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ABSTRACT 

ANDREW DANIELSEN KAMISCHKE: Raman Spectroscopic and Computational 
Study of Hydrogen Bond Interactions between Guanidine Hydrochloride, 

Trimethylamine N-oxide (TMAO), Urea, and Water 

 

(Under the direction of Dr. Nathan Hammer) 

Proteins are broken down in the body and produce water, CO2, and ammonia as by-
products. Ammonia is toxic to cells, making it a priority to be excreted. Urea is the key 
route for the transportation of ammonia out of the body and is the main component of urine. 
Guanidine is another important nitrogen-containing molecule that is structural like urea 
and plays important biological roles in the stabilization of proteins. Guanidine 
hydrochloride and Urea are known to denature proteins and this functionality continues to 
be a topic of great interest. Urea and guanidine contain many hydrogen bonding sites and 
interactions with water are important to their biological functionality and their abilities to 
affect protein stability. Trimethylamine N-oxide (TMAO) is known to counteract the 
effects that urea and guanidine hydrochloride have at destabilizing proteins. Here, we use 
Raman spectroscopy to study how urea, guanidine hydrochloride, and TMAO affect the 
hydrogen bonded network of water both in solution at room temperature and in a frozen 
crystal state. The experiment confirmed previous research that showed a blue shift in the 
HNH bending region of urea when TMAO was added. Raman spectra of guanidine 
hydrochloride and TMAO was found to have two different blue shifts in the HNH bending 
region. Another perspective result for future research is that the low temperature Raman 
spectra of urea water was found show multiple peaks. 
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Chapter 1: Introduction 
1.1 Bonding 
1.1.1 Overview 

Chemical bonds are all around us and are the glue that holds different atoms 

together. Atoms are made up of particles of different charges that are located at different 

areas within the atom. The nucleus contains neutral particles, neutrons, and positive 

particles, protons. The final particle found in an atom is a negative species called an 

electron that orbits around the nucleus. The positive portion of an atom is attracted to the 

negative portion of another atom. When these interactions result in a net reduction of the 

potential energy of the particles, a bond is formed. The three broad categories of these 

intramolecular interactions are ionic, covalent, and metallic. Intramolecular forces occur 

within a molecule like the white and red bond between hydrogen and oxygen in Figure 

1.1.1.1. The other type of bonding occurs between two molecules like the yellow dashed 

bond between the two water molecules in Figure 1.1.1.1. The intermolecular forces are 

weaker than intramolecular forces and are useful in determining physical properties of a 

compound like its melting point and boiling point. There are many different types of  

intermolecular forces including: ion-dipole, hydrogen bonding, dipole-dipole, ion-induced 

dipole, dipole-induced dipole, and London dispersion forces (LDF)    [1] 

Figure 1.1.1.1: Intramolecular and Intermolecular bonding 
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1.1.2 Hydrogen Bonding 

Hydrogen bonding is a special type of intermolecular interactions and is important 

in everyday life. Hydrogen bonding is not as strong as intramolecular forces like ionic and 

covalent bonds; however, it is known to be one of the strongest intermolecular force. To 

be able to understand what hydrogen bonding is, you must first understand some common 

notation. A hydrogen bond can be described by the notation X—H …Y. In this depiction 

X and Y are both electronegative elements. The hydrogen donor is X whereas the hydrogen 

accept is Y. The element Y also usually contains one or more lone pairs. The most well-

known case of hydrogen bonding occurs when X and Y are of the following elements: 

fluorine, oxygen, or nitrogen. The acronym FON is often given to remember what elements 

exhibit hydrogen bonding. Other elements are known to exhibit hydrogen bonding like 

carbon; however the strength of the hydrogen  bond with Carbon is much weaker than the 

ones listed above. [2] When a hydrogen bond occurs, there is a charge transfer from the 

proton acceptor to the proton donor. The charge transfer weakens the X—H bond causing 

the bond length to increase because of the weaker attraction forces. The resulting bond 

elongation is shown to cause a decrease in the vibrational frequency. A shift to lower 

frequency is associated with a lower energy and is often denoted as a red shift. When the 

vibrational frequency increases causing the energy to increase, a resulting blue shift is 

denoted. [2, 3] 

 
1.2 Osmolytes 

Osmolytes are an important category of molecules whose main function is the 

regulation of water in both intracellular and extracellular. There are many different types 

of osmolytes including free amino acids, polyhydric alcohols, and combinations of 
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methylamines. Within those different classes the three osmolytes that are of the most 

interest are urea, guanidine hydrochloride, and trimethylamine N-oxide. [4, 5] 

Osmolytes are also known to interact with proteins and their structural dynamics. There 

are two different ways in which osmolytes may interact with a protein. Osmolytes may 

either interact in a positive manner pushing towards the folded state or negatively by 

pushing towards the unfolded state. The way in which these interaction occur is under much 

debate; however, it occurs without the making or breaking of covalent bonds. [6] 

1.2.1 Urea 
1.2.1.1 Structure and Properties  

Urea has a molecular formula of CH4N2O and has a planar geometry in the 

crystalline form. It has a pH around neutral at 7.2 and it is highly soluble in water at 545g/L. 

Solid urea is a white crystal or powder.[7] Figure 1.2.1.1.1 is a microscopic picture of 

crystalline urea using the CCD camera on the Raman spectrometer.  

 
 

Figure 1.2.1.1.1: Photograph of solid urea (left) and molecular geometry (right)  
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1.2.1.2 Role 

Urea has been studied for many years and was the first organic molecule to be 

synthesized.[8] Urea has many important roles in nature with the most notable being used 

for the removal of nitrogenous waste in living things. Nitrogenous waste is usually in the 

form of ammonia that is part of the backbone structure in amino acids. The way in which 

urea is used to accomplish that task is dependent upon the organism being studied. Birds 

and reptiles excrete their ammonia in the form of uric acid. Uric acid is a heterocyclic 

molecule with a chemical formula of C5H4N4O3. Organism that convert their waste into 

uric acid are known as uricotelic. Humans and most terrestrial organism excrete 

nitrogenous waste in the form of urea and are known as ureotelic. The process to make urea 

is called the urea cycle and is predominantly done in the liver. The cycle takes place in 

both the mitochondrial matrix and the cytosol within in the liver. Once free ammonium is 

converted to urea it travels through the blood and into the kidneys where it is finally 

excreted in the urine. Urea makes up the largest percentage of organic compounds in the 

urine. Urea is also a denaturant or chaotropic agent and that characteristic is of importance 

to this research. [9] 

1.2.2 Guanidine Hydrochloride 
1.2.2.1 Structure and Properties 

Guanidine hydrochloride is a strong organic base with a molecular formula of 

CH5N3-HCl. Guanidine hydrochloride has a pH of 13.6 causing it to dissociate in 

physiological pH in the guanidinium form that contains an extra hydrogen along with 

having an overall charge of plus 1. The resulting compound at physiological pH has three 

resonance structure sharing the double bond and the overall charge of the molecule. [10, 

11] Figure 1.2.2.1.1 is a microscopic image of guanidine hydrochloride using the CCD 
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camera on the Raman spectrometer. Guanidine hydrochloride and guanidinium are used 

synonymously to describe the same structure. For this thesis guanidine hydrochloride will 

be used to describe this compound in all settings and will be abbreviated as gdn-HCl. 

 

 
Figure 1.2.2.1.1: Photograph of solid guanidine hydrochloride (left) and 
molecular geometry (right) 
 
 

1.2.2.2 Role 

Guanidine hydrochloride has a few uses within organisms. Like urea, gdn-HCl can 

be found in the urine as a by-product of protein metabolism. On the medical side, gdn-HCl 

can be used to treat myasthenia which is a rare autoimmune disease that causes muscle 

weakness and the breakdown of communication between nerves and the muscles. It does 

this by fixing and increasing the release of the neurotransmitter, acetylcholine, after a nerve 

impulse. Another use of gdn-HCl is as a fluorescent tag or probe in HPLC. The 

characteristic that is of most importance for this research is that it is also a chaotropic 

compound. It causes proteins and other macromolecules to denature.  
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1.2.3 Trimethylamine N-oxide 
1.2.3.1 Structure and Properties 

Trimethylamine N-oxide also referred to as TMAO, has a chemical formula of 

C3H9NO. TMAO has an IUPAC name of N,N-dimethylmethanamine oxide and is a 

colorless solid at room temperature. TMAO has a solubility of 454 mg/mL in water. It has 

a net neutral charge; however, there is a positive charge on the Nitrogen and a negative 

charge on the Oxygen. [12] 

1.2.3.2 Role 

TMAO is commonly found in tissues of marine organisms and humans. In marine 

organisms it is used to protect against changes in salinity, temperature, hydrostatic 

pressure, and high amounts of urea. TMAO has many different roles in humans and other 

terrestrial organisms. It has recently been associated with cardiovascular disease in 

humans. TMAO’s role in stabilizing proteins, kosmotropic agent, and causing them to fold 

back into their native state is of most importance for this research. [13] Figure 1.2.3.2.1 is 

a microscopic image of solid TMAO using the CCD camera from the Raman spectrometer.  

 
 

Figure 1.2.3.2.1: Photograph of solid TMAO (left) and molecular geometry (right) 
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1.3 Protein Synthesis and Degradation 
1.3.1 Overview 

Proteins are macromolecules that make up a large percentage of living things. They 

are crucial in many different biological process including movement, transportation and 

storage of molecules, provide mechanical support, immune protection, control growth, and 

many other functions. Proteins have many important attributes that enable them to have 

such a vast range of function. [9, 14] They have two major states or conformations that 

exist in nature; native and non-native. Native proteins are those that are folded and 

packaged tightly with their non-polar groups positions in the interior getting as far away 

from water as possible. On the other side is the non-native proteins that are prone to 

aggregation and unwanted interactions because their hydrophobic groups are no longer 

tucked away in the interior of the protein. The hydrophobic groups are then free to interact 

with water and other hydrophobic molecules affecting the intended purpose of the protein. 

The non-native structure is common in the body and is needed for important biological 

processes including protein synthesis, transportation through membranes, and for 

degradation. The downside occurs when the non-native structure is formed during times 

when it is supposed to be in the native state. [15] 

1.3.2 Synthesis 

Proteins are created from basic building blocks called amino acids that all contain 

the same backbone and vary by their substituents. There are four main structures associated 

with proteins: primary, secondary, tertiary, and quaternary. The primary structure is a one-

dimensional structure of the sequence of amino acids and occurs after translation. The 

secondary structure is a result of the folding of the primary structure on to its self by means 

of α-helix and β-sheets. The tertiary structure is the three-dimensional structure created by 
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the folding of the secondary structure. The final possible structure is the quaternary 

structure that results from different tertiary subunits coming together to form a large 

assembled subunit. A common example of quaternary structure is the oxygen binding 

protein of red blood cells, hemoglobin. [9] 

1.3.3 Degradation 

Proteins may become degraded or pushed into their non-native states by many 

ways. There is a mechanical way in which one can physically unfold a protein using special 

optical tweezers. Proteins can also become denatured by thermal means along with by 

chemical changes from pH or the introductions of denaturants. [16] The use of denaturants 

is of the most importance for this study. The mechanism in which chemical denaturation 

occurs has baffled the scientific community. The two proposed ways is that either the 

denaturant directly interacts with the protein causing it to unfold [17-19] or that the 

denaturant interacts with water weakening the water structure which indirectly causes the 

protein to unfold. The weakened water structure occurs when the denaturant hydrogen 

bonds with water causing water to have less available bonding sites to contain the protein 

into its native state. [20-22] There are also those who believe that denaturation occurs as a 

result of a combination of the two theories. [23] 

Urea begins to denature proteins after 8M. From a theoretical model, they determined 

that increasing concentrations of denaturants can cause sharp phase transitions of the native 

molecule to denature states because the denaturant solutions favorably solvate the nonpolar 

groups in the denatured state. Gdn-HCl was found to be a more effective denaturant at 

lower concentrations than urea at around 6M. Free energy should depend approximately 
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linearly on denaturant concentration for either gdn-HCl or urea over the typical 

experimentally accessible ranges. [24] 

1.4 Previous Research 

The topic involving protein denaturation and renaturation regarding osmolytes has 

baffled the scientific community. There are many articles that show the results of specific 

proteins with the addition of a particular denaturant like urea or gdn-HCl [17, 25, 26]. 

These types of article just show the result of the addition of different osmolytes and not 

what happens on the microscopic level. There are a few different reasons that have been 

studied in the literature. There is research that suggest that the interactions are a result of 

hydrophobic interactions and those that are induced by hydrogen bonding. [17] 

One article concluded that when urea is placed in water, urea will hydrogen bond with 

water rather than create a urea dimer.[20] Another article found that the hydrogen bonds 

between urea and water were weaker than those between water and water. This causes urea 

to strengthen the water structure in the form of hydrogen bond energies leading to urea 

directly interacting with the protein.[18] Unlike urea and gdn-HCl, TMAO has been found 

to strengthen hydrogen bonds networks causing proteins to conform to their folded native 

state. [19] 

The current research of the project is a continuation of previous research in the 

Hammer research group involving noncovalent interactions between different osmolytes 

in various environments. The first study was an analysis of noncovalent interactions 

between trimethylamine N-oxide and water. One of the conclusions from the research was 

that TMAO will create a cluster of three waters for every TMAO molecule when in 
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solution. The three water molecules are all bonded to the oxygen on TMAO and it was 

determined by comparing theoretical data with computational data. [27] 

Figure 1.4.1: Molecular structure of TMAO in solution[27] 

 The next study expanded on the interaction of TMAO with water and looked at how 

TMAO interacts with various other solvents including methanol, ethanol, and ethylene 

glycol. The different solvents all were shown to interact directly with the oxygen atom on 

TMAO leaving the methyl groups on TMAO unchanged. From that it was proposed that 

the interactions with the oxygen on TMAO causes it to have its osmolyte features. 

Hyperconjugation was found with both TMAO and the solvents used and resulted with a 

charge transfer causing a blue shift in TMAO’s C—H stretching mode. [28]  

 The most recent research that is most useful for this research involved the study of 

the noncovalent interaction between TMAO, urea, and water. The research was able to 

show strong agreement between experimental data and theoretical data suggesting that the 

theoretical structures are what occurs or is close to the actual arrangement. Because the 

theoretical graph matched the experimental graph, the different vibrational modes were 
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able to be determined. It was found that there was a blue shift, Figure 1.4.2, in the spectral 

data in the HNH symmetric bend region. The blue shift suggests that TMAO directly 

interacts with urea because the shift is not seen in the individual Raman spectra of TMAO 

or urea in solution. [29] 

 

 Figure 1.4.2: Blue shift of TMAO and urea solution[29] 

 

1.5 Spectroscopy 

The most basic definition of spectroscopy is the study of light matter interactions. Light 

can be described as either discrete or continuous. Matter can be in the elemental form or as 

a bonded molecule. The interactions between light and matter ranges from emission, 

absorption, transmission, scattering and reflection.  

1.5.1 Electromagnetic Radiation  

  Electromagnetic radiation or light refers to the waves of the EM spectrum that carry 

little pockets of EM energy. The EM radiation is known to exhibit a wave-particle duality 

meaning that it has properties of both a wave and a particle simultaneously. In most cases 

light is described and studied as a wave. One can study many different aspects of a wave 
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including its amplitude, wavelength, and frequency. Equation 1.5.1.1 relates the wave-like 

properties of EM radiation.  

     𝑐 = 𝜆𝑣   Equation 1.5.1.1 

 The above equation shows that wavelength and frequency are inversely related to 

one another and the constant that relates the two is the speed of light in a vacuum. Figure 

1.5.1.1 is a visual representation of Equation 1.5.1.2. The wavelength starts small in the 

range of femtometers with 𝛾-rays and increases in wavelength to gigameters with radio 

waves. The frequency has the opposite relation by starting with low frequency with radio 

waves and increases to high frequency with 𝛾-rays. Our eyes are only capable of detecting 

light in the visible spectrum that only makes up a minute fraction of the entire EM 

spectrum. The particle-like property of light can be described using Equation 1.5.1.2 

     𝐸 = ℎ𝑣  Equation 1.5.1.2 

 Light in the particle sense carries with it a packet of energy described as a photon. 

A photon of energy is described in terms of the frequency. The energy and frequency are 

directly related with the constant term being Planck’s constant. On the EM spectrum, 𝛾-

rays would contain the highest energy whereas radio waves would contain the lowest 

amount of energy. The two equations above both contain the variable frequency allowing 

for the two equation to be combined into one, Equation 1.5.1.3 [30] 

𝐸 =
௛௖

ఒ
          Equation 1.5.1.3 
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  There are many different types of spectroscopy to choose from when studying the 

effects of light on matter. The different sections of the EM spectrum will help in studying 

different aspects matter. A key aspect to look out for is that each type of spectroscopy has 

requirements that must be met to use it as a viable technique. For example, when using IR 

spectroscopy, the molecule moiety studies must have a net change in dipole moment. An 

in-depth look at Raman spectroscopy will be discusses later.  

Figure 1.5.1.1 Electromagnetic spectrum [31] 

 

1.5.2 Transitions 

All forms of matter; atoms, ions, and molecules, are in constant motion all the time. 

The type of movement can be dependent on the form of matter being studied. Molecules 

have four types of transitions that occur to them: translational, rotational, vibrational, and 

electronic. A visual representation of the various types of movement can be seen in Figure 

1.5.2.1. Translational movements involve the entire molecule moving in unison in a three-

dimensional plane. Translational transitions require the least amount of energy to occur. A 

rotational transition involves an axis of rotation that usually dissects a central atom. The 
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rest of the atoms are spun around this axis of rotation. A rotational transition occurs when 

EM radiation from a microwave source is directed towards a molecule. The molecule must 

contain a permanent dipole moment to absorb the microwave energy and induce a 

rotational transition. The next highest energy transition is a vibrational transition that 

consist of two types of movements: bending and stretching. The stretching may be 

symmetric meaning that the movement is of the same magnitude on either side or 

asymmetric where the movement is not uniform. A vibrational excitation occurs with a 

light source from the infrared region of the EM spectrum. A molecule must have a nonzero 

dynamic dipole moment to elicit a vibrational excitation to occur. The final and highest 

energy transition is an electronic transition. Electronic transitions are a result of the 

excitation of visible and ultraviolet radiation. Some electronic transitions can be detected 

without the need for specialized instrumentation. A color change that occurs in the visible 

region of the EM spectrum is a direct indicator that an electronic transition has occurred 

with the sample being observed.  [32]  

 

Figure 1.5.2.1Types of molecular motion [33] 

From the hierarchy stated above in respect to transitions, one can create a graph 

where there is an electron level that contains multiple vibrational transitions within it along 
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with multiple rotational transitions within the vibrational transitions. Figure 1.5.2.2 shows 

how the different transition states are arranged according to energy and nuclear separation. 

Vibrational transitions can be described using two different systems. With a harmonic 

oscillator the vibrational levels are equally spaced and the lines on either side are not 

asymptotic. The other system is the anharmonic approximation where the energy levels 

decrease as the vibrational level increases and nuclei cannot pass through one another 

because the graph does not cross the y axis. The rotational levels decrease in distance 

between levels as the rotational level increases. Rotational states also can go beyond the 

vibrational state in which the series started. In Figure 1.5.2.2, rotational states five and six 

reach beyond vibrational level one moving into the next vibrational level.  

 Figure 1.5.2.2 Electronic, vibrational, and rotational states [34] 

 

 Selection rules help govern what types of transition are allowed. The vibrational 

states, often referred to as a harmonic oscillator can have transitions where Δ v=+-1. A 

fundamental transition occurs when the starting state is v=0. When the starting state is v>0 

then the transition is called a hot band. Hot bands are usually only observed at elevated 
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temperatures. When Δ v>=-1 an overtone is produced. Overtones can be produced because 

molecules are anharmonic. The rotational states also referred to as a rigid rotor model can 

have transitions where Δ J=+-1. Rotational transitions consist of three different types or 

branches. A Q branch occurs when Δ J=0 implying that only a vibrational and/or an 

electronic transition occurred. The higher energy R branch occurs when the Δ J=+1 

whereas the lower energy P branch arises when Δ J=-1. At room temperature it is assumed 

that the vibrational and electronic states of a molecule will be in the ground state. The 

above assumption only holds true if the amount of thermal energy available is less than the 

energy gap between states. The rotational states will however be populated above the 

ground states of molecules at room temperature. This phenomenon causes spectrum 

obtained from UV-vis and IR to contain broad peaks. [32, 34] 

1.6 Raman Spectroscopy 
1.6.1 Introduction 

Raman spectroscopy is an analytical vibrational spectroscopy technique that is 

similar and complementary to IR spectroscopy. Raman is a nondestructive technique that 

requires little to no sample preparation. Because of newer design and lower cost of 

manufacturer, Raman spectroscopy is moving out of the research labs and into the private 

sector along with into the hands of the layperson. [35] Raman spectroscopy is becoming 

more valuable in the field of forensic chemistry because of its nondestructive nature and 

ability to analyze a plethora of different compounds. A portable Raman spectrometer has 

been created and is used to identify illicit drugs. Police and forensic scientist can analyze 

an unknown substance in the field using a portable Raman and can obtain an accurate 

analysis of the identity of the unknown substance. [36] Raman spectroscopy has been 

successfully used to analyze questionable documents for their authenticity by analyzing the 
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inks from such documents along with the ability to successfully compare fibers from a 

crime scene to fibers from another source for similarities. [22, 37] The nondestructive 

nature has been used to differentiate different bodily fluids in a forensic setting. Dry 

samples of blood, semen, saliva, sweat, and vaginal fluid were differentiated from one 

another and canine semen was differentiated from human semen all using Raman 

spectroscopy [38]   

1.6.2 Background and Theory 

In 1928, Sir C. V. Raman successfully observed the scattering of light that would 

eventually be known as Raman scattering. Raman created an experiment using his eye as 

the detection source and determined that there were two different phenomena occurring 

when a light source was scattering by molecules. One type of scattering resulted in a 

wavelength that was the exact same wavelength of the light source and the other type of 

scattering resulted in a wavelength of light different than the source. Along with the 

variation in wavelengths of the scattered light, Raman also noticed that there was a change 

in the frequency of the scattered light compared to the source that was characteristic of the 

molecule being tested. Sir C. V. Raman obtained a Nobel Prize in Physics for his discovery 

of this phenomenon occurring as a result of scattered light.  [35, 39] 

As it was mentioned earlier, there are two types of scattering that may occur, Raman 

and Rayleigh scattering. The predominant form of scattering found in nature is Rayleigh 

which occurs when the scattered light is of the same wavelength as the original source 

light. The type of collisions that occur with Rayleigh scattering are called elastic collisions 

because there is no net change in energy or wavelength from the incident light to the 

scattered light. An example of this can be seen in spy movies. When the spy goes to steal 
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some valuable object they usually encounter a room that looks normal until the spy sprays 

an aerosol or throws a fine powder in the air. After they do this a plethora of various lasers 

are then able to be seen by the human eye. Before the extra particles are introduced to the 

room the lasers were not detectable by the human eye because one would have to be staring 

directly at the laser to be able to see it. The introduction of the particles causes the laser 

sources to interact with the particles causing the laser light to scatter as a result. The 

scattered light is predominately Rayleigh scattering because the laser light is of the same 

color or wavelength as the original laser light.  

The less common type of scattering occurring in nature is known as Raman 

scattering. Raman scattering occurs because of inelastic collisions meaning that there is a 

net change in energy from the incident light to the scattered light. There are two types of 

Raman scattering, Stokes and anti-Stokes Raman scattering. Stokes scattering occurs when 

a photon from the light source loses energy because of interacting with an object. A ground 

state electron is excited to a virtual energy state and returns to a higher energy level than it 

started on. In anti-Stokes scattering, a non-ground state electron is again excited to a virtual 

energy state and returns to a lower energy state than it started with. Anti-Stokes scattering 

is less common than Stokes scattering because at room temperature most molecule will be 

in the vibrational ground state. [30, 35, 40] Figure 1.6.2.1 shows the different types of 

scattering that may occur along with an example of how IR absorption compares. The color 

and thickness of the lines are related to the different types of scattering. The color 

difference shows a change in energy of light and the thickness is a rough estimation of the 

probability of each type of scattering.  
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Figure 1.6.2.1: Types of scattering 

 

The energy change in the system can be calculated from Equation 1.6.1.2 where 

the change can be calculated using ℎ𝑣. With scattering light, the amount of energy is not 

quantized like in IR where the absorption of a photon is quantized. Because the scattering 

of light is not quantized, the energy is not enough to reach the excited states. The molecule 

is thus said to be in an imaginary state that is called a virtual state. The virtual state 

represents a place between the excited and ground state that an electron will temporarily 

occupy. To find the different vibrational energy changes of the molecules Equation 1.6.2.1 

can be used. 

𝐸 − ο𝐸 = ℎ(𝑣 − 𝑣ଵ)     Equation 1.6.2.1 

The above equation is used to obtain the various shifts in frequency from the 

Rayleigh frequency. Wavelength is not present in the equation making the wavelength of 

Virtual State 

V=0 

V=1 

V=2 

V=3 

Stokes Rayleigh Anti-Stokes IR 
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the laser or excitation source independent of the frequency shifts. In theory the same Raman 

data can be obtained using an excitation source that is in the visible, IR, or UV region of 

the EM spectrum. [40] 

The graphical representation of Raman spectroscopy is like that of IR spectroscopy. 

Like IR, Raman is also plotted as intensity versus the shift in wavenumber. The intensity 

is arbitrary and is depicted as the number of times that a signal at that wavelength returned 

to the detector. The units for intensity are usually depicted as Raman intensity and the 

numerical values are often left off the y-axis. The x-axis, on the other hand, is in the units 

of wavenumber and labeled as Raman shift. Since the units are in wavenumbers, the Raman 

spectrum can easily be compared to the IR spectrum because the Raman shift in 

wavenumbers is identical to the absorption peak in wavenumbers from IR. A key difference 

between the two analytical techniques is what kinds of molecules can be studied in each 

one. In IR spectroscopy the molecules must possess a change in dipole moment. A 

molecule must have a change in polarizability to be Raman active. If a vibrational mode is 

both IR and Raman active a peak will appear in the exact same place in both spectrum. 

There may, however be a difference in the intensity of the two peaks. The Raman spectrum 

are usually of a lower intensity because the probability of Raman scattering is much lower 

than that of Rayleigh scattering and IR absorption A conventional difference between IR 

and Raman is that the IR graph are usually depicted as the peaks going down or in the 

negative whereas the Raman peaks are pointed up and positive.   

1.6.3 Raman Light Source 

A Raman spectrometer has a few basic pieces to function properly: a sample holder, 

light source, wavelength selector, and a detector. The light sources required for Raman 
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spectroscopy must be monochromatic. The power of the light source is directly 

proportional to the resulting Raman signal. The original light sources were made from a 

UV light source that was weak making the resulting Raman signals small or non-detectable. 

Today, a more powerful laser light source is used to increase the signal-to-noise ratio along 

with the intensity of the Raman scattering.  Lower wavelength light sources create more 

intense signals than higher wavelength sources because Raman scattering is proportional 

to the light source frequency by Equation 1.6.3.1. The disadvantage to using lower 

wavelength light sources like blue and green is that they may cause a sample to decompose 

or fluoresce. The longer wavelength light sources are thus preferred for material that may 

fluoresce like some biological material. When choosing the excitation source for your 

sample it is imperative that your sample does not absorb at the same wavelength as the 

excitation source. [30] 

ଵ

ఒర
        Equation 1.6.3.1 

1.6.4 Temperature Control Stage 

A THMS600 heating and freezing stage that has a temperature range of -196 to 

600℃ was used to obtain spectra at low temperatures. The stage was accompanied by a 

T95 LinkPad, LNP95 cooling pump, and a 2L Dewar. Figure 1.6.4.1 shows how the TCS 

is set up on the Raman spectrometer. The following set up allows the user to take Raman 

spectrum of their sample at both high and low temperatures. For this experiment the focus 

will be on using the TCS for taking Raman at low temperatures. To use the low temperature 

setting on the TCS, liquid nitrogen is needed. Liquid nitrogen has a boiling point at -196℃ 

or 77 Kelvin allowing the user to cool their samples down to that temperature.  
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Figure 1.6.4.1: Photograph of TCS setup 
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Chapter 2: Experimental 
 

2.1 Instrumentation 

The primary instrumentation used for the data of this research was a Horiba HR 

Evolution Raman Spectrometer. The excitation sources used to obtain spectra was a YAG 

532nm laser. The green 532nm laser was used because it is the most powerful laser that 

was available and none of the samples tested absorbed light at 532nm allowing for optimal 

scattering.  

 The Raman spectrometer was calibrated before any spectra were taken on it each 

day. The process for calibrating the Raman was simple and usually took less than five 

minutes. The green 532nm laser was first turned on. Then a calibration slide containing a 

sample of a silicon wafer is placed under the aperture of the Raman. Figure 2.1.1 shows a 

visual of what the stage and apertures on the Raman spectrometer look like. A 10x objective 

lens was used in all cases to obtain the spectra. A CCD camera was used to find the sample 

on the slide. A joystick was used for fine movements to obtain a clear image of the silicon 

wafer. Once the silicon wafer was found on the calibration slide using crosshairs on the 

screen, the Raman was then ready to calibrate. Auto calibrate was hit using the parameters 

of a 532nm laser and 600gr/mm grating. The calibration of the Raman results in finding 

the zero point along with the vibrational peak associated with the silicon wafer at 

approximately 520cm-1. Once these two peaks were found, the instrument was then 

calibrated to the above settings and ready to collect data.  
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Figure 2.1.1: Photograph of Raman stage 
 
2.2 Sample Preparation 

One of the best attributes with using Raman spectroscopy is the little to no sample 

preparation needed to take data. All the data was taken from various iteration of three 

different osmolytes: urea, gdn-HCl, and TMAO. Tables 2.2.1, 2.2.2 and 2.2.3 show the 

different solutions and samples that were created and tested. Each of the solutions were 

made by adding DI water to the solid osmolyte. All the solid osmolyte added to each 

solution dissolved completely making each solution colorless with no visible undissolved 

osmolyte present. The osmolytes were all supplied by Sigma-Aldrich and were not purified 

any further. The purifications were as followed: urea ≥ 98.0%, gdn-HCl ≥ 98.0%, and 

TMAO ≥ 99.0%. 
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Table 2.2.1: Serial dilutions  
1M Urea 2M Urea 4M Urea 6M Urea 8M Urea Solid 

Urea 
1M Gdn-
HCl 

2M Gdn-
HCl 

4M Gdn-
HCl 

6M Gdn-
HCl 

8M Gdn-
HCl 

Solid 
Gdn-HCl 

1M TMAO 2M TMAO 4M TMAO 6M TMAO 8M TMAO Solid 
TMAO 

 
Table 2.2.2: Osmolyte solutions 

1 Urea: 1 Gdn-HCl 1 Urea: 2 Gdn-HCl 2 Urea: 1 Gdn-HCl 
1 Urea:1 Gdn-HCl 1 Urea: 1 TMAO 1 Gdn-HCl: 1 TMAO 
1 Urea: 1 Gdn-HCl: 1 TMAO DI Water 

 
Table 2.2.3: TCS solutions at -150°C 

8M Urea 8M Gdn-HCl 8M TMAO 
1 Urea:1 Gdn-HCl 1 Urea: 1 TMAO 1 Gdn-HCl: 1 TMAO 
1 Urea: 1 Gdn-HCl: 1 TMAO DI Water 

 
2.3 Data Collection 

Data were only collected from solids and liquids for the experiment. The solid 

samples were placed on a microscope slide. A small amount of sample, the size of a pencil 

tip, was required to acquire the Raman spectrum of the solids. The CCD camera was used 

to bring the solid into focus allowing for the user to place the laser on a piece of the solid 

sample. Figures 1.2.1.1.1, 1.2.2.1.1, and 1.2.3.2.1 are all examples of the solid osmolyte 

samples that the laser had to focus on top of. The final Raman spectra of each sample case 

was collected using the following settings: an acquisition time of 15 seconds, 15 

accumulations, 600 gr/mm grating, and a 100% laser intensity 

 The microscope slides were unable to be used to sample the various solutions that 

were created. Instead, a special adapter to the Raman spectrometer was used allowing for 

solutions to be tested. The attachment shown in Figure 2.3.1 attaches to the aperture 

nosepiece or turret by the two screws on either side. Cuvettes were then placed into the 

holder and tightened using the two white screws on either side. Special cuvettes that had 
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sloped sides were used to reduce the amount of solution needed to collect data. If sample 

size was still a problem, the user can adjust the cuvette height using the set screws. The 

user may temporarily collect real-time acquisitions in a region where there should be a 

peak to move the cuvette up or down optimizing the perfect placement to collect the best 

data possible. Once the optimal position was found, the set screws were tightened securing 

the cuvette in position. When collecting data for liquids, finding the sample using the CCD 

camera was not required because the sample is already positioned so that the laser must 

contact it.  

  Figure 2.3.1: Photograph of Raman spectrometer cuvette holder 

 

 The last way that data were collected was using a TCS attached to the Raman 

spectrometer. The samples found in Table 2.2.3 are the only ones where the Raman spectra 

were taken using TCS. Figure 1.6.4.1 shows what the TCS looks like along with how it is 

attached to the liquid nitrogen vessel and pumps. A small aliquot of sample, approximately 

25 µL, was placed on one end of microscope slide. The sample had to be placed on one 

end of the microscope slide because of the way the slide sits in the TCS. Once the sample 

was placed on the slide, the slide was pushed into the TCS and the TCS was sealed. Liquid 

nitrogen was then carefully poured into the liquid nitrogen vessel approximately three 

fourths of the way to the top. The TCS was placed on the Raman stage and the viewing 
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window was aligned underneath the 10x objective lens. The pump was turned on and set 

to -150℃ with a pump speed of 95. When the temperature reached the desired ending 

temperature, the pump speed was decreased to negate the system from having to heat the 

stage which wastes the liquid nitrogen. After the sample crystallized, the CCD camera was 

used to find the crystals and Raman data were then collected. If the CCD camera was turned 

on for the freezing of the sample, the formation of the ice crystals were visible along with 

how the solution moved as crystals formed.  
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Chapter 3: Data Analysis 
3.1 Solid Phase 

Solid samples of gdn-HCl, urea, and TMAO were all collected and compared to 

theoretical data. The theoretical data were calculated using a hybrid density functional 

Becke 3-parameter Lee-Yang-Parr (B3LYP). The basis set that accompanied the functional 

was 6-31++G which was used in previous research[41]. The theoretical calculations were 

carried out using Gaussian 09 software. Figures 3.1.1, 3.1.2, and 3.1.3 show a comparison 

of solid experimental Raman spectra compared to its theoretical counterpart.  Gdn-HCl and 

TMAO showed high correlation between experiment and theory whereas urea had many 

differences.  

 

Figure 3.1.1: Raman spectrum solid gdn-HCl experimental versus theory 
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Figure 3.1.2: Raman spectrum solid urea experimental versus theory 

 

Figure 3.1.3: TMAO experimental versus theory Raman spectra 
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3.2 Osmolyte Solutions 

Data from the serial dilution were collected using the Raman spectrometer and can 

be seen in Figures 3.2.1, 3.2.2, and 3.2.3. In each of the graphs there were little deviations 

in the spectra from one concentration to the next. The small shifts from the samples in 

solution were of both higher energy (blue) and lower energy (red) compared to the solid 

sample. The shifts in Raman peaks are consistent with the various osmolytes interacting 

with water directly. The shifts are also consistent with previous research showing how 

these osmolytes interact with water.[27, 42]  The same peaks were able to be 

distinguishable on each of the three graphs. It is important to note that there was no 

manipulation of the intensities allowing all the different spectra to be on the same scale. 

Each of the spectra was separated from one another to allow for easier identification and 

were placed in increasing concentration order. The biggest difference found is that the 

intensities of the various peaks were dependent upon the concentration of the solute.  
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Figure 3.2.1: Serial dilution of urea 

 

Figure 3.2.2: Serial dilution of guanidine hydrochloride 
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Figure 3.2.3: Serial dilution of TMAO 

 

3.3 Osmolyte Interactions 

The first part of this section will look at confirming previous research conclusions 

using new data. The interaction of urea and TMAO have already been studied by the 

Hammer research group and it was concluded that TMAO interacts directly with urea 

causing a blue shift in a peak at 1591cm-1. That peak was found to be associated with the 

HNH bend found in urea. The spectrum collected in Figure 3.3.1 is consistent with 

previous research. A concentrated view of the important region around 1600cm-1 can be 

seen in Figure 3.3.2. The blue shift observed in Figure 3.3.2 is consistent with previous 

research that can be seen in Figure 1.4.2. There was a small difference in the degree of 

shift from previous research to current research. Previous research showed an 11cm-1 blue 

shift whereas Figure 3.3.2 exhibits a 6cm-1 blue shift.  
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Figure 3.3.1: Raman comparison of solutions involving TMAO and urea 

Figure 3.3.2: Raman comparison of solutions involving TMAO and urea at HNH 
bending region 
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The new aspect of the research aims to study the interaction between TMAO:gdn-

HCl and the interactions of urea:gdn-HCl. The Raman spectrum for gdn-HCl is like that of 

urea with only a few differences and can be seen in Figure 3.3.3. In the urea spectrum there 

are two peaks at 524cm-1 and 587cm-1 whereas gdn-HCl only has one peak at 529cm-1. 

Another area of difference occurs in the HNH bending region. Urea has a peak at 1594cm-

1 whereas gdn-HCl has that same peak at 1556cm-1. When the two solutions are combined 

there are a few changes in the spectrum compared to each individual solution. In the 1:1 

ratio solution there is a single peak at 530cm-1. The resulting singular peak could be 

additive from the two peaks in urea with the one peak of gdn-HCl. The spectral range 

between 1500-1800cm-1 is of the most importance because it contains the HNH bending 

region. When urea and gdn-HCl are combined the resulting peak occurs at 1598cm-1. The 

related peak in the urea spectrum is at 1595cm-1 and at 1558cm-1. In both cases a blue shift 

could be associated with the resulting solution of the two osmolytes; however, one can’t 

confirm a shift occurred because each individual osmolyte contains a peak in the region. 

The resulting peak could be the summation of the two individual osmolytes.   
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Figure 3.3.3: Raman comparison of solutions involving gdn-HCl and urea 

 

 The next part of the research focused on the interaction of TMAO with gdn-HCl. 

Figure 3.3.4 is the resulting Raman data that was taken with the different spectrum 

separated to make it easier to analyze. The black spectrum is the combination of the two 

solutions and can be seen to be a combination of the two individual spectra. The two peaks 

around 500cm-1 in both the TMAO solution and gdn-HCl solution can be seen to combine 

in an additive nature into one broader peak in the black spectrum. Unlike the solution 

containing gdn-HCl and urea, the solution with TMAO and gdn-HCl do not contain similar 

peaks in the HNH range of interest. The HNH bending region can be seen up close in 

Figure 3.3.5. The figure shows that there are two peaks where a shift occurs. A shift is 

confirmed because the spectrum of TMAO has no peaks in the region of interesting causing 

the only reason for shifting is that interaction of TMAO with gdn-HCl. The first peak shifts 

to a higher energy (blue shift) going from 1556cm-1 to 1566cm-1 making a total change of 

Gdn-HCl:Urea solution 

8M Gdn-HCl 
 8M Urea solution 
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10cm-1. The second peak also shifts to a higher energy (blue shift) from 1650cm-1 to 

1660cm-1 making the total change in energy of 10cm-1. The two peaks that showed an 

increase in energy were both associated with bending frequencies of the HNH bond. The 

peaks associated with TMAO were not found to show any shifts when added to gdn-HCl.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4: Raman comparison of solutions involving gdn-HCl and TMAO 
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Figure 3.3.5: Raman comparison of solutions involving gdn-HCl and TMAO in the HNH 
bending region 

 

The three different osmolytes have been studied separately thus far by only 

comparing solutions made from two of the osmolytes. The next topic was to see what would 

happen if a solution was made using urea, gdn-HCl, and TMAO. The resulting spectra can 

be seen in Figure 3.3.6. The initial analysis is that there is no observable change or 

significant shift in vibrational peaks from the individual solutions. The shifts that have been 

seen thus far are due to the interaction of TMAO with either of the two denaturants. Figure 

3.6.7 is a graph comparing a solution of urea and gdn-HCl with a solution of TMAO, urea, 

and gdn-HCl in the HNH bending region. It appears that the solution containing TMAO 

does not show any shifts in the spectrum like it did in individual solutions of TMAO and a 

denaturant. No shifts may suggest that there are no direct interactions between TMAO and 

the two denaturants in solution. That result contradicts previous research that showed a 

shift in the Raman spectra when TMAO was added to both urea and gdn-HCl separately.  
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These results could be justified by the concentration of the solutions that were used. An 

equal amount of 8M of each osmolyte was combined into a single sample. The 

concentration of TMAO was half that of the total concentration of denaturant which could 

have caused too low of interaction to detect with the Raman spectrometer.  

Figure 3.3.6: Raman comparison of solutions involving gdn-HCl, urea, TMAO, and a 
solution of all three osmolytes 
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Figure 3.3.7: Raman comparison of solutions involving gdn-HCl:urea and gdn-
HCl:urea:TMAO at the HNH bending region 

 

 

3.4 Temperature Control Stage Analysis 

The temperature control stage was used to collect data at temperatures around             

-150℃ for the entire duration of the Raman scan. The resulting spectra can be seen 

compared to their room temperature counterparts in Figures 3.4.1, 3.4.2, 3.4.3. The 

spectrum at low temperature for urea was the only that showed a significant amount of 

deviation from the room temperature counterpart. The low temperature spectrum separated 

the broad peaks in the HNH bending region in urea and can be seen in Figure 3.4.1. A 

downside to collecting Raman at low temperatures is the Raman intensity decreases 

greatly. The low temperatures cause the probability of an electron to excite into the virtual 

state to decrease. When the graphs are normalized, the spectra of low temperatures Raman 

are seen to have a low signal to noise ratio and the spectrum appears jagged. The low 
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temperature also causes the solutions to freeze inside the temperature control vessel. The 

action of freezing the solution in a rapid manner causes the bonds to become more rigid, 

locking them into place compared to the room temperature solution. That could cause the 

molecules to be frozen in an unnatural conformation causing the vibrational frequencies to 

be altered.  

Figure 3.4.1: Raman spectral comparison of urea using temperature-controlled Raman 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2: Raman spectral comparison of gdn-HCl using temperature-controlled 
Raman 
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Figure 3.4.3: Raman spectral comparison of TMAO using temperature-controlled Raman 
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Chapter 4: Conclusion 
Raman spectroscopy and computational data was used to study the hydrogen 

bonding between urea, gdn-HCl, TMAO, and water. Raman spectra taken of urea matched 

that from previous research indicating that urea and TMAO directly interact with one 

another when placed in the same solution. The serial dilution for each osmolyte showed 

that the peak intensity was dependent upon the concentration of the osmolyte in solution. 

It was also found that the solution of TMAO and gdn-HCl exhibited similar shifts to the 

TMAO urea spectra. Two peaks in the HNH bending region were shown to shift to higher 

energy by 10cm-1. The shift is consistent with direct interaction of TMAO and gdn-HCl. 

The direct interactions thus suggest that TMAO may counteract gdn-HCl’s tendency to 

denature proteins.  
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Chapter 5: Future Work 
There is a lot of possibilities for future work and applications to the above research. 

More theoretical data could be collected to make the spectra of the experimental match that 

of the theoretical with a higher affinity. Another addition to this research is the collection 

of data using different techniques including SERS and RUNS. The RUNS would expand 

on the concept of the TCS allowing the user to freeze the solutions. The lower temperature 

would lock the molecules into place restricting their movement and allowing for better 

resolution and peak separation when collecting Raman data.  

 Future work could also investigate studying different systems and system 

combinations. There are many more osmolytes out there along with kosmotropic and 

chaotropic agents. Raman data can be collected using different combinations of solutes and 

solvents to better understand both hydrogen bonding and protein interactions.  

 Another future research plan could investigate studying the crystal lattice structures 

of urea and urea in solution. The Raman spectrum taken at low temperature showed great 

potential because of the various perturbations that occurred in the spectrum.  
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Chapter 6: Forensic Chemistry Application 
 In its simplest form, a forensic chemist analyzes physical evidence found at a crime 

scene to assist in solving a crime. They do this by identifying and characterizing different 

types of evidence including blood, trace evidence, bodily fluids, mysterious powders, etc. 

Currently, DNA typing is the predominant means of identification of individuals. DNA 

does have its weakness and one of those is that is can be easily degraded especially once 

outside the body.[43] Proteins are more robust than DNA and contain single nucleotide 

polymorphism. A recent study looked at using proteins located in the hair shaft to correctly 

identify and distinguish different individuals. [44] By understanding how proteins interacts 

in different aqueous environments can lead to the increased use of proteins in a forensic 

chemistry setting. Understanding why proteins denature and renature can be used in the 

sample preparation of proteins for use in the discrimination of different individuals.  
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