See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280805503

In-situ growing of MnS and FeS nanoclusters at the interlayer of Al-pillared bentonite

Conference Paper · June 2015 CITATIONS READS 34 0 5 authors, including: Helir Joseph Muñoz Ana Maria Garcia University of Nariño National University of Colombia 6 PUBLICATIONS 0 CITATIONS 8 PUBLICATIONS 8 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Project Special Issue "Porous Materials for Environmental Applications" View project

Project Special Issue "Advances in Pillared Clays: Synthesis, Characterization and Applications" View project

The user has requested enhancement of the downloaded file.

In-situ growing of MnS and FeS nanoclusters at the interlayer of Al-pillared bentonite

H.J. Muñoz^{a*}, A.M. García^{a,b}, A. Gil^b, M.A. Vicente^c and L.A. Galeano^{a*}

VNIVERSIDAD D SALAMANCA Up Niversidad Up Niversidad Vniversidad Vniversidad Vniversidad Vniversidad Vniversidad Vniversidad Vniversidad Vniversidad

Corresponding author : *alejandrogaleano@udenar.edu.co

^a Research Group on Functional Materials and Catalysis. Department of Chemistry, University of Nariño, Calle 18, Cra 50 Campus Torobajo, Pasto Colombia.

^b Department of Applied Chemistry, Public University of Navarra, Edifcio Los Acebos, Campus Arrosadía, 31006-Pamplona, Spain. ^c Department of Inorganic Chemistry, Chemical Science Faculty, Salamanca University, P. de la Merced, s/n, 37008 - Salamanca, Spain.

Introduction

Since formation of metal nanoclusters is thermodynamically unstable and difficult to control, in this work it has been explored the *in-situ* growing of either MnS or FeS nanoclusters in the interlayer space of a bentonite by means of a pretty short process taking only around 12 h. The interlayered polynuclear sulfidized metal clusters were prepared by cationic exchange of either Mn²⁺ or Fe²⁺ on the bentonite previously interlayered/pillared with aluminium under different conditions. These metal sulfidized nanomaterials have attracted substantial interests due to their unique optical and electrical properties and wide variety of potential applications in electroluminescence¹ and nonlinear optical devices². Since the main physical and optical properties of such metal sulfides primarily depend on their shape and size, the immobilization of metal sulfide nanoparticles in a spatially confined environment is a way to control the photo-physical and photo-chemical properties which result in very interesting strategy of morphological control.

Experimental Materials & Methods

Figure 1. Sketch of prepared materials.

Results

Figure 2. Preparation of materials by in situ growing of either MnS or FeS interlayered nanoclusters.

Figure 3. Powder XRD patterns of the
Mn-modified materials.Figure 4. Powder XRD patterns of the
Fe-modified materials.

Table 1. SiO₂-normalized content of Mn, CEC, compensation of cationic exchange capacity and textural properties of the materials.

Sample	Content (wt.%)	CEC	S _{BET}
	MnO ₂ /SiO ₂	(meq/100 g)	(m²/g)
AIP20	0.00	34	107
AlP20-Mn	0.13	45	
AlP20-MnS50-200N ₂	0.07	11	84
AlP20-MnS100-200N ₂	0.05	8	85
AlP20-MnS150-200N ₂	0.07	10	33
AlP20-MnS100-400N ₂	0.05	14	

Table 2. SiO₂-normalized content of Fe, CEC, compensation of cationic exchange capacity and textural properties of the materials.

Sample	Content (wt.%) Fe ₂ O ₃ /SiO ₂	CEC (meq/100 g)	S _{BET} (m²/g)
AIP20	0.04	34	107
AlP20-Fe	0.09	36	
AlP20-FeS50-200N ₂	0.08	2	26
AIP20-FeS100-200N ₂	0.12	2	
AlP20-FeS150-200N ₂	0.08	6	

diagram (TGA/DSC) AIP20- diagram (TGA/DSC) AIP20-MnS100 FeS100

Conclusions

- The most suitable conditions for the *in-situ* growing of MnS nanoclusters interlayered in Al-pillared bentonite were established: molar ratio (H₂S_(g))/Mn (interlayered) = 50; T of chemical treatment = 100 °C; T of thermal treatment = 200 °C.
- The most appropriate conditions for the growth of interlayered FeS nanoclusters in Al-pillared bentonite were: molar ratio (H₂S_(g))/Fe (interlayered) = 50; aluminum content = 20 mequiv. Al³⁺ g⁻¹; T of chemical treatment = 100 °C; T thermal treatment = 200 °C.
- The type of atmosphere, either oxidizing or inert, did not display significant effect on the structural properties of the resulting materials.

Acknowledgement

Financial support received from VIPRI - Universidad de Nariño is kindly acknowledged.

References

[1] Lou, Y., Chen, X., Samia, A.C., Burda, C., 2003. J. Phys. Chem., B 107, 12431–12437.

[2] Chin, A.H., Calderón, O.G., Kono, J., 2001. Phys. Rev. Lett. 86,

