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ABSTRACT 

JAMES LUKE LEARY: Characterizing the Effects of stm and ath1 Mutations on Floral 

Organ Development in Arabidopsis thaliana(Under the direction of Dr. Sarah Liljegren) 

  

 The purpose of this project was to explore the function of 

SHOOTMERISTEMLESS (STM) and ARABIDOPSIS THALIANA HOMEOBOX 

GENE1 (ATH1), two transcription factors in Arabidopsis thaliana that play a role in the 

molecular pathways that establish organ boundaries in flowers. Prior research has 

shownthat mutations in the STM and ATH1 genes cause defects in the boundaries formed 

between floral organs and the stem of the plant. My study was designed to investigate 

whether ATH1 and STM also control the boundaries found between adjacent floral 

organs. I predicted that stm ath1-3 double mutant flowers would display a significant 

number of stamen-stamen and sepal-sepal fusion events compared to wild-type flowers, 

which would indicate that the boundaries between these organs had been compromised.  

 Stem cells found in flower meristems are required for a full set of floral organs to 

develop. Since STM are ATH1 are known to play roles in maintaining the population of 

stem cells in both shoot and flower meristems, stm ath1-3 double mutant flowers were 

also expected to produce fewer organs compared to wild-type flowers. I found that 15 

percent of the stamens in stm and ath1-3 single mutant flowers, and 51 percent of the 

stamens in stm ath1-3 double mutant flowers were fused to another stamen. I also found 

that 95 percent of the sepals in the double mutant flowers were fused to a neighboring 

sepal. The stm ath1-3 mutant flowers produced three fewer petals and three fewer 

stamens on average. These results indicate that STM and ATH1 redundantly regulate 

boundaries formed between stamens and petals. They also demonstrate that STM and 
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ATH1 regulate the size of the flower meristem and that their functions are required for 

that meristem to correctly produce all of its organs.  
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INTRODUCTION 

 

 When considering the complex and consistent nature in which a plant grows flowers, one 

must consider the genomic pathways that are responsible for this phenomenon. Each flower is 

subject to specific genetic regulations that are influential in the development of floral organs 

(Meinkeet al., 1998). Through study of these genomic pathways and genetic regulations, 

understanding can be found regarding the development of flowers.  

 Arabidopsis thaliana is a plant species that is known for the various genomic properties 

that it has; in particular, these properties lend it to being one of the better-known model 

organisms for genetic research. Some of these reasons are its relatively small genome, rapid life 

cycle, prolific seed production, efficient transformation methods, large number of mutant lines 

and genetic resources, and economic, accessible requirements for growth.  Many genes are 

conserved between multiple plant species; therefore, understanding the roles that specific genes 

play in Arabidopsis thaliana can give us extensive insight into plant biology as a whole 

(Meinkeet al., 1998).  

The number of floral organs in Arabidopsis thaliana is conserved between plants, as is the 

relative position of the floral organs (Figure 1). Typically a flower of a wildtype plant is 

composed of four sepals, four petals, six stamens, and two fused carpels. Each of these 

categories are found in a whorl, which is an arrangement of organs that radiate from a single 

point and encircle the stem (Irish et al., 1999). In wildtype plants, there are distinctive lateral 

boundaries found that separate each of these organs from the floral stem (Gomez-Mena and 

Sablowski, 2008). These organs and their growth pattern can be seen in Figure 1. 
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 Multipotent stem cells found within the tip of a developing shoot make up the shoot 

apical meristem (SAM). Flower primordia formed on the flanks of a shoot meristem also contain 

sufficient stem cells to form the distinct organ types of a flower (Barton, 2010).  The boundaries 

of these organs are made up of layers of densely packed cells that serve to separate distinct 

tissues. The cells of these dense layers are generally smaller in size than the cells surrounding the 

regions (Breuil-Broyer et al., 2004). Multiple types of organ boundaries are found in a flower. 

Lateral organ boundaries are groups of cells at the adaxial base of the floral organs (ie. sepal-

stem), while inter-organ boundaries separate adjacent organs within the same whorl (ie. sepal-

sepal) and inter-whorl boundaries distinguish organs in neighboring whorls (ie. petal-

stamen)(Shuai et al., 2002).Genetic screens in Arabidopsis have uncovered mutants that alter 

each of these boundaries. (Arnaud and Pautot, 2014) 

 A transcription factor recognized to play a role in the formation of lateral and inter-organ 

boundary regions in Arabidopsis flowers is encoded by the ARABIDOPSIS 

THALIANAHOMEOBOX GENE1 (ATH1) gene (Gomez-Mena and Sablowski, 2008; Liljegren, 

Figure 1: Diagram of the floral organs present in an Arabidopsis 

thaliana flower. A ‘top-down’ look at an A. thaliana flower that 

shows the location of petals, sepals, and stamens. A wildtype 

flower typically has four petals, four sepals, and six stamens that 

surround a central pistil. (Image credit: Gubert et al., 2014) 
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unpublished results). ATH1is a BELL-type homeodomain transcription factor that represses 

growth of the basal regions of floral organs that border the floral receptacle (upper part of the 

floral stem). Mutations in ATH1 hamper the process of lateral organ boundary formation, and the 

boundary region between the sepals and floral stem is less distinct. The stamens of ath1 single 

mutant flowers are frequently fused at their bases to the underlying receptacle, and fail to detach 

during the abscission process (Gomez-Mena and Sablowski, 2008; Liljegren, unpublished 

results). Adjacent stamens of ath1 flowers are sometimes fused along part of their filaments, 

which is an inter-organ boundary defect. The mutant alleles referred to in this study, ath1-3 and 

ath1-5, both introduce errors in the DNA-binding region of the protein (Figure 2).  

 SHOOTMERISTEMLESS (STM) is a KNOX-type homeodomain transcription factor 

essential for formation of the shoot meristem and its sustained activity, such as stem cell 

proliferation (Long et al., 1996). STM does this by activating cytokinin biosynthesis in the shoot 

meristem (Scofield et al., 2014).  Within the developing flower, STM causes a delay in the 

differentiation of organ primordia and, like ATH1, represses growth to allow floral organ 

boundaries to be established (Aida et al., 1999). Previous studies have shown that loss-of-

function mutations of STM lead to an absence of the SAM as well as fusions between the 

cotyledons of stm seedlings (Scofield et al., 2014).  

 Since the loss-of-function alleles have such a severe effect on plant development, partial 

loss of function alleles have been studied to further examine the roles of STM. For instance, the 

flowers produced by a weak stm-2 allele contain fewer total floral organs (Endrizzi et al., 

1996).These results show that when stm mutants retain enough shoot meristem function to 

produce flower meristems on their flanks, the flowers reveal defects indicative of flower 

meristem maintenance issues. The hypomorphic stm mutant used in this study is caused by a 
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point mutation that introduces a premature stop codon in the homeodomain region of the STM 

transcription factor, seen in Figure 2 (Liljegren, unpublished results). The phenotype of this stm 

mutant mimics that of the ath1 mutants described above, with reduced definition of the lateral 

organ boundaries between the sepal and floral stem, and fusion of the stamens to the underlying 

stem, preventing their detachment. 

 

 
 

 

 Although it functions in the nucleus to control transcription of DNA, STM lacks a 

nuclear localization signal (Cole et al., 2006). Since STM is not able to move from the cytoplasm 

of a cell to the nucleus on its own, it must heterodimerize with BELL-type homeodomain 

transcription factors that have a nuclear localization signal in their amino acid sequence (Cole et 

al., 2006; Rutjens et al., 2009). ATH1 is known to be one of the BELL-type partners of STM and 

is found in both the cytoplasm and the nucleus of the cell (Rutjens et al., 2009). Loss-of-function 

ath1mutants do not show significant changes in the phenotype of the shoot meristem unless 

combined with partial loss-of-function mutations in STM. When the two mutations are combined, 
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the SAM is found to be significantly smaller (Rutjens et al., 2009). This result suggests the 

possibility of redundant gene function between STM and ATH1. Two other BELL-type proteins, 

POUND-FOOLISH (PNF) and PENNYWISE (PNY) have been shown to physically interact 

with STM, and genetic evidence suggests that they also share redundant activity with ATH1 in 

shoot meristem function. A triple ath1 pnf pny mutant, like the loss-of-function stm mutant, is 

missing a SAM (Rutjens et al., 2009). 

 Previous studies (Raybourn, 2016; Palmer, 2018) have revealed that STM and ATH1 

exhibit redundancy in establishing the lateral organ boundaries of Arabidopsis flowers 

(Raybourn, 2016). When plants contain both the hypomorphic stm allele and the ath1-5 allele, 

the boundaries that divide the sepals from the floral stem are essentially erased (Figure 3). 

Recent research in the lab has shown that the stm ath1-5 double mutants also have significant 

defects in forming inter-organ boundaries, particularly between adjacent sepals and stamens 

(Malone, 2018). 

 



 14 

 

The goal of my project was to investigate the roles that the ATH1 and STM transcription 

factors play in establishing the inter-organ boundaries that are formed between adjacent organs 

of Arabidopsis flowers. My experiments were primarily designed to test whether an independent 

loss-of-function allele, ath1-3, behaves like the ath1-5 allele in disrupting the boundaries formed 

between adjacent stamens and sepals when combined with the partial loss of function stm allele 

studied in the lab. My hypotheses were that 1) the ath1-3 single mutants would contain a 

significantly higher amount of stamen-stamen fusion events when compared to wildtype plants, 

2) the stm ath1-3 double mutants would show a significantly higher amount of sepal-sepal fusion 

events than the single mutants and wildtype flowers. In order to test these hypotheses, I 

evaluated the number of organ fusion events that occurred in stm, ath1-3, and stm ath1-3 mutant 

flowers compared to wildtype flowers.  

 It is known through previous studies that ATH1 and STM share some redundancy in 

maintaining a specific number of stem cells in the SAM and floral meristem of the plants 

Figure 3: The sepal-stem boundary is abolished in stm ath1 flowers. Scanning 

electron micrographs of a wild-type and mutant flowers. (A) A well-defined boundary is 

formed between the sepals and stem of wild-type flowers. (B) In ath1 single mutant 

flowers, this organ boundary is less distinct. (C) In stmath1-5 double mutant flowers, 

this boundary is absent. (Liljegren, unpublished results) 
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(Jasinski et al., 2005; Yanai et al., 2005). It is these stem cells that eventually develop into floral 

organs in Arabidopsis thaliana. As STM has an important role in maintaining these stem cell 

counts, I expected that plants containing the stm allele with reduced function will produce fewer 

floral organs than the wildtype plants. I also expected the stm ath1-3 double mutants will show 

fewer organs than both the single stm mutant and the wildtype plants. To test these expectations, 

I counted the number of floral organs produced by these mutants compared to wildtype. By 

assessing both the number of fusion events found in flowers as well as the number of floral 

organs, the ratio of floral organs affected by fusion events could be determined. 
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METHODS 

 

I. Initial Preparation of Arabidopsis thaliana seeds 

 

 As an experiment revolving around analyzing different genotypic traits of Arabidopsis 

thaliana, the first step was to properly plant out seeds. In order for this species’ seeds to 

germinate properly, they needed to undergo a sterilization procedure and cold treatment prior to 

being planted. The sterilization procedure was initiated by covering the seeds with 70% ethanol 

solution for two minutes. After removing the ethanol, the seeds were covered with 5% bleach 

and 1% Sodium Dodecyl Sulfate solution for 15 minutes. Following this, the seeds were washed 

twice using approximately 500 μL of distilled and deionized water, refrigerated at 4 °C for 48 

hours, then suspended in a 0.1% agarose solution and planted.  For this research project, four 

types of seeds expected to generate four different genotypes were planted into trays and grown 

with a repeating cycle of sixteen hours of light followed by eight hours of darkness. The plants 

were kept at a temperature of approximately 23 °C and 69-70% humidity. The seeds were grown 

in Promix BX soil and were watered every Monday, Wednesday and Friday alternating between 

water and water with 200 ppm Miracle Grow. Landsberg erecta (Ler) plants grown in one tray 

were used as a wildtype (wt) control for the experiment. Two other trays contained homozygous 

stm and homozygous ath1-3 mutant plants, respectively. Additional trays were planted to 

generate homozygous stm ath1-3 double mutant plants. The double mutants studied have been 

found to be infertile (Liljegren, unpublished results) so seed stocks that were homozygous for 

one mutant and heterozygous for the other mutant were used. Knowing that these genes are not 

linked, according to Mendelian genetics, approximately 25% of the plants grown from this seed 

stock were expected to be homozygous for both of the mutant alleles. Since the germination rate 

of this stock had not been recently tested, we planted four trays of plants of either stm/+ ath1-3 
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or stm ath1-3/+ heterozygous plants to assure a large enough sample size of double mutant 

plants. The specific seed stocks used are shown in Table 1.  

Table 1: Seed Stocks Used for Experimentation 

Seed Stock 

Name 

# of Trays 

Planted 

Date Collected Possible Genotypes 

“Ler WT” 1 5/25/2017 WT 

“ath1-3 #1” 2 3/31/2017 ath1-3 

“sta1 A” 2 11/27/2017 stm 

“ath1-3 x sta1/+ 

#9 F4” 

1 10/19/2016 stm ath1-3, stm/+ ath1-3, 

STM ath1-3 

“ath1-3 x sta1/+ 

#15 F4” 

1 10/11/2016 stm ath1-3, stm/+ ath1-3, 

STM ath1-3 

“ath1-3/+ x sta1 

F5” 

2 1/5/2017 stm ath1-3, stm ath1-3/+, 

stm ATH1 

 

 

II. Determination of Genotypes for Individual Plants 

 

 After the plants had grown for four weeks, genomic DNA was prepared so that it could 

be analyzed and the genotypes verified. Genomic DNA was isolated using the protocol for the 

QIAGEN DNeasy Plant Mini Kit with the following procedure. Collected leaf tissue from plants 

that were later used for phenotypic analyses was disrupted using a motorized pestle pulverizer 

and 400μL of AP1 buffer to break down the lipid membrane and lyse the cells. Following this, 

four μL of RNase was added to degrade any RNA that could be found in the mixture. This 

mixture was vortexed and incubated for ten minutes at 65 °C to continue breaking down the 

cells. After the incubation was complete, 130 μL of Buffer P3 was combined with the mixture to 

precipitate polysaccharides and proteins before the mixture was vortexed once again and 

incubated in ice for five minutes.  After the cold incubation was complete, the mixtures were 

placed in a centrifuge and spun for seven minutes at 14,000 rpm so that the tissue debris could 

fully separate from the liquid and pellet at the bottom of the tube. Using a pipette, the 

supernatant containing the DNA was transferred into a clean QIAshredder spin column. The spin 
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column was then centrifuged for two minutes at 14,000 rpm to further filter out the remaining 

proteins and cell remnants. Next the filtrate was combined with approximately 660μL of buffer 

AW1, which ensured denaturation of the proteins in the mixture, and mixed by pipetting. 650μL 

of this mixture was placed into a DNeasy spin column and centrifuged twice at 8,000 rpm for 

one minute each time. Following this, 500 μL of a salt removing buffer (AW2) was added, and 

the mixture was once again placed in the centrifuge and spun at 8,000 rpm for one minute; this 

process was repeated a second time. In the final step, 100 μL of buffer AE was used to elute the 

DNA from the spin column followed by a five minute incubation period at room temperature. 

This step was repeated once to maximize the yield of DNA. The prepared samples of genomic 

DNA were stored at -20 °C.  

 Once the DNA was isolated from the plants, specific regions of the STM and ATH1 genes 

were amplified using Polymerase Chain Reaction (PCR). The forward and reverse primers used 

for genotyping the stm and ath1-3 mutants are shown in Table 2. Since the ath1-3 mutation 

contains a large T-DNA insertion two separate PCR reactions were run, one designed to show 

the presence of the wildtype allele and the other to show the presence of the mutant allele. The 

PCR reactions included 18 μL of a master mix containing two μL 10X reaction buffer, 0.5 μL of 

10 mM dNTP, 0.5 μL of 10X Taq polymerase, 0.7 μL each of 20 mM forward and reverse 

primers and 13.6 μL of distilled, deionized H2O. Two μL of each DNA sample was then added to 

separate PCR tubes to bring the reaction volume to 20 μL. The samples were then loaded into 

and run on a S1000 ThermoCycler using program cycles optimized for each primer pair (Table 

3). 
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Table 2: Primer Sequences 

Primer 5’ to 3’ Sequence 

ath1-3A 

-Used with the ath1-3B primer  to amplify the 

wild-type ATH1 allele 

CCATCAGATTTGGAGACCTAACG 

ath1-3B  

-Used with the JMLB1 primer to amplify the 

mutant allele 

GAGACACACTCTATATCATTTGCC 

JMLB1 

-anneals to one of the T-DNA borders. 

CAGCTGTTGCCCGTCTCACTGGTG 

STAMgtF GTTCATAAACCAGAGGAAACGGCACTG 

STAMgtR GAGGAGATGTGATCCATTGGGAAAGG 

 

Table 3:  PCR Conditions for STM and ATH1 Gene Amplification  

 

 STM ATH1 WT ath1-3 Mutant 

Step Temp. 

(F) 

Time 

(minutes) 

Temp. 

(F) 

Time 

(minutes) 

Temp. 

(F) 

Time 

(minutes) 

1 94.0 4:00 94.0 4:00 94.0 4:00 

2 94.0 0:30 94.0 0:30 94.0 0:30 

3 54.0 0:30 53.0 0:30 53.0 0:30 

4 72.0 0:30 72.0 0:40 72.0 0:30 

5 Repeat 

Step 2 x30 

Repeat 

Step 2 x30 

Repeat 

Step 2 x30 

Repeat 

Step 2 x30 

Repeat 

Step 2 x30 

Repeat 

Step 2 x30 

6 4.0 Indefinite 4.0 Indefinite 4.0 Indefinite 

 

 Restriction enzyme digests of the STM PCR products were then used to distinguish the 

mutant genotypes from wild-type. The digests included 17 μL of the PCR product, one μL of 

BsrI restriction enzyme and two μL of the10X 3.1 restriction enzyme buffer. This restriction 
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enzyme recognized and cut the wild-type PCR product into 106 bp and 29 bp fragments. The 

digests were incubated for four hours at 67 °C.  

 The sizes of the digested STM PCR products were analyzed using gel electrophoresis. 

Three percent agarose gels were made using six grams of agarose powder combined with 200 

milliliters of 1X TAE buffer and 5.5 μL of ethidium bromide. This mixture was melted in a 

microwave to dissolve the agarose, cooled, and then poured into a mold with a comb to solidify 

over time. The ATH1 PCR products were also run on 3% agarose gels. 3.3 μL of loading dye 

was mixed with each of the samples, then 13.5 μL of each DNA/dye mixture was loaded into 

individual wells in the agarose gel. Gels were imaged using an AlphaImager HP. Controls of 

known wild-type and mutant DNA were included in the PCR reactions and digests to verify the 

sizes of the expected wild-type and mutant DNA fragments. A 50 bp ladder was used during 

electrophoresis in order to determine the approximate sizes of the DNA products in the 

experimental samples.  

 

III. Experimental Design 

 

 When designing this experiment, various factors were accounted for to ensure as few 

confounding variables as possible.  All of the seed stocks were planted on the same day, and to 

control for any differences in seed germination and developmental progress, data were collected 

from stage 13-15 flowers found within the 7
th

 and 18
th

 positions on the primary inflorescence of 

each plant. These developmental stages encompass the time from when the buds begin to open 

until the pollinated fruit begins to elongate (Smyth et al., 1990). Positions were numbered with 

the oldest seedpod at the base of the inflorescence deemed number one, then moving up the stem 

in chronological order. Within the range of positions 7-18, the first flower without withering 
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organs (stage 15) was selected to be the first floral bud that data was collected for each plant. 

Each successive flower bud was then analyzed through flowers undergoing anthesis (stage 13; 

bud opening). Each floral bud was looked at through a dissecting microscope to determine the 

number of sepals, petals and stamens present as well as the number of fusion events observed 

between the floral organs. Every fusion event seen between two organs was recorded, regardless 

of whether it was partial or complete. Fusion percentage was calculated by dividing the number 

of floral organs affected by a fusion event by the number of organs within that flower.  

 

IV. Data Analysis 

 

 Microsoft Excel was used to analyze the collected data. Bar graphs were generated to 

illustrate the average percentage of fusion for 1) sepals, 2) petals, 3) stamens and 4) all outer 

organs for each genotype. The number of outer floral organs per flower was also determined for 

each genotype tested and independently depicted via bar graph. Standard deviations of the 

samples and standard errors from the mean are shown in tables associated with each bar graph. 

Phenotypic differences between genotypes were considered statistically significant (P < 0.05) if 

the standard errors of their respective means did not overlap.  
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RESULTS 

 

 Each individual flower was analyzed using a dissecting microscope to record the number 

of floral organs produced and to identify any inter-organ fusion events. I was able to examine 40 

flowers each for the stm mutant, the ath1-3 mutant and wild-type plants; 25 flowers were 

examined for the stm ath1-3 double mutants.  Fewer healthy plants with flowers at the right stage 

were available from the set of double mutants grown for this experiment. Data were collected 

from ten plants each for the wildtype and single mutant plants but only from four double mutant 

plants. On average, four flowers were assessed per plant for the wildtype, stm mutant, and ath1-3 

mutant while six flowers per plant were evaluated for the double mutant plants. 

 After collecting the data, I determined the frequency of inter-organ fusion events and 

compared the number of floral organs produced by the flowers of each genotype. In order to 

calculate fusion percentage, the number of organs with fusion defects was divided by the total 

number of that organ type. For instance, if there were two pairs of fused stamens within a flower, 

100% of its stamens were recorded as fused.  

The frequency of stamen-stamen fusion was higher in the single mutants compared to 

wild-type flowers, with 15% of ath1-3 and stm stamens showing a fusion defect compared to 0% 

of wild-type stamens. This phenotype was enhanced in the double mutant, with 51% of the stm 

ath1-3 stamens fused to another stamen (Figure 4). 
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Frequency of Stamen Fusion 

 
Mean St dev. St. Error 

WT 0 0 0 

Stm 14.75 21.05 3.33 

ath1-3 14.75 21.39 3.38 

stm ath1-3 51.47 46.33 9.27 

 

 
Figure 4: Frequency of Stamen Fusion. n=40 for WT. n=40 for stm single 

mutant flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double 

mutant flowers. This graph shows the average frequency of stamen-stamen 

fusion events in each sample group. Error bars indicate standard deviation. The 

average fusion frequency for each group is portrayed above the respective bars 

on the graph. The single and double mutant flowers show significantly more 

fusion events than the WT plants. 
 

 

 

The frequency of sepal-sepal fusion showed a stark contrast when comparing the double 

mutant plants to the wildtype and single mutant plants. The sepals in the double mutant flowers 

were almost universally fused (95%), while the sepals of the stm mutant and wildtype flowers 

were never fused (0%), and the sepals of the ath1-3 flowers were rarely fused (1%) (Figure 5). 
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Frequency of Sepal Fusion 

 
Mean St. Dev. St. Error 

WT 0 0 0 

stm 0 0 0 

ath1-3 0.625 3.95 0.625 

stm ath1-3 94.67 13.15 2.63 

 

 
Figure 5: Frequency of Sepal Fusion. n=40 for WT. n=40 for stm single 

mutant flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double 

mutant flowers. This table and bar graph shows the average frequency of 

sepal-sepal fusion events in each sample group. Error bars indicate standard 

deviation. The average fusion frequency for each group is portrayed above 

the respective bars on the graph. The double mutant flowers demonstrate 

significantly more fusion events than the WT and single mutant plants.  
 

 

 

Considering all of the outer organs (Figure 6), 58% of the organs in the stm ath1-3 

double mutants were affected by fusion events, compared to 3% of the organs in both single 

mutants, and 0% of the organs in the wild-type flowers .Fusion events affecting organs in 

adjacent whorls (i.e. petal-petal, sepal-petal, and petal-stamen) were searched for but not 

observed in the mutants analyzed during this experiment. 
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 Frequency of Total Fusion 

 
Mean St. Dev. St. Error 

WT 0 0 0 

stm 2.99 4.37 0.69 

ath1-3 3.08 4.16 0.66 

stm ath1-3 57.92 18.48 3.70 

 

 
Figure 6: Frequency of Total Fusion.  n=40 for WT. n=40 for stm single mutant 

flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double mutant 

flowers This table and bar graph shows the average frequency of total fusion events 

in each sample group. Error bars indicate standard deviation. The average fusion 

frequency for each group is portrayed above the respective bars on the graph. The 

double mutant flowers demonstrate more significantly more fusion events than the 

WT and single mutant plants.  

 

 

 To determine if there was variation between the different genotypes, the number of floral 

organs in each flower was also recorded. No significant differences were detected between the 

number of sepals produced (Figure 7); flowers from the wildtype plants, stm and ath1 single 

mutants and stm ath1 double mutant each produced an average of 4 sepals. 
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Average # of Sepals 

 
Mean St. Dev. St. Error 

WT 3.975 0.16 0.025 

stm 4 0 0 

ath1-3 4 0 0 

stm ath1-3 3.88 0.44 0.09 

 

 
Figure 7: Average Number of Sepals.  n=40 for WT. n=40 for stm single mutant 

flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double mutant 

flowers. This bar graph shows the average number of sepals on flowers of each 

sample group. The error bars indicate standard deviation. The average number of 

sepals found in each genotype is portrayed above the respective bars on the graph.  

The difference between the numbers of sepals produced is not significant. 

 

The single mutant plants did not demonstrate significant differences in petal number 

when compared to the wildtype plants (Figure 8); flowers of each genotype contained an 

average of 4 petals. However, the double mutant plants produced significantly fewer petals than 

either the wild-type or the single mutants, with an average of 1 petal per flower (Figure 8). 
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Average # of Petals 

 
Mean St. Dev. St. Error 

WT 4 0 0 

stm 3.95 0.22 0.035 

ath1-3 3.98 0.16 0.025 

stm ath1-3 1.32 1.31 0.26 

 

 
Figure 8: Average Number of Petals.   n=40 for WT. n=40 for stm single mutant 

flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double mutant 

flowers. This bar graph shows the average number of petals on flowers of each 

sample group. The error bars indicate standard deviation. The average number of 

petals found per sample group is portrayed above the respective bars on the graph. 

The stm ath1-3 double mutant flowers produced significantly less petals per flower 

than either single mutant or wildtype. 

 

The single mutant plants produced on average one fewer stamen compared to the wild-

type plants (Figure 9).Compared to the wild-type average of 6 stamens, the stm and ath1 flowers 

produced an average of 5 stamens. The double mutant flowers produced significantly fewer 

stamens than either the single mutants or wild-type, with an average of 3 stamens (Figure 9). 
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Average # of Stamen 

 
Mean St. Dev. St. Error 

WT 5.85 0.36 0.06 

stm 4.98 0.73 0.12 

ath1-3 5.25 0.63 0.10 

stm ath1-3 3.20 1.58 0.32 

 

 
Figure 9: Average Number of Stamen.  n=40 for WT. n=40 for stm single 

mutant flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double 

mutant flowers. This bar graph shows the average number of stamens on 

flowers of each sample group. The error bars indicate standard deviation. The 

average number of stamens found per sample group is portrayed above the 

respective bars on the graph. The stm ath1-3 double mutant flowers produced 

significantly fewer stamens on average compared to wildtype. 

 

 The total number of outer floral organs produced per flower (sepals, petals, and stamens) 

was calculated for each genotype (Figure 10). Both of the single mutants contained one fewer 

organ per flower on average than wild-type, with 13 total organs compared to 14, respectively. 

The stm ath1-3 double mutant flowers produced significantly fewer organs than either the single 

mutants or wild-type, with an average of 8 total organs (Figure 10). 
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Average of Total Floral Organs 

 

Total # of 

Floral Organs 
Mean Per 

Flower St. Dev St. Error 

WT 553 13.83 0.91 0.14 

stm 517 12.93 0.65 0.10 

ath1-3 529 13.23 0.70 0.11 

stm ath1-3 210 8.40 1.62 0.26 

 

 
Figure 10: Total Number of Floral Organs.  n=40 for WT. n=40 for stm single 

mutant flowers. n=40 for ath1-3 mutant flowers. n=25 for stm ath1-3 double mutant 

flowers. This bar graph shows the average total number of floral organs found on 

flowers of each sample group. The error bars indicate standard deviation. The 

average number of total organs found per sample group is portrayed above the 

respective bars on the graph. The stm ath1-3 double mutants produce significantly 

fewer floral organs than either single mutant or wildtype.  
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DISCUSSION 

 

 Prior research regarding the roles that the STM and ATH1 transcription factors play in 

both development of inter-organ boundaries and the formation of floral organs was the 

motivating factor in selecting the topic of my research experiment. The hypothesis that STM and 

ATH1have significant roles in forming the boundaries between individual floral organs as well 

as the boundaries between the floral organs and underlying receptacle was initially tested using 

the ath1-5 allele (Malone, 2018). I hypothesized that if ATH1 truly plays a critical role in 

establishing the inter-organ boundaries formed between the sepals and stamens, I would observe 

1) a significantly increased number of stamen-stamen fusion events in the single ath1-3 and 

double stm ath1-3 mutants compared to wild-type and 2) a significantly increased number of 

sepal-sepal fusion events in the stm ath1-3 double mutant compared to the single mutants and 

wild-type. 

 The data I collected supported my first hypothesis that disruption of ATH1 activity using 

an independent allele from one previously tested would disturb the boundaries formed between 

adjacent stamens. My results were particularly striking for the stm ath1-3 double mutant, in 

which 51% of the stamens were fused to another stamen compared to 0% of wild-type stamens 

(see Figure 4). As 15% of the stamens in the ath1-3 single mutant were also affected by fusion 

events, significantly higher frequencies of stamen-stamen fusion events were observed for both 

the single and the double mutant compared to wild-type. 

My second hypothesis that ATH1 and STM are redundantly responsible for maintaining 

the boundaries between adjacent sepals was strongly supported by my data (see Figure 5). 

Whereas 95% of the sepals in the double mutant were fused, only 1% of the sepals in the ath1 

single mutant, and none of the sepals in the stm single or wild-type plants showed fusion defects. 
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These results suggest that ATH1 and STM are able to function independently in establishing the 

inter-organ boundaries formed between sepals. When the function of the ATH1 transcription 

factor alone is disrupted, these boundaries was not significantly altered compared to those of 

wild-type plants. However, when the function of the STM transcription factor is also disrupted in 

the double mutant flowers, the sepal-sepal boundaries are significantly disturbed compared to 

either the single mutants or to the wildtype. 

Although I also looked for any fusion events affecting floral organs in adjacent whorls, 

all the fusion defects I found occurred between neighboring floral organs within the same whorl. 

The boundary regions that separated different whorls were not found to be significantly affected 

in stm ath1-5 plants either (Malone, 2018), thus it appears unlikely that these transcription 

factors are involved in establishing inter-whorl boundaries. Instead, it appears that STM and 

ATH1primarily regulate the inter-organ boundaries formed in the outermost whorl of sepals and 

the inner whorl of stamens. No fusion events were detected in the petals of the ath1-3 or stm 

ath1-3 flowers.  

 The results from this study also support my hypotheses that STM and ATH1 play 

important roles in regulating the maintenance of the flower meristem. While the number of 

sepals did not show any significant differences between the mutants I studied, the number of 

petals and stamens were significantly reduced by the combined presence of the stm and ath1-3 

mutations. On average, the stm ath1-3 double mutant flowers contained about five fewer organs 

than the wildtype flowers, and were missing at least two petals and two stamens. This was 

expected as STM has a known function in maintaining stem cell numbers in the SAM as well as 

in floral meristems (Jasinski et al., 2005; Yanai et al., 2005). After comparing this previously 

known information with the recently collected data it appears that the STM and 
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ATH1transcription factors share roles in maintaining the number of stem cells that must be 

present within the floral meristem in order to generate the four sepals, four petals, six stamens 

and a central pistil typically found in an Arabidopsis flower.  

 When designing this study, it was not known in advance whether the ath1-3and ath1-5 

alleles would show any differences in their phenotypes. Since Gomez-Mena and Sablowski 

(2008) had concluded that the ath1-3 allele was a loss-of-function allele, and it wasn’t clear 

whether the ath1-5 allele should be considered as a loss-of-function or hypomorphic allele, an 

initial hypothesis was that the phenotypic effect of the ath1-3 mutation would be greater than 

that of the ath1-5 mutation previously studied(Malone, 2018). However, after comparing the data 

for my project and the parallel project using the ath1-5 allele, I didn’t find any notable 

differences. Although the frequencies of stamen fusion in my project were approximately double 

that of the previous study, it is noteworthy that the percentage of fusion events per floral organ 

were calculated in a different way (Malone, 2018). For instance if two stamens were fused, they 

were counted as one fusion event/two organs, or 50%, whereas I would count that as 100% 

fusion. Furthermore, when comparing the organ counts, no significant difference were found 

between any of the plants containing the ath1-5 mutation and the plants containing the ath1-3 

mutation. My results suggest that the two alleles may be functionally equivalent. 

 There are multiple directions that this research can take in the future. For instance, the 

extent to which the edges of the sepals and stamens are fused in the stm ath1 double mutant 

could be determined. An interesting feature I noticed about the stm ath1 double mutants is that 

the distance between the positions of individual flowers along the primary stem appeared to be 

closer to one another than those that grow on primary stems of wildtype and single mutant 

plants. This observation could be tested and quantified in order to determine if there is a 
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significant reduction in internode length when STM and ATH1 function is compromised. The 

results of my analysis of the number of floral organs produced by ath1-3 and stm ath1-3 mutant 

flowers compared to wild-type flowers will help refine the analysis of abscission defects in these 

mutants.  My results also have relevance to a study investigating whether the ath1-3 and stm 

ath1-3 mutants have a higher retention of floral organs due to their lateral organ boundary 

defects (Roth, 2018). Since the number of organs a flower produces affects the number it is 

capable of retaining, my analysis will help put the results from this study and future studies in 

context.  
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