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Abstract

This study deals with the application of Iranian zeolite as a low cost adsorbent for the removal of the

Direct blue 71 (DB 71) from colored solution. Important parameters including equilibrium and

contact time, initial dye concentration, effect of pH, and zeolite dosage were evaluated. Maximum

dye removal was obtained at about 99.8% for 25 mg/L at 120 min of equilibrium. Higher adsorption

efficiency of direct dye was obtained at higher dose and acidic pH. To analyze the adsorption

equilibrium and kinetic, Langmuir, Freundlich, and Temkin isotherms as well as four kinetic models

encompassing pseudo first-order, pseudo second-order, intraparticle diffusion, and Elovich were

evaluated. The Langmuir isotherm (R2
¼ 0.995) and pseudo second-order models, gave the best fit

to equilibrium experimental data. In Langmuir analysis, the maximum adsorption capacity (qm) by

13.66 mg/g was determined. Finally, the characteristics of zeolite including both natural and modified,

such as compositions, surface morphology by X-ray diffraction technique (XRD), X-ray fluorescence

(XRF), and scanning electron microscopy (SEM) were obtained. According to XRF analysis, it was
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demonstrated that Al2O3 and SiO2 are the most part of natural and modified zeolite. Furthermore,

the clinoptilolite was determined as the significant crystalloid phase by XRD pattern.

Keywords

Direct dye adsorption, equilibrium and kinetics, Direct blue 71, N-cetyl pyridinium bromide

(CPB), zeolite

Introduction

Nowadays, the textile industry plays a key role in the economy of countries around the world
(Amin, 2009). Among the textile operation, dyeing is a fundamental process which produces
large volume of colored wastewater that can affect environmental ecosystems, especially
aqueous ambient. Direct blue 71 is an azo dye group with three azo bonds. The potential
toxicity and carcinogenicity of azo dyes has been reported (El-Bahy et al., 2009). In addition
to aesthetically displeasing, some dyes (as azo group dye) are toxic to some microorganisms
and may cause direct destruction or inhibition of their catalytic activities (Armagan et al.,
2004). According to reports, Direct dyes constitute about 17% of all dyes employed for
dyeing textiles and about 30% of dyes used for dyeing cellulose fiber (Sax, 1981).
Therefore, this products need to be treated before delivery. The conventional methods for
the decolorization of dyes from aqueous solutions are oxidation, precipitation, ion exchange,
bio-sorption, electrochemical treatment, and adsorption (Bulut et al., 2007; Shirmardi et al.,
2013). The use of each method depends on the economical, technical requirements, and
wastewater characteristics. As a result of the adsorption advantage, (i) it is considered to
be relatively superior to other techniques due to its low cost, (ii) simplicity of design, (iii)
viability, and (iv) ability to treat dyes in more concentrated form (Arami et al., 2006; Hossini
et al., 2015; Malakootian et al., 2011). On the contrary, adsorption has been found to be
superior to other techniques for water re-use in terms of initial cost and insensitivity to toxic
substances (Meshko et al., 2001). Zeolites material including synthetic and natural forms have
become increasingly important due to the wide range of their chemical and physical
characteristics, and have been applied as adsorbents, ion exchangers, membranes,
molecular sieves, and catalysts in the past decades (Wang et al., 2006). In this study, the
potential of Iranian zeolite was tested as a low cost adsorbent. The aim of this study is to
estimate the ability of modified Iranian zeolite for the removal of Direct dyes. The optimum
parameters were determined to be used in column design and other applications.
Furthermore, the equilibrium and kinetic studies were carried out for this adsorbent.

Materials and methods

All chemical reagent and material were prepared in laboratory grade.

Adsorbent

The natural zeolite was prepared from Semnan mines, Iran. After derivation, the natural
zeolite was rinsed for 24 h and was dried at 200�C to remove the impurity, contaminant, and
moisture. Subsequently, zeolite was grinded and sorted by sieving in 50–70 meshes.
Thereafter, in order to produce a higher quality zeolite, it was placed in contact with 1M
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sodium chloride for 48 h and was shook at about 170 r/min. Saturation with sodium chloride
provides more uniformity of zeolite surface, and enhances the cation exchange capacity. The
saturated zeolite was washed with deionized water and was dried at 50�C. Finally, it was
treated with 2mmol/L of N-cetylpyridinium bromide (CPB) for 24 h and 170 r/min.
Thereafter, samples were rinsed and placed at 50�C.

Adsorbate

Direct blue 71 has three azo bonds, and it is in the group of azo dyes with a large molecular
weight (Molar mass 1029.87 g/mol). The molecular structure of Direct blue 71 is shown in
Figure 1. Molecular formula is C40H23N7Na4O13S4. The stock solution of Dye was prepared
by dissolving 200mg of Direct blue 71 in 1000mL deionized water. The other concentrations
were diluted with stock solution. To evaluate the effect of initial dye concentrations, four
values of 25, 50, 75, and 100mg/L were selected. Due to typical concentration in textile
wastewaters (about 50mg/L) (Saien and Soleymani, 2007), the range of 25–100mg/L was
considered. The pH was adjusted to the desired value with 1M NaOH and 1M HCl.

Analysis

Before the samples were analyzed, the filtration was employed to remove the solid material.
pHwasmeasured with a pHmeter (Metrohm). The decolorization rate of the Direct blue 71 in
the solution samples was analyzed by spectrophotometer (Perkin Elmer Lambda 25—uv/vis
spectrometer), at a wavelength of maximum absorbance of 585 nm, respectively. The XRD,
XRF, and SEM images were taken from both zeolite (natural and modified) by X’ Pert MPD
Philips Holland, PW 2404 Philips Holland and XL30 Philips Holland, respectively. The
experiments were carried out at room temperature of about 23�C� 1�C.

Kinetic and isotherm study

To analyze the adsorption equilibrium and kinetic, the most three common isotherms
(Langmuir, Freundlich, and Temkin) and four kinetic models (pseudo first, pseudo

Figure 1. Direct blue 71 structure.
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second-order, intraparticle diffusion, and Elovich) were evaluated. The linearized form of
equations was employed for determining the equilibrium, kinetic constants, and coefficients.

Results and discussion

Effect of contact time and initial concentrations

An investigation was conducted in order to study the effect of contact time at various initial
dye concentrations (25, 50, 75, and 100mg/L) on the rate of dye removal from solution.
It can be clearly seen from Figure 2 that the adsorption increases rapidly in the first 0 to
30min, and then gradually increases until it reaches the equilibrium in all dye concentrations
at 120min. The adsorption efficiency of modified zeolite were about 99.8, 85.6, 62.33, and
49% at 12min of equilibrium for 25, 50, 75, and 100mg/L dye concentrations, respectively.
Maximum dye adsorption was obtained for 25mg/L, and efficiency was reduced with
increase in initial dye concentrations. Thereafter, 50mg/L was chosen for other experiments.

Effect of initial pH and dosage

The pH is an important parameter in adsorption processes due to the following: it is a
controlling factor that strongly affects the sorption mechanism of surface complexation
and on the other hand, the pH of the system controls the adsorption capacity because of
its influence on the surface properties of the adsorbent (Ajouyed et al., 2010), and provides
the optimum condition for conversion of pollutant materials.

To determine the optimum pH, batch experiments were performed by taking in contact
100mg/L of Direct 71 solution with 5 g of modified zeolite (CPB) for 120min shaking time.
For this object, several values of pH were considered such as 3, 5, 7, and 9. The adsorbed
Direct 71 efficiency was calculated from the difference between initial C1 and final C2

Figure 2. Effect of contact time and initial concentrations on Direct 71 adsorption.
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concentrations of initial Direct 71 concentration in colored solution, before and after
shaking (equation (1)).

Adsorbed Dye% ¼
C1 � C2

C1
� 100 ð1Þ

As shown in Figure 3, the percentage of adsorption decreased, when the initial pH of
colored solution increased. This fact can occur due to characteristic changes of zeolite
surface. In lower pH, the zeolite surface is charged positively as a result of higher proton
ions and it can provide higher adsorption rates. On the other hand, due to negative charges,
the dye molecule in aqueous solution and the positive sites of the adsorbent, are favorable
for sorption of the dye (Xiong et al., 2010). Similarly, higher adsorption efficiency of direct
dye in acidic pH was reported by (Nemr et al., 2009) and (Xiong et al., 2010).

The effect of initial Zeolite dosage is shown in Figure 4. In order to find the proper dose,
five doses (2.5, 5, 7.5, 10, and 12.5 g) were tested. According to results, it can be seen that the
higher dye molecule was removed at higher dosage of modified zeolite. Nevertheless, with
regards to 5% Error bar, no significant efficiency percentage was observed for 5 g with upper
doses.

Isotherm studies

In general, isotherms have been applied to describe the equilibrium between liquid and solid
phases (Meshko et al., 2001). In other words, isotherm is the relationship between
the equilibrium amount of adsorbed (Direct Blue 71) on sorbent surface (modified zeolite
(CPB)) and residual concentration of adsorbed in solution. To analyze the
adsorption isotherm, three models were employed including the Langmuir, Freundlich,
and Temkin isotherms. The comprehensive detail of isotherm model has been reported by

Figure 3. Effect of initial pH on Direct 71 adsorption.
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Foo and Hameed (2010). The following relations can represent the linear forms of the
isotherm models (Hossini et al., 2014; Niri et al., 2015; Wang et al., 2010)

Langmuir equation
Ce

qe
¼

1

Kcqm
þ

Ce

qm
ð2Þ

Freundlich equation log qe ¼ logðKFÞ þ 1=n logðCeÞ ð3Þ

Temkin equation qe ¼ B1 ln kt þ B1 lnCe ð4Þ

As shown in Figure 5, the adsorption isotherm models comprising Langmuir
(Figure 5(a)), Freundlich (Figure 5(b)), and Temkin (Figure 5(c)) are shown for
experimental data. Regarding R2 value of models, better correlation between isotherms
and experimental data can be found. Nevertheless, the Langmuir with R2 0.995 indicates
the best fit with the adsorption experimental data. Furthermore, in Langmuir analysis, the
maximum adsorption capacity (qm) by 13.66mg/g was determined. As shown in Table 1,
there are more details of isotherms including the constants and adsorption values for Direct
blue 71 onto modified zeolite. A comparison of equilibrium constants of various dyes for
zeolite is shown in Table 2. With regard, the adsorption of DB71 by zeolite is best correlated
with the Langmuir and Freundlich isotherms. In addition, the maximum adsorption capacity
was observed for all of them. It is obvious that the maximum adsorption capacity is between
0.5 and over 85mg/g. However, a maximum adsorption capacity of 13.66mg/g for Direct
Blue 71 onto modified zeolite can be appropriate in the present work.

Kinetics studies

To investigate the capacity of mass transfer of dye molecules to zeolite sites, the
kinetic relations were employed. Other beneficial aspects of kinetic studies are as

Figure 4. Effect of modified zeolite (CPB) dosage on Direct 71 adsorption.
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follows: (i) to know more details about adsorption performance, facilities and apparatus,
and mechanisms, (ii) to be effective for the pilot application, (iii) to determine the solution
uptake rate (Qiu et al., 2009).

The four most popular kinetic models including pseudo first, pseudo second-order,
intraparticle diffusion, and Elovich were evaluated, to determine the better mass transfer
model. Hence, the linearized form of kinetic relations was employed. The linearized
equations can represent the following (Equation (5)–(8)) (Arab Markadeh et al., 2016;
Hossini et al., 2016; Moussavi et al., 2013)

Pseudo first-order equation log qe � qt
� �

¼ log qe
� �
�

k1
2:303

t ð5Þ

Figure 5. Langmuir (a), Freundlich (b), and Temkin (c) isotherms.

Table 1. Isotherm constants and correlation coefficients.

Isotherm kL kf kt qm(mg/g) B n r2

Langmuier 0.873 13.66 1.8459 0.995

Freundlich 5.221 3.547 0.879

Temkin 6.7061 3.91 0.947
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Pseudo second� order equation
t

qt
¼

1

h
þ

1

qe
t ð6Þ

Elovich equation qt ¼
1

�
1n �:�ð Þ þ

1

�
1n tð Þ ð7Þ

Intraparticle diffusion log qt ¼ log kid þ a logðtÞ ð8Þ

Figure 6 illustrates the complete pattern of pseudo first-order (Figure 6(a)), pseudo
second-order (Figure 6(b)) and Elovich (Figure 6(c)) as well as Intraparticle diffusion
(Figure 6(d)) kinetics for each dye concentration. The results of kinetic study with its
details are shown in Table 3. According to correlation coefficient values (R2), it can be
concluded that the pseudo-second-order model is more fitted with the experimental data.
Furthermore, as can be seen from Table 2, they are best correlated with the second-order
kinetic.

Figure 6. Pseudo first-order (a), pseudo second-order (b), Elovich (c), and intraparticle diffusion

(d) kinetics.
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XRD, XRF, and SEM analyses

In order to review the modified zeolite, the X-ray diffraction technique (XRD), X-ray
fluorescence (XRF), and scanning electron microscope (SEM) analysis were taken. As
shown in Figure 7, data points of experimental X-ray diffraction patterns were observed
for the natural and modified zeolite sample. According to XRD pattern (Figure 7(a)), it can

Table 3. Kinetic constants and correlation coefficients.

Kinetic

Direct

blue 71

(mg/L) K1 qe (mg/g) K2 Kid b a r2

P-first order 25 0.054581 1.2462 0.8303

50 0.019806 2.0941 0.7275

75 0.025563 4.7076 0.91

100 0.044218 59.5388 0.8938

P-second order 25 4.9554 0.4906 1

50 9.6993 0.1663 0.9999

75 11.6144 0.0384 0.9996

100 14.3885 0.025 0.9994

Intraparticle

diffusion

25 0. 0604 0.7862

50 0.1465 0.6993

75 0.301 0.8186

100 0.3686 0.8837

Elovich 25 3.8153 2.8973 0.915

50 0.7739 1.1765 0.8494

75 1.5384 1.2734 9312

100 0.6491 1.1141 0.9527

Figure 7. XRD image of zeolite (a) natural zeolite and (b) modified zeolite with PCB.
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be seen that the zeolite used in this study, was mainly composed of clinoptilolite (10–60�y)
and cristalloite. The lower part belongs to Quartz (20–22�y). Surfactant modification of this
natural zeolite is seen in 50–60�y on the structure (Figure 7(b)). In addition, more crystalline
peak (24–26, 30–32, and 34–36�y) were created during surface modification. Figure 8 shows
the structure and morphological characteristics of the zeolite, before and after modification
by SEM image. Proper structure of surface zeolite is represented. To identify the constituents
of zeolite, the XRF analysis was considered. As shown in Table 4, details of XRF analysis
are presented. According to zeolite constituents, Al2O3 and SiO2 are the integral part of
natural (raw) and modified zeolite. However, several elements such as P2O5, SO3, Sr, and Zr
were added when modification was carried out. The LOI is loss on ignition which shows the
volatile portion after the heating of zeolite, and is a common method for determining the

Table 4. XRF test for both natural and modified zeolite.

Composition Raw-zeolite (%) M-zeolite (%)

Al2O3 10.49 10.475

SiO2 69.33 69.32

Fe2O3 0.68 0.0662

TiO2 0.2 0.191

CaO 1.3 1.289

K2O 4.05 4.028

Mg O 0.42 0.41

P2O5 — 0.02

SO3 — 0.045

Sr — 0.028

Zr — 0.017

Na2O 2.25 2.244

LOI 11.28 11.27

Figure 8. SEM image of zeolite (a) natural zeolite and (b) modified zeolite with PCB.
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organic and carbonate content of samples (Heiri et al., 2001). The loss of ignition percentage
of about �11.3% was determined for both types.

Conclusion

This work identified modified zeolite as a suitable adsorbent for decolorization of Direct dye
with large molecule weight from aqueous solution. Based on results, the following conclusion
can be suggested. The adsorptions were rapid during the first 30min, and reached equilibrium
in 120 min. The adsorption efficiency of modified zeolite was about 99.8, 85.6, 62.33 and 49%
at 12min of equilibrium for 25, 50, 75, and 100mg/L dye concentrations, respectively. Higher
adsorption efficiency of direct dye was obtained at higher dose and acidic pH. The Langmuir
isotherm (R2 0.995) and pseudo second-order models gave the best fit to equilibrium
experimental data. In addition, according to XRD pattern, it can be inferred that the
clinoptilolite is the most important ingredient of crystalloid phase.
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Appendix

Notation

b1 constant related to the heat of adsorption
C1 initial dye concentration (mg/L)
C2 final dye concentration (mg/L)
h equal to k2.qe

2 (mg/g . L/min)
kf Freundlich adsorbent capacity, (mg/g (L/mg)1/n)
kid intraparticle diffusion constant (mg/g�min)
kL Langmuir constant (L/mg)
kt equilibrium binding constant (L/mg)
k1 pseudo-first order rate constant (L/min)
k2 pseudo-second order rate constant (mg/g.min)
m the dose of modified Zeolite (g/L)
n Freundlich constant
q the capacity of adsorption (mg/g)
qe adsorption capacity at equilibrium conditions (mg/g)
qm maximum adsorption capacity (mg/g)
qt adsorption capacity at time t (mg/g)
t time (min)
v volume of dye solution (L)
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