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ABSTRACT 

 

COMPUTATIONAL FLUID DYNAMICS STUDY OF AIRFLOW AND 

PARTICLE DEPOSITION IN DISEASED NASAL AIRWAY 

 

Understanding the properties of airflow in the nasal cavity is very important in 

determining the nasal physiology and in diagnosis of various anomalies associated 

with the nose. The complex anatomy of the nasal cavity has proven to be a significant 

obstacle in the understanding of nasal obstructive disorders. Due to their non-

invasiveness, Computational Fluid Dynamics (CFD) has now been utilized to assess 

the effects of surgical interventions on nasal morphological changes as well as local 

breathing airflow characteristics through the upper airway of individual patients. 

Furthermore, nasal inhalation is a major route of entry into body for airborne pollutions. 

Therefore, the function of the upper airway to filter out the inhaled toxic particles is 

considered important. The determination of the total particle filtering efficiency and 

the precise location of the induced lesion in the upper airway is the first step in 

understanding the critical factors involved in the pathogenesis of the upper airway 

injury. The present work involved development of three-dimensional diseased upper 

airway models from Computed Tomographic (CT) scan images derived from a nasal 

airway without any nasal diseased and an upper airway which was diagnosed with 

chronic nasal obstruction and obstructive sleep apnea. Numerical simulation of airflow 

and transport and deposition of inhaled pollutant through chronic diseased nasal 

airway, constricted pharyngeal representing Obstructive Sleep Apnea (OSA) and 

diseased upper airway with OSA for pre- and post-operative cases have been studied. 

Detailed flow pattern and characteristics for inspiratory airflow for various breathing 

rates (7.5-40 L/min) were evaluated. Simulation of the particle transport and 
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deposition of micro-sized particles with particle diameter ranging from 1-40 µm were 

also investigated. In the first part of this study, the surgical treatment performed in the 

nasal cavity which include septoplasty, inferior turbinate reduction and partial concha 

bullosa resection substantially increased nasal volume, which influenced flow 

partitioning and decreases the pressure drop and flow resistance of the nasal passage. 

The removal of the obstruction in the nasal airway significantly improve the breathing 

quality. However, the nasal airway experienced approximately about a 50 % decrease 

in total particle filtering efficiency after surgery. Therefore, careful consideration 

should be given to this matter before nasal operation especially for a patient with 

breathing allergic history. In the second part of this study, the morphology of the 

constricted pharyngeal representing OSA was found to significantly affect the airflow 

pattern and the deposition fraction of microparticles. The morphology of the upper 

airway, the size of the inhaled particle and breathing rate was found significantly affect 

the total particle deposition efficiency and local deposition fraction in the upper airway. 

The presented regional deposition fraction may be used in specifying the site of highest 

possibility for respiratory lesions according to the breathing rate and the size of the 

inhaled toxic particles. Results obtained from this study can be also used to estimate 

the location of airway obstruction in upper airway of patient with sleep apnea symptom. 

In the third part of this study, the surgical conducted procedure has cleared out the 

obstructions in the nasal airway hence improve the airflow distribution through the 

upper airway during inhalation process. This study shows that the nasal surgery alone 

can help improve the breathing quality in the upper airway with OSA. The reduction 

of the airflow resistance in the nasal cavity affect the pressure distribution in the lower 

part of the upper airway. Obstruction in the nasal passage and sudden airway expansion 

in the upper airway increased number of particles trap, recirculated and finally 
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deposited in the airway. Finally, the experimental data obtained from the experimental 

study utilizing the developed pharyngeal airway further validate the result obtained 

from the numerical study. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

Upper airway which consisted of nasal cavity and pharynx is one of the most 

important components of human respiratory system. It provides the first line protection 

for lung by warming and humidifying the inspired air. Upper airway plays an important 

role to filter out the inhaled air from airborne contaminated particles, bacteria and 

pathogen. However, the success of upper airway physiological function is highly 

dependent on the fluid dynamics characteristic of airflow through the airway passage. 

Hence, better understanding of airflow characteristic and transport and deposition of 

inhaled particle through the upper airway is essential to understand the physiology of 

upper airway breathing pattern. 

 

 During inhalation, upper airway also plays an important role to filter out the 

inhaled toxic and contaminated particles from the polluted atmospheric air. Both the 

fine and coarse particles which enter the breathing airway during inhalation, not only 

can induce  irritation, moreover, with extensive exposure and high concentration of 

inhaled airborne toxic and infectious particle, the airway is susceptible to chronic 

injury and could further aggravate upper airway disorder (Harkema et al., 2006). 

Harkema et al., (2006) and Grotberg (2001) also reported that the determination of the 

precise location of the induced lesion in the upper airway is the first step in 

understanding the critical factors involved in the pathogenesis of the upper airway 
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injury. As we already know that the toxic and contaminated particles could harm and 

affect the health of the human population. Hence it is important to investigate and 

improve understanding of the airflow distribution and particle transport and deposition 

in the human nasal airway. The location of the particle deposition in an airway is 

important information for correlating inhaled toxins or carcinogens to disease locations 

and for developing potential therapies.  

 

Airflow through human upper airway has been studied numerically and 

experimentally by a number researchers (Garcia et al., 2007; Kim & Chung, 2004; 

Mylavarapu et al., 2009; Segal et al., 2008; Weinhold & Mlynski, 2004; Wen et al., 

2008; Xiong et al., 2008). Furthermore, several researchers have undertaken studies 

pertaining to airflow through nasal cavity using measuring devices such as 

rhinomanometry and acoustic rhinometry (Hilberg et al., 1989; Jones & Lancer, 1987; 

Shelton & Eiser, 1992; Sipila & Suonpaa, 1997; Suzina et al., 2003).  

 

Rhinomanometry is used to measure the pressure required to produce airflow 

through the nasal airway and acoustic rhinometry is used to measure the cross-

sectional area of the airway at various nasal planes. However, measuring the precise 

velocity of airflow and evaluating the local nasal resistance in every portion of the 

nasal cavity have proven to be difficult (Ishikawa et al., 2009). The anatomical 

complexity of the nasal cavity makes it difficult for the measurement of nasal 

resistance. The small sizes of the nasal cavity and its narrow flow passage can cause 

perturbations in the airflow with any inserted probe. Moreover, the reliability of the 

result obtained using this device depends on optimal cooperation from the subject, 

correct instructions from the investigator, and standardized techniques (Kjaergaard et 
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al., 2009). There are reports of failure rates of between 25 % and 50 % in the subjects 

examined by rhinomanometry (Austin & Foreman, 1994). Furthermore, direct 

measurement of the total particle deposition efficiency and local deposition fraction of 

inhaled contaminated particle in the human upper airway are highly impossible. 

 

Due to the inherent limitations of the available measuring devices, 

Computational Fluid Dynamics (CFD) has been proposed as a viable alternative. CFD 

which refers to use of numerical methods to solve the partial differential equation 

governing the flow of a fluid, is becoming an increasingly popular research tool in 

fluid dynamics (Basri et al., 2016). The non-invasive CFD modelling allows 

investigation of a wide variety of flow situations and particle deposition through 

human upper airway. Several researchers have conducted studies on the airflow and 

particle transport and deposition through the human upper airway by using the CFD 

simulation technique (Abouali et al., 2012; Bahmanzadeh et al., 2015; Dastan et al., 

2014; Ghalati et al., 2012; Riazuddin et al., 2011). 

 

In the present study, initially the effect of nasal obstruction which include 

septum deviation, turbinate hypertrophy and concha bullosa were investigated. A 

comparative study was made between the pre- and post-operative model. The effect of 

nasal surgery on inhaled particle filtering function was also investigated. In order to 

improve the understanding of the pathophysiology of the Obstructive Sleep Apnea 

(OSA) disease, numerical simulation of inspiratory airflow through a constricted 

pharyngeal section representing OSA symptom was conducted. Studies were carried 

out for various flow rates of 7.5 L/min, 10 L/min, 20 L/min, 30 L/min and 40 L/min 

suggesting various breathing rates. Lagrangian particle tracking approach was used to 
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investigate the effect of the constricted pharyngeal section on the deposition rate and 

deposition patterns of microparticles. Microparticles in the size range of 1-40 µm were 

injected at the nostril inlet and the particle trajectories and regional deposition fractions 

of the particles were analyzed.  

 

In order to investigate the effect of chronic nasal obstruction on the upper 

airway diagnosed with OSA disease, numerical simulation of airflow and aerosol 

deposition in a realistic human upper airway with chronic nasal airway and obstructive 

sleep apnea symptom for pre- and post-surgery were performed. Different inhalation 

rates of steady laminar airflows suggesting low breathing activity were simulated 

numerically through the upper airway models. The airflow characteristics and 

breathing resistance were analyzed. Lagrangian trajectory analysis approach was used 

to examine the transport and deposition of the inhaled microparticles through the upper 

airways before and after surgery. The focus of the final part of this study is to develop 

an experimental setup and perform experimental work on a pharyngeal airway model 

to compare and validate the results obtained from numerical study with that of 

experiment. 

 

1.2 Problem Statement 

Although treatment methods in upper airway surgery have constantly improved 

over time, due to the narrow and complicated structure of the human nasal airway and 

anatomical differences between each individual, the prediction of a successful 

individual therapy remains a challenging task. Hence, further studies are needed to 

improve the diagnosis method and the quality of the future upper airway surgical 

treatment. The highly detailed anatomy of the pre- and post-operative morphological 
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upper airway model and information derived from CFD analysis would be able to 

provide relevant information prior to a surgical intervention and medical treatment. 

The analyzed data of detailed aerodynamic behavior of the upper airways can be made 

available to the ENT surgeons so that it can be used to assist them in identifying 

possible sites of obstruction and direct toward the anatomic site of obstruction for 

surgical intervention. The location of the particle deposition in an airway can provide 

important information for correlating inhaled toxins or carcinogens to disease locations 

and for developing potential therapies. The main outcome will lead to the improvement 

of the diagnostics methodologies or even improved treatment strategies and outcome.   

 

1.3 Research Objectives 

 The overall objective of the present study is focused on the investigation of the 

airflow characteristics and inhaled particle deposition in the diseased human upper 

airway. The main aims include:  

 

i. To develop a three-dimensional computational model of human nasal airway 

for pre- and post-operative nasal computational models. 

ii. To perform CFD analysis on both the pre- and post-operative diseased nasal 

airway. 

iii. To analyze the impact of abnormal nasal passage on airflow characteristics 

and aerosol deposition. 

iv. To investigate the effect of deformation of the pharyngeal section on the 

airflow and particle deposition in the human upper airway. 
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v. To develop experimental setup and perform experimental study to validate 

the results obtained from the numerical study. 

1.4 Scope of Work 

This research work was first carried out by procuring Computed Tomography 

(CT) scan images of the normal and diseased human upper airway. For the normal 

nasal airway, the CT scan data was provided by a radiologist from the Advanced 

Medical and Dental Institute, Universiti Sains Malaysia. For the diseased upper airway, 

the CT scan data was provided by a Head and Neck Surgeon from Hospital Serdang, 

Malaysia. A research proposal was prepared and submitted to the committee of the 

Clinical Research Centre and the Medical Research and Ethics Committee, Ministry 

of Health Malaysia to obtained research approval. The ethical approval letter issued 

by the committees are as presented in Appendix I and II in this thesis.  

 

A normal nasal cavity of 39-year-old Malaysian female was selected for the 

normal nasal cavity model whereas a 38-year-old Malaysian male diagnosed with 

chronic nasal obstruction and prevalence of OSA were selected for this diseased upper 

airway study. The selected CT scan data were imported into an image processing 

software, Mimics in order to process the scan images and to generate a realistic three-

dimensional computational aided design CAD model of the upper airways. This was 

then followed by construction of three-dimensional surface geometry by using a 

Computer Aid Design (CAD) software CATIA.  
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The 3D surface geometries were imported into GAMBIT, ANSYS ICEM CFD 

and ANSYS FLUENT Meshing for unstructured and hybrid mesh generation. 

Numerical simulation of airflow and particle transport and deposition were further 

carried out by using the available CFD commercial software, ANSYS FLUENT. 

Numerical inspiratory airflow was simulated for various breathing rates which 

includes 4, 7.5, 10, 20, 30 and 40 L/min. Particles were injected into the upper airway 

from the nostril inlet to investigate the transport and deposition in the upper airway. 

The size of the injected particle includes 1, 5, 10, 20 and 40 µm. Experimental test rig 

was developed, pharynx experimental model was fabricated, and experimental 

investigation was conducted to compare and validate the results obtained from the 

numerical study with that of the experimental results. 

 

1.5 Organization of the Thesis 

This thesis includes 9 chapters. The first chapter provides an introduction that 

review relevant research objectives, and related outlines of the purposes of this study. 

Chapter 2 presents an in-depth review of the background for the research. The chapter 

begins with an introduction to the anatomy and physiological function of the human 

upper airway and is followed by a review of previous studies related to the research. 

Chapter 3 presents the method used to construct and develop the three-dimensional 

realistic diseased human upper airway from the CT scan data. Chapter 4 presents the 

numerical method used to perform CFD simulation of airflow and particle transport 

and deposition in the upper airway computational model. Chapter 5 presents the 

numerical investigation on airflow characteristics and particle deposition in diseased 

nasal cavity having turbinate hypertrophy, concha bullosa, and septum deviation. A 

comparative study was made between pre- and post-operative model. Chapter 6 
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presents the computational fluid dynamics study of airflow and micro-particle 

deposition in a constricted pharyngeal section representing obstructive sleep apnea 

disease. Chapter 7 presents numerical simulation of airflow and aerosol deposition in 

realistic human upper airway with obstructive sleep apnea and chronic nasal 

obstruction for pre- and post-surgery. Chapter 8 presents the method used to develop 

the pharynx experimental model and the experiment test rig for both pre and post-

operative cases. The main aim of this study was to analyze and validate the solutions 

obtained from numerical study. Finally, Chapter 9 presents the summary of the majors 

research findings derived from the research studied. Suggestions for future works are 

also presented in this chapter. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Overview 

The following chapter discusses the anatomy and physiology function of the 

human upper airway. The conventional method used to evaluate the diseased human 

upper airway has been highlighted. A brief summary of the computational fluid 

dynamics study of airflow and particle transport and deposition through the human 

upper airway carried out by other researchers has been presented.  

 

2.2 Anatomy and Physiology of the Human Upper Airway 

The anatomy of the human upper airway and its physiological function are 

presented in the following section. 

 

2.2.1 Upper Airway Anatomy 

Upper airway which consisted of the nasal cavity and pharynx is one of the 

most important components of the human respiratory system. The complex shape of 

the human upper airway provides the first line protection for lung by filtering, warming, 

and humidifying the inspired air. The nose is the only external part of the upper airway 

respiratory system. It is made of bone and cartilage and fibro fatty tissues. The two 

openings in the nose called nostrils, allow air to enter or leave the body during 

breathing. 
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The nasal cavity is divided into right and left cavities by a thin plate of bone 

and cartilage called the nasal septum. Septal cartilage not only forms a partition 

between the right and left nasal cavities but also provides support to the tip and dorsum 

of cartilaginous part of nose. The nasal cavity lies above the hard plate. The hard 

portion of the palate forms the floor of the nasal cavity, separating it from the oral 

cavity below. The nose can be divided axially into four regions the vestibule, the nasal 

valve, the turbinate and the nasopharynx regions. The vestibule is a pear-shaped cavity 

which located at the most anterior part of the nose. The nasal valve area is the 

narrowest portion of the nasal passage. The nasal valve structure regulates the 

breathing airflow in the nasal passage.  

 

The nasal conchas or turbinates are important structures located laterally in the 

nasal cavity. There are three turbinates available on each side of the nose, namely, 

inferior, middle and superior. The inferior turbinate is the largest while the superior 

turbinate is the smallest in structure. The spiral or curved nature of the turbinates 

increases the surface area and contact with inspired air. As the turbinates compose 

most of the mucosal tissue of the nose, it can help warm, humidify and filter air inhaled 

through the nasal cavity.  Pharynx is the medical name for the throat. Nasopharynx is 

located at the upper part of the throat behind the nose to the upper surface of the soft 

palate. The soft palate separates the nasopharynx from the oropharynx which located 

just below the soft palate. The epiglottis is a flexible flap located at the base on tongue. 

The vocal cord is located within the larynx section and the larynx in connected to 

trachea. 
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2.2.2 Upper Airway Physiology 

The human nose has two primary functions. The first is olfaction, the sense of 

smell. The second function is air-conditioning. Inspired air is conditioned by a 

combination of heating, humidification and filtering to provide the first line protection 

for the lung (Elad et al., 2008).   The nasal conchae help to slow down the passage air, 

causing it to swirl in the nasal cavity. The nose acts as the organ of olfaction and has 

a specially adapted mucosal lining along its roof for this purpose. In order to stimulate 

the olfactory system, the sense of smell, the odorant particles must interact with 

olfactory receptors located in the olfactory mucosa. Odorants must therefore be 

capable of being delivered to the olfactory region by inspired air and be able to dissolve 

sufficiently in the mucus covering the olfactory mucosa (Ishikawa et al., 2009).   

 

The nasal cavity is lined by mucous membrane containing microscopic hair 

like structures called cilia. The cells of the membrane produce mucus, a thick gooey 

liquid. The mucus moistens the air and traps any bacteria or particles of air pollution. 

Microscopic finger-like projections on the surface of the mucosal cells lining the nasal 

cavity called cilia. The cilia wave back and forth in rhythmic movement. Cilia will 

slowly propel the mucus backwards into the pharynx where it is swallowed. In subjects 

with breathing allergy syndrome, the pharynx is often a reaction site to allergens, with 

common symptoms including burning and itching. The main function epiglottis is to 

protect the opening entrance to the larynx and trachea by closing it while swallowing 

so that the swallowed food is guided towards the esophagus and stomach. The vocal 

cord is located within the larynx section which is also recognized as the voice box. The 

vocal cord will usually vibrate and produce sound when the air flow pass through the 
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vocal cord especially during exhalation. The function of larynx is to connect the 

pharynx with trachea and protect trachea by only allowing air to pass through it. 

 

2.3 Objective Measurement Methods  

Objective measurement methods are the conventional tools utilized by medical 

practitioners to measure and assess the anatomy and physiology of the human upper 

airway. In this section, the main objective measurement methods are discussed namely 

rhinomanometry, acoustic rhinometry, endoscopy and polysomnography. 

 

2.3.1 Rhinomanometry  

Rhinomanometry is a tool which is used to measure nasal airway resistance by 

making a quantitative measurement of nasal flow and pressure. The European 

committee of standardization of Rhinomanometry has selected the formula R = ∆P/V 

at a fixed pressure of 150 Pa; to facilitate comparison of results, where R is resistance, 

∆P is pressure drop, V is the velocity of flow. Rhinomanometry can be performed by 

anterior or posterior approaches. However this technique is time consuming and 

requires a great deal of patient cooperation, particularly difficult with children. It 

cannot be used in the presence of septal perforations and when one or both cavities are 

totally obstructed. It is affected by nasal cycle and errors as high as 25 % are reported 

for repetitions within 15 minutes (Hilberg et al., 1989). It cannot accurately assess a 

specific area of the nasal cavity. Rhinomanometry is time consuming, requires 

technical expertise, a high degree of subject cooperation and is impossible in subjects 

with severely congested nasal airways. There are reports of failure rates of between 
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25 % and 50 % in the subjects examined by rhinomanometry (Austin & Foreman, 

1994). Suzina et al., (2003) concluded that active anterior rhinomanometry is a 

sensitive but not a specific tool for the detection of abnormalities in nasal air resistance 

and it failed to relate to the symptom of nasal obstruction. 

 

2.3.2 Acoustic Rhinometry 

Acoustic Rhinometry (AR) analyses ultrasound waves reflected from 

the nasal cavity to calculate the cross sectional area at any point in the nasal 

cavity as well as the nasal volume. Acoustic rhinometry was first described for 

clinical use in 1989. The list of clinical problems that can be analyzed 

objectively with acoustic rhinometry has expanded to include turbinoplasty, 

sleep disorders, more types of cosmetic/reconstructive procedures, sinus 

surgery, vasomotor rhinitis, maxillofacial expansion procedures, and aspirin 

and methacholine challenge (Corey, 2006).   

 

Acoustic rhinometry is a tool that can aid in the assessment of nasal 

obstruction. The test is noninvasive, reliable, convenient, and easy to perform. 

Common clinical and practical uses of acoustic rhinometry for the rhinologic 

surgeon include assessment of “mixed" nasal blockage, documentation of nasal 

alar collapse, and preoperative planning for reduction rhinoplasty. Acoustic 

rhinometry can also be used to document the positive effect of surgery on nasal 

airway obstruction (Lal & Corey, 2004). However, AR may be unreliable due 

to artifacts & errors can occur in cross sectional area estimation (Tomkinson & 

Eccles, 1995; Tomkinson & Eccles, 1998). There is a poor correlation between 
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subjective sensation of nasal airflow and objective measurements (Eccles, 1998). 

Riechelmann et al., (1999) found unreliability of acoustic rhinometry in pediatric 

rhinology. Mean cross-sectional areas measured by AR were constantly less than those 

measured by CT of the nasal cavity up to 33 mm from the nostril, whereas areas 

measured by AR were greater than those measured by CT scans beyond that point 

(Min & Jang, 1995; Mamikoglu et al., 2000). AR is not a reliable method for the 

indication or evaluation of surgery for nasal obstruction (Reber et al., 1998). 

 

2.3.3 Endoscopy 

Endoscopy has been used to observe and measure upper airway morphology. 

The technique used to evaluate the morphology of the upper airway include the sleep 

endoscopy and awake endoscopy. Although endoscopy evaluation technique can be 

used to accurately measure the morphology of the human upper airway. However, the 

disadvantage of using this evaluation technique is due to the invasive nature and 

contribute to patient discomfort (Banabilh et al., 2010).   

 

2.3.4 Polysomnography 

Polysomnography has been used to diagnose the severity of obstructive sleep 

apnea disease (5 < AHI < 50). A standard polysomnography usually performed with 

continuous recording of electrocephalography, electrooculograpgy, electromyography, 

electrocardiography, chest wall and abdominal movement, oxygen saturation level, 

snoring sounds and body position. Apnea-hypopnea index (AHI) is an index used in 

sleep apnea studies. The AHI represents the sum of all apneas and hypopneas divided 



15 

 

by the amount of sleep hours. An apnea is defined as a complete cessation of 

airflow that lasts 10 s or longer. A hypopnea is defined as a reduction of airflow 

that last 10s or longer (Vos et al., 2007). Even though, polysomnograpic data 

could not provide anatomical relevant information to surgeon in order to help 

in planning of upper airway treatments, polysomnographic study has been used 

to evaluate the treatment outcome. 

 

2.4 Fluid Flow Studies in the Human Upper Airway 

Recent developments in medical imaging, three-dimensional geometrical 

modeling, numerical mathematics, and high computational technologies have opened 

new possibilities for physically realistic numerical simulations of airflow based on 

anatomical precise computer models of the upper airway. To improve the 

understanding of the detailed flow phenomena inside the human upper airway without 

any intervention and clinical risk for the patient, CFD methods can be used to simulate 

the airflow and particle transport and deposition in the upper airway. Simulation results 

obtained through CFD analysis can provide a detailed picture of the local and global 

distribution of physical flow parameters like air velocities, airflow vortices, pressure 

drop or nasal resistance values, wall shear stress, and particle deposition. 

 

2.4.1 Computational Model of the Human Upper Airway 

The general process of developing three-dimensional upper airway 

computational model includes acquiring of MRI/CT scans images of the airway 

passage followed by carefully define threshold on the scanned images. Since the upper 
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airway especially the nasal cavity has complex geometries, proper selection of the 

important features is critical to create an appropriate upper airway passage. High 

quality MRI/CT scans data in Digital Imaging and Communications in Medicine 

(DICOM) format are usually used to reconstruct the 3D computational model of 

normal or diseased human upper airway. The increment between each slice of the scan 

images should be less than 1 mm to avoid stair-step artifact which usually appear on 

the curved surface of the model (Bailie et al., 2006). Kim et al., (2013) suggested that 

the CT images which are obtained after the decongestion of the nasal mucosa are not 

recommended since the volume of the mucosa would be decreased and nasal cavities 

become abnormally wider (Kim et al., 2013). In the case of surgical evaluation study, 

the head positions should be similar in the two CT data sets for each patient scanned 

before and after surgery. Table 2.1 summarized the specification of MRI and CT scan 

data used by researchers to develop the human upper airway model. Type of 

commercial software utilized by previous researchers to develop human upper airway 

computational model and software used to perform numerical analysis  has been 

summarized by Kim et al., (2013). 
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Table 2.1: Summary of the specification MRI/CT scans data obtained to develop the 
nasal computational models 

Researchers Data 
source 

Number, 
gender (M/F), 
age of subjects 

Scan 
resolution 

(pixels) 

Increment 
between 

slice (mm) 
Power 

      
Ghahramani 
et al., 2014 

CT scans 1, F,24 NA 0.6 120 KV peak, 
99 mA 

 
Dastan et al., 
2014 

CT scans 2, M&F,24 512 x 512 0.6 Tube potential 
120 KVP 

Tube current 
160 mA 

 
Cheng et al., 
2014 

CT scans 10, NA, NA NA 2.5 NA 
 

Abouali et 
al., 2012 

CT scans 1, M, NA 512 x 512 0.6 120 KV peak, 
160 mA 

 
Ghalati et al., 
2012 

CT scans 1, F, 24 NA 0.6 120 KV peak, 
 99 mA 

 
Moghadas et 
al., 2011 

CT scans 
 

1, M, NA 512 x 512 2.0 NA 
 

Xi et al., 
2011 

MRI 1, M, 5 NA 1.5 NA 

Wang et al., 
2009 

CT scans 1, M, 25 NA 1-5 120 kV peak, 
200 mA 

 
Inthavong et 
al., 2008 

CT scans 1, M, 25  NA 1-5 120 kV peak, 
200 mA 

 
Mihaescu et 
al., 2008 

MRI 1, F, 18 0.85 x 
0.85 

 

0 NA 
 

Shi et al., 
2007 

MRI 1, M, 53 NA 1.5 NA 
 

Xu et al., 
2006 

MRI 3, NA, 3-5 NA NA NA 
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2.4.2   Fluid Flow Modelling  

For many years, several researchers have been interested in studying airflow in 

the human upper airway (Elad et al. 1993; Keyhani et al. 1995; Subramaniam et al. 

1998; Croce et al. 2006; Zamankhan et al. 2006; Wen et al. 2007; Segal et al. 2008; 

Wen et al. 2008). The following section explained the important parameters used by 

previous researchers to analyze the breathing airflow characteristics through the upper 

airway of the human respiratory system.  

 

2.4.2.1 Velocity and Flow Distribution 

Several studies have shown that, during inspiration air enters each nasal cavity 

through the oval shaped external nostrils into the vestibule. Then, the flow changes 

direction, 90 degrees towards the horizontal, before entering the nasal valve region. 

The flow increases in the nasal valve region where the cross-sectional area is smallest 

causing an acceleration of the air. Segal et al., (2008) in their study found that 

inspiratory flow velocity was highest in the nasal vestibule and nasal valve regions in 

all four test subjects. At the end of the nasal valve region the cross-sectional area of 

the nasal cavity increases suddenly. This expansion is the beginning of the turbinate 

region where the profile is complicated and asymmetrical. Croce et al., (2006) found 

that the velocity decreases considerably downstream from the nasal valve region due 

to the sudden expansion of the cross-sectional area posterior to the nasal valve 

especially in the vertical planes of the nose.  
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Several researchers found that the majority of the airflow passes through the 

inferior turbinate (Keyhani et al., 1995; Segal et al., 2008; Croce et al., 2006). Keyhani 

et al., (1995) performed numerical studies of laminar airflow through the right human 

nasal cavity which was constructed from CAT scans of a healthy adult nose. They 

observed that approximately 30 % of the inspired volumetric flow passed below the 

inferior turbinate and only 10 % passed through olfactory airway. Croce et al., (2006) 

performed numerical simulations of airflow in realistic nasal airway geometry for flow 

rates up to 253 ml/s. They showed that predominant flow was observed in the inferior 

part of the nasal cavities, under the middle turbinate, through the middle and inferior 

meatuses. At the nasopharyngeal region, the left and right cavities merge together 

causing the flow in this region to mix intensely (Wen et al., 2007). 

 

Some researchers demonstrated that vortices were observed downstream from 

the nasal valve and toward the olfactory region (Wen et al., 2008; Croce et al., 2006). 

Croce et al., (2006) observed two main vortices downstream from the nasal valve and 

toward the olfactory region. The highest velocities were in the nasal valve region and 

the lowest velocities were in the upper part (olfactory region).  For flow rate of 7.5 

L/min Wen et al., (2008) found that the flow recirculation was prominent in the upper 

anterior part of the cavity, the olfactory region. The vortex is a result of the adverse 

pressure gradient caused by the abrupt increase in the cross-sectional area from the 

nasal valve to the main nasal passage.  

 

 Segal et al., (2008) conducted numerical analysis on human nasal cavities to 

investigate and compare the inhaled airflow patterns and distributions in the four 

different nasal anatomies. In all four subjects, they found that swirling flow was most 
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evident in the nasal vestibule and nasopharynx areas. However, the intensity of the 

swirling flow was found differ among them. Subramaniam et al., (1998) showed that 

prominent recirculating streams are found in the nasal vestibule and complex 

downward spiraling flow patterns in the nasopharynx. There were some differences in 

the size and location of the vortices between the models compared which may be 

attributed to geometrical differences such as increase in airway height that promote 

separation  (Keyhani et al., 1997).  

 

2.4.2.2 Airflow Resistance 

Nasal resistance is an important factor in considering breathing airway 

resistance. In adults, nasal resistance can contribute up to half of the total breathing 

airway resistance. The influence of geometrical variations was found to produce 

dramatic increases in the resistance (Wen et al., 2008). Studies show that decrease in 

cross-sectional area of the nasal passage is associated with the increase in the pressure 

drop. Increase the passage cross-area through virtual surgery decreases the flow 

resistance of the passage (Wen et al., 2008; Abouali et al., 2012; Dastan et al., 2014). 

Wen et al., (2008) found that the nasal resistance value within the first 2-3 cm 

contributes up to 50 % of the total airway resistance. 

 

2.4.2.3 Wall shear stress 

A friction force is generated when moving air contacts the nasal walls, referred 

to as wall shear stress. This interaction enables heat and mass transfer between the air 

and the upper airway wall to condition the inhaled air (Bailie et al., 2006). As shear 
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stresses are linearly related to the local velocity, these values significantly increase as 

breathing effort increase. High shear stresses that are concentrated locally may cause 

irritation of the blood vessels within that area (Wen et al., 2008). Elad et al., (1993) 

showed that the maximum shear stresses at peak inspiration of 20 L/min located on the 

septal wall through the inferior turbinate in the range of 0.2 Pa. Wen et al., (2008) 

found that the wall shear stress decreases gradually corresponding to the airway 

expansion in the middle region where the velocity decreases. The wall shear stress 

values were found increased again when the left and right cavities merge at the 

posterior region of the nasal cavity. The increment is cause by the change in flow 

direction at the nasopharynx where the air travels downwards towards the lung. 

 

2.5 Particle Deposition Studies in the Human Upper Airway 

An adult human breathes in 10,000 to 20,000 liters of air per day. The air brings 

with it a large quantity of particulate matter: microorganisms, dust, smokes, allergens, 

and other toxic and non- toxic aerosols that may get deposited in the breathing airway 

during the inhalation process. Nasal inhalation is a major route of entry into body for 

the inhaled airborne pollutions. Therefore, the function of the nose to filter out toxic 

particles is considered important.  

 Inhalable particles range from a few nanometers to, typically, a few microns 

(Tsuda et al., 2013). The size range of natural and manmade particles can be large. 

For-example, occupational dusts may be 0.001-1000 micrometer, pollen particles are 

20-60 micrometer, consumer aerosol products are 2-6 micrometer, most cigarette 

smoke particles are 0.2-0.6 micrometer, and viruses and proteins may be in the range 

0.001-0.05 micrometer (Guha, 2008). From the toxicology point of view, all particles 
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which are smaller than 10 µm in diameter can be biologically active and could cause 

allergic responses and even cancers is susceptible (Cheng, 2003). Where the aerosol 

lands in an airway is important information for correlating inhaled toxins or 

carcinogens to disease locations and for developing potential therapies (Grotberg, 

2001). On the other hand, the airway can also provide an alternative route for drug 

delivery. Therefore, it is important to enhance knowledge on the airflow characteristics, 

particle transport and deposition in the human respiratory system. The knowledge 

obtained from the transport and deposition of inhaled particle can be used to further 

develop understanding of the therapeutic drug delivery through the upper airway. 

 

2.5.1 Particle Modelling 

Computational modeling approaches have the capability to conveniently 

estimate the regional deposition pattern of aerosol. The location of peak deposition in 

different parts of the respiratory tract can be identified. Studies of particle transport 

and deposition in the human nasal cavity have been performed by many researchers to 

understand the mechanisms and patterns of deposition (Wang et al., 2008; Dastan et 

al., 2014; Zamankhan et al., 2006; Abouali et al., 2012; Bahmanzadeh et al., 2015; 

Inthavong et al., 2008).  Inthavong et al., (2008) constructed 3D nasal passage based 

on nasal geometry which obtained through a CT scan of a healthy human nose. The 

airflow analysis showed vortices present in nasal valve region enhanced fibre 

deposition by trapping and recirculating the fibre in the regions where the axial 

velocity is low.  
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Wang et al., (2008) investigated the influential factors of the transport and 

deposition efficiencies of glass fibers in three human nasal models. Glass fiber 

deposition was studied at five inhalation rates: 4, 8, 12, 15, and 18 L/min and four fiber 

length range: 10-19, 20-29, 30-39, and 40-49 µm. They found that deposition of fiber 

glass fibers with about 1 µm diameter in human nasal passage is mainly due to inertial 

impaction and these fibers oriented themselves normal to the flow direction before 

deposition occurs. Dastan et al., (2014) investigated the transport and deposition of 

fibrous particle in different human nasal passages. They developed an in-house code 

to solve the coupled transitional and rotational equation of motion of ellipsoids. For 

four different laminar breathing rates, different range of diameters and lengths of fiber 

were analyzed. They found that, the variation of nasal passages was found to 

significantly affect the deposition fraction. The deposition fraction is highly affected 

by the nasal geometry and of airflow rate in the nasal valve and main airway regions.  

 

 Another work was done by Zamankhan et al., (2006), who studied the airflow 

characteristics and transport and deposition of ultrafine particles ranging from 1 to 100 

nm in a three dimensional model of human nasal passage by using an Eulerian-

Lagrangian approach. They found that, for the smallest range of particles ranging from 

1-30 nm, diffusion is the dominant deposition mechanism. Cheng, (2003) postulated 

that deposition in the nasal and oral airways is dominated by the inertial mechanism 

for particles larger than 0.5 µm and by the diffusion mechanism for particles smaller 

than 0.5 µm.  

 

 Other studies include Abouali et al., (2012), who investigated the effect of 

virtual Uncinectomy and Middle Meatal Antrostomy on the airflow distribution and 
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particle deposition in the nasal airway, maxillary and frontal sinuses. The virtual 

surgery was performed by performing the uncinate process and exposing the maxillary 

sinus antrum. Inhalation of micro and nanoparticles were considered in this study. For 

microparticle, the path and deposition of the particles in the nasal passages and 

maxillary sinuses was evaluated by using a Lagrangian trajectory analysis approach. 

For nanoparticles, the transport and deposition analysis were performed by using a 

diffusion model. The rate of particle deposition in the maxillary and frontal sinuses 

were analyzed and compared between pre and post-surgery conditions. They found 

that, for the pre-operative condition, almost no particles entered the sinuses. However, 

after surgery, the inhaled nano- and microparticles can easily enter the sinuses due to 

the increase of airflow penetration into the sinus cavity. 

 

 Bahmanzadeh et al., (2015) investigated the effect of endoscopic 

sphenoidotomy surgery on the flow patterns and deposition of micro-particles in the 

left side of the human nasal passage and sphenoid sinus. The Lagrangian approach was 

used to track the particle which was continuously entering the nasal airway during 

inhalation. They found that sphenoidotomy increased the airflow hence increased 

deposition of micro-particles in the sphenoid region. They also found that, for the post-

operation case, particle size up to 25 µm were able to penetrate into the sphenoid region. 

During resting breathing condition, the highest deposition in the sphenoid was found 

for 10 µm particles at about 1.5 %. Table 2.2 summarized the parameter and modelling 

approached used by previous researchers to perform CFD study of airflow and particle 

transport and deposition through normal and diseased human nasal airway. 
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Table 2.2: Summary of grid size, flow rate and viscous models, particle size and 
particle tracking approach. 

 

Researchers Mesh Flow rate;  
Viscous model 

Particle size; 
Particle tracking 

approach 
    
Karakosta et 
al., 2013 

Tetrahedral 
2,200,000 

 

1,2,5,10 m/s; 
SST k-w 

0.5-20 µm; 
Lagrangian  

Ghahramani et 
al., 2014 

Hybrid 
 4,660,000 

 

30,45,60 L/min; 
LRN k-ε 
Turbulent 

 

2.5, 5, 10 and 15 μm; 
Lagrangian  

Moghadas et 
al., 2011 

Tetrahedral 
600,000  

12 L/min; 
Laminar 

 

1–50 μm 
Lagrangian  

Zhang & 
Kleinstreuer, 
2011 

Hybrid 
4,435,705 

30 and 60 L/min 1–100 nm; 
Eulerian  

 
Ghalati et al., 
2012 

Tetrahedral 
2,600,000  

5, 10 and 
15 L/min; 
Laminar 

5, 10 and 20 μm; 
Lagrangian  

1, 3 and 5 nm; 
Eulerian  

 
Dastan et al., 
2014 

Hybrid 
3.5 million 

10 L/min; 
Laminar 

1,3,5,10, 15 µm 
(Ellipsoidal Fibers) ; 

Lagrangian  
 

Abouali et al., 
2012 

Tetrahedral 
3,500,000 

 

4,7.5,10 L/min; 
Laminar 

1,5,10,15,20 µm; 
Lagrangian  

 1, 3, 5, 10, 20 nm  
Eulerian  

 

2.5.2 Factors Affecting Particle Deposition in Upper Airway 

Particle transport and deposition in the nasal airway has been found to depend 

on the morphology of the respiratory tract, particle characteristics, and breathing rates 

and pattern. The subsections below present the factors affecting the deposition of 

inhaled particle through upper airway. 
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2.5.2.1 Morphology of Respiratory Tract  

Particle deposition depends on the morphology of the respiratory tract. The 

impact of airway geometry on micron-particle deposition was demonstrated by Xi & 

Longest, (2007), who compared deposition results for a realistic and three simplified 

oral airway models. They reported that the modification made on the simplified airway 

model significantly affect the transport dynamic and the pattern of the aerosol 

deposition. 

 

2.5.2.2 Particle Characteristics  

The size of particle is one of the most important feature of an aerosol because 

it determines the stability of the particle (Karakosta et al., 2013). Heyder, (2004) 

reported that the distance a particle travels by diffusional transport increases with 

decreasing particle size. Xi & Longest, (2007) reported that, the location of deposited 

inhaled particles in the upper airway was highly dependent of the particle size. Dastan 

et al, (2014) found that fiber deposition rate increases as the fiber diameter and length 

increases.  Ghalati et al., ( 2012) reported that the rate of particle deposition increases 

as particles diameter increase due to their higher inertia and deviation from streamlines. 

 

2.5.2.3 Breathing Flow Rates  

Deposition of particles depends not only on the particle characteristics but also 

on the subject’s breathing pattern and rates (Heyder et al., 1986). Wen et al., (2008) 

reported that low flow in olfactory region is a defense mechanism that prevents 

particles whose trajectories are heavily dependent on flow patterns from being 
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deposited onto the sensitive olfactory nerve fibers, while vapors are allowed to diffuse 

for olfaction. Ghahramani et al., (2014) investigated deposition pattern of 5μm particle 

for three flow rates of breathing (30, 45, and 60 L/min). They found that the particle 

deposition increases as the breathing rates increased. This trend is expected since the 

impaction parameter that control the particle deposition, is directly proportional to 

volume flow rate. 

 

2.6 Upper Airway Surgery 

It is desirable to perform a virtual surgery in advance of the actual surgical 

treatment to assess the potential changes in the nasal airflow and the associated aerosol 

particles’ deposition and filtration. Furthermore, virtual surgery would allow for 

testing various alternatives and for optimal surgical planning. Numerical study on 

airflow in the human upper airway has been the subject of several studies (Abouali et 

al., 2012; Moghadas et al., 2011; Zhao et al., 2004; Wexler et al., 2005; Garcia et al., 

2007; Lindemann et al., 2005; Bahmanzadeh et al., 2015). 

 

2.6.1    Diseased Nasal Airway 

Using CFD modeling of one patient’s nose pre and post-operative, Zhao et al., 

(2004) showed significant improvement in postsurgical ortho and retronasal airflow 

and odorant delivery rate to olfactory neuroepithelium, which correlated well with 

olfactory recovery. Ethmoid and sphenoid sinuses were included in their 

computational model, and it was shown that the airflow velocity within the sinus is 

very low, confirming the limited effect of the sinus on the overall nasal airflow field.  
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 Another numerical analysis conducted on a 3D nasal model of a patient with 

sinonasal disease was done by Wexler et al., (2005). They investigated the 

aerodynamic consequences of conservative unilateral inferior turbinate reduction 

using CFD methods to accomplish detailed nasal airflow simulations. Steady-state, 

inspiratory laminar airflow simulations were conducted at 15 L/min. They found that 

inferior turbinate reduces the pressure along the nasal airway. Also, the airflow was 

minimally affected in the nasal valve region, increased in the lower portion of the 

middle and posterior nose, and decreased dorsally. Lindemann et al., (2005) 

investigated the intranasal airflow after radical sinus surgery. The numerical 

simulation was performed by assuming the nasal airflow as laminar at 14 L/min for 

quiet breathing rate. They performed an unusually aggressive virtual operation on the 

CT scan model of the nose, which included a bilateral model of the human nose with 

maxillectomy, ethmoidectomy, and resection of the lateral nasal wall and the 

turbinates. Result showed that aggressive sinus surgery with resection of the lateral 

nasal wall complex and the turbinates cause disturbance of the physiological airflow, 

an enlargement of the nasal cavity volume, as well as an increase in the ratio between 

nasal cavity volume and surface area. 

 

 Other studies include Garcia et al., (2007), who investigated airflow 

characteristics, water transport, and heat transfer in the nose of an Atrophic Rhinitis 

(AR). The patient underwent a nasal cavity narrowing procedure. Rib cartilage was 

implanted under the mucosa along the floor of the nose, and septum spur was removed. 

The reconstructed nose was simulated and the nasal airflow was assumed as laminar 

with 15 L/min corresponding to resting breathing rate. This study showed that the 
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atrophic nose geometry had a much lower surface area than the healthy nasal passages. 

The simulations indicated that the atrophic nose did not condition inspired air as 

effectively as the healthy geometries. Xiong et al., (2008) performed numerical study 

on the pre and post virtual functional endoscopic surgery (FESS). In the post-FESS 

model, they found an increase in airflow distribution in the maxillary, ethmoid and 

sphenoid sinuses, and a 13 % increase through the area connecting the middle meatus 

and the surgically opened ethmoid. Xiong et al. (2011) used CFD to compare nasal 

airflow after two different surgical interventions, which involved opening the 

paranasal sinuses, excising the ethmoid sinuses, and excising or preserving the 

uncinate process, in a cadaveric head model. They concluded that the preservation of 

the uncinate process may significantly reduce the alteration of nasal cavity airflow 

dynamics after functional endoscopic sinus surgery for chronic rhinosinusitis.  

 

 Abouali et al., (2012) investigated the effect of virtual Uncinectomy and 

Middle Meatal Antrostomy on the airflow distribution and particle deposition in the 

nasal airway, maxillary and frontal sinuses. The virtual surgery was performed by 

removing the uncinate process and exposing the maxillary sinus antrum. Inhalation of 

micro and nanoparticles were considered in this study. The rate of particle deposition 

in the maxillary and frontal sinuses were analyzed and compared between pre and post-

surgery conditions. They found that, for the pre-operative condition, almost no 

particles entered the sinuses. However, after surgery, the inhaled nano- and 

microparticles can easily enter the sinuses due to the increase of airflow penetration 

into the sinus cavity. Bahmanzadeh et al., (2015) investigated the effect of endoscopic 

sphenoidotomy surgery on the flow patterns and deposition of micro-particles in the 

left side of the human nasal passage and sphenoid sinus. They found that 
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sphenoidotomy increased the airflow hence increased deposition of micro-particles in 

the sphenoid region. They also found that, for the post-operation case, particle size up 

to 25 µm were able to penetrate into the sphenoid region. During resting breathing 

condition, the highest deposition in the sphenoid was found for 10 µm particles at 

about 1.5 %. Table 2.3 shows the impact of the nasal surgical treatment on airflow and 

particle deposition. 

 

Table 2.3: Summary of impact of surgical treatment on airflow and particle 
deposition. 

 
Nasal Disease; 
Surgical Treatment Research Findings References 

   
Chronic 
Rhinosinusitis; 
 
Functional 
Endoscopic Sinus 
Surgery (FESS): 
Uncinectomy 
Middle Meatal 
Anstrostomy (MMA) 

• Increases the passage cross-area 
caused decreases of flow 
resistance through the nasal 
passage. 

• Airflow field inside the 
maxillary sinus changes 
dramatically, and part of the 
main airflow through the nasal 
passage enters the sinus. 

• Inhaled particles can easily enter 
the maxillary sinus due to 
penetration of the airflow into 
the maxillary sinus cavity. 

• In contrast to the preoperative 
condition in which almost no 
particles entered the sinuses. 

• The range of microparticle sizes 
for which the deposition in the 
maxillary sinus shows 
significant increase after 
Uncinectomy/MMA 
 

Abouali et al., 
2012 

 

Septal deviation; 
 
Septoplasty 

• Deviation decreased the cross-
section areas in right nasal 
cavity and the total volume of 
the passage, which led to several 
breathing problems for the 
patient. 

Moghadas et al., 
2011 
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• After the septoplasty, 16 % of 
the obstruction due to deviation 
was removed. 

• For a given pressure drop, the 
nasal airflow in the abnormal 
right nasal cavity before 
septoplasty is about 40-50 % 
less than that in the normal left 
passage. After septoplasty, the 
differences reduce to less than 
6 %. 

 
Septal deviation and  
Inferior turbinate 
hypertrophy; 
 
Right balloon 
sinuplasty 
Left uncinectomy 
Septoplasty 
Bilateral inferior 
turbinate reduction  
 

• The airflow patterns in the nasal 
cavity showed reasonably 
decreased resistance and slightly 
more even flow partitioning 
after the operation. 

• Maxillary sinus ventilation 
increased during inspiration in 
the left sinus after uncinectomy 

• Maxillary sinus ventilation 
increased during expiration in 
right sinus after balloon 
sinuplasty 

Zhu et al., 2014 

 

2.6.2 Obstructive sleep apnea (OSA) 

Obstructive Sleep Apnea (OSA) is a potentially serious respiratory disorder 

and has become one of the most common public health problems. OSA is characterized 

by recurrent episodes of partial or complete pharyngeal airway collapse and 

obstruction during sleep which cause reduction in or complete cessation of airflow 

despite ongoing inspiratory efforts (Mihaescu et al., 2008). The short-term 

consequences of sleep apnea include sleep fragmentation, snoring, daytime sleepiness, 

and fatigue-related accidents. Without reasonable cure in the early stage of OSA, long-

term adverse effects on cardiovascular functions may develop negative impacts on 

multiple organs and systems (Lipton & Gozal, 2003). A standard non-surgical 

treatment for OSA is continuous positive airway pressure (CPAP) therapy. CPAP 
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supplies constant air pressure through the throat to help the OSA patient breath more 

easily during sleep and to prevent airway collapse. However, the compliance of CPAP 

is a problem in some of the patients. 

 

Other alternative treatment is upper airway surgical modification. The most 

common surgical procedures performed includes nasal reconstruction, 

uvulapalatopharyngoplasty (UPPP), advancement of genioplasty, mandibular 

osteotomy with genioglossus advancement, and hyoid myotomy suspension. In more 

severe cases, maxillomandibular advancement (MMA) with advancement genioplasty 

may be indicated. However, the success rate of upper airway surgery is not good (Ito 

et al., 2011; Lu et al., 2014). Even after appropriate surgical treatment, some patients 

may demonstrate continued obstruction with associated symptoms (Ephros et al., 

2010).  

 

Due to the non-invasiveness nature, CFD has now been utilized to visualize the 

fluid flow in the upper airway and to assess the effects of OSA treatment interventions 

that alter upper airway anatomical structure (Mihaescu et al., 2011; Xu et al., 2006). 

This is done by simulating airflow in reconstructed models of human upper airways 

from imaging data and analyzing different flow features such as flow velocity, static 

pressure, and wall-shear stress from the numerical results. It is also believed that the 

CFD simulation is possible to predict the surgical outcome of the upper airway. 

 

Recently, Computational Fluid Dynamics (CFD) method has been utilized to 

analyze the flow dynamics in the human upper airway reconstructed from Magnetic 

Resonance Imaging (MRI) or Computed Tomography (CT) imaging data (De Backer 
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et al., 2007; Jeong et al., 2007; Mihaescu et al., 2008; Mihaescu et al., 2011; 

Mylavarapu et al., 2013; Mylavarapu et al., 2009; Xu et al., 2006; Vos et al., 2007; 

Zhao et al., 2013; Zhao et al., 2013; Riazuddin et al., 2011; Zubair et al., 2010; Zubair 

et al., 2013). Mihaescu et al., (2008) investigated the airflow distribution and 

characteristics in the pharyngeal airway model by using both RANS and LES 

approaches. The pharyngeal airway model was developed from nasopharynx to 

retroglossal pharynx region. They reported that, the geometry expansion in radial 

direction after the narrowing region produced flow separation, strong shear layers, and 

recirculation regions. Mylavarapu et al., (2009) conducted CFD simulation of 200 

L/min expiratory flow to investigate the fluid flow in the upper airway regions where 

obstruction could occur. They reported that the highest positive pressures were 

observed in the retroglossal regions below the epiglottis, while the lowest negative 

pressures were recorded in the retropalatal region. The latter is a result of the airflow 

acceleration in the narrow retropalatal region. The largest pressure drop was observed 

at the tip of the soft palate where the smallest cross section area of the airway is located. 

They also found that, among the five different turbulence models used in the study, the 

standard k-ω model predictions were the closest to experimental results. This is 

attributed partly to the better treatment of adverse pressure gradient and viscous near-

wall region with k-ω turbulence model as compared to k-ɛ and Spalart-Allmaras one 

equation.  

 

 Jeong et al., (2007) in their study, found that the pressure drop due to area 

restriction occurred primarily between the nasopharynx and oropharynx. Turbulent jet 

with higher shear and pressure force was observed in the narrowest segment of the 

pharyngeal airway. The constriction at the velopharynx produced pharyngeal jet as air 
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passes through the velopharynx. Similar to the work of Sung et al., (2006), the 

maximum velocity and minimum pressure of breathing airflow were observed at the 

velopharyngeal section. They concluded that the strength and intensity of the turbulent 

pharyngeal jet flow would be the main reason for the pharyngeal occlusion and OSA 

disease (nostril to pharynx). Vos et al., (2007) postulated that the combination of the 

three parameters which include smallest cross-sectional area, airflow resistance and 

body mass index (BMI) can be used to evaluate the severity of obstructive sleep apnea 

in patient. 

 

The main anatomic risk factor for pediatric OSA is adenotonsillar hypertrophy. 

To improve understanding of the pathogenesis of OSA of children, Xu et al., (2006) 

investigated the effect of airway shape on pressure distribution and flow resistance in 

the upper airway of children ages 3-5 year-old. They found that, the minimum pressure 

occurred at the narrowest region which is located at the region of adeno-tonsillar 

overlap. High-velocity jet and higher turbulence energy was observed at the 

downstream of the narrowest cross section area. CFD has also been proposed as a tool 

to determine treatment response to Mandibular advancement splint (MAS) therapy 

using patient-specific airway geometries obtained from CT scans without and with 

MAS (De Backer et al., 2007). MAS is an alternative for the treatment of OSA. MAS 

treatment protrudes the lower jaw, enlarges the pharyngeal volume and stiffens 

surrounding tissue and its success was assessed by De Backer et al., (2007), Zhao et 

al., (2013a) and Zhao et al., (2013b) using CFD and FSI simulations.  

 

 De Backer et al., (2007) developed a patient specific upper airway model based 

on CT scans data obtained from nasopharynx to larynx. A patient specific boundary 
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condition obtained during split-night polysomnography was used for the airflow 

simulation. They found that decrease in upper airway resistance and an increase in 

upper airway volume correlate with both a clinical and an objective improvement. 

Although is likely to provide greater model accuracy, obtaining patient-specific 

boundary conditions through intensive overnight monitoring is likely to limit the 

clinical application of this type of prediction strategy (Zhao et al., 2013b). 

 

 Zhao et al., (2013a, 2013b) developed upper airways model between the hard 

palate and the vocal folds and performed CFD simulations of airflow at the maximum 

flow rate of 166 ml/s during inspiration. They reported that FSI model demonstrated 

full collapse of upper airway with maximum distance of 5.83 mm during pre-treatment. 

The upper airway collapse was found located at the oropharynx with low 

oropharyngeal pressure ranging from -51.18 Pa to -39.08 Pa, which was induced by 

velopharyngeal jet flow with maximum velocity equal to 10 m/s. However, for upper 

airway with MAS treatment, smaller deformation with maximum distance of 2.03 mm 

was found, matching the known clinical response. They concluded that, a clinical 

challenge remains in preselecting patients who will respond to MAS therapy. 

 

Although morphology variation, narrow and collapsible of upper airway are 

believed to be the main cause of OSA, the etiology of this disorder and the exact 

mechanisms of upper airway collapse in OSA are still not completely understood. 

Hence, the accurate prediction of the abnormal airflow characteristics, airflow 

resistance and pressure distribution in the upper airway geometry associated with OSA 

is essential in understanding the relation between airway anatomy collapsibility and 

the pathophysiology of OSA.   
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CHAPTER 3  

 

MODELLING THE HUMAN UPPER AIRWAY 

 

3.1 Overview 

This chapter presents the methods used in developing the three-dimensional 

computational models of the human upper airway from two-dimensional CT scan 

images. The method used to develop the unstructured and hybrid mesh for the human 

upper computational model is also presented. The overall process of the present 

numerical and experimental study was summarized in the flow chart shown in Figure 

3.1. 

 

3.2 Developing 3D Computational Model of the Human Upper Airway 

The general process of developing the 3D human upper airway computational 

model basically consists of selection of CT scan data of the upper airway followed by 

converting the 2D CT scan images into 3D CAD data using a medical image 

processing software, MIMICs. After that, by using a reverse engineering method, the 

surface geometry was developed by using a CAD software, CATIA. 
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Figure 3.1: Flow chart for the present study. 
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METHODOLOGY 

Procure CT scan data sets of diseased human 
nasal airway (Pre- and Post-Surgery) 

Convert the 2D CT scan images into 3D CAD 
model using MIMICS 

Geometry Creation using CATIA 

Transparent 3D model 
for fabrication 

Mesh Generation using ANSYS ICEM 
CFD & ANSYS FLUENT MESHING 

-Unstructured Mesh 
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ANSYS FLUENT Simulation Setup 
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Case Setup 
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concha bullosa and septum deviation) 

associated with OSA 

Pre- and post-operative upper airway with 
OSA and chronic nasal obstruction 
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3.2.1 Procuring CT Scans Data of Human Upper Airway 

For the first case study, the constricted pharyngeal section representing 

Obstructive Sleep Apnea (OSA) disease, the three-dimensional nasal computational 

model was constructed based on the CT scans of a healthy 39-year old female. The CT 

scan images of the nasal airway was taken from pre-existing CT scan images. The CT 

scan of the nasal airway without nasal disease was obtained from the patient who was 

diagnosed with other type of disease which is not related to the breathing airway. 

Furthermore, the nasal anatomy was attested to be normal by the ear, nose and throat 

(ENT) surgeon.  

     

     

     
     

50 mm 

Figure 3.2: Coronal CT scan images along the axial distance of the human nasal 
cavity. 
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Figure 3.2 shows a series of CT scan images of the normal human nasal cavity 

obtained from coronal plane along the axial distance starting from nostril to 

nasopharynx. The increment between each slice of the scan images is 0.8 mm. It is 

important to make sure that the scan interval is less than 2 mm in order to accurately 

capture the complex geometry of the nasal cavity to avoid stair-step artifact which 

usually appear on the curved surface of the model. 

 

For the second and third case studies, the anatomical models were developed 

from CT scan images of a 38-year-old male patient in Hospital Serdang. The subject 

was diagnosed with deviated nasal septum, hypertrophy of the inferior turbinates, left 

concha bullosa and also obstructive sleep apnea by the otorhinolaryngology and head 

and neck surgeon. He underwent nasal surgeries namely septoplasty, inferior turbinate 

reduction and concha bullosa resection. The pre- and post-treatment data of the upper 

airway were also taken from pre-existing CT scans data. The scan images were 

obtained from axial, coronal and sagittal plane and accounted for the upper airway 

respiratory system. CT scan images were acquired when the patient was awake and 

was in a supine position. A study proposal has been submitted to the Hospital Serdang 

and the study was approved by the Medical Research and Ethics Committee (MREC) 

of the Ministry of Health Malaysia. The certificate of approval is included in the 

Appendix I and II. 
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50 mm 

Figure 3.3: Coronal CT scan images along the axial distance of the diseased human 
nasal cavity before surgery. 

 

Figures 3.3 shows the coronal view of CT scan images of the diseased human 

nasal cavity along the axial distance obtained before surgery. The slice increment for 

the pre-operative CT scans data is 0.5 mm. As can be seen in Figure 3.3, the patient 

has narrower nasal airway when compared to the normal nasal airway as depicted in 

Figure 3.2. The narrowed airway was caused by the septum deviation, enlarged inferior 

turbinate and concha bullosa which describes the presence of air pocket in the middle 

concha. 
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50 mm 

Figure 3.4: Coronal CT scan images along the axial distance of the diseased human 
nasal cavity after surgery. 

 

Figures 3.4 shows the coronal view of CT scan images of the diseased human 

nasal cavity along the axial distance obtained before and after surgery respectively. 

The slice increment for the post-operative CT scans data is 0.6 mm. The post-operative 

CT scans data was obtained 7 months after the surgery was performed. As can be seen 

in Figure 3.4, after surgery, the overall nasal cavity airway has increased when 

compared to the pre-operative CT scan images. 



42 

 

  
 

250 mm 
 

250 mm 
(a) (b) 

Figure 3.5: Sagittal plane of CT scan images of human upper airway obtained (a) 
before surgery and (b) after surgery. 

 

Figures 3.5 (a) & (b) shows the sagittal view of the CT scan images obtained 

before and after surgery respectively. As can be seen in Figure 3.5 (a), before surgery, 

narrow air pathway was observed at the inferior, middle and superior meatus region in 

the diseased nasal cavity. However, after surgery, the air pathway in the turbinates 

region has increased when compared to that of CT scan image obtained prior to the 

surgery. The surgical treatment was only performed in the nasal cavity region. The 

surgeries performed includes septoplasty at the anterior part of the left nasal cavity, 

bilateral inferior turbinectomy and partial concha bullosa resection at the posterior part 

of the left nasal cavity. It can be observed that, in Figure 3.5 (b), the nasal airway and 

the overall upper airway volume increased after the patient underwent the surgical 

Surgeries location 
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treatment. Details explanation of the geometrical variation between pre- and post-

operative case are include in Chapter 7. 

3.2.2 Converting 2D CT Scans Image to 3D CAD Data  

MIMICs is an image processing and editing software which provides tool for 

visualization and segmentation of CT images and also for 3D rendering of objects. 

Before the scan data can be processed, MIMICs reads a set of 2D CT scan images from 

the DICOM (*.dcm) file format and convert it into MIMICs (*.mcs) file format. 

MIMICs will compress and merge all the axial, coronal and sagittal scan images into 

a single volume file project based on the similar pixel size value. 

 

The main step of airway geometry reconstruction from the CT scan data is the 

segmentation process in which the regions of interest are identified in the sliced image 

data. The CT scan images consist of gray values which represents material density. 

The segmentation was developed based on the gray values in the CT scan images. The 

gray values are expressed according to the Hounsfield scale. Hounsfield scale is a 

measure of the electron density of the tissue. Airway passages appear as black, the 

surrounding airway tissues as gray, and bony structures as white.  

 

Figures 3.6 & 3.7 show segmentation process which was performed by 

defining a range of threshold value to create the segmentation mask. The range of the 

threshold value used for the first case study is between -444 to 2037 HU. For the 

second case study, the range of threshold value used is between 0 to 789 HU for both 

pre- and post-operative cases. The threshold value is used to differentiate between 
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bone and soft tissues and to determine the set of structure to be included in the 3D 

upper airway model. Medical reconstruction requires a good understanding of anatomy, 

which can only come with experience, and understanding the types of tissue that are 

preferentially imaged by radiographers. Hence the presence of an expert radiologist 

and ENT practitioner is essential in deciding the threshold and editing of the geometry. 

 

 

Figure 3.6: CT scan images obtained from axial, coronal and sagittal plane and 3D 
model of the female human nasal cavity. 
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(a) 

 
(b) 

Figure 3.7: CT scan images obtained from axial, coronal and sagittal plane, (a) pre-
operative OSA and (b) post-operative OSA. 
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An automatic region growing function was used to reconstruct the upper 

airway from the nostril to pharynx based on the segmented mask. The purpose of the 

region growing function was to reduce the noise, remove floating pixels and to split 

the unconnected structure. However, manual segmentation is also required to edit the 

mask which leak to surrounding region and remove unwanted parts which are still 

connected to the upper airway model. Manual editing function also makes it possible 

to draw and restore parts of the image on the segmented mask. By using the MIMICs 

editing tools, the scan images were segmented slice by slice on axial, coronal and 

sagittal plane by using the local threshold value. 

 

MIMICs has the ability to generate and display the 3D anatomical model of the 

upper airway from the segmented mask. After all the necessary threshold editing, the 

3D anatomical model of the upper airway was generated from the segmented mask. 

By using the 3D rendering tools, the 3D upper airway model generated was examined 

to ensure the suitability of the threshold and to confirm the presence of all the required 

structure for the physical anatomical model. MIMICs also provide the export function 

which can be used to export the 3D object generated from the segmented CT scan 

images into IGES file and can be directly used in any CAD software. 

 

For the first case study, the polylines were created in MIMICs based on the 

segmented mask of the 3D object on each slice of the project by using ‘calculate 

polyline function’ as depicted in Figure 3.8. Later the 3D polylines data was exported 

as IGES (*.igs) file format, for the surface model generation using the CAD software, 
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CATIA. However, for the second case study, instead of using polylines function, the 

3D upper airway can be directly export into 3D object as STL (*.stl) file format. Figure 

3.9 shows the 3D model of the diseased human upper airway in .stl file format. Figure 

3.9 (a) shows the 3D model generated for pre-operative and Figure 3.9 (b) shows for 

post-operative case.  The direct export to STL file format function is only possible 

after the MIMICs software has been upgraded to a newer software version, Materialise 

MIMICs 19.0. 

 

 

Figure 3.8: Polyline data of the 3D human nasal cavity. 
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(a) (b) 

Figure 3.9: The 3D model of the diseased human upper airway in .stl file format: (a) 
pre-operative and (b) post-operative. 

 

3.2.3 Geometry Creation Using CATIA 

The coordinate contour point extracted from the CT scan data of the human 

nasal cavity was imported into CAD software package, CATIA using Digitized Shape 

Editor (DSE) workbench for surface model generation. DSE is usually used at the 

initial stages of the reverse engineering process and it also provides tools for various 

operations on the imported digitized data. The IGES (*.igs) file can be imported and 

displayed in DSE workbench in the form of virtual mesh surface. The IGES (*.igs) file 

can be imported and displayed in DSE workbench in the form of cloud of points or 

polylines. 
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 Due to anatomical complexity, the facets were created directly from the 

polylines instead of cloud of points. Figure 3.10 (a) shows the polylines data for the 

normal human nasal cavity whereas in Figure 3.10 (b), the facets were generated by 

using the mesh creation tools. The neighborhood parameter value was set to 7.5 mm 

to define the maximum length of the facet edge. The function of the neighborhood 

value is to close the unwanted holes of the mesh. Increasing the neighborhood 

parameter will lead to a non-manifold mesh. After the mesh surfaces have been created 

from the polylines, the next stage is to edit the 3D nasal mesh geometry by removing 

the unwanted mesh part.  

 

 In Figure 3.10 (c), the human face skin surface has been removed to simplify 

the geometry of the nasal computational model. As seen in Figure 3.10 (d), all the 

paranasal sinuses have also been removed in order to simplify the geometry and to 

reduce the computational cost. Editing was carefully carried out to preserve the 

original shape of the anatomical model of the human nasal cavity as depicted in Figure 

3.10 (e). By using the cleaning mesh function, the defective mesh was removed to 

improve the quality of the mesh. The mesh cleaner helped analyze and delete all the 

defective mess which consisted of non-manifold edges, non-manifold vertices, isolated 

triangle, triangle with inconsistent orientations and the corrupted triangles. After all 

the necessary mesh cleaning, the 3D mesh geometry was smoothened using the mesh 

smoothing tool to improve mesh surface quality. Finally, the 3D computational model 

of the human nasal cavity was created based on the smooth mesh surface by using the 

automatic surface tool in Quick Surface Reconstruction workbench. Figure 3.10 (f) 

shows the final 3D model of the normal nasal cavity obtained from CATIA which can 

be used for computational modelling. 
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(a) Polyline data. 

 

(b) Surface mesh generation. 

 
(c) Nasal cavity with paranasal sinuses. 

 
(d) Nasal cavity with paranasal sinuses 

removed. 

 
(e) Smoothing operation. 

 
(f) The final 3D model of the nasal cavity 

Figure 3.10: Steps involved in developing 3D model of the nasal cavity using 
CATIA. 
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Since it is highly difficult and very time consuming to obtain the CT scan data 

for subject suffering from Obstructive Sleep Apnea disease, therefore the first study 

case on OSA was carried out by modifying the control subject to represent the OSA 

disease. As can be seen in Figure 3.11 (a), the normal nasal geometry was extended 

from nasopharynx region to include the constricted pharyngeal section (Figure 3.11 

(b)) to represent airway occlusion of the obstructive sleep apnea disease. The geometry 

was modified by using the Wireframe and Surface Design workbench in CATIA. The 

airway was modeled to have some area restrictions in the pharynx, which can be 

represented in terms of percentage stenosis. The details of the percentage stenosis 

developed for this model are further explained in Chapter 6.  

 

 

 

(a) (b) 

Figure 3.11: Modification of control subject to represent OSA disease; (a) normal 
nasal cavity, (b) upper airway with constricted pharyngeal representing OSA. 

 

 

 



52 

 

In the third case study, full geometry of human upper airway starting from 

nostril inlet until pharynx region were developed both for pre- and post-surgery as 

depicted in Figures 3.12 & 3.13 respectively. Figures 3.12 (a) and 3.13 (a) show the 

initially the STL files were imported into CATIA using the Digitized Shape Editor 

(DSE) workbench for surface model generation. Then the mesh surfaces were 

generated in the same workbench. The patient’s face has been removed in order to 

simplify the geometry and to reduce the computational cost.  

 

As shown in Figures 3.12 (b) and 3.13 (b), mesh surface editing was carefully 

carried out to preserve the original shape of the nasal cavity inlet. Similarly, the mesh 

surface was cleaned up to remove all defective mesh. In Figures 3.12 (c) and 3.13 (c), 

the mesh was then smoothen to improve the mesh quality before the surface generation. 

Figures 3.12 (d) and 3.13 (d) show the final 3D model of the diseased upper airway 

with OSA for both pre- and post-operative cases respectively, which have been 

developed using CATIA. 
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(a) (b) 

 
 

(c) (d) 

 

Figure 3.12: Steps involved in developing 3D model of the diseased human upper 
airway for the pre-operative case. 

 



54 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 3.13: Steps involved in developing 3D model of the diseased human upper 
airway for post-operative case. 
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For the second case study, the effect of obstruction in the nasal cavity due to 

several nasal diseases and the effect of the nasal surgical treatment on breathing pattern 

and airflow characteristics and particle deposition were investigated. The 3D model of 

the diseased nasal airway was obtained from the upper airway geometry. The three-

dimensional upper airway model of both pre and post-operative cases were modified 

by separating it into 2 parts namely, the nasal cavity region and the pharynx region. 

Figure 3.14 (a) shows the pre-operative nasal cavity model whereas Figure 3.15 (a) 

shows the post-operative nasal cavity model.  

 

 

 
 

(a) (b) 
Figure 3.14: The three-dimensional pre-operative upper airway model: (a) nasal 

cavity (b) pharynx. 
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(a) (a) 

  
Figure 3.15: The three-dimensional post-operative upper airway model: (a) nasal 

cavity (b) pharynx. 
 

3.3 Hybrid Mesh Generation Using ANSYS Workbench 

The 3D anatomical model of the human nasal cavity was imported into 

GAMBIT using STEP (*.stp) file format where the surface generated are detected as 

faces. The multiple faces are then stitched together to form a complete volume, which 

acts as the airflow domain. Before performing the face mesh generation, the nasal 

geometry was simplified by merging all the small faces into one face. This step is 

important in order to control the quality of the face and volume mesh of the domain to 

avoid creating a high aspect ratio and highly skewed mesh. A mesh with highly skewed 

cells can decrease accuracy and destabilize the solution. CFD simulation with 

structured grid usually gives faster solutions compared to unstructured grids. However, 

in the present case, as seen in Figure 3.16, due to the anatomical complex structure of 

the human upper airway, initially unstructured mesh consisting of tetrahedral elements 

was developed using GAMBIT.  
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Figure 3.16: Volume mesh of the 3D computational model of human nasal cavity.  

 

The complex geometry of nasal cavities requires a high-quality computational 

grid for resolving the airflow near the passage walls and to accurately model the 

particle-wall interactions. Hence, to improve numerical stability and accuracy, a 

hybrid mesh was generated with 1,580,000 elements, which consisted of a total 6 

layers of prism cells near the wall boundary and tetrahedral elements were generated 

at the core of the domain as depicted in Figure 3.17. The hybrid mesh was developed 

by using ANSYS FLUENT MESHING. The first cell height (y value) was calculated 

based on the dimensionless wall distance y+=1. This confirms that the mesh quality of 

the airway models used for numerical simulations is sufficient for resolving the 

turbulent boundary layers in the airway models. 

INLET 

OUTLET 

WALL 
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Figure 3.17: Hybrid mesh generated for the constricted pharyngeal representing 
OSA model.  

 

For the second and third case studies, the initial unstructured mesh were 

developed using ANSYS ICEM WORKBENCH. The 3D anatomical model of the 

human upper airway was imported into ICEM WORKBENCH using IGES (*.igs) file 

format where the surface generated are detected as faces as depicted in Figures 3.18 

(a) and 3.19 (a). Similarly, before performing the face mesh generation, the nasal 

geometry was simplified by merging all the small faces into one face. This step is 

important in order to control the quality of the face and volume mesh of the domain to 

avoid creating a high aspect ratio and skewed mesh. Figure 3.18 (b) shows the 

unstructured tetrahedral mesh generated for the pre-operative case and Figure 3.9 (b) 

shows for the post-operative case.  
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(a) 

 
(b) 

 

Figure 3.18: Unstructured tetrahedral mesh generation for the pre-operative nasal 
cavity model; (a) nasal model in IGES file format (b) volume mesh. 
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(a) 

 
(b) 

 

Figure 3.19: Unstructured tetrahedral mesh generation for the post-operative nasal 
cavity model; (a) nasal model in IGES file format (b) volume mesh. 
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Hybrid mesh were then generated by using ANSYS FLUENT MESHING with 

4456725 elements for pre-operative and 3167403 elements for post-operative model. 

A total of 5 layers of prism mesh near the wall boundary, and tetrahedral elements in 

the remaining flow domain were obtained from a grid independent study. A detail 

explanation on grid dependency study are included in Chapter 5.  

 

Figure 3.20 (a) and 3.21 (a) show the upper airway model in IGES file format 

for pre-operative and post-operative model respectively. Figures 3.20 (b) and 3.21 (b) 

show the unstructured tetrahedral mesh generated for the pre- and post-operative upper 

airway model with obstructive sleep apnea diseases. Hybrid mesh was then developed 

by using ANSYS FLUENT MESHING. A total of 4 layers of prism mesh near the wall 

boundary, and tetrahedral elements in the remaining flow domain were obtained from 

a grid independent study. A detail explanation on grid independent study are included 

in Chapter 7. 
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(a) (b) 

 
 

Figure 3.20: Tetrahedral mesh generation for pre-operative upper airway model.(a) 
upper airway model in IGES file format (b) volume mesh. 
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(a) (b) 

 

 
Figure 3.21: Tetrahedral mesh generation for post-operative upper airway model (a) 

upper airway model in IGES file format (b) volume mesh.  
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3.4 Calculation of First Grid Off the Wall, the y Values 

The region close to the wall is usually characterized in term of dimensionless 

variables with respect to the local conditions at the wall. If we let 𝑦 be the normal 

distance from the wall and 𝑈 be the time averaged velocity parallel to the wall, then 

the dimensionless velocity 𝑈+ and wall distance 𝑦+ can be appropriately described as 

𝑈/𝑢𝜏 and 𝑦𝜌𝑢𝜏/𝜇, respectively. This is called the law of the wall. By defining 𝑦+equal 

to 1, the first grid point off the wall 𝑦 value can be calculated by using the following 

equations (Versteeg & Malalasekera, 1995): 

 𝑦+ =
𝜌𝑢𝜏𝑦

𝜇
 (3.1) 

and  

 

 
𝑦 =

𝑦+𝜇

𝜌𝑢𝜏
 (3.2) 

where 𝜇 is the dynamic viscosity, 𝜌 is the air density, 𝑢𝜏 is the friction velocity at the 

nearest wall, and 𝑦  is the distance to the nearest wall. Within this dimensionless 

parameters, the wall friction velocity 𝑢𝜏 is defined with respect to the wall shear stress 

𝜏𝑤 

 
𝑢𝜏 = √

𝜏𝑤

𝜌
 (3.3) 
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where 𝜏𝑤 is the wall shear stress and 𝜌 is the air density. The wall shear stress 𝜏𝑤 is 

defined as 

 𝜏𝑤 =
𝐶𝑓𝜌𝑈2

2
 (3.4) 

where 𝐶𝑓 is the skin friction coefficient, 𝜌 is the air density, and 𝑈 is the air velocity. 

The skin friction coefficient 𝐶𝑓 is defined as 

 𝐶𝑓 = 0.079𝑅𝑒−0.25 (3.5) 

where 𝑅𝑒 is the Reynolds number.  

The Reynolds number 𝑅𝑒 is defined as  

 
𝑅𝑒 =

𝜌𝑈𝑑𝐻

𝜇
 (3.6) 

where 𝜌 is the air density, 𝑈 is the air velocity, 𝑑𝐻 is the hydraulic diameter and 𝜇 is 

the dynamic viscosity. The hydraulic diameter is defined as (Segal et al., 2008): 

 𝑑𝐻 =
4𝐴

𝑃
 (3.7) 

where 𝐴 is the cross section area at the pharynx section and 𝑃 is the wetted perimeter 

at the pharynx section. 
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3.4.1 Pre-Operative Upper Airway Computational Model 

By using the Equation 3.7, the hydraulic diameter 𝑑𝐻 was calculated based on 

the perimeter measured at the pharynx section as depicted in Figure 3.22. The 

perimeter was measured by using the measure item tool which is available in the CAD 

software named CATIA. As shown in Figure 3.22, the red color lines which represent 

the curve edges were measured by using the edge selection mode. In the measure item 

toolbox, the calculation mode was set to exact, which means only exact measured 

value will be considered. The perimeter at the pharynx was then calculated by adding 

the measured length of each curve edges as shown in Figure 3.22. For the Pre-

Operative OSA case, the perimeter obtained at pharynx section is 𝑃𝑝ℎ𝑎𝑟𝑦𝑛𝑥 = 29.84 

mm. The cross-section area obtained at the pharynx section is, 𝐴𝑝ℎ𝑎𝑟𝑦𝑛𝑥 =

6.124 × 10−5 m2. Hence, the hydraulic diameter calculated for the pre-operative OSA 

case is 𝑑𝐻 = 8.21×10-3 m.  
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Figure 3.22: The measured perimeter at the pharynx section for pre-operative case.  
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The air velocity 𝑈 were calculated based on the volume flow rate 𝑄 defined at 

the inlet boundary condition and the cross-section area obtained at the pharynx section. 

By using Equation 3.6, the Reynolds number 𝑅𝑒 were calculated for all flow rates 

ranging from 7.5 to 60 L/min. The air density is 𝜌 = 1.225 kg/m3  , the dynamics 

viscosity is 𝜇 = 1.7894×10-5 kg/ms and the hydraulic diameter is 𝑑𝐻 = 8.21×10-3 m. 

By using Equation 3.1 to 3.5, the skin friction coefficient 𝐶𝑓, the wall shear stress 𝜏𝑤, 

the friction velocity at the nearest wall 𝐶𝑓 and the first grid point off the wall 𝑦 were 

calculated. Table 3.1 shows the summary of first grid point off the wall value for pre-

operative cases.  

 

Table 3.1: First grid point off the wall, y value for pre-operative OSA. 

Volume 
Flow 
Rate, 

(L/min) 

Velocity
, (m/s) 

Reynolds 
Number 

Skin 
friction 

coefficient 

Wall 
Shear 
Stress, 
(Pa) 

Friction 
velocity at 
the nearest 
wall, (m/s) 

First grid 
point off 
the wall, 

(mm) 

4 1.089 605 - - - - 

7.5 2.041 1147 - - - - 

10 2.722 1529 - - - - 

20 5.443 3059 0.011 0.192 0.396 0.037 

30 8.165 4589 0.010 0.392 0.566 0.026 

40 10.886 6118 0.009 0.646 0.726 0.020 
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3.4.2 Post-Operative Upper Airway Computational Model 

For the post-operative model, similarly, by using Equation 3.7, the hydraulic 

diameter 𝑑𝐻  was calculated based on the pharynx perimeter obtained by using the 

measure item tool in CATIA. Figure 3.23 shows the measured perimeter at the pharynx 

section for the post-operative geometry. For the post-operative geometry, the perimeter 

obtained at the pharynx section is 𝑃𝑝ℎ𝑎𝑟𝑦𝑛𝑥 = 34.30 mm  . The cross-section area 

obtained at the pharynx section is 𝐴𝑝ℎ𝑎𝑟𝑦𝑛𝑥 = 7.685 × 10−5 m2. Hence, the hydraulic 

diameter calculated for post-operative OSA case is 𝑑𝐻 = 8.964×10-3 m.  
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Figure 3.23: The measured perimeter at the pharynx section for post-operative case.  
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Table 3.2: First grid point off the wall, y value for post-operative OSA. 

Volume 
Flow 
Rate, 

(L/min) 

Velocity, 
(m/s) 

Reynolds 
Number 

Skin 
friction 

coefficient 

Wall 
Shear 
Stress, 
(Pa) 

Friction 
velocity at 
the nearest 
wall, (m/s) 

First grid 
point off 
the wall, 

(mm) 

4 0.867 532 - - - - 

7.5 1.627 998 - - - - 

10 2.169 1331 - - - - 

20 4.337 2661 0.011 0.127 0.322 0.045 

30 6.506 3992 0.010 0.257 0.458 0.032 

0 8.675 5323 0.009 0.424 0.588 0.025 

 

The air velocity 𝑈 were calculated based on the volume flow rate 𝑄 defined at 

the inlet boundary condition and the cross-section area obtained at the pharynx section. 

By using Equation 3.6, the Reynolds number 𝑅𝑒 were calculated for all flow rates 

ranging from 7.5 to 60 L/min. The air density is 𝜌 = 1.225 kg/m3 , the dynamics 

viscosity is 𝜇 = 1.7894×10-5kg/ms and the hydraulic diameter is 𝑑𝐻 = 8.964×10-3m. 

By using Equations 3.1 to 3.5, the skin friction coefficient 𝐶𝑓, the wall shear stress 𝜏𝑤, 

the friction velocity at the nearest wall 𝐶𝑓 and the first grid point off the wall 𝑦 were 

calculated. Table 3.1 shows the summary of first grid point off the wall value for post-

operative cases. 
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CHAPTER 4 

 

NUMERICAL SIMULATION METHODOLOGY 

 

4.1 Overview 

This chapter presents the governing equation for the fluid phase and particle 

phase used to solve the numerical simulation of airflow and the transport and 

deposition of the inhaled particles in the diseased human upper airway model. The type 

of boundary condition defined on the computational domain and assumption made 

during simulation were also explained. The numerical methods used and the 

convergence criteria are also briefly discussed.   

 

4.2 Governing Equations for Fluid Phase 

CFD is fundamentally based on the governing equations of fluid dynamics. 

They represents mathematical statements of the conservation laws of physics, 

consisting of the continuity equation, three momentum equations and an energy 

equation which is also called the full Navier-Stokes equation. 

 

4.2.1   General Equations for Fluid Phase 

The CFD approach consists of solving the continuity and momentum equations 

in each cell of the discretized computational domain. For a general fluid property 

defined by 𝜙, the governing equations of fluid flow for an incompressible fluid, such 
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as the airflow in the respiratory system, can be cast into the so-called transport equation 

form as (Versteeg & Malalasekera, 1995): 

 

𝜕𝜙

𝜕𝑡
+

𝜕(𝑢𝜙)

𝜕𝑥
+

𝜕(𝑣𝜙)

𝜕𝑦
+

𝜕(𝑤𝜙)

𝜕𝑧

=
𝜕

𝜕𝑥
[Γ

𝜕𝜙

𝜕𝑥
] +

𝜕

𝜕𝑦
[Γ

𝜕𝜙

𝜕𝑦
] +

𝜕

𝜕𝑧
[Γ

𝜕𝜙

𝜕𝑧
] + 𝑆𝜙 

(4.1) 

 

where 𝑡 is time, 𝑢, 𝑣, 𝑤 represents velocity components, Γ is the diffusion coefficient, 

and 𝑆𝜙 which is a general source term that may represent external variables. These 

source terms may include pressure and non-pressure gradient terms, gravity that 

influence the fluid motion and heat source sources or sinks within the flow domain, to 

name a few. Equation 4.1 represents the transport process of the fluid properties and 

hence is also known as the transport equations. In words, Equation 4.1 can be read as 

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 
𝜙 𝑖𝑛 𝑎 𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 + 

𝑁𝑒𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑜𝑓 
𝜙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑓𝑙𝑢𝑖𝑑  

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
= 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 
𝑜𝑓 𝜙 𝑑𝑢𝑒 𝑡𝑜 
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

+ 
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 

𝑜𝑓 𝜙 𝑑𝑢𝑒 𝑡𝑜 
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 

𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

Local acceleration  Convection  Diffusion    Source terms 

 

Equation 4.1 is commonly used as the starting point for computational procedures in 

the finite volume methods. By setting the property 𝜙 equal to 1, 𝑢, 𝑣, 𝑤 and 𝑇 and 

selecting appropriate value for the diffusion coefficient Γ, one can obtain the partial 

differential equations for the conservation of mass, momentum, and energy as shown 

in Table 4.1. 
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Table 4.1 The Navier-Stokes equations for the incompressible flow 

 

 

Conservation of mass (𝜙 = 1) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (4.2) 

Conservation of Momentum (𝜙 = 𝑢, 𝑣, 𝑤) 

𝜕𝑢

𝜕𝑡
+

𝜕(𝑢𝑢)

𝜕𝑥
+

𝜕(𝑣𝑢)

𝜕𝑦
+

𝜕(𝑤𝑢)

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
[𝜈

𝜕𝑢

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜈

𝜕𝑢

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜈

𝜕𝑢

𝜕𝑧
] + 𝑆𝑢 

(4.3) 

𝜕𝑣

𝜕𝑡
+

𝜕(𝑢𝑣)

𝜕𝑥
+

𝜕(𝑣𝑣)

𝜕𝑦
+

𝜕(𝑤𝑣)

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
[𝜈

𝜕𝑣

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜈

𝜕𝑣

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜈

𝜕𝑣

𝜕𝑧
] + 𝑆𝑣 

(4.4) 

𝜕𝑤

𝜕𝑡
+

𝜕(𝑢𝑤)

𝜕𝑥
+

𝜕(𝑣𝑤)

𝜕𝑦
+

𝜕(𝑤𝑤)

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑥
[𝜈

𝜕𝑤

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝜈

𝜕𝑤

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝜈

𝜕𝑤

𝜕𝑧
] + 𝑆𝑤 

(4.5) 

 

 

4.2.2   Reynolds-Averaged Navier-Stokes Equations 

Turbulent flows are characterized by fluctuating velocity fields. These 

fluctuations mix transported quantities such as momentum, energy, and species 

concentration, and cause the transported quantities to fluctuate as well. Since these 

fluctuations can be of small scale and high frequency, they are too computationally 

expensive to simulate directly in practical engineering calculations. Instead, the 

instantaneous governing equations can be time-averaged, ensemble-averaged, or 

otherwise manipulated to remove the small scales, resulting in a modified equation 
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contain additional unknown variables, and turbulence models are needed to determine 

these variables in terms of known quantities. The additional terms in the governing 

equations need to be modeled in order to achieve “closure” which means that there are 

sufficient number of equations for all the unknowns.  

 

The Reynolds-Average Navier-Stokes (RANS) equations represent transport 

for the mean flow quantities only, with all the scales of the turbulence being modeled. 

The approach of permitting a solution for the mean flow variables greatly reduces the 

computational effort. Osborne Reynolds first introduced the concept of Reynolds 

decomposition. In this concept, the solution variables in the instantaneous Navier-

Stokes equations which defines 𝜙 are decomposed into the sum of a steady mean 

component �̅� (ensemble averaged or time average) and a fluctuating component 𝜙′(𝑡) 

(ANSYS FLUENT Theory Guide, 2009): 

 𝜙(𝑡) = �̅� + 𝜙′(𝑡) (4.6) 

Substituting expression of this form for the flow variables into the Navier-Stokes 

equations in Table 4.1 produces the Reynolds-Averaged Navier-Stokes (RANS) 

equations.  

 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 (4.7) 
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𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗)

= −
𝜕𝑝

𝜕𝑥𝑖
+ [𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑙

𝜕𝑥𝑙
)]

+
𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) 

(4.8) 

where �̅�𝑖 and 𝑢𝑖
′ are the mean velocity and fluctuating velocity, respectively. Equation 

4.7 and 4.8 represent the Reynolds-averaged Navier-Stokes (RANS) equations. They 

have the same general form as the instantaneous Navier-Stokes equations, with the 

velocities and other solution variables now representing ensemble-average (or time-

average) values. Additional terms now appear that represent the effects of turbulence. 

Then Reynolds stresses −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ , must be modeled in order to close Equation 4.8. 

 

The Reynolds-averaged approach to turbulence modeling requires that the 

Reynolds stresses in Equation 4.8 be appropriate modeled. A common method 

employs the Boussinesq hypothesis to relate the Reynolds stresses to the mean velocity 

gradients: 

 
−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
) 𝛿𝑖𝑗  (4.9) 

The advantage of this approach is the relatively low computational cost associated with 

the computation of the turbulent viscosity, 𝜇𝑡. The disadvantage of the Boussinesq 

hypothesis as presented is that it assumes 𝜇𝑡 is an isotropic scalar quantity, which is 

not strictly true. 
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In the present study, simulation is based on the numerical solution of the 

Reynolds Average Navier-Stokes equation representing the general equation for 3D 

flow of incompressible and viscous fluids. The SST k − ω turbulence model, a two-

equation turbulence model was employed. The shear stress transport (SST) k − ω 

model was developed by Menter, (1994) to effectively blend the robust and accurate 

formulation of the k − ω  model in the near wall region with the free stream 

independence of the k − ε model in the far field. To achieve this, the k − ε model is 

converted into k − ω formulation. The SST k − ω model accounts for transport of 

turbulent shear stress and gives highly accurate predictions of the amount of flow 

separation under adverse pressure gradient. The SST model is blend between the k −

ω  turbulence model, which is applicable near the walls, and the k − ε  turbulence 

model which is applied at the core of the computational domain. Therefore, SST 

combines the advantages of both the k − ε and k − ω methods. The combination is 

ideal for a flow in a complex geometry like the nasal cavity (Liu, Matida, Gu, & 

Johnson, 2007). The suitability of SST k − ω model also has been experimentally 

validated by (Mylavarapu et al., 2009b). 

 

The shear-stress transport (SST) k − ω model was developed by Menter to 

effectively blend the robust and accurate formulation of the k − ω model in the near-

wall region with the freestream independence of the k − ε model in the far field. To 

achieve this, k − ε  model is converted into a k − ω  formulation. The SST k − ω 

model is similar to the standard k − ω model, but includes the following refinements. 

First, the standard k − ω and the transformed k − ε model are both multiplied by a 

blending function and both models are added together. The blending function is 
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designed to be one in the near-wall region, which activates the standard k − ω model, 

and zero away from the surface, which activates the transformed k − ε model. Second, 

the SST model incorporates a damped cross-diffusion derivative term in the ω 

equation. Third, the definition of the turbulent viscosity is modified to account for the 

transport of the turbulent shear stress. Fifth, the modeling constants are different. These 

features make the SST k − ω model more accurate and reliable for a wider class of 

flows, for example, adverse pressure gradient flows, than the standard k − ω model. 

The suitability of SST k − ω model has been experimentally validated by (Liu et al., 

2007) and (Mylavarapu et al., 2009b). 

The transport equations for the SST k − ω model can be defined as (ANSYS FLUENT 

Theory Guide, 2009) 

 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (4.10) 

 
𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖

(𝜌𝜔𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(Γ𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔 (4.11) 

 

In Equations 4.10 and 4.11, the term 𝐺𝑘 is the production of turbulence kinetic energy 

due to mean velocity gradients, and is defined as  

 
𝐺𝑘 = −𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑢𝑗

𝜕𝑥𝑖
 (4.12) 

 

To evaluate 𝐺𝑘 in a manner consistent with the Boussinesq hypothesis, 
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 𝐺𝑘 = 𝜇𝑡𝑆2 (4.13) 

In Equation 4.13, 𝑆 represents the modulus of the mean rate-of-strain tensor, which 

can be defined as 

 
𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗 (4.14) 

The term 𝐺𝜔  is the generation of the turbulence specific dissipation rate, 𝜔  and is 

given by 

 
𝐺𝜔 =

𝛼

𝑣𝑡
𝐺𝑘 (4.15) 

In Equation 4.15, the coefficient 𝛼 is defined by 

 
𝛼 =

𝛼∞

𝛼∗
(

𝛼0 + 𝑅𝑒𝑡/𝑅𝜔

1 + 𝑅𝑒𝑡/𝑅𝜔
) (4.16) 

 𝑅𝜔 = 2.95. 𝛼∗ (4.17) 

 
𝛼∗ = 𝛼∞

∗ (
𝛼0

∗ + 𝑅𝑒𝑡/𝑅𝑘

1 + 𝑅𝑒𝑡/𝑅𝑘
) (4.18) 

 𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
 (4.19) 

where 𝑅𝑘 = 6, 𝛼0
∗ = 𝛽𝑖/3 and 𝛽𝑖 = 0.072. The terms Γ𝑘 in Equations 4.10 represents 

the effective diffusivity 𝑘 while the term Γ𝜔 in Equation 4.11 represents the effective 

diffusivity of and 𝜔. The effective diffusivity for 𝑘 and 𝜔 can be defined by: 
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 Γ𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 (4.20) 

 Γ𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
 (4.21) 

In Equation 4.20, the term 𝜎𝑘 represents the turbulent Prandtl number for 𝑘 while the 

term 𝜎𝜔  is the turbulent Prandtl number for and 𝜔 . The turbulent viscosity, 𝜇𝑡  is 

computed as follows: 

 
𝜇𝑡 =

𝜌𝑘

𝜔

1

𝑚𝑎𝑥 [
1

𝛼∗ ,
Ω𝐹2

𝛼1𝜔]
 (4.22) 

In Equation 4.22, the term Ω is the strain rate magnitude and is given by  

 Ω ≡ √2Ω𝑖𝑗Ω𝑖𝑗 (4.23) 

 
𝜎𝑘 =

1

𝐹1

𝜎𝑘,1
+ (1 − 𝐹1)/𝜎𝑘,2

 (4.24) 

 

𝜎𝜔 =
1

𝐹1

𝜎𝜔,1
+ (1 − 𝐹1)/𝜎𝜔,2

 (4.25) 

In Equation 4.23, Ω𝑖𝑗 is the mean rate-of rotation tensor while the coefficient 𝛼∗ is 

given in Equation 4.18. The blending functions, 𝐹1 and 𝐹2 are defined by 

 𝐹1 = 𝑡𝑎𝑛ℎ(Φ1
4) (4.26) 

 
Φ1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (

√𝑘

0.09𝜔𝑦
,

500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2

] (4.27) 
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𝐷𝜔

+ = 𝑚𝑎𝑥 [2𝜌
1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10] (4.28) 

 𝐹2 = 𝑡𝑎𝑛ℎ(Φ2
2) (4.29) 

 
Φ2 = 𝑚𝑎𝑥 [2

√𝑘

0.09𝜔𝑦
,

500μ

𝜌𝑦2𝜔
] (4.30) 

 

In Equation 4.27, 𝑦 represents the distance to the next surface and 𝐷𝜔
+ represents the 

positive portion of the cross-diffusion term. 

𝐷𝜔
+ = 2(1 − 𝐹1)𝜌𝜎𝑤,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (4.31) 

The term 𝑌𝑘represents the dissipation of the turbulence kinetic energy and is given by 

 𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔 (4.32) 

For SST  k − ω model, 𝑓𝛽∗ =1. Thus, 

 𝑌𝑘 = 𝜌𝛽∗𝑘𝜔 (4.33) 

In Equation 4.34, 𝑌𝜔 is the dissipation of 𝜔, and is given by 

 𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2 (4.34) 

For SST  k − ω model, 𝑓𝛽 = 1. Thus 

 𝑌𝜔 = 𝜌𝛽𝜔2 (4.35) 
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𝛽 = 𝛽𝑖 [1 −

𝛽𝑖
∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)] (4.36) 

For SST  k − ω model,𝛽𝑖 

 𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2 (4.37) 

In Equation 4.37, βi,1 = 0.075,  βi,2 = 0.0828 and F1 is calculated from the Equation 

4.26. The SST  k − ω  model, is based on both the standard k − ω  model and the 

standard k − ε model. To blend these two models together, the standard k − ε model 

has been transformed into equations based on k and ω, which leads to the introduction 

of a cross diffusion term Dω. In Equation 4.11, Dω is defined as  

 
𝐷𝜔 = 2(1 − 𝐹1)𝜌

1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (4.38) 

The values of constants are as follows: 

𝜎𝑘,1 = 1.176 

𝜎𝜔,1 = 2.0 

𝜎𝑘,2 = 1.0 

𝜎𝜔,2 = 1.168 

𝛼1 = 0.31 

𝛽𝑖,1 = 0.075 

𝛽𝑖,2 = 0.0828 
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All additional model constants (𝛼∞
∗ , 𝛼∞, 𝛼0, 𝛽∞

∗ , 𝑅𝑘, 𝑅𝜔 , 𝜁∗, 𝑎𝑛𝑑 𝑀𝑡0) have the similar 

values when compared with that of the standard k − ω model. 

𝛼∞
∗ = 1 

𝛼∞ = 0.52 

𝛼0 =
1

9
 

𝛽∞
∗ = 0.09 

𝑅𝑘 = 6 

𝑅𝜔 = 2.95 

𝜁∗ = 1.5 

𝑀𝑡0 = 0.25 

 

 

4.3 Governing Equation for Particle Phase 

Generally, the fluid-particle flows can be investigated by utilizing the Eulerian-

Lagrangian or Eulerian-Eulerian approaches. However, in the presents work, only the 

Eulerian-Lagrangian model was used. The Lagrangian particle tracking approach 

which is available in the CFD commercial software, ANSYS FLUENT, is used to track 

the particle dispersion along the trajectory. A one-way coupling assumption for 

particle transport was used as the concentration in the inhaled air is considered dilute. 

This means that the airflow transports the particle, but the effect of the particles on the 

flow is negligible and can be ignored. With this assumption, the airflow field is first 

evaluated and then used for particle trajectory analysis. The wall was set as the trap 

boundary. To achieve the uniform droplet concentration assumption, droplets were 

released at the same velocity as the free stream. It is assumed that the droplets will not 
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affect the fluid flow (one-way coupling) as the volume fraction of the droplets is 

relatively low which is less than 10% (Inthavong et al., 2009).  

 

 

In the present work, the micro-particle deposition calculations were performed 

using a Lagrangian approach. This model tracks individual particles within the flow 

field. The primary advantage of this method is that a variety of forces, such as inertia, 

diffusivity and gravity terms, can be considered directly. Therefore, this model is 

appropriate for micro-particles; their inertia has a noticeable effect on their motion. 

Taking the above assumptions into consideration, the Lagrangian equations governing 

the particle motion can be written as: 

 
𝑑𝑥𝑝

𝑑𝑡
= 𝑢𝑝 (4.39) 

 
𝑑𝑢𝑝

𝑑𝑡
= 𝐹 (4.40) 

The left hand side of Equation 4.40 represents the acceleration term or the inertial force 

per unit mass, 𝑥𝑝 in Equation 4.39 is the particle position, and 𝑢𝑝 is the velocity of the 

particle. In Equation 4.40, F represents all the body forces and surface forces acting on 

the particle. An example of a body force acting on the mass of the particle is gravity, 

while the surface forces are due to drag. 

 𝐹 = 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑥 (4.41) 

Additional source terms for the particle equation, such as the Brownian force and the 

Saffman lift force, are not included as the particles concerned are substantially greater 
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than submicron particles. The gravity force was also not considered. Hence the 

trajectories of the individual particles can be tracked by integrating the force balance 

equations on the particle as written below: 

 
𝑑𝑢𝑝

𝑑𝑡
= 𝐹𝐷(𝑢𝑔 − 𝑢𝑝) (4.42) 

In Equation 4.42, 𝑢𝑝 is the particle velocity vector and 𝑢𝑔is the air velocity vector.  

 

The drag force per unit particle mass is expressed as 

 
𝐹𝐷 =

18𝑢𝑔

𝜌𝑝𝑑𝑝
2

𝑐𝐷𝑅𝑒𝐷

24
 (4.43) 

In Equation 4.43, 𝜇𝑔 is the fluid dynamic viscosity and 𝑑𝑝is the particle diameter. As 

shown in Equation 4.44, 𝑅𝑒𝑝 is the particle’s Reynolds number which can be defined 

by: 

 
𝑅𝑒𝑝 =

𝜌𝑝𝑑𝑝|𝑢𝑔 − 𝑢𝑝|

𝜇𝑔
 (4.44) 

FLUENT employs drag coefficient  𝑐𝐷 by (Morsi & Alexander, 2006): 

 
𝑐𝐷 = 𝑎1 +

𝑎2

𝑅𝑒
+

𝑎3

𝑅𝑒𝑝
2 (4.45) 

In Equation 4.45, 𝑎1, 𝑎2 and 𝑎3 are constants that apply to smooth spherical particle 

in a stipulated range of 𝑅𝑒𝑝 as given in the Table 4.2 (Jayaraju, 2009; Karakosta et al., 

2013). Figure 4.1 shows the comparison of two formulations used by Schiller and 

Neumann, (1933) and Morsi & Alexander, (2006) for 𝑐𝐷 with the experimental data of 
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Schlicthing, (1979). As can be seen In Figure 4.1, both models follow the same pattern 

of 𝑐𝐷 obtained by Schlicthing (1979) until 𝑅𝑒𝑝 = 1000, after that, the model of Morsi 

& Alexander, (2006) shows good agreement with Schlicthing (1979) . However, the 

𝑅𝑒𝑝 obtained in the current work are in the range of 101 − 103, hence, both developed 

formulas can be used. By referring to the Table 2.4, based on the calculated particle 

Reynolds number, the constants values obtained are as follows: a1= 1.222, a2= 29.1667, 

and a3= -3.8889. 

 

Figure 4.1: Drag coefficient for spheres as a function of 𝑅𝑒𝑝. 

 

 

Table 4.2: Constants for different intervals of the Reynolds number for the Morsi & 
Alexander, (2006) drag model. 

Rep a1 a2 a3 

0< 0.1 0 24 0 

0.1 < 1.0 3.69 22.73 0.0903 

1 < 100.0 1.222 29.1667 -3.8889 
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10.0 < 100.0 0.6167 46.5 -116.67 

100.0 < 1000.0 0.3644 98.33 -2778 

1000.0 < 5000.0 0.357 148.62 -4.75 

5000.0 < 10000.0 0.46 -490.546   57.87 

10000.0 < 
50000.0 

0.5191 -1662.5 5.4167 

 

4.4 Numerical Solver Procedure 

The governing transport equations were discretized using the control volume-

based technique. The domain is discretized into control volumes based on the created 

computational mesh. The governing equations were converted into an integral form to 

allow integration of the equation on each computational mesh. A set of algebraic 

equations of dependent variables such as velocities, pressure and temperature are then 

set up and solved. Discretization of the governing equations can be illustrated most 

easily by considering the steady-state conservation equation for transport of a scalar 

quantity Ф. This is demonstrated by the following equation written in integral form for 

an arbitrary control volume V as follows: 

 
∮ 𝜌𝜙�⃗�. 𝑑𝐴 = ∮ Γ𝜙∇𝜙. 𝑑𝐴 + ∫ 𝑆𝜙𝑑𝑉

𝑉

 (4.46) 

where 𝜌  is density, �⃗�  is velocity vector, 𝐴  is surface area vector, Γ𝜙  is diffusion 

coefficient for 𝜙, ∇𝜙 is gradient of 𝜙, and 𝑆𝜙 is source of 𝜙 per unit volume. Equation 

4.46 is applied to each control volume in the computational domain. The two-
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dimensional, triangular cell shown in Figure 4.2 is an example of such a control 

volume. Discretization of Equation 4.46 on a given cell yields 

 
∑ 𝜌𝑓�⃗�𝑓𝜙𝑓 . 𝐴𝑓 = ∑ Γ𝜙(∇ϕ)𝑛. 𝐴𝑓 + 𝑆𝜙

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝑉 (4.47) 

where 𝑁𝑓𝑎𝑐𝑒𝑠 is the number of faces enclosing cell, 𝜙𝑓  is the value of 𝜙 convected 

through face 𝑓, 𝜌𝑓�⃗�𝑓𝜙𝑓 . 𝐴𝑓 is the mass flux through the face, 𝐴𝑓 is the area of face 𝑓, 

(∇ϕ)𝑛 is the magnitude of ∇ϕ normal to face 𝑓 and 𝑉 is the cell volume. 

 

 

Figure 4.2: Control volume used to illustrate Discretization of a scalar transport 

equation. 

 

FLUENT stores discrete values of the scalar 𝜙 at the cell centers (𝑐0 and 𝑐1 in 

Figure 4.2). However, face values 𝜙𝑓 are required for the convection terms in Equation 
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4.47 and must be interpolated from the cell center values. This is accomplished by 

using an upwind scheme. The upwind differencing scheme takes into account the flow 

direction when determining the value at a cell face. The convected value of 𝜙 at a cell 

face is taken to be equal to the value at the upstream node. Upwinding means that the 

face value 𝜙𝑓 is derived from quantities in the cell upstream, or upwind, relative to the 

direction of the normal velocity 𝑣𝑛 in Equation 4.47.  

 

In the first order upwind scheme, the quantities at cell faces are determined by 

assuming that the cell-center values of any field variable represent a cell-average value 

and hold throughout the entire cell. The face quantities are identical to the cell 

quantities. Hence, the face value 𝜙𝑓 is set equal to the cell-center value of 𝜙 in the 

upstream cell. In the second-order upwind scheme, quantities at cell faces are 

computed using a multidimensional linear reconstruction approach. In this approach, 

higher-order accuracy is achieved at cell faces through a Taylor series expansion of 

the cell-centered solution about the cell centroid. Thus when second-order upwinding 

is selected, the face value 𝜙𝑓 is computed using the following expression: 

 𝜙𝑓 = 𝜙 + ∇𝜙. ∆𝑠 (4.48) 

where 𝜙 and ∇𝜙 are the cell-centered value and its gradient in the upstream cell, and 

∆𝑠 is the displacement vector from the upstream cell centroid to the face centroid. This 

formulation requires the determination of the gradient ∇𝜙 in each cell. This gradient 

is computed using the divergence theorem, which in discrete form is written as 
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∇𝜙 =

1

𝑉
∑ �̃�𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝐴 (4.49) 

here the face values �̃�𝑓 are computed by averaging 𝜙 from the two cells adjacent to 

the face. Finally, the gradient  ∇𝜙 is limited so that no new maxima or minima are 

introduced. 

 

In this work, first order upwind and second order upwind scheme were used. 

Initially, the first order upwind scheme was used to stabilize the flow. Smaller under 

relaxation factor value was applied in order to gain flow stability. After the first order 

converged, the second order upwind scheme was then utilized to accomplish higher 

order accuracy of the flow solution. The quality of the second order upwind scheme 

has been proved for its reliability and accuracy in evaluating the scalar variables on 

unstructured meshes (FLUENT User manual). 

 

The segregated pressure-based solver within FLUENT was chosen which 

solved the governing equations. The pressure-based approach is suitable for low-speed 

incompressible flows. In this pressure-based method, the velocity is obtained from the 

momentum equations, the pressure field is extracted by solving a pressure or pressure 

correction equation which is obtained by manipulating continuity equations. Figure 

4.3 shows the flow chart of the iteration procedure based on the segregated pressure-

based solution method. In the present study, the SIMPLE algorithm was used to obtain 
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the relationship between velocity and pressure corrections to enforce mass 

conservation and also to obtain the pressure.  

 

 

Figure 4.3: Pressure-based solution method. 

 

The trajectories of the discrete particle injections can be computed without 

impacting the continuous phase. In turbulent flows, trajectories can be based on time-

averaged continuous phase velocities or they can be impacted by instantaneous 

velocity fluctuations in the fluid. The particle trajectory can either be solved by using 

coupled or uncoupled method. The coupled tracking method allows particles to interact 

Update fluid properties: 
Eg: Density, Viscosity, 

Turbulent viscosity 

Solve sequentially:  
Uvel, Vvel, Wvel 

Solve pressure-correction 
(continuity) equation 

Update mass flux, pressure, 
and velocity 

Solve energy, species, turbulence, and 
other scalar equations 

Converged? Stop Yes No 
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with the fluid flow and affect the flow solution. In this research work, the uncoupled 

trajectory calculation method was used with stochastic tracking.  

 

Figure 4.4 shows the flow chart of the particle trajectory calculations based on 

the uncoupled discrete phase calculation method. In this method, first the continuous 

flow field will be solved. Then the particle trajectories for the discrete phase injections 

will be calculated. This procedure is considered acceptable when the discrete phase is 

present at a low mass and momentum loading, in which case the continuous phase is 

not impacted by the presence of the discrete phase. 

 

 

Figure 4.4: Uncoupled discrete phase calculation method. 

 

The trajectory of each particle was computed over a large number of steps as 

it passes through the flow domain. Step length factor indicates the total number of 

steps each particle should make across a grid cell and maximum number of steps define 

the limit for the number of steps. If the maximum number of steps in too small, some 

particles will be terminated too early before they can reach the outlet or wall boundary. 

This particle will be reported as incomplete in FLUENT. Fluent also reported the 

Continuous phase flow field calculation 

 

Particle trajectory calculation 
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number of particles tracked, escaped, aborted, trapped and incomplete. The maximum 

number of steps can be used to stop the solver being trapped in a continuous loop when 

particles are trapped in a recirculation region in the computational domain. To model 

the effects of turbulent fluctuations on particle motion, a random walk method was 

employed. The tracking parameters used in this research work were 60,000 for the 

maximum number steps and 5 for the step length factor. 

 

4.5 Boundary Condition Definition 

The summary of boundary conditions defined in the case study are as depicted 

in Table 4.3. The nasal wall was assumed to be rigid and the simulation ignored the 

presence of mucus, a no-slip boundary condition was defined at the walls. 

 

Table 4.3: Summary of the boundary conditions. 

 Boundary Condition Discrete Phase Model 
Conditions 

Inlet Mass flow inlet Escape 

Outlet Outflow Escape 

Wall No slip Trap 
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The mass flow rate boundary condition was imposed at the nostril inlet and 

outflow boundary was defined at the pharynx outlet. Since the velocity and pressure 

at the pharynx are not known prior to the solution of the flow problem, we used outflow 

boundary condition to model the pharynx exit during inspiration. Outflow boundary 

condition assumes that flows is fully developed in the direction perpendicular to the 

outflow boundary surface. Outflow boundary condition also assumes a zero-normal 

gradient for all flow variables except pressure. For the DPM conditions, Escape 

boundary condition was imposed at the inlet and outlet. When the particle meets the 

inlet or outlet boundary, the escape boundary condition assumed the particle leaves the 

domain, hence stop the particle tracking. Figure 4.5 shows the illustrations for the 

escape boundary condition. 

 

 

Figure 4.5: Escape boundary condition for the discrete phase. 

 

The trap DPM boundary condition was defined at the wall surface. When the 

particle strike the flow boundary face, the trap boundary condition assumed the particle 

is removed, but its current mass and energy is imparted to the gas phase. The trajectory 

calculations are terminated and the fate of the particle is recorded as trapped. Figure 

Particle vanishes 
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4.6 shows the illustration of the trap boundary condition for the discrete phase 

modeling. The particle rebounding from the surfaces was neglected, the particle was 

assumed to be trapped or deposited on the wall surface when the distance between the 

particle center and the wall surface was less than or equal to the particle radius.  

 

Figure 4.6: Illustration of the particle deposition with trap boundary condition. 

 

Particle deposition was found by adding up the trapped particles. The regional 

deposition of microparticles in human airways can be quantified in terms of the 

deposition fraction (DF) or total deposition efficiency (TDE) in a specific region (e.g. 

nasal valve, nasal vestibule, main airway, and etc.) (Z. Zhang, Kleinstreuer, Donohue, 

& Kim, 2005). They can be defined as: 

DF𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑒𝑔𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑠𝑡𝑟𝑖𝑙
× 100% (8.50) 

TDE𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑖𝑟𝑤𝑎𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑠𝑡𝑟𝑖𝑙
× 100% (2.51) 

For the first study case, inspiratory steady state laminar and turbulent airflow 

simulations were modelled. The airflow was assumed to be laminar for flow rates of 

7.5L/min and 10L/min and turbulent boundary condition were imposed on flow rate 

up 

rp 

Deposited particle 
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of 20-40L/min. This was in general agreement with previous researchers  who 

determined laminar nature of the flow, for flow less than 15L/min (Riazuddin et al., 

2011; Segal, Kepler, & Kimbell, 2008; Wen, Inthavong, Tu, & Wang, 2008; Zubair et 

al., 2013; Zubair et al., 2010). Table 4.4 shows the summary of the particle injection 

properties defined in the case study. This injection properties defines the release 

conditions for the injected particles. By defining a surface injection type, one particle 

stream is released from each cell on the inlet surface. Uniform sized spherical particles 

ranging from 1 to 40 µm with a density of 600 kg/m3 were simulated. The particles 

were considered to be inert and the interaction between particles were ignored. Initial 

particle velocities were assumed to be equal to the average fluid velocity at the nostril. 

 

Table 4.4: Summary of the particle injection properties. 

Particle diameter 1,5, 10, 20, 40 µm (monodisperse) 

Particle type Inert 

Particle density 600 kg/m3 

Particle velocity Velocity at nostril inlet 

Injection type Surface injection-particle released from each facet of the 
surface 

 

As listed in Table 4.5, the following assumptions were invoked for the particle 

simulation. Micro-particles with aerodynamic diameters in the range of 1-40 µm were 

simulated to examine a wide range of nasal deposition efficiency. Local deposition 

fraction was also investigated by calculating the ratio of the number of trapped 

particles to the number of particles entering the nostril during inhalation. 
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Table 4.5: Assumptions for the particle modelling. 

1. Particle is sphere 

2. One way coupling 

3. Particle-particle interactions are neglected. 

4. The particle rotational and thermophoretic forces are assumed to be zero 

5. The particles deposit as soon as they touch the wall. 

 

 

4.5 Convergence Criteria 

The residual is one of the most fundamental measures of an iterative solution`s 

convergence, as it directly quantifies the error in the solution of the system equations. 

In a CFD analysis, the residual measures the local imbalance of a conserved variable 

in each control volume. Therefore, every cell in the computational model will have its 

own residual value for each equation being solved. In an iterative numerical solution, 

the residual will never be exactly zero. However, the lower the residual value is, the 

more accurate the solution. Convergence was considered complete only when the 

residual values for all equations have reduced to an acceptable value typically at four 

orders of magnitude. 
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CHAPTER 5 

 

NUMERICAL INVESTIGATION ON AIRFLOW CHARACTERISTICS AND 

PARTICLE DEPOSITION IN NASAL CAVITY HAVING TURBINATE 

HYPERTROPHY, CONCHA BULLOSA, AND SEPTUM DEVIATION: PRE- 

AND POST-OPERATIVE STUDY 

 

5.1 Introduction 

Nasal cavity is one of the most important component of the human respiratory 

system which provide first line defense against the contaminated particles, bacteria 

and pathogen to flow into the lower respiratory tract and then reach lung. During 

inhalation, nasal cavity plays an important role to filter out the inhaled toxic particles 

from the polluted atmospheric air. Both the fine and coarse particles which enter the 

nasal cavity during inhalation, not only can induce nasal irritation, moreover, with 

extensive exposure and high concentration of inhaled airborne toxic and infectious 

particle, the nose is susceptible to chronic injury and could further aggravate nasal 

disorder (Harkema et al., 2006). Study has shown that, extensive exposed to urban air 

pollution or the multicomponent mixtures such as fire combustion products, could 

affect and disturb the nasal physiological function. Harkema et al., (2006) also 

reported that the determination of the precise location of the induced lesion in the nose 

is the first step in understanding the critical factors involved in the pathogenesis of the 

injury. As we already know that the toxic and contaminated particles could harm and 

affect the health of the human population. Hence it is important to investigate and 
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improve understanding of the airflow distribution and particle transport and deposition 

in the human nasal airway.  

 

Computational Fluid Dynamics study of airflow, particle transport and 

deposition through the diseased human nasal airway have been investigated by several 

number of researchers (Abouali et al., 2012; Dastan et al., 2014; Keyhani et al., 1997; 

Kimbell et al., 2013; Moghadas et al., 2011; Riazuddin et al., 2011; Wen et al, 2008; 

Zamankhan et al., 2006).   (Keyhani et al.,1997) simulated the steady flow of 7.5 L/min 

and 12 L/min through the nasal cavity by using the finite element method in a 

commercial software named FIDAP. They developed only one side of the nasal cavity 

starting from the nostril to the end of the nasal turbinates from CAT scan of a healthy 

human nasal cavity. They reported that a large amount of the airflow passed through 

the middle and inferior part of the nasal passage.  (Zamankhan et al., 2006) investigated 

steady state inspiratory airflow through nasal airway developed from MRI. By using 

the Eulerian-Lagrangian technique, the transport and deposition of the inhaled 

particles were also evaluated. They reported that effect of the gravitational force and 

difference of particle density does not affect the particle deposition efficiency in the 

nasal cavity. Keyhani et al., (1997) and Zamankhan et al., (2006) found that for a 

normal nasal cavity, most of the inhaled air passes through the middle and inferior part 

of the nasal passage. Only a small portion passes though the olfactory region.  

 

 (Garcia et al, 2007) investigated the effect of atrophic rhinitis and on the air 

conditioning performance in the human nasal airway. Through the CFD simulation of 

laminar inspiration, they evaluated the airflow, water transport and heat transfer in the 
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atrophic nasal cavity. They reported that the atrophic nasal cavity could not condition 

the inspired air as effectively as the normal nasal airway. (Moghadas et al., 2011) 

evaluated the effect of septoplasty on the flow pattern and particle deposition in the 

diseased nasal passage diagnosed with deviated septum. In this study, they simulated 

steady laminar inspiratory airflow and evaluated the transport and deposition of micro 

sized particle in the range of 1-50 µm by using Lagrangian particle tracking approaches. 

Moghadas et al., (2011) reported that, the total particle deposited in the deviated 

septum model in higher when compared to the post-surgery model. However, the 

volume of the airflow rate could passes though the nasal airway was found increased 

in the post-surgery model.  (Dastan et al., 2014) simulated the transport, the total and 

regional deposition of fibrous particle through the nasal airway for laminar inspiratory 

airflow. They developed a mathematical approach to investigate the coupled 

translational and rotational movement of the ellipsoidal fibers particle through the 

human nasal airway. They reported that the deposition fraction was affected by the 

variation of the nasal airway geometry inhalation rate. The number of deposited 

particle with higher impact factor increased in a location where there is sudden changes 

in flow direction in the nasal cavity.  

 

 (Abouali et al., 2012) utilized the numerical simulation technique to investigate 

the effect of the airflow through a diseased nasal airway diagnosed with chronic 

rhinosinusitis. In their research work, virtual uncinatetomy and middle meatal 

antrostomy were performed on the nasal cavity. Steady inspiratory airflow were 

simulated for flow rate of 4, 7.5 and 10 L/min. By using the Lagrangian approach, 

deposition and transport of microparticle of 1-25 µm were analyzed. They found that, 

the ventilation in the maxillary sinus improve significantly after surgery. However, the 
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number of particle deposited in the maxillary region increased after surgery due to the 

increased of airflow penetration into this region. 

 

Numerical simulation of airflow and transport and deposition of inhaled 

pollutant through chronic diseased nasal airway with deviated septum, bilateral 

inferior turbinate hypertrophy and concha bullosa has never been study before. The 

main objective of this study is to investigate, the effect of the nasal surgery which 

include septoplasty, bilateral reduction and partial concha bullosa resection on airflow 

characteristics, breathing resistance and particle deposition efficiency. In this study, 

detailed flow pattern and characteristics for inspiratory airflow for various breathing 

rates (7.5-40 L/min) were evaluated. Simulation of the particle transport and 

deposition of micro sized particles with particle diameter ranging from 1-40 µm were 

also investigated.  

 

5.2 Methodology 

5.2.1 Three-Dimensional Nasal Computational Model 

 Three dimensional diseased nasal computational models was developed from 

CT scan images of 38 year-old Malaysian male patient with chronic obstruction in the 

nasal airway. The patient had undergone nasal surgical treatment which include 

septoplasty, bilateral inferior turbinate reduction and partial concha bullosa resection. 

The CT scan images of both pre- and post-operative conditions obtained from the 

Hospital Serdang, Selangor are as shown in Figures 5.1 and 5.2 respectively. Figure 

5.1 shows the CT scan images of the obstructed nasal airway obtained before surgery. 
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Figures 5.1 (a) and (b) show the location of the inferior turbinate hypertrophy and 

deviated septum while Figure 5.1 (c) shows the location for the concha bullosa which 

refers to the existence of an air pocket inside the nasal turbinate.  Figure 5.2 (a-c) shows 

the CT scan images of the treated nasal airway obtained after surgery. As can be 

observed in Figure 5.2, after the surgery was performed, the blockage in the nasal 

cavity has been removed and the airway passage increased.  

 

 

   

(a) (b) (c) 

Figure 5.1: CT scan images for the obstructed nasal airway before surgery. 

   

(a) (b) (c) 

Figure 5.2: CT scan images for the treated nasal airway after surgery. 

  

Turbinate Hyperthrophy Septal Deviation Concha Bullosa 
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The airway passage is represented by the black colour in the each figures. The 

scans data were provided by the Hospital Serdang, Selangor. The scans were taken 

without nasal decongestion. The pre-operative CT scans data were processed 3 months 

before the surgery, and the post-operative scans data were processed 7 months after 

the surgery. A realistic three-dimensional computational model of the diseased nasal 

cavity was developed for both pre- and post-operative cases. Figure 5.3 shows the 

diseased nasal computational model for the pre-operative case, whereas, Figure 5.4 

shows for the post-operative case. The inlet boundary condition is located at the nostril 

and the outlet boundary condition is located at the nasopharynx. The grey surface in 

Figure 5.3 and 5.4 represent the nasal wall boundary condition. As can be seen in 

Figure 5.3 the hollow in the nasal model represent the nasal blockage is caused by the 

deviated septum. The blockage was successfully removed after the surgery as shown 

in Figure 5.4.  

 

Figure 5.3: Diseased nasal computational model for pre-operative case. 

Inlet: Nostril 

Outlet: Nasopharynx 

Airway blockage 
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Figure 5.4: Diseased nasal computational model for post-operative case. 

 

 

5.2.2 Numerical Methods 

 The numerical investigation was performed by using the commercial CFD 

solver ANSYS FLUENT. The simulation is based on the numerical solution of the 

RANS equation representing the general equation for the 3D flow of incompressible 

and viscous fluids. The CFD simulation adopted steady flow rates of 7.5 and 10 L/min 

for laminar cases, whereas flow rates of 20, 30 and 40 L/min were considered turbulent. 

This was in general agreement with previous researchers who determined the laminar 

nature of the flow, for flows less than 15 L/min. (Jian Wen et al., 2008).  

 

A Lagrangian particle trajectory analysis was used to investigate the effect of 

the chronic nasal obstruction and surgical treatment on the transport and deposition of 

Inlet: Nostril 

Outlet: Nasopharynx 
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the inhaled particles. In the present study, microparticles in the size range of 1–40 µm 

were introduced at the nostril inlet and the particle trajectories and deposition 

efficiency were analyzed. The details of the numerical methods implemented for the 

present study are as explained in Chapter 4. In this work, hybrid mesh were generated 

with 4456725 elements for pre-operative and 3167403 elements for post-operative 

model. A total of 5 layers of prism mesh near the wall boundary, and tetrahedral 

elements at the remaining flow domain were obtained from a grid independency study. 

 

5.3 Results and Discussions 

5.3.1 Grid Dependency Analysis 

Two grid dependency studies have been performed for both pre- and post-

operative diseased nasal models. Grid dependency studies were performed to reduce 

the influence of the number of mesh on the computational results. In the present work, 

initially unstructured tetrahedral mesh was generated by using the grid-generating 

software named ANSYS ICEM-CFD. The quality of the mesh plays a significant role 

in accuracy and stability of the numerical computation. Skewness is one of the primary 

quality measures for a mesh. Skewness is defined as the difference between the shape 

of the generated cell and the shape of equilateral cell. According to the definition of 

Tgrid skew in ANSYS ICEM CFD, a value of 0 indicates best mesh quality and value 

of 1 indicates worst mesh quality. In the present work, the maximum skewness for the 

boundary mesh and the volume mesh developed using ANSYS ICEM CFD was 

maintained to be less than 0.5. 
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The generated unstructured mesh in .msh files were then imported into 

FLUENT MESHING ANSYS to generate hybrid mesh which consisted of 5 layers of 

prism mesh near to the wall boundary and tetrahedral mesh was generated in the inner 

core of the computational domain. For pre-operative case, an initial thickness of 

2.012 × 10−5 𝑚 was maintained for the prism mesh to obtain a y+<1. The worst cell 

had the maximum value of skewness of about 0.83. For post-operative case, an initial 

thickness of 2.484 × 10−5 𝑚 was maintained for the prism mesh and the maximum 

skewness obtained was 0.81.  

 

There are two methods for measuring skewness quality. The first method is 

based on the equilateral volume which can be applied only to the tetrahedral mesh. 

The second method is based on the deviation from a normalized equilateral angle 

which can be applied to prism mesh. 

For tetrahedral mesh: 

 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒 − 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
 (5.1) 

For prims mesh: 

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 [
𝜃𝑚𝑎𝑥 − 90

90
,
90 − 𝜃𝑚𝑖𝑛

90
] (5.2) 

where 𝜃𝑚𝑎𝑥 is the largest angle in face or cell and 𝜃𝑚𝑖𝑛 is the smallest angle in face or 

cell. Equation 5.1 was used to evaluate skewness for the tetrahedral mesh whereas 

Equation 5.2 was used for prims mesh.  Figure 5.5 shows the grid dependency plot for 
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the pre-operative case while Figure 5.6 show grid dependency plot for the post-

operative case. The average static pressure and average wall shear stress were obtained 

at the nasal valve plane. The nasal valve plane is located at 23 mm from the anterior 

part of the nasal cavity. The facet average equation used in ANSYS FLUENT to 

calculate the facet average value for the selected flow property is as described in 

Equation 5.3 below: 

 
∑ 𝜙𝑖

𝑛
𝑖=1

𝑛
 (5.3) 

   

 

Figure 5.5: Grid dependency study for pre-operative nasal cavity model. 
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Figure 5.6: Grid dependency study for post-operative case nasal cavity model. 
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consisting of 4456725 and 3167403 elements were selected for pre- and post-operative 

case respectively. The selected grid files were then imported into FLUENT ANSYS 

to perform numerical simulation inspiratory airflow and particle transport and 

deposition in the pre- and post-operative nasal cavity models.  

 

5.3.2 Geometry Comparison 

The fourteen planes created along the axial distance of the diseased human 

nasal cavity before surgery is as shown in Figure 5.7. The cross-sectional areas were 

created in ANSYS FLUENT and used to calculate the flow properties inside the nasal 

cavity. The anterior region of the nasal cavity is in the range of 𝑥 ≤ 5 and the posterior 

region is in the range of 𝑥 > 5. The planes were created approximately perpendicular 

to the airflow through the nasal cavity. 
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Figure 5.7: Fourteen cross section area along the axial distance of the nasal cavity 
for the pre-operative computational model. 

  

 Figure 5.8 shows the planes created for pre-operative nasal cavity 

corresponding to the area that has undergone surgery. The darkened grey area in the 

figure represents the air pathways. As can be observed in Figure 5.8 plane b, bilateral 

turbinate reduction was performed on both left and right side of the nasal cavity to 

restore the breathing air space. As can be seen in Figure 5.8 plane c-g, septoplasty was 

performed on the deviated nasal septum to remove the nasal blockage in the left nasal 

cavity. In Figure 5.8 plane h and plane i, partial concha bullosa resection was carried 

out on the middle turbinate to remove the air pocket at the posterior part of the left 

nasal cavity. 
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Plane a Plane b Plane c Plane d Plane e 

     

Plane f Plane g Plane h Plane i Plane j 

   
 

 

Plane k Plane l Plane m Plane n  

Figure 5.8: The fourteen planes created for pre-operative nasal cavity. 

  

Figure 5.9 shows the total fourteen planes created through the axial distance of 

the post-operative case of the diseased nasal cavity. Similarly, the planes were created 

approximately perpendicular to the airflow and approximately at the similar location 

when compared to the pre-operative nasal cavity model.  
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Figure 5.9: Fourteen cross section area along the axial distance of the nasal cavity 
for the post-operative model. 
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As can be seen in Figure 5.10 plane b, after the bilateral turbinate reduction surgery, 
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Plane a  Plane b Plane c Plane d  Plane e  

     

Plane f  Plane g  Plane h Plane i  Plane j  

    

 

Plane k  Plane l  Plane m  Plane n  

Figure 5.10: Fourteen planes created in the post-operative nasal cavity model. 

 

Figure 5.11 compares the variations of the cross-sectional areas of the nasal 

passage with the distance from the anterior to the posterior part of the nasal cavity for 

pre- and post-operative models. In both study cases, the nasal valve region was found 

located at 0.7 cm from the tip of the nose. 
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Figure 5.11: The comparison of cross-sectional area vs. axial distance from anterior 
to the posterior of the diseased nasal cavity. 
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nasal surgical operations. The increased of the cross section area after the nasal valve 

region was also observed by other researcher in the normal nasal cavity model (Jian 

Wen et al., 2008).The nasal valve plays an important role in distributing airflow 

through inferior, middle, superior turbinate and olfactory region of the nasal passage, 

hence, it is best to maintain the cross section area of the nasal valve during surgery. 
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5.3.3 Airflow Resistance  

 Pressure distribution through the nasal passage can be used to evaluate the 

impact of the morphology of the nasal airway on breathing airflow resistance. Airway 

flow resistance is extremely important for the evaluation of the effectiveness of the 

applied surgical operations and treatment. The nasal airflow resistance can be defined 

as the ratio of pressure drop to the volume flow rate, (R= ∆p/Q), where ∆p is pressure 

drop across the airway passage and Q is airflow rate. 

 

Table 5.1: Pressure drop for flow rate of 7.5 L/min before and after surgery. 

 Pressure difference (Pa) Airflow resistance (Pa-
min/L) 

Pre-Operative 4.02 0.54 

Post-Operative 1.99 0.27 

 
 

The airflow field simulations were performed for breathing rates of 7.5 L/min 

for both pre- and post-operative nasal models. Table 5.1 compares the pressure drops 

obtained through the nasal passage for an inhalation rate of 7.5 L/min. It can be seen 

that the pressure different obtained between the nostril inlet and the outlet at the 

nasopharynx for pre-operation model was 4.02 Pa, whereas post-operative model 

demonstrated pressure drop of only 1.99 Pa. The nasal resistance obtained before 

surgery was about 0.54 Pa-min/L, whereas, the post-surgery model demonstrated only 

0.27 Pa-min/L of airflow resistance. The post-operative model experienced about 50 % 

decrease in resistance. The nasal surgical procedures increase the nasal cavity cross-

sectional area where the operation was performed consequently decreases the pressure 
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drop and flow resistance of the nasal passage. As the computed airway resistance has 

significantly improved after surgery. Hence, less effort is needed for breathing the 

same flow rate into the lung. The airflow resistance plotted against the inspiratory rates 

ranging from 7.5 to 40 L/min is as shown in Figure 5.12. As can be seen in Figure 5.12, 

as the breathing rates increased, the airflow resistance inside the nasal cavity also 

increased. Figure 5.13 shows the pressure drop obtained from the present study was 

compared and validated with previous published work by Wen et al., (2008) and 

Weinhold & Mlynski, (2004). The pressure drop between the nostril and nasopharynx 

was obtained at flow rates from 7.5 L/min to 40 L/min. As can be observed in Figure 

5.13, the pressure drop in both pre and post-operative nasal cavity model was found 

follow the same pattern as that of the available published data by Wen et al., (2008) 

and Weinhold & Mlynski, (2004). The pressure drop obtained in the present nasal 

airway models increased as the flow rates increased.  

 

 

Figure 5.12: Airflow resistance for flow rates of 7.5 L/min – 40 L/min. 
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Figure 5.13: Pressure drop for inhalation flow rates of 7.5-40 L/min. 
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with blue indicating the lowest and red indicating the highest velocity magnitude. The 

black colour represents the outer surface of the nasal airway, in wireframe view. Figure 
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superior meatus. After septoplasty, turbinate reduction and concha bullosa resection, 

however, the flow field inside the nasal passage changes significantly. 

 
(a) 

 
(b) 

  
Figure 5.14: Pathlines for breathing rate of 7.5 L/min for (a) pre-operative and (a) 

post-operative surgery. 

   

It can be seen in Figure 5.14 (b) that, after surgery, most of the flow pass 

through the middle and inferior meatus. This finding is consistent with previous 

Flow recirculation 
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researchers who also found that in a normal nasal airway, most of the flow passes 

through the middle and inferior part of nasal airway during inhalation (Hahn et al., 

1993; Keyhani et al., 1995). It can also be observed that, after surgery, only a small 

quantity of flow reach the superior region of the nasal passage. As the olfactory nerve 

located at the top anterior part of the nasal cavity, a lesser flow in this region means 

less stimulation of the sense of smell. However, the changes of airflow distribution in 

the post-operative model is physiologically consistent with that of a normal nose where 

at rest and low breathing rate, the sense of smell is less stimulated when compared to 

the high inhalation rate during sniffing. However, for a low breathing rate of 7.5 L/min, 

the low velocity magnitude of the recirculatory flow observed at the olfactory region 

in the post-operative model could improve the nasal sensation stimuli. As shown in 

Figures 5.14 (a) and (b), at the nasopharynx region, the left and right nasal cavities 

merge together, this caused the flow to mix intensely in this region. 

5.3.5 Pressure Distribution 

 

Figure 5.15: Comparison of pressure distribution through the nasal airway for pre-
operative and post-operative study. 
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 As can be seen in Figure 5.15, for both pre- and post-operative models, the 

pressure distribution decrease along the nasal passage. It is important to have a 

decreasing value of pressure in the nasal cavity because during inspiration the chest 

expands, therefore, the air enters the lung because the pressure within the lung is less 

than that of the atmosphere. It should be pointed out that, before operation, the average 

static pressure obtained at the nasal outlet was about -4.02 Pa. However, after the 

operation, the average static pressure decreased to -1.99 Pa. This implies that removing 

the nasal obstruction reduce the magnitude of negative inspiratory pressure, which is 

one of the major contributing factors to pharyngeal collapse in obstructive sleep apnea 

patients. This finding shows that nasal surgery can improve breathing quality for OSA 

patient without the patient has to goes through surgery at the pharynx part of the 

breathing airway.  

 

5.4.6 Wall Shear Stress 

 Wall shear stress exerted on the nasal wall can contribute to nasal irritation and 

discomfort which could affect sleep quality. Figure 5.16 shows comparison of average 

wall shear stress obtained along the axial distance of the nasal cavity for inhalation 

rate of 7.5 L/min for pre- and post-operative cases. Figure 5.16 clearly demonstrate 

that after surgery the average wall shear stress along the nasal wall has decreased. 

Before surgery the highest average wall shear stress with 2.7 × 10−3 𝑃𝑎 was found at 

region located at 3.7 cm from the tip of the nose which is represented by plane b in 

Figure 5.8. This is due to the increased of the velocity magnitude at the nasal blockage 

and narrow cross section area caused by the deviated septum in the left nasal cavity. 
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Figure 5.16: Comparison of average wall shear stress along the axial distance of the 
nasal cavity for flow rate of 7.5 L/min. 
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(a) 

 

(b) 

 

Figure 5.17: Average wall shear stress for inhalation rate of 20 L/min (a) pre-
operative and (b) post-operative. 
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Figure 5.17 shows comparison of wall shear stress contour plot on the nasal 

wall for inhalation rate of 20 L/min for both pre- and post-operative cases. As can be 

observed in Figure 5.17 (b), after surgery, as the cross section area through the nasal 

airway increased, the wall shear stress obtained in the post-operative model has 

significantly reduced. A high magnitude of wall shear stress could contribute to nasal 

irritation and breathing discomfort to the patient during inspiration which could 

damage the cell lining and blood vessels located at the nasal wall. Hence, as the wall 

shear stress obtained after surgery has reduced, this shows that the nasal surgery has 

successfully improve the breathing comfort for the patient.  

 

5.4.7  Particle Deposition 

To compare the total deposition of microparticles for pre- and post-operation 

models, mono-dispersed 1, 5, 10, 20 and 40 µm particles were released at nostril inlet, 

and the particle trajectories were analysed. Figure 5.18 shows a comparison of the total 

particle deposition efficiency obtained for a range of particle diameter (1, 5, 10, 20 and 

40 µm) and inhalation rate of 7.5 L/min before and after surgery. It can be seen in 

Figure 5.28 that for both pre and post-operative models, as the particle size increased, 

the total particle deposition efficiency increased. This implies that as the size of the 

inhaled particles increased, the number of particles being filtered within the nasal 

cavity will increase. 
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Figure 5.18: Comparison of total deposition efficiency, before and after surgery. 

 

The effect of the nasal surgery on the total particle deposition efficiency can 

be clearly observed in Figure 5.18. Before surgery, the total deposition efficiency 

obtained for the particle diameter of 1 µm was 0.7 %. However, after the surgery the 

total deposition efficiency obtained was reduced to a value of 0.3 %. Similarly, the 

total deposition efficiency obtained for particle diameter of 40 µm before surgery was 

about 53.73 %, whereas after surgery the total deposition reduced to a value of 31.32 %. 

For low breathing rate of 7.5 L/min, the post-operative model experienced 

approximately about a 50 % decrease in total particle filtering efficiency. Hence, after 

surgery, more particles can pass through the nasal passage and flow into the lower 

respiratory tract. Hence, with lower particle filtering efficiency and high exposure to 

this inhalable toxic particle can increase the risk of developing particle-related 

respiratory diseases. 
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5.5 Conclusions 

 The septoplasty, inferior turbinate reduction and partial concha bullosa 

resection substantially increased nasal volume, which influenced flow partitioning and 

decreases the pressure drop and flow resistance of the nasal passage. Hence, the 

computed airway resistance has significantly improved after surgery and less effort is 

needed for breathing the same flow rate into the lung. After surgery, the average static 

pressure obtained at the nasopharynx outlet decreased to -1.99 Pa. This implies that 

removing the nasal obstruction reduce the magnitude of negative inspiratory pressure, 

which is one of the major contributing factors to pharyngeal collapse in obstructive 

sleep apnea patients. The abnormal shape and obstruction in the diseased nasal airway 

increased the number of particle deposition in the nasal cavity. However, the post-

operative model experienced approximately about a 50 % decrease in total particle 

filtering efficiency. Hence, based on this finding, it can be conclude that after surgery, 

by removing the nasal obstruction, more particles can pass through the nasal passage 

and flow into the lower respiratory tract which can cause adverse health effect. 

Therefore, careful consideration should be given to this matter before nasal operation 

especially for a patient with breathing allergic history. 
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CHAPTER 6 

 

COMPUTATIONAL FLUID DYNAMICS STUDY OF AIRFLOW AND 

MICROPARTICLE DEPOSITION IN A CONSTRICTED PHARYNGEAL 

SECTION REPRESENTING OBSTRUCTIVE SLEEP APNEA DISEASE 

 

6.1 Introduction 

Obstructive Sleep Apnea (OSA) is a potentially serious respiratory disorder 

and has become one of the most common public health problems. OSA is characterized 

by recurrent episodes of partial or complete pharyngeal airway collapse and 

obstruction during sleep (Mihaescu, et al., 2008). The collapse of the pharyngeal 

airway during inspiration, having particular anatomical conditions such as an 

abnormally large tongue, too much tissue at the back of the throat (the uvula) and the 

soft palate that hangs down can lead to OSA, whose the symptoms are snoring, 

difficulty in breathing and sleep disorders. The collapse of the pharyngeal airway 

causes a reduction in or complete cessation of airflow despite ongoing inspiratory 

efforts (Ephros, et al.,2010; Fogel et al., 2004).   

 

A schematic depiction of OSA, referring to the collapse of the pharyngeal 

section, is as shown in Figure 6.1 (Suratt et al., 1983). Although the narrow and 

collapsible upper airway are believed to be the main causes of OSA, the etiology of 

this disorder and the exact mechanisms of upper airway collapse in OSA are not 

completely understood. Hence, the accurate prediction of the abnormal airflow 

characteristics, pressure distribution and airflow resistance in the upper airway 
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geometry associated with OSA is essential in understanding the relation between 

airway anatomy collapsibility and the pathophysiology of OSA.   

 

   

Figure 6.1: Left panel shows position of tongue, soft palate, and posterior pharynx 
during unobstructed breathing in sleeping patients. Right panel shows the position of 

these structures in OSA patients. 

 

Recently, a Computational Fluid Dynamics (CFD) approach has been utilized 

to analyze flow patterns and characteristics through pharyngeal airway models 

reconstructed from magnetic resonance (MR) or the computed tomography (CT) 

imaging data of patients with OSA (Jeong et al., 2007; Mihaescu et al., 2008; 

Mihaescu et al.  2011; Vos et al., 2007; Xu et al., 2006; Zhao, et al., 2013a, 2013b). 

Mihaescu et al. (2008) investigated the airflow distribution and characteristics in the 

pharyngeal airway model by using both Reynolds-Averaged Navier-Stokes (RANS) 

approaches. The pharyngeal airway model was developed from the nasopharynx to the 

retroglossal pharynx region. As in their report, Mihaescu et al. (2008) stated that the 
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geometry expansion in the radial direction after the narrowing region has produced 

flow separation, strong shear layers, and recirculation regions. They also found that, 

compared to k-ɛ, the k-w results are the closest to the LES results due to its treatment 

of the viscous near-wall region and in its accounting for the effects of adverse pressure 

gradients. To increase understanding of the pathogenesis of OSA, Xu et al. (2006) 

investigated the effect of airway shape on pressure distribution and flow resistance in 

the upper airway of children age 3-5 years old. They found that the minimum pressure 

occurred at the narrowest region which is located at the region of adeno-tonsillar 

overlap. High-velocity jet and higher turbulence energy was observed at the 

downstream of the narrowest cross-sectional area.  

 

 In another study, Jeong et al. (2007) , found that the pressure drop due to area 

restriction occurred primarily between the nasopharynx and the oropharynx. Turbulent 

jet with higher shear and pressure force was observed in the narrowest segment of the 

pharyngeal airway. The constriction at the velopharynx produced pharyngeal jet flow 

as air passed through the velopharynx. Similar to the work of Sung et al. (2006), the 

maximum velocity and minimum pressure of the breathing airflow were observed at 

the velopharyngeal section. They concluded that the strength and intensity of the 

turbulent pharyngeal jet flow would be the main reason for pharyngeal occlusion and 

OSA diseases. Vos et al. (2007) postulated that the combination of the three 

parameters, which include the smallest cross-sectional area, airflow resistance and 

body mass index (BMI) can be used to evaluate the severity of obstructive sleep apnea 

in patients.  
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Most of the previous studies were limited to the oropharynx section and did 

not include the entire upper airway anatomy. Indeed, it is not easy to obtain the CT 

data for a subject suffering from OSA. Therefore, the present study on OSA was 

carried out by modifying the control subject to represent the OSA case study. This was 

accomplished by including a constricted pharyngeal section as shown in Figure 6.2. 

This OSA model was used for carrying out CFD simulation in order to understand the 

effect of pharyngeal constriction on the actual flow phenomenon. 

 

One issue which has not been studied before is the effect of OSA on the 

increased potential for inhaled pollutants and particles to enter and deposit in the 

pharyngeal section and lung. Enhanced deposition of inhaled particles in the 

pharyngeal section is important for the assessment of exposure to aerosol pollutants, 

as well as for therapeutic drug delivery.  The study of coal ash deposition in the human 

respiratory tract is of great importance because of the potential for serious health 

effects. The Environmental Protection Agency (EPA) in the United States has found 

that living near to a coal ash disposal site can increase the risk of cancer or some other 

serious diseases. In Malaysia, fly ash is one of the largest industrial waste material 

which commonly deposited in landfills. The total production of fly ash in Malaysia is 

approximately about 2 million tons annually (Shaheen et al., 2014). Coal ash is 

hazardous waste. It is one of the naturally-occurring products from the coal 

combustion process and is a material that is nearly the same as volcanic ash. Most coal 

ash comes from coal-fired electric power plants. The toxic remains of coal burning in 

power plants are full of chemicals that cause cancer and developmental disorders. 

Individuals with pre-existing lung disease, including asthma, can be at increased risk 

of their symptoms being exacerbated after being exposed to the inhalable ash particles. 
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Coal ash includes fly ash (fine powdery particles that are carried up in the smoke and 

captured by pollution control devices) as well as coarser materials that fall to the 

bottom of the furnace. Fly ash particles are generally spherical in shape and range in 

size from 0.5 μm to 60 μm (Sarkar et al., 2005). One study has shown that exposure 

to fly ash may cause irritation to the mucous membrane of the respiratory tract and 

even pulmonary fibrosis in humans. The ash particles that are inhaled into the lungs 

could trigger inflammation and immunological reactions (Cho & Cho, 1994). The 

adverse effects of particulates depend on the region of the airway in which the particles 

or ash are deposited. Thus, the knowledge of the deposition of ash in the respiratory 

tract is of considerable importance. The information about local deposition might be 

used in health risk assessment, because a high local dose may cause tissue injuries or 

initiate a disease process.  

 

In this study, CFD simulation of laminar and turbulent inspiratory airflow 

through a constricted pharyngeal section is conducted to explore and improve the 

understanding of the pathophysiology of the OSA disease. A Lagrangian particle 

tracking approach is used to investigate the effect of the constricted pharyngeal section 

on the deposition rate and deposition patterns of microparticles in the upper airway 

model which represents OSA disease. Microparticles in the size range of 1-40 µm are 

introduced at the nostril inlet and the particle trajectories and regional deposition 

fractions of the particles were analyzed.  
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6.2 3D Model Generation and Meshing 

A three-dimensional nasal computational model was developed based on the 

computed tomography (CT) scans of a healthy 39-year old female. The scans data was 

procured at the Universiti Sains Malaysia (USM), Medical Campus Hospital. The CT 

scan images were obtained from the axial, coronal and sagittal planes. The increment 

between each slice of the scan images is 0.8 mm. The scan images were segmented by 

defining threshold values ranging from -444 to 2037 HU. Segmentation was performed 

slice by slice on the scan images to ensure the accuracy of the selected region of 

interest (Riazuddin et al., 2011). By using the image processing software MIMICs, the 

2D scan images were converted into a 3D nasal cavity model  

 

Figure 6.2 shows the reconstruction of the upper airway with a constricted 

pharyngeal section which was made in CATIA (Dassault Systems, SA). As can be seen 

in Figure 6.2 (b), the upper airway geometry modification was made by extending the 

outlet part of the normal nasal cavity model in Figure 6.2 (a). After that, a converging 

and diverging geometry was included at the normal nasal cavity outlet to mimic the 

pharyngeal occlusion in the upper airway. The geometry modification was made based 

on the discussion with an ENT surgeon from the Hospital Universiti Sains Malaysia.  
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Figure 6.2: Computational domain: (a) normal nasal cavity, (b) upper airway with 
constricted pharyngeal representing Obstructive Sleep Apnea. 

 

 

 

(a) 

(b) 
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The most predominant feature of the pharyngeal airway is that stenosis 

converges and diverges at the pharynx. Hence, the airway was modeled to have some 

area restrictions at the pharynx region, which can be represented in terms of percentage 

stenosis in accordance with Xu et al., (2006) as written in Equation 6.1: 

 

 % stenosis = (1AOL/ACH) x100%. (6.9) 

 

In Equation 6.1, 𝐴𝐶𝐻 is the cross-sectional area perpendicular to the airway centerline 

at the choanae and 𝐴𝑂𝐿  is the minimum cross-sectional area in the constricted 

`pharyngeal region. Thus the model developed in this study has a percentage stenosis 

of around 89 % to represent the pharyngeal airway occlusion in OSA. Schwab et al. 

(1993) reported CT data showing that the retropalatal area was approximately 90 mm2 

for a snorer/mild apneic subject and 50 mm2 for an apneic subject. In the present study, 

the minimum constricted area at the pharyngeal section was about 5.53 mm2 (𝐴𝑂𝐿), 

which is smaller when compared to the observations of Schwab et al. (1993) and Sung 

et al. (2006). 

 

6.3 Numerical Methods 

The numerical simulation was performed using the commercial CFD solver 

ANSYS FLUENT. The simulation is based on the numerical solution of the RANS 

equation representing the general equation for the 3D flow of imcompressible and 

viscous fluids. In the present study, simulations for the modeled nasal configuration 

were performed under the steady condition for breathing rates of 7.5, 10, 20, 30, and 
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40 L/min. The details numerical methods implemented for this study are as described 

in Chapter 3. In the present work, initially, the upper airway computational domain 

was meshed with an unstructured tetrahedron using GAMBIT. After that, a hybrid 

mesh was generated by using a mesh generation software named TGRID with 

1,580,000 elements, which consisted of a total of 6 layers of prism mesh near the wall 

boundary, and tetrahedral elements at the remaining flow domain. The generated 

hybrid mesh are as illustrated in Figure 3.16 and 3.17 in Chapter 3, section 3.3. 

 

6.4 Results and discussion 

6.4.1 Velocity distribution 

Understanding the properties of airflow in the nasal cavity is very important in 

determining the nasal physiology and in diagnosis of various diseases associated with 

the nose. The inspiratory flow rates for adults can range between 5 L/min and 12 L/min 

for light breathing and 12-40 L/min for non-normal conditions such as during exertion 

and physical exercise (Wen et al.,2008).  In this study, the airflow field simulations 

were performed for breathing rates of 7.5, 10, 20, 30 and 40 L/min. The flow was 

considered as laminar for breathing flow rate up to 10 L/min and turbulent for flow 

rate of 20 to 40 L/min. Figure 6.3 shows comparison of velocity streamlines between 

inhalation rate of 7.5 and 20 L/min. As can be seen in Figure 6.3 (b), as the inhalation 

rate increase, the amount of recirculatory flow was observed also increased at the 

anterior top part of the nasal cavity. Increased of flow recirculation in this region 

increased interaction between airflow and nasal wall. 
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Figure 6.3: Velocity streamlines for inhalation rates of 7.5 and 20 L/min. 

 

 

 

(a) 

(b) 
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As can be observed in Figure 6.3 (a) and (b), for both breathing rate, most of 

the air flow pass through the middle airway region. The increase of inhalation rate does 

not change the location of the most air passed through the nasal airway. Even for a low 

laminar breathing rate of 7.5 L/min, intense flow recirculation can be observed 

occurred at the lower part of the pharyngeal section. The recirculatory flow was 

observed caused by the sudden expansion of the pharyngeal airway.  

 

Figure 6.4 shows the coronal view of the velocity vector obtained for inhalation 

rate of 20 L/min.  As shown in Figure 6.4 (a)-(e) several vortex flow formation were 

found in the inferior, middle and superior meatuses. The vortex flow formation were 

observed caused by the present of the inferior, middle and superior turbinates which 

obstruct the inhaled air through the nasal airway. As can be seen in Figure 6.4 (d), at 

the end of turbinates region, high swirling flow was observed. The airflow was 

observed intensely mixed at the nasopharynx region were the airflow from the left and 

right nasal cavity meet.  
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Figure 6.4: Velocity vector for inhalation rate of 20 L/min.  

(a) 
(b) 

(c) (d) 

(e) (f) 



138 

 

Figure 6.5 shows the velocity contour of inspiratory flow rate of 20 L/min. As can be 

seen in this figure one of the main factors that affect to the airflow patterns is the 

morphology of the upper airway. It can be seen that, at the constricted pharyngeal 

airway, firstly acceleration of the flow was observed then the flow decelerates due to 

increase cross-sectional area of the airway. The maximum velocity magnitude is found 

located at the smallest cross section in the pharyngeal section, with a value of 56.76 

m/s. 

 

 

 

Figure 6.5: Velocity contour of 20 L/min flow rate. 

 

As shown in Figure 6.6, due to the area restriction, a turbulent jet is observed 

at the constricted area of pharyngeal section. Two flow recirculation region at the 

downstream of the smallest cross-sectional area were prominently formed at the 

posterior region of airway wall. The flow recirculation causes flow instability at the 

region further downstream of the pharyngeal airway.  
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Figure 6.6: Recirculation regions downstream of the constricted pharyngeal section. 

 

6.4.2 Pressure distribution 

The pressure distribution through the upper airway of OSA for breathing 

airflow of 20 L/min is depicted in Figure 6.7. It can be observed that the pressure drop 

from the choanae to the OSA region was larger than the pressure drops through the 

nasal passages highlighting the effect of OSA on adverse flow behavior in that region. 

The resistance along the nasal passage was about 0.053 kPa/L/s, whereas the pressure 

drop from the choanae to the constricted OSA was 3.132 kPa/L/s. The effects of the 

negative pressure gradient due to the abrupt cross-sectional area expansion are 
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observed from the back flow and vortex downstream of the constricted region. The 

force induced by negative pressure is strong enough to cause pharyngeal wall 

displacement, further narrowing the constricted region which could lead to complete 

pharyngeal airway obstruction. A larger negative value of the pressure effort indicates 

that the patient needs to breathe harder to inhale the specified air volume to reach the 

lung. 

 

 

  

Figure 6.7: Pressure distribution for 20 L/min. 

 

The average static pressure obtained through the upper airway for inhalation 

rate ranging from 4 to 40 L/min are as depicted in Figure 6.8. For a normal nasal cavity, 

for inhalation rate of 20 L/min, the pressure drop obtained is the nasal cavity was 

approximately 14.7 Pa. However, for the same flow rate, the pressure drop was found 

significantly increase to 2724.4 Pa as the flow passes through the constricted region in 
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the pharyngeal airway. The increased of pressure drop values in this region is due to 

the sudden geometrical changes which cause pressure lost after the constricted region 

in the pharyngeal section. As can be observed in Figure 6.8, as the inhalation rate 

increase, the pressure drop through the upper airway was found increased.  

 

 

Figure 6.8: Average static pressure for inhalation rates of 4 to 40 L/min.  

 

6.4.3 Microparticles deposition 

When the distance between the particle centre and the surface is less than or 

equal to the particle radius the inhaled particle is assumed to be deposited on the wall. 

The local deposition fraction in a specific upper airway region can be defined by the 

ratio of particles depositing within a region to the particles entering the nostrils. To 

investigate the effect of particle size on the regional deposition through the upper 

airway with constricted pharyngeal, particle in the size range of 1-40 µm are released 
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at the nostril inlet and the particles trajectories are analyzed. Figure 6.9 shows the total 

particles deposition efficiency for inhalation rates of 4 to 40 L/min. The diameter of 

the injected particles are 1, 5, 10, 20 and 40 µm. 

 

Figure 6.9: Total deposition efficiency for inhalation rates of 4-40 L/min. 

 

As can be seen in Figure 6.9, as the inhalation rate increase, the total number 

of inhaled particles found deposited in the upper airway increased. As shown in Figure 

6.3 (b), the increased of inhalation rate produced more recirculatory flow and increased 

vortex flow formation in the nasal airway. Hence increased the total number of 

particles trap and deposited in the upper airway.  
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Figure 6.10: The six different regions created in the constricted pharyngeal airway 
model. 

 

Figure 6.10 shows the six different regions defined through the upper airway 

computational model. The main purpose of dividing the upper airway into 6 major 

regions is to facilitate the calculation of the total number of particles deposited on the 

wall located in each region. Figure 6.11 shows the calculated percentage of particle 

deposition fraction obtained in each region for inhalation rate of 7.5 L/min. Deposition 

fraction of microparticles in upper airway for inhalation flow rates of 7.5 and 20 L/min 

are shown in Figure 6.11 and Figure 6.12 accordingly. 
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Figure 6.11: Deposition fraction of microparticles in upper airway for 
inhalation rates of 7.5 L/min. 

 

Figure 6.12: Deposition fraction of microparticles in upper airway for inhalation 
rates of 20 L/min. 
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As can be seen in Figure 6.11 and 6.12 for both 7.5 and 20 L/min inspiratory 

rates, the highest deposition fraction for the size of particle with the diameter of 20 and 

40 µm particle are located at the vestibule region. For 20 µm, the deposition fraction 

obtained in the vestibule region for flow rate of 7.5 and 20 L/min are around 22 % and 

26 % respectively. For 40 µm, the deposition fraction obtained in the vestibule region 

for flow rate of 7.5 and 20 L/min are 41 % and 57 % accordingly. However, it can be 

seen in Figure 6.11 and 6.12 that for the same flow rates, the highest deposition fraction 

for particle size of 1-10 µm are observed at the pharynx region. Hence, it can be 

concluded that, as the diameter of the particle increase, the location of the highest 

particle deposited region will shift to the anterior part of the nasal airway. For 20 µm 

and 40 µm particle, most particles were captured deposited at the vestibule region 

compared to the pharynx region. This is due to the higher particle inertia and deviation 

from the flow streamlines at the vestibule region. As shown in Figure 6.10 and 6.11, 

for particle with diameter of 1-10 µm, due to lower inertia, most particles can penetrate 

to the pharyngeal section. The results obtained from this study shows that, as the 

diameter of the particles increased, the number of particle deposited in the upper 

airway increased.  

 

As shown in Figure 6.13, the deposition fraction of microparticles in the 

vestibule region was plotted against the inhaled particle diameter for flow rate ranging 

from 7.5 to 40 L/min.  As can be seen in Figure 6.13, for all particles size, as the flow 

rates increase, the number of particles deposited in the vestibule region also increased. 

During inspiration, air enter the nasal cavity through the nostril inlet. After that, the 

flow was observed changed about 90 degree from its original direction to enter the 
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nasal valve region. Due to the higher inertial impaction, the particles with a higher 

diameter sized will maintain its original pathway and deposit in the vestibule region. 

It can also be observed that, most of the particle in a size range of 1-10 µm with lower 

inertia could pass through the nasal vestibule region and flow into the lower part of the 

upper airway. 

 

Figure 6.13: Comparison of deposition fraction of microparticles deposited in the 
upper airway for inhalation rate of 7.5 to 40 L/min: (a) Vestibule region. 

 

6.5 Conclusions 

The morphology of the upper airway was found to significantly affect the 

airflow pattern and the deposition fraction of microparticles. Results obtained can be 

used to estimate the location of airway obstruction in upper airway of patient with 

sleep apnea symptom. The local deposition fractions proved that the upper airway 

plays a significant role in filtering large micro-particles. The size of the inhaled particle 

significantly affects the total particle deposition efficiency in the upper airway. 
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Breathing rate was also found significantly influence the particle filtering efficiency 

in the upper airway.  The inhalation of toxic particles through the upper airway has 

been found to cause adverse responses. The presented regional deposition fraction may 

be used in specifying the site of highest possibility for respiratory lesions according 

the breathing rate and the size of the inhaled toxic particles. 
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CHAPTER 7 

 

NUMERICAL SIMULATION OF AIRFLOW AND AEROSOL DEPOSITION 

IN REALISTIC HUMAN UPPER AIRWAY WITH CHRONIC NASAL 

OBSTRUCTION AND OBSTRUCTIVE SLEEP APNEA: PRE- AND POST-

SURGERY 

 

7.1 Introduction 

Obstructive sleep apnea (OSA) is one of the potentially chronic upper airway 

disease and has affected a significant portion of population. OSA disorder is known 

caused by the narrowed and small structure of the upper airway and loss of dilator 

muscle function when the patient is asleep. The apnea has been defined as a cessation 

of airflow due to airway collapse within the upper airway during sleep (Guilleminault 

et al.,1976).These partial or full cessation of breathing, influence the quality of sleep, 

reduce brain oxygen saturation and have linked to hypertension, neuropsychological 

dysfunction and heart failures (Chouly et al.,  2008; Sittitavornwong et al., 2009). 

However, success rate of the surgical treatment in treating OSA is limited because the 

etiology of the OSA disorder is still not fully understood.  

 

Due to the non-invasive approach, the computational fluid dynamics (CFD) 

simulations have been used to investigate the biological flow characteristics in the 

normal and diseased human upper airway. CFD can also be used to investigate the 

effect of surgical intervention on upper airway anatomical structure and breathing 

mechanics. Zhao et al., (2013) investigated the effect of mandibular advancement 
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splint device which enlarge the pharyngeal airway on the OSA treatment. They 

developed upper airway geometry from the nasopharynx to the hypopharynx region. 

In order to understand the pathogenesis of OSA in children, Xu et al., (2006) 

investigated the effect of airway shape on pressure distribution and flow resistance in 

the upper airway of children ages 3-5 year-old. They reported that the highest pressure 

drop was found in the nasopharynx region at the location of adenoid and tonsils overlap. 

(Wang et al., 2012) compare the aerodynamics airflow patterns in upper airways and 

soft palate movements between preoperative and postoperative models. Reduced nasal 

resistance and decrease soft palate volume due to odema contribute to the decrease of 

airflow resistance through pharyngeal section. On the other hand, determination of the 

precise location of the induced lesion in the upper airway is the first step in 

understanding the critical factors involved in the pathogenesis of the injury (Harkema 

et al., 2006).  

 

The existence of obstruction in the nasal cavity has impact on the overall 

breathing performance in the upper airway and may further aggravate the OSA 

symptom. However, there is not much study investigated the difference of upper 

airway characteristics at pre- and post-treatment particularly to analyze the effect of 

chronic nasal obstruction on OSA. In this study we discussed the results obtained from 

the numerical simulation of airflow through the realistic human upper airway with 

OSA disease and chronic nasal obstruction for pre- and post-operative cases. The 

objective of this study was to evaluate the effect of geometrical changes in the nasal 

airway section on pressure drop and breathing resistance though the upper airway 

particularly in the pharyngeal section before and after surgery. The comparison 

between pre- and post-operative cases in terms of the velocity magnitude, static 
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pressure distribution, wall shear stress and particle deposition efficiency were 

systematically studied. 

 

7.2 Three-Dimensional Upper Airway Computational Model 

A 38-year-old Malaysian male patient was diagnosed with chronic nasal airway 

obstruction and obstructive sleep apnea disease in Hospital Serdang, Selangor, 

Malaysia. His symptoms include, septum deviation which cause nasal obstruction in 

the left nasal cavity. Inferior turbinate hypertrophy was observed in both left and right 

side of the nasal cavity and concha bullosa which resulting in narrowing of the nasal 

airway at the posterior region on the left nasal cavity. The patient had undergone a 

surgical treatment performed in the nasal cavity. The CT scan data were taken without 

nasal decongestion. The CT scans were obtained while the patient was fully awake. 

The pre-operative scans were taken before the surgery, and the post-operative scans 

were taken 7 months after the surgery. Realistic three-dimensional human upper 

airways were developed for both pre- and post-operative cases. 

 

Figure 7.1 shows comparison of the CT scan images of the diseased human 

upper airway obtained before and after surgery. As can be observed in Figure 7.1 (a), 

before surgery, the patient has a major obstruction in the nasal cavity and a structurally 

narrowed pharynx. 
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(a) (b) 

Figure 7.1: Comparison of the CT scan images of human upper airway; (a) before 
surgery and (b) after surgery. 

 

The most restricted region was found at the hypopharynx near to the vocal cord. 

However, as can be seen in Figure 7.1 (b), after surgery, the nasal blockage has been 

removed and simultaneously the airflow passage at the pharyngeal section has 

increased. The 3D realistic human upper airways were then reconstructed from the 2D 

CT scan images by using the image processing software, Mimics and CAD software 

named CATIA. Mesh were developed using ANSYS ICEM CFD and the hybrid mesh 

were generated using ANSYS FLUENT Meshing. 

 

In ICEM CFD, the maximum skewness obtained for the generated unstructured 

mesh was maintained to be less than 0.5. After that, the mesh files were imported into 

ANSYS FLUENT MESHING to develop the hybrid mesh which consisted of 4 layers 

of prism mesh near to the nasal wall and unstructured tetrahedral mesh at the inner 
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region of the upper airway. For both pre- and post-operative upper airway model, the 

maximum skewness obtained for the generated hybrid mesh was maintained to be less 

than 0.85. Figure 7.2 shows the hybrid mesh generated for the pre-operative upper 

airway model. 

 

 

 

Figure 7.2: Hybrid mesh generated for the pre-operative upper airway model. 

 

As shown in Figure 7.2, 4 layers of prism mesh were developed near to the 

wall whereas the unstructured tetrahedral mesh was developed at the remaining part 

of the computational domain. Figure 7.3 shows the hybrid mesh generated for the post-

operative upper airway model. As highlighted in Figure 7.3, similarly, 4 layers of 

prism mesh were developed at the wall and unstructured tetrahedral mesh was 

generated at the inner part of the computational domain. 
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Figure 7.3: Hybrid mesh generated for the post-operative upper airway model. 

 

 

7.3  Numerical Methods 

The numerical simulations of the inspiratory airflow through the upper airway 

mdoel for both pre-and post-operative cases were performed using the commercial 

CFD solver named ANSYS FLUENT. In the present study, numerical simulation for 

the inspiratory airflow for the modeled upper airway configuration were performed 

under the steady condition for breathing rates of 4, 7.5and 10 L/min. For the pre-

operative case, the Reynolds number obtained for the selected inhalation rates are 605, 

1147 and 1529. On the other hand, for the post-operative case, the calculated Reynolds 
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number are 532, 998 and 1331. Hence, in both pre- and post-operative cases, the flow 

were considered as laminar inspiratory airflow. In this study, mass flow inlet was 

boundary condition was defined at the nostril inlet while outflow boundary condition 

was defined at the outlet. A no slip boundary condition was assumed and defined at 

the nasal wall, ignoring the presence of the mucus layer in the airway passage. The 

numerical methods implemented for this study has been presented in detailes in 

Chapter 4.  

 

Figure 7.4 shows the three-dimensional realistic human upper airway model 

with obstructive sleep apnea disease developed for the pre-operative case study. The 

blue colour surfaces in Figure 7.4 represents the inlet boundary condition for the upper 

airway model. The grey surface represents the wall boundary condition. The outlet 

boundary condition was define at the bottom part of the upper airway model. 
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Figure 7.4: 3D realistic human upper airway computational model with obstructive 
sleep apnea diseases for pre-operative case. 

 

Figure 7.5 shows the three-dimensional realistic human upper airway model 

with obstructive sleep apnea developed for the post-operative case study. As shown in 

Figure 7.5, similarly, the red surfaces were defined as the inlet boundary condition for 

the post-operative upper airway model. The grey surface represents the wall boundary 

condition. The outlet boundary condition was defined at the bottom part of the upper 

airway model. 
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Figure 7.5: 3D realistic human upper airway computational model with obstructive 
sleep apnea disease for post-operative case. 

 

7.4 Grid Dependency Analysis  

Grid dependency studies have been performed for the pre- and post-operative 

diseased human upper airway models. As shown in Figure 7.6 and 7.7, the mesh size 

represents the total number of mesh generated for the upper airway computational 

domain. The average static pressure was obtained at the constricted region. The plane 

created at the constricted region is as shown in Figure 7.8 plane j. 

 

Figure 7.6 shows the grid dependency study for the developed upper airway 

with OSA before surgery. The first model with number of mesh of 3426150 was 

initially used to solve the inspiratory airflow in the upper airway at a flow rate of 7.5 
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L/min. The model was then improved by refining the cells by reducing the size of the 

mesh with each refinement producing a higher total number of mesh in the upper 

airway model. As can be seen in Figure 7.6, the grid dependency analysis shows that 

the results obtained for average static pressure converge as the mesh approached 

7354273 cells. Hence, in this study, the upper airway model with 7354273 cells was 

used for the pre-operative case study. 

 

 

Figure 7.6: Grid dependency analysis for pre-operative human upper airway with OSA.  

 

Figure 7.7 shows the grid dependency study for the post-operative upper 

airway with OSA disease.  For this model, an initial mesh size of 3389924 cells was 

used to simulate the inspiratory airflow in the post-operative upper airway for flow 

rates of 7.5 L/min. After that, similarly the mesh was refined by reducing the mesh 

size, resulting in an increased of the total number of mesh in the post-operative upper 

airway model. As can be observed in Figure 7.7, the average static pressure obtained 
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at the constricted region converge as the mesh resolution approached 7465763 cells. 

Hence, the post-operative upper airway model with 7465763 cells was used in this 

study in order to compromise between the computational cost and results accuracy. 

 

 

Figure 7.7: Grid dependency analysis for post-operative human upper airway with 
Obstructive Sleep Apnea. 

 

7.5 Geometry Comparison  

The pre- and post-operative upper airway models were compared to observe 

the geometrical changes in the upper airway model after the surgical treatment. Figure 

7.8 shows the eighteen cross-section area created along the upper airway for the pre-

operative computational model. 
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Figure 7.8: Cross section area along the upper airway for the pre-operative 
computational model. 

 

As can be seen in Figure 7.8, plane a to plane h were created in the nasal cavity 

region, whereas, plane i to plane r were created in the pharynx region. As shown in 

Figure 7.8, plane k marks the end of nasopharynx section. Plane l and m are located at 

the back of the tongue, the oropharynx section. Plane n and o are located at the 

hypopharynx section. Plane m is located near to the epiglottis, whereas, plane o is 

located near to the glottis. Plane p and are located at the larynx section. Finally, plane 

r is located at the trachea region. As can be observed in Figure 7.8, two constricted 
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regions were found in the pharyngeal airway passage. The first constricted region was 

found located at the back of the tongue (Plane k), in the oropharynx region. The second 

constricted region was found located in the hypopharynx region as depicted by plane 

o in Figure 7.8. Figure 7.9 shows the ten planes created from the nasopharynx region 

to the larynx. As shown in Figure 7.9, for the pre-operative model, the smallest cross 

section area in the pharynx section was observed at plane j and plane o which located 

at the oropharynx region and hypopharynx region respectively. As can be observed in 

Figure 7.9, the geometry of the cross-section area along the pharynx region change 

dramatically from nasopharynx to trachea region.  

   

 

Plane i Plane j Plane k Plane l 

  
  

Plane m Plane n Plane o Plane p 

  

  

Plane q Plane r   

Figure 7.9: The planes created from nasopharynx to larynx region for pre-operative 
model. 
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Figure 7.10 shows the cross-section area along the upper airway for the post-

operative computational model. Similarly, plane a to plane h were created in the nasal 

passage region, where, plane i to plane q were created in the pharynx region. As can 

be seen in Figure 7.8, plane k marks the end of the nasopharynx region. Plane l and m 

were created at the oropharynx region while plane n and o were created in the 

hypopharynx region. Plane m was created near to the epiglottis, whereas, plane o was 

created near to the glottis. Finally, Plane p and q are created in the larynx and trachea 

region respectively. 

 

Figure 7.10: Cross section area along the upper airway for the post-operative 
computational model. 
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Figure 7.11 shows the planes created from nasopharynx to the larynx region 

for the post-operative computational model. As can be seen in Figure 7.11, for post-

operative case, the smallest cross section area was also observed located at the 

oropharynx region and hypopharynx region. The smallest cross section area in the 

oropharynx region is represents by plane j and the smallest cross section area in the 

hypopharynx region is represents by plane o. 

 

 

Figure 7.11: The planes created from nasopharynx to larynx region for post-
operative case. 
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Figure 7.12 shows comparison of the cross-sectional area obtained along the 

axial distance through the nasal cavity region for pre- and post-operative upper airway 

models. Initially, both pre- and post-operative model starts with the same cross section 

area at the nostril. After that, a bilateral inferior turbinate reduction surgery was 

performed at the anterior part of the nasal cavity. Then a septoplasty surgery was 

performed in the left nasal cavity to remove the nasal blockage and to restore the nasal 

septum position. Therefore, as can be seen in Figure 7.12, the cross-section area for 

the post-operative case increased after the nostril inlet. The nasal blockage which was 

located approximately at the 4 cm from the tip of the nose was removed. Finally, a 

concha bullosa resection was performed at approximately 6 to 10 cm from the tip of 

the nose resulting in an increased of cross section area in the posterior part of the post-

operative nasal passage. 

 

 

Figure 7.12: Cross-sectional area along the axial distance through the nasal airway. 
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Figure 7.13 shows the cross-sectional area plots along the sagittal distance 

through the pharynx section of the pre and post-operative upper airway model. As can 

be seen in Figure 7.13, both pre- and post-operative cases have almost the same 

magnitude of the cross-section area at the nasopharynx plane. However, after the 

nasopharynx plane, the cross-sectional area for the post-operative upper airway model 

started increased. It is worth to mention that, no surgical treatment was performed in 

the pharynx part of the upper airway model. The geometrical changes in the pharynx 

region was generally affected by the nasal surgical treatment. 

 

 

Figure 7.13: Cross-sectional area along the sagittal distance through the pharyngeal 
section. 
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section area was found located at 0.9 cm from the nasopharynx plane. As can be 

observed in Figure 7.13, after surgery, the cross-section area at the oropharynx region 

was found increased. However, the cross-section area at the hypopharynx area was 

found decreased. The cross-section area at the glottis region increased in the post-

operative model. There were no significant changes in cross section area in the larynx 

region after surgery. As shown in Figure 7.13, before surgery, the smallest cross 

section area was found in the glottis region, which is located at 8 cm from the plane i. 

However, after surgery, the smallest cross section area was found in the oropharynx 

region, which is located at 0.9 cm from the plane i. The cross-section area at the glottis 

has increased from 0.4 cm2 to 1.2 cm2. 

 

7.6 Pressure and Flow Resistance  

Figure 7.14 shows comparison of pressure contour obtained along the upper 

airway model for pre- and post-operative cases. As can be observed in Figure 7.14, for 

both cases, the highest pressure magnitude was found located at the nostril. The 

pressure was observed decreased throughout the upper airway model. As the air flow 

through the upper airway model, negative pressure was observed. The negative 

pressure represents the air suction into the lung during physiological breathing. 
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 (a)  (b) 

Figure 7.14: Comparison of pressure contour obtained for inhalation rate of 10 
L/min: (a) pre- and (b) post-surgery. 

 

As can be observed in Figure 7.14, the maximum negative pressure obtained 

after surgery was significantly reduced as compared to that of before surgery. Before 

surgery, the maximum negative pressure obtained in the pharynx section is 69.28 Pa, 

whereas, after surgery, the maximum negative pressure reduces for about 92 % with 

5.75 Pa. As the negative pressure in the pharyngeal airway during inspiration is one of 

the contributing factor of collapse of the pharyngeal airway. The reduction of the 

negative pressure in the post-operative model could contribute to the reduction of the 

possibility of the airway occlusion in the pharyngeal airway. Figure 7.15 shows the 

pressure comparison between pre- and post-operative model for flow rate of 10 L/min.   



167 

 

 

 

Figure 7.15: Pressure comparison between pre- and post-operative model for flow 
rate of 10 L/min. 

 

As be seen in Figure 7.15, before surgery, the average static pressure was 

observed decreased drastically as the flow passes through the hypopharynx region. 

However, after surgery, there was only small changes in pressure distribution in the 

hypopharynx region. Before surgery, the average static pressure obtained at plane l is 

-11.19 Pa and plane m is -46.60 Pa. However, after surgery, the average static pressure 

obtained in plane l is -3.41 Pa and plane m is -4.52 Pa. As can be observed in Figure 

7.15, before surgery, the highest pressure drop, 19.43 Pa, was found in the 

hypopharynx region during inspiration, whereas after surgery, highest pressure drop, 

with only 1.2 Pa, was found in oropharynx region. Figure 7.16 shows the average static 

pressure obtained along the pharynx section of pre-operative upper airway for various 

flow rates ranging from 4 to 10 L/min. 
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Figure 7.16: Pressure along the pre-operative upper airway model for various flow 

rates. 
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oropharynx region. For inhalation rate of 7.5 L/min, the average static pressure 

calculated at plane m is -26.83 Pa, whereas, for 10 L/min, the calculated average static 

pressure is -46.60 Pa. Figure 7.17 shows the average static pressure obtained along the 

pharynx section of the post-operative model for flow rate of 4, 7.5 and 10 L/min. 
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Figure 7.17: Pressure along the post-operative upper airway model for various flow 
rates. 
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morphological changes on breathing resistance. Table 7.1 shows the pressure drop and 

airflow resistance obtained through the upper airway for inhalation rate of 7.5 L/min. 
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Table 7.1: Pressure drop for flow rate of 7.5 L/min before and after surgery. 

 Pressure drop 
(Pa) 

Airflow resistance (Pa-
min/L) 

Pre-Operative (Nasal) 3.19 0.43 

Post-Operative (Nasal) 1.84 0.25 

Pre-Operative (Pharynx) 38.38 5.12 

Post-Operative (Pharynx) 1.44 0.19 

Pre-operative (Full upper 
airway) 

43.34 5.78 

Post-operative (Full upper 
airway) 

3.27 0.44 

 

As shown in Table 7.1, before surgery the airflow resistance obtained in the 

nasal cavity is 0.43 Pa-min/L. However, after surgery, the airflow resistance in the 

nasal cavity decreased about 42 % to 0.25 Pa-min/L. The reduction of the airflow 

resistance in the nasal cavity affect the pressure distribution in the lower part of the 

upper airway. As can be observed in Table 7.1, after surgery, the airflow resistance 

obtained in the pharynx section decreased significantly from 5.12 Pa-min/L to 0.19 

Pa-min/L, about 96 % from the preoperative case.  

 

As can be seen in Table 7.1, before surgery, the pressure different obtained 

between the nostril inlet and pharynx outlet is 43.34 Pa, whereas after surgery, the 

pressure different decreased to only 3.27 Pa. The total airflow resistance through the 

upper airway was found reduced about 92 % from 5.78 Pa-min/L to 0.44 Pa-min/L 

after surgery. This indicate that the nasal surgery has successfully improved the overall 

breathing quality in upper airway with OSA. During the follow-up visits after the 

surgery, the patient reports that his main symptom i.e nasal obstruction, has been 
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greatly reduced. Secondly, the improvement of the breathing quality can be observed 

by reduction of the breathing resistance for about 92 % after surgery. Obstruction in 

the nasal passage increased in the airflow resistance in the nasal cavity and affect the 

total airflow resistance in the upper airway during inspiration. However, the removal 

of the nasal obstruction has increase the airway passage and smoothen the airflow 

through the airway resulted in reduction of pressure drop and airflow resistance 

through the upper airway during inspiration. Figure 7.18 shows the comparison of 

airflow resistance plots between pre and post-operative cases against inhalation rates 

of 4, 7.5 and 10 L/min. As can be observed in Figure 7.19, for both cases, the airflow 

resistance increased as the inhalation rates increase. However, for pre-operative case, 

the increment for the airflow resistance through the diseased upper airway is steeper 

as compared to the post-operative case.  

 

 

Figure 7.18: Comparison of airflow resistance plot for inhalation rates ranging from 
4 to 10 L/min. 
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7.7 Velocity and Flow Distribution  

Figure 7.19 shows the velocity vector obtained through the upper airway for 

the pre-operative models. As shown in Figure 7.19, the velocity jet was found located 

at the oropharynx region. The velocity magnitude increased when the flow passes 

through a smaller cross section area from nasopharynx to oropharynx, at the back of 

the soft palate. As can be seen in Figure 7.19 (a), low recirculating flow was observed 

as the flow hit the epiglottis wall. At the end of the velocity jet, as the flow entered 

larger airway volume in the hypopharynx region, flow separation can be observed at 

the anterior part of the hyhopharynx region. As can be observed in Figure 7.19 (c), 

second velocity jet was observed as the flow passes through the glottis region. After 

that, the flow was directed to the posterior part of the larynx section. The sudden 

airway expansion caused flow instability in this region. Few vortices were observed 

located at the anterior part of the larynx section.  

 

Figure 7.20 shows the velocity vector obtained for the post-operative model. 

As can be seen in Figure 7.20, after surgery, the maximum velocity magnitude 

obtained in the upper airway decreased from 9.52 m/s to 2.81 m/s. Similar to the pre-

operative, two velocity jets were observed at the back of the soft palate and at the 

glottis region. However, the magnitude of the velocity is lower as compared to the pre-

operative case. As can be observed in Figure 7.20 (c), at the larynx region, flow 

separation and recirculation were observed at both at the anterior and posterior part of 

the larynx section. The higher magnitude of velocity vectors were not observed at the 
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posterior part of the larynx section. Instead, the flow was observed directed to the 

center part of the larynx section. 

 

 

 

 

Figure 7.19: Velocity vector for inhalation rate of 10L/min, pre-operative case. 
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Figure 7.20: Velocity vector for inhalation rate of 10 L/min, post-operative case. 
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Figure 7.21: Velocity streamlines for inhalation rate of 10 L/min for pre- and post-
operative cases. 
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Figure 7.21 shows the 3D velocity streamline for inhalation rate of 10 L/min 

for the pre-and post-operative cases. As can be observed in Figure 7.21 the velocity of 

the inspiratory airflow increased as the flow pass through the oropharynx region.  

 

Figure 7.23 shows the average velocity obtained along the pre-operative upper 

airway model for various flow rates ranging from 4 to 10 L/min. As can be seen in 

Figure 7.23, as the inhalation rate increased, the average velocity through the upper 

airway increased.  Figure 7.24 shows the average velocity obtained through the post-

operative upper airway for flow rates of 4, 7.5 and 10 L/min. Similarly, as shown in 

Figure 7.24, the velocity obtained along the upper airway increased as the inspiratory 

rate increased. In both cases, the average velocity of the inspiratory airflow was 

observed increased as the flow passes though the smallest cross section area in 

oropharynx and hypopharynx region. As the inhalation rate increased, the location of 

the highest velocity obtained in the pharynx section does not changed. 
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Figure 7.23: Average velocity along pre-operative upper airway for flow rates of 4-
10 L/min. 

 

Figure 7.24: Average velocity along post-operative upper airway for flow rates of 4-
10 L/min. 
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7.8 Wall Shear Stress 

Figure 7.24 shows the wall shear stress contour obtained on the pre-operative 

upper airway wall for inhalation rate of 10 L/min.  

   

 
  

Figure 7.24: Wall shear stress contour on pre-operative upper airway wall for 
inhalation rate of 10 L/min. 
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As can be seen in Figure 7.24, for the pre-operative case, the highest wall shear 

stress was observed at the smallest cross section area at the hypopharynx region near 

to the glottis. Figure 7.24 shows the wall shear stress contour obtained on the post-

operative upper airway model wall for inhalation rate of 10 L/min. 

 

As can be seen in Figure 7.24, the wall shear stress increases as the flow passes 

through the oropharynx and the glottis section in the hypopharynx region. The highest 

wall shear stress with 0.47 Pa was found located approximately at the glottis. Figure 

7.24 shows comparison between anterior and posterior part of the pharyngeal wall of 

the upper airway shows that, the posterior wall experience higher wall shear stress 

during inspiration. Because as the flow passes through the oropharynx, the high 

velocity airflow was observed directed to the posterior part of the pharyngeal section. 

Figure 7.25 shows comparison of average wall shear stress obtained for inhalation rate 

of 10 L/min for pre- and post-operative cases. As can be seen in Figure 6.25, the 

highest wall shear stress for the pre-operative case was observed located at about 2 cm 

from the plane (nasopharynx plane) whereas, for the post-operative case, the highest 

wall shear stress was observed at the nasopharynx plane.  
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Figure 7.25: Comparison of average wall shear stress obtained for inhalation rate 10 
L/min: pre- and post-operative model. 

 

7.9 Particle Deposition  

Figure 7.26 shows the developed three-dimensional pre-operative diseased 

upper airway which was further divided into 8 different regions which include the 

vestibule, nasal valve, main airway, nasopharynx, oropharynx, hypopharynx, larynx 

and trachea region. Similarly, Figure 7.27 shows the eight different regions created in 

the three-dimensional post-operative model. The purpose of dividing the upper airway 

into several different regions is to investigate the effect of the morphology of the upper 

airway on the particle deposition fraction during inhalation. Based on the morphology 

of the upper airway of this patient, it can be observed that the most important area of 

concern is located in the main airway region where the structural nasal obstruction is 

found. The obstruction in the main airway contribute to the increase of the total 

breathing resistance. Furthermore, the obstruction in the main airway region also 

contribute to the increase of the possibility of the pharyngeal collapse due to the 

increase of negative pressure in the lower part of the upper airway. 
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Figure 7.26: The developed 3D pre-operative upper airway model divided by region 
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Figure 7.27:  The developed 3D post-operative upper airway model divided by 

region 

 

Figure 7.28 shows upper airway total deposition efficiency plots against the 

diameter of the inhaled particles. Figure 7.28 also shows the comparison of the total 

deposition efficiency calculated for inhalation rate of 4, 7.5 and 10 L/min for pre- 

and post –operative models. 
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Figure 7.28: Comparison of total deposition efficiency for inhalation rate of 4-10 
L/min for pre- and post-operative model. 

 

As depicted in Figure 7.28, for both the pre-and post-operative cases, as the 

inhalation rate increased, the total deposition efficiency was observed increased. 
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deposited in the upper airway. For inhalation rate of 10 L/min, and particle size of 10 

µm, the total deposition efficiency obtained before surgery was about 24.3 % whereas 

after surgery, the total deposition efficiency reduces to 1.58 %. The total decrease of 

the total deposition efficiency after surgery is about 93.5 %. This shows that after 

surgery, as the obstructions in the nasal cavity were removed, more particles can pass 

through the upper airway. Figure 7.29 shows the deposition fraction for inhalation rate 

of 10 L/min with inhaled particle diameter ranging from 1-10 µm for the pre-operative 

model, whereas Figure 7.30 shows for the post-operative model. 

 

Figure 7.29: Particle deposition fraction for inhalation rate of 10 L/min for pre-
operation model. 
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Figure 7.30: Particle deposition fraction for inhalation rate of 10 L/min for the post-

operative model. 

 

As can be seen in Figure 7.29, for the pre-operative model, for all particle sizes, 
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was found reduced after surgery, Figure 7.30 shows that, after surgery, the vestibule 

plays a significant role in filtering out larger size particles.  

 

7.9   Conclusions 

The surgical procedure has cleared out the obstructions in the nasal airway 

hence improve the airflow distribution through the upper airway during inhalation 

process. This study shows that the nasal surgery alone can help improve the breathing 

quality in the upper airway with OSA. The reduction of the airflow resistance in the 

nasal cavity affect the pressure distribution in the lower part of the upper airway. The 

combination of the decrease of the airflow resistance and decrease of the magnitude of 

the negative pressure found in the pharynx region contribute to the improvement of 

the breathing quality for the OSA patient and reduce the risk of pharyngeal collapse 

during inspiration. The total particle deposition efficiency was found affected by the 

inhalation rate and the inhaled particle diameter. The total deposition efficiency 

increased as the inhalation rate and particle size increased. The total particle deposition 

efficiency and particle deposition fraction in regions were found affected by the 

morphology of the upper airway. Obstruction in the nasal airway increased number of 

deposited particle in the airway. Sudden airway expansion in the hypopharynx region 

which caused flow recirculation also increased number of particles trap, recirculated 

by finally deposited in the airway. For the post-operative case, as the morphology of 

the upper airway changed after surgery, the local particle deposition hot spot was found 

located in different region as compared to the pre-operative case.  
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CHAPTER 8 

 

EXPERIMENTAL INVESTIGATION 

 

8.1  Introduction 

This chapter presents the process of developing the experiment test rig and the 

pharynx experimental model for both pre and post-operative cases. The main aim of 

this study was to analyze and validate the solutions obtained from numerical 

simulation with that of experimental results.  

 

8.2  Development of 3D Model 

The pharynx experimental model was developed by modifying the upper 

airway computational model developed for the numerical simulation study. The 

reconstruction of the three-dimensional realistic anatomical model of the human upper 

airway from CT scan images is already presented in Chapter 3. For the pharynx 

experimental model, initially, the upper airway model was modified in CATIA by 

excluding the nasal cavity part from the upper airway model. The exclusion of the 

nasal cavity part was done considering the complicated and narrowed diseased nasal 

airway geometry which is not possible to fabricate furthermore it will make flow 

measurement and visualization through the full upper airway model difficult. Figure 

8.1 (a) and 8.2 (a) show the pharynx part of the diseased upper airway for the pre-

operative and post-operative cases respectively. After that, two connectors were 

constructed at the inlet and the outlet of the pharynx model. 
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Figure 8.1:  Pharynx experimental model for the pre-operative case: (a) pharynx, (b) 
pharynx with connector, (c) extruded 2.5 mm thickness, (d) right part, (e) left part. 
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Figure 8.2: Pharynx experimental model for the post-operative case: (a) pharynx, (b) 
pharynx with connector, (c) extruded 2.5 mm thickness, (d) right part, (e) left part. 

 

As shown in Figure 8.1 (b) and 8.2 (b) the modification of the upper airway 

models was made using a CAD software named CATIA. The pharynx model was 

modified to include connector at the inlet and the outlet part of the geometry. This 

modification was considered necessary to facilitate pipe connection without affecting 

the pharynx geometry. After that the .stl files generated in CATIA were then imported 

a b c d e 
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into another 3D modelling software named Materialise 3-matic. In this software, the 

upper airway wall was extruded to give a minimum thickness of 2.5 mm for the model 

fabrication purpose. As shown in Figure 8.1 (c) and 8.2 (c), the outer surface of the 

pharynx models was extruded with 2.5 mm thickness specification. After that, the 

pharynx models were separated into two parts as depicted in Figure 8.1 (d) and (e) for 

the pre-operative case and Figure 8.2 (d) and (e) for the post-operative case. Finally 

the extruded wall surface was smoothen in the 3-matic software to improve the surface 

quality and roughness before fabrication process. 

 

8.3  Model Fabrication 

Several number of researchers have used several techniques to fabricate the 

human nasal cavity model (Chun et al., 2006; Doorly et al., 2008; Hahn et al., 1993; 

Hopkins et al., 2000; Zubair et al., 2015). Hahn et al., (1993) developed an enlarged 

20X scale of the human nasal cavity model. Hopkins et al., (2000) and Doorly et al., 

(2008) used 2X scale of human nasal cavity model produced by using the three 

dimensional printer named Zprinter 310 from the Z Corporation. Mylavarapu et al., 

(2009) constructed 2X scale of the human airway model. They used Stereolithography 

process and selected a SLA resin named Somos Watershed 11,110 material to fabricate 

the airway. In the present work, the pharynx experimental model was fabricated by 

using the Stereolithography process. Stereolithography is a laser-based technology that 

uses a UV-sensitive liquid resin. A UV laser beam scans the surface of the resin and 

selectively hardens the material corresponding to a cross section of the product, 

building the 3D part from the bottom to the top. The required supports for overhangs 

and cavities are automatically generated, and later manually removed. Finally, the 
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surface of the model is then finished and cleaned. Figure 8.5 shows the steps involved 

in fabricating the pharynx models by using the Stereolithography technology. 

  

(a) The 3D model (b) A laser hardens UV curable liquid 

  

(c) The platform cotaining liquid  (d) The liquid is vanished away and 

the support is removed 

 

(e) The part is finished 

Figure 8.3: Stereolithography method.  
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Before we can start to fabricate the pharynx models, we need to select a good 

and high-quality material which can produce a high quality transparency product. In 

this study, as shown in Figure 8.4, a Stereolithography resin named TuskXC2700T 

was used to fabricate the developed pharynx experimental models. Tusk XC2700T 

was selected to fabricate the 3D pharynx model because it can produce strong, tough, 

water-resistant parts with good transparency quality.  

 
Figure 8.4: Material selection, TuskXC2700T. 

 

Table 8.1 shows the mechanical properties of the selected material to fabricate 

the pharynx experimental model.  Table 8.2 shows the surface finishing degrees can 

be applied on the printed parts. After the printing process, the auto-generated support 

will be manually removed from the printed part. Then, a surface finishing process was 

performed. The surface finishing process include support removal, curing, 

sandblasting, smoothing, primer and coating. 
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Table 8.1: TuskXC2700T material properties datasheet. 

 Units ASTM# Range 

Density g/cm3  1.18 – 1.2 

Tensile Strength MPa D638M 47.1 – 53.6 

Tensile Modulus MPa D638M 2650 – 2880 

Elongation at break % D638M 11 – 20 

Flexural Strength MPa D790M 63.1 – 74.16 

Flexural Modulus MPa D790M 2040 – 2370 

Notched Izod 
Impact 

J/m D256A 20 – 30 

Hardness Shore D D2240 81 

Heat Deflection 
Temp 

0C D648-98c At 0.46 MPa: 45.9 – 
54.5 

At 1.81 MPa: 49.0 – 
49.7 

 

 

Table 8.2: Finishing degrees for Stereolithography parts. 

Finishing Support 
removal Curing Sandblasting Smoothing Primer Coating 

Basic ✓  ✓      

Cosmetic 
transparent ✓  ✓  ✓  ✓  ✓  ✓  

 

 

Figure 8.5 shows the example of the surface finishing degrees done on the SLA 

parts. As can be seen in Figure 8.5 (a) with a basic surface finishing degree, the 

building layers can still be observed on the surface even after the curing process. Figure 
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8.5 (b) shows the SLA part with cosmetic transparent on both inside and outside 

surfaces. For the cosmetic transparent finishing degree, sandblasting, surface 

smoothing, primer and transparent coating will be applied onto the inner and outer 

surface of the printed SLA part.  

 

 

• SLA basic finishing 

 

• SLA 

• Cosmetic transparent outside 

• Cosmetic transparent inside 

 
Figure 8.5: Examples of the printed part with (a) basic and (b) cosmetic transparent 

surface finishing. 

 

 

Figure 8.6 shows the transparent pharynx experimental model fabricated by 

using the Stereolithography machine with cosmetic transparent finishing degree. The 

(a) 

(b) 
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surface quality of the fabricated pharynx experimental models were improved by 

utilizing the cosmetic transparent surface finishing degree on the inner and outer 

surface of the printed model. Initially the support material generated during the 

printing process was removed. After that the model was cured by exposing the model 

surface under UV light to harden the surface. Next, the model surface was sandblasted 

and sandpapered to smoothen the model surface. During the smoothing process, the 

building layer observed on the printed surface was removed. After that, in order to 

improve the surface adhesion, primer was applied on the inner and outer surface of the 

pharynx experimental model prior to cosmetic transparent painting. Then, a 

transparent paint was applied on the inner and outer surface of the printer part to 

improve the transparency quality of the pharynx experimental model. As can be 

observed in Figure 8.6 (a) and (b), after the surface finishing process, both models 

show a very good transparency quality. The fabricated pharynx experimental model 

has uniform wall thickness of 2.5 mm. 
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Figure 8.6: The transparent pharynx model produced from the Stereolithography 
machine: (a) pre-operative model and (b) post-operative model. 

 

 

 

 

 

 

(a) (b) 
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8.4 Experimental Setup  

Figure 8.7 shows the experimental test setup developed in the Propulsion 

Laboratory, Universiti Putra Malaysia. As can be seen in Figure 8.7, the air pressure 

can be controlled by using the control valve and air flow was driven by the air 

compressor. The flow will pass through the experimental model and exit to the 

atmosphere.  The air compressor has capacity to pump to a maximum pressure of about 

138 kPa. 

 

 

Figure 8.7: Flow measurement apparatus. 

 

Pressure valve 

Outlet pipe 

Inlet pipe 

Pharynx experimental model 

Digital pressure 
manometer 

Digital pressure 
manometer 
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Two pressure taps were included on each of the pharynx experimental models 

for the purpose of pressure measurement. Another one pressure tap was located at the 

pipe located at the beginning to the test model to measure the pressure inlet. The 

location of the pressure taps used for measuring pressure drop across the pharynx 

experimental model is as shown in Figure 8.8. 

 

 

 

Figure 8.8: The location of the pressure taps on the pharynx experimental models. 

 

The pressure taps located at the inlet and outlet were connected to a digital 

manometer which reads pressure in Pascal, Pa. The pressure tap and the pressure 

manometer were connected by using plastic tubes. The compressor drives the airflow 

from the pharynx outlet to the pharynx inlet which represents expiratory airflow. 

Pressure drop were obtained for various exhalation rates and plotted against the 

pressure inlet. The pressure drop values obtained from the experimental work were 

Pharynx inlet Pharynx outlet Pressure tab 
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compared with the pressure drop obtained from the numerical simulation of expiratory 

airflow through the same model to validate the numerical results obtained from this 

research study. 

 

8.5 Experimental Error Analysis 

The experimental error analysis was performed to improve the accuracy of the 

measured data. As reported by Taylor, 1997, error analysis can be defined as the study 

of uncertainties in physical measurements (i.e. experimental error). Hence, 

experimental error is the difference between two or more measured values. Mean and 

standard deviation as proposed by Taylor, 1997 will be used in this study to calculate 

the experimental error. Several number of measurements will be obtained to calculate 

the mean and standard deviation value. Mean value describes the central value of the 

measures, while the standard deviation describes the spread or deviation of the 

measured values about the mean. The mean of x is represented by and it is calculated 

by the following formula from a set of N measured values for some quantity x: 

 𝑥𝑏𝑒𝑠𝑡 = �̅� (8.10) 

 

Where 

 �̅� =
𝑥1 + 𝑥2 + 𝑥3 + ⋯ . +𝑥𝑁

𝑁
=

∑ 𝑥𝑖

𝑁
 (8.11) 

 

The standard deviation, 𝜎𝑥 and can be written as: 
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𝜎𝑥 = √

∑ (|𝑥𝑖 − �̅�|)2
𝑥𝑖

𝑁 − 1
 (8.12) 

where, 𝑥𝑖is the value obtained in the i-th measurement. According to the theory of 

probability, if N measurements of a quantity x is made, there is a probability that68% 

of the measurements will fall within the range�̅� ± 𝜎𝑥… 

 

8.6 Experimental Results 

Figure 8.9 shows the pressure drop obtained for a range of pressure inlet of 10 

to 150 Pa for the pre-operative pharynx model. As can be seen in Figure 8.9, as the 

pressure inlet increased, the pressure drop also was observed increased. The pressure 

drop obtained for the pressure inlet of 10 Pa was approximately 12 Pa. At a higher 

pressure inlet of 100 Pa the pressure drop obtained was around 110 Pa. Figure 8.10 

shows the pressure drop obtained through the post-operative pharynx model. Similar 

to the pre-operative case, the pressure drop through the post-operative pharynx model 

was observed increased ad the pressure inlet increased. However, for the same pressure 

inlet of 10 Pa, the pressure drop obtained through the post-operative pharynx model 

was found does not changed as compared to the pre-operative case. However, as the 

pressure inlet increased, the pressure drop obtained for the post-operative case was 

observed increased about 3 %. For pressure inlet of 100 Pa, the pressure drop obtained 

for the post-operative case is 113 Pa, and pre-operative case 110 Pa.  
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Figure 8.9: Pressure drop for pre-operative pharynx model. 

 

 

Figure 8.10: Pressure drop graph for post-operative pharynx model. 
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Table 8.3 shows the experimental error measurement calculated for the 

different pressure drop values obtained for both pre- and post-operative pharynx 

experimental model. As can be seen in Table 8.3, the maximum calculated standard 

deviation is approximately 6.5 which is significantly small. Hence the results obtained 

can be deem reliable. 

 

Table 8.3: Experimental error measurement for different pressure drop values. 

 Pressure drop (Pa) Standard Deviation 

Pre-operative case 12 0.6 

 51 0.4 

 110 4.8 

 158 6.5 

Post-operative case 12 0.6 

 57 1.3 

 113 3.9 

 168 4.6 
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8.7 Comparison of Experimental and Numerical Investigations 

Numerical simulation of expiratory flow were carried out using the pharynx 

experimental model developed for both pre- and post-operative cases. Air was defined 

as the fluid properties used in the simulation. Pressure drop values obtained from the 

numerical study were compared with that of the experimental results. Figure 8.11 

shows the comparative study of pressure drop plot for numerical and experimental 

investigation for the pre-operative model, whereas, Figure 8.12 shows for the post-

operative model. As shown in Figure 8.11 and 8.12, the pressure drop obtained from 

the numerical study follow the same pattern and match closely with the pressure drop 

obtained from the experimental study. As can be seen in Figure 8.11, for the pre-

operative model, the pressure drop obtained for pressure inlet of 10 Pa was 12 Pa from 

experiment and 10.1 Pa from simulation. For a higher pressure inlet of 150 Pa, the 

pressure drop obtained from the experimental study was approximately 158 Pa and 

153 Pa from the numerical simulation study. The variation between the pressure drop 

obtained from the numerical study and experimental study is significantly small at 

approximately 3.3 %. For the post-operative case, as can be observed in Figure 8.12, 

the pressure drop calculated for pressure inlet of 10 Pa was 12 Pa for experiment and 

10.5 Pa for simulation. For a higher pressure inlet of 150 Pa, the pressure drop obtained 

from the experimental analysis was 169 Pa whereas 166.9 Pa from numerical analysis. 

The variation between results obtained from the experiment investigation and 

numerical study of post-operative pharynx model is significantly small at 

approximately 1.2 %.  
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Figure 8.11: Comparative study of pressure drop plot for numerical and 
experimental investigation for pre-operative model. 

 

 

Figure 8.12: Comparative study of pressure drop plot for numerical and 
experimental investigation for post-operative model. 
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8.9 Conclusions 

The variation between the pressure drop obtained from the numerical study and 

experimental study is significantly small at approximately 3.3 % and 1.2 % for the pre-

operative case and post-operative case respectively. Thus, from the comparative study 

between the results of the pressure drop values obtained from the experimental 

investigation and numerical analysis, it can be safely concluded that the results 

obtained from the numerical simulation is acceptable. Hence, from this comparative 

study, it can be concluded that the numerical method used was successfully verified 

and can be further used to conduct parametric study for various morphological 

geometry.  
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CHAPTER 9 

 

CONCLUSION REMARKS AND FUTURE RECOMMENDATION 

 

9.1 Introduction 

Realistic three-dimensional diseased human upper airway of male and female 

patients was developed by using the CT scans images source from the hospital. 

Numerical simulation of airflow was performed for inhalation rates of 4, 7.5, 10, 20 

and 40 L/min though the developed, diseased nasal airway, constricted pharyngeal 

representing OSA and diseased upper airway model with chronic nasal obstruction and 

OSA for the pre- and post-operative cases. By assuming one-way coupling, the 

Lagrangian particle tracking approach was used to investigate the transport and 

deposition of microparticle through the diseased upper airway. The injected particle 

diameter are 1, 5, 10, 20 and 40 µm. Experimental test rig was developed, and realistic 

pharynx model was fabricated, and experimental study of expiratory flow was 

conducted. Numerical simulation of expiratory airflow through the pharynx model was 

conducted for the same flow rate used during experiment. Results obtained from the 

numerical study was compared and validated with the experimental results. In this 

chapter, major results and recommendation for future study are discussed. 
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9.2 Conclusion Remarks 

Three-dimensional realistic diseased human upper airway computational 

models were successfully developed by using the CT scans images obtained before 

and after surgery. CFD analysis on both the pre- and post-operative diseased nasal 

airway were also successfully performed. From the first case study, numerical 

simulation of airflow and particle transport deposition of inhaled pollutant through 

chronic diseased nasal airway were investigated. In this case study, it was found that 

nasal surgeries which include septoplasty, inferior turbinate reduction, and partial 

concha bullosa resection substantially increased nasal volume and influenced flow 

partitioning and decreases the pressure drop and flow resistance of the nasal passage. 

Hence, the computed airway resistance has significantly improved after surgery and 

less effort is needed for breathing the same flow rate into the lung. However, the post-

operative model experienced approximately about a 50 % decrease in total particle 

filtering efficiency. Hence after surgery, more particles can pass through the nasal 

passage and flow into the lower respiratory tract which could cause adverse health 

effect to the patient with breathing allergy history. 

 

From the second case study, numerical simulation of laminar and turbulent 

inspiratory airflow and particle transport and deposition in a constricted upper airway 

region representing OSA were conducted. In this case study, it was found that the 

morphology of the upper airway significantly affects the airflow pattern and the 

deposition fraction of microparticles. The pressure drop from the choanae to the OSA 

region was larger than the pressure drops through the nasal passages highlighting the 

effect of OSA on adverse flow behavior in that region. The local deposition fractions 



208 

 

proved that the upper airway plays a significant role in filtering large micro-particles. 

It was found that, as the diameter of the particle increase, the location of the highest 

particle deposited region will shift to the anterior part of the upper airway. The 

presented regional deposition fraction may be used in specifying the site of highest 

possibility for respiratory lesions. 

 

In the third part of this study, numerical simulation of airflow and particle 

deposition in the human upper airway with chronic nasal obstruction and OSA were 

performed. In this case study, it was found that the surgical procedure performed in 

the nasal airway was found improve the airflow distribution through the upper airway 

during inhalation process. The combination of the decrease of the airflow resistance 

and decrease of the magnitude of the negative pressure found in the pharynx region 

contribute to the improvement of the breathing quality for the OSA patient and reduce 

the risk of pharyngeal collapse during inspiration. The total deposition efficiency 

increased as the inhalation rate and particle size increased. The total particle deposition 

efficiency and particle deposition fraction in regions were found affected by the 

morphology of the upper airway. For the post-operative case, as the morphology of the 

upper airway changed after surgery, the local particle deposition hot spot was found 

located in different region as compared to the pre-operative case. 

 

The comparative study between the results obtained from the experimental 

investigation and numerical analysis, show that the variation between the pressure 

drops obtained from the numerical study and experimental study is significantly small 

at approximately 3.3 %. Hence, the numerical simulation is considered accurate and 
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the numerical method used was successfully verified and can be further used to 

conduct parametric study for various morphological geometry.  

 

9.3 Future Recommendations 

Based on the presented research findings, several recommendations can be 

drawn to facilitate and provide future direction of research works.  

i. In the present study, particle transport and deposition in the human upper 

airway with a constricted pharyngeal section is limited to micrometer-sized 

particles. However, it is known that nanoparticles have a different deposition 

mechanism. Hence, further work can focus on the transport and deposition of 

inhaled nanometer-sized particles. 

ii. When studying inhaled aerosol particles, most of the researchers used the 

common simplifications that the aerosol particles are spherical, non-interacting, 

and monodisperse. These underlying assumptions allow for decoupling of the 

fluid phase from the particle phase. However, in reality, inhaled particles are 

possibly not in spherical shape, colliding and aggregating.  

iii. Further study may also be carried out to investigate the effect of mucous layer 

on the particle deposition efficiency in the upper airway. 
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