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ABSTRACT 

Computer Vision Control for Phased Array Beam Steering 

 

 

Jacob A. Freking 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Gregory Huff 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

 This work proves a concept for a wireless access point that uses image identification and 

tracking algorithms to automate the electronic control of a phased antenna array. Phased arrays 

change the direction of their radiation electronically by adjusting the phase of the signal applied 

to the individual antenna elements of the array. This ability can improve a user’s connectivity to 

a wireless network by directing radiation from an access point to a user, provided that the user’s 

location is known. Open source image processing and machine learning libraries provided a basis 

for developing a Python program that determines the position of a target using a single camera. 

This program uses the position information acquired from the camera to calculate the phases 

required to steer the radiation of the array to the target. The Python program sends the required 

phases to another piece of software that controls the phases of the phased array. This software 

adjusts the phases of the antenna elements and steers the main beam. Experiments were 

conducted to evaluate the identification, tracking, and control capabilities of the system. Finally, 

a full system demonstration was performed to benchmark the wireless performance, study the 

trade-offs in performance for complexity, and compare the connectivity to the current standard in 

multi-antenna access points.  
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CHAPTER I 

INTRODUCTION 

 

The rapid adoption of wireless devices has created network traffic that requires an ever-

increasing bandwidth. Previously the increases in usable bandwidth have been achieved through 

advanced digital communication techniques that reduce the loss of information over 

communication channels [1]. However, these techniques are limited by the synchronization 

ability of the hardware used in their application [2]. 

Antenna arrays offer a hardware solution that can increase the gain, directivity, and 

bandwidth efficiency of wireless systems, making them appealing to the future of wireless 

networks. Current array technology can operate at millimeter wavelength frequencies, which 

provide much greater bandwidths than current standard communication frequencies. The benefits 

of arrays have been proven theoretically and experimentally [2-5]. To be useful, however, the 

array must be able to determine in which direction to steer its beam.  

This work explores a computer vision tracking system connected to a local network 

access point as a solution to this issue. Recently, computer vision and machine learning 

algorithms have become efficient enough for real-time applications [6-7]. The work presented 

focuses on the development of a computer vision system for identifying and tracking target 

objects to provide position information to a programmable phased array in real-time. The 

position information is used to determine the phases necessary to apply to the signal to steer the 

main beam of the array to the direction of the target object. The system was tested by measuring 

the received signal strength at a target location while the target was both stationary and in 

motion.  
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National Instruments (NI) provided the Huff Research Group with a millimeter wave 

(mmWave), software controlled, phased array system capable of steering its beam in directions 

determined by manual input [8]. A computer vision control system was integrated to this system 

and tested. This system actively searched for a target object and determined the direction to the 

target before returning the steering instructions to the phase-controlling software. The received 

signal strength was measured and recorded as the target moved. This was compared to the 

received signal strength from a transmitted beam in a constant direction.  
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CHAPTER II 

BACKGROUND AND APPLICATIONS 

 

Computer Vision 

Computer vision gathers, processes, and analyzes digital images and videos in a way that 

allows computers to extract high-level information similar to what the human brain perceives. 

Modern computer vision capabilities include color detection and object recognition, which can 

accurately find and track objects of interest. 

Color Detection 

 Color detection relies on image segmentation algorithms, which divide images into 

unique regions. Common image segmentation algorithms are histogram thresholding and edge 

detection. Histogram thresholding allows the computer to ignore pixels with color information 

outside of threshold values. After a threshold is applied, edge detection finds drastic changes in 

the remaining color information and returns the locations of the edges [9]. Combining these 

methods with the hue-saturation-value (HSV) color space, which is invariant to most lighting 

conditions, provides a reliable tool for locating objects of a single color [10]. The HSV color 

space has a well-documented, nonlinear transformation from the more common red-green-blue 

(RGB) color space, which is the standard color space used to store images on a computer [10]. 

OpenCV, an open source computer vision library, provides a computationally efficient algorithm 

for converting images from the RGB color space to the HSV color space [11]. The library also 

has tools for applying thresholds based on color space values to images. One can use this 

filtering capability to locate specific colors in an image. The filtered image can be searched by 

another OpenCV algorithm to find contours between the color of interest and the background of 
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the image [11]. This method of object tracking is useful if the object of interest has a unique 

color that is separable from the background. A more reliable method for tracking uses machine 

learning techniques to learn how to distinguish the object from the background regardless of 

shared colors. 

Object Recognition 

Computer vision image processing techniques can extract unique features from an image 

and identify patterns. The patterns in images can train a support vector machine (SVM). SVMs 

are supervised machine learning models used for classification [7]. The simplest form of an 

image classifier uses unique image features, marked by the programmer, to train an SVM. Object 

recognition applications attempt to locate those unique patterns in images using the trained SVM. 

There are many patterns that could be chosen to identify objects, one of which is the histogram 

of oriented gradients (HOG) [6]. 

HOG features are extracted by sectioning the pixels of an image into cells. The pixels in 

each cell are assigned a gradient vector based on the difference in color values between each 

pixel and its neighbors. The cells are then assigned their own gradient vector based on the sum of 

the vectors assigned to the pixels within the cells. HOG features are especially useful when 

searching for objects that can vary greatly with color. The main use of HOG features is facial 

recognition [6]. 

The open source library dlib provides an efficient algorithm for training a SVM using the 

HOG features of training images that contain the object of interest [12]. The algorithm provided 

by dlib achieves 99.3% accuracy with facial recognition, however, it is not as accurate with 

detecting other objects. After training the SVM, one can use image pyramids and the sliding 

window method to locate regions of the image with matching features. The sliding window 
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method searches a given image one region at a time. A window of fixed width and height scans 

the image from left-to-right and top-to-bottom [13]. Image pyramids allow matching features at 

any scale to be detected [14]. This scaling is performed by gradually increasing the size of the 

sliding window. The region of the image inside each window is resized to have the same pixel 

dimensions as the training images. The SVM is applied to each resized window to locate an 

object of interest. Once a match is found, the pixel coordinates of the match are output. By doing 

this, one can track a target in real-time in a computationally efficient way, simple enough to be 

done with central processing units (CPUs). 

The state-of-the-art object detection algorithm is called “you only look once” (YOLO). 

This algorithm can process 45 frames per second and achieves an accuracy of 65.5%, which is 

the highest of the real-time object detection algorithms available [15]. The downside of this 

method is the cost of the equipment necessary to implement it. YOLO recognition requires each 

image to be sectorized and passed through a large neural net, requiring thousands of matrix 

multiplications. A graphics processing unit (GPU) can parallelize this procedure, which is 

necessary to run the algorithm in real-time. GPUs are expensive pieces of equipment that are not 

easily incorporated into existing computer architectures. This procedure takes about 20 seconds 

to perform on one frame using ordinary CPUs, making it unreasonable to use for this project. 

Phased Arrays 

Phased Antenna Arrays 

The antenna structure of choice for modern communication and radar applications is the 

phased array [2]. The benefits of using phased arrays instead of single antennas include increased 

gain, reduced side lobe level, and the ability to control the direction of radiation [16]. Phased 

arrays consist of a group of individual antennas that are arranged and excited in a way that 



7 

synthesizes radiation patterns that cannot be achieved with single antenna elements. The array 

factors that govern the radiation pattern of an array distributed in three-dimensional Euclidean 

space are given in equations (1) - (4), where equation (4) gives the total radiation pattern of an 

array of isotropic radiators. 

𝐴𝐹𝑥(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑚−1)(𝑘𝑑𝑥 sin(𝜃) cos(𝜙)+𝛽𝑥)

𝑀

𝑚=1

(1) 

𝐴𝐹𝑦(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑛−1)(𝑘𝑑𝑦 sin(𝜃) cos(𝜙)+𝛽𝑦)

𝑁

𝑛=1

(2) 

𝐴𝐹𝑧(𝜃, 𝜙) = ∑ 𝑒𝑗(𝑝−1)(𝑘𝑑𝑧 sin(𝜃) cos(𝜙)+𝛽𝑧)

𝑃

𝑝=1

(3) 

𝐴𝐹(𝜃, 𝜙) =  𝐴𝐹𝑥𝐴𝐹𝑦𝐴𝐹𝑧 (4) 

In equations (1) – (3), the 𝛽 terms represent the phase adjustments to a signal along the 

different axes. Phase requirements for steering the main beam of an array to the desired direction 

angles, θ and ϕ, can be derived from these equations. The maximum of (4) occurs at the main 

beam. One can obtain this maximum by equating the exponents of (1) - (3) to 0. Thus, the phase 

adjustments necessary for steering the beam in an arbitrary direction are given by equations (5) - 

(7). 

𝛽𝑥 =  −𝑘𝑑𝑥 sin(𝜃) cos(𝜙) (5) 

𝛽𝑦 =  −𝑘𝑑𝑦 sin(𝜃) cos(𝜙) (6) 

𝛽𝑧 =  −𝑘𝑑𝑧 cos(𝜃) (7) 

These phase terms are dependent on the spacing between the antenna elements in each 

direction, d, the wavenumber, k, and the desired steering direction angles, θ and ϕ. In the case of 

a two-dimensional array, equation (3) goes to 1 and the total array factor only depends on the x 
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and y array factors. If the array is made of homogenous antenna elements, the total radiation 

pattern of the array is simply the product of the array factor and the radiation pattern of an 

individual element of the array. 

A feed network controls the excitations applied to the elements of the array. This network 

consists of phase shifters and power dividers. The radiation pattern can be steered electronically 

to a desired direction by adjusting the amplitude and phase of the excitations applied to each 

element. These phase shifters can provide discrete, digital phase control or continuous, analog 

control. Digital phase shifting requires binary input for the state of the phase shifter. The spatial 

resolution of phased arrays employing digital phase shifters depends on the number of discrete 

states available. Analog phase shifters require an external, analog voltage to set their phase 

shifts. For example, the external voltage of 1.0 V could correspond to a 0.0-degree phase shift, 

whereas a voltage of 5.0 V could correspond to a 180.0 degree phase shift, and every voltage in 

between will create its own unique phase shift. 

Previous work has attempted to integrate computer vision into a control structure for 

phased arrays [17]. Jensen et al. primarily focused on developing a system that could manipulate 

its radiation pattern given a specific geometry of antenna elements found by the computer vision 

system. This work seeks to extend the use of computer vision in phased array systems by 

providing a targeting application to control the direction of the radiation pattern autonomously.  

Software Control 

Software defined radio (SDR) provides a software implementation for the hardware 

typically found in phased array feed networks, which allows the feed network to be controlled 

directly by software. Software algorithms can provide sophisticated control of phase shifters. 

Equations (5) - (7) can be solved using software, and the phases can be updated either by 
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changing the discrete state of digital phase shifters or the analog voltage applied to an analog 

phase shifter. This makes tracking algorithms via software realizable if the location of the target 

is known. By locating the target, solving equations (5) - (7), and adjusting the phases of the 

phased array, the signal from the array can follow the target. This will allow network access 

points to direct their signal to users as they move through an area. 

Applications 

5G Communication 

 5G communications have been intensively researched recently and are predicted to 

become commercially available by 2020 [4]. The main improvement 5G will offer over 4G is an 

increase in the bandwidths of communication channels as a result of increasing the operating 

frequency. At mmWave frequencies, wireless signals experience more intense attenuation when 

they penetrate objects, making it necessary to have users in the line-of-sight of a base station. 

This property makes efficiently directing the radiation from base stations to users desirable. To 

make this possible, the base stations must find the location of users. Currently, algorithms like 

multiple signal correlation (MUSIC) provide a long-range solution for locating network users 

[18]; however, this algorithm requires measuring the phase of a received signal at each antenna 

element in an array before carrying out large matrix calculations to locate users. While this 

algorithm, or one of its variants, is the most feasible solution for locating users at long distances, 

there may be more efficient alternatives at short distances, especially inside buildings that the 

signals cannot penetrate. 
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CHAPTER III 

DESIGN 

 

System Hardware 

 The system utilizes high definition cameras for computer vision and software-controlled 

phased arrays. The integration of these systems will provide automated control for the phased 

array.  

Cameras 

 This work explored the use of two different cameras for the computer vision system. 

First, Microsoft’s Kinect, a depth sensing camera, was used to gather information regarding the 

exact 3D position of targets. The accuracy of the Kinect was poor and calibrations failed to 

eliminate random errors in the position information returned in the point cloud. Next, a high 

definition, 2D camera was tested and provided more accurate azimuth and elevation information, 

however, no depth information was acquired. For this application, depth information is 

unnecessary for determining the direction of the array’s beam. The target tracking subsystem 

uses the 2D camera and no depth sensor because of this. 

The camera and phased array were placed near each other, so the effect of their relative 

positions could be assumed to be negligible. This configuration was used to determine if the 

steering instructions given by the computer vision system were accurate. With the camera 

mounted on the phased array, the system’s spatial coverage was limited to the field-of-view 

(FoV) of the camera. A comparison of the measured FoVs of the array and Logitech camera is 

given in Table 1. 
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Table 1. Comparison of field-of-views for camera and array 

Field-of-View Direction Logitech C920 HD Webcam NI mmWave Phased Array 

Azimuth 60° 120° 

Elevation 40° 120° 

 

NI mmWave Transceiver 

 The NI mmWave transceiver system is a software defined radio (SDR) that offers the 

“first real time mmWave prototyping system” for mmWave communication systems [8]. The 

system’s software interface allows designs to be implemented quickly as both hardware and 

software for mmWave systems. LabVIEW software controls high-performance FPGAs that 

facilitate the data processing of the transmitter and receiver systems. The transceiver also 

includes a phased array that operates at 60 GHz using digital phase shifters. Software controls 

the phase shifters, allowing the main beam to be controlled by software inputs.   

 The radiation pattern of the NI mmWave transceiver array was modeled as a 5x2 

microstrip patch antenna array. The pattern was calculated using analog phase shifts and plotted 

for several main lobe directions. Figure 1 shows these patterns. The radiation patterns are very 

wide in the elevation plane but narrow in the azimuth plane. This characteristic makes it difficult 

to judge the accuracy of the results in the elevation tracking and steering mode. If the array had 

more elements, it could provide a more narrow, focused beam. A narrower beam would require 

more precise tracking methods to direct the main beam accurately. 
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Figure 1. Approximate normalized radiation patterns of the NI mmWave at several main beam positions. The 

azimuth angle increases by 10° in each row, starting with 0° in the top row. The elevation angle increases by 20°, 

starting with 90° in the left column. 

System Software 

 The computer vision system has two main tasks: accurately identifying target objects and 

providing the position of those objects. Identification was accomplished with color detection. 

Once a target was identified, a bounding box was drawn around it, and the location of the center 

pixel was returned. The center pixel was mapped to the measured FoV of the camera to extract 

the azimuth and elevation angles of the target.  
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 To integrate this subsystem with the NI transceiver, a communication link was necessary. 

The transmitter and receiver systems already utilized TCP/IP connections through local access 

networks (LANs) to communicate the received signal strength (RSS) from the receiver to the 

transmitter. It made sense that the computer vision system could also make use of a LAN to 

communicate the phase information to the transmitter. A TCP/IP host was created within the 

Python computer vision framework. A TCP/IP client was created in the transceiver’s LabVIEW 

interface. The final computer vision subsystem is shown in figure 2. Verifying the accuracy of 

this subsystem will be discussed in the next section. 

 

Figure 2. Flowchart for computer vision subsystem 
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CHAPTER IV 

VALIDATION AND INTEGRATION 

 

Subsystem Performance Testing 

 The accuracy of the pixel mapping algorithm was tested by placing targets in known 

positions and comparing the measured position to that output from the computer vision system. 

The computer vision measurements in the azimuth direction erred -1.4° from the physical 

measurements with a standard deviation of 2.1°. The azimuth error increases near the edge of the 

camera’s FoV. In the elevation direction, the error was 0.893°, with a standard deviation of 

0.596°. These errors in angle translate to average errors of -2.4cm in azimuth position and 1.6cm 

in elevation position at a radial distance of 1m from the camera. The position errors observed are 

acceptable for close-range, wide beam systems. Because the NI system has only 12 elements, it 

provides a relatively wide beam, so for experimental purposes, this computer vision system is 

sufficient. Implementing this system with phased arrays that have more antenna elements and 

more narrow beams should utilize more accurate computer vision systems or LIDAR (light 

detection and ranging) sensors to reduce this error.  

 A TCP/IP connection was established between the computer vision system and the NI 

transceiver. Python and LabVIEW documentation helped tremendously with this 

implementation. The NI transceiver system acts as the client and the computer vision system the 

host. The computer vision system continuously updates the position of the target and relays the 

phase information to the transceiver. The connection between host and client was tested by 

sending hard-coded strings over the connection and verifying that the output matched the input. 

The connection was verified once strings of any length could be sent and received consistently. 
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System Integration 

Once the TCP/IP connection was verified, the integrated system performance was tested. 

The flowchart for the integrated system is shown in figure 3. This shows the startup procedure 

for the transceiver systems and how they interface with the computer vision subsystem. 

 

Figure 3. Flowchart for integrated system 

The integrated system is shown in figures 4 and 5. Figure 4 shows the transmitting and 

computer vision systems. Figure 5 shows the receiver system with the target outlined by the 

computer vision system. The receiver was placed on a remote-controlled rover to speed up 

measurements. To test the system performance, the receiver system was moved and the RSS and 

target position were recorded at each point.  
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Figure 4. Transmitter and camera systems 

 

Figure 5. Receiver system and measurement platform as seen by the computer vision system  
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CHAPTER V 

RESULTS 

 

Azimuth Tracking 

The first test verified that the system tracked a target in the azimuth plane and steered the 

beam with the target as it moved. The receiver system on the rover was moved through the 

camera’s FoV, maintaining a constant distance away from the transmitting array. At several 

points in the FoV, the RSS and position were recorded. In addition to the computer vision-

controlled beam, a beam centered at 0°, and a wide beam (equal power at all points) were 

measured for comparison. This test was done both with and without realigning the receiving 

horn. When the receiving horn was not aligned, it was kept facing parallel to the transmitter, as 

shown in figure 6. Figures 7 and 8 show the results of the tests with and without realignment 

respectively. As expected the RSS of the computer vision tracking mode in the realigned test 

remained nearly constant at all points in the camera’s FoV. The test without realignment shows a 

drop in RSS due to the directivity of the antennas. In both tests, the computer vision tracking 

provided significantly higher signal powers than the two control cases. 
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Figure 6. Normalized RSS measurements from NI system with realignment of the receiving horn 

 

Figure 7. Normalized RSS measurements from the NI system without realigning the receiving horn 
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Elevation Tracking 

 Another test was conducted to evaluate the performance of the tracking software and the 

beamforming of the NI array. The measured RSS in both azimuth and elevation planes is shown 

in figure 9. The RSS in the tracking mode is more dependent on the azimuth direction than the 

elevation direction. The computer vision tracking mode consistently replicates the RSS in figure 

7 for each elevation plane. RSS from the center beam is also shown for comparison. The 

measurements from the center beam also follow the pattern observed in figure 7.  

 

Figure 8. Normalized RSS measurements from NI system in with elevation 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

This control system uses computer vision to update a target’s location and steer the main 

beam of a phased array to that location. This work proves the feasibility of using computer vision 

in the network access points of future communication systems. The functionality of the system is 

constrained by the FoV of the camera, which may be improved with the use of a stereo camera 

system. Another solution may be to place the camera(s) away from the array itself and perform 

geometric translations to provide relative position information to the array. In addition to 

improving the FoV, the object recognition system may also be improved. Current state-of-the-art 

object recognition algorithms, such as YOLO, require expensive GPUs to operate in real-time 

applications. Implementing this system with YOLO would provide a means to locate more 

difficult-to-detect objects, like mobile devices. Other future work also involves implementing the 

system with multiple arrays as access points. Such a system would allow experiments to 

determine how and when one access point should be used to connect to a network rather than 

another based on the line-of-sight to the receiver on the target. Expanding on this work could 

result in a working physical layer of a localized 5G network.  
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APPENDIX 

COMPUTER VISION CODE 

 

import numpy as np 

import cv2 

from socket import * 

import socket 

import os 

import sys 

import pandas as pd 

import netifaces as ni 

 

# Get codewords from Excel file 

codebook = pd.read_excel('/home/jfreking/Desktop/192x108_codewords.xlsx',header=0) 

 

txCodes = codebook['Tx Codes'] 

#print txCodes 

 

# Get IP address (check the available links with cmd: ifconfig -- connection may 

be 'eth0' instead of 'enp3s0') 

ni.ifaddresses('enp3s0') 

ip = ni.ifaddresses('enp3s0')[ni.AF_INET][0]['addr'] 

print ip 

 

# Create a TCP/IP socket 

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 

 

# Bind the socket to the port 

server_address = (ip, 8085) #server name, port number 

print >>sys.stderr, 'starting up on %s port %s' % server_address 

try: 

    sock.bind(server_address) 

except socket.error as msg: 

    print 'Bind failed.Error Code: ' + str(msg[0]) + ' Message: ' + msg[1] 

    sys.exit() 

     

print 'Socket bind complete' 

 

# If no connection is available in 2 seconds of trying to send data, raise error 

sock.setblocking(1) 

sock.settimeout(0.1) 

 

# Listen for incoming connections -- accept waits for an incoming connection 

sock.listen(10) 

print 'Socket listening'   

 

cap = cv2.VideoCapture(1) 

 

def nothing(x): 

    pass 

 

# Uncomment to tune tracker to a different color 
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cv2.namedWindow('HSV Tuner') 

 

cv2.createTrackbar('Hmin', 'HSV Tuner', 0, 180, nothing) 

cv2.createTrackbar('Hmax', 'HSV Tuner', 0, 180, nothing) 

cv2.createTrackbar('Smin', 'HSV Tuner', 0, 255, nothing) 

cv2.createTrackbar('Smax', 'HSV Tuner', 0, 255, nothing) 

cv2.createTrackbar('Vmin', 'HSV Tuner', 0, 255, nothing) 

cv2.createTrackbar('Vmax', 'HSV Tuner', 0, 255, nothing) 

 

 

while True: 

    # Uncomment to tune tracker to a different color 

     

    # Get slider positions 

    hMin = cv2.getTrackbarPos('Hmin', 'HSV Tuner') 

    hMax = cv2.getTrackbarPos('Hmax', 'HSV Tuner') 

    sMin = cv2.getTrackbarPos('Smin', 'HSV Tuner') 

    sMax = cv2.getTrackbarPos('Smax', 'HSV Tuner') 

    vMin = cv2.getTrackbarPos('Vmin', 'HSV Tuner') 

    vMax = cv2.getTrackbarPos('Vmax', 'HSV Tuner') 

     

     

    # Set HSV thresholds 

    # Uncomment to tune tracker to a different color 

    lw_range = np.array([hMin,sMin,vMin]) 

    up_range = np.array([hMax,sMax,vMax]) 

     

    # Get frame from camera 

    ret, frame = cap.read() 

     

    # Logitech C920 has a resolution of 1920x1080 

    frame = cv2.resize(frame, (1920,1080)) 

         

    # Convert frame to HSV 

    hsv_img = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) 

     

    # Define frame threshold with HSV thresholds 

    frame_threshold = cv2.inRange(hsv_img, lw_range, up_range) 

     

    # Find contours 

    ret,thresh = cv2.threshold(frame_threshold, 127, 255, 0) 

    _, contours, heirarchy = cv2.findContours(thresh, cv2.RETR_TREE, 

cv2.CHAIN_APPROX_SIMPLE) 

     

    # Find center of largest contour and produce a codeword based on position 

    #   Note: codeword MUST be a string for TCP/IP communication 

    if contours != []: 

        areas = [cv2.contourArea(c) for c in contours] 

        maxIndex = np.argmax(areas) 

        cnt = contours[maxIndex] 

 

        x,y,w,h = cv2.boundingRect(cnt) 

        cv2.rectangle(frame, (x,y), (x+w, y+h), (0,255,0), 2) 

         

        cv2.rectangle(frame_threshold, (x,y), (x+w, y+h), (180,255,255), 2) 

         

        X = x+w/2 

        Y = y+h/2 

         

        #resolution: 1920x1080 
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        codeword = str(txCodes[np.ceil(X/10)*np.ceil(Y/10)]) 

         

        #DEGBUGGING 

        """ 

        print("x: {}".format(X)) 

        print("y: {}".format(Y)) 

        print(" ")             

        print 'codeword: ' + codeword 

        print(" ") 

        """ 

     

    # Wait for a connection 

    print >>sys.stderr, 'waiting for a connection' 

    # Try to accept a client 

    try: 

        conn, client_address = sock.accept() #returns open connection btwn server 

and client and the client address 

         

        # Send codeword if there is a connection, if no connection, print error 

and continue 

        try: 

            conn.sendall(codeword) 

        except socket.error as msg: 

            print 'No connection available. Error Code: ' + str(msg[0]) + ' Error 

Msg: ', msg[1] 

            continue 

         

    except timeout: 

        print 'caught a timeout' 

     

     

     

    cv2.imshow("Show", frame) 

    cv2.imshow("HSV", frame_threshold) 

     

    if cv2.waitKey(1) & 0xFF == ord('q'): 

        break 

 

conn.close() 

cap.release() 

cv2.destroyAllWindows() 

 


