theorem, which states

that the equilibrium response to a small external force behaves like the dynamics of

spontaneous fluctuations. Mean field theory does not capture fluctuation in the bulk.

However, critical Casimir forces, as an instance of a fluctuation-induced force, occur only

if the fluctuating fluid is confined between surfaces close together. At the same time, the
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surfaces represent boundary conditions leading to non-homogeneous equilibrium profiles,

which can be obtained in MFT. The small fluctuations of the solvent adhere to the same

boundary conditions as the equilibrium profile.

For a bounded system, the Hamiltonian Eq. (C.35) is amended by a surface term of

the general form

Hs =

∫

∂V

d(d−1)s
[ c
2
(φ(s))2 − hsφ(s)

]
. (C.67)

Applying the saddle-point approximation, one obtains from this

δH

δφ(r′)
=

∫

V

ddr (∇φ(r)) ·

(
=∇ δφ(r)

δφ(r′)︷ ︸︸ ︷
δ

δφ(r)
∇φ(r)

)
(C.68)

+

∫

V

ddr
[
τ φ(r) +

u

6
φ(r)3 − h(r)

] δφ(r)

δφ(r′)
+

∫

∂V

d(d−1)s [cφ(s)− hs]
δφ(s)

δφ(r′)
!
= 0

Gauss’s theorem can be applied to the first term, yielding

∫

V

ddr (∇φ(r)) ·∇ δφ(r)

δφ(r′)
= −

∫

V

ddr (∇ ·∇φ(r))
δφ(r)

δφ(r′)
+

∫

∂V

d(d−1)s (∇φ(s) · n)
δφ(s)

δφ(r′)
,

(C.69)

so that we need to solve
∫

V

ddr
[
τ φ(r) +

u

6
φ(r)3 − h(r)−∇2φ(r)

] δφ(r)

δφ(r′)
(C.70)

+

∫

∂V

d(d−1)s [(∇φ(s) · n) + cφ(s)− hs]
δφ(s)

δφ(r′)
!
= 0.

Since δφ(r)
δφ(r′)

= δ(r− r′), and a point r is either within the Volume V or on its surface ∂V ,

but not both, one ends with two equations that need to be solved simultaneously:

τ φ(r) +
u

6
φ(r)3 − h(r)−∇2φ(r) = 0, for r ∈ V, (C.71)

∇φ(s) · n+ cφ(s)− hs = 0, for s ∈ ∂V. (C.72)

The first equation is simply the Euler-Lagrange equation of the bulk case. The second

equation is a Robin boundary condition to the differential equation. Notably, in the case

of c = 0, it amounts to a von-Neumann boundary condition ∇φ(s) · n = hs, whereas for

c → ∞, but with lim
c→∞

hs/c �= 0, it represents a Dirichlet boundary condition φ(s) = hs/c.

Within this thesis, we have obtained equilibrium OP profiles by solving this differential

equation numerically using a finite-element method [101]. Another consequence of the

confinement is the fact that, for a fixed configuration, the system is under stress, which

is compensated by constraint forces. A virtual displacement r → r + ǫ(r) of the system

(i.e., a coordinate transform) creates a virtual work δH. Then, the stress tensor Tij is
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defined by the linear response relation

δH =

∫

V

ddr
∂ǫi

∂xj

Tij, (C.73)

where ǫi is the i-th component of ǫi. The components of the stress tensor can be expressed

in terms of the Lagrangian L, which is the integrand of the Hamiltonian, i.e., H[φ(r)] =∫
V

ddrL(φ(r),∇φ(r)), by performing explicitly the variation

δH =

∫

V

ddr δL(φ(r), ∂jφ(r)) =

∫

V

ddr

(
∂L

∂φ
δφ+

∂L

∂(∂jφ)
δ∂jφ

)
, (C.74)

where the OP φ and its derivative are treated as individual variables with the varia-

tions δφ(r) = ǫi∂iφ(r) and δ∂jφ(r) = ǫi∂j∂iφ(r) + (∂jǫi)∂iφ(r). Substituting these into

Eq. (C.74) and performing a partial integration yields Eq. (C.73) with the stress tensor

being

Tij =
∂L

∂(∂jφ)
∂iφ− δijL. (C.75)

Suppose one chooses the particular coordinate transform with ǫz(r) = α for r ∈ Vs

in a subvolume Vs, but ǫz(r) = 0 outside, and ǫi = 0 for i �= z. Then ǫz = α1Vs is

proportional to the the indicator 1Vs of the subvolume, and the derivative ∂
∂xi

∂ǫi
∂α

=
∂1Vs

∂z
of

the indicator represents a surface delta function, so that the force acting on that subvolume

in z-direction is given by

Fz = −∂H

∂α
= − ∂

∂α

∫

V

ddr
∂ǫi

∂xj

Tij = −
∫

∂Vs

d(d−1)s Tzjnj, (C.76)

where nj is the j-th component of the outwards surface normal n. With a view on

continuum mechanics, the force acting on a volume of liquid is also acting on an enclosed

particle. Thus, we can numerically calculate the critical Casimir force as the singular

contribution to the force, after numerically minimizing the Hamiltonian using a finite

element method, and evaluating the stress tensor on a conveniently chosen (virtual) surface

enclosing a particle.

This way, we obtain numerically the equilibrium OP profile of a static, confined geom-

etry, and concomitantly we can calculate the force corresponding to a small displacement

of the walls within linear-response. The critical Casimir force is the singular and dominant

contribution to the force at T → Tc.

C.6 Renormalization group theory

Renormalization group (RG) theory is a collective term for a number of powerful and

complex methods for the calculation of critical exponents beyond MFT and Gaussian
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approximation [194,195]. They may differ in details and their usage, but share a general

idea. Conceptually, the basic steps of RG theory are

1. Course-graining or Elimination: This step can be done in various fashions that

follow the same fundamental idea, but can lead to quite different mathematical

procedures in practice. In principle, one reduces the number of degrees of freedom,

for example, by grouping spins into blocks and averaging them to a single block-spin

value, or by assigning to the block the majority value of its spin. Instead of working

with the lattice in real-space, it is also possible to apply the renormalization group

theory in momentum-space. In any case, one generates an iterative step that leads

to an effective Hamiltonian H[φ] → H′ [ φ
]

for the course-grained lattice, which

possesses a larger lattice spacing and substituted coefficients.

2. Rescaling: The new lattice is then rescaled by a factor b to match the lattice size

of the original, so that the new coordinates are given by r ′ = r/b.

3. Renormalizing: The rescaling affects also the scale of the variations in the order

parameter, i.e., the gradient term, which is remedied by normalizing the amplitude

φ′
r ′ = φr ′/λ.

Since the partition function sums up all configurations for the order parameter φ, and

none of the above steps produces a new configuration φ′ that was not possible before (even

if it was an unlikely one), the partition function is preserved

Z =

∫
Dφ exp(−βH[φ(r)]) =

∫
Dφ′ exp(−βH′[φ′(r ′)]). (C.77)

It is assumed that the Hamiltonian H does not change its functional form after a RG step,

although the values of the coefficients change. Of course, this is an excessive assumption

and actually performing the RG iteration will generate additional, higher order terms.

Thus, this is an approximation leading to effective coefficients.

However, we gain a new perspective on the problem. The coefficients of the Hamilto-

nian may be collected into a vector H, and the RG iteration written as Hn+1 = RHn,

where R is an (non-linear) operator. Such an iteration may have fixed points (eigen-

vectors in the linear case), for which H = RH. Now, for the Ising model and the

Ginzburg-Landau Hamiltonian, three such fixed points exist, all with physical relevance:

for the so-called high-temperature fixed point, the parameter associated with tempera-

ture T behaves as if T → ∞. For the Ising model, J/kBT → 0 and the spins become

uncorrelated. Thus, at the high-temperature fixed point, the system is completely ran-

dom so that scaling and renormalization will not make it any more or less random. At

the low-temperature fixed-point, corresponding to T → 0, the system attains an ordered

ground state that does not change under RG. For example, if all Ising spins are aligned,
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course-graining or elimination of spins will not alter the overall orientation. The third

fixed point is the subject of our scientific fetish.

One can conclude another property from this perspective on the RG. The vector H

spans a parameter space of Hamiltonians. RG iterations result in trajectories through this

parameter space. Thus, the fixed-points can in principle be of three types: attractive (all

trajectories in the vicinity are moving into the fixed-point), repulsive (all trajectories in the

vicinity move away) or mixed (some directions are attractive, others are repulsive). One

observes that, starting a bit off the critical temperature and applying the RG, one moves

either to the high-temperature or the low-temperature fixed point, which are therefore

attractive. The critical point itself is a mixed fixed point.

In a similar spirit, let us analyze the dimensions of the coefficients in the Hamiltonian

βH =

∫

V

ddr
s

2
(∇φ)2 +

τ

2
φ2 +

u

4!
φ4 (C.78)

in units of a microscopic length a, e.g., the lattice spacing constant, or similarly a micro-

scopic interaction range. Certainly, the result of the integration must be dimensionless

and the integration itself corresponds to a factor ∼ ad. Suppose the order parameter φ

has dimension a−z, where z ∈ Z, which will be determined in a moment. Analogously, let

τ ∼ a−y and u ∼ a−x, with x, y ∈ Z. From the three independent terms, we obtain three

equations for the dimensional exponents. Thus, the fourth factor s is undetermined and

can be chosen freely. It is convenient to absorb it into φ and set s = 1. In order to obtain

the correct physical dimensions, it is required that

1. ad · (∇φ)2 ∼ ad · (a−z−1)2 ∼ ad−2z−2 !
= 1 ⇒ z = d−2

2
,

2. ad · τ
2
φ2 ∼ ad−y−2z !

= 1 ⇒ y = 2,

3. ad · u
4!
φ4 ∼ ad−x−4z !

= 1 ⇒ x = 4− d.

In an RG step, the microscopic length a is rescaled by a factor b > 0, giving the

new length a′ = a/b. Exactly at the critical point, the rescaling can be performed an

arbitrary large number of times without changing the physics of the system, due to the

self-similarity of the order parameter profile (scale-invariance). Thus, the corresponding

length an = a/bn after step n is expected to vanish with n → ∞. Since u ∼ a−(4−d),

the parameter un ∼ a
−(4−d)
n ∼ bn(4−d)u reveals an interesting dependence on the spatial

dimension d: For d > 4 and any value of u, after many RG steps, the parameter un will

become vanishingly small. On the other hand, for d < 4, no matter how small the initial

value of u was, un increases without bounds. This has consequences for the Gaussian

approximation, which relies on neglecting the quartic term and takes into account only

the quadratic terms.
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This is formally described by the Ginzburg criterion

∫
Vξ

ddr 〈φ(r)φ(0)〉 − 〈φ(r)〉2
∫
Vξ

ddr 〈φ(r)〉2
≪ 1 (C.79)

which represents the relative strength of the fluctuations compared to the mean value of

the order parameter. For this comparison, one integrates the fluctuations over at least

a cube of size Vξ = ξd over which the fluctuations are correlated. Since we evaluate the

fluctuations using the Gaussian approximation, whereas the mean value is aptly obtained

from mean field theory, the Ginzburg criterion also indicates whether the Gaussian ap-

proximation is a small correction to the mean field result. In that sense, it announces the

breakdown of the Gaussian approximation if that assumption is no longer valid.

The Ginzburg criterion evaluates to

∫
Vξ

ddr 〈φ(r)φ(0)〉 − 〈φ(r)〉2
∫
Vξ

ddr 〈φ(r)〉2
=

∫
Vξ

ddrC(r)

ξd ·
√

6
u
(−τ)

2 (C.80)

using ξ = 1/
√
−2τ and Eq. (C.59), we arrive at

∫
Vξ

ddr 〈φ(r)φ(0)〉 − 〈φ(r)〉2
∫
Vξ

ddr 〈φ(r)〉2
= c(d)

u

3
ξ4−d, (C.81)

where c(d) is a positive, numeric factor depending on the number of spatial dimensions

d. For d > 4, the relative strength of the fluctuations becomes arbitrary small close to

Tc as ξ → ∞ and thus the quadratic approximation is valid. For d < 4, fluctuations are

only negligible not too close criticality, when ξ ≪ 1; otherwise the φ4 term becomes the

dominant contribution.

In conclusion, for the bulk situation mean field theory is valid above the upper critical

dimension duc, whereas in lower dimensions, e.g., d = 3, fluctuations start to become

important. Below the lower critical dimension dlc, phase transitions are completely de-

stroyed.
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