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ABSTRACT 

Applications of Machine Learning for Real-Time Road Anomaly Identification 

 

 

Dillon Knox 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Jim Ji 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

 Infrastructure degradation is becoming a wide-reaching problem in the United States, and 

there is a need to determine ways to intelligently distribute taxpayer money when addressing the 

issues. This paper investigates the use of smartphones to classify various road anomalies by 

using on-board sensors, including accelerometers, gyroscopes, and a cameras. Having a 

relatively robust sensor array in a ubiquitous device allows for crowdsourcing of data collection, 

and makes mapping large road networks that are prevalent in the US much more feasible. 

Specifically, this paper will propose a novel machine learning algorithm that can identify and 

differentiate between four different classifications of road anomalies, as opposed to the binary 

approach (using thresholding) that has been employed in similar studies. Additionally, this 

approach will be able to classify anomalies by severity, as well as provide an estimate of overall 

road roughness using the International Roughness Index (IRI). This data will allow for more 

accurate evaluations of overall road conditions than similar methods, and will allow preventive 

maintenance to be performed, potentially saving time and money. 

 

 



2 

ACKNOWLEDGEMENTS 

 

I would like to thank my faculty advisor, Dr. Jim Ji, for first introducing me to research 

as an undergraduate and for guiding me on this project. I would also like to thank Akanksh 

Basavaraju for allowing to join and contribute to his research project, and for providing me with 

valuable insight throughout the entire process.  



3 

CHAPTER I 

INTRODUCTION 

 

Project Overview 

Broadly speaking, the scope of this investigation can be subdivided into two stages: data 

collection and filtering (pre-processing), and algorithm development and analysis (post-

processing). The first stage deals with the actual means of collecting data (via smartphone, 

mounted camera, stand-alone accelerometer), the quality of data collected, and approaches to 

clean up the data. The second stage involves the development of machine learning algorithm, 

including comparing and contrasting differing approaches (Support Vector Machine, k-nearest 

neighbors, and decision trees), initial training of each algorithm, and finally the results of 

applying each algorithm to our data set. 

 

Pre-processing 

In order to train an algorithm to differentiate between multiple types of road anomalies 

using just vibration (accelerometer) data, accelerometer data needs to be collected from a large 

quantity from each type of anomaly, so that the algorithm can identify the similarities between 

occurrences of the same anomaly. This requires collecting data from anomalies that have already 

been identified as falling into one of the pre-established categories (potholes, rutting, cracking, 

etc.). The most straight-forward way to do this is to collect video of each anomaly in order to be 

able to classify it after the fact. From the captured video, anomalies can be classified using an 

image processing algorithm that provides information about width, depth, and frequency of 
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occurrence. Once an anomaly has been classified visually, its corresponding accelerometer data 

can be used to train the machine learning algorithm. 

However, the raw collected data is undoubtedly noisy and need to be filtered. We propose 

a simple model where the raw data is first passed into an adaptive filter, in this case a Kalman 

filter, which will smooth the signal and eliminate noise, but will also preserve the high frequency 

and high amplitude signals that characterize a road anomaly. Next, the envelope of the filtered 

data will be extracted to produce a continuous function. Finally, the data will be windowed 

before post-processing begins. 

 

Post-processing 

 Many previous studies have used a simple thresholding algorithm in order to classify 

anomalies in a binary fashion, i.e. an anomaly that causes a large enough spike in magnitude of 

the accelerometer s classified as a pothole; otherwise it is classified as not a pothole. We propose 

using machine learning to improve not only the predictive accuracy of our algorithm, but also the 

number of classifications that are possible.  

 We propose evaluating the performance of four different machine learning algorithms, 

which have traits ranging from ease of implementation to robustness of classification. The first 

algorithm that we will is decision tree based. Decision tree-based algorithms are comparatively 

simple and provide a baseline to compare the accuracy of other algorithms against. Developing 

the algorithm consists of determining several thresholds, with each threshold branching off to 

different thresholds depending on how a given input compares to it. It is important to note that 

the first test has the most impact on how the input is classified; for instance, a threshold for the 

accelerometer magnitude makes for a good first test. The k-nearest neighbors algorithm is 
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slightly more robust than the decision tree-based algorithm, but is still simple to implement. The 

algorithm works by first graphing each point from the data set according to a set of given 

parameters that form the axes of the graph. The input in question is then also graphed and the 

distance to each data point from the training set is determined. The closest k number of data 

points is then sampled and the input is then classified as the classify that appears the most. The 

third and final algorithm that we will test is a Support Vector Machine (SVM), by far the most 

complex of the algorithms that we will test. Here, the algorithm is trained by graphing the 

training set on an n-dimensional space, where n is the given number of features that define the 

set. A hyperplane that separates the different classifiers is then determined by maximizing the 

separation between the plane and the given classifiers. 

It should be noted that neural networks were not included a potential algorithm, despite 

being known for their high degree of accuracy, due to the large amount of training data required 

(Lépine).  

After we have trained each algorithm, we will then test their accuracy by collecting more 

examples of anomalies, in a similar fashion to our training set, and running the algorithms, 

noting the true positive, false positive, and false negative rates for each. Based on these results, 

as well as additionally parameters such as runtime, we will be able to make a recommendation 

on what algorithm to use for future research.  
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CHAPTER II 

METHODS 

 

Data Acquisition 

 In order to identify and characterize road anomalies, three different sets of data are 

required: accelerometer data, video, and GPS data. Accelerometer and GPS data were collected 

using an iOS application developed by Akanksh Basavaraju, from the Department of Electrical 

and Computer Engineering at Texas A&M University. An iPhone 6s was used to run the app 

during data collection. Video was captured using a DJI Osmo camera that was provided by Dr. 

Eric Du, from the Department of Construction Science at Texas A&M University. The iPhone 

accelerometer has a frequency of 100 Hz, while the Osmo is capable of capturing 4K video, but 

was set at 720p due to storage limitations. A Ford Focus was used as the vehicle for data 

collection for the duration of the study. The iPhone was mounted at on the interior of the vehicle 

using a windshield mount, and the Osmo was mounted on the hood of the vehicle using a car 

mount, as shown in Figure 1. The iPhone was oriented at approximately a ninety degree angle, 

and any discrepancy was adjusted for using axis reorientation (see Filtering below). In this 

orientation, the y-axis represents the vertical motion of the vehicle, the x-axis represents 

horizontal motion, and the z-axis represents forward accelerations and decelerations. 
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Figure 1. Positioning of the Osmo camera 

 

 Data was collected from roads around the Bryan-College Station metro area. 

Accelerometer, video, and GPS data was continuously recorded during stretches of road with 

known anomalies, and each stretch of road was ran over multiple times. The collected data was 

then hand-labeled in order to be used as a training set for the machine learning algorithms. The 

accelerometer data was labeled by inspecting the video from the Osmo and noting timestamps 

where anomalies approximately occur. Two different classes of anomalies, cracks and potholes 

were noted. Figure 2, below, shows an anomaly that would be labeled as a pothole through visual 

inspection, while Figure 3 shows an anomaly that would be labeled as a crack.  
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Figure 2. A frame shot with the Osmo showing a pothole 

 

Figure 3. A frame shot with the Osmo showing a crack 
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 The total accelerometer data was then sequentially windowed with a window length of 1 

second, giving each window a total of 100 data points. If a window contained an anomaly, it was 

labeled as such, and windows that contained no visible anomalies were labeled as smooth road. 

Figure 4, below, shows the y-axis accelerometer data for a window that was labelled as 

containing a pothole. In total, 143 windows were labeled as containing potholes, 26 were labeled 

as containing cracks, and 817 were labeled as smooth road. 

 

Figure 4. Windowed accelerometer data

 

Filtering and Feature Extraction 

 Even though the orientation of the smartphone was controlled throughout our initial 

study, it is important to consider that the orientation of each smartphone would not be controlled 

during any potentially crowdsourcing applications. Accordingly, we used the quaternion-based 

approach proposed by Tundo et al. to reorient the signal from all three axes so that negative y-

axis of the accelerometer signal aligned with the gravitational acceleration vector (Tundo). After 

the raw accelerometer data was reoriented, the x and z axes were high-pass filtered. The high-

pass filter removes low-frequency components from the accelerometer signal, and will thus 
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remove the unwanted effects of turning, breaking, and acceleration (Eriksson). Finally, time-

domain, frequency-domain, and wavelet features were calculated for each observation, and the 

results were subsequently organized into a matrix where each column represents a unique feature 

while each row represents a unique observation. Windowing, reorientation, filtering, and feature 

extraction were all performed using MATLAB. 

 

Machine Learning Algorithms 

 Three different algorithms, k-nearest neighbors, Support Vector Machine, and a decision 

tree-based algorithm, were implemented using R. First, the feature data matrix containing 986 

observations was imported from MATLAB. Before training the three algorithms, it was 

important to reduce the feature set in order to avoid potential overfitting, as well as to reduce 

training and classification time. First, a pairwise correlation matrix was produced, and highly 

correlated features were identified. If the correlation between two features was above 0.9, one of 

the features in the pair was declared redundant and subsequently discarded. Next, recursive 

feature elimination was used to determine how many features are necessary for classification, 

and which ones are the most important. A Support Vector Machine algorithm with a radial kernel 

was used to evaluate the performance of the model, first using all variables, and then removing 

the least important feature each iteration. Since the observation data contained an imbalanced 

number of classes (in particular, the number of smooth road observations dominated), log loss 

was chosen as the metric to minimize when evaluating all possible subsets of the features. Figure 

5 shows the log loss of the model versus the number of features used. Log loss is minimized at 

10 features, and plateaus thereafter.  
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Figure 5. Log loss versus the number of features  

 

The rfe function allows provides a ranking of the most important features, shown in 

Figure 6 below. The vast majority of the most important features involve power spectral density 

in some capacity. 
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Rank Feature Axis 

1 PSD_AvgBandPower_5to15 Z 

2 MeanMedianDiff_EnvUpper_LPwindow X 

3 PSD_AvgBandPower_30to40 Z 

4 PSD_RMSBandValue_35to45 Y 

5 PSD_MaxBandValue_30to40 Z 

6 PSD_AvgBandPower_35to45 Y 

7 PSD_MaxBandValue_5to15 Z 

8 PSD_RMSBandValue_0to10 Y 

9 PSD_AvgBandPower_5to15 X 

10 PSD_AvgBandPower_40to50 X 

Figure 6. Top 10 selected features  

 

After the top features were selected, with data was randomly split into a training and 

testing set, with 75 percent used for training, and the remaining 25 percent used for testing. 10-

fold cross validation was performed with each of the three models, and the resulting precision, 

recall, and F1 scores were calculated using the testing data. Precision, recall, and F1 score are 

mathematically calculated as follow: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Additionally, training was repeated 10 times and the mean performance was calculated 

for each model. After an initial run to determine a baseline, further tuning was performed on 

each algorithm. First, the decision tree was pruned using the built-in prune function. Next, the k-

nearest neighbors algorithm was optimized for the k-value that produced the highest accuracy 
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Finally, the SVM was optimized for the soft margin and gamma values (with each combination 

checked by cross-validation), as well as the kernel type that produced the highest F1 score. 
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CHAPTER III 

RESULTS 

 

Algorithm Performance 

 Initially, the algorithms were trained and tested using a 75/25 split between training and 

testing data. The results of testing each algorithm are summarized in Table 1 below. 

 

Table 1. Performance measures for each algorithm with a 75/25 testing/training split 

Algorithm Precision Recall F1 Score 

 Cracks Potholes Smooth Cracks Potholes Smooth Cracks Potholes Smooth 

Dec-Tree 0.14 

 

0.83 

 

0.99 1.00 

 

0.88 0.96 

 

0.25 

 

0.86 0.98 

kNN 0.000 0.94 0.99 

 

NaN 

 

0.83 

 

0.99 

 

NaN 0.88 

 

0.99 

 

SVM 0.43 

 

0.97 

 

0.99 

 

0.75 

 

0.88 

 

1.00 

 

0.55 

 

0.92 

 

0.99 

 

 

 The SVM algorithm (with polynomial kernel) performed the best across all performance 

measures. Note that each algorithm performed exceptionally well at classifying smooth road and 

potholes, but struggled with classifying cracks. In particular, the precision of the SVM for cracks 

was well below what would be desirable, meaning that the algorithm struggles to positively 

predict cracks. However, the absolute number of observations for cracks was very low, and 

removing any observations from the training set may be extremely detrimental to performance. 

Therefore, it is useful to perform training with all the observations, keeping in mind the potential 

risk of overfitting to the training set when evaluating each algorithm’s performance. Each 
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algorithm was trained and tested again, this time using all observations for testing data, and the 

precision, recall and F1 score were calculated (see Table 2, below).  

 

Table 2. Performance measures for each algorithm with all data used for training 

Algorithm Precision Recall F1 Score 

 Cracks Potholes Smooth Cracks Potholes Smooth Cracks Potholes Smooth 

Dec-Tree 0.42 

 

1.00 

 

0.99 

 

0.92 

 

0.88 

 

0.99 

 

0.58 

 

0.94 

 

0.99 

 

kNN 0.54 

 

0.96 

 

0.99 

 

0.70 

 

0.90 

 

0.99 

 

0.61 

 

0.93 

 

0.99 

 

SVM 1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

As expected, the performance of each algorithm improves immensely, especially in terms 

of being able to classifying cracks. Note, however, that the SVM (now maximized by a radial 

kernel) achieves perfect classification. This is likely a sign of overfitting; nevertheless, the fact 

that all three algorithms saw significant improvements across all statistical measures when 

classifying cracks shows that there is potentially a great benefit to collecting more data for 

training purposes.     

 

Comparison to Previous Research 

 In recent years, a lot of research has been conducted on classifying road anomalies in an 

efficient and crowd-sourceable fashion. Relevant previous research is summarized below. 

 Many studies have proposed using a simple thresholding approach on accelerometer data 

in order to classify potholes and smooth road. Kulkarni et al. were able to achieve pothole 

detection accuracy between 90 and 95% by simply determining threshold values on the x and z 

axes (Kulkarni). Tai et al. also used thresholding to detect general road anomalies, and were able 
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to achieve a precision of 0.785 and a recall of 0.705% (Tai). Outside of using accelerometer data, 

Tedeschi and Bendetto proposed an image processing-based solution, where users of an Android 

app are able to take pictures of a roadway, and an algorithm detects whether a pothole or crack is 

present. For cracks, this approach was able to achieve a precision of 0.767, a recall of 0.736, and 

an F1 Score of 0.769. For potholes, it was able to achieve a precision of 0.812, a recall of 0.767, 

and an F1 Score of 0.792 (Tedeschi). Finally, Allouch et al. were able to develop a smartphone 

application, RoadSense, that used both accelerometer and gyroscope data to classify potholes and 

smooth road, and were able to achieve a precision of 0.951, a recall of 0.953, and an F1 Score of 

0.950 using SVM (Allouch). 

 Our results compare very favorably to the results of previous studies. Our precision of 

0.972 when classifying potholes is higher than comparable studies, and our F1 Score of 0.921 is 

comparable to the results obtained using RoadSense. Additionally, our approach is non-binary, 

allowing for cracks and potholes to be classified, in addition to smooth road. Finally, our 

algorithm only depends on accelerometer data, and only uses 10 features for classification, 

potentially allowing for fast classification times in real-time applications.   
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CHAPTER IV 

CONCLUSION 

 

 In this paper, a machine-learning approach to detecting road anomalies was proposed that 

uses accelerometer data collected using a smartphone. Three different classification algorithms 

were tested on classifying two types of anomalies (cracks and potholes) and smooth road. SVM 

was determined to be superior at classifying each of the three classes across multiple statistical 

measures. The performance of our algorithm was much better than previous studies that used 

thresholding to classifying potholes and smooth road, with precision and recall values up to 24 

percent higher. When compared to similarly implemented SVM algorithms that used both 

accelerometer and gyroscope data, our best algorithm was able to achieve a higher precision and 

similar F1 score (0.92 vs 0.95), while only using accelerometer data. Additionally, it was also 

able to differentiate between cracks and potholes and potentially offers very fast runtimes for 

real-time classification, because only 10 total features are used. 

 Future work will be focused on collecting more data for algorithm training purposes, as 

the performance of our algorithm in terms of cracks was potentially limited by the comparatively 

small number of observations. Additional proposals for future work include incorporating GPS 

data into a mobile application that can be used for crowdsourcing, and using the collected 

accelerometer data to provide a measure of road roughness in addition to identifying anomalies.      
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