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Chapter 1

Introduction

An interface is the contact area between two different phases. The type of the interface

can be specified corresponding to the combination of thermodynamic states (solid, liquid,

or gaseous) of the adjacent phases: solid-gaseous, solid-liquid, solid-solid, liquid-gaseous,

and liquid-liquid. For convenience, in the following the term fluid denotes a state which

is not solid. Gases have the characteristic to mix, which is why there is no interface

of the type gaseous-gaseous. The concept of a surface is also used frequently but it

is less general. Strictly speaking the surface corresponds to a situation where a solid

or a liquid is bounded by vacuum. Moreover it is common to denote the interfaces

solid-gaseous and liquid-gaseous as surfaces [1, 2]. The definition of the interface as a

surface in the mathematical sense agrees with our experience in daily life. There we

often encounter macroscopic phases of large volumes which are separated from each other

by (infinitesimally) small domains, e.g., the water-air interface of a lake or the wall-air

interface of a building. However this picture only withstands a macroscopic treatment

and is too vague on a microscopic scale.

In a more precise picture the interface is a domain of molecular dimensions. Within

this domain the particles, e.g., atoms or molecules, i.e., the building blocks of the adja-

cent phases, are surrounded by less particles as compared to the bulk far away from the

interface. That is, the isotropy of the surroundings of the particles, which is given in the

bulk, is disturbed close to the interface and specific properties deviate from properties in

the volume phase. Interfacial properties may be quantified by means of the interfacial

tension γ. Consider, for instance, a two-phase system of total volume V and bulk pressure

p. The phases are assumed to be separated by a planar interface of area A. The grand

canonical potential Ωeq of this system reads [3]

Ωeq = −pV + γA. (1.1)

The grand canonical potential of this assembled system is not equivalent to the sum of

only the volume terms (−pV). This would be the case, if the properties close to the

9



10 CHAPTER 1. INTRODUCTION

interface would not differ from the ones in the volume phases. However, in Eq. (1.1)

additionally a contribution of the interface, γA, has to be taken into account. A is the

size of a surface in the mathematical sense. The physical properties of the interfacial

domain are included in γ.

The interfacial tension acts in any interface such that the interfacial area is minimized.

The shapes of fluid-fluid interfaces result, among others, from this mechanism. This is

different if at least one of the adjacent phases is solid; systems of this kind are in the focus

of the present dissertation. According to the definition of a solid, the shape of such an

interface is rigid, i.e., it remains in the predefined state. Nevertheless an interfacial tension

can be formally defined also for these systems [4]. For the sake of comparability with other

studies the discussions in Chaps. 2 and 3 are based on γ. Another common quantity,

which describes interfacial phenomena, is the excess adsorption. The latter indicates the

positive or negative excess number of particles in comparison with the bulk due to the

presence of the interface. It is therefore a measure for accumulation or dilution of matter

at interfaces [4]. Interfaces in the context of ionic solutions are usually accompanied by

electric double layers (EDLs). The latter can be conveniently quantified by means of the

differential capacitance C, which is in the focus of the discussion in Chaps. 4 and 5 (see

below).

The concept of an interfacial tension enables to explain various interfacial phenomena,

for instance, wetting phenomena. The latter are usually discussed by means of a generic

setup: a limited amount of liquid is situated on a solid surface and is surrounded by a gas.

The liquid can either completely wet the solid surface or it can form a drop. In the latter

case a contact angle θ is established at the contact line where all three phases merge; θ is

measured between the liquid-gaseous and solid-liquid interfaces. Young’s equation

γsg = γsl + γlg cos θ (1.2)

relates the contact angle with the interfacial tensions between the involved phases: the

interfacial tension of the solid-gaseous (γsg), the solid-liquid (γsl), and the liquid-gaseous

(γlg) interface, respectively. That is, the wettability of the solid surface, quantified by the

value of the contact angle, corresponds to an interplay of the different interfacial tensions.

An increase of the contact angle is equivalent to a reduction of wettability [1–3].

If two fluid phases are separated by a curved interface, then there is a pressure differ-

ence ∆p across that interface due to the interfacial tension γ. The pressure difference can

be quantified by means of the Young-Laplace or Laplace equation

∆p = γ

(

1

R1
+

1

R2

)

, (1.3)

where R1 and R2 denote principal radii of curvature. For example, Eq. (1.3) states that
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the pressure inside of a spherical liquid drop is higher than the pressure of the surrounding

gas. Capillary phenomena result from a balance between body forces due to gravity and

interfacial forces. The latter combine wetting phenomena with geometric constraints and

can be estimated by a combination of Eqs. (1.2) and (1.3) [2–4].

Both Young’s equation (1.2) and the Young-Laplace equation (1.3) reveal that interfa-

cial phenomena are determined by the composition of the adjacent phases. This includes

the properties of the bulk phases and the geometry of the interface. However, even though

the curvature of the interface explicitly enters the Young-Laplace equation, the underly-

ing description of the interfacial geometry is a macroscopic one; usually the interfacial

tension of a planar interface is taken into account although curved interfaces are under

consideration. Such an approach neglects that the interfacial tension of a curved inter-

face differs in general from that of a planar interface. Presumably Tolman has been the

first to derive an explicit expression for the interfacial tension of a spherical droplet in

equilibrium with its vapour. In Ref. [5] it is reported, among others, that for a droplet

diameter of 10−6 cm the value of the interfacial tension deviates by 4% from its planar

limit; the deviation becomes larger for smaller values of the droplet diameter. The influ-

ence of geometry on thermodynamic quantities like the interfacial tension is still causing

debates. In particular the concept of morphometric thermodynamics, which is discussed

below, is a divisive issue. The numerical example in Tolman’s study indicates that, from

a macroscopic point of view, the dependence of the interfacial tension on the shape of the

interface becomes significant only for small radii. That is, the dependence of the inter-

facial tension on the geometry is likely to be negligible, if large volume phases separated

by weakly curved interfaces are under consideration. However, in the converse limit, this

cannot be assumed from the start. If the interfacial area is relatively large, which usually

is tantamount with a highly curved interface, it must be assumed that interfacial proper-

ties have an impact of significant magnitude on the system. Systems of such kind exhibit

a large specific interfacial area, which is given by the ratio (interfacial area)/volume. The

following list of examples corresponds to systems, in which interfacial phenomena play

an important role and which are likely to be encountered in daily life. (i) Interfacial

phenomena are closely related to colloidal dispersions. The latter seem to be uniform on

a macroscopic but actually are non-uniform on a microscopic scale. The highly dispersed

colloids exhibit a large specific interfacial area which brings about that their behavior is

strongly influenced by interfacial properties. Examples for colloidal systems are paints,

pollen, smoke, smog, styrofoam, fire extinguishers, (inhalable) pharmaceuticals, butter,

milk, . . . [2, 6]. (ii) In geology one is interested in the swelling behavior of clay or soil in

combination with water. (iii) Due to interfacial forces water accumulates around small

dust particles which leads to the formation of clouds and rain [2]. (iv) Proteins are large

molecules consisting of a huge amount of atoms. In biological systems they are situated

in an aqueous environment. The three-dimensional structure of a protein is related with
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its biological function which is why there is a particular interest in understanding the

underlying complex folding mechanism [7]. (v) The interface between an electrode and an

electrolyte solution is usually accompanied by an electric double layer. In particular the

fluid behavior close to the electrode can be conveniently manipulated by means of external

electric fields. In a supercapacitor the double layer evolving between an electrode of high

specific interfacial area and an ionic solution is used for energy storage (see Sec. 4.1).

The interfaces in the aforementioned examples are in general complex entities. A

simple but yet precise theoretical description of the same would be valuable both from a

scientific and a technological point of view. A model of this kind would be transferable to

diverse geometries. It would be able to predict the behavior of the underlying interfaces

without the need for cumbersome realizations in experiments. A step in this direction

has been taken in Ref. [8]. The study focuses on the dependence of the grand canonical

potential on the shape of the container which bounds the thermodynamic system. Ac-

cording to the approach of morphometric thermodynamics (MT), which is introduced in

Ref. [8], the grand canonical potential depends on the geometry of the surroundings only

by four morphometric measures [see also Eq. (2.1)]. All other quantities are independent

of the geometry; they have to be determined only once for a specific wall-fluid combi-

nation. This information is sufficient in order to evaluate the grand canonical potential

in arbitrary geometries by means of the expression in Eq. (2.1). Other thermodynamic

quantities like the interfacial tension or the differential capacitance, which follow from

the grand canonical potential, inherit the simple dependence on the geometry in line with

MT.

The initial agenda of the present dissertation has been to explore the limitations of the

morphometric approach in more detail. Limits of its applicability have been attested from

the start. The approach has been introduced in combination with the restriction that it

cannot be used with respect to systems with large intrinsic length scales [8]. However,

insights gained in the same study as well as in several examples in literature, where MT

either has been applied or where results have been found to be in agreement with MT,

inspired confidence that MT is valid in simple fluids like hard sphere systems [8–18].

On the other hand several studies question the completeness of the MT approach even

in the case of hard sphere systems [19–24]. In agreement with the latter studies also

the calculations carried out in the course of this dissertation cannot confirm that MT is

exactly valid.

Some interfaces are accompanied by electric double layers (EDLs). That is, at such

interfaces oppositely charged layers are facing each other. EDLs essentially arise as a

consequence of the following processes: charge carriers may transfer from one phase to

another, ions may specifically adsorb at the interface, and external electric fields may cause

an accumulation of charge [1]. In electrostatics two plates carrying opposite charges are

known as a capacitor. Also the adjacent layers of EDLs exhibit a capacitive behavior. The
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corresponding differential capacitance can be determined experimentally, for example, as

a function of the electrode potential [25–29]. Measurements like these can be used to

evaluate theoretical models of EDLs which in turn allow for a deeper insight into the

underlying structure.

Studies with the objective of understanding the structure of EDLs go back to, at least,

the year 1879. At that time Helmholtz considered an electric double layer (“electrische

Doppelschicht”) at the interface between a liquid and the wall of a vessel. He assumed the

liquid part of the EDL to be of a very small, but finite thickness (see p. 349 in Ref. [30]).

The structure of this EDL may be interpreted in terms of a molecular capacitor, where the

surface charge of the solid wall is facing the same amount of opposite charge concentrated

in a thin liquid layer parallel to the solid wall. If the (molecularly small) distance between

the plates is known, the capacitance of this plate capacitor can be estimated [31]. However,

the capacitance of a plate capacitor does not depend on the applied voltage. For that

reason this model fails to explain experimentally found differential capacitance curves

which exhibit a dependence on the voltage [25–29].

Several years later Gouy and Chapman have approached an EDL at the interface

between an electrolyte solution and an electrode by means of the Poisson-Boltzmann

(PB) equation. As compared to the Helmholtz model the charge in the liquid phase is

spatially distributed which is why the double layer within the Gouy-Chapman approach is

sometimes referred to as a diffuse double layer. The corresponding differential capacitance

C depends on the electrode potential; the Gouy-Chapman model predicts a minimum at

the potential of zero charge (see below). For monovalent ions, small ionic strengths, and

surface charge densities the differential capacitance agrees with measurements [2, 32–34].

In 1924 Stern has drawn attention to certain limitations of the Gouy-Chapman theory.

The latter allows for charge accumulation very close to the electrode. This explains the

tendency of the Gouy-Chapman approach to predict too large values for the capacitance.

Stern suggested to combine the Helmholtz and the Gouy-Chapman approach. Accord-

ingly, the charge in the liquid phase is partly situated on a Helmholtz plane, which is

located at a distance of about the ionic radius from the electrode surface. In this way

the adsorption of ions at the electrode surface is taken into account. The remaining

charge beyond the Helmholtz plane is treated as a diffuse layer in agreement with the

Poisson-Boltzmann equation [31].

As compared to Stern’s approach the model for an EDL according to Grahame de-

scribes the adsorption of the ions in more detail. Ions are considered as adsorbed, if they

are held by the electrode not only due to coulombic forces but also due to covalent bonds

or van der Waals forces or both. The term specific adsorption is used when the binding

is specific to the various ions. In Grahame’s model the adsorbed ions are situated clos-

est to the electrode surface. Their electrical centers lie in the so-called inner Helmholtz

plane. This description takes into account that adsorbed ions are not separated from the
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electrode surface by solvent molecules in contrast to unadsorbed ions. As solvated ions

the latter are accompanied by a solvent sheath which prevents that their electrical centers

approach the electrode surface closer than the so-called outer Helmholtz plane [35].

The presented evolution of approaches, from Helmholtz until Grahame, shows that,

over time, the description of an EDL has become more and more sophisticated. The

introduction of Helmholtz layers takes into account that particles have a nonvanishing

size. This concept has led to better agreements with experiments which suggests that

the particle size is relevant for the structure of an EDL. However, in the approaches

mentioned so far the particle size is only regarded close to the interface. In more recent

models it is possible to take into account the molecular extent also further away. Such

models are often denoted with respect to the underlying microscopic description of the

present species, e.g., solvent particles, cations, and anions. For example, in the so-called

“primitive model” (PM) ions are taken into account as charged hard spheres surrounded

by a solvent which is regarded only implicitly by the corresponding permittivity. In

the so-called “solvent primitive model” or “molecular solvent model” additionally the

solvent molecules are treated as uncharged hard spheres. If the latter carry an embedded

electric dipole, the corresponding model sometimes is referred to as “civilized model”. In

conjunction with the attribute “restricted” these models refer to hard spheres of the same

radius, e.g., the restricted primitive model (RPM). In the following the term “molecular

model” corresponds to any kind of these models in which particle sizes are explicitly taken

into account, i.e., the PM, RPM, solvent primitive model, and civilized model.

Molecular models have been implemented in various ways. Theoretical approaches like

modified Poisson-Boltzmann equations, integral equation approaches or density functional

theories (see below) are usually based on mathematical approximations. The latter can be

conveniently verified with help of computer simulations. Both Monte Carlo and molecular

dynamics simulations have been applied in order to examine the structure of ionic systems

within, e.g., the PM, RPM, or the solvent primitive model in the bulk [36–38] as well as

in EDLs [39–41].

One possibility for the theoretical consideration of, inter alia, volume effects in elec-

trolyte solutions is to evaluate the corresponding corrections to the Poisson-Boltzmann

equation [42, 43]; in its original form the latter treats the ions as pointlike particles. The

resulting improvements of the Poisson-Boltzmann equation are often referred to as modi-

fied Poisson-Boltzmann (MPB) equations [44,45]. Various versions, e.g., MPB1 – MPB5,

corresponding to different approximations have been suggested [46–48].

Mainly before density functional theory has been established molecular models have

been implemented by means of integral equation approaches which are based on the

Ornstein-Zernike equation. The latter relates the total correlation function h with the

direct correlation function c. The Ornstein-Zernike equation can be solved for h and

c, if it is combined with a so-called closure relation, i.e., a second independent relation
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between h and c. In general closure relations are approximations with respect to which

the various integral equation approaches are distinguished. For instance, the hypernetted

chain (HNC) equation and the mean spherical approximation (MSA) have been commonly

used [49–51]. A noteworthy feature of the MSA is the availability of an analytic solution

for the PM which has been derived by Waisman and Lebowitz [52, 53]. For example,

in Refs. [54–57] different integral equation approaches have been applied to model the

structure of EDLs.

Alternatively EDLs in terms of molecular models can be considered by means of the

density functional theory (DFT) [58], which is the approach of choice in the present dis-

sertation. Therein the properties of the system under consideration are comprised in a

density functional, i.e., a functional of the number density profiles of the various par-

ticle species. The density functional contains an external potential which conveys the

interaction between the electrode and the electrolyte solution. In order to describe an

EDL between a solid electrode and an electrolyte solution, the external potential is kept

fixed and the corresponding equilibrium number density profiles are determined. The

latter are defined as the number density profiles which minimize the density functional.

The equilibrium number density profiles can be functions of the location and of further

degrees of freedom like the orientation. They give detailed insight into the structure of

the EDL which may be mapped onto quantities like the differential capacitance. The

mutual interactions of the particles in the solution are taken into account by the so-called

excess functional, i.e., the part of the density functional, which comprises contributions

in excess to the exactly known ideal gas term. In general the exact expression of the

excess functional is unknown which renders DFT approximative. However, in particular

for hard spherical interactions accurate weighted density implementations have been de-

veloped, e.g., in Refs. [13,59–61], which are referred to as “fundamental measure theory”

(FMT). These approaches are valuable, among others, in DFT implementations of molec-

ular models. There the hard-spherical character of the particles in the solution can be

taken into account as a reference system by means of FMT. Additional interactions, like

Coulomb interactions, can be treated perturbatively, e.g., within the MSA or the random

phase approximation (RPA). DFT implementations of molecular models have been found

to be in agreement with simulations [41, 62–65] and have been applied to examine, i.a.,

the structure of EDLs in Refs. [41, 62–72].

Among the electrically conducting liquids one may distinguish two types: (i) elec-

trolyte solutions consist of ions that are dissolved in a solvent, e.g., salt water. (ii) Ionic

liquids are solvent-free and consist of ions only. Molten salts are examples for ionic liq-

uids but usually high temperatures are necessary in order to melt a salt. In contrast there

are ionic liquids which liquify already at temperatures below 100 ◦C; these are commonly

referred to as room-temperature ionic liquids (RTILs) [73, 74]. As compared to ions of

common salts RTIL ions are not roundish on the atomic scale and the charge is distributed
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inhomogeneously across the molecule [74], so that molecular models with hard spherical

ions would be a rather crude approximation. The EDL between an ionic liquid and a

charged wall behaves different as compared to an electrolyte solution EDL. For the latter

case already a description in agreement with the Poisson-Boltzmann equation leads to

reasonable results. This treatment corresponds to the picture that, up to the Coulomb

interaction, ions are ideal gas particles. In particular in dilute electrolyte solutions the

neglect of the volumes of the ions in the theoretical approach leads to, at least, a qualita-

tive agreement with measurements in terms of the differential capacitance. In contrast, in

ionic liquids the ions are the only species present so that volume effects should be taken

into account. For example, in Ref. [73] the so-called Poisson-Fermi equation, a kind of

modified Poisson-Boltzmann equation, is derived from a lattice-gas model of concentrated

electrolytes which takes into account that there is a maximal possible local concentration

of ions. The approach allows to conveniently interpolate between two extreme cases by

means of one parameter γ: the Gouy-Chapman theory corresponds to γ = 0, whereas

γ = 1 means that all available sites are occupied. The differential capacitance C in de-

pendence of the dimensionless electrode potential u0 is given analytically. Within the

Gouy-Chapman approach C(u0) ∝ cosh(u0/2). Already for small but finite values of

γ deviations from this behavior manifest: instead of growing exponentially the capaci-

tance begins to decrease for large |u0| due to lattice saturation. In the limit of large |u0|
the proportionality C ∝ (γ|u0|)−1/2 is predicted; the resulting plot could be described as

camel-shaped. For sufficiently large values of γ the graph of C(u0) exhibits a maximum at

u0 = 0 and decays for growing |u0|. This bell-shaped graph clearly contradicts the Gouy-

Chapman behavior with a minimum at u0 = 0 and thus supports Kornyshev’s argument

that the theory of the EDL in ionic liquids must be built differently [73]. The appearance

of a bell-shaped differential capacitance versus potential curve has been confirmed exper-

imentally for various ionic liquids [29]. Further insight into the structure of ionic liquids

EDLs is provided by an approach of the Landau-Ginzburg type in Refs. [75, 76] which is

able to describe both crowding and overscreening. For increasing surface potential the

counterions form a condensed layer at the interface which expands into the bulk; this be-

havior originates from lattice saturation and is referred to as crowding. Due to short range

correlations the accumulated charge overscreens the electrode charge, i.e., more charge is

located in the condensed layer than on the surface. The resulting net charge leads to a

formation of an additional layer of coions. The latter, in turn, slightly overscreens the net

charge, and so on. The approach in Refs. [75,76] is in better agreement with simulations

than a simpler approach without correlations which allows for the conclusion that corre-

lations play an essential role in ionic liquids. For the interested reader reference is made

to Refs. [74, 77] where ionic liquids at interfaces are reviewed.

To sum up, for the theoretical description it is crucial whether a solvent in the ionic

system is present or not, i.e., one has to make a decision about whether an electrolyte
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solution or an ionic liquid is to be modelled. In the present dissertation EDLs between

electrolyte solutions and curved solid electrodes are discussed (see Chaps. 4 and 5). On

one hand the discussion of ionic systems is partly dedicated to the evaluation of the

morphometric approach. Against this background electrolyte solutions have been the

first choice because their intrinsic length scale can be easily adjusted. In comparison

ionic liquids are accompanied by strong Coulomb correlations [74], which questions the

applicability of the morphometric approach in the first place. On the other hand, as

compared with ionic liquids, the ions of common electrolyte solutions exhibit a simpler

geometry which reduces the complexity of the underlying description. Systems of this kind

can be approached by means of the aforementioned models which have been confirmed

many times. Numeric DFT implementations of molecular models, which are able to

resolve microscopic details of the structure of the EDL, converge relatively fast. This

allows to study extensively the dependence of the EDL on the geometry of the electrode

and to assess the impact of various (microscopic) parameters.

The following Chaps. 2 – 5 contain the insights which have been gained in the course

of this dissertation. The chapters address distinct theoretical models and comprise the

corresponding results and discussions; technical details are to be found in appendices at

the end of each chapter. A thematic classification within the specific literature as well as

a short summary is given for each chapter separately. The dissertation can be roughly

divided into two parts; one consisting of Chaps. 2 and 3 with the focus on simple fluids,

and the other consisting of Chaps. 4 and 5 with the focus on electrolyte solutions. Within

the parts the chapters are closely related and partially build upon each other.

Chapters 2 and 3 are mainly dedicated to the examination of the morphometric ther-

modynamics. To that end the interface between a solid wall and a fluid phase is considered.

The latter is assumed to consist of a simple fluid. The entire wall-fluid system is taken

into account by means of density functional theory (DFT). Such an approach ensures a

consistent description of the fluid phase both in the bulk and close to the inhomogene-

ity. This is essential because the interfacial tension finally arises from subtracting the

contribution proportional to the volume of the phase from the grand canonical potential

of the entire system [see, e.g., Eq. (1.1)]. In addition, the different DFT approaches in

use are microscopic models. They are capable of resolving the structure in interfaces of

macroscopically small radii of curvature in which the shape dependence of the interfacial

tension becomes significant. The wall is of planar, spherical, or cylindrical shape. The

symmetry of these geometries enables an effectively one-dimensional description, which

allows for precise numerics or even for the derivation of exact expressions. Moreover such

kinds of walls exhibit a constant curvature across their surfaces. As a result the expres-

sion for the interfacial tension in agreement with MT simplifies; it can be written as a

polynomial in the inverse wall radius [see Eq. (2.3)].

In Chap. 2 a density functional within the second-virial-approximation is applied. This
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approach ensures high precision for low number densities which is confirmed by compar-

ison with simulation results. It is used in order to calculate numerically the interfacial

tension as a function of the wall radius. This result is expanded in powers of the wall

curvature and compared with the corresponding expression in agreement with MT. For

all considered cases, i.e., distinct interaction potentials for the fluid-fluid as well as for the

fluid-wall interactions, MT turns out to be not exactly valid. Its quality as an approxi-

mation strongly depends on the interface convention which underlies the definition of the

interfacial tension.

In Chap. 3 a modified version of the density functional of Chap. 2 is used in order to

model a Yukawa fluid at curved walls. The resulting Euler Lagrange equations can be

solved analytically for the geometries under consideration and exact expressions for the

interfacial tension can be obtained. These are expanded in powers of the wall curvature

which leads to analytically known curvature coefficients. The latter are discussed in detail.

Among others, they demonstrate that the approach of MT is not complete for the model

in use. The quality of the morphometric approach as an approximation depends on the

shape of the wall.

After a detailed discussion concerning simple fluids in contact with solid walls in

Chaps. 2 and 3, in the subsequent Chaps. 4 and 5 electrolyte solutions at curved electrodes

come into focus. Systems of the latter kind offer more possibilities to manipulate the fluid

behavior in particular close to the interface. For instance, the amount of ions in the

system determines the Debye length, which is an intrinsic length scale corresponding to

the decay behavior of the electrostatic interaction. The wall-fluid interaction potential

can be adjusted by means of the charge on the electrode surface. Moreover the shape

of the electrode itself can be conveniently varied within the theoretical models under

consideration. Since the choice of wall geometries in Chaps. 2 and 3 has led to fruitful

discussions, the same types of geometries are considered also in Chaps. 4 and 5. The above

addressed and further impacts on the structure of the electric double layer are captured

by means of the differential capacitance C. The latter is related to the interfacial tension

so that, in principle, the predictions of MT should be applicable likewise; without the

necessity to specify an interfacial convention, C turns out to be a convenient quantity to

test the morphometric approach. However, MT has turned out to be a doubtful approach

already with respect to simple fluids. Having this in mind, it hardly comes as a surprise,

that also the more complex electrolyte solutions are not in line with MT. For that reason

it is abstained from a too detailed discussion in terms of curvature expansions as in

the preceding chapters. Instead in Chaps. 4 and 5 the focus is on the entire curvature

dependence of the differential capacitance. The outcome of various models is compared

with each other and the influences of parameters, such as surface charge density and ionic

strength, are analyzed.

In Chap. 4 an electrolyte solution in contact with an electrode is taken into account
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by means of the Poisson-Boltzmann theory. The differential capacitance is discussed as

a function of the wall curvature in dependence of, e.g., the ionic strength and the sur-

face charge density. The corresponding graphs reveal two curvature ranges with distinct

behaviors: in the range of small curvatures the capacitance is largely affected by the sur-

face charge density. For large curvatures the dependence on the surface charge density

diminishes. Both curvature ranges are analyzed in detail.

In Chap. 5 an electrolyte solution in contact with an electrode is approached by a

microscopic DFT. The underlying implementation of the so-called civilized model can be

considered as an extension of the PB approach in the preceding chapter. For instance, it

allows for the description of steric effects between the particles in the solution and of a

spatially varying polarization due to the electric dipoles embedded in the solvent particles.

As compared to the PB theory, the civilized model enables to analyze the influence of

microscopic parameters, such as the particle radii or the dipole moment. Furthermore

it is possible to compare its outcome with the predictions of simpler theories for double

layers at curved electrodes.

Conclusions and outlook are given in Chap. 6.
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Chapter 2

Implications of interface conventions

for morphometric thermodynamics

The present Chap. 2 corresponds to a slightly modified and extended version of the study

published in Ref. [22]. There several model fluids in contact with planar, spherical, and

cylindrical walls are investigated for small number densities within density functional

theory. The dependence of the solid-fluid interfacial tension on the curvature of spherical

and cylindrical walls is examined and compared with the corresponding expression derived

within the framework of morphometric thermodynamics. Particular attention is paid to

the implications of the choice of the interface location, which underlies the definition of

the interfacial tension. Morphometric thermodynamics is found to be never exact for the

considered systems. It turns out that its quality as an approximation depends sensitively

on the choice of the interface location.

2.1 Introduction

In recent years morphometric thermodynamics (MT) has been used to understand the

influence of geometric constraints on the thermodynamic properties of fluids [8,14–16,18].

This approach has been motivated by a theorem of integral geometry which is often

referred to as “Hadwiger’s theorem” [78,79]. For example, in Ref. [8] it has been applied

to a fluid of hard spheres bounded by a hard wall. Based on the assumption of being

an additive, motion-invariant, and continuous functional of the shape of the walls, the

grand canonical potential Ωeq of a confined fluid is given, in accordance with Hadwiger’s

theorem, by a linear combination of only four geometrical measures which characterize

the shape S of the confining walls: volume V, surface area A, integrated mean curvature

C, and Euler characteristic Y :

Ωeq[S] = −pV[S] + γ0A[S] + κC[S] + κ̄Y [S]. (2.1)

21
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According to Eq. (2.1) the pressure p, the interfacial tension for a planar wall γ0, and the

bending rigidities κ and κ̄, unlike the geometrical measures, do not depend on the shape

of the bounding container. This structure turns morphometric thermodynamics into a

very attractive tool, because once the thermodynamic coefficients p, γ0, κ, and κ̄ have been

determined, preferably by considering simple geometries S, the grand canonical potential

can be readily calculated even for systems bounded by complex geometries the shape S

of which enters Eq. (2.1) only via the measures V,A, C, and Y . This strategy has been

used, e.g., in Refs. [14,15,18] in order to calculate solvation free energies of proteins with

complex shapes.

As a thermodynamic quantity, which follows from the grand canonical potential, the

interfacial tension γ acquires the simple morphometric form [8]

γ = γ0 + κH̄ + κ̄K̄, (2.2)

where H̄ = C/A and K̄ = Y/A denote the averaged mean and Gaussian curvatures,

respectively, of the confining wall [8]. In the case of geometries with constant curvatures,

i.e., spherical and cylindrical walls with radii of curvature R, Eq. (2.2) can be written as

γ =











γ0 +
γ1
R

+
γ2
R2

, spherical wall,

γ0 +
γ1
R
, cylindrical wall,

(2.3)

where γ1,2 denote coefficients independent of the curvature 1/R and where γ2 = 0 in the

case of cylindrical walls. Note that in Eq. (2.3) and below in Eq. (2.18) the coefficients

γn>0 are not the same for spherical and cylindrical walls. For clarity in the following

the considered geometry is explicitly noted. For the case that coefficients of different

geometries are compared with each other, additional subscripts will be introduced.

On one hand morphometric thermodynamics has already been applied to several phys-

ical systems confined to geometries with complex shapes [14,15,18] and it has been found

to be in agreement with certain data of hard spheres [8,10,16] and of hard rods [9] in con-

tact with hard walls. On the other hand, in agreement with earlier studies using gradient

expansion approaches [80, 81], recently evidences have been provided, that a description

as in Eq. (2.3), where the curvature expansion of the interfacial tension for a spherical

wall terminates after the quadratic and that of a cylindrical wall after the linear order in

1/R, could be incomplete [19–21].

Here an explanation for the observation is proposed that for certain studies morpho-

metric thermodynamics appears to be applicable, whereas it is not for others. To that

end, several model fluids with small number densities in contact with curved walls are

analyzed by means of density functional theory (DFT) within the second virial approxi-

mation (see Sec. 2.2). This technically simple approach allows one to study various kinds
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of interactions among the fluid particles [Eqs. (2.4) – (2.6)] with high numerical precision

for low densities (see, e.g., Fig. 2.3). For this reason fluids with high densities as they

occur, e.g., at two-phase coexistence, are not considered. It turns out that those basic

features of morphometric thermodynamics this study is aiming at reveal themselves al-

ready at low densities for which one can control the numerical accuracy sufficiently in

order to address reliably the corresponding issues. Moreover exact results are presented

for an ideal gas fluid confined by non-hard spherical and cylindrical walls. The focus is

on the interfacial tension γ. Its curvature dependence is compared with the one predicted

from morphometric thermodynamics [Eq. (2.3), see Sec. 2.3]. It turns out that the mor-

phometric form of the interfacial tension is indeed not valid exactly and that its quality

as an approximation depends on the choice of the location of the interface underlying the

definition of the interfacial tension (see Sec. 2.4).

2.2 Model

Let us consider a simple fluid composed of particles which interact via an isotropic pair

potential U(r) which is characterized by an energy scale U0, a length scale L, and, for

technical convenience, a cut-off length Lc such that U(r > Lc) = 0. The focus is on three

distinct types of pair potentials:

• the square-well (U0 < 0) or square-shoulder (U0 > 0) potential

βU(r ≤ Lc) = βU0 (2.4)

with L = Lc,

• the Yukawa potential (U0 > 0)

βU(r ≤ Lc) = βU0
L

r
exp

(

− r

L

)

, (2.5)

• the Lennard-Jones potential (U0 > 0)

βU(r ≤ Lc) = βU0

[

(

L

r

)12

−
(

L

r

)6
]

. (2.6)

In the following non-uniform number density profiles ̺(r) of the fluid in contact with

walls are studied. To this end density functional theory [58] offers a particularly useful

approach. Since the present investigation is focused on low densities, we use the density

functional Ω[̺] within the second-virial approximation [49, 61, 82] (see Appendix 2.A for
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a derivation of the excess functional):

βΩ[̺] =

∫

d3r ̺(r)
{

ln
[

̺(r)L3
]

− 1 − βµ + βV ext(r)
}

+
1

2

∫

d3r

∫

d3r′ ̺(r)̺(r′) {1 − exp[−βU(|r − r′|)]} ,
(2.7)

where β = 1/(kBT ) is the inverse temperature, V ext(r) is the external potential due to

walls, and µ is the chemical potential µ̃ shifted by a constant (with respect to r and ̺)

given by the thermal de Broglie wavelength Λ and the length scale L of the pair potential

among the fluid particles:

βµ := βµ̃− 3 ln

(

Λ

L

)

. (2.8)

The geometrical properties of the walls enter the description only via the external

potential V ext. In order to determine the thermodynamic coefficients in Eq. (2.1) we

consider the bulk fluid and the fluid in contact with planar, spherical, and cylindrical

walls exhibiting constant curvatures. For these choices the densities in Eq. (2.7) depend

on a single spatial variable only.

• The uniform bulk corresponds to a spatially constant external potential, which can

be set to zero without loss of generality:

βV ext(r) = 0. (2.9)

As a consequence the equilibrium density ̺eq(r) = ̺bulkeq is independent of the posi-

tion r.

• A planar wall leads to an external potential

βV ext(r) =







∞, z < 0,

βV (z), z ≥ 0.
(2.10)

This potential implies that the equilibrium density ̺eq(z) is identically zero for

z < 0. Therefore it is not possible for the centers of the fluid particles to get closer

to the wall than z = 0. In the following the set of accessible points of the centers

of the fluid particles closest to the geometrical wall surface is called the reference

surface. In Eq. (2.10) V (z) represents the excess part of the wall potential [i.e., in

excess of V ext(z < 0) = ∞] as a function of the distance z from the reference surface.

Depending on the wall-fluid interaction potential, the geometrical wall surface at

position Xg in Fig. 2.1 and the reference surface at position X in Fig. 2.1 can be

distinct.
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• A spherical wall with radius R of the reference surface is characterized by an external

potential

βV ext(r) =







∞, r < R,

βV (r), r ≥ R,
(2.11)

where V (r) represents the excess part of the external potential as a function of the

distance r to the center of the sphere.

• A cylindrical wall with radius R of the reference surface is characterized by an

external potential of the same form as the one in Eq. (2.11); however, in this case,

r and R measure distances from the symmetry axis of the cylinder.

In accordance with the variational principle underlying density functional theory [58]

the equilibrium density ̺eq(r) minimizes the functional in Eq. (2.7). The corresponding

Euler Lagrange equation,

δβΩ[̺]

δ̺(r)

∣

∣

∣

∣

̺eq

= ln
[

̺eq(r)L3
]

− βµ + βV ext(r) +

∫

d3r′ ̺eq(r
′){1 − exp[−βU(|r − r′|)]}

= 0,

(2.12)

is solved numerically by means of the Piccard iteration scheme (see Sec. 8.1 in Ref. [61]).

From the equilibrium density profile ̺eq(r), the grand canonical potential Ωeq follows

from [58] [Eq. (2.7)]

Ωeq = Ω[̺ = ̺eq]. (2.13)

It has been verified that the hard wall sum rule (see, e.g., Ref. [10]) is fulfilled by the

functional in Eq. (2.7).

2.3 Discussion

The interfacial tension γ is defined by

L2βγ =
βΩeq − βΩbulk

eq

AL−2
=

βΩeq + βp V
AL−2

(2.14)

as the work Ωeq −Ωbulk
eq per interfacial area A required to create the interface [3]. On the

right hand side of Eq. (2.14) the relation

βΩbulk
eq = −βp V (2.15)
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Figure 2.1: The reference surface (solid line) at position X is determined by the external
potential. It consists of the set of all reachable locations of the centers of the fluid
particles which are closest to the geometrical wall surface (dash-dotted line) at position
Xg. Depending on the wall-fluid interaction potential, the geometrical wall surface and
the reference surface can be distinct. The interface of area A (dashed line), with respect
to which the interfacial tension γ in Eq. (2.16) is defined, may differ from the reference
surface. The parameter δ measures the offset of the interface with respect to the reference
surface. This sketch refers to the cases of spherical or cylindrical walls for which X ≡ R.
However, the concept involving the parameter δ is valid also for other geometries, in
particular for a planar wall with X ≡ z = 0. If the dashed line runs within the interior
of the reference surface, δ is taken to be negative. The fluid volume V, which refers to
the set of all points being not closer to the geometrical wall surface than the interface, is
shaded in grey.

between the grand canonical potential Ωbulk
eq , the fluid volume V, and the bulk pressure p

has been used [3].

The wall-fluid interfacial tension γ is not an observable because according to Eq. (2.14)

its value depends, via V and A, on the arbitrary choice of an interface position. In order

to characterize various interface conventions we introduce a parameter δ which measures

the offset of a chosen interface position with respect to the reference surface (see Fig. 2.1).

In addition to the interfacial area A the choice of an interface position also determines

what is called the fluid volume V, which refers to the set of all points being not closer to

the geometrical wall surface than the interface. As a consequence A and V are functions

of X + δ where X characterizes the reference surface (see Fig. 2.1). On the other hand

Ωeq depends on X only, because due to Eq. (2.13) only the parameters of the substrate

potential (i.e., X) enter Ωeq. Accordingly, one has

L2βγ(X, δ) =
βΩeq(X) + βp V(X + δ)

A(X + δ)L−2
. (2.16)

In the following the data are calculated within the convention δ/L = 0 as this choice
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Figure 2.2: The interfacial tension γ of hard spheres with diameter L for the convention
δ/L = 0 as a function of the radius R of the reference surface forming the boundary
of a spherical (a) and a cylindrical (b) hard body. Polynomials (lines) as predicted by
morphometric thermodynamics [up to order 1/(R+δ)2 for spherical walls and up to order
1/(R+ δ) for cylindrical walls] have been fitted to the numerical data (dots). In panel (a)
the fit shows good agreement with the data, whereas panel (b) clearly shows deviations
from the predicted behavior. This means that for the cylindrical wall the curvature
expansion of γ Eq. (2.3) does not terminate after the first-order term, in contradiction
to the prediction from morphometric thermodynamics. The hard spheres interact among
each other via the square-shoulder potential U(r) in Eq. (2.4) with βU0 = ∞. The
chemical potential is chosen as βµ = −2.768839 which corresponds to the low packing
fraction η = π

6
̺bulkeq L3 ≈ 0.02656.

is convenient for various types of interactions U . Moreover, in certain studies (see, e.g.,

Ref. [83]) this choice has been argued to be “the natural one from the point of view

of statistical mechanics”. Figure 2.2 shows the interfacial tension γ for hard spheres in

contact with spherical [Fig. 2.2(a)] and cylindrical [Fig. 2.2(b)] walls with various radii
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R of the reference surface. The packing fraction η = π̺bulkeq L3/6 is chosen sufficiently

small such that the second virial approximation is valid. The plot for the cylindrical

walls [Fig. 2.2(b)] reveals a non-linear increase, similar to the case of spherical walls

[Fig. 2.2(a)]. This means that the curvature expansion of γ in terms of powers of 1/R

does not terminate after the first-order term, in contradiction to the prediction from

morphometric thermodynamics for cylindrical walls.

Evaluating Eq. (2.16) for δ = 0 and arbitrary δ 6= 0 and exploiting that Ωeq does not

depend on δ leads to

L2βγ(X, δ) =
A(X)

A(X + δ)
L2βγ(X, δ = 0) +

L2βp

A(X + δ)
[V(X + δ) − V(X)] . (2.17)

According to Eq. (2.17) the interfacial tension γ(X, δ = 0) calculated for the convention

δ/L = 0 can be translated to that for any other choice of the convention. For example the

convention δ/L = −0.5 is often used when discussing hard spheres confined by hard walls

because this choice renders the interface to coincide with the geometrical wall surface at

position Xg in Fig. 2.1, which, in this case, is separated from the reference surface at

position X in Fig. 2.1 by a distance given by the particle radius L/2.

In Fig. 2.3 simulation results of Laird et al. [16] for hard spheres with packing fraction

η = 0.02656, obtained for δ/L = −0.5, are plotted together with the data of Fig. 2.2

which have been translated into the convention δ/L = −0.5 according to Eq. (2.17). The

agreement with the simulation data is very good. In particular, within this convention

for δ, in the case of a cylindrical wall [Fig. 2.3(b)] the data points almost coincide with a

straight line, in accordance with the prediction of morphometric thermodynamics. This

finding has also been confirmed for the packing fractions η ≈ 0.053 and 0.101, for which

the respective plots are qualitatively similar to those in Fig. 2.3 except that, as expected,

the results of the present virial expansion deviate more and more from the simulation

data upon increasing the density.

Figures 2.2 and 2.3, which are based on the same microscopic system, show that the

interfacial tension depends strongly on the choice of the convention for δ. Upon varying δ

not only the sign of γ may change, as already noted in Ref. [10], but also the magnitude

and even the qualitative functional form, which is revealed clearly in the case of cylindrical

walls.

Figure 2.4 shows the behavior of the same microscopic system as above (hard spheres

exposed to a hard cylindrical wall) described in terms of two conventions for η ≈ 0.01.

The data are presented in log-log plots which facilitate the identification of power laws in

1/(R + δ). In this presentation the contribution γ0(δ) of the planar wall is subtracted so

that the plotted quantity vanishes for R → ∞. Within the convention δ/L = 0, at R ≈ 3L

there is a crossover between two power laws. Thus the dependence of the interfacial tension

on 1/R consists of more than the leading term ∼ 1/R which, according to morphometric
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Figure 2.3: Comparison of the simulation results of Laird et al. [16] (squares �) with
the corresponding data of the present DFT study (crosses ×) for the packing fraction
η ≈ 0.02656. The latter have been obtained by translating the data displayed in Fig. 2.2
(for δ = 0) into the convention δ/L = −0.5 by using Eq. (2.17). In contrast to Fig. 2.2(b),
the plot of the interfacial tension in the case of a cylindrical wall (b) almost coincides with
a straight line.

thermodynamics, would be the only one allowed for the cylindrical configuration. The

behavior is different within the convention δ/L = −0.5. There, within this presentation,

the interfacial tension is represented by an almost straight line throughout the whole

range of (R+ δ)/L shown. In order to analyze the curvature dependence of the interfacial

tension more quantitatively, we assume that γ(R, δ) can be expanded in terms of a power

series in 1/(R + δ):

L2βγ(R, δ) = L2
∞
∑

n=0

Ln βγn(δ)

(R + δ)n
. (2.18)
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Figure 2.4: Dependence of the interfacial tension γ for hard spheres at a cylindrical
hard wall on the radius R of the reference surface and on the shift parameter δ. The
contribution of the planar wall γ0(δ), which corresponds to the limit R → ∞, has been
subtracted. The numerical data (red dots) are obtained within the convention δ/L = 0
(a) and translated to the convention δ/L = −0.5 (b) via Eq. (2.17). The three straight
lines represent the terms n = 1, 2, 3 of the curvature expansion in Eq. (2.18). In the
case δ/L = 0 the coefficient γ2(δ) is the largest one, i.e., for small R the contribution
βγ2(δ)L4/(R + δ)2 is the dominant one so that a deviation from the leading behavior
∼ 1/(R + δ) becomes obvious for R/L . 3. Within the convention δ/L = −0.5 the
leading coefficient γ1(δ) is the largest one, i.e., the leading term βγ1(δ)L3/(R + δ) is the
dominant one. Here U(r) is given by Eq. (2.4) with U0 → ∞ and βµ = −3.88 so that
η ≈ 0.01. Note that at (R + δ)/L = 1 the plots render the values of the dimensionless
coefficients βγn(δ)L2.

For various radii R of the reference surface of the curved wall, the interfacial tension

γ is calculated numerically (red dots in Fig. 2.4) and fitted to the curvature expansion

Eq. (2.18) with n ≤ 10. This way the coefficients γn(δ) have been determined. Only

the coefficient γ0(δ), which is the interfacial tension at a planar wall, can be obtained
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independently without fitting. In Fig. 2.4 the terms Ln+2βγn(δ)/(R + δ)n corresponding

to n ∈ {1, 2, 3} in the curvature expansion of Eq. (2.18) are plotted as lines. Within

the convention δ/L = 0 the quadratic coefficient γ2, which vanishes within morphometric

thermodynamics, is even larger than the linear coefficient γ1; this explains the crossover

between two power laws describing the numerical data (red dots). However, within the

convention δ/L = −0.5 the first-order coefficient γ1 is much larger than the higher order

coefficients γn, n ≥ 2, so that in this case morphometric thermodynamics is a very good

approximation of the exact curvature dependence of the interfacial tension.

Within the class of systems with square-well-like or square-shoulder-like particle-

particle interactions, a large variety of configurations within the convention δ/L = 0

has been studied in the same way as shown in Fig. 2.4. Fluids with packing fractions

η ∈ {0.01, 0.02, 0.05, 0.10} and with interaction strengths βU0 ∈ {−0.1, 0.1, 1, ∞} have

been examined near spherical and cylindrical hard walls. In addition to the interfacial

tension γ, the dimensionless excess adsorption Γ [3],

L2Γ(X, δ) =
N(X) − ̺bulkeq V(X + δ)

A(X + δ)L−2
, (2.19)

has been calculated for U0 > 0 where N(X) =
∫

V(X)
d3r ̺(r) denotes the number of fluid

particles. The corresponding observations can be summarized as follows:

• Apart from opposite signs, both the excess adsorption Γ and the interfacial tension

γ exhibit a similar dependence on the radius of curvature R.

• The functional form of L2 [βγ(R, 0) − βγ0(0)] is similar when comparing fluids with

the same bulk state near a spherical and a cylindrical hard wall. Because in all

considered cases the third order coefficient γ3 is smaller than γ1 and γ2, morphome-

tric thermodynamics turns out to be a better approximation for spherical than for

cylindrical walls.

• Decreasing packing fractions η or interaction strengths U0 > 0 result in a shift of the

crossover between the power laws describing L2[βγ(R, 0) − βγ0(0)] towards larger

radii R, i.e., the second coefficient γ2 becomes larger in comparison to the first

coefficient γ1. Apart from that, the behavior of L2 [βγ(R, 0) − βγ0(0)] is similar to

the one shown in Fig. 2.4. For U0 < 0, L2 [βγ(R, 0) − βγ0(0)] exhibits a zero because

the coefficients γ1 and γ2 have opposite signs.

• For some of the above systems the data have been translated to the convention

δ/L = −0.5 by using Eq. (2.17). In these cases, for the spherical wall configurations

the third order coefficient γ3 is much smaller than γ1 and γ2, and for the cylindrical

wall configurations the leading coefficient γ1 is much larger than the subleading
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ones. Therefore, within this convention morphometric thermodynamics turns out

to be a very good approximation.

The comparison of the plots in Figs. 2.4(a) and (b) shows that the coefficients γn(δ)

in the curvature expansion [Eq. (2.18)] indeed depend on the chosen convention δ (see

also, e.g., Refs. [10, 19, 21]). In order to examine the implications of shifting the position

of the interface (see Fig. 2.1) this dependence is investigated more closely. The derivative

of Eq. (2.16) with respect to δ for fixed R leads to

L
∂

∂δ
L2βγ(R, δ) = −L3βp− d

L

R + δ
L2βγ(R, δ),

d =







2, spherical wall,

1, cylindrical wall,

(2.20)

where V ′(R+ δ) = −A(R+ δ) and A′(R+ δ)/A(R+ δ) = d/(R+ δ) have been used. The

derivative of Eq. (2.18) with respect to δ gives

L
∂

∂δ
L2βγ(R, δ) = L3

∞
∑

n=0

{

Ln βγ′
n(δ)

(R + δ)n
− Lnn

βγn(δ)

(R + δ)n+1

}

. (2.21)

Equating Eqs. (2.20) and (2.21) and using Eq. (2.18) leads to

−L3βp = L3βγ′
0(δ) +

∞
∑

n=1

Ln

(R + δ)n
{

L3βγ′
n(δ) + (d− n + 1)L2βγn−1(δ)

}

(2.22)

for all R. Comparison order by order in (R + δ)−1 in Eq. (2.22) renders

O
[

(R + δ)0
]

: −L3βp = L3βγ′
0(δ) (2.23)

and

O
[

(R + δ)−n
]

, n ≥ 1 : L3βγ′
n(δ) + (d− n + 1)L2βγn−1(δ) = 0. (2.24)

Integration of Eqs. (2.23) and (2.24) with respect to δ leads to the following iterative
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Figure 2.5: Reduced coefficients γn(δ), n ∈ {0, 1, 2, 3}, characterizing the curvature ex-
pansion in Eq. (2.18) as function of the shift parameter δ and as obtained from Eq. (2.25).
The data correspond to a hard sphere fluid at βµ = −3.88, so that η ≈ 0.01, exposed to
hard spherical (a) or cylindrical (b) walls.

algorithm for determining the dependence of the coefficients γn(δ), n ≥ 0, on δ:

n = 0 : L2βγ0(δ) = L2βγ0(0) − L3βp
δ

L
,

n ≥ 1 : L2βγn(δ) = L2βγn(0) + (n− d− 1)

δ
∫

0

dδ̃

L
L2βγn−1(δ̃),

d =







2, spherical wall,

1, cylindrical wall.

(2.25)

The dependence of the coefficients γn(δ) on δ is fully determined once in Eq. (2.25)

the values of γn′(0) for all n′ ≤ n are known. Here the values γn(0) are obtained by fitting
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Figure 2.6: Reduced coefficients γn(δ), n ∈ {0, 1, 2, 3}, characterizing the curvature ex-
pansion in Eq. (2.18) as function of the shift parameter δ and as obtained from Eq. (2.25).
The data correspond to a fluid with a square-shoulder pair potential U(r) [Eq. (2.4)] with
βU0 = 0.1 and βµ = −3.95 so that η ≈ 0.01. The fluid is exposed to hard spheres (a) or
hard cylinders (b).

Eq. (2.18) for n ≤ 10 to the numerical data within the convention δ/L = 0. Considering

terms in Eq. (2.18) to such high orders was necessary in order to achieve a sufficiently

high precision for the actually interesting coefficients γ1(δ), . . . , γ3(δ) (see Figs. 2.4 – 2.9);

taking the additional terms of order n ≥ 4 into account guarantees that these coefficients

γ1(δ), . . . , γ3(δ) are not affected by the fast-decaying contributions of the full curvature

expansion. Thereby it has been found that the ratio of the leading coefficients for the

spherical wall, γs1(0), and for the cylindrical wall, γc1(0), takes the value γs1(0)/γc1(0) = 2

for all systems considered here, with a relative deviation of 10−7 or less. Comparison of

that numerical result with the exact relation γs1(δ)/γc1(δ) = 2, which follows from the fact

that the total curvatures J = 1/R1+1/R2 of a sphere, Js, and of a cylinder, Jc, are related
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by Js = 2Jc (see Refs. [8, 19]), validates the applied numerical approach. [See also the

discussion in Sec. 3.3.4 with respect to Eq. (3.92).] The relationship between the leading

coefficients has been the motivation for considering also the ratio of the next-to-leading

coefficients. For small packing fractions γs2(δ)/γc2(δ) ≈ 8/3 for δ = 0, independently

of the particle-particle interaction potential U . The value of this ratio does depend on

the convention for δ because the spherical coefficient γs2(δ) varies with δ, whereas the

cylindrical coefficient γc2 is constant (see discussion below). Actually, the value 8/3 can

be obtained from the exact analytical expressions for the surface tension in the low-

density limit for a fluid of hard spheres [21]. Moreover, the exact expression in Eq. (2.57)

(see Appendix 2.B) describes the deviation of the ratio γs2(0)/γc2(0) from 8/3 for an

ideal gas of particles as function of the strength βV yu
p of a short-ranged excess external

potential in addition to the hard wall potential. In Sec. 3.3.4 the discussion about the

ratio γs2(0)/γc2(0) is continued [see Eqs. (3.93) and (3.95) and the corresponding text].

It is interesting to pay special attention to the coefficient γn=d+1 in Eq. (2.25) which

is the coefficient of the lowest order being not in accordance with morphometric thermo-

dynamics. For this order n = d + 1 one has n− d − 1 = 0 and therefore γd+1 is constant

in δ [see Eq. (2.25) for n ≥ 1, as well as, e.g., Refs. [19–21]]. This checks with Fig. 2.4

(corresponding to d = 1), where the values of the coefficients γ2 can be read from the lines

∼ 1/(R+δ)2 at (R+δ)/L = 1. The value of γ2 is not vanishing and it is the same in both

conventions for δ. This implies that within morphometric thermodynamics the curvature

expansion is not exact for any convention for δ. On the other hand, if, as a consequence

of Eq. (2.25), the R-dependence of γ(R, δ) within morphometric thermodynamics would

be exact for any single convention for δ, it would be exact for all conventions for δ. How-

ever, this statement is of no practical use, because, on the basis of numerical data, it is

virtually impossible to prove that there is a convention for δ within which the morpho-

metric form of the interfacial tension is exact. In contrast, Fig. 2.4 shows that even if the

non-morphometric coefficients γn(δ) (n ≥ 2 for a cylindrical wall) are numerically small

for one convention for δ [see Fig. 2.4(b)] they may be large for another [see Fig. 2.4(a)].

The reason for this is that the operation of approximating the curvature-dependence of

the interfacial tension by the form predicted within morphometric thermodynamics does

not commute with the operation of shifting the interface.

Figure 2.5 shows the dependence of the coefficients γn(δ), 0 ≤ n ≤ 3, of the curvature

expansion Eq. (2.18) on the shift parameter δ. Except for the first non-morphometric

coefficient (i.e., γ3 for a sphere and γ2 for a cylinder), which is constant in δ, the coeffi-

cients γn(δ) vary over several orders of magnitude upon changing δ. This is particularly

pronounced near δ/L = 0, where the morphometrically allowed coefficients are small; in

the case of a cylindrical wall γ1 is even smaller than the leading non-morphometric co-

efficient γ2. However, apart from this region around δ/L = 0, e.g., at δ/L = −0.5, the

morphometrically allowed coefficients exceed the leading non-morphometric coefficient by
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Figure 2.7: Same as Fig. 2.6 for a fluid with a Yukawa pair potential [Eq. (2.5)] with
βU0 = 0.1, βµ = −3.94, and Lc/L = 5 so that η ≈ 0.01.

several orders of magnitude. These observations are in agreement with the findings of

Fig. 2.4 which is based on the same system and where for each convention for δ the coeffi-

cients, the values of which are rendered at (R+ δ)/L = 1, have been fitted independently.

Figure 2.5 demonstrates that the interfacial tension cannot be represented exactly by the

form obtained within morphometric thermodynamics, and that the quality of the approx-

imation of the interfacial tension by the morphometric form depends on the position of

the interface parameterized by the shift δ.

So far we have mainly focused on hard sphere fluids near hard walls. In the following

we discuss to which extent the aforementioned observations can be extended to other

systems. This will be discussed along the lines of Fig. 2.5.

Figure 2.6 displays the corresponding results for a fluid which is governed by a square-

shoulder pair potential of finite strength βU0, acting as a representative for interaction
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Figure 2.8: Same as Fig. 2.7 for a fluid with a Lennard-Jones pair potential [Eq. (2.6)]
with βU0 = 0.1, βµ = −3.92, and Lc/L = 5 so that η ≈ 0.01.

potentials of finite range. The comparison with Fig. 2.5 does not reveal qualitative

changes. Figures 2.7 and 2.8, respectively, display the corresponding results for a fluid

with a Yukawa pair potential, representing exponentially decaying interaction potentials,

and for a Lennard-Jones pair potential, representing algebraically decaying pair poten-

tials. Although comparing them with Figs. 2.5 and 2.6 reveals certain differences, the

main conclusions remain the same: the coefficients γn(δ) are strongly affected by the

choice of the convention for δ and, whereas for none of the systems considered here the

curvature-dependence of the interfacial tension is exactly in agreement with morphomet-

ric thermodynamics, the morphometric form of the interfacial tension may be an excellent

approximation for suitable conventions for δ.

In order to further assess to which extent the above findings are generic, an additional

excess part V of the external potential V ext is considered. This excess part V is obtained
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Figure 2.9: Reduced coefficients γn(δ), n ∈ {0, 1, 2, 3}, characterizing the curvature ex-
pansion in Eq. (2.18) as function of the shift parameter δ and as obtained from Eq. (2.25).
Panels (a), (b), and (c) belong to the same systems as in Figs. 2.6(a), 2.7(a), and 2.8(a),
respectively, with an additional soft part V of the external substrate potential: (a) V
given by Eq. (2.59), (b) V given by Eq. (2.60), and (c) V given by Eq. (2.62). The data
correspond to the following choice of system parameters: βV sq

p = βV yu
p = βV LJ

p = 0.1
(see Appendix 2.C), Lw/L = 1, and Lcw/L = 5.
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by integrating the pair potential Uw(r) between a fluid particle and a wall particle over

the volume Ṽ of the wall:

βV (r) = ̺w

∫

Ṽ

d3r′ βUw(|r − r′|), (2.26)

where in Ṽ the number density ̺w of the wall is taken to be constant. The particle-wall

potentials Uw(r) are chosen to be of a similar form as the pair potentials U(r) between the

fluid particles [Eqs. (2.4) – (2.6)], with the exception that the Yukawa-like wall-particle

potential is not truncated and the repulsive part of a Lennard-Jones-like wall potential is

replaced by a hard wall. The pair potentials are characterized by an energy scale U0w, a

length scale Lw and a cut-off length Lcw such that Uw(r > Lcw) = 0:

• the square-well (U0w < 0) or square-shoulder (U0w > 0) potential

βUw(r ≤ Lcw) = βU0w (2.27)

with Lw = Lcw,

• the Yukawa potential (U0w > 0, Lcw = ∞)

βUw(r) = βU0w
Lw

r
exp

(

− r

Lw

)

, (2.28)

• the Lennard-Jones potential (U0w > 0)

βUw(r) =















βU0w

[

(

Lw

r

)12

−
(

Lw

r

)6
]

, Lw ≤ r ≤ Lcw,

∞, r < Lw.

(2.29)

The resulting excess parts V of the substrate potentials as function of the radial distance

z to a spherical reference surface of radius R are given in Eqs. (2.59), (2.60), and (2.62)

in Appendix 2.C.

In Fig. 2.9 the results for systems with a non-vanishing excess part V of the external

potential are shown. The parameters are chosen such that, apart from V 6= 0, the same

systems as in Figs. 2.6(a), 2.7(a), and 2.8(a) are analyzed. It again turns out that the

coefficients γn(δ) exhibit a strong dependence on δ so that the quality of morphometric

thermodynamics as an approximation depends sensitively on the convention for δ. As a

general trend, for all three examples shown in Fig. 2.9 the non-morphometric coefficient

|βγ3(δ)|L2 is not negligible in wider ranges of conventions for δ than in the cases without an

excess substrate potential V . In this sense the quality of morphometric thermodynamics as

an approximation deteriorates in the presence of excess parts V of the substrate potential.
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2.4 Conclusions and Summary

By using density functional theory within the second virial approximation several model

fluids with small number densities in contact with planar, spherical, or cylindrical walls

have been analyzed. The curvature expansion [Eq. (2.18)] of the interfacial tension γ

has been compared with the expression derived within morphometric thermodynamics

[Eq. (2.3)]. Particular attention has been paid to the implications of the choice of the

position of the interface, which underlies the definition of the interfacial tension [Eq. (2.16)

and Fig. 2.1]. For none of the considered systems the expression for the interfacial tension

in accordance with morphometric thermodynamics is exact, regardless of whether the

particles interact with each other via a square-well or square-shoulder potential [Eq. (2.4)],

a Yukawa potential [Eq. (2.5)], or a Lennard-Jones potential [Eq. (2.6)]. As shown in

Figs. 2.5 – 2.8 the coefficients γn(δ) of the curvature expansion in Eq. (2.18) may depend

sensitively on the chosen interface convention, which is expressed in terms of the shift

parameter δ (Fig. 2.1). There are conventions for which the morphometrically allowed

coefficients are much larger than the morphometrically forbidden ones so that within

them morphometric thermodynamics is a reliable approximation of the interfacial tension.

However, the opposite situation can occur for other interface conventions, in which case

morphometric thermodynamics has to be used with caution. In particular the reliability

of morphometric thermodynamics as an approximation deteriorates in the presence of

excess contributions to the wall potential (Fig. 2.9). Based on these results, it turns out

to be necessary in future applications of morphometric thermodynamics to clearly state

which interface convention is chosen and why morphometric thermodynamics is expected

to be a reliable approximation for that particular interface convention as compared with

others.

2.A Derivation of the excess functional

A grand canonical ensemble of particles is described within density functional theory

by density functionals of the generic structure [58]

βΩ[̺] =

∫

d3r ̺(r)
{

ln
[

̺(r)Λ3
]

− 1 − βµ + βV ext(r)
}

+ βF ex[̺], (2.30)

with β = 1/(kBT ), the Boltzmann constant kB, the absolute temperature T , the number

density ̺, the de Broglie thermal wavelength Λ, the chemical potential µ, the external

potential V ext, and the excess functional F ex. The latter takes into account interactions

between the particles. With the choice F ex = 0 Eq. (2.30) would correspond to a system

of non-interacting ideal gas particles, i.e., F ex incorporates contributions in excess of the
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ideal gas. In general the precise form of the excess functional is not known. However,

since in the present case the focus is on systems with small number densities, F ex can be

approximated by a truncated expansion in powers of the number density, which is exact

in the low density limit. This appendix is dedicated to explain the origin of the excess

functional in use [see Eq. (2.7)] with respect to principles of statistical mechanics. The

generic functional Eq. (2.30) gives rise to the Euler-Lagrange equation (ELE)

δ(βΩ)

δ̺(r)

∣

∣

∣

∣

̺eq

= ln
[

̺eq(r)Λ3
]

− βµ + βV ext(r) − c(1)(r, [̺eq]) = 0, (2.31)

c(1)(r, [̺]) := −δ (βF ex)

δ̺(r)
, (2.32)

where the one-point direct correlation function c(1) has been introduced. In the following,

at first an expression for c(1) is derived, which afterwards is used to determine the excess

functional F ex according to Eq. (2.32). The argument (r, [̺]) indicates that the quantity

in question is evaluated at the position r and that it is a functional of ̺. For reasons of

clarity this notation is only used with respect to c(1). The ELE (2.31) is fulfilled by the

equilibrium number density ̺eq. With the abbreviation

z(r) :=
exp[βµ− βV ext(r)]

Λ3
(2.33)

the ELE (2.31) can be written as

c(1)(r, [̺eq]) = ln

[

̺eq(r)

z(r)

]

. (2.34)

In density functional theory usually the ELE is an equation for the unknown equilibrium

number density ̺eq whereas the quantities z and c(1) are given. However, within this

appendix, an expression for c(1) is derived by calculating the right hand side of Eq. (2.34)

by means of the grand partition function Z. It will turn out that z and ̺eq cannot be

chosen independently from each other. In the following the subscript “eq” of ̺eq indicates

the equilibrium number density which corresponds to a certain choice of z. The grand

partition function is given by [49, 58],

Z =
∞
∑

N=0

1

N !

∫

d3r1 . . .

∫

d3rN

N
∏

i=1

z(ri) exp[−βu(r1, . . . , rN)], (2.35)

where N denotes the number of particles in the system, ri is the position of the ith

particle, and where u is the potential energy due to mutual interactions of the particles.

The equilibrium number density ̺eq is obtained by taking the average of the density
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operator ˆ̺ [58]

̺eq(r) = 〈 ˆ̺(r)〉 =

〈

N
∑

i=1

δ(r − ri)

〉

=
1

Z

∞
∑

N=0

1

N !

∫

d3r1 . . .

∫

d3rN

N
∏

j=1

z(rj) exp[−βu(r1, . . . , rN)]

[

N
∑

i=1

δ(r − ri)

]

.

(2.36)

The functional derivative of the grand partition function Eq. (2.35) with respect to z at

position r is given by

δZ
δz(r)

=

∞
∑

N=0

1

N !

∫

d3r1 . . .

∫

d3rN

{

N
∑

i=1

N
∏

j=1
j 6=i

z(rj)δ(ri − r)
z(ri)

z(r)

}

exp[−βu(r1, . . . , rN)],

(2.37)

where the δ-function δ(ri − r) is the result of the functional derivative δz(ri)/δz(r). Due

to the presence of the δ-function the quotient z(ri)/z(r) corresponds to a factor of 1,

which is introduced in order to compare Eq. (2.37) with the expression Eq. (2.36) for the

equilibrium number density. This results in

δZ
δz(r)

=
Z̺eq(r)

z(r)
(2.38)

⇔ 1

Z
δZ

δz(r)
=

̺eq(r)

z(r)
, (2.39)

that is, a relation between the grand partition function Z and the quantities which appear

on the right hand side of Eq. (2.34). In the following it is assumed that the particles

interact pairwisely with each other and that the particle-particle interaction potential U

depends only on the distance between the particles,

u(r1, . . . , rN) =
1

2

N
∑

i,j=1
i 6=j

U(|ri − rj |). (2.40)

The grand partition function Eq. (2.35) is functionally expanded in powers of z:

Z = 1 +

∫

d3r1 z(r1) +
1

2

∫

d3r1

∫

d3r2 z(r1)z(r2) exp[−βU(|r1 − r2|)] + O
(

z3
)

.

(2.41)

This way the left hand side of Eq. (2.39) can be determined as

1

Z
δZ

δz(r)
= 1 +

∫

d3r1 z(r1)f(|r − r1|) + O
(

z2
)

, (2.42)
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with the Mayer f -function [49]

f(x) := exp[−βU(x)] − 1. (2.43)

By combining Eqs. (2.39) and (2.42) z can be given in terms of ̺eq

z(r) =
̺eq(r)

1

Z
δZ

δz(r)

= ̺eq(r)

[

1 −
∫

d3r1 z(r1)f(|r − r1|) + O
(

z2
)

]

(2.44)

= ̺eq(r)

[

1 −
∫

d3r1 ̺eq(r1)f(|r − r1|) + O
(

̺2eq
)

]

. (2.45)

Equation (2.45) is obtained by applying the relation in Eq. (2.44) in order to replace

the dependence on z on the right hand side of Eq. (2.44) with a dependence on ̺eq.

Equation (2.45) relates z with the equilibrium number density ̺eq and shows that these

quantities cannot be chosen independently from each other. With help of Eq. (2.45) the

right hand side of Eq. (2.34) can be evaluated. The ratio ̺eq(r)/z(r) exhibits only a

dependence on the density; this dependence is inherited by c(1). That is, the expression

for c(1) does not depend on the aforementioned relation between z and ̺eq, but it can

be written in terms of an arbitrary number density ̺. As a result, the low density

approximation of the one-point direct correlation function [Eq. (2.34)] is given by

c(1)(r, [̺]) =

∫

d3r1 ̺(r1)f(|r − r1|) + O
(

̺2
)

. (2.46)

Equation (2.46) gives the value of the one-point direct correlation function for any (small)

number density ̺. This relation can be used to obtain the expression for the excess

functional by functional integration with respect to density; the procedure described here

follows the one in Ref. [58]. For this purpose a path in the space of density functions is

introduced

̺α(r) := α̺(r), (2.47)

where α ∈ [0, 1] parameterizes the path. α = 0 corresponds to a density of zero ̺0(r) = 0,

whereas α = 1 corresponds to the density ̺1(r) = ̺(r) for which the value of the excess

functional is of interest. The partial derivative of the excess functional, evaluated at ̺α,

with respect to α,

∂(βF ex[̺α])

∂α
=

∫

d3r
δ(βF ex)

δ̺(r)

∣

∣

∣

∣

̺α(r)

∂̺α(r)

∂α
= −

∫

d3r c(1)(r, [̺α])̺(r), (2.48)

can be written in terms of the one-point direct correlation function [Eq. (2.32)]. By
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exploiting the fundamental theorem of calculus the excess functional is expressed as

βF ex[̺] = βF ex[̺] − βF ex[0] = βF ex[̺1] − βF ex[̺0] =

1
∫

0

dα
∂(βF ex[̺α])

∂α

= −
∫

d3r

1
∫

0

dα c(1)(r, [α̺])̺(r).

(2.49)

In Eq. (2.49) it is assumed that in the limit of low densities the effect of interactions

becomes negligible and thus βF ex[0] = 0 (see also Ref. [58]). With the explicit expression

for the one-point direct correlation function Eq. (2.46) the excess functional is given by

βF ex[̺] = −
∫

d3r

∫

d3r′
1

∫

0

dαα̺(r′)f(|r − r′|)̺(r) + O
(

̺3
)

= −1

2

∫

d3r

∫

d3r′̺(r)̺(r′)f(|r − r′|) + O
(

̺3
)

=
1

2

∫

d3r

∫

d3r′ ̺(r)̺(r′){1 − exp[−βU(|r − r′|)]} + O
(

̺3
)

.

(2.50)

The excess functional Eq. (2.50) is used in the density functional of the current chap-

ter [see Eq. (2.7)]. Furthermore the random phase approximation in the next chapter

[Eq. (3.2)] corresponds to the limit of low particle-particle interaction strength of the

excess functional in Eq. (2.50).

2.B Ideal Gas

In this appendix we analyze the exactly solvable case of non-interacting particles. The

density functional in Eq. (2.7) with U(r) = 0 is minimized by the equilibrium number

density

̺eq(r) = ̺bulkeq exp
[

−βV ext(r)
]

with

̺bulkeq = Λ−3 exp(βµ̃).
(2.51)

For pointlike ideal gas particles the convention δ = 0 is convenient and will be used

throughout this appendix. For this choice the interface of area A, the reference surface,

and the geometrical wall surface are the same and the interfacial tension γ is given by

βγ = −
̺bulkeq

A

∫

V

d3r {exp[−βV (r)] − 1} , δ = 0. (2.52)

The integration volume V in Eq. (2.52) equals the volume accessible to the fluid particles.

Therefore the integrand depends only on the excess part V of the external potential V ext
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[see Eqs. (2.10) and (2.11)].

In the case of a hard wall with V = 0 the interfacial tension of the ideal gas is

zero, γ = 0, irrespective of the shape of the wall. Therefore the ideal gas is a useful

choice for studying the influence of the excess part V 6= 0 of an external potential on the

morphometric coefficients.

Here a Yukawa-like interaction Uw [Eq. (2.28)] between the fluid particles and the wall

particles is analyzed. The excess part V follows from Eq. (2.26). For planar, spherical,

and cylindrical walls, respectively, one finds

V (z)

V yu
p

= exp

(

− z

Lw

)

, plane,

V (r)

V yu
p

=
Lw

r
exp

(

− r

Lw

)

[

(S − 1)eS + (S + 1)e−S
]

, sphere,

V (r)

V yu
p

= 2S I1(S)K0

(

r

Lw

)

, cylinder,

(2.53)

where V yu
p = 2π̺wU0wL

3
w denotes the strength of the excess part V at contact with a

planar wall and S = R/Lw with K0 and I1 as familiar modified Bessel functions [84].

The expressions in Eq. (2.53) for the excess parts V of the external potential facilitate to

determine exactly the coefficients γn of the curvature expansion of the interfacial tension

γ in Eq. (2.52). In the case of a spherical wall

βγ = − ̺bulkeq Lw

∞
∑

n=1

(−βV yu
p )n

n!n

{

1 +
Lw

R

[

2

n
− 1 − n

]

+
L2
w

R2

[

n2

2
+

n

2
− 1 − 3

n
+

2

n2

]

− L3
w

R3
(2 − n)(1 − n)

[

1

n2
+

1

n
+

1

2
+

n

6

]

+ O

(

L4
w

R4

)}

+ O

[

exp

(

−2
R

Lw

)]

, δ = 0,

(2.54)

and for the cylindrical wall the corresponding result is given by

βγ = − ̺bulkeq Lw

∞
∑

n=1

(−βV yu
p )n

n!n

{

1 +
Lw

R

[

1

n
− 1

2
− n

2

]

+
L2
w

R2

[

− 1

2n
− 1

8
+

n

8
+

n2

8

]

+ O

(

L3
w

R3

)}

, δ = 0.

(2.55)

The expression for the planar wall is included in the expressions for the curved walls

[Eqs. (2.54) and (2.55)] as the term being independent of the radius R.

In Eqs. (2.54) and (2.55) the respective curvature expansions are presented up to

and including the leading non-morphometric coefficients (belonging to R−3 in the case of

spherical walls and to R−2 in the case of cylindrical walls) which in general are non-zero.

Further interesting insight can be gained by studying ratios of particular coefficients:
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• The ratio of the leading coefficients γ1 (belonging to R−1),

γs1
γc1

= 2, (2.56)

i.e., a constant value independent of the strength βV yu
p of the external potential.

• For small amplitudes βV yu
p the ratio of the subdominant coefficients γ2 (belonging

to R−2) is given by

γs2
γc2

=
8

3

{

1 − 1

18

(

βV yu
p

)2
+ O

[

(

βV yu
p

)3
]

}

. (2.57)

For βV yu
p ≪ 1 this ratio reduces to the constant value 8/3 which has also been found

in Ref. [21] and in the numerical calculations of Sec. 2.3.

• A comparison of the leading (γc1) and the subdominant (γc2) coefficients for cylin-

drical walls leads to

γc1
γc2

= −2

3
βV yu

p +
67

162

(

βV yu
p

)2
+ O

[

(

βV yu
p

)3
]

. (2.58)

This implies that for βV yu
p ≪ 1 one has |γc2| ≫ |γc1| which contradicts the morpho-

metric prediction according to which γc2 should be zero.

These results for an ideal gas of non-interacting particles invalidate morphometric ther-

modynamics if there is a non-vanishing excess part βV yu
p 6= 0 of the external potential.

2.C Excess parts of the external potentials

The calculation of the excess parts V of the external potentials according to Eq. (2.26)

results in lengthy expressions. Here these are presented for spherical walls as function

of the distance z ≥ 0 from the reference surface of radius R, i.e., the distance from the

center of the spherical wall is r = R + z.

In the case of the square-well or square-shoulder potential [Eq. (2.27)] the excess part
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V of the external potential is given by

βV (z ≥ 0) = βV sq
p ×















































































































z ≥ Lw : 0,

z ≤ Lw − 2R : 2
R3

L3
w

,

Lw − 2R < z < Lw :
1

8

L3
w

(R + z)3

[

z6

L6
w

+ 6
z5R

L6
w

+
z4

L4
w

(

9
R2

L2
w

− 6

)

+
z3

L3
w

(

4
R3

L3
w

− 24
R

Lw
+ 8

)

+
z2

L2
w

(

−30
R2

L2
w

+ 24
R

Lw

− 3

)

+
z

Lw

(

−12
R3

L3
w

+ 24
R2

L2
w

− 6
R

Lw

)

+8
R3

L3
w

− 3
R2

L2
w

]

,

βV sq
p =

2

3
πL3

wβU0w̺w.

(2.59)

In the case of the Yukawa potential [Eq. (2.28)] the excess part V is given by

βV (z ≥ 0) =βV yu
p exp

(

− z

Lw

)

Lw

R + z

[

R

Lw

− 1 + exp

(

−2R

Lw

)(

R

Lw

+ 1

)]

,

βV yu
p =2π̺wβU0wL

3
w.

(2.60)

[Note that Eq. (2.60) and the sphere expression in Eq. (2.53) are identical.]

In the case of the Lennard-Jones-like potential [Eq. (2.29)] the reference surface and the

geometrical wall surface do not coincide: R = Rg +Lw with Rg denoting the radius of the

geometrical wall. Integration according to Eq. (2.26) results in an expression βVg(zg, Rg)

in which zg measures the distance from the geometrical wall surface, i.e., the distance
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from the center of the spherical wall is r = Rg + zg:

βVg(zg, Rg) =βV LJ
p

I12(zg, Rg) − I6(zg, Rg)

−2πL3
w

{

− 1

10

(

10

9

L9
w

L9
cw

− L10
w

L10
cw

− 1

9

)

+
1

4

(

4

3

L3
w

L3
cw

− L4
w

L4
cw

− 1

3

)} ,

βV LJ
p = − 2πL3

w̺wβU0w

{

− 1

10

(

10

9

L9
w

L9
cw

− L10
w

L10
cw

− 1

9

)

+
1

4

(

4

3

L3
w

L3
cw

− L4
w

L4
cw

− 1

3

)}

,

In(zg, Rg) =
2π

n− 2
Ln−1
w

Lw

Rg + zg

5
∑

j=1

A
(n)
j (zg, Rg),

A
(n)
1 (zg, Rg) =L4−n

w

{

1

n− 3

Rg

Lw

[

z3−n
g

L3−n
w

+
(2Rg + zg)

3−n

L3−n
w

]

+
1

(n− 3)(n− 4)

[

−
z4−n
g

L4−n
w

+
(2Rg + zg)

4−n

L4−n
w

]

}

,

A
(n)
2 (zg, Rg) =L4−n

w Θ (Rg + zg − Lcw)

{

1

3 − n

Rg

Lw

(2Rg + zg)
3−n

L3−n
w

− 1

2

L2−n
cw

L2−n
w

R2
g

L2
w

− 1

(4 − n)(3 − n)

[

(2Rg + zg)
4−n

L4−n
w

− (Rg + zg)
4−n

L4−n
w

]

}

,

A
(n)
3 (zg, Rg) =L4−n

w Θ(2Rg + zg − Lcw)Θ(Lcw −Rg − zg)

{

1

3 − n

Rg

Lw

(2Rg + zg)
3−n

L3−n
w

− 1

2

L2−n
cw

L2−n
w

R2
g

L2
w

− 1

3 − n

L3−n
cw

L3−n
w

Lcw − Rg − zg
Lw

+
1

2

L2−n
cw

L2−n
w

(Lcw −Rg − zg)
2

L2
w

+
L4−n
cw − (2Rg + zg)

4−n

(3 − n)(4 − n)L4−n
w

}

,

A
(n)
4 (zg, Rg) =L4−n

w Θ(zg − Lcw)

{

1

3 − n

Rg

Lw

z3−n
g

L3−n
w

+
1

2

L2−n
cw

L2−n
w

R2
g

L2
w

+
z4−n
g − (Rg + zg)

4−n

(4 − n)(3 − n)L4−n
w

}

,

A
(n)
5 (zg, Rg) =L4−n

w Θ(Rg + zg − Lcw)Θ(Lcw − zg)

{

1

3 − n

L3−n
cw

L3−n
w

Rg + zg − Lcw

Lw

+
1

2

L2−n
cw

L2−n
w

(Rg + zg − Lcw)2

L2
w

+
L4−n
cw − (Rg + zg)

4−n

(4 − n)(3 − n)L4−n
w

}

. (2.61)

The excess part V of the external potential as function of the distance z from the reference

surface of radius R is related to Vg in Eq. (2.61) via

βV (z ≥ 0) = βVg(z + Lw, R− Lw). (2.62)



Chapter 3

Yukawa fluid at curved walls

In Chap. 3 density functional theory is used in order to investigate the interface between

a Yukawa fluid and a convex wall of planar, spherical, or cylindrical shape. A modified

version of the density functional in the preceding Chap. 2 (see also Ref. [22]) allows for

exact solutions of the corresponding Euler Lagrange equations. The latter enable to derive

closed expressions for the interfacial tension, which is the quantity of choice to analyze the

dependence of the interface on the wall curvature. An expansion of the interfacial tension

in small curvatures leads to the insight that an approach in agreement with morphometric

thermodynamics is not complete. The question, whether the latter approach can be

used as a good approximation instead, is addressed based on the analytically known

curvature coefficients. The findings differ with respect to geometry: For cylindrical walls

the morphometric approach proposes to truncate the exact curvature expansion such that

terms of significant magnitude may be neglected. In the case of spherical walls, however,

the curvature expansion truncated according to morphometric thermodynamics deviates

from the exact one only by exponentially small terms.

3.1 Introduction

Within the preceding Chap. 2 (see also Ref. [22]), inter alia, the question has been dis-

cussed, why the quality of morphometric thermodynamics (MT) has been judged very

differently in the literature. To that end density functional theory (DFT) has been used

in order to discuss distinct types of fluids in contact with convex walls. Provided that

small bulk densities have been under consideration the obtained results have been in good

agreement with simulation results (see Fig. 2.3). The discussion has led to the insight

that interface conventions, underlying the definition of the interfacial tension, have to be

taken into account when the quality of MT is under consideration. Within certain con-

ventions the DFT results clearly contradict the form of the curvature expansion, which is

in accordance with MT [see, e.g., Eq. (2.3)], whereas in other conventions the numerical

results show great agreement with the morphometric expression. However, because the

49
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respective Euler Lagrange equations had to be solved numerically, various shortcomings

had to be accepted in that former discussion. (i) Interaction potentials of unlimited range,

i.e., the Yukawa potential or Lennard-Jones potential in the preceding chapter, could only

be considered in combination with a cutoff length, which, as it has turned out recently,

might have prevented interesting relations from emerging. In this context Ref. [23] reports

about qualitatively distinct dependences of the interfacial tension on the wall radius. For

the full 12-6 Lennard-Jones potential a logarithmic dependence occurs in the curvature

dependence which however vanishes in the case of the truncated version of the interaction

potential. Also for the so-called inverse power law potential logarithmic dependences ap-

pear [24]. (ii) Expansions of observables in terms of the wall curvature and the respective

coefficients have been determined by fitting to the numerical outcome. This procedure

is accompanied by inaccuracies which may lead to inconclusive results. For instance, the

question whether a comparatively small coefficient is zero or not is difficult to answer.

(iii) All results were obtained on a sample basis and discussions like the dependence of the

curvature coefficients on certain system parameters are (computation) time consuming.

In order to overcome these shortcomings, analytic expressions for the quantities under

consideration are desirable. For that purpose, within DFT an ansatz in terms of a gradient

expansion is, in principle, a promising candidate [58]. There the corresponding Euler

Lagrange equation (ELE) is a differential equation. This type of equation is typically

technically easier to handle than an integral equation. ELEs of the latter type result

from approaches with non-local excess functionals, see, e.g., Eq. (2.12) in the preceding

approach. However, the local gradient expansion ansatz is only recommendable, if the

number densities vary slowly compared with molecular correlations [58], i.e., if microscopic

details are not under consideration. The following discussion focuses on the dependence

of the interface between a fluid and a wall on the radius of the latter. Especially for the

case of (microscopically) small radii of curvature microscopic details can be expected to

be important and, in view of that, it seems to be a wise choice to not neglect microscopic

details, a priori, for larger radii. Moreover, in Ref. [85] it is pointed out that the gradient

expansion approximation is not valid, if there is a discontinuity in the density profile,

which is caused by the presence of an impenetrable wall. Therefore, as before, in the

present chapter a local gradient expansion model is omitted. Instead, the fluid is described

within a nonlocal theory which is accompanied by the consequence of having to deal with

equations of higher level of complexity.

In the present chapter the approved model of the preceding Chap. 2 (see also Ref. [22])

is modified in order to allow for analytic solutions. As a result, the approach under

consideration (see Sec. 3.2) is similar to a model, which in the literature is sometimes

referred to as Sullivan’s model [85,86]. The latter has originally been introduced to study

gas adsorption on planar surfaces. Subsequently also curved interfaces have come into

focus. For example, in Refs. [87, 88] Sullivan’s model has been applied in order to study
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interfacial properties and structures of liquid drops of various radii which are embedded

in a vapour background. In Refs. [89–91] the wetting behavior of a spherical substrate

surrounded by a fluid has been examined.

In Sec. 3.2 the model is explained in detail and amendments with respect to the pre-

ceding approach are pointed out. In Sec. 3.3 the equilibrium density profiles, i.e., the

solutions of the ELE in various geometries, are given explicitly. These enable to calculate

closed expressions for the interfacial tensions for the planar, spherical, and cylindrical

wall. Finally, the exact expressions are expanded in terms of small wall curvatures which

leads to analytically known curvature coefficients for the interfacial tension. In this way

the aforementioned shortcomings can be overcome. (i) The present model takes into

account the Yukawa interaction potential with its full range. Recently, untruncated alge-

braically decaying potentials have been shown to correspond to a curvature dependence

of the interfacial tension which is not covered by a power series [23, 24]. Here, the exact

expressions for the interfacial tension can be used to examine whether also the under-

lying Yukawa interaction potential leads to a dependence on the curvature which is not

purely algebraic. (ii) Exact expressions for the curvature coefficients leave no doubt about

whether MT is exactly valid or not. This is an advantage in comparison with numerical

results the analysis of which has to rely on fitting procedures. Against the background of

the influence of interface conventions (see Chap. 2 and Ref. [22]), the distinction between

a comparatively small coefficient and a coefficient exactly equalling zero, can have huge

consequences. (iii) With the help of exact expressions the parameter space can be scanned

quickly. This way it is possible to put MT to the test in a wider range than within an

approach which has to be addressed numerically. In particular, within the present model

it is possible to take into account an external potential in excess to the hard fluid-wall

interaction and therefore to examine the influence of a wall that is not purely hard. A

summary is given in Sec. 3.4 and Appendix 3.A contains technical details.

3.2 Model

Let us consider a simple fluid composed of particles which interact via a Yukawa pair

potential

U(r) = U0
exp(−r/L)

r
. (3.1)

In the preceding model [see Sec. 2.2] the cutoff length Lc in Eq. (2.5) has to be set to an

infinitely large value in order to describe the same interaction potential as in Eq. (3.1).

Interestingly, in the case of the preceding model, a larger cutoff length is accompanied by

an increased computation time and letting Lc → ∞ would prevent the numerical algorithm

from finding a solution, whereas, within the present model, it is the properties of the pure
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Yukawa in Eq. (3.1) that help to exactly solve the Euler Lagrange equation [see the

following discussion and especially Eqs. (3.23) and (3.24)]. In Eq. (3.1) L sets the length

scale of the exponential decay and U0 parameterizes the strength of the interaction. Note

that, unlike in the preceding chapter [Eq. (2.5)], the dimension of the latter parameter is

[U0] = [energy] × [length]. The density functional Eq. (2.7) of the preceding chapter is

modified and henceforth reads

Ω[̺] =

∫

V

d3r {f [̺(r)] + ̺(r)[V ext(r) − µ]} +
1

2

∫

V

d3r

∫

V

d3r′ U(|r − r′|)̺(r)̺(r′).

(3.2)

In Eq. (3.2) µ and V ext are the chemical and the external potential, respectively. V
refers to all positions r ∈ R3 which are accessible for the centers of the particles. In

the following |V| labels the volume of this set of points. The series representation of the

exponential function in the excess functional of Eq. (2.7) (see also Appendix 2.A) is taken

into account up to linear order which leads to an excess functional in terms of the random

phase approximation in Eq. (3.2) [58]. In the present chapter the free energy density of

the ideal gas reference system in Eq. (2.7),

f̃(̺) :=
1

β
̺
[

ln
(

Λ3̺
)

− 1
]

, (3.3)

with the thermal wavelength Λ, β = (kBT )−1, the Boltzmann constant kB, and with the

absolute temperature T , is approximated by a truncated expansion f around an arbitrary

but fixed number density ̺∗ up to quadratic order in ̺− ̺∗:

f(̺) := f̃(̺∗) + f̃ ′(̺∗)(̺− ̺∗) +
1

2
f̃ ′′(̺∗)(̺− ̺∗)2. (3.4)

With the coefficients

a := f̃(̺∗) − f̃ ′(̺∗)̺∗ +
1

2
f̃ ′′(̺∗)̺∗2 = − ̺∗

2β
, (3.5)

b := f̃ ′(̺∗) − f̃ ′′(̺∗)̺∗ =
1

β

[

ln
(

Λ3̺∗
)

− 1
]

, (3.6)

and

c := f̃ ′′(̺∗) =
1

β̺∗
(3.7)

the approximated reference free energy density f can be written as

f(̺) = a + b̺ +
c

2
̺2. (3.8)
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In combination with Eq. (3.8) the functional Eq. (3.2) reads

Ω[̺] =

∫

V

d3r
{

a + ̺(r)[V ext(r) − µ∗] +
c

2
̺(r)2

}

+
1

2

∫

V

d3r

∫

V

d3r′ U(|r − r′|)̺(r)̺(r′),

(3.9)

µ∗ := µ− b. (3.10)

Note that only the difference Eq. (3.10) of µ and b contributes. Therefore the actual value

of b and hence the value Λ of the thermal de Broglie wavelength is irrelevant. Altogether,

in order to obtain Eq. (3.9), within the preceding model [Eq. (2.7)] both the free energy

density of the reference system and the excess functional are approximated. In the limit

of small deviations ̺ − ̺∗ of the number density ̺ from ̺∗ and small amplitudes U0 of

the interaction potential Eq. (3.1) the simplified present model leads to similar results as

the approved preceding one (see Fig. 3.2).

In the bulk, i.e., without the presence of an external potential V ext(r) = 0, the number

density is independent of the position: ̺b := ̺(r) and V = R3. In that case Eq. (3.9)

becomes a function of the number density

Ωb
(

̺b
)

= |V|
{

a− ̺bµ∗ +
1

2

(

̺b
)2

[

c + Û(0)
]

}

, (3.11)

Û(0) :=

∫

R3

d3r U(|r|) = 4πL2U0. (3.12)

The Euler Lagrange equation (ELE)

∂Ωb

∂̺b

∣

∣

∣

∣

̺beq

= 0 ⇔ µ∗ =
[

c + Û(0)
]

̺beq (3.13)

relates the bulk equilibrium number density ̺beq with the rescaled chemical potential µ∗.

The bulk grand canonical potential Ωb
eq is defined as the value of Ωb when evaluated at

the bulk equilibrium number density

Ωb
eq := Ωb

(

̺beq
)

= |V|
(

a− 1

2
̺beqµ

∗

)

. (3.14)

In order to ensure that the number density in accordance with Eq. (3.13) refers to a stable

state, it has to correspond to a minimum in Ωb Eq. (3.11), i.e., the parameters have to

be chosen such that the inequality

∂2Ωb

(∂̺b)2

∣

∣

∣

∣

̺beq

> 0 ⇔ c + Û(0) > 0 (3.15)
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is fulfilled. Assuming that the reference density is positive ̺∗ > 0 it follows that c > 0

[Eq. (3.7)]. With this the stability criterion Eq. (3.15) is always fulfilled for the case of

repulsive particle particle interactions, i.e., U0 > 0 ⇒ Û(0) > 0 [Eq. (3.12)]. However, for

U0 < 0 the stability criterion Eq. (3.15) restricts the values that can be taken by c.

For spatially varying external potentials in general the number density is a spatially

varying function. The equilibrium number density ̺eq(r) fulfills the ELE which follows

from the functional derivative of Eq. (3.9)

δΩ

δ̺(r)

∣

∣

∣

∣

̺eq

= 0 = V ext(r) − µ∗ + c̺eq(r) +

∫

V

d3r′U(|r − r′|)̺eq(r′). (3.16)

The grand canonical potential Ωeq is given by the functional Eq. (3.9) evaluated at the

equilibrium density ̺eq

Ωeq := Ω[̺eq] = |V|a +
1

2

∫

V

d3r ̺eq(r)
[

V ext(r) − µ∗
]

. (3.17)

In the following the focus is on systems in three-dimensional space which consist of fluids

surrounding a convex wall. The sketch in Fig. 3.1 illustrates the basic structure of these

systems and how they are parameterized. The geometry of the wall enters the formalism

via the external potential V ext(r) with r = (x, y, z) ∈ R3:

• A planar wall occupies the half space beyond the xy-plane in a cartesian coordinate

system

V ext(r) =







∞, r < 0,

V (r), r ≥ 0.
(3.18)

r := z is equal to the z-component of the position r. The variable name “r” is chosen

in order to have the same notation for all geometries. V represents the excess part

of the external potential [i.e., in excess to the part V (r < 0) = ∞ which originates

from the hard interaction between the fluid particles and the wall]. An equivalent

notation is used in the cases of spherical Eq. (3.19) and cylindrical Eq. (3.20) walls.

• A spherical wall of radius R is given by

V ext(r) =







∞, r < R,

V (r), r ≥ R.
(3.19)

r :=
√

x2 + y2 + z2 denotes the radial distance between the center of the spherical

wall, which is chosen as the origin of the coordinate system, and the position r.
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Figure 3.1: Sketch of the model system under consideration. The depicted case corre-
sponds to a spherical [Eq. (3.19)] or a cylindrical [Eq. (3.20)] wall (gray circle) of radius
R which is surrounded by a fluid. The wall consists of wall particles which are homoge-
neously distributed in the domain Ṽ with number density ̺w. The fluid particles cannot
enter this domain because therein the external potential V ext takes an infinitely large
value [see Eqs. (3.18) – (3.20)]. Instead the former occupy the accessible domain V out-
side of the wall. Their number density ̺ is plotted in blue color; different shades of blue
illustrate that, in general, ̺(r) is a spatially varying function. At all positions r ∈ V
the fluid particles interact with the wall by means of the excess external potential V (r)
[Eq. (3.22)]. Within the present chapter the reference surface, the geometrical surface,
and the interface A (see Fig. 2.1) comprise the same set of points.

• A cylindrical wall of radius R is defined by

V ext(r) =







∞, r < R,

V (r), r ≥ R.
(3.20)

In this case r :=
√

x2 + y2 measures the distance between the symmetry axis of the

cylinder, i.e., the z-axis, and the position r.

The excess external potential V in Eqs. (3.18) – (3.20) characterizes the interaction be-

tween fluid and wall particles apart from being in contact with each other. The latter are

assumed to be homogeneously distributed in the wall Ṽ, i.e., the positions that correspond

to the hard part of the external potentials in Eqs. (3.18) – (3.20), with number density

̺w. In the present study the pair interaction potential Uw between fluid and wall particles

adopts the same form as the potential U amongst fluid particles Eq. (3.1)

Uw(r) := U0w
exp(−r/Lw)

r
, (3.21)

where the strength U0w and the length scale Lw may be chosen independently of the

fluid-fluid interaction parameters U0 and L in Eq. (3.1). With this the excess external
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potential can be calculated as

V (r) = ̺w

∫

Ṽ

d3r′ Uw(|r − r′|). (3.22)

The ELE (3.16) is an integral equation because the required function ̺eq(r) is part of

the integrand. In the present case it can be translated into a differential equation with

corresponding boundary conditions by exploiting the properties of the interparticle poten-

tial U [Eq. (3.1)]. This approach has already been proposed earlier, e.g., in Refs. [85–92],

in order to solve integral equations of similar form in planar and spherical geometry. Here

a generalized notation is used which allows to conveniently apply this formalism with

respect to various geometries. It is made use of the fact that the Yukawa potential U

Eq. (3.1) is the Green’s function of the Helmholtz operator ∆ − L−2,

∆U(|r − r′|) − 1

L2
U(|r − r′|) = −4πU0 δ(r − r′), (3.23)

where ∆ is acting on the unprimed coordinate r. Together with Eq. (3.23) the Laplacian

of the integration in Eq. (3.16) reads

∆

∫

V

d3r′ U(|r − r′|)̺eq(r′)

=
1

L2

∫

V

d3r′U(|r − r′|)̺eq(r′) − 4πU0

∫

V

d3r′ δ(r − r′)̺eq(r
′)

=
1

L2
[µ∗ − V (r) − c̺eq(r)] − 4πU0̺eq(r).

(3.24)

The ELE (3.16) is used in order to replace the integral in the second line of Eq. (3.24).

Finally, by applying the replacement of Eq. (3.24), the Laplacian of Eq. (3.16) leads to

the ELE in the form

∆̺eq(r) − 1

ξ2
̺eq(r) = F (r),

ξ2 :=

(

1

L2
+

4πU0

c

)−1

,

F (r) := −1

c

[

µ∗ − V (r)

L2
+ ∆V (r)

]

,

(3.25)

which is a linear partial differential equation with inhomogeneity F (r). Due to the sym-

metry of the considered geometries only the radial part of the Laplacian in Eq. (3.25) in

one, two, or three dimensions contributes. In these cases Eq. (3.25) effectively turns into

an ordinary differential equation [see Eqs. (3.39), (3.51), and (3.71)]. ξ can be identified as

the bulk correlation length (see Appendix 3.A). The differential equation (3.25) describes
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the fluid only within the domain V. Additional boundary conditions are required in order

to uniquely define the solution. Far away from the wall the solution has to fulfill the bulk

ELE (3.13). There, no external potential is present and the number density is a constant,

i.e., V (r)|bulk = 0, ∆V (r)|bulk = 0, and ∆̺eq(r)|bulk = 0. These special values reduce

Eq. (3.25) to

(

1

L2
+

4πU0

c

)

̺eq(r)|bulk =
µ∗

cL2
(3.26)

⇔
(

c + 4πL2U0

)

̺eq(r)|bulk = µ∗ (3.27)

⇔
[

c + Û(0)
]

̺eq(r)|bulk = µ∗. (3.28)

Thus, the intuitive choice ̺eq(r)|bulk := ̺beq readily fulfills this boundary condition [see

the bulk ELE (3.13)]. The remaining boundary condition refers to the wall surface. The

ELE (3.16) in integral form contains information about both the fluid within V and

the connection with the boundaries of this domain. [Note that also the bulk Eq. (3.13)

is covered by Eq. (3.16).] In order to conserve the consistent description of the integral

equation, the boundary condition for the differential equation is obtained from the former.

The corresponding procedure is now explained in terms of general expressions which are

valid for all wall shapes under consideration. Subsequently, in Sec. 3.3.1, the procedure

is demonstrated in detail with respect to the planar wall. In the case of the geometries

considered in the present study [Eqs. (3.18) – (3.20)] the ELE (3.16) is effectively one-

dimensional

I(r) = µ∗ − V (r) − c̺eq(r), (3.29)

I(r) :=

∫

V

d3r′ U(|r − r′|)̺eq(r′). (3.30)

The derivative of Eq. (3.29) with respect to r is evaluated at the wall surface

I ′(r)|rw = −V ′(r)|rw − c̺′eq(r)|rw , (3.31)

where rw := 0 for the planar geometry and rw := R for the curved geometries, respectively.

It turns out that I ′(r)|rw and I(rw) are proportional to each other,

I ′(r)|rw = ζ I(rw), (3.32)

[see, e.g., Eq. (3.41)] and that the proportionality factor ζ depends on the wall geometry.

This leads to a boundary condition of the general form

−V ′(r)|rw − c̺′eq(r)|rw = ζ [µ∗ − V (rw) − c̺eq(rw)] , (3.33)
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which relates the number density at the wall ̺eq(rw) with its derivative. The explicit

expressions are given in the context of each geometry [see Eqs. (3.43), (3.53), and (3.73)].

3.3 Discussion

For the sake of clarity the subscript eq is omitted in the case of the number densities and

subsequently the focus is on equilibrium number densities. The interfacial tension

γ =
Ωeq − Ωb

eq

|A| (3.34)

measures the work Ωeq − Ωb
eq which is necessary in order to create the interface A. In

principle, A can be defined arbitrarily which is why Eq. (3.34) does not define γ uniquely

(see Sec. 2.3). The pointlike particles in the present study are able to penetrate the

whole space up to the wall. This is the reason why the accessible positions for the fluid

particles V and the positions outside of the wall R3\Ṽ are equal V = R3\Ṽ. Or, to use the

terminology of the preceding chapter, the reference surface and the geometrical surface are

the same (see Fig. 2.1). It is therefore convenient to define the interface to consist of the

same set of points as the reference and geometrical surface and, consequently, to determine

the bulk contribution Ωb
eq in Eq. (3.34) for the same domain V as the contribution Ωeq.

Speaking in terms of the preceding Chap. 2 (see also Ref. [22]) this choice corresponds

to the convention δ = 0, i.e., the following results will be quoted with respect to this

convention. The interfacial tension is given by

γ =
1

2|A|

∫

V

d3r
{

µ∗
[

̺b − ̺(r)
]

+ V (r)̺(r)
}

. (3.35)

That is, the equilibrium number density profile ̺(r) is necessary in order to calculate the

value of γ. To that end subsequently the ELE (3.16), or alternatively Eq. (3.25) with

corresponding boundary conditions, is solved for various geometries.

3.3.1 Planar wall

Within this subsection the solution process is explained in detail for the planar geometry.

In order to obtain expressions for the interfacial tension with respect to the curved ge-

ometries the following steps can be applied analogously (see Secs. 3.3.2 and 3.3.3). The
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excess external potential V Eq. (3.22) in the case of the planar wall Eq. (3.18) is given by

V (r) =

0
∫

−∞

dr′
∞
∫

−∞

dy′
∞
∫

−∞

dx′ ̺wUw(|r − r′|) = Vp exp (−r/Lw) , (3.36)

Vp := 2π̺wU0wL
2
w. (3.37)

Vp refers to the excess external potential evaluated at contact with the planar wall. It

contains both the number density of wall particles ̺w and the amplitude of the wall-fluid

interaction potential U0w and will be used in the following in order to quote the strength

of the excess external potential. Due to the symmetry of the system the number density

̺(r) is translationally invariant in any direction parallel to the wall surface and can only

vary in normal direction with respect to the wall. Therefore the ELE (3.16) is effectively

one-dimensional [see Eq. (3.29)]

I(r) = 2πU0L

∞
∫

0

dr′ ̺(r′) exp

(

−|r − r′|
L

)

= µ∗ − V (r) − c̺(r) (3.38)

and corresponds to a one-dimensional version of the differential equation (3.25)

̺′′(r) − 1

ξ2
̺(r) = − µ∗

cL2
+ Bp exp

(

− r

Lw

)

, (3.39)

Bp :=
Vp

c

(

1

L2
− 1

L2
w

)

. (3.40)

The derivative of the integral expression in Eq. (3.38) with respect to r and evaluated at

the wall surface r = 0,

I ′(r)|r=0 = 2πU0

∞
∫

0

dr′ ̺(r′) exp

(

−r′

L

)

=
1

L
I(0), (3.41)

is proportional to the integral expression in Eq. (3.38) evaluated at the wall surface with

proportionality factor ζ = 1/L [see Eq. (3.32)]. The relation Eq. (3.41) between the

derivative and the value of I(r) at the wall surface can be written in terms of the right

hand side of Eq. (3.38) as

−V ′(r)|r=0 − c̺′(r)|r=0 =
1

L
[µ∗ − V (0) − c̺(0)] (3.42)



60 CHAPTER 3. YUKAWA FLUID AT CURVED WALLS

which is equivalent to Eq. (3.33) in planar geometry. With the actual expression for the

excess external potential [Eq. (3.36)] finally the boundary condition

̺′(0) − ̺(0)

L
=

Vp

cLw
− µ∗ − Vp

cL
(3.43)

at the wall surface is obtained. The excess external potential Eq. (3.36) is an eigenfunction

of the one-dimensional Laplacian ∆ ≡ ∂2
r . Therefore the inhomogeneity F of Eq. (3.25)

only consists of terms constant in r and of terms proportional to the eigenfunction of the

Laplace operator [see the right hand side of Eq. (3.39)]. Since the differential operator of

the differential equation (3.39) is the Laplacian, the particular solution can be determined

straightforwardly. Note that analogous structures for the inhomogeneity also emerge for

the curved geometries [see Eqs. (3.51) and (3.71)] which enables to solve the respective

equations in a similar manner. The solution of the differential equation (3.39) is of the

form

̺(r) = ̺b + Ap exp

(

− r

Lw

)

+ Dp exp

(

−r

ξ

)

, (3.44)

where the first two summands are an ansatz for the particular solution and the last

summand solves the homogeneous differential equation, i.e., Eq. (3.39) with the right

hand side set to zero. The constant term ̺b in Eq. (3.44) corresponds to the constant

part of the inhomogeneity and fulfills the boundary condition in the bulk, i.e., for r → ∞
[see Eqs. (3.26) – (3.28)]. The constant Ap is chosen such that the remaining part of the

inhomogeneity is captured which leads to

Ap := Bp

(

1

L2
w

− 1

ξ2

)−1

. (3.45)

The constant

Dp := −
[

(

1

Lw
+

1

L

)(

Ap +
Vp

c

)

− Û(0)̺b

cL

]

(

1

ξ
+

1

L

)−1

(3.46)

is determined in order to fulfill the boundary condition Eq. (3.43). It was checked that

the number density profile Eq. (3.44) with Eqs. (3.45) and (3.46) solves the integral

equation (3.38). Finally, the interfacial tension [Eq. (3.35)] may be determined as

γp =
1

2

∞
∫

0

dr
{

µ∗
[

̺b − ̺(r)
]

+ ̺(r)V (r)
}

= −µ∗

2
(ApLw + Dpξ) +

Vp

2

(

̺bLw +
1

2
ApLw +

Dp

1/ξ + 1/Lw

)

.

(3.47)
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3.3.2 Spherical wall

The excess external potential V Eq. (3.22) in the case of the spherical wall Eq. (3.19) is

given by

V (r) = Vs
exp(−r/Lw)

r/Lw
, (3.48)

Vs := Vp

[(

R

Lw
− 1

)

exp

(

R

Lw

)

+

(

R

Lw
+ 1

)

exp

(

− R

Lw

)]

, (3.49)

and the effectively one-dimensional ELE (3.29) reads

2πU0L

r

∞
∫

R

dr′ r′̺(r′)

{

exp

[

−|r − r′|
L

]

− exp

[

−|r + r′|
L

]}

= µ∗ − V (r) − c̺(r). (3.50)

The integral equation (3.50) translates into the differential equation [see Eq. (3.25)]

̺′′(r) +
2

r
̺′(r) − 1

ξ2
̺(r) = − µ∗

cL2
+ Bs

exp(−r/Lw)

r
, (3.51)

Bs :=
VsLw

c

(

1

L2
− 1

L2
w

)

, (3.52)

with the boundary condition

̺′(R) − 1

L
L
(

R

L

)

̺(R)

=

(

1

Lw

+
1

R

)

VsLw

c

exp(−R/Lw)

R
− 1

L
L
(

R

L

)[

µ∗

c
− VsLw

c

exp(−R/Lw)

R

] (3.53)

at the wall surface r = R. L(x) = coth(x) − 1/x denotes the Langevin function. The

proportionality Eq. (3.32) with

ζ =
1

L
L
(

R

L

)

(3.54)

is used in order to obtain the boundary condition Eq. (3.53). The differential equa-

tion (3.51) is solved by the ansatz

̺(r) = ̺b + As
exp(−r/Lw)

r
+ Ds

exp(−r/ξ)

r
(3.55)

with the constants

As := Bs

(

1

L2
w

− 1

ξ2

)−1

(3.56)
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and

Ds := − exp

(

R

ξ

)[

1

ξ
+

1

L
coth

(

R

L

)]−1

×
{

exp

(

− R

Lw

)(

As +
VsLw

c

)[

1

Lw

+
1

L
coth

(

R

L

)]

− R

L
L
(

R

L

)

Û(0)̺b

c

}

.

(3.57)

The interfacial tension for the spherical wall reads

γs = − µ∗

2R2

[

As exp

(

− R

Lw

)

(

RLw + L2
w

)

+ Ds exp

(

−R

ξ

)

(

Rξ + ξ2
)

]

+
VsLw

2R2

{

̺b exp

(

− R

Lw

)

(

RLw + L2
w

)

+
1

2
AsLw exp

(

−2R

Lw

)

+ Ds

(

1

ξ
+

1

Lw

)−1

exp

[

−R

(

1

ξ
+

1

Lw

)]

}

.

(3.58)

In order to check the validity of the morphometric approach the expression for the interfa-

cial tension γs is expanded in terms of large radii R of the wall. Note that the dependence

of γs on R is also contained in the quantities As, Ds, and Vs. The latter can be written

in terms of the following expansions

Vs = Vp

(

R

Lw
− 1

)

exp

(

R

Lw

)

+ O

[

R

Lw
exp

(

− R

Lw

)]

, (3.59)

Bs = BpLw

(

R

Lw
− 1

)

exp

(

R

Lw

)

+ O

[

R

Lw
exp

(

− R

Lw

)]

, (3.60)

As = ApLw

(

R

Lw

− 1

)

exp

(

R

Lw

)

+ O

[

R

Lw

exp

(

− R

Lw

)]

, (3.61)

Ds = R exp

(

R

ξ

){

Dp +
Ds1

R
+ O

[

exp

(

−2R

L

)

+ exp

(

−2R

Lw

)]}

, (3.62)

with

coth

(

R

L

)

= 1 + O

[

exp

(

−2R

L

)]

, (3.63)

Ds1 :=

[

Lw

(

Ap +
Vp

c

)(

1

Lw
+

1

L

)

− Û(0)̺b

c

]

(

1

ξ
+

1

L

)−1

. (3.64)

For the interfacial tension these expansions lead to

γs = γp + L
γs1
R

+ L2γs2
R2

+ O

[

exp

(

−2R

L

)

+ exp

(

−2R

Lw

)]

(3.65)
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with the coefficients

Lγs1 := −µ∗

2

(

Dpξ
2 + Ds1ξ

)

+
Vp

2

[

(Ds1 − LwDp)

(

1

ξ
+

1

Lw

)−1

− ApL
2
w

]

(3.66)

and

L2γs2 := −µ∗

2

(

Ds1ξ
2 − ApL

3
w

)

+
Vp

2

[

ApL
3
w

2
− ̺bL3

w −Ds1Lw

(

1

ξ
+

1

Lw

)−1
]

. (3.67)

For the spherical wall the expansion Eq. (3.65) reveals that the morphometric expression

Eq. (2.3) is not exactly valid because there are terms which are not constant, linear, and

quadratic in the curvature. However, the deviation between the exact expression and

the MT expression is exponentially small and thus, for not too small R, the deviation

is essentially smaller than the algebraic terms in accordance with MT. In this geometry

MT proposes to truncate the exact expression after the term ∝ R−2 which ensures an

approximation of high quality.

3.3.3 Cylindrical wall

In the case of a cylindrical wall Eq. (3.20) the excess external potential Eq. (3.22) reads

V (r) = Vc K0

(

r

Lw

)

, (3.68)

Vc := 2Vp
R

Lw

I1

(

R

Lw

)

, (3.69)

with the modified Bessel functions Kν and Iν [84]. The cylindrical geometry enables to

formulate an effectively one-dimensional ELE (3.29)

4πU0



K0

( r

L

)

r
∫

R

dr′ r′̺(r′) I0

(

r′

L

)

+ I0

( r

L

)

∞
∫

r

dr′ r′̺(r′) K0

(

r′

L

)





= µ∗ − V (r) − c̺(r),

(3.70)

which is equivalent to the differential equation

̺′′(r) +
1

r
̺′(r) − 1

ξ2
̺(r) = − µ∗

cL2
+ Bc K0

(

r

Lw

)

, (3.71)

Bc :=
Vc

c

(

1

L2
− 1

L2
w

)

, (3.72)
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with the boundary condition at the wall surface r = R

̺′(R) − χ

L
̺(R) =

Vc

cLw
K1

(

R

Lw

)

− χ

cL

[

µ∗ − Vc K0

(

R

Lw

)]

, (3.73)

χ :=
I1(R/L)

I0(R/L)
. (3.74)

The proportionality Eq. (3.32) with ζ = χ/L leads to the boundary condition Eq. (3.73).

The number density profile

̺(r) = ̺b + Ac K0

(

r

Lw

)

+ Dc K0

(

r

ξ

)

(3.75)

with

Ac := Bc

(

1

L2
w

− 1

ξ2

)−1

(3.76)

and

Dc := −
[

1

ξ
K1

(

R

ξ

)

+
χ

L
K0

(

R

ξ

)]−1
{

Ac

[

1

Lw
K1

(

R

Lw

)

+
χ

L
K0

(

R

Lw

)]

+
Vc

c

[

1

Lw
K1

(

R

Lw

)

+
χ

L
K0

(

R

Lw

)]

− χ

L

Û(0)̺b

c

} (3.77)

solves the differential equation (3.71) and the associated boundary conditions. With this

the interfacial tension reads

γc = − µ∗

2

[

AcLw K1

(

R

Lw

)

+ Dcξ K1

(

R

ξ

)]

+
Vc

2

{

̺bLw K1

(

R

Lw

)

+
AcR

2

[

K1

(

R

Lw

)2

− K0

(

R

Lw

)2
]

+ Dc

[

1

ξ
K1

(

R

ξ

)

K0

(

R

Lw

)

− 1

Lw
K0

(

R

ξ

)

K1

(

R

Lw

)](

1

ξ2
− 1

L2
w

)−1
}

.

(3.78)

The dependence of the interfacial tension γc on the radius of the cylindrical wall turns

out to be comparatively complex. In the case of the spherical wall Eq. (3.58) the R-

dependence is covered by a combination of exponential and rational functions. For the

cylindrical geometry Eq. (3.78) one has to deal with various combinations of modified

Bessel functions. (Note that the latter are also contained in the abbreviations Ac, Dc,

and Vc.) With the help of asymptotic expansions for large arguments of the modified
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Bessel functions [84]

Iν(z) ∼exp(z)√
2πz

×
[

1 − µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ O

(

z−4
)

]

,

(3.79)

Kν(z) ∼
√

π

2z
exp(−z)

×
[

1 +
µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ O

(

z−4
)

]

,

(3.80)

µ = 4ν2, (3.81)

the exact expression for the interfacial tension γc in Eq. (3.78) can be discussed in terms

of large radii of the cylinder. The expansions Eq. (3.79) and (3.80) lead to

Vc = 2Vp

√

R

2πLw
exp

(

R

Lw

)[

1 − 3

8

Lw

R
− 15

128

L2
w

R2
− 105

1024

L3
w

R3
+ O

(

R−4
)

]

, (3.82)

χ = 1 − 1

2

L

R
− 1

8

L2

R2
− 1

8

L3

R3
+ O

(

R−4
)

, (3.83)

Dc =

√

2R

πξ
exp

(

R

ξ

)[

Dp +
Dc1

R
+

Dc2

R2
+

Dc3

R3
+ O

(

R−4
)

]

, (3.84)

with

Dc1 := − ξ

8

[

(

1

Lw
+

1

L

)(

Ap +
Vp

c

)

Lw

(

1

Lw
− 4

ξ

)

− Û(0)̺b

c

(

1
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− 4

ξ

)

]

×
(

1

ξ
+

1
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ξDp

8
+

Ds1

2
,

(3.85)

Dc2 := − ξ2L
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[
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1

Lw
+

1

L

)(
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Vp
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(
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ξLw
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LLw
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8

ξL
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− 16
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(3.86)

and

Dc3 := − ξ3L2

1024

[
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1

Lw
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1

L

)(
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Vp

c

)

L3
w

(
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ξ2L3
w
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ξLL3
w
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w
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ξ3LLw
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ξ3L2
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− Û(0)̺b
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ξ2L
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ξL2
+

59

L3
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ξ3

)

]

(

1

ξ
+

1

L

)−1

.

(3.87)



66 CHAPTER 3. YUKAWA FLUID AT CURVED WALLS

The expansion of γc in powers of the curvature 1/R of the cylinder is given by

γc = γp + L
γc1
R

+ L2γc2
R2

+ L3γc3
R3

+ O
(

R−4
)

(3.88)

with

Lγc1 := − µ∗ξ

2

(

3

8
Dpξ + Dc1

)

− 1

4
VpApL

2
w

+
Vp

2

(

1

ξ
+

1
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)−1 [

Dc1 −
1

8
ξLwDp

(

4

ξ
+

1

Lw

)]

=
L

2
γs1,

(3.89)

L2γc2 :=
3

16
µ∗ApL

3
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2
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128
Dpξ
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8
Dc1ξ + Dc2
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16
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32
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1
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+
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(

4

ξ
+

1

Lw

)

+
ξ2LwDp

128

(

24

ξ
+
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Lw
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,

(3.90)

and

L3γc3 := − µ∗ξ

2
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1024
Dpξ
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128
Dc1ξ

2 +
3

8
Dc2ξ + Dc3
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− 3

16
VpApL

4
w

+
Vp
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(

1

ξ
+

1

Lw

)−1
[

Dc3 −
1

8
ξLwDc2

(

4

ξ
+

1

Lw
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+
ξ2LwDc1

128

(

24

ξ
+

9

Lw

)

− ξ3L3
wDp

1024

(

192

ξ3
+

192

ξ2Lw

+
180

ξL2
w

+
75

L3
w

)

]

.

(3.91)

3.3.4 Interpretation of the results in Secs. 3.3.1 – 3.3.3

Recently, in Refs. [23, 24] systems have been examined in which the particles interact

with each other via the 2k-k Lennard-Jones potential and the inverse power law potential

∝ r−ν, respectively. The first terms of curvature expansions of the interfacial tension

in spherical and cylindrical geometry have been determined analytically. For k = 6 and

ν = 6 some of these terms comprise a logarithmic dependence on the wall radius. For

faster decay behaviors, i.e., for larger values of k or ν, the dependence on the curvature

is found to be algebraic. Moreover, the truncated version of the 12-6 Lennard-Jones po-

tential does not lead to a logarithmic term, i.e., truncation of the potential leads to a

significant change in the curvature dependence of the interfacial tension [23]. That is,

in view of these results, it is not a priori clear, that the untruncated Yukawa potential

Eq. (3.1) considered in the present study corresponds to an interfacial tension with alge-

braic curvature expansion. Indeed the closed expressions for both γs [Eq. (3.58)] and γc

[Eq. (3.78)] reveal a transcendental dependence on the wall radius. With regard to small
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curvatures, however, both expressions convert either into a polynomial in curvature up to

an exponentially small remainder [see Eq. (3.65)] or into an expansion in powers of the

curvature [see Eq. (3.88)]. Considering that, in the cylindrical case, even the truncated

expansions of the modified Bessel functions correspond to transcendental dependences

on the cylinder radius R [see, e.g., Eq. (3.82)], this finding is not clear from the start.

However, the modified Bessel functions in Eq. (3.78) always occur in combinations such

that the transcendental parts cancel. The expansion Eq. (3.83) of χ Eq. (3.74), which

is a quotient of modified Bessel functions, illustrates this cancelation. That is, in terms

of a curvature expansion, for which logarithmic terms have been reported to occur in

Refs. [23, 24], we do not observe a comparable significant deviation from an algebraic

dependence. Note that this finding nevertheless is in line with Refs. [23, 24] according to

which potentials of shorter range give rise to algebraic curvature expansions. The Yukawa

potential, which is regarded here, decays exponentially and hence faster than any of the

ones considered in Refs. [23, 24].

For the cylindrical geometry morphometric thermodynamics predicts a curvature ex-

pansion of γc only up to linear order in the curvature. However, the curvature expansion

Eq. (3.88) exhibits also higher orders and the coefficients γc2 and γc3, which are given ex-

plicitly in Eqs. (3.90) and (3.91), are nonzero in general. Therefore this result contradicts

the prediction from morphometric thermodynamics and disqualifies the approach from

being exact. This finding is in line with other studies in which analytic expressions for

the same or related coefficients have been shown to be nonzero [20,21,23,24]. Incidentally

the discussion about interface conventions within the preceding Chap. 2 (see also Ref. [22])

should be taken into account. There it has been worked out, that, if the R dependence of

the interfacial tension in accordance with MT would be exact in one convention, it would

remain exact for all conventions. The values of most of the coefficients depend on the

chosen interface convention. If there are nonzero coefficients of larger order than allowed

within MT, changing the convention can have the consequence, that a good approxima-

tion deteriorates (see, e.g., Fig. 2.4). From that point of view it makes a huge difference

whether coefficients not in accordance with the MT approach are really zero or just small

in comparison with coefficients in accordance with MT. Due to uncertainties within the

fitting procedure this question can be difficult to answer on the basis of numerical results.

It is interesting to study ratios between curvature coefficients of different geometries.

The quotient of the first order coefficients yields [see Eqs. (3.66) and (3.89)]

γs1
γc1

= 2. (3.92)

This result is in line with both the morphometric approach (see, e.g., Ref. [8]) and a

more general curvature expansion which has been applied, e.g., in Refs. [19,21,23,24] and

which is ascribed to Ref. [93]. In both approaches the linear dependence of the interfacial
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tension on the wall curvature is written in terms of the total curvature J = 1/R1 + 1/R2

where R1 and R2 are the principal radii of curvature. Note that the latter do not depend

on the position on the wall surface for the geometries under consideration. The ratio of

the total curvatures of a spherical Js and a cylindrical wall Jc renders Js/Jc = 2. In the

present study the curvature expansions are written in terms of the inverse wall radius [see

Eqs. (3.65) and (3.88)] and therefore the relation between the total curvatures is absorbed

in the coefficients γs1 and γc1 [see Eq. (3.92)]. Note that Eq. (3.92) is valid for all parameter

choices within the current model, in particular for any range Lw and strength Vp of the

excess external potential. To a certain extent this finding might complement other studies

where the fluid is confined by purely hard walls [19, 21, 23, 24].

Within MT the ratio γs2/γc2 would not be defined because the morphometric approach

predicts γc2 = 0 and, in general, γs2 6= 0. However, in the previous study (see Ref. [22]

and Chap. 2) it has been found that for small packing fractions this ratio is close to

the constant value 8/3 for all fluid-fluid interaction potentials under consideration, i.e.,

for square-well, square-shoulder, Yukawa-like, and Lennard-Jones-like potentials. The

generality of this relation has been further confirmed with help of analytic results for

hard sphere systems which have been derived in Ref. [21]. Recently, in Refs. [23, 24] the

quotient of second order coefficients has been analyzed with respect to systems interacting

through a Lennard-Jones or an inverse-power law potential. In both studies the value

γs2/γc2 = 8/3 has been found again. The authors have pointed out that the origin of this

relation is purely geometrical which explains the observed generality. Moreover, on the

basis of this quotient, the author in Ref. [24] proposes, e.g., a so-called surface isotension

condition as a tool in order to evaluate the accuracy of different approximations. Within

the present model γs2 and γc2 [see Eqs. (3.67) and (3.90)] render

γs2
γc2

=
8
√

1 + x

2 + x +
√

1 + x
, (3.93)

x := 4πβU0̺
∗L2, (3.94)

where for simplicity the excess external potential is not considered, i.e., Vp = 0. States

which fulfill the stability criterion Eq. (3.15) correspond to positive arguments in the

square roots of Eq. (3.93). For |x| ≪ 1 the exact expression Eq. (3.93) can be expanded

which leads to

γs2
γc2

=
8

3
− 2

9
x2 + O

(

x3
)

, (3.95)

that is, the meanwhile well-known ratio in zeroth order. Note that for the convenient

choice ̺∗ = ̺b Eq. (3.95) corresponds to an expansion in the bulk number density. In

Eq. (3.95) there is no term of linear order present and the coefficient of the term quadratic

in x is comparatively small. Therefore the constant value 8/3 can be expected to be a



3.3. DISCUSSION 69

-12

-10

-8

-6

0 0.2 0.4 0.6 0.8 1

L
2
β
γ
/1

0−
5

L/R

preceding model, cylinder

preceding model, sphere

present model, cylinder

present model, sphere

Figure 3.2: Reduced interfacial tension L2βγ for a fluid in contact with a cylindrical (or-
ange plots) and with a spherical wall (black plots) in dependence of the dimensionless wall
curvature L/R. The results of two models are compared with each other. Data labelled
with preceding model refers to the approach in Chap. 2 and Ref. [22] in combination with
the Yukawa-like interaction potential Eq. (2.5), βµ = −3.94, βU0 = 0.1, Lc/L = 10, and
with βVp = 0. Data labelled with present model refers to Eqs. (3.58) and (3.78) with
η ≈ 0.01, βU0/L = 0.1, and with βVp = 0. In the posed limit of small packing fraction,
weak particle-particle interaction, and large cutoff parameter the two approaches exhibit
a good agreement throughout the shown interval.

good estimate for the ratio γs2/γc2 in the case of small |x|.

3.3.5 Illustration

The present approach enables to derive exact expressions for the observables of inter-

est, i.e., the interfacial tension for fluids in contact with walls of different geometries

[Eqs. (3.47), (3.58), and (3.78)] as well as the coefficients of the corresponding (truncated)

curvature expansions [Eqs. (3.65) and (3.88)]. However, the expressions in question turn

out to be rather complicated such that the further analysis is supported by plots. For that

purpose lengths and energies are measured in units of the characteristic length scale L of

the particle-particle interaction [see Eq. (3.1)] and the thermal energy 1/β, respectively.

The reference density is chosen to equal the bulk equilibrium density ̺∗ = ̺b which sets

the value of the coefficient c [see Eq. (3.7)]. Furthermore some kind of packing fraction

η :=
π

6
̺bL3 (3.96)

is introduced which might be a more intuitive quantity than the bulk density ̺b.

In Fig. 3.2 the outcome of the present approach of a Yukawa fluid [Eq. (3.1)] is com-
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Figure 3.3: Reduced coefficients of the curvature expansions Eqs. (3.65) and (3.88) in
dependence of the packing fraction η [Eq. (3.96)]. Every curve corresponds to the fixed
values of βU0/L = 0.1 and βVp = 0. The coefficient γs1 is not shown explicitly because the
same essential information is already contained in γc1 [see Eq. (3.89)]. The inset provides a
zoomed in view with respect to the vertical axis in order to facilitate a distinction between
the coefficients γc1 and γc3. Note that morphometric thermodynamics would predict the
coefficients γc2 and γc3 to be exactly zero.

pared with the results of the model with cut-off Yukawa-interaction Eq. (2.5) of the

preceding Chap. 2 (see also Ref. [22]). The interfacial tension is plotted as a function of

the wall curvature and the values of the fixed parameters correspond to a Yukawa(-like)

fluid of small packing fraction with weak particle-particle interactions in the case of the

present (preceding) approach. Within this limit the two approaches exhibit a good agree-

ment throughout the shown interval. On one hand this finding may serve as a crosscheck

for the solution processes of both models. On the other hand this finding implies that

the present model is capable to reproduce results derived from the more sophisticated

preceding approach, i.e., the simplified model leads to reasonable results. Compared with

numerical solutions the exact expressions for the coefficients of the curvature expansions

have the advantage that they do not suffer from inaccuracies during fitting procedures.

Moreover, instead of being dependent on examining the coefficients on a sample basis due

to computation time limitations, the dependence of the coefficients on various parameters

can be scanned rapidly.

It is already known that MT in general is not an exact approach. However, it is still

possible, that a truncation of the exact curvature expansion in line with MT leads to a

good approximation. For spherical walls this is the case because the difference between

the MT expression and the exact one is exponentially small [see Eq. (3.65)]. The question

arises whether MT possibly works in a similar fashion also in the case of a cylindrical
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Figure 3.4: The same as Fig. 3.3 in dependence of the reduced strength βU0/L of the
particle-particle interaction potential Eq. (3.1) and for the fixed parameters η = 0.01 and
βVp = 0.

wall. Therefore the remaining discussion focuses on the cylindrical geometry where the

MT expression differs algebraically from the exact expression [see Eq. (3.88)], i.e., the

precision of the MT approach can be expected to be of a poorer quality than in the case

of the spherical wall. In order that a truncation of the exact curvature expansion in line

with MT is a good approximation, the neglected coefficients should at least be smaller

than the ones which are in accordance with MT, i.e., for the cylindrical geometry there

should be |γp|, |γc1| > |γc2|, |γc3|, . . .. Note that this criterion for a good approximation

is an arbitrary choice which is introduced here as a basis for the subsequent discussion.

For certain applications other criteria may be more appropriate and may lead to other

conclusions. Furthermore note that in the preceding discussion (see Chap. 2 and Ref. [22])

it is revealed that the choice of the interface convention influences the values of the

coefficients. Within the present chapter the expressions are given in the convention δ = 0.

In Figs. 3.3 and 3.4 the coefficients are plotted in dependence of the bulk quantities

η and βU0/L, respectively. In both figures the excess external potential is exactly zero,

i.e., the interaction between the wall and the fluid particles is purely hard. For many

parameter choices the planar coefficient γp is the dominant one in both cases. However,

the absolute value of the first order coefficient is smaller than the one of the second

order coefficient |γc1| < |γc2|. For the parameter choices shown the quality of MT as

an approximation is questionable because truncation in line with MT would demand to

consider coefficients only up to |γc1| and to neglect, e.g., the larger |γc2|.
Figures 3.5 and 3.6 show the curvature coefficients as functions of parameters which

specify the strength βVp and range Lw/L of the excess external potential. For many



72 CHAPTER 3. YUKAWA FLUID AT CURVED WALLS

-0.06

-0.03

0

0.03

0.06

-1 -0.5 0 0.5 1

βVp

η = 0.01, βU0/L = 0.1, Lw/L = 1.5

L2βγp
L2βγc1
L2βγc2

L2βγc3
L2βγs2

Figure 3.5: The same as Fig. 3.3 in dependence of the reduced strength βVp [Eq. (3.37)] of
the particle-wall interaction potential and for the fixed parameters η = 0.01, βU0/L = 0.1,
and Lw/L = 1.5.

parameter choices again |γc1| < |γc2|. Other relations, however, differ considerably from

the behaviors observed so far. In the former Figs. 3.3 and 3.4 the third order coefficient

γc3 plays a minor role, i.e., its absolute value is the smallest of the coefficients shown.

That is, in the former cases this parameter is not violating the criterion for a good

approximation. In Figs. 3.5 and 3.6 its absolute value increases rapidly with growing |βVp|
and Lw/L. For large values of |βVp| its value is larger than that of the first order coefficient

|γc3| > |γc1| (see Fig. 3.5). In Fig. 3.6, for large Lw/L, the absolute values of both the

second and third order coefficients exceed the absolute values of zeroth and first order

coefficients |γc2|, |γc3| > |γp|, |γc1|. Within the analytically quoted coefficients this is the

exact opposite of the aforementioned criterion for a good approximation. This observation

manifests that an excess external potential further deteriorates the applicability of MT

as an approximation.

The evaluation of the analytically quoted coefficients in Figs. 3.3 – 3.6 renders that

the criterion for a good approximation is violated for many parameter choices. Hence, by

truncation of the exact curvature expansion for the cylindrical geometry according to the

morphometric approach, terms of significant magnitude are neglected, in contrast to the

spherical geometry.

3.4 Summary

The interface between a convex wall of planar, spherical, or cylindrical shape and a Yukawa

fluid has been analyzed. To that end the fluid has been described within density functional
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Figure 3.6: The same as Fig. 3.3 in dependence of the reduced decay length Lw/L of the
particle-wall interaction potential [see Eq. (3.21)] and for the fixed parameters η = 0.01,
βU0/L = 0.1, and βVp = 1.

theory by the functional in Eq. (3.9) which is a modified version of the functional Eq. (2.7)

used in the preceding Chap. 2 (see also Ref. [22]). In order to analyze the dependence

of the wall-fluid interface on the radius R of the wall, the interfacial tension [Eqs. (3.34)

and (3.35)] has been chosen as an observable. The applied simplifications, which lead

from the preceding model to the present one, enable one to obtain exact expressions for

the interfacial tension at the planar [γp, Eq. (3.47)], spherical [γs, Eq. (3.58)], and at the

cylindrical [γc, Eq. (3.78)] wall. In spite of the modifications, the results of the present

model agree well with the ones corresponding to the preceding model (see Fig. 3.2).

In contrast to the preceding approach the coefficients of the curvature expansions are

available analytically for both cases, the spherical wall [with the expansion in Eq. (3.65)

and corresponding coefficients γs1 and γs2 in Eqs. (3.66) and (3.67)] and the cylindrical

wall [with the expansion in Eq. (3.88) and corresponding coefficients γc1 – γc3 in Eqs. (3.89)

– (3.91)]. With that it is possible to actually prove, that for the model under consideration

the approach of morphometric thermodynamics (MT), stating that the dependence of the

interfacial tension on the curvature is given exactly by a quadratic (linear) polynomial

in the curvature in the case of a spherical (cylindrical) wall, is not complete. Therefore

the morphometric approach has the status of an approximation. The quality of MT

as an approximation has been discussed within the convention δ = 0 [see Fig. 2.1 and

Eq. (2.16) in the preceding chapter]. For the cylindrical geometry the arbitrary criterion

for a good approximation |γp|, |γc1| > |γc2|, |γc3|, . . . has been introduced in order to judge

the values of the coefficients relative to each other. With the aid of plots the dependence

of the coefficients on various system parameters has been examined. In most cases the
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criterion has turned out to be not fulfilled mainly because |γc2| > |γc1|. This can be

observed, e.g., in Figs. 3.3 and 3.4, where the bulk parameters packing fraction and

strength of the fluid-fluid interaction potential are varied. An additional excess external

potential, parameterized by its strength and range in Figs. 3.5 and 3.6, further deteriorates

the applicability of MT because there the criterion is as well violated with respect to

γc3. The results for the two types of curved geometries reveal qualitative differences.

In the case of cylindrical walls the morphometric approach proposes to truncate the

curvature expansion such that terms of significant magnitude may be neglected. However,

for spherical geometries the MT expression equals the exact one up to exponentially

small terms and, thus, it corresponds to an approximation of comparatively high quality.

Relations between curvature coefficients of different geometries [Eqs. (3.92) and (3.95)]

agree well with those found in literature as well as in Chap. 2 and Ref. [22].

3.A Determination of the bulk correlation length ξ

The bulk correlation length ξ provides information about the range over which fluctuations

in the density are correlated [49]. Its value can be determined from the asymptotic decay

of the density-density correlation function Ḡ evaluated in the bulk. Ḡ is a measure for

the correlation of deviations of the number density from its equilibrium value ̺eq between

two positions r and r′. It is defined by the configuration average [58]

Ḡ(r, r′) := 〈[ ˜̺(r) − ̺eq(r)][ ˜̺(r′) − ̺eq(r
′)]〉

= ̺(2)(r, r′) + ̺eq(r)δ(r − r′) − ̺eq(r)̺eq(r
′),

(3.97)

with the density operator ˜̺, the average of which renders the equilibrium number density

〈 ˜̺〉 = ̺eq, and the pairwise distribution function ̺(2) (see below). In a uniform fluid, i.e.,

in the bulk, with equilibrium number density ̺b Eq. (3.97) simplifies to

G(r − r′) := Ḡ(r, r′)|bulk =
(

̺b
)2

g(|r − r′|) + ̺bδ(r − r′) −
(

̺b
)2

, (3.98)

where use has been made of the relation ̺(2)(r, r′) =
(

̺b
)2

g(|r−r′|) between the pairwise

distribution function ̺(2) and the radial distribution function g [58]. In the following G

denotes the bulk density-density correlation function. By means of the Fourier transform

f̂(q) :=

∫

R3

d3r f(r) exp(−iq · r) (3.99)
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and the pair correlation function h(r) := g(r) − 1 Eq. (3.98) can be written in Fourier

space as

Ĝ(q) =
(

̺b
)2

ĥ(q) + ̺b. (3.100)

Next a relation between this quantity and density functional theory is obtained with help

of the generic density functional βΩ[̺] in Eq. (2.30). Its second functional derivative with

respect to number density and evaluated in the bulk reads

δ2(βΩ)

δ̺(r)δ̺(r′)

∣

∣

∣

∣

̺b
=

δ(r − r′)

̺b
− c(2)(|r − r′|) =: K(r − r′), (3.101)

where the bulk Ornstein-Zernike direct correlation function

c(2)(|r − r′|) := − δ2(βF ex)

δ̺(r)δ̺(r′)

∣

∣

∣

∣

̺b
(3.102)

has been introduced [58]. The Fourier transform of Eq. (3.101) is given by

K̂(q) =
1

̺b
− ĉ(2)(q). (3.103)

The product of K̂(q) and Ĝ(q) reduces to

K̂(q)Ĝ(q) = 1 + ̺b
[

ĥ(q) − ĉ(2)(q)̺bĥ(q) − ĉ(2)(q)
]

= 1 (3.104)

⇔ Ĝ−1(q) = K̂(q), (3.105)

where the term in brackets of Eq. (3.104) vanishes due to the Ornstein-Zernike equation

for translationally invariant and isotropic systems in Fourier space [49],

ĥ(q) = ĉ(2)(q) + ̺bĉ(2)(q)ĥ(q). (3.106)

Equation (3.105) states that, in Fourier space, the inverse of Ĝ is given by the second

derivative of the density functional K̂ [Eq. (3.101)]. The equivalent of Eq. (3.105) in real

space is used in order to determine G−1 from the density functional of the present model

Eq. (3.9) as

G−1(r − r′) =
δ2(βΩ)

δ̺(r)δ̺(r′)

∣

∣

∣

∣

bulk

= βc δ(r − r′) + βU(|r − r′|). (3.107)

In Fourier space

Ĝ−1(q) =
1

Ĝ(q)
=

βc[1 + (qL)2] + βÛ(0)

1 + (qL)2
, (3.108)
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can be inverted and the Fourier transform of G reads

Ĝ(q) = − Û(0)

βc2L2

1

1

L2

[

1 +
Û(0)

c

]

+ q2
+

1

βc
. (3.109)

The inverse Fourier transform

G(r) :=
1

4π2ir

∞
∫

−∞

dq q Ĝ(q) exp(iqr), (3.110)

gives the expression of G(r) and the respective integration can be treated with the residue

theorem. The asymptotic exponential decay of G(r) is determined by the poles of Ĝ(q)

and the longest decay length corresponds to the pole q′ + iq′′ ∈ C with smallest imaginary

part. For our purpose it is not necessary to execute the integration in Eq. (3.110) because

the value of the bulk correlation length can be read from the root of the denominator of

the first term in Eq. (3.109) as

ξ =
1

|q′′| =

{

1

L2

[

1 +
Û(0)

c

]}−1/2

=

(

1

L2
+

4πU0

c

)−1/2

. (3.111)

This result enables to identify the bulk correlation length ξ in the differential equation

Eq. (3.25).



Chapter 4

Electrolyte solutions at curved

electrodes. I. Mesoscopic approach

In Ref. [8] the idea of morphometric thermodynamics (MT) has been introduced in con-

junction with the restriction, that the approach cannot be applied to systems with large

intrinsic lengths, which comprises, e.g., critical phenomena or systems with long ranged

fluid-fluid or fluid-wall interactions. For that reason, so far in Chaps. 2 and 3, simple flu-

Figure 4.1: Idealized sketch of an experimental setup corresponding to the theoretical
models which are discussed in Chaps. 4 and 5. An electrode (gray circle) of planar,
spherical, or cylindrical shape is immersed in an electrolyte solution (blue background).
The present sketch depicts a curved electrode, i.e., a sphere or cylinder of radius R. The
electrode surface may be homogeneously charged with surface charge density σ by applying
a voltage U between the electrode and the bulk far away from the electrode surface. Note
that the voltage U is defined as the potential difference between two equipotential surfaces:
one is equivalent to the electrode surface and the other one consists of points in the bulk
which are at equal distance from the electrode surface. In the following, in particular
the electrolyte solution is considered by various models. Figures 4.2 and 5.1 give a visual
impression of the different levels of complexity of the latter.

77
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ids with interaction potentials of limited or short range around curved walls have been in

focus in order to check the morphometric approach within its original range of definition.

It has turned out that MT is never exactly valid. However, depending on the convention

for the interface, the morphometric expression for the interfacial tension can be a good

approximation.

These former insights have given rise to systematically analyze also more complex

fluids in contact with curved solid walls: electrolyte or ionic solutions at curved elec-

trodes. In the following these systems are considered, because, on one hand, they are

common in nature. Even pure water, for instance, is an ionic solution, because of the

self-ionization of water. On the other hand, supercapacitors consisting of electrodes in

contact with electrolyte solutions are of current interest in technological applications (see

the references in Sec. 4.1) and findings with respect to the geometry dependence of the

capacitance might be helpful for the development of energy storage systems. Last but

not least electrolyte solutions are attractive from a scientific point of view. On one hand,

they are more complex than the simple fluids under former consideration. For instance

they consist of more than one particle species carrying different electrical charges which

interact in distinct ways with each other and with the charged electrode; this makes their

description comparatively difficult. On the other hand, these systems are endowed with

more options to act upon them, both in theoretical models and in experimental setups.

For example, the Debye length, which is an intrinsic length scale, can be tuned by means

of the ionic strength. Furthermore the strength of the wall potential is set by the surface

charge density of the electrode. It can be expected that these quantities, among others,

have an effect on the structure of the electric double layer (EDL) whose dependence on

the wall geometry is the focus of the following discussion. To that end the differential

capacitance C, which is a measurable quantity, is chosen as an observable. Its definition

does not underlie an interface convention as the interfacial tension, which is convenient,

inter alia, for statements with respect to the validity of MT. Figure 4.1 depicts an ide-

alized experimental setup corresponding to systems which are approached theoretically

in the following. In an experiment one would set the surface charge density σ by apply-

ing a voltage between the electrode and, in the depicted case, the bulk. The differential

capacitance is defined as the derivative of σ with respect to the voltage or the electrode

potential. That is, the change of the surface charge density in response to a change of

the electrode potential has to be known. In the following the underlying relation be-

tween σ and the electrode potential is determined theoretically by distinct approaches: a

mesoscopic one in Chap. 4 and a microscopic one in Chap. 5. The analysis based on the

differential capacitance, which contains integrated properties of the structure of the EDL,

enables to investigate the influence of the electrode geometry on the EDL in dependence

of, e.g., the surface charge density, the ionic strength, and other (microscopic) parameters

which are introduced in the following. Furthermore the outcome of various models, some
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of which are illustrated in Figs. 4.2 and 5.1, can be compared with each other.

Up to occasional modifications and add-ons the present Chap. 4 is equivalent to the

study published in Ref. [94]. Therein the Poisson-Boltzmann (PB) approach is used in or-

der to analyze systematically electrolytes in contact with planar, spherical, and cylindrical

electrodes. The dependences of their capacitance C on the surface charge density σ and

the ionic strength I are examined as a function of the wall curvature. The surface charge

density has a strong effect on the capacitance for small curvatures, whereas for large cur-

vatures the behavior becomes independent of σ. An expansion for small curvatures gives

rise to capacitance coefficients which depend only on a single parameter, allowing for a

convenient analysis. The universal behavior at large curvatures can be captured by an

analytic expression.

4.1 Introduction

An electrical double layer capacitor or supercapacitor basically consists of electrodes which

are insulated by a separator and which are in contact with an electrolyte. Supercapaci-

tors are used as alternative electrical energy storage devices and combine the properties of

conventional batteries, with high energy but low power densities, and conventional capac-

itors with the opposite characteristics [95]. They are used in electric vehicles and mobile

phone equipments. Moreover, in search of sustainable energy systems there is still growing

interest in double layer capacitors. The capacitive behavior is determined by the nature

of the electrode material, e.g., its porosity and accessible surface area. Often carbon is

the electrode material of choice and especially ordered carbon allotropes have received

much attention because their micro-texture influences the electronic properties. Different

kinds of carbon nanostructured materials, including carbon nanotubes, carbon nanorods,

spherical fullerenes, and carbon nano-onions, have been used as electrodes [95,96]. Fiber-

shaped supercapacitors exhibit low weight and high flexibility and thus are promising

candidates for power sources in wearable electronics [97]. In contrast to conventional

capacitors with smooth electrode morphologies, supercapacitors exhibit highly curved

surfaces in order to obtain large specific areas, i.e., high porosity. This poses the problem

of understanding the properties of electric double layers at curved geometries. A suitable

method to model an electric double layer is given by the Poisson-Boltzmann (PB) theory.

Within this mesoscopic approach the focus is on length scales larger than the ions or sol-

vent molecules because electrolyte solutions are taken to consist of pointlike ions dissolved

in a homogeneous solvent which is described by its electric permittivity only. The PB

theory has been pioneered by Gouy [32] and Chapman [33] in the 1910s and sometimes

it is referred to as the Gouy-Chapman theory. Although the model is simple, reliable

predictions can be expected to hold for low ionic strengths (below 0.2 M = 0.2 mol/ℓ) and

low electrode potentials (below 80 mV), in the case of aqueous solutions and monovalent
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salts [2]. For that reason and due to its simplicity the PB theory is used frequently. Under

certain circumstances it even allows for exact solutions, e.g., for electrolyte solutions at

planar electrodes [2, 34]. Recently, exact results have been presented for an electrolyte

bounded by parallel plates or inside a cylindrical charged wall if only counterions are

considered [98]. This setup might be used as a description for ions confined in a charged

nanotube or pore. However, for the corresponding spherical system, so far a solution in

closed form has not been found. In Ref. [99] the same authors presented an expansion

for the solution of the PB equation in spherical and cylindrical geometries with large

radii of curvature, which might resemble charged macromolecules surrounded by an elec-

trolyte solution and which comes closest to an analytic solution of the full PB equation for

these geometries. Within the framework of the linearized Gouy-Chapman-Stern theory in

Ref. [100] a model for an arbitrary surface morphology was developed. This facilitates, for

example, the calculation of capacitances of nanostructured electrodes, the study of which

might contribute to the development of efficient energy generating and storage devices.

But also for numerical studies the PB equation often is the model of choice because its

simplicity allows for fast calculations: In order to understand the properties of the diffuse

double layer at charged nanoelectrodes or carbon nanotubes the PB equation was solved

in Refs. [101,102] for spherical and cylindrical electrodes. The potential and capacitance

were analyzed for various values of the electrode radius. The evolution of capacitance

models for supercapacitors gave rise to the study in Ref. [103] in which cylindrical and

slit pores were considered within the Gouy-Chapman-Stern model to address, inter alia,

the issue of how the pore shape affects the capacitance.

However, so far the dependence of the capacitance on the geometry has only been ad-

dressed on a sample basis, i.e., for particular choices of system parameters. The intention

of the present work is to study the curvature dependence of the capacitance systematically

within the entire, relevant parameter space.

In the present study the PB equation is solved for electrolytes surrounding spherical

and cylindrical electrodes (see Sec. 4.2). In addition to presenting results for a variety

of parameter choices, a thorough overview of the spectrum of solutions is given. To that

end the dependence of the differential capacitance on the various parameters is analyzed

in detail within the PB theory for these geometries. The limiting behavior is discussed

systematically, i.e., the dependence on only one parameter or analytically. This facilitates

the understanding of the essential behavior of the data of interest which in the present case

is the differential capacitance as a function of the wall curvature. In Sec. 4.3.1 a short

overview of the exact results within the linearized theory is given before in Sec. 4.3.2

the full PB equation for various choices of the parameters is solved. In the subsequent

Secs. 4.3.3 and 4.3.4 general trends for large and small radii of the electrodes are worked

out. Corresponding technical details are discussed in Appendices 4.A and 4.B. Summary

and outlook are given in Sec. 4.4.



4.2. MODEL 81

4.2 Model

Consider an electrolyte composed of pointlike, monovalent ions, i.e., particles without vol-

ume carrying positive or negative elementary charge ±e. Due to local charge neutrality

the number densities of both ion species in the bulk are equal to the ionic strength I.

The solvent is regarded as a dielectric continuum with homogeneous relative permittiv-

ity ǫ. The electrostatic potential Φ in this system obeys the Poisson-Boltzmann (PB)

equation [2, 34]

∆Φ(r) =
2eI

ǫ0ǫ
sinh[βeΦ(r)], (4.1)

where ∆ is the Laplace operator, r ∈ R3 denotes a position in three-dimensional space, ǫ0

is the vacuum permittivity, β = (kBT )−1 with the Boltzmann constant kB and the absolute

temperature T . The electrolyte is assumed to be in contact with a convex electrode of

planar, spherical, or cylindrical shape. The electrode is described as a homogeneously

charged hard wall with surface charge density σ. Under these assumptions the potential

Φ in Eq. (4.1) depends on a single spatial variable Φ(r) := Φ(r) = Φ(x, y, z) where the

meaning of r depends on the geometry:

• A planar wall occupies the half space z < 0 which leads to a dependence of Φ on

r := z,

• a spherical wall x2 + y2 + z2 < R2 of radius R gives rise to a dependence of the

potential on r :=
√

x2 + y2 + z2, and for a

• cylindrical wall x2 + y2 < R2 of radius R the potential depends on r :=
√

x2 + y2.

The sketch in Fig. 4.2 illustrates the model under consideration. By introducing the

parameter d in order to distinguish the three geometries the PB equation (4.1) may be

formulated in a one-dimensional fashion:

1

rd
∂

∂r

[

rd
∂Φ(r)

∂r

]

=
2eI

ǫ0ǫ
sinh[βeΦ(r)],

d =



















0, planar wall,

1, cylindrical wall,

2, spherical wall.

(4.2)



82 CHAPTER 4. ELECTROLYTE SOLUTIONS AT CURVED ELECTRODES. I.

Figure 4.2: Sketch of the model system under consideration (see Sec. 4.2). The depicted
case corresponds to a spherical or cylindrical electrode of radius R. The electrode, i.e.,
a homogeneously charged hard wall with surface charge density σ, is surrounded by an
electrolyte solution which consists of pointlike, monovalent ions (red and blue dots) dis-
solved in a solvent with relative permittivity ǫ. Within the present model the solvent
is taken into account as a structureless continuum which is represented by the yellowish
background. The distribution of the ions depends, inter alia, on the geometry and the
surface charge density of the electrode and gives rise to the electrostatic potential Φ which
is determined by the Poisson-Boltzmann equation (4.1).

Solutions of Eq. (4.2) are subject to boundary conditions at the wall surface rw and in

the bulk r → ∞:

Φ′(r)
∣

∣

∣

r=rw
= − σ

ǫ0ǫ
, rw =







0, d = 0,

R, d ∈ {1, 2},

Φ′(r)
∣

∣

∣

r=∞
= 0.

(4.3)

For the considered geometries the electric field exhibits only a component E(r) = −Φ′(r)

in direction normal to the wall surface. The value of the component at the surface rw

is linked to the surface charge density σ by the first boundary condition. The second

boundary condition ensures global charge neutrality. In the following we additionally

demand Φ(∞) = 0 so that the lower boundary condition is fulfilled and the arbitrary

integration constant of Φ is set.

For small values of the dimensionless potential βeΦ(r) → 0 it is sufficient to consider

the expansion of the hyperbolic sine in the PB equation (4.2) only up to linear order in

order to obtain the linearized PB equation

1

rd
∂

∂r

[

rd
∂Φ(r)

∂r

]

= κ2Φ(r), κ :=

√

2e2Iβ

ǫ0ǫ
, (4.4)



4.3. DISCUSSION 83

with the inverse Debye length κ.

4.3 Discussion

The differential capacitance is defined by [34]

C :=
∂σ

∂Φ(rw)
(4.5)

as the change of the surface charge density σ upon changing the potential at the wall Φ(rw).

Here the theoretical results are presented in terms of this measurable quantity in order

to facilitate comparison with experiments. The examinations focus on the dependence of

the capacitance C on the curvature 1/R of a spherical and a cylindrical wall.

4.3.1 Linearized PB equation

The linearized PB equation (4.4) can be solved analytically for the geometries under

consideration:

• At a planar wall the potential at the electrode is

Φ(0) =
σ

ǫ0ǫκ
, (4.6)

and the capacitance is given by the double-layer capacitance ǫ0ǫκ [34]

C

ǫ0ǫκ
= 1. (4.7)

This quantity will be used as a reference in order to define dimensionless capaci-

tances.

• For a spherical wall one has

Φ(R) =
σ

ǫ0ǫκ

κR

κR + 1
, (4.8)

and

C

ǫ0ǫκ
= 1 +

1

κR
, (4.9)

a polynomial of linear order in the dimensionless curvature (κR)−1.
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• In the case of a cylindrical wall the electrode potential

Φ(R) =
σ

ǫ0ǫκ

K0(κR)

K1(κR)
, (4.10)

and the capacitance

C

ǫ0ǫκ
=

K1(κR)

K0(κR)
= 1 +

1

2

1

κR
− 1

8

1

(κR)2
+ O

[

1

(κR)3

]

(4.11)

are given by a ratio of modified Bessel functions [84]. For large radii κR ≫ 1

the expression can be represented by an infinite power series in the curvature, the

truncated version of which is shown in Eq. (4.11).

Already the linearized PB equation reveals interesting differences for the curvature depen-

dencies of the capacitance. Whereas in the case of the spherical wall the entire curvature

dependence is given by a linear polynomial, in the case of the cylindrical wall a transcen-

dental expression is found. The leading curvature correction in the case of the spherical

electrode [Eq. (4.9)] is twice of that in the cylindrical case [Eq. (4.11)]. In the following

it turns out that this ratio also holds for systems in accordance with the nonlinear PB

equation (see Sec. 4.3.3). The analysis based on the linearized PB equation becomes

rather complex when arbitrary curved surfaces are considered, which was addressed in

Refs. [100, 104, 105]. However, the linear theory is valid only in the limit Φ → 0 and the

capacitances are independent of Φ or σ. Strictly speaking the full PB equation has to be

considered as soon as systems with non-vanishing Φ or σ are of interest. This will be the

focus in Secs. 4.3.2 – 4.3.4.

4.3.2 Full non-linear PB equation

The solution of the PB equation (4.2) at the planar wall is available in closed form and

the capacitance is given by [34]

C

ǫ0ǫκ
= cosh

[

1

2
βeΦ(0)

]

, (4.12)

where the potential at the wall Φ(0) depends on the surface charge density σ as

Φ(0) =
2

βe
arsinh

(

βeσ

2ǫ0ǫκ

)

. (4.13)

For spherical and cylindrical geometries the PB equation (4.2) is solved numerically; for

this purpose an algorithm in the spirit of the Piccard iteration is used (see Sec. 8.1 in

Ref. [61]). If lengths, charges, and energies are measured in units of the Debye length 1/κ,

the elementary charge e, and the thermal energy 1/β = kBT , respectively, the present



4.3. DISCUSSION 85

model of a monovalent salt solution is specified by the following three dimensionless,

independent parameters: I/κ3, κR, and σ/(eκ2). In Figs. 4.3 and 4.4 results for the

reduced capacitance are shown for two cases A and B corresponding to the choices I/κ3 ≈
0.05329 and I/κ3 ≈ 0.1685, respectively. The parameters would, for example, refer to an

aqueous electrolyte solution at room temperature T = 300 K with relative permittivity

ǫ = 77.7003, Debye length 1/κ ≈ 9.600 Å [30.36 Å], and ionic strength I = 0.1 M [0.01 M]

in case A [B]. In Figs. 4.3 and 4.4 the reduced capacitance C/(ǫ0ǫκ) is plotted as function

of the dimensionless wall curvature 1/(κR) for various values of the reduced surface charge

density σ/(eκ2). The value 1/(κR) = 0 corresponds to the planar wall result in Eq. (4.12).

Larger values on the horizontal axes are equivalent to larger curvatures and hence to

smaller radii of the wall. Since the PB equation originates from a classic theory the

results for large curvatures should be treated with caution. In case A, for example, the

Debye length is about 1/κ ≈ 10 Å. This means that for 1/(κR) > 10 the wall radius is

smaller than the atomic length scale of 1 Å. Within this range the particle size, which

is not captured by the PB theory, should play a role. In the case of the spherical wall

(Fig. 4.3) the curvature dependence of the capacitance for the smallest chosen value of

σ almost coincides with a straight line. This is in accordance with the analytic result in

Eq. (4.9) which renders a linear polynomial in 1/(κR). For increasing σ the capacitance

in the planar limit 1/(κR) = 0 increases, whereas for large curvatures the curves seem

to converge from above to the graph for σ → 0. This indicates that the linear theory

becomes the more valid the larger the curvature is chosen. In between the limits of high

and low curvatures the capacitance exhibits a minimum the position of which shifts with

σ. Also the slope of the graph for small curvatures depends on σ. For σ → 0 there is a

positive slope, whereas larger surface charge densities give rise to a negative slope.

The curvature dependences in Fig. 4.4 of the capacitances for electrolytes in contact

with cylindrical walls resemble the ones at spherical walls in Fig. 4.3. The results for

cylinders look like the results for spheres stretched in horizontal direction. However, for

σ → 0 the capacitance at a cylindrical wall clearly deviates from a linear function [see

Eq. (4.11)]. The potential Φ(R) at the cylindrical electrode agrees well with the expression

for the surface potential in Ref. [106] [Eqs. (3) and (4) therein] within the specified range

of validity, i.e., for not too small curvatures and line charge densities.

The linearized PB equation (4.4) corresponds to the lowest curves in Figs. 4.3 and

4.4. Thus important features, particularly in the range of small curvatures, are neglected,

whereas for large curvatures a description based on the linear theory appears to be suf-

ficient. In the solution of the full equation (4.2) the surface charge density affects the

capacitance for small curvatures to a large extent whereas for large curvatures the be-

havior becomes more and more general and independent of σ. This phenomenon will be

addressed in Secs. 4.3.3 and 4.3.4.
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Figure 4.3: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the dimensionless
curvature 1/(κR) of spherical electrodes. The data are obtained by solving the PB equa-
tion (4.2) for two cases (A and B) of the bulk parameter choices (see the main text). Each
curve corresponds to a constant value of the reduced surface charge density σ/(eκ2). The
vertical arrow points in the direction of increasing σ.

4.3.3 Limit of large wall radii

Within this subsection we focus on walls with large radii κR ≫ 1 or small curvatures

1/(κR) ≪ 1. It has been shown before that in this limit the capacitance as function of

the curvature varies strongly with the surface charge density σ (see Figs. 4.3 and 4.4 and

the discussion in the previous Sec. 4.3.2). In order to examine this observation in more

detail, the capacitance is taken as a power series in terms of small curvatures (κR)−1 ≪ 1:

C = ǫ0ǫκ
∞
∑

n=0

Cn

(κR)n
, (4.14)
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Figure 4.4: Same as Fig. 4.3 for cylindrical electrodes.

where ǫ0ǫκC0 is the capacitance of a planar wall [Eq. (4.12)]. In Appendix 4.A the

calculation of the dimensionless coefficients Cn is explained in detail. In Fig. 4.5 the

lowest order coefficients C0,1,2 of the curvature expansion in Eq. (4.14) are plotted as

function of the dimensionless parameter

t := tanh

[

1

2
arsinh

(

βeσ

2ǫ0ǫκ

)]

∈ [−1, 1], (4.15)

which is a combination of T, ǫ, I, and σ such that the sign of t agrees with the sign of σ

[see also Eq. (4.28)]. Apart from the geometry captured by d, the coefficients Cn depend

only on t. Thus within PB theory every parameter choice can be assigned to Fig. 4.5.

Since the solutions Φ(r) of Eqs. (4.2) and (4.3) are odd functions of σ, the capacitance in

Eq. (4.5) and hence the coefficients Cn are even functions of t, i.e., Cn(t) = Cn(−t); it is

therefore sufficient to only discuss the range t ≥ 0. For the planar wall [Fig. 4.5(a)] the
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Figure 4.5: Lowest order coefficients C0,1,2 of the curvature expansion [Eq. (4.14)] as
function of the parameter t defined in Eqs. (4.15) and (4.28). The entire information
about the influences of T, ǫ, I, and σ is contained in the dependence on t ∈ [−1, 1] (see
the discussion in Appendix 4.A). For clarity the coefficient C0, describing the contribution
of the planar wall to C [panel (a)], is displayed separately from the coefficients C1 and C2

for spherical (b) and cylindrical (c) walls.

formulation in terms of scaled variables is

C0 =
1 + t2

1 − t2
(4.16)
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which diverges for σ → ±∞ ⇔ t → ±1 as (1−|t|)−1. The coefficient C1 [Figs. 4.5(b) and

(c)] exhibits the same qualitative behavior for both curved walls: its value in the spherical

case is twice of that in the cylindrical case. At t = 0, C1 attains a positive maximum;

for t > 0 the curve decreases monotonically and crosses the t-axis at t = 0.4858(3). In

Figs. 4.3 and 4.4, C1 corresponds to the slope for small curvatures. Indeed the slope

changes from positive to negative with increasing σ, i.e., increasing t. The roots of C1 in

Figs. 4.5(b) and (c) correspond to a special combination of parameters for which the initial

slope in Figs. 4.3 and 4.4 would be exactly zero. For C2 qualitative differences between

the curved wall shapes occur. In the case of the spherical wall [Fig. 4.5(b)] C2 is zero

at t = 0 which is consistent with Fig. 4.3 showing a straight line for σ → 0. Increasing

t leads to a somewhat oscillatory behavior of C2. Positive values of C2 correspond to a

convex function (from below) in Fig. 4.3 for small curvatures and intermediate values of

σ whereas negative values of C2 for t → 1 indicate a concave behavior. The magnitude of

negative values of C2 is relatively small so that the concave behavior is less pronounced.

However, the latter is visible in Fig. 4.3(b) for large σ. For the crossover value for t

between convex and concave one obtains t = 0.8428(3). In the case of the cylindrical wall

[Fig. 4.5(c)] C2 is negative at t = 0 and consequently in Fig. 4.4 the concave behavior

for small curvatures and small σ is visible. Upon increasing t the coefficient C2 changes

sign from negative to positive and remains positive for values of t larger than the root at

t = 0.2208(3). In Fig. 4.4 the convex behavior can be observed for large σ. This analysis

shows that even for very large σ no concave behavior can be expected as in the case of

spherical walls. The coefficients [see Eqs. (4.9) and (4.11)] obtained within the linearized

theory [Eq. (4.4)] are covered by the present analysis and correspond to the values at

t = 0 ⇔ σ = 0.

At this stage an excursion to morphometric thermodynamics (MT) is appropriate.

Within that approach the interfacial tension γ takes a very simple form with respect to

the dependence on the geometry of the surrounding walls. For the geometries of the

current study the dependences on the radius R can be formulated as [see also Eq. (2.3)]

γ =











γ0 +
γs1
R

+
γs2
R2

, spherical wall,

γ0 +
γc1
R

, cylindrical wall.
(4.17)

Within MT there are no higher order terms and the coefficients γn are independent of the

radius R. (For further details see, e.g., Refs. [8, 22] and Chap. 2.) The connection with

the present study is given by the Lippmann equation [34]

σ = − ∂γ

∂Φ(rw)
(4.18)
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and hence

C = − ∂2γ

∂Φ(rw)2
. (4.19)

Since differentiation of Eq. (4.17) with respect to the electrode potential Φ(rw) does not

change the form of the equations, MT predicts the same truncated curvature dependence

for the capacitance C. However, examinations in terms of the capacitance have the

advantage that this quantity is uniquely defined contrary to the interfacial tension. In a

previous study [22] (see also Chap. 2) the authors examined the implications of various

interface conventions concerning the accuracy of MT in terms of the interfacial tension.

They found that the quality of the approach as an approximation depends to a large

extent on the interfacial position which in principle may be chosen arbitrarily. Following

the prediction of MT in the case of cylindrical walls the coefficient C2 should be zero.

However, in agreement with earlier work on curved interfaces using gradient expansion

approaches [80, 81, 107, 108], already the linear theory [Eq. (4.11)] exhibits a nonzero

coefficient and the full solution Fig. 4.5(c) reveals that C2 is nonzero for most choices of

the parameters. Therefore MT is not an exact approach, which is not surprising because

even for simple fluids its precision has been doubted recently (see, e.g., Refs. [19–22]

as well as Chaps. 2 and 3). Therefore, MT has the status of an approximation. For

example, when discussing cylindrical walls the necessary restriction |C2| ≪ |C1| might

be adequate to truncate the curvature expansion in accordance with MT which is the

case for values of t far away from the root of C1. It is remarkable that this is the

case for |t| → 1 ⇔ |σ| → ∞, i.e., for highly charged electrodes. In any case this quality

criterion depends on t and therefore on the surface charge density. In general the curvature

coefficients are properties of the fluid and the wall-fluid interaction [8]. As a consequence,

for simple fluids, the coefficients are fixed once a certain wall-fluid system has been chosen.

However, in the case of electrode-electrolyte systems, the wall-fluid interaction is typically

not fixed but can be adjusted via the surface charge density. For such cases the dependence

of the coefficients Cn on σ has to be known. This further complicates and reduces the

applicability of MT.

4.3.4 Limit of small wall radii

For spherical walls and large curvatures a somewhat general behavior is observed (see

Fig. 4.3): all curves shown approach the straight line which corresponds to the results for

small σ and which is in accordance with the result of the linearized theory [Eq. (4.9)]. In

the case of cylindrical walls (Fig. 4.4) a similar behavior is visible; however, the degree of

convergence towards the curve corresponding to small σ is inferior to that for spherical

walls, at least within the shown curvature interval.

Indeed, it is possible to show analytically that non-linear contributions to the solution



4.4. SUMMARY AND OUTLOOK 91

of the PB equation [Eq. (4.2)] are negligible for sufficiently large curvature, e.g., if

1

κR
≫

√

1√
6

βe|σ|
ǫ0ǫκ

(4.20)

for a spherical wall (see Appendix 4.B for details). This finding explains the general

behavior encountered in Fig. 4.3 because for any finite σ there is a range of (large)

curvatures for which the inequality in Eq. (4.20) holds. Cylindrical electrodes (Fig. 4.4)

exhibit curvature dependent capacitances which resemble the spherical results (Fig. 4.3),

stretched in horizontal direction. This finding is supported by the linearized theory. In

the limit of small radii, κR → 0, Eqs. (4.8) and (4.10) read asymptotically [84]:

spherical electrode: Φ(R) =
σ

ǫ0ǫκ

κR

κR + 1
∼ σ

ǫ0ǫκ
κR, (4.21)

cylindrical electrode: Φ(R) =
σ

ǫ0ǫκ

K0(κR)

K1(κR)
∼ − σ

ǫ0ǫκ
κR ln(κR). (4.22)

That is, in this limit, the strengths |Φ(R)| of the electrode potentials are monotonically

increasing functions of R and the one at the cylindrical electrode with the same R is larger

than the corresponding one at the spherical wall. On one hand this means that in the

case of cylindrical walls smaller radii or larger curvatures are necessary in order to get the

same value of Φ(R) as in the spherical case; this also holds for the capacitance. On the

other hand the linearized theory is based on small values of the dimensionless potential

βe|Φ| ≪ 1. Thus, in the case of cylindrical walls the linearized theory turns into a reliable

description at smaller radii or larger curvatures as compared to the spherical wall. From

the comparison of Figs. 4.3 and 4.4 it follows that a corresponding estimate like the one in

Eq. (4.20) would lead to wall radii below molecular sizes (see the discussion in Sec. 4.3.2)

and which therefore would be of no practical use.

4.4 Summary and outlook

In terms of the Poisson-Boltzmann (PB) equation [Eq. (4.1)] electrolytes in contact with

electrodes of planar (d = 0), cylindrical (d = 1), or spherical (d = 2) shape [Eq. (4.2)]

have been analyzed. The differential capacitance C [Eq. (4.5)] was calculated for various

ionic strengths I, surface charge densities σ, and electrode radii R. The focus was on

examining the dependence of the capacitance on the curvature 1/R of the electrode as

displayed in Figs. 4.3 and 4.4. In all cases the surface charge density has a strong effect on

the capacitance for small curvatures whereas for large curvatures the behavior becomes

independent of σ. These limits have been analyzed in detail. For small curvatures (see

Sec. 4.3.3) a curvature expansion of the capacitance [Eq. (4.14)] reveals the behavior in a

very convenient way because the corresponding expansion coefficients Cn depend on the
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single parameter t ∈ [−1, 1] [Eqs. (4.15) and (4.28)] and on the geometry d ∈ {0, 1, 2}
only. Therefore, within PB theory, the influence of any conceivable combination of system

parameters on the lowest order coefficients Cn can be inferred from Fig. 4.5. For large

curvatures (see Sec. 4.3.4) an analytic discussion provides the insight that the linearized

PB theory becomes reliable, if the radius of the spherical wall is chosen to be small enough;

this explains the general behavior visible in Fig. 4.3.

In the present study the mesoscopic structure of electrolyte solutions at curved elec-

trodes has been discussed systematically in terms of the capacitance within PB theory (i)

because this approach is widely used in various research fields, and (ii) because it offers

to judge less integral, microscopic approaches such as the one presented in part II of this

study (see Ref. [72] and Chap. 5).

4.A Limit of large wall radii

Let us assume that for large radii R → ∞ the solution of the PB equation (4.2) can

be expanded in terms of powers of the curvature such that the dimensionless potential

y := βeΦ takes the form

y(r = R + z) =
∞
∑

n=0

yn(z)

(κR)n
, (4.23)

where z ∈ [0,∞) measures the distance from the wall. For all radii the boundary condi-

tions in Eq. (4.3) translate into an inhomogeneous condition at the wall z = 0,

y′0(z)
∣

∣

∣

z=0
= −βeσ

ǫ0ǫ
, y′n>0(z)

∣

∣

∣

z=0
= 0, (4.24)

and a homogeneous one at z = ∞:

yn≥0(∞) = 0. (4.25)

The ansatz in Eq. (4.23) gives rise to a curvature expansion of the PB equation (4.2). In

the following, we take into account orders up to and including 1/(κR)2. The lowest order

leads to

y′′0(z) = κ2 sinh[y0(z)], (4.26)

which is the PB equation (4.2) with d = 0 for the dimensionless potential y0(z) at the

planar wall. The orders which are linear and quadratic in the curvature 1/(κR) correspond
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to differential equations for the spatially varying expansion coefficients y1,2(z):

y′′n(z)

κ2
− cosh[y0(z)]yn(z) =











n = 1 : −d
y′0(z)

κ
,

n = 2 : −d
y′1(z)

κ
+ zdy′0(z) +

1

2
sinh[y0(z)]y1(z)2,

d ∈ {1, 2}, n ∈ {1, 2}.

(4.27)

Within the curvature expansion given by Eq. (4.23) the contribution of the planar wall

is entirely captured by the coefficient y0. Higher order coefficients yn>0 occur solely at

curved walls (d 6= 0). The solution of Eq. (4.26) is given by (see Ref. [34])

y0(z) = 4 artanh[t exp(−κz)],

t := tanh

[

1

2
arsinh

(

βeσ

2ǫ0ǫκ

)]

=
2ǫ0ǫκ

βeσ





√

1 +

(

βeσ

2ǫ0ǫκ

)2

− 1



 ∈ [−1, 1].
(4.28)

In Eq. (4.28) the dependence on z maps onto the scaled spatial variable

x := t exp(−κz), |x| ∈ [0, |t|], with

fn(x) := yn(z(x)),
(4.29)

such that, e.g., the planar wall result takes the simple form

f0(x) = 4 artanh(x). (4.30)

The differential equations for f1,2(x) are given by

x2f ′′
n(x) + xf ′

n(x) − cosh[f0(x)]fn(x) =



























n = 1 : xdf ′
0(x),

n = 2 : xdf ′
1(x) + d ln

(x

t

)

xf ′
0(x)

+
1

2
sinh[f0(x)]f1(x)2,

d ∈ {1, 2}, n ∈ {1, 2},

(4.31)

subject to the boundary conditions

f1,2(x = 0) = 0,

f ′
1,2(x)

∣

∣

∣

x=t
= 0.

(4.32)

From Eqs. (4.31) and (4.32) it follows that the scaled potentials f1,2 depend parametrically

on d ∈ {1, 2} and t. Moreover, the differential equations (4.31) are to be solved within a

finite domain of values of x [Eq. (4.29)] so that the whole parameter space can be scanned
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rapidly. Finally, the capacitance follows as

C =

[

∂Φ(rw)

∂σ

]−1

=

[

1

βe

∂

∂σ

∑

n

yn(z = 0)

(κR)n

]−1

=

[

1

βe

∂

∂σ

∑

n

fn(x = t)

(κR)n

]−1

= ǫ0ǫκ

[

∑

n

1

4

(1 − t2)2

1 + t2
∂fn(x = t)

∂t

1

(κR)n

]−1

=: ǫ0ǫκ
∑

n

Cn

(κR)n
,

(4.33)

which defines the dimensionless expansion coefficients Cn of the differential capacitance

C. In Eq. (4.33) the expression ∂fn(x = t)/∂t refers to the derivative of fn with respect

to t after evaluation at x = t; the dependence on d and t is transferred to the coefficients

Cn.

Alternatively, the coefficients C1,2 can be determined from the expressions for the

surface potential of spherical and cylindrical surfaces which are given in Refs. [107, 108]:

For the spherical electrode the coefficients are

C1 =
1 − 4t2 − t4

1 + t2
(4.34)

and

C2 =
1

2

1 − t2

(1 + t2)3
(

1 + 26t2 + 16t4 + 6t6 − t8
)

+
1

2

1 − t2

t2 (1 + t2)
ln
(

1 − t2
) (

1 + 6t2 + t4
)

.

(4.35)

For the cylindrical electrode

C2 =
1

8

1 − t2

(1 + t2)3
(

−1 + 20t2 + 10t4 + 4t6 − t8
)

(4.36)

and the coefficient C1 is half of that in the spherical case [Eq. (4.34)]. With help of

Eq. (4.34) the root of C1 can be determined exactly. Its value, t =
√√

5 − 2 ≈ 0.485868,

is in agreement with the numerically found one (see Sec. 4.3.3).

Apart from the influence of the geometry via d, the whole parameter space given by

T, ǫ, I, and σ is contained in t ∈ [−1, 1]. Thus every parameter choice within PB theory

can be assigned to Fig. 4.5.

4.B Limit of small wall radii

Here we investigate under which conditions the non-linearities of the full PB equation (4.2)

may be neglected. To this end, with the dimensionless potential y := βeΦ we consider
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the equation

1

r

∂2

∂r2
[rλy(r)] = κ2 sinh[λy(r)] = κ2

[

λy(r) +
1

6
λ3y(r)3 + O

(

λ5
)

]

(4.37)

in spherical geometry, where λ ∈ C is an arbitrary complex parameter. For λ = 1 the PB

equation (4.2) is recovered, whereas for |λ| ≪ 1 non-linearities on the right hand side are

suppressed. In order to solve the truncated version of Eq. (4.37) we make the ansatz

y(r) = y0(r) + λ2y2(r) + O
(

λ4
)

. (4.38)

In lowest order O (λ0) the linearized PB equation (4.4) with d = 2 is recovered for which

the spatially varying potential y0(r) and the electrode potential y0(R) are given by

y0(r) = A
exp(−κr)

r
, A :=

sR2

1 + κR
exp(κR), s :=

βeσ

ǫ0ǫ
, and

y0(R) =
sR

1 + κR
,

(4.39)

respectively. The next higher order O (λ2) leads to a differential equation for the dominant

non-linear contribution y2(r)

1

r

∂2

∂r2
[ry2(r)] = κ2y2(r) +

κ2

6
y0(r)3, (4.40)

where the inhomogeneity is given by the solution of the linearized PB equation [Eq. (4.39)].

The solution of Eq. (4.40) takes the form

y2(r) = B
exp(−κr)

r
+

f(r)

r
, where

f(r) := −κA3

12

∞
∫

R

dr′ exp(−κ|r − r′|)exp(−3κr′)

r′2
,

B := f(R)
κR− 1

κR + 1
exp(κR).

(4.41)

The electrode potential y2(R) is given by

y2(R) = −y0(R)
1

6

( s

κ

)2 h(4κR)

1

κR

(

1 +
1

κR

)3 , with

h(z) := z exp(z)

∞
∫

z

dx
exp(−x)

x2
.

(4.42)
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From these results one infers that the contribution from the linearized PB equation is the

dominant one if the leading non-linear term y2(R) is much smaller than the linear one

y0(R). Since h(z > 0) ≤ 1, one obtains

∣

∣

∣

∣

y2(R)

y0(R)

∣

∣

∣

∣

≪ 1

for
1

κR
≫

√

1√
6

|s|
κ

=

√

1√
6

βe|σ|
ǫ0ǫκ

.

(4.43)

Hence for any finite σ the first non-linear term y2(R) becomes negligible if the curvature

(κR)−1 is chosen large enough. For small radii R the linearized PB theory turns into a

reliable description.



Chapter 5

Electrolyte solutions at curved

electrodes. II. Microscopic approach

The present Chap. 5 consists of the occasionally amended study published in Ref. [72].

There density functional theory is used to describe electrolyte solutions in contact with

electrodes of planar or spherical shape. The electrolyte solutions are considered by means

of the so-called civilized model, in which all species present are treated on equal footing.

The features of the electric double layer are discussed in terms of the differential capac-

itance. The model provides insight into the microscopic structure of the electric double

layer, which goes beyond the mesoscopic approach addressed in part I of this study (see

Ref. [94] and Chap. 4). This enables one to judge the relevance of microscopic details,

such as the radii of the particles forming the electrolyte solutions or the dipolar character

of the solvent particles, and to compare the predictions of various models. Similar to

part I, a general behavior is observed for small radii of the electrode in that in this limit

the results become independent of the surface charge density and of the particle radii.

However, for large electrode radii non-trivial behaviors are observed. Especially the par-

ticle radii and the surface charge density strongly influence the capacitance. From the

comparison with the Poisson-Boltzmann approach it becomes apparent that the shape of

the electrode determines whether the microscopic details of the full civilized model have

to be taken into account or whether already simpler models yield acceptable predictions.

5.1 Introduction

In the first part (Ref. [94] and Chap. 4) of this study electric double layers have been dis-

cussed in detail on mesoscopic scales within the Poisson-Boltzmann (PB) theory, which

was pioneered by Gouy [32] and Chapman [33]. The focus of the analysis in Ref. [94] and

Chap. 4 has been on electrodes of spherical or cylindrical shape surrounded by an elec-

trolyte solution. Such kind of setups serve as models for certain parts of so-called double

97
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layer capacitors, i.e., electrical energy storage devices which are promising candidates for

supporting sustainable energy systems. In part I (Ref. [94] and Chap. 4) the differential

capacitance C, which is the change of the surface charge density upon varying the elec-

trostatic potential at the wall and thus is experimentally accessible, has been analyzed in

particular concerning its dependence on the surface charge density and on the radius of

the curved electrode. The focus has been, within the PB model, on a thorough discussion

of the dependence of the capacitance on the geometry of the system.

Especially for large and small curvatures of the electrodes the behavior has been

discussed systematically. On one hand, the simplifying assumptions underlying the PB

approach facilitate such a detailed discussion, and, on the other hand, they are also

the reason for the approach to be only reliable for weak ionic strengths (below 0.2 M =

0.2 mol/ℓ) and low electrode potentials (below 80 mV) in the case of monovalent salts in

aqueous solutions [2]. But already in these ranges deviations from experimental data are

observable: the predicted differential capacitance is larger than the measured one [34].

Therefore Stern introduced a model which accounts for that shortcoming by combin-

ing the Gouy-Chapman description of the diffuse layer, i.e., the charge in the fluid is

distributed continuously following the PB equation, with the model of a Helmholtz layer

of counterions, i.e., the charge in the fluid is directly attached to the electrode surface

within a molecular layer [31]. Accordingly, the pure Gouy-Chapman description, which

does not consider the granular character of the fluid, has been improved by introducing a

Stern layer in between the electrode and the diffuse layer, i.e., the actual nonzero particle

volumes are taken into account only close to the wall. As a consequence the total capac-

itance of the system can be considered as a circuit of two capacitors (i.e., the Stern layer

and the diffuse layer) in series [2,34] and, following the rules for electric circuits, the total

capacitance is smaller than the Gouy-Chapman capacitance. Practically, one is left to fit

the capacitance of the Stern layer to experimental results which, on one hand, might lead

to good agreements with measurements, but which, on the other hand, provides only a

coarse microscopic picture of the electrical double layer. One possible interpretation of

the results of the Stern theory is that close to the wall the permittivity is reduced [2,34].

More sophisticated models have been developed in order to describe the structure of an

electrical double layer more precisely than within the mesoscopic PB approach according

to which the ions are treated as pointlike charges dissolved in a homogeneous background.

Three classes of corresponding models are common in the literature. Within the so-called

“primitive model” (PM) the ions are considered as charged hard spherical particles which

are dissolved in a solvent which is taken into account only via the permittivity. In the

so-called “solvent primitive model” (SPM) the solvent particles exhibit also a nonzero

volume and are often described as hard spheres. Sometimes these models are labelled

in conjunction with the attribute “restricted” which means that all particle radii are

equal. Yet more elaborate theories incorporate the electrostatics between ions and solvent
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particles by providing the latter with a dipole.

In 1980 Carnie and Chan used the so-called “civilized model” in order to model an

electrolyte solution [54]. Therein, as opposed to a primitive model, “both the ions and

the solvent are treated on an equal basis”. The ions are represented by hard spheres with

charges whereas the solvent is represented by hard spheres with an embedded dipole. In

Ref. [54] exact and approximative results within the mean spherical approximation are

presented for the structure of the electrolyte solution at a charged planar surface. For low

ionic concentrations the surface potential has the Stern layer form, i.e., the expression

of the surface potential is the sum of the diffuse part of the electrical double layer and

an additional part which can be interpreted as the contribution of a Stern layer. Thus

the result is regarded as a derivation of the Stern layer behavior. Analytic expressions

reveal that both the nonzero ion size and the dipolar solvent alter the capacitance, which

otherwise reduces to the double-layer capacitance of the linearized Gouy-Chapman theory.

However, this change is not very large [54].

In Ref. [55] a similar approach is used in order to complement the results of Ref. [54].

Hard core and solvent effects, both of which are taken into account, lead to a reduction

of the differential capacitance, i.e., the trend indicated by the Stern model is confirmed.

However, the alignment of the dipoles close to the planar wall persists for several layers into

the fluid. This ordering is not confined to a single Stern-like layer next to the electrode.

The so-called reference hypernetted-chain theory is used in Refs. [56, 57] in order to

examine the double layer at the surface of large spherical macroions within a multipolar

hard sphere model of electrolyte solutions, i.e., the ions are charged hard spheres and the

solvent molecules are hard spheres carrying point multipoles. The structure of the double

layer is discussed in terms of, e.g., the potential of mean force between the macroion and

a counterion, ion or solvent number density profiles, and mean electrostatic potentials.

The dependences of the structure on the surface charge density, the ionic concentration,

and the (macro-)ionic radii are examined.

In Ref. [66] a possible realization of a microscopic model for electric double layers

within density functional theory (DFT) is proposed. The functional is formulated for a

mixture of spheres with embedded point charges or dipoles. Consequently, the excess part

of the DFT functional splits into a Coulombic and into hard sphere parts where for the

latter the fundamental measure theory (see Refs. [12, 13] in Ref. [66]) is adopted. Within

this approach various density profiles near a charged planar wall are presented, which, due

to the granular nature of the fluid, exhibit pronounced oscillations. The authors conclude

by comparison that the primitive model is able to reproduce well ionic density profiles in

low concentration regimes and beyond a certain distance from the wall. However, within

the microscopic description and for higher concentrations the number density oscillations

become increasingly pronounced such that a primitive model description turns out to be

inadequate.
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Within the microscopic model used in Ref. [67] the Coulombic interactions are taken

into account in a mean-field-like kind while the excluded-volume effects are accounted

for by the Percus Yevick approach. The radii of the various particle species, i.e., anions,

cations, and solvent molecules, are chosen differently. This qualitatively affects the de-

pendence of the differential capacitance C on the surface charge density σ of the planar

electrode: within the Gouy-Chapman theory C is an even function of σ, whereas for

unequal values of the particle radii this symmetry disappears.

Oleksy and Hansen have used DFT with an explicit solvent description in order to in-

vestigate the wetting and drying behavior of ionic solutions in contact with a charged solid

substrate [68]. All particles are treated as hard spheres and the corresponding excluded-

volume correlations are taken into account by fundamental measure theory. The other

interactions, i.e., the electrostatic interaction and the cohesive Yukawa attraction, are

treated within mean field theory in order to ensure full thermodynamic self-consistency.

The key finding is the remarkable agreement between this version of a civilized model and

a previous model in which the dipoles are not explicitly taken into account.

Henderson and coworkers proposed a nonprimitive model which differs from the afore-

mentioned models with respect to the shape of the solvent particles [69]. Within DFT

hard spherical ions are considered to be dissolved in a solvent which is composed of neu-

tral dimers, i.e., touching positively and negatively charged hard spheres. The model

predicts a larger electrode potential than in the case of an implicit model like the re-

stricted primitive model. However, for technical reasons, results could only be obtained

for comparatively low potential values.

Recently, electrolyte aqueous solutions near a planar wall have been discussed within

a so-called polar-solvation DFT [71]. Therein all particles are considered as hard spheres

via the fundamental measure theory and the mean spherical approximation is used in

order to calculate the remaining part of the direct correlation functions. The comparison

between the results of this polar-solvation DFT, within which the solvent particles are

assumed to carry an embedded dipole, and the results of the unpolar-solvation DFT of

Refs. [63, 64], within which the solvent particles are taken into account as hard spheres

only, yields, e.g., a discrepancy in the density profiles which increases with increasing

electrode potential. Due to technical reasons the model in Ref. [71] could not be used to

study ion concentrations above 10 mM.

For many years a lot of efforts have been spent in order to understand the structure

of electric double layers either at planar walls or around macroions. Therefore various

realizations of microscopic approaches, which in general include an explicit description of

dipolar solvents, have been proposed [54–57,66–69,71]. Here the case of a double layer at

a spherical electrode of arbitrary radius R is studied. In the spirit of part I (Ref. [94] and

Chap. 4) of this study, the structure of the electrolyte solution is captured in terms of

the differential capacitance C, which facilitates to judge the relevance of various system
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parameters. As compared to the mesoscopic PB approach used in part I (Ref. [94] and

Chap. 4), in the present microscopic description the size of the spherical electrode affects

the layering behavior of the particles due to steric effects. In addition, the charges or

dipoles, embedded in the particles, interact with each other and with the charge on the

electrode. Due to the interplay of various interactions, structural features, such as the

spatially varying dipole orientation of the solvent particles, are expected to exhibit a

comparatively complex dependence on the electrode radius. The model used within the

present study is inspired by the work of Oleksy and Hansen [68]. It incorporates the

aforementioned features (non-vanishing and distinct particle volumes as well as spatially

varying dipole orientations), which contribute to the differential capacitance in ways that

are, due to the influence of the electrode size, not yet well understood. Apart from dealing

with the hard spheres the interactions are taken into account within a modified random

phase description [58], the relatively simple structure of which allows one to conveniently

generalize the planar geometry to the spherical one. Moreover, the concept of introducing

an additional cohesive attraction amongst the particles corresponds to the intention to

discuss an electrolyte solution in the liquid state under realistic conditions. To that end

the respective model parameters are chosen to mimic liquid water as the solvent at room

temperature and ambient pressure. The differential capacitance is discussed as function

of the remaining inherent system parameters, in particular, the wall curvature. Here,

especially the dependence on the latter contains mechanisms which are not revealed by

more primitive models such that quantitative or even qualitative differences between the

model under consideration and the more primitive ones can be expected to occur.

In Sec. 5.2.1 the present version of the density functional is discussed in detail. The

corresponding Euler-Lagrange equations (ELE) are presented in Sec. 5.2.2. The method to

account for the boundary conditions in the process of obtaining the numerical solution is

described in Sec. 5.2.3. Section 5.2.4 summarizes the chosen parameters and the notation

used here. Technical details are discussed in Appendices 5.A – 5.D. The results of the

calculations are presented in Sec. 5.3 where the structures of the electric double layers are

illustrated via spatially varying number density profiles. Subsequently the capacitance

data obtained for the planar wall are shown for various choices of system parameters and

models. Finally, the capacitance data of spherical electrodes are discussed as function of

the electrode curvature and of the surface charge density. The influence of various choices

of system parameters is discussed and various models are compared with each other.
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Figure 5.1: Sketch of the system under consideration. For clarity the sketch shows a two-
dimensional cross-section (light gray background) of the system which actually occupies
the three-dimensional space. The model (see Sec. 5.2) takes into account an electrolyte
solution which is composed of three species: (i) Solvent particles (yellow circles) are
considered as hard spheres with radius r0. The arrows in the yellow circles illustrate
embedded permanent dipoles. The orientational degrees of freedom of the latter are
explicitly taken into account. For clarity the arrows are depicted parallel to the plane
of the paper. Note, however, that the model incorporates the dipole orientations in
three dimensions, i.e., the arrows may point into or out of the plane of the paper. (ii)
Monovalent cations (red circles) are considered as hard spheres with radius r1 carrying
positive charge. (iii) Monovalent anions (blue circles) are considered as hard spheres
with radius r2 carrying negative charge. The spatial extent of the electrolyte solution is
restricted due to the presence of an electrode (dark gray circle) occupying the volume
V ⊆ R3. In the present sketch the electrode is of spherical shape with radius R. Its
surface may be homogeneously charged with a surface charge density σ. All particles
interact with each other and with the electrode by means of steric effects, electrostatic
interactions [Eq. (5.5)], and an attractive interaction [Eq. (5.7)]. For further details see
Sec. 5.2. A comparison between the present sketch and the one in Fig. 4.2 gives a visual
impression of the differences between the present microscopic civilized model and the
mesoscopic Poisson-Boltzmann theory of Chap. 4.

5.2 Model

5.2.1 Density functional

The microscopic approach used here follows the one of Oleksy and Hansen in Ref. [68]

which is sometimes referred to as the so-called civilized model [54] according to which

both the ions and the solvent are treated on equal footing, in contrast to the primitive

model. Let us consider an electrolyte solution composed of three species: solvent particles
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(hard spheres with radius r0 and an embedded dipole of strength m), monovalent cations

(hard spheres with radius r1 carrying a charge q1 = e > 0, e denoting the absolute value

of the elementary charge), and monovalent anions (hard spheres with radius r2 carrying

a charge q2 = −e < 0). The spatial extent of the electrolyte solution is restricted due

to the presence of an electrode occupying the volume V ⊆ R3. In the present study the

focus is on two types of electrodes or walls: planar electrodes correspond to the half-space

V = {(x, y, z) ∈ R
3 | z < 0} with surface A = {(x, y, z) ∈ R

3 | z = 0} whereas spherical

electrodes of radius R occupy the domain V = {(x, y, z) ∈ R3 | x2 + y2 + z2 < R2} with

surface A = {(x, y, z) ∈ R3 | x2 + y2 + z2 = R2}. The surfaces A of the walls may be

homogeneously charged with a surface charge density σ. Figure 5.1 illustrates the system

under consideration. The, in general inhomogeneous, distribution of solvent particles

is given by the number density ̺0(r,ω), i.e., the number of particles per volume with

dipole orientation ω, |ω| = 1, at position r ∈ R3\V. In a fixed, but otherwise arbitrary,

coordinate system the dipole orientation can be represented by

ω =







sin(ϑ) cos(ϕ)

sin(ϑ) sin(ϕ)

cos(ϑ)






(5.1)

with polar angle ϑ and azimuthal angle ϕ. The number density of all solvent particles at

a point r irrespective of the orientation is given by

¯̺0(r) :=

∫

d2ω ̺0(r,ω) :=

π
∫

0

dϑ sin(ϑ)

2π
∫

0

dϕ ̺0(r, ϑ, ϕ). (5.2)

In the following the integration over all orientations, i.e., over all possible values of the

two angles ϑ and ϕ [see Eq. (5.1)], is denoted as
∫

d2ω [see, e.g., Eq. (5.2)]. The number

density of ion species i ∈ {1, 2} at position r is ̺i(r).

Density functional theory (DFT) is a particularly useful approach to determine these

density profiles and with them the structure of the electrolyte solution in contact with

the wall [58]. To this end we consider the following approximation for the grand potential

functional Ω[̺0, ̺1, ̺2] =: Ω[̺] of the number densities ̺0(r,ω) and ̺1,2(r):

βΩ[̺] =

∫

d3r

∫

d2ω ̺0(r,ω) [βV0(r) − βµ0]

+

2
∑

i=1

∫

d3r ̺i(r) [βVi(r) − βµi]

+ βF id[̺] + βFhs[̺] + βF el[̺] + βFatt[̺].

(5.3)

In Eq. (5.3) one has β = (kBT )−1 with the Boltzmann constant kB and the absolute
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temperature T . Vi and µi denote the external and the chemical potential of species i,

respectively. The external potential V0(r) acting on the solvent particles is taken to be

independent of their dipolar orientations. Unless indicated differently, volume integrals
∫

d3r run over the space R3\V. F id is the ideal gas contribution,

βF id[̺] =

∫

d3r

∫

d2ω ̺0(r,ω)
{

ln
[

Λ3
0 ̺0(r,ω)

]

− 1
}

+

2
∑

i=1

∫

d3r ̺i(r)
{

ln
[

Λ3
i̺i(r)

]

− 1
}

,

(5.4)

with the thermal wave lengths Λi.

The hard sphere interaction between the particles is taken into account by means of

the functional Fhs which, in the present case, is the White Bear version of the fundamental

measure theory (see Ref. [60]). For the contribution Fhs {and likewise Fatt [see Eq. (5.7)

below]} the orientations ω of the dipoles do not matter which is why it is a functional of

¯̺0(r) [see Eq. (5.2)].

The remaining terms of Eq. (5.3), F el [Eq. (5.5)] and Fatt [Eq. (5.7)], are taken into

account by means of a modified random phase approximation. Appendix 5.A explains the

assumptions underlying this approximation. Note that the discussion in Appendix 5.A

concerns the excess functional F ex. The latter takes into account mutual interactions of

the particles in the electrolyte solution. In the strict sense, the surface terms contained

in F el [Eq. (5.5)] are not part of F ex but formally act like external potentials.

The electrostatic interactions, both amongst the particles and between the particles

and the wall, are captured by the functional

βF el[̺] =
1

2

2
∑

i,j=1

∫

d3r

∫

d3r′
β

4πǫ0ǫex

qiqj
|d| ̺i(r)̺j(r

′)Θ[|d| − (ri + rj)]

+
2

∑

i=1

∫

d3r

∫

d3r′
∫

d2ω′ β

4πǫ0ǫex
qi
mω′ · d
|d|3 ̺i(r)̺0(r

′,ω′)Θ[|d| − (r0 + ri)]

+
1

2

∫

d3r

∫

d2ω

∫

d3r′
∫

d2ω′ β

4πǫ0ǫex
m2

[

ω ·ω′

|d|3 − 3
(ω · d)(ω′ · d)

|d|5
]

× ̺0(r,ω)̺0(r
′,ω′)Θ(|d| − 2r0)

+
2

∑

i=1

∫

r∈A

d2r

∫

d3r′
β

4πǫ0ǫex

σqi
|d| ̺i(r

′)Θ(|d| − ri)

+

∫

r∈A

d2r

∫

d3r′
∫

d2ω′ β

4πǫ0ǫex
σ
mω′ · d
|d|3 ̺0(r

′,ω′)Θ(|d| − r0),

(5.5)
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where ǫ0 is the vacuum permittivity,

Θ(x) =







0, x < 0,

1, x > 0
(5.6)

denotes the Heaviside step function, and d := r − r′ is the spatial offset between posi-

tions r and r′. Within the present approach, the dielectric properties of the solvent are

described in terms of an explicit mean-field-like contribution due to the solvent particles

with embedded dipole moments p := mω and an implicit excess contribution given by

the excess relative permittivity ǫex which captures dielectric properties beyond the mean-

field description [see also Sec. 5.2.3 and in particular Eq. (5.31)]. Alternatively, one could

use descriptions based on the mean spherical approximation [71] or model the solvent

molecules as dimers in the style of Ref. [69]. However, the present approach has technical

advantages and, moreover, it has turned out that the explicit dipolar contribution affects

the results only weakly.

The influence of Coulomb correlation contributions has been examined in Ref. [62],

where semi-primitive model electrolytes have been described both in terms of a mean-field

density functional, which neglects Coulomb correlations, and in terms of a more complex

density functional including such correlations. The outcome of these different approaches

has been compared with each other and with Monte Carlo simulations. The authors have

found that Coulomb correlation corrections alter the mean-field results significantly only

for high surface charges in the presence of divalent cations. Based on that finding, the

model in the present study is expected to accurately describe electrolytes consisting of

monovalent ions. In addition, the results of the present model for an ionic strength of

0.1 M have been compared with Figs. 5 and 6 in Ref. [41], which provide simulation results

for a charged spherical macroparticle surrounded by an electrolyte solution within the

molecular solvent model. All profiles show good agreement with the simulation data which

supports the aforementioned argument that the present model is a reliable description for

monovalent ions. Another consistency check has been carried out with respect to the bulk

limit. To that end number density profiles around a spherical electrode, with the same size

and charge as an ion, have been calculated. These density profiles, which correspond to

pair distribution functions, have been compared with Fig. 2 in Ref. [38] where simulation

data for an electrolyte within a solvent primitive model are presented. The results of

the present model almost lie on top of the curves denoted by “HNC” and are in good

agreement with the simulation data.

An attractive interaction between the particles is taken into account by the contribu-

tion Fatt. This interaction is rationalized by a van der Waals attraction which enables the

formation of a liquid state under realistic conditions, i.e., room temperature and ambient

pressure. Amplitude and range of this potential, chosen to be square-well-like, are given
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by u and rc, respectively:

βFatt[̺] =
1

2

2
∑

i,j=0

∫

d3r

∫

d3r′ βuΘ(rc − |d|)̺i(r)̺j(r
′)Θ[|d| − (ri + rj)]. (5.7)

[Note that in Eq. (5.7) ̺0(r,ω) reduces to ¯̺0(r).] We make the simplifying assumption

that this kind of attractive potential is the same for the interaction among the fluid

particles and for their interaction with the wall particles. Thus for a homogeneous number

density ̺w of the wall particles, the attractive van der Waals interaction gives rise to the

substrate potential

βV att(r) =

∫

V

d3r′ ̺wβuΘ(rc − |d|). (5.8)

The attractive van der Waals potential V att together with the hard repulsive interaction

between wall and fluid particles comprise the external potentials Vi, i ∈ {0, 1, 2}:

βVi(r) =







∞, ∃ r′ ∈ V : |d| < ri,

βV att(r), otherwise.
(5.9)

Further contributions, e.g., due to electrostatic image forces in the case of a dielectric

contrast between wall and fluid, would have to be added to the second line of Eq. (5.9).

5.2.2 Euler-Lagrange equations

In accordance with the variational principle underlying density functional theory [58] the

equilibrium densities ̺eqi minimize the functional in Eq. (5.3) and thus fulfill the Euler-

Lagrange equations (ELEs)

δ(βΩ)

δ̺0(r,ω)

∣

∣

∣

∣

̺eq0 ,̺eq1 ,̺eq2

= 0,
δ(βΩ)

δ̺1,2(r)

∣

∣

∣

∣

̺eq0 ,̺eq1 ,̺eq2

= 0. (5.10)

Their forms will be discussed in more detail below (see also Ref. [68]). For clarity the

superscript eq is omitted and subsequently the focus is on equilibrium densities. In the bulk

and thus in the absence of inhomogeneities, the density profiles entering the ELEs (5.10)

are uniform and isotropic: ̺0(r,ω) = ̺b0/(4π), ̺1(r) = ̺b1 ≡ I, and ̺2(r) = ̺b2 ≡ I with

the ionic strength I. Note that ̺b1 = ̺b2 implies local charge neutrality. This also holds

at points sufficiently far away from the wall. By subtracting from the ELEs (5.10) the

respective expressions in the bulk, the chemical potentials µi and the lengths Λi drop out
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of the equations:

̺0(r,ω) =
̺b0
4π

exp
{

− βV0(r) + chs0 (r) − chs,b0 + catt0 (r) − catt,b0

+ βmω · [E(r) −Eaux(r)]
}

(5.11)

and, i ∈ {1, 2},

̺i(r) = ̺bi exp
{

− βVi(r) + chsi (r) − chs,bi + catti (r) − catt,bi − βqi [Φ(r) − Φaux
i (r)]

}

.

(5.12)

Here the following quantities have been introduced: one-point direct correlation functions,

x ∈ {hs, att},

cxi (r) := −δ(βFx)

δ̺i(r)
, cx,bi := −δ(βFx)

δ̺i(r)

∣

∣

∣

∣

bulk

, (5.13)

the polarization

P (r) :=

∫

d2ωmω̺0(r,ω), (5.14)

electric fields

E(r) :=

2
∑

i=1

∫

d3r′
qi

4πǫ0ǫex

d

|d|3
[

̺i(r
′) − ̺bi

]

−
∫

d3r′
1

4πǫ0ǫex

{

P (r′)

|d|3 − 3d[P (r′) · d]

|d|5
}

+

∫

r
′∈A

d2r′
σ

4πǫ0ǫex

d

|d|3 ,

(5.15)

and

Eaux(r) :=

2
∑

i=1

∫

d3r′
qi

4πǫ0ǫex

d

|d|3
[

̺i(r
′) − ̺bi

]

Θ(r0 + ri − |d|)

−
∫

d3r′
1

4πǫ0ǫex

{

P (r′)

|d|3 − 3d[P (r′) · d]

|d|5
}

Θ(2r0 − |d|)

+

∫

r
′∈A

d2r′
σ

4πǫ0ǫex

d

|d|3Θ(r0 − |d|),

(5.16)
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as well as electric potentials

Φ(r) :=

2
∑

j=1

∫

d3r′
1

4πǫ0ǫex

qj
|d|

[

̺j(r
′) − ̺bj

]

+

∫

d3r′
1

4πǫ0ǫex

P (r′) · d
|d|3

+

∫

r
′∈A

d2r′
1

4πǫ0ǫex

σ

|d|

(5.17)

and

Φaux
i (r) :=

2
∑

j=1

∫

d3r′
1

4πǫ0ǫex

qj
|d|

[

̺j(r
′) − ̺bj

]

Θ(ri + rj − |d|)

+

∫

d3r′
1

4πǫ0ǫex

P (r′) · d
|d|3 Θ(r0 + ri − |d|)

+

∫

r
′∈A

d2r′
1

4πǫ0ǫex

σ

|d|Θ(ri − |d|).

(5.18)

The original Heaviside functions inherited from the functional F el in Eq. (5.5) are split

according to Θ(x) = 1 − Θ(−x). This is the reason for the appearance of the auxiliary

quantities, denoted with the superscript aux [see Eqs. (5.16) and (5.18)]. Since these

quantities act like electric fields or potentials, respectively, we use the same corresponding

notions for them. The advantage of this separation is of technical nature: on one hand, the

integration domains in Eaux [Eq. (5.16)] and Φaux
i [Eq. (5.18)] are bounded and therefore

numerically manageable. On the other hand, the total electric field E = −∇Φ [Eq. (5.15)]

and the total electric potential Φ [Eq. (5.17)] are determined by electrostatics and fulfill

Poisson’s equation with Neumann boundary conditions:

∆Φ(r) = − 1

ǫ0ǫex

2
∑

j=1

qj̺j(r) +
1

ǫ0ǫex
∇ · P (r),

∫

r∈A

d2rn(r) ·E(r) =
σ

ǫ0ǫex
|A|,

lim
λ→∞

∫

r∈B(λ)

d2rn(r) ·E(r) = 0,

B(λ) :=
{

r + λn(r) ∈ R
3|r ∈ A

}

.

(5.19)

Hence, E and Φ are the solution of the boundary value problem posed by Eq. (5.19). Since

the differential equation (5.19) has to be evaluated only locally, this route is technically

more convenient than to perform the integrals over the whole space in Eqs. (5.15) and

(5.17). The unit vectors n in the second and in the last line of Eq. (5.19) point into



5.2. MODEL 109

the radial direction away from the wall and are locally perpendicular to the respective

surface. |A| denotes the area of the wall surface A. Poisson’s equation (5.19) determines

the potential Φ up to an additive constant which is chosen such that lim
r→∞

Φ(r) = 0, i.e.,

the potential Φ(r) at any position r corresponds to the voltage with respect to the bulk

at large distances from the wall (r → ∞). Note that the equations for the density profiles

[see Eqs. (5.11) and (5.12)] depend only on the differences E −Eaux and Φ − Φaux
i .

Due to the dependence of the ELE (5.11) on both the position r and the orientation

ω, in general the problem has to be solved in a high-dimensional space which is difficult to

handle. However, for certain geometries of the electrode, this dimension can be reduced

to a large extent [68]. To this end the distribution function f of the dipole orientations is

introduced and expanded in terms of spherical harmonics:

f(r,ω) :=
̺0(r,ω)

¯̺0(r)
=

∞
∑

l=0

l
∑

m=−l

flm(r)Ylm(ϑ, ϕ). (5.20)

Due to the definition of the orientation independent number density ¯̺0(r) in Eq. (5.2), f

is normalized, i.e.,

∫

d2ω f(r,ω) = 1, (5.21)

which determines the value of the coefficient f00(r) = (4π)−1/2. In principle, the expansion

in Eq. (5.20) leads to a dependence of the polarization P [Eq. (5.14)] on the coefficients

flm of order l = 1, i.e., on f1,0, f1,1, and f1,−1. However, for planar and spherical elec-

trodes the orientation of P is perpendicular to the electrode surface everywhere and to

all corresponding parallel surfaces. The respective normal component P is

P (r) =

√

4π

3
m ¯̺0(r)f1,0(r), (5.22)

i.e., the polarization depends only on the coefficient f1,0, provided that the polar axis of the

spherical harmonics is chosen perpendicular to the electrode surface pointing away from

the wall. Likewise the electric fields E and Eaux are perpendicular to the surface A with

components E and Eaux, respectively. This facilitates integration over the orientations ω

such that the ELE (5.11) for ̺0(r,ω) can be split into two equations (see Appendix 5.B):

one for the orientation independent density

¯̺0(r) = ̺b0

{

exp
[

− βV0(r) + chs0 (r) − chs,b0 + catt0 (r) − catt,b0

]}

× sinh{βm[E(r) − Eaux(r)]}
βm[E(r) − Eaux(r)]

,
(5.23)
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and another one for the coefficient

f1,0(r) =

√

3

4π
L{βm[E(r) −Eaux(r)]} (5.24)

with the Langevin function L(x) = coth(x) − 1/x. Altogether the model is described by

four equations: one for each of the number densities ̺i(r) of the ion species i ∈ {1, 2} [see

Eq. (5.12)], one for the solvent number density ¯̺0(r) independent of the dipole orientation

[see Eq. (5.23)], and one for the orientation coefficient f1,0(r) of the dipoles [see Eq. (5.24)].

The entire dependence on the orientation ω is covered by the latter quantity. Therefore

and because in the case of planar and spherical electrodes the four profiles ¯̺0, ̺1, ̺2, and

f1,0 vary only along the direction perpendicular to the surface, the dimensionality of the

original problem has been reduced considerably.

5.2.3 Behavior at large distances from the wall

Equations (5.12), (5.16), (5.18), (5.19), (5.22), (5.23), and (5.24) form a complicated

system of coupled nonlinear integro-differential equations, which can be solved only nu-

merically; here this is accomplished by means of the Piccard iteration scheme (see Sec. 8.1

in Ref. [61]). This requires discretization of the various profiles on a large but finite grid

along the radial direction. This approach requires assumptions concerning the profiles

outside the numerical grid at large distances from the wall. Here it is assumed that

the one-point direct correlation functions chsi (r) and catti (r) decay rapidly towards their

bulk values chs,bi and catt,bi , respectively, such that in Eqs. (5.11) and (5.12) the differ-

ences chsi (r) − chs,bi and catti (r) − catt,bi can be neglected outside the numerical grid. (See

Appendix 5.D for a detailed discussion of the decay behavior of these one-point direct

correlation functions.) Global charge neutrality requires the vanishing of the electric field

E infinitely far away from the wall [see the third line of Eq. (5.19)]. Since a numerical grid

can span only a finite distance from the wall, the solution of Poisson’s equation (5.19) in

the asymptotic range outside the grid has to be determined, e.g., in terms of a linearized

theory and matched with the numerical solution inside the grid. Therefore the electric

fields E(r) and Eaux(r) as well as the potentials Φ(r) and Φaux
i (r) are not required to

vanish outside the numerical grid. Instead it is assumed that at large distances from

the wall the electric fields and potentials are sufficiently small to allow for a linearization

of the exponential function in Eqs. (5.11) and (5.12) such that the ELEs are given by

Eqs. (5.52) and (5.53) in Appendix 5.C. It can be shown by means of Eqs. (5.15) – (5.18)

that for equally-sized ions and weakly charged walls the quantities Ex −Eaux
x , Ey −Eaux

y ,

Ez−Eaux
z , Φ−Φaux

1 , and Φ−Φaux
2 (i) exhibit the same asymptotic decay behavior at large

distances from the wall (r → ∞) and (ii) are proportional to the surface charge density

(see Appendix 5.C for details). We make use of this property by introducing constants
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kE, kΦ
1 , and kΦ

2 ,

kΦ
i := − lim

r→∞

Φaux
i (r)

Φ(r)
, kE := − lim

r→∞

Eaux(r)

E(r)
, (5.25)

for systems with weakly charged planar walls, where E and Eaux denote the radial com-

ponents of the electric fields. Since both numerators and denominators in Eq. (5.25)

exhibit the same decay behavior, as well as the asymptotic proportionality to σ in the

limit σ → 0, to leading order the constants do not vary spatially and do not depend on

the surface charge density. It has turned out numerically that the constants kE, kΦ
1 , and

kΦ
2 as determined for a weakly charged planar wall are valid for all curvatures and surface

charges used in the present study. Moreover, this procedure has been found to work also

for small differences between the particle radii, which are at most as large as the ones

considered in the following. By using Eq. (5.25) the asymptotically leading contribution

to the auxiliary fields in Eqs. (5.52) and (5.53) in Appendix 5.C can be expressed in

terms of the constants kE , kΦ
1 , and kΦ

2 as well as the total electric potential Φ and the

radial component E of the total electric field. [Note that the radial component of the

electric field is the relevant one (see Appendix 5.B).] A treatment analogous to the one

in Sec. 5.2.2 and in Appendix 5.B leads to the ELEs for the four relevant profiles

̺i(r) ≃ ̺bi
[

1 − βqiΦ(r)
(

1 + kΦ
i

)]

, i ∈ {1, 2}, (5.26)

¯̺0(r) ≃ ̺b0 , (5.27)

f1,0(r) ≃ 1

3

√

3

4π
βm

(

1 + kE
)

E(r), (5.28)

which correspond to simplified versions of Eqs. (5.12), (5.23), and (5.24). Equations (5.26)

– (5.28) together with Poisson’s equation (5.19) lead to a linearized, modified Poisson-

Boltzmann equation

∆Φ(r) ≃

e2Iβ

ǫ0ǫex

(

2 + kΦ
1 + kΦ

2

)

1 +
̺b0βm

2

3ǫ0ǫex

(

1 + kE
)

Φ(r) = κ2Φ(r). (5.29)

The requirement to recover the Debye length 1/κ in Eq. (5.29) with

κ :=

√

2e2Iβ

ǫ0ǫ
, (5.30)

and with the total relative permittivity ǫ defines the excess relative permittivity

ǫex = ǫ

[

1 +
1

2

(

kΦ
1 + kΦ

2

)

]

− ̺b0βm
2

3ǫ0

(

1 + kE
)

. (5.31)
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Parameter Case A Case B

κr0 0.1617 0.05114

̺b0/κ
3 29.36 931.8

I/κ3 0.05329 0.1685

κm/e 0.04012 0.01269

βu −1.500 −1.500

κrc 0.5821 0.1841

̺w/κ
3 9.843 311.3

Table 5.1: Two sets of values for those independent, dimensionless parameters which
are kept fixed for each case studied numerically (see Sec. 5.2.4). The choice of values
for the remaining dimensionless parameters [κr1, κr2, κR, and σ/(eκ2)] will be quoted
for the corresponding numerical results. The choices of the values of the dimensionless
parameters given in the table are guided by adopting realistic values for the corresponding
dimensional quantities (see the main text). The values in case A assume the Debye length
as 1/κ ≈ 9.600×10−10 m and 1/κ ≈ 3.036×10−9 m in case B. Both cases correspond to the
energy scale β ≈ 2.414×1020 J−1, i.e., T = 300 K. The parameter values for case B emerge
from those of case A by multiplying the latter by (1/κA)/(1/κB) and [(1/κB)/(1/κA)]3,
respectively, and by replacing IA by IB = IA/10.

Note that in the case of vanishing particle volumes, i.e., kΦ
1 = kΦ

2 = kE = 0, and vanishing

dipole moment m = 0 the excess relative permittivity equals the total relative permit-

tivity ǫex = ǫ. The linearized modified Poisson-Boltzmann equation (5.29) can be solved

analytically within the geometries under consideration.

5.2.4 Choice of parameters

If lengths, charges, and energies are measured in units of the Debye length 1/κ [Eq. (5.30)],

the elementary charge e, and the thermal energy 1/β = kBT , respectively, the present

model of a monovalent salt solution is specified by the following eleven independent,

dimensionless parameters: κr0, κr1, κr2, ̺
b
0/κ

3, I/κ3, κm/e, βu, κrc, κR, σ/(eκ2), and

̺w/κ
3. This implies that those systems are equivalent, which exhibit the same values

for these dimensionless parameters. Note that for this choice of forming dimensionless

ratios the relative permittivity ǫ is not an independent parameter but is absorbed in the

expression of the Debye length [Eq. (5.30)]. The present study is focused on examining

the influence of the electrode geometry. Therefore and for illustration purposes, in the

following some of these parameters are fixed to certain, realistic values, i.e., they are

chosen such that, at best, they describe a realistic system. Table 5.1 provides an overview

of the corresponding dimensionless parameters for two cases A and B. The choices of the

parameter values within each case and for the two cases relative to each other are guided
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by adopting realistic values for the corresponding dimensional quantities. These would,

for example, refer to an aqueous electrolyte solution at room temperature T = 300 K and

ambient pressure p ≈ 1013 hPa. The dipole moment m = 1.85 D ≈ 6.171 × 10−30 Cm

of the model solvent particles is chosen corresponding to the literature value of m for

the water molecule [109,110]. The relative permittivity of water in static fields takes the

value of ǫ = 77.7003 for the temperature chosen here [110]. The equation of state for the

pure solvent is derived from the functional Eq. (5.3) in the bulk and is matched to the

saturation properties of liquid water at T = 300 K, i.e., its saturation number density and

its pressure [111]. This fixes the particle radius of the solvent to r0 ≈ 1.552× 10−10 m. In

addition the amplitude u and range rc of the attractive interaction [Eq. (5.7)] are adjusted

in order to obtain the best possible agreement between the first peak of the structure

factor of the present model and the corresponding data for water determined by X-ray

scattering (see p. 347 in Ref. [112]). This way one obtains the values u ≈ −1.500 × kBT

and rc = 3.6 × r0; recall that within the present approach the interaction potentials

between the substrate particles and the fluid particles are chosen to be the same square

well ones as the ones among the fluid particles. Finally, in the model under consideration

the homogeneous number density ̺w of the particles forming the electrode enters into the

strength of the attractive interaction [Eq. (5.8)] between the wall and the fluid particles.

Its value is estimated from the number density profile of the pure solvent in contact

with an uncharged planar wall. The choice ̺w ≈ 1.112 × 1028 m−3 ensures that the

number density peak closest to the wall matches that of water in contact with a single

graphene layer [113]. Although the value of ̺w is expected to depend on the chosen

electrode material, the aforementioned value leads to a surprisingly good agreement also

with the data corresponding to an aqueous electrolyte solution at a charged Ag-surface

(see Fig. 4a in Ref. [114]). Case A corresponds to an ionic strength I = 0.1 M, i.e.,

to a Debye length 1/κ ≈ 9.600 × 10−10 m, whereas case B corresponds to I = 0.01 M,

i.e., 1/κ ≈ 3.036 × 10−9 m. The pressure p follows from the equation of state derived

from the functional Eq. (5.3) in the bulk with the equilibrium number densities ̺b0 and

I. The ELEs in the bulk relate the chemical potentials µi [Eq. (5.3)] and the thermal

wave lengths Λi [Eq. (5.4)], i ∈ {0, 1, 2}, with bulk quantities which have already been

quoted at the beginning of the current Subsec. 5.2.4. Therefore, in this sense µi and

Λi are not independent variables. The solvent number density ̺b0 has to be adjusted in

order to render the required value of the pressure p for all examined ionic configurations.

However, these variations are marginal such that for given κ the numerical value of ̺b0/κ
3

in Tab. 5.1 is valid with the precision of four significant digits. It is not claimed that the

present model is able to accurately describe liquid water because it lacks crucial properties

such as hydrogen bonds and the tetrahedral shape of the water molecules. Nevertheless,

this procedure precludes one from choosing arbitrary parameter values which correspond

to “exotic” or even unrealistic systems. In the following this type of system, corresponding
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to the civ ilized model introduced in Secs. 5.2.1 – 5.2.3, is abbreviated by “CIV”, possibly

in conjunction with additional parameter specifications or modifications (e.g., a vanishing

dipole moment, m = 0). In the following the remaining dimensionless parameters r1/r0,

r2/r0, σ/(eκ2), and κR are varied and their influence on the structure of the electrolyte

solution is studied. The radii r1 and r2 of the ions are given in units of the radius r0

of the solvent particles, which is equivalent to providing them in units of 1/κ, and we

choose either r1 ≤ r0 ≤ r2 or r2 ≤ r0 ≤ r1. By choosing special values for some of the

parameters, other well known models can be obtained within the described framework.

For the restricted primitive model (RPM) one has r1 = r2, m = 0, βu = 0, and ̺b0 = 0,

and for the Poisson-Boltzmann (PB) description one has r1 = r2 = 0, m = 0, βu = 0,

and ̺b0 = 0.

5.3 Discussion

In Fig. 5.2 various profiles relevant for the electrostatics are displayed as functions of the

distance z from a charged planar wall. The CIV model, within which all particles have

the same radius, and PB (see Sec. 5.2.4) are compared with each other. The electrode

is positively charged and consequently the electrostatic potential Φ [Fig. 5.2(a)] has a

positive value at the wall. Qualitatively there are no significant differences in Φ between

PB and CIV and even quantitatively both models lead to similar results. This is in

contrast to the charge density [Fig. 5.2(b)]. Within the microscopic CIV the centers of

the fluid particles cannot get closer to the wall than their own radius. Hence, there is

a discontinuity at the distance of contact. Furthermore, again due to the non-vanishing

particle volumes, the charge density exhibits a layered structure close to the wall. For

clarity of the presentation the solvent profile ¯̺0(z) is not shown here. However, it is

noteworthy that the high density of the solvent particles contributes considerably to the

pronounced layering of the charge density. It is remarkable that the oscillating behavior

of the charge density corresponds to a rather smooth potential Φ. In contrast, in the

case of PB, within which the particle volumes are neglected, the charge density exhibits a

monotonic behavior. The polarization, the component P of which in the direction normal

to the wall [Eq. (5.22)] is shown in Fig. 5.2(c), is identically zero in PB. Within CIV also

this profile has a layered structure close to the wall. Its positive value is in accordance

with expectation because it corresponds to dipoles, which, on average, point away from

the positively charged wall. The discontinuity at contact with the wall causes the slight

kink in Φ at the same distance [see Eq. (5.19)]. At large distances from the wall both

models exhibit a monotonic exponential decay on the scale of the Debye length 1/κ.

Figure 5.3 shows results for the same models as in Fig. 5.2 but for a larger value of the

reduced surface charge density. As expected, the larger surface charge density leads to an

increase of the absolute values of the shown profiles. In addition nonlinear effects are more
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Figure 5.2: Reduced electrostatic potential βeΦ [panel (a)], reduced charge density (̺1 −
̺2)/I [panel (b)], and component P/(10−2eκ2) of the reduced polarization in the direction
normal to the wall [Eq. (5.22), panel (c)] as functions of the reduced distance κz from a
planar electrode with reduced surface charge density σ/(eκ2) ≈ 0.153. The CIV model
and PB corresponding to case A (see Sec. 5.2.4) are compared with each other. The insets
reveal that at large distances from the wall the displayed profiles of both models exhibit
an exponential decay on the scale of the Debye length 1/κ. The specifications given in
panel (a) apply for (b) and (c), too.



116 CHAPTER 5. ELECTROLYTE SOLUTIONS AT CURVED ELECTRODES. II.

0

2

4

6 (a) potential

σ/(eκ2) ≈ 1.53 > 0, case A, r1 = r2

0.1

1

0 2 4

−500

−300

−100

0
(b) charge density

0.1

1

10

100

0 2 4

0

20

40

0 0.5 1 1.5 2

(c) polarization

0.1

1

10

0 2 4

β
eΦ

PB
CIV, r1/r0 = 1

∝ exp(−κz)

(̺
1
−
̺
2
)/
I

|̺
1
−
̺
2
|/
I

P
/

(1
0−

2
eκ

2
)

κz

Figure 5.3: Same as Fig. 5.2 but for a larger value σ/(eκ2) ≈ 1.53 of the reduced surface
charge density.

pronounced than in Fig. 5.2. This is clearly visible in the insets of panel (b): in Fig. 5.2 the

PB result for the reduced charge density is almost a straight line which is in accordance

with the linearized PB equation; in Fig. 5.3 deviations from an exponential behavior

occur. The layering of the reduced charge density [Fig. 5.3(b)] and of the component of

the reduced polarization in the direction normal to the wall [Fig. 5.3(c)] within the CIV
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Figure 5.4: Component P/(10−2eκ2) of the reduced polarization in normal direction
[Eq. (5.22), panel (a)] and reduced charge density (̺1 − ̺2)/I [panels (b) and (c)] of
an electrolyte solution as functions of the reduced distance κz from an uncharged planar
electrode at z = 0. The system is described by case A in the CIV model (see Sec. 5.2.4).
Unequal particle radii give rise to nonzero profiles of the charge density although the wall
is not charged. Panel (c) provides an enlarged view of the charge density close to the wall.
There the data are plotted in the form of circles on the numerical grid points only and
the connecting straight lines are drawn to guide the eye. The specifications given in panel
(a) apply for (b) and (c), too. For further discussions of the panels and in particular of
the arrows in (c), see the main text.
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model is less pronounced in the case of high surface charges. That is, in comparison with

Fig. 5.2, the peak closest to the wall is large relative to the subsequent peaks. For large

distances from the wall, PB predicts a larger value for both the potential [Fig. 5.3(a)] and

the absolute value of the charge density [inset of Fig. 5.3(b)] than the CIV model does.

However, at contact with the electrode the order is reversed.

Figure 5.4 shows results for the CIV model for various particle radii. The profiles are

shown as functions of the distance z from an uncharged planar wall. If all radii are equal,

i.e., r1/r0 = r2/r0 = 1, there is no electric field present and the profiles of the charge

density and the polarization in Fig. 5.4 vanish identically due to symmetry reasons. This

changes in the case of different values of the radii. Figure 5.4(c) provides an enlarged view

of the charge density close to the wall. (Due to the large zoom factor there the points of

the numerical grid become visible.) The arrows pointing downwards indicate the reduced

positions of closest approach of the ions (κr1 and κr2). The colors of the arrows and

their labels correspond to the colors of the keys. The arrow pointing upwards indicates

the reduced position of closest approach of the solvent particles (κr0) which is the same

for all systems shown there. The space between the electrode surface z = 0 and the

point of closest approach (κr2) of the smaller ions (here negative) cannot be penetrated

by any particle; in this region the charge density is identically zero. Subsequently, in the

direction away from the wall the charge density is negative because only negative ions

can approach that space. This holds up to the point beyond which the positive ions are

able to penetrate that space (κr1); there the charge density becomes positive. The further

behavior is visible in Fig. 5.4(b) which shows a high but narrow positive peak. The inset of

Fig. 5.4(b) reveals that this positive charge is compensated by the subsequent wide region

of negative charge density such that global charge neutrality is fulfilled. The polarization

[Fig. 5.4(a)] has a discontinuity at the position z = r0, i.e., at the point of closest approach

of the solvent particles. In Fig. 5.4(c), the arrow pointing upwards indicates this position

κr0. Because the value of the radius of the solvent particles is chosen to be in between

the values of the radii of the ions, the discontinuity of the polarization (κr0) is located to

the right of the point of closest approach of the negative ions (κr2) and to the left of the

point of closest approach of the positive ions (κr1).

In the following we discuss the properties of an electrolyte solution in contact with an

electrode in terms of the differential capacitance [34]

C :=
∂σ

∂Φ(r)|A
(5.32)

which is the change of the surface charge density σ upon varying the (constant) potential

at the wall Φ(r)|A taken relative to its bulk value. Within the present study the ELEs in

Sec. 5.2.2 are solved for various values of the surface charge density σ. Together with the

solutions of the ELEs the electric potential Φ [Eq. (5.17)] is known. The relation between
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Figure 5.5: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the reduced surface
charge density σ/(eκ2) of a planar electrode. The electrolyte solution corresponding to
case A is described as indicated by various models in which the ionic radii are chosen to
be equal (r1 = r2, see Sec. 5.2.4).

the potential at the wall and σ is used in order to determine C [Eq. (5.32)] numerically.

The differential capacitance is experimentally accessible, e.g., via cyclic voltammetry,

chronoamperometry, and impedance spectroscopy [2]. It contains integrated properties

of the structure of the electrolyte solution (see, e.g., Figs. 5.2 – 5.4). This facilitates the

comparison with other models and the analysis of the influence of the parameters r1/r0,

r2/r0, σ/(eκ2), I/κ3, and κR.

Figure 5.5 depicts results of various models in which the ionic radii are chosen to be

equal (r1 = r2, see Sec. 5.2.4). The electrolyte solution is in contact with a planar electrode

the rescaled surface charge density σ of which is the horizontal axis. Here and in the

following, the differential capacitance is plotted in units of the double-layer capacitance

ǫ0ǫκ which facilitates comparison with Gouy-Chapman results (see also Ref. [94] and

Chap. 4). Within the range shown, all displayed curves exhibit the same characteristics

as the PB result: for small σ the differential capacitance attains a constant with zero

slope. Upon increasing σ also the capacitance increases; the main differences between the

models are borne out within this range. The two indicated CIV results differ with respect

to the strength of the dipole moment m: in one case (black solid line) the latter is chosen

according to Sec. 5.2.4 and in the other case (orange dashed line) it is set to zero. The two

curves almost coincide and only for large values of σ a small deviation is visible. Hence, for

these two systems the influence of the dipole moment is relatively weak. This finding is in

accordance with previous studies of the differential capacitance [54,71] as well as of wetting

phenomena [68] for which the explicit dipole description turned out to have a relatively

small effect. The agreement between the simple PB and the comparatively complex CIV
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Figure 5.6: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the reduced surface
charge density σ/(eκ2) of a planar electrode. The electrolyte solution is described within
the CIV model in case A (see Sec. 5.2.4). Curves with the same shade of gray correspond
to the same set of ion size ratios {r1/r0, r2/r0} where the cations are the larger ions
(r1/r0 > r2/r0) for dotted curves whereas the anions are the larger ions (r1/r0 < r2/r0)
for dashed curves. The PB result turns out to be close to the solid black curve (see
Fig. 5.5).

models throughout the studied range is remarkable, in particular when taking into account

that RPM, endowed with an intermediate degree of complexity, clearly shows deviations

from the otherwise common trend. An explanation for this observation could be that

within CIV and PB all particles of the electrolyte solution are described consistently on

the same footing whereas within RPM they are not: within PB all particles are pointlike

and within the displayed cases of CIV the particles are treated as hard spheres of equal

radii. In contrast, within RPM the solvent is a structureless continuum and the ions are

described as hard spheres of finite size.

In Fig. 5.6 the influence of various choices for the ionic radii is examined within

CIV: the solid curve corresponds to the case in which all radii are equal whereas they

are unequal for the other curves. In the limit of an uncharged (σ → 0) electrode the

capacitance increases with increasing difference between the ionic radii. Curves with the

same shade of gray correspond to the same set of ion size ratios {r1/r0, r2/r0} where the

cations are the larger ions (r1/r0 > r2/r0) for dotted curves whereas the anions are the

larger ions (r1/r0 < r2/r0) for dashed curves. As expected, curves of the same shade

concur at the vertical axis: For σ → 0 swapping the ion radii is equivalent to flipping

the sign of all charges and the latter does not change the differential capacitance C [see

Eq. (5.32)]. However, for a charged electrode (σ > 0) this equivalence does not hold and

for the differential capacitance two branches occur. If the positive ions are the smaller
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Figure 5.7: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the dimensionless
curvature 1/(κR) of spherical electrodes. The electrolyte solution corresponding to case A
(see Sec. 5.2.4) is described by the same models as the ones used in Fig. 5.5. The value
of the reduced surface charge density is σ/(eκ2) ≈ 1.527. The planar limit [1/(κR) = 0]
corresponds to that planar electrode in Fig. 5.5 with the highest surface charge density.

(larger) particles, the capacitance curve exhibits (non-)monotonic behavior within the

investigated interval of σ. Compared to the models in Fig. 5.5, where the ionic radii are

chosen to be equal, the decrease of C for small values of σ is a new feature in Fig. 5.6 for

r1/r0 > 1 and r2/r0 < 1. On the other hand, for r1/r0 < 1 and r2/r0 > 1 the capacitance

increases rapidly thus leading to values of C larger than those for the cases shown in

Fig. 5.5. Due to the symmetries of the present model the differential capacitance fulfills

the relation C(r1, r2, σ) = C(r2, r1,−σ), where the first, second, and third argument are

the cation radius, the anion radius, and the surface charge density, respectively. That

is, if the capacitance is known for a particular system, the same capacitance is obtained

for a system in which the values of the ionic radii are swapped and the surface charge

density is taken to be opposite. This explains why curves with the same shade of gray

meet at σ = 0 in Fig. 5.6. Moreover the above relation enables one to extend the curves

in Fig. 5.6 to negative values of σ. For unequal values of the ionic radii the resulting

curve has a minimum at a certain nonzero value of σ and the curve is not symmetric with

respect to this minimum. The shape of such a curve is in better qualitative agreement

with experimental findings than the curve for r1 = r2 which is symmetric around the

minimum at σ = 0 (see, e.g., Ref. [28]).

So far the focus has been on planar electrodes (see Figs. 5.2 – 5.6). In Fig. 5.7 the same

models as in Fig. 5.5 are used in order to investigate electrolyte solutions in contact with

spherical electrodes of various radii R. The surface charge density of σ/(eκ2) ≈ 1.527 is

chosen such that the planar limit, i.e., for zero curvature 1/(κR) = 0, corresponds to that
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Figure 5.8: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the dimensionless
curvature 1/(κR) of spherical electrodes. The displayed data correspond to an electrolyte
solution described by case A in the CIV model (see Sec. 5.2.4) with equal particle radii
r1/r0 = 1 = r2/r0. Each curve corresponds to a certain value of the surface charge density
σ. The vertical arrow indicates the direction of increasing σ.

planar electrode in Fig. 5.5 with the largest surface charge density. In this planar limit PB

and CIV (dotted and solid black line in Fig. 5.5, respectively) yield almost the same value

for the differential capacitance. However, in Fig. 5.7 differences between the two models

appear for nonzero curvatures, i.e., finite electrode radii: PB predicts larger values for the

capacitance than CIV. Hence, compared with the situation at planar electrodes, where

PB is a surprisingly accurate approximation for CIV with equal particle radii, at curved

electrodes larger deviations occur. It is likely that these differences originate from the

hard-sphere character of the particles within CIV. As within PB, the charged electrode

interacts with the charges of the ions and denies them access to a certain R-dependent

volume. However, in the case of CIV in addition the layering of the particles is influenced

by varying the radius of the electrode. A mechanism of such kind is not present within

PB. This might explain, why between CIV and PB there are differences in the curvature

dependences and why the importance of microscopic details hinges on the geometry of

the electrode. Again (as in Fig. 5.5) the two CIV results shown in Fig. 5.7 are close

to each other indicating that within CIV the dipole moment has no significant effect on

the capacitance. Since already at a planar wall RPM exhibits clear deviations from the

other models (see Fig. 5.5), it does not come as a surprise, that the curve predicted by

it deviates considerably also at spherical electrodes (see Fig. 5.7). For small wall radii

the various models seem to attain a linear dependence on curvature and, compared with

intermediate values of the curvature, these lines are relatively close to each other.

Figures 5.8 – 5.14 display the differential capacitance C of spherical electrodes as a
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Figure 5.9: Same as Fig. 5.8 for case B (see Sec. 5.2.4).

function of their curvature 1/(κR). The corresponding data are obtained within CIV (see

Sec. 5.2.4) and each curve corresponds to a fixed value of the surface charge density σ.

For 1/(κR) = 0 the capacitance values reduce to the corresponding ones for a planar

wall. For the largest curvatures considered, the radius of the electrode approximately

equals the radii of the fluid particles. It is remarkable that all systems studied exhibit a

common behavior for large curvatures: irrespective of the value of σ all curves converge

to the graph corresponding to σ → 0. However, the dependence on σ becomes non-

trivial for small curvatures. A similar general behavior for large curvatures has been

observed in part I (Ref. [94] and Chap. 4) of this study, where the PB model is discussed

in detail. There it is possible to show analytically, that for sufficiently small radii (i.e.,

large curvatures) of the electrode the linearized version of the PB equation is a reliable

description. Within the linearized PB theory the electrode potential is proportional to

the surface charge density and hence the differential capacitance is independent of σ. This

explains within PB, why at large curvatures the dependence of the capacitance C on σ

disappears. It is not possible to analytically analyze the CIV model as detailed as PB.

However, the data from the CIV model in the present study reveal the same behavior as in

the PB model, i.e., the dependence of C on σ weakens for large curvatures. Furthermore,

Fig. 5.15 demonstrates that the capacitance C at large curvatures is also independent

of the radii of the particles. Hence the capacitance exhibits a general behavior for large

curvatures which is independent of σ and of the particle radii.

Figures 5.8 – 5.10 are related because in the cases studied there the radii of all par-

ticles are chosen to be equal. Compared with Fig. 5.8, in Fig. 5.9 the ionic strength is

reduced, and in Fig. 5.10 the dipole moment is set to zero. Qualitatively these three

systems exhibit similar curves and their shapes resemble the results obtained within the
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Figure 5.10: Same as Fig. 5.8 for m = 0.

pure PB approach in part I (Ref. [94] and Chap. 4) of this study. Quantitatively, however,

the distinct models render deviations which are visible most clearly in Fig. 5.7, where var-

ious approaches are compared for one fixed value of the surface charge density. Again,

the results are only weakly affected by the strength of the dipole moment: the graphs in

Fig. 5.8 (with the dipole moment chosen as in Sec. 5.2.4) and Fig. 5.10 (no dipole moment)

differ only slightly. Also in the case of planar walls (see Fig. 5.5 and Refs. [54,68,71]) the

explicit dipole description turned out to have only a small effect. It would be interesting

to counter-check this finding with alternative approaches such as computer simulations.

Thereby it might be possible to clarify, whether the aforementioned small differences in

the capacitance originate from an insufficient description of the dipoles or whether already

simpler models are capable to capture sufficiently accurately the relevant structure of an

electrolyte solution. In this case it might be justified to skip the comparatively sophis-

ticated description of the dipoles. Simulations for models, which take dipoles explicitly

into account, have already been carried out. In Ref. [115] results for mixtures of hard

spherical ions and dipoles in contact with charged walls are presented in terms of spa-

tially varying profiles. Reference [116] summarizes several simulation studies concerning

the effective interaction between two charged surfaces separated by a solution described

by ions dissolved in a Stockmayer fluid which is a Lennard-Jones fluid with an embedded

point-dipole. However, computer simulations of ion-dipole mixtures are regarded to be

technically difficult [115]. Possibly, this is the reason why numerical capacitance data de-

rived from models with and without explicit dipole description had not yet been compared

with each other, as it is done, e.g., in Fig. 5.5.

Unequal particle radii can give rise to qualitatively different behaviors which may be

discussed according to the sizes of the ionic species. In the case that the positive ions are
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Figure 5.11: Same as Fig. 5.8 for r1/r0 = 0.9 and r2/r0 = 1.1.
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Figure 5.12: Same as Fig. 5.8 for r1/r0 = 0.85 and r2/r0 = 1.15.

the smaller particles (Figs. 5.11 and 5.12) the capacitance in the planar limit 1/(κR) → 0

increases with increasing difference in the particle radii. Moreover the graphs become

more concave (from below) for small curvatures and in particular for large surface charge

densities. In the case that the positive ions are the largest particles (Figs. 5.13 and 5.14)

the capacitance in the planar limit shows a more complex behavior (see also Fig. 5.6): for

σ → 0 the capacitance increases with increasing difference in the particle radii. However,

for intermediate and large values of σ, the capacitance decreases upon increasing the

particle size difference. As a consequence, some curves approach the graph for σ → 0

from below (see, e.g., the (green) graph for σ/(eκ2) ≈ 0.3824 in Fig. 5.14), whereas in the
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Figure 5.13: Same as Fig. 5.8 for r1/r0 = 1.05 and r2/r0 = 0.95.
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Figure 5.14: Same as Fig. 5.8 for r1/r0 = 1.1 and r2/r0 = 0.9. The only concave curve
corresponds to the bottom entry of the key; the order of the vertical intercepts of the
convex curves corresponds to the order of the remaining keys.

most other cases the convergence is from above (see Figs. 5.8 – 5.12).

Already in the case of planar electrodes it has become apparent that a variation of the

particle radii has a relatively strong effect on the shape of capacitance data (see Figs. 5.5

and 5.6). This finding is confirmed for the case of spherical electrodes when comparing

the data corresponding to unequal particle radii (Figs. 5.11 – 5.14) with the data cor-

responding to equal particle radii (Figs. 5.8 – 5.10), upon varying the ionic strength I

or the dipole moment m. The difference in particle radii has a strong influence on the

charge distribution because the smallest species can approach the wall closest. For a
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Figure 5.15: Reduced differential capacitance C/(ǫ0ǫκ) as a function of the dimensionless
curvature 1/(κR) of spherical electrodes with rescaled surface charge density σ/(eκ2) ≈
1.527. The electrolyte solution corresponding to case A is described within the CIV model
(see Sec. 5.2.4). Curves with the same shade of gray correspond to the same set of ion
size ratios {r1/r0, r2/r0} where the cations are the larger ions (r1/r0 > r2/r0) for dotted
curves and the anions are the larger ions (r1/r0 < r2/r0) for dashed curves.

planar wall this behavior is captured in Fig. 5.4. For spherical electrodes the interplay of

these steric effects with electrostatic interactions is influenced additionally by the radius

R of the electrode which increases the complexity and gives rise to the various shapes of

the presented capacitance data. Figure 5.15 facilitates the comparison of distinct data

sets. The solid curve corresponds to the case in which all radii are equal whereas the

radii are unequal for the cases corresponding to the other curves. For large curvatures the

curves approach each other and exhibit a common behavior independent of the chosen

particle radii. In view of the limiting behavior at large curvatures, as shown in Figs. 5.8 –

5.14, the common behavior at large curvatures is also independent of the surface charge

density. At this stage it is already known that the simple PB model is a rather good

approximation for CIV with equal particle radii in the limit of small electrode radii (see

Fig. 5.7). Furthermore, in part I (Ref. [94] and Chap. 4) of this study it is shown that in

the limit of large curvatures these results are in accordance with the linearized PB descrip-

tion. Combined with the insight obtained from Fig. 5.15 it seems that for 1/(κR) ≫ 1

the linearized PB model might be an adequate approximation for all systems displayed

in Fig. 5.15. This finding might be interesting for describing small electrodes or highly

curved parts of electrodes.
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5.4 Summary

The electric double layer (EDL) of an electrolyte solution in contact with electrodes of pla-

nar or spherical shape has been analyzed. Inspired by the study of Oleksy and Hansen [68]

the electrolyte solution is described in terms of density functional theory (DFT) based on

the functional given in Eq. (5.3). This approach, which is a certain version of the so-called

civ ilized model (CIV, see Sec. 5.2.4), takes into account all particle species on equal foot-

ing. All particles are modelled as hard spheres with non-vanishing volumes, embedded

charges (in the cases of the monovalent anions or cations) or point-dipoles (in the case

of the solvent molecules), and with an attractive interaction amongst all particles which

enables one to discuss an electrolyte solution in the liquid state under realistic ambient

conditions. This microscopic model is a possible extension of the mesoscopic Poisson-

Boltzmann (PB) approach, which was used in part I of the present study (Ref. [94] and

Chap. 4) in order to discuss EDLs at curved electrodes. Close to the wall the microscopic

description gives rise to a layering behavior of the charge density and of the polarization

(see Figs. 5.2 – 5.4) whereas the PB approach renders monotonic profiles only. As in part

I (Ref. [94] and Chap. 4) the structural features of the EDL enter into the differential

capacitance C [Eq. (5.32)] which facilitates the comparison of various models with each

other or to evaluate the influence of various system parameters such as particle radii,

dipole moment of the solvent molecules, ionic strength, surface charge density, and elec-

trode radius. At the planar wall and for equal radii of all particles, PB and CIV lead to

similar values for the capacitance (see Fig. 5.5). Since compared with CIV (see Sec. 5.2.4)

PB neglects many microscopic details, this finding is not obvious. Against this back-

ground, in its turn it is remarkable, that in the case of spherical electrodes of finite radii

R the agreement between the predictions of the two models deteriorates (see Fig. 5.7),

i.e., the relevance of microscopic details, captured by the CIV model, depends on the

geometry of the electrode. The restricted primitive model (RPM), in which the particles

are not treated on equal footing, clearly exhibits a different trend in comparison with the

other models (see Figs. 5.5 and 5.7). In the case of spherical electrodes the capacitance

data obtained within CIV for equal particle radii are qualitatively similar to the PB re-

sults of part I (Ref. [94] and Chap. 4) of this study (see Figs. 5.8 – 5.10). Nevertheless,

there are quantitative differences (see Fig. 5.7). Considering the dipoles explicitly has no

large effect (compare the two curves labelled with CIV in Figs. 5.5 and 5.7 or compare

Fig. 5.8 with Fig. 5.10). Qualitative and relatively large quantitative differences occur if

the particle radii are unequal. This is the case both for planar electrodes [see Fig. 5.6

where the PB result turns out to be close to the solid black curve (see Fig. 5.5)] and for

spherical electrodes (compare Fig. 5.8 with Figs. 5.11 – 5.14). However, the differences

are borne out only for small and intermediate curvatures 1/(κR). For large curvatures

the capacitance curves of all considered cases exhibit a common behavior and converge to



5.A. DERIVATION OF THE MODIFIED RANDOM PHASE APPROXIMATION 129

the limiting graph valid for small surface charge densities σ → 0, i.e., in this limit the be-

havior becomes independent of σ (see Figs. 5.8 – 5.14). Moreover, this behavior becomes

also independent of the choice of the particle radii (see Fig. 5.15). For 1/(κR) ≫ 1 the

simple linearized PB model appears to be an adequate approximation of the relatively

complex CIV. In summary it can be stated that the geometry of the electrode determines

the relevance of microscopic details. Apart from the limit of small electrode radii, for

which a general behavior is observed, PB provides acceptable estimates in the case of

equal particle sizes and large electrode radii.

5.A Derivation of the modified random phase ap-

proximation

The model in Sec. 5.2 takes into account the electrostatic [Eq. (5.5)] and attractive

[Eq. (5.7)] interactions by means of a modified random phase approximation. Within this

Appendix the assumptions underlying this approximation are explained. For clarity, in the

following indices describing the particle species are suppressed and the dipole orientations

are omitted. A generalization of the final result is straightforward. Starting point is

a relation between the pairwise distribution function ̺(2), the pairwise intermolecular

potential U , and the excess functional F ex [58]:

̺(2)(r, r′, [̺, U ]) = 2
δF ex[̺, U ]

δU(r, r′)
. (5.33)

Here the notation ̺(2)(r, r′, [̺, U ]) means that ̺(2) is a function of the positions r and r′

and that it is a functional of the number density ̺ and of the interaction potential U .

F ex is the part of the density functional [Eq. (5.3)] which is in excess to the ideal gas

contribution F id, i.e., in the present case, it is given by the sum F ex = Fhs + F el + Fatt.

F ex takes into account the interaction potential U between the particles. In principle, the

excess functional F ex is set once the interaction potential U has been chosen. However,

often the precise form of F ex is not available and therefore approximative expressions

have to be used (see below). Equation (5.33) can be functionally integrated [58]. For that

purpose the integration path

Uα(r, r′) := Uref(r, r
′) + α [U(r, r′) − Uref(r, r

′)] , α ∈ [0, 1], (5.34)

is chosen. The path Uα interpolates between a reference interaction potential Uref = Uα=0

and the interaction potential U = Uα=1. The partial derivative of the excess functional
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with respect to the parameter α reads

∂F ex[̺, Uα]

∂α
=

∫

d3r

∫

d3r′
δF ex[̺, U ]

δU(r, r′)

∣

∣

∣

∣

U=Uα

∂Uα(r, r′)

∂α

=
1

2

∫

d3r

∫

d3r′ ̺(2)(r, r′, [̺, Uα]) [U(r, r′) − Uref(r, r
′)] ,

(5.35)

where Eqs. (5.33) and (5.34) have been used. Integration of the left hand side of Eq. (5.35)

with respect to α leads to

1
∫

0

dα
∂F ex[̺, Uα]

∂α
= F ex[̺, U1] − F ex[̺, U0] = F ex[̺, U ] − F ex[̺, Uref] = F ex[̺] − F ex

ref[̺].

(5.36)

In agreement with the definition in Eq. (5.34), F ex[̺, U1] corresponds to the interaction

potential U and therefore it is the excess functional F ex[̺] := F ex[̺, U ], whereas F ex[̺, U0]

corresponds to the reference interaction potential Uref , which is why it is denoted as the

reference excess functional F ex
ref[̺] := F ex[̺, Uref]. In Eq. (5.35) the pairwise distribution

function can be replaced by (see Ref. [49])

̺(2)(r, r′, [̺, Uα]) = ̺(r)̺(r′)g(r, r′, [̺, Uα]), (5.37)

that is, by a product of the number density ̺ evaluated at two positions r and r′ and of

the pair distribution function g. As a result the integration of Eq. (5.35) with respect to

α can be written as (see also Ref. [58])

F ex[̺] = F ex
ref[̺] +

1

2

1
∫

0

dα

∫

d3r

∫

d3r′ ̺(r)̺(r′)g(r, r′, [̺, Uα]) [U(r, r′) − Uref(r, r
′)] .

(5.38)

Equation (5.38) provides a prescription to obtain the excess functional F ex, corresponding

to the interaction potential U , if the reference excess functional F ex
ref , corresponding to

some reference interaction potential Uref, and g for all Uα, α ∈ [0, 1], are known.

In the present model (see Sec. 5.2) the hard-spherical interaction, denoted by Uhs

in this Appendix, is chosen as the reference interaction, Uref = Uhs, and the reference

excess functional is given by F ex
ref = Fhs. Consequently, the difference in interactions in

Eq. (5.38), U − Uhs, is given by the sum of the electrostatic and attractive interactions,

which is abbreviated by Uel,att within this Appendix. The pair distribution function g

in Eq. (5.38) is not known. The approximation g = 1 is referred to as random phase

approximation [58]. In order to go beyond this approximation the following modified
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random phase approximation is used:

g(r, r′, [̺, Uα]) ≈







0, if hard spheres centered at r and r′ would intersect,

1, otherwise.
(5.39)

The first line of Eq. (5.39) is exactly valid since the hard-spherical particles cannot overlap.

The approximation in the second line neglects correlations. Finally, the approximation of

Eq. (5.38) reads

F ex[̺] = Fhs[̺] + F el[̺] + Fatt[̺]

≈ Fhs[̺] +
1

2

∫

d3r

∫

d3r′ ̺(r)̺(r′)Uel,att(r, r
′)

×







0, if hard spheres centered at r and r′ would intersect,

1, otherwise.

(5.40)

The term corresponding to F el+Fatt in Eq. (5.40) is used in the present model in Eqs. (5.5)

and (5.7). There the Heaviside step functions prevent that the hard-spherical particles

intersect.

5.B Derivation of the ELEs for the solvent in the

form of Eqs. (5.23) and (5.24)

Equations (5.23) and (5.24) follow from the ELE (5.11) which contains all information

needed about the solvent. It can be written as

̺0(r,ω) = ζ(r) exp {βmω · [E(r) −Eaux(r)]} ,

ζ(r) :=
̺b0
4π

exp
[

−βV0(r) + chs0 (r) − chs,b0 + catt0 (r) − catt,b0

]

.
(5.41)

Due to the dependence of Eq. (5.41) on both the position r and the orientation ω, in

general the equation has to be solved in a high-dimensional space. In order to reduce

the dimensionality of the problem we focus only on the relevant information contained in

Eq. (5.41). With Eq. (5.41) and the definition of the orientationally integrated number

density ¯̺0(r) of the solvent [Eq. (5.2)] one has

¯̺0(r) = ζ(r)

∫

d2ω exp {βmω · [E(r) −Eaux(r)]} . (5.42)

In order to carry out the angular integration in Eq. (5.42) the orientation vector ω

[Eq. (5.1)] is represented in a coordinate system the polar axis of which points into the

radial direction away from the wall, i.e., the polar axis is parallel to the electric fields
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E(r) and Eaux(r). Therefore the scalar product in Eq. (5.42) reduces to

βmω · [E(r) −Eaux(r)] = βm [E(r) − Eaux(r)] cos(ϑ) = a(r) cos(ϑ),

a(r) := βm [E(r) − Eaux(r)] ,
(5.43)

so that

¯̺0(r) = ζ(r)

2π
∫

0

dϕ

π
∫

0

dϑ sin(ϑ) exp [a(r) cos(ϑ)] = ζ(r)4π
sinh[a(r)]

a(r)
, (5.44)

which is equivalent to Eq. (5.23).

For this orientation of the coordinate system, the normal component P [Eq. (5.22)] of

the polarization only depends on the coefficient f1,0(r) of the expansion in Eq. (5.20):

f1,0(r) =

∫

d2ω Y ∗
1,0(ϑ, ϕ)f(r,ω) =

√

3

4π

∫

d2ω cos(ϑ)
̺0(r,ω)

¯̺0(r)

=

√

3

4π

a(r)

4π sinh[a(r)]

∫

d2ω cos(ϑ) exp {βmω · [E(r) −Eaux(r)]}
(5.45)

where the asterisk ∗ denotes the complex conjugate. In order to carry out the angular

integration in Eq. (5.45) the scalar product therein is treated like in Eq. (5.43) such that

one obtains

f1,0(r) =

√

3

4π

a(r)

4π sinh[a(r)]

2π
∫

0

dϕ

π
∫

0

dϑ sin(ϑ) cos(ϑ) exp [a(r) cos(ϑ)]

=

√

3

4π

{

coth[a(r)] − 1

a(r)

}

=

√

3

4π
L[a(r)],

(5.46)

which is equivalent to Eq. (5.24).

5.C Asymptotic behavior at large distances from the

wall

In Sec. 5.2.2 the full ELEs are presented in Eqs. (5.11) and (5.12) which provide the most

general description of the model. From them the relevant reduced Eqs. (5.12), (5.23), and

(5.24) are derived in Sec. 5.2.2. They have to be solved numerically on a large but finite

grid along the radial direction. However, beyond the finite grid radial cutoff, the position

of which is characterized by the length rg in this Appendix, assumptions concerning the

profiles have to be made. Here we focus on these assumptions and on the resulting

behavior at large distances from the wall, where the external potentials [Eq. (5.9)] are
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identically zero and where it can be assumed that the quantities

∆E(r) := E(r) −Eaux(r), (5.47)

∆Φi(r) := Φ(r) − Φaux
i (r), i ∈ {1, 2}, (5.48)

and

∆chs,atti (r) := chsi (r) − chs,bi + catti (r) − catt,bi , i ∈ {0, 1, 2}, (5.49)

are sufficiently small to allow for linearization of the exponential functions in Eqs. (5.11)

and (5.12). The following considerations focus on the general case of a spherical wall; the

corresponding results for a planar wall can be obtained from taking the limit of infinite

wall radius. With this, at large distances from the wall the ELEs (5.11) and (5.12) take

the form

̺0(r,ω)
∣

∣

∣

|r|>rg
≃ ̺b0

4π

[

1 + ∆chs,att0 (r) + βmω · ∆E(r)
]

, (5.50)

and

̺i(r)
∣

∣

∣

|r|>rg
≃ ̺bi

[

1 + ∆chs,atti (r) − βqi∆Φi(r)
]

, i ∈ {1, 2}. (5.51)

Within this Appendix the focus is on the spatial decay of the electrostatic quantities

∆Φi(r) and ∆E(r) which follow from Eqs. (5.15) – (5.18). These expressions are inde-

pendent of the contribution ∆chs,att0 (r). The latter can enter ∆Φi(r) and ∆E(r) only via

the polarization P (r). However, due to the angular integration in Eq. (5.14), terms in

̺0(r,ω) which are independent of the orientation ω, such as ∆chs,att0 (r) in Eq. (5.50), do

not contribute to P (r). In the limit of equal radii of the ions, r1 = r2, the contributions

∆chs,atti (r), i ∈ {1, 2}, are equal and drop out of the sums in the first terms of Eqs. (5.15)

– (5.18) due to the same absolute value of the ionic charges q1 = −q2. In this limit, as it

will turn out in the following, the electrostatic contributions ∆E(r) and ∆Φi(r) exhibit

the same decay behavior. The corresponding length scale is set by the Debye length 1/κ

[Eqs. (5.29) and (5.30)]. In Appendix 5.D the asymptotic decay behavior of ∆chs,atti (r) is

discussed. There it is shown that in the limit of equal particle radii the one-point direct

correlation functions decay on the length scale of the bulk correlation length ξ emerging

due to the presence of the hard spherical and attractive interactions. Except very close

to critical points, at which ξ diverges, ξ is typically much smaller than 1/κ such that the

contributions ∆chs,atti (r) decay rapidly towards zero and can be neglected in Eqs. (5.50)

and (5.51) for large distances from the wall. This can be expected to hold also for small

differences between the particle radii which is the limit we focus on in the present study.
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Accordingly, our approximation for the ELEs at large distances from the wall reads

̺0(r,ω)
∣

∣

∣

|r|>rg
≃ ̺b0

4π
[1 + βmω · ∆E(r)] (5.52)

and

̺i(r)
∣

∣

∣

|r|>rg
≃ ̺bi [1 − βqi∆Φi(r)] , i ∈ {1, 2}. (5.53)

Equations (5.15) – (5.18) are discussed in detail now. For this purpose the original

integration domain R3\V is extended to R3. Note that within V the integrands are

identically zero for r1 = r2. The extended domain R3 is split into a region |r| ≤ rg close

to the wall, where the full solutions are known, and into a region |r| > rg further away

from the wall, where the number densities are approximated either as in Eqs. (5.50) and

(5.51) in the limit of equal ionic radii, or as in Eqs. (5.52) and (5.53) under the assumption

of negligible one-point direct correlation function differences. This leads to

∆Eα(r) ≃ h

[

−
2

∑

i=1

βq2i ̺
b
i

∫

R3

d3r′ K
(1)
αi (d)∆Φi(r

′)

− βm2̺b0
3

z
∑

γ=x

∫

R3

d3r′ K(2)
αγ (d)∆Eγ(r′) + S(1)

α (r)

]

, α ∈ {x, y, z},
(5.54)

and

∆Φi(r) ≃ h

[

−
2

∑

j=1

βq2j̺
b
j

∫

R3

d3r′ K
(0)
ij (d)∆Φj(r

′)

+
βm2̺b0

3

z
∑

α=x

∫

R3

d3r′K
(1)
αi (d)∆Eα(r′) + S

(0)
i (r)

]

, i ∈ {1, 2},
(5.55)

with

K
(0)
ij (r) :=

1

|r|Θ[|r| − (ri + rj)], i, j ∈ {1, 2}, (5.56)

K
(1)
αi (r) :=

rα
|r|3Θ[|r| − (r0 + ri)], α ∈ {x, y, z}, i ∈ {1, 2}, (5.57)

K(2)
αγ (r) :=

(

δαγ
|r|3 −

3rαrγ
|r|5

)

Θ(|r| − 2r0), α, γ ∈ {x, y, z}, (5.58)
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S
(0)
i (r) :=

2
∑

j=1

∫

|r′|≤rg

d3r′
qj
|d|

{[

̺j(r
′) − ̺bj

]

+ βqj̺
b
j ∆Φj(r

′)
}

Θ[|d| − (ri + rj)]

+

∫

|r′|≤rg

d3r′
[

P (r′) · d
|d|3 − 1

3
̺b0βm

2∆E(r′) · d
|d|3

]

Θ[|d| − (r0 + ri)]

+

∫

A

d2r′
σ

|d|Θ(|d| − ri), i ∈ {1, 2}, d = r − r′,

(5.59)

S(1)
α (r) :=

2
∑

i=1

∫

|r′|≤rg

d3r′ qi
dα
|d|3

{[

̺i(r
′) − ̺bi

]

+ βqi̺
b
i ∆Φi(r

′)
}

Θ[|d| − (r0 + ri)]

−
∫

|r′|≤rg

d3r′
{[

Pα(r′)

|d|3 − 3dαP (r′) · d
|d|5

]

− 1

3
̺b0βm

2

[

∆Eα(r′)

|d|3 − 3dα∆E(r′) · d
|d|5

]}

Θ(|d| − 2r0)

+

∫

A

d2r′ σ
dα
|d|3Θ(|d| − r0), α ∈ {x, y, z},

(5.60)

and

h :=
1

4πǫ0ǫex
. (5.61)

In the limit r1 = r2 the expressions of S
(0)
i and S

(1)
α are odd functions of σ. That is,

for small surface charge densities σ → 0 both contributions are of the order O(σ). This

property will be referred to at the end of this Appendix. Note that δαγ is the Kronecker

symbol and the abbreviation d = r − r′ for the spatial offset is still valid. The Greek

indices α, γ denote the vector components x, y, z whereas the Latin indices i, j denote the

ion species 1, 2. For example, the first term of Eq. (5.54) can be derived as follows: from

Eqs. (5.15) and (5.16) one obtains

E(r) −Eaux(r) = ∆E(r) (5.62)

=

2
∑

i=1

∫

R3

d3r′
qi

4πǫ0ǫex

d

|d|3
[

̺i(r
′) − ̺bi

]

[1 − Θ(r0 + ri − |d|)] + . . .

=
1

4πǫ0ǫex

2
∑

i=1

∫

R3

d3r′ qi
d

|d|3
[

̺i(r
′) − ̺bi

]

Θ[|d| − (r0 + ri)] + . . . .

In the next step, the asymptotic expressions for the density profiles at large distances

|r| > rg from the wall [Eq. (5.51) or (5.53)] are used. Note that q1̺
b
1 + q2̺

b
2 = 0 due to
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local charge neutrality. The equation is written in terms of each component α ∈ {x, y, z}
of the electric field:

∆Eα(r) ≃ 1

4πǫ0ǫex

×
{

2
∑

i=1

∫

|r′|≤rg

d3r′ qi
dα
|d|3

{

[

̺i(r
′) − ̺bi

]

− ̺bi

[

∆chs,atti (r′) − βqi∆Φi(r
′)
]}

× Θ[|d| − (r0 + ri)]

+
2

∑

i=1

∫

R3

d3r′ qi
dα
|d|3̺

b
i

[

∆chs,atti (r′) − βqi∆Φi(r
′)
]

Θ[|d| − (r0 + ri)] + . . .

}

.

(5.63)

In the limit of equal radii for the ions the contribution ∆chs,atti (r′) drops out of the sum.

The integrations with respect to positions |r′| ≤ rg close to the wall are collected in

S
(1)
α [Eq. (5.60)] and will not be considered further in this example. Finally by using

Eqs. (5.57) and (5.61) one has

∆Eα(r) ≃ 1

4πǫ0ǫex

[

−
2

∑

i=1

βq2i ̺
b
i

∫

R3

d3r′
dα
|d|3Θ[|d| − (r0 + ri)]∆Φi(r

′) + . . .

]

= h

[

−
2

∑

i=1

βq2i ̺
b
i

∫

R3

d3r′K
(1)
αi (d)∆Φi(r

′) + . . .

]

.

(5.64)

In terms of the Fourier transform

f̂(q) :=

∫

R3

d3r f(r) exp(−iq · r) (5.65)

Eqs. (5.54) and (5.55) lead to a system of five linear equations for the components ∆Êα(q),

α ∈ {x, y, z}, of the vector ∆Ê(q) and for ∆Φ̂i(q) with i ∈ {1, 2}:

∆Êα(q) = h

[

−
2

∑

i=1

βq2i ̺
b
i K̂

(1)
αi (q)∆Φ̂i(q) − βm2̺b0

3

z
∑

γ=x

K̂(2)
αγ (q)∆Êγ(q) + Ŝ(1)

α (q)

]

(5.66)

and

∆Φ̂i(q) = h

[

−
2

∑

j=1

βq2j̺
b
j K̂

(0)
ij (q)∆Φ̂j(q) +

βm2̺b0
3

z
∑

α=x

K̂
(1)
αi (q)∆Êα(q) + Ŝ

(0)
i (q)

]

.

(5.67)
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With the 5-component vectors v and s as well as the 5 × 5 matrix M ,

v =

















vx

vy

vz

v1

v2

















, s =

















sx

sy

sz

s1

s2

















, M =

















Mxx Mxy Mxz Mx1 Mx2

Myx Myy Myz My1 My2

Mzx Mzy Mzz Mz1 Mz2

M1x M1y M1z M11 M12

M2x M2y M2z M21 M22

















, (5.68)

defined by

vα :=

√

βm2̺b0
3

∆Êα(q), α ∈ {x, y, z}, (5.69)

vi :=
√

βq2i ̺
b
i ∆Φ̂i(q), i ∈ {1, 2}, (5.70)

sα := h

√

βm2̺b0
3

Ŝ(1)
α (q), α ∈ {x, y, z}, (5.71)

si := h
√

βq2i ̺
b
i Ŝ

(0)
i (q), i ∈ {1, 2}, (5.72)

Mαγ := h
βm2̺b0

3
K̂(2)

αγ (q), α, γ ∈ {x, y, z}, (5.73)

Mαi := −Miα := h

√

βm2̺b0
3

βq2i ̺
b
i K̂

(1)
αi (q), α ∈ {x, y, z}, i ∈ {1, 2}, (5.74)

and

Mij := h
√

βq2i ̺
b
i βq

2
j̺

b
j K̂

(0)
ij (q), i, j ∈ {1, 2}, (5.75)

the system of linear equations (5.66) and (5.67) has the form

(1 + M) · v = s ⇔ v = (1 + M)−1 · s (5.76)

with the identity matrix 1. With the abbreviations

k2 := 8πβe2hI, (5.77)

p2 := βm2h̺b0 , (5.78)

r̄i :=
ri
r0
, i ∈ {1, 2}, (5.79)

k̄ := kr0, (5.80)

x := qr0 :=
√
q · q r0, (5.81)

a :=
π

6
p2

sin(2x) − 2x cos(2x)

x3
, (5.82)

bj := −i

√

2π

3
pk̄

sin[x(1 + r̄j)]

x2(1 + r̄j)
, j ∈ {1, 2}, (5.83)
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and

Mij =
k̄2

2

cos[x(r̄i + r̄j)]

x2
, i, j ∈ {1, 2}, (5.84)

one obtains

1 + M =

















1 − a 0 0 0 0

0 1 − a 0 0 0

0 0 1 + 2a b1 b2

0 0 −b1 1 + M11 M12

0 0 −b2 M12 1 + M22

















. (5.85)

For various combinations of the indices α, i and α, γ the Fourier transforms K̂
(1)
αi (q) and

K̂
(2)
αγ (q) are identically zero. Therefore the matrix 1 + M exhibits this kind of block

structure. Equation (5.76) relates the response of the fields v to an external perturbation

s, i.e., it is a multidimensional analogue of Yvon’s equation in Fourier space [49]. There-

fore, up to irrelevant factors, the matrix Ĝ(q) := (1 + M)−1 is the Fourier transform of

the bulk two-point direct correlation functions of the field components ∆Ex,y,z and of the

potential differences ∆Φ1,2. With the inverse Fourier transform

G(r) :=
1

4π2ir

∞
∫

−∞

dq q Ĝ(q) exp(iqr), r := |r|, (5.86)

one obtains G(r), which determines the asymptotic spatial dependence of ∆Ex,y,z(r) and

∆Φ1,2(r). The integral in Eq. (5.86) can be studied by using the residue theorem. As a

consequence the exponential decay of G(r) is determined by the poles of Ĝ(q) [117,118].

The pole q′ + iq′′ ∈ C, with q′, q′′ ∈ R, of Ĝ(q) with the smallest imaginary part |q′′|
determines the asymptotic decays of ∆Ex,y,z(r) and ∆Φ1,2(r) on the length scale 1/|q′′|
away from the charged wall. Since, according to Cramer’s rule, the inverse matrix (1 +

M)−1 = Ĝ(q) ∝ 1/det(1+M) is proportional to the reciprocal of det(1+M), the poles

of Ĝ(q) are given by the roots of the determinant det(1 + M):

det(1 + M) = (1 − a)2[(1 + 2a)(1 + M11)(1 + M22) − 2b1b2M12 + b22(1 + M11)

−M2
12(1 + 2a) + b21(1 + M22)] = 0.

(5.87)

Equation (5.87) can be solved numerically. The parameter choices of the present study

(see Sec. 5.2.4) correspond to purely imaginary roots iq′′, i.e., the asymptotic decay of

∆Ex,y,z(r) and of ∆Φ1,2(r) is monotonic. However, the important finding is that all

electric field components and electric potentials decay on the same length scale 1/|q′′|
and are proportional to σ in the limit of equal radii r1 = r2 of the ions and for σ → 0.
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This finding is relevant for Sec. 5.2.3 and in particular for Eq. (5.25).

5.D Asymptotic decay of the one-point direct corre-

lation functions

Within this Appendix the asymptotic decay behavior of the one-point direct correlation

functions (DCFs) chs0,1,2(r) and catt0,1,2(r) is examined at positions far away from the wall.

This behavior is related to the decay behavior of the number densities ¯̺0(r) and ̺1,2(r)

which fulfill the ELEs (5.23) and (5.12). Let us introduce the deviations of the number

densities from their respective bulk values, ∆̺0(r) := ¯̺0(r)−̺b0 and ∆̺1,2(r) := ̺1,2(r)−
̺b1,2, and use the notation in Eqs. (5.47) – (5.49) in order to rewrite Eqs. (5.23) and (5.12)

as

ln

[

1 +
∆̺0(r)

̺b0

]

+ βV0(r) − ∆chs,att0 (r) − ln

{

sinh[βm∆E(r)]

βm∆E(r)

}

= 0 (5.88)

and, i ∈ {1, 2},

ln

[

1 +
∆̺i(r)

̺bi

]

+ βVi(r) − ∆chs,atti (r) + βqi∆Φi(r) = 0. (5.89)

Within this Appendix, a spherical wall is discussed, as in Appendix 5.C, and we consider

the case that all particle species have the same radius: r0 = r1 = r2. As a consequence

the one-point direct correlation functions and the differences of the electrostatic potentials

are the same for all species, i.e., ∆chs,att0,1,2 (r) =: ∆chs,att(r) and ∆Φ1,2(r) =: ∆Φ(r). In

the following the equation for the solvent [Eq. (5.88)] is discussed in detail so that the

presented procedure can be applied analogously to the two equations for the ionic species

in Eq. (5.89). The Fourier transform [Eq. (5.65)] of Eq. (5.88) is given by

∫

R3

d3r exp(−iq · r)

{

ln

[

1 +
∆̺0(r)

̺b0

]

+ βV0(r)

− ∆chs,att(r) − ln

{

sinh[βm∆E(r)]

βm∆E(r)

}}

= 0.

(5.90)

We introduce the length rg large enough such that

βV0,1,2(r)
∣

∣

|r|>rg
= 0, (5.91)

sinh[βm∆E(r)]

βm∆E(r)

∣

∣

∣

∣

|r|>rg

≃ βm∆E(r)

βm∆E(r)
= 1, (5.92)
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and, i ∈ {0, 1, 2},

ln

[

1 +
∆̺i(r)

̺bi

]

∣

∣

∣

∣

∣

|r|>rg

≃ ∆̺i(r)

̺bi
. (5.93)

The integration in Eq. (5.90) over the whole space can be split into two domains, one with

|r| ≤ rg, where the full ELE (5.88) is integrated, and another one with |r| > rg, where the

ELE (5.88) is approximated according to Eqs. (5.91) – (5.93). We make use of the fact

that the equilibrium density ¯̺0(r) fulfills the ELE (5.88) locally which is why the integral

in the domain |r| ≤ rg vanishes. Therefore, with the approximations in Eqs. (5.91) –

(5.93), the Fourier transform in Eq. (5.90) reads

∫

|r|>rg

d3r exp(−iq · r)

[

∆̺0(r)

̺b0
− ∆chs,att(r)

]

= 0. (5.94)

The one-point direct correlation function ∆chs,att(r), which is a functional of the number

densities ̺0,1,2 [see Eq. (5.13)], can be expressed in terms of a Taylor series expansion with

respect to the bulk value:

∆chs,att(r) ≃
∫

R3

d3r′ c(2)hs,att,b(r − r′)[∆̺0(r
′) + ∆̺1(r

′) + ∆̺2(r
′)]. (5.95)

Since the integral in Eq. (5.94) is restricted to positions far away from the wall, i.e.,

|r| > rg, where the number densities are close to their respective bulk values and hence

the deviations |∆̺0,1,2| are small, in Eq. (5.95) only terms up to and including linear order

in ∆̺0,1,2 are taken into account. Note that ∆chs,att [Eq. (5.49)] measures the difference

of the one-point direct correlation functions from their respective bulk values. Therefore

evaluation in the bulk leads to ∆chs,att = 0 which is the zeroth order of the expansion in

Eq. (5.95). The quantity c(2)hs,att,b denotes the bulk two-point direct correlation function

governed by the hard spherical (hs) and the attractive (att) interaction, respectively. In

Eq. (5.94) a conveniently chosen zero is added such that the original integration over

|r| > rg is written in terms of a Fourier integral and an integration over the domain

|r| ≤ rg in order to obtain

∆ˆ̺0(q)

̺b0
− ĉ(2)hs,att,b(q)[∆ˆ̺0(q) + ∆ˆ̺1(q) + ∆ˆ̺2(q)] − F0(q) = 0,

F0(q) :=

∫

|r|≤rg

d3r exp(−iq · r)







∆̺0(r)

̺b0
−

∫

R3

d3r′ c(2)hs,att,b(r − r′)
2

∑

i=0

∆̺i(r
′)







.

(5.96)
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The same procedure can be applied to the sum of the two equations in Eq. (5.89). The

contribution of the electric potential drops out of the sum because the ion species carry

a charge of the same absolute value q1 = −q2, thus leading to

∆ˆ̺1(q) + ∆ˆ̺2(q)

I
− 2ĉ(2)hs,att,b(q)[∆ˆ̺0(q) + ∆ˆ̺1(q) + ∆ˆ̺2(q)] − F1,2(q) = 0,

F1,2(q) :=

∫

|r|≤rg

d3r exp(−iq · r)

{

∆̺1(r) + ∆̺2(r)

I

− 2

∫

R3

d3r′ c(2)hs,att,b(r − r′)

2
∑

i=0

∆̺i(r
′)

}

.

(5.97)

The functions F0(q) and F1,2(q) are entire, i.e., they do not possess any poles in q ∈ C3,

because the outer-most integrations in Eqs. (5.96) and (5.97) are those of continuous

integrands which are entire in q over a compact domain. The sum of Eqs. (5.96) and

(5.97),

∆ˆ̺0(q) + ∆ˆ̺1(q) + ∆ˆ̺2(q) =
̺b0F0(q) + IF1,2(q)

1 − ĉ(2)hs,att,b(q)(̺b0 + 2I)
, (5.98)

is an analogue of Yvon’s equation in Fourier space [49] because it relates the number

densities with an external perturbation given by the numerator on the right hand side

of Eq. (5.98). The expression S(q) := [1 − ĉ(2)hs,att,b(q)(̺b0 + 2I)]−1 is the bulk structure

factor [49]. Hence, following the line of argument in Appendix 5.C and recognizing that

the numerator in Eq. (5.98) does not have poles, the asymptotic decay of the sum ∆̺0(r)+

∆̺1(r) + ∆̺2(r) is given by the pole q′ + iq′′ of S(q) with the smallest imaginary part

|q′′|, which sets the length scale of the decay. Here the length scale can be identified as

the bulk correlation length ξ = 1/|q′′| emerging from the hard spherical and attractive

interactions. Far away from the wall, i.e., at positions r at which the approximations in

Eqs. (5.91) – (5.93) can be applied, the ELE for the solvent Eq. (5.88) and the sum of

the ELEs for the ions in Eq. (5.89) are given by

∆̺0(r)

̺b0
= ∆chs,att(r) (5.99)

and

∆̺1(r)

̺b1
+

∆̺2(r)

̺b2
= 2∆chs,att(r). (5.100)

From Eqs. (5.99) and (5.100) it follows that the decay of the one-point direct correlation

function difference ∆chs,att(r) is given by the decay of the number densities ∆̺0,1,2(r).

That is, ∆chs,att(r) decays on the length scale of the bulk correlation length ξ. This result
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is used in Sec. 5.2.3 and in Appendix 5.C in order to justify the neglect of the one-point

direct correlation function differences in Eqs. (5.52) and (5.53).



Chapter 6

Conclusions and outlook

The present dissertation has been dedicated to interfaces between curved solid walls and

different kinds of fluids, in particular, simple fluids and electrolyte solutions. The depen-

dence of interfacial quantities, like the interfacial tension γ and the differential capacitance

C, on the geometry of the solid wall has been assessed by means of various theoretical

approaches.

In Chaps. 2 and 3 density functional theory (DFT) has been applied in order to

determine the interfacial tension γ of the interface between a simple fluid and a solid

wall. The latter has been assumed to be of spherical or cylindrical shape with arbitrary

radius R. The dependence of the interfacial tension γ(R) on the radius has been assessed

numerically in Chap. 2 and analytically in Chap. 3. Expansions in powers of the wall

curvature 1/R have rendered curvature coefficients γsi, i ≥ 1, for the spherical and γci for

the cylindrical geometry. These exact results have been compared to the predictions of

morphometric thermodynamics (MT) stating that γsi = 0 for i ≥ 3 and that γci = 0 for

i ≥ 2. It has turned out that MT is not complete for all considered cases, i.e., for distinct

interaction potentials for the fluid-fluid as well as for the fluid-wall interactions. This result

is in line with studies in Refs. [19–24] which question the completeness of MT. Therefore

MT has the status of an approximation. In Chaps. 2 and 3 it has become evident that the

quality of the approximation depends to a large extent on the considered geometry and

on the convention for the interfacial position parameterized by δ in Chap. 2; the results

in Chap. 3 have been quoted with respect to δ = 0. Up to γs3 and γc2 the coefficients

exhibit a dependence on δ (see Figs. 2.5 – 2.9). This has the following consequence: In

general by truncating the exact expansion in agreement with MT a certain remainder

is neglected. Since most of the coefficients vary with δ, the relative magnitude of the

remainder, as compared to the considered terms, depends on the chosen convention. In

spherical geometries the MT approximation is in better agreement with the exact results

than in cylindrical geometries. This has become particularly apparent in the discussion of

Chap. 3 where the deviation between MT and the exact result is exponentially small at the

spherical wall whereas it is algebraic at the cylindrical wall. For the latter, depending on
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the convention, it may occur that |γc2| > |γc1|, i.e., the second coefficient, which should

not be present according to MT, can be larger than the first coefficient. Possibly this

inequality only holds for small number densities upon which the discussions in Chaps. 2

and 3 focus. In this limit such an inequality can also be inferred from the expressions for

the curvature coefficients in Ref. [21]. Since the coefficients γs3 and γc2 are independent of

the convention for the interface, a convenient choice for the convention might be helpful

to obtain these coefficients from numerical results. In some conventions the coefficients

in agreement with MT are much larger than the coefficients not in agreement so that

within such conventions MT is a good approximation [see, e.g., Fig. 2.4(b)]. This might

explain why MT has been found to perform well in several studies [8–18] despite of the

aforementioned deficits. In the presence of an excess external potential, i.e., in excess

to the hard wall potential, the agreement between the MT approximation and the exact

result deteriorates. This is pointed out clearly by the analytic results in Chap. 3, where the

coefficients not in agreement with MT become more and more dominant upon increasing

the range or the strength of the excess external potential. In a sense Chaps. 2 and 3

specify the incompleteness of MT. The deviations between MT and the exact results

range from exponentially small, through to algebraic with comparably small coefficient

up to algebraic with comparably large coefficient. For applications based on MT these

findings are problematic because the deviations depend, for instance, on the geometry. In

case of arbitrary geometries, for which MT would be essentially powerful, the deviations

probably cannot be estimated without the knowledge of the exact result. The ratio

between the first curvature coefficients of the different geometries is given by γs1/γc1 = 2

for all conventions. This ratio is in agreement with other studies [8, 19, 21, 23, 24, 93].

Interestingly, in the limit of small number densities and for δ = 0, also the corresponding

ratio for the second coefficients has been found to be given by a constant value γs2/γc2 =

8/3; in this context constant means that this value has been found for all considered

particle-particle interaction potentials as well as for an ideal gas in the limit of small excess

external potentials and that this ratio has been confirmed in other studies [21, 23, 24].

These findings inspire confidence that this value is of general validity.

It would be interesting to verify the presented results by means of computer sim-

ulations. For this purpose in particular low density fluids surrounding a spherical or

cylindrical hard wall seem to be promising configurations. If the interfacial tension is

determined as a function of the wall radius in the convention δ = 0, within the cylindri-

cal geometry the coefficient γc2, which is not in agreement with MT, is expected to be

comparably large. In that case the coefficient should be determinable with relative ease

which would further substantiate the incompleteness of MT. The same procedure with

respect to spherical geometries would enable to verify the aforementioned ratio of second

order curvature coefficients, which, so far, has only been predicted theoretically.

In Chap. 4 the differential capacitance C of an electric double layer (EDL) between an
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electrolyte solution and a solid charged electrode has been analyzed within the framework

of the Poisson-Boltzmann (PB) equation. The focus has been on the dependence of

the differential capacitance on the geometry of the electrode. To that end spherical or

cylindrical electrodes of radius R have been under consideration. The impact of the

geometry on the differential capacitance could be conveniently assessed by means of plots

of C in dependence of the electrode curvature 1/R (see Figs. 4.3 and 4.4). There the size

of the electrode has been varied quasi-continuously between the limiting cases of a planar

electrode and an electrode of small radius as compared to the Debye length. Further

dependencies, for instance on the surface charge density σ and the ionic strength, have

been incorporated parametrically in these plots. In the limiting cases of the electrode

curvature the graphs reveal different behavior which has been discussed in detail. For

small curvatures a strong dependence on the surface charge density occurs. An expansion

of C in powers of the curvature has led to expansion coefficients which depend on only

one parameter. The curvature expansion in case of the cylindrical electrode has yielded

that a prediction in agreement with MT would not be complete. For large curvatures the

dependence of C on σ is reduced. This observation is in line with an analytical discussion

which provides the insight that for small radii of the spherical electrode a description

based on the linearized PB equation becomes reliable.

A system in the PB model is defined by a comparably small amount of parameters.

Therefore the PB approach is well suited in order to estimate the basic structure of

results in view of more sophisticated models. For instance, here the discussion of the

PB model has been helpful in order to gauge the outcome of the microscopic model in

Chap. 5. A common extension of the PB approach is usually referred to as the Gouy-

Chapman-Stern model (see Chap. 1). There an additional Helmholtz layer is introduced

in between the electrode surface and the electrolyte solution which takes into account

the volume of the adsorbed ions. This modification is known to affect the differential

capacitance at the planar wall. It would be enlightening to extent the present discussion

in this context. Furthermore one could try to assess the implications of differently chosen

boundary conditions. For instance, image charge effects would consider that the electrode

behavior depends on the distribution of the ions. The present discussion has addressed

convex electrodes which are surrounded by the electrolyte solution. The question arises,

what is the corresponding outcome in the case of concave electrodes filled with electrolyte

solution?

Also Chap. 5 has been dedicated to the analysis of EDLs. As compared to Chap. 4,

in Chap. 5 a molecular model for the electrolyte solution has been applied in order to

determine the structure of the EDL and the corresponding differential capacitance C at

a spherical electrode of arbitrary radius R. The DFT implementation of the so-called

civilized model is capable of taking into account microscopic details like the volumes

of the particles in the electrolyte solution and dipole moments embedded in the solvent
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particles. Consequently, for instance the profile of the charge density exhibits new features

as compared to PB results, for example, layering close to the electrode. To a large extent

the influences of microscopic and other parameters have been assessed by evaluating C

as a function of the curvature 1/R. The basic structure of this kind of plots is known

from Chap. 4; these graphs enable to consider the impacts of different parameters in

various (geometrical) configurations of the electrode. In Chap. 5 it has turned out that

the electrode geometry determines the relevance of microscopic details. PB and the

civilized model with equally chosen particle radii predict similar values for the differential

capacitance at the planar wall. If the electrode is curved, the agreement deteriorates.

However, for equal particle radii at least no qualitative differences occur. The results

are only minorly affected by the strength of the dipole moment embedded in the solvent

particles. Qualitative differences between the PB and the civilized model arise, if in the

latter the particles have unequal radii. In that case these differences manifest at both

planar and curved electrodes. In general, the limit of small curvatures is nontrivial and

reveals a dependence on various parameters. However, in the limit of large curvatures the

dependence on the surface charge density reduces, as in the case of PB. Additionally the

results show a common behavior independent of the chosen values for the particle radii.

Hence in the limit of large curvatures the linearized PB model might be a satisfactory

approximation for the comparably sophisticated civilized model.

In future projects the presented results for the spherical electrode could be comple-

mented by results for the cylindrical electrode. As compared to other geometries, the

latter exhibits certain symmetries which allow to reduce the dimensionality of the generic

civilized model and which therefore enable precise numeric calculations; this procedure

has been discussed here for the spherical electrode and it should be applicable analogously

for the cylindrical case. The same should be true for the corresponding complementary

cases, i.e., the electrolyte solution surrounded by a spherical or cylindrical electrode. In

view of porous electrode surfaces in terms of supercapacitors results for these geometries

might be of technological interest. On the way towards a more realistic model one could

think about implementing several modifications into the model in the present state; unfor-

tunately these usually would be accompanied by an increase of the already large number

of parameters. For instance, specific adsorption of ions at the electrode surface could be

incorporated on the level of the external potential. Probably this would have a similar

effect as the Helmholtz layer in the Stern model. In that case, the differential capaci-

tance is expected to be affected by this modification. As mentioned before, by means of

image charge effects another kind of wall-fluid interaction would be taken into account.

Instead of choosing hard spherical particles one could assume the particle shapes to be

more asymmetric. In particular, in case of the solvent particles this would couple steric

effects with the anisotropic dipole interaction potential which might lead to interesting

effects in dependence of the electrode curvature. In view of the explicit dipole description
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within the presented model comparisons with simulations would be enlightening. The

results have only been minorly affected by the strength of the dipole moment. Therefore

the question arises, whether this is a model specific weakness or whether larger impacts

cannot be expected principally. Moreover one could think about refining the so-called

attractive interaction, which has been assumed to be the same for all particles in the

present model. This might be a step towards a description of solvated ions accompanied

by a solvation shell. The finding, that the differential capacitance of a small spherical

electrode can be estimated rather accurately by the linearized PB equation, might guide

the way towards the treatment of more complex surfaces, e.g., rough electrodes.
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Summary

The present dissertation has been dedicated to the theoretical study of interfaces between

curved solid walls and different kinds of fluids. Special attention has been paid to the

dependence of interfacial quantities on the wall geometry. The insight gained in the

course of this dissertation is contained in Chaps. 2 – 5; in part these have already been

published in Refs. [22, 72, 94]. The present thesis can be roughly divided thematically

into two parts. In Chaps. 2 and 3 interfaces in combination with various simple fluids

have been under consideration. The dependence of the corresponding interfacial tension

γ on the curvature of the wall has been assessed and compared with the predictions of the

morphometric thermodynamics approach (see below). In Chaps. 4 and 5 electric double

layers at interfaces between curved electrodes and electrolyte solutions have been discussed

in terms of the differential capacitance C. The results of various models regarding the

dependence of the differential capacitance on the electrode geometry have been compared

with each other and the impact of several intrinsic parameters has been assessed.

In Chap. 2 the interface between a planar, spherical, or cylindrical wall and several

model fluids with small number densities has been analyzed. Density functional theory

(DFT) within the second virial approximation [Eq. (2.7)] has been applied in order to

determine the interfacial tension γ in dependence of the radius R of the spherical and

cylindrical wall. This approach gives accurate results for small number densities which

has been confirmed by comparison with computer simulations (see Fig. 2.3). From the nu-

merically acquired relation between γ and R the lowest order coefficients of the curvature

expansion in Eq. (2.18) of the interfacial tension γ have been obtained by a fitting routine.

These results have been compared with the expressions derived within morphometric ther-

modynamics (MT) [Eq. (2.3)]. According to the prediction of MT, the dependence of the

interfacial tension on the wall curvature is given by a quadratic (linear) polynomial in the

curvature in the case of a spherical (cylindrical) wall. Throughout the discussion particu-

lar attention has been paid to the implications of the choice of the position of the interface,

which underlies the definition of the interfacial tension [see Eq. (2.16) and Fig. 2.1]. For

none of the considered systems the expression for the interfacial tension in accordance

with morphometric thermodynamics is exact, regardless of whether the particles interact

with each other via a square-well or square-shoulder potential [Eq. (2.4)], a Yukawa po-

tential [Eq. (2.5)], or a Lennard-Jones potential [Eq. (2.6)]. In general MT seems to be a
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better approximation for spherical than for cylindrical walls. As shown in Figs. 2.5 – 2.8

the coefficients γn(δ) of the curvature expansion in Eq. (2.18) may depend sensitively on

the chosen interface convention, which is expressed in terms of the shift parameter δ [see

Eq. (2.16) and Fig. 2.1]. There are conventions for which the morphometrically allowed

coefficients are much larger than the morphometrically forbidden ones so that within these

conventions morphometric thermodynamics is a reliable approximation of the interfacial

tension. However, the opposite situation can occur for other interface conventions, in

which case morphometric thermodynamics has to be used with caution. In particular

the reliability of morphometric thermodynamics as an approximation deteriorates in the

presence of excess contributions to the hard wall potential (Fig. 2.9). The ratio of the

leading coefficients for the spherical wall, γs1(δ), and for the cylindrical wall, γc1(δ), has

been found to take the well-known value γs1(δ)/γc1(δ) = 2. Interestingly, in the limit of

small number densities and excess external potentials, also the ratio of the corresponding

next-to-leading coefficients has rendered the value γs2(0)/γc2(0) = 8/3 independent of the

particle-particle interaction. This relation, which would not be defined according to MT,

has been confirmed in Chap. 3 and in other studies. Based on these results, it turns out

to be necessary in future applications of morphometric thermodynamics to clearly state

which interface convention is chosen and why morphometric thermodynamics is expected

to be a reliable approximation for that particular interface convention as compared with

others.

In Chap. 3 the interface between a convex wall of planar, spherical, or cylindrical

shape and a Yukawa fluid has been under consideration. To that end the fluid has been

described within density functional theory by the functional in Eq. (3.9) which corresponds

to a modified version of the functional Eq. (2.7) used in the preceding Chap. 2. The

applied simplifications, which have led from the preceding model to the one in Chap. 3,

have facilitated to obtain analytic expressions for the interfacial tension [Eqs. (3.34) and

(3.35)] at a planar [γp, Eq. (3.47)], spherical [γs, Eq. (3.58)], and at a cylindrical [γc,

Eq. (3.78)] wall. That is, within the considered approach the entire dependence of the

interfacial tension on the wall radius R is known exactly and can be evaluated as a function

of further intrinsic parameters: the strength of the fluid-fluid interaction, the bulk number

density, the strength of the wall potential in excess to the hard interaction, and the range

of this excess wall potential, which may be chosen independently from the range of the

fluid-fluid interaction. In spite of the applied simplifications, the results of the model in

Chap. 3 agree well with the ones corresponding to the preceding model in Chap. 2 (see

Fig. 3.2). In contrast to the preceding approach, in Chap. 3 the coefficients of the curvature

expansions are available analytically for both cases, a spherical wall [with the expansion

in Eq. (3.65) and corresponding coefficients γs1 and γs2 in Eqs. (3.66) and (3.67)] and a

cylindrical wall [with the expansion in Eq. (3.88) and corresponding coefficients γc1 – γc3

in Eqs. (3.89) – (3.91)]. As compared to numerically determined curvature coefficients
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these exactly known coefficients are not subject to inaccuracies in fitting procedures.

Furthermore they allow one to scan the parameter space rapidly. The results in Chap. 3

could substantiate the findings of the preceding chapter. For instance, it has been possible

to actually prove, that for the model under consideration the approach of morphometric

thermodynamics is not complete. Therefore the morphometric approach has the status

of an approximation. The quality of MT as an approximation has been discussed within

the convention δ = 0. For the cylindrical geometry the arbitrary criterion for a good

approximation |γp|, |γc1| > |γc2|, |γc3|, . . . has been introduced in order to judge the values

of the coefficients relative to each other. With the aid of plots the dependence of the

coefficients on various system parameters has been examined. In most cases the criterion

has turned out to be not fulfilled mainly because |γc2| > |γc1|. This can be observed, e.g., in

Figs. 3.3 and 3.4, where the bulk parameters packing fraction and strength of the fluid-fluid

interaction potential are varied. An additional excess external potential, parameterized

by its strength and range in Figs. 3.5 and 3.6, further deteriorates the applicability of MT

because there the criterion is as well violated with respect to γc3. The results for the two

types of curved geometries reveal qualitative differences. In the case of cylindrical walls

the morphometric approach proposes to truncate the curvature expansion such that terms

of significant magnitude may be neglected. However, for spherical geometries the MT

expression equals the exact one up to exponentially small terms and, thus, it corresponds

to an approximation of comparatively high quality. The aforementioned relations between

curvature coefficients of different geometries [see Eqs. (3.92) and (3.95)] agree well with

those found in the literature and in Chap. 2.

In Chap. 4 an interface between a charged electrode and an electrolyte solution has

been examined. The structure of the accompanying electrical double layer (EDL) has

been assessed in terms of the Poisson-Boltzmann (PB) equation [Eq. (4.1)]. Electrodes

of planar (d = 0), cylindrical (d = 1), or spherical (d = 2) shape [Eq. (4.2)] have been

analyzed. The differential capacitance C [Eq. (4.5)] has been calculated for various ionic

strengths I, surface charge densities σ, and electrode radii R. The focus has been on

examining the dependence of the differential capacitance on the curvature 1/R of the

electrode as displayed in Figs. 4.3 and 4.4. In all cases the surface charge density has

a strong effect on the capacitance for small curvatures whereas for large curvatures the

behavior becomes independent of σ. These limits have been analyzed in detail. For

small curvatures (see Sec. 4.3.3) a curvature expansion of the capacitance [Eq. (4.14)]

has revealed the behavior in a very convenient way because the corresponding expansion

coefficients Cn depend on the single parameter t ∈ [−1, 1] [Eqs. (4.15) and (4.28)] and

on the geometry d ∈ {0, 1, 2} only. Therefore, within PB theory, the influence of any

conceivable combination of system parameters on the lowest order coefficients Cn can

be inferred from Fig. 4.5. For large curvatures (see Sec. 4.3.4) an analytic discussion

has provided the insight that the linearized PB theory becomes reliable, if the radius of
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the spherical wall is small enough; this explains the general behavior visible in Fig. 4.3.

In Chap. 4 the mesoscopic structure of electrolyte solutions at curved electrodes has

been discussed systematically in terms of the differential capacitance within PB theory.

Within the latter a system is specified by a relatively small amount of parameters and the

comparably simple description allows for detailed discussions. Therefore this approach is

well suited for providing the basic structure of results for the considered kind of systems,

i.e., electrolyte solutions at curved electrodes. That is, this approach offers to judge less

integral, microscopic approaches such as the one presented in Chap. 5.

In Chap. 5 the electric double layer of an electrolyte solution in contact with an

electrode of planar or spherical shape has been analyzed. The electrolyte solution has

been described in terms of density functional theory based on the functional given in

Eq. (5.3). This approach, which is a certain version of the so-called civ ilized model (CIV,

see Sec. 5.2.4), takes into account all particle species on equal footing. All particles are

modelled as hard spheres with non-vanishing volumes, embedded charges (in the cases of

the monovalent anions or cations) or point-dipoles (in the case of the solvent molecules),

and with an attractive interaction amongst all particles which enables one to discuss an

electrolyte solution in the liquid state under realistic ambient conditions. This microscopic

model is a possible extension of the mesoscopic Poisson-Boltzmann approach, which has

been used in Chap. 4 in order to discuss EDLs at curved electrodes. Close to the wall the

microscopic description gives rise to a layering behavior of the charge density and of the

polarization (see Figs. 5.2 – 5.4) whereas the PB approach renders monotonic profiles only.

As in Chap. 4 the structural features of the EDL enter into the differential capacitance

C [Eq. (5.32)] which facilitates the comparison of various models or the evaluation of

the influence of various system parameters such as particle radii, dipole moment of the

solvent molecules, ionic strength, surface charge density, and electrode radius. At the

planar wall and for equal radii of all particles, PB and CIV lead to similar values for the

capacitance (see Fig. 5.5). Since in comparison with CIV (see Sec. 5.2.4) PB neglects

many microscopic details, this finding is not obvious. Against this background, in its turn

it is remarkable, that in the case of spherical electrodes of finite radii R the agreement

between the predictions of the two models deteriorates (see Fig. 5.7), i.e., the relevance

of microscopic details, captured by the CIV model, depends on the geometry of the

electrode. The restricted primitive model (RPM), in which the particle species are not

treated on equal footing, clearly exhibits a different trend in comparison with the other

models (see Figs. 5.5 and 5.7). In the case of spherical electrodes the capacitance data

obtained within CIV for equal particle radii are qualitatively similar to the PB results

in Chap. 4 (compare Fig. 4.3 with Figs. 5.8 – 5.10). Nevertheless, there are quantitative

differences (see Fig. 5.7). Considering the dipoles explicitly has no large effect (compare

the two curves labelled with CIV in Figs. 5.5 and 5.7 or compare Fig. 5.8 with Fig. 5.10).

Qualitative and relatively large quantitative differences occur if the particle radii of ions
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and solvent molecules are unequal. This is the case for planar electrodes [see Fig. 5.6

where the PB result turns out to be close to the solid black curve (see Fig. 5.5)] as well

as spherical electrodes (compare Fig. 5.8 with Figs. 5.11 – 5.14). However, the differences

are borne out only for small and intermediate electrode curvatures 1/(κR). For large

curvatures the capacitance curves of all considered cases exhibit a common behavior and

converge to the limiting graph valid for small surface charge densities σ → 0, i.e., in

this limit the behavior becomes independent of σ (see Figs. 5.8 – 5.14). Moreover, this

behavior becomes also independent of the choice of the particle radii (see Fig. 5.15). For

1/(κR) ≫ 1 the simple linearized PB model appears to be an adequate approximation

of the relatively complex CIV. In summary it can be stated that the geometry of the

electrode determines the relevance of microscopic details. Apart from the limit of small

electrode radii, for which a general behavior is observed, PB provides acceptable estimates

in the case of equal particle sizes and large electrode radii.
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Zusammenfassung

Die vorliegende Dissertation wurde dem theoretischen Studium von Grenzflächen zwischen

gekrümmten festen Wänden und verschiedenen Arten von Fluiden gewidmet. Beson-

dere Aufmerksamkeit galt der Wandgeometrieabhängigkeit von Grenzflächengrößen. Die

im Zuge dieser Dissertation erlangten Erkenntnisse sind in den Kapiteln 2 – 5 enthal-

ten; zum Teil sind diese bereits unter den Referenzen [22, 72, 94] veröffentlicht wor-

den. Die vorliegende Doktorarbeit kann thematisch grob in zwei Teile unterteilt wer-

den. In den Kapiteln 2 und 3 wurden Grenzflächen in Kombination mit verschiede-

nen einfachen Fluiden betrachtet. Die Wandkrümmungsabhängigkeit der entsprechenden

Grenzflächenspannung γ wurde bestimmt und mit den Vorhersagen des Ansatzes der mor-

phometrischen Thermodynamik (siehe unten) verglichen. In den Kapiteln 4 und 5 wur-

den elektrische Doppelschichten an Grenzflächen zwischen gekrümmten Elektroden und

Elektrolytlösungen hinsichtlich der differentiellen Kapazität C diskutiert. Die Ergebnisse

verschiedener Modelle bezüglich der Elektrodengeometrieabhängigkeit der differentiellen

Kapazität wurden miteinander verglichen und die Einflüsse unterschiedlicher inhärenter

Parameter wurden bestimmt.

In Kapitel 2 wurde die Grenzfläche zwischen einer ebenen, kugel- oder zylinderförmigen

Wand und verschiedenen Modellfluiden kleiner Anzahldichten analysiert. Dichtefunktio-

naltheorie (DFT) in zweiter Virialnäherung [Gl. (2.7)] wurde verwendet um die Grenzflä-

chenspannung γ in Abhängigkeit des Radiuses R der kugel- oder zylinderförmigen Wand

zu bestimmen. Dieser Ansatz erzielt genaue Ergebnisse bei kleinen Anzahldichten, was

durch den Vergleich mit Computersimulationen bestätigt wurde (siehe Abb. 2.3). Aus

dem numerisch erlangten Zusammenhang zwischen γ und R wurden die Koeffizienten

kleinster Ordnung der Krümmungsentwicklung in Gl. (2.18) der Grenzflächenspannung γ

durch Kurvenanpassung gewonnen. Diese Ergebnisse wurden mit den aus der morphome-

trischen Thermodynamik (MT) abgeleiteten Ausdrücken [Gl. (2.3)] verglichen. Gemäß

der Vorhersage der MT ist die Wandkrümmungsabhängigkeit der Grenzflächenspannung

im Fall einer kugelförmigen (zylinderförmigen) Wand durch ein quadratisches (lineares)

Polynom in der Krümmung gegeben. Während der Diskussion wurde insbesondere auf

die Auswirkungen der Wahl der Grenzflächenposition geachtet, die der Definition der

Grenzflächenspannung zugrunde liegt [siehe Gl. (2.16) und Abb. 2.1]. Bei keinem der be-

trachteten Systeme ist der Ausdruck für die Grenzflächenspannung gemäß der morphome-
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trischen Thermodynamik exakt, ungeachtet dessen, ob die Teilchen miteinander durch

ein square-well oder square-shoulder Potential [Gl. (2.4)], ein Yukawa Potential [Gl. (2.5)]

oder ein Lennard-Jones Potential [Gl. (2.6)] wechselwirken. Generell scheint MT eine

bessere Approximation für kugelförmige als für zylinderförmige Wände zu sein. Wie in

den Abb. 2.5 – 2.8 gezeigt können die Koeffizienten γn(δ) der Krümmungsentwicklung in

Gl. (2.18) empfindlich von der gewählten Grenzflächenkonvention, die mithilfe des Ver-

schiebeparameters δ [siehe Gl. (2.16) und Abb. 2.1] wiedergegeben wird, abhängen. Es

gibt Konventionen, in denen die morphometrisch erlaubten Koeffizienten viel größer als die

morphometrisch verbotenen sind, so dass innerhalb dieser Konventionen die morphome-

trische Thermodynamik eine zuverlässige Approximation der Grenzflächenspannung dar-

stellt. In anderen Grenzflächenkonventionen kann sich jedoch auch die gegenteilige Si-

tuation einstellen, in welchem Fall die morphometrische Thermodynamik mit Vorsicht

eingesetzt werden sollte. Insbesondere verschlechtert sich die Zuverlässigkeit der mor-

phometrischen Thermodynamik als Approximation in Gegenwart von Zusatzbeiträgen

zum harten Wandpotential (Abb. 2.9). Für das Verhältnis der führenden Koeffizien-

ten der kugelförmigen Wand, γs1(δ), und der zylinderförmigen Wand, γc1(δ), wurde der

bekannte Wert γs1(δ)/γc1(δ) = 2 festgestellt. Interessanterweise hat sich im Limes kleiner

Anzahldichten und Zusatzbeiträge zum externen Potential auch für das Verhältnis der

entsprechenden Koeffizienten zweiter Ordnung der Wert γs2(0)/γc2(0) = 8/3 unabhängig

von der Teilchen-Teilchen Wechselwirkung ergeben. Dieser Zusammenhang, der gemäß

MT nicht definiert wäre, wurde in Kapitel 3 und in anderen Studien bestätigt. Auf-

grund dieser Ergebnisse stellt es sich für zukünftige Anwendungen von morphometrischer

Thermodynamik als notwendig heraus, klar darzulegen, welche Grenzflächenkonvention

gewählt wird und warum erwartet wird, dass durch die morphometrische Thermodynamik

in dieser Grenzflächenkonvention eine vergleichsweise zuverlässige Approximation gegeben

ist.

In Kapitel 3 wurde die Grenzfläche zwischen einer konvexen Wand von ebener, kugel-

oder zylinderförmiger Gestalt und einem Yukawafluid betrachtet. Zu diesem Zweck wurde

das Fluid mittels Dichtefunktionaltheorie durch das Funktional in Gl. (3.9) beschrieben,

welches einer modifizierten Version des im vorangehenden Kapitel 2 verwendeten Funk-

tionals in Gl. (2.7) entspricht. Die angewendeten Vereinfachungen, die vom vorangehenden

Modell zu demjenigen in Kapitel 3 geführt haben, ermöglichten es analytische Ausdrücke

für die Grenzflächenspannung [Gln. (3.34) und (3.35)] an einer ebenen [γp, Gl. (3.47)],

kugelförmigen [γs, Gl. (3.58)] und an einer zylinderförmigen [γc, Gl. (3.78)] Wand zu

erhalten. Das heißt, innerhalb des betrachteten Ansatzes ist die gesamte Abhängigkeit

der Grenzflächenspannung vom Wandradius R bekannt und kann als Funktion weiterer

inhärenter Parameter ausgewertet werden: die Stärke der Fluid-Fluid Wechselwirkung,

die Anzahldichte im Bulk, die Stärke des Wandpotentials zusätzlich zur harten Wechsel-

wirkung und die Reichweite ebendieses Wandpotentials, die unabhängig von der Reichwei-
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te der Fluid-Fluid Wechselwirkung gewählt werden kann. Trotz der angewendeten Verein-

fachungen stimmen die Ergebnisse des Modells in Kapitel 3 gut mit denjenigen aus dem

vorangehenden Modell in Kapitel 2 überein (siehe Abb. 3.2). Im Gegensatz zum vorange-

henden Ansatz sind in Kapitel 3 die Koeffizienten der Krümmungsentwicklungen sowohl

für eine kugelförmige Wand [mit der Entwicklung in Gl. (3.65) und den entsprechenden

Koeffizienten γs1 und γs2 in Gln. (3.66) und (3.67)] als auch für eine zylinderförmige

Wand [mit der Entwicklung in Gl. (3.88) und den entsprechenden Koeffizienten γc1 –

γc3 in Gln. (3.89) – (3.91)] analytisch zugänglich. Verglichen mit numerisch bestimmten

Krümmungskoeffizienten unterliegen diese genau bekannten Koeffizienten keinerlei Unge-

nauigkeiten durch Kurvenanpassungen. Darüber hinaus ermöglichen sie den Parameter-

raum zügig abzutasten. Die Ergebnisse in Kapitel 3 konnten die Befunde des vorange-

henden Kapitels untermauern. Zum Beispiel war es möglich zu beweisen, dass der Ansatz

der morphometrischen Thermodynamik für das betrachtete Modell nicht vollständig ist.

Aus diesem Grund ist der morphometrische Ansatz als Approximation einzuordnen. Die

Qualität der MT als Approximation wurde bezüglich der Konvention δ = 0 erörtert. Um

die Beträge der Koeffizienten relativ zueinander zu beurteilen, wurde für die Zylindergeo-

metrie das willkürliche Kriterium für eine gute Approximation |γp|, |γc1| > |γc2|, |γc3|, . . .
eingeführt. Unter Zuhilfenahme von Plots wurde die Abhängigkeit der Koeffizienten von

verschiedenen Systemparametern untersucht. Hauptsächlich weil |γc2| > |γc1| stellte sich

das Kriterium in den meisten Fällen als nicht erfüllt heraus. Dies lässt sich z.B. in

Abb. 3.3 und 3.4 feststellen, in denen Bulkparameter, namentlich die Packungsdichte

und die Stärke des Fluid-Fluid Wechselwirkungspotentials, variiert werden. Durch ein

zusätzliches äußeres Potential, das in Abb. 3.5 und 3.6 durch seine Stärke und Reich-

weite parametrisiert wird, verschlechtert sich die Anwendbarkeit der MT weiter, weil

dann das Kriterium auch in Bezug auf γc3 verletzt wird. Die Ergebnisse für die zwei

Typen von gekrümmten Geometrien offenbaren qualitative Unterschiede. Im Fall zylin-

derförmiger Wände schlägt der morphometrische Ansatz vor, die Krümmungsentwicklung

so abzubrechen, dass dabei Terme signifikanter Größe vernachlässigt werden können. Bei

kugelförmigen Geometrien hingegen gleicht der MT Ausdruck dem exakten bis auf ex-

ponentiell kleine Terme und entspricht somit einer Approximation vergleichsweise hoher

Qualität. Die oben angesprochenen Verhältnisse zwischen Krümmungskoeffizienten ver-

schiedener Geometrien [siehe Gln. (3.92) und (3.95)] stimmen gut mit den entsprechenden

in der Literatur und in Kapitel 2 überein.

In Kapitel 4 wurde eine Grenzfläche zwischen einer geladenen Elektrode und einer

Elektrolytlösung untersucht. Die Struktur der damit einhergehenden elektrischen Dop-

pelschicht (EDL, englisch: electric double layer) wurde auf Basis der Poisson-Boltzmann

(PB) Gleichung [Gl. (4.1)] bestimmt. Elektroden ebener (d = 0), zylinderförmiger (d = 1)

oder kugelförmiger (d = 2) Gestalt [Gl. (4.2)] wurden analysiert. Die differentielle Ka-

pazität C [Gl. (4.5)] wurde für unterschiedliche Ionenstärken I, Oberflächenladungsdichten
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σ und Elektrodenradien R berechnet. Der Schwerpunkt lag auf der Untersuchung der

Abhängigkeit der differentiellen Kapazität von der Elektrodenkrümmung 1/R wie in

Abb. 4.3 und 4.4 dargestellt. In allen Fällen hat die Oberflächenladungsdichte einen

starken Effekt auf die Kapazität bei kleinen Krümmungen, während sich bei großen

Krümmungen ein von σ unabhängiges Verhalten zeigt. Diese Grenzfälle wurden ausführlich

untersucht. Für kleine Krümmungen (siehe Abschnitt 4.3.3) offenbarte eine Krümmungs-

entwicklung der Kapazität [Gl. (4.14)] das Verhalten auf praktische Weise, weil die ent-

sprechenden Entwicklungskoeffizienten Cn nur von dem einen Parameter t ∈ [−1, 1] [Gln.

(4.15) und (4.28)] und von der Geometrie d ∈ {0, 1, 2} abhängen. Daher kann aus Abb. 4.5

auf den Einfluss jeder denkbaren Kombination von Systemparametern innerhalb der PB

Theorie auf die Koeffizienten Cn niedrigster Ordnung geschlossen werden. Für große

Krümmungen (siehe Abschnitt 4.3.4) führte eine analytische Diskussion zu der Erkennt-

nis, dass die linearisierte PB Theorie zuverlässig wird, sofern der Radius der kugelförmigen

Wand klein genug ist; dies erklärt das in Abb. 4.3 erkennbare generelle Verhalten. In Kapi-

tel 4 wurde die mesoskopische Struktur von Elektrolytlösungen an gekrümmten Elek-

troden im Bezug auf die differentielle Kapazität im Rahmen der PB Theorie systema-

tisch erörtert. Innerhalb letzterer wird ein System durch eine relativ kleine Anzahl an

Parametern festgelegt und die vergleichsweise einfache Beschreibung ermöglicht detail-

lierte Diskussionen. Aus diesen Gründen eignet sich dieser Zugang gut um die Grund-

struktur der Ergebnisse bezüglich der betrachteten Systeme, d.h. Elektrolytlösungen an

gekrümmten Elektroden, bereitzustellen. Das heißt, dieser Ansatz ermöglicht es, weniger

zugängliche, mikroskopische Ansätze einzuschätzen, wie z.B. denjenigen in Kapitel 5.

In Kapitel 5 wurde die elektrische Doppelschicht einer Elektrolytlösung in Kontakt

mit einer Elektrode ebener oder kugelförmiger Gestalt analysiert. Die Elektrolytlösung

wurde mittels Dichtefunktionaltheorie auf Basis des Funktionals in Gl. (5.3) beschrieben.

Dieser Ansatz, eine Art des so genannten civ ilized model (CIV, siehe Abschnitt 5.2.4),

berücksichtigt alle Teilchensorten auf gleiche Weise. Alle Teilchen werden als harte Kugeln

modelliert mit nicht-verschwindenden Volumina, eingebetteten Ladungen (in den Fällen

der monovalenten Anionen oder Kationen) oder Punkt-Dipolen (im Fall der Lösungsmit-

telmoleküle) und mit einer attraktiven Wechselwirkung zwischen allen Teilchen, die es

ermöglicht, eine Elektrolytlösung im flüssigen Zustand unter realistischen Umgebungsbe-

dingungen zu betrachten. Dieses mikroskopische Modell ist eine denkbare Erweiterung des

mesoskopischen Poisson-Boltzmann Ansatzes, der in Kapitel 4 verwendet wurde um EDLs

an gekrümmten Elektroden zu diskutieren. Durch die mikroskopische Beschreibung wird

nahe der Wand Schichtbildung im Profil der Ladungsdichte und der Polarisation sichtbar

(siehe Abb. 5.2 – 5.4) während der PB Ansatz lediglich monotone Profile wiedergibt. Wie

in Kapitel 4 gehen die strukturellen Besonderheiten der EDL in die differentielle Kapazität

C [Gl. (5.32)] ein, was den Vergleich verschiedener Modelle miteinander vereinfacht bzw.

es ermöglicht, den Einfluss unterschiedlicher Systemparameter wie Teilchenradien, Dipol-
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moment der Lösungsmittelmoleküle, Ionenstärke, Oberflächenladungsdichte und Elektro-

denradius zu ermitteln. An der ebenen Wand und bei gleichen Teilchenradien führen PB

und CIV auf ähnliche Werte für die Kapazität (siehe Abb. 5.5). Da PB, verglichen mit

CIV (siehe Abschnitt 5.2.4), viele mikroskopische Details vernachlässigt, ist dieser Befund

nicht selbstverständlich. Vor diesem Hintergrund ist es wiederum bemerkenswert, dass

sich im Falle kugelförmiger Elektroden endlicher Radien R die Übereinstimmung zwischen

den Vorhersagen der beiden Modelle verschlechtert (siehe Abb. 5.7), d.h. die Relevanz

mikroskopischer Details, erfasst im CIV Modell, hängt von der Elektrodengeometrie ab.

Das restricted primitive model (RPM), in welchem die Teilchensorten nicht alle auf die

gleiche Weise berücksichtigt werden, weist im Vergleich mit den anderen Modellen klar

einen abweichenden Verlauf auf (siehe Abb. 5.5 und 5.7). Im Falle kugelförmiger Elektro-

den sind die Kapazitätsdaten, die innerhalb CIV mit gleichen Teilchenradien berechnet

wurden, qualitativ ähnlich zu den PB Resultaten in Kapitel 4 (vergleiche Abb. 4.3 mit

Abb. 5.8 – 5.10). Dennoch sind quantitative Unterschiede vorhanden (siehe Abb. 5.7). Die

explizite Betrachtung der Dipole hat keinen großen Effekt zur Folge (vergleiche die zwei

mit CIV bezeichneten Kurven in Abb. 5.5 und 5.7 oder vergleiche Abb. 5.8 mit Abb. 5.10).

Qualitative und relativ große quantitative Unterschiede tauchen auf, wenn die Teilchen-

radien der Ionen und Lösungsmittelmoleküle ungleich sind. Dies ist der Fall sowohl für

ebene Elektroden [siehe Abb. 5.6, in welcher das PB Ergebnis nahe der durchgezogenen

schwarzen Kurve wäre (siehe Abb. 5.5)] als auch für kugelförmige Elektroden (verglei-

che Abb. 5.8 mit Abb. 5.11 – 5.14). Jedoch sind die Differenzen nur bei kleinen und

mittleren Elektrodenkrümmungen 1/(κR) ausgeprägt. Bei großen Krümmungen weisen

die Kapazitätskurven aller betrachteter Fälle ein gemeinsames Verhalten auf und kon-

vergieren gegen die Kurve, die dem Grenzfall kleiner Oberflächenladungsdichten σ → 0

entspricht, d.h., in diesem Limes wird das Verhalten unabhängig von σ (siehe Abb. 5.8 –

5.14). Darüber hinaus wird das Verhalten auch unabhängig von der Wahl der Teilchenra-

dien (siehe Abb. 5.15). Für 1/(κR) ≫ 1 scheint das einfache linearisierte PB Modell

eine angemessene Approximation für das relativ komplexe CIV zu sein. Zusammen-

fassend kann festgestellt werden, dass die Elektrodengeometrie die Relevanz mikrosko-

pischer Details festlegt. Abgesehen vom Limes kleiner Elektrodenradien, in welchem ein

generelles Verhalten beobachtet wird, bietet PB akzeptable Abschätzungen im Fall glei-

cher Teilchengrößen und großer Elektrodenradien.
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[70] A. Härtel, S. Samin, and R. van Roij, J. Phys.: Condens. Matter 28, 244007 (2016).

[71] V. Warshavsky and M. Marucho, Phys. Rev. E 93, 042607 (2016).

[72] A. Reindl, M. Bier, and S. Dietrich, J. Chem. Phys. 146, 154704 (2017).

[73] A. A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007).

[74] M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 2978 (2014).

[75] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102

(2011).

[76] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 109, 149903

(2012).

[77] C. Merlet, B. Rotenberg, P. A. Madden, and M. Salanne, Phys. Chem. Chem. Phys.

15, 15781 (2013).

[78] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer,
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Isabel, für Eure Unterstützung und Eure Begleitung auf meinem bisherigen Lebensweg.

167


