
 
 

 

 

 

Impact of the Exit from Nuclear and Fossil-fuel Energy on the 

German Economy 

A General Equilibrium Analysis with Special Emphasis on Agriculture and Electricity 

 

 

 

 

Dissertation 

zur Erlangung des Doktorgrades 

der Fakultät für Agrarwissenschaften 

der Georg-August-Universität Göttingen 

 

 

 

 

 

vorgelegt von 

Andrea Kerstin Rothe 

geboren in Löbau 

 

 

 

Göttingen, im Mai 2017 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 7 

 

1. Referent: PD Dr. Martin Banse 

2. Korreferent: Prof. Dr. Scott McDonald  

Tag der mündlichen Prüfung: 10. Juli 2017



Danksagung 

i 

Danksagung 

Es ist geschafft! Das Modell läuft und auf der Liste der zu erledigenden Punkte in meinem Leben kann 

bei Dissertation ein Haken gemacht werden.  

Es ist an der Zeit denjenigen Menschen ganz herzlich Danke zu sagen, die mich in den vergangenen 

Jahren begleitet und unterstützt haben. An erster Stelle bedanke ich mich bei meinem Doktorvater 

PD Dr. Martin Banse, durch den ich überhaupt erst die spannende Welt der CGE-Modellierung 

kennen lernte und der es mir ermöglichte das Vorhaben Dissertation umzusetzen.  

Mein ganz besonderer Dank gilt Prof. Dr. Scott McDonald. Dies zum einen für die Übernahme des 

Korreferates, jedoch besonders für sein Vertrauen in mich, seine Geduld in schwierigen Phasen aber 

auch seine Motivation die Modellarbeit und die Dissertation zu vollenden. Die Zusammenarbeit mit 

ihm war für mich eine sehr wertvolle Erfahrung.  

Bei Prof. Dr. Harald Grethe bedanke ich mich für die Übernahme des Gutachtens dieser Dissertation, 

aber auch dafür, dass er und seine Mitarbeiterinnen und Mitarbeiter in Hohenheim und Berlin mich 

immer herzlich aufgenommen, in ihr Team integriert und unterstützt haben.  

Ein großer Dank gilt ebenfalls meinen Kolleginnen und Kollegen des Thünen-Institutes für 

Marktanalyse für die freundliche, offene und angenehme Arbeitsatmosphäre aber auch dafür, dass 

sie meine schlechte Laune ertragen haben, wenn das Modell mal wieder nicht lief.  

Meiner Familie danke ich für ihr Verständnis und ihren Rückhalt.  

 

Andrea Kerstin Rothe 

 

 



Contents 

i 

Content 

 

Danksagung .................................................................................................................................. i 

Content ......................................................................................................................................... i 

List of Figures ............................................................................................................................... iv 

List of Tables ................................................................................................................................ vi 

Abbreviations ............................................................................................................................. viii 

1 Introduction.......................................................................................................................... 1 

1.1 Background and objectives ..................................................................................................... 1 

1.2 Outline of the study ................................................................................................................. 4 

2 Theory of Social Accounting and Social Accounting Matrices .................................................. 6 

2.1 Introduction ............................................................................................................................. 6 

2.2 The System of National Accounts ............................................................................................ 7 

2.2.1 Conceptual elements ....................................................................................................... 7 

2.2.2 Valuation of transactions ................................................................................................ 9 

2.2.3 Accounts in the 2008 SNA ............................................................................................. 10 

2.2.4 Economic indicators generated by the SNA .................................................................. 11 

2.2.5 Supply and Use Tables ................................................................................................... 11 

2.2.6 Input-Output Tables ...................................................................................................... 15 

2.3 What is a Social Accounting Matrix? ..................................................................................... 18 

2.3.1 The circular flow of the economy captured in a Social Accounting Matrix................... 19 

2.3.2 The accounts of a Social Accounting Matrix .................................................................. 22 

2.3.3 Balancing a SAM ............................................................................................................ 24 

2.4 A SAM as database for modelling.......................................................................................... 25 

2.4.1 The SAM approach to modelling ................................................................................... 25 

2.4.2 Accounting identities and prices ................................................................................... 28 

2.4.3 Equilibrium conditions and model closures .................................................................. 32 

2.5 Summary................................................................................................................................ 32 

3 A Static Applied General Equilibrium Model – The STAGE base model ................................... 34 

3.1 Introduction ........................................................................................................................... 34 

3.2 Excursus to general equilibrium theory ................................................................................ 34 

3.3 Behavioural relationships in STAGE....................................................................................... 36 

3.3.1 Functional forms for modelling production, households and trade ............................. 38 

3.4 Quantity relationships in the STAGE base model .................................................................. 47 

3.5 Price relationships in the STAGE base model ........................................................................ 50 

3.6 Modelling production in the STAGE base model................................................................... 52 

3.7 Modelling trade in the STAGE base model ............................................................................ 57 

3.8 Modelling household income and expenditure in the STAGE base model ........................... 59 



Contents 

ii 

3.9 Model closures ...................................................................................................................... 60 

3.9.1 Factor market closure .................................................................................................... 61 

3.10 Summary................................................................................................................................ 63 

4 Development of a Social Accounting Matrix for Germany – Own modifications ..................... 65 

4.1 Introduction ........................................................................................................................... 65 

4.2 The process to reach a disaggregated and balanced Social Accounting Matrix ................... 67 

4.3 Development of the macro Social Accounting Matrix .......................................................... 68 

4.4 Development of a detailed and disaggregated Social Accounting Matrix ............................ 73 

4.4.1 Integration of Supply and Use Tables ............................................................................ 73 

4.4.2 Disaggregation of the agricultural sector ...................................................................... 73 

4.4.3 Disaggregation of the energy sector ............................................................................. 76 

4.4.4 Development of a satellite account for carbon emissions ............................................ 78 

4.5 Aggregation of the Social Accounting Matrix ........................................................................ 78 

4.6 Summary................................................................................................................................ 79 

5 Development of the model STAGE_D – Own modifications ................................................... 81 

5.1 Introduction ........................................................................................................................... 81 

5.2 Modification of the nested production function .................................................................. 81 

5.3 Implementation of carbon emissions .................................................................................... 95 

5.4 Parameters of functional forms ............................................................................................ 95 

5.5 Summary................................................................................................................................ 97 

6 Case study – Impact of the Energiewende on the German economy ...................................... 98 

6.1 Introduction ........................................................................................................................... 98 

6.2 Energy policy in Germany .................................................................................................... 100 

6.3 Electricity generation in Germany ....................................................................................... 103 

6.4 Development of electricity generation based on renewable energy sources .................... 105 

6.5 Electricity use in Germany ................................................................................................... 109 

6.6 Import dependency on energy resources of the German economy ................................... 112 

6.7 Specifics of the German electricity market ......................................................................... 114 

6.8 Development of electricity prices in Germany .................................................................... 115 

6.9 Development of electricity trade ........................................................................................ 118 

6.10 Impact of renewable energy sources on the prevention of carbon emissions ................... 121 

6.11 Summary.............................................................................................................................. 122 

7 Case study – Scenario description, Model closures and Results............................................ 124 

7.1 Introduction ......................................................................................................................... 124 

7.2 Scenario description ............................................................................................................ 126 

7.3 Model closures .................................................................................................................... 130 

7.4 Results ................................................................................................................................. 131 

7.4.1 Impact on Gross Domestic Product ............................................................................. 131 

7.4.2 Impact on the electricity sector................................................................................... 132 

7.4.3 Cross-sectoral effects of the Energiewende in the economy ...................................... 137 



Contents 

iii 

7.4.4 Effects on factor income and factor prices ................................................................. 139 

7.4.5 Impact on households ................................................................................................. 141 

7.4.6 Trade effects ................................................................................................................ 142 

7.4.7 Impact of the Energiewende on carbon dioxide emissions ......................................... 146 

7.4.8 Impact on the agricultural sector ................................................................................ 148 

7.5 Sensitivity Analysis .............................................................................................................. 155 

7.6 Summary and conclusions of the scenario results and recommendations ........................ 158 

7.6.1 Summary of the scenario results ................................................................................. 158 

7.6.2 Conclusions .................................................................................................................. 162 

7.6.3 Recommendations ....................................................................................................... 163 

8 Summary of the study ........................................................................................................ 166 

9 References ......................................................................................................................... 171 

10 Addendum ......................................................................................................................... 178 

10.1 Variables, parameters and sets ........................................................................................... 178 

10.1.1 Model Variables ........................................................................................................... 178 

10.1.2 Model parameters ....................................................................................................... 181 

10.1.3 Model set description .................................................................................................. 184 

10.2 Model equations of the STAGE base model ........................................................................ 188 

Eidesstattliche Erklärung ........................................................................................................... 200 

 



List of Figures 

iv 

List of Figures 

Figure 1:  Relationships between prices in the 2008 SNA ........................................................................ 9 

Figure 2:  Circular flow in the economy .................................................................................................. 19 

Figure 3:  The SAM approach to modelling ............................................................................................ 26 

Figure 4:  Quantity relationships in the STAGE base model ................................................................... 48 

Figure 5:  Production relationships in the STAGE base model ............................................................... 49 

Figure 6:  Price relationships in the STAGE base model ......................................................................... 51 

Figure 7:  Price relationships for production in the STAGE base model ................................................. 52 

Figure 8:  Modified nested production structure of STAGE_D ............................................................... 82 

Figure 9:  Gross domestic electricity generation (in TWh) and electricity generation by 
energy source (in percent) between 2000 and 2014............................................................ 103 

Figure 10:  Gross electricity generation based renewable resources between 1990 and 
2014 (in GWh) ....................................................................................................................... 106 

Figure 11:  Crop and livestock based substrate use for biogas generation (2012) ................................ 108 

Figure 12:  Biogas - Development of gross electricity generation (in GWh) and land use (in 
hectare) ................................................................................................................................. 109 

Figure 13:  Gross electricity use by consumer groups in Germany in the year 2014 in TWh ................. 110 

Figure 14:  Development of electricity consumption (in Petajoule) ....................................................... 111 

Figure 15:  Domestic supply and imports of primary energy resources in Germany in 2014 
(in Petajoule) ......................................................................................................................... 113 

Figure 16:  Development of electricity prices for households and the industry in Germany 
(in Cent per kWh) .................................................................................................................. 116 

Figure 17:  Composition of the average electricity price for households and industry in 
2014 (in Cent per kWh) ......................................................................................................... 117 

Figure 18:  Development of electricity trade in Germany between 2000 and 2014 (in 
Petajoule) .............................................................................................................................. 119 

Figure 19:  Prevention of carbon emissions by renewable energy sources for electricity 
generation (in 1,000 tons) .................................................................................................... 121 

Figure 20:  Impacts on Gross Domestic Product (in percent) ................................................................. 131 

Figure 21:  Domestic electricity generation by industries (in billion €) .................................................. 133 

Figure 22:  Relative changes of electricity generation by industries (in percent) .................................. 135 

Figure 23:  Impact on the emissions of carbon dioxide (in percent) ...................................................... 147 



List of Figures 

v 

Figure 24:  Sensitivity analysis: Impact of the elasticity of substitution of the value added-
energy aggregate on factor income (in percent) .................................................................. 155 

Figure 25:  Sensitivity analysis: Impact of changes of the Armington elasticity on 
commodity imports (in percent) ........................................................................................... 157 

Addendum  

A Figure 1:  File structure of the STAGE model ........................................................................................ 187 

 



List of Tables 

vi 

List of Tables 

Table 1:  A simplified Supply and Use framework ................................................................................ 12 

Table 2:  Simplified framework of a product-by-product Input-Output Table of supply 
and use at basic prices ........................................................................................................... 17 

Table 3:  Schematic structure of a SAM for modelling ......................................................................... 21 

Table 4:  Behavioural relationships in the STAGE standard model ...................................................... 37 

Table 5:  The macro SAM for the STAGE standard model .................................................................... 69 

Table 6:  Macro SAM for Germany for the year 2007 (in billion Euro)................................................. 70 

Table 7:  Underlying data sources for the German macro SAM for 2007 (Part A) ............................... 71 

Table 8:  Disaggregation of the agricultural sector .............................................................................. 74 

Table 9:  Disaggregation of the energy sector ...................................................................................... 76 

Table 10:  Armington and CET elasticities .............................................................................................. 96 

Table 11:  Elasticity values for production and consumption in the adjusted STAGE_D 
model ..................................................................................................................................... 97 

Table 12:  Objectives of the German energy policy ............................................................................. 100 

Table 13:  Relative change of electricity prices and domestic demand (in percent) ........................... 137 

Table 14:  Cross-sectoral production effects (in percent relative to the base) .................................... 138 

Table 15:  Relative change of factor income compared to the base situation (in percent) ................. 139 

Table 16:  Relative change of factor prices compared to the base situation (in percent) ................... 140 

Table 17:  Impact on private households’ income and expenditure (in percent relative to 
the base) .............................................................................................................................. 141 

Table 18:  Trade effects on energy commodities (in percent relative to the base) ............................. 143 

Table 19:  Trade effects on goods and services in other sectors of the economy (in 
percent relative to the base) ............................................................................................... 145 

Table 20:  Production and price changes of agricultural commodities  (in percent relative 
to the base) .......................................................................................................................... 150 

Table 21:  Relative production changes in the federal states of Germany (in percent) ...................... 152 

Table 22:  Change in trade of agricultural commodities (in percent relative to the base) .................. 154 

Table 23:  Sensitivity analysis: Impact of the elasticity of substitution of the energy 
aggregate on electricity prices (in percent) ......................................................................... 156 



List of Tables 

vii 

Addendum  

A Table 1:  Model Variables .................................................................................................................... 178 

A Table 2:  Model Parameters ................................................................................................................ 181 

A Table 3:  Model Sets ............................................................................................................................ 184 

A Table 4:  Commodities included in the 2007 German Supply and Use Tables .................................... 185 

A Table 5:  Activities included in the 2007 German Supply and Use Tables ........................................... 186 

A Table 6:  STAGE model equations ........................................................................................................ 188 

 



Abbreviations 

viii 

Abbreviations 

A  
AGEB Working group on energy balance 

AGEE Working group on renewable energy statistics 

B  
BMWi German Ministry of Economic Affairs and Energy 

bn Billion 

C  

ct Cent 

CES Constant Elasticity of Substitution 

CET Constant Elasticity of Transformation 

CGE Computable General Equilibrium 

COFOG Government expenditure by function 

COIOP Classification of individual consumption by purpose 

CPA Classification of products by activity 

CPI Consumer Price Index 

E  

EEG Renewable Energy Act 

EEX European Energy Exchange 

e.g. exempli gratia 

EnWG Energy Industry Act  

€ Euro 

F  

FADN Farm Accountancy Data Network 

FOC First Order Condition 

G  

GCE Generalised Cross Entropy method  

GDP Gross Domestic Product 

GNDI  Gross National Disposable Income 

GNI Gross National Income 

GVA Gross Value Added  

GWh Gigawatt hour 

H  
ha Hectare 
I  

i.e. id est 

IEA Integrated Economic Accounts 

K  

kWh Kilowatt hour 

L  

LES Linear Expenditure System 

  

  

 



Abbreviations 

ix 

M  

MPP Marginal Physical Product 

MRP Marginal Revenue Product 

MW Megawatt 

N  

NABEG Act to Accelerate the Expansion of Electricity Networks  

NACE 
Nomenclature statistique des activités économiques dans la  
Communauté européenne 

NNDI Net National Disposable Income 

NNI Net National Income 

O  

OTC Over-the-counter 

P  

PJ Petajoule 

S  

SAM Social Accounting Matrix 

SNA System of National Accounts 

STAGE Static Applied General Equilibrium Model 

SUT Supply and Use Tables 

T  

TV Transaction Value 

TWh Terawatt hour 

V  

VAT Value-added tax 

VBA Visual Basic Application 
 

 



Introduction 

1 

1 Introduction  

1.1 Background and objectives 

The German energy sector is currently experiencing a transformation process from a nuclear- and 

fossil-oriented to a renewable-oriented resource base. Initial point of this process was the 

implementation of the Energy Concept by the German government in 2010, also known as the 

Energiewende (Energy Shift). The Energy Concept comprises a fundamental long-term restructuring 

of the energy supply system until 2050 and represents a holistic approach. In addition to the 

comprehensive establishment of renewable energy resources, the German government intends to 

achieve further objectives that comprise a) the improvement of climate protection, b) affordable 

energy prices for consumers, c) a high level of economic competitiveness and development as well as 

d) a reduction of import dependency on energy commodities (BMWi 2010, BMBU 2012). The 

development of a sustainable energy supply system therefore involves environmental, economic and 

social objectives, which have to be considered simultaneously.  

The change in the electricity sector should primarily take place on the basis of nuclear power. This 

technology should serve as a ‘bridge technology’ until renewable-based electricity generation has 

been sufficiently expanded. However, as a consequence of the Fukushima Daiichi (Japan) nuclear 

accident in March 2011, the German government reconsidered the long-term role of nuclear power 

with the result to phase-out nuclear power plants by 2022. In order to phase-out nuclear power 

more quickly, the process of reorganising the German electricity supply on the basis of renewable 

sources needed to be substantially accelerated. Thus, the Energy Package was implemented by the 

German government in July 2011 as legal basis for the nuclear phase-out and the faster expansion of 

technologies to generate electricity on a renewable basis (BMWi 2012, Hübner et al. 2012).  

Wind, solar and biomass represent the most important renewable energy sources for electricity 

generation in Germany. While the supply of wind- and solar-based electricity generation is achieved 

by short-term marginal costs, which tend to be zero, the provision of electricity on a biomass basis 

causes higher costs in the agricultural sector (AEE 2013). 

Generally, agriculture got a special role in the context of the Energiewende because agriculture is 

concerned by the energy policy in several ways. On the one hand, agriculture got a role as a ‘new 

player’ on the electricity market due to the possibility to generate electricity based on biogas. On the 

other hand, this sector is a big consumer of electricity and therefore directly affected by changing 

electricity prices and economic effects caused by the implementation of the Energiewende 

(BMWi 2016).  
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In addition, the technological development and state support for the use of agricultural commodities 

for energy production within the framework of the Renewable Energy Sources Act (EEG) have 

expanded the traditional use spectrum of agricultural products. Consequently, competition for 

production factors, especially for land, has intensified over the last decade (Theuvsen 2010). 

Furthermore, agriculture is increasingly competing for the final use of agricultural commodities as 

feed, food or energy (Hermeling & Wölfing 2011, Bringezu et al. 2008, Faulstich 2012).  

In order to determine the economic, environmental and social impacts of the comprehensive 

restructuring process of the energy sector on the German economy - and in particular on agriculture 

and the electricity sector - this research focusses on the achievement of two objectives.  

The first objective is the provision of an analytical framework that is able to capture the complexity of 

the Energiewende and the interrelations between the agents of the German economy and that 

allows for a monitoring and policy advice. 

Since electricity is a commodity used by all economic agents as intermediate input or for final 

consumption, changes in the electricity supply system have an impact on the whole economy. 

Computable General Equilibrium (CGE) models provide a systematic approach to capture and analyse 

these complex direct and indirect impacts on all agents of an economy. 

There already exist several models that explicitly focus on the German energy sector. The energy 

system model TIMES captures technological aspects of the electricity market (Remme 2007). The 

dynamic Input-Output model DIOGENES (Vögele 2001), the CGE model LEAN (Welsch and 

Ochsen 2002) or the global trade CGE model GTAP_E (Burniaux and Truong 2002) focus on economic 

or trade impacts of changes in the energy sector. However, these models either focus on 

technological aspects or often present the agents of an economy on an aggregated level. 

In order to contribute to an improvement of the analysis of the impacts of the Energiewende on the 

German economy, this study intends the development and application of the single-country CGE 

model STAGE_D for Germany, based on the Static Applied General Equilibrium Model (STAGE) 

(McDonald 2007).  

The model STAGE_D shall be able to capture the agents of the economy and their interrelation on a 

more detailed level. Compared to existing CGE models for Germany, the model STAGE_D should also 

allow for multiple production technologies for electricity generation that encompass existing 

technologies (nuclear, coal, gas, etc.) and new technologies (wind, solar and biomass) to generate 

the homogenous product1 electricity with different cost structures.  

                                                           
1
 In this study the terms products, goods and commodities are used synonymously. The same holds for the terms activity, 

sector and industry. 
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Furthermore, it is intended to improve the presentation of the agricultural sector in the framework 

of CGE analyses for Germany. In the model STAGE_D, the agricultural sector shall be presented as a 

multi-product sector in order to differentiate agricultural activities on a regional level on the basis of 

the federal states (Bundesländer). This means that a particular agricultural activity in the model a) 

represents all farms of that region and b) is able to produce multiple output, i.e. crops, livestock as 

well as biomass for biogas generation. This consideration allows the model to capture regional 

differences in the production structure. 

To determine also environmental impacts of structural changes in the electricity sector, STAGE_D 

should also comprise carbon emissions caused by the use of energy commodities by industries and 

households.  

To give the model STAGE_D these planned capabilities, it is necessary to develop an adequate and 

detailed database, which represents the electricity and agricultural sectors in a disaggregated form. 

The underlying database for STAGE_D should therefore be developed in form of a Social Accounting 

Matrix (SAM) on the basis of the Supply and Use Tables (SUT) and in accordance with the principles 

and accounting rules of the System of National Accounts (SNA). In addition, carbon emissions of 

various production systems have to be recorded by a satellite account.  

The second objective of this research is the application of the model STAGE_D to analyse the impact 

of the nuclear phase-out and the complete implementation of the Energiewende in the electricity 

sector on the German economy. For this, it is intended to calculate and analyse three scenarios with 

STAGE_D. The first scenario, ‘Phase_out`, shall capture the impacts of an immediate and entire 

nuclear phase-out on the agents of the German economy. Within scenario ‘Complete’ the economic, 

ecological and social impacts of the complete implementation of the objectives of the Energiewende 

in the electricity sector shall be considered. A third scenario ‘Biomass’ shall provide conclusions 

about the importance of electricity generation based on biomass in the agricultural sector in the 

context of the Energiewende. 
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1.2 Outline of the study 

The structure of this study follows the tasks specified by the development and application of 

STAGE_D and the underlying SAM.  

Chapter 2 starts with the introduction of the theoretical background that underlies the development 

of the SAM. The SAM is based on the accounting rules of the SNA, presented in section 2.2. This 

section describes the conceptual elements and valuation of transactions on the frame of the SNA. 

Additionally, the accounts and application of the SNA are presented. A closer look is done here on 

the differences between SUT and Input Output Tables (IOT), in order to explain the decision to 

develop STAGE_D on the basis of SUTs. The question of "What is a SAM" is answered in section 2.3. 

Based on the explanation of how a SAM captures the circular flow of an economy, this section also 

explains the accounts of a SAM and the importance of a balanced SAM. In this study, the SAM serves 

simultaneously as database as well as an analytical framework to calibrate the model STAGE_D. This 

SAM approach to modelling is introduced in section 2.4. In this context also accounting identities and 

prices as well as the meaning of equilibrium conditions and model closures are presented. 

Chapter 3 focuses on the STAGE base model that represents the basis for the modifications done to 

develop STAGE_D. After a brief introduction to general equilibrium theory in section 3.2, the 

underlying behavioural relationships (section 3.3) as well as price and quantity relationships are 

presented in the sections 3.4 and 3.5. Moreover focusses this chapter on the implementation of 

production (section 3.6), trade (section 3.7) and households (section 3.8) as well as the basic model 

closures (section 3.9) in STAGE. 

The development of the German SAM from the macro SAM until the disaggregated balanced SAM, 

applied for the calibration of STAGE_D, is on focus of chapter 4. After a summarising introduction of 

the process in section 4.2, the chapter concentrates on the development of the macro SAM in 

section 4.3. With regard to the research focus, a disaggregation of the agricultural and electricity 

sector as well as the development of a satellite account for carbon emissions is required. How the 

accounts have been disaggregated and which data was used for this work is presented in section 4.4. 

Finally the disaggregated database was again aggregated for the application in STAGE_D. The applied 

tool and the final version of the SAM, on which STAGE_D is based for this research, is presented in 

section 4.5. A summary of the chapter can be found in section 4.6. 

Chapter 5 presents the modifications of STAGE_D made in the context of this study to prepare the 

model for the application to analyse the economic, environmental and social impacts of the 

Energiewende in the case study. The modification of the nested production function and the 

mathematical implementation into STAGE_D are introduced in section 5.2. The implementation of 
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carbon emissions into the model is shown in section 5.3. Finally, section 5.4 presents the applied 

parameters of functional forms in the case study.  

The case study itself is divided into two parts. The first descriptive part, presented in chapter 6, 

provides insights into the framework conditions and specifics of the German electricity sector and 

the role of the agricultural sector in this context. Section 6.2 introduces the political framework of 

the Energiewende. To get an impression of the structure of the German electricity sector, section 6.3 

gives information about electricity generation and the resources use, while section 6.4 takes a closer 

look at electricity generation based on renewable. In addition to electricity supply, electricity use in 

Germany is shown in section 6.5. To what extend Germany depends on energy imports is presented 

in section 6.6. The German electricity sector is characterised by some specifics, which are explained 

in section 6.7. A closer look at the development and composition of electricity prices gives section 

6.8. Specifics of the grid and the development of electricity trade are described in section 6.9. Finally, 

this chapter presents the impact of the use of renewable energy sources on the prevention of carbon 

emissions in section 6.10. 

Chapter 7 comprises the second part of the case study - the application of STAGE_D. Starting with the 

introduction of the scenarios in section 7.2 and the applied model closures in section 7.3, this 

chapter presents the results of the analysis in section 7.4. The analysis of the scenarios focusses on 

the impacts on GDP, the electricity sector itself, other sectors of the economy, factor income and 

prices, households, trade and carbon emissions. It takes also a closer look at the impacts of the 

Energiewende on the agricultural sector. A sensitivity analysis of the applied elasticities is presented 

in section 7.5. This chapter closes with a summary of the scenario results and presents the 

conclusions as well as recommendations for further improvements and applications of STAGE_D in 

section 7.6.  

The final chapter 8 summarises the findings of this study.  
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2 Theory of Social Accounting and Social Accounting Matrices  

2.1 Introduction  

The methodical emphasis of this study is the development of a single-country CGE model for 

Germany - STAGE_D. Starting point for the development of STAGE_D is the construction of the 

underlying database – the SAM. This chapter presents the theoretical background and methodical 

framework, in which the German SAM is developed and applied. 

The chapter is structured as follows. Because a SAM can be considered as a systematic data and 

classification system that follows the standards of the System of National Accounts (SNA), section 2.2 

provides an introduction to the SNA. The conceptual elements of the SNA are presented in 2.2.1. 

Section 2.2.2 takes a closer look at the valuation of transactions. The accounts of the SNA are 

described in section 2.2.3 and an overview of economic indicators generated on the basis of the SNA 

is given in section 2.2.4. 

A more detailed presentation of the theoretical framework of SUTs, which are building the basis of 

the German SAM, is presented in section 2.2.5. By using a SAM based on SUTs as database for 

STAGE_D, the model represents an exception in the frame of existing CGE models. Most CGE models 

are based on IOTs. Therefore, section 2.2.6 concentrates on some characteristics of IOTs to explain 

why the application of a SUT-based SAM has to be preferred in order to capture the complex 

interrelations and technological specifics of the Energiewende.  

The theoretical background of a SAM is the emphasis of section 2.3, starting in section 2.3.1 with a 

description of the circular flow of an economy, which is captured in the framework of a SAM. The 

accounts of a SAM are described in section 2.3.2. The introduction of the SAM framework closes with 

the presentation of the methods for balancing a SAM in section 2.3.3.  

Next to its function as a database, a SAM can also be applied as an analytical framework. The SAM 

approach to modelling comprises the relationship between a SAM as database for a CGE model and 

the presentation of economic theory. Section 2.4 describes the role of a SAM as database for 

modelling, starting with an introduction of the SAM approach to modelling in section 2.4.1. A closer 

consideration of accounting identities and prices is given in section 2.4.2, which comprises the 

transaction-value form of a SAM and the interdependencies of prices. The introduction of a SAM as 

database closes in section 2.4.3 with the presentation of equilibrium conditions and model closures. 

Chapter 2 is summarised in section 2.5. 
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2.2 The System of National Accounts  

The System of National Account, coordinated by the United Nations Statistics Office,: ”… is the 

internationally agreed standard set of recommendations on how to compile measures of economic 

activity in accordance with strict accounting conventions based on economic principles. The 

recommendations are expressed in terms of a set of concepts, definitions, classifications and 

accounting rules that comprise the internationally agreed standard for measuring such items as gross 

domestic product (GDP), the most frequently quoted indicator of economic performance.” 

(United Nations 2009, page 1).  

The purpose of the SNA is the provision of a comprehensive conceptual accounting framework for 

compiling and reporting macroeconomic statistics in order to analyse and evaluate the performance 

of an economy. It records the distribution of production between the economic agents - consumers, 

enterprises, the government and other countries. In addition, the SNA describes the income flows 

between these agents, taxation and transfers as well as the distribution for consumption, savings and 

investments. Another function of the accounting system is the standardisation of definitions of 

components of the economic system and their valuation.  

To ensure the use of the SNA in these fields, the accounts included in this framework conform to 

following criteria. They are: 

 comprehensive, because they include all activities and agents of the economy, 

 consistent, because of the underlying determining accounting rules, 

 integrated, because all effects of an agents action are covered (Eurostat 2013). 

The current SNA of 2008 (United Nations 2009) is a revised version of the 2003 SNA. It is the fifth 

version, going back to the year 1947. In this year, the United Nations Statistical Commission 

emphasised the need for consistent international statistical standards for the compilation and 

update of comparable statistics to cover a large array of policy needs (United Nations 2014). The 

1947 Report (United Nations 1947) was published by the Sub-Committee on National Income 

Statistics of the League of Nations Committee of Statistical Experts under the leadership of Richard 

Stone and plays a key role in the development of the conceptual framework of national accounting 

(United Nations 2017).  

2.2.1 Conceptual elements  

The SNA is able to capture and describe economies worldwide - from least developed countries, 

developing countries, transition economies and developed countries. Because it captures all 

characteristics of an economy, the 2008 SNA can be considered as a: “… system of macroeconomic 

accounts based on a set of concepts, definitions, classifications and registration rules. It provides a 
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framework within economic data can be collected and analysed to assist decision-makers and 

provide guidance on economic policies.” (Eurostat 2013, page 59).  

Based on the SNA construction rules, an economy can be described in a simplified way. Therefore, 

the complexity of an economy is presented on an aggregated level. There are two ways to describe 

an economy:  

1.) The classification by industry, called ‘functional classification’, is linked to SUTs and represents the 

economy wide production and flows of goods and services. This classification shows the balance 

between supply and demand. Here, the units of an economy are defined by their technical-

productive profile.  

2.) The second way to characterise an economy is the ‘institutional classification’, where the units of 

an economy are defined according to their economic behaviour, function and objectives. This 

classification focuses on income generation, distribution and how capital is generated and financed. 

The ‘institutional classification’ is based on the Integrated Economic Accounts (IEA) 

(United Nations 2009).  

The transactions of economic agents are recorded in the SNA by defined accounting rules. The basis 

for national accounts is built up according to business accounting. The two-side presentation is 

converted into a T-account for a nation. In the SNA the right side comprises the resources for the 

transactions and the left side the use of the transaction. The principle of double-entry is also applied 

in the accounts of the SNA. The accounts comprise ‘horizontal’ double entries, i.e. if an institution 

provides a good or service to another institution, the transaction has to be recorded in the other 

account too. Here, the transaction is an entry in the resource account of one institution and in the 

use account of the other institution. Transactions have to be done twice in the account of the same 

institution, a) as a resource position and b) as a use position. This way of bookkeeping is called 

‘vertical’ double-entry. This ‘vertical’ double-entry guarantees that the total of transactions recorded 

in the use account equals the total in the resources account (Eurostat 2013).  

The objective of tables, accounts and balance sheets, applied in the SNA, is to record a) economic 

actions within a given time period and b) the effects of these actions on the stocks of assets and 

liabilities at the beginning and the end of that time period. The time period usually comprises one 

financial year. The described actions are called economic flows and relate to production, 

consumption, savings and investments etc. of all institutional units of an economy. The effects of 

economic flows, which comprise transactions and other economic flows, are the creation, 

transformation, exchange or transfer of economic value. In addition, economic flows can change the 

volume, composition or value of liabilities and assets (ibid).  
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2.2.2 Valuation of transactions  

In order to capture economic flows in the SNA, transactions must be recorded for all accounts in all 

sectors at the same value. In an economy the value of transactions is oriented on the current market 

price. To ensure this, the SNA applies various transaction valuation methods of treating taxes and 

subsidies on products, value-added taxes and other deductible taxes as well as trade and transport 

margins on goods and services. For the measurement of output two kinds of prices are used: the 

basic price and the producers’ price. The relationships between these prices and the purchasers’ 

price are shown in Figure 1. 

Figure 1: Relationships between prices in the 2008 SNA  

 

Source: Eurostat (2014) 

The basic price is defined as the price the producer receives from the purchaser for a unit of output. 

This price includes subsidies on products the producer received during production or sale, but no 

taxes and transport charges. The basic price can be regarded as the relevant price for decision 

makers for supply (United Nations 2009).  

The producers’ price is the price the producer receives from the purchaser for a unit of output 

including taxes on products, with the exception of value-added tax (VAT) and excluding subsidies on 

products. It also excludes any transport charges. The producer price is the basic price plus any non-

deductible taxes on products and less any subsidies on products (OECD 2005).  

The purchasers’ price is the price most relevant for buyers and represents the price including VAT not 

deductible by the purchaser, the separately invoiced transport charges as well as the wholesaler and 
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retail margins. It is the price paid by the purchaser for the delivery of a unit of output at the time and 

place required by the purchaser (United Nations 2009).  

2.2.3 Accounts in the 2008 SNA 

Due to the large number of individual transactions during an economic period, the number of 

transactions has to be structured and aggregated. The SNA therefore comprises five accounts 

according to the standard SNA classification (United Nations 2009, Eurostat 2014):  

1. Current accounts: Current accounts include the production account and accounts that 

capture primary and secondary distribution of income, as well as the use of income. 

Additionally, these accounts include the world account, which records imports and exports of 

goods and services.  

2. Accumulation accounts: Accumulation accounts involve four types: a) the capital account, 

b) financial accounts, c) the other changes in assets accounts and d) the revaluation account. 

These accounts deal with changes in the values of assets, the registration of transactions in non-

financial and financial assets and other changes in the volume of assets.  

3. Balance sheets: Balance sheets capture the values of asset and liability stocks at the 

beginning and the end of an accounting period.  

4. Goods and services account: This account implies that the total amount of goods and services 

supplied in an economy equals the total use of goods and services. This identity corresponds to 

the following:  

Output + Imports + Taxes (less subsidies) on products 

= 

Intermediate consumption + Final consumption + Exports + Capital formation 

The account can be considered as the basic identity of the SNA. All other accounts of the SNA 

are developed around this goods and services account in the way of additional transactions 

relating to income and savings generation, distribution and redistribution.  

5. Accounts for the rest of the world: Entries in the accounts for the rest of the world show the 

value of goods and services that are imported into the economy from the rest of the world and 

those that are produced on the domestic market and exported to the rest of the world. These 

accounts have the function to capture the full range of transactions between the national 

economy and the rest of the world. The entries correspond to the entries in the balance of 

payments, as set out in the ‘Balance of Payments and Investment Position Manual’ 6th edition 

(IMF 2009). 
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2.2.4 Economic indicators generated by the SNA 

The main objectives of the SNA are the provision of internationally comparative indicators and key 

figures for macroeconomic analysis as well as for domestic and foreign comparison. The so-called 

‘aggregates’ represent composite values that respectively focus on one special aspect of an economic 

activity. Aggregates generated in the framework of the SNA provide a detailed, complete and 

simplified picture of the current economic situation of a country. On this basis, conclusions about the 

development of an economy and its actors can be drawn.  

Some aggregates can be derived directly from the totals of single transactions. Other aggregates 

result from aggregating balancing items of sector accounts like value added, disposal income or 

savings (Eurostat 2013). A balancing item can be described as a resulting number derived by the 

application of general accounting rules and considering specific entries on both sides of one account. 

Balancing items are used to generate macroeconomic indicators. The main aggregates for measuring 

economic performance are the Gross Domestic Product (GDP), Gross National Income (GNI) and Net 

National Income (NNI) and Gross/ Net National Disposable Income (GNDI/NNDI) 

(United Nations 2009).  

One of the most common aggregate is the GDP. The estimation of the GDP of an economy can be 

done by the application of three approaches: a) The production approach, b) the expenditure 

approach and c) the income approach. The production and expenditure approaches are based on 

information provided by SUTs. SUTs include a combined and balanced set of various national 

accounts. By means of SUT, GDP can be deducted on the base of the production approach or 

expenditure approach, depending on the coverage of data at whole economy level and the product 

level (Eurostat 2013). 

SUTs represent a core element of the German Social Accounting Matrix developed in the frame of 

this research. Therefore, the next section provides a closer examination of the aggregates and 

accounting identities of SUTs.  

2.2.5 Supply and Use Tables  

SUTs comprise a set of matrices that describe how the supply of goods and services is generated by 

domestic industries and imports and how goods and services are allocated for final use between 

intermediate or final consumption as well as for exports (Federal Statistical Office 2010b). Table 1 

presents a simplified framework of Supply and Use Tables.  
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Table 1: A simplified Supply and Use framework 

 

Source: OECD (2017) 

 

Supply table

Agriculture Industry Services activites

Agricultural products

Industrial products

Services

Total imports
Total trade and 

transport margins

Total taxes less 

subsidies on products

Total supply at 

purchaser price

Use table

Agriculture Industry Services activites Final consumption Gross capital formation Exports 

Agricultural products

Industrial products

Services

Value added

Total 

Total 

Total use by product at 

purchaser price

Total 

Industries

Output by products and by industry at basic prices Imports by product
Trade and transport 

margins by product

Taxes less subsidies on 

products by product

Total supply by product 

at purchaser price

Total output at basic prices by industry

Products 

Industries
Imports

Trade and transport 

margins

Taxes less subsidies on 

products

Total Total output at basic prices by industry Total final uses by category 

Final uses

Final uses by product and by category

Value added Value added by component and by industry at basic prices

Products Intermediate consumption by product and by industry 
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The Supply table 

The Supply table covers the supply of goods and services by product and industry, with a distinction 

between domestic industries and imports. Furthermore, this table comprises trade and transport 

margins as well as taxes and subsidies on products. These components sum up to the total supply of 

goods and services valuated at basic prices (Eurostat 2014).  

In the production matrix, domestic output by sectors, is shown by the value of products. The main 

product of an industry is reported on the main diagonal of the production matrix. Compared to IOTs 

in the Supply table also secondary or coupled products are recorded. These products are captured 

beside the main diagonal.  

The Use table 

The Use table captures the use of goods and services by industries. Use is divided into intermediate 

consumption by industries, final consumption, gross capital formation and exports. Next to this, the 

table includes the value added by industries, gross fixed capital formation and changes in inventories 

and valuables (Eurostat 2014). The columns represent the cost of production of each industry. The 

intermediate consumption identifies the goods and services that are used to produce primary and 

secondary products.  

In the Supply table, as well as in Use table, the number of industries and products can differ, i.e. one 

industry can produce more than one product. Therefore, the classification of products in the Supply 

table can be more detailed than the classification of industries, but the same level of detail for 

products has to be hold in the use table. The level of disaggregation for products is variable 

(Punt 2013). 

Accounting identities of SUTs  

In a closed economy, supply has to be equal to use by definition. To ensure this, three accounting 

identities have to hold for each commodity (Eurostat 2014).  

1. Identity by industry:  

The identity by industry indicates that the total output by industry is equal to total input by industry.  

Output by industry = Input by industry. 

Under this condition the output of an industry equals the intermediate consumption plus Gross Value 

Added (GVA).  
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2. Identity by product:  

The identity by product indicates that the total supply by products is equal to total use by products. 

Total supply by product = Total use of product. 

To achieve this identity it is necessary to estimate supply and use at the same price. Therefore, the 

prices in SUTs for each product are estimated at purchasers’ prices. 

 

Supply at purchasers’ price =  

Output at basic prices + Imports at basic prices 

+ Trade margins + Transport margins + Taxes (less subsidies) on products 

 

Use at purchasers’ price = 

Consumption of intermediate inputs + Exports + Final consumption expenditure 

 + Gross capital formation 

 

3. Identity for Gross Value Added: 

The total GVA is equal to the sum of the GVA of each industry.  

Total GVA = ∑ GVA of each industry 

The GVA of an industry is received by deducting intermediate consumption from output.  

By integrating value added into the framework of SUTs, the following accounting relation comes into 

effect:  

Output – Intermediate consumption 

= 

Value added 

= 

Compensation of employees + Taxes on production + Net operating surplus 

 

The German SUTs are compiled on an annual basis by the Federal Statistical Office and follow the 

accounting rules of the SNA. With respect to the classification of commodities and activities the 

tables follow internationally harmonised classification systems (Federal Statistical Office 2008d). 

These systems comprise the: 

 Classification of activities: Nomenclature statistique des activités économiques dans la 

Communauté européenne = NACE, 

 Classification of products by activity (CPA), 



Theory of Social Accounting and Social Accounting Matrices 

15 

 Classification of individual consumption by purpose (COIOP), 

 Government expenditure by function (COFOG).  

2.2.6 Input-Output Tables  

SUTs provide the statistical basis to create symmetric IOTs. For their compilation various assumptions 

and adjustments are necessary. These comprise: 

 the derivation of domestic and import use matrices, 

 the valuation of the use matrix at basic prices, 

 the decision about the compilation of a product-by-product or industry-by-industry IOT, 

 the determination and distribution of secondary products (McDonald 2007). 

In IOTs, the classification of products or industries is identical in rows and columns. The underlying 

assumption is that each industry produces a single commodity and each commodity is exclusively 

produced by a single industry. An IOT is therefore referred to as symmetric - the intermediate part of 

the production matrix is square (Eurostat 2008). Due to the necessary adjustments, an IOT can be 

regarded as a reduced form of a combined SUT, because it combines information from the supply 

table and the use table into one single table. During the transformation of data from SUTs into IOTs, 

assumptions about the relations between input and output have to be made, so that either the 

product or the industry dimension is lost. IOTs are compiled either as product-by-product tables with 

underlying technology assumptions or industry-by-industry tables that are based on sales structure 

assumptions.  

The relation of industries and products can be regarded as conceptual difference between SUTs and 

IOTs. In SUTs, statistics relate products to industries, while in symmetric IOTs statistics relate 

products to products or industries to industries.  

Technology assumptions to generate product-by-product IOTs 

Product-by-product IOTs can be derived by the application of a) the product technology assumption 

and b) the industry technology assumption.  

a) If the IOT is based on the product technology assumption, each product is produced by its 

own characteristic way. There is no differentiation between the industries that produce it.  

b) Under the industry technology assumption, each industry has its characteristic and unique 

input structure, but there is no differentiation of its product mix. 

Sales structure assumptions to create industry-by-industry IOTs 

To derive industry-by-industry IOTs, either assumptions about c) the fixed industry sales structure or 

d) the fixed product sales structure have to be made.  
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c) With an underlying fixed industry sales structure assumption, the IOT is characterised by 

specific sales structures for each industry, regardless of its production mix.  

d) The fixed product sales structure assumption includes that each product has its own sales 

structure, irrespective of the producing industry. 

The decision, which kind of IOT is applied, depends on the economic focus of the analysis. Industry-

by-industry IOTs represent market transactions in a better way than product-by-product IOTs. 

Product-by-product IOTs on the other hand are regarded as more homogeneous in terms of cost 

structures and production activities (Eurostat 2008). 

In a real economy, an industry often produces more than one product, as a subsidiary product, a  

by-product or a joint product (United Nations 2009). These secondary products create a problem 

while the development of symmetric IOTs. While the supply table presents secondary products apart 

the main diagonal, this kind of products have to be reallocated in IOTs, because it assumes that one 

industry only produces one single product.  

Compared to IOTs, in SUTs the same product can also be produced by different industries. This 

property of SUTs becomes important for this research. It allows capturing a) the agricultural sector as 

multi-product industry and b) the production of the homogeneous product electricity by different 

industries in the German SAM and in STAGE_D.  

IOTs are valued at basic prices by using information of the supply table, also valued at basic prices 

and the use table, valued at purchaser prices. In a supply system at basic prices like in IOTs, the 

columns for trade and transport margins and net taxes on products of the use table become 

redundant. The valuation matrices are derived from the use table at purchaser prices 

(Eurostat 2008).  

Table 2 presents a simplified framework of a product-by-product IOT, generated on the base of the 

product technology assumption. A similar IOT could be presented for an industry-by-industry IOT. 

Here, the first quadrant would contain an industry-by-industry matrix instead of the product-by-

product matrix.  
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Table 2: Simplified framework of a product-by-product Input-Output Table of supply and use at basic prices 

Source: Based on Eurostat (2008) 

Primary sector 

(Agriculture, 

forestry, fishery)

Secondary sector 

(Industries)

Tertiary sector 

(Services) 

Consumption by 

households, non-

profit 

organisations, 

government

Changes in 

valuables and 

inventories

Export FOB
Output at 

basic prices

Products primary sector (Agriculture, forestry, fishery)

Products secondary sector (Industries)

Products tertiary sector (Services) 

Total at basic prices

Taxes less subsidies on products

Direct purchases abroad by residents

Domestic purchases by non-residents

Total at purchasers´price

Compensation of employees

Other net taxes on production 

Consumption of fixed capital 

Net operating surplus

Value added at basic prices

Output at basic prices

Imports CIF

Input at basic prices 

= empty

Intermediate consumption at basic prices Final demand at basic prices

Imports CIF

Value added at basic prices

Homogeneous industries Final use of products
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2.3 What is a Social Accounting Matrix? 

A SAM captures the whole circular flow of an economy in a square matrix format. That means that a 

SAM includes all transactions and transfers between different institutions and production activities 

and their interrelationships via factor and product markets within the economy and the rest of the 

world. All transactions are captured by the application of a single-entry form of booking that can be 

expressed by the following formula: 

 𝑇 =  [𝑡𝑗𝑘] (E 1) 

Every covered economic agent has its own row and column in the matrix 𝑇. Rows and columns are 

identically ordered. Each transaction between two agents is considered by two transactions:  

a) receipts of transactor 𝑗 are captured in the SAM in the row of 𝑗 and b) expenditures by 𝑘 are 

included in the column of 𝑘. Consequently, 𝑡𝑗𝑘 is the value of all earnings of 𝑗 from 𝑘 during the 

observed time period. The other way around, 𝑡𝑘𝑗 records the payments to 𝑘 done by 𝑗. Because a 

SAM is an accounting framework, the SAM accounts have to balance. This presumes that the 

corresponding row and column totals have to be equal (Pyatt 1988).  

Round (2003) summarises the main features of a SAM as follows: 

1. The accounts of a SAM are represented as a square matrix, where income and expenditure of 

each account appears in the corresponding row and column of the account. Incomes are 

captured in the rows and expenditures in the columns of the account. Therefore, each 

transaction in any cell of the SAM explicitly displays the interconnections between the agents 

due to the matrix format. Compared to traditional accounts, every entry appears only once, 

according to the principle of double-entry book keeping.  

2. A SAM is comprehensive, i.e. a SAM pictures all economic activities, which comprise 

consumption, production, accumulation and distribution (Lofgren et al. 2002). 

3. A SAM is flexible in the way that, next to the basic components, there is a great flexibility for 

disaggregating a SAM. The possibilities for disaggregation comprise on the one hand the detail 

of disaggregation of commodities and on the other hand the agents of the economy.  

The name ‘Social Accounting matrix’ includes the attribute ‘social’, because households represent an 

important part of a SAM and the distributional features are an important component for the 

description of an economy (Round 2003).  

The development of a SAM offers diverse advantages. The construction of a SAM combines data 

from various data sources, which often subject to the rules of the SNA. But it also allows for the 

combination of other data sources that capture the structural characteristic of an economy. 
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Furthermore, a SAM represents a relatively simple and illustrative tool to display information about 

interdependencies in an economy. Additionally, a SAM can be used as database and analytical 

framework for modelling (see chapter 2.4) (Pyatt 1988, King 1985).  

Round (2003a) describes a SAM as a ‘meso-level framework’ that serves as a bridge between 

macroeconomic considerations and a more detailed view on the agents of the economy and their 

interrelationships.  

The following sections describe the basic structure of a SAM, starting with the presentation of how 

the circular flow of an economy is captured in a SAM. 

2.3.1 The circular flow of the economy captured in a Social Accounting Matrix 

As a consequence of the characteristics of a SAM, the equality of row and column totals, a SAM 

includes all components of the circular flow in a matrix format (McDonald 2013). Figure 2 shows the 

circular flow in the economy in a simplified way. Following the direction of the arrows, this figure 

represents the flow of goods and services between agents. If going the opposite way, the arrows 

would describe the classic circular flow of income within an economy (Pyatt 1988).  

Figure 2: Circular flow in the economy 

 

Source: Punt (2013) 

Starting point for the description of the circular flow are the industries. Industries produce goods and 

services and sell them to other industries for intermediate use or to institutions like households, 

government or enterprises for final consumption. In case of an open economy, final consumption 
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also comprises exports. Furthermore, final goods can be used during the accounting period or can be 

stored for use in the future. Imports represent a supplement to domestic production on the product 

market. Trading interactions between the economy and the rest of the world can also take place 

between institutions and factor markets. The interactions on factor markets include, for example, 

workers who are selling their manpower abroad or foreigners who are working in the mentioned 

economy. Institutions sell factor services on factor markets. Seller of these factor services - labour, 

capital and land - are the industries. Payments for factor services include salaries and wages as well 

as returns to capital and land. Punt (2013) expanded the standard picture of the circular flow by 

payments between institutions and the rest of the world. These include household remittances and 

foreign aid/ funds.  

SUTs, presented in section 2.2.5, comprise detailed information about production and consumption, 

but do not show the whole picture of the circular flow, because they miss the link between income 

distribution (factors) and consumption (institutions). There are three necessary mappings, identified 

by Pyatt (1999), in order to capture the entire circular flow in a SAM. They comprise a) the mapping 

of value added from industries to factors, b) the mapping of factor income to institutions and c) the 

mapping of income of institutions into demand for goods and non-factor services. Next to this, 

information about transfers between institutions is required. These transfer payments include 

unrequited transfers, property income of rent, interest and the payment of dividends by corporate 

firms to their stakeholders.  

A SAM is characterised by capturing all components of the circular flow in a matrix format by 

recording the values of transactions between two agents. These transactions are identified by entries 

in the row and column accounts (see Table 3).  
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Table 3: Schematic structure of a SAM for modelling 

 

Source: Lofgren et al. (2002), Punt et al. (2003a) 
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The SAM structure, shown in Table 3, can be regarded as representative for the base SAM developed 

and applied for this research.  

How the entries in a SAM are interpreted, is demonstrated here by using the example of 

commodities. The entries in the commodities rows represent the values of commodity sales to the 

appropriate agents, who are identified in the column. Commodities can be used as intermediate 

inputs by activities (industries), as final consumption by households, by the government, enterprises, 

investments or exports. The columns for commodities show the supply side and identify the 

purchasers of commodities. Commodities can be supplied by domestic activities or can be imported. 

Furthermore, commodity accounts include expenditures for trade and transport services as well as 

commodity specific taxes (McDonald 2013).  

The next section gives a more detailed overview of the accounts of a SAM.  

2.3.2 The accounts of a Social Accounting Matrix 

A SAM comprises assets, institutions and transactions as main fundamentals of social accounting, 

which are usually constructed by six types of accounts (Pyatt 1991, Punt et al. 2003a). The scope of 

the accounts is not fixed and can be disaggregated according to the research objective and data 

availability. Each account is presented by a row and a column in the matrix. Entries in the row 

represent for the transactions going into an account, while the columns show transactions leaving 

the account. For each account in the SAM, the total revenue (row total) corresponds to the total 

expenditure (column total) (Pyatt 1991, Lofgren et al. 2001, Robinson 2003b).  

In a SAM, the following relation is given: The entry 𝑡 in the ith row and jth column is the expenditure of 

the jth account on the product of the ith account and simultaneously the income of the jth account due 

to sales to the ith account. If 𝑦 comprises the total of an account, consequently the row and column 

totals have to be equal by definition (Drud et al. 1986, Pyatt 1988).  

 𝑦 = ∑ 𝑡𝑖𝑗 = ∑ 𝑡𝑖𝑗

𝑖𝑗

 (E 2) 

Commodity accounts 

Commodity accounts include the supply and use of goods and services during an accounting period. 

Commodities can be used as intermediate inputs for production processes of industries or they will 

receive final demand, what comprises their final consumption, exports or commodities will become 

part of stock changes.  

Commodities produced and sold on the market are automatically captured in a SAM by a transaction. 

Goods and services that are not traded on markets, such as self-consumption of producers or capital 
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formation, are recorded in the account of the final users. In this case prices have to be estimated 

(United Nations 2009). Prices and quantities also have to be estimated for non-market goods and 

services.  

All domestically produced commodities are valued at the same price and include all relevant sales 

taxes and tariffs. As a consequence, the prices in a row are the same, independently which agent 

sells the commodity. One exception of the price definition in a row is the export price that is derived 

by a function of exogenously determined export prices (Punt et al. 2003a). 

Production accounts 

Production or industry accounts cover the production costs in the columns and the revenues 

received by selling products in the rows. In the SAM framework, producing industries are called 

activities. Domestic production is captured in the rows of the activity accounts and the column of the 

commodity account. Total domestic supply includes domestically produced goods plus imports.  

The cost of production of an activity comprises the costs for intermediate inputs as well as wages and 

rents paid for the production factors labour, land and capital. All purchases that are completely used 

for production in the accounting period are assigned to intermediate inputs. Inputs purchased but 

not used during this period relate to stock changes and are a part of final demand.  

The purchase of factor services is recorded as value added at basic prices. Therefore, the information 

of the columns of the activity accounts can be used to calculate GDP (Punt et al. 2003a, 

United Nations 2009).  

Factor accounts 

Factor accounts include land, labour and capital. These factors represent real assets and are owned 

by institutions. The factor accounts comprise payments for factor use in the rows. Returns to land, 

wages for labour and returns to capital are captured in the columns.  

Institution accounts 

An institution is an economic entity that is able to own assets, incur liabilities and conduct 

transactions. In a SAM typically households, corporations and the government are covered. The SNA 

2008 identifies three basic economic actions that can be undertaken by an institution: 1) production 

of goods and services, 2) consumption and 3) accumulation of capital (United Nations 2009).  

 

 

 



Theory of Social Accounting and Social Accounting Matrices 

24 

Capital accounts 

Capital accounts present all asset related transactions and purchases that are not consumed during 

the considered period. Payments recorded in the capital account therefore refer to investments and 

stocks.  

Rest of the world account 

The account for the rest of the world shows the transactions between domestic institutions of the 

related economy with the rest of the world. It covers the international trade of goods and services, 

factor income and payments as well as transfers between institutions. 

2.3.3 Balancing a SAM 

As underlying database for STAGE_D, a SAM for Germany is developed and disaggregated as part of 

this study. The development of the SAM and the disaggregation process required the combination of 

data from different statistical sources, which were often not consistent. Additionally, in some cases 

necessary data were not available. Due to the conditions that each account must balance and the 

row and column sums have to equate, a method is necessary to estimate missing data and filling the 

gaps to achieve a balanced SAM. Various methods such as the RAS method, the Stone-Byron method 

and the Cross Entropy method are available for estimating missing data and to balance a SAM (see 

Round 2003b, Fofana et al. 2005).  

In this study the Generalised Cross Entropy (GCE) method is applied for the estimation of missing 

data and to balance the German SAM. The GCE method is based on the Cross Entropy method. Both 

methods are described here in more detail. 

The Cross Entropy Method 

The Cross Entropy Method developed by Golan, Judge and Robinson (1994), applies an entropy-

based minimand and a constraint set for balancing a SAM. The minimand is derived from a 

coefficient structure of the SAM (A*). The initial column coefficients (A) are used rather than the 

transaction flows (X*). Furthermore the minimand includes the estimation of a set of error weights 

(wij), which are part of the generation of error variables (ei). This minimand is included into the 

estimation of error weights (wij), which are a component of the calculation of the error variables (ei).  

 
𝐿(𝐴∗, 𝑊: 𝐴) = ∑ 𝑎𝑖𝑗

∗

𝑖,𝑗

𝑙𝑛 (
𝑎𝑖𝑗

∗

𝑎𝑖𝑗
) + ∑ 𝑤𝑖𝑗

𝑖,ℎ

ln(𝑛𝑤𝑖ℎ) 
(E 3)  

Error variables (ei) are not included into the minimand, but ensure the balancing of the 

corresponding row and column totals. Error weights (wij) and error variables (ei) are elements of the 
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constraint set that ensures the maintenance of accounting relationships between coefficients and 

flows and additionally to accounting constraints (Round 2003b, Punt 2010).  

The Generalised Cross Entropy Method 

The GCE Method was developed by Golan, Judge and Robinson (1994) and updated by Robinson, 

Cattaneo and El-Said (2001). The method treats every cell in a SAM with an error support set whose 

weights are estimated. This method uses a prior for each estimated value and uses measurement 

errors. During the balancing process a comparison is made between measurement errors and the 

estimates. The measured error distribution is able to explain the difference between the measured 

values and the estimated values. The method allows reliable data to have a higher weight than data 

of lower quality. Additionally, this approach allows special treatment of row and column totals and 

macro-aggregates, what improves the estimation process (Robinson et al. 2001). 

2.4 A SAM as database for modelling 

2.4.1 The SAM approach to modelling  

The practical implementation of the SAM approach to modelling comprises two parallel proceedings: 

1) the development of the data and theory in the SAM and 2) the development of the (CGE) model 

with regard to the research question. This section presents the SAM approach to modelling, based on 

the paper of Pyatt (1988).  

Relationship between database and model 

Figure 3 illustrates the SAM perspective on model construction with regard to the relationship 

between the model and its underlying database. Starting from the initial SAM framework, there exist 

two parallel spaces for further development: a) the formulation of the model and b) the calibration 

of the SAM. The model formulation requires the determination of the model behaviour for each cell 

of the SAM by a set of equations. The SAM calibration includes the data development and the 

balancing process (see section 2.3.3).  

The broken arrows in Figure 3 illustrate the interactions during model formulation and the calibration 

of the SAM. For instance, a lack of primary data leads to the composition of a relatively simple and 

aggregated SAM. Furthermore, theoretical considerations in the model formulation often give 

arguments for a detailed disaggregation and conceptual adjustments of the SAM. Both issues have 

feedback effects on the initial SAM framework. 
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Figure 3: The SAM approach to modelling 

 

Source: Pyatt (1988) 

After finishing this iterative process with the result of a complete SAM framework, two versions of 

the SAM exist: a) one SAM that includes the specification of behavioural relationships in transaction 

value form and b) a second SAM, which relates to the first version and presents a balanced set of 

data that records the value for each transaction in the base period presented. These two versions of 

the SAM (Model formulation, SAM calibration) are shown in Figure 3 by the arrows leading to the 

model calibration. Before turning into the analysis, two further contributions to the calibration of the 

model have to be done: the formulation of closure rules and the estimation of non-distributive 

parameters.  

Three stages to develop a SAM-based model 

Pyatt (1988) describes the approach for developing a SAM-based model in three stages: 

1) The first stage covers the choice of the research question and the corresponding model 

focus. On this basis decisions about the aggregation level of activities, commodities, factors 

and institutions have to be taken. 

2) The second stage comprises the specification of the transaction value form of the model.  

3) The third stage includes the selection of closure rules. 

The first stage comprises the general focus of the model with regard to the research question and 

the resulting SAM structure. Classification systems become particularly important because they are 

not independent. Pyatt (1988) indicates that the choice of commodity disaggregation has influence 

on the way how activities should be disaggregated. In parallel, the choice of grouping the activities 
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has an impact on the disaggregation of factors and institutions. Due to the implication of the circular 

flow (see chapter 2.3.1) and the coherent interdependencies captured in a SAM and in the model, 

the modeler has to be aware that the detailed disaggregation of one part of the economy also 

requires consideration of the other parts of the economy.  

The second stage of the SAM approach to modelling is based on the concept of two versions of a 

SAM.  

a) One version includes the values of transactions.  

b) The other version deals with the algebraic expression for determining the corresponding 

transaction value (Drud et al. 1986, Pyatt 1988).  

The reason for two SAM versions is the respective application of the SAM. The first SAM version 

serves as a database, the second SAM version as basis for the model. In its role as basis for a model, a 

SAM includes the algebraic expressions, the so-called transaction value (TV) form, of the underlying 

model. This SAM ensures that each value in the SAM can be expressed by the model through a 

specific equation. In the end, all equations of the model must be solved simultaneously in order to 

create a complete and consistent SAM. The SAM approach to modelling provides the possibility to 

determine transaction values by modelling prices and quantity flows based on a set of equations. 

Quantity equations can be derived from the transaction-value form of the model, because quantities 

are the result of value flows and prices. This is a difference to other approaches, in which equations 

have to be separately specified to determine prices and quantities (Drud et al. 1986, Pyatt 1988).  

The advantages of having a pair of a SAM in a data and algebraic format are described by 

Drud et al. (1986) as follows: 

 The disaggregation level of a SAM has to consider the data availability and the research 

question. The simultaneous development of data and theory captures this issue.  

 The framework of a SAM increases data quality due to the requirements of a SAM to be 

complete and consistent. 

 Explaining the transaction-values of the SAM by the model improves the understanding of 

the model structure. 

 The complementary pairs of a SAM ensure the calibration of a CGE model. The model can 

always reproduce the base case.  

Based on the transaction-value SAM, the underlying price system of the model and the SAM as well 

as the accounting identities and other assumptions of the model can be deducted. The price system 

and the accounting identities will be discussed in more detail in the next section 2.4.2. 
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The third stage of the SAM approach to modelling is the choice of closures. According to Drud et al. 

(1986), the system derived from the equations in the transaction-value form of the model in the 

second stage is underdetermined for describing an economy. Therefore, additional restrictions in 

form of closures are required to derive a fully determined system. Model closures are described in 

more details in section 2.4.3 and 3.9. 

2.4.2 Accounting identities and prices 

According to Pyatt (1988), there is only one fundamental economic law, which declares that every 

income relates to a corresponding expenditure. A SAM can be regarded as an implementation of this 

law, because a balanced SAM completely captures the incomes and expenditures of an economy. 

Pyatt (1988) describes a SAM as a quantitative picture of the economy by capturing and summarising 

all flows as transactions. The monetary value of any transaction in a SAM is reported in transaction 

values, that simply is the multiplication of prices by the quantity.  

As described in section 2.4.1, the application of the SAM approach to modelling provides two 

versions of a SAM: 1) an empirical version that includes the data framework and 2) a theoretical 

version, where the SAM serves as a framework that presents economic theory by describing the 

behavioural relationships of the agents. In this second version, the cells of the SAM do not include 

algebraic expressions. Instead of this, the cells include conceptual terms that determine transaction 

values. Compared to the description of a model as a set of equations defining prices and quantities, 

the distinctive feature by using the SAM approach to modelling is the description of how the value of 

each transaction is expressed (Drud et al. 1986).  

2.4.2.1 The transaction-value form  

For the description of a model in the TV form, decisions about the determination of the elements of 

the SAM and the behavioural assumptions have to be made. Each number captured in a SAM has to 

be represented by an algebraic statement that describes how the transaction is defined. Every 

algebraic statement is therefore a function of income depending on prices.  

Following the notation of Pyatt (1988), assuming a given SAM matrix 𝑇, the single entries in TV form 

in the jth row and kth column of the SAM (𝑡𝑗𝑘) are defined as a set of equations according to: 

 𝑡𝑗𝑘 =  𝑡𝑗𝑘(𝑦; 𝑝, 𝑓, λ) (E 4) 

The value of a transaction is a function of the income vector 𝑦, which depends on a vector of product 

and non-factor service prices (𝑝), a vector of factor prices (𝑓) and the exchange rate (𝜆). The value 

of the element is a function of income and prices. There are no quantities in this function, but it is 

recognised that each quantity (𝑞) can be determined as 𝑦/𝑝. Based on the condition that the sum of 
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the row is equal to the sum of the corresponding column, the following equation can be derived 

(Pyatt 1988). 

Ti = 𝑦 = T′i (E 5) 

Here 𝑖 is a summation vector. Therefore, the jth element of 𝛾 (𝛾𝑗) is the sum of a) all elements in the 

jth row of 𝑇(∑ 𝑡𝑗𝑘𝑘 ) and b) all elements the jth column 𝑇(∑ 𝑡𝑗𝑘𝑗 ). Consequently, 𝛾𝑗  represents both: 

the total income and the total expenditure of the transactor (𝑗), which have to be equal.  

Pyatt (1988) describes the advantage of expressing a model in TV form in the ‘ready understanding’ 

of the models characteristics. He notes, that if equation (E 4) is substituted for each 𝑡𝑗𝑘 into equation 

(E 5), then two sets of equations are derived, which are fundamental to the model structure - one set 

for the row summation and one set for the column summation of 𝑇. The formulation of the model is 

complete if one additional set of equation is formulated, which comprise the closure rules.  

Equations for column summation 

The column summation equations of activity and commodity accounts ensure compliance with the 

following condition: If total costs are equal to total revenues, then average revenues have to be 

equal to average costs. Therefore, prices are interdependent. This relation is captured in the column 

summation equations for commodities and activities, which are presented by Pyatt (1988) as follows: 

p = 𝑝(𝑦; 𝑝, 𝑓, 𝜆) (E 6) 

This equation characterises the first of three equations describing a macro model. It shows that 

commodity and activity prices not only depend on each other, but also on factor prices (𝑓), the 

exchange rate (𝜆) and the income level (scale of output) of activities (𝑦). Usually, this type of 

equation is linear homogeneous. Under the assumption that the scale of production is constant, a 

doubling of input prices causes a doubling of output prices.  

Pyatt (1988) distinguishes three types of TV specifications for each cell of the SAM in the context of 

SAM: 

a) In the first case, tjk depends on income (𝑦) (see equation (E 4)) and the cells are endogenous. 

The matrix of endogenous transactions is denoted by 𝑁. 

b) In the second case, tjk is independent of income and the cells are exogenous. These 

transactions are represented as positive matrix elements X.  
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c) The third case comprises a mixture of endogenous and exogenous cells. Each column 

comprising one or more exogenous elements has to include this type of cells to meet the 

adding-up condition. Therefore, these balancing cells finally include the difference between 

the total income of the account and the sum of the other elements of the column.  

If a SAM includes both, endogenous and exogenous cells, the SAM matrix T can be described as 

follows: 

𝑇 = 𝑁 + 𝑋 (E 7) 

Referred to Pyatt (1988) another column summation equation can be derived: 

𝑦′ = 𝑖′𝑇 = 𝑖′𝑁 + 𝑖′𝑋 (E 8) 

If row and column sums are equal, then 𝑖′𝑋 is zero and 𝑖′𝑁 is equal to 𝑦′. The sums of the columns 

show the production or supply of an economy. They express the costs of production and include a 

differentiation of goods and services. This form of column summation equation is used to derive the 

row summation equations, which are presented in the next part. 

Equations for row summation 

The row summation equations comprise the second set of equations to describe the basic model 

structure by: 

𝑦 = 𝑛 + 𝑥 (E 9) 

where 𝑛 and 𝑥 represent the column vectors of the sums of row 𝑁 and 𝑋, respectively.  

This type of equation refers to the demand side of the economy and shows how total income of each 

account is derived from endogenous and exogenous demand. 

System closing equations 

As final step of the application of the SAM approach to modelling, Pyatt (1988) mentions the choice 

of closure rules, which present the third type of equation to describe a basic model. These equations 

are necessary to close the system and typically focus on factor markets and capital accounts.  

The column summation equation p = 𝑝(𝑦; 𝑝, 𝑓, 𝜆) and the row summation equation 𝑦 = 𝑛 + 𝑥 give 

[𝑝] + [𝑦] − 1 independent equations. Therefore, a third set of [𝑓] + 2 equations is required to close 

the system. These equations refer to the closure rules.  

Because row and column summation equations are linear homogeneous, at least one of the closures 

has to be nonlinear by setting one price as numéraire for the entire system. All other prices are 

measured relative to this price.  
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2.4.2.2 Interdependence of prices 

Pyatt (1988) explains the interdependence of prices in SAM-based models as follows. Based on the 

column sums of commodities and activities and the requirement that total cost must be equal to 

total revenue, the price (average revenue) must equal average cost, which depend on prices. The 

interdependence between prices is therefore determined by the column summation equations for 

activities and commodities (see equation (E 6)). This equation shows that product and industry prices 

depend on each other.  

The prices in a CGE model are derived from accounting identities and follow economic theory. By 

definition, row and column totals of a SAM have to be equal. These transactions totals can be 

expressed as price multiplied by quantity. The quantity supplied by a commodity has to be equal to 

the quantity demanded. Entries in the column of a SAM record the expenditures to supply the 

commodity to the economy. Thus, this implicit price must be equal to the average cost to supply the 

commodity. Since row and column totals must be equal and the quantities supplied must be the 

same as demanded, the price for the row total must be equal to the average cost caused by the 

supply of the commodity. The interdependence between prices in CGE models are therefore derived 

by the structural information of the columns of a SAM (McDonald 2013). 

Law of one price  

The law of one price explains the price definition in a SAM for modelling and declares in this context 

why prices are common across the rows of the SAM. 

As already mentioned, in a SAM the entry in the ith row and jth column is equal to the expenditure of 

the jth account on the product of the ith account. The entry is also the income to the ith account from 

sales of its products to the jth account. Under the condition that a SAM is complete and consistent, 

the total income and total expenditure must be the same for each account (Punt 2013). 

McDonald (2011) describes this relation as follows: 

 ∑ 𝑝𝑖𝑗

𝑖

𝑞𝑖𝑗 =  ∑ 𝑇𝑖𝑗 = ∑ 𝑇𝑖𝑗 = ∑ 𝑝𝑖𝑗𝑞𝑖𝑗

𝑗𝑗𝑖

 ∀𝑖 = 𝑗 (E 10) 

where 𝑝 is the price and 𝑞 the quantity. This equation represents the assumption that prices are 

homogeneous along each row of the SAM and therefore the price for any transaction in one row is 

the same, irrespective of the agent who buys it (Drud et al. 1986). This fact is the so-called law of one 

price because it indicates the requirement that each price in the model is uniquely determined 

(McDonald 2011). If the price is unique, it is irrespective which agent buys the product, because the 

product is homogeneous. This implies that the quantities in any row are measured in the same units 
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and can be summed up to the row totals. The row totals are defined as the product of the respective 

price and the sum of quantities recorded in each transaction of the row (Punt 2013).  

McDonald (2011) describes this as follows: 

 𝑇𝑖𝑗 = ∑ 𝑝𝑖𝑞𝑖𝑗 = 𝑝𝑖

𝑗

𝑄𝑖  𝑎𝑛𝑑 ∑ 𝑞𝑖𝑗 =  𝑄𝑖

𝑗

 (E 11) 

By definition, row and column totals must be equal in a SAM, but the prices in the column relate to 

different goods and services. The prices are not the same and summing the quantities down the 

columns is not correct, because quantities are not in the same unit. To hold the accounting identities 

of a SAM, the quantities in each row should be expressed in similar units with one common single 

price. 

2.4.3 Equilibrium conditions and model closures 

Next to the equilibrium conditions, a model requires closures. In mathematical terms, model closures 

have to ensure that the number of equations and variables is consistent in order to solve the model. 

That means for the user of the model that a number of variables have to be fixed either on the 

original level or on a new level for scenario calculations.  

From the economic point of view, the decision about model closures declares how the modeller 

thinks the underlying economy operates. Therefore, model closures have an important impact on the 

results of model calculations. Appropriate variables that can be fixed in the model are related to the 

foreign exchange rate, savings and investments, enterprises, the government and factors of 

production.  

2.5 Summary  

This chapter presents the interrelations between the classic accounting framework of the SNA, a 

SAM and the application of a SAM in in the context of modelling.  

The SNA provides an internationally agreed coherent, comprehensive and complete statistical 

accounting framework to obtain information on the structure and development of an economy. A 

special focus was laid on SUT, which represent a cornerstone in the SNA to capture flows of goods 

and services and builds the basic database for the development of the SAM for Germany.  

The theoretical and methodological frame of a SAM in the context of the SNA and the connection to 

modelling are a further central point of this chapter. Here especially the ability of a SAM to capture 

the circular flow of goods and services in an economy and characteristics of the SAM accounting 

framework are introduced. 
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Furthermore, introduces this chapter the connection between the theory of accounting with the 

theory of modelling. Here The SAM approach for modelling combines the function of a SAM as a 

database with the function of a SAM to picture economic theory by describing the content of the 

SAM by behavioural relationships expressed by algebraic expressions to determine transaction 

values.  

Summarised it can be stated, that CGE models heavily depend on the quality of their database. A 

SAM comprises a comprehensive database that follows the clearly defined accounting rules of the 

SNA. 
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3 A Static Applied General Equilibrium Model – The STAGE base 

model 

3.1 Introduction 

The Static Applied General Equilibrium Model (STAGE) is a comparative-static model and represents 

the base model for the development of the modified model version STAGE_D. STAGE was developed 

by Scott McDonald and Karen Thierfelder (McDonald and Thierfelder 2013) and is a member of 

single-country CGE model descendants of a model approach described by Dervis et al. (1982) and 

further developed by Robinson et al. (1990), Kilkenny (1991) and Devarajan et al. (1994). STAGE is a 

SAM based model that is influenced by the SAM approach to modelling (Pyatt 1988), described in 

chapter 2.4. Therefore, also in STAGE_D the SAM serves as a database for model calibration and 

additionally the sub-matrices of the SAM identify agents of the economy, whose behavioural 

relationships are defined in the model.  

This chapter introduces the basic structure of the STAGE model. After a short excursus into the 

general equilibrium theory in section 3.2 with focus on the definition of an economy in an 

equilibrium situation, the following section 3.3 identifies the behavioural relationships with reference 

to the sub-matrices of the SAM and the underlying functional forms for modelling. Section 3.4 

considers quantity and section 3.5 price relationships in the STAGE base model. The subsequent 

sections give a more detailed insight in the algebraic statements of modelling production 

(section 3.6), trade (section 3.7) and household income and expenditure (section 3.8) in the base 

model. The closures of the base model are presented in section 3.9. A short summary of this chapter 

is given in section 3.10. 

3.2 Excursus to general equilibrium theory 

General equilibrium theory goes back to Leon Walras in the 1870s (Walker 2005). His theory was 

further developed by Arrow, Debreu and McKenzie in the 1950s (Arrow and Debreu 1954). From the 

1970s onward, technological progress and increasing computing power made it possible to develop 

‘computable´ models for national economies to obtain empirical solutions for general equilibrium 

prices and quantities. 

General equilibrium theory examines the fundamentals of supply and demand in a multi-market 

economy, with the objective to identify the equilibrium situation where all prices are in balance. 

Compared to the partial equilibrium theory, which focusses on a single market, the general 

equilibrium theory considers all markets. Here, the economy is regarded as an interrelated system of 

markets. In an equilibrium situation all consumers, enterprises, industries and factor services are in 
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equilibrium simultaneously. The equilibrium theory investigates the mechanism how choices of 

economic agents are coordinated across all markets in order to achieve the equilibrium situation 

(McKenzie 2002).  

With regard to the circular flow of an economy (see section 2.3.1), a general equilibrium is achieved 

if the following three conditions hold: 

 Market clearance, 

 Zero profit, 

 Income balance of households (Wing 2004). 

Market clearance condition: Market clearance is the situation, in which the quantity supplied equals 

the quantity demanded. The market clearing price, also called equilibrium price, is the price that 

causes the appropriate adjustment of supply and use (ibid).  

Zero profit condition: The zero profit condition for production implies the non-existence of long-term 

profits. The ‘Zero Profit Theorem’ states that firms enter into competitive markets until all 

possibilities for positive economic profit are reduced to zero. Therefore, a competitive firm 

maximises its profits by choosing the production at a price where marginal costs are equal to 

marginal revenues, which are equal to the marginal price (Gravelle andRees 2004). 

Income balance of households’ condition: This condition relates to household income and 

expenditure. In the equilibrium situation, income and expenditure of households have to equate. 

That means that the households factor endowment is fully employed and households spend their 

income on purchases and savings (Pandit and Shanmugam 2008).  

These three conditions are applied in CGE models to solve simultaneously for a set of prices and the 

allocation of products and factors. But for modelling also two additional assumptions are important:  

The first is the stability of the equilibrium for analysing the effects of changes of exogenous variables. 

If the equilibrium is stable, the system returns back to the point of equilibrium when it is in 

disequilibrium.  

The second point is the uniqueness of the equilibrium, which is important for comparative-static 

analysis, like in this study (Gravelle and Rees 2004). 

By running an experiment, disequilibrium is created. This is done by changing an exogenous 

parameter or variable in the model, i.e. for example a tax rate or factor demand by industries. The 

model solves for a new equilibrium. The comparison between the initial or base equilibrium with the 

new equilibrium shows the effects of changes in policy, technology or other external factors in the 

economy.  
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Today, CGE models are a standard tool for economic and political analysis and are widely used to 

analyse the aggregate welfare and distributional impacts of policies whose effects may be 

transferred across multiple markets (see Dervis et al. 1982). A CGE model explains the payments 

recorded in the database by using a set of linear and non-linear equations. These equations are 

solved simultaneously, whereby a CGE model has no objective function (Lofgren et al. 2002, 

Burfisher 2011). In a CGE model, the behaviour for consumption and production is determined by 

nonlinear first order conditions. It means that industries maximise their profits and consumer 

maximise their utility. Some of the equations represent a set of constraints that has to be satisfied by 

the system. These constraints affect markets for factors and commodities as well as macroeconomic 

aggregates like savings and investments, the government and the rest of the world 

(Lofgren et al. 2002). All equations in the model are solved simultaneously to find the equilibrium of 

the economy, where prices and quantities of supply and demand are equal in every market 

(Burfisher 2011).  

After this brief overview of general equilibrium theory, the next section gives an introduction to the 

STAGE base model, starting with a closer look at behavioural relationships.  

3.3 Behavioural relationships in STAGE  

The accounts of a SAM determine the agents of the model. The values included in the various 

submatrices recorded in a SAM identify the transactions of the agents of an economy. Additionally, 

these transactions represent the outcome of the behavioural relationships specified in the model. 

Behavioural relationships identify how the economic agents, captured in a CGE model, react to 

exogenous changes in parameters or variables. The specification of behavioural relationships and the 

calibration of their parameters is one part of the calibration process of a CGE model. After the 

calibration, the model is able to replicate the initial conditions recorded in SAM, which represents 

the base equilibrium situation. This section gives an overview of the behavioural relationships in the 

STAGE model. 

Starting point for the description is Table 4, which describes the behavioural relationships of the 

different agents in the STAGE standard model, structured by the sub matrices of the SAM.  

Behavioural relationships in STAGE are a mix of non-linear and linear functions that express the 

reactions of agents recorded in the model to exogenous changes in model parameters and/or 

variables (McDonald 2007). Non-linear functional forms are applied in five submatrices of the SAM. 

These submatrices comprise (1) production in the intermediate use matrix, (2) the factor demand 

matrix, (3) trade in the import matrix and (4) export matrix and (5) household consumption. 

Depending on the particular focus of the research question, these functional forms can differ.  
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Table 4: Behavioural relationships in the STAGE standard model 

 

Source: McDonald (2007) 

 

Commodities Activities Factors  Households Enterprises Government Capital Rest of the world Total Prices

Commodities 0
Leontief Input-Output 

coefficients
0

Utility functions 

(Cobb-Douglas or 

Stone-Geary)

Fixed in real terms
Fixed in real terms 

and export taxes

Fixed shares of 

savings
Commodity exports Commodity demand

Consumer 

commodity price

Activities Domestic production 0 0 0 0 0 0 0

Constant elasticity of 

substitution 

production functions

Prices for exports

Factors 0
Factor demands 

(CES)
0 0 0 0 0

Factor income from 

RoW
Factor income

Households 0 0
Fixed shares of 

factor income

Fixed Shares of 

income

Fixed shares of 

dividends
Fixed (real) transfers 0 Remittances Household income

Enterprises 0 0
Fixed shares of 

factor income
0 0 Fixed (real) transfers 0 Transfers Enterprise income

Government

Tariff revenue/ 

Domestic product 

taxes

Indirect taxes on 

activities

Fixed shares of 

factor income/ Direct 

taxes on factor 

income

Direct taxes on 

household income

Fixed shares of 

dividends/ Direct 

taxes on enterprise 

income

0 0 Transfers Government income

Capital 0 0 Depreciation Household savings Enterprise savings
Government savings 

(residual)
0

Current account 

‘deficit’
Total savings

Rest of the 

world 
Commodity imports 0

Fixed shares of 

factor income
0 0 0 0 0

Total ‘expenditure’ 

from RoW

Total Commodity supply Activity input Factor expenditure
Household 

expenditure

Enterprise 

expenditure

Government 

expenditure
Total investment

Total ‘income’ from 

RoW

Prices

Producer commodity 

prices/ Domestic and 

world prices for 

imports

Value-added prices
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3.3.1 Functional forms for modelling production, households and trade 

In this section, the non-linear behavioural relationships for production, households and trade are 

described in more detail in their functional forms.  

3.3.1.1 Functional forms for modelling production 

In CGE models producers are assumed to maximise profit under technological constraints and the 

first order condition (FOC) of the implemented production function. These conditions determine the 

optimal level of resource use and the combination of factors (Punt 2013). There are various 

functional forms to describe production in a CGE model, e.g. the Leontief production function, the 

Cobb-Douglas production function or Constant Elasticity of Substitution (CES) functions 

(Provide 2003b).  

The Leontief and Cobb-Douglas production functions can be regarded as special cases of the CES 

function. The Leontief production function is often applied under the assumption of fixed 

proportions of intermediate demand relative to the output of each industry due to the characteristic 

elasticity of substitution of zero. For Cobb-Douglas production functions, the elasticity of substitution 

between inputs is equal to one. CES functions are more flexible. The elasticity of substitution can 

have other values than one, but the elasticity is constant for all pairs of inputs in the function 

(Nicholson and Snyder 2010).  

During the development of STAGE_D, the majority of modifications were made in the nested 

production structure by the application of different kinds of CES functions. Therefore, this type of 

production function is now presented in more detail. 

Theory and variants of the CES function  

CES production functions were applied to modify the nested production structure in the STAGE_D to 

capture the complexity of the energy policy in Germany (see chapter 5). This part of the study, some 

theoretical aspects and variants of the CES function are examined in more detail.  

The CES function was described for the first time by Arrow, Chenery, Minhas and Solow (1961). The 

objective of Arrow et al. (1961) was a better representation of empirical evidence. Therefore, they 

developed a function with the focus on the following characteristics: a) homogeneity, b) constant 

elasticity of substitution between capital and labour and c) the possibility of different elasticities for 

different industries. They also revealed that the Leontief and Cobb-Douglas functions are special 

cases of the CES function. The introduction of the CES function by Arrow et al. (1961) was done for 

the two-factor case. Mukerji (1963) expanded this version by the n-factor case. Further 
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developments were carried out by Sato (1967), with an extension of the multi-factor CES function to 

the two-level CES function. 

Originally, the CES function was illustrated in the context of production under the assumption of 

profit maximisation. But CES functions are also applied in the context of consumption. Under the 

assumption of utility maximisation, a CES function builds the basis for the Linear Expenditure System 

(LES) utility function.  

The two-factor CES production function  

The presentation of the theoretical foundations of the two-factor CES production function follows 

the demonstration of Chiang and Wainwright (2005).  

The following equation represents the two-factor CES function,  

𝑄 = 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]
−1

𝜌⁄  (𝐴 > 0; 0 < 𝛿 < 1; −1 < 𝜌 ≠ 0) (E 12) 

in which 𝐾 and 𝐿 represent two factors of production. 𝐴 is the efficiency parameter, 𝜌 (rho) the 

substitution parameter and 𝛿 (delta) the distribution parameter. The efficiency parameter 𝐴 is a 

neutral efficiency parameter and serves as an indicator for the state of technology. It only effects the 

proportional change of output by a given set of inputs. The distribution parameter 𝛿 deals with the 

relative factor shares in the product. The substitution parameter 𝜌 determines the value of the 

(constant) elasticity of substitution.  

The CES function is homogeneous of degree 1. This can be proved by the replacement of the 

production factors 𝐾 and 𝐿 by 𝑗𝐾 and 𝑗𝐿 in equation (E 12). The output will change from 𝑄 to 𝑗𝑄. 

𝐴[𝛿 (𝑗𝐾)−𝜌 + (1 − 𝛿) (𝑗𝐿)−𝜌]
−1

𝜌⁄  =  𝐴{𝑗−𝜌[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]}
−1

𝜌⁄  

(E 13) 

 = (𝑗−𝜌)
−1

𝜌⁄ 𝑄 = 𝑗𝑄 

Due to the homogeneity of degree 1, the linear homogeneous production function is characterised 

by constant returns to scale. Constant returns to scale enable the application of Euler´s theorem. 

Euler´s theorem implies that if the price (in terms of output units) of each input factor is equal to its 

marginal product, the total cost is equal to total output (Nicholson and Snyder 2010). 
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A CES function is always negatively sloped with strictly convex isoquants for all positive values of 

𝐾 and 𝐿. This can be shown by the marginal products of 𝑄𝐿  

𝑄𝐿 ≡
𝛿𝑄

𝛿𝐿
 =  𝐴 (−

1

𝜌
) [𝛿 (𝐾)−𝜌 + (1 − 𝛿) (𝐿)−𝜌]

(−1
𝜌−1⁄ )

(1 − 𝛿) (−𝜌)𝐿−𝜌−1 

(E 14) 

 
= (1 − 𝛿) 𝐴[𝛿 (𝐾)−𝜌 + (1 − 𝛿) (𝐿)−𝜌]−(1+𝜌)/𝜌 𝐿−(1+𝜌) 

 
= (1 − 𝛿) 

𝐴1+𝜌

𝐴𝜌
[𝛿 (𝐾)−𝜌 + (1 − 𝛿) (𝐿)−𝜌]−(1+𝜌)/𝜌 𝐿−(1+𝜌) 

 
 =

(1−𝛿)

𝐴𝜌  (
𝑄

𝐿
)

1+𝜌
> 0 by (E 13) 

and similarly for 𝑄𝐾 , 

𝑄𝐾 ≡
𝛿𝑄

𝛿𝐾
 =

(1 − 𝛿)

𝐴𝜌
 (

𝑄

𝐾
)

1+𝜌

> 0 (E 15) 

which are defined for positive values of Kand L (Chiang and Wainwright 2005). Therefore, the slope 

of the isoquants is negative.  

𝑑𝐾

𝑑𝐿
=

𝑄𝐿

𝑄𝐾
 = −

(1 − 𝛿) 

𝛿
 (

𝐾

𝐿
)

1+𝜌

< 0 (E 16) 

As a result, d2K/dL2 will be greater than zero, what causes that the isoquants to be strictly convex 

for a positive K and L.  

The marginal product (see (E 14) and (E 15)) is used to determine the elasticity of substitution of a 

CES function.  

Therefore, the least-cost combination of the factors labour and capital 
QL

QK
=

PL

PK
 has to be found, 

where PL and PK are the prices for labour (wage rate) and capital (interest rate), like shown in 

equation (E 17). 

(1 − 𝛿)

𝐴𝜌
 (

𝐾

𝐿
)

1+𝜌

=
𝑃𝐿

𝑃𝐾
 (E 17) 
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Consequently, the optimal ratio of capital-labour use can be described as follows, 

(
𝐾∗

𝐿∗
) = (

𝛿

1 − 𝛿
)

1
(1+𝜌)⁄

 (
𝑃𝐿

𝑃𝐾
)

1
(1+𝜌)⁄

≡ 𝑐 (
𝑃𝐿

𝑃𝐾
)

1
(1+𝜌)⁄

 (E 18) 

where c is a shorthand symbol for the term (
𝛿

1−𝛿
)

1
(1+𝜌)⁄

. 

By using (𝐾∗ 𝐿∗)⁄  as a function of (𝑃𝐿 𝑃𝐾)⁄ , the associated marginal and average functions can be 

presented as follows: 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  =
𝑑(𝐾∗ 𝐿∗⁄ )

𝑑(𝑃𝐿 𝑃𝐾)⁄
=  

𝑐

1 + 𝜌
 (

𝑃𝐿

𝑃𝐾

)

1
1+𝜌

−1

 (E 19) 

𝐴𝑣𝑒𝑟𝑎𝑛𝑔𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  =
𝐾∗ 𝐿∗⁄

𝑃𝐿 𝑃𝐾⁄
=  𝑐 (

𝑃𝐿

𝑃𝐾

)

1
1+𝜌

−1

 (E 20) 

The resulting elasticity of substitution is the quotient of the marginal function and the average 

function.  

𝜎 =
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
=

1

1 + 𝜌
 (E 21) 

This equation shows that the elasticity of substitution is a constant whose magnitude depends on the 

value of the substitution parameter 𝜌, like shown here:  

−1 < 𝜌 < 0 ⟹ 𝜎 > 1 

(E 22) 𝜌 = 0 ⟹ 𝜎 = 1 

0 < 𝜌 < ∞ ⟹ 𝜎 < 1 

The first order condition for profit maximisation can be derived by including the profit maximisation 

condition, where the wage of factor F equals the marginal revenue product of the particular factor 

(𝑊𝐹 = 𝑀𝑅𝑃𝐹), into the equation for the marginal physical product of the factor (𝑀𝑃𝑃𝐹). Hence, the 

relation 𝑀𝑃𝑃𝐹 ∗ 𝑃 = 𝑀𝑅𝑃𝐹 = 𝑊𝐹 holds, where 𝑃 is the price of output. The marginal physical 

product is the first derivative of factor 𝐹.  
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The equilibrium demand for factor capital can therefore be described as follows 

(see Punt et al. 2003b): 

𝑀𝑃𝑃𝐾  = (−
1

𝜌
)  𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿)𝐿−𝜌]

−1
𝜌−1⁄

[(1 − 𝛿) (−𝜌) 𝐾−𝜌−1] 

(E 23) 
𝑀𝑅𝑃𝐾

𝑃
 = 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]

−1
𝜌−1⁄

[𝛿 𝐾−𝜌−1] 

𝑊𝐾  = 𝑃 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]
−1

𝜌−1⁄
[𝛿 𝐾−𝜌−1] 

The equilibrium factor demand for labour is derived in the same way: 

𝑀𝑃𝑃𝐿 = (−
1

𝜌
)  𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿)𝐿−𝜌]

−1
𝜌−1⁄

[𝛿 (−𝜌) 𝐿−𝜌−1] 

(E 24) 
𝑀𝑅𝑃𝐿

𝑃
 = 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]

−1
𝜌−1⁄

[𝛿 𝐿−𝜌−1] 

𝑊𝐿 = 𝑃 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]
−1

𝜌−1⁄
[𝛿 𝐿−𝜌−1] 

The equations for equilibrium factor demand satisfy the first-order condition for profit maximisation. 

Profit maximisation can be derived by the definition of a profit function (Π) as total revenue minus 

total costs, which is described as follows:  

∏ = 𝑃 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]
−1

𝜌−1⁄
− 𝑊𝐾𝐾 − 𝑊𝐿𝐿 (E 25) 

By using the first order partial differentials of the profit function for 𝐾 and 𝐿 and solving them 

simultaneously, the profit equilibrium condition can be obtained (Punt 2013). The first order partial 

differentials of the profit functions for 𝐾 and 𝐿 are set to zero:  

∂Π

𝜕𝐾
 = (−

1

𝜌
) 𝑃 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]

−1
𝜌−1⁄

[−𝜌 𝛿 𝐾−𝜌−1] − 𝑊𝐾 = 0 (E 26) 

∂Π

𝜕𝐿
 = (−

1

𝜌
) 𝑃 𝐴[𝛿 𝐾−𝜌 + (1 − 𝛿) 𝐿−𝜌]

−1
𝜌−1⁄

[−𝜌(1 − 𝛿)𝐿−𝜌−1] − 𝑊𝐿 = 0 (E 27) 
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Under the application of the first order partial differentials of the profit function, the optimal ration 

for the respective factor is determined by the ratio of prices according to the profit condition 

described in equation (E 28). 

𝑊𝐾

𝑊𝐿
 =

𝛿

1 − 𝛿
 (

𝐿

𝐾
)

𝜌+1

 (E 28) 

To receive the profit equilibrium condition, the ratio of factors has to be the dependent variable:  

𝐿

𝐾
 = (

𝑊𝐾

𝑊𝐿
 
1 − 𝛿

𝛿
)

1
𝜌+1

 (E 29) 

The generalised version of the two-factor CES function 

To allow the consideration of n factors, the CES function was further developed by Mukerji (1963).  

The generalised multi-factor CES function has the following form:  

𝑄 = 𝐴[𝛿1 𝑥1
−𝜌 + 𝛿2 𝑥2

−𝜌 + ⋯ + 𝛿𝑛 𝑥𝑛
−𝜌]

−𝜀
𝜌⁄  

(E 30) 
 

= 𝐴 [∑ 𝛿𝑖  𝑥𝑖

𝑛

𝑖=1

]

−𝜀
𝜌⁄

 

This function provided the basis for Sato (1967) to develop a two-level CES function that represent 

the foundation of nested production functions, which are used until today in CGE models. The two-

level CES function can be described as a special case of strongly separable functions. Therefore, the 

allocation of factors within each factor category (capital, labour) is determined solely by relative 

prices of that respective category (Punt 2003b). 

Similar to the case of two factors, the multiplication of each factor 𝑥𝑖 by a factor 𝜆 causes an increase 

of output by factor 𝜆𝜀. Therefore, it is a linear homogeneous function for 𝜀 = 1. The first order 

condition for profit maximisation for this type of CES function for factor 𝑥𝑖 is equal to the two-factor 

CES function and can be derived by setting the wage of factor 𝑥𝑖 (𝑊𝑖) equal to the marginal revenue 

product of product 𝑥𝑖 (𝑀𝑅𝑃𝑖). Doing this, the marginal physical product of 𝑥𝑖 (𝑀𝑅𝑃𝑖) is derived. The 

result of multiplying the marginal physical product by the price of output is the first order condition 

of the generalised form of the CES function.  
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The derivation of the first order condition of a linear homogeneous function (𝜀 = 1) is described here 

in its mathematical form and follows Punt (2013):  

𝑀𝑃𝑃𝑖  = (
−1

𝜌
) 𝐴[𝛿1 𝑥1

−𝜌 + 𝛿2 𝑥2
−𝜌 + ⋯ + 𝛿𝑛 𝑥𝑛

−𝜌]
−1

𝜌−1⁄
[(−𝜌) 𝛿𝑖  𝑥𝑖

−𝜌−1] 

(E 31) 

 
=  𝐴[𝛿1 𝑥1

−𝜌 + 𝛿2 𝑥2
−𝜌 + ⋯ + 𝛿𝑛 𝑥𝑛

−𝜌]
−1

𝜌−1⁄
[𝛿𝑖  𝑥𝑖

−𝜌−1] 

𝑀𝑅𝑃𝑖  = 𝑃 𝐴[𝛿1 𝑥1
−𝜌 + 𝛿2 𝑥2

−𝜌 + ⋯ + 𝛿𝑛 𝑥𝑛
−𝜌]

−1
𝜌−1⁄

[𝛿𝑖  𝑥𝑖
−𝜌−1] 

 𝑊𝑖  = 𝑃 𝐴[𝛿1 𝑥1
−𝜌 + 𝛿2 𝑥2

−𝜌 + ⋯ + 𝛿𝑛 𝑥𝑛
−𝜌]

−1
𝜌−1⁄

[𝛿𝑖  𝑥𝑖
−𝜌−1] 

 

= 𝑃 𝐴 [∑ 𝛿𝑖 𝑥𝑖
−𝜌

𝑛

𝑖=1

]

−1
𝜌−1⁄

[𝛿𝑖  𝑥𝑖
−𝜌−1] 

 

= 𝑃 𝑄 [∑ 𝛿𝑖  𝑥𝑖
−𝜌

𝑛

𝑖=1

]

−1

[𝛿𝑖  𝑥𝑖
−𝜌−1] 

By given the following relationship: 

𝑄 = 𝐴 [∑ 𝛾𝑖 𝑥𝑖
−𝜌

𝑛

𝑖=1

]

−1
𝜌⁄

 

(E 32) 

[∑ 𝛾𝑖  𝑥𝑖
−𝜌

𝑛

𝑖=1

] = [
𝑄

𝐴
]

−𝜌

 

Equation (E 31) can be restated in terms of the quantity ratio as follows:  

𝑊𝑖  = 𝑃 𝑄 [∑ 𝛾𝑖 𝑥𝑖
−𝜌

𝑛

𝑖=1

]

−1

[𝛾𝑖 𝑥𝑖
−𝜌−1] 

(E 33) 

𝑊𝑖

𝑃
 = 𝑄 [[

𝑄

𝐴
]

−𝜌

]

−1

[𝛾𝑖  𝑥𝑖
−𝜌−1] 

 
= 𝑄 [

𝑄

𝐴
]

−𝑝

[𝛾𝑖  𝑥𝑖
−𝜌−1] 

 
=

𝑄

𝑄−𝜌𝐴𝜌
 [𝛾𝑖  𝑥𝑖

−𝜌−1] 
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=

[𝛾𝑖  𝑥𝑖
−𝜌−1]

𝑄−𝜌−1 𝐴𝜌
 

 
=

𝛾𝑖

𝐴𝜌
 
𝑥𝑖

−𝜌−1

𝑄−𝜌−1
 

 
=

𝛾𝑖

𝐴𝜌
 [

𝑥𝑖

𝑄
]

−𝜌−1

 

[
𝑥𝑖

𝑄
]

−𝜌−1

 = [
𝑊𝑖

𝑃
 
𝐴𝜌

𝛾𝑖
] 

𝑥𝑖

𝑄
 = [

𝑃𝑖

𝑃
 
𝐴𝜌

𝛾𝑖
]

1
−𝜌−1

 

The CES functions applied in the STAGE standard model are linear homogenous. Thus, a 

multiplication of all inputs by the same value causes an increase of output by the same factor. A 

linear homogeneous production function is characterised by the following properties: 

 constant returns to scale, 

 marginal products that are independent of the scale of production, 

 the slopes of isoquants depend only on the input proportion, but not on the scale of 

production, 

 the output is equal to the sum of the marginal products of the used inputs multiplied by the 

amount of use (Gravelle and Reese 2004, Punt 2013). 

Section 3.6 gives an overview of modelling production in the STAGE base model. 

3.3.1.2 Functional forms for modelling households 

Private households are assumed to maximise their utility. This is done by the income allocation 

across commodities on the basis of their preferences and with regard to budget constraints and 

commodity prices. This behaviour can be represented by using a Stone-Geary or Cobb-Douglas utility 

function, as in the STAGE model. In STAGE, the Linear Expenditure System (LES) is based on the 

Stone-Geary utility function and represents the base for modelling household consumption. 

Therefore, the Stone-Geary and Cobb-Douglas utility functions are considered here in more detail.  

The LES, introduced by Stone (1954), can be derived from maximising the Stone-Geary utility function 

subject to household budget constraint. The Stone-Geary utility function is a variant of the Cobb-
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Douglas function and assumes that household expenditure is spent in fixed value shares to each 

product, so that the total disposable income is spent. The cross-price elasticity for this type of 

function is zero. All own-price elasticities are equal to the value of minus one. Income elasticities and 

the elasticities of substitution are equal to the value of one.  

The application of a Cobb-Douglas utility function is associated with advantages and disadvantages. 

One disadvantage is the assumption of constant average budget shares. Due to this, changing 

consumption and trade patterns and an inobservance of Engel`s law cannot be captured. Engel`s law 

states that in case of rising income the proportion of income spent on food decreases, even if 

expenditures on food increases (Nicholson and Snyder 2010). Nevertheless, the Cobb-Douglas utility 

function is often used in CGE models because this functional type is convenient in the calibration and 

no additional elasticities are necessary. The missing consumption shares can be easily calculated 

from the SAM (Punt 2013, Annabi et al. 2006). The Cobb-Douglas utility function can be achieved 

during the calibration process of the model by setting the Frisch parameter to minus one and all 

income elasticities of demand equal to one. By doing this, the Stone-Geary utility function changes 

into the Cobb-Douglas utility function (McDonald 2007). The Frisch parameter is the negative ratio 

between the total and discretionary expenditure. It measures “…the sensitivity of the marginal utility 

of income to total expenditures and establishes a relationship between income and own-price 

elasticities. Own-price and cross-price elasticities can be derived by using the Frisch parameter in 

conjunction with income elasticity.“ (Jussila et al. 2012, page 7).  

Compared to the Cobb-Douglas utility function, the LES does not assume unit income elasticity. 

Under a Stone-Geary utility function household consumption is divided into two components: the 

subsistence demand and the discretionary demand. The function captures both elements, which 

allow the user of the model to distinguish between households with different incomes 

(McDonald 2007). An overview how household income and expenditure is implemented into the 

STAGE base model is given in section 3.8. 

Another aspect of modelling household behaviour in STAGE is the differentiation between 

domestically produced and imported commodities. Functional forms for modelling trade are 

considered now.  

3.3.1.3 Functional forms for modelling trade  

In a CGE model, final consumption is divided into intermediate consumption and final demand by 

domestic agents, investments and exports. Supply comprises domestically produced goods and 

imports. CES functions can be applied to combine domestically produced goods and imports as 

‘composite’ goods. The optimal ratio for the demand of imported or domestic commodities is 

determined by their relative prices through the first order condition of the CES function. This 



A Static Applied General Equilibrium Model – The STAGE base model 

47 

distinction follows the Armington assumption. This assumption comprises the differentiation of 

products based on the origin of countries in which they are produced and the imperfect substitution 

between these goods (Armington 1969). 

In CGE models, the behavioural relationships of exports are often defined by the Constant Elasticity 

of Transformation (CET) function. The supply of commodities is determined by the domestic demand 

and the export demand of domestically produced commodities. Under the assumption of imperfect 

transformation between domestic demand and export demand, due to the application of the CET 

function, the optimal distribution of domestically produced commodities between the domestic 

market and the export market is determined by the relative prices between these two markets 

(Punt et al. 2003b). The implementation of trade in the STAGE standard model is presented in 

section 3.7.  

3.4 Quantity relationships in the STAGE base model  

This section presents the quantity and production relationships in the STAGE base model according 

to McDonald (2007). Starting point are the quantity relationships presented in Figure 4.  

The total demand for composite commodities in an economy (𝑄𝑄𝑐) is a composition of the demand 

for intermediate inputs (𝑄𝐼𝑁𝑇𝐷𝑐) and final demand. Final demand comprises consumption by 

households (𝑄𝐶𝐷𝑐), corporations (𝑄𝐸𝐷𝑐,𝑒), the government (𝑄𝐺𝐷𝑐), gross fixed capital formation 

(𝑄𝐼𝑁𝑉𝐷𝑐) and stock changes (𝑑𝑠𝑡𝑜𝑐𝑐𝑜𝑛𝑠𝑡𝑐). The products demanded are assumed to be composite 

products (𝑄𝑄𝑐) by a combination of domestically produced goods (𝑄𝐷𝑐) and imported goods 

(𝑄𝑀𝑐). The aggregation of these goods is determined by a CES function2 and the relevant first order 

condition.  

Domestically produced goods, sold on the domestic market (𝑄𝐷𝑐), represent only one part of total 

domestic supply (𝑄𝑋𝐶𝑐). The other part is assumed to be destined for the export market (𝑄𝐸𝑐). The 

distribution of goods between the domestic market and export market is governed by the Armington 

CET function3. The relative share of a product sold on each market depends on the relative price on 

the particular market. The product equilibrium condition ensures market clearing on the domestic 

market. In this case total demand and total supply of composite products (𝑄𝑄𝑐) are equal and the 

total domestic supply (𝑄𝑋𝐶𝑐) is either consumed domestically or exported.  

STAGE allows the consideration of multi-product industries, i.e. one industry can produce more than 

one product or the other way around: a commodity can be produced by multiple industries. 

Consequently, the total production of a commodity is the sum of commodities produced by different 

                                                           
2
 The elasticity parameter used in CES functions is identified by sigma (𝜎). 

3
 Omega (Ω) represents the elasticity parameter of the Armington CET function for exports. 
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activities. These commodities derive from different industries (𝑄𝑋𝐴𝐶𝑐,𝑎) and are aggregated across 

sectors to reach the total domestic production of this commodity (𝑄𝑋𝐶𝑐). The optimal combinations 

are determined by industry prices and the first order condition. Each industry produces its specific 

combination of products in fixed proportions. The output of 𝑄𝑋𝐴𝐶𝑐,𝑎 follows the conditions of the 

Leontief function and is a fixed proportion aggregate of the output of each industry (𝑄𝑋𝑎). The 

assumption of fixed proportions allows input use to be determined together with the output level, 

because the input level would increase in the same proportions as the level of output.  

Figure 4: Quantity relationships in the STAGE base model 

 

Source: McDonald (2007) 

Domestically produced commodities (𝑄𝑋𝐶𝑐), commodities produced for the domestic market (𝑄𝐷𝑐), 

imports (𝑄𝑀𝑐) and exports (𝑄𝐸𝑐) are valued at basic prices. Intermediate demand (𝑄𝐼𝑁𝑇𝐷𝑐) and 
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the different parts of final demand (𝑄𝐶𝐷𝑐 , 𝑄𝐸𝑁𝑇𝐷𝑐,  𝑄𝐺𝐷𝑐 , 𝑄𝐼𝑁𝑉𝐷𝑐 , 𝑑𝑠𝑡𝑜𝑐𝑐𝑜𝑛𝑠𝑡𝑐) are valued at 

purchasers´ prices.  

For modelling consumption by households (𝑄𝐶𝐷𝑐) the LES utility function is applied. Final demand 

by enterprises (𝑄𝐸𝑁𝑇𝐷𝑐) and the government (𝑄𝐺𝐷𝑐) as well as the demand for investment 

(𝑄𝐼𝑁𝑉𝐷𝑐) are fixed in real terms. The demand of these parts of final demand is assumed not to be 

price-driven, compared to household or enterprise decisions.  

In the basic version of STAGE, production is depicted as a two-level nested production structure by 

the application of different nested CES and Leontief production functions. The production 

relationships of the base version are shown in Figure 5. This figure can be regarded as continuation of 

Figure 4, but furthermore, as the base for the modification done in this study to develop STAGE_D 

(see section 5). For simplifying the illustration only two intermediate inputs and three primary inputs 

are recorded. 

At the top level of the nested production function, the output of the industry (𝑄𝑋𝑎) is defined as a 

CES aggregate of intermediate input aggregate (𝑄𝐼𝑁𝑇𝑎) and the value added aggregate (𝑄𝑉𝐴𝑎) in 

the default version. The elasticity of substitution (𝜎) between the intermediate input aggregate and 

value added aggregate can differ between industries. The aggregation of intermediate inputs is 

defined by a Leontief aggregation, which implies an elasticity of substitution of zero and a 

combination of inputs in fixed proportions (𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎) per unit of aggregate intermediate input 

and output.  

Figure 5: Production relationships in the STAGE base model 

 

Source: McDonald (2007) 
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The value added aggregate (𝑄𝑉𝐴𝑎) in the base version of STAGE is defined as a CES aggregate of the 

quantities of factors (𝐹𝐷𝑓,𝑎). The elasticity of substitution (𝜎) between primary inputs (𝐹𝐷𝑓,𝑎) can 

be different for each industry, but remains fixed between any pair of factors. The first order 

condition for the CES function is used to allocate the total factor supply between the industries. The 

allocation of factors depends on their relative price.  

3.5 Price relationships in the STAGE base model 

Figure 6 presents the price relationships in the base STAGE model. The supply price of composite 

commodities (𝑃𝑄𝑆𝑐) is valued at basic prices and defined as the weighted averages of domestically 

produced commodities sold on the domestic market (𝑃𝐷𝑐) and the domestic prices for imported 

products (𝑃𝑀𝑐). The prices for imported products (𝑃𝑀𝑐) are determined by the world price 

(𝑃𝑊𝑀𝑐), the exchange rate and the ad valorem import duties (𝑇𝑀𝑐). The supply price of composite 

goods is captured by a CES aggregation of domestically produced and imported products. This 

approach allows substitution between domestically produced and imported products based on the 

ratio of domestic and international prices. After adding up sales taxes (𝑇𝑆𝑐) and excise duties 

(𝑇𝐸𝑋𝑐) the composite consumer price (𝑃𝑄𝐷𝑐) is obtained. The composite consumer price (𝑃𝑄𝐷𝑐) is 

valued at purchasers´ prices, because it includes taxes, VAT, transport charges and margins. The 

producer price of products (𝑃𝑋𝐶𝑐) is valued at basic prices and defined by the weighted averages of 

the prices received for domestically produced products sold on the domestic market (𝑃𝐷𝑐) and the 

export market (𝑃𝐸𝑐). This composition is determined endogenously in the model through the first 

order condition for the optima of the CET function. The domestic export prices (𝑃𝐸𝑐) are derived by 

multiplying the world price of exports (𝑃𝐸𝑊𝑐) with the exchange rate (𝐸𝑅) less export duties, which 

are defined by ad valorem export duties (𝑇𝐸𝑐). Here, the law of one price is violated, but this 

treatment allows the substitution between producing for domestic and export markets. The average 

price per unit of output received by an industry (𝑃𝑋𝑎) is defined by the weighted average of the 

producer prices of each commodity produced by each industry (𝑃𝑋𝐴𝐶𝑐,𝑎), where the weight of each 

product in the output mix remains constant (McDonald 2007). 
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Figure 6: Price relationships in the STAGE base model 

 

Source: McDonald (2007)  

Figure 7 presents the price relationships in the production nest in the STAGE base model that can be 

regarded as continuation of Figure 6.  

After paying indirect taxes (𝑇𝑋𝑎), the average price per unit of output received by an industry (𝑃𝑋𝑎) 

is divided between the price of aggregate value added (𝑃𝑉𝐴𝑎) and the price of aggregate 

intermediate inputs (𝑃𝐼𝑁𝑇𝑎). The price of aggregate value added is the amount available to pay for 

primary input (𝐹𝐷𝑓,𝑎). The price of aggregate intermediate inputs is defined as the weighted sum of 

the prices of inputs (𝑃𝑄𝐷𝑐), where the weights are derived from the volume of each product in total 

intermediate input. The prices paid for intermediate inputs are the same as paid for final demand. 

That means that the law of one price is adhered to domestic demand, because intermediate demand 
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and final demand are valued at purchasers` prices. The factor prices (𝑊𝐹𝑓,𝑎) are factor and industry 

specific. Different industries therefore can pay different prices for capital, labour and land.  

Figure 7: Price relationships for production in the STAGE base model 

 

Source: McDonald (2007) 

3.6 Modelling production in the STAGE base model  

In a CGE model, behavioural equations govern the producers’ decision about their input use and level 

of output (see section 3.3). Producers can act as cost-minimisers, choosing the minimal cost level of 

inputs for a given output. But producers can also be regarded as agents who maximise their profits. 

In STAGE producers are assumed to maximise profit subject to technology constraints and the first 

order condition related to the production function. The objective of modelling production in CGE 

models is the determination of the optimal level of resource use and the combination of factors. 

The supply price of domestically produced commodities depends on the purchaser prices for the 

specific commodity on the domestic and foreign markets. Following the assumption that each 

domestic activity produces multiple commodities in fixed proportions (𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥), these proportions 

are used for a mapping of supply prices of commodities with the weighted average activity prices 

(𝑃𝑋𝑎) (see equation (E 34)).  

𝑃𝑋𝑎 = ∑ 𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥𝑎,𝑐 ∗ 𝑃𝑋𝐶𝑐

𝑐

 (E 34) 

As already mentioned in section 3.4, production is presented in the STAGE base version by a two-

level production function, where the top level is defined as a CES or Leontief production function. If a 

CES function is chosen, the value of activity output can be described as the weighted sums of input 
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expenditures in volume shares, after paying production taxes (𝑇𝑋𝑎) (see equation (E 35)). 

Production taxes are assumed to be ad valorem. 

𝑃𝑋𝑎 ∗ (1 − 𝑇𝑋𝑎) ∗ 𝑄𝑋𝑎 = (𝑃𝑉𝐴𝑎 ∗ 𝑄𝑉𝐴𝑎) + (𝑃𝐼𝑁𝑇𝑎 ∗ 𝑄𝐼𝑁𝑇𝑎) (E 35) 

The aggregate price for intermediate inputs (𝑃𝐼𝑁𝑇𝑎) is defined as the intermediate input-output 

coefficient weighted sum of the prices of intermediate inputs (see equation (E 36)).  

𝑃𝐼𝑁𝑇𝑎 = ∑(𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎 ∗ 𝑃𝑄𝐷𝑐)

𝑐

 (E 36) 

Here, 𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎 represents the intermediate input-output coefficients, where the output is the 

aggregated intermediate input (𝑄𝐼𝑁𝑇𝑎). 

The CES function at the top level nest of production  

In the base version of STAGE model a two-argument CES function is applied at the top level of the 

production nest (see equation (E 37)). The output produced by an industry a (𝑄𝑋𝑎) is determined by 

the aggregate value added (𝑄𝑉𝐴𝑎) and aggregate intermediate input (𝑄𝐼𝑁𝑇𝑎), where 

𝛿𝑎 (0 ≤ 𝛿 ≤ 1) is the share parameter, 𝜌𝑐
𝑥  (−1 ≤ 𝜌 ≤ ∞) the substitution parameter and 

𝐴𝐷𝑎
𝑥 (𝐴𝐷 > 0) the efficiency or shift variable.  

𝑄𝑋𝑎 = 𝐴𝐷𝑎
𝑥 ∗ (𝛿𝑎

𝑥 ∗ 𝑄𝑉𝐴𝑎
−𝜌𝑎

𝑥

+ (1 − 𝛿𝑎
𝑥) ∗ 𝑄𝐼𝑁𝑇𝑎

−𝜌𝑎
𝑥

)
−

1
𝜌𝑎

𝑥
 (E 37) 

The efficiency/ shift parameter is defined as a variable, because the model provides the possibility to 

adjust this variable (see equation (E 38)), where 𝑎𝑑𝑥𝑏 is the base value and 𝑑𝑎𝑑𝑎𝑑𝑥 is the absolute 

change in the base value. The factor 𝐴𝐷𝑋𝐴𝐷𝐽 is an equi-proportionate adjustment factor. 𝐷𝐴𝐷𝑋 

represents an additive adjustment factor and 𝑎𝑑𝑥01 a vector of zeros and non-zeros for scaling the 

additive adjustment factor. 

𝐴𝐷𝑋𝑎 = [(𝑎𝑑𝑥𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑥𝑎) ∗ 𝐴𝐷𝑋𝐴𝐷𝐽] + (𝐷𝐴𝐷𝑋 ∗ 𝑎𝑑𝑥01𝑎) (E 38) 

The first order condition defines the optimal ratio to combine value added and intermediate inputs 

and can be depicted in terms of the relative price of value added (𝑃𝑉𝐴𝑎) and intermediate inputs 

(𝑃𝐼𝑁𝑇𝑎) (see equation (E 39)). 

𝑄𝑉𝐴𝑎

𝑄𝐼𝑁𝑇𝑎
 = [

𝑃𝐼𝑁𝑇𝑎

𝑃𝑉𝐴𝑎
∗

𝛿𝑎

(1 − 𝛿𝑎
𝑥)

]
−

1
𝜌𝑎

𝑥

 (E 39) 
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The CES function in the second level nest 

The second level of the production nest is modelled as a multi-factor (n-argument) CES function to 

combine production factors into the value added aggregate (𝑄𝑉𝐴𝑎) (see equation (E 40)). 

𝑄𝑉𝐴𝑎 = 𝐴𝐷𝑎
𝑣𝑎 ∗ [ ∑ 𝛿𝑓,𝑎

𝑣𝑎 ∗ 𝐴𝐷𝐹𝐷𝑓,𝑎 ∗ 𝐹𝐷𝑓,𝑎
−𝜌𝑎

𝑣𝑎

𝑓$𝛿𝑓,𝑎
𝑣𝑎

]

−1
𝜌𝑎

𝑣𝑎⁄

 (E 40) 

Accordingly, 𝛿𝑓,𝑎
𝑣𝑎  is the share parameter, 𝜌𝑎

𝑣𝑎 represents the substitution parameter and 𝐴𝐷𝑎
𝑣𝑎 the 

efficiency factor. The first order condition for profit maximisation (see equation (E 41)) determines 

the wage rate of factors (𝑊𝐹𝑓). 

𝑊𝐹𝑓 ∗ 𝑊𝐹𝐷𝐼𝑆𝑇𝑓,𝑎 ∗ (1 + 𝑇𝐹𝑓,𝑎  

 = 𝑃𝑉𝐴𝑎 ∗ 𝐴𝐷𝑎
𝑣𝑎 ∗ [ ∑ 𝛿𝑓,𝑎

𝑣𝑎 ∗ 𝐴𝐷𝐹𝐷𝑓,𝑎 ∗ 𝐹𝐷𝑓,𝑎
−𝜌𝑎

𝑣𝑎

𝑓$𝛿𝑓,𝑎
𝑣𝑎

]

−(
1+𝜌𝑎

𝑣𝑎

𝜌𝑎
𝑣𝑎 )

∗ 𝛿𝑓,𝑎
𝑣𝑎 ∗ 𝐹𝐷𝑓,𝑎

(−𝜌𝑎
𝑣𝑎−1)

 (E 41) 

 = 𝑃𝑉𝐴𝑎 ∗ 𝑄𝑉𝐴𝑎 ∗ 𝐴𝐷𝑎
𝑣𝑎 ∗ [ ∑ 𝛿𝑓,𝑎

𝑣𝑎 ∗ 𝐴𝐷𝐹𝐷𝑓,𝑎 ∗ 𝐹𝐷𝑓,𝑎
−𝜌𝑎

𝑣𝑎

𝑓$𝛿𝑓,𝑎
𝑣𝑎

]

−1

∗  

 𝛿𝑓,𝑎
𝑣𝑎 ∗ 𝐴𝐷𝐹𝐷𝑓,𝑎

−𝜌𝑎
𝑣𝑎

∗ 𝛿𝑓,𝑎
𝑣𝑎 ∗ 𝐹𝐷𝑓,𝑎

(−𝜌𝑎
𝑣𝑎−1)

  

The ratio of factor payments for factor 𝑓 from activity 𝑎 (𝑊𝐹𝐷𝐼𝑆𝑇𝑓,𝑎) is included in the equation to 

allow for non-homogenous factors. This ratio results directly from the first order condition for profit 

maximisation as equality between the wage rates for each factor in each activity and the values of 

the marginal products of those factors in each activity. The efficiency/ shift factor is again defined as 

a variable with the appropriate adjustment mechanism.   
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The Leontief production function on the top level nest of production  

Under the assumption of the Leontief technology on the top level of the production nest, the 

aggregate quantities of the aggregate value added (𝑄𝑉𝐴𝑎) and intermediate inputs (𝑄𝐼𝑁𝑇𝑎) are 

determined by the following aggregation functions,  

𝑄𝑉𝐴𝑎 = 𝑖𝑜𝑞𝑣𝑎𝑞𝑥𝑎 ∗ 𝑄𝑋𝑎  ∀𝑎𝑞𝑥𝑛𝑎 (E 42) 

𝑄𝐼𝑁𝑇𝑎 = 𝑖𝑜𝑞𝑖𝑛𝑡𝑞𝑥𝑎 ∗ 𝑄𝑋𝑎 ∀𝑎𝑞𝑥𝑎 (E 43) 

where 𝑖𝑜𝑞𝑣𝑎𝑞𝑥 and 𝑖𝑜𝑞𝑖𝑛𝑡𝑞𝑥 are fixed volume shares of 𝑄𝑉𝐴𝑎 and 𝑄𝐼𝑁𝑇𝑎 in the output 𝑄𝑋𝑎. The 

application of the Leontief assumption on the top level is controlled in STAGE by the membership of 

the activity in the set 𝑎𝑞𝑥. The set 𝑎𝑞𝑥𝑛 is the complement to 𝑎𝑞𝑥 and comprises all activities 

without the Leontief assumption on the top-level.  

The Leontief production function at the second level nest of production  

In the default version of STAGE the Leontief technology assumption is applied in the production nest 

for intermediate inputs on the second level. That implies that intermediate inputs are combined in 

fixed proportions (𝑖𝑜𝑞𝑖𝑛𝑡𝑞𝑥𝑎) to generate intermediate input (𝑄𝐼𝑁𝑇𝑎) for an industry. Furthermore, 

it represents a multiple input use, which is applied in fixed proportions relative to the level of output 

(𝑄𝑋𝑎). Here, the application of a Leontief production function implies a substitution between inputs 

by zero.  

𝑄𝐼𝑁𝑇𝑎 = 𝑖𝑜𝑞𝑖𝑛𝑡𝑞𝑥𝑎 ∗ 𝑄𝑋𝑎 (E 44) 

The aggregate intermediate input (𝑄𝐼𝑁𝑇𝑎) of industries has to be transformed to the intermediate 

input by commodity (𝑄𝐼𝑁𝑇𝐷𝑐). This is done by using the fixed (Leontief) input coefficients of 

demand for commodity by activity (𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐𝑐,𝑎). This coefficient is multiplied by the quantity of the 

activity specific intermediate input (𝑄𝐼𝑁𝑇𝑎), like shown in the following equation:  

𝑄𝐼𝑁𝑇𝐷𝑐 = ∑ 𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎 ∗ 𝑄𝐼𝑁𝑇𝑎

𝑎

 (E 45) 
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Modelling commodity output 

In CGE models assuming that each industry only produces one single product, the output of an 

industry (𝑄𝑋𝑎) would be equal to the product output (𝑄𝑋𝐶𝑐) of that industry. In reality an industry 

produces in most cases more than one product. To allow STAGE for multi-product activities, 

assumptions have to be made with regard to the output composition of an industry, i.e. the ratio, in 

which different commodities are produced. Each activity produces a total output, which is the 

aggregate of different commodities produced by the activity (𝑄𝑋𝐴𝐶𝑎,𝑐), but also the composite 

supply of each commodity (𝑄𝑋𝐶𝑐). This relation is presented in equation (E 46). 

𝑄𝑋𝐶𝑐 = 𝑎𝑑𝑥𝑐𝑐 ∗ [ ∑ 𝛿𝑎,𝑐
𝑥𝑐

𝑎$𝛿𝑎,𝑐
𝑥𝑐

∗ 𝑄𝑋𝐴𝐶𝑎,𝑐
−𝜌𝑐

𝑥𝑐

]

−1
𝜌𝑐

𝑥𝑐⁄

 ∀𝑐𝑥𝑐  𝑎𝑛𝑑 𝑐𝑥𝑎𝑐𝑐 (E 46) 

The default version of STAGE comprises the assumption that a commodity, produced by multiple 

activities, is differentiated by reference to the activity that produces this commodity. Therefore, the 

total production of one commodity is defined as a CES aggregate of the quantities of this commodity 

produced by each activity. This enables the model to capture two important aspects: The model can 

a) differentiate between commodity qualities and b) capture different output compositions of 

activities. The assumption of imperfect substitution is included in the model by a CES aggregator 

function, where 𝑎𝑑𝑥𝑐𝑐 is the shift parameter, 𝛿𝑎,𝑐
𝑥𝑐  the share parameter and 𝜌𝑐

𝑥𝑐 the elasticity 

parameter. The first order condition for the optimal combination of commodity output is given by 

the following equation (E 47). The prices for each commodity produced by each activity are captured 

by 𝑃𝑋𝐴𝐶𝑎,𝑐.  

𝑃𝑋𝐴𝐶𝑎,𝑐  = 𝑃𝑋𝐶𝑐 ∗ 𝑎𝑑𝑥𝑐𝑐 ∗ [ ∑ 𝛿𝑎,𝑐
𝑥𝑐

𝑎$𝛿𝑎,𝑐
𝑥𝑐

∗ 𝑄𝑋𝐴𝐶𝑎,𝑐
−𝜌𝑐

𝑥𝑐

]

−(
1+𝜌𝑐

𝑥𝑐

𝜌𝑐
𝑥𝑐 )

∗ 𝛿𝑎,𝑐
𝑥𝑐 ∗ 𝑄𝑋𝐴𝐶𝑎,𝑐

(−𝜌𝑐
𝑥𝑐−1)

 (E 47) 

 = 𝑃𝑋𝐶𝑐 ∗ 𝑄𝑋𝐶𝑐 ∗ [ ∑ 𝛿𝑎,𝑐
𝑥𝑐

𝑎$𝛿𝑎,𝑐
𝑥𝑐

∗ 𝑄𝑋𝐴𝐶𝑎,𝑐
−𝜌𝑐

𝑥𝑐

]

−(
1+𝜌𝑐

𝑥𝑐

𝜌𝑐
𝑥𝑐 )

∗ 𝛿𝑎,𝑐
𝑥𝑐 ∗ 𝑄𝑋𝐴𝐶𝑎,𝑐

(−𝜌𝑐
𝑥𝑐−1)

 ∀𝑐𝑥𝑎𝑐𝑐 

Under the assumption that commodities are perfect substitutes, the model includes an alternative 

specification for commodity aggregation. Here, commodities produced by different activities are 

regarded as perfect substitutes, e.g. electricity, and modelled in the following way in the model 

(see equation (E 48)). 
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𝑄𝑋𝐶𝑐 = ∑ 𝑄𝑋𝐴𝐶𝑎,𝑐

𝑎

 ∀𝑐𝑥𝑐  𝑎𝑛𝑑 𝑐𝑥𝑎𝑐𝑛𝑐  (E 48) 

The underlying price condition includes that 𝑃𝑋𝐴𝐶𝑎,𝑐 is equal to 𝑃𝑋𝐶 for the appropriate commodity 

activity combination (see equation (E 49)). 

𝑃𝑋𝐴𝐶𝑎,𝑐 = 𝑃𝑋𝐶𝑐 ∀𝑐𝑥𝑎𝑐𝑛𝑐 (E 49) 

The decision, which aggregation function is active in the model is controlled by the membership of 

commodities in the sets 𝑐𝑥𝑎𝑐 or 𝑐𝑥𝑎𝑐𝑛. The set 𝑐𝑥𝑎𝑐 includes commodities that are differentiated by 

activities, whereby no differentiation is made in set 𝑐𝑥𝑎𝑐𝑛. 

The STAGE base model follows the assumption that the product output ratio remains constant 

regardless of the output level of the industry, i.e. the Leontief assumption of fixed proportions. The 

output ratio by activity is captured in the base model by the parameter 𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥. The quantity of 

each commodity produced by each industry (𝑄𝑋𝐴𝐶𝑎,𝑐) is calculated according to the following 

formula (E 50): 

𝑄𝑋𝐴𝐶𝑎,𝑐 = 𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥𝑎,𝑐 ∗ 𝑄𝑋𝑎  (E 50) 

This equation not only deals with the patterns of secondary production, it also provides the market 

clearing conditions for equality between supply and demand of domestic output.  

3.7 Modelling trade in the STAGE base model  

STAGE allows international trade of goods and services and therefore belongs to the category of 

open economy models. On the demand side, domestically produced goods and services compete 

with imports. On the supply side, domestically produced goods and services can be sold on domestic 

markets or exported. Under the Armington assumption, domestic and imported goods are imperfect 

substitutes. To implement this difference into CGE models, De Melo and Robinson (1985) proposed 

the use of CET functions to consider the imperfect substitution between domestically produced and 

exported goods on the supply side. For the demand side, CES functions are used in the base model 

(McDonald 2007).  

The CET function for exports in the STAGE base model 

In the basic version of STAGE a two-argument CET function and the related first order condition 

determine the relative share of products sold on the export market and on the domestic market.  



A Static Applied General Equilibrium Model – The STAGE base model 

58 

Domestic commodity production (𝑄𝑋𝐶𝑐) is determined by the quantity of exported goods (𝑄𝐸𝑐) and 

the domestic demand (𝑄𝐷𝑐), the distribution or share parameter 𝛾 (0 ≤ 𝛾 ≤ 1), the substitution 

parameter 𝜌 (−1 ≤ 𝜌 ≤ ∞) and the efficiency or shift parameter (𝑎𝑡 > 0). The CET function for 

export is distinguished by constant return to scale and is presented by the following equation (E 51): 

𝑄𝑋𝐶𝑐 = 𝑎𝑡𝑐 ∗ (𝛾𝑐 ∗ 𝑄𝐸𝑐
𝜌𝑐 + (1 − 𝛾𝑐) ∗ 𝑄𝐷𝑐

𝜌𝑐)
1

𝜌𝑐 (E 51) 

The first order condition of this function (see (E 52)) determinates the optimal ratio between 

products sold on the domestic markets (𝑄𝐷𝑐) or on export markets (𝑄𝐸𝑐). This is achieved by the 

relative prices of exports (𝑃𝐸𝑐) and domestic prices (𝑃𝐷𝑐): 

𝑄𝐸𝑐

𝑄𝐷𝑐
 =  [

𝑃𝐸𝑐

𝑃𝐷𝑐
∗  

(1 − 𝛾𝑐)

(𝛾𝑐)
]

1
𝜌𝑐−1

 (E 52) 

The domestic price for exports (𝑃𝐸𝑐) is defined as the product of the world price of exports (𝑃𝑊𝐸), 

the exchange rate (𝐸𝑅) and one minus the export tax rate (McDonald 2007). 

The CES function for imports in the STAGE base model 

The substitution between domestically produced goods and imported goods is implemented in 

STAGE by disposing a two-argument CES function. The domestic commodity demand (𝑄𝑄𝑐) is stated 

by the quantity of imports (𝑄𝑀𝑐) and domestically produced goods (𝑄𝐷𝑐), the distribution or share 

parameter 𝛿 (0 ≤ 𝛿 ≤ 1), the substitution parameter 𝜌 (−1 ≤ 𝜌 ≤ ∞) and the efficiency or shift 

parameter (𝑎𝑐 > 0). This CES function is called Armington function and is characterised by constant 

returns to scale. The following function (E 53) presents the Armington function in the STAGE base 

model:  

𝑄𝑄𝑐  = 𝑎𝑐𝑐 ∗ (𝛿𝑐 ∗ 𝑄𝑀𝑐
−𝜌𝑐 + (1 − 𝛿𝑐) ∗ 𝑄𝐷𝑐

−𝜌𝑐)
−

1
𝜌𝑐  (E 53) 

The optimal ratio between import (𝑄𝑀𝑐) and domestic demand (𝑄𝐷𝑐) is achieved by the first order 

condition (see (E 54)). This ratio depends on the relative prices of imported (𝑃𝑀𝑐) and domestically 

(𝑃𝐷𝑐) supplied goods, the distribution or share parameter 𝛿 and the substitution parameter 𝜌. 

𝑄𝑀𝑐

𝑄𝐷𝑐
 =  [

𝑃𝐷𝑐

𝑃𝑀𝑐
∗  

𝛿𝑐

(1 − 𝛿𝑐)
]

1
(1+𝜌𝑐)

 (E 54) 
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3.8 Modelling household income and expenditure in the STAGE base model  

Single-country CGE models like STAGE are able to be calibrated on the basis of a SAM that includes a 

variety of household types. This is a difference to global CGE models, which usually comprise a single 

household account per region. Therefore, single country CGE models are often used to analyse 

impacts of political or economic changes on much more detailed types of households.  

This section describes the implementation of household income and expenditure generation in 

STAGE following the explanation of household modelling in the STAGE documentation 

(McDonald 2007). 

Household income 

Households receive income from various sources. Factor incomes for factors owned by the 

household are distributed under the assumption of fixed proportions (ℎ𝑜𝑣𝑎𝑠ℎ). Additionally, 

households can receive income from transfers (𝐻𝑂𝐻𝑂), payments from incorporated enterprises 

(𝐻𝑂𝐸𝑁𝑇), transfers from the government (ℎ𝑜𝑔𝑜𝑣𝑐𝑜𝑛𝑠𝑡) or from the rest of the world (ℎ𝑜𝑤𝑜𝑟) 

(see equation (E 55)).  

𝑌𝐻ℎ = (∑ ℎ𝑜𝑣𝑎𝑠ℎℎ,𝑓 ∗ 𝑌𝐹𝐷𝐼𝑆𝑃𝑓

𝑓

) + (∑ 𝐻𝑂𝐻𝑂ℎ,ℎ𝑝

ℎ𝑝

) (E 55) 

 +𝐻𝑂𝐸𝑁𝑇ℎ + (ℎ𝑜𝑔𝑜𝑣𝑐𝑜𝑛𝑠𝑡ℎ ∗ 𝐻𝐺𝐴𝐷𝐽 ∗ 𝐶𝑃𝐼) + (ℎ𝑜𝑤𝑜𝑟ℎ ∗ 𝐸𝑅)  

Inter-household transfers (𝐻𝑂𝐻𝑂) are defined as a fixed share of household income (𝑌𝐻) after the 

payment of direct taxes and savings.  

Household expenditure 

Household expenditure is defined as household income after the payment of taxes, less savings and 

transfers to other households (see equation (E 56)). 

𝐻𝐸𝑋𝑃ℎ = (𝑌𝐻ℎ ∗ (1 − 𝑇𝑌𝐻ℎ)) ∗ (1 − 𝑆𝐻𝐻ℎ) − (∑ 𝐻𝑂𝐻𝑂ℎ𝑝,ℎ

ℎ𝑝

) (E 56) 

In the default version of STAGE household demand is modelled by using a LES function. This LES 

functional form is the only non-linear function in the model. The LES function is related to the Cobb-

Douglas and CES function. Contrary to the Cobb-Douglas function, the LES function does not assume 

unit income elasticity (see section 3.3.1). The LES functional form in STAGE is the Stone-Geary utility 

function to maximise household utility (see formula (E 57)).  
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𝑄𝐶𝐷𝑐 = 
(∑ (𝑃𝑄𝐷𝑐ℎ ∗ 𝑞𝑐𝑑𝑐𝑜𝑛𝑠𝑡𝑐,ℎ + ∑ 𝑏𝑒𝑡𝑎𝑐,ℎ ∗ (𝐻𝐸𝑋𝑃ℎ − ∑ (𝑃𝑄𝐷𝑐 ∗ 𝑞𝑐𝑑𝑐𝑜𝑛𝑠𝑡𝑐,ℎ))))𝑐ℎ

𝑃𝑄𝐷𝑐
 (E 57) 

A Stone-Geary utility function divides household consumption demand into two parts: a) the 

subsistence demand (𝑞𝑐𝑑𝑐𝑜𝑛𝑠𝑡) and b) the discretionary demand. Both elements are included in 

equation (E 57). The discretionary demand is defined as the marginal budget share (𝑏𝑒𝑡𝑎). The 

discretionary demand can be regarded as the part of the household expenditure that remains of the 

total household consumption expenditure after the spending in subsistence demand.  

Additionally, the model offers the opportunity to change the Stone-Geary utility function into the 

Cobb-Douglas utility function with all income elasticities of demand equal to one. To implement this, 

the Frisch parameter has to change to minus one in the calibration process of the model 

(McDonald 2007).  

3.9 Model closures 

As already mentioned in section 2.4.3, a CGE model requires model closures to ensure that the 

numbers of equations and variables is consistent in order for the model to solve. Otherwise, the 

determination of model closures has an important influence on how a model works and how an 

economy is captured in the model (Kilkenny and Robinson 1990).  

STAGE allows general and specific closure rules, in which general closure rules relate to 

macroeconomic conditions and specific closure rules comprise specific characteristics of the 

economic system.  

In this section, the possible closures of the default version of STAGE are presented. The factor market 

closures are introduced in more detail, because they become relevant in the application of STAGE_D 

in the case study in chapter 7.  

The foreign exchange account closure comprises the closure for the account of the rest of the world 

by either fixing the variable of the exchange rate or the current account balance.  

The capital account closure ensures that the aggregate savings are equal to the aggregate 

investments by fixing one of these determinants. Fixing savings presumes the economy as savings-

driven. Closing the economy by fixing the investments implies an investment-driven assumption of 

the operation of an economy.  

The enterprise account closure enables the user of the model to fix either the volume or the value or 

the share of final commodity demand by enterprises.  
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The closure for the government account serves to determine fiscal policy considerations. In the base 

model, government savings are assumed to be a residual. The determinants of the government 

income and expenditure are fixed, while government savings are free to adjust.  

The numéraire is applied in the model to serve as a base. Because the model is homogenous of 

degree zero in prices, STAGE defines relative prices based on the numéraire. The model provides two 

possibilities for price normalisation equations: a) the consumer price index (CPI) or b) the producer 

price index (PPI) (McDonald 2007).  

3.9.1 Factor market closure 

3.9.1.1 Full factor mobility and employment closure 

This section presents the factor market closures in the default version of STAGE. The description 

follows the documentation of the STAGE (McDonald 2007).  

The basic specification of factor market closures implies that all factors are fully mobile and 

employed. Under this assumption, the total factor supply (𝐹𝑆𝑓) is equal to total factor demand 

(𝐹𝐷𝑓,𝑎). The total supply of each factor is determined exogenously (see equation (E 58)). The demand 

for factor 𝑓 by activity 𝑎 and the wage rates for factors (𝑊𝐹𝑓) are determined endogenously.  

The model includes the assumption that wage rates for factors are averages and allows for variable 

factor payments across activities. This is captured by the variable 𝑊𝐹𝐷𝐼𝑆𝑇𝑓,𝑎 that describes the 

sectoral proportions for factor prices. This variable influences the factor use by activities and is fixed 

in the base model (see (E 59)). Equation (E 60) limits the factor prices to positive values by placing the 

bounds around the average factor prices.  

𝐹𝑆𝑓 =  𝐹𝑆𝑓 (E 58) 

𝑊𝐹𝐷𝐼𝑆𝑇𝑓,𝑎 =  𝑊𝐹𝐷𝐼𝑆𝑇𝑓,𝑎 (E 59) 

𝑀𝑖𝑛 𝑊𝐹𝑓 =  − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦  

(E 60) 

𝑀𝑎𝑥 𝑊𝐹𝑓 =  + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

3.9.1.2 Factor immobility and unemployment closure 

Factor immobility and/ or factor unemployment can be determined in the model by the treatment of 

variables referring to factors either as a variable or as factors. In the practical implementation, a 

block of conditions for each factor has to be defined (E 61), where 𝑓𝑎𝑐𝑡 represents a particular factor 

and 𝑎𝑐𝑡𝑖𝑣 relates to a specific activity.  
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The following block of equations includes all variables referring to factors. The first four equations 

are the same as in the basic factor market closure, where factors are fully employed and mobile.  

𝐹𝑆𝑓𝑎𝑐𝑡 =  𝐹𝑆𝑓𝑎𝑐𝑡 

(E 61) 

𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎 =  𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎 

𝑀𝑖𝑛 𝑊𝐹𝑓𝑎𝑐𝑡 =  − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

𝑀𝑎𝑥 𝑊𝐹𝑓𝑎𝑐𝑡 =  + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

𝐹𝐷𝑓𝑎𝑐𝑡,𝑎 =  𝐹𝐷𝑓𝑎𝑐𝑡,𝑎 

𝑊𝐹𝑓𝑎𝑐𝑡 =  𝑊𝐹𝑓𝑎𝑐𝑡 

𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎𝑐𝑡𝑖𝑣 =  𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎𝑐𝑡𝑖𝑣 

𝑀𝑖𝑛 𝐹𝑆𝑓𝑎𝑐𝑡 =  − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

𝑀𝑎𝑥 𝐹𝑆𝑓𝑎𝑐𝑡 =  + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

To make a factor activity specific without any sectoral factor mobility requires forcing the condition 

that factor demand is activity specific (𝐹𝐷𝑓𝑎𝑐𝑡,𝑎 =  𝐹𝐷𝑓𝑎𝑐𝑡,𝑎). The returns to this factor must be 

allowed to vary, what involves relaxing condition (E 59). 

Because factor demand is fixed, the factor supply is not able to vary and has to be relaxed (E 64). Up 

to this point, the number of equations and of variables is still the same. To run simulations, the 

sectoral proportions of factor prices, 𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎𝑐𝑡𝑖𝑣, for a specific activity have to be fixed.  

Unemployment of factors can be implemented in the factor closures by fixing the factor prices, 

𝑊𝐹𝑓𝑎𝑐𝑡 and relaxing the total supply of the factor (E 67). Additionally, the total factor supply is 

restricted by condition (E 68).  

𝐹𝐷𝑓𝑎𝑐𝑡,𝑎 =  𝐹𝐷𝑓𝑎𝑐𝑡,𝑎 (E 62) 

𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎 =  𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎 (E 63) 

𝐹𝑆𝑓𝑎𝑐𝑡 =  𝐹𝑆𝑓𝑎𝑐𝑡 (E 64) 

𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎𝑐𝑡𝑖𝑣 =  𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑎𝑐𝑡,𝑎𝑐𝑡𝑖𝑣 (E 65) 
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𝑊𝐹𝑓𝑎𝑐𝑡 =  𝑊𝐹𝑓𝑎𝑐𝑡 (E 66) 

𝐹𝑆𝑓𝑎𝑐𝑡 =  𝐹𝑆𝑓𝑎𝑐𝑡 (E 67) 

   

𝑀𝑖𝑛 𝐹𝑆𝑓𝑎𝑐𝑡 =  0 

(E 68) 

𝑀𝑎𝑥 𝐹𝑆𝑓𝑎𝑐𝑡 =  + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

3.10 Summary 

This chapter presents the structure of the default version of STAGE that builds the basis for the 

development of the German single-country CGE model STAGE_D. Compared to a large number of 

CGE models, whose basic code is not open source or badly documented and therefore often 

described as a ‘black box’, STAGE provides a comprehensive documentation and basic code for 

further development.  

For a better understanding of the principle function of CGE models, a short introduction in the 

general equilibrium theory is given at the beginning of this chapter.  

The methodological link between STAGE and its database, the SAM, is described by presenting the 

behavioural relationships included in the model. Particular attention is paid to the non-linear 

functional forms for modelling production, households’ behaviour and trade. The CES production 

function represents one of the central functional forms for capturing behavioural relationships in 

STAGE. This type of function is also relevant for the modification of the nested production structure 

of STAGE_D and is therefore described in more detail.  

The main focus of this chapter is on the one hand, the presentation of the methodological and 

scientific background of equilibrium theory and mathematical forms of functions. On the other hand, 

builds this chapter the bridge between theory and practical application for modelling. The 

connections of price and quantity relationships of STAGE represent the core for understanding the 

functioning of the model. The same holds for the different ways to implement production, household 

income and expenditure as well as trade and the various possibilities to adapt the model to specific 

technological, economic or social framework conditions.  

A CGE model requires closures to ensure that the numbers of equations and variables is consistent in 

order for the model to solve. Otherwise, model closures have an important influence on how a 
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model works and how characteristics of an economy are captured. The basic model closures are 

presented in this chapter with a deeper insight to the operating principles of factor market closures. 
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4 Development of a Social Accounting Matrix for Germany – Own 

modifications 

4.1 Introduction  

The model STAGE_D is calibrated on the basis of a SAM for Germany, which is developed and 

disaggregated as part of this research. Until today the only existing SAM for Germany was developed 

by Klose et al. (2004) for the year 2000, based on Input-Output Tables. Due to the higher coverage of 

information in SUTs (see section 2.2.5) and the capability of STAGE to model multi-output activities, 

the decision was to establish a new SAM for Germany for the year 2007 based on SUTs´.  

The decision to construct a SAM for the year 2007 is based on three facts: 

 The publication of revised annual SUTs by the Federal Statistical Office occurs with a delay of 

three years to the current year. In the particular time when starting this research work, the 

development of the SAM for Germany was the first step. Although a more recent SUT was 

available at this time, the national accounts, including SUTs for the year 2007, represented 

the most complete database with regard to necessary additional data required for further 

disaggregation.  

 Due to changes of the SNA classification system of products by activities in 2008, the results 

of SUTs published after 2007 are not completely comparable with those published before 

(Federal Statistical Office 2008d). With regard to the necessary disaggregation and the 

associated data requirements from various data sources, it was decided to set up the SAM on 

the older classification system.  

 The year 2008 represents the year of the worldwide financial crisis that also affected the 

German economy. Therefore, a SAM for the year 2008 or 2009 would give a picture of the 

German economy in exceptional circumstances.  

Generally, the decision to present the database in a SAM format provides advantages, which made 

this type of database increasingly popular in the application of whole economy models over the last 

years. McDonald (2013) summarises these advantages in three points. First, the SAM format is a 

formal part of the SNA and follows internationally agreed accounting standards. Second, the 

compilation of data for a single region can be compiled and related to the national account in an 

efficient and relatively easy manner. Third, the matrix format of a SAM has a greater accessibility for 

users and policy makers.  

The most considerable difference between the SAM used in STAGE and a SAM, which is consistent 

with the SNA standards can be seen in the distribution of income. The STAGE SAM comprises only 
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one phase of income distribution, but the model uses fixed proportions for the subdivision of income 

distribution. This reduced version of a SAM for modelling compared to a SNA SAM therefore does not 

violate the behavioural relationships of the model. Another difference to the SNA SAM is the 

presentation of a government account. Different types of tax accounts that represent tax 

instruments are summarised in the macro SAM of STAGE by creating a government account. Thus, 

government expenditure and tax revenues are more combined, what simplifies the process of 

modelling (ibid). 

The general approach of this research is guided by the principle that the model and the database, i.e. 

the SAM, must be configured in such a way that both reflect the economic and political environment, 

which is supposed to be analysed. As such, the alternative of adapting the SAM to the CGE model is 

rejected; instead, the choice is made to adapt the model to the ‘reality’ that should be reflected in 

the structure and reported transactions in the SAM. In order to follow the logic of this principle, the 

first necessary step was the determination of the range of agents/accounts that need to be captured 

in the SAM.  

A review of available databases indicated that the published degree of detail in the SUTs and national 

accounts with regard to the necessary disaggregated presentation of the energy and agricultural 

sector as well as the policy instruments has limitations. Therefore, additional disaggregation of inputs 

- intermediate use and final demand, outputs – joint- and by-production within the energy and 

agricultural sector and its use for further processing was required.  

This chapter highlights all steps done to develop a disaggregated SAM for Germany and starts with an 

introductory summary in section 4.2. The point of origin for the development process is the 

composition of an aggregated macro SAM (see section 4.3), which is based on the national accounts 

of the Federal Statistical Office. In the next step, SUTs of the year 2007 were integrated into this 

macro SAM (see section 4.4.1). To develop a detailed, disaggregated SAM that captures the specifics 

of the energy and agricultural sector, different data sources have been used to provide information 

for the disaggregation process. The way, in which the disaggregation was achieved in both sectors is 

introduced in the sections 4.4.2 (agriculture) and 4.4.3 (energy). To capture also the environmental 

impacts of the energy policy, carbon emissions by commodity use of activities were added in form of 

a satellite account, whose composition is described in section 4.4.4. Because a SAM often provides 

more accounts than required for an explicit analysis, a SAM has to be aggregated to a size 

appropriate for the analysis. For this research the Excel-based programme ‘SAMgator’ was applied to 

aggregate the SAM that was finally used as database for STAGE_D. The theoretical background of 

‘SAMgator’ is presented in section 4.5. A summary of this chapter is given in section 4.6.  
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4.2 The process to reach a disaggregated and balanced Social Accounting 

Matrix  

This section gives an overview of the steps done to derive the balanced and disaggregated final 

German SAM, before presenting the individual development steps in the following sections in more 

detail. The general principle for the development of a SAM can be regarded as a sequential process 

and comprises a set of SAMs, where the further disaggregated SAM is built on the previously 

developed SAM. This stepwise approach ensures that the subsequent phases of disaggregation 

cannot affect the estimates of the prior steps. This procedure provides a systematic structure in the 

organisation of data, because there are always two SAMs at each level of the disaggregation process: 

one ‘macro’ and one ‘micro’ SAM. The ‘macro’ SAM provides the control totals and builds the frame 

within the disaggregation process takes part. The ‘micro’ SAM represents the space, in which the 

database is further disaggregated.  

In an international comparison, the available German statistics can be regarded as very extensive and 

detailed. Nevertheless, the development process of a disaggregated SAM is characterised by high 

data requirements. Furthermore, when combining information from different data sources some 

parts of the SAM accounts are inconsistent and additionally often information is missing. These 

problems arise especially in the disaggregation of the intra- and inter-sectoral exchange of 

commodities. Here, official statistics provide the totals, but do not reach the data requirements for a 

disaggregated dataset useable for the construction of a disaggregated SAM. As a consequence, row 

and column totals of an account are not equal and missing data have to be estimated. 

The method applied in this study for estimating the ‘prior’ SAM versions and estimating missing data 

is the GCE method that was described in section 2.3.3 in more detail. For this research GAMS code 

for the application of the GCE method was provided by Scott McDonald, who developed this 

programme together with Sherman Robinson (Robinson and McDonald 2006). This approach applies 

a term named entropy that estimates missing data or/ and balances a SAM by means of the given 

prior data and the predetermined constraints and targets. These targets can be regarded as a 

generalised unit of prior data that is part of the objective function, the so-called entropy divergence 

function.  

After the configuration of each ‘prior’ SAM, the GAMS based programme was applied to solve the 

maximisation problems in the frame of the given constraints and to estimate a balanced SAM used as 

‘prior’ for the next disaggregation step. Furthermore, the programme provides additional 

information about the estimation process, which was used to evaluate the resultant ‘prior’ SAM, but 

also to make adjustments in the database if necessary. 
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Starting point in the development process of the German SAM was the construction of a macro SAM 

(see section 4.3). The balanced macro SAM can be regarded as the ‘prior’ SAM for the next step for 

disaggregation: the integration of the information from SUT of the year 2007 (see section 4.4) into 

the macro SAM. The SUT-SAM comprised 71 commodity accounts, 66 activity accounts, 

4 government accounts and each one account for labour, capital, households and enterprises, the 

stock changes and investments and the rest of the world. This extended SUT-SAM was once again 

balanced by applying the GCE method. The result of this estimation process represented the next 

prior SAM that represented the basis for the disaggregation of the agricultural sector (see 

section 4.4.2) and energy sector (see section 4.4.3). The basic work for the disaggregation of these 

two sectors was done by the application of Microsoft Excel software (Excel), because Excel offers the 

advantage to be more flexible to add further information for individual cells.  

In the 2007 SUT the agricultural sector is represented in one single product and industry account, 

respectively. The energy sector is more complex and therefore included in various product and 

industry accounts of the 2007 SUT. Different data sources have been used as to achieve the next 

unbalanced but fully disaggregated ‘prior’ SAM. This fully in Excel disaggregated energy-agricultural 

SAM was compiled by using GAMS. This energy-agricultural SAM represents the ‘prior’ for the final 

SAM that was balanced by using the GCE method. 

The final energy-agricultural SAM comprises 91 commodities, 86 activity accounts, 3 factor accounts, 

4 government accounts and one account for households, enterprises, stock changes, savings and 

investments and the rest of the world respectively.  

After this introductory overview, the individual steps for developing the disaggregated SAM for 

Germany will be explained in more detail in the next sections.  

4.3 Development of the macro Social Accounting Matrix  

Initial point for the development of the German SAM for the year 2007 is the construction of a macro 

SAM, which provides the basic control totals for each sub-matrix represented in the SAM. Table 5 

shows the framework of a macro SAM and gives an overview of which submatrices are active, 

marked with X, and which are inactive, marked with a zero. This SAM is used for the calibration of the 

basic version of STAGE_D and serves as basis for the disaggregation. 
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Table 5: The macro SAM for the STAGE standard model 

 

Source: McDonald (2013) 

The national accounts for the year 2007 provided by the Federal Statistical Office 

(Federal Statistical Office 2008a) and the underlying SUTs (Federal Statistical Office 2010a) represent 

the main data sources for the derivation of the German macro SAM. Table 6 shows the macro SAM 

for Germany and Table 7 the underlying data used for the construction. 

 

Commodities Activities Factors Households Enterprises Government
Capital 

accounts
RoW

Commodities 0 X 0 X X X X X

Activities X 0 0 0 0 0 0 0

Factors 0 X 0 0 0 0 0 X

Households 0 0 X 0 X X 0 X

Enterprises 0 0 X 0 0 X 0 X

Government X X X X X 0 0 X

Capital 

accounts
0 0 X X X X 0 X

RoW X 0 X X X X X 0

Total X X X X X X X X
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Table 6: Macro SAM for Germany for the year 2007 (in billion Euro) 

 

Source: Own calculation based on publications of the Federal Statistical Office (2008a, 2010a) 

Commodities Activities Labour Capital Households Government Indirect taxes Direct taxes Enterprises

Investments/

Stock 

changes

Rest of the 

World 

Commodities 2318.2 1343.0 435.6 442.5 1116.2

Activities 4494.8

Labour 1180.4 6.4

Capital 967.9 220.4

Households 1181.0 421.2 450.5 381.6 12.5

Government 17.6 400.8 270.9 304.0 1.0

Indirect taxes 251.6 28.3

Direct taxes 231.8 33.1

Enterprises 643.2 4.3

Investments/  

Stock changes
284.9 35.1 290.1 -167.6

Rest of the 

World 
912.1 6.7 195.4 39.8 7.8 2.9

Total 5658.5 4494.8 1187.7 1277.3 2300.3 929.0 270.9 304.0 707.8 442.5 1193.2
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Table 7: Underlying data sources for the German macro SAM for 2007 (Part A) 

 

A = Federal Statistical Office (2010a): National Accounts. Input-Output accounting. Chapter 4: Base Tables  
B = Federal Statistical Office (2008a): Statistical Yearbook 2008 for the Federal Republic of Germany. Chapter 24: National Accounts 

Source: Own compilation 

 

 

 

Row Column Source Table 

Activities A 4.2 Use Table, page 111: Intermediate consumption at purchasers' prices

Households A 4.2 Use Table, page 111: Final consumption by households at purchasers' prices

Government A 4.2 Use Table, page 111: Final consumption by government at purchasers' prices

Investments/ Stock changes B 23.3 Gross domestic product, national income, net borrowing, page 628: Gross capital formation

Rest of the World A 4.2 Use Table, page 111: Exports of goods and services

Activities Commodities A 4.1 Supply Table, page 97: Total supply of goods and services

Activities A 4.2 Use Table, page 111: Wages paid domestically

Rest of the World B 24.17 Income and Expenditure from and to the RoW, page 644: Wages received from the RoW

Activities A 4.2 Use Table, page 111: Gross operating surplus + depreciation

Rest of the World B 24.17 Income and Expenditure from and to the RoW, page 644: Income on investments received from the RoW

Labour B 24.16 Income and savings of private households, page 643: Income to households from labour

Capital B 24.16 Income and savings of private households, page 643: Income to households from assets

Government B 24.16 Income and savings of private households, page 643: Income to households from social benefits paid by the government

Enterprises B 24.13 Enterprise profits, primary income of incorporated enterprises, page 640: Dividend distribution and transfer from reserves

Rest of the World B 24.17 Income and expenditure from and to the RoW, page 644: Transfers received from the RoW

Capital B 24.15 Income, expenditure and financial balance from the government, page 642: Income on investments

Households B 24.11 Main aggregates of the sectors, page 639: Received social security contribution

Indirect taxes B 24.15 Income, expenditure and financial balance from the government, page 642: Income and property taxes

Direct taxes B 24.15 Income, expenditure and financial balance from the government, page 642: Taxes on products and import duties

Commodity

Labour

Capital

Households

Government
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Underlying data sources of the German macro SAM for 2007 (Part B) 

 

A = Federal Statistical Office (2010a): National Accounts. Input-Output accounting. Chapter 4: Base Tables  
B = Federal Statistical Office (2008a): Statistical Yearbook 2008 for the Federal Republic of Germany. Chapter 24: National Accounts 

Source: Own compilation 

 

 

Row Column Source Table 

Commodities A 4.1 Supply Table, page 111: Taxes on products

Activities A 4.2 Use Table, page 111: Taxes on production

Households B 24.1 National Accounts, page 624: Income tax and taxes on assets

Enterprises B 24.11 Main aggregates of the sectors, page 639: Income tax and taxes on assets

Capital B 24 National Accounts, page 621: Corporate and investment income

Rest of the World B 24.17 Income and expenditure from and to the RoW, page 644: Transfers received from the RoW

Households B 24.1 Nationals accounts, page 625: Changes in net assets plus depreciation

Government B 24.1 Nationals accounts, page 625: Changes in net assets plus depreciation

Enterprises B 24.1 Nationals accounts, page 625: Changes in net assets plus depreciation

Rest of the World B 24.1 Nationals accounts, page 625: Changes in net assets plus depreciation

Commodities A 4.1 Supply Table, page 111: Imports of goods and services

Labour B 24.17 Income and expenditure from and to the RoW, page 644: Wages paid to the RoW

Capital B 24.17 Income and expenditure from and to the RoW, page 644: Investment income paid to the RoW

Households B 24.17 Income and expenditure from and to the RoW, page 644: Transfers to the RoW

Government B 24.17  Income and expenditure from and to the RoW, page 644: Transfers to the RoW

Enterprises B 24.17 Income and expenditure from and to the RoW, page 644: Transfers to the RoW

Rest of the World

Indirect taxes

Direct taxes

Enterprises

Investment/ Stock 

changes
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4.4 Development of a detailed and disaggregated Social Accounting Matrix 

4.4.1 Integration of Supply and Use Tables  

Based on the compiled macro SAM that includes the main economic aggregates for Germany, the 

detailed and disaggregated SAM for Germany was developed. The next step was the implementation 

of the 2007 SUTs, provided by the Federal Statistical Office (Federal Statistical Office 2010a), into the 

framework of the macro SAM.  

The SUTs for the year 2007 constitute the core of the basic German SAM and enlarge the production 

matrix of the macro SAM. The German SUTs for the year 2007 covers 71 commodities produced by 

66 activities. As described in chapter 2.2.5, the supply table presents the supply of goods and services 

by product and industry, with a distinction between domestic industries and imports. Furthermore, 

this table includes trade and transport margins, taxes and subsidies on products. The use tables 

comprise the use of goods and services by product, split into intermediate consumption by 

industries, final consumption, gross capital formation and exports (Eurostat 2014). 

The extended SUT-SAM was subsequently estimated and balanced under the application of the GCE 

method.  

The next step in the compilation process of the German SAM was the disaggregation of the 

agricultural and energy sector that required the inclusion of various surveys alongside the national 

accounts. The steps done to disaggregate these two sectors are presented in the next two sections.  

4.4.2 Disaggregation of the agricultural sector 

The 2007 SUT presents the agricultural sector as a single industry that produces a single commodity. 

To have a deeper insight on the role of the agricultural sector in the frame of the energy policy, the 

commodities and activities are disaggregated as shown in Table 8. The single agricultural commodity 

presented in the SUT was split into 13 commodities. The activity agriculture was disaggregated on a 

regional base following the administrative units of the federal states (Bundesländer) of Germany4. 

The decision to present agricultural activities on this regional basis and not under the aspect of 

production specialisation underlies the fact that ‘Bundesländer’ can be regarded as production units 

(farms) that produce multiple output, like farms do in most cases in reality. One agricultural activity – 

one federal state – in the SAM represents all farms in this region with the regional-specific multiple-

output, i.e. focus on crops, livestock or biomass for biogas generation. This way of disaggregating the 

agricultural sector enables an analysis of regional differences in agricultural production within the 

                                                           
4
 The agricultural sectors of the city states Hamburg and Bremen have been included into the activity ‘Lower 

Saxony’ and Berlins agriculture was added to ‘Brandenburg’.  
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frame of a CGE application. STAGE_D is able to capture multi-product activities and allows for a more 

realistic picture of this sector than other CGE models based in IOTs. 

Table 8: Disaggregation of the agricultural sector 

 

Source: Own compilation  

The disaggregation of the agricultural sector was done using data provided by the FARMIS Model, 

which is conducted by the Thünen Institute5. FARMIS is a comparative-static programming model for 

farm groups in Germany. The database builds on information from the Farm Accountancy Data 

Network (FADN) (Thünen Institute 2017). The FADN dataset comprises a sample of farm surveys 

collected each year in all member states of Europe. It includes accountancy data at farm level and 

has the objective to monitor the income and economic development of agricultural enterprises. The 

FADN database represents the only source of microeconomic data that follows harmonised 

bookkeeping principles (European Commission 2010).  

The German agricultural sector is disaggregated as follows: 

Agricultural production: The FARMIS database (FARMIS 2007) comprises detailed information on 

agricultural production at regional and product level in value terms. On this basis, the supply of 

agricultural commodities was distributed across the regional activities by calculating the shares of 

sales per region. The original value presented in the SUT provided the basis for the disaggregation of 

the agricultural production. On this base also regional production of commodities was determined.  

Subsidies and taxes: The FARMIS database contains detailed information on subsidies: investment 

subsidies, subsidies for the production on less favoured area payments, single farm payments and 

other allocated subsidies are recorded by product and by activity. On the base of FARMIS data, the 

shares of subsidies by commodity and activity were calculated. The original figure in the base SAM 

                                                           
5
 The Thünen Insitute is a German research institute doing research for the German Ministry of Agriculture 

(BMEL). It develops scientific foundations for decision-making of the German government.
 
 

cagric aagric

cwheat Wheat aSH Schleswig-Holstein

cbarley Barley aNS Lower Saxony

crye Rye aNR Northrhine-Westphalia

cmaize Maize aHE Hesse

cothgrain other Grain aRP Rhineland Palatinate

coilseed Oilseeds aBW Baden Wurttemberg

cbeet Sugarbeet aBA Bavaria

cvegfruit Vegetables and Fruits aSL Saarland

cothcrop other Crops aST Saxony Anhalt

cdairy Dairy aBB Brandenburg

cbeef Beef and Sheep aMV Pomerania

cpig Pigs aSN Saxony

cpoult Poultry aTH Thuringia

ActivitiesCommodities

Agriculture
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was disaggregated on the basis of these calculated shares. Taxes are not recorded in the FARMIS 

database and therefore received from the Federal Statistical Office statistics and split by the shares 

of production by region (Federal Statistical Office 2012b).  

Use of agricultural products: The use of agricultural products is distributed across the sectors on the 

base of the shares of sales recorded in the FARMIS database. The use of intermediate inputs by 

agricultural activities is calculated by means of the cost of production. Here, cost information for 

fertiliser, plant protections, energy, seed, repairs, services and other costs on regional and 

commodity level are available and have been used to split the totals of intermediate use for 

agricultural production. The use of agricultural commodities by households was disaggregated on the 

base of data concerning households’ expenses for food products (Federal Statistical Office 2008c). 

Intermediate use of agricultural commodities: The intermediate use of agricultural commodities was 

calculated on the base of sales shares by commodities reported in the FARMIS database. 

Additionally, data for intermediate use of agricultural commodities by the food industry and by 

households were derived from a special evaluation of the Federal Statistical Office (2010c). This 

special evaluation provided a higher disaggregation level of the food industry.  

Stock changes: Stock changes of agricultural commodities were derived on the basis of sales shares 

by commodities reported in the FARMIS database.  

Gross operating surplus: Depreciation of agricultural commodities, reported in the FARMIS database, 

was used to calculate the gross operating surplus in the German SAM.  

Exports: Exports were disaggregated by the application of data reported in the export statistic survey 

of the German Ministry of Agriculture (BLE 2009).  

Factor income: Disaggregated information about the use of factors by activity was derived from the 

FARMIS database. FARMIS includes detailed information about agricultural area split in arable and 

grass land, the shares of own and rented land as well as the rent prices. With regard to labour, the 

FARMIS database provides detailed information about wages and working hours. Furthermore, 

information about the value of own and rented capital is provided. This data was used to calculate 

labour and capital income.  

With regard to the objective to capture the impact of the changing energy policy in Germany on the 

agricultural sector the production factor land was disaggregated. The capital account served as base 

account for this disaggregation. Data on regional land supply and use were derived from the FARMIS 

database. Here, information about the shares of arable and grass land, own or rented land and the 

rent prices was provided. 
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Production taxes: Production taxes paid by agricultural activities were distributed on the base of 

sales by industry. 

Imports: Information about imports was derived from import statistics of the German Ministry of 

Agriculture (BLE 2009). 

4.4.3 Disaggregation of the energy sector 

To derive a SAM that captures energy generation in more detail, the energy sector, with special 

consideration of the electricity sector, was disaggregated as shown in Table 9. Here, the bold printed 

activities and commodities represent the original accounts derived from SUTs. The breakdown of 

these aggregated accounts is described below. 

Table 9: Disaggregation of the energy sector 

 

Source: Own compilation  

Compared to the agricultural sector that is part of the primary production in an economy, the energy 

sector comprises several parts of primary production like the extraction of energy resources, i.e. 

mining of dark and brown coal. But, the energy sector also includes various steps of processing raw 

materials (coal, crude oil etc.) into final products (electricity, petrol, bioethanol etc.). With regard to 

raw materials the scope of available resources expanded over the last years due to technological 

progress and the resulting implementation of renewable energy sources. Fossil fuels like petroleum 

or diesel nowadays can be substituted by bioethanol or biodiesel. Also new technologies like 

electricity generation based on wind and solar energy were introduced.  

ccoal Coal and Lignite acoal Mining coal

cdark Dark Coal adark Mining Dark Coal

cbrown Brown Coal abrown Mining Brown Coal

coilgas Crude Petroleum and Natural Gas acoke Manufacture of Coke, Petroleum Products

ccrudeoil Crude Oil acokeman Coke Production

cnatgas Natural Gas apetro Petroleum Production

adiesel Manufacture of Diesel Production

ccoke Coke, Refined Petroleum Products abiodie Production of Biodiesel Production

ccok Coke abioeth Bioethanol Production

cpetro Petrol

cdiesel Mineral Diesel aelgaswat Electricity, Gas, Steam and Hot Water supply

cbiodiesel Biodiesel agas Gas Supply

cbioethanol Bioethanol awater Steam and Hot Water Supply

aelblack Electricity Generation Dark Coal 

celectricity Electricity and District Heat aelbrown Electricity Generation Brown Coal 

cely Electricity aeloil Electricity Generation Oil

cdist District Heat aelgas Electricity Generation Gas

aelnucl Electricity Generation Nuclear Power

aelwindsol Electricity Generation Wind and Solar

aelbio Electricity Generation Biomass

Energy Sector

Commodities Activities
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Several statistical databases were applied to disaggregate the energy sector recorded in the 2007 

SUT. The Federal Statistical Office, the working group on renewable energy statistics (AGEE), the 

working group on energy balance (AGEB) and the energy database from the German Ministry of 

Economic Affairs and Energy (BMWi) represent the main providers of the databases applied for the 

disaggregation of the energy sector. The following part summarises shortly, which data was applied.  

The German energy sector is disaggregated as follows: 

Energy production: Information on domestic raw material extraction is based on data from the 

‘System of Integrated Environmental and Economic Accounting’ provided by the Federal Statistical 

Office (Federal Statistical Office 2012a). The statistic was used to disaggregate brown and dark coal 

as well as natural gas and oil. Information about sales, based on data of the sales tax statistic, was 

applied to divide coke and petroleum production (Federal Statistical Office 2010f).  

To capture the production of biodiesel and bioethanol, the activity ‘petroleum production’ was 

disaggregated into diesel and petroleum manufacturing on the base of data provided by the ‘System 

of Integrated Environmental and Economic Accounting’ of the Federal Statistical Office. Here, the 

information of the use of diesel and petroleum for the year 2005 offered the shares to calculate the 

supply of these fuels (Federal Statistical Office 2012a). Biodiesel and bioethanol were divided from 

diesel and petroleum on the base of production data from AGEE (2010) and BMWi (2010). 

In the 2007 SUT electricity generation was included in the aggregate ‘Electricity, Gas, steam and hot 

water supply’. To extract total electricity generation out of this aggregate, the shares of sales taxes of 

the different industries were applied (Federal Statistical Office 2010f).  

To split the aggregate of electricity and district heat generation, the shares of sales were used too. 

The necessary information was provided by the industry statistic of the Federal Statistical Office 

(2010g).  

To get a deeper insight into the different technological options for electricity generation, the supply 

of electricity was subdivided into electricity generation based on dark coal, brown coal, oil, gas, 

biomass, wind and solar. Production data from AGEB (2012) and BMWi (2012) provided the 

necessary information. Renewable electricity generation was disaggregated on the base of 

production data supplied by AGEE (2010). 

Imports and Exports: Data about energy trade are derived from the evaluation tables of the energy 

balance of Germany provided by the ‘System of Integrated Environmental and Economic Accounting’ 

(Federal Statistical Office 2012a) and trade data derived from the working group on energy balance 

and the energy database from the German Ministry of Economic Affairs and Energy (AGEB 2012, 

BMWi 2012).  
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Energy use: The ‘System of Integrated Environmental and Economic Accounting’ offers detailed data 

about the use of energy by energy sources and industries (Federal Statistical Office 2012a). This 

database also builds the basis to disaggregate energy use by households, the government and the 

inter-sectoral energy use. 

Stock changes: Stock changes of energy commodities are recorded in the ‘System of Integrated 

Environmental and Economic Accounting’ (Federal Statistical Office 2012a). 

Production factors: The Federal Statistical Office offers data that captures the cost structure of 

industries (Federal Statistical Office 2010g). On the base of this information wages and the net 

operating surplus was derived.  

Taxes and subsidies: Information about taxes and subsidies on products and production were 

provided from the tax statistic of the Federal Statistical Office (2010f).  

4.4.4 Development of a satellite account for carbon emissions 

Carbon emissions by activities and households represent an additional database for STAGE_D that 

was developed in terms of a satellite account. The SNA differentiates between two types of satellite 

accounts. The first type is the internal satellite account that follows all accounting rules of the SNA 

but is different in the standard classification system. The second type, applied in this study, for 

carbon emissions includes additional non-economic data that is not included in SUT framework. The 

satellite account is consistent with the SAM with regard to commodity, activity and households 

categories, but does not include monetary values. In the applied satellite account carbon emissions 

are recorded in tons, emitted by activities and households. The total carbon emissions by activities 

and households are derived from the ‘System of Integrated Environmental and Economic Accounting’ 

(Federal Statistical Office 2012a) and the Federal Ministry of Environment (UBA 2017). Because of the 

disaggregation of energy use on the level of separate energy commodities in the use matrix of the 

SAM, the shares of energy commodities used by activities and households are known. By means of 

these shares and the information about carbon emissions of energy units (tons of carbon dioxide per 

terrajoule), the carbon emissions of activities and households have been calculated.  

4.5 Aggregation of the Social Accounting Matrix 

Next to the disaggregated sections of the SAM, which were established with regard to the research 

question, a SAM also comprises accounts that are not relevant for the analysis. By using a too 

comprehensive database to calibrate the model, the model becomes too large and consequently the 

results become too detailed for practical analysis and interpretation. Furthermore, very small values 

of the detailed SAM can be avoided. Before using the SAM to calibrate STAGE_D, the SAM was 

therefore aggregated for practical purposes. 
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For the aggregation of the final SAM the Visual Basic Application (VBA) programme ‘SAMgator’ was 

applied. This programme was developed in the frame of the PROVIDE project (PROVIDE 2004b).  

The SAMgator is implemented by using Microsoft Excel software, with the GAMS software in the 

background. For application the user declares the new aggregates for commodities, activities and the 

other accounts in an Excel template and declares the source and destination of the data input and 

output files. GAMS is activated directly from within Excel. The SAMgator generates all sets and 

mapping files and also checks whether all mappings are consistent before generating the GAMS 

programme file.  

The main pillar of the SAMgator is a single GAMS equation that aggregates the database of the SAM 

in two dimensions like shown in the following equation:  

NEWSAM(sp, spp) = 𝑆𝑈𝑀((𝑠𝑠, 𝑠𝑠𝑝) 

 $(𝑀𝐴𝑃𝑆𝐴𝑀𝐴𝐺(𝑠𝑝, 𝑠𝑠) 

 $(𝑀𝐴𝑃𝑆𝐴𝑀𝐴𝐺(𝑠𝑝𝑝, 𝑠𝑠𝑝)), 𝑆𝐴𝑀(𝑠𝑠, 𝑠𝑠𝑝)) ; 

(E 69) 

Here the parameter 𝑆𝐴𝑀(𝑠𝑠, 𝑠𝑠𝑝) includes the disaggregated database, where 𝑠𝑠 is the set that 

defines the row and column labels of the SAM. The parameter 𝑁𝐸𝑊𝑆𝐴𝑀(𝑠𝑝, 𝑠𝑝𝑝) includes the new 

aggregated database where 𝑠 represents the set that defines row and column labels for the new 

SAM. The set 𝑀𝐴𝑃𝑆𝐴𝑀𝐴𝐺(𝑠𝑝, 𝑠𝑠) captures the members of the set 𝑠𝑠 that aggregates into 𝑠𝑝 by 

the rows of 𝑆𝐴𝑀(𝑠𝑠, 𝑠𝑠𝑝). The set 𝑀𝐴𝑃𝑆𝐴𝑀𝐴𝐺(𝑠𝑝𝑝, 𝑠𝑠𝑝) defines the members of the set 𝑠𝑠𝑝 that 

aggregates into 𝑠𝑠𝑝 by the columns of 𝑆𝐴𝑀(𝑠𝑠, 𝑠𝑠𝑝) (McDonald 2013).  

After the application of the SAMgator the final energy-agriculture SAM for calibrating STAGE_D 

comprises 35 commodities, 34 activities and factor accounts for land, labour and capital. 

Furthermore, it includes three tax accounts and respectively one account for the government, 

households, enterprises, stock changes, investments and savings as well as for the rest of the world.  

4.6 Summary  

The development of a detailed and disaggregated SAM for Germany can be regarded as one 

cornerstone of this research. The process of the development is imbedded in the accounting rules of 

the SNA and the requirements of STAGE_D. Starting point of the data work was the development of 

the macro SAM that constitutes the frame for the further composition of the SAM for Germany for 

the year 2007. In this framework SUT have been implemented and the agricultural and energy sector 

disaggregated. The construction of a SAM requires a comprehensive demand for data from various 

data sources, which are partly not consistent to each other. Another issue is the lack of data during 

the process of disaggregation. This applies especially to the cross-sectoral interrelations the further a 

SAM is disaggregated. The generalised cross entropy method is used to estimate missing data and to 
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balance the SAM. The whole process of the development and disaggregation of a SAM can be 

regarded as a sequential approach with starting on macro level and finally finishing on a 

disaggregated meso-level, with the consequence that the disaggregated final SAM, with all accounts 

included, becomes very large. For practical purposes the SAM applied as database for STAGE_D was 

therefore reduced in a manner, in which the requirements for analysing the impacts of the energy 

policy and the special focus on the agricultural and energy sector are warranted. This aggregation 

was done by using the Visual Basic Application programme ‘SAMgator’. 

Next to the SAM, a satellite account capturing carbon emissions was developed to get the 

environmental view on the energy policy in Germany. 
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5 Development of the model STAGE_D – Own modifications  

5.1 Introduction  

This chapter presents the development of STAGE_D for the application to analyse the economic, 

environmental and social impact of the Energiewende on the German economy. The adaptions of the 

nested production function and the appropriate mathematical implementation in STAGE_D are 

presented in section 5.2. To enable the model also to capture environmental consequences, carbon 

emissions by commodity use of activities and households were implemented (see section 5.3). 

Section 5.4 introduces the underlying parameters of functional forms, which were applied for the 

analysis in the case study. This section closes with a short summary in section 5.5. 

5.2 Modification of the nested production function 

In the default version of the STAGE a two-stage production function is applied (see Figure 5). Because 

results depend significantly on substitution possibilities between primary inputs and energy inputs as 

well as on the substitution between energy inputs by itself, the structure of the nested production 

function was changed (Burniaux and Truong 2002).  

To capture electricity generation and the impact of the German energy change policy in a more 

specific way in STAGE_D, the two-level nested production function applied in the default version of 

STAGE, was set up in STAGE_D as a four-level nest of production functions. The extension was done 

to allow the model to capture different production technologies of different power plants to produce 

the homogenous commodity electricity. The modified nested production function is presented in 

Figure 8 in quantity terms.  

The production function of output by each activity at the top level (𝑄𝑋𝑎) of STAGE_D is a CES 

aggregate in the default version to combine intermediate inputs (𝑄𝐼𝑁𝑇𝑎) and the value added-

energy aggregate (𝑄𝑉𝐴𝐸𝑎). The top level can also be defined as a Leontief form, e.g. in the scenario 

calculation to model the nuclear phase-out. To allow for substitution possibilities between energy 

commodities in the production processes of an industry and to implement different production 

technologies, energy commodities have been shifted from the intermediate input aggregate (𝑄𝐼𝑁𝑇𝑎) 

into the value added aggregate (𝑄𝑉𝐴𝑎), so that the value added – energy aggregate (𝑄𝑉𝐴𝐸𝑎) was 

created. This was done by the establishment of the subset 𝑐𝑒𝑙, that comprises the energy 

commodities dark coal, brown coal, crude oil, natural gas and electricity, and the subset 𝑐𝑒𝑙𝑛 

comprising all non-energy commodities. The applied elasticity of substitution (𝜎𝑥) of the CES 

function between the intermediate input aggregate and the value added-energy aggregate can differ 

between industries.  
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Figure 8: Modified nested production structure of STAGE_D 

 

Source: Own compilation  

The second level comprises two nests: a) the aggregate of intermediate inputs (𝑄𝐼𝑁𝑇𝑎) and b) the 

value added-energy aggregate (𝑄𝑉𝐴𝐸𝑎). The aggregate of intermediate inputs is defined as a 

Leontief aggregation, which implies an elasticity of substitution of zero. Under this assumption inputs 

are combined in fixed proportions per unit of aggregate intermediate input (𝑄𝐼𝑁𝑇𝑎) and output 

(𝑄𝑋𝑎). The individual intermediate inputs are aggregated by the way that input-output coefficients 

(𝑖𝑜𝑞𝑖𝑛𝑡𝑎,𝑐𝑒𝑙𝑛) are defined in terms of input quantities relative to the aggregate intermediate input. 

The number of intermediate inputs depends on the one hand on the production technology but also 

on the level of disaggregation in the SAM. For a simplified presentation, Figure 8 only comprises 

three non-energy intermediate inputs (𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙𝑛,𝑎). 

The value added-energy nest (𝑄𝑉𝐴𝐸𝑎) is defined as a two-argument CES function that combines the 

labour-land aggregate (𝑄𝑉𝐿𝐿𝑎) and the capital-energy aggregate (𝑄𝑉𝐾𝐸𝑎). The elasticity of 

substitution 𝜎𝑣𝑎𝑒 between 𝑄𝑉𝐿𝐿𝑎 and 𝑄𝑉𝐾𝐸𝑎 can be different for each industry, but remains fix 

between these two aggregates.  

The third level comprises two nests. The aggregate of the primary inputs labour and land (𝑄𝑉𝐿𝐿𝑎) is 

defined by a two-argument CES aggregate over the factor labour (𝐹𝐷𝑓𝑙𝑎𝑏,𝑎) and the factor land 

(𝐹𝐷𝑓𝑙𝑎𝑛𝑑,𝑎) with 𝜎𝑣𝑙𝑙 as appropriate elasticity of substitution. 
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The second nest on the third level comprises the capital-energy nest (𝑄𝑉𝐾𝐸𝑎), which offers the 

possibility to substitute between energy inputs (𝑄𝑉𝐸𝑎) and capital (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎) by a defined elasticity 

of substitution 𝜎𝑣𝑘𝑒 for this CES aggregation. 

The fourth level of the nested production function offers the possibility to substitute energy inputs 

by the application of a n-argument CES function. This enables the substitution between electricity, 

dark coal, brown coal, natural gas and crude oil. The elasticity of substitution between these energy 

inputs is defined by 𝜎𝑣𝑒. 

5.2.1.1 Mathematical implementation of the nested production structure into STAGE_D  

The description of the mathematical implementation of the nested production structure into 

STAGE_D starts with a short excursion to modelling commodity output in STAGE. This part of the 

model was not changed in STAGE_D, but is presented here for a better understanding of how 

STAGE_D is generating multi-product output of an industry (see McDonald 2007). This part of the 

model illustrates why the activities of the agricultural sector can be represented on the regional base 

of the federal states (see section 4.4.2) as production units (farms) producing multiple output. The 

other way around comprises the assumption of multiple-output activities that a single commodity 

can be produced by multiple activities, i.e. electricity can be produced by different power plants that 

apply different technologies.  

The total output of a commodity is the sum of the production of this commodity by each activity (E 

70). Therefore, the domestic production of a commodity (𝑄𝑋𝐶𝑐) is a CES aggregate of the quantities 

of this commodity produced by different activities (𝑄𝑋𝐴𝐶𝑎,𝑐). Using a CES aggregation considers two 

practical aspects: first, quality differences of commodities can be included and second, a different 

ratio of commodities in a mixed production is captured. The assumption of imperfect substitution is 

implemented by a CES aggregation function with 𝑎𝑑𝑥𝑐𝑐 as the shift parameter, 𝛿𝑎,𝑐
𝑥𝑐  as the share 

parameter and 𝜌𝑐
𝑥𝑐 as the elasticity parameter. The first order condition for the optimal combination 

of commodity output is shown in (E 71). Here, 𝑃𝑋𝐴𝐶𝑎,𝑐 captures the prices of each commodity 

produced by each activity. 

The model also includes an alternative specification for commodity aggregation where commodities 

can be produced by different activities as perfect substitutes (E 72). The matching price condition 

which requires that 𝑃𝑋𝐴𝐶𝑎,𝑐 equals 𝑃𝑋𝐶𝑐 for the respective commodity-activity combination is 

shown in (E 73).  

The particular assignment of commodities is controlled by the sets 𝑐𝑥𝑎𝑐 (commodities that are 

differentiated by activity) and 𝑐𝑥𝑎𝑐𝑛 (commodities that are not differentiated by activity). This 
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alternative specification is applied in this study to allow power plants to produce the homogeneous 

commodity electricity on the basis of different technologies, i.e. nuclear power or biomass. 

Activities themselves produce commodities in activity specific fixed proportions. The activity output 

(𝑄𝑋𝐴𝐶𝑎,𝑐) is a Leontief aggregate with fixed proportions of the output of each activity (𝑄𝑋𝑎) (E 74).  

Production Block – Commodity Output 

𝐶𝑂𝑀𝑂𝑈𝑇𝑐  𝑄𝑋𝐶𝑐 = 𝑎𝑑𝑥𝑐𝑐 ∗ [ ∑ 𝛿𝑎,𝑐
𝑥𝑐 ∗  𝑄𝑋𝐴𝐶𝑎,𝑐

−𝜌𝑐
𝑥𝑐

𝑎$𝛿𝑎,𝑐
𝑥𝑐

]

−
1

𝜌𝑐
𝑥𝑐

  
∀𝑐𝑥𝑐   

∀𝑐𝑥𝑎𝑐𝑐  
(E 70) 

𝐶𝑂𝑀𝑂𝑈𝑇𝐹𝑂𝐶𝑎,𝑐  𝑃𝑋𝐴𝐶𝑎,𝑐 = 
𝑃𝑋𝐶𝑐 ∗ 𝑄𝑋𝐶𝑐 [ ∑ 𝛿𝑎,𝑐

𝑥𝑐 ∗  𝑄𝑋𝐴𝐶𝑎,𝑐
−𝜌𝑐

𝑥𝑐

𝑎$𝛿𝑎,𝑐
𝑥𝑐

]

−(
1+𝜌𝑐

𝑥𝑐

𝜌𝑐
𝑥𝑐 )

∗ 𝛿𝑎,𝑐
𝑥𝑐

∗ 𝑄𝑋𝐴𝐶𝑎,𝑐
(−𝜌𝑐

𝑥𝑐−1)
 

∀𝑐𝑥𝑎𝑐𝑐  (E 71) 

𝐶𝑂𝑀𝑂𝑈𝑇𝑎  𝑄𝑋𝐶𝑐 = ∑ 𝑄𝑋𝐴𝐶𝑎,𝑐

𝑎

  
∀𝑐𝑥𝑐   

 ∀𝑐𝑥𝑎𝑐𝑛𝑐  
(E 72) 

𝐶𝑂𝑀𝑂𝑈𝑇𝐹𝑂𝐶𝑎,𝑐  𝑃𝑋𝐴𝐶𝑎,𝑐 = 𝑃𝑋𝐶𝑐  ∀𝑐𝑥𝑎𝑐𝑛𝑐  (E 73) 

𝐴𝐶𝑇𝐼𝑉𝑂𝑈𝑇𝑎,𝑐 𝑄𝑋𝐴𝐶𝑎,𝑐 =  𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥𝑎,𝑐 ∗  𝑄𝑋𝑎  ∀𝑎𝑞𝑥𝑎  (E 74) 

After this short excursus in modelling commodity output, the following part of this section presents 

the mathematical implementation of the adapted nested production structure for STAGE_D for each 

level.  

Nested Production Function - Top level 

Industries are defined as multi-product activities that can produce combinations of commodity 

outputs for the composite price of activity output (𝑃𝑋𝑎). Like the STAGE model, STAGE_D includes 

the assumption that domestic activities produce commodities in fixed proportions (𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥𝑎,𝑐) and 

these proportions provide a mapping between the supply prices of commodities and the weighted 

average activity prices (𝑃𝑋𝐶𝑐) (E 75). The weights are derived from the supply matrix of the SAM.  

The value of activity output is defined by the activity price less production taxes (𝑇𝑋𝑎) multiplied by 

the quantity of activity output (𝑄𝑋𝑎) (E 76). This value equals the sum of payments for value added 

and energy commodities (𝑃𝑉𝐴𝐸𝑎) times the quantitiy of value added – energy (𝑄𝑉𝐴𝐸𝑎) plus the 

quantity of non-energy intermediate inputs (𝑄𝐼𝑁𝑇𝑎) times the price (𝑃𝐼𝑁𝑇𝑎) for non-energy 

intermediate inputs.  
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To implement the possibility of energy substitution into the model, energy commodities have been 

shifted from the intermediate input aggregate (𝑄𝐼𝑁𝑇𝑎) into the value added aggregate (𝑄𝑉𝐴𝑎), so 

that the value added-energy aggregate (𝑄𝑉𝐴𝐸𝑎) was created. To achieve this, the sets 𝑐𝑒𝑙 and 𝑐𝑒𝑙𝑛 

were implemented into the model, were 𝑐𝑒𝑙 comprises energy commodities and 𝑐𝑒𝑙𝑛 the non-

energy commodities. With regard to prices required the shift of energy commodities into the value 

added aggregate the introduction of the variable 𝑃𝑄𝐷𝐷𝐼𝑆𝑇𝑐,𝑎 that ensures that also the sectoral 

proportions of energy commodity prices relate to the value added-energy aggregate. Simultaneously 

the intermediate input demand (𝑄𝐼𝑁𝑇𝐷𝑐,𝑎) was made commodity and activity specific in STAGE_D. 

The price of aggregate non-energy intermediate inputs (𝑃𝐼𝑁𝑇𝑎) is defined as the weighted average 

price of all non-energy intermediate inputs under the assumption of fixed proportions. The weights 

are determined by the input-output coefficients (E 77). 

The aggregation on the top level can be defined by a CES or Leontief production function. In the 

default version, the top level production function is a CES aggregate of non-energy intermediate 

inputs and value added-energy inputs.  

Under the assumption of a CES production function on the top level (E 79), the output of an activity 

(𝑄𝑋𝑎) is generated by the aggregated quantities of factors (value added) and energy inputs (𝑄𝑉𝐴𝐸𝑎) 

and the aggregate non-energy intermediate inputs (𝑄𝐼𝑁𝑇𝑎). Here, 𝛿𝑎
𝑥  is the share parameter, 𝜌𝑎

𝑥 the 

substitution parameter and 𝐴𝐷𝑎
𝑥 the efficiency variable. The efficiency variables, also in the other 

nests, are defined as variables so that an adjustment possibility is provided (E 78). Here, 𝑎𝑑𝑥𝑏𝑎 is the 

base value, 𝑑𝑎𝑏𝑎𝑑𝑥𝑎 is the absolute change in the base value, 𝐷𝐴𝐷𝑋 represents an additive 

adjustment factor and 𝑎𝑑𝑥01 is a vector of zeros and non-zeros for scaling the additive adjustment 

factor.  

Equation (E 80) presents the first order condition (FOC) that defines the optimal ratio of the value 

added-energy inputs to intermediate inputs. This can be expressed by the relative prices of the value 

added-energy inputs (𝑃𝑉𝐴𝐸𝑎) and the intermediate inputs (𝑃𝐼𝑁𝑇𝑎). 

The top level of the nested production function can also be defined as a Leontief function, where 

𝑄𝑉𝐴𝐸𝑎 and 𝑄𝐼𝑁𝑇𝑎 are combined in fixed proportions. Under the assumption of a Leontief 

aggregation on the top level, the aggregate quantities of production factors and energy (𝑄𝑉𝐴𝐸𝑎) and 

the intermediate inputs (𝑄𝐼𝑁𝑇𝑎) are determined by the two equations (E 81) and (E 82). Here, 

𝑖𝑜𝑞𝑣𝑎𝑒𝑞𝑥𝑎 and 𝑖𝑜𝑞𝑖𝑛𝑡𝑎 represent fixed volume shares in the output of an activity (𝑄𝑋𝑎). The 

decision about which functional form aggregates the output on the top level, is controlled by the 

membership of the set 𝑎𝑞𝑥, which includes activities with CES aggregation. The set 𝑎𝑞𝑥𝑛 includes 

activities with a Leontief aggregation on the top level. 
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Top level – Implementation STAGE_D 

𝑃𝑋𝐷𝐸𝐹𝑎 𝑃𝑋𝑎 = ∑ 𝑖𝑜𝑞𝑥𝑎𝑐𝑞𝑥𝑎,𝑐 ∗  𝑃𝑋𝐶𝑐

𝑐

  
(E 75) 

 𝑃𝑋𝑎 ∗ (1 − 𝑇𝑋𝑎) ∗ 𝑄𝑋𝑎 = (𝑃𝑉𝐴𝐸𝑎 ∗ 𝑄𝑉𝐴𝐸𝑎) + (𝑃𝐼𝑁𝑇𝑎 ∗ 𝑄𝐼𝑁𝑇𝑎) 
 

(E 76) 

𝑃𝐼𝑁𝑇𝐷𝐸𝐹𝑎 𝑃𝐼𝑁𝑇𝑎 = ∑(𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐𝑒𝑙𝑛,𝑎 ∗ 𝑃𝑄𝐷𝑐𝑒𝑙𝑛)

𝑐𝑒𝑙𝑛

  
(E 77) 

𝐴𝐷𝑋𝐸𝑄𝑎 𝐴𝐷𝑋𝑎 = [(𝑎𝑑𝑥𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑥𝑎) ∗ 𝐴𝐷𝑋𝐴𝐷𝐽] +  (𝐷𝐴𝐷𝑋 ∗ 𝑎𝑑𝑥01𝑎) 
 

(E 78) 

𝑄𝑋𝑃𝑅𝑂𝐷𝐹𝑁𝑎 𝑄𝑋𝑎 =  𝐴𝐷𝑎
𝑥 ∗ (𝛿𝑎

𝑥 ∗ 𝑄𝑉𝐴𝐸𝑎
−𝜌𝑎

𝑥

+ (1 − 𝛿𝑎
𝑥) ∗ 𝑄𝐼𝑁𝑇𝑎

−𝜌𝑎
𝑥

)
−

1
𝜌𝑎

𝑥
  

∀𝑎𝑞𝑥𝑎 
(E 79) 

𝑄𝑋𝐹𝑂𝐶𝑎 
𝑄𝑉𝐴𝐸𝑎

𝑄𝐼𝑁𝑇𝑎
 = [

𝑃𝐼𝑁𝑇𝑎

𝑃𝑉𝐴𝐸𝑎
∗ 

𝛿𝑎
𝑥

(1 − 𝛿𝑎
𝑥)

]

1
(1+𝜌𝑎

𝑥)
    

 ∀𝑎𝑞𝑥𝑎 
(E 80) 

𝑄𝑉𝐴𝐸𝐷𝐸𝐹𝑎 𝑄𝑉𝐴𝐸𝑎 = 𝑖𝑜𝑞𝑣𝑎𝑒𝑞𝑥𝑎 ∗  𝑄𝑋𝑎      
∀𝑎𝑞𝑥𝑛𝑎 

(E 81) 

𝑄𝐼𝑁𝑇𝐷𝐸𝐹𝑎 𝑄𝐼𝑁𝑇𝑎 = 𝑖𝑜𝑞𝑖𝑛𝑡𝑎 ∗  𝑄𝑋𝑎       
∀𝑎𝑞𝑥𝑛𝑎 

(E 82) 
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Level 2: Value added - energy aggregate and intermediate input aggregate 

The second level comprises two production nests: the value added-energy aggregate (𝑄𝑉𝐴𝐸𝑎) and 

the aggregate of intermediate inputs (𝑄𝐼𝑁𝑇𝑎).  

The non-energy intermediate commodity demand by activity (𝑄𝐼𝑁𝑇𝐷𝑐,𝑎) (E 83) is defined as the 

product of fixed (Leontief) input coefficients of the demand for commodity c by activity a 

(𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎) multiplied by the quantity of intermediate input by activity (𝑄𝐼𝑁𝑇𝑎). As already 

mentioned the non-energy intermediate input (𝑄𝐼𝑁𝑇𝐷𝑐,𝑎) is declared as commodity and activity 

specific. 

The value added-energy aggregate (𝑄𝑉𝐴𝐸𝑎) is specified as a two argument CES function over the 

land-labour aggregate (𝑄𝑉𝐿𝐿𝑎) and the capital-energy aggregate (𝑄𝑉𝐾𝐸𝑎), where 𝛿𝑎
𝑣𝑎𝑒 represents 

the share parameter, 𝜌𝑎
𝑣𝑎𝑒 the substitution parameter and 𝐴𝐷𝑎

𝑣𝑎𝑒 the efficiency variable (E 84). 

In this nest, equation 𝐴𝐷𝑉𝐴𝐸𝐸𝑄𝑎 (E 85) defines the efficiency variable 𝐴𝐷𝑉𝐴𝐸𝑎, where 𝑎𝑑𝑣𝑎𝑒𝑏𝑎 is 

the base value, 𝑑𝑎𝑏𝑎𝑑𝑣𝑎𝑒𝑎 the absolute change in the base value and 𝐷𝐴𝐷𝑉𝐴𝐸 an additive 

adjustment factor. The parameter 𝑎𝑑𝑣𝑎𝑒01 is a vector of zeros and non-zeros for scaling the additive 

adjustment factor.  

The optimal ratio of aggregated 𝑄𝑉𝐿𝐿𝑎 and 𝑄𝑉𝐾𝐸𝑎 is defined by the first order condition for profit 

maximisation (E 86) that is determined by the respective relative prices of the capital-energy 

aggregate (𝑃𝑉𝐾𝐸𝑎) and the labour-land aggregate (𝑃𝑉𝐿𝐿𝑎). 

Equation (E 87) determines the unit cost function for the activity price of the value added energy 

aggregate. 
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Level 2: Intermediate input aggregate – Implementation STAGE_D 

𝑄𝐼𝑁𝑇𝐷𝐸𝑄𝑐,𝑎 𝑄𝐼𝑁𝑇𝐷𝑐,𝑎 = ∑ 𝑖𝑜𝑞𝑡𝑑𝑞𝑑𝑐,𝑎

𝑎

∗ 𝑄𝐼𝑁𝑇𝑎 ∀𝑐𝑒𝑙𝑛𝑐 (E 83) 

Level 2: Value added – energy aggregate – Implementation STAGE_D 

𝑄𝑉𝐴𝐸𝑃𝑅𝑂𝐷𝐹𝑁𝑎 𝑄𝑉𝐴𝐸𝑎 = 𝐴𝐷𝑎
𝑣𝑎𝑒 ∗ [𝛿𝑎

𝑣𝑎𝑒 ∗ 𝑄𝑉𝐿𝐿𝑎
−𝜌𝑎

𝑣𝑎𝑒

+ (1 − 𝛿𝑎
𝑣𝑎𝑒) ∗  𝑄𝑉𝐾𝐸𝑎

−𝜎𝑎
𝑣𝑎𝑒

]
−

1
𝜌𝑎

𝑣𝑎𝑒
 ∀𝛿𝑣𝑎𝑒 (E 84) 

𝐴𝐷𝑉𝐴𝐸𝐸𝑄𝑎 𝐴𝐷𝑉𝐴𝐸𝑎 = [(𝑎𝑑𝑣𝑎𝑒𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑣𝑎𝑒𝑎) ∗ 𝐴𝐷𝑉𝐴𝐸𝐴𝐷𝐽] +  (𝐷𝐴𝐷𝑉𝐴𝐸 ∗ 𝑎𝑑𝑣𝑎𝑒01𝑎)  (E 85) 

𝑄𝑉𝐴𝐸𝐹𝑂𝐶𝑎 𝑄𝑉𝐿𝐿𝑎 =  𝑄𝑉𝐾𝐸𝑎 ∗ [
𝑃𝑉𝐾𝐸𝑎

𝑃𝑉𝐿𝐿𝑎
∗ 

𝛿𝑎
𝑣𝑎𝑒

(1 − 𝛿𝑎
𝑣𝑎𝑒)

]

1
(1+𝜌𝑎

𝑣𝑎𝑒)
 ∀𝛿𝑣𝑎𝑒 (E 86) 

𝑃𝑉𝐴𝐸𝐷𝐸𝐹𝑎 𝑃𝑉𝐴𝐸𝑎 ∗ 𝑄𝑉𝐴𝐸𝑎 =  (𝑃𝑉𝐿𝐿𝑎 ∗ 𝑄𝑉𝐿𝐿𝑎) + (𝑃𝑉𝐾𝐸𝑎 ∗ 𝑄𝑉𝐾𝐸𝑎)  (E 87) 
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Level 3: Labour-Land aggregate and Capital-Energy aggregate 

The third level comprises two nests: The labour-land aggregate and the capital-energy aggregate.  

Labour-Land aggregate 

The labour-land aggregate is an aggregate over the primary inputs labour and land (𝑄𝑉𝐿𝐿𝑎) that is 

determined by a two-argument CES function over the factor labour (𝐹𝐷𝑓𝑙𝑎𝑏,𝑎) and the factor land 

(𝐹𝐷𝑓𝑙𝑎𝑛𝑑,𝑎) (E 88). Here 𝛿𝑎
𝑣𝑙𝑙  is the share parameter, 𝜌𝑎

𝑣𝑙𝑙 the substitution parameter and 𝐴𝐷𝑎
𝑣𝑙𝑙 the 

efficiency variable. 

The efficiency variable 𝐴𝐷𝑉𝐿𝐿𝑎 is defined by equation (E 89), where 𝑎𝑑𝑣𝑙𝑙𝑏𝑎 is the base value, 

𝑑𝑎𝑏𝑎𝑑𝑣𝑙𝑙𝑎 the absolute change in the base value and 𝐷𝐴𝐷𝑉𝐿𝐿 an additive adjustment factor. The 

vector 𝑎𝑑𝑣𝑙𝑙01 comprises zeros and non-zeros for scaling the additive adjustment factor.  

To find the optimal allocation between labour and land, the first order condition 𝑄𝑉𝐿𝐿𝐹𝑂𝐶𝑎 is 

applied (E 90). The first order condition is determined by the respective relative prices for labour and 

land and the demand for labour by activity a (𝐹𝐷𝑓𝑙𝑎𝑏,𝑎). The price for land is defined as the product 

of the sectoral proportion of the land price (𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑛𝑑,𝑎) multiplied by the price for land 

(𝑊𝐹𝑓𝑙𝑎𝑛𝑑) and the taxes on land (𝑇𝐹𝑓𝑙𝑎𝑛𝑑,𝑎). The labour price is defined as the product of the 

sectoral proportion of the price for labour (𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑏,𝑎) multiplied by the price for labour 

(𝑊𝐹𝑓𝑙𝑎𝑏) and taxes on labour (𝑇𝐹𝑓𝑙𝑎𝑏,𝑎). The price for the labour-land aggregate is defined by 

equation (E 91). 
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Level 3: Labour-Land aggregate – Implementation STAGE_D 

𝑄𝑉𝐿𝐿𝑃𝑅𝑂𝐷𝐹𝑁𝑎 𝑄𝑉𝐿𝐿𝑎 =  𝐴𝐷𝑎
𝑣𝑙𝑙 ∗ (𝛿𝑎

𝑣𝑙𝑙 ∗ 𝐹𝐷𝑓𝑙𝑎𝑛𝑑,𝑎
−𝜌𝑎

𝑣𝑙𝑙

+ (1 − 𝛿𝑎
𝑣𝑙𝑙) ∗ 𝐹𝐷𝑓𝑙𝑎𝑏,𝑎

−𝜌𝑎
𝑣𝑙𝑙

)
−

1

𝜌𝑎
𝑣𝑙𝑙

 ∀𝛿𝑣𝑙𝑙 (E 88) 

𝐴𝐷𝑉𝐿𝐿𝐸𝑄𝑎 𝐴𝐷𝑉𝐿𝐿𝑎 = [(𝑎𝑑𝑣𝑙𝑙𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑣𝑙𝑙𝑎) ∗ 𝐴𝐷𝑉𝐿𝐿𝐴𝐷𝐽] + (𝐷𝐴𝐷𝑉𝐿𝐿 ∗ 𝑎𝑑𝑣𝑙𝑙01𝑎)  (E 89) 

𝑄𝑉𝐿𝐿𝐹𝑂𝐶𝑎 𝐹𝐷𝑓𝑙𝑎𝑛𝑑,𝑎 = 𝐹𝐷𝑓𝑙𝑎𝑏,𝑎 [
(𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑏,𝑎 ∗ 𝑊𝐹𝑓𝑙𝑎𝑏 ∗  (1 + 𝑇𝐹𝑓𝑙𝑎𝑏,𝑎))

(𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑛𝑑,𝑎 ∗ 𝑊𝐹𝑓𝑙𝑎𝑛𝑑 ∗  (1 + 𝑇𝐹𝑓𝑙𝑎𝑛𝑑,𝑎))
∗ 

𝛿𝑎
𝑣𝑙𝑙

(1 − 𝛿𝑎
𝑣𝑙𝑙)

]

1

(1+𝜌𝑎
𝑣𝑙𝑙)

 ∀𝛿𝑣𝑙𝑙 (E 90) 

𝑃𝑉𝐿𝐿𝐷𝐸𝐹𝑎 𝑃𝑉𝐿𝐿𝑎 ∗ 𝑄𝑉𝐿𝐿𝑎 = 
(𝑊𝐹𝑓𝑙𝑎𝑛𝑑 ∗ 𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑛𝑑,𝑎 ∗ (1 +  𝑇𝐹𝑓𝑙𝑎𝑛𝑑,𝑎) ∗ 𝐹𝐷𝑓𝑙𝑎𝑛𝑑,𝑎)

+  (𝑊𝐹𝑓𝑙𝑎𝑏 ∗ 𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑙𝑎𝑏,𝑎 ∗ (1 +  𝑇𝐹𝑓𝑙𝑎𝑏,𝑎) ∗ 𝐹𝐷𝑓𝑙𝑎𝑏,𝑎) 
∀𝛿𝑣𝑙𝑙 (E 91) 
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Capital-Energy aggregate 

The second nest on the third level is the capital-energy aggregate that offers a substitution possibility 

between capital and energy inputs in the production process of an activity. The capital-energy 

aggregate is defined as a two-argument CES function over the factor capital (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎) and the 

energy aggregate (𝑄𝑉𝐸𝑎) (E 92) in which 𝛿𝑎
𝑣𝑘𝑒 is the share parameter, 𝜌𝑎

𝑣𝑘𝑒 the substitution 

parameter and 𝐴𝐷𝑎
𝑣𝑘𝑒 the efficiency variable. 

The efficiency variable 𝐴𝐷𝑉𝐾𝐸𝑎 is defined by equation (E 93), where 𝑎𝑑𝑣𝑘𝑒𝑏𝑎 is the base value, 

𝑑𝑎𝑏𝑎𝑑𝑣𝑘𝑒𝑎 the absolute change in the base value, 𝐷𝐴𝐷𝑉𝐾𝐸 the additive adjustment factor and 

𝑎𝑑𝑣𝑘𝑒01 a vector of zeros and non-zeros for scaling the additive adjustment factor.  

For the optimal allocation for capital and energy inputs, the first order condition (𝑄𝑉𝐾𝐸𝐹𝑂𝐶𝑎) is 

defined by equation (E 94). 

Equation (E 95) shows the price definition of the capital-energy aggregate, where 𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑐𝑎𝑝,𝑎 

represents the sectoral proportion of the capital price, 𝑊𝐹𝑓𝑐𝑎𝑝 the price for capital, 𝑇𝐹𝑓𝑐𝑎𝑝,𝑎 

specifies the tax rate for capital use by activity and 𝐹𝐷𝑓𝑐𝑎𝑝,𝑎 the capital demand by activity. 𝑃𝑉𝐸𝑎 is 

the price for the energy aggregate and 𝑄𝑉𝐸𝑎 the respective quantity.  
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Level 3: Capital-Energy aggregate – Implementation STAGE_D 

𝑄𝑉𝐾𝐸𝑃𝑅𝑂𝐷𝐹𝑁𝑎 𝑄𝑉𝐾𝐸𝑎 = 𝐴𝐷𝑎
𝑣𝑘𝑒 ∗ (𝛿𝑎

𝑣𝑘𝑒 ∗ 𝐹𝐷𝑓𝑐𝑎𝑝,𝑎
−𝜌𝑎

𝑣𝑘𝑒

+ (1 − 𝛿𝑎
𝑣𝑘𝑒) ∗ 𝑄𝑉𝐸𝑎

−𝜌𝑎
𝑣𝑘𝑒

)
−

1

𝜌𝑎
𝑣𝑘𝑒

 ∀𝛿𝑣𝑘𝑒 (E 92) 

𝐴𝐷𝑉𝐾𝐸𝐸𝑄𝑎 𝐴𝐷𝑉𝐾𝐸𝑎 =  [(𝑎𝑑𝑣𝑘𝑒𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑣𝑘𝑒𝑎) ∗ 𝐴𝐷𝑉𝐾𝐸𝐴𝐷𝐽] +  (𝐷𝐴𝐷𝑉𝐾𝐸 ∗ 𝑎𝑑𝑣𝑘𝑒01𝑎)  (E 93) 

𝑄𝑉𝐾𝐸𝐹𝑂𝐶𝑎 𝐹𝐷𝑓𝑐𝑎𝑝,𝑎 = 𝑄𝑉𝐸𝑎 ∗ [
𝑃𝑉𝐸𝑎

(𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑐𝑎𝑝,𝑎 ∗ 𝑊𝐹𝑓𝑐𝑎𝑝 ∗ (1 + 𝑇𝐹𝑓𝑐𝑎𝑝,𝑎))
∗ 

𝛿𝑎
𝑣𝑘𝑒

(1 − 𝛿𝑎
𝑣𝑘𝑒)

]

1

(1+𝜌𝑎
𝑣𝑘𝑒)

 ∀𝛿𝑣𝑘𝑒 (E 94) 

𝑃𝑉𝐾𝐸𝐷𝐸𝐹𝑎 𝑃𝑉𝐾𝐸𝑎 ∗ 𝑄𝑉𝐾𝐸𝑎 =  (𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑐𝑎𝑝,𝑎 ∗  𝑊𝐹𝑓𝑐𝑎𝑝 ∗ (1 + 𝑇𝐹𝑓𝑐𝑎𝑝,𝑎) ∗ 𝐹𝐷𝑓𝑐𝑎𝑝,𝑎 +  𝑃𝑉𝐸𝑎 ∗ 𝑄𝑉𝐸𝑎) ∀𝛿𝑣𝑘𝑒 (E 95) 
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Level 4: Energy aggregate  

Level four comprises the energy aggregate (𝑄𝑉𝐸𝑎) which is determined by a multi argument CES 

function. The aggregate includes the energy commodities natural gas (𝑄𝐼𝑁𝑇𝐷𝑐𝑛𝑎𝑡𝑔𝑎𝑠,𝑎), electricity 

(𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙𝑦,𝑎), crude oil (𝑄𝐼𝑁𝑇𝐷𝑐𝑐𝑟𝑢𝑑𝑒𝑜𝑖𝑙,𝑎), brown coal (𝑄𝐼𝑁𝑇𝐷𝑐𝑏𝑟𝑜𝑤𝑛,𝑎) and dark coal 

(𝑄𝐼𝑁𝑇𝐷𝑐𝑑𝑎𝑟𝑘 ,𝑎). 

In the related production function (𝑄𝑉𝐸𝑃𝑅𝑂𝐷𝐹𝑁𝑎) (E 96), 𝛿𝑎
𝑣𝑒 is the share parameter, 𝜌𝑎

𝑣𝑒 the 

substitution parameter and 𝐴𝐷𝑎
𝑣𝑒 represents the efficiency variable.  

The efficiency variable 𝐴𝐷𝑉𝐸𝑎 is defined by equation (E 97), where 𝑎𝑑𝑣𝑒𝑏𝑎 is the base value, 

𝑑𝑎𝑏𝑎𝑑𝑣𝑒𝑎 the absolute change in the base value, 𝐷𝐴𝐷𝑉𝐸 an additive adjustment factor and 𝑎𝑑𝑣𝑒01 

a vector of zeros and non-zeros for scaling the additive adjustment factor.  

The associated first order condition for profit maximisation (𝑄𝑉𝐸𝐹𝑂𝐶𝑎) (E 98) determines the price 

of energy inputs (𝑃𝑄𝐷𝑐𝑒𝑙). Here, the sectoral proportion of energy commodity prices by activity 

(𝑃𝑄𝐷𝐷𝐼𝑆𝑇𝑐𝑒𝑙,𝑎) and the tax rates on energy commodity use by activity (𝑇𝐶𝐸𝑐,𝑎) are included. 

The first order condition for profit maximisation is derived by the equality between the payments for 

each energy commodity by each activity and the values of the marginal products of those energy 

commodities by each activity. 

The price for the energy commodities (𝑃𝑉𝐸𝑎) is defined as the product of the sectoral proportion of 

the energy price (𝑃𝑄𝐷𝐷𝐼𝑆𝑇𝑐𝑒𝑙,𝑎) multiplied by the energy price (𝑃𝑄𝐷𝑐𝑒𝑙), the taxes on energy 

(𝑇𝐶𝐸𝑐𝑒𝑙,𝑎) and the energy demand by activity (𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙,𝑎) (E 99). 
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Level 4: Energy aggregate – Implementation STAGE_D 

𝑄𝑉𝐸𝑃𝑅𝑂𝐷𝐹𝑁𝑎 𝑄𝑉𝐸𝑎 = 𝐴𝐷𝑎
𝑣𝑒 [ ∑ 𝛿𝑐𝑒𝑙,𝑎

𝑣𝑒

𝑐𝑒𝑙$𝛿𝑐𝑒𝑙,𝑎
𝑣𝑒

∗ 𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙,𝑎
−𝜌𝑎

𝑣𝑒

]

−
1

𝜌𝑎
𝑣𝑒

 
∀ ∑ 𝛿𝑐𝑒𝑙,𝑎

𝑐𝑒𝑙

 (E 96) 

𝐴𝐷𝑉𝐸𝐸𝑄𝑎 𝐴𝐷𝑉𝐸𝑎 = [(𝑎𝑑𝑣𝑒𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑣𝑒𝑎) ∗ 𝐴𝐷𝑉𝐸𝐴𝐷𝐽] +  (𝐷𝐴𝐷𝑉𝐸 ∗ 𝑎𝑑𝑣𝑒01𝑎)  (E 97) 

𝑄𝑉𝐸𝐹𝑂𝐶𝑎 

𝑃𝑄𝐷𝑐𝑒𝑙 ∗ 𝑃𝑄𝐷𝐷𝐼𝑆𝑇𝑐𝑒𝑙,𝑎 ∗ (1 +  𝑇𝐶𝐸𝑐𝑒𝑙,𝑎)   

= 𝑃𝑉𝐸𝑎 ∗ 𝑄𝑉𝐸𝑎 ∗ [ ∑ 𝛿𝑐𝑒𝑙,𝑎
𝑣𝑒 ∗ 𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙,𝑎

−𝜌𝑎
𝑣𝑒

𝑐𝑒𝑙$𝛿𝑐𝑒𝑙,𝑎
𝑣𝑒

]

−1

∗ 𝛿𝑐𝑒𝑙,𝑎
𝑣𝑒 ∗ 𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙,𝑎

(−𝜌𝑎
𝑣𝑒−1)

 
∀𝛿𝑐𝑒𝑙,𝑎 

(E 98) 

𝑃𝑉𝐸𝐷𝐸𝐹𝑐𝑒𝑙,𝑎 𝑃𝑉𝐸𝑎 ∗ 𝑄𝑉𝐸𝑎 = (𝑃𝑄𝐷𝑐𝑒𝑙 ∗ 𝑃𝑄𝐷𝐷𝐼𝑆𝑇𝑐𝑒𝑙,𝑎 ∗ (1 + 𝑇𝐶𝐸𝑐𝑒𝑙,𝑎)) ∗ 𝑄𝐼𝑁𝑇𝐷𝑐𝑒𝑙,𝑎)  (E 99) 
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5.3 Implementation of carbon emissions  

Based on the code of the global energy model GLOBE_EN that was developed by Scott McDonald and 

Karen Thierfelder (2008), also carbon emissions are implemented into STAGE_D. Here, carbon 

emissions are divided into emissions caused by the use of energy commodities (𝑄𝐼𝑁𝑇𝐷𝑐,𝑎) by 

activities (𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,𝑎) (E 100) and households (𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,ℎ) (E 101) multiplied by the carbon 

emission coefficients (co2co). The total amount of carbon emissions (𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑇𝑂𝑇) is a sum over 

emissions arising from industries and the households (E 102).  

𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,𝑎 =  𝑄𝐼𝑁𝑇𝐷𝑐,𝑎 ∗ 𝑐𝑜2𝑐𝑜𝑐,𝑎 ∀𝑐𝑒𝑙 (E 100) 

𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,ℎ =  𝑄𝐼𝑁𝑇𝐷𝑐,ℎ ∗ 𝑐𝑜2𝑐𝑜𝑐,ℎ ∀𝑐𝑒𝑙 (E 101) 

𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑇𝑂𝑇 =   ∑ 𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,𝑎

𝑐,𝑎

+ ∑ 𝐶𝑂2𝐸𝑀𝐼𝑆𝑆𝑐,ℎ

𝑐,ℎ

  (E 102) 

5.4 Parameters of functional forms 

Elasticities of substitution are important drivers of model results (Sancho 2010). Elasticity parameters 

describe the responsiveness of producers and consumers to relative price changes and are necessary 

to calibrate a CGE model. Next to the information of the SAM, elasticities represent an important 

data source. One issue of elasticities is their availability. 

The model extension and the more detailed specification of production technologies increase the 

requirements for elasticities of substitution. Furthermore, the higher disaggregation level of the SAM 

requires more specific elasticities for single commodities or activities.  

Table 10 presents the elasticities of substitution between imported and domestically produced 

commodities (Armington elasticity) and the elasticity of transformation between export and 

domestic supply (CET elasticity) applied in STAGE_D. The Armington elasticities are based on the 

elasticities provided in the GTAP database and borrowed from Orlov (2012). These elasticities are not 

country specific, but due to the lack of specific data for Germany, applied in STAGE_D for this 

research.  

The applied CET elasticities are based on CET elasticities used in other CGE models (Wiebelt 1996, 

Banse 1997, Weyerbrock 1998, Orlov 2012) and comprise values of 2.9 for energy commodities, 2.0 

for industrial commodities and 1.5 for food, feed and agricultural commodities.  



Development of the model STAGE_D – Own modifications 

96 

Table 10: Armington and CET elasticities 

 

Source: Own compilation 

Table 11 shows the elasticity values for production and consumption in the adjusted STAGE_D model. 

Contrary to homogeneous commodities like electricity in this study, commodities are differentiated 

depending on the activity that produces this commodity. The domestic output of this commodity is a 

CES aggregate with an elasticity of 4, like in the STAGE base model.  

The modified STAGE_D model comprises a four level nested CES production function 

(see section 5.2). Activity output at the top level is defined by the production elasticity (𝜎𝑥) that 

relates to the substitution between the value added-energy aggregate and the non-energy 

intermediate input aggregate. The elasticity of substitution on the top-level is 1.2 for all activities.  

At the second level the value added-energy elasticity (𝜎𝑣𝑎𝑒) defines the substitution between the 

labour-land aggregate and the capital-energy aggregate and takes various values between 0.2 and 

1.6.  

Level three comprises two nests and two elasticities for the labour-land aggregate and the capital-

energy aggregate. The elasticity between labour and land (𝜎𝑣𝑙𝑙) comprises values between 0.4 and 

0.8. The elasticity between capital and the energy aggregate (𝜎𝑣𝑘𝑒) is 2 for all activities.  

The elasticity of substitution between energy inputs on level 4 (𝜎𝑣𝑒) is 0.5 for all activities. There are 

exceptions that comprise electricity generating activities and mining of dark coal. The elasticity of 

substitution between the capital and the energy nest (𝜎𝑣𝑘𝑒) is 0.1 at this point and for wind and solar 

this elasticity is 5. These elasticities are user defined. 

Commodity Armington Elasticity CET Elasticity

Dark coal 1.52 2.90

Brown coal 0.90 2.90

Crude oil 2.60 2.90

Natural gas 8.60 2.90

Electricity 1.40 2.90

Light manufacturing 2.65 2.00

Heavy manufacturing 1.87 2.00

Construction 2.53 2.00

Transport 0.95 2.00

Service 0.59 2.00

Agricultural products 1.45 1.50

Food and feed products 1.45 1.50
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Table 11: Elasticity values for production and consumption in the adjusted STAGE_D model 

 

Source: Own compilation 

With regard to households the LES income elasticity was set to 1 and the LES Frisch paramenter to -1. 

These elasticites are equal to the values in the STAGE base model.  

Pyatt (1988) mentions that the elasticities applied in a GCE model are one of the weaknesses of CGE 

models, because they are received from outside the SAM framework. One way to proof the reaction 

of a model to the applied elasticities is the sensitivity analysis. The sensitivity analysis for the applied 

elasticities in STAGE_D is presented in section 7.5.  

5.5 Summary  

This chapter presents the modifications of the model STAGE_D. The two-level production function of 

the basic version of STAGE was set up as a four-level nest of production functions and implemented 

into the model. Furthermore, a set of equations was included to capture carbon emissions by 

activities and households. This section additionally introduces the parameters of functional forms 

applied in STAGE_D to analyse the impact of the exit from nuclear and fossil-fuel energy on the 

German economy, presented in the next chapter.  

 

Functional Form Set Value

CES on product aggregation from different industries Commodities 4

CES on value added-energy and intermediate inputs Activity 1.2

CES on labour-land aggregate and capital-energy aggregate Activity 0.2 to 1.6

CES on labour-land aggregate Activity 0.4 to 0.8

CES on capital-energy aggregate Activity 2

CES energy aggregate Activity 0.5

LES income elasticity Household 1

LES Frisch parameter Household -1
Consumption 

Production 
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6 Case study – Impact of the Energiewende on the German economy  

6.1 Introduction  

In September 2010 the German government decided on the establishment of an energy change 

strategy, the Energy Concept, which required a fundamental long-term restructuring of the German 

energy supply system during the period until 2050. The main objective of the so-called Energiewende 

is a comprehensive replacement of fossil energy by renewable energy sources to ensure climate 

protection. At the same time, affordable energy prices for consumers, a high level of economic 

competitiveness and development and the reduction of the import dependency on energy 

commodities have to be maintained (BMWi 2010, BMBU 2012).  

One aspect of the implementation of the Energy Concept was the extension of the operating lifetime 

of German nuclear power plants by an average of 12 years to reach the environmental goal to reduce 

carbon emissions. But, the nuclear accident in Fukushima, in March 2011, changed the government’s 

energy strategy to include the elimination of nuclear power by the year 2022, starting with the 

immediate closure of the eight oldest plants. This decision was enacted by the government in the 

frame of the Energy Package in July 2011 (BMWi 2012).  

These changes are being implemented alongside major changes in the coal policies. The European 

Council of Ministers introduced (stepwise) reductions in dark coal subsidies from 2011 to 2018 that 

are expected to end German dark coal production. Additionally electricity generation using brown 

coal has to be reduced. In 2015, the government decided to close 2.7 GW of brown coal power plants 

capacity, comprising 13 %, by 2020. The combined impact of the nuclear and coal policies and the 

increase of renewable energy as an objective of the Energiewende is that around 50 % of established 

energy sources have to be replaced by renewable energy sources, by 2030 (BMWi 2013a, 

BMWi 2017).  

The objective of this case study is the presentation and analysis of the impact of the exit from nuclear 

and fossil-fuel energy and the increasing use of renewable energy sources for electricity generation 

on the German economy. A special emphasis is laid on the agricultural sector, because the 

agricultural sector is concerned with the energy policy in two ways: 1) agriculture became a ‘new 

player’ on the electricity market due to the possibility to generate electricity based on biogas and 

2.) agriculture is an intensive user of electricity and directly concerned by the total economic effects 

of the implementation of the Energiewende in the German economy.  

The case study comprises two parts. In the first part, presented in this chapter, the framework 

conditions and specifics of the German electricity sector are presented with the aim to provide a 

better understanding of how electricity is supplied and used in the German economy and how the 
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development process of the Energiewende was involved over the last years. This background 

information complements the information that is captured in the German SAM (see chapter 4), 

because a SAM shows a static picture of the German economy and electricity sector.  

In the second part of the case study, presented in the following chapter 7, the model STAGE_D is 

applied. This analytical part of the case study comprises the introduction of the scenarios and model 

closures as well as the presentation and analysis of the results. 

This descriptive chapter is structured as follows. Starting point is the presentation of the political 

background. This comprises the Energy Concept and the Energy Package as well as a short 

introduction of the coal policy and the Renewable Energy Act in section 6.2. The following section 6.3 

gives an overview of electricity generation by energy sources and gross domestic electricity 

generation in Germany. In this context, section 6.4 has a closer look at the development of electricity 

generation based on renewable energy sources, with a special treatment of electricity generation 

based on biomass and the substrate provision by the agricultural sector. Additionally to the supply, 

section 6.5 shows the use of electricity by industries and households. Information about the 

domestic provision of energy resources and the dependence on imports of the German economy are 

captured in section 6.6. Section 6.7 contains the presentation of some specifics of the German 

electricity market. The development of electricity prices with a more detailed consideration of the 

components that add up to the consumer prices for households and industries is presented in 

section 6.8. Electricity trade is the focus of section 6.9. This chapter closes with a consideration of the 

impact of electricity generation based on renewable energy sources on carbon emissions in section 

6.10. A summary of the descriptive chapter is given in section 6.11. 
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6.2 Energy policy in Germany  

The changes on the German energy markets, observable over the last years, are consequence of a 

comprehensive restructuring programme initiated by the German government. The legal foundation 

of this process can be seen in the implementation of the Energy Concept and the Energy Package, 

which are presented here in more detail. Furthermore, a short introduction of the Renewable Energy 

Act, the Dark Coal Financing Act and energy taxation is given.  

The Energy Concept 2010  

The Energy concept can be regarded as an extension of the Integrated Energy and Climate Program 

of the German government, implemented in December 2007, on the basis of the decisions of the 

cabinet meeting in Meseberg. With the Energy Concept, determined on 28 September 2010, the 

government established a long-term strategy for a transformation process of the German energy 

system until the year 2050. This process, known as Energiewende (Energy Shift), relates to all areas of 

energy supply and use (electricity, heat and mobility) (BMWi 2010).  

Central point of this policy measure is the extension of renewable energies to the main pillar in the 

German energy-mix. In the electricity sector wind, solar and biomass will serve as alternative 

resources for fossil fuels (oil, coal, natural gas) and nuclear energy. In the framework of the Energy 

Concept nuclear power got a role as bridge technology to secure electricity supply during this 

transition process. Therefore, an average of 12-year extension of the run-time to nuclear power 

plants was granted.  

Table 12 presents the long-term objectives of the German energy policy determined in the Energy 

Concept. 

Table 12: Objectives of the German energy policy 

 

Source: BMU (2012) 

Altogether, a reduction of energy use and an increase of renewable energy sources are on focus of 

the implementation. With regard to the electricity sector the share of renewable energy in electricity 

consumption is intended to increase by 35 % in 2020, 50 % in 2030, 65 % in 2040 and 80 % in the year 

2020 2030 2040 2050

Reduction of greenhouse gases (base: 1990) -40 -55 -70 -80

Share of renewable energies in total final energy consumption 18 30 45 60

Share of renewable energies in electricity consumption 35 50 65 80

Reduction of primary energy consumption (base: 2008) -20 -50

Reduction of electricity consumption (base: 2008) -10 -25

Reduction of final energy consumption in transport sector (base: 2008) -10 -40

%
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2050 compared to the year 2008. The consumption of electricity shall be reduced by -10 % in 2020 

and -25 % in 2050. This reduction shall be achieved by an increase of efficiency in electricity use.  

Furthermore, the implementation of the Energy Concept occurs on the background to increase 

climate protection. It is intended to achieve a reduction of greenhouse gases by  

-40 % in 2020 and -80 % in 2050 compared to the year 1990.  

The achievements of the objectives in the energy sector, presented in Table 12, are implemented 

under the consideration of the development of industries, households and trade. During the 

comprehensive transformation process in the energy sector the competitiveness and development of 

domestic industries shall be maintained. In addition, competitive prices shall be ensured for the 

industries as well as affordable prices for households.  

The objective to reduce energy use and to switch from a fossil to a renewable base also occurs under 

the aspect to reduce the import demand for energy commodities. Germany, characterised as a 

resource poor country, strongly depends on imports of oil and gas. For the future, the German 

government expects higher energy prices due to the increasing global demand for energy resources. 

Therefore, the reduction of import dependency is a further objective in the frame of the 

Energiewende.  

Consequently, the Energiewende can be regarded as an integrated overall approach with an impact 

on all actors in the economy (BMWi 2010).  

The Energy Package 2011 

As a consequence of the Fukushima Daiichi (Japan) nuclear accident in March 2011, the federal 

government reconsidered the long-term role of nuclear power, with the result to phase-out the use 

of nuclear power for commercial electricity generation at the earliest possible time. On 30 June 2011, 

the Bundestag passed the Thirteenth Act amending the Atomic Energy Law (Dreizehntes Gesetz zur 

Änderung des Atomgesetzes). This act entered into force on August 6, 2011. One important decision 

was to ensure that the nuclear phase-out could proceed as quickly as possible with the eight oldest 

nuclear power plants not being reconnected to the grid.  

In order to phase-out nuclear power more quickly, the process of reorganising the German energy 

supply system at a fundamental level needed to be substantially accelerated. So the Federal Cabinet, 

the Bundestag and the Bundesrat enacted a comprehensive so-called Energy Package, in July 2011. 

This Energy Package consists of seven acts and one ordinance, e.g. on expanding renewables, 

expanding the grid, energy efficiency and on the funding of the reforms. The Energy Package marked 

the second significant step by the federal government towards the restructuring of the energy supply 

(Hübner et al. 2012, BMWi 2012). 
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The Renewable Energy Act 

The Renewable Energy Act (EEG) presents the legal foundation for the promotion of renewable 

energy sources for electricity generation and builds up on the ‘Energy Feed-in Law’, introduced in the 

year 1991. The Renewable Energy Act was established in the year 2000 (EEG 2000). At this time the 

main objective of the EEG was the development and support of new technologies for electricity 

generation, such as wind, solar and biomass energy. In the framework of the EEG the market entry of 

these new technologies was regulated and supported by fixed remunerations and guaranteed 

purchase of this electricity. Due to technological progress of renewable-based power plants, the 

increasing provision of renewable-based electricity and changing political sub-ordinate targets, the 

EEG has been amended several times (EEG 2004, EEG 2009, EEG 2012, EEG 2014, EEG 2017) 

(FNR 2017). 

Due to the positive development of renewables energies (see section 6.4), the EEG 2017 introduced a 

paradigm shift: since 2017, the remuneration of renewable energy is no longer determined by the 

state. Until this year prices for renewable electricity were determined by calls for tenders on the 

electricity market because renewable energies became competitive against fossil energies 

(BMWi 2017).  

The Dark Coal Financing Act  

The extraction of dark coal in Germany is not competitive in the international context; therefore dark 

coal extraction has been subsidised since 1974. In February 2007, a coal policy agreement was 

decided between the government, the dark coal industry and the coal-mining states (Bundesländer). 

The agreement of ‘Terminating subsidised dark coal production in Germany in a socially acceptable 

manner’ describes the details of the phase-out process of dark coal until the year 2018. The 

corresponding act ‘The Act to Finance the Termination of Subsidised Dark Coal Production by the 

Year 2018’ (Dark Coal Financing Act, Steinkohlefinanzierungsgesetz), entered into force on 

December 28, 2007. On this legal basis subsidies are reduced annually. Appropriate to the 

agreement, the government and the coal-mining states grant the financial support for sales, mine 

closures and liabilities needed in the period between 2009 and 2019. The coal mining industry has to 

contribute to the costs from 2012 onwards.  

Beyond the German act, operational aid of dark coal extraction from 2018 onwards is permitted by a 

European Council Regulation, which came in force in January 2011 (BMWi 2007, IAE 2013).  

Electricity taxation in Germany  

Governments tax revenues based on electricity taxes comprised 6.6 Billion (bn) Euro (€) in the year 

2015. This corresponds to a share of around 7.7 % of Germanys total tax revenues in this year 
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(Federal Statistical Office 2017). The Electricity Tax Act (StromStG 1999) regulates the taxation of 

electricity consumption and has been introduced in Germany in April 1999 within the framework of 

the ecological tax reform. The electricity tax is an indirect excise tax, accrued by the electricity 

supplier, if electricity is used by the final consumer. This tax is passed directly to the consumer by 

electricity prices. Since 2003 the electricity tax rate comprises 2.05 Cent/kWh (Ministry of Justice and 

Consumer Protection 2000).  

6.3 Electricity generation in Germany 

In 2014, German power plants generated 626.7 terawatt hours (TWh) of electricity (BMWi 2017b). 

Within the EU, Germany is the biggest producer of electricity with a share of 19.5 % of the total EU 

gross domestic electricity generation (Eurostat 2016a).  

Figure 9 presents development of gross electricity generation and the appropriate shares of energy 

resources used for electricity generation in Germany between the years 2000 and 2014. Gross 

electricity generation increased from 576.6 TWh in 2000 up to 640.6 TWh in the year 2007 and 

626.7 TWh in 2014 (AGEB 2016, BMWi 2017) but shows a volatile development. 

Figure 9: Gross domestic electricity generation (in TWh) and electricity generation by energy source 
(in percent) between 2000 and 2014 

 

Source: AGEB (2016), BMWi (2017) 

Background of the increasing electricity generation is the rise of electricity generation based on 

renewable energies due to the guaranteed purchase of this electricity determined in the EEG 

(see section 6.2).  
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The intensified volatility is caused by two facts: 1) One characteristic of electricity generation on the 

basis of the renewable energies wind and solar is the volatile feed-in because these types of 

electricity supply strongly depend on weather conditions. 2) On the other hand the volatile electricity 

generation is a consequence of the inflexibility of the production processes of power plants on the 

base of coal and nuclear power to react on the unsteady electricity supply, based on renewable 

resources. For technological reasons coal- and nuclear-based power plants are not able to adapt to 

current demand situations for electricity (AEE 2013).  

Next to direct influences of the electricity market on electricity generation, also other economic 

impacts influence the supply of electricity. This becomes evident in the years 2008 and 2009 with a 

decline of electricity generation down to 595.6 TWh in 2009 (BMWi 2017). This decline was caused 

by the global economic slowdown as a result of the economic and financial crisis. The second drop in 

the year 2011 is the resulting effect of the immediate shut down of the eight oldest nuclear power 

plants as a consequence of the Fukushima accident, decided in the Energy Package by the 

government (see section 6.2).  

A consideration of the importance of particular energy resources used for electricity generation 

(see Figure 9) already shows the progress of the restructuring process from a fossil-based electricity 

supply system to a renewable based system. At the starting point of the implementation of the EEG 

in the year 2000, nuclear energy, brown and dark coal, with shares of 34.7 %, 26.6 % and 23.8 % 

respectively, have been the foundation of the German electricity supply system. Even in the year 

2014 brown and dark coal represented the most important sources for electricity production with 

shares of 28.8 % and 20.7 %, respectively. Since the political decision to reduce subsidies for dark 

coal extraction in Germany (see section 6.2) the use of dark coal for electricity generation has been 

reduced slightly. Nevertheless, the share of dark coal on gross electricity production is relatively 

stable, because of the fulfilment of the demand of dark coal power plants by imports 

(see section 6.6) (AGEB 2016).  

Brown coal does not depend on subsidies and is available in sufficient quantities as a natural 

resource. Germany is the biggest extractor of brown coal worldwide. In 2012, two new power plants 

were put into operation with a capacity of 2,875 megawatt (MW) (AGEB 2014). Electricity generation 

based on brown coal increased by 2 % between 2000 and 2014.  

Against the background of the Fukushima accident and the political decision of the immediate 

shutdown of the eight oldest nuclear power plants in 2011 (see section 6.2), electricity generation 

based on nuclear power decreased by a share of 13.4 % down to 21.0 % in 2014. Primarily, coal 

replaced nuclear power in the German electricity supply system (BMWi 2017b).  
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Due to the support system, established in the EEG (see section 6.2), the use of renewable energy 

resources increased from a share of 3.4 % in 2000 up to 16.3 % in the year 2014. The most important 

developments could be observed in the use of wind power, solar energy and biomass.  

Natural gas as a resource for electricity generation comprised a share of 8.8 % in 2000 and increased 

slightly to 9.3 % in 2014. Gas power plants are characterised by high cost of production. But due to 

their flexibility to adapt to fluctuations of renewable electricity supply, they may become more 

important in the future (AEE 2013).  

The development of gross electricity generation and the changes in the resource mix show that  

a) political conditions, b) the availability of domestic natural resources, c) technological progress,  

d) the structure and economic development of the national economy, but also e) global 

developments have impacts on the German electricity supply system. 

6.4 Development of electricity generation based on renewable energy 

sources 

As already mentioned in section 6.3 the importance of electricity generation based on renewable 

energy sources increased steadily over the last years. In 2014, gross electricity consumption based on 

renewable energy resources comprised a share of 27.3 %, starting from 6.2 % in 2000 (AGEE 2016). 

Figure 10 presents the development of renewable electricity generation based on wind, solar and 

biomass between 1990 and 2014.  

In the early stages, these new technologies were characterised by high production costs. Due to the 

political support program (EEG) and technical progress, renewables developed to an important 

cornerstone of the German electricity supply system.  

Wind energy as source for electricity generation became the main pillar over the last years. In the 

year 2014, around 12 % or 57.4 gigawatt hours (GWh) of German electricity was produced by 

onshore and offshore wind plants. In addition to the expansion of suitable land sites and the 

replacement of old, smaller plants by modern and more powerful systems - the so-called 

‘repowering’ - the expansion of wind energy at sea (offshore wind energy) is becoming increasingly 

important (BMWi 2017, AGEE 2016).  
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Figure 10: Gross electricity generation based renewable resources between 1990 and 2014 (in 
GWh) 

 

Source: AGEE (2016) 

Electricity generation based on solar panels has been the most costly renewable technology for 

electricity generation in the past. Therefore, compared to other renewable energy sources, the 

comprehensive electricity generation based on solar started relatively late in the year 2006. Due to 

technological developments, solar based electricity increased to a share of 6.1 % on total renewable 

energies in 2014 with an electricity generation of 36.1 GWh (AGEE 2016, BMWi 2017).  

Resources for electricity generation based on biomass are numerous and comprise solid and liquid 

fuels, biogenic waste, landfill gas, gas from purification plants and biogas. Due to the support in the 

framework of the EEG, electricity based on biomass comprised 8.2 % on total renewable electricity 

generation in 2014. This corresponds to an electricity generation by 48.3 GWh. Biogas is the most 

important source of biomass. In 2014, around 5 % of electricity was generated on the base of this 

source (AGEE 2016).  

The next chapter presents a more detailed view to the use of biomass for biogas generation in the 

agricultural sector.   
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6.4.1.1 Biomass as resource for electricity generation  

This section focuses on the production of biomass for biogas generation in the framework of 

agricultural production.  

Compared to wind and solar energy, which represent free natural resources, the production of 

biomass generates costs and furthermore a competition for production factors (indirect competition) 

and the final use (direct competition). Direct competition occurs when agricultural raw materials are 

used for more than one purpose. For example, wheat can be used for food production, feed, as a 

substrate for biogas and biofuel production, or as a basic material for starch production in the 

chemical industry. Indirect competition occurs when biomass production requires the same 

production factors and especially the scarce factor land. This means for example, that the production 

of energy crops, which are initially not grown for food or feed purposes or material re-use are 

competing with these use alternatives because they are grown on the same limited cultivation areas 

(Hermeling & Wölfing 2011, Bringezu et al. 2008, Faulstich 2012).  

Biogas can be produced on the basis of crop and livestock substrates. Figure 11 presents the 

substrate usage for biogas generation in the year 2012 divided by crop- and livestock-based 

substrates. The use of crop-based substrates dominates with a relation between crop- and livestock-

based substrates by 63 % to 27 % (DBFZ 2014).  

In the field of crop-based substrates maize and grass silage, whole plant silage and cereal grain 

represent the most important substrates. Maize and grass silage are by far the most important crop 

substrates with shares of 55.7% and 35.7% of total crop-based substrates. With a significantly lower 

share, whole plant silage with 6.1 % and cereal grain with 1.1 % rank third and fourth place. The total 

of these four main substrates sums up to 98.6 % of all crop-based substrates used for biogas 

generation. 

In the field of livestock-based substrates cattle slurry, with a share of 69.0 %, pig slurry with 14.0 %, 

poultry and cattle manure with 7.0 % and 3.0 % represent main substrates. Together, these 

substrates comprise 97.0 % of the livestock-based substrate use (ibid). 
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Figure 11: Crop and livestock based substrate use for biogas generation (2012) 

 

Source: DBFZ (2014) 

Next to technological and biochemical requirement of biogas generation, especially the government 

subsidies in the framework of the EEG influenced the development biogas generation and the 

composition of substrate inputs (Becker 2016).  

While livestock based substrates can be seen as by-product of livestock production, crop based 

substrates indirectly compete for the factor land (Theuvsen et al. 2010). Figure 12 shows the 

development of land used for crops for biogas generation and the gross electricity generation based 

on biogas. Gross electricity generation based on biogas represents the most important source of 

renewable electricity generation based on biomass. From the year 2000 onward, biogas produced an 

increasing amount of renewable-based electricity, which comprised 29.3 GWh in 2014, representing 

a share of 5.0 % of renewable electricity. The development of the cultivated area for crops used for 

biogas production has more than tripled since the year 2007 and comprised 1,268,000 hectare (ha) in 

the year 2014 (FNR 2016).  
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Figure 12: Biogas - Development of gross electricity generation (in GWh) and land use 
(in hectare) 

 

* from 2008 Biogas and Biomethan 

Source: FNR (annual publications), AGEE (2016) 

In the framework of the EEG fixed output prices for electricity for 20 years after the construction of a 

biogas plant are determined (FNR 2017). Therefore, electricity generation of biogas plants does not 

depend on electricity prices, but on the alternative prices for crops and livestock (Becker 2016).  

6.5 Electricity use in Germany 

Within the EU, Germany is the biggest user of energy with a gross domestic energy consumption of 

313 million tons of oil equivalent in 2014 (Eurostat 2016b). This related to 19.5 % of the total 

European gross energy consumption. The high energy demand is caused by the fact that Germany 

represents one of largest countries within the EU in terms of population and energy intensive 

industries. Domestically, about 50 % of energy is used for heat, 30 % for transport and 20 % for 

electricity generation (UBA 2013).  

Figure 13 presents the electricity consumption by consumer groups in the year 2014. The total gross 

electricity consumption, including losses, installation consumption and exports, comprehended 

666.7 TWh. The biggest user of electricity in Germany is the industry, which includes the mining and 

manufacturing sectors, with 244.4 TWh. This corresponds to 36.7 % of the total consumption. The 

amount of 129.37 TWh (19.5 %) of electricity is used by private households. Retail and trade (11.5 %), 

public institutions (7.8 %) and the transport sector (1.7 %) also represent big users of electricity 

(BMWi 2017).  

Although the agricultural sector is a small sector within the German economy with a share of 0.63 % 

on total GDP in the year 2014 (Statista 2017), agricultural production is characterised by a high 
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electricity demand. In the year 2014 this sector used 9.5 TWh of electricity, an amount with a share 

of 1.4 % on total gross electricity consumption.  

Figure 13: Gross electricity use by consumer groups in Germany in the year 2014 in TWh 

 

Source: BMWi (2016) 

Figure 14 presents the development of the total electricity consumption in Germany with a separate 

view on the biggest users of electricity: households (blue bars) and the industry (green bars). The 

total electricity consumption in Germany increased steadily from the year 2000 until the year 

2007/2008 from 1,780 Petajoule (PJ) up to 1,894 PJ. The sharp decline in 2009 is caused by the global 

economic and financial crisis, which caused a lower demand on domestic and global level. Compared 

to the development between 2000 and 2008 the trend of increasing consumption of electricity 

changed since 2011. Electricity use remained almost stable in 2011, 2012 and 2013 and declined 

down to 1,846 PJ in 2014 (AGEB 2016, BDEW 2015a).  

Electricity consumption by households increased steadily until 2006 from 470 PJ up to 509 PJ. Since 

2006 electricity consumption decreased and accounted for 467 PJ in 2014. The increase in 2010 was 

caused by cold weather conditions (BDEW 2015a).  

The consumption of electricity by the industry increased from 748 PJ in 2000 to 824 PJ in 2014 but 

also shows stagnation since 2010.  
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Figure 14: Development of electricity consumption (in Petajoule) 

 

Source: AGEB (2016) 

A closer view at the development of electricity consumption by households and the industry shows 

that there are different influencing factors. A study of the Bundesverband der Energie- und 

Wasserwirtschaft (BDEW 2015a) analysed the influencing factors of electricity use over time. The 

following trends and factors for an increasing or decreasing electricity use were identified:  

Increase of efficiency: Over the last years, efficiency in electricity use increased due to technological 

progress. The improved efficiency was caused by two effects: a) On the one hand, the use of 

electricity decreases because of a lower demand of production processes and technical devices, 

which cause lower costs for electricity input. b) But on the other hand, in some cases these lower 

costs caused an increasing use of electricity. This relation is called ‘rebound effect’ and can appear in 

industries and households. 

Industry: Energy intensive production processes have been transferred into foreign countries as a 

consequence of increasing prices for energy in Germany (see Figure 16). Furthermore, a declining 

share of energy intensive production on the total value added of the German economy, lead to 

reduction of electricity use. Nevertheless, the use of electricity in industry increased because 

electricity is often the chosen energy source for new plants.  

Substitution effects: In the past, electricity was used in a large amount for heat generation in 

households. In the last years, electricity lost market shares because of an increasing use of gas and 

renewable energies for heating.  
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Next to substitution effects that replace electricity, also reverse effects can be observed. In the 

automotive industry electric cars are becoming more important. Also, an increasing use of electric 

heat pumps in the industry can be observed.  

Demographic development: The development of the amount of electricity used in households in 

Germany is influenced by two factors: a) the trend for more households with fewer members but 

more living space and b) the increase of efficiency of energy use (UBA 2017). Another factor is the 

increasing number of technical devices in households.  

Consumer behaviour: Increasing prices for electricity and higher awareness of consumers for 

environmental protection caused a declined demand for electricity in German households. This was 

achieved by a more economical and more efficient use of electricity.  

Next to the referred long-term aspects that influence electricity consumption, also cyclical factors 

have an impact on electricity demand. These factors comprise the domestic and global economic 

development, political framework conditions - like the EEG - and weather conditions, which 

especially influence the use of electricity for heat generation.  

6.6 Import dependency on energy resources of the German economy 

Germany is characterised as a resource poor country. Figure 15 shows the domestic supply and use 

of primary energy resources in the year 2014. The figure illustrates, that domestic demand for energy 

resources considerably exceeds the domestic supply. Therefore, Germany depends highly on imports 

of energy resources.  

In Germany only 4,033 PJ, what corresponds to 31 % of the total energy use of 13,180 PJ, are 

produced on the basis of domestic energy resources. This means that around 69 % of domestically 

used energy resources have to be imported (AGEB 2016).  

Germany has small deposits of mineral oil and natural gas, which deliver 104 PJ or 311 PJ, 

respectively. Around 98 % of mineral oil and 87 % of natural gas have to be imported. The use of 

energy is dominated by mineral oil, with 4,493 PJ, which comprised a share of 34 % on total energy 

demand in 2014. Until today, oil-based products cover almost the total requirements in the transport 

sector, but also in the chemical industry. 

Natural gas is used at an amount of 2,672 PJ, representing 20 % of the total energy demand, and is 

mostly used for heat generation.  
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Figure 15: Domestic supply and imports of primary energy resources in Germany in 2014  
(in Petajoule) 

 
Source: AGEB (2016) 

Germany possesses large dark coal deposits. Although dark coal extraction already declines as a 

consequence of the abolition of subsidies for dark coal extraction (see section 6.2), Germany 

extracted dark coal by an amount of 230 PJ in 2014. The high import demand for dark coal shows 

that although dark coal extraction is state-funded in Germany, imports by a share of 87 % are 

necessary to cover the domestic demand. Overall dark coal captures 13 % of the total energy 

demand and is mostly used for electricity generation.  

Brown coal represents the most important domestic energy resource. In 2014, brown coal with an 

energy content of 1,617 PJ was extracted domestically. 1,574 PJ were predominantly used for 

domestic electricity generation. Brown coal provides 12 % of the domestic energy demand. Due to a 

low energy content only around 3 % of brown coal has been exported.  

Nuclear energy is produced continuously over years from nuclear fuel rods. These fuel rods have to 

be imported (AGEB 2016). Therefore, the domestic supply of this energy resource is shown as zero. 

Altogether, nuclear energy by an amount of 1,060 PJ is used domestically for electricity generation. 

The share of nuclear power on primary energy use comprised 8 % in 2014. 

A view on the importance of renewable energy sources in the year 2014 shows that renewables 

already became increasingly important as a domestic energy resource in the framework of the 

Energiewende. Wind power, in addition to the use of solar energy and biomass produced together 

1,544 PJ of energy, what comprised around 12 % of the domestic energy use in 2014 (AGEB 2016). 

Renewable energy is used for heat generation, the generation of biofuels for transport and electricity 
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generation. Figure 15 shows that the domestic supply of renewable energy exceeds the domestic 

use. This fact is caused by the warranted feed-in of renewable electricity in the grid due to the 

regulations of the EEG (see section 6.2) and the maintenance of the system voltage of the grid. The 

specifics of German electricity markets will be considered in the next section.  

6.7 Specifics of the German electricity market 

Until 1998, the German electricity market was state-controlled. Following the Directive 96/92/EC of 

the European Commission of the year 1997, the German electricity market was liberalised in 1998. 

The liberalisation process comprised the generation, the transport and distribution of electricity and 

the establishment of an electricity stock exchange.  

In the late Nineties, while the liberalisation process took place, the development of renewable 

energies was negligible and therefore the liberalisation and resulting structure of the electricity 

market was constructed under the technological conditions of fossil and nuclear electricity 

generation. The focus was on the introduction of competition and marketing to offer electricity for 

appropriate prices (Connect 2015).  

As a result of this liberalisation process, producers of electricity sell their product primarily on the 

wholesale market. The first option for producers, which is often used for long-term contracts, is the 

so-called ‘Over-the-counter’ (OTC) contract. The second possibility is the trade of electricity over the 

‘European Energy Exchange’ (EEX), which was established in the framework of the liberalisation 

process (BMWi 2016). The prices for electricity are daily determined on the electricity exchange and 

represent the orientation for the OTC-trade.  

Prices on the exchange are determined on the base of the order of marginal costs of the different 

types of power plants, the so-called ‘merit order’. The last and most expensive power plant, which is 

still necessary to satisfy the demand is called ‘marginal power station’. This ‘marginal power station’ 

determines the unit price for all power plants and therefore the market clearing price on the 

electricity exchange (AEE 2013). Due to this process of price formation on the electricity exchange, 

electricity prices are based on short-term marginal cost of power plants. The prices are determined 

by the costs of energy input, but not by long-term capital and financing costs of power plants. So only 

the price for electricity is compensated, but not the price for the provision of performance (so-called 

‘energy only market’). Hence, the economic efficiency of power plants depends on the generation of 

marginal income. In the long-term economic perspective of a power-plant, the prices for electricity 

have to be over the marginal costs to cover fix and operating costs and to take profit (AGE 2013, 

Connect 2015).  
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At this point the role of the newly established renewable energies becomes important. Electricity 

remunerated according to the EEG, is traded on a large scale on the spot market of the EEX. The 

characteristic of renewable energy, with the exception of biomass, is the amount of marginal costs, 

which tend to be zero for wind and solar power plants. Additionally, electricity traded under the 

conditions of the EEG has to be traded preferentially. As a consequence, the ‘merit order’ of power 

plants changes in times when renewable-based electricity is available. The most expensive power 

plants, which are fossil-based power plants and especially gas power plants, are displaced by 

renewables power plants and cost-efficient power plants. As a result, the prices on the electricity 

exchange decline. Therefore, fossil and nuclear power plants more often do not achieve marginal 

returns and consequently increase their depreciations (INSM 2016). 

The domestic demand for electricity depends on the time of day as well as on the season and 

fluctuates daily between 40 and 80 Gigawatt. In times of low load, under the requirement of the 

existence of wind and sunshine, renewable energies are already able to cover a large part of the 

domestic electricity demand. In these periods, only a few conventional fossil power plants are used 

to cover the remaining demand. But because of technical and economic reasons, coal- and nuclear-

based power plants are not able to reduce their production during this time. That means that an 

oversupply of electricity is generated during these periods (see section 6.4) and the prices for 

electricity decrease and even can become negative on the EEX (AEE 2013).  

The reasons for the inflexibility of fossil power plants are manifold. Several fossil power plants are 

used to guarantee the supply of control energy for the grid and have to generate electricity. But fossil 

and nuclear power plants are also inflexible. Starting up and down these types of power plants is 

often inefficient from an economic and technological perspective. Gas power plants, which could be 

flexible in their operation, are characterised by high marginal costs. Consequently, not flexible gas 

power plants generate electricity to secure the base load in the grid, but coal and nuclear based 

power plants that are characterised by the described technological and economic inflexibility. 

Electricity that is not used in Germany is exported to foreign countries. The resulting development of 

electricity trade is presented in section 6.9.  

6.8 Development of electricity prices in Germany  

This section focusses on the development and price formation for electricity in Germany. Electricity 

generated on the basis of renewable energy, which is not sold directly in the framework of green 

electricity tariffs that are defined in the EEG, is sold on the EEX by transmission system operators. 

The difference between the guaranteed EEG-price for electricity fed into the grid for operators of 

renewable energy plants and the particular current price, which is achieved on the electricity 

exchange is passed on the consumer in terms of the so-called EEG-levy. Due to the increasing 
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provision of renewables in the energy mix for electricity generation, the price for electricity on the 

EEX decreased over the last years. This decrease is a consequence of changes in the ‘merit-order’ of 

power plants and the low marginal costs of renewable energy sources wind and solar (see section 

6.7). As a consequence, the EEG-levy increased and caused higher prices for consumers (AEE 2013).  

Figure 16 shows the development of electricity prices for households and the industry in Germany. 

Although the prices on the EEX declined as a consequence of an increasing supply of renewable-

based electricity and the resulting change of the ‘merit order’ of power plants, prices for electricity 

consumed by households and the industry increased continuously over the last years. In the year 

2000, representing the starting year of the EEG and the related support of renewable energies, the 

price for electricity comprised 14.92 Cent/kWh for households and 4.40 Cent/kWh for the industry. 

In the year 2014, electricity prices for households almost doubled up to 29.37 Cent/kWh. The prices 

for industries increased by around 62 % up to 11.66 Cent/kWh (BMWi 2017). The reason for the 

growing electricity prices can be found in the composition of the final electricity price for consumers, 

which also explains the difference between the electricity price for households and the industry. 

Figure 16: Development of electricity prices for households and the industry in Germany (in Cent 
per kWh) 

 

Source: BMWi (2017) 

Figure 17 presents the components of the electricity prices for households and the industry. Pictured 

are the cost items of the average electricity price for an exemplary household with an annual 

electricity consumption of 3,500 kWh and an exemplary industrial enterprise with an annual 

consumption between 160 MWh and 20 GWh.  
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Altogether, the cost elements that influence the price for electricity for households and industrial 

firms, can be summarised into three categories. These categories comprise a) costs for procurement 

and distribution, b) grid charges and c) taxes and levies. Figure 17 illustrates that the composition of 

these three components is different between households and industrial firms and finally result in 

different prices for electricity. Overall, the average price for electricity for households comprised 

29.14 Cent/kWh and 15.32 Cent/kWh for the industrial enterprise. Some of the cost factors are equal 

between industry and households, but there are also differences in the cost factors.  

Figure 17: Composition of the average electricity price for households and industry in 2014  
(in Cent per kWh) 

 

Source: BDEW (2015b, 2016) 

The price forming factors for households include costs for energy provision, distribution and margins 

with an amount of 7.38 Cent/kWh. For the industry, these costs components together comprise 

6.95 Cent/kWh. This cost position includes the actual costs of production for electricity, the costs for 

the use of supply networks and the administrative costs of the provider. The lower price share for the 

industry is justified by staggered prices of electricity suppliers. For higher purchase quantities of 

electricity, supplier offer lower prices per kWh (BDEW 2016, 2015b).  

The EEG-levy comprises an amount of 6.24 Cent/kWh and is equal for households and industry. This 

levy balances the difference between the guaranteed EEG-price for electricity based on renewable 

energy and the particular current price, which is achieved on the EEX (see section 6.7).  
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A further component of electricity prices is the electricity tax (see section 6.2). The regular tax rate 

comprises 2.05 Cent/kWh. The Electricity tax is an indirect tax, which is incurred by the electricity 

supplier when electricity is taken from the grid for final consumption. Electricity suppliers pass on the 

electricity tax to the final consumer. The lower tax rate for the industry, with an average amount of 

1.54 Cent/kWh, is a result of tax benefits. These benefits were introduced by the government with 

regard to maintain the international competitiveness of the German manufacturing industry 

(Ministry of Justice and Consumer Protection 2000). 

The concession fee is a charge for granting the right to use public routes for the installation and 

operation of pipelines intended for the direct supply of final consumers with electricity and gas 

(BDEW 2010). The amount of the fee depends on the population of a community. In the year 2014 

households had to pay an average fee of 1.66 Cent/kWh and the industry 0.11 Cent/kWh.  

The position ‘other fees’ comprise the KWK-levy, which is used to promote combined heat and 

power plants. The fee also includes grid charges of energy intensive enterprises (§19-levy) that are 

released from these charges. Next to this, ‘other fees’ include the offshore-levy, which balances lost 

revenues of offshore wind parks as a result of delayed connection to the power grid. Overall, these 

‘other fees’ sum up to 0.53 Cent/kWh for households and 0.48 Cent/kWh for the industry.  

Compared to the industry, households also have to pay grid charges in the amount of 6.63 Cent/kWh 

and value-added tax, which comprises 4.65 Cent/kWh.  

In the result around 52 % of the electricity price comprises taxes and levies, 23 % have to be paid for 

the use of the grid and around 25 % serve for the actual provision of electricity (BDEW 2015a).  

The development of the electricity prices show that households and the industry have to struggle 

with increasing electricity prices due to the shifting of the EEG-levy to the final consumer. Especially 

households, which contrarily do not have the option to pay reduced electricity tax rates compared to 

the industry, have to pay for the replacement of fossil/ nuclear by renewable energies.  

6.9 Development of electricity trade  

Electricity trade is also characterised by some specifics. Because of technological characteristics of 

the grid, the German physical electricity market is not country-specific. In fact, it is a complex market 

and grid system between ten European countries6. The objective of this connected market is the 

synchronisation of supply and demand of electricity and the maintenance of electric tension in the 

grid during phases of high and low demand. Therefore, the amount of German imports and exports 

of electricity, shown in Figure 18, is primarily a consequence of electricity exchange due to 

                                                           
6
 Denmark, the Netherlands, Luxembourg, France, Switzerland, Austria, Czech Republic, Poland, Sweden, 

Germany  
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technological conditions in the grid. Relevant for conclusions about electricity trade are the numbers 

of net-imports (BMWi 2017).  

Figure 18: Development of electricity trade in Germany between 2000 and 2014  
(in Petajoule) 

 

Source: AGEB (2016) 

For purposes of clarity, Figure 18 shows the development of electricity trade from 2007 onwards. The 

information for the year 2000, the year of the implementation of the EEG, serves for a better 

placement of the development.  

In 2000, Germany has been a net-importer of electricity with an amount of 11 PJ. Due to a) the 

increase of electricity generation based on renewable energies (see Figure 10) and the preferred 

feed-in into the grid under the conditions of the EEG, but also because of b) the inflexibility of 

electricity production regulation of fossil and nuclear power plants (see section 6.7), domestic 

electricity generation increased to a level that exceeds domestic demand. Thus, Germany became a 

net-exporter of electricity and net-imports became negative. In the year 2014, exports exceeded 

imports by an amount of -122 PJ (AGEB 2016). 

Furthermore, Figure 18 shows a volatile picture of the development of imports and exports of 

electricity. The considerable influences on the amount of electricity imports and exports can be 

summarised as follows: 
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Technological conditions: As described in section 6.7, the current composition of fossil and nuclear 

power plants is characterised by inflexibility with regard to modifications of electricity supply to the 

actual demand of electricity. Due to the constant electricity generation by these power plants, 

exports of electricity increase in times when renewable power plants deliver a high amount of 

electricity to the grid.  

Renewable Energy Act: The Renewable Energy Act (see section 6.2) ensures a guaranteed and 

preferred feed-in of renewable-based electricity into the grid. In years, characterised by optimal 

weather conditions for electricity generation based on wind and solar energy, this renewable-based 

electricity is available in the grid, independent of the demand. Furthermore, the EEG caused an 

extension of electricity generation based on wind, solar and biomass (see section 6.4), with the 

consequence that the provided amount of renewable and preferred electricity increased. The volatile 

development of electricity exports is a consequence of the dependence on weather conditions of 

renewable electricity generation.  

Energy Package: Due to the immediate shutdown of the eight oldest nuclear power plants in the year 

2011 and the abolition of electricity supply, imports of electricity increased.  

Increase of efficiency: The increase of efficiency in electricity use due to technological progress 

causes a decrease of electricity demand. 

Consumer behaviour: Increasing prices for electricity (see section 6.8) and the awareness of 

consumers for environmental protection caused a decline in electricity demand and electricity 

imports.  

Export supply and import demand for electricity depend furthermore on the domestic and global 

economic development (BDEW 2015).   
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6.10 Impact of renewable energy sources on the prevention of carbon 

emissions  

One environmental objective of the Energiewende is the reduction of carbon emissions by replacing 

fossil by renewable energy sources (see Table 12). Figure 19 shows the development of the 

prevention of carbon emissions as a consequence of the increased use of renewable energies for 

electricity generation between the years 2000 and 2014.  

Figure 19: Prevention of carbon emissions by renewable energy sources for electricity generation 
(in 1,000 tons) 

 

Source: BMWi (2017) 

The figures show that the increasing use of bio-based resources caused an increase in the prevention 

of carbon emissions from 33 million tons in the year 2000 up to 99 million tons in 2014 (BMWi 2017). 

The development of carbon emission prevention is conditioned on the development of electricity 

generation based on renewable energies shown in Figure 10 and illustrates one characteristic of 

renewables: In the years 2008, 2009 and 2010 electricity generation based on wind energy declined, 

due to windless weather. Therefore, also the prevention of carbon emissions remained almost on the 

same level. The use of biomass and solar energy for electricity generation increased during this time 

and absorbed the missing wind energy (see section 6.4). But nevertheless, the stagnation in the 

prevention of carbon emissions shows the dependence of renewable energies sources on weather 

conditions to achieve the political determined targets to reduce carbon emissions (see section 6.2).  
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6.11 Summary 

The political objectives for the energy sector, determined by the Energy Concept, the Energy Package 

and the Renewable Energy Source Act, currently cause a restructuring process of the German 

electricity supply system. 

The consideration of electricity generation shows a switch from a fossil- and nuclear-base to a 

renewable-based supply system. Especially electricity generation based on wind, solar and biomass 

experienced a considerable increase. Biomass-based electricity generation comprises a special role in 

the frame of renewable energies. While the provision of wind and solar energy is characterised by 

marginal costs that tend to be zero, the supply of biomass is characterised by the existence of higher 

costs and furthermore by a competition for production factors as well as for the final use of 

agricultural commodities. Here, the new possibility to use agricultural products for electricity 

generation competes with the usage as feed and food.  

Industries and households represent the biggest users of electricity. Over the years, electricity 

consumption showed stagnation with a declining tendency. On the one hand, these effects are 

caused by an increasing efficiency of electricity use. On the other hand, manifold influencing factors 

like the economic development, substitution effects, changes of consumer behaviour or increasing 

prices for electricity have an impact on electricity use.  

Germany is a resource-poor country and strongly depends on energy imports. With regard to energy 

resources used for electricity generation, there is a high import demand for natural gas and dark coal. 

Brown coal and renewable resources are available domestically.  

The German electricity sector and the transformation process is characterised by various specifics. 

Old established power plants, like the remaining nuclear power plants and coal power plants are 

inflexible with regard to adapting their electricity supply on changing framework conditions. But they 

are necessary to ensure a sufficient electricity supply in times of high demand. Gas power plants 

provide this flexibility but have too high marginal costs for being competitive with coal or nuclear 

power plants. At the same time, electricity on the basis of wind and solar energy is generated under 

the preferred conditions of the EEG. As a consequence electricity supply based on renewable energy 

resources increased over the last years.  

In the framework of the liberalisation of the electricity market an energy exchange was established. 

Here, the prices for electricity are determined on the basis of the order of marginal costs of power 

plants, the so-called ‘merit order’. The most expensive power plants, which are fossil-based power 

plants and especially gas power plants are displaced by renewable power plants and cost-efficient 
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power plants. As a consequence, the prices on the electricity exchange decline and fossil and nuclear 

power plants more often do not achieve marginal returns.  

Although prices for electricity achieved by generating companies tend to decrease, electricity prices 

for households and industries increase. The reasons for these increasing prices are on the one hand 

the increase of the EEG-levy, which balances the difference between the EEG guaranteed price for 

electricity fed into the grid for operators of renewable energy plants and the particular current 

electricity price and on the other hand the composition of the final electricity price for consumers. 

Especially households, which do not have the option to pay reduced electricity tax rates compared to 

the industry, have to pay for the replacement of fossil fuel with renewable energies.  

Changes of the domestic supply and use of electricity have an impact on electricity trade. As a 

consequence of the increased supply of electricity based on renewable energy sources, Germany 

changed from a net-importer to net-exporter of electricity.  

One objective of the Energiewende is climate protection and, in this context, the reduction of 

greenhouse gases. The emissions of carbon dioxide caused by electricity generation show a declining 

but volatile tendency as a consequence of the increasing use of renewable energies.  
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7 Case study – Scenario description, Model closures and Results  

7.1 Introduction  

In the case study, the comparative-static model STAGE_D is applied, to analyse the impacts of the 

transformation from a nuclear and fossil-based to a renewable based electricity supply system on the 

German economy, with special consideration of the agricultural sector. This chapter presents the 

description of the considered scenarios, the simulation results and their analyses. 

The model STAGE_D as well as the underlying SAM have been developed in the framework of this 

research (see chapters 4 and 5). The SAM, applied in this case study, comprises detailed and 

disaggregated information of the electricity and agricultural sector. 

The model STAGE_D allows multiple production technologies for electricity generation that comprise 

existing technologies (nuclear, dark coal, brown coal, oil and gas) and new technologies (wind, solar, 

biomass) with different cost structures. Electricity is implemented in the model as a homogenous 

product being produced by these different technologies with different cost structures.  

The agricultural sector is captured in STAGE_D as a multi-product sector. Agricultural activities are 

distinguished at the regional level of the German states (Bundesländer). That means that a given 

agricultural activity - one state - represents all farms of that region and that this agricultural activity is 

able to produce multiple output, i.e. crops, livestock as well as biomass for biogas generation. This 

consideration enables the model to capture regional differences in the production structure. 

Furthermore the model also provides an accounting for the carbon emissions resulting from the use 

of energy inputs by sectors and households. The database is provided in form of a satellite account 

(see section 4.4.4).  

This chapter starts with the presentation of the scenarios, considered in this case study, in section 

7.2 and the underlying model closures in section 7.3.  

Scenario results are presented and analysed in section 7.4, starting with the analysis of the 

macroeconomic impact. The presented changes in GDP, see section 7.4.1, can be interpreted as an 

indicator for the total economic development.  

Because a CGE model captures the circular flow of an economy, changes in commodity and factor 

demands in the electricity sector (see section 2.3.1) affect the whole economy and its actors. Due to 

the complexity of the driving factors of economic adaptions, as a reaction on the changes in the 

electricity sector, the results are presented stepwise.  

The electricity sector, as the triggering sector for economic changes, is the starting point of the 

analysis in section 7.4.2. Here, the changes in the composition of nuclear, fossil and renewable 
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resources used for electricity generation are presented. One consequence of the modified resource 

use and application of new technologies is a change in the cost structure of electricity generation. 

Therefore this section additionally presents the impact of the application of new technologies on 

electricity prices under the new equilibrium situations in the three scenarios.  

The impact of the restructuring process of the electricity sector on other sectors of the economy is 

presented subsequently in section 7.4.3. A closer examination of the impacts on factor income and 

factor prices is given in section 7.4.4. Changes in factor income have a direct impact on the income 

and consumption of households. The way how households are concerned in the different scenarios is 

presented in section 7.4.5. Next to adjustments of the domestic economy, the Energiewende also has 

impacts on international trade. Section 7.4.6 captures the trade effects with regard to electricity and 

commodities used for electricity generation, but also the changes of import and exports of 

commodities produced in other sectors.  

The nuclear phase-out and the substitution of fossil by renewable energies have also environmental 

impacts. One objective of the German government is the long-term reduction of greenhouse gas 

emissions. The changes of carbon emissions as a consequence of the implementation of energy 

change policy are outlined in section 7.4.7.  

The presentation of the results completes with a special focus on the agricultural sector in section 

7.4.8. The agricultural sector gets particular attention in this consideration due to its special role as a 

sector characterised by a high level of energy and electricity use but also as a ‘new’ actor for 

providing electricity based on biogas. Therefore, the impact of the changes in the electricity sector on 

agricultural production and prices as well as on trade is analysed in this section.  

The chapter closes with a summary of the model results, conclusions and recommendations for 

further research, presented in section 7.6.   
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7.2 Scenario description 

The impact of the exit from nuclear and fossil-fuel energy and the concurrent increase of renewable 

energy on the German economy are captured through three related scenarios, which are presented 

here with regard to their objective and the implementation into STAGE_D. 

Objectives of the scenarios 

Scenario ‘Phase_out’: Impact of the nuclear phase-out on the German economy 

The political and social acceptance of the use of nuclear power for electricity generation in Germany 

changed over the last years. At the beginning of the comprehensive conversion of the German 

electricity supply system in the framework of the Energy Concept in 2010, the German government 

decided the extension of the operating lifetime of nuclear power plants. Nuclear power was intended 

to be a bridge technology until renewable-based electricity generation would be developed to supply 

electricity in a sufficient extent because nuclear power offers environmental advantages due to low 

carbon emissions and a low import demand. 

But as a consequence of the nuclear accident in Fukushima in the year 2011, the government 

changed its strategy for the transformation process of the electricity supply system with an 

immediate closure of the eight oldest nuclear power plants and the decision of the complete nuclear 

phase-out in the year 2022 in the framework of the Energy Package (see section 6.2).  

The underlying object of the scenario ‘Phase_out’ is the analysis of the economic, environmental and 

social impact of the nuclear phase-out in Germany under the assumption of a complete phase-out.  

Scenario ‘Complete’: Increase of the importance of renewable energies in the electricity sector  

One main objective of the German Energiewende is the transformation of the electricity supply 

system away from the old established fossil and nuclear basis towards a renewable based system 

(BMWi 2010).  

The second scenario ‘Complete’ focusses on the impacts of the substitution of fossil by renewable 

energies for electricity generation based on the objective of the Energiewende to extend renewable 

energies to the main source for electricity supply. With regard to fossil-based electricity generation in 

this scenario the assumption was made that electricity generation based on coal mostly is replaced 

by gas. Background of this decision is the technological flexibility of gas-based electricity generation 

to balance the fluctuating supply of wind and solar based electricity generation, because of varying 

weather conditions (see section 6.4).  

Furthermore, this scenario includes the abolition of domestic dark coal extraction as a consequence 

of the cancelled dark coal subsidies in 2018 (BMWi 2007, IAE 2013) as well as the nuclear phase-out. 
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Scenario ‘Biomass’: Analysing the role of biomass in the framework of the Energiewende  

The agricultural sector comprises a special role in the transformation process of the energy supply 

system. Agriculture is an energy intensive sector with a high use of electricity and other energy 

inputs. Furthermore, the agricultural sector became a provider of electricity due to the technological 

possibility to generate electricity based on biogas as a consequence of the political support in the 

frame of the EEG. Biomass, the substrate for biogas production, produced in the agricultural sector 

comprises crop and livestock based substrates. While livestock based substrates, like manure etc., 

are by-products of livestock production, the production of crop-based substrates raises a claim on 

the production factors and increase especially the competition for land that can also be used for 

crops processed in the food and feed industry. Furthermore, over the last years a competition 

between the final uses of agricultural commodities arose. Next to the traditional application of 

agricultural commodities to be the basis for feed and food production, technological progress and 

governmental support by the EEG extended this use spectrum by the electricity generation. 

Consequently, the competition for the use of biomass increased. The objective of this scenario is the 

analysis of the role of the agricultural sector in the framework of the Energiewende.  

Scenario implementation into STAGE_D  

Scenario ‘Phase_out’: Impact of the nuclear phase-out on the German economy 

The nuclear phase-out, captured in scenario ‘Phase_out’, is implemented into the model by a 

reduction of capital demand (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑒𝑙𝑛𝑢𝑐𝑙) for electricity generation based on nuclear power 

(𝑎𝑒𝑙𝑛𝑢𝑐𝑙) to zero. The factor supply (𝐹𝑆𝑓) for Germany remained fixed. The returns to capital for 

this activity are allowed to vary by relaxing the sectoral proportion for the capital price 

(𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑐𝑎𝑝,𝑎𝑒𝑙𝑛𝑢𝑐𝑙) .  

Additionally, the top level of the nested production function was changed from a CES into a Leontief 

form for nuclear electricity generation by adding the activity 𝑎𝑒𝑙𝑛𝑢𝑐𝑙 to the subset 𝑎𝑞𝑥𝑛 to prevent a 

substitution between the intermediate inputs and value added-energy inputs. Due to the fact that 

capital demand of electricity generation based on nuclear power (𝑎𝑒𝑙𝑛𝑢𝑐𝑙) is reduced to zero and 

the Leontief assumption on the top level of the production structure, the nuclear phase-out is 

implemented into STAGE_D, with the consequence to stop the generation of nuclear based 

electricity. 

The modification of the nested production structure, presented in section 5.2, as well as the 

development of the SAM on the basis of SUTs (see section 2.2.5) allows STAGE_D to differentiate 

between activities with different technologies and resulting different cost structures to produce the 

same good. For this simulation, electricity was declared as a homogeneous product by switching 

electricity (𝑐𝑒𝑙𝑦) from the set 𝑐𝑥𝑎𝑐 that captures commodities that are differentiated by activity into 
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the set 𝑐𝑥𝑎𝑐𝑛, which does not differentiate between activities. This switch enables the model to 

capture the fact that electricity is produced by different types of power plants, e.g. coal, nuclear or 

wind power plants. In addition, it allows different treatment of electricity generating activities.  

Scenario ‘Complete’: Increase of the importance of renewable energies in the electricity sector  

For the implementation of scenario ‘Complete’ in the model, electricity was declared as a 

homogeneous product, by switching electricity (𝑐𝑒𝑙𝑦) from the set 𝑐𝑥𝑎𝑐 into the set 𝑐𝑥𝑎𝑐𝑛, like in 

scenario ‘Phase_out’. This allows for the generation of electricity by different technologies.  

Furthermore, for all electricity producing activities the Leontief production function on the top level 

of the production function was chosen. These activities comprise electricity generation based on 

nuclear power, brown coal, dark coal, gas, wind/solar and biomass 

(𝑎𝑒𝑙𝑛𝑢𝑐𝑙, 𝑎𝑒𝑙𝑏𝑟𝑜𝑤𝑛, 𝑎𝑒𝑙𝑑𝑎𝑟𝑘, 𝑎𝑒𝑙𝑔𝑎𝑠, 𝑎𝑒𝑙𝑜𝑖𝑙, 𝑎𝑒𝑙𝑤𝑖𝑛𝑑𝑠𝑜𝑙, 𝑎𝑒𝑙𝑏𝑖𝑜) and for the extraction of dark 

coal (𝑎𝑑𝑎𝑟𝑘). The Leontief assumption on the top level, with the underlying elasticity of substitution 

of zero, avoids a substitution between intermediate inputs and value added-energy inputs 

(see section 5.2). 

To increase or decrease the production of the appropriate electricity generating activity, the 

implementation was done by changes of the factor demand for capital (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦)7. The 

decision to make only the factor capital immobile and activity specific is a consequence of the 

characteristic of the electricity sector. Fossil and nuclear power plants require high investments over 

a long period, longer than the period of the politically decided phase-out or reduced use of power 

plants. To shut down the power plants, workers are still necessary.  

Renewable power plants, like wind and solar plants, do not require substantial amount of labour 

input during their runtime. Also for biogas plants, it was assumed that these plants only require 

investments but no additional labour on the farms. Land was assumed as fix, due to the exclusive use 

of land by the agricultural and forestry sector.  

To achieve the nuclear phase-out and the stop of the domestic extraction of dark coal, capital 

demand (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑒𝑙𝑛𝑢𝑐𝑙,  𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑑𝑎𝑟𝑘) for these two activities was reduced down to zero.  

Due to the technological advantages of gas power plants (see section 6.7) in order to adapt electricity 

generation to the required needs, electricity generation based on gas (𝑎𝑒𝑙𝑔𝑎𝑠) is decided to rise up 

to the most important fossil energy source in this scenario. This is implemented by an increasing 

capital demand for this activity by factor eight.  

                                                           
7
 The activity ‘aelectricity’ includes here all electricity generating activities.  
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Beyond, capital demand for the electricity producing activities wind and solar (𝑎𝑒𝑙𝑤𝑖𝑛𝑑𝑠𝑜𝑙) and 

biomass (𝑎𝑒𝑙𝑏𝑖𝑜) increases by the factors seven and five to achieve the objective of an electricity 

supply system based on renewable energy.  

Capital demand for electricity generation based on brown coal (𝑎𝑒𝑙𝑏𝑟𝑜𝑤𝑛), dark coal (𝑎𝑒𝑙𝑑𝑎𝑟𝑘) and 

oil (𝑎𝑒𝑙𝑜𝑖𝑙) is reduced by 30 %, 95 % and 25 % to provoke a reduction of the electricity supply of 

these fossil based activities.  

Furthermore, it is assumed to achieve total electricity supply close to the base level in order to avoid 

a decline of economic growth as consequence of a lower electricity supply in this scenario. 

Scenario ‘Biomass’: Analysing the role of the agricultural sector in the framework of the 

Energiewende  

To analyse the impact of the use of biomass and the role of the agricultural sector as supplier and 

user of electricity, scenario ‘Biomass’ preserves all assumptions of scenario ‘Complete’ with 

exception of biomass. The amount of electricity generation based on biomass is generated 

endogenously by the model in this scenario. Scenario ‘Complete’ presents the reference scenario for 

the analysis of the results of scenario ‘Biomass’. Therefore the implementation into STAGE_D is 

comparable with those in scenario ‘Complete’ with exception of the increase of capital demand for 

electricity generation based on biomass (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑒𝑙𝑏𝑖𝑜).  
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7.3 Model closures  

To run a CGE model the number of equations has to be equal to the number of variables to close the 

model. The closure rules comprise the choice of variables that are fixed or unfixed to implement the 

experiment (see section 2.4.3). Model closures are an important component because these rules 

determine how the German economy operates from the modellers’ perspective. For running the 

simulations the following closure rules are assumed: 

Foreign exchange closure: The external trade balance is fixed. The exchange rate remains flexible in 

order to balance the account for the rest of the world. 

Investment-savings closure:  

The German economy is assumed to be investment driven. The value share of investment in total 

final domestic demand is fixed. The savings rate of households and enterprises is flexible to adjust to 

balance the capital accounts. 

Government account closure:  

Tax rates, government consumption expenditures and transfers are fixed. The government account is 

brought into equilibrium through flexible government savings.  

Enterprise closure:  

For enterprises, the volume as a share of final demand is fixed as well as the enterprise transfers to 

households. The value of commodity expenditures by enterprises is allowed to vary.  

Numéraire: The consumer price index (CPI) is set as numéraire and therefore all prices are expressed 

relative to this fixed CPI.  

Factor market closure: 

Changes in the factor market closures are already described while presenting the implementation of 

the different scenarios into STAGE_D. Summarised, the factor market closures are implemented as 

follows: Labour is assumed to be fully employed and mobile. The basic factor market closure for land 

was not changed and is the same as in STAGE. Land is fully employed but due to the exclusive use by 

the agricultural and forestry sector de facto immobile.  

Capital was made activity specific. Due to the long-term investments of fossil and nuclear power 

plants and the negligible demand for labour for conducting wind and solar plants, it was decided only 

to fix the factor capital by the relevant activities and let labour mobile. For the implementation in 

STAGE_D, capital demand for the relevant electricity generating activities and the activity mining of 

dark coal is fixed (𝐹𝐷𝑓𝑐𝑎𝑝,𝑎𝑐𝑡𝑖𝑣). Returns to capital are allowed to vary and unfixed 

(𝑊𝐹𝐷𝐼𝑆𝑇𝑓𝑐𝑎𝑝,𝑎𝑐𝑡𝑖𝑣). The total factor supply (𝐹𝑆𝑓) remains fix.  
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7.4 Results  

This section provides the presentation and analysis of the simulation results regarding the impact of 

the exit from nuclear and fossil-fuel energy in the electricity sector on the German economy with a 

special consideration of the agricultural sector. 

7.4.1 Impact on Gross Domestic Product  

GDP indicates the economic performance of an economy by measuring to the sum of the GVA of all 

resident institutional units involved in production processes (OECD 2002). Figure 20 depicts the 

macroeconomic effects of the conversion from fossil and nuclear to renewable electricity generation 

within the framework of the Energiewende by percentage changes in GDP for the considered 

scenarios.  

GDP is going down in Germany in all three scenarios. The lowest reduction is caused by the nuclear 

phase-out (‘Phase_out’) with a decline of -0.80 %. The implementation of the objectives of the 

Energiewende in the electricity sector, shown in scenario ‘Complete’, results in a decline in GDP by -

1.75 % but the most considerable economic effects become visible in scenario ‘Biomass’, with a 

decrease of GDP by -1.80 %.  

Figure 20: Impacts on Gross Domestic Product (in percent) 

 

Source: Own results 

In addition to the total changes in GDP, Figure 20 presents a breakdown of GDP into the components 

of GVA - the income of labour, land and capital. While the income of labour and land is mostly 
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reduced in scenario ‘Phase_out’ with declines of -0.34 % and -0.27 %, the income of capital is 

effected mostly in scenario ‘Complete’ and ‘Biomass’ with a reduction of -0.68 % and -0.70 %.  

Overall, a decline in GDP is an indicator of a shrinking economic performance and shows that the 

implementation of the Energiewende in the electricity sector has negative economic impacts. This 

result contradicts the governmental objective of maintaining a high level of economic 

competitiveness and development. The influencing factors of these negative economic effects and 

the reasons for the differences between the scenarios are considered in the following sections, 

starting with the electricity sector.  

7.4.2 Impact on the electricity sector  

The nuclear phase-out, captured in scenario ‘Phase_out’, the replacement of fossil by renewable 

energy resources (scenario ‘Complete’) and especially the use of biomass for electricity generation in 

this replacement process (scenario ‘Biomass’) cause fundamental changes in the composition of 

resources used for electricity generation and in the total amount of electricity generation.  

In addition, the application of new technologies and raw materials leads to changes in the cost 

structure of electricity generation that have an impact on electricity prices. This section focuses on 

these relationships, starting with the description of the changes in domestic electricity generation. 

7.4.2.1 Domestic electricity generation  

Figure 21 gives an overview of the domestic electricity generation by industries in the year 2007, the 

reference year, and the adjustments in the three scenarios expressed in monetary units. Referring to 

section 7.2, the changes in electricity generation presented here are also determined by the factor 

market closure rules implemented for the simulated model scenarios.  

Altogether, two effects become apparent. The first effect is a change in the level of total of electricity 

generation; the second effect is a change in the composition of electricity supply by the generating 

industries. Both effects are now analysed in more detail. 

In the base situation, the total value of generated electricity comprises 87.0 billion €. In scenario 

‘Phase_out’, the nuclear phase-out has the effect of reducing total electricity generation to 

72.5 billion €, which corresponds to a difference of -14.6 billion € compared to the initial situation. 

This value does not cover the whole value of nuclear power generation of 24.0 billion € as in the 

base. This means that the drop of nuclear power is partially compensated by other electricity 

generating industries. Brown coal compensates the highest part with an expansion of the production 

by 2.7 billion €, followed by dark coal with 1.8 billion €. Gas-based electricity generation expands by 

1.6 billion €. But also renewable power plants increase their production by 1.6 billion € in the wind 

and solar industries and by 1.4 % in the generation of electricity based on biomass.  
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Figure 21: Domestic electricity generation by industries (in billion €) 

 

Source: Own results  

Electricity generation in scenario ‘Complete’ remains closely to the ‘base’ level with a value of 

88.1 billion €. Due to technological advantages in terms of high flexibility to produce electricity in 

times of peak load (see section 6.7), the gas-based electricity generation is extended to the main 

pillar of fossil electricity generation with a value of 35.0 billion €. Wind and solar as well as biomass 

power plants increase electricity production by 22.5 billion € and 19.2 billion €, respectively.  

Domestic production of brown coal-based electricity decreases in this scenario by -15.2 billion €. 

When implementing this scenario into the model, it was decided to reduce electricity generation 

based on brown coal and to increase gas-based electricity generation. This decision is contrary to the 

political objective of reducing the German import dependency on energy resource, as brown coal is a 

domestic resource and gas has to be imported (see section 6.6). Furthermore, gas power plants are 

characterised by high marginal costs (see section 6.7). Background, to decide for a decline of 

electricity generation based on brown coal, is the technological disadvantage of brown coal power 

plants in terms of their inflexibility to react to corresponding changes in electricity demand. Gas-fired 

power plants have the advantage of flexibility in this regard (see section 6.7). Furthermore, brown 

coal power plants are also large emitters of carbon dioxide. The operation of such power plants is 

therefore contrary to the political objective of reducing carbon emissions. 

The same applies to electricity generation based on dark coal. In addition to ecological and technical 

disadvantages that correspond to those of brown coal, an important factor influencing the reduction 



Case study – Scenario description, Model closures and Results 

134 

of electricity generation based on dark coal is the abolition of dark coal subsidies for domestic 

extraction in 2018 (see section 6.2). The decline in dark coal subsidies will lead to a decline in the 

domestic competitiveness of this energy type compared to the domestic substitute brown coal and 

imported dark coal. Consequently, domestic dark coal extraction is expected to end in the year 2018 

what may cause an increase of import demand for dark coal. For the simulation it is therefore 

decided to reduce the use of dark coal for electricity generation to 4.1 billion €.  

Electricity generation based on oil remains at a low level and declines to an amount of 0.8 billion € to 

reduce the import dependence of fossil energy resources.  

In scenario ‘Biomass’, total domestic electricity generation decreases to 77.0 billion €. In this 

scenario, all closure and simulation conditions are the same as in scenario ‘Complete’, with exception 

of electricity generation based on biomass. In order to assess the impact of biomass production for 

electricity generation in the agricultural sector, electricity generation based on biomass is here 

determined endogenously. As a result, electricity generation based on biomass declines and is 

generated by the same value as in the base situation of 5.9 billion €. Compared to scenario 

‘Complete’, representing the reference scenario for scenario ‘Biomass’, the decline in electricity 

generation based on biomass is partly compensated by gas with an increase in production by 

1.9 billion € and to a small extent by brown coal and renewable energies, wind and solar, with 

increases of 0.2 billion € and 0.1 billion €, respectively. Electricity generation based on dark coal 

declines by -0.1 billion €.  

Changes in the composition of electricity generating industries determine the importance of the 

electricity produced by these industries. Figure 22 highlights these changes by recording the shares 

of electricity generation by industries in the base situation and the respective scenarios. The shares 

shown in the scenarios cannot be compared with the shares in the base situation, as the total supply 

of electricity changed in the scenarios like shown in Figure 21. But they are an indicator of the 

relevance of the various electricity providers in the particular situation that is captured in the 

scenarios.  
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Figure 22: Relative changes of electricity generation by industries (in percent) 

 

Source: Own results  

In 2007, the reference year, nuclear-based electricity generation is the most important source of 

electricity generation with a share of 27.6 % of total electricity generation. The conversion to 

electricity based on brown and dark coal comprises 25.0 % and 19.1 %, respectively. Together with 

gas and oil with a share of 12.9 % and 1.8 % respectively, the total nuclear- and fossil-based 

electricity generation covers 86.0 % of domestic electricity supply. Compared to today, electricity 

generation based on wind, solar and biomass was only slightly developed in 2007 

(see section 6.4.1.1) and accounted for a total share of 13.7 %. 

In scenario ‘Phase_out’, the nuclear phase-out causes the elimination of this energy source for 

electricity generation and thus, the loss of the most important pillar for electricity supply in Germany. 

Figure 22 shows that the nuclear phase-out causes an increasing importance of electricity generation 

based on coal. In the new situation, brown coal becomes the most important electricity supplier with 

a share of 33.9 %, followed by dark coal with a share of 25.5 %. Also, the role of gas and oil power 

plants increases, with shares of 17.7 % and 2.5 %, respectively. Nevertheless, in the complete picture 

the importance of fossil electricity on the total electricity supply decreases. Compared to the base 

situation, in which fossil and nuclear resources account for around 86.0 % of total electricity 

generation, the share of electricity based on fossil resources declines by around 6.0 % down to 
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80.0 %. Renewable energies are growing in importance, accounting for 20 % of the total electricity 

supply, while total electricity supply decreases.  

In scenario ‘Complete’, the renewable energy sources wind, solar and biomass are the most 

important suppliers of electricity with a share of 47.4 %, followed by gas with 39.7 %. Overall, the 

German electricity supply system in this situation is based on renewables and gas, which together 

comprise 87.1 %. Brown and dark coals take together a share of 12.1 % and oil of 0.9 %.  

The impact assessment of biomass-based electricity supply is the main concern of scenario ‘Biomass’. 

The reduced importance of biomass in the electricity supply mix from 21.8 % in scenario ‘Complete’ 

down to 7.6 % in ‘Biomass’ causes an increasing importance of all other energy sources, but 

especially of gas. Gas-based electricity generation increases by 8.1 % up to a share of 47.8 %. The 

share of wind and solar energy increases by 3.8 % up to 29.4 %. Brown and dark coals account for 

8.8 % and 5.2 %, respectively in this new equilibrium situation.  

The impact of the changed input structure in the electricity sector on electricity prices and the 

domestic electricity demand are presented and analysed in the following section.  

7.4.2.2 Impact on electricity prices and domestic electricity demand 

Due to the drop of nuclear power and/ or the replacement of fossil by renewable energy sources, 

established and technically advanced technologies, such as nuclear power or coal power plants are 

replaced by new, less developed and thus more expensive technologies like electricity generation 

based on wind, solar or biomass but also gas. Furthermore, these new technologies require 

comprehensive investments, which additionally increase the cost of production and finally the price 

for electricity.  

Moreover, established power plants such as nuclear and coal power plants are in most cases not 

completely depreciated because the ‘normal’ economic period for depreciation does not correspond 

to the politically decided shutdown (nuclear power plants) or capacity reduction (coal power plants) 

for these power plants. As a consequence, capital is fixed in these power plants and causes an 

increase in capital costs per unit of generated electricity.  

The changing framework conditions in the electricity sector have impacts on the electricity price. 

Table 10 presents the relative changes in electricity prices and the impact on domestic electricity 

demand for the different scenarios. Overall, it becomes obvious that electricity prices in all scenarios 

increase and domestic electricity demand decreases. 

In scenario ‘Phase_out’, the price for electricity rises by 18.5 % due to the reduction of electricity 

supply (see Figure 9) and the changed and more expensive resources used for the replacement of 

nuclear power (see Figure 22).  
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The highest increase in electricity prices can be observed under scenario ‘Biomass’ with a share of 

24.2 %. The lowest increase of 10.6 % can be stated for scenario ‘Complete’, which is the reference 

scenario for ‘Biomass’. Compared to scenario ‘Complete’, the lower use of biomass as input for 

electricity generation leads to an increase of the electricity price by 13.6 %. The reason for this price 

difference can be seen in the reduced total supply of electricity (see Figure 21) and the increasing 

production costs for electricity generation on the base of gas, which is characterised by high cost of 

production (see section 6.7) and the drop of electricity supply based on biomass.  

Increasing prices for electricity influence the demand for this good, also presented in Table 13. The 

domestic electricity demand decreases in reverse order to the increase in electricity prices, i.e. the 

biggest decline of electricity demand by -24.4% can be observed for scenario ‘Biomass’ with the 

highest increase in electricity prices. In scenario ‘Phase_out’, the total domestic demand declines by  

-21.4 % and in scenario ‘Complete’ by -15.4 %. 

Table 13: Relative change of electricity prices and domestic demand (in 
percent) 

 

Source: Own results  

A closer look at the various scenario results shows that there is no linear relationship between the 

increase in electricity prices and the decline in electricity demand. This means that it is not only 

electricity prices that determine the level of demand. Adjustments due to changing electricity prices 

are cross-sectoral and affect the entire economy with an impact on the electricity sector itself.  

The impact of changing electricity prices on prices and production in other sectors as well as on 

prices and incomes of factors and the consumer behaviour of private households will be discussed in 

the next sections. 

7.4.3 Cross-sectoral effects of the Energiewende in the economy  

Electricity is used as an input for production processes in other sectors of the economy. Therefore, 

price changes for electricity lead to changes in the cost structure of the various sectoral production 

processes and ultimately to a change in overall electricity demand. In the scenarios, rising electricity 

prices lead to higher production costs in all sectors of the economy.  

In addition to the use of electricity as a direct input, electricity is used for processing of intermediate 

goods, for example steel production, which is an input for the automotive industry. Along the entire 

value chain, the ‘energy content’ of intermediates increases the more the commodity is processed. 

Phase_out Complete Biomass

%

Electricity price 18.5 10.6 24.2

Domestic electricity demand -21.4 -15.4 -24.4
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The longer the value chain of a product and the more processing steps were done, the more 

electricity is consumed. Therefore, the importance of higher electricity prices increases.  

Activities are partly able to substitute electricity by capital or other energy inputs in the specific 

extent, which is limited by technical requirements. The possibility to substitute electricity and other 

energy inputs by capital is captured in STAGE_D by activity specific elasticities of substitution in the 

modified nested production function (see section 5.2 and 5.4).  

In addition, the amount of electricity consumed directly in production processes influences the 

extent of the impact of increasing electricity prices in the different sectors. Energy-intensive 

activities, such as the agricultural sector or the heavy manufacturing, with a high share of electricity 

in their production processes, are more affected than less energy-intensive activities that are not as 

dependent on electricity for their production, i.e. the service sector.  

Table 14 shows cross-sectoral production effects caused by the changes in the electricity sector on 

the production in the sectors: transport, construction, services, food industry, light and heavy 

manufacturing. A more detailed focus on the agricultural sector is given in section 7.4.8.  

The results show that the increase in electricity prices in all scenarios leads to a decline in production 

in all sectors. 

Table 14: Cross-sectoral production effects (in percent relative to the base) 

 

Source: Own results  

The smallest percentage decline in production can be observed in scenario ‘Phase_out’, where 

production in the construction sector even remains unchanged. The largest decline in this scenario is 

recorded for the energy-intensive sector heavy manufacturing with a decline of -1.4%. 

The decline in production is more significant in the scenarios ‘Complete’ and ‘Biomass’. Heavy 

manufacturing is also in these scenarios most affected. It is contained by a decline in production of  

-1.7 % and -2.1 %, followed by the food industry with a decline in production of -1.5 % in scenario 

‘Complete’ and -1.4 % in scenario ‘Biomass’. The smallest effects can be observed in the construction 

sector, where production declines by -0.9 % and -0.6 % respectively.  

Phase_out Complete Biomass

%

Transport -0.5 -1.3 -1.1

Construction 0.0 -0.9 -0.6

Services -0.5 -1.4 -1.2

Food industry -0.6 -1.5 -1.4

Heavy manufacturing -1.4 -1.7 -2.1

Light manufacturing -0.5 -1.1 -1.0
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Thus, the political objective of the Energiewende to secure the growth and competitiveness of 

German industry has not yet been achieved. 

However, the increase in electricity prices is not the only influencing factor on cross-sectoral 

production decisions. Going back to Table 13, which shows the effects on electricity price, it becomes 

apparent that electricity prices increase by 18.5 % in scenario ‘Phase_out’, 10.6 % in scenario 

‘Complete’ and by 24.2 % in scenario ‘Biomass’. Normally, changes in domestic production would be 

expected to follow this order, but the cross-sectoral production effects in the scenario ‘Complete’ 

with the smallest increase in electricity prices are almost identical to the results of the scenario 

‘Biomass’ with the highest increase. This means that the production decisions of the industries are 

influenced by further factors. A closer look at the changes in factor markets and household demand 

is necessary to explain the production decisions of the various sectors. 

7.4.4 Effects on factor income and factor prices 

In the previous analysis of developments in the electricity sector (see section 7.4.2) and the cross-

sectoral adjustments (see section 7.4.3), it became obvious that the changes in the input structure 

for electricity generation resulted in increasing electricity prices. Higher prices for electricity cause 

higher cost production and result in a reduction of production level (see section 7.4.3). But it became 

also apparent that the reduced production not only depends on the increasing prices for electricity 

and intermediate inputs. The additional influencing factor can be found in the prices of production 

factors, the respective factor income and the behaviour of private households. A special focus on the 

drivers on the development of land, as a specific factor for agriculture, is given in section 7.4.8. 

Starting point here is the development of factor income. 

Table 15: Relative change of factor income compared to the base situation (in percent) 

 

 Source: Own results 

Table 15 presents the percentage changes in factor income for the considered three scenarios. 

Overall, the income declines for all factors in all scenarios. The lowest changes can be observed for 

scenario ‘Phase_out’ with a decline of capital income of -0.5 %, labour income of -0.9 % and income 

for land of -0.7 %. In the other two scenarios, the reduction effects on factor income are more 

significant, with a reduction of capital income by -2.0 % in scenario ‘Complete’ and -2.1 % in scenario 

‘Biomass’. Furthermore, in scenario ‘Complete’ the income for labour falls by -1.7 % and land income 

Phase_out Complete Biomass

 %

Capital -0.5 -2.0 -2.1

Labour -0.9 -1.7 -1.8

Land -0.7 -1.4 -1.5
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declines by -1.4 %. In scenario ‘Biomass’ labour income declines by -1.8 % and the income of land by -

1.5 %. A classification of the impacts of the reduced factor income on households is given in section 

7.4.5 in the context of the adaption reactions of households.  

Before analysing the impact of the reduced factor incomes on private households, changes in factor 

prices are considered in more detail. Table 16 shows the percentage changes of factor prices. Overall, 

these changes correspond to the changes of factor incomes in the cases of labour and land, but 

capital represents an exception, which is discussed here in more detail.  

In scenario ‘Phase_out’, the decline of factor prices by -0.5 % is equal to the reduction of the 

corresponding factor income as shown in Table 15. A different picture shows the factor income and 

price for scenario ‘Complete’ and ‘Biomass’. In scenario ‘Complete’ factor income decreases by  

-2.0 % although the factor price increases by 0.7 %. Background to this contrary development is the 

high level of investments in renewable energies in the electricity sector to achieve the political 

objective to develop renewable energies as the main pillar for electricity generation but also the 

investments into the extension of gas power plants. These high investments increase capital demand 

and lead to higher capital prices. As a consequence, next to higher prices for the intermediate input 

electricity in scenario ‘Complete’ also the costs for the production factor capital increase.  

This increase in capital cost also explains the non-linear modification of electricity demand on 

electricity prices shown in Table 13. Also, the high reduction of industrial production under scenario 

‘Complete’ (see Table 14) is a consequence of the higher production costs due to higher electricity 

and capital prices. Furthermore, the reduced production in the various sectors is caused by a lower 

household demand as a consequence of a decreasing factor income.  

Table 16: Relative change of factor prices compared to the base situation (in percent) 

 

Source: Own results 

In scenario ‘Biomass’, the price for capital declines by -0.2 % and capital income decreases by -2.1 %. 

Compared to scenario ‘Complete’, the lower level of biomass-based electricity generation causes a 

lower level of investments in this kind of electricity generation. Nevertheless, the composition of 

resources used for electricity generation in the electricity sector changed (see Figure 22) and causes 

higher electricity prices. Due to the higher production costs in the industries and the lower demand 

by private households, the prices for factors decline.  

Phase_out Complete Biomass

%

Capital -0.5 0.7 -0.2

Labour -0.9 -1.7 -1.8

Land -0.7 -1.4 -1.5
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The impact of the reduced factor income on households is presented and analysed in more detail in 

the next section. 

7.4.5 Impact on households 

A decline in factor income has a direct impact on household income and their consumption 

behaviour. Table 17 shows the impact of the restructuring process in the electricity sector on income 

and consumption expenditure of private households.  

The reduction in factor income, as shown in Table 15, leads to a decline of household income by  

-0.7 % in scenario ‘Phase_out’, which is the lowest reduction, by -1.6 % in scenario ‘Complete’ and  

-1.7 % in scenario ‘Biomass’. As a consequence of the income reduction, households reduce their 

consumption expenditure. Here, the reduction of consumption expenditure correlates with the 

reduction of income. The higher the decline in income, the more extensive is the reduction of 

consumption expenditure. The lowest income reduction in scenario ‘Phase_out’ results in the lowest 

reduction of consumption expenditure by -0.8 %. The largest reduction of income causes the largest 

decline in consumption expenditure in scenario ‘Biomass’ by -1.8 %.  

Table 17: Impact on private households’ income and expenditure (in percent relative to the base) 

 

Source: Own results  

At this point, the circular flow (see section 2.3.1) and the interrelation between the actors in the 

German economy become obvious and show the advantages of economic analysis using a CGE 

model. Going back to the cross-sectoral production effects as presented in Table 14 it becomes 

apparent that the increase of electricity prices causes an increase of production costs in other 

industries. Additionally, in scenario ‘Complete’, higher investment in the expansion of renewable 

energy sources for electricity generation increases the capital price (Table 16).  

What is not shown in the results, because STAGE_D is a comparative-static model, but helps to 

understand the adjustment processes in an economy between the ‘old’ equilibrium and the situation 

in the ‘new’ equilibrium: Higher cost of production meanwhile cause higher prices for the produced 

goods and services by the industry. As a result, private household demand for the more expensive 

goods and services declines, reflected by the lower consumption expenditure of households, as 

shown in Table 17. This decline in consumption expenditure has a feedback effect on the industries 

that reduce their production due to the decline in private demand. This reduced private demand 

Phase_out Complete Biomass

%

Household income -0.7 -1.6 -1.7

Consumption expenditure -0.8 -1.8 -1.8

Electricity consumption -14.9 -10.3 -19.3
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leads to a decline in prices for goods and services but furthermore a decline in the demand for 

production factors with the result that factor income also goes down (see Table 15). Consequently, 

lower factor income has a direct impact on the income of households that reduce their consumption. 

This decrease in demand has again negative consequences on the production of industries that 

reduce their production with the result of a slightly shrinking of the overall economic performance. 

The consequence of this adjustment process is a decline in economic growth as indicated in the 

reduction of GDP (see Figure 20).  

But not only private households are affected by the restructuring process in the electricity sector due 

to their declining income. Households are also consumers of electricity and therefore directly 

affected by increasing electricity prices. In response to increasing electricity prices, the consumption 

level of this good decreases.  

Table 17 presents the decline in electricity consumption by households. The biggest increase of 

electricity prices (see Table 13) in scenario ‘Biomass’ causes the highest decline in electricity 

consumption by -19.3 %. The lowest reduction in electricity use can be observed in scenario 

‘Complete’ that is also characterised by the smallest increase of electricity prices.  

Summarised, it can be stated that households are double burdened by the implementation of the 

Energiewende. They are directly concerned by paying higher prices for electricity and capital 

(scenario ‘Complete’) but furthermore, private households also receive a lower income. As presented 

in section 6.8, households have to pay higher prices for electricity than industry anyway due to 

higher taxes and levies. The German governments’ objective of securing economic growth, 

strengthening the competiveness of the German economy and guaranteeing reasonable consumer 

prices for energy is therefore not achieved.  

7.4.6 Trade effects 

7.4.6.1 Imports and exports of electricity and energy resources 

Germany, characterised as a country poor in resources, strongly depends on imports of energy 

commodities (see section 6.6). Changes in the domestic electricity generation and increasing prices 

for electricity, combined with changed composition of energy resources for electricity generation 

(see section 7.4.2), have significant impacts on international electricity trade as well as on trade with 

the relevant energy resources to produce electricity. In addition, the overall economic development 

is driving the demand for energy resources and hence, trade developments.  

Table 18 shows the impact of the Energiewende on international electricity trading and trading with 

relevant energy resources for electricity generation in Germany. Due to the technological framework 

conditions of the European electricity market (see section 6.7), Germany receives and delivers 
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electricity into this European grid in order to ensure a sufficient voltage in phases of volatile demand 

for electricity. Since 2007, Germany is an exporter of electricity (see section 6.9).  

Table 18: Trade effects on energy commodities (in percent relative to the base) 

 

Source: Own results  

The scenario results for electricity trade show that this situation changes under the scenario 

‘Biomass’. The lower domestic electricity demand (see Table 13) and electricity generation 

(see Figure 21) cause a decline in electricity exports by -59.9 %. High domestic electricity prices 

(see Table 13) result in an increase in electricity imports by 2.7 % as a consequence of the relative 

lower electricity price abroad Germany.  

Comparing the two scenarios ‘Complete’ and ‘Biomass’, imports and exports of electricity decline by  

-2.4 % and -37.0 %, respectively. Compared to scenario ‘Biomass’, the trade effects are less 

distinctive, due to the lower increase in electricity prices and the smaller decline in domestic demand 

(see Table 13). As a consequence, a reduced use of biomass for electricity generation, as shown in 

scenario ‘Biomass’, causes higher trade effects and shifts the German trade position from a net 

exporter to a net importer of electricity.  

Due to the phase-out of nuclear power and the associated decline in electricity generation 

(see Figure 21), exports in scenario ‘Phase_out’ decline by -52.1 %. The lower demand for electricity 

driven by increasing electricity prices (see Table 13) and an overall shrinking economy lead to a 

decline in electricity imports of -0.2 %.  

Changes in the composition of energy resources for electricity generation, as shown in Figure 22, and 

the resulting higher prices for electricity and capital in scenario ‘Complete’ have also an impact on 

trade with other energy commodities.  

Therefore, Table 18 also presents the relative changes of imports and exports of dark coal, crude oil 

and natural gas. Due to high transport costs, there is hardly any significant international trade of 

brown coal (see Figure 15). The trade effects under scenario ‘Phase_out’ show that the decrease in 

total electricity generation and the lower demand for electricity lead to decline in imports of all 

energy commodities. The strongest decline can be observed for dark coal by -10.3 %. Exports are 

reduced on a low level with reductions of -3.4 % for dark coal and -0.9 % for natural gas.  

Phase_out Complete Biomass Phase_out Complete Biomass

Imports Exports

Electricity -0.2 -2.4 2.7 -52.1 -37.0 -59.9

Dark coal -10.3 -9.9 -15.8 -3.4 -4.3 -5.4

Crude oil -4.5 0.0 -1.4 -0.7 -0.6 -0.7

Natural gas -5.5 9.0 6.6 -0.9 -0.7 -0.8

%
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Scenario ‘Complete’ shows an increase of natural gas imports by 9.0 %, as a consequence of the 

conversion of the electricity supply system with gas as the most important fossil cornerstone. The 

import of crude oil remains unchanged. Imports of dark coal decline as a result of the reduced use for 

electricity generation due to political efforts to reduce the import demand for energy resources. But 

also the technological disadvantages regarding the inflexibility of coal-fired power plants and the 

high carbon emissions of this resource cause a decline in domestic demand.  

The effect of a lower use of biomass and the resulting decline in the total electricity supply due to 

higher electricity prices and lower total domestic demand cause a decline in imports in scenario 

‘Biomass’. Imports of dark coal are reduced by -15.8 % and those of crude oil by -1.4 %. Natural gas 

imports are lower than in the reference scenario ‘Complete’ but still cover an increase by 6.6 % as a 

consequence that natural gas was assumed to become the most important fossil energy source for 

electricity generation. 

7.4.6.2 Impact on trade in other sectors of the economy 

Table 19 presents the trade effects on goods and services produced by other sectors of the economy 

due to the politically initiated restructuring process in the electricity sector. Higher production costs 

as a result of higher electricity prices (see Table 13) and prices for intermediate inputs but also the 

increase of capital prices (scenario ‘Complete’) cause higher prices for the domestically produced 

goods and services. Consequently, a higher import demand for foreign products and services would 

be expected, because of the relative lower prices for imports.  

But the increase in prices for domestically produced goods and services causes a decline of the 

consumption of households and in consequence a drop in the domestic production of goods and 

services and a reduced economic growth (see Figure 20). These impacts cause a decline of imports 

and exports of domestically produced goods and services.  

The extent of the different trade effects between the scenarios is a combination of the amount of the 

price increase for electricity and capital, the decline of domestic production of goods and services 

and the reduction of domestic demand as a consequence of the reduced consumption expenditure 

of households. 

In scenario ‘Phase_out’, factor and household income show the lowest decline compared to the 

other two scenarios, with consequence that the consumption of households also shows the lowest 

decline. Therefore, the reduction of imports remains under 1 % for all goods and services. The 

decrease of exports is caused by the increasing costs of production of domestic industries because of 

higher electricity prices and the resulting decline of domestic demand. This becomes apparent by the 

consideration of commodities of the heavy manufacturing whose production is energy intensive. One 
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exception are services that are exported by an increase of 0.2 %. The provision of services is 

characterised by a high share of the factor labour. Because of the decline in the labour price 

(see Table 15), the price for domestic services is lower than the price for foreign services and causes 

therefore increasing exports.  

The restructuring process of the electricity sector by making renewable energies to the main energy 

source in the electricity sector, as captured in scenario ‘Complete’, causes the lowest increase of 

electricity prices (see Table 14). But high investments in upgrading renewable power plants 

(see Table 16) lead to an increase of capital prices and the cost of production of the domestic 

industries. The resulting reduction of factor and household income and the consequent drop of 

domestic demand cause a decline in domestic production (see Table 14) and imports. In this 

scenario, the reduction of imports is therefore primarily driven by the reduction of domestic 

demand, as a consequence of a higher price for capital than for electricity. The decline in import 

demands for all goods and services and comprises amounts between -1.4 % for construction and 

heavy manufacturing commodities with the lowest decline and -1.7 % for light manufacturing 

commodities with the highest decline. Exports are reduced as a consequence of the increase of the 

relative domestic prices caused by the price of capital and electricity in relation to foreign prices but 

also due to the decline of domestic production. The highest decline in exports can be observed for 

construction commodities with a decline by -1.8 % and the lowest decline in light manufacturing with 

a decline by -1.0 %.  

Table 19: Trade effects on goods and services in other sectors of the economy (in percent relative 
to the base) 

 

Source: Own results  

Biomass-based electricity generation also has an impact on trade. The reduction of electricity 

generation based on biomass, in scenario ‘Biomass’, causes the highest increase of electricity prices 

(see Table 13) whose effects on trade become apparent by the comparison of the results of scenario 

‘Complete’ and ‘Biomass’.  

Due to a lower investment demand for biomass power plants in scenario ‘Biomass’, the price for 

capital decreases compared to scenario ‘Complete’ (see Table 16). The reduction of the domestic 

Phase_out Complete Biomass Phase_out Complete Biomass

Imports Exports

Transport -0.9 -1.6 -1.7 -0.5 -1.5 -1.2

Construction -0.7 -1.4 -1.6 -0.6 -1.8 -1.4

Services -0.8 -1.6 -1.6 0.2 -1.2 -0.3

Food industry -0.6 -1.6 -1.5 -0.6 -1.4 -1.3

Heavy manufacturing -0.7 -1.4 -1.3 -1.5 -1.7 -2.2

Light manufacturing -0.8 -1.7 -1.6 -0.5 -1.0 -0.9

%
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consumption expenditure of households is reduced by the same share of -1.8 % for both scenarios 

(see Table 17). Therefore the reduction of imports is caused by the reduction of domestic demand as 

a consequence of a reduced factor income and household demand. The decline in exports is primarily 

caused by an increase of electricity prices. It can be seen that especially products using a high share 

of electricity in their production process, e.g. heavy manufacturing with a decline of -2.2 %, are less 

exported. Therefore, the higher cost of production caused by higher electricity prices leads to a 

decline of exports because domestically produced goods and services become relatively more 

expensive. However, also the decline of domestic production causes the decline of exports in 

scenario ‘Biomass’.  

The results show that the transformation process in the electricity sector has negative impact on 

international trade. The higher costs of production due to increasing electricity prices  

(scenarios ‘Phase_out’ and ‘Biomass’) and/or of capital due to the high capital commitment for the 

development of renewable energy and gas power plants in the electricity sector  

(scenario ‘Complete’) increase the cost of production for domestically produced goods and services. 

As a consequence, domestically produced goods and services become more expensive and exports 

decline. Furthermore, higher prices for electricity cause a decline of household consumption 

expenditure, which meanwhile should increase imports, because foreign goods and services become 

relatively cheaper. But due to the lower demand for domestically produced goods and services, 

domestic production and household income decline. As a consequence of a shrinking economy, total 

import demand also declines. As a result, the decline in GDP as an indicator of economic growth and 

the decrease of imports and exports show that the German economy is losing its international 

competitiveness.  

7.4.7 Impact of the Energiewende on carbon dioxide emissions 

One objective of the Energiewende is the reduction of greenhouse gas emissions in Germany by  

-55 % in 2030. This section focusses on the changes in carbon emissions as a consequence of the 

nuclear phase-out, the implementation of the objectives of the Energiewende in the electricity sector 

and the role of biomass. 

Figure 23 presents the percentage changes of carbon dioxide emission in the different scenarios. 

Generally, the objective of reducing carbon emissions has been achieved in all scenarios but on a 

different scale and under the acceptance of a reduced economic growth. The lowest reduction of 

carbon emissions is obtained by phasing out nuclear energy in scenario ‘Phase_out’ with a decline of 

-9.8 %. The complete implication of the Energiewende in scenario ‘Complete’ causes a decrease by  

-10.1 %. The highest share of reduction can be observed for scenario ‘Biomass’ with a decline by  
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-14.3 %. The influencing factors that cause these different reduction rates will be discussed in this 

section in more detail.  

Nuclear power-based electricity generation is a low emitter of carbon dioxide. Therefore, the phase-

out of nuclear power itself has no relevant impact on the amount of carbon emissions. The reduction 

of carbon emissions in scenario ‘Phase_out’ is a consequence of lower household consumption and 

the reduction of industrial production in Germany. The starting point for this development is the 

change in the cost structure in the electricity sector in order to replace nuclear power by other, 

predominantly fossil, energy sources (see Figure 21) that usually should increase carbon emissions. 

But, the increasing cost of production for electricity generation to replace nuclear power and the 

lower supply of electricity due to the phase-out cause higher electricity prices. These higher prices 

(see Table 13) cause higher costs for intermediate inputs and electricity in industrial production  

(see section 7.4.3), which were directly passed to final consumers, e.g. households. As a consequence 

of lower factor income, consumption expenditure of households decreases and causes lower 

demand for goods and services, what finally cause a decline of production in the industries and the 

negative development of GDP. Therefore, the reduction of carbon emissions in scenario ‘Phase_out’ 

is a consequence of a reduction of economic performance due to higher electricity prices.  

Figure 23: Impact on the emissions of carbon dioxide (in percent) 

 

Source: Own results 

Interesting is the comparison of the development of carbon emissions between the scenarios 

‘Complete’ and ‘Biomass’. For scenario ‘Biomass’, it is expected that a lower use of biomass as 

renewable energy source would lead to a lower reduction of carbon emissions compared to scenario 

‘Complete’, but the reduction is higher.  
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Looking at the development of the GDP, it becomes apparent that the reduction of GDP comprises 

almost the same amount for scenario ‘Complete’ with a decline by -1.75 % and -1.80 % for scenario 

‘Biomass’. This means that both scenarios are characterised by a shrinking economic performance 

and a lower domestic production. The differences between the two scenarios are related to the 

impact that causes the reduction in GDP and finally the different reduction of carbon emissions. 

Looking at the development of electricity prices, the main relevant difference between the two 

scenarios becomes obvious. While the electricity prices increase by 24.2 % in scenario ‘Biomass’, the 

growth of electricity prices in scenario ‘Complete’ is considerably lower with an increase by 10.6 % 

only. Here, the higher electricity prices in scenario ‘Biomass’ cause a lower domestic demand for 

electricity with a reduction of domestic demand by -24.4 % compared to -15.4 % in scenario 

‘Complete’. The higher reduction of electricity demand is a consequence of higher electricity prices, 

which is also a determining factor of the higher decline of carbon emissions, as projected in scenario 

‘Biomass’.  

Another determining factor is the development of capital prices. In scenario ‘Complete’, the price for 

capital increases due to the capital commitment in the expansion of renewable energies. Therefore, 

the decline in GDP in scenario ‘Complete’ is more driven by higher capital costs than higher electricity 

prices. Finally, the lower reduction of electricity demand compared to scenario ‘Biomass’ explains the 

lower reduction of carbon emissions in scenario ‘Complete’.  

Summarised can be noted, that the objective of reducing carbon emissions was achieved in all 

scenarios but at the expense of the competitiveness of the German economy and higher electricity 

prices for consumers. 

7.4.8 Impact on the agricultural sector  

The agricultural sector plays a special role in the framework of the implementation of the 

Energiewende. Traditionally, agricultural commodities are used to produce food and feed. Due to 

technological developments and the governmental support to use agricultural crop and livestock 

commodities for energy generation under the framework of the EEG, this traditional use spectrum 

has been expanded by the generation of biogas for electricity generation (see section 6.4.1.1).  

Forestry and agriculture are the only two sectors that require large areas of land as production 

factor, which is mainly sector specific. As a consequence of the enhanced demand for agricultural 

products for biogas production, competition for production factors and in particular for the factor 

land has intensified over the last years with increasing land prices (Federal Statistical Office 2015). 

Furthermore, competition between the various possibilities of use (feed, food, energy) of agricultural 

commodities increased.  
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Another characteristic of the agricultural sector is the high energy demand in crop and livestock 

production processes (see Figure 13). On the one hand, these production processes directly have a 

high demand for energy. On the other hand, agriculture uses intermediate inputs that are produced 

in energy intensive production processes such as the production of agricultural machinery, fertilisers 

or feed products.  

Compared to wind and solar energy, which represent together with biomass the most important 

resources for electricity generation, the generation of biomass is confronted with an increasing 

competition for production factors and alternative final uses of the produced goods. As a 

consequence, the provision of biomass generates higher costs of production compared to wind and 

solar, which are - apart from initial investments - available as natural resources with very low 

marginal costs for provision. But while wind and solar energy depend on weather conditions, 

biomass has the advantage of a secured and continuous provision through the possibility of storing 

biomass and continuous production of biogas and electricity. 

This section focusses on the impacts of the Energiewende on the agricultural sector, by analysing the 

effects on agricultural production and prices in section 7.4.8.1 and on international trade with 

agricultural commodities in section 7.4.8.2.  

7.4.8.1 Impact of the Energiewende on agricultural production and prices  

Table 20 presents production and price effects of the restructuring process of the electricity sector 

on the agricultural sector. It becomes apparent that the Energiewende causes a reduction of 

production and prices in all scenarios for almost all commodities.  

The lowest decline in production can be observed in scenario ‘Phase_out’ with a decrease of 

agricultural commodity production between -0.3 % and -0.5 %. Prices for agricultural commodities 

decline between -0.1 % and -0.3 %. Higher impacts of production and prices changes can be observed 

in scenario ‘Complete’ with production changes between zero and -1.6 % and price changes between 

2.1 % and -0.7 %. The lower use of biomass for electricity generation provokes a reduction of the 

production of agricultural commodities between -1.4 % and -0.9 % and price changes between zero 

and -0.7 % in scenario ‘Biomass’.  

Although being a supplier of electricity, the agricultural sector is negatively affected by the 

Energiewende, because prices and production of almost all agricultural commodities decrease in the 

scenarios. One exception is the scenario ‘Complete’. Here, the price for ‘other crops’ increases by 

2.1 % and the price for maize remains on the same level. The aggregate ‘other crops’ includes crops 

used for grass silage and whole plant silage, which represent two of the main plant substrates for 
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biogas generation (see section 6.4.1.1). The prices of these agricultural products increase due to the 

higher input demand in biogas production.  

Table 20: Production and price changes of agricultural commodities (in percent relative to the 
base) 

 

Source: Own results  

The main crop used for biogas generation is maize. Next to the use of maize as substrate, maize is 

used as feed crop in cattle and dairy production. Because the production of cattle and milk decreases 

by -1.6 % and -1.4 %, the demand for maize as feedstuff declines but increases for the use as 

substrate in biogas generation. Both effects are balancing each other in this scenario and prices 

remain almost unchanged. 

A similar effect becomes apparent in livestock production. Prices for cattle and pig production remain 

unchanged. Cattle and pig slurry used as substrate for biogas generation are by-products of beef and 

pig production. Often farms with livestock production are also running biogas plants. The higher 

electricity price therefore partly compensates the declining prices for cattle and pigs. 

Nevertheless, a reduction of agricultural production and prices in all scenarios can be observed with 

a different extent. The fall in production and prices is generally caused by the same effects as in the 

other sectors in the economy (see Table 14) and can be traced back to higher prices for electricity, 

which directly increase production costs of agricultural commodities. Furthermore, higher electricity 

prices cause an increase of prices for intermediate inputs, like feed or fertilisers, whose production 

requires high energy input. In addition to the input side, the use of agricultural commodities 

decreases as consequence of a lower household demand (see Table 17). Background of this lower 

demand by households is the decline of factor income (see Table 15) due to lower production in the 

Phase_out Complete Biomass Phase_out Complete Biomass

Wheat -0.4 -1.2 -1.1 -0.3 -0.4 -0.4

Barley -0.4 -1.4 -1.2 -0.2 -0.3 -0.3

Rye -0.4 -1.1 -1.0 -0.3 -0.5 -0.5

Maize -0.5 -1.6 -1.4 -0.2 0.0 -0.1

Beet -0.4 -1.4 -1.3 -0.2 -0.4 -0.3

Oilseeds -0.3 -0.9 -0.9 -0.3 -0.7 -0.7

Vegetables and Fruit -0.4 -1.3 -1.3 -0.2 -0.3 -0.2

other Crops -0.3 0.0 -1.1 -0.1 2.1 0.0

other Grain -0.4 -1.4 -1.2 -0.2 -0.3 -0.3

Cattle -0.5 -1.6 -1.4 -0.2 0.0 -0.1

Milk -0.4 -1.4 -1.2 -0.2 -0.2 -0.3

Pig -0.5 -1.6 -1.4 -0.2 0.0 -0.1

Poultry -0.4 -1.4 -1.2 -0.2 -0.3 -0.3

other Animals -0.4 -1.2 -1.2 -0.2 -0.4 -0.3

%

Crop Production Crop Prices

Livestock Production Livestock Prices
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whole economy (see Table 14). Of particular importance for the agricultural sector is the 

development in the food industry, which represents the most important purchaser of agricultural 

commodities as intermediate inputs for further processing into food and feed (see Table 14).  

As private households receive a lower income as a consequence of a lower factor income, their 

consumption expenditure declines and this also comprises their consumption expenditure for food 

products.  

Next to higher electricity prices and the lower domestic demand for food and feed, the increase of 

capital prices in scenario ‘Complete’ is an important driver for the decline of production and prices of 

agricultural commodities. Agricultural production is capital intensive. Crop production is 

characterised by high investments in machinery and storage facilities for crops. Livestock production 

requires investments in stables and silos. Additionally, the construction of biogas plants involves 

comprehensive investments. The increase of capital prices in scenario ‘Complete’ is driven by a high 

investment demand to expand capacities to produce renewable energies, e.g. biogas.  

From the agricultural perspective, therefore, the implementation of the Energiewende and the 

expansion of investments in biogas plants are a boon and bane at the same time. Biogas production 

partly absorbs increasing electricity costs, but causes higher costs for capital due to higher 

investments. In consequence, only the production of some commodities is positively affected. The 

negative impact of higher capital and energy costs causes a decline in the production level and prices 

of almost all agricultural products.  

The development of agricultural production with a decline in livestock and crop production as well as 

a drop in agricultural producer prices in all scenarios explains the reduction of land prices and land 

income, presented in section 7.4.4. Land prices and income decline by -0.7 % in scenario ‘Phase_out’, 

by -1.4 % in scenario ‘Complete’ and by -1.5 % in scenario ‘Biomass’. Here, the lower demand of the 

food and feed industry for agricultural commodities as a result of the lower household income and 

consumption also contributes to the reduced prices and income for land. Even the higher demand for 

biomass for electricity generation could not fully compensate this decline in demand and the 

resulting negative impact on price and income for land. 

Altogether, due to the only small contribution of the German agricultural sector to overall GDP of 

0.7 % in total GDP in 2007 (Statista 2017), the expected increase of competition between production 

factors and/or the alternative use of agricultural commodities does not take place. The overall 

impact of the Energiewende indeed causes a higher demand for biogas for electricity generation but 

a reduced demand for agricultural commodities for feed and food production. The lower household 

demand predominates and causes a decline of agricultural production and prices for crop and 

livestock commodities.  



Case study – Scenario description, Model closures and Results 

152 

Impact on regional level  

The implementation of agricultural activities on the base of the federal states (Bundesländer) in 

STAGE_D (see section 4.4.2) allows an analysis of the impact of the Energiewende on the agricultural 

sector on a regional level, too. Table 21 presents the relative production changes per region in the 

particular scenarios. It becomes apparent that agricultural production is affected differently in the 

federal states.  

In scenario ‘Phase_out’, the production in almost all regions decreases between -0.9 % or  

-0.1 % or remains on the same level due to the lower demand for agricultural crop or livestock 

commodities. In this scenario, the higher prices for electricity and the lower domestic demand of 

households for food products are responsible for this decline.  

Interesting are the regional production effects in scenario ‘Complete’. In this scenario, biomass-based 

electricity generation is extended to a share of 21.8 % on total electricity generation in Germany. 

Here, the adaption of agricultural production is different between the federal states. It becomes 

apparent that some regions extent their production, like Rhineland-Palatinate or Saxony by 2.8 % or 

0.3 %, respectively, and production is reduced in other regions, like North Rhine-Westphalia or 

Bavaria by -2.1 % or -2.6 %. 

Table 21: Relative production changes in the federal states of Germany (in percent)  

 

Source: Own results 

The differences in the change of production depend on the particular production structure of the 

region. Federal states characterised by a comprehensive livestock but also biogas production, i.e. 

Schleswig-Holstein, North Rhine-Westphalia, Lower-Saxony or Bavaria are more concerned than 

regions characterised by crop production, i.e. Brandenburg, Thuringia or Saxony.  

The decline of production in regions with comprehensive livestock farming can be traced back on 

increasing cost for capital due to investments in the expansion of renewable resource based power 

Phase_out Complete Biomass

%

Bavaria -0.7 -2.6 -2.0

Brandenburg 0.0 0.0 -0.1

Baden-Württemberg -0.4 -1.1 -1.3

Hesse -0.6 -2.3 -1.7

Mecklenburg-Western Pomerania -0.2 -0.5 -0.6

North Rhine-Westphalia -0.6 -2.1 -1.7

Lower Saxony -0.5 -1.7 -1.4

Rhineland-Palatinate 0.0 2.8 -0.7

Schleswig-Holstein -0.4 -2.0 -1.4

Saarland -0.9 -1.8 -1.2

Saxony -0.1 0.3 0.0

Saxony-Anhalt -0.2 -0.5 -0.4

Thuringia 0.0 0.3 0.2
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plants including biogas power plants. Additionally, the decrease of household income causes a lower 

demand for food products and therefore a lower demand for agricultural products by the food 

industry. Together both effects cause this higher decline in agricultural production in these regions 

compared to regions with low livestock production.  

Regions characterised by crop production even benefit from the increasing demand for crops used as 

substrates for biogas generation and increase their production. Because land is immobile and 

restricted, crop based substrates used for biogas generation cannot be produced in a necessary 

amount in regions where the biogas plant is running. Therefore crop based substrates are `traded’ 

between the regions in this scenario. Furthermore the relative decline in livestock production due to 

the lower domestic demand reduces the availability of livestock based substrates and additionally 

increases crop production in other regions to replace these substrates.  

In scenario ‘Biomass’, electricity generation based on biomass is lower compared to scenario 

‘Complete‘ and comprises a share of 7.6 % on total domestic electricity generation. In this scenario, 

the impact of a higher demand for crop based substrates is less important and a decline of 

production in these regions becomes obvious. Rather the higher price for electricity becomes 

relevant. Especially regions characterised by energy intensive livestock production are more 

concerned and reduce their production. Additionally, the decline of household demand for food 

products causes a decline of agricultural production in all federal states compared to scenario 

‘Complete’.  

7.4.8.2 Impact on agricultural trade  

Changes of the domestic production and prices for agricultural commodities have also an impact on 

international trade.  

Table 22 presents the trade effects of the most important crop and livestock commodities. Overall, 

agricultural imports and exports decline in all scenarios, although the prices for domestically 

produced commodities decrease and these commodities should become relatively cheaper 

compared to foreign produced commodities. The influencing factors driving this development will be 

described and explained in this section.  
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Table 22: Change in trade of agricultural commodities (in percent relative to the base) 

 

Source: Own results 

The lowest trade effects can be observed in scenario ‘Phase_out’ with a decline of imports of crop 

and livestock products between -0.5 % for cattle and pigs and -0.7 % for oilseeds. The reduction of 

exports is a range between -0.1 % for oilseeds and -0.5 % for pigs. Here, the impact of increased 

prices for electricity (see Table 13) becomes obvious. Higher electricity prices increase the cost of 

production for agricultural commodities. The prices for agricultural commodities decrease due to a 

lower demand of households for food products and a lower demand of the agricultural sector for 

feed products because livestock production also declines. As a consequence, the imports of 

agricultural commodities decrease due to a lower domestic demand of the food industry because of 

a lower household demand. Exports decrease due to higher costs of production for agricultural 

commodities but especially due to the decrease of domestic agricultural production and therefore at 

all (see Table 20).  

The increase of renewable energies in the electricity sector captured in scenario ‘Complete’, causes 

higher impacts on trade with agricultural commodities compared to the nuclear ‘Phase_out’ 

scenario. Imports of crop and livestock commodities decrease between -1.4 % for cattle and pigs and 

-1.9 % for oilseeds. On the export side, especially the trade with animals is affected with reductions 

between of -1.8 % for cattle and pigs and -1.2 % for poultry.  

Altogether, the analysed scenarios indicate a decrease of domestic production for all agricultural 

commodities, except those used for biogas generation (see Table 20). But, especially livestock 

production is affected, because of higher prices for electricity and capital. Livestock production in 

Germany is characterised as energy and capital intensive, due to high investments in equipment and 

stables but also due to investments in stock of animal. Therefore, the increase of prices for electricity 

and especially for capital causes the decline of domestic production and of exports of animals in 

scenario ‘Complete’.  

Phase_out Complete Biomass Phase_out Complete Biomass

Wheat -0.6 -1.7 -1.5 -0.2 -0.8 -0.8

Barley -0.6 -1.6 -1.4 -0.3 -1.2 -1.1

Rye -0.6 -1.8 -1.5 -0.2 -0.7 -0.6

Oilseeds -0.7 -1.9 -1.6 -0.1 -0.2 -0.3

Vegetables and fruit -0.6 -1.6 -1.3 -0.4 -1.1 -1.4

Cattle -0.5 -1.4 -1.3 -0.4 -1.8 -1.5

Pig -0.5 -1.4 -1.3 -0.5 -1.8 -1.5

Poultry -0.6 -1.6 -1.4 -0.3 -1.2 -1.1

%

Import Crops Export Crops

Import Livestock Export Livestock 
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Compared to scenario ‘Complete’, the lower use of biomass, shown in scenario ‘Biomass’ causes 

lower reductions in trade with agricultural commodities compared to scenario ‘Complete’. In this 

scenario, especially the increase of electricity prices causes higher cost of production for agricultural 

commodities and therefore a decline in the domestic agricultural production. Especially concerned 

are commodities, which require a high electricity use for their production like vegetables and fruits, 

cattle or pigs. Export of these commodities decline by -1.4 % and -1.5 %, respectively. Imports of 

agricultural commodities decline, like in the other scenarios, due to lower domestic demand because 

of lower consumption expenditures of households.  

7.5 Sensitivity Analysis 

As mentioned by Pyatt (1988), elasticities applied in a GCE model can be regarded as one of the 

weaknesses of CGE models, because they comprise information from outside the SAM framework. 

This section presents selected results of the sensitivity analysis done for the scenario ‘Complete’ to 

show the sensitivity of STAGE_D with regard to the applied elasticities. The sensitivity analysis was 

conducted by comparing the model results based on the applied elasticity with two additional 

elasticity values: one low value and one high value. The results of the sensitivity analysis presented in 

this section comprise the elasticity of substitution of the value added-energy aggregate (𝜎𝑣𝑎𝑒), the 

energy aggregate (𝜎𝑣𝑒) and the Armington import elasticity (𝜎).  

Figure 24 presents the results of the sensitivity analysis applied for the elasticity of substitution of the 

value added energy-aggregate (𝜎𝑣𝑎𝑒).  

Figure 24: Sensitivity analysis: Impact of the elasticity of substitution of the value added-energy 
aggregate on factor income (in percent) 

 

Source: Own results 
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Here, the percentage changes of factor income caused by the implementation of a high value for 

𝜎𝑣𝑎𝑒 (1.5) and a low value (0.5), as well as the applied value of 𝜎𝑣𝑎𝑒 are shown. The results indicate 

that the model reacts sensitive to this elasticity. The income of capital decreases in a smaller share 

under low elasticity values than the income of labour and land. Because especially the factor income 

and the resulting household income have a strong impact on the adjustment reaction of the whole 

economy, the value of this elasticity influences the model results. The value chosen for this analysis 

implies relatively equal percentage adaptions of factor income for land, capital and labour.  

The second sensitivity analysis considers the impacts of the value of the elasticity of substitution of 

the energy aggregate (𝜎𝑣𝑒) on electricity prices. This elasticity determines the substitution of energy 

commodities used to produce the activity output. The results of the sensitivity analysis show that this 

elasticity has an impact on model results. The lower the elasticity of substitution, the less is the 

possibility of activities to substitute energy commodities by each other. As a consequence, a low 

value of elasticity of substitution of 0.2 causes a higher relative price change by 11.5 % than the high 

elasticity value (1.5) by 9.9. But furthermore, the possibility to substitute energy inputs by each other 

depends on the respective input structure of an activity that is determined in the SAM. The value of 

𝜎𝑣𝑒 applied in the case study is 0.5.  

Table 23: Sensitivity analysis: Impact of the elasticity of substitution of the energy aggregate on 
electricity prices (in percent) 

 

 Source: Own results 

The model comprises two trade elasticities. The first is represented by the elasticity of substitution 

for the CES aggregation of imports and domestically produced products to combine these to a 

composite good (Armington import elasticity). The second trade elasticity is the elasticity of 

transformation of domestically produced output. This elasticity determines the relative share of 

exports and commodities produced for the domestic market. The sensitivity analysis was done for 

the Armington import elasticity (𝜎). Figure 25 shows that a small value for sigma causes a high 

decrease of electricity imports by -10.4 %. On the other hand, a small value for sigma implies a strong 

increase of electricity imports by 11.1 %. The commodity electricity is highly concerned by 

implementation of the scenario ‘Complete’, due to the changes in the supply structure. Nevertheless, 

the Armington elasticity is a sensitive parameter with regard to the model results. The high decrease 

of dark coal imports and the strong imports of natural gas are as well caused by the implementation 

of the scenario into the model. Domestic dark coal generation was phased-out and the domestic 

demand for natural gas increases due to the extension of electricity generation based on gas.  

σve = applied σve = 0.2 σve = 1.5

Electricity Price 10.6 11.5 9.9

%



Case study – Scenario description, Model closures and Results 

157 

Figure 25: Sensitivity analysis: Impact of changes of the Armington elasticity on commodity imports 
(in percent) 

Source: Own results  
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7.6 Summary and conclusions of the scenario results and 

recommendations  

In this case study, the comparative-static model STAGE_D was applied to consider and analyse the 

impacts of the Energiewende on the German economy with a special emphasis on agriculture and the 

electricity sector in three scenarios. Scenario ‘Phase_out’ focusses on the impacts of an immediate 

nuclear phase-out. Scenario ‘Complete’ captures the complete implementation of the targets of the 

Energiewende in the electricity sector. Scenario ‘Biomass’ has a special focus on the role of biomass 

and the agricultural sector in the framework of a changed electricity supply system. This section 

provides a summary of the results, conclusions and recommendations for further analyses.  

7.6.1 Summary of the scenario results 

In the past, the German electricity supply system was mainly based on fossil and nuclear energy 

resources. One objective of the Energiewende is the phase-out of nuclear power and the 

development of renewable-based electricity generation to become the main pillar of electricity 

supply. In this transition process, the application of new technologies based on renewable resources 

causes changes in the cost structure of electricity generation. Old established coal-based power 

plants have to reduce their production or are completely phased-out (nuclear power plants). More 

expensive gas power plants expand electricity generation due to their technological advantage to 

provide electricity flexible in times when wind- and solar-based electricity is not available due to 

weather conditions.  

The restructuring of the electricity supply system requires high investments to increase the capacity 

of renewable and gas power plants in order to replace old established power plants and to generate 

the necessary amount of electricity. As a consequence, the provision of electricity by more expensive 

production technologies leads to increasing electricity prices in all scenarios. Furthermore, in 

scenario ‘Complete’, capital prices increase due to high investments in the extension of renewable 

and gas-based power plants.  

Increasing prices for electricity and capital cause cross sectoral effects. Industries use electricity 

either directly as input for production processes or indirectly via intermediate inputs. Along the 

entire value chain, the ‘energy content’ of intermediate goods increases the further these goods are 

processed. In the value added chain, the impact of higher electricity prices becomes increasingly 

relevant for the final user. Consequently, industries with a high direct use of electricity or those that 

depend on electricity intensive intermediate inputs are more concerned by higher electricity prices. 

The results in all scenarios show that high electricity prices cause a reduced production across all 
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sectors. In scenario ‘Complete’, the higher capital price increases the production costs in addition to 

the electricity.  

Private households have to carry a double burden due to the implementation of the Energiewende. 

On the one hand, they are directly concerned by paying higher prices for electricity and capital 

(scenario ‘Complete’). On the other hand, the decline in domestic production leads to lower factor 

prices and consequently to a decline in the disposable factor income of private households. 

Therefore, consumption expenditure of households decreases. This decrease of consumption 

expenditure can be regarded as the reason for the decline in domestic production of industries.  

Changes in the domestic electricity supply system and increasing prices for electricity affect 

international trade of electricity and the relevant energy resources to produce electricity. Due to the 

technological framework conditions of the European electricity market, Germany receives and 

delivers electricity into this European grid in order to ensure a sufficient voltage in phases of volatile 

electricity demand. In 2007, Germany was an exporter of electricity. In all scenarios, electricity 

exports decrease as consequence of the domestic increase of electricity prices and a lower electricity 

generation in the scenarios ‘Phase_out’ and ‘Biomass’. With regard to imports, the reduced 

economic performance and the lower demand for electricity lead to a decline of imports in 

‘Phase_out’ and ‘Complete’. The high domestic price for electricity in scenario ‘Biomass’, shifts 

Germany´s trading position from a net exporter to a net importer of electricity.  

The increasing import dependency of energy resources for electricity generation shows that the 

nuclear phase-out (‘Phase_out’) implies a decrease of imports of the fossil resources dark coal, crude 

oil and natural gas. With exception of natural gas, imports of these energy resources decrease in the 

other scenarios, too. In the scenarios ‘Complete’ and ‘Biomass’, imports of natural gas increase as 

consequence of the enhanced domestic use for electricity generation.  

The transformation process of the electricity sector has negative impacts on international 

competitiveness of domestic industries. The higher prices for electricity (scenarios ‘Phase_out’ and 

‘Biomass’) and for capital (scenario ‘Complete’) increase the cost of production for domestically 

produced goods and services. As a consequence, domestically produced commodities become 

relatively more expensive and exports decline. Additionally, the reduction of factor and household 

income and the associated decline in domestic demand cause a decline in both: domestic production 

and imports.  

One objective of the Energiewende is the reduction of greenhouse gas emissions. Generally, the 

analyses show that the objective to reduce carbon emissions is achieved in all scenarios. But the 

reduction of carbon emissions is predominantly a consequence of a reduction of economic 

performance initiated due to higher electricity prices (scenario ‘Phase_out’ and ‘Biomass’) and capital 
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prices (scenario ‘Complete’). The resulting declines in electricity demand by private households and 

industries, but also the overall reduction of domestic production by industries, have a stronger 

impact on the reduction of carbon emissions than the targeted increase in the efficiency of electricity 

use.  

The phase-out of nuclear power and the increasing use of renewable energy resources (‘Complete’) 

reduce the application of fossil-based energy resources for electricity generation. As a net effect, 

however, German GDP declines in all three scenarios. A reduction in GDP is an indicator for a 

shrinking economic performance and shows that the implementation of the Energiewende in the 

electricity sector has negative impacts on the entire German economy.  

This analysis of the consequences of the Energiewende on the German economy is done under 

particular consideration of the agricultural sector, because of the special role of agriculture in this 

framework. Traditionally, agricultural commodities are used for the production of food and feed. Due 

to technological developments and the governmental support in the frame of the EEG, this use 

spectrum is expanded by the generation of biogas for electricity production. The enhanced demand 

increases competition with regard to production factors, especially for the factor land, and the final 

use of agricultural commodities. Another characteristic of the agricultural sector is the high energy 

demand in crop and livestock production. On the one hand, energy resources are directly used in the 

agricultural production processes, i.e. electricity or diesel. On the other hand, the agricultural sector 

has a high and indirect energy demand caused by the use of intermediate inputs that are produced in 

energy intensive production processes, i.e. fertiliser or feed products. Next to this, the provision of 

biomass in the agricultural sector also generates higher costs of electricity production compared to 

wind and solar, which are available at very low marginal costs for provision.  

In general, the Energiewende causes a decline of agricultural production and a price decrease for 

agricultural commodities in all scenarios, except of scenario ‘Complete’. Here the prices for crops 

used for biogas generation increase or remain unchanged due to the higher input demand in biogas 

production.  

The drop in agricultural production and prices can be traced-back on increased prices for electricity 

that directly increase the cost of production of agricultural commodities. Furthermore, higher 

electricity prices cause an increase of prices for intermediate inputs. Next to the input side, the use 

of agricultural commodities for feed and food decreases as a consequence of a lower household 

demand due to lower factor income. Important for the agricultural sector is the development in the 

food industry, which represents the most important purchaser of agricultural commodities as 

intermediate inputs for further processing into food and feed. As consequence of a lower factor 

income, the consumption expenditure of private households declines, which is also the case for the 
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demand of food products. The reduced demand of the food and feed industry can be regarded as an 

important driver for the decline of production and prices of agricultural commodities. 

Agricultural production is capital intensive; therefore, the increase of capital prices increases cost of 

production in crop and livestock production. The increase of capital prices in scenario ‘Complete’ is 

driven by high investment demand to expand capacities to produce renewable energies, e.g. biogas 

but also gas based electricity generation.  

An increase in competition between production factors and/or the alternative use of agricultural 

commodities, due to the extension of the use spectrum by agricultural commodities, cannot be 

confirmed by the scenario results. Although the overall effects of the Energiewende cause a higher 

demand for biogas for electricity generation, the lower demand for agricultural commodities for feed 

and food as consequence of the lower household demand overweighs and implies a decline in 

agricultural production and prices for crop and livestock commodities.  

Changes in domestic production and prices for agricultural commodities also have impact on 

international trade. Agricultural imports and exports decline in all scenarios due to the decrease of 

domestic production for all agricultural commodities, except for those used for biogas generation. 

Especially livestock production is affected by higher prices for electricity and capital. Livestock 

production in Germany is characterised as energy and capital intensive. Therefore, the increase of 

prices for electricity and especially for capital causes a decline of domestic production and exports. 

Imports of agricultural commodities decline due to lower domestic demand for food and feed.  

From an agricultural perspective, the implementation of the Energiewende and the expansion of 

investments in biogas plants are a boon and bane at the same time. Higher biogas production 

compensates partly the increasing costs for electricity but also drives up costs for capital because of 

investments in the extension of biogas plants in scenario ‘Complete’. In consequence only the 

production of some commodities is positively affected. Overall, the negative impact of higher capital 

and energy costs and the lower domestic demand for feed and food products cause a decline in the 

production level and prices of almost all agricultural commodities.   
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7.6.2 Conclusions 

The German economy is currently in the transition phase of implementing the Energiewende with the 

objective of a fundamental long-term restructuring of the German energy supply system from a fossil 

and nuclear basis to a renewable basis. The intention is to improve environmental protection and 

reduce the current high dependence on energy imports. At the same time, affordable energy prices 

for consumers and a high level of economic competitiveness and development have to be 

maintained. The establishment of a sustainable energy supply, initiated by the German government, 

therefore includes environmental, economic and social objectives, which must be taken into account 

at the same time.  

The objective of this case study is to analyse the implementation of the Energiewende in Germany 

with a particular focus on achieving these various objectives. The focus here is on the electricity and 

the agricultural sectors. For this analysis, the CGE model STAGE_D is used, which was developed 

within the scope of this research. This analysis tool is intended to provide a better understanding of 

the complex interrelationships between the economic, ecological and social impacts of the 

Energiewende on all economic actors.  

The application of STAGE_D in the three scenarios ‘Phase_out’, ‘Complete’ and ‘Biomass’ shows that 

the political objectives are not realised yet. Moreover, the restructuring of the electricity supply is 

having a negative impact on Germany’s economic development, indicated by a relative decline in 

GDP.  

This decline in GDP is caused by a reduced income for the production factors capital, labour and land 

as consequence of a reduced production of domestic industries. While the nuclear phase-out and the 

complete restructuring of the electricity supply system, German industries are confronted with 

increasing prices for electricity due to the implementation of more costly technologies to supply 

electricity. Furthermore, the expansion of electricity production based on renewables and gas 

requires high investments, which additionally increase the capital price. The political objective to 

offer electricity at competitive prices was therefore not achieved. Moreover, due to the resulting 

decline of domestic production because of the higher input prices and the lower domestic demand, 

German industries sustain a loss in international competitiveness, visible in a decline of imports and 

exports of goods and services. 

Private households carry the main burden in the implementation of the Energiewende. On the one 

hand, households are confronted with rising electricity prices and on the other hand with income 

losses due to the declining economic development. The political objective to supply electricity at 

affordable prices for consumers is therefore not achieved.  
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From the environmental perspective, the political objective of reducing carbon emissions is primarily 

achieved by a decline in economic performance and the overall reduced use of energy resources. 

7.6.3 Recommendations 

With regard to the future energy policy of the government, it is recommended to adjust the 

promotion of renewable energies against the background of the still existing old structures of power 

plants in the electricity sector. As nuclear power already is decided to be phased-out in 2022, an 

adjustment of electricity generation based on coal and gas needs to be considered. Electricity 

generation based on inflexible coal-fired power plants should be reduced, while gas-fired power 

generation should be expanded. 

The support of renewable energies under the EEG should be adapted. Electricity generation on the 

basis of renewable energies became increasingly established in recent years. The guaranteed 

purchase and the support of renewable electricity in the frame of the EEG increase electricity prices. 

This has negative impacts on the German economy. In the national context, this is due to higher 

production costs and lower household consumption expenditure. On the international markets, the 

German economy is losing competitiveness, due to the more expensive production. In order to 

strengthen industries and households, a reduction of the EEG-levy and a reduced support of 

renewables in the frame of the EEG should be considered. 

It is also recommended to promote technological progress in electricity generation in order to reduce 

electricity prices in the long term. The efficiency of electricity use should also be promoted in order 

to achieve the desired reduction in electricity use and so positive environmental effects.  

With the agricultural sector in view, it is advisable to maintain biogas production for electricity 

generation in the medium term. This is against the background that this renewable energy source is 

continuously available. Nevertheless, with regard to increasing demand for the use of agricultural 

products for food and other purposes, a further expansion of biogas production is not 

recommended. The expansion of renewable energies for power generation in future should 

concentrate on wind and solar energy.  
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With regard to the application of the single-country CGE model STAGE_D it can be stated that the 

model demonstrated its ability to measure the complex intra- and inter-sectoral impacts of the 

German energy policy. Nevertheless, the model version applied in this study indicates starting points 

for further research.  

Recommendations for further research to develop STAGE_D and the SAM: 

 The Social Accounting Matrix can be updated to reflect the current state of the 

implementation of the Energiewende and the economic situation.  

 The structure of the nested production function can be extended to allow the model a 

substitution between capital and electricity, dark and brown coal, petrol and bioethanol, 

diesel and biodiesel.  

 In this research, the agricultural sector is recorded as a multiple output ‘industry’. The 

underlying assumption that the composition of output remains the same, regardless of 

relative prices of the produced commodities can be improved by a flexible output 

composition.  

 Technological progress can be considered by making the shift parameter 𝑎𝑑𝑥𝑎 a variable for 

relevant activities that supply and use energy.  

 Electricity and energy taxes as well as subsidies can be disaggregated in the SAM and 

implemented into STAGE_D for a better consideration of political measures. 

 The presentation of households can be improved by a disaggregation of households on the 

base of their income in the SAM and adjustments of the Stone-Geary utility function in 

STAGE_D.  

 A division of capital into immobile long-term capital and mobile short-term capital could 

address the issue of long-term investments of power plants in the energy sector. 

 The connection to global trade models can improve the trade relationships between 

Germany and the rest of the world.  

 Econometric estimates of elasticities would improve elasticity values. 

 A dynamic version of STAGE_D can improve the visibility of adaption processes in the 

economy on changed political or economic framework conditions.   
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Application examples of the model and further research topics:  

 With this model, the monitoring process of the energy transition for measuring and analysing 

economic, social and ecological impacts can be supported. 

 Analyses focusing on the impact on a reduced EEG-levy and generally on the impact of lower 

prices of electricity can be done.  

 The recommendation of all objectives of the Energiewende, including biofuels and heat 

generation, can improve the results and give a complete picture of the Energiewende.  

 Electric mobility will become an important topic in the future. Analyses of changing national 

and international markets for electricity and fuels outline an interesting topic for global and 

single country CGE models.  
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8 Summary of the study 

The German energy sector is currently characterised by a transformation process from a nuclear- and 

fossil-oriented to a renewable-oriented input base. Initial point of this process was the decision of 

the Energy Concept by the German government in 2010. The implementation of the so-called 

Energiewende (Energy Shift) is planned with a transitional period until 2050 and requires a 

fundamental long-term restructuring of Germany’s energy supply system.  

In the electricity sector, this restructuring process should primarily take part by using nuclear power 

as a ‘bridge technology’ until renewable-based electricity generation has been expanded to a 

sufficient amount. However, as a consequence of the Fukushima Daiichi (Japan) nuclear accident in 

March 2011, the government reconsidered the long-term role of nuclear power with the result to 

phase-out the use of nuclear power until the year 2022. In order to phase-out nuclear power more 

quickly, the process of reorganising Germany’s energy supply on the base of renewable energy 

sources needed to be substantially accelerated. This process was implemented by the government in 

the framework of the Energy Package in June and July 2011.  

The most important renewable energy sources in Germany are biomass, wind and solar energy. 

Electricity generation based on these resources experienced a considerable extension over the last 

years as a consequence of the implementation of the Energiewende and the governmental support in 

the framework of the Renewable Energy Act (EEG). While the supply of wind- and solar-based 

electricity generation causes marginal costs, which tend to be zero, the costs of biomass-based 

electricity are significantly higher. Traditionally, agricultural products are used for food and feed 

production. Due to technological development and the governmental support to use agricultural 

commodities for energy production, this traditional use spectrum was expanded by the generation of 

biogas for electricity generation. As a consequence of this additional use of agricultural products, 

competition for production factors and in particular for land has intensified over the last decade. In 

addition, competition between the various possibilities to use agricultural commodities (feed, food, 

energy) has emerged. Next to its new role as electricity provider, the agricultural sector is 

characterised by a high energy demand for the production processes of crop and livestock 

production and therefore directly affected by price changes of energy commodities.  

The politically initiated adjustment process of the electricity sector is accompanied by the objectives 

of a long term securing of the domestic energy supply on the base of renewable energies, the 

improvement of environmental protection and the reduction of the currently strong dependence on 

imported energy resources. At the same time affordable energy prices for consumers and a high level 

of economic competitiveness and development shall be also maintained. Thus, the establishment of 
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a sustainable energy supply system involves environmental, economic and social objectives, which 

have to be considered simultaneously. 

In order to determine the consequences of the comprehensive restructuring process of the electricity 

sector on the German economy and on the agricultural sector in particular, this research focusses on 

the achievement of two objectives.  

The first objective is the provision of an analytical instrument able to capture the economic, 

environmental and social impacts of the energy policy on all agents of the German economy. This 

instrument should be able to monitor the process of the Energiewende and allow for 

recommendations for the government. Therefore, the Static Applied General Equilibrium Model for 

Germany (STAGE_D) was developed on the basis of the STAGE standard model. STAGE_D is a 

comparative-static single-country CGE model and provides the methodological basis for the 

necessary intra- and inter-sectoral, social and environmental analysis.  

The second objective is the application of the model STAGE_D in order to analyse the impact of the 

exit from nuclear- and fossil-based energy on the German economy and, particularly, on the 

electricity and the agricultural sector in the frame of a case study. 

The analyses based on STAGE_D required the development of an adequate database for Germany, 

including disaggregated data for the electricity and agricultural sector as well as a satellite account 

that records data on carbon emissions associated with different production systems. The database 

for STAGE_D is presented as a SAM and follows the principles and accounting rules of the SNA. A 

SAM can be regarded as a comprehensive and flexible accounting framework, in which the accounts 

of all agents of an economy are represented in the format of a square matrix. This matrix captures 

the interconnections between the agents and their interactions via factor and product markets 

within the economy and the rest of the world.  

The development of STAGE_D follows the SAM approach to modelling and uses the SAM as database 

and analytical framework to calibrate the model. Therefore, STAGE_D can be explained within the 

submatrices of the German SAM. Also the prices for industries and products, applied in the model, 

derive from the developed German SAM.  

For the construction of the German SAM different data sources have been combined to capture the 

structural characteristic of the German economy. SUTs of the year 2007, provided by the German 

Federal Statistical Office, represent the underlying main source data. 

The distinctive features of the model derive from the focus of the analysis on the impact of energy 

policy on all sectors of the economy in Germany and on the electricity and agricultural sector in 

particular. Therefore, these two sectors are captured and modelled on a more detailed level than in 
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the standard national accounts database. Additional disaggregation of inputs - intermediate use and 

final demand, outputs – joint- and by-production within the electricity and agricultural sectors and its 

use for further processing has been done in the framework of the setup of the German SAM.  

The model STAGE_D itself includes a detailed specification of the supply, production and demand for 

energy and agricultural products in Germany. The modified model allows multiple production 

technologies for electricity that encompass existing and new technologies for electricity generation 

with different cost structures. This formulation of electricity production addresses the problem 

presented by a homogenous product – electricity – being produced by different technologies with 

different cost structures.  

The agricultural sector is captured in STAGE_D as a multi-product sector. Agricultural activities are 

distinguished at the regional level by federal states (Bundesländer). That means that one state 

represents all farms of that region and that this agricultural activity is able to produce multiple 

output, i.e. crops, livestock as well as biomass for biogas generation. This consideration enables the 

user of the model to capture regional differences in the production structure. 

Furthermore, STAGE_D is able to record carbon emissions caused by the use of energy commodities 

by industries and households. For this purpose, an external database in form of an external satellite 

account was developed in addition to the SAM.  

In this study, STAGE_D is applied to capture and analyse the impacts of the Energiewende on the 

German economy with a special consideration of agriculture and the electricity sector in three 

scenarios. Scenario ‘Phase_out’ focusses on the impacts of an immediate nuclear phase-out, scenario 

‘Complete’ captures the complete implementation of the targets of the Energiewende in the 

electricity sector and scenario ‘Biomass’ has a special focus on the role of biomass in the framework 

of a changed electricity supply system.  

The results show that the political objectives have not yet been achieved and that the restructuring 

of the electricity supply system has negative impacts on the economic growth in Germany, indicated 

by a reduction in GDP compared to the reference year 2007.  

This decline in GDP is caused by a reduced income for the production factors capital, labour and land 

as a consequence of a lower production of domestic industries. While the nuclear phase-out and the 

complete restructuring of the electricity supply system, German industries are confronted with 

increasing prices for electricity due to the implementation of more costly technologies to supply 

electricity. Furthermore, the expansion of electricity production based on renewables requires high 

investments, which additionally increase the price for capital. The political objective to offer 

electricity at prices to preserve the competitiveness of German industries therefore has not been 

achieved. Moreover, due to the resulting decline of domestic production as a consequence of higher 
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input prices and a reduced domestic demand, German industries suffer a loss in international 

competitiveness visible by the decline of imports and exports of goods and services. 

Private households carry the main burden while the implementation of the Energiewende. On the 

one hand, households are confronted with increasing electricity prices and on the other hand with a 

reduced income due to the decline of economic performance. The political objective to supply 

electricity to affordable prices for consumers is therefore not achieved.  

From the environmental perspective, the political objective to reduce carbon emissions is achieved in 

the first consideration but this reduction is mainly reached by the reduction of economic 

performance and the overall reduced use of energy resources.  

From an agricultural point of view, the implementation of the Energiewende and the expansion of 

investments in biogas plants are a boon and bane at the same time. Higher biogas production 

compensates partly the increasing costs for electricity, but also drives up costs for capital because of 

investments in the extension of biogas plants. In consequence only the production of some crops 

used for biogas generation is positively affected. Altogether, higher capital and energy costs and the 

lower domestic demand for feed and food products cause a decline in agricultural production and 

lower prices for almost all agricultural commodities. The consideration of the impact of the 

Energiewende on the regional level shows that federal states, characterised by energy and capital 

intensive livestock production, are more concerned than federal states with dominant crop 

production.  

For the future energy policy of the government, it is recommended to modify the support for 

renewable energies with regard to the existing power plant structures in the electricity sector. 

Adjustments of electricity generation based on coal and gas should be considered. Electricity 

generation by inflexible coal-fired power plants should be reduced and electricity generation by gas 

plants expanded. 

The promotion of renewable energies under the EEG should also be reconsidered. Electricity 

generation based on renewable energies has become increasingly established in recent years. The 

guaranteed purchase and support for electricity generation based renewables increase electricity 

prices. A reduction of the support in the frame of the EEG and also a reduced EEG-levy would cause 

lower prices for consumers. This could strengthen the national and international competitiveness of 

the German industry and relieve households. 

Additionally, it is recommended to support technological progress for processes for electricity 

generation in order to reduce production cost and to reduce the electricity price in the long term. 

Furthermore, support measures to increase the efficiency of electricity use should be fostered.  
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With regard to agriculture, it is advisable to maintain biogas production for electricity generation in 

the medium term, as this renewable energy source is constantly available. But with a view to the 

rising demand for the use of agricultural commodities for food and other purposes, a further 

expansion of biogas production is not recommended. In the future, the expansion of renewable 

energies for electricity generation should concentrate on wind and solar energy. This is also due to 

the fact that electricity generation on this basis is more cost-effective and environmentally friendly.  
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10 Addendum 

10.1 Variables, parameters and sets 

The description of the variables, parameters and sets follows McDonald (2007) and has been 

adjusted appropriate to the model adaptions made in this study.  

Parameters, variables and sets are listed in alphabetic order.  

10.1.1 Model Variables 

A Table 1: Model Variables  

Variable name Variable description 

ADVAEa Shift parameter for CES production functions for QVAE 

ADVAEADJ Scaling factor for Shift parameter on CES functions for QVAE 

ADVEa Shift parameter for CES production functions for QVE 

ADVEADJ Scaling factor for Shift parameter on CES functions for QVE 

ADVKEa Shift parameter for CES production functions for QVKE 

ADVKEADJ Scaling factor for Shift parameter on CES functions for QVKE 

ADVLLa Shift parameter for CES production functions for QVLL 

ADVLLADJ Scaling factor for Shift parameter on CES functions for QVLL 

CAPGOV Government savings 

CAPWOR Current account balance 

CPI Consumer price index 

DADVAE Partial scaling factor for Shift parameter on CES functions for QVAE 

DADVE Partial scaling factor for Shift parameter on CES functions for QVE  

DADVKE Partial scaling factor for Shift parameter on CES functions for QVKE 

DADVLL Partial scaling factor for Shift parameter on CES functions for QVLL 

DS Partial household and enterprise savings rate scaling factor 

DTAX Direct income tax revenue 

DTE Partial export tax rate scaling factor 

DTEX Partial excise tax rate scaling factor 

DTF Partial fuel tax rate scaling factor 

DTM Partial tariff rate scaling factor 

DTS Partial sales tax rate scaling factor 

DTX Partial indirect tax rate scaling factor 

DTYE Partial direct tax on enterprise rate scaling factor 

DTYF Partial direct tax on factor rate scaling factor 

DTYH Partial direct tax on household rate scaling factor 

EG Expenditure by government 

EGADJ Transfers to corporations by government scaling factor 

ER Exchange rate (domestic per world unit) 
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ETAX Export tax revenue 

EXTAX Excise tax revenue 

FDf,a Demand for factor f by industry a 

FSf Supply of factor f 

FTAX Fuel tax revenue 

FYTAX Factor income tax revenue  

GOVENTe Government income from enterprise e  

HEXPh Household consumption expenditure  

HGADJ Scaling factor for government transfers to households  

HOENTh,e Household Income from enterprise e 

HOHOh,hp Inter household transfer  

IADJ Investment scaling factor  

INVEST Total investment expenditure  

INVESTSH Value share of investment in total final domestic demand  

IOQXACQXVa,c Share of product c in output by industry a  

ITAX Indirect tax revenue  

MTAX Tariff revenue 

PDc Consumer price for domestic supply of product c  

PEc Domestic price of exports by industry a  

PINTa Price of aggregate intermediate input  

PMc Domestic price of competitive imports of product c  

PPI Producer (domestic) price index  

PQDc Purchaser price of composite product c  

PQDDISTc,a Sectoral proportion for energy commodity prices  

PQSc Supply price of composite product c  

PVAa Value added price for industry a  

PVAEa Value added- energy price for activity a  

PVEa Price for aggregate energy used by activity a 

PVKEa Price for aggregate capital energy used by activity a 

PVLLa Price for aggregate quantity of labour and land used by activity a 

PWEc World price of exports in Dollar  

PWMc World price of imports in Dollar  

PXa Composite price of output by industry a  

PXACa,c Industry product prices  

PXCc Producer price of composite domestic output  

QCDc,h Household consumption by product c  

QDc Domestic demand for product c  

QEc Domestic output exported by product c  

QEDADJ Enterprise demand volume scaling factor  

QEDc,e Enterprise consumption by product c 

QGDADJ Government consumption demand scaling factor  

QGDc Government consumption demand by product c  
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QINTa Aggregate quantity of intermediates used by industry a  

QINTDc,a Demand of activities for intermediate inputs by commodity  

QINTDc Demand for intermediate inputs by product c  

QINVDc Investment demand by product c  

QMc Imports of product c  

QQc Supply of composite product c 

QVAa Quantity of aggregate value added for level 1 production  

QVAEa Quantity of aggregate value added-energy  

QVEa Quantity of aggregate energy 

QVKEa Quantity of aggregate capital energy  

QVLLa Quantity of aggregate labour land 

QXa Domestic production by industry a  

QXACa,c Domestic product output by each industry  

QXCc Domestic production by product c  

SADJ Savings rate scaling factor for BOTH households and corporations  

SEADJ Savings rate scaling factor for corporations  

SENe Corporation savings rates  

SHADJ Savings rate scaling factor for households  

SHHh Household savings rates  

STAX Sales tax revenue  

TEADJ Export subsidy scaling factor  

TEc Export taxes on exported product c  

TEXADJ Excise tax rate scaling factor  

TEXc Excise tax rate  

TFADJ Tax rate on factor use scaling factor 

TFc Tax rate on factor use  

TMADJ Tariff rate scaling factor  

TMc Tariff rates on imported product c  

TOTSAV Total savings  

TSADJ Sales tax rate scaling factor  

TSc Sales tax rate  

TXa Indirect tax rate  

TXADJ Indirect tax scaling factor  

TYEADJ Enterprise income tax scaling factor  

TYEe Direct tax rate on corporations  

TYFADJ Factor tax scaling factor  

TYFf Direct tax rate on factor income  

TYHADJ Household income tax scaling factor 

TYHh Direct tax rate on households  

VEDe Value of enterprise e consumption expenditure 

VEDSHe Value share of enterprise consumption in total final domestic demand  

VFDOMD Value of final domestic demand  
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VGD Value of government consumption expenditure  

VGDSH Value share of govt consumption in total final domestic demand  

WALRAS Slack variable for Walras's Law  

WFDISTf,a Sectoral proportion for factor prices 

WFf Price of factor f  

YEe Enterprise incomes  

YFDISPf Factor income for distribution after depreciation  

YFf Income to factor f  

YFWORf Foreign factor income  

YG Government income  

YHh Income to household h 

 

10.1.2 Model parameters 

The following parameters are used in the behavioural specifications/equations of the model. In 

addition to these parameters, there is an additional set of parameters. This set of parameters is used 

for model calibration and for deriving results; there exists one parameter for each variable and they 

are identified by appending a zero to the respective variable name. 

A Table 2: Model Parameters 

Parameter name Parameter description 

acc Shift parameter for Armington CES function 

advaa Shift parameter for CES production functions for QVA (base model) 

advaeba Shift parameter for CES production functions for QVAE 

adveba Shift parameter for CES production functions for QVE 

advkeba Shift parameter for CES production functions for QKE 

advllba Shift parameter for CES production functions for QVLL 

adxa Shift parameter for CES production functions for QX 

adxcc Shift parameter for product output CES aggregation 

alphahc,h Expenditure share by product c for household h 

atc Shift parameter for export CET function 

betac,h Marginal budget shares 

caphoshh Shares of household income saved (after taxes) 

comactactcoc,a Intermediate input output coefficients 

comactcoc,a Use matrix coefficients 

comgovconstc Government demand volume 

comhoavc,h Household consumption shares 

comtotshc Share of product c in total product demand 

dabadvaea Change in base shift parameter on functions for QVAE  

dabadvea Change in base shift parameter on functions for QVE  

dabadvkea Change in base shift parameter on functions for QVKE  
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dabadvlla Change in base shift parameter on functions for QVLL  

dabsene Change in base enterprise saving rates 

dabshhh Change in base household saving rates 

dabtec Change in base export taxes on product c imported from region w 

dabtexc Change in base excise tax rate 

dabtmc Change in base tariff rates on product c imported from region w 

dabtsc Change in base sales tax rate 

dabtxa Change in base indirect tax rate 

dabtyee Change in base direct tax rate on corporations 

dabtyff Change in base direct tax rate on factors 

dabtyhh Change in base direct tax rate on households 

deltac Share parameter for Armington CES function 

deltavaea Share parameters for CES production functions for QVAE  

deltavecel,a Share parameters for CES production functions for QVE 

deltavkea Share parameters for CES production functions for QVKE  

deltavlla Share parameters for CES production functions for QVLL 

deltaxa Share parameter for CES production functions for QX 

deltaxca,c Share parameters for product output CES aggregation 

deprecf Depreciation rate by factor f 

dstocconstc Stock change demand volume 

econc Constant for export demand equations 

entgovconste Government transfers to enterprise e 

entvashe,f Share of income from factor f to enterprise e 

entwore Transfers to enterprise e from world (constant in foreign currency) 

etac Export demand elasticity 

factworf Factor payments from RoW (constant in foreign currency) 

frischh Elasticity of the marginal utility of income 

gammac Share parameter for export CET function 

gammaic Share parameter for output CET function 

goventshe Share of enterprise income after tax, savings and consumption to govt 

govvashf Share of income from factor f to government 

govwor Transfers to government from world (constant in foreign currency) 

hexpsh Subsistence consumption expenditure 

hoentconsth,e Transfers to household h from enterprise e (nominal) 

hoentshh,e 
Share of enterprise income after tax, savings and consumption to 
household h 

hogovconsth Transfers to household h from government (nominal but scalable) 

hohoconsth,hp Interhousehold transfers 

hohoshh,hp Share of household h after tax and saving income transferred to hp 

hovashh,f Share of income from factor f to household h 

howorh Transfers to household from world (constant in foreign currency) 

invconstc Investment demand volume 
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ioqintqxa Agg intermediate quantity per unit QX for Level 1 Leontief agg 

ioqtdqdc,a Intermediate input output coefficients 

ioqvaqxa Agg value added quant per unit QX for Level 1 Leontief agg 

ioqxacqxa,c Share of product c in output by industry a 

kapentshe Average savings rate for enterprise e out of after tax income 

predeltaxa Dummy used to estimated deltax 

pwsec World price of export substitutes 

qcdconstc,h Volume of subsistence consumption 

qedconstc,e Enterprise demand volume 

rhocc Elasticity parameter for Armington CES function 

rhocvaa Elasticity parameter for CES production function for QVA (base model) 

rhocxa Elasticity parameter for CES production function for QX 

rhocxcc Elasticity parameter for product output CES aggregation 

rhotc Elasticity parameter for export CET function 

rhotia Elasticity parameter for output CET function 

rhovaea Elasticity parameter for CES production function for QVAE 

rhovea Elasticity parameter for CES production function for QVE 

rhovkea Elasticity parameter for CES production function for QVKE 

rhovlla Elasticity parameter for CES production function for QVLL 

sumelasth Weighted sum of income elasticities 

te01c 0-1 par for potential flexing of export taxes on products 

tex01c 0-1 par for potential flexing of excise tax rates 

tfue01c 0-1 par for potential flexing of fuel tax rates 

tm01c 0-1 par for potential flexing of tariff rates on products 

ts01c 0-1 par for potential flexing of sales tax rates 

tx01a 0-1 par for potential flexing of indirect tax rates 

tye01e 0-1 par for potential flexing of direct tax rates on corporations 

tyf01f 0-1 par for potential flexing of direct tax rates on factors 

tyh01h 0-1 par for potential flexing of direct tax rates on households 

usec,a Use matrix transactions 

vddtotshc Share of value of domestic output for the domestic market 

worvashf Share of income from factor f to rest of world 

yhelastc,h (Normalised) household income elasticities 
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10.1.3 Model set description 

A Table 3: Model Sets 

celc Energy commodities  

celnc Non energy commodities 

a_hsac Activity and commodity accounts - Carbon emissions 

aa_h Activity accounts - Carbon emissions 

ha_h Household accounts - Carbon emissions 

cec Export commodities 

cenc Non-export commodities 

cedc Export commodities with export demand functions 

cednc Export commodities without export demand functions 

cmc  Imported commodities 

cmnc  Non-imported commodities 

cxc  Commodities produced domestically 

cxnc  Commodities NOT produced domestically AND imported 

cxacc  Commodities that are differentiated by activity 

cxacnc  Commodities that are NOT differentiated by activity 

cdc  Commodities produced and demanded domestically 

cdnc  Commodities NOT produced and demanded domestically 

aqxa  Activities with CES aggregation function at Level 1 of nest 

aqxna  Activities with Leontief aggregation function at Level 1 of nest 

sac SAM Accounts  

  

c Products, Commodities 

a Industries, Activities 

f Factors 

h Households 

g Government 

e Enterprises 

i Investment 

w Rest of World 
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A Table 4: Commodities included in the 2007 German Supply and Use Tables 

 

Number Commodity Number Commodity 

1 Products of agriculture, hunting and related services 37 Other transport equipment

2 Products of forestry, logging and related services 38 Furniture; other manufactured goods n.e.c.

3 Fish and other fishing products; services incidental of fishing 39 Secondary raw materials

4 Coal and lignite; peat 40 Electricity, district heat, Services

5 Crude petroleum and natural gas; services incidental to oil and gas extraction 41 Gas, Services of gas supply

6 Uranium and thorium ores 42 Water, services of water supply

7 Metal ores 43 general construction and civil engineering. 

8 Other mining and quarrying products 44 Construction work

9 Food and feed products 45 Trade, maintenance and repair services of motor vehicles and motorcycles

10 Beverages 46 Wholesale trade and commission trade services

11 Tobacco products 47 Retail  trade services, repair services of personal and household goods

12 Textiles 48 Hotel and restaurant services

13 Wearing apparel; furs 49 Rail transport services             

14 Leather and leather products 50 Land transport; transport via pipeline services

15 Wood and products of wood and cork 51 Water transport services

16 Pulp, paper 52 Air transport services

17 Paper products 53 Supporting and auxiliary transport services; travel agency services

18 Publishing commodities 54 Post and telecommunication services

19 Printed matter and recorded media 55 Financial intermediation services

20 Coke, refined petroleum products and nuclear fuels 56 Insurance and pension funding services

21 Pharmazeutics 57 Services auxiliary to financial services and insurance services        

22 Chemicals, chemical products and man-made fibres 58 Real estate services

23 Rubber products 59 Renting services of machinery and equipment 

24 Plastic products 60 Computer and related services

25 Glass 61 Research and development services

26 Ceramic, stone and abrasive products 62 Other business services

27 Basic metals 63 Public administration and defence services

28 Other non-metallic mineral products 64 Compulsory social security services

29 Foundry 65 Education services

30 Fabricated metal products, except machinery and equipment 66 Health and social work services

31 Machinery and equipment n.e.c. 67 Sewage and refuse disposal services, sanitation and similar services

32 Office machinery and computers 68 Membership organisation services n.e.c.

33 Electrical machinery and apparatus n.e.c. 69 Recreational, cultural and sporting services

34 Radio, television and communication equipment and apparatus 70 Other services

35 Medical, precision and optical instruments, watches and clocks 71 Private households with employed persons

36 Motor vehicles, trailers and semi-trailers
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A Table 5: Activities included in the 2007 German Supply and Use Tables 

 

 

Number Activity Number Activity

1 Agriculture, hunting and related service activities 31 Recycling

2 Forestry, logging and related service activities 32 Electricity, gas, steam and hot water supply

3 Fishing, operating of fish hatcheries and fish farms 33 Collection, purification and distribution of water

4 Mining of coal and lignite; extraction of peat 34 Construction

5 Extraction of crude petroleum and natural gas 35 Sale, maintenance and repair of motor vehicles and motorcycles

6 Mining of uranium and thorium ores 36 Wholesale trade and commission trade

7 Mining of metal ores 37 Retail trade, except of motor vehicles and motorcycles

8 Other mining and quarrying 38 Hotels and restaurants

9 Manufacture of food products and beverages 39 Land transport; transport via pipelines

10 Manufacture of tobacco products 40 Water transport

11 Manufacture of textiles 41 Air transport

12 Manufacture of wearing apparel; dressing and dyeing of fur 42 Supporting and auxiliary transport activities; activities of travel agencies

13 Tanning and dressing of leather 43 Post and telecommunications

14 Manufacture of wood and of products of wood and cork 44 Financial intermediation, except insurance and pension funding

15 Manufacture of pulp, paper and paper products 45 Insurance and pension funding, except compulsory social security

16 Publishing, printing and reproduction of recorded media 46 Activities auxiliary to financial intermediat.

17 Manufacture of coke, refined petroleum products and nuclear fuels 47 Real estate activities

18 Manufacture of chemicals and chemical products 48 Renting of machinery and equipment 

19 Manufacture of rubber and plastic products 49 Computer and related activities

20 Manufacture of other non-metallic mineral products 50 Research and development

21 Manufacture of basic metals 51 Other business activities

22 Manufacture of fabricated metal products 52 Public administration and defence; compulsory social security

23 Manufacture of machinery and equipment n.e.c. 53 Education

24 Manufacture of office machinery and computers 54 Health and social work

25 Manufacture of electrical machinery and apparatus n.e.c. 55 Sewage and refuse disposal, sanitation and similar activities

26 Manufacture of radio, television and communication equipment and apparatus 56 Activities of membership organisation n.e.c.

27 Manufacture of medical, precision and optical instruments, watches and clocks 57 Recreational, cultural and sporting activities

28 Manufacture of motor vehicles, trailers and semi-trailers 58 Other service activities

29 Manufacture of other transport equipment 59 Private households with employed persons

30 Manufacture of furniture; manufacturing n.e.c.
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A Figure 1: File structure of the STAGE model  

 

Source: McDonald (2013) 
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10.2 Model equations of the STAGE base model 

The model equations listed in this section are taken from the technical documentation of the STAGE base model of McDonald (2007).  

A Table 6: STAGE model equations  

Name Equation and set control  Number of 
Equations 

Variable Number of 
Variables 

 EXPORTS BLOCK    
     
PEDEFc  * * 1c c cPE PWE ER TE ce    ce PEc ce 

CETc 
  

1

* * 1 *   c c c
rhot rhot rhot

c c c c c cQXC at QE QD ce cd     AND  
c QDDc c 

ESUPPLYa 
   

1

11
*   

crhot
cc c

c c c

QE PE
ce cd

QD PD





 
  
 

AND  

c QEc c 

EDEMANDc 
*

ceta

c

c c

c

PWE
QE econ ced

pwse



 
  

 
 

   

CETALTc          c c cQXC QD QE cen cd ce cdn   ΑΝD  OR ΑΝD     
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

 IMPORTS BLOCK    
     
PMDEFc  * * 1c c cPM PWM ER TM cm    cm PMc cm 

ARMINGTONc 
  

1

1   c c c
rhoc rhoc rhoc

c c c c c cQQ ac QM QD cm cx 


 
    AND  

c QQc c 

COSTMINc 

 

 

1

1

*   
1

crhoc
c c c

c c c

QM PD
cm cx

QD PM





 
  

 
AND  

c QMc c 

ARMALTc          c c cQQ QD QM cmn cx cm cxn   ΑΝD OR ΑΝD     

     

 COMMODITY PRICE BLOCK    
     
PQDDEFc  * 1c c c cPQD PQS TS TEX +  c PQDc c 

PQSDEFc * *
  c c c c

c

c

PD QD PM QM
PQS cd cm

QQ


  OR  

c 
cPQS  c 

PXCDEFc  * * $c c c c c

c

c

PD QD PE QE ce
PXC cx

QXC


   

cx 
cPXC  cx 

 NUMÉRAIRE BLOCK    
CPIDEF *c c

c

CPI comtotsh PQD  1 CPI  1 

PPIDEF *c c

c

PPI vddtotsh PD  1 PPI 1 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

PRODUCTION BLOCK    
PXDEFa 

, *a a c c

c

PX ioqxacqx PXC  a 
aPX  a 

PVADEFa      * 1 * * *a a a a a a aPX TX QX PVA QVA PINT QINT    a 
aPV  a 

PINTDEFa  , *a c a c
c

PINT ioqtdqd PQD  a PINTa a 

ADXEQa    * * 01a a a aADX adxb dabadx ADXADJ DADX adx    

 

a ADXa a 

QXPRODFNa 

  
1

1
x x x
a a a

rhoc rhocx x x rhoc
a a a a a a

a

QX AD QVA QINT

aqx

 


 
  


 

a 
aQX  a 

QXFOCa 

 

 
1

1

*
1

x
ax rhoc

a a a
ax

a a a

QVA PINT
aqx

QINT PVA





 
  

  

 

a 
aQINT  a 

 *a a a aQINT ioqintqx QX aqx      

QVADEF *a a a aQVA ioqvaqx QX aqxn      

QINTDEF *a a a aQINT ioqintqx QX aqx 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

QVAPRODFNa 

,

1

, , ,

$

* * *

va
a

va
a

va
f a

va va

a a f a f a f a

f

QVA AD ADFD FD











 

  
  
  

a 
aQVA  a 

QVAFOCf,a  

 

,

, ,

1

, , ,

$

1

, , , ,

* * 1

* * * * *

* * * *

va
a

va
f a

vava
aa

f f a f a

va va

a a a f a f a f a

f

va va

f a f a f a f a

WF WFDIST TF

PVA QVA AD ADFD FD

ADFD FD









 





 



 
  

  
  

(f*a) 
afFD ,  (f*a) 

QINTDEQc 
, *c c a a

a

QINTD ioqtdqd QINT  c QINTDc c 

COMOUTc 

,

1

, ,

$

* *  and 

xc
c

xc
c

xc
a c

xc

c c a c a c c c

a

QXC adxc QXAC cx cxac











 

  
  
  

c QXCc c 

 
,  and c a c c c

a

QXC QXAC cx cxacn      

COMOUTFOCa,c 

 

,

1

, , ,

$

1

, ,

* * *

* *

xc
c

xc
cxc

c

xc
a c

xc
c

xc

a c c c a c a c

a

xc

a c a c c

PXAC PXC QXC QXAC

QXAC cxac














 
 
 
 



 

 
  

  



  

(a*c) PXACa,c (a*c) 

 
,a c cPXAC PXC cxacn      

ACTIVOUTa,c 
, , *a c a c aQXAC ioqxacqx QX  (a*c) QXACa,c (a*c) 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

FACTOR BLOCK    
YFEQf 

 , ,* * *f f f a f a f

a

YF WF WFDIST FD factwor ER
 

  
 
  

f 
fYF  f 

YFDISPEQf     * 1 * 1f f f fYFDISP YF deprec TYF    f 
fYFDIST  f 

HOUSEHOLD BLOCK    
YHEQh 

 

 

, ,*

* *

*

h h f f h hp

f hp

h h

h

YH hovash YFDISP HOHO

HOENT hogovconst HGADJ CPI

howor ER

   
    
   

 



 

 

h 
hYH  h 

HOHOEQh,hp     , , * * 1 * 1h hp h hp h h hHOHO hohosh YH TYH SHH    h*hp HOHOh,hp h*hp 

HEXPEQh 
      ,* 1 * 1h h h h hp h

hp

HEXP YH TYH SHH HOHO
 

     
 
  

h 
hHEXP  h 

QCDEQc 
 , , ,* * *c c h c h h c c h

h h c

c

c

PQD qcdconst beta HEXP PQD qcdconst

QCD
PQD

   
     

   

  

 

c 
cQCD  c 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

ENTERPRISE BLOCK    
YEEQe 

   

, *

* * *

e e f f

f

e e

YE entvash YFDISP

entgovconst EGADJ CPI entwor ER

 
  
 

 


 

1 YE 1 

QENTDEQc,e 
, , *c e c eQED qedconst QEDADJ  c QENTDc c 

VENTDEQe 

, *e c e c

c

VED QED PQD
 

  
 
  

1 VENTD 1 

HOENTEQh,e     

 , ,

,

* 1 * 1

*
*

e e e

h e h e

c e c

c

YE TYE SEN

HOENT hoentsh
QED PQD

  
 
  
 


 

h HOENTh h 

GOVENTEQe     

 

* 1 * 1

*
*

e e e

e e
c c

c

YE TYE SEN

GOVENT goventsh
QED PQD

  
 
 
 


 

1 GOVENT 1 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

 TAX RATE BLOCK    
TMDEFc     * * 01c c c cTM tmb dabtm TMADJ DTM tm    cm TM cm 

TEDEFc     * * 01c c c cTE teb dabte TEADJ DTE te    ce TE ce 

TSDEFc     * * 01c c c cTS tsb dabts TSADJ DTS ts    c TS c 

TEXDEFc     * * 01c c c cTEX texb dabtex TEXADJ DTEX tex    c TEX c 

TXDEFa     * * 01a a a aTX txb dabtx TXADJ DTX tx    a TX a 

TFDEFf,a     , , , ,* * 01f a f a f a f aTF tfb dabtf TFADJ DTF tf    f*a TF f*a 

TYFDEFf     * * 01f f f fTYF tyfb dabtyf TYFADJ DTYF tyf    f TYF f 

THYDEFh     * * 01h h h hTYH tyhb dabtyh TYHADJ DTYH tyh    h TYH h 

TYEDEFe     * * 01e e e eTYE tyeb dabtye TYEADJ DTYE tye    e TYE e 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

 TAX REVENUE BLOCK    
MTAXEQ  * * *c c c

c

MTAX TM PWM ER QM  1 MTAX 1 

ETAXEQ  * * *c c c

c

ETAX TE PWE ER QE  1 ETAX 1 

STAXEQ 

 

 

* *

* *

c c

c c c c c c c

c c c

c

TS PQS
STAX

QINTD QCD QED QGD QINVD dstocconst

TS PQS QQ

 
  

     







 

1 STAX 1 

EXTAXEQ  * *c c c

c

EXTAX TEX PQS QQ  1 EXTAX 1 

ITAXEQ  * *a a a

a

ITAX TX PX QX  1 ITAX  1 

FTAXEQ  , , ,

,

* * *f a f f a f a

f a

FTAX TF WF WFDIST FD  1 FTAX  1 

FYTAXEQ    * * 1f f f

f

FYTAX TYF YF deprec   1 FTAX 1 

DTAXEQ    * *h h e

h e

DTAX TYH YH TYE YE    1 DTAX  1 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

GOVERNMENT BLOCK    
     
YGEQ 

 * *f f

f

YG MTAX ETAX STAX EXTAX FTAX ITAX FYTAX DTAX

govvash YFDISP GOVENT govwor ER

       

 
   
 


 

1 YG  1 

QGDEQc *c cQGD qgdconst QGDADJ  c 
cQGD  c 

VGDEQ 
*c c

c

VGD QGD PQD
 

  
 
  

1 VQGD 1 

EGEQ 
* * *

* *

c c h

c h

e

e

EG QGD PQD hogovconst HGADJ CPI

entgovconst EGADJ CPI

   
    
   

 
 
 

 



 

1 EG 1 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

INVESTMENT BLOCK    
SHHDEFh     * * * * 01h h h hSHH shhb dabshh SHADJ SADJ DSHH DS shh  

 

h SHH H 

SENDEFe     * * * * 01e e e eSEN sen dabsen SEADJ SADJ DSEN DS sen  

 

e SEN e 

TOTSAVEQ    

   

   

* 1 *

* 1 *

* *

h h h

h

e e

e

f f

f

TOTSAV YH TYH SHH

YE TYE SEN

YF deprec KAPGOV CAPWOR ER

 

 

  







 

1 TOTSAV  1 

QINVDEQc  *c cQINVD IADJ qinvdconst  c 
cQINVD  c 

INVEST   *c c c

c

INVEST PQD QINVD dstocconst   1 INVEST  1 

FOREIGN INSTITUTIONS BLOCK    
YFWOREQf *f f fYFWOR worvash YFDISP  f 

fYFWOR  f 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

MARKET CLEARING BLOCK    
FMEQUILf 

,f f a

a

FS FD  f 
fFS  f 

QEQUILc 
, ,c c c h c e c c c

h e

QQ QINTD QCD QED QGD QINVD dstocconst        c   

CAPGOVEQ KAPGOV YG EG   1 CAPGOV 1 
CAEQUIL 

*

*

f

c c

c f

c c f

c f

h

h

YFWOR
CAPWOR pwm QM

ER

pwe QE factwor

howor entwor govwor

  
    
   

  
    
   

 
   
 

 

 



 

1 CAPWOR 1 

VFDOMDEQ 
, ,*c c h c e c c c

c h e

VFDOMD PQD QCD QED QGD QINVD dstocconst
 

     
 

    1 VFDOMD 1 

VENTDSHEQ 
e

e

VENTD
VENTDSH

VFDOMD
  

1 VENTDSH 1 

VGDSHEQ VGDVGDSH
VFDOMD

  1 VGDSH 1 

INVESTSHEQ INVESTINVESTSH
VFDOMD

  1 INVESTSH 1 

WALRASEQ TOTSAV INVEST WALRAS   1 WALRAS 1 
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Name Equation Number of 
Equations 

Variable Number of 
Variables 

MODEL CLOSURE    
  or ER CAPWOR  1 
  and  or c c cednPWM PWE PWE  2c 

 , ,  or  or or SADJ SHADJ SEADJ IADJ INVEST INVESTSH  
1 

  or  or QEDADJ VED VEDSH  1 

 At least  of , , , , , , , , 

 , , , , , , , , , and 

TMADJ TEADJ TSADJ TEXADJ TFADJ TXADJ TFADJ TYHADJ TYEADJ

DTM DTE DTS DTEX DTF DTX DTYF DTYH DTYE CAPGOV

one
 

7 

 at least of , , ,  and QGDADJ HGADJ EGADJ VGD VGDSHtwo  3 

 
, and f f aFS WFDIST  (f*(a+1)) 

    or CPI PPI  1 
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