

X Simposio Colombiano de

CWPO Degradation of Natural Organic Matter: Synthetic Water vs. **Real Surface Water**

<u>Ana María García^{a,b}, Ricardo A. Torres-Palma^b, Luis Alejandro Galeano^{a,*}</u>

^a Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, Calle 18, Cra 50 Campus Torobajo, 52001 Pasto, Colombia.

b Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias 💥 Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia.

*Presenting and Corresponding Author's E-mail: *alejandrogaleano@udenar.edu.co.*

Introduction

Advanced Oxidation Processes (AOPs) are feasible and very promising methods to oxidize NOM from raw waters. Catalytic Wet Peroxide Oxidation (CWPO) degradation of NOM present in (i) a synthetic model water and *(ii)* raw surface, real water was carried out in order to determine the efficiency of NOM removal.

mineralization $NOM + H_2O_2 \xrightarrow{\text{manual and mathematical and mathematic$

Materials and methods

Table 1. Preparation of synthetic water surrogate based on
 standards of different polarity.

Reagent ¹		NOM- fraction modelled ²	Molecular weight (Da)	Abundance in synthetic water (TOC %)
Polyacrylic acid (PAA)		TPI	130.000	20
Polystyrene	PSS-1	HPO	1′000.000	12.5
(PSS)	PSS-2	НРО	200.000	12.5
Polygalacturonic acid (PGUA)		HPI	25.000- 50.000	30
Humic acids (HA)		НРО	-	25

¹All reagents Sigma-Aldrich used as received ²HPI: hydrophilic; TPI: transphilic; HPO: hydrophobic Fig. 1 Preparation of synthetic water.

Table 2. Physicochemical properties of real and synthetic
 water samples.

Parameters	Raw water (RW) ¹	Synthetic water (SW)		
UV ₂₅₄ (cm ⁻¹)	0.385	0.418	PREPARACIÓ E MUESTRA	
Color ₄₅₆ (PCU) ²	0.021	0.047		
TOC (mg C/L)	18.1	15.4		
DOC (mg C/L)	10.9	15.4		
SUVA (L mg ⁻¹ m ⁻¹)	3.526	2.709		
Alcalinity (mgCaCO ₃ /L)	46			
Conductivity (µS/cm)	16.9	17.9	Fig. 2 DAX-8 and XAD-4 resins packed columns.	
Turbidity (UNT)	173.0			
Dissolved oxygen (mg/L)	159	11		

Fig. 6 CWPO degradation of NOM: organic color removal at 456 nm (2120C-Standard Methods) and DOC mineralization (TOC-L Analyzer Shimadzu).

Fig. 7 Evolution of DOC and Specific UV **Fig. 8** Fraction of H₂O₂ reacted vs. added Absorbance (SUVA) through the CWPO tests. through the CWPO catalytic tests.

¹Raw water was collected from Vereda Charandú surface source, near Ipiales – Nariño, Colombia ²PCU: platinum cobalt color units

Fig. 3 Schematic (left) and real laboratory (right) set-up for CWPO-degradation of NOM. Experimental parameters: Peroxide Dose $[H_2O_2]_d = 64.42$ % stoichiometric (SW: 87 mg/L, RW: 50 mg/L); Catalyst concentration [Al/Fe-PILC]*: 5.1 g/L; pH_{SW} 7.0 and pH_{RW} 7.3; Temperature_{sw}: 25 °C and Temperature_{RW}: 14 °C (RT on sampling); full reaction time: 180 min; full recorded time: 240 min.

* (Al/Fe-PILC: Atomic Metal Ratio AMR_(Fe) = 3.17 %; Total Metal Concentration (TMC) = 5.73 mol/L; Interlayering solution: Auto-hydrolysis^[1] with starting ratio $(Al^{3+}/Al^{0}) = 14/86$; Final heating: 400 °C/2 h). Fe_{active} content: 0.62 wt. %.

Conclusions

 H_2O_2 was slightly more efficiently used by the catalytic system on RW, in good agreement with the highest percentage of color removal on this sample (~ 93 %); however, the NOM mineralization was significantly higher (75 %) on the SW against RW (37%). It probably was related with higher fraction of more refractory hydrophilic substances formed in the real water (SUVA~ 3, HPI: 12.37 %, HPO:

Fig. 10 DOC resin-fractionation of synthetic and real water before and after (240 min) of the CWPO catalytic tests.

Acknowledgment

Financial support from Project CWPO for enhanced Drinking Water Quality in Nariño (BPIN 2014000100020), CT&I Fund of the SGR -Colombia is gratefully acknowledged. AMG also thanks PhD Scholarship granted From Nariño Department Program (BPIN 2013000100092).

References

^[1] Akitt W. J, Farthing A., J. Chem. Soc., Dalton Trans. **(1981)**, 1624-1628.

