

Helir Joseph Muñoza, Carolina Blancob, José Herney Ramírezc, Arsenio Hidalgo^d, Luis Alejandro Galeano^{a*}

^a Grupo de Investigación en Materiales Funcionales y Catálisis, Universidad de Nariño, 52001 Pasto, Colombia. ^b Departamento de Química, Universidad Nacional de Colombia, 11001 Bogotá D.C., Colombia.

^c Grupo de Investigación en Materiales, Catálisis y Medio Ambiente, Universidad Nacional de Colombia. 11001 Bogotá D.C., Colombia

^d Centro de Estudios y Asesoría en Estadística CEASE, Universidad de Nariño, 52001 Pasto Colombia.

X Simposio Colombiano de

Durante la última década diferentes estudios han demostrado que las arcillas pilarizadas con el sistema mixto Al/Fe presentan una excelente respuesta catalítica en la degradación de compuestos orgánicos tóxicos disueltos en agua mediante Peroxidación Catalítica en Fase Húmeda (PCFH) [1-3]. Sin embargo, la implementación de ésta tecnología en la descontaminación de aguas a escala real depende fuertemente de la preparación reproducible del catalizador a mayor escala, sin una pérdida significativa de sus propiedades tanto fisicoquímicas como catalíticas. Este trabajo tiene como objetivo principal determinar el efecto de la preparación del catalizador Al/Fe-PILC en tres diferentes escalas y concentración de sus precursores.

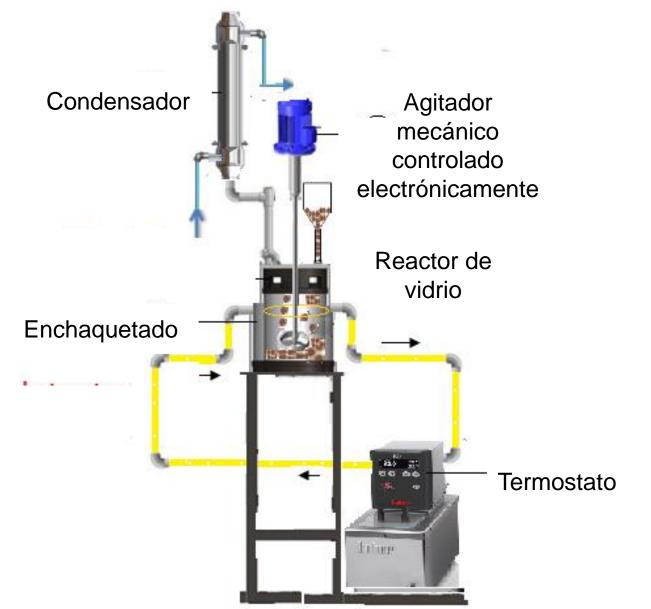


Figura 1. Montaje de preparación de arcilla pilarizada escala 1,2 kg.

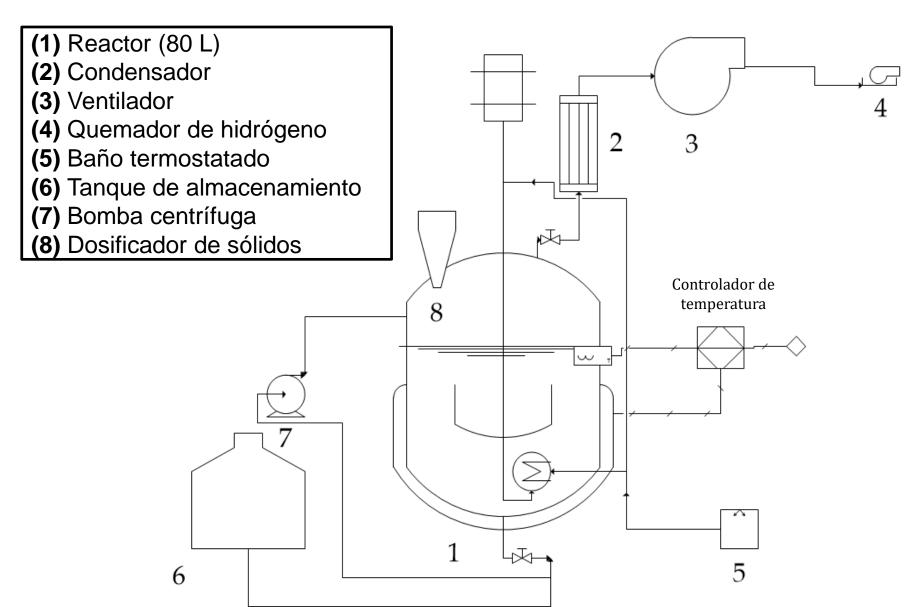


Figura 2. Diseño del sistema usado en la preparación de arcilla pilarizada escala 10 kg.



Figura 3. Montaje empleado en los ensayos catalíticos.

Optimización multirespuesta

Normalizada en una función de

deseabilidad (1*10⁴ g Al/Fe-PILC)

Tabla 1. Condiciones de preparación de catalizadores

Cantidad	Condiciones de preparación de catalizadores					
Al/Fe-PILC (g)	RAN _{Fe} (%)	CTM_f (mol/L)	RH (OH/Al +Fe)	Carga de pilares (meq. M ³⁺ /g arcilla)	Al^{3+}/Al^0	
15,0	5,0	0,06	2,4	20		
10,0; 1,5 * 10 ³ y 1,0 * 10 ⁴	5,0	5,00	2,6	20	14/86	

Muestra	Condiciones de tratamiento	*Fe _{incorporado} (Fe ₂ O ₃) (% p/p	d ₀₀₁) (Å)	S _{BET} (m ² /g)	V _{μp} (cm ³ /g)		
arcillas de partida y pilarizadas							
Tabla 2. Contenido de Fe incorporado, espaciado basal y propiedades texturales de las							
10,0; 1,5 * 10^3 y 1,0 * 10^4	5,0 5	,00 2,6		2	0		
15,0	5,0	,06 2,4		2	0		

Muestra	Condiciones de tratamiento	*Fe _{incorporado} (Fe ₂ O ₃) (% p/p)	d ₀₀₁ (Å)	S_{BET} (m ² /g)	$V_{\mu p}$ (cm ³ /g)
r	Refinada laboratorio	No aplica	15,0	100	0,024
R	Refinada bench	No aplica	14,0	60	0,006
RI	Refinada Industrial	No aplica	15,9	96	0,012
rLD	Al/Fe-PILC lab-diluido	2,38	17,4	194	0,063
RLC	Al/Fe-PILC lab-concentrado	2,57	18,3	198	0,066
RBC	Al/Fe-PILC bench-concentrado	1,08	17,7	169	0,050
RIPC	Al/Fe-PILC piloto-concentrado	3,14	17,1	147	0,0,40

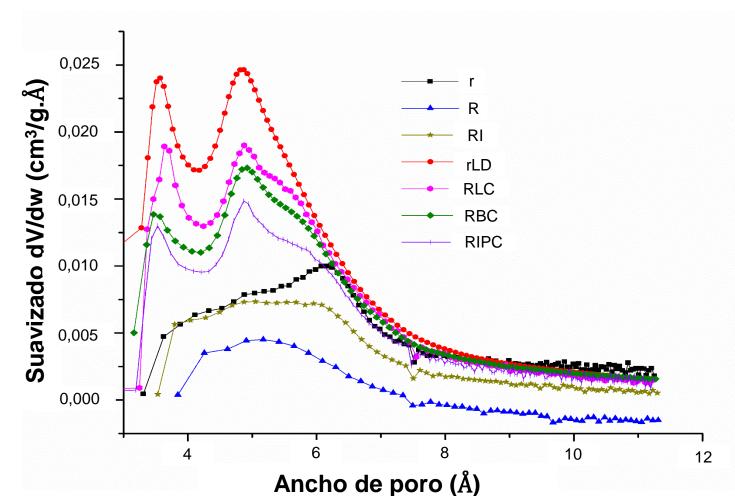
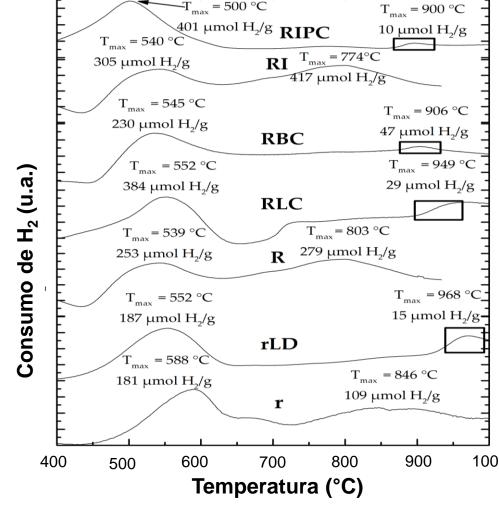



Figura 4. Distribuciones de tamaños de microporos, análisis por el método de Horvath y Kawazoe de las arcillas de partida y pilarizadas

Figura 5. Diagramas TPR-H₂ de arcillas de partida y pilarizadas

La nueva metodología empleada permitió preparar catalizadores tipo Al/Fe-PILCs desde un precursor intercalante altamente concentrado (80 veces más de lo habitual), logrando una significativa intensificación de una de las etapas críticas que involucra la preparación de estos catalizadores, haciendo más factible su escalamiento.

La carga de catalizador mostró una influencia estadísticamente significativa sobre el rendimiento catalítico en la PCFH de fenol, en términos de: mineralización de TOC, moles de peróxido que reaccionaron y degradación de fenol, simultáneamente.

Agradecimientos Se agradece especialmente soporte financiero del proyecto Agua Potable Nariño - SGR (BPIN 2014000100020). GP agradece la beca de maestría concedida por el Departamento de Nariño.

bla 3. Diseño experimental empleado para optimizar principales parámetros de PCFH catalizador a 10 kg. (Central compuesto, 10 experimentos)

Variables experimentales	Rango experimental	Covariables	Rango experimental			
Dosis de peróxido $[H_2O_2]_d$ (% estequiométrico)	53,70-71,30	Concentración inicial PhO TOC (mg C/L)	5,8 - 14,9			
Concentración de catalizador (RIPC) (g/L)	4,39-11,39	Temperatura de reacción (°C)	6,1 - 23,3			
		рН	6,7 – 8,9			
Respuestas						
Mineralización de PhO (% COT/g catalizador)						
$[H_2O_2]_f$ (espectrofotométrico: Método metavanadato, $\lambda = 444$ nm)						
Degradación de PhO (HPLC) (%/g catalizador)						

Tabla 4. Valor p obtenido en el diseño experimental

Mineralización

Términos

 $[H_2O_2]_f$

Degradación

de PhO

					1
		p valor	p valor	p valor	
	$A:[H_2O_2]_d(\%)$	0,2095	0,0569	0,3098	
	B: [RIPC] (g/L)	0,0032	0,0002	0,0007	
	AA	-	-	0,3225	
	AB	-	-	-	
	ВВ	0,0101	0,0133	0,143	
seabilid	1 0,8 0,6 0,4 0,2 0 50 55 60 [H ₂ O ₂] _d (%)			15	abilidad 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
		Deseabili	dad = 0.971		

Figura 6. Superficie de respuesta multirespuesta

[1] Khankhasaeva S, Dambueva D, Dashinamzhilova E, Gil A, Vicente M, Timofeeva M. J. Hazard. Mater., 293 **(2015)**, 21-29

[2] Catrinescu C, Arsene D, Teodosiu C. Appl. Catal B-Environ., 101 (2011), 451-460

[3] Galeano L.A, Bravo P. Luna C, Vicente M, Gil A. Appl. Catal B-Environ., (2012), 527-535.

Metodología

ntroducciór