
COMPUTER VISION CONTROL FOR PHASED ARRAY BEAM

STEERING

An Undergraduate Research Scholars Thesis

by

JACOB A. FREKING

Submitted to the Undergraduate Research Scholars program at

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Gregory Huff

May 2018

Major: Electrical and Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/159488114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

CHAPTER

I. INTRODUCTION .. 2

II. BACKGROUND AND APPLICATIONS ... 4

Computer Vision ... 4

Phased Arrays ... 6

Applications .. 9

III. DESIGN .. 10

System Hardware .. 10

System Software ... 12

IV. VALIDATION AND INTEGRATION .. 14

Subsystem Performance Testing ... 14

System Integration .. 15

V. RESULTS ... 17

Azimuth Tracking ... 17

Elevation Tracking .. 19

VI. CONCLUSIONS AND FUTURE WORK ... 20

REFERENCES ... 21

APPENDIX: COMPUTER VISION CODE .. 23

1

ABSTRACT

Computer Vision Control for Phased Array Beam Steering

Jacob A. Freking

Department of Electrical and Computer Engineering

Texas A&M University

Research Advisor: Dr. Gregory Huff

Department of Electrical and Computer Engineering

Texas A&M University

 This work proves a concept for a wireless access point that uses image identification and

tracking algorithms to automate the electronic control of a phased antenna array. Phased arrays

change the direction of their radiation electronically by adjusting the phase of the signal applied

to the individual antenna elements of the array. This ability can improve a user’s connectivity to

a wireless network by directing radiation from an access point to a user, provided that the user’s

location is known. Open source image processing and machine learning libraries provided a basis

for developing a Python program that determines the position of a target using a single camera.

This program uses the position information acquired from the camera to calculate the phases

required to steer the radiation of the array to the target. The Python program sends the required

phases to another piece of software that controls the phases of the phased array. This software

adjusts the phases of the antenna elements and steers the main beam. Experiments were

conducted to evaluate the identification, tracking, and control capabilities of the system. Finally,

a full system demonstration was performed to benchmark the wireless performance, study the

trade-offs in performance for complexity, and compare the connectivity to the current standard in

multi-antenna access points.

2

CHAPTER I

INTRODUCTION

The rapid adoption of wireless devices has created network traffic that requires an ever-

increasing bandwidth. Previously the increases in usable bandwidth have been achieved through

advanced digital communication techniques that reduce the loss of information over

communication channels [1]. However, these techniques are limited by the synchronization

ability of the hardware used in their application [2].

Antenna arrays offer a hardware solution that can increase the gain, directivity, and

bandwidth efficiency of wireless systems, making them appealing to the future of wireless

networks. Current array technology can operate at millimeter wavelength frequencies, which

provide much greater bandwidths than current standard communication frequencies. The benefits

of arrays have been proven theoretically and experimentally [2-5]. To be useful, however, the

array must be able to determine in which direction to steer its beam.

This work explores a computer vision tracking system connected to a local network

access point as a solution to this issue. Recently, computer vision and machine learning

algorithms have become efficient enough for real-time applications [6-7]. The work presented

focuses on the development of a computer vision system for identifying and tracking target

objects to provide position information to a programmable phased array in real-time. The

position information is used to determine the phases necessary to apply to the signal to steer the

main beam of the array to the direction of the target object. The system was tested by measuring

the received signal strength at a target location while the target was both stationary and in

motion.

3

National Instruments (NI) provided the Huff Research Group with a millimeter wave

(mmWave), software controlled, phased array system capable of steering its beam in directions

determined by manual input [8]. A computer vision control system was integrated to this system

and tested. This system actively searched for a target object and determined the direction to the

target before returning the steering instructions to the phase-controlling software. The received

signal strength was measured and recorded as the target moved. This was compared to the

received signal strength from a transmitted beam in a constant direction.

4

CHAPTER II

BACKGROUND AND APPLICATIONS

Computer Vision

Computer vision gathers, processes, and analyzes digital images and videos in a way that

allows computers to extract high-level information similar to what the human brain perceives.

Modern computer vision capabilities include color detection and object recognition, which can

accurately find and track objects of interest.

Color Detection

 Color detection relies on image segmentation algorithms, which divide images into

unique regions. Common image segmentation algorithms are histogram thresholding and edge

detection. Histogram thresholding allows the computer to ignore pixels with color information

outside of threshold values. After a threshold is applied, edge detection finds drastic changes in

the remaining color information and returns the locations of the edges [9]. Combining these

methods with the hue-saturation-value (HSV) color space, which is invariant to most lighting

conditions, provides a reliable tool for locating objects of a single color [10]. The HSV color

space has a well-documented, nonlinear transformation from the more common red-green-blue

(RGB) color space, which is the standard color space used to store images on a computer [10].

OpenCV, an open source computer vision library, provides a computationally efficient algorithm

for converting images from the RGB color space to the HSV color space [11]. The library also

has tools for applying thresholds based on color space values to images. One can use this

filtering capability to locate specific colors in an image. The filtered image can be searched by

another OpenCV algorithm to find contours between the color of interest and the background of

5

the image [11]. This method of object tracking is useful if the object of interest has a unique

color that is separable from the background. A more reliable method for tracking uses machine

learning techniques to learn how to distinguish the object from the background regardless of

shared colors.

Object Recognition

Computer vision image processing techniques can extract unique features from an image

and identify patterns. The patterns in images can train a support vector machine (SVM). SVMs

are supervised machine learning models used for classification [7]. The simplest form of an

image classifier uses unique image features, marked by the programmer, to train an SVM. Object

recognition applications attempt to locate those unique patterns in images using the trained SVM.

There are many patterns that could be chosen to identify objects, one of which is the histogram

of oriented gradients (HOG) [6].

HOG features are extracted by sectioning the pixels of an image into cells. The pixels in

each cell are assigned a gradient vector based on the difference in color values between each

pixel and its neighbors. The cells are then assigned their own gradient vector based on the sum of

the vectors assigned to the pixels within the cells. HOG features are especially useful when

searching for objects that can vary greatly with color. The main use of HOG features is facial

recognition [6].

The open source library dlib provides an efficient algorithm for training a SVM using the

HOG features of training images that contain the object of interest [12]. The algorithm provided

by dlib achieves 99.3% accuracy with facial recognition, however, it is not as accurate with

detecting other objects. After training the SVM, one can use image pyramids and the sliding

window method to locate regions of the image with matching features. The sliding window

6

method searches a given image one region at a time. A window of fixed width and height scans

the image from left-to-right and top-to-bottom [13]. Image pyramids allow matching features at

any scale to be detected [14]. This scaling is performed by gradually increasing the size of the

sliding window. The region of the image inside each window is resized to have the same pixel

dimensions as the training images. The SVM is applied to each resized window to locate an

object of interest. Once a match is found, the pixel coordinates of the match are output. By doing

this, one can track a target in real-time in a computationally efficient way, simple enough to be

done with central processing units (CPUs).

The state-of-the-art object detection algorithm is called “you only look once” (YOLO).

This algorithm can process 45 frames per second and achieves an accuracy of 65.5%, which is

the highest of the real-time object detection algorithms available [15]. The downside of this

method is the cost of the equipment necessary to implement it. YOLO recognition requires each

image to be sectorized and passed through a large neural net, requiring thousands of matrix

multiplications. A graphics processing unit (GPU) can parallelize this procedure, which is

necessary to run the algorithm in real-time. GPUs are expensive pieces of equipment that are not

easily incorporated into existing computer architectures. This procedure takes about 20 seconds

to perform on one frame using ordinary CPUs, making it unreasonable to use for this project.

Phased Arrays

Phased Antenna Arrays

The antenna structure of choice for modern communication and radar applications is the

phased array [2]. The benefits of using phased arrays instead of single antennas include increased

gain, reduced side lobe level, and the ability to control the direction of radiation [16]. Phased

arrays consist of a group of individual antennas that are arranged and excited in a way that

7

synthesizes radiation patterns that cannot be achieved with single antenna elements. The array

factors that govern the radiation pattern of an array distributed in three-dimensional Euclidean

space are given in equations (1) - (4), where equation (4) gives the total radiation pattern of an

array of isotropic radiators.

𝐴𝐹𝑥(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑚−1)(𝑘𝑑𝑥 sin(𝜃) cos(𝜙)+𝛽𝑥)

𝑀

𝑚=1

(1)

𝐴𝐹𝑦(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑛−1)(𝑘𝑑𝑦 sin(𝜃) cos(𝜙)+𝛽𝑦)

𝑁

𝑛=1

(2)

𝐴𝐹𝑧(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑝−1)(𝑘𝑑𝑧 sin(𝜃) cos(𝜙)+𝛽𝑧)

𝑃

𝑝=1

(3)

𝐴𝐹(𝜃, 𝜙) = 𝐴𝐹𝑥𝐴𝐹𝑦𝐴𝐹𝑧 (4)

In equations (1) – (3), the 𝛽 terms represent the phase adjustments to a signal along the

different axes. Phase requirements for steering the main beam of an array to the desired direction

angles, θ and ϕ, can be derived from these equations. The maximum of (4) occurs at the main

beam. One can obtain this maximum by equating the exponents of (1) - (3) to 0. Thus, the phase

adjustments necessary for steering the beam in an arbitrary direction are given by equations (5) -

(7).

𝛽𝑥 = −𝑘𝑑𝑥 sin(𝜃) cos(𝜙) (5)

𝛽𝑦 = −𝑘𝑑𝑦 sin(𝜃) cos(𝜙) (6)

𝛽𝑧 = −𝑘𝑑𝑧 cos(𝜃) (7)

These phase terms are dependent on the spacing between the antenna elements in each

direction, d, the wavenumber, k, and the desired steering direction angles, θ and ϕ. In the case of

a two-dimensional array, equation (3) goes to 1 and the total array factor only depends on the x

8

and y array factors. If the array is made of homogenous antenna elements, the total radiation

pattern of the array is simply the product of the array factor and the radiation pattern of an

individual element of the array.

A feed network controls the excitations applied to the elements of the array. This network

consists of phase shifters and power dividers. The radiation pattern can be steered electronically

to a desired direction by adjusting the amplitude and phase of the excitations applied to each

element. These phase shifters can provide discrete, digital phase control or continuous, analog

control. Digital phase shifting requires binary input for the state of the phase shifter. The spatial

resolution of phased arrays employing digital phase shifters depends on the number of discrete

states available. Analog phase shifters require an external, analog voltage to set their phase

shifts. For example, the external voltage of 1.0 V could correspond to a 0.0-degree phase shift,

whereas a voltage of 5.0 V could correspond to a 180.0 degree phase shift, and every voltage in

between will create its own unique phase shift.

Previous work has attempted to integrate computer vision into a control structure for

phased arrays [17]. Jensen et al. primarily focused on developing a system that could manipulate

its radiation pattern given a specific geometry of antenna elements found by the computer vision

system. This work seeks to extend the use of computer vision in phased array systems by

providing a targeting application to control the direction of the radiation pattern autonomously.

Software Control

Software defined radio (SDR) provides a software implementation for the hardware

typically found in phased array feed networks, which allows the feed network to be controlled

directly by software. Software algorithms can provide sophisticated control of phase shifters.

Equations (5) - (7) can be solved using software, and the phases can be updated either by

9

changing the discrete state of digital phase shifters or the analog voltage applied to an analog

phase shifter. This makes tracking algorithms via software realizable if the location of the target

is known. By locating the target, solving equations (5) - (7), and adjusting the phases of the

phased array, the signal from the array can follow the target. This will allow network access

points to direct their signal to users as they move through an area.

Applications

5G Communication

 5G communications have been intensively researched recently and are predicted to

become commercially available by 2020 [4]. The main improvement 5G will offer over 4G is an

increase in the bandwidths of communication channels as a result of increasing the operating

frequency. At mmWave frequencies, wireless signals experience more intense attenuation when

they penetrate objects, making it necessary to have users in the line-of-sight of a base station.

This property makes efficiently directing the radiation from base stations to users desirable. To

make this possible, the base stations must find the location of users. Currently, algorithms like

multiple signal correlation (MUSIC) provide a long-range solution for locating network users

[18]; however, this algorithm requires measuring the phase of a received signal at each antenna

element in an array before carrying out large matrix calculations to locate users. While this

algorithm, or one of its variants, is the most feasible solution for locating users at long distances,

there may be more efficient alternatives at short distances, especially inside buildings that the

signals cannot penetrate.

10

CHAPTER III

DESIGN

System Hardware

 The system utilizes high definition cameras for computer vision and software-controlled

phased arrays. The integration of these systems will provide automated control for the phased

array.

Cameras

 This work explored the use of two different cameras for the computer vision system.

First, Microsoft’s Kinect, a depth sensing camera, was used to gather information regarding the

exact 3D position of targets. The accuracy of the Kinect was poor and calibrations failed to

eliminate random errors in the position information returned in the point cloud. Next, a high

definition, 2D camera was tested and provided more accurate azimuth and elevation information,

however, no depth information was acquired. For this application, depth information is

unnecessary for determining the direction of the array’s beam. The target tracking subsystem

uses the 2D camera and no depth sensor because of this.

The camera and phased array were placed near each other, so the effect of their relative

positions could be assumed to be negligible. This configuration was used to determine if the

steering instructions given by the computer vision system were accurate. With the camera

mounted on the phased array, the system’s spatial coverage was limited to the field-of-view

(FoV) of the camera. A comparison of the measured FoVs of the array and Logitech camera is

given in Table 1.

11

Table 1. Comparison of field-of-views for camera and array

Field-of-View Direction Logitech C920 HD Webcam NI mmWave Phased Array

Azimuth 60° 120°

Elevation 40° 120°

NI mmWave Transceiver

 The NI mmWave transceiver system is a software defined radio (SDR) that offers the

“first real time mmWave prototyping system” for mmWave communication systems [8]. The

system’s software interface allows designs to be implemented quickly as both hardware and

software for mmWave systems. LabVIEW software controls high-performance FPGAs that

facilitate the data processing of the transmitter and receiver systems. The transceiver also

includes a phased array that operates at 60 GHz using digital phase shifters. Software controls

the phase shifters, allowing the main beam to be controlled by software inputs.

 The radiation pattern of the NI mmWave transceiver array was modeled as a 5x2

microstrip patch antenna array. The pattern was calculated using analog phase shifts and plotted

for several main lobe directions. Figure 1 shows these patterns. The radiation patterns are very

wide in the elevation plane but narrow in the azimuth plane. This characteristic makes it difficult

to judge the accuracy of the results in the elevation tracking and steering mode. If the array had

more elements, it could provide a more narrow, focused beam. A narrower beam would require

more precise tracking methods to direct the main beam accurately.

12

Figure 1. Approximate normalized radiation patterns of the NI mmWave at several main beam positions. The

azimuth angle increases by 10° in each row, starting with 0° in the top row. The elevation angle increases by 20°,

starting with 90° in the left column.

System Software

 The computer vision system has two main tasks: accurately identifying target objects and

providing the position of those objects. Identification was accomplished with color detection.

Once a target was identified, a bounding box was drawn around it, and the location of the center

pixel was returned. The center pixel was mapped to the measured FoV of the camera to extract

the azimuth and elevation angles of the target.

13

 To integrate this subsystem with the NI transceiver, a communication link was necessary.

The transmitter and receiver systems already utilized TCP/IP connections through local access

networks (LANs) to communicate the received signal strength (RSS) from the receiver to the

transmitter. It made sense that the computer vision system could also make use of a LAN to

communicate the phase information to the transmitter. A TCP/IP host was created within the

Python computer vision framework. A TCP/IP client was created in the transceiver’s LabVIEW

interface. The final computer vision subsystem is shown in figure 2. Verifying the accuracy of

this subsystem will be discussed in the next section.

Figure 2. Flowchart for computer vision subsystem

14

CHAPTER IV

VALIDATION AND INTEGRATION

Subsystem Performance Testing

 The accuracy of the pixel mapping algorithm was tested by placing targets in known

positions and comparing the measured position to that output from the computer vision system.

The computer vision measurements in the azimuth direction erred -1.4° from the physical

measurements with a standard deviation of 2.1°. The azimuth error increases near the edge of the

camera’s FoV. In the elevation direction, the error was 0.893°, with a standard deviation of

0.596°. These errors in angle translate to average errors of -2.4cm in azimuth position and 1.6cm

in elevation position at a radial distance of 1m from the camera. The position errors observed are

acceptable for close-range, wide beam systems. Because the NI system has only 12 elements, it

provides a relatively wide beam, so for experimental purposes, this computer vision system is

sufficient. Implementing this system with phased arrays that have more antenna elements and

more narrow beams should utilize more accurate computer vision systems or LIDAR (light

detection and ranging) sensors to reduce this error.

 A TCP/IP connection was established between the computer vision system and the NI

transceiver. Python and LabVIEW documentation helped tremendously with this

implementation. The NI transceiver system acts as the client and the computer vision system the

host. The computer vision system continuously updates the position of the target and relays the

phase information to the transceiver. The connection between host and client was tested by

sending hard-coded strings over the connection and verifying that the output matched the input.

The connection was verified once strings of any length could be sent and received consistently.

15

System Integration

Once the TCP/IP connection was verified, the integrated system performance was tested.

The flowchart for the integrated system is shown in figure 3. This shows the startup procedure

for the transceiver systems and how they interface with the computer vision subsystem.

Figure 3. Flowchart for integrated system

The integrated system is shown in figures 4 and 5. Figure 4 shows the transmitting and

computer vision systems. Figure 5 shows the receiver system with the target outlined by the

computer vision system. The receiver was placed on a remote-controlled rover to speed up

measurements. To test the system performance, the receiver system was moved and the RSS and

target position were recorded at each point.

16

Figure 4. Transmitter and camera systems

Figure 5. Receiver system and measurement platform as seen by the computer vision system

17

CHAPTER V

RESULTS

Azimuth Tracking

The first test verified that the system tracked a target in the azimuth plane and steered the

beam with the target as it moved. The receiver system on the rover was moved through the

camera’s FoV, maintaining a constant distance away from the transmitting array. At several

points in the FoV, the RSS and position were recorded. In addition to the computer vision-

controlled beam, a beam centered at 0°, and a wide beam (equal power at all points) were

measured for comparison. This test was done both with and without realigning the receiving

horn. When the receiving horn was not aligned, it was kept facing parallel to the transmitter, as

shown in figure 6. Figures 7 and 8 show the results of the tests with and without realignment

respectively. As expected the RSS of the computer vision tracking mode in the realigned test

remained nearly constant at all points in the camera’s FoV. The test without realignment shows a

drop in RSS due to the directivity of the antennas. In both tests, the computer vision tracking

provided significantly higher signal powers than the two control cases.

18

Figure 6. Normalized RSS measurements from NI system with realignment of the receiving horn

Figure 7. Normalized RSS measurements from the NI system without realigning the receiving horn

19

Elevation Tracking

 Another test was conducted to evaluate the performance of the tracking software and the

beamforming of the NI array. The measured RSS in both azimuth and elevation planes is shown

in figure 9. The RSS in the tracking mode is more dependent on the azimuth direction than the

elevation direction. The computer vision tracking mode consistently replicates the RSS in figure

7 for each elevation plane. RSS from the center beam is also shown for comparison. The

measurements from the center beam also follow the pattern observed in figure 7.

Figure 8. Normalized RSS measurements from NI system in with elevation

20

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This control system uses computer vision to update a target’s location and steer the main

beam of a phased array to that location. This work proves the feasibility of using computer vision

in the network access points of future communication systems. The functionality of the system is

constrained by the FoV of the camera, which may be improved with the use of a stereo camera

system. Another solution may be to place the camera(s) away from the array itself and perform

geometric translations to provide relative position information to the array. In addition to

improving the FoV, the object recognition system may also be improved. Current state-of-the-art

object recognition algorithms, such as YOLO, require expensive GPUs to operate in real-time

applications. Implementing this system with YOLO would provide a means to locate more

difficult-to-detect objects, like mobile devices. Other future work also involves implementing the

system with multiple arrays as access points. Such a system would allow experiments to

determine how and when one access point should be used to connect to a network rather than

another based on the line-of-sight to the receiver on the target. Expanding on this work could

result in a working physical layer of a localized 5G network.

21

REFERENCES

[1] J. Rahhal, Y. Wang, and G. E. Atkin, “PSK-based constellation expansion for fading

multipath channels,” in Computers and Communications, 1997. Proceedings., Second IEEE

Symposium on, 1997, pp. 685–689.

[2] D. Jenn, Y. Loke, T. C. H. Matthew, Y. E. Choon, O. C. Siang, and Y. S. Yam, “Distributed

Phased Arrays and Wireless Beamforming Networks,” International Journal of Distributed

Sensor Networks, vol. 5, no. 4, pp. 283–302, Jul. 2009.

[3] J. Kim and A. F. Molisch, “Fast millimeter-wave beam training with receive beamforming,”

Journal of Communications and Networks, vol. 16, no. 5, pp. 512–522, Oct. 2014.

[4] W. Roh et al., “Millimeter-wave beamforming as an enabling technology for 5G cellular

communications: Theoretical feasibility and prototype results,” IEEE communications

magazine, vol. 52, no. 2, pp. 106–113, 2014.

[5] M. H. Habebi, M. Janat, and M. R. Islam, “PHASED ARRAY ANTENNA DESIGN FOR

5G MOBILE NETWORKS,” 2006.

[6] A. Geitgey, “Machine Learning is Fun! Part 4: Modern Face Recognition with Deep

Learning,” Medium, 24-Jul-2016.

[7] D. K. Srivastava and L. Bhambhu, “Data Classification Using Support Vector Machine,”

JATIT, vol. 12, no. 1.

[8] “Introduction to the NI mmWave Transceiver System Hardware.” National Instruments, 05-

Jul-2017.

[9] P. W.-M. Tsang and W. H. Tsang, “Edge detection on object color,” in Image Processing,

1996. Proceedings., International Conference on, 1996, vol. 3, pp. 1049–1052.

[10] H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances and

prospects,” Pattern Recognition, vol. 34, no. 12, pp. 2259–2281, Dec. 2001.

22

[11] “OpenCV 3.0.0-dev documentation,” 10-Nov-2014.

[12] D. King, “dlib Documentation.” [Online]. Available: http://dlib.net/python/. [Accessed: 23-

Oct-2017].

[13] A. Rosebrock, “Sliding Windows for Object Detection with Python and OpenCV,”

pyimagesearch, 23-Mar-2015.

[14] A. Rosebrock, “Image Pyramids with Python and OpenCV,” pyimagesearch, 16-Mar-2015.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-

Time Object Detection,” 2016, pp. 779–788.

[16] C. A. Balanis, Antenna Theory Analysis and Design, 4th ed. John Wiley & Sons, Inc., 2016.

[17] J. S. Jensen, K. Buchanan, J.-F. Chamberland, and G. H. Huff, “A Computer Vision-Based

Framework for the Synthesis and Analysis of Beamforming Behavior in Swarming

Intelligent Systems,” in Radar Conference (RadarConf), 2017 IEEE, 2017, pp. 0118–0122.

[18] M. H. Hayes, Statistical Digital Signal Processing and Modeling, 1st ed. John Wiley &

Sons, Inc., 1996.

[19] J. Ruff and G. Huff, “Update on SiBeam Collaboration with TAMU and National

Instruments: A Mobile Characterization System for Millimeter-Wave Phased Arrays,” 14-

Feb-2018.

23

APPENDIX

COMPUTER VISION CODE

import numpy as np

import cv2

from socket import *

import socket

import os

import sys

import pandas as pd

import netifaces as ni

Get codewords from Excel file

codebook = pd.read_excel('/home/jfreking/Desktop/192x108_codewords.xlsx',header=0)

txCodes = codebook['Tx Codes']

#print txCodes

Get IP address (check the available links with cmd: ifconfig -- connection may

be 'eth0' instead of 'enp3s0')

ni.ifaddresses('enp3s0')

ip = ni.ifaddresses('enp3s0')[ni.AF_INET][0]['addr']

print ip

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Bind the socket to the port

server_address = (ip, 8085) #server name, port number

print >>sys.stderr, 'starting up on %s port %s' % server_address

try:

 sock.bind(server_address)

except socket.error as msg:

 print 'Bind failed.Error Code: ' + str(msg[0]) + ' Message: ' + msg[1]

 sys.exit()

print 'Socket bind complete'

If no connection is available in 2 seconds of trying to send data, raise error

sock.setblocking(1)

sock.settimeout(0.1)

Listen for incoming connections -- accept waits for an incoming connection

sock.listen(10)

print 'Socket listening'

cap = cv2.VideoCapture(1)

def nothing(x):

 pass

Uncomment to tune tracker to a different color

24

cv2.namedWindow('HSV Tuner')

cv2.createTrackbar('Hmin', 'HSV Tuner', 0, 180, nothing)

cv2.createTrackbar('Hmax', 'HSV Tuner', 0, 180, nothing)

cv2.createTrackbar('Smin', 'HSV Tuner', 0, 255, nothing)

cv2.createTrackbar('Smax', 'HSV Tuner', 0, 255, nothing)

cv2.createTrackbar('Vmin', 'HSV Tuner', 0, 255, nothing)

cv2.createTrackbar('Vmax', 'HSV Tuner', 0, 255, nothing)

while True:

 # Uncomment to tune tracker to a different color

 # Get slider positions

 hMin = cv2.getTrackbarPos('Hmin', 'HSV Tuner')

 hMax = cv2.getTrackbarPos('Hmax', 'HSV Tuner')

 sMin = cv2.getTrackbarPos('Smin', 'HSV Tuner')

 sMax = cv2.getTrackbarPos('Smax', 'HSV Tuner')

 vMin = cv2.getTrackbarPos('Vmin', 'HSV Tuner')

 vMax = cv2.getTrackbarPos('Vmax', 'HSV Tuner')

 # Set HSV thresholds

 # Uncomment to tune tracker to a different color

 lw_range = np.array([hMin,sMin,vMin])

 up_range = np.array([hMax,sMax,vMax])

 # Get frame from camera

 ret, frame = cap.read()

 # Logitech C920 has a resolution of 1920x1080

 frame = cv2.resize(frame, (1920,1080))

 # Convert frame to HSV

 hsv_img = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

 # Define frame threshold with HSV thresholds

 frame_threshold = cv2.inRange(hsv_img, lw_range, up_range)

 # Find contours

 ret,thresh = cv2.threshold(frame_threshold, 127, 255, 0)

 _, contours, heirarchy = cv2.findContours(thresh, cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

 # Find center of largest contour and produce a codeword based on position

 # Note: codeword MUST be a string for TCP/IP communication

 if contours != []:

 areas = [cv2.contourArea(c) for c in contours]

 maxIndex = np.argmax(areas)

 cnt = contours[maxIndex]

 x,y,w,h = cv2.boundingRect(cnt)

 cv2.rectangle(frame, (x,y), (x+w, y+h), (0,255,0), 2)

 cv2.rectangle(frame_threshold, (x,y), (x+w, y+h), (180,255,255), 2)

 X = x+w/2

 Y = y+h/2

 #resolution: 1920x1080

25

 codeword = str(txCodes[np.ceil(X/10)*np.ceil(Y/10)])

 #DEGBUGGING

 """

 print("x: {}".format(X))

 print("y: {}".format(Y))

 print(" ")

 print 'codeword: ' + codeword

 print(" ")

 """

 # Wait for a connection

 print >>sys.stderr, 'waiting for a connection'

 # Try to accept a client

 try:

 conn, client_address = sock.accept() #returns open connection btwn server

and client and the client address

 # Send codeword if there is a connection, if no connection, print error

and continue

 try:

 conn.sendall(codeword)

 except socket.error as msg:

 print 'No connection available. Error Code: ' + str(msg[0]) + ' Error

Msg: ', msg[1]

 continue

 except timeout:

 print 'caught a timeout'

 cv2.imshow("Show", frame)

 cv2.imshow("HSV", frame_threshold)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

conn.close()

cap.release()

cv2.destroyAllWindows()

