
Automated Provisioning of
Fairly Priced Resources

Dissertation

zur Erlangung des Doktorgrades
Ph. D.

der Mathematisch-Naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

im PhD Programme in Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Abhinandan Sridhara Rao Prasad
aus Mysore, Karnataka, India

Göttingen
im Juni 2018



Betreuungsausschuss: Prof. Dr. Xiaoming Fu,
Georg-August-Universität Göttingen

Dr. Volker Hilt,
Nokia Bell Labs, Stuttgart

PD Dr. rer. nat. habil. Mayutan Arumaithurai,
Georg-August-Universität Göttingen

Dr. David Koll,
Georg-August-Universität Göttingen

Prüfungskommission:
Referent: Prof. Dr. Xiaoming Fu,

Georg-August-Universität Göttingen

Korreferenten: Prof. Dr. Nils Aschenbruck,
Universität Osnabrück, Germany

Weitere Mitglieder
der Prüfungskommission:

PD Dr. rer. nat. habil. Mayutan Arumaithurai,
Georg-August-Universität Göttingen
Prof. Dr. Carsten Damm,
Georg-August-Universität Göttingen
Prof. Dr. Dieter Hogrefe,
Georg-August-Universität Göttingen
Prof. Dr. Stephen Waack,
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 21. Juni 2018



Abstract

In recent times, cloud service providers are increasingly offering more complex services.
These complex services are heterogeneous and composed dynamically from traditional ser-
vices such as Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Platform
as a Service (PaaS) to handle ad-hoc demands. Consequently, the current cloud is a com-
plicated marketplace. Furthermore, resource prices influence the user demands, and user
demands eventually drive resource provisioning. Correspondingly, resource pricing and
provisioning are indispensable to each other. Hence, cloud service providers face the chal-
lenge of optimizing resource prices and provisioning.

This challenge has attracted both industry and academia. However, most of the pric-
ing approaches proposed and practiced achieve either efficiency or fairness. Thus, current
pricing schemes reward either the service provider or the user. In resource provisioning,
both industry and academia focus on addressing the issue of when to provision, while dis-
regarding what to provision. Consequently, services are deployed using a single Virtual
Machine (VM) size for all components resulting in performance degradation and eventually
leading to Service Level Objective (SLO) violations.

This dissertation proposes Automated Resource Pricing and Provisioning (ARPP) for the
pricing and provisioning of cloud and edge resources to address the above-mentioned chal-
lenges. The ARPP pricing supports three pricing approaches dubbed Robust Auction for
Edge Resource Allocation (RAERA), Edge Resource Market (ERM), and Online Fisher
Market (OFM). RAERA is a robust optimization-based sealed auction proposed to address
price uncertainty. ERM computes differential prices for buyers with Separable Piecewise-
Linear Concave (SPLC) utilities. OFM is an online Fisher market for pricing varying re-
sources for varying buyers. Both ERM and OFM maximize Nash Social Welfare (NSW) – a
Pareto outcome between efficiency and fairness. The evaluation demonstrates the effective-
ness and scalability of proposed approaches.

In this dissertation, we propose Robust Configuration (RConf) and Robust Configuration
Primal-Dual (RConfPD) as an answer to automate the issue of what to provision. RConf

finds an optimal configuration for maximizing the overall resource utilization of a complex
service. Conversely, RConfPD trades off resource utilization for performance. Hence, it is
appropriate for services with nearly instant provisioning requirements. Both the approaches
estimate performance cost for arbitrary arrivals and departures using a robust queueing
theory-based model. The experimental evaluations show the overall resource utilization



iv

improvement of 16−50% over one-size-fits-all solutions, and simultaneously deploys 22%
of fewer resources.

The ARPP proposed in this dissertation can be integrated with edge or cloud orchestrators.
Moreover, the ideas presented can also be applied to (i) pricing and provisioning Network
Function Virtualization (NFV) service chains, (ii) building a single marketplace for cloud,
edge, and fog resources and applying ARPP ERM to price resources differentially according
to resource types, and (iii) automatically selecting complex service type (cloud, edge or fog)
and provisioning depending on user preferences.



Acknowledgements

It is my pleasure to thank those who made this dissertation possible. I would like to sincerely
thank my supervisor Prof. Dr. Xiaoming Fu for his constant support to pursue my diverse
research interests.

I gratefully acknowledge the funding received towards my Ph.D. from the EU FP7 Marie
Curie Actions through CleanSky ITN project.

I am sincerely thankful to Dr. Volker Hilt, who also kindly agreed to be my second
dissertation supervisor. Volker provided me an opportunity to pursue research in Bell Labs
at Stuttgart and Dublin.

I am grateful to my former mentor Dr. David Koll, who also kindly agreed to be my
third dissertation superior. David frequently provided constructive criticism and reviews in
hours over hours of discussions in dozens of meetings, which significantly contributed to
the quality of dissertation.

I am obliged to my colleague Dr. Mayutan Arumaithurai for his constant encouragement
and invaluable suggestions, which have significantly improved my work.

I am grateful to Dr. Jesus Omana Iglesias and Dr. Jordi Arjona Aroca for hosting me in
Bell Labs, Ireland. Their constructive criticisms and reviews have helped me to significantly
improved my work.

I am obliged to Prof. Carsten Damm, Prof. Dieter Hogrefe, Prof. Nils Aschenbruck
and Prof. Stephen Waack for being members of my examination committee, and to Prof.
Yuming Jiang, for hosting me during the research visit to NTNU, Trondheim.

I sincerely thank my former and current colleagues at the Computer Networks Group at
the University of Göttingen, especially Sameer Kulkarni, Osamah Barakat, Sripriya Srikant
Adhatarao and Jacopo De Benedetto whose feedback also contributed to the quality of this
dissertation. Furthermore, I thank Annette Kadziora, Federica Poltronieri, and Tina Bockler
for taking care of all the administrative procedures.

I am deeply obliged to Dr. P. Suresh and Prof. Shrisha Rao (International Institute of
Information Technology), for inspiring me to pursue research.



vi

Last and most importantly, I am indebted to my family: to my parents S. Prasad and S.
Usha Prasad and my wife Ashwini Abhinandan, for their unrelenting support during difficult
times, and for their exceptional personal sacrifices to enable my success.



vii

The research leading to these results has received funding from the EU FP7 Marie Curie
Actions by the EC Seventh Framework Programme (FP7/2007-2013) Grant Agreement No.
607584 (the Cleansky project). The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the CleanSky project or the European
Commission.



viii



Contents

Table of Contents ix

List of Figures xiii

List of Tables xv

List of Definitions and Theorems xvii

Acronyms xvii

1 Introduction 1
1.1 Complex Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background 19
2.1 Optimization theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Linear Programming and Duality . . . . . . . . . . . . . . . . . . 21
2.1.2 Karush-Kuhn-Tucker Conditions . . . . . . . . . . . . . . . . . . . 23

2.2 Microeconomic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Robust Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Robust Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . 30



Contents x

3 Related Work 33
3.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Offline Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Online Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 ARPP Sealed-bid Auction 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 RAERA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 RAERA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 RAERA Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 ARPP Market 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 ERM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 ERM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 ERM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 ARPP Online Pricing 79
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 OFM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 OFM Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 OFM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 OFM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 ARPP Resource Provisioning 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 VCP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.2 Formal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xi Contents

7.3 Modeling a Complex Service . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.1 Robust queue Motivation . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.2 Service’s Component Modeling . . . . . . . . . . . . . . . . . . . 119
7.3.3 VCP Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 RConf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.2 Complexity and Performance analysis . . . . . . . . . . . . . . . . 125

7.5 RConfPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5.1 RConf Primal-dual and complementary slackness formulation . . . 127
7.5.2 RConfPD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5.3 Complexity and Performance Analysis . . . . . . . . . . . . . . . 130

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 ARPP Resource Provisioning Evaluation 133
8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 RConf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 RConfPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Discussion and Future Work 149
9.1 Recap: Does ARPP Meet the Challenges? . . . . . . . . . . . . . . . . . . . 151
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.1 ARPP Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.2 ARPP Resource Provisioning . . . . . . . . . . . . . . . . . . . . . 152

10 Conclusion 155
10.1 Dissertation Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A Appendix 159
A.1 Optimal pricing for Fisher market . . . . . . . . . . . . . . . . . . . . . . 159
A.2 Bregman divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography 160





List of Figures

1.1 A complex service consisting of a load balancer, web server, and database . 3
1.2 A service function chain consisting of a NAT, firewall, and DPI . . . . . . . 3
1.3 The abstract model of a complex service consisting of many components,

each of which may consist of several instances. Each component processes
a fraction of the traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Complex services, resources, and users in edge computing. . . . . . . . . . 5
1.5 Relationship between pricing and resource provisioning. . . . . . . . . . . 7
1.6 Relationship between resource provisioning and pricing. . . . . . . . . . . 7
1.7 ARPP for pricing and provisioning . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Illustration of queueing systems. . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 RAERA Auction Framework: Buyers place bids on resources, and RAERA

decides the allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Profit: Break-even Optimum vs RAERA . . . . . . . . . . . . . . . . . . . 54
4.3 Price: Average Bid vs RAERA . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Example depiction of market clearing allocation. . . . . . . . . . . . . . . 63
5.2 Fixed Buyers: Normalized revenue improvement factor for different distri-

butions and different values of ε . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Fixed Goods: Normalized revenue improvement factor for different distri-

butions and different values of ε . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Revenue improvement CDF for different distributions . . . . . . . . . . . . 74
5.5 Fixed Buyers: Normalized Nash social welfare (NSW) for different distri-

butions and different values of ε . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Fixed Goods: Normalized Nash social welfare (NSW) for different distri-

butions and different values of ε . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Fixed Buyers: Running time of ERM for different distributions and different

values of ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Fixed Goods: Running time of ERM for different distributions and different

values of ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Autocorrelation and partial autocorrelation of CPU demand data. . . . . . . 100



List of Figures xiv

6.2 Comparison of prediction based on ARIMA, mean and previous values of
sampled CPU demand of Google cluster trace . . . . . . . . . . . . . . . . 100

6.3 Regret for fixed resource set . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Competitive ratio for fixed resource set . . . . . . . . . . . . . . . . . . . . 103
6.5 Regret for varying resources for ARIMA, immediate previous and mean

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6 Competitive ratio for varying resources for ARIMA, immediate previous

and mean model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.7 Measured time for varying buyers for fixed resources. . . . . . . . . . . . . 107

8.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Measured (profiled) system time vs. RConf prediction vs. theoretical

G/G/m system time (maximum). . . . . . . . . . . . . . . . . . . . . . . . 138
8.3 Measured running time of RConf vs RConfPD. . . . . . . . . . . . . . . . . 144
8.4 Measured solution quality of RConf vs. RConfPD. . . . . . . . . . . . . . . 146
8.5 Solution quality comparison of RConf, RConfPD, large and small ap-

proaches. Furthermore, statistical evaluation of RConfPD, large and small
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



List of Tables

2.1 Common arrival and service distribution and their symbols used in queueing
theory literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Summary of queueing theory notations described in this section. . . . . . . 31

3.1 A summary of related works with respect to offline pricing . . . . . . . . . 39
3.2 A summary of related works with respect to online pricing . . . . . . . . . 39

4.1 A summary of notations used for proposing RAERA. . . . . . . . . . . . . . 48

5.1 A summary of notations used for proposing ERM. . . . . . . . . . . . . . . 65

6.1 A summary of notations used in OFM. . . . . . . . . . . . . . . . . . . . . 89
6.2 Mean absolute error (MAE) for ARIMA, mean and previous values of sam-

pled CPU demand of Google cluster trace. . . . . . . . . . . . . . . . . . . 101

7.1 A summary of feasible service configurations for an SLO requirement

u(l) = 300ms. The utilization is given as
n

∑
i=1

υ(πi). All values are given in

ms (milliseconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 A list of notations used in this chapter. . . . . . . . . . . . . . . . . . . . . 116
7.3 A numerical example of resource norm scaling. . . . . . . . . . . . . . . . 128

8.1 A summary of the instance flavors and their CPU (in cores) and RAM (in
GB) resources used in our experiments. . . . . . . . . . . . . . . . . . . . 135

8.2 Comparison of resource allocation and resulting utilization among different
approaches under the specified budgets and latency SLO. Instance flavors
not shown were not chosen by any approach. . . . . . . . . . . . . . . . . 141

8.3 RConf meets the pre-defined SLO requirements and scales up components
as required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 INST and RTI benchmark information. . . . . . . . . . . . . . . . . . . . . 143
8.5 Difference in configurations for RConfPD vs. RConf. . . . . . . . . . . . . 145





List of Definitions, Lemma and Theorems

1.1 Definition (Complex Service) . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Theorem (Weak duality) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Theorem (Strong duality) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Theorem (Complementary slackness) . . . . . . . . . . . . . . . . . . . . 23
2.1 Definition (Rational) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Definition (Utility function) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Definition (Rational equilibrium) . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Theorem (Fisher market pricing) . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Definition (Stochastic Process) . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Theorem (Worst case bound for system time) . . . . . . . . . . . . . . . . 32

5.1 Theorem (ERM approximation ratio) . . . . . . . . . . . . . . . . . . . . . 69

6.1 Lemma (Equivalence of OFM objective function) . . . . . . . . . . . . . . . 87
6.1 Theorem (OFM objective function property) . . . . . . . . . . . . . . . . . . 87
6.2 Lemma (OFM closed form expression) . . . . . . . . . . . . . . . . . . . . 91
6.3 Lemma (OFM regret bound) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Theorem (VCP complexity ) . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Theorem (RConf approximation ratio) . . . . . . . . . . . . . . . . . . . . 125
7.3 Theorem (RConfPD approximation ratio) . . . . . . . . . . . . . . . . . . . 130





Acronyms

AR Auto Regressive

ARIMA Auto Regressive Integrated and Moving Average

ARPP Automated Resource Pricing and Provisioning

ARU Average Resource Utilization

AWS Amazon Web Services

CDF Cumulative Distribution Function

CES Constant Elasticity of Substitution

CPU Central Processing Unit

DB Database

DC Datacenter

DFS Depth First Search

DPI Deep Packet Inspection

ERM Edge Resource Market

EC2 Elastic Compute Cloud

FW Firewall

GB Gigabyte

IaaS Infrastructure as a Service

IC Incentive Compatible

ILP Integer Linear Program



Acronyms xx

IoT Internet of Things

IR Individual Rationality

ISP Internet Service Provider

KKT Karush-Kuhn-Tucker

KPI Key Performance Indicator

LB Load Balancer

MA Moving Average

MAE Mean Absolute Error

MMKP Multiple choice Multidimensional Knapsack Problem

NAT Network Address Translation

NFV Network Function Virtualization

NIST National Institute of Standards and Technology

NSW Nash Social Welfare

OCO Online Convex Optimization

OFM Online Fisher Market

OMD Online Mirror Descent

PaaS Platform as a Service

PTAS Polynomial-Time Approximation Scheme

QoE Quality of Experience

QoS Quality of Service

RAERA Robust Auction for Edge Resource Allocation

RAM Random Access Memory

RConf Robust Configuration

RConfPD Robust Configuration Primal-Dual



xxi

RO Robust Optimization

SaaS Software as a Service

SFC Service Function Chains

SLO Service Level Objective

SPLC Separable Piecewise-Linear Concave

VCP Virtual Configuration Problem

VM Virtual Machine

VNF Virtual Network Function

WS Webserver





Chapter1
Introduction

It’s faster in every case to talk to the server than it is my local hard disk... Carrying
around these non-connected computers – with tons of data and state in them – is
byzantine by comparison.
You’ve got to start with the customer experience and work backwards to the
technology.

— Steve Jobs, Worldwide Developer Conference, May 1997 [1]





3 1.1 Complex Services

1.1 Complex Services

The National Institute of Standards and Technology (NIST) defines cloud computing as [2]:
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction”.

In essence, cloud computing is the paradigm of offering computing services over the in-
ternet. These services can scale on demand to support ad-hoc workload. Hence, cloud com-
puting is one of the primary enablers of new paradigms, such as edge computing and Net-
work Function Virtualization (NFV). Earlier the cloud offerings were limited to infrastruc-
ture (e.g., virtual machines), development environments and applications. These offerings
are popularly known as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) respectively. Recent improvements in virtualization and cus-
tomer requirements are driving cloud service providers to offer complex services deployed
on virtualized resources [3]. These resources could vary from physical infrastructures, such
as servers and software components and are hosted in data centers. In cloud computing, a
chain consisting of a load balancer, web server and database as illustrated in Figure 1.1 is
a simple example of a complex service. Similarly, Service Function Chains (SFC) in com-
puter networking is a complex service. For instance, an SFC consisting of Network Address
Translation (NAT), firewall, and Deep Packet Inspection (DPI) as depicted in Figure 1.2 is
an example of a complex service.

Load balancer Web server Database

Figure 1.1: A complex service consisting of a load balancer, web server, and database

Network address  
translation

Firewall Deep packet  
inspection

 

Figure 1.2: A service function chain consisting of a NAT, firewall, and DPI

Without loss of generality, we can define complex service as follows:



Introduction 4

Definition 1.1 (Complex Service) A complex service is a chain of virtual components that
together process a certain fraction of the traffic passing through the provider’s network.

Figure 1.3 illustrates our complex service model. The model is generic and abstracts the
behavior of existing complex services such as NFV service chains. In a service chain, each
component processes the incoming traffic flows before it leaves the service chain as depicted
in Figure 1.3. In this dissertation, we focus mainly on the complex service model with
virtualized components (simply put, they are running on virtual instances such as Virtual
Machines (VMs) and containers).

Component v1

Component v2

Component vn
Flow  
arrivals

Flow  
departures

Figure 1.3: The abstract model of a complex service consisting of many components, each
of which may consist of several instances. Each component processes a fraction
of the traffic.

With the advent of edge computing, cloud service providers are increasingly moving data
centers closer to the network edge (i.e., the customer) to provide better customer experi-
ence. This approach not only reduces latency but also improves the scalability of complex
services [4–7]. In edge, users arrive at the service provider for the complex services such
as virtual networks and VMs. Based on the customer location and preferences, the service
provider selects appropriate edge resources and offers to the user. Figure 1.4 illustrates the
typical edge computing scenario where cloud service providers provide complex services
to the customers.

For the remainder of this dissertation, the term service is a short form of complex services.
Similarly, the term service providers are a short form of cloud service providers.



5 1.1 Complex Services

Cloud Datacenters

Community

Cloud Customers

Edge Resources and Services 

Figure 1.4: Complex services, resources, and users in edge computing.



Introduction 6

1.2 The Problem

Currently, many cloud service providers are offering complex services on top of traditional
cloud services, such as IaaS, SaaS, and PaaS. These services are heterogeneous and charged
differently. For example, SaaS is billed per user or on application basis while IaaS such as
VM is billed hourly. Most often, IaaS or PaaS act as the backend for SaaS and complex
services as illustrated in Figure 1.3. Any IaaS outrage impacts SaaS, for instance, inter and
intra Datacenter (DC) problems affected around 32% of SaaS applications [8]. Hence, the
performance of SaaS and complex services depend predominantly on IaaS or PaaS.

Cloud users are the customers for SaaS providers, in turn, the customers of IaaS or PaaS
providers. This relationship among cloud users, SaaS, IaaS, and PaaS providers result in
a complicated marketplace affecting both resource allocation and performance of the ser-
vice [9]. Moreover, the service hosting jointly depends on pricing, advertised and delivered
SLOs. The prices and advertised SLOs influence the user demands and user demands even-
tually drive the resource provisioning [10]. It is well-known that resource provisioning is
the allocation of resources to satisfy SLO for an incoming workload [11]. Conversely, re-
source provisioning is responsible for delivering SLOs which in turn affect user demand
and eventually affect prices. Figures 1.5 and 1.6 depict the relationship between resource
pricing and provisioning. Hence, both resource pricing and provisioning are interdepen-
dent. Hence, any optimization on pricing should consider resource provisioning and vice
versa. Therefore, in this dissertation, we present solutions to automatically price and pro-
vision complex services in both edge and cloud environments. This process involves two
significant steps namely i) resource pricing and ii) provisioning.

1.2.1 Pricing

Pay-as-you-go or Fixed pricing is the current pricing scheme followed by most of the cloud
service providers. In fixed pricing, consumers are charged based on resource usage. For
instance, Amazon EC2 instances are billed on an hourly basis. In fixed pricing, revenue
is maximized only if every customer behavior is well-defined and arrivals are temporally
invariant [12]. For instance, consumers spending more money on weekends than weekdays
are an example of a well-defined behavior. The temporal invariance implies constant cus-
tomer arrivals. However, these conditions are not valid in cloud computing because both
customer demands and arrivals are ad-hoc [13]. Moreover, the physical capacity of cloud
resources is finite [14]. Most often, the default fixed pricing favors cloud service providers
contractually [15]. Further, current cloud resource prices are oligopolistic due to the pres-
ence of few large cloud service providers (e.g., Amazon or Microsoft) [16, 17]. In other
words, a small number of larger service providers influence the prices. Oligopolistic prices



7 1.2 The Problem

Service
hosting

Advertised
SLOsPrices

User
demands

Resource
allocation

Resource
provisioning

Delivered
SLOs

Figure 1.5: Relationship between pricing and resource provisioning.

Prices

User
demands

Resource
provisioning

Delivered
SLOs

Figure 1.6: Relationship between resource provisioning and pricing.



Introduction 8

are higher than competitive prices. Hence, fixed pricing neither maximizes the revenue of
cloud service providers, nor it is fair towards the customers.

The cloud computing community is exploring an alternative pricing scheme called dy-
namic pricing [18–20] to address earlier mentioned fixed pricing issues. In this approach,
resource prices reflect supply and demand of the resource. The higher the demand is, the
higher the prices are. Most often dynamic pricing leads to efficient resource utilization and
satisfaction of user demands [13]. There are some efforts from industry towards dynamic
pricing. For instance, Amazon introduced the concept of spot pricing. In spot pricing, a user
can specify maximum prices he is willing to pay, and instances are allocated until spot in-
stance prices are within a maximum price. However, spot instance prices are not determined
based on the market demand [20].

Generally, cloud service providers are profit driven. Hence, prices maximize the revenue
for a service provider. This approach is beneficial in short-term but might drive away cus-
tomers in the long term due to higher prices. Microeconomic theory addresses this issue
by maximizing social welfare maximization [21]. In cloud computing, maximizing social
welfare improves not only the overall system efficiency but also assures better user ex-
perience [13]. Furthermore, maximizing social welfare is apt for both public and private
clouds [22]. Therefore, maximizing social welfare is beneficial for both the cloud service
providers and the users.

There are three types of social welfare namely utilitarian, egalitarian or max-min fairness
and Nash Social Welfare (NSW). In utilitarian, the aim is to maximize overall utility of
customers and service providers. Most of the works in the Cloud regarding dynamic pricing
(e.g., [7, 20, 23, 24]) are utilitarian and favor customers with higher utility. Conversely, the
egalitarian goal is to maximize the minimum utility of the customers and rewards customers
with lower utility. In literature [25], NSW is the Pareto outcome between utilitarian and
egalitarian approaches. Moreover, NSW is scale-free, i.e., optimal allocation is independent
of the scale of each customer’s utility. Hence, maximizing NSW is appropriate in a cloud
environment.

The market that maximizes the NSW is also called Eisenberg-Gale or Fisher market
and is well studied in algorithmic game theory [26–29]. In this market setup, customers
arrive with money, and the service providers allocate resources to maximize NSW. Most
often, allocations are fractional. However, in the context of cloud computing, a fractional
allocation is intangible. The usual approach is to round these fractional values to nearest
integer. However, the resulting rounding difference (integrality gap) is unbounded for a
market, i.e., the difference grows with the number of buyers [30].

Furthermore, differential pricing among resources should be possible for multiple rea-
sons. First, the same VM can be more costly when provisioned during peak times (when



9 1.2 The Problem

resources are more scarce) than off-peak hours. Second, differential pricing can be used
as an incentive strategy to motivate users to spend not only environment-friendly offerings
such as green energy based resources but also to distribute load across multiple data cen-
ters. Moreover, cloud resources often suffer from diminishing returns, i.e., often adding
more copies of the same resource does not improve the utility for the buyer [31]. Further-
more, cloud customers are ready to pay differential prices for superior service [32].

State-of-the-art solutions in the cloud and edge computing currently do not offer capabil-
ities for differential pricing [6,24] and ignores diminishing returns. Hence, discrete concave
utilities such as the SPLC utility are proposed [33]. There is a solution based on stable poly-
nomial approach [34], but it requires highly complex ellipsoidal algorithms. However, the
cloud market requires fast market clearance [35]. Therefore, price computation should be
quick. Auctions are another alternative for computing market equilibrium. Auction-based
algorithms are combinatorial and run faster compared to ellipsoidal algorithms [36].

Auctioning is one of the dynamic pricing models widely used in cloud and edge com-
puting environments due to its ability to discover the market value of resources without
compromising economic efficiency [37]. Furthermore, auctioning helps to find a fair price
in cases where both the seller (auctioneer) and the buyer do not know the actual value and
estimates could be highly imperfect (price uncertainty) [38]. Auctions can be either open-
cry or sealed [39] depending on the knowledge about other bidders. In open-cry auctions,
the buyers observe other bidders and update their bids at every round. Sealed auctions are
very popular in edge and cloud computing. In this auction, buyers submit sealed bids and
sellers allocate the resources. The buyers might inflate or deflate their bids. Hence, auction
mechanisms are proposed for encouraging truthful bidding by providing incentives. Hence,
such auctions are incentive compatible. Most often, auction mechanisms assume prior in-
formation about buyers bidding values [40]. However, if a user draws a bid from a different
probability distribution, then the obtained solution is not optimal [40, 41]. This is often
the case in edge computing, where each user is different and may draw valuations from a
different probability distribution.

Inherently, in cloud computing, customer demands are ad-hoc [13] and not independent
and identically distributed [42]. The works mentioned above are offline algorithms – they
have complete knowledge of input data. In contrast, for online algorithms data is revealed
in parts. Recently, pricing based on online algorithms have captured interest [43–45], es-
pecially posted pricing [13, 46]. In posted pricing, customers appear sequentially, and the
seller publishes prices. If prices are acceptable, then customers procure the resource; other-
wise they reject it. Hence, this approach is alternatively known as leave-it-or-take-it pric-
ing. Also, the online marketplace has enabled collection of a significant data for service
providers. As a result, there are works based on online learning to compute prices [46].
However, these works maximize either utility or revenue maximizing.



Introduction 10

In algorithmic game theory, the online versions of Fisher market where resources appear
in each round are proposed [47, 48] but the assumption of resources appearing every round
is contrary to the reality in the cloud and edge computing. These online algorithms are
analyzed based on the adversarial models (worst-case inputs). There is a solution [49] to
handle arbitrary customers and resources. However, the adversarial model is not only weak
but also cannot guarantee integer allocation.

In summary, there are multiple needs regarding pricing resources. Firstly, an auction
mechanism with no prior information about the buyer bids in edge computing. Secondly,
an auction-based computationally efficient market that not only maximizes NSW with in-
teger allocation of cloud resources but also enables differential pricing for SPLC utilities.
And thirdly, an online market maximizes NSW for arbitrary customers and resources with
stronger adversarial models for arbitrary resources and customers with guaranteed integer
allocation.

1.2.2 Resource Provisioning

After the price computation, the subsequent step is to automate the provisioning of resources
for the customer demanded services. Providers perform provisioning and scheduling opti-
mizations due to substantial benefits in, for example, performance, and revenue or energy
consumption [50]. One of the significant challenges in automated resource provisioning
is to configure resources optimally to services as illustrated in Figure 1.3. Generally, a
requested service is deployed as a combination of different components, where each com-
ponent is assigned, a set of virtual instances and their resources.

Both industry and academia have addressed the problem of when to provision more re-
sources (e.g., more component instances) for an application under high load. Many cloud
service providers such as Google and Amazon employ threshold-based autoscaling strate-
gies for provisioning. There are more sophisticated control-theory solutions [51–53] or
systems based on empirical service modeling [54, 55]. Moreover, some approaches predict
how many resources need to be provisioned based on time series analysis [56, 57]. Cloud
providers exploit tools that address the question of how to provision these resources, such
as Puppet, OpenStack Heat, Ansible, and Chef. Thus, the goal is to find the appropriate
time to increase the resources to meet service level objectives (SLOs).

Often service providers overlook the question of what to provision and deploy all the
components with a uniform size of VM (also called as flavor) during actual deployment,
commonly known as one-size-fits-all and have faced several drawbacks. First, deciding VM
size is non-trivial and requires the expertise of the service. Second, the configurations of-
fered by VM are not uniform. Thus, translates to non-uniform load capacity. Finally, in case



11 1.2 The Problem

of new paradigms such as NFV, services are composed dynamically from the available com-
ponents. Most often, there are flows from one component to another. Consequently, there
are dependencies among these components. In the one-size-fits-all approach, deployment
ignores the dependencies. Consequently, service might not handle required load. In sum-
mary, one-size-fits-all results in either over-provisioning or under-provisioning and over-
provisioning results in resource wastage. Conversely, under-provisioning degrades service
performance [11]. Hence, the service provider may violate SLOs, consequently resulting
in business and legal implications. This scenario holds true with multi-tier services as well.
Hence, service providers need to address what to provision during service deployment based
on arrival workload load.

As a first step to answer the question of what to deploy, it is essential to determine the per-
formance cost and capacity of flavors since these parameters affect the SLOs directly. Gen-
erally, a VM specification provides information about the maximum capacity of the flavor.
However, determining performance cost is non-trivial due to dynamically varying load [58].
Moreover, request arrivals are not restricted to specific probability distributions (e.g., Pois-
son). Queueing theory is widely applied for performance modeling of computer systems.
The performance metrics (e.g., latency) are estimated from the customer/process arrivals
and departures. Queueing models are widely prevalent in cloud computing as well [58,59].
Most of the queueing models assume Markovian arrivals as it is computationally tractable,
unlike generic queues. However, traffic in multi-tier systems is not Markovian [58]. There
are some works such as [58] which model tiers using generic queue but could not consider
processing capacity due to the computational intractability of generic queues.

It is well known that a complex service consists of multiple components and end-to-
end performance costs need to be estimated from the individual components. Even if we
estimate the end-to-end performance cost of a complex service, finding the optimal config-
uration for the complete service is non-trivial due to the combinatorial configuration space.
For instance, consider a hypothetical complex service with three components and each sup-
porting 4 configurations. The service can be deployed in 4×4×4 = 43 ways and we have
to find an optimum among this combinatorial search space.

Real complex services are composed of a large number of components and can be de-
ployed on a variety of VMs. As a result, optimal configuration space of the service is vast.
In addition, finding optimal configuration should be not only time efficient so that the solu-
tion can be deployed for edge applications with near-instant provisioning requirements [60]
but also automated for integrating with cloud or edge orchestrators.

Therefore, there are multiple needs regarding automating resource provisioning. First,
an answer to the “what to deploy” question that can be automated and used with tools such
as Puppet, OpenStack Heat, Ansible or Chef. Moreover, the solution should be extended
to applications which require near-instant provisioning [60] which is very common in edge



Introduction 12

computing. Second, a model needs to be developed for determining the performance cost
of VM for arbitrary arrivals and simultaneously accounting for processing capacities and
computationally tractable.

For the remainder of this dissertation, we consider a complex service as a resource type
during resource pricing.

1.3 Challenges

In this section, we present the challenges for pricing and resource provisioning in cloud
computing.

1.3.1 Pricing

The ability to price resources based on supply-demand is the main strength of dynamic
pricing. Consequently, prices are time-dependent and reflect the market demand of the
resource. For instance, consider a hypothetical VM based on x64 hosted on Linux with
10 GB memory called Tlarge. In dynamic pricing, the Tlarge price is higher if the market
demand for Tlarge is higher and vice versa. Section 1.1 emphasized the need for dynamic
pricing in the cloud and presented multiple issues concerning pricing. However, we need to
address the following challenges:

1. Strategic behavior: It is well-known that bidders are not allowed to modify bids after
submission. Generally, customers inflate their demands and tighten deadlines antic-
ipating improved SLOs [61]. Hence, customers might not bid truthfully. Moreover,
sealed auctions are susceptible to bidder collusion – bidders collude among them-
selves and reduce payment to the auctioneer [62]. Hence, the auctioneer designs an
incentive compatible auction mechanism to motivate truthful bidding. Therefore, the
proposed pricing schemes should design an incentive compatible auction mechanism.

2. No prior information: Most of the auction mechanisms assume a prior distribution
of user bids. However, if a user draws a bid from a different probability distribution,
then the obtained solution/price is not optimal [40,41]. This is often the case in cloud
and edge computing, where each user is different and may draw valuations from a
different probability distribution. Hence, the auction based pricing mechanism should
be adaptive to the probability distribution of user bids.



13 1.3 Challenges

3. Differential prices: Social welfare maximization is one of the critical challenges for
any service provider as it improves the overall system efficiency and provides a better
user experience. In differential pricing, each customer pays a different price for the
same resource types and consequently transfers user surplus (the difference between
the money the customer is willing to pay and the actual money that is spent) to the
service provider, eventually a higher revenue for the service provider. Therefore,
differential pricing is inherently unfair towards some customers [63].

As we know, NSW is Pareto outcome between utilitarian and egalitarian social wel-
fares and the goal of this dissertation is to maximize NSW. Hence, the proposed
pricing scheme should achieve NSW of all cloud customers in differential pricing.

4. Integer allocation: In today’s cloud and edge datacenters, most of the resources
are generally virtualized. There are plenty of works on market-based pricing. Most
of these works compute fractional allocation. However, many cloud resources (e.g.,
VMs) cannot be allocated fractionally. Hence, the fractional values are either rounded
up or down to the nearest integer. Unfortunately, the resulting rounding difference
(integrality gap) is unbounded for a market, i.e., the difference between optimal ob-
jective value and rounded objective value grows with the number of buyers and re-
sources [30, 34].

Hence, the proposed pricing scheme should not round the fractional allocation to the
nearest integer.

5. Performance and scalability: Maximizing NSW for indivisible items is APX-
hard [64]. An optimization problem is APX-hard if it is in NP and allows polynomial-
time approximation algorithms (PTAS) with approximation ratio bounded by a con-
stant which implies the existence of an efficient algorithm to find market equilibrium
within a fixed multiplicative factor of the optimal market equilibrium.

Furthermore, cloud computing market is projected to become a low commodity mar-
ket. Moreover, a large number of current service providers are offering edge re-
sources. Therefore, the proposed pricing scheme should be time efficient and scale
with customers and resources.

1.3.2 Resource Provisioning

In this subsection, we present the challenges for addressing what to provision problem in
resource provisioning.

1. Estimating performance cost: Generally, service providers guarantee SLOs for cus-



Introduction 14

tomers. Hence, the optimal configuration of the complex service should not violate
promised SLOs. Otherwise, it leads to business and legal implications. A complex
service is composed of heterogeneous components. Each component offers different
functionality and has a different capacity. Hence, it is vital to estimate the perfor-
mance cost of component individually. However, estimating the performance cost
is non-trivial for real cloud systems because of the varying workload and customer
arrivals. In other words, the customer arrivals are not restricted to a specific distribu-
tion.

There are queueing theory-based approaches to estimate performance cost. Most of
these approaches assume exponential arrivals. Although there are some approaches
based on generic distribution, they fail to take processing capacity of servers into
account due to the intractability of generic distribution based queueing models. In
summary, any performance model of a complex service should satisfy following prop-
erties for finding optimal configurations:

• Functionality independence.
• Adaptive to incoming workload.
• Support generic distributed arrivals and departures.
• Account for the processing capacity of each component.
• Multi-tier aware.

The above properties ensure that proposed resource provisioning algorithm does not
violate agreed SLOs.

2. Performance and scalability: More and more customers are moving towards cloud
and edge. Furthermore, recently service providers are introducing various types of
complex services, such as analytics and virtual networking. As a result, complex
services are composed of a large number of heterogeneous components. Cloud or
edge orchestrators perform the deployment of complex services. Moreover, few edge
applications require near-instant provisioning. As a result, orchestrator’s have to find
the optimal configuration within a small amount of time irrespective of the service.

Hence, the proposed resource provisioning algorithm has multiple requirements.
First, the solution should scale with the number of components. Second, the time
required to find an optimal configuration should be limited for applications that re-
quire instant provisioning. Finally, the solution should be able to integrate with tools,
such as Chef and Heat so that provisioning solution can be integrated with the orches-
trator.



15 1.4 Contributions

1.3.3 Summary

In summary, requirements for an automated resource pricing and provisioning solution to
address above challenges are presented below:

(i) Designing an incentive compatible auction mechanism for edge and cloud resources
to motivate truthful bidding in sealed auctions. Furthermore, the proposed mechanism
should be adaptive to an arbitrary probability distribution of bids.

(ii) Finding differential prices for the resources keeping NSW maximized. The proposed
solution should scale with a large number of different resource types and be time
efficient. Moreover, the resource allocation should be an integer.

iii) The performance estimation model of a complex service should be adaptive to in-
coming workload, be multi-tier aware and be component functionality independent.
Furthermore, it should estimate performance cost based processing capacity of the
component and arbitrary customer arrivals and departure.

(iv) The proposed solution should have the ability to work with tools seamlessly (e.g.,
Chef and Heat) so the decision of finding optimal configuration can be automated
inside an edge or cloud orchestrator.

1.4 Contributions

In this dissertation, we propose ARPP to perform automated resource pricing and provision-
ing for cloud and edge resources as shown in Figure 1.7.

The cloud and edge users arrive at the cloud service provider. The service provider pro-
vides three pricing options to the user. First, a user can submit a sealed bid for edge re-
sources. Second, users can procure resources from an auction market which maximize NSW
and supports differential pricing without violating user’s budget. Finally, a user shall be able
to procure resources from an online Fisher market by paying prices at current time instance.
Once the prices are computed, the service provider provisions the resources by finding de-
ployment configurations that maximize the system utilization. This approach not only max-
imizes NSW of users but also maximizes the overall resource utilization which eventually
improves market competitiveness and resource utilization of the service providers.

The salient features of ARPP pricing approaches are:

(a) Robust Auction for Edge Resource Allocation (RAERA): RAERA is a robust
optimization-based auction mechanism for multi-item auctions for use with edge
computing resources. The users submit sealed bids for the resources. RAERA leverages



Introduction 16

Automatic
Resource

Provisioning and
Pricing (ARPP)

ERM

RAERA OFM

RConfPDRConf

Cloud Customers

Flavors and Virtual Instances

Bids or Utilities

SLOs and Load

Figure 1.7: ARPP for pricing and provisioning



17 1.4 Contributions

historical bid data and determines the winner. This strategy guarantees the profit for
service providers during price uncertainty, and also calculates the reserve prices based
on historical data and leverages this is before the winner determination. As a result, it
guarantees the profit for service providers during price uncertainty.

RAERA satisfies incentive compatibility (truthful bids have higher utility for the bidder
compared to non-truthful bids) and individual rationality (bidders do not derive negative
utility for truthful bids). Therefore, RAERA can set a time-dependent fair price that
benefits both buyers and sellers.

(b) Edge Resource Market (ERM): ERM is an auction-based Fisher market that offers mul-
tiple resource types and buyers with SPLC utility. ERM guarantees (1+ ε) approxima-
tion. Further, ERM ensures differential prices and integer resource allocation without
violating the (1+ ε) market equilibrium.

ERM is the first auction based approach to exploit SPLC utilities for capturing diminish-
ing returns, which allow the price differential to vary depending on utility, budget and
resource types. Experimental evaluation shows ERM offers orders of magnitude more
revenue for the market provider than state-of-the-art approaches. Furthermore, ERM
scales well with increasing number of buyers and resource types.

(c) Online Fisher Market (OFM): OFM is an online Fisher market for cloud and edge
resources. OFM is the first approach that computes the prices for current time instant
based on previous instant data. The actual inputs such as buyer utility and resources
offered are revealed only after current prices are computed.

OFM maximizes NSW and performs integer allocation. Moreover, it achieves a balance
between the well-behavedness and worst-case inputs. The experimental results on both
real and emulated datasets demonstrate the convergence and time efficiency of OFM.

Once the prices are computed, it is necessary to provision resources for maximizing
the system utilization without affecting SLOs. In this dissertation, we propose RConf and
RConfPD as a part of ARPP provisioning to address the question of what to provision. The
prominent features of ARPP provisioning are:

(a) Robust Configuration (RConf): We formalize the problem of finding the optimal con-
figuration for complex service as Virtual Configuration Problem (VCP) and reduce it
to Multiple choice Multidimensional Knapsack Problem (MMKP). In this dissertation,
we propose RConf as a near-optimal solution for VCP.

RConf takes advantage of robust queueing theory-based model to predict performance
cost of the configurations. We believe that the proposed model is the first approach for



Introduction 18

predicting performance cost of a component with a generic arrival and departure process
and simultaneously considering processing capacity unlike state of the art solutions.
The experiments on Amazon EC2 demonstrate the prediction efficiency of the model.
RConf finds an optimal solution, i.e., finds the best available flavors for each service
component under SLO.

(b) Robust Configuration Primal-Dual (RConfPD): RConf requires optimization solvers
to find an optimal solution. However, these solvers have exponential time complexity.
Hence, they are not appropriate for applications with near-instant provisioning require-
ment.

RConfPD is a primal-dual based algorithm with 1+ε approximation guarantee for VCP
and trades off optimality against computational complexity. We believe that RConfPD
is the first primal-dual approximation solution for MMKP. The experiments on Ama-
zon EC2 and simulation demonstrate the superiority of RConf and RConfPD regarding
overall resource utilization and resource usage over conventional approaches.

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows: in Chapter 2, the basic concepts
of linear programming, duality theory, microeconomic theory and robust queueing theory
are explained. A comprehensive review of related work on both resource pricing and pro-
visioning is presented in Chapter 3. The review reveals the need for an ARPP solution.
The ARPP sealed bid auction called RAERA is presented in Chapter 4. The ARPP module
for differential pricing is proposed in Chapter 5. The online ARPP based on Fisher market
is presented in Chapter 6. Chapter 7 presents ARPP resource provisioning and Chapter 8
presents the evaluation results of ARPP resource provisioning.



Chapter2
Background

This chapter starts with providing the theoretical concepts for comprehending ARPP so-
lutions proposed in this dissertation. First, we introduce linear programming and duality
theory necessary for primal-dual based approximation algorithms. Furthermore, we briefly
introduce Karush-Kuhn-Tucker conditions for a generic function. Secondly, we present fun-
damental concepts in microeconomic theory required for Fisher market. Finally, we briefly
provide an overview of robust queueing theory essential for understanding the performance
model proposed as a part of the answer to the question, what to provision.

Contents

2.1 Optimization theory . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Linear Programming and Duality . . . . . . . . . . . . . . . 21
2.1.2 Karush-Kuhn-Tucker Conditions . . . . . . . . . . . . . . . 23

2.2 Microeconomic theory . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Robust Queueing Theory . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Robust Optimization . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Robust Queueing Theory . . . . . . . . . . . . . . . . . . . 30





21 2.1 Optimization theory

2.1 Optimization theory

In this section, we introduce basic concepts in linear programming, specifically duality
based on [65] comprehending Chapter 7. The readers can explore [65] for an in-depth
explanation of linear programming.

2.1.1 Linear Programming and Duality

Given a cost vector ccc = (c1, . . . ,cn) of n-dimensional vector xxx = (x1, . . . ,xn) and our goal is

to minimize the product cccᵀ ·xxx =
n

∑
i=1

cixi, also called as linear cost function subject to a set of

linear equality and inequality constraints. Then, the corresponding linear program is given

minimize
x

cccᵀ · xxx

subject to aaaᵀiii · xxx≥ bi, i ∈ F1,

aaaᵀiii · xxx≤ bi, i ∈ F2,

aaaᵀiii · xxx = bi, i ∈ F3,

x j ≥ 0, j ∈ B1,

x j ≤ 0, j ∈ B2.

(2.1.1)

In the above Eq. (2.1.1), F1,F2, and F3 are some finite sets used to construct a constraint
based on the n-dimensional vector aaaiii and a scalar bi. Similarly, the sets B1 and B2 constrains
the variables x j as either non-negative or non-positive. The variables x1, . . .xn are popularly
known as decision variables. The vector xxx satisfying all the constraints of Eq. (2.1.1) is
called as a feasible solution or feasible vector.

There can be multiple feasible vectors for a linear program. Let xxx? be the feasible vector
that minimizes the objective function, i.e., cccᵀ ·xxx? ≤ cccᵀ ·xxx for all feasible xxx. Then, xxx? is called
as an optimal feasible solution or optimal solution.

Suppose, there are m constraints indexed by i. Let bbb = (b1, . . . ,bn) and let AAA be a n×m
matrix. The row vectors aaaᵀ111 . . .aaa

ᵀ
mmm form the row of matrix AAA.

AAA =

. . . aaaᵀ111 . . .
...

. . . aaaᵀmmm . . .





Background 22

We can represent above constraints as AAAxxx = bbb. Then, Eq. (2.1.1) can be rewritten as

minimize
x

cccᵀ · xxx

subject to AAAxxx = bbb,

xxx≥ 0.

(2.1.2)

The linear program of Eq. (2.1.1) is said to be in the standard form (Eq. (2.1.2)). The
procedure to convert the generic form to standard form can be found in [65].

We can solve linear programs in multiple ways. However, duality theory is widely used.
Duality theory is based on the Lagrange multiplier method used in calculus [66] to minimize
a function with equality constraints.

Consider an example function as given [65]

minimize
x,y

x2 + y2

subject to x+ y = 1.
(2.1.3)

In Lagrange multiplier method, Eq. (2.1.3) is first transformed to an unconstrained min-
imization problem by introducing a Lagrange multiplier for each constraint. Let p be the
Lagrange multiplier for constraint x+y= 1. The Lagrange L (x,y, p) of Eq. (2.1.3) is given
by

L (x,y, p) = x2 + y2 + p(1− x− y) (2.1.4)

The Lagrangean L is also called as Lagrange dual is minimized over x and y while

keeping p fixed i.e.,
∂L

∂x
= 0 and

∂L

∂y
= 0. The Lagrangean L achieve optimality when

x = y =
p
2

. The constraint of Eq. (2.1.3) implies that p = 1. Hence, the optimal solution of

Eq. (2.1.3) is x = y =
1
2

.

The Lagrange multiplier method can be summarized as follows: we associate a Lagrange
multiplier for each constraint which is called popularly as price and allow constraint viola-
tion by converting to an unconstrained optimization problem. We find prices such that the
optimal solution of both constrained and unconstrained optimization problems are equal. In
other words, we find the prices such that constraints do not affect the optimal cost.

Linear programming uses the Lagrange multiplier method. Hence, associates price for
each constraint. The goal is to find prices such that constraints do not affect the optimal cost



23 2.1 Optimization theory

that eventually leads to a new linear program called dual and the original linear program
called primal.

The dual of the standard linear program (Eq. (2.1.2)) is given by

maximize
x

pppᵀ ·bbb

subject to pppᵀAAA≤ cccᵀ.
(2.1.5)

The dual of a minimization problem is a maximization problem and vice versa. The
procedure of finding dual can be found in [65].

Weak and strong duality theorems describe the relationship between objective functions
of primal and dual. The proofs can be found in [65].

Theorem 2.1 (Weak duality) If xxx and ppp are feasible solutions of primal and dual respec-
tively in standard form, then pppᵀbbb≤ cccᵀxxx

Theorem 2.2 (Strong duality) If a primal has an optimal solution, and the corresponding
dual also has an optimal solution then the respective optimal costs are equal.

Theorem 2.1 and Theorem 2.2 is known as weak and strong duality theorems respec-
tively. The weak duality theorem implies that cost of primal and dual are bound to each
other. Conversely, strong duality theorem implies that the cost of primal and dual is equal
at optimality. Furthermore, this leads to an important relationship between primal and dual
optimal solution called complementary slackness as defined in the following theorem:

Theorem 2.3 (Complementary slackness) If xxx and ppp are feasible solutions of primal
and dual respectively in standard form. If xxx and ppp are optimal solutions only iff:

pi(a
ᵀ
i −bi) = 0,∀i

(c j− pppᵀAAA j)x j = 0,∀ j

Theorem 2.3 is the cornerstone for designing primal-dual approximation algorithms [67].

2.1.2 Karush-Kuhn-Tucker Conditions

In the previous section, Lagrange multiplier method is applied to a linear program with
equality constraints. Karush-Kuhn-Tucker (KKT) conditions extend Lagrange multiplier



Background 24

method for a generic function with inequality constraints. We briefly introduce KKT con-
ditions required for comprehending Section 2.2. The readers can refer [68] for an in-depth
discussion on both convex programming duality and KKT conditions.

Consider a generic maximization function

maximize
x

f (x)

subject to hi(x) = 0, ∀i = 1, · · · ,m,

g j(x)≤ 0, ∀i = 1, · · · ,n

(2.1.6)

Let αi be the Lagrangean multiplier associated with the equality constraint hi(x) in Eq.
(2.1.6). Similarly, µ j be the Lagrangean multiplier associated with inequality constraint
g j(x). The Lagrangean dual L is given by

L (x,α,µ) = f (x)−
m

∑
i=1

αihi(x)−
n

∑
j=1

µ jg j(x) (2.1.7)

Let ∇x be the gradient operator of the function i.e., ∇x f (x) represents the gradient of
function f (x) with respect to x. Let x? be the optimal solution of Eq. (2.1.6), then KKT
conditions are:

(i) Stationary: ∇x f (x?) =
m

∑
i=1

αi∇xhi(x?)+
n

∑
j=1

µ j∇xg j(x?) i.e.,
∂L

∂x
= 0.

(ii) Equality constraints: ∇α f (x?)+
m

∑
i=1

∇ααihi(x?)+
n

∑
j=1

µ j∇αg j(x?) = 0 i.e.,
∂L

∂α
= 0.

(iii) Complementary slackness: µ jg j(x) = 0,∀ j = 1, · · · ,n.

2.2 Microeconomic theory

The unique characteristic of microeconomic theory is the ability to model economic activity
as an interaction of economic agents with private information [21]. Individual decision mak-
ing is not only a significant concept but also basis for most of the analysis in microeconomic
theory. In individual decision making, the goal is to choose outcomes. The decision-making
model may be either preference based or choice based depending on the relationship among
the outcomes. In preference based models, preference relation exists among the outcomes
based on the rationality axioms; i.e., the decision maker prefers some outcome over the
other. In choice-based models, the decision maker makes choice a based on the consistency



25 2.2 Microeconomic theory

criterion. Our work is based primarily on preference-based individual decision making.
Hence, in this section, we present fundamental concepts of preference-based individual de-
cision making presented in [21].

In preference-based models, preference relation exists among the outcomes. Let X de-
note the outcome set and % denote the preference relation between outcomes. Let a and b
be two outcomes in X i.e., a,b ∈X . If a decision maker prefer a over b, then it is denoted
as a % b.

Definition 2.1 (Rational) If preference relation % is said to be rational if the following
properties are satisfied:

• Completeness: ∀a,b∈X , we have a% b, or b% a or both. In other words, preference
relation exists with all the outcomes in the set.

• Transitivity: ∀a,b,c ∈X , If a % b and b % c, then a % c.

In economics, preference relations are described using a function which assigns a numer-
ical value to each outcome. This function is known as utility function or utility. Formally, a
utility function is defined as follows:

Definition 2.2 (Utility function) A function u : X → R is a utility function representing
preference relation % if

∀a,b ∈X ,a % b ⇐⇒ u(a)≥ u(b)

In microeconomic theory, the market economy is one of the approaches to address the
fundamental issue of production organization and commodity allocation [21]. Market equi-
librium is an outcome in a market economy such that agents maximize their utility without
violating budget constraints and market clears (complete allocation of goods).

Consider a market M with n buyers and m divisible goods and represented by the sets B
and G respectively, i.e., |B| = n, |G| = m. Let the sets B and G be indexed by i and j, i.e.,
i represents ith buyer and j represents jth goods. Let bi be the maximum budget of the ith

buyer. Let ui j be the utility derived by the ith buyer for jth good. Also, xi j be the fraction of
jth goods allocated to the ith buyer. When the utilities are linear, the total utility derived by

ith buyer is
m

∑
j=1

ui jxi j and represented by Ui.

The objective function of market M should satisfy following conditions [26]:



Background 26

• The optimal allocation should be invariant of utility scaling. In other words, if a utility
of a buyer is scaled, then optimal allocation should be unaltered.

• If the budget of a buyer i is split among two new buyers with same utility, then the
sum of optimal allocation of new buyers should be the same as optimal allocation of
buyer i.

The geometric mean of the utilities satisfies the above properties [26]. As we know,
NSW is the geometric mean of the utilities of all the agents. The objective of market M is
to maximize NSW. Hence, we have following objective function:

maximize ∏
i∈B

(
Ubi

i

) 1
∑i bi (2.2.1)

In Eq. (2.2.1), if we normalize total budgets to 1 (i.e., ∑
i

bi = 1) and take a logarithm of

the objective, then Eq. (2.2.1) is transformed to the following:

maximize ∑
i∈B

bi logUi (2.2.2)

The convex program for maximizing NSW is given by

maximize
x ∑

i∈B
bi logUi

subject to Ui =
m

∑
j=1

ui jxi j, ∀i ∈ B,

n

∑
i=1

xi j ≤ 1, ∀ j ∈ G,

xi j ≥ 0, ∀i ∈ B, j ∈ G.

(2.2.3)

The convex program Eq. (2.2.3) is popularly called as the Eisenberg-Gale convex pro-
gram [26]. The market M satisfying Eq. (2.2.3) is called the Fisher or Eisenberg-Gale
market. Let p j be the price of the good j. Applying KKT conditions, the optimal price of a

jth good is given by p j =
biui j

Ui
. The derivation can be found in Appendix A.1.

Before presenting the theorem, we define a rational equilibrium [33, 69].

Definition 2.3 (Rational equilibrium) If the utility, budget, allocation, and prices of a
market M are rational then the market M is said to have a rational equilibrium.



27 2.2 Microeconomic theory

Rational equilibrium implies that the utilities, budget, allocation, and prices can be writ-
ten in polynomially many bits [33].

We present the equilibrium of Fisher market theorem proposed in [69].

Theorem 2.4 (Fisher market pricing) The Fisher market of buyers with linear utility, if
there is a buyer i with ui j for every goods j (potential buyer for every good) then,

(i) Rational equilibrium exists.
(ii) The set of equilibrium allocations is convex.

(iii) Both equilibrium allocation and prices are unique.

Proof By KKT condition, we have p j ≥
biui j

Ui
≥ 0 (Eq. (A.1.3)). Also, there is a buyer

for every goods j. Hence, the prices p j > 0,∀ j ∈ G. The complementary slackness (Eq.

(A.1.2)) implies that
n

∑
i=1

xi j = 1,∀ j ∈ G. In other words, all the goods are completely allo-

cated.

For xi j > 0, p j =
biui j

Ui
. Therefore, p jxi j = xi j

biui j

Ui
. Summing over successful allocation

of buyer i, we get
bi ∑

m
j=1 ui j

Ui
=

m

∑
j=1

p jxi j. Since utility is linear,
m

∑
j=1

ui j =Ui. Hence,

bi =
m

∑
j=1

p jxi j

In other words, the buyer i spends his budget completely.

The utility and the budgets are rational. Also, in the market there is a potential buyer,
Ui 6= 0,∀i ∈ B. Hence, the prices are rational.

At equilibrium, allocation xi j is the solution of the convex program (Eq.2.2.3). Hence,
equilibrium allocations form a convex set.

The logarithmic function is strictly concave. Therefore, the utility derived by each buyer
should be the same across equilibria. Moreover, the buyer has to spend his budgets, and that
implies the existence of only one equilibrium.



Background 28

2.3 Robust Queueing Theory

In this section, we briefly introduce robust queueing theory proposed in [70]. As a prereq-
uisite, first, we briefly introduce robust optimization and queueing theory.

2.3.1 Robust Optimization

The goal of optimization is to maximize or minimize given objective function and data.
Correspondingly the solution is called optimal. In reality, most often data are unreliable
due to errors such as measurement and estimation. Hence, data is uncertain due to errors.
However, a small perturbation in data affects optimality [71, 72]. Stochastic optimization
methods incorporate probability distribution of uncertainty during optimization to address
uncertainty. However, obtaining uncertainty probability distribution in the real world is very
hard and in few cases not possible [73]. Conversely, Robust Optimization (RO) approach
bound the data within a deterministic set called uncertainty set during optimization [71].
Moreover, RO does not require any knowledge of probability distribution, unlike stochastic
optimization.

We present the generic robust optimization formulation of [72]. Consider an objective
function f (x) and goal is to optimize under m constraints hi(x,ui) ≤ 0 with uncertainty
parameters ui, then,

minimize
x

f (x)

subject to hi(x,ui)≤ 0, ∀i = 1, · · · ,m,ui ∈U .
(2.3.1)

In the above formulation, x ∈ Rn is the decision vector and f ,hi : Rn → R. Moreover,
uncertainty parametersui take arbitrary values from uncertainty set Ui, i.e., ui ∈Ui⊆R. The
aim of Eq. (2.3.1) is to find optimal decision vector x? that not only minimize the objective
function but also unaffected by all the disturbances ui within Ui. Let us assume that there is
an uncertainty set U such that U = U1×·· ·×Um. Hence, (u1, · · · ,um) ∈U . Intuitively,
Ui is a projection of U along corresponding dimensions [71].

Thus, RO guarantees solution feasibility and optimality against all instances of the pa-
rameters within the uncertainty set at the expense of computational overhead. The interested
readers can refer [71, 72] for in-depth coverage of RO.



29 2.3 Robust Queueing Theory

2.3.2 Queueing Theory

Queuing theory is widely used for modeling performance of the computer systems [74].
Figure 2.1 illustrates the general queueing system.

μλ

Arrival Processes Departure Processes

Figure 2.1: Illustration of queueing systems.

In a queue, the customers arrive at the service center. If the server is free, they are served
immediately. Otherwise, they wait in the queue. Similarly, we can observe similar behavior
in various resources, such as CPU and disk. For instance, jobs arrive at CPU scheduler and
executed if CPU is available. Otherwise, jobs wait in the queue.

Queueing models provide two crucial insights. First, the performance of the system and
second, capacity provisioning of the systems. These two insights are of immense value for
a system designer. We introduce basic terminologies of queueing models.

First, we define a stochastic process as given in [75].

Definition 2.4 (Stochastic Process) A stochastic process is a group of random variables
{X(t)|t ∈ T}, defined on a given probability space, indexed by the parameter t which varies
over the set T .

The values of X(t) are called states, and the set of all possible values of X(t) is called a
state space of the process. Also, T called an index set.

Consider a queue with m parallel servers. Let An and Xn be the arrival and service time of
nth job respectively. Let Tn be the interarrival time and computed as Tn = An−An−1. Let FA

be the probability distribution from which the interarrival times are drawn. Similarly, FX be
the probability distribution of the service time. Using standard Kendall’s notation [76], we
can denote the queue as FA/FS/m. Table 2.1 shows the standard symbols used in queueing



Background 30

theory literature. Consider a hypothetical notation G/M/3. This notation denotes a queue
with three servers where the interarrival times are generally distributed while the service
times are exponentially distributed.

Symbol Distribution type

M Exponential distribution
D Deterministic or constant arrival or service
G General distribution

Table 2.1: Common arrival and service distribution and their symbols used in queueing the-
ory literature.

Let λ be the rate of arrival process, i.e., number of arrivals per unit time. Similarly,
1
µ

be

the mean service time at a server. The utilization of the queue denoted by ρ is calculated as

ρ =
λ

mµ
(2.3.2)

The queue is said to be stable if 0 ≤ ρ < 1. Let wn be the waiting time of the nth job (i.e.,
time a job waits to be served). Moreover, let τn be system time, i.e., the end-to-end time
spent by the job from arrival to departure and defined as

τn = wn +Xn (2.3.3)

In other words, system time is the sum of waiting time and service time. Let τ be the average
system time. Then, according to Little’s result [76], the number of jobs in the queue Nq is
given by

Nq = λτ (2.3.4)

Table 2.2 summarizes the queueing notations described in this section.

2.3.3 Robust Queueing Theory

If the arrival and departure process are exponentially distributed (Markovian) or determin-
istic, then we can derive the closed form expressions for system time and waiting time [76].
Hence, these queueing models are widely used due to this tractable behavior. However, if
the arrivals and departures are arbitrarily distributed, then the generic method of analyzing
steady state [77] is intractable [70]. Hence, most of the analysis is limited to Markovian or
deterministic.



31 2.3 Robust Queueing Theory

Symbol Description

An Arrival time of nth job
Xn Service time of nth job
Tn Interarrival time of nth job
wn Waiting time of nth job
τn System time of nth job
λ Arrival rate
µ Service rate
m Number of servers
ρ Queue utilization
Nq Number of jobs in the queue

Table 2.2: Summary of queueing theory notations described in this section.

Bandi et al. [70] apply robust optimization [71] to derive performance bounds for G/G/m
queue. We can classify arrival and departure processes as heavy-tailed and non heavy-tailed
depending on the bound of processes tail. In heavy-tailed distributions, a tail is not exponen-
tially bounded. Authors construct uncertainty using the central limit theorem. According to
the central limit theorem, the sum of independent and identically distributed random vari-
ables approach a normal distribution. For heavy-tailed processes, the sum converges to a
stable distribution [78]. Let αa and αs be the tail coefficient of arrival and departure process
respectively. Let interarrival times T1,T2, · · · ,Tn be independent and identically distributed

with mean
1
λ

. Similarly, service times X1,X2, · · ·Xn be independent and identically dis-

tributed with mean
1
µ

. Also, σa and σs be the standard deviation of interarrival and service

times respectively. According to central limit theorem, as n→ ∞, then
∑

n
i=1 Ti− n

λ

σa
2
√

n
and

∑
n
i=1 Xi− n

µ

σs
2
√

n
are asymptotically standard normal. Hence,

n

∑
i=1

Ti−
n
λ
≥−Γa

2
√

n (2.3.5)

n

∑
i=1

Xi−
n
µ
≤ Γs

2
√

n (2.3.6)

In Eq. (2.3.5) and (2.3.6), Γa and Γs are the variability parameter of arrival and departure



Background 32

process. As we know that a standard normal Z satisfies P(Z ≤ 2)≈ 0.975 and P(Z ≤ 3)≈
0.995. Hence, Γa and Γs are chosen with higher P(Z). Authors extend the results to heavy
distribution as well [70].

Hence, the uncertainty sets for arrival Ua and departure process Us is given by

Ua =

{
(T1, · · · ,Tn)

∣∣∣∣∑n
i=1 Ti− n

λ

n
1

αa

≥−Γa

}
(2.3.7)

Us =

{
(X1, · · · ,Xn)

∣∣∣∣∣∑
n
i=1 Xi− n

µ

n
1

αs

≤ Γs

}
(2.3.8)

Theorem 2.5 (Worst case bound for system time) The worst case bound for system
time Sn of an nth job of m-server queue with TTT ∈ Ua,XXX ∈ Us,αa 6= αs such that ρ < 1
and α = min(αa,αs),

Sn ≤
α−1

α
α

(α−1)

λ
1

(α−1) (Γa +Γs/m1/α)α/(α−1)

(1−ρ)
1

α−1
+

m
λ

Proof Can be found in [70].



Chapter3
Related Work

Chapter 1 emphasized the need for pricing and provisioning of cloud resources. Cloud
pricing and provisioning of resources have been receiving significant attention from both
industry and academia. In this chapter, we present the review of state-of-the-art pricing
and provisioning algorithms in the cloud. Initially, we analyze and categorize pricing algo-
rithms depending on the knowledge about input - (i) algorithms with complete knowledge
and (ii) algorithms with incomplete knowledge. Within each category, we discuss existing
approaches in both cloud computing and algorithmic game theory. Afterward, we review
existing cloud provisioning algorithms. Finally, we conclude the review by presenting a
summary of the comparative analysis of the strengths and weaknesses of each existing pric-
ing models.

Contents

3.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Offline Pricing . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Online Pricing . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38





35 3.1 Pricing

3.1 Pricing

Pricing strategies for resources in the cloud and edge environment are plentiful. We classify
pricing approaches into two groups namely offline and online pricing based on the knowl-
edge about input. In offline pricing, the algorithm has complete knowledge about inputs
such as the number of buyers and utilities while inputs appear to online algorithms piece-
by-piece.

3.1.1 Offline Pricing

Pricing decision involves service providers, customers, and resource demand. Conversely,
pricing is a multiparticipant decision making. Generally, game theoretical models such as
non-cooperative, Stackelberg models, etc., are applied in such a scenario. In cloud com-
puting, the non-cooperative game theory is widely used for resource allocation [63]. In
non-cooperative game theory, each player tries to maximize his or her payoff. However,
non-cooperative game theory models assume complete information contrary to real sys-
tems. Alternative game theory models such as Stackelberg games are also explored. In
Stackelberg game, one player acts as a leader and others are followers. Hence, alternatively
called as the leader-follower game. Stackelberg games are applied in cloud computing as
well for maximizing utilities [23] and guaranteeing QoS [79]. Wang et al. [80] propose an
energy demand-based pricing for VMs based on the Stackelberg game to maximize profit.
Stackelberg games require a leader and cannot be applied if players do not reach consensus
on the leader.

In auctions, customers (or bidders) submit bids for items and auctioneer determine the
winner based on his objective such as utility maximization. Landa et al. [7] perform
Vickrey-auction based resource allocation, where each instance of a resource type by con-
sidering each instance of a resource type as an independent resource itself.

Gu et al. [81] propose a primal-dual based approximation algorithm for performing NFV
service chain auctions. Buyers submit bids for the whole service chain. Unfortunately,
their solution is also limited to service chains and not suitable in a market setting. Xilouris
et al. [82] propose T-Nova, an auction-based marketplace for offering network functions
to customers as-a-Service. T-Nova offers traditional auction mechanisms such as English,
Dutch, and Vickrey. D’Oro et al. [83] implement service chain composition based on a
marketplace approach. The servers behave as buyers and network request brokers act as
customers to perform service composition at a minimum price.

Chichin et al. [35] propose a double-sided greedy auction algorithm for maximizing to-
tal utility of buyers. The algorithm performs the integral allocation. However, the algo-



Related Work 36

rithm cannot handle resources with diminishing returns. Concretely, Jin et al. [6] propose
a double-action based truthful bidding mechanism for resource sharing in for maximizing
successful trading (number of matches between resources and customers). Here, buyers
submit bids for the resources and the proposed mechanisms determine allocation and incen-
tives. Pal et al. [24] propose a Walrasian market for cloudlets. They propose both a static
and a dynamic version of the market with the goal of utility maximization for small cloud
providers.

Market-based pricing is one of the significant areas in algorithmic game theory [69].
Specifically, Devanur et al. [27] propose a polynomial time algorithm for computing the
market equilibrium based on the primal-dual and max-flow min-cut algorithms. Orlin [28]
improves the overall computation time of market equilibrium by scaling [27]. Brânzei et
al. [29] prove the existence of Nash equilibrium for constant elastic substitution utility and
also bound the price of anarchy for Fisher markets. However, they also assume that re-
sources are divisible. Cole and Vasilis [30] present an algorithm to compute market clearing
prices and simultaneously perform integer allocation in a Fisher market. Anari et al. [34]
extend the idea for multiple instances of resources using a stable polynomial method.

Goel and Vazirani [84] propose rational convex programming based approach to perform
price discrimination of goods. Chakraborty et al. [36] propose a generic auction based algo-
rithm for finding (1+ε) market equilibrium for items with the limitation of fixed transaction
costs.

3.1.2 Online Pricing

Cloud resource allocation is naturally online decision making [13, 45]. There are several
works for determining cloud resource prices online. Zhang et al. [43] propose online auction
mechanism for VMs based on the primal-dual framework to maximize the utility of both
customers and service provider profit. Shi et al. [44] propose online combinatorial online
auction for VMs. Furthermore, authors propose revenue maximizing online auction for
virtual clusters [85]. The mechanisms presented satisfy individual rationality and incentive
compatibility. Shi et al. [45] propose online combinatorial auction for heterogeneous VMs.
Zhang et al. [86] propose an online auction-based marketplace for VNF service chains.
The idea is to transform online stochastic social welfare to a deterministic fraction program
based on bid arrival processes. The allocation is performed using the primal-dual method.
Moreover, prices are learned based on historical bids, arrival, and departure of strategic
bidders.

Zhao et al. [18] try to maximize profit for cloud service providers by joint modeling
pricing, provisioning and job execution using stochastic optimization framework based on



37 3.2 Resource Provisioning

Lyapunov optimization theory. Zhang et al. [86] propose an online stochastic auction mech-
anism for on-demand service chain provisioning and pricing at an NFV provider. Here,
customers submit their bids and the algorithm computes both the allocation and the price
for the service chains based on the primal-dual framework. The algorithm thus offers dy-
namic pricing and satisfies the individual rationality and incentive compatibility require-
ments. However, is further limited to VNFs, i.e., a single resource type and bids arrivals
are assumed to be Poisson arrivals. Toosi et al. [42] propose online auction mechanism for
cloud spot markets for maximizing profit.

Posted pricing is currently popular in online pricing market [63]. Zhang et al. [13] com-
pute posted prices for cloud resources by designing exponential pricing function based on
the primal-dual framework for 0-1 knapsack problem. Bubeck et al. [46] compute posted
prices based on online learning approach for revenue maximization. Zhou et al. [87] design
online auction for cloud jobs with deadlines. They maximize utility and compute posted
prices using the primal-dual framework.

Online algorithms for market clearing prices are popular in algorithmic game theory.
Angelopoulos et al. [47] propose deterministic and randomized algorithms for finding an
approximate market equilibrium for a linear fisher market in an online setting where goods
appear one-by-one. Blum et al. [88] propose a market clearing algorithm for the customer
bids. The auctioneer has to decide whether to accept or decline a bid without knowledge of
future bids. Bateni et al. [49] perform multiobjective optimization and dynamically allocate
goods appearing online to budgeted buyers of a Fisher market with proportional fairness and
efficiency as objectives. Azar et al. [48] design a primal-dual convex programming based
algorithm for an online Fisher market where goods appear in each round with immutable
decision.

3.2 Resource Provisioning

There have been several approaches that address the challenges of provisioning resources
in the cloud (e.g., [51, 52, 55]). However, we believe that no previous work studied what
resources should be provisioned in the context of complex services. The most similar work
was recently published by Delimitrou et al. [89]. They proposed HCloud, a hybrid pro-
visioning system that uses both reserved and on-demand resources (i.e., fits the business
models of Amazon EC2). HCloud determines the best possible configuration by considering
load-fluctuations, performance, and cost of resources. In contrast, this work focuses on de-
scribing a theoretical model based on robust queueing theory [70] that accurately describes
the behavior of a given component in service regardless of the input traffic distribution. We
are interested in understanding the exact behavior of each component in the service, not in



Related Work 38

inferring it through micro-benchmarking as done by HCloud. Moreover, recently there have
been some efforts on reducing the number of reconfigurations in cloud environments. For
instance, Jiao et al. [90] studied the problem of resource allocation and reconfiguration in
the multi-tier resource pool from an online optimization perspective. However, they do not
address the issue of what configuration should be used.

Many queueing theory-based approaches have been proposed in the past. For instance,
Urgaonkar et al. [58] models servers at each tier as a G/G/1 queue for representing arbi-
trary arrival and service time distributions. They assume uniform processing power and
present both reactive and predictive provisioning algorithms. However, if the servers are
allocated with different cores or processors, their model fails to capture this aspect due to
the intractability of the G/G/m queue. Furthermore, Gandhi et al. [59] employed Kalman
filters and queueing networks to scale a given application proactively. However, the biggest
drawback is the assumption of Markovian arrivals and departures in a multi-tier architec-
ture, contrary to reality [58]. Tsoumakos et al. [91] propose the TIRAMOLA framework
for performing automatic resizing of NoSQL clusters based on a Markov Decision Pro-
cess (MDP). The resizing operation is performed based on the user policies and current
system state. Naskos et al. [92] extend the TIRAMOLA model to resizing clusters of a
single generic application hosted on virtual machines. However, both approaches cannot be
applied if a service comprises multiple different components.

Workflow deployment approaches are also widely used in the cloud [93–95]. This ap-
proach defines a workflow graph of services based on data dependencies. The workflow
engine then scales the application based on input data and the workflow graph. In workflow
based scheduling, the goal is to minimize the execution cost and to satisfy QoS [96, 97] by
selecting an objective-maximizing path in a workflow graph in a homogenous environment.
Similarly, Switch [98] is a recent project aiming to improve execution and deployment of
time-critical applications, where the developers can specify QoS/QoE during the applica-
tion’s development.

3.3 Summary

Table 3.1 summarizes the recent offline pricing approaches in the cloud and edge comput-
ing. The state-of-the-art solutions feature a wide range of approaches that cause fractional
allocation of resources except [35]. Additionally, these solutions do not strive to maximize
NSW but usually aim for maximization of the profit at the providers’ premises or utilitarian
social welfare. Furthermore, we believe that none of these works considers price discrimi-
nation.



39 3.3 Summary

Approach Model
Maximization

Objective Domain

Daoud et al. [23] Stackelberg game Utilitarian Cloud
Valerio et al. [79] Stackelberg game Profit Cloud
Wang et al. [80] Stackelberg game Utilitarian Cloud
Landa et al. [7] Auction Utilitarian Cloud
Gu et al. [81] Auction Utilitarian NFV
Xilouris et al. [82] Auction H NFV
D’Oro et al. [83] Auction Utilitarian NFV
Jin et al. [6] Auction Successful trades Edge
Chichin et al. [35] Auction Utilitarian Cloud
Pal et al. [24] Walrasian Utilitarian Edge

Table 3.1: A summary of related works with respect to offline pricing

H feature not specified

Approach Model
Maximization

Objective Domain

Zhang et al. [43] Auction Utilitarian NFV
Shi et al. [44] Auction Utilitarian Cloud (VMs)
Shi et al. [85] Auction Utilitarian Cloud (Virtual clusters)
Shi et al. [45] Auction Utilitarian Cloud (heterogeneous VMs)
Zhang et al. [86] Auction Utilitarian NFV
Toosi et al. [42] Auction Profit Cloud
Zhao et al. [18] Stochastic optimization Profit Cloud
Zhang et al. [13] Posted pricing Utilitarian Cloud
Zhou et al. [87] Posted pricing Utilitarian Cloud
Bubeck et al. [46] Posted pricing Profit Cloud

Table 3.2: A summary of related works with respect to online pricing



Related Work 40

Similarly, Table 3.2 summarizes recent online pricing approaches in cloud computing.
The state-of-the-art online pricing approaches in the cloud and edge computing are con-
cerned mainly utilitarian. There are approaches in algorithmic game theory for maximizing
NSW [48,49]. However, [48] cannot be applied for varying customers and integer allocation
cannot be guaranteed by [49].

There have been several approaches that address the challenges of provisioning resources
in the cloud [51, 52, 55, 89, 90]. Many queueing theory-based approaches have been pro-
posed in the past [58, 59]. There are works on resizing clusters [91, 92]. Further, workflow
deployment [93–95] and scheduling [96, 97] approaches are also widely used in the cloud.
However, we believe that no previous work studied what resources should be provisioned
in the context of complex services.



Chapter4
ARPP Sealed-bid Auction

Auctioning is one of the popular forms of dynamic pricing model that helps to find a fair
price during price uncertainty [38] without compromising economic efficiency [37]. As we
see in chapter 3, a majority of sealed auction algorithm at least assume prior knowledge
about bid distributions. This chapter presents an incentive compatible auction mechanism
dubbed RAERA for auctioning edge resources.

Initially, we motivate and formalize the problem of designing auction mechanism for
the edge. Subsequently, we propose RAERA algorithm. Finally, we evaluate and present
experimental results.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 RAERA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 RAERA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 RAERA Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55





43 4.1 Introduction

4.1 Introduction

The Internet is one of the vital infrastructures of our society. With the advent of the Internet
of Things (IoT) and Machine-to-Machine communication, it is expected to connect approx-
imately 50 billion devices by 2020 [99]. To cope with this growth Internet stakeholders
have recently deployed new technologies in both access and core networks. In particu-
lar, infrastructure and service providers currently moving towards edge computing, where
data, applications, and services are placed towards the edge of the network rather than in
centralized locations. The benefits of this strategy are [4–7]

(i) Lowering the traffic passing through the infrastructure.

(ii) Reducing the latency for services.

(iii) Scaling network services.

By employing edge computing, infrastructure providers (sellers) are also gaining a new
set of customers. Content and service providers are looking at means to enhance their users’
experience to gain a competitive advantage by pushing content and services closer to the
edge and thus closer to the users. Currently, these customers (buyers) can buy computing
and network resources at the cloud in services such as Amazon CloudFront and Microsoft
Azure. Here, a buyer typically visits the seller’s marketplace, manually selects resources
based on his requirements and subsequently pays for their usage time. The predominant
pricing model for the instances is fixed pricing, i.e., a particular instance has the same price
to all users at all times. A variant of this is the differential pricing where specific buyers get
discounted rates (similar to frequent flyer programs) or the rates could be different during
specific time periods (e.g., weekend tariffs).

In these pricing models, it is difficult to arrive at a fair price1 for all participants [38].
In markets that exhibit uncertainty about the price of goods or services and that have little
knowledge about market participants, there is a tendency for the sellers to set a price that
is favorable to them [15]. However, in the presence of competition, these pricing schemes
could either drive customers away or result in lower prices leading to a loss. Therefore,
some sellers opt for dynamic pricing, in which prices fluctuate based on demand and usage
patterns. For instance, Amazon offers spot instances, where a buyer specifies the maximum
amount for a particular instance. The allocated instance is terminated when the bid amount
exceeds the current spot instance price. Price uncertainty is the major obstacle for dynamic
pricing.

Auctioning is a form of dynamic pricing that helps to find a fair price in cases where

1with respect to terms and conditions



ARPP Sealed-bid Auction 44

both the seller(auctioneer) and the buyer do not know the true value and estimates regarding
the terms and conditions are highly imperfect (price uncertainty) [38]. Here, buyers (or
bidders) submit bids for items and usually the bidder with the highest bid is the winner.
Most of the auction mechanism assume prior distribution. However, if a user draws a bid
from a different probability distribution, then the obtained price is not optimal [40,41] which
is often the case in edge computing, where each user is different and may draw valuations
from a different probability distribution.

There are several auction-based resource allocation works in the Edge [6, 7]. However,
these solutions lack a generic solution to deal with heterogeneous resources and thus with
market uncertainty. In this chapter, we propose the first auction mechanism based on ro-
bust optimization for the edge computing scenario. We develop our approach based on
robust optimization for performing multi-item auctions [40]. Our mechanism—dubbed Ro-
bust Auction for Edge Resource Allocation (RAERA) —creates an uncertainty set for each
resource based on the historical bidding data maintained by the infrastructure provider, and
can thus deal with the unknown market conditions. In the first stage, RAERA computes a
reservation price for each resource based on buyers’ historical data. The reservation price
is the minimum price that an infrastructure provider needs to sell for avoiding loss. In the
second stage, RAERA allocates the resources for which bid value is higher than its reserve
price.

Finally, it computes payment for each bidder. Importantly, RAERA offers the property of
individual rationality (bidders do not derive negative utility for truthful bids) and is incentive
compatible (truthful bids have higher utility for the bidder compared to non-truthful bids).
Our evaluations highlight that RAERA offers a time-dependent fair price. Sellers can achieve
higher revenue in the range of 5%− 15% irrespective of varying demands, and the buyers
pay up to 20% lower than their top bid amount.

4.2 RAERA Problem

This chapter addresses the problem of auctioning edge resources to achieve both profit and
social welfare for the resource seller(s) and the resource buyers. Furthermore, this chapter
defines these terms as follows:

• (Edge) Resources are resources that could be used to support edge computing. These
resources are on the Edge in various forms such as micro data centers, cloudlets,
and fog nodes. In this chapter, resources are assumed to be atomic units (I.e., the
smallest unit of resource that could be made available) that could be, for example,
a) virtualized resources such as VMs, dockers, and unikernels; b) actual resources



45 4.2 RAERA Problem

such as CPU cores (or fractions thereof) and memory; or c) indirect resources such
as execution time.

• Sellers are those entities who own edge resources at the edge of a network and are
willing to lease them to interested buyers. For example, infrastructure providers such
as edge/access/eye-ball ISPs and mobile network providers can be sellers.

• Buyers are those who would like to deploy their services on edge resources to en-
hance the user experience. For example, content providers or service providers can
be buyers.

Here, dynamic pricing leads to cheaper resources for the buyer and better utilization for
the seller [63]. However, it is necessary to address the following challenges:

• Uncertainty about pricing: Due to a lack of ground truth, it is difficult to validate
resource valuations. For instance, it is difficult not only to infer but also to validate
CPU consumption of multiple VMs sharing the same physical core. Hence, pricing
these resources is non-trivial, and sellers are uncertain about the resource prices they
should call for. Shi et al. [4] emphasize the need for a new cost model, especially for
edge resources, which not only guarantee profitability for sellers but also acceptability
from buyers.

• Service guarantee: Currently, service providers cannot guarantee service availabil-
ity even with fixed pricing [61]. For instance, allocated amazon spot instances are
terminated as soon as the current called-for price exceeds the buyer’s bid. As a re-
sult, a buyer has to bid higher to ensure instance availability for critical applications.
Otherwise, procure instances with fixed pricing scheme, which favors the seller of the
resources.

• Strategic behavior: Buyers often also have strict requirements on the resources (e.g.,
if they need to meet SLOs), but most of the sellers are unable to provide service guar-
antees within fixed pricing for premium customers [61]. As a result, buyers usually
try to receive better service than required by inflating their requirements, incurring
unnecessary costs at the sellers’ premises [61].

This chapter addresses these challenges by following a sealed bid auctioning approach.
Here, the buyers submit sealed bids for resources and receive resources only if they are win-
ners in the auction. Specifically, auctions can counter the price uncertainty problem, provide
service guarantees since items are entirely allocated to the winner [21], and incentive com-
patible auctions encourage truthful bidding. One popular example is the Vickrey auction,
where the bidder with the highest bid wins the auction but only pays the second highest bid
instead of his quoted bid, which has proven to prevent strategic behavior of buyers [100].

In this subsection, we formally define our problem as follows: Let N = {1,2, . . . ,n} be
a set of n buyers indexed by i, i.e., i represents ith buyer. Similarly, let M = {1,2, . . . ,m}



ARPP Sealed-bid Auction 46

be the set of edge resources indexed by j, i.e., j represents the jth resource. Each buyer
i has a private valuation for each resource. In our model, vi j represents the valuation of
buyer i for the jth resource. The valuation profile or vector of a buyer i is represented by
vi = (vi1,vi2, . . . ,vim). Each buyer i submits a bid represented by bi = (bi1, . . . ,bim) for m
resources. Let β ∈Rn be the bid profile or vector of all the users, i.e., β = (b1,b2, . . . ,bn).
Let b−i be the bid vector of all users except i, i.e., b−i = (b1,b2, . . . ,bi−1,bi+1, . . . ,bn). Also,
β = (bi,b−i).

Let x(·) : Rn → N be the allocation function of edge resources to users based on their
submitted bids.

If ν is a bid profile of successful resource allocation, then x(ν) = {x(ν)i j}, ∀i ∈ N, j ∈M
where x(ν)i j is the amount of resource j a bidder i receives when the profile is ν . In our
model, x(ν)i j is discrete to represent an atomic resource, i.e., the allocation x(ν)i j is an
integer since a fractional value would represent a fractional unit and thus does not have any
practical significance.

Similarly, let p(·) : Rn → R be the payment function which maps a bid profile to an
n-dimensional real value which is a monetary payment, i.e., p(ν) = (p1(ν), . . . , pn(ν). In-
formally, pi(ν) is the monetary payment of buyer i to the seller.

Let ui be the utility derived by the ith buyer. Informally, a utility is the satisfaction ob-
tained by consuming goods. We assume the utility ui is quasilinear. Quasilinearity implies
the risk neutrality for buyers [62], i.e., the more money a buyer spends, the greater the
utility. Formally, ui(vi,x(b), p(b)) = vixi(b)− pi(b).

Let U j ∈Rn be the uncertainty set (i.e., data and constraints are allowed to change within
the set without affecting optimality) for the jth resource. Bid vectors for the jth resource
are drawn from this uncertainty set. The uncertainty set for an auction is constructed based
on historical bid data. According to the central limit theorem, a distribution with a mean µ

and variance σ
2 will converge to standard normal distribution when the sample size n→∞.

Based on [101], we define the uncertainty set U j for the jth resource as follows:

Uj =

{
(b1 j, . . . ,bn j)

∣∣∣∣∣−Γ≤ ∑
n
i=k+1 bk j− (n− k)µ j√

(n− k).σ j
≤ Γ,k 6= n

}
(4.2.1)

For a standard normal distribution Z, the confidence interval is 95% and 99% for |Z| ≤ 2
and |Z| ≤ 3 respectively, i.e., P(|Z| ≤ 2) ≈ 0.95 and P(|Z| ≤ 3) ≈ 0.99. Hence, in Eq.
(4.2.1), Γ is chosen between 2 and 3 to reflect the desired confidence interval. Also, (n−k)
can be regarded as the window of recent historical values. If k = 0, then all the historical
values are considered. Furthermore, U denotes the uncertainty set for m resources, i.e.,



47 4.3 RAERA Algorithm

U =U1×·· ·×Um.

In our model, all bids and valuation vectors are drawn from the uncertainty set U , i.e.,
∀i ∈ N,bi,vi ∈ U . Let W be the break-even optimal (optimal revenue in presence of to-
tal uncertainty [41]) of the service provider. The goal of this chapter is to maximize W
satisfying following properties:

• Individual Rationality (IR): The users should not lose money when they bid truth-
fully, i.e., ui ≥ 0.

• Incentive compatibility (IC): The user has to derive higher utility for truthful bid-
ding. Let b̂i be a non-truthful bid profile and x(b̂i) and p(b̂i) corresponding allo-
cation and payment. Then, this property implies that ui(vi,x(bi,b−i), p(bi,b−i)) ≥
ui(vi,x(b̂i,b−i), p(b̂i,b−i)).

We formulate our goal as the following linear optimization problem.

maximize
x

W

subject to (i) W −∑
i∈N

pi ≤ 0,

(ii) ∑
j∈M

xi j ≤ 1, ∀i ∈ N,

(iii)
m

∑
k=1

b̂i jxi j− p̂i ≤
m

∑
k=1

bi jxi j− pi, ∀bi j, b̂i j ∈U ,

(iv) pi ≤ Bi, ∀i ∈ N,

(v) pi ≤ ∑
j∈M

bi jxi j, ∀i ∈ N,

xi j = {0,1}, ∀i ∈ N, j ∈M.

(4.2.2)

Here, constraint (i) ensures a non-negative profit for the auctioneer, (ii) implies allocation
of every resource, (iii) and (iv) ensure the IC and IR property, respectively; (v) implies
the atomic resource allocation to ith buyer. Furthermore, the notations are summarized in
Table 4.1.

4.3 RAERA Algorithm

In this section, we present the algorithm for the optimization problem defined in Eq. (4.2.2).
The goal of Eq. (4.2.2) is to maximize the worst-case revenue W for the auctioneer—this
is the least upper bound or supremum revenue irrespective of the probability distribution of



ARPP Sealed-bid Auction 48

Symbol Description

N Set of buyers
M Set of edge resources
W Break-even optimal revenue
bi True bid of buyer i
b̂i Reported bid of buyer i
β Bid profile of all buyers
x(·) Allocation function
ν Bid profile of successful allocation
p(·) Payment function
ui Utility of buyer i
vi Valuation of buyer i
pi Payment received by buyer i
U j Uncertainty set of edge resource j
µ j Mean of edge resource j historical bids
σ j Variance of edge resource j historical bids
Γ Variability parameter

Table 4.1: A summary of notations used for proposing RAERA.



49 4.3 RAERA Algorithm

buyers bids. Here, it is crucial for the seller to determine a minimum price for the resources,
which guarantees non-negative profit and is popularly known as the reserve price [21].

The seller will have information about historical bid valuations only, i.e., the uncertainty
set U . Let ri j be the reserve price of resource j for the bidder i. The reserve price implies
that bidder i should pay at least ri j for getting a non-zero allocation of the jth resource. We
can have multiple valuations for the items in the uncertainty set and have to find the valu-
ation which will maximize the revenue for the auctioneer. The auctioneer should calculate
the reserve price for resources to maximize the revenue and to avoid financial loss in case
of selling below the reserve price.

The idea is to apply duality theory. Section 2.1.1 presents the basics of duality theory.
The dual forms a lattice and a corner of the lattice represents a Vickrey pay-off point where
the buyers have an incentive for their truthfulness in a sealed bid auction [102]. In our case,
finding the break-even optimal valuation is the primal problem. Formally, let zzz = {zi j},∀i ∈
N, j ∈M denote the worst case valuation vector. We solve the Eq. (4.3.1) to find zzz for all
the valuations v in uncertainty set. The corresponding allocation also called as candidate
allocation (allocations before receiving the bid vector) is represented as x?i j,

maximize
v ∈U

∑
i∈N

∑
j∈M

xi j · vi j

subject to (i) ∑
j∈M

xi j ≤ 1, ∀i ∈ N,

(ii) ∑
j∈M

xi j · vi j ≤ ∑
j∈M

xi j ·ui j, ∀i ∈ N,ui j ∈U ,

(iii) xi j ≥ 0, ∀i ∈ N, j ∈M.

(4.3.1)

In Eq. (4.3.1), constraint (i) ensures the allocation of every resource in the auction, (ii)
is a robust optimization constraint for polyhedral uncertainty that ensures the IC and IR
properties [40], and (iii) ensures a zero or non-negative allocation (a zero allocation implies
that the bidder is not the winner).

Then, the dual of Eq. (4.3.1) is as follows:

minimize
ε,η ∑

j∈M
ε j +ηi ∑

i∈N
∑
j∈M

x?i j · ũi

subject to ε j + zi j ·ηi ≥ zi j, ∀i ∈ N, j ∈M,

ε j,ηi ≥ 0.

(4.3.2)



ARPP Sealed-bid Auction 50

The dual value for the uncertainty is denoted as ũi and calculated as follows:

ũi = argmin ∑
j∈M

x?i j ·ui j,∀i ∈ N (4.3.3)

The reserve price ri j is calculated as follows:

ri j← ε
?
j +η

?
i · x?i j,∀i ∈ N, j ∈M (4.3.4)

Algorithm 4.1 presents the pseudo-code for calculating reserve price from the uncertainty
set.

Algorithm 4.1 calculateReservePrice
1: procedure CALCULATERESERVEPRICE(U )
2: Compute worst case valuation z = {zi j} and candidate allocation x? = {x?i j} using

Eq. (4.3.1)
3: Calculate ε

? and η
? using Eq. (4.3.2)

4: Calculate ri j using Eq. (4.3.4)
return ri j,x?i j,∀i ∈, j ∈M

Once the reserve price is determined, the subsequent step is to filter bids less than reserve
price and such bids are knowns as feasible bids. Let P be the set of feasible bids issued by
all buyers and defined as follows:

P = arg


∑
i∈N

yi j ≤ 1−∑
i∈N

x?i j,∀ j ∈M

∑
j∈M

yi j ·ui j− ∑
j∈M

x?i j · ri j

+ ∑
j∈M

x?k jηiũ j,∀u ∈U,∀i ∈ N

 (4.3.5)

Next, we find an allocation in P which maximizes the revenue for the auctioneer. Let
y = {yi j} be the allocation. Formally,

{yi j}= argmax
P

∑
i∈N

∑
j∈M

yi j · (bi j− ri j) (4.3.6)

We adjust candidate allocation to reflect input bids for every buyer i. Let ai j is the final
allocation and computed as:

ai j = x?i j + yi j,∀i ∈ N, j ∈M (4.3.7)

The payment is computed based on both the reserve price and the impact of buyers val-
uation. Moreover, the primary goal of payment is to induce truthfulness during bidding.



51 4.3 RAERA Algorithm

Hence, we determine allocation without each buyer. Let Q‖ be the set of allocations when
buyer k is absent. It is determined as follows:

Qk = arg


∑
i∈N

yi j ≤ 1−∑
i∈N

x?i j,∀ j ∈M

∑
j∈M

yi j ·ui j− ∑
j∈M

yi j · ri j∀u ∈U,∀i ∈ N\{k}

 (4.3.8)

Let y−k = {y−k
i j }, i ∈ N\k, j ∈M be the allocation for set Qk. We have,

{y−k
i j }= argmax

Qk
∑

i∈N\{k}
∑
j∈M

yi j · (bi j− ri j) (4.3.9)

Finally, we compute the payment for each buyer as follows:

pk = ∑
j∈M

yk j · rk j + ∑
j∈M

x?k j · rk j− ∑
j∈M

x?k j ·η?
i · ũk

j

+ ∑
i∈N\{k}

∑
j∈M

y−k
i j · (bi j− ri j)

− ∑
i∈N\{k}

∑
j∈M

yi j · (bi j− ri j),∀i ∈ N

(4.3.10)

In Eq. (4.3.10), pk represents the amount a buyer has to pay to be part of successful allo-
cation. The fourth term represents the profit when buyer k’s valuation is absent while the
fifth term computes profit when valuation is present. The payment rule presented satisfies
the IC and IR properties (theoretical proof can be found in [40]). We present Algorithm 4.2
for edge resource allocation.

Algorithm 4.2 calculateReservePrice
1: procedure ALLOCATEANDPAY(b,ri j,x?i j)
2: if b /∈U then
3: ai j← 0, pi← 0,∀i ∈ N, j ∈M

4: Compute set P using Eq. (4.3.5)
5: Compute set Qk using Eq. (4.3.8) ∀k = 1, . . . ,n
6: Compute yi j,∀i ∈ N, j ∈M using Eq. (4.3.6)
7: ai j← x?i j + yi j,∀i ∈ N, j ∈M
8: Compute payment pi using Eq. (4.3.10)
9: Allocate jth resource to ith bidder with a probability ai j

10: Compute price for jth resource for ith bidder as
pi

∑ j∈M ai j
return ai j, pi,∀i ∈, j ∈M

Figure 4.1 shows the RAERA auction framework. The bidders submit the sealed bid for
the resources. The service provider computes the reserve prices and candidate using algo-
rithm 4.1 from the uncertainty set constructed from the previous bid values. Once, reserve



ARPP Sealed-bid Auction 52

RAERA

historical data

uncertainty set

Resources

bid

bid

bid

bid

Bidders

algorithm

Allocation

1

4

3

2

unsuccessful
bid

Figure 4.1: RAERA Auction Framework: Buyers place bids on resources, and RAERA decides
the allocation.



53 4.4 RAERA Evaluation

prices are computed final allocations, and prices are determined using Algorithm 4.2. Since
RAERA is incentive compatible, the bidders have to bid truthfully. Otherwise, it will affect
their incentives.

4.4 RAERA Evaluation

We now evaluate RAERA by simulation to study its benefit for both sellers (increased profit)
and buyers (fair price).

4.4.1 Methodology

RAERA requires knowledge of historical bids to create its uncertainty sets. This data is pri-
vate to infrastructure providers. Further, we believe that a real edge resource demand dataset
is unavailable publicly. Moreover, edge resource providers don’t reveal real information
about pricing publicly due to fear of losing competitive advantages.

We, therefore, model network traffic (and subsequently resource demand) based on Gill
et al. [103], who provide insights into YouTube traffic demand on an hourly scale. Gill et
al. [103] is the first work to analyze and characterize Youtube traffic to understand how user
contents are viewed and distributed over the internet based on YouTube data collected for
three months. The collected data is a combination of both local (on campus) and global
internet. They observed a steady rise in traffic during the morning with a peak achieved
during the afternoon. For instance, YouTube traffic reaches a peak during the afternoon,
while only 5% of peak traffic is present in the early morning. Based on these trends we
generate bid valuations for every hour: buyers bid higher in the afternoon compared to
morning hours.

We generate both historical data and bid vectors using a uniform distribution. The bid
vector is 20% higher compared to historical data. We use CPLEX to solve the optimiza-
tion problem formulated in Algorithms 4.1 and 4.2. Finally, our simulator calculates the
payment for each buyer in case of a successful allocation.

4.4.2 Results

We start by investigating seller profit. Figure 4.2 compares the guaranteed profit of the seller
with the profit achieved by RAERA. The guaranteed profit is what a seller will earn regardless
of the bid probability distribution. We observe that RAERA can adapt resource prices based



ARPP Sealed-bid Auction 54

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
o

rm
al

iz
ed

 P
ro

fi
t

Time (hours)

Break-Even Optimal RAERA Reserve Price

Figure 4.2: Profit: Break-even Optimum vs RAERA

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
o

rm
al

iz
ed

 P
ri

ce
 

Time (hours)

Winner Bid RAERA Reserve Price

Figure 4.3: Price: Average Bid vs RAERA



55 4.5 Summary

on demand and achieves a 5% to 15% higher revenue irrespective of demand even during
low demand periods. Further, RAERA is beneficial to the buyers as well. According to
Figure 4.3, the bids of buyers can be up to 20% lower using RAERA. Lower bids on average
also result in lower payment on average.

4.5 Summary

In this chapter, we introduced RAERA, a novel method based on robust optimization for
multi-item auctions for edge computing resources. In preliminary experiments, we have
shown that RAERA can guarantee the profit even in a scenario loaded with uncertainty, un-
like traditional methods. Furthermore, it is incentive compatible and satisfies individual
rationality. Therefore, RAERA can set a time dependent fair price that benefits both buyers
and sellers.





Chapter5
ARPP Market

In differential pricing, each customer pays different prices for the same item. Consequently,
this generates additional revenue for producers. Generally, cloud customers are ready to
pay an additional price for services with higher QoS. Furthermore, differential pricing
can influence customer spending. For instance, green energy-based VMs can be priced
lower than their brown energy counterpart to increase green energy adoption. This chapter
proposes an auction-based Edge resource market (ERM) for computing differential prices in
the Fisher market.

Initially, we motivate the need for NSW maximization and differential pricing in the
Cloud and Edge. Afterward, we formalize the problem of implementing of differential
pricing in the Fisher market. Subsequently, we propose ERM algorithm. Finally, we evaluate
and present experimental results.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 ERM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 ERM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 ERM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76





59 5.1 Introduction

5.1 Introduction

Edge computing is gaining in popularity for a variety of applications. For instance, edge
computing can support the trend to virtualize network functions [104] by i) providing these
virtualized services close to the user [105, 106]; ii) avoiding the need to redirect traffic to
cloud services [107], and iii) supporting the scaling up/down of services to meet user de-
mand [108]. Further, IoT applications such as those on vehicles, smart-homes, and factories
could benefit from edge computing [109] to avail virtualized services such as pre-processing
a significant amount of data collected. Edge-computing could also help alleviate the latency
concerns of making use of cloud services for computation offloading [4] by providing the
extra computation resources close to the users [4–7]. In this context, a market provider typ-
ically provisions requested edge resources to the customer (e.g., via Amazon CloudFront or
Amazon EC2).

One key consideration of the provider in the request-to-provision process is pricing.
However, pricing is non-trivial in cloud and edge due to following reasons:

(C1) High prices may drive away customers while low prices may result in reduced profit.
(C2) Resources in edge or cloud data centers are generally virtualized. While the cost of

physical resources (e.g., the cost of buying and running a physical server) is tangible,
this is not the case for virtual resources. Hence, determining actual resource usage is
uncertain [18].

(C3) Determining operating cost is non-trivial since multiple virtual machines (VMs) usu-
ally share the same physical resources in a highly dynamic environment, and it is
unclear how many resources the provisioning of a particular VM will consume.

Therefore, both academia and industry [17, 18, 80, 110–112] frequently propose pricing
strategies for the cloud.

Currently, cloud and edge providers follow a “pay-as-you-go” pricing model. In this
model, prices are fixed and charged based on usage. For instance, Amazon EC2 in-
stances are charged hourly. Moreover, fixed pricing fails to capture resource supply and
demand [113]. Consequently, providers suffer losses for scare edge resources(high de-
mand) as these are at the same price as the other provisioned resources (low demand) in a
cloud data center. Most often, fixed pricing favors providers contractually [19]. Finally, in
the presence of only a few big cloud service providers (e.g., Amazon or Microsoft) cloud
resource prices are oligopolistic [16, 17]. Oligopolistic prices are higher than competitive
prices, and, if more resource providers would enter the market, the market is poised to
become a low commodity market with low-profit margins [16].

One option to appropriately set prices based on supply and demand is dynamic pricing.



ARPP Market 60

Dynamic pricing maximizes the provider’s profit and at the same time has the potential to
be fair to all users [18]. However, dynamic pricing is not trivial, especially in edge data
centers, where resource choices are plentiful and highly variable, the associated costs such
as energy costs could vary based on location, and the actual resource usage is uncertain [18].
In particular, the following properties of pricing are desired from the provider’s point of
view.

(i) Dynamic pricing should determine the optimal price such that there is at least one
buyer who is interested in each resource, based on supply and demand—i.e., the
pricing scheme satisfies the market clearing property [21] which guarantee complete
allocation of all the available resources. This pricing is also known as equilibrium
pricing.

(ii) The Market provider will strive for increasing the revenue acquired from selling the
resources.

(iii) Differential pricing among resources should be possible for multiple reasons. For
instance, the same VM can be more costly when provisioned during peak times (when
resources are more scarce) than when provisioned during off-peak hours. Further,
running on servers fueled by brown energy should be priced differently than resources
running on green energy, and a VM provisioned on the network edge should be more
costly than the same VM provisioned at a cloud data center. Also, cloud resources
often suffer from diminishing returns, i.e., often adding more copies of the same
resource does not improve the utility for the buyer [31].

State-of-the-art solutions currently neither offer capabilities for differential pricing [6,24]
nor consider diminishing returns. In algorithmic game theory, the Separable Piecewise-
Linear Concave (SPLC) utility models diminishing returns [33]. Previous works extend
max-flow min-cut market algorithms for the SPLC utility for multiple copies and also pro-
pose stable polynomial based rounding [34]. However, these solutions are computationally
complex and a stable polynomial approach requires highly complex ellipsoidal algorithms.

Additional existing works typically also assume that resources are divisible and thus per-
form fractional allocation of resources to buyers [26, 28, 114, 115]. However, many cloud
resources (e.g., VMs) cannot be allocated fractionally, which is usually solved by rounding
fractional allocations to the nearest integer solution. Unfortunately, the resulting round-
ing difference (integrality gap) is unbounded for a market, i.e., the difference between op-
timal objective value and rounded objective value grows with the number of buyers and
resources [30, 34].

To overcome these issues, and to efficiently arrive at a market clearing price while en-
suring that price discrimination reflects supply and demand, we propose the Edge Resource
Market (ERM), a market-based pricing scheme predominantly for edge computing resources



61 5.1 Introduction

based on auctions. We believe that edge computing is an ideal use-case since—similar to
how individuals could contribute electricity to the grid and earn money [116, 117]—such a
market mechanism could encourage a large number of smaller players to participate as ei-
ther sellers or buyers of such resources since otherwise the cloud market is poised to become
a low commodity market [16].

In ERM, we assume the presence of multiple buyers and multiple resources types. Each
resource type can have multiple instances, and each instance of one resource type has the
same functionality but different specification. Hence, each of the buyers can have a different
utility (or valuation) for (a subset of) the resource instances. Our goal is to maximize the
social welfare of buyers and customers. In cloud computing, maximizing social welfare
improves overall system efficiency and customer experience simultaneously [13]. There
are three types of social welfare namely utilitarian, egalitarian and Nash Social Welfare
(NSW).

The goal of utilitarian solutions is to maximize the total utility across the buyers. Hence,
the allocation is thus always biased towards the buyers with higher utility. On the other
hand, the egalitarian or max-min fairness approach tries to maximize the happiness of the
least satisfied buyer and is thus biased towards buyers with the lowest utility. NSW is a
Pareto outcome between utilitarian and egalitarian approaches [25, 30]. In other words,
NSW achieves the balance between efficiency and fairness. Hence, in this work, our goal is
to maximize NSW.

A market which maximizes NSW is the well-known Eisenberg-Gale or Fisher mar-
ket [26]. The prices in the Fisher market is market clearing [26]. Further, prices are
determined solely on supply and demand which is determined from the customer utility.
Hence, there is no need to measure actual consumption of resources for computing prices.
Therefore, challenges C2 and C3 are not applicable for the Fisher market.

Based on these principles, our contributions are:

• We propose ERM, an auction-based algorithm (Section 5.3) for computing the (1+ ε)
equilibrium for markets with buyers with SPLC utility and market providers that offer
multiple resource instances. Typically, prices in an approximate market equilibrium
are market clearing, and most buyers achieve a satisfactory allocation [118]. The
basic idea is to allocate resource instances requested by a set of buyers by traversing
a demand graph of buyers. Instead, ERM starts with low prices for all resources and
iteratively increases these prices until no buyer is willing to pay a higher price.

• Different to state of the art solutions, ERM is further not only designed to compute
equilibrium prices but also to compute differential prices without violating the (1+ε)
market equilibrium. Previous approaches can only include fixed transaction costs
(e.g., taxes or fixed differential) for buyers and resources [36]. They additionally treat



ARPP Market 62

identical copies of multiple instances as independent resources and are thus unable to
capture price differentiation. ERM is the first approach to exploit SPLC utilities, which
allow the price differential to vary depending on utility, budget and resource types.

• We evaluate ERM with uniform, normal and Pareto distributions to represent a good
match of heavy and non-heavy tailed distributions to represent various buyer utility
behaviors (Section 5.4.1). Our results show that ERM, in fact, offers orders of magni-
tude more (10× to 100× in most cases) revenue for the market provider than state-
of-the-art approaches. At the same time, it is proven to be fair by achieving the Nash
Social Welfare (NSW), and this property increases as the problem complexity grows.
Further, ERM captures dynamic prices based on supply and demand of resources. Fi-
nally, while convex program solvers do not scale beyond 50 buyers, we show that ERM
scales well with increasing numbers of buyers and resource types, and can compute a
solution within seconds, even for large scenarios with 500 buyers and resource types.

5.2 ERM Problem

Our market features multiple buyers interested in one or multiple resource types. Further,
the market provider may offer multiple instances of each resource2. Here, a buyer’s utility
for different instances of the same resource type is not necessarily the same since an instance
can run in different environments with different impacts on its performance. Buyers express
their interest in utility (definition 2.2) for the resources. Section 2.2 presents the essential
concepts of the market.

The goal of the market is to allocate resources to successful buyers. The critical chal-
lenges are:

• The market M should have the market clearing property [21].
• The resources offered in M are indivisible.
• The market should offer rational equilibrium prices [33]. For a rational input, rational

equilibrium implies the existence of a rational optimal solution with bitsize bounded
polynomially by the input size [119]. For such a rational optimal solution, we can
employ linear programming solvers instead of slow convex solvers, which adds to the
practicality of ERM [119].

• The market should offer differential prices.

Figure 5.1 depicts a simple example of four resource types (R1, R2, R3, R4) with R1

2The market provider could play the role of a middleman who procures resources from resource providers and
pays them their due for a fee [84].



63 5.2 ERM Problem

having two instances and the rest having just one instance. Figure 5.1a shows three buyers
arrive with an initial valuation of the three resource types. We can observe in Figure 5.1b
that an ideal allocation technique would assign R2 and R4 to buyer B3 since she is the only
one expressing interest in it, albeit at a very low price. Moreover, all the three buyers are
interested in the two instances of R1 and R1 is subsequently sold to the two highest bids.
Fig. 5.1b illustrates that all the resources have been sold at differing prices and that all the
buyers have received at least one of the resources they bid for. Next, we formalize the
problem.

B1

B2

B3

R1

R2

R3

R4

{{10, 5}, 0, 0, 0}

{{8, 10}, 0, 10, 0}

{{6, 3}, 5, 8, 3}

{2}

{1}

{1}

Valuations Buyers Resource 
Types

Instances

{1}

(a) Buyer’s resource valuations

B1

B2

B3

R1

R2

R3

R4

{2}

{1}

{1}

Buyers Resource 
Types

Instances

{1}

(b) Allocation

Figure 5.1: Example depiction of market clearing allocation.

Let B = {1,2, . . . ,n} be a set of n buyers. Let M = {1,2, . . . ,m} be the set of resource
types, where j represents the jth resource type. Also, |B|= n and |M|=m. For each resource
type j, there are ` j instances. Let ui jk be the utility derived by the buyer i for buying the
kth instance of resource type j. Let xi jk be the amount of kth instance of resource type j
allocated to the buyer i. Let ei be the total endowment or money of the buyer i.

The utility of a resource can be modeled with a variety of different approaches. Cloud
resource utilities are usually modeled by Constant Elasticity of Substitution (CES) utility
functions. The Leontief utility is a well known CES function family but has an irrational
equilibrium [115, 120]. In real systems, an irrational equilibrium cannot be written in poly-
nomial bits [33]. Linear utility functions (convex combinations of resources) on the other
hand are simple and widely used. However, they fail to model the concept of decreasing
marginal utility (i.e., diminishing returns). SPLC utility functions address these limitations.

In our context, consider a simple service with two components, namely a web server and
a database. The total utility of the service is the additive of the PLCs of both components.
The market equilibrium of SPLC is rational [33]. Hence, in our market, we assume that



ARPP Market 64

buyers utility is SPLC.

The goal of social choice theory is to perform a fair division of resources. There are three
approaches—utilitarian, egalitarian and Nash Social Welfare (NSW). A utilitarian approach
favors buyers with large utility. Conversely, an egalitarian approach favor buyers with small
utility, while NSW has a Pareto outcome. The latter implies that the allocation can only be
improved at the expense of a buyer.

The goal of this work is to perform resource allocation such that the NSW of all buyers,
i.e., the geometric mean of their utilities, is maximized. Taking logarithm, we obtain the
following convex program [30]:

maximize
x

( n

∏
i=1

uei
i

) 1
n

subject to
n

∑
i=1

` j

∑
k=1

xi jk ≤ ` j, ∀ j ∈M,

m

∑
j=1

` j

∑
k=1

xi jk(p j +qi jk) = ei, ∀i ∈ B,

xi jk ∈ {0,1}, ∀i ∈ N, j ∈M,k ∈ ` j.

(5.2.1)

Let ppp be the m×1 vector of prices and xxx be n×m× ` j, the vector of allocations, where
the entry at (i, j,k) is xi jk, a boolean decision variable indicating whether buyer i is allocated
the kth instance of resource type j. Let M = (ppp,xxx) be the market and ppp is market clearing
prices and allocation at equilibrium xxx. In other words, let p j be the base price associated
with the resource type j and, similarly, let qi jk be the price differential, i.e., the extra money
paid by the buyer i for the kth copy of the jth resource type. The goal of this work to find
both the base price and the differential price for each resource type such that the allocation
satisfies Eq. (6.2.1).

The total utility ui is given by ui =
m

∑
j=1

` j

∑
k=1

ui jk · xi jk, where ui jk is the utility of buyer i for

the kth instance of resource type j. The objective function is to maximize the NSW of all
buyers. The first constraint ensures that the allocations never exceed ` j instances of resource
type j. The second constraint guarantees that the total price paid by the buyer never exceeds
his total money. The third constraint implies only integral allocation.

We assume the following, consistent with [84]:

• The supply of resource units is limited i.e., ` j 6= ∞,∀ j ∈M.



65 5.2 ERM Problem

• There is at least one buyer for all the resource instances, i.e., ui jk > 0,∀ j ∈ M, ` j ∈
j. The prices are determined such that all instances are sold as long as there are
enough buyers, i.e., if required, prices are fixed in such a way that even buyers with
less money are satisfied if there is no other buyer with more money available for a
resource.

In this chapter, we design M as (1+ε)-approximate equilibrium if the budget is satisfied

within a factor (1+ε) i.e.,
m

∑
j=1

` j

∑
k=1

xi jk(p j+qi jk)= (1+ε)ei,∀i∈B so that ppp and xxx are market

clearing. The notations are summarized in Table 5.1.

Symbol Description

B Set of buyers
M Set of resources
ui jk Utility of buyer i for kth instance of jth resource
ui Total utility of buyer i
ei Total budget or endowment buyer i
` j Total number of resource j instances
xi jk Boolean variable denoting allocation of kth instance of jth resource to buyer i
qi jk Differential price kth instance of jth resource to buyer i
p j Price of resource j
ppp Price vector of all resources
xxx Allocation vector of all buyers

Table 5.1: A summary of notations used for proposing ERM.



ARPP Market 66

5.3 ERM Algorithm

To simplify the computation, we take the logarithm of the objective function of Eq. (5.2.1),
and subsequently, have

maximize
x

n

∑
i=1

ei · logui

subject to
n

∑
i=1

` j

∑
k=1

xi jk ≤ ` j, ∀ j ∈M,

m

∑
j=1

` j

∑
k=1

xi jk(p j +qi jk) = ei, ∀i ∈ B,

xi jk ∈ {0,1}, ∀i ∈ N, j ∈M,k ∈ ` j.

(5.3.1)

Eq. (5.3.1) is popularly known as an Eisenberg-Gale or Fisher market [26,30,34]. In the
above formulation, p j is the base price of the jth resource type, while qi jk is the differential
price for the kth instance of resource j, i.e., additional money paid by a buyer i to achieve
higher utility. ei is the initial endowment, i.e., the maximum amount of money that the
buyer i is willing to spend.

We define bang-per-buck αi jk of the k−th copy of j as the ratio of the utility of a resource

instance to its price, i.e., αi jk =
ui jk

p j
. α describes how much a buyer benefits from buying

the resource instance at this price. Further, the rate for each buyer, ri =
ui

ei
, is the average

utility a buyer i expects to gain unit money, expressed as the ratio of total utility to the
money of i [84]. Equilibrium exists only if Eq (5.3.1) has an optimal solution which implies
that the Karush-Kuhn-Tucker (KKT) conditions are satisfied [21,34]. Section 2.1.2 presents
the fundamentals of KKT. The KKT conditions for Eq (5.3.1) are:

• ∀ j ∈M, p j ≥ 0 and ∀i ∈ N, j ∈M,k ∈ ` j,qi jk ≥ 0 which implies that both the price
and the differential price are non-negative.

• ∀ j, p j ≥ 0 =⇒
n

∑
i=1

` j

∑
k=1

xi jk = ` j which implies complete allocation of all instances of

the different resource types are sold.
• qi jk > 0 =⇒ xi jk = 1 which implies that price discrimination will affect only the

successful allocations.
• ∀i ∈ B, j ∈M,k ∈ ` j, p j +qi jk ≥

ei ·ui jk

ui
and if xi jk > 0 =⇒ p j +qi jk =

ei ·ui jk

ui
and

implies that at optimality, the actual bang-per-buck of a buyer i is at most ui.



67 5.3 ERM Algorithm

The pseudo-code of ERM is presented in Algorithm 5.1.

Algorithm 5.1 ERM auction
Require: Utility vector ui, ∀i ∈ B

1: initialize()

2: while ∀i ∈ N,si > 0 or ∀ j ∈M,
n

∑
i=1

` j

∑
k=1

xi jk = ` j do

3: buildDemandGraph()
4: transferWalk()
5: ∀ j ∈M, p j← (1+ ε) · p j

6: if ∀i ∈ B, j ∈M,k ∈ ` j,∃yi jk = 1 then
7: xi jk← 1

return ∀i ∈ B, j ∈M,k ∈ ` j,xi jk∀ j ∈M, p j

Algorithm 5.2 initialization
1: procedure INITIALIZATION(u)
2: ∀ j ∈M, p j← 0
3: ∀i ∈ B, j ∈M,k ∈ ` j,qi jk← 0

4: ui←
n

∑
i=1

m

∑
j=1

` j

∑
k=1

ui jk

5: for j← 1,m do
6: p j = minui jk,∀i ∈ N,k ∈ ` j

7: b,w← argminui jk,∀i ∈ N,k ∈ ` j

8: yb jw← 1
return ppp,yyy

The basic idea of ERM (Algorithm 5.1) is to allocate the most demanded resource in-
stances of each buyer in an iterative way, thereby reducing buyer surplus (i.e., increasing
the money spent for each buyer). First, ERM performs initialization to ensure that there is
at least one buyer for each resource instance, i.e., the prices are market clearing (Algo-
rithm 5.2). Here, for every resource instance, we find the buyer with the minimum utility for
the resource instance, and this utility is considered as the base price of the instance (line 6).
The corresponding buyer is temporarily allocated with the instance (line 7). We call this
allocation the temporary allocation. In every round t, we increase the base price of each
resource instance k by the factor (1+ ε), i.e., p j,k,t−1 =

p j,k

(1+ ε)
.

In general, the surplus of a buyer i is calculated as

si = ei−

(
m

∑
j=1

` j

∑
k=1

(
p j +qi jk

)
· xi jk +

m

∑
j=1

` j

∑
k=1

(
p j

(1+ ε)

)
· yi jk

)
(5.3.2)



ARPP Market 68

In other words, the surplus is the remaining money i has left after spending on resource
allocations. After initialization, the surplus of each buyer is reduced by the sum of his
valuations for his temporarily allocated resource instances.

Then, ERM performs resource allocation iteratively over multiple rounds, where each
round can be divided into three stages. First, we determine for every buyer with non-zero
surplus her most desired resource instance, i.e., the resource instance with a maximum
bang-per-buck. With these instances as input, ERM second generates the demand graph (Al-
gorithm 5.3), where each buyer is represented by a node, and initially no edges exist. We
then construct edges in G as follows (line 6): each resource instance k of type j was previ-
ously temporarily allocated to a buyer, say i. In the demand graph, we now create an edge
e(i′,i) between each buyer i′ for whom the kth instance of j is the most-wanted resource
instance, and i. In other words, i′ is interested in the resource allocated to i.

Algorithm 5.3 buildDemandGraph
1: procedure BUILDDEMANDGRAPH(B)
2: ∀i ∈ B,vi ∈V
3: E← /0
4: for i← 1,n do
5: if ∃i′ and i′ 6= i,yi′dc then
6: edg← (i, i′)
7: E← E ∪{edg}

return G = (V,E)

During this allocation, particularly for high-demand resources, two or more buyers might
be interested in the same resource instance. To resolve this issue, ERM as a third stage
traverses the demand graph in a DFS style from each buyer node. On each edge it traverses,
it transfers the surplus between the two adjacent buyers i′ and i, if i′ is willing to pay more
(i.e., the differential price) for the kth instance of j than i. This is the case, if the bang-per-
buck αi′, j,k is higher than ri, i.e., the required price (increased by the price differential) is
still attractive for i′ (line 3 in Algorithm 5.6), and the i has a sufficient amount of surplus
(line 6). If both requirements are satisfied, the allocation of k will be changed to i′, and the
price of the resource is updated appropriately. The money previously invested by i into k
is added to the surplus of i, while the surplus of i′ is reduced by the updated price. After
traversing the edge—regardless of whether or not the allocation of kth instance of j was
changed or not—the edge is removed from the graph. This process is repeated until the
DFS traversal reaches a leaf node. Note that

1. by removing edges during traversal, ERM also avoids loops in the graph, which is
essential to ensure the feasibility of ERM in distributed settings [36].

2. a resource can be allocated to different buyers throughout the round due to the itera-



69 5.3 ERM Algorithm

tive DFS processing of buyer nodes.

3. after traversing all buyer nodes, there will be no edges left in the graph, and all re-
sources will be allocated, i.e., they are either allocated to a new buyer or remain with
the old one (in the extreme case, with the temporarily allocated buyer during initial-
ization).

Algorithm 5.4 transferWalk
1: procedure TRANSFERWALK(G = (V,E))
2: for i← 1,n do
3: βi← DFS(i)
4: srcEdg← i
5: for ∀η ∈ βi do
6: dstEdg← η

7: transferSurplus(srcEdg,dstEdg,d,c)
8: srcEdg← η

return G = (V,E)

ERM then repeats these three stages iteratively for the next most-wanted resource in-
stances. In each iteration, it again increases the resource base price by the factor 1+ ε .
Here, the rationale is that the market provider has two significant goals. One is to sell all re-
source instances (market clearing prices), which is achieved by the guarantee of all resource
instances being allocated as long as at least one buyer is interested in them at an arbitrar-
ily low price due to ERM’s initialization procedure. The second one is to increase revenue.
This is achieved by increasing the prices of resources in every round. Here, informally, ERM
transfers resources from an already allocated buyer to another buyer with a higher surplus
for a higher price. This iterative process is performed until all buyers have zero surplus or
all resource instances are allocated, at which time ERM converges.

Theorem 5.1 (ERM approximation ratio) ERM converges with (1 + ε) market equilib-
rium.

Proof First, we prove that ERM maintains the constraints of Eq(5.3.1). The initialization
(Algorithm 5.2) performs allocation of each resource instance of all resource types with
a minimum price

p j

(1+ ε)
(line = 7). Hence, before starting the auction, all instances are

already allocated (i.e., sold). Since we initialize with minimum prices, the sum of all the
resource prices is less than the total budget. In this case, all the constraints are satisfied.

In an auction round, the allocation is modified when there is a buyer i′ with enough
surplus si′ to buy the kth resource instance of j (line 9, Algorithm 5.6). Also, the negative
surplus of buyers is one of the terminating conditions of ERM. This implies that the budget
constraint is met in every round. The differential price is calculated based on the KKT



ARPP Market 70

Algorithm 5.5 transferSurplus
[htpb]

1: procedure TRANSFERSURPLUS(G = (V,E))
2: Calculate srcSurplus and dstSurplus for i′ and i using Eq (5.3.2)
3: if αidc > ri then
4: qidc← ei ·

uidc

ui

5: if dstSurplus > (pd +qidc) then
6: adjustAllocation (i,d,c)
7: edg← (i′, i)
8: E← E \{edg}

Algorithm 5.6 adjustAllocation
1: procedure ADJUSTALLOCATION(i,d,c)
2: if αidc > si then
3: qidc← ei ·

uidc

ui
4: else
5: qidc← 0
6: curPrice← pd +qidc
7: if si > curPrice then
8: prevPrice← p′j +qi′ jk

9: if yi′dc or curPrice > prevPrice then
10: xidc← 1
11: xi′dc← 0
12: yi′dc← 0

conditions. Moreover, for every buyer i, the sum of base price and differential price always
satisfies (p j +qi jk) =

ui jk

ui
.

Finally, if there are unallocated resource instances due to low demand, then the initial
temporary allocation is made permanent(line 6 of Algorithm 5.1). Hence, ERM maintains
the conditions of (1+ ε) throughout the running time.

Let umin = minui jk and θ =
m

∑
j
` j. Since the prices are updated from umin to ∑

i
ei, there

are at most R = 1+
θ

umin
log

∑i ei

umin
rounds. The initialization and final allocation can be done

in nθ operations. The depth-first search takes O(n) operations and total surplus transfer



71 5.4 ERM Evaluation

can be achieved in O(n) operations as well. The demand set of the buyers can be found in
O(n logθ) if we use a max-heap and hence the demand graph construction takes at most
O(n2 logθ). The total time complexity of ERM is, therefore, O((n2 logθ +n)R).

5.4 ERM Evaluation

5.4.1 Methodology

Generally, the internal pricing strategies of cloud service providers are private and, to the
best of our knowledge, there exists no open real-world data for evaluating market mecha-
nisms. Hence, most existing works perform custom simulations and generate the data based
on probability distributions [24, 35, 81, 86]. Codenotti et al. [114] evaluate different market
mechanisms by generating a desirability matrix and using Constant Elasticity Substitution
(CES) utility functions to generate utilities for the buyers. Similarly, we use an SPLC func-
tion to determine buyer utilities in combination with the desirability matrix.

Initially, we generate a desirability matrix which represents the buyers’ resource instance
valuations. We generate the matrix elements based on different properties such that the sum
of each row is 1. Subsequently, we generate the utility matrix for the complete market as a
product of the desirability matrix and uniform values in the interval [0,100]. The pseudo-
code in Algorithm 5.7 presents our approach.

Algorithm 5.7 Data set generator
Require: N buyers, M resource, max instances and min instances

1: for i← 1,n do
2: for j← 1,m do
3: γ ← random(min instances,max instances)

4: ∀i ∈ N, j ∈M,k ∈ γ Generate di jk based on generator type such that
γ

∑
k

di jk = 1

and
|M|

∑
j

di j = 1

5: ∀i ∈ N, j ∈M,k ∈ γ,ui jk← di jk · random[0,100]

return Utility matrix ui jk ∈UM

We obtain different desirability matrices as follows:



ARPP Market 72

• Uniform generator: The matrix elements are uniformly distributed in the interval
[0,1].

• Subset generator: In this approach, initially we generate the subset J of M such that
|J| ← random[1, |M|]. The desire of buyers outside of J is 0. For example, if we have
5 resources and |J|= 3, then the buyers are interested only in items in J and for other
items the utility is 0.

In our evaluation, we use the combination of these two generators so that there is at least
one buyer for the resource, i.e., ∃i′ such that ui′ jk 6= 0, which is consistent with our market
assumptions. The sum of the coefficients of the two generators is 1. To determine the
utilities, we consider the following probability distributions:

• Uniform distribution: This is a simple and widely used probability distribution for
evaluating market equilibrium [115].

• Normal distribution: As the number of samples n→ ∞, non-heavy-tailed distribu-
tions converge to normal [70]. Hence, evaluation on a normal distribution guarantees
similar behavior as in other non-heavy-tailed distributions.

• Pareto distribution: This is a well known heavy-tailed distribution frequently used to
model income and wealth [121].

We consider the following scenarios:

• Fixed resource types and varying buyers: In this scenario, the number of resource
types is fixed throughout the experiments. In our case, we fix the number of resource
types to 500 and increase the number of buyers.

• Fixed buyers and varying resource types: In this case, we fix the number of buyers to
100 while resource types are increased.

For each scenario, we generate multiple instances for each resource type uniformly in
the range of [1,10 mod m], where m is the number of resource types. For instance, if we
have 500 resource types, then each resource type will have instances in the interval [1,5].
Hence, the problem size and complexity increase with the number of resource types. Our
evaluation goals are:

• To determine the revenue increase ERM yields for the market provider. To compute
the increase, we compare the revenue obtained by ERM to that obtained by a Vickrey
auction. The Vickrey auction or second-price auction [100] is a well-known auction
algorithm used in trading. In this auction a resource is allocated to the highest bidder;
however, the winner only pays the second highest bid to encourage truthful bidding.

• To evaluate the effect on the NSW of tuning epsilon, i.e., the price increase in each
round of our auction algorithm.



73 5.4 ERM Evaluation

• To evaluate the effect of varying epsilon on the running time of ERM. Note that for
auctioning time-critical services, our solution ideally needs to compute within a few
seconds.

5.4.2 Results

5.4.2.1 Provider Revenue

Figures 5.2 and 5.3 show the revenue factor (ratio of profit obtained by ERM to profit ob-
tained by the Vickrey auction) for different distributions, different values of ε and different
scenarios.

0 200 400
100

101

102

103

Re
ve

nu
e 

Im
pr

ov
em

en
t

(a) Uniform

0 200 400
Resource types

100

101

102

103 (b) Pareto

= 0.1
= 0.01
= 0.001

0 200 400
100

101

102

103 (c) Normal

Figure 5.2: Fixed Buyers: Normalized revenue improvement factor for different distribu-
tions and different values of ε .

0 200 400
100

101

102

103

Re
ve

nu
e 

Im
pr

ov
em

en
t

(a) Uniform

0 200 400
Buyers

100

101

102

103 (b) Pareto

= 0.1
= 0.01
= 0.001

0 200 400
100

101

102

103 (c) Normal

Figure 5.3: Fixed Goods: Normalized revenue improvement factor for different distribu-
tions and different values of ε .

We observe that the revenue of ERM is at least one order of magnitude higher than for
Vickrey auctions. Most improvement factors for normal and uniform distributions are in



ARPP Market 74

the range of 10× to 100×, with several occasion where ERM achieves more than that. Fur-
ther, ERM scales better than the Vickrey auction in this regard, as the ratio increases with
an increase in resources. Additionally, we observe that the revenue improvement of ERM is
the highest for the Pareto distribution, caused by its heavy-tailed nature. Here, the utilities
of the highest and second-highest bidder may significantly differ. In a Vickrey auction, the
allocated buyer pays the second highest price, whereas ERM will calculate a price closer
to the valuation of the highest bidder. Finally, as a larger ε also implies additional bud-
get allowance among buyers, increasing ε offers more revenue for varying resource types.
Figure 5.4 summarizes the improvement factors for each distribution in a CDF.

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

(a) Uniform

0 2000 4000 6000
Revenue Improvement

0.0

0.2

0.4

0.6

0.8

1.0
(b) Pareto

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0
(c) Normal

Figure 5.4: Revenue improvement CDF for different distributions

5.4.2.2 Social Welfare

Simultaneously Nash Social Welfare (NSW) increases as we scale up buyers and resources
in the market as shown in Figures 5.5 and 5.6, again supporting the scalability of our ap-
proach.

We further observe that a smaller ε results in a slightly better fairness, caused by smaller
increases of the price in each round of the auction and thereby the possibility to fulfill more
buyer demands—instead of overpricing resources for more buyers with higher ε values.
Note, however that (i) the difference between the ε values is rather small (except for the
Pareto distribution), and (ii) that there is practically no difference between ε = 0.01 and
ε = 0.001.



75 5.4 ERM Evaluation

0 200 400
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
NS

W

(a) Uniform

0 200 400
Resource types

0.0

0.2

0.4

0.6

0.8

1.0
(b) Pareto

= 0.1
= 0.01
= 0.001

0 200 400
0.0

0.2

0.4

0.6

0.8

1.0
(c) Normal

Figure 5.5: Fixed Buyers: Normalized Nash social welfare (NSW) for different distributions
and different values of ε .

0 200 400

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
NS

W

(a) Uniform

0 200 400
Buyers

0.2

0.4

0.6

0.8

1.0
(b) Pareto

= 0.1
= 0.01
= 0.001

0 200 400

0.2

0.4

0.6

0.8

1.0
(c) Normal

Figure 5.6: Fixed Goods: Normalized Nash social welfare (NSW) for different distributions
and different values of ε .

0 200 400

102

103

104

105

Ti
m

e(
m

illi
se

co
nd

s)

(a) Uniform

0 200 400
Resource types

103

104

105
(b) Pareto

= 0.1
= 0.01

0 200 400
102

103

104

105

(c) Normal

Figure 5.7: Fixed Buyers: Running time of ERM for different distributions and different val-
ues of ε .



ARPP Market 76

5.4.2.3 Performance of ERM

As one use case of ERM is edge resource auctioning, our algorithm needs to converge fast.
Therefore, in Figures 5.7 and 5.8 we evaluate the computation time of ERM, again under
the influence of ε . Since prices are increased by the factor (1+ ε) in each round, ε co-
determines the number of rounds ERM requires to converge. Thus, smaller ε values will
result in slower convergence as ERM needs to compute additional rounds of auctions.

0 200 400

103

104

105

Ti
m

e(
m

illi
se

co
nd

s)

(a) Uniform

0 200 400
Buyers

103

104

(b) Pareto

= 0.1
= 0.01

0 200 400

103

104

105
(c) Normal

Figure 5.8: Fixed Goods: Running time of ERM for different distributions and different val-
ues of ε .

Our key observation is that for time-critical auctions, ε should be set to larger values.
Here, ε = 0.1 yields computation times of less than one second for smaller markets (up
to 40 buyers and 100 resource types), and less than 10 seconds for larger markets (up to
500 buyers and resource types). When changing ε to 0.01, ERM will take over one minute
to compute a solution for the larger markets. This might not be sufficient for time-critical
service provisioning.

5.5 Summary

In this chapter, we proposed ERM, a market for edge resource allocation. Different from
state-of-the-art solutions, ERM ensures that resource prices are market clearing based on
supply and demand; maximizes NSW fairness among buyers with (1+ ε) market equi-
librium; and is based on auction performs integer allocation to reflect a realistic case of
allocating indivisible resources of the market with SPLC utilities.

Another significant feature of ERM is that it facilitates price discrimination by comput-
ing differential prices dynamically contrary to state-of-the-art solutions, enabling market
providers to provide differential services. The experiments demonstrate substantial revenue



77 5.5 Summary

improvement compared to Vickrey auctions. While standard convex solvers do not scale
beyond 50 buyers, our experiments show that ERM scales with the number of resource types
and buyers and with an appropriate value of ε can be applied to edge computing with less
loss of NSW.





Chapter6
ARPP Online Pricing

Pricing algorithms proposed in previous chapters 4 and 5 are offline algorithms—algorithms
with complete knowledge of the input. This chapter presents OFM, an online Fisher market
where the input is revealed after the prices for the current time interval are computed.

Initially, we motivate the need for online NSW maximization in cloud and edge.
Subsequently, we formalize an online Fisher market for varying buyers and resources and
introduce our OFM adversarial model. Eventually, we propose the OFM algorithm. Finally,
we evaluate and present experimental results.

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 OFM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 OFM Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 OFM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 OFM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104





81 6.1 Introduction

6.1 Introduction

Currently, most of the services and applications offered by service providers are virtualized
and hosted in data centers. Due to many benefits over hardware appliances—such as its
inherent scaling flexibility—virtualization is a primary enabler for new paradigms such as
edge computing and network function virtualization (NFV). Edge computing is gaining
in popularity for a variety of applications. For instance, edge computing can support the
trend to virtualize network functions [104] by a) providing these virtualized services close
to the user for alleviating the latency concerns [4, 105, 106]; b) avoid the need to redirect
traffic to cloud services [107];and c) support the scale up/down of services to meet user
demand [108]. IoT applications such as those on vehicles, smart-homes, and factories could
benefit from leveraging edge computing [109] to avail virtualized services such as pre-
processing the large amount of data collected.

Cloud and edge service or resource pricing3 is one of the important challenges for any
cloud and edge service providers. Low resource prices affect profit while higher prices
drive away customers. Hence, pricing affects profit and customer experience simultane-
ously. As a consequence, resource pricing has captured the attention of both academia and
industry [63]. Currently, cloud service providers employ a “pay-as-you-go” or fixed pricing
model. In this model, prices are computed based on usage time. For instance, Amazon
EC2 instances are billed hourly. Fixed pricing maximizes the revenue only if every cus-
tomer behavior is well-defined and arrivals are temporally invariant [12]. For example,
consumers spending more money on weekends than weekdays is an example of a well de-
fined behavior. The temporal invariance implies constant customer arrivals. However, these
conditions are not valid in cloud computing because both customer demands and arrivals
are ad-hoc [13]. Moreover, the physical capacity of cloud resources is finite [14]. Most
often, the default fixed pricing favors cloud service providers contractually [19]. Further,
resource prices are uniform regardless of demand and scarcity [113]. Hence, cloud service
providers cannot benefit from an additional profit during high demand periods and suffer
a loss during low demand periods. Hence, fixed pricing neither maximize the revenue of
cloud service provider nor fair towards customers.

The cloud computing community is exploring alternative pricing schemes such as posted
pricing and dynamic pricing [18–20] to address the earlier mentioned fixed pricing issues.
In posted pricing, customers appear sequentially, and the seller publishes prices. Cus-
tomers procure resources only if prices are acceptable. Hence, this approach is alternatively
known as leave-it-or-take-it pricing. However, posted pricing approaches does not guar-
antee equilibrium or market-clearing prices—prices guarantee complete allocation of all
resources [21].

3In this work we use the terms services and resources interchangeably



ARPP Online Pricing 82

In dynamic pricing, resource prices reflect the supply and demand of the resource, i.e.,
the higher the demand, the higher the prices. Most often dynamic pricing leads to efficient
resource utilization and satisfies user demands [13]. There are some efforts from the in-
dustry to move towards dynamic pricing. For instance, Amazon introduced the concept of
spot pricing. In spot pricing, a user can specify maximum prices he is willing to pay, and
instances are allocated until spot instance prices are within the maximum price. However,
spot instance prices are not determined based on market demand [20].

Generally, cloud service providers are profit driven. Hence, prices maximize revenue
for the service provider. Alternatively, maximizing social welfare especially in cloud com-
puting improves not only overall system efficiency but also assures a better user experi-
ence [13]. Further, maximizing social welfare is appropriate for both public and private
clouds [22]. Therefore, maximizing social welfare is beneficial for both cloud service
providers and users.

There are three types of social welfare namely utilitarian, egalitarian or max-min fair-
ness and Nash social welfare(NSW). In utilitarian, the aim is to maximize overall utility of
customers and service providers. Most of the works [20] in the Cloud regarding dynamic
pricing are utilitarian and favor customers with higher utility. Conversely, the egalitar-
ian goal is to maximize the minimum utility of the customers and rewards customers with
lower utility. In literature [25], NSW is the Pareto outcome between utilitarian and egali-
tarian approaches. Further, NSW is scale-free, i.e., optimal allocation is independent of the
scale of each customer’s utility. Hence, maximizing NSW is appropriate for a cloud and
edge environment. Further, cloud customer demands are online and hence require online
pricing [13]. However, designing online market maximizing NSW is non-trivial due to the
following challenges:

(C1) Customer valuations are not independent and identically distributed [42] and vary
dynamically, and decisions are often time-critical [13].

(C2) Cloud resources are usually virtualized and therefore rendered intangible [18]. These
cloud resources need to be allocated as a whole, i.e., a fractional allocation (such as
one half of a virtual machine (VM)) is impractical in cloud environments.

We believe that there exists no solution that solves these challenges. Therefore, in this
work, we introduce OFM, an extended online Fisher market for dynamically pricing cloud
resources. OFM yields the following contributions:

(i) OFM maximizes NSW of providers and customers while achieving market clearing
prices. In particular, it achieves a balance between efficiency and fairness. While
state-of-the-art solutions typically follow a utilitarian approach [82,83,86], NSW has
been proven to be fair to all customers and the providers [25].



83 6.1 Introduction

(ii) OFM allows for the online allocation of resources. State-of-the-art Fisher markets typ-
ically employ offline algorithms, i.e., algorithms with complete knowledge about the
input [26, 27, 84, 122, 123] that includes the buyer utilities as well as the number of
buyers and resources. In the online version of a Fisher market, the resources freshly
appear in each round and allocation decisions as well as price calculations are per-
formed simultaneously in an irrevocable fashion [47, 48, 88]. Both are not aligned
with the cloud reality in which customers dynamically arrive at the market and pro-
cure a fixed set of available resources. OFM fits the needs of a cloud resource market.
In contrast to existing solutions, OFM can converge and allocate resources without
aprior knowledge about the number of buyers and their utilities in each allocation
round.

(iii) OFM ensures the integer allocation of resources. State-of-the-art solutions typically
round fractional allocations to the nearest integer solution. Unfortunately, the result-
ing rounding difference, also called as integrality gap is unbounded for a market, i.e.,
the difference grows with the number of buyers [30]. The OFM formulation implies
only integer allocation since constraints force buyers to pay either the full price of the
resource or nothing (Theorem 6.1).

(iv) Online algorithms usually are analyzed with worst-case input. However, observed
data in real systems is not worst-case input at all times. Devanur and Hayes [124]
proposed a random permutation model for this scenario in an online algorithm. Also,
this model is more generic compared to independent and identically distributed data
(iid) with both known and unknown distributions [125]. Moreover, algorithms for
random permutated models provide better performance for an arbitrary input [125].
Furthermore, this enables us to capture changing customers and resources offered
over a period. The adversarial model of OFM is not only stricter than state-of-art
solution [49] but also more optimistic than [48].

(v) Online convex optimization (OCO) [126] methods are widely used for online prob-
lems with Lipschitz continuous objective functions. The NSW objective of Fisher
market neither guarantee integer allocation nor Lipschitz continuous [127] . Hence,
OFM uses an equivalent convex program proposed in [122, 123]. This formulation not
only maximizes NSW but also guarantee integer allocation (Theorem 6.1). Even this
formulation is also not Lipschitz continuous. OFM apply a simple relationship between
concave and convex functions and convert the objective to a convex function by flip-
ping the sign of the objective function. Informally, OFM performs optimization in the
opposite direction of the objective. The prices computed by both concave and convex
functions are the same. The equilibrium prices form unit simplex [122]. Hence, the
value of the prices is in [0,1] all the time.

(vi) OFM uses online mirror descent algorithm [126] with unnormalized negative entropy
as the regularization function. In the first stage, OFM predicts the current price based
on the previous period price. The input is revealed after the prediction and OFM will



ARPP Online Pricing 84

perform an update on the regularization function and projects back to the current ob-
jective function. This projection minimizes the Bregman divergence of the regulariza-
tion function. The OFM updates are closed-form expressions and are computationally
efficient. Hence, OFM can scale for a large number of buyers and customers. Intu-
itively, OFM picks the resource prices near the previous optimal resource allocation.
We measure the performance of OFM using regret. Regret is the difference between
an online player and a static player with hindsight information.

Generally, the internal pricing mechanisms are not made public due to the fear of losing
competitive edge over other service providers. We believe that there is no openly available
cloud pricing data of service providers. Balserio et al. [128] generate a stochastic dataset
based on Google AdX 4 real data to evaluate their AdX placement algorithms. Further,
Bateni et al. [49] 5 extend this dataset for their evaluation.

Each dataset consists of varying advertisers and impression types. The number of ad-
vertisers and impressions are different in each dataset. Also, the utilities of the advertisers
are sparse in one data set while dense in another dataset. We evaluate OFM in two scenarios
namely fixed resources and varying resources. In fixed resources, we extend the dataset
by distributing buyer utilities normally and uniformly. The experimental results clearly
show the convergence of OFM with a prediction accuracy of about 95% of optimal prices on
datasets namely AdX, normal and uniformly distributed data.

For evaluating varying resource scenario, we generate the number of resources offered
at each time instance by randomly sampling CPU demand without replacement from the
Google cluster data trace [129]. We employ prediction schemes to predict the resources
offered. We use time series models, mean of the previous resource offered and resource of-
fered in the last interval. Our evaluation shows the superiority of ARIMA (Autoregressive
Integrated and Moving Average) model over other regarding prediction accuracy. How-
ever, merely using the information of last offered resources can reduce computational time
without affecting overall performance.

Furthermore, we perform experiments to determine the impact of buyers on OFM. The
results clearly show that OFM computation time is in the order of microseconds for a large
number of buyers. Hence, OFM is a candidate for the edge computing market where there is
a need for quick and irrevocable price computations.

4https://developers.google.com/ad-exchange/
5https://bitbucket.org/florinciocan/fairresourceallocation.git



85 6.2 OFM Problem

6.2 OFM Problem

Let N = {1,2, . . . ,n} be a set of n buyers indexed by i i.e., i represents the ith buyer. Let
R = {1,2, . . . ,m} be the set of resources indexed by j, i.e., j represents the jth resource.
Let xi j be the fraction of allocation of the jth resource to the ith buyer. Let ui j be the utility

derived by ith buyer for jth resource and ui =
m

∑
j=1

ui j ·xi j be the total utility derived by the ith

buyer. Also, let bi be the budget of the ith buyer i.e., , total endowment or money of buyer i.

In a cloud, maximizing social welfare not only improves overall system efficiency but
also assures a better user experience [13]. In social choice theory, there exist three types
of social welfare—utilitarian, egalitarian and Nash Social Welfare (NSW). In a utilitarian
approach, the goal is to maximize total utility of buyers and customers while an egalitarian
approach maximizes the minimum utility of the customers. As a result, buyers with a higher
utility are favored in the former approach while the later favors buyers with smaller utility.
NSW achieves a Pareto outcome between utilitarian and egalitarian. Conversely, NSW
achieves a balance between efficiency and fairness [25]. Moreover, NSW is scale-free—
optimal allocation is independent of the scale of each customer’s utility. As a consequence,
there is no incentive to inflate or deflate utility.

We assume the following, consistent with [84]:

• The supply of resources is limited.
• There is at least one buyer for all the resources, i.e., ui j > 0,∀ j ∈ G . The prices are

determined such that all resources are sold as long as there are enough buyers. In
other words, prices are computed in such a way that even buyers with less money are
satisfied if there is no other buyer with more money available for a resource.

Theoretically, NSW is the geometric mean of the utilities of all the buyers, i.e., (ub1
1 ·

ub2
2 · · ·u

bn
n )

1
n . Additionally, as discussed before, in the context of cloud computing the notion

of fractional allocation does not have practical application. Therefore, existing solutions
typically round the fractional part to the next integer value [130] as the difference between
actual and rounded values are usually negligible. This difference is known as the integrality
gap. However, Cole et al. [30] show that for a Fisher market, this rounding approach leads
to suboptimal performance due to an unbounded integrality gap (integrality gap increases
with the number of buyers). Therefore, OFM considers resources to be indivisible which
implies that allocation of a resource is either 0 or 1. If we take the logarithm, then the
maximization of NSW reduces to an Eisenberg-Gale or Fisher market [26]. The convex



ARPP Online Pricing 86

program is as follows:

maximize
x

n

∑
i=1

bi logui

subject to ui =
m

∑
j=1

ui j · xi j, ∀i ∈N ,

n

∑
i=1

xi j ≤ 1, j ∈R,

xi j ∈ {0,1}, ∀i ∈N , j ∈R.

(6.2.1)

Unfortunately, Eq. (6.2.1) cannot be used directly in an online setting to address chal-
lenge C2 due to the following reasons:

• Most of the online convex optimization algorithms assume that the objective function
is Lipschitz continuous. Our objective function, however, is not only non-Lipschitz
continuous (the rate of change of the function is not constant) but also non-convex.

• Even if we circumvent non-Lipschitz continuity by shifting the valuations to a range
{1, · · · ,K+1}, where a number K > 0 then we will end up as a linear factor in regret
bound leading to low performance (around less 20%) [131].

• Integer allocation is not guaranteed as discussed above.

Cole et al. [123] provide a convex program equivalent to 6.2.1 as follows:

maximize
x

(
∏i ∏ j uxi j

i j

∏ j pp j
j

)

subject to
n

∑
i=1

yi j = p j, ∀ j,

m

∑
j=1

yi j = bi, ∀i,

xi j ∈ {0, p j}, ∀i, j, p j ≤ 1.

(6.2.2)

Here, p j is the price associated with resource type j. Also, yi j is the amount paid by
the buyer i for the jth resource. The first constraint implies that the total amount paid for a
resource by all buyers never exceeds resource price. The second constraint guarantees that
the total amount paid by the buyer is within his overall budget bi.



87 6.2 OFM Problem

Lemma 6.1 (Equivalence of OFM objective function) Eq. (6.2.1) and Eq. (6.2.2) max-
imize the NSW. Further, the logarithm of the objective function Eq. (6.2.2) maximizes
NSW.

Proof The equivalence of Eq. (6.2.1) and Eq. (6.2.2) is proven in [123]. The logarithm

of the objective
n

∑
i=1

m

∑
j=1

(yi j logui j − p j log p j). This is the objective function of the con-

vex program proposed by [122] for determining equilibrium prices. The proof of NSW
maximization for this objective function can be found in [122, 132]. Hence, the objective

n

∑
i=1

m

∑
j=1

(xi j logui j− p j log p j) is NSW maximizing.

If we take the logarithm of the objective of Eq. ( 6.2.2) and apply an additional constraint
to enforce integer allocation [123], we get the following convex program:

maximize
x

n

∑
i=1

m

∑
j=1

(xi j logui j− p j log p j)

subject to
n

∑
i=1

xi j = p j, ∀ j ∈R,

m

∑
j=1

xi j = bi, ∀i ∈N ,

xi j ∈ {0, p j}, ∀i ∈N , j ∈R, p j ≤ 1.

(6.2.3)

The third constraint implies that the buyer will either pay the full price or nothing.

Theorem 6.1 (OFM objective function property) The convex program (6.2.3) maxi-
mizes NSW and performs integer allocation.

Proof The objective of Eq. (6.2.3) is the logarithm of Eq. (6.2.2). Hence, by using

lemma 6.1, Eq. (6.2.3) maximizes NSW. The constraint xi j ∈ {0, p j} and
n

∑
i=1

xi j = p j

implies that there can be only one buyer among others with xi j = p j, while for the rest

of buyers i′ 6= i, xi′ j = 0. Substituting, we get,
m

∑
j=1

xi j logui j− xi j logxi j and the following



ARPP Online Pricing 88

convex program:

maximize
x

n

∑
i=1

m

∑
j=1

(xi j logui j− p j log p j)

subject to
m

∑
j=1

xi j = bi, ∀i ∈N .

The objective function of convex program 6.2.3 is not only non-Lipschitz continuous
but also concave. Hence, online convex optimization based methods cannot be applied
directly. Therefore, we perform the following steps before applying online convex opti-
mization methods:

• We apply a simple relationship between concave and convex functions and convert
the objective to a convex function by flipping the sign of the objective function. Then
the goal is changed to minimize the convex function (i.e., maxg(x) and min−g(x)
are equivalent). Informally, we perform optimization in the opposite direction of the
objective.

• In a Fisher market, equilibrium prices form a unit simplex, i.e., the sum of normal-
ized prices of all goods is equal to 1 [122]. Furthermore, the unit simplex not only
reduces computational complexity but also implicitly enforces the constraint of Eq.
(6.2.4). Still, the optimality of the solution is not affected. Hence, we address the
non-Lipschitz continuous nature of the program by restricting the input set to a unit
simplex.

Finally, the convex program for OFM is as follows:

minimize
x

n

∑
i=1

m

∑
j=1

(xi j logui j− p j log p j)

subject to
m

∑
j=1

xi j = bi, ∀i ∈N ,

xi j ≥ 0, ∀i ∈N , j ∈R

(6.2.4)

The above formulation is the minimization of the Kullback-Leiber (KL) divergence [133]
between price and utility [123]. In summary, Eq. (6.2.4) addresses the challenge C2 de-
scribed in Section 6.1. In the subsequent section, we develop the adversarial model for
addressing the challenge C1. The following Table 6.1 summarizes the notations used in this
section.



89 6.3 OFM Adversarial Model

Symbol Description

N Set of buyers
R Set of resources
ui j Utility of buyer i for jth resource
ui Total utility of buyer i
bi Total budget or endowment buyer i
xi j Boolean variable denoting allocation of jth resource to buyer i
p j Price of resource j

Table 6.1: A summary of notations used in OFM.

6.3 OFM Adversarial Model

Online algorithms, unlike their offline counterparts, do not have complete information about
the input. Hence, for analyzing the performance of online algorithms, adversarial models
are proposed in the literature. The basic idea of an adversarial model is to present input
which negatively affects the performance of the algorithm. For instance, quicksort per-
forms poorly when the input is already sorted. Most of the proposed online algorithms are
pessimistically designed towards a fully adversarial model where the input data is provided
for the worst-case.

In real scenarios, often input is well-behavedness. For instance, in sponsored search
auctions, the query keywords are classified into head and tail keywords based on the fre-
quency of their appearance. Head keywords frequently appear while tail keywords appear
rarely. The tail keywords are the reason for the competitive edge of search engines over
traditional media such as television advertisements. However, tail keywords are harder to
optimize [124]. Furthermore, both pessimistic and stochastic adversarial models cannot
model tail behavior.

Devanur and Hayes [124] proposed a random permutation model for modeling tail key-
word behavior and account for the behavior of observed data in an online algorithm. We
can observe a similar tail behavior in cloud computing as well. For instance, the Amazon
AWS EC2 service is more popular than the AWS Elastic search service [134]. Hence, a
random permutation model is more suitable for cloud computing due to its ability to model
tail behavior and its generic nature. In essence, the random permutation model is sam-
pling without replacement, while independent and identically distributed data with known
and unknown distributions are sampling with replacement [124]. In sampling with replace-
ment, samples drawn are independent of each other while they are dependent in sampling



ARPP Online Pricing 90

without replacement. Hence, the random permutation model is more generic compared to
independent and identically distributed. Importantly, any algorithm that works on a ran-
dom permutation model will work for independent and identically distributed models [135]
and provide better performance for arbitrary input [125]. Finally, this enables us to model
customers and resource dynamics over a period. Hence, we use the random permutation
adversarial model for the online fisher market proposed in [125].

Briefly, OFM random permutation model not only captures tail behavior but is also more
generic compared to stochastic models. Simultaneously, it is less pessimistic compared to
fully adversarial. In summary, OFM adversarial model captures the well-behaveness of the
data compared to the state-of-the-art adversarial models for the online Fisher market [48,
49].

Formally, we define our random permutation model as follows [125]: The adversary picks
an input consisting of n = |N |, m = |R|, mi,∀i∈N and di j∀i∈N , j ∈R. A permutation
π of G is chosen uniformly at random. In round t, the buyer’s utility inputs are ut

i j = diπ( j)
and the budget of the buyer i is bi = eπ(i).

Hazan et al. [136] define regret as the difference between the total cost of the current
decision and the best single decision with the benefit of hindsight. Informally, regret is the
performance measure between an online player and a static player with hindsight informa-
tion. Let `t be the instance of Eq. (6.2.4) at period t or in other words the value of the loss
function at period t. Formally, we denote the cumulative regret of the objective function as
follows [137]:

RRRooo =
T

∑
t=1

`t(xt)−min
x

`t(xt) (6.3.1)

In summary, the design goals of OFM are:

(D1) Find prices p j,∀ j ∈R at every time instance t for varying buyers and resources which
maximize Nash social welfare and approximately market clearing.

(D2) Minimize the regret RRRooo.

The design goal D1 addresses challenge C2 while design goal D2 address the challenge
C1 as described in Section 6.1. In the subsequent section, we present the OFM algorithm to
achieve above design goals. In the next section, we present the OFM algorithm to achieve the
above goals.



91 6.4 OFM Algorithm

6.4 OFM Algorithm

The design goal D2 can be achieved by choosing an approximate online convex optimization
algorithm. At every time instance, the numbers of buyers and resources are dynamic—
a typical scenario in the cloud [13]. Further, the computation of equilibrium prices for an
offline algorithm using convex optimization solvers is not scalable [114]. Therefore, several
works [27, 28] compute approximate equilibrium market prices. Hence, even for an offline
algorithm, computing market equilibrium prices is non-trivial and especially true in the
online scenario with a one-time decision and varying demand and supply as well. Thus,
achieving D1 for OFM is non-trivial and very challenging.

At every time instant t OFM will be in either of following scenarios:

• Fixed resource set: The number of resources offered by the provider(s) is constant
over a period with varying buyers.

• Varying resource set: The number of resources offered by the provider(s) and buyers
both varies at every time instance.

With a fixed resource set, since the offered resources are constant, the prices depend
solely on the buyer utility at that time instant t. If the objective function can be solved using
a closed expression, then the resulting algorithm not only computationally efficient but also
scales with the numbers of buyers. We can obtain a closed-form expression for the OFM

objective in this scenario for finding market equilibrium prices.

Lemma 6.2 (OFM closed form expression) The closed form expression for computing

prices of the OFM objective function with m fixed resources is given by xi j =
biui j

∑
m
j=1 ui j

.

Proof Let αi be the dual variable associated with each constraint in equation (6.2.4). Now
we derive the closed form expression for xi j which minimizes the value of equation (6.2.4)

L (x,α) =
n

∑
i=1

m

∑
j=1

xi j logxi j− xi j logui j +
n

∑
i=1

αi
(
bi−

m

∑
j=1

xi j
)

Let g(α) be the dual function and by definition, we have

g(α) = sup
x∈∆

L (x,α)

∇xL (x,α) = logxi j +1− logui j−αi

Let µi j = logui j +αi, then

= logxi j +1−µi j



ARPP Online Pricing 92

At optimality, ∇xL (x,α) = 0

=⇒ xi j = exp
{

µi j−1
}

Substituting xi j in g(α), we have

g(α) = sup
n

∑
i=1

biαi−
n

∑
i=1

m

∑
j=1

eµi j−1

Eliminating µi j,

= max
n

∑
i=1

biαi +
n

∑
i=1

m

∑
j=1

ui jeαi−1

g is maximized when ∇g = 0, therefore,

bi =
m

∑
j=1

ui j exp(αi−1)

Finally, the maximum value of g(α) is

maxg(α) =
n

∑
i=1

(logbi− log
m

∑
j=1

ui j)

According to strong duality theorem, at optimality the primal and dual objective have

same value. If we substitute xi j =
biui j

∑
m
j=1 ui j

, equation (6.2.4) achieve minimum value. The

dual of (6.2.4) is:

maximize
x

n

∑
i=1

biαi−
n

∑
i=1

m

∑
j=1

ui jeµi j−1

subject to µi j− logui j ≤ αi, ∀i ∈N , j ∈R,

αi ≥ 0, ∀i ∈N .

(6.4.1)

At optimality,i.e., xi j =
biui j

∑
m
j=1 ui j

then αi = 1. The value of xi j is same for the maximiza-

tion of Eq(6.2.3) and readers can see at [123].

Hence, for fixed resource set, we can compute the prices efficiently and quickly.

The varying resource set is a generic problem compared to the fixed resource scenario
and hence, more challenging. Furthermore, a typical real case scenario in cloud subletting.



93 6.4 OFM Algorithm

In cloud subletting, a user can monetize her unused or under-utilized resources by sublet-
ting to other users [138]. The service provider can act as a broker on behalf of a user for
subletting resources. At every period, interested users can submit under-utilized resources
to the service provider. The service provider can sublet for a specified period. Hence, the
service provider lacks complete knowledge of the total number of resources offered at every
instance. However, it is necessary to predict the number of resources offered approximately.
For instance, in a sponsored search auction, if the number of queries is unknown apriori,
then the competitive ratio of the online algorithm will be bounded away from 1 even for a
small number of bidders and query keywords [124]. Hence, Devanur and Hayes [124] ad-
vocate knowing the number of queries offered approximately to improve the performance
of the online algorithm.

In OFM, the number of resources offered is revealed only after the current prices are com-
puted. However, OFM has access to the past data, and there will be patterns and trends in
supply and demand such as periodical changes from low to high demand and vice versa.
Time series analysis is widely used to predict future data based on such trends [139]. OFM
updates the time series model based on the input data and performs a prediction of the num-
ber of resources offered in the next time instance. Here, OFM can employ different prediction
models such as ARIMA, but also more straightforward approaches such as simple moving
averages and immediate past values.

Once OFM has predicted the number of resources, then the scenario is similar to a fixed
resource set and OFM finds the new prices near to the previous instance optimal prices. In
this way, OFM achieves its second goal.

We introduce the notation and definitions used by the OFM algorithm. The objective func-
tion of OFM is not only convex but also time variant with varying buyers and resources. The
equilibrium prices form a unit simplex [122]. Let ∆t be the unit simplex constructed from

the set X at time t. Formally, ∆t =

{
x

∣∣∣∣∣ n

∑
i=1

m

∑
j=1

xi j = 1

}
. The cardinality of ∆t changes only

when there is a change in the number of resources offered. That is, |∆t | 6= |∆t ′ | if mt 6= mt ′ .
Let ∆ be the set of all unit simplex till period T . Formally, ∆ = {∆t |t ≤ T}.

Let xxxt be the price matrix (column vector of size m×n) which is the price buyers pay for
the resources at round t, i.e., xxxt = (xt

i j,∀xi j ∈ ∆t). Let mt be the number of resources offered
at time t and assume that k past values are available, i.e., mt−k,mt−k−1, . . . ,mt .

Online mirror descent (OMD) is one of the widely used algorithms for online convex
optimization [126, 140, 141]. The basic idea of OMD is to perform an update on the dual
space of the regularizing function and to project the update on the convex decision set using
appropriate distance generating functions iteratively. The regularization function not only



ARPP Online Pricing 94

improves the stability but also lowers the regret bounds [126]. Furthermore, OMD has
following characteristics [141]:

• Nearly optimal regret can be achieved even for a full adversary (worst case input data)
by using OMD for any convex online learning problem by defining an appropriate
distance generating function. Hence, can be applied to any convex learning problem
and therefore, OMD is considered as universal [141].

• The OMD update is a first order method (involves only the slope of the function).
Hence, most of the times the updates are simple and computationally efficient.

Hence, OFM employs OMD. To apply OMD, we require a distance generating func-
tion, which is dependent on the geometry of the objective function. The Bregman diver-
gence [142] is one of the widely used distance generating functions. It is used to measure
the distance between the function and the first order Taylor expansion of the function (tan-
gent). Formally, let h : Ω× ri(Ω) be a continuously differentiable convex function and let
ppp and qqq be the two points on h with gradient ∇ppp and ∇qqq respectively. Then, the Bregman
divergence is defined as follows:

Bh(ppp,qqq) = φ(ppp)−φ(qqq)−〈∇qqq, ppp−qqq〉 (6.4.2)

For a Fisher market, an unnormalized negative entropy function is used as the regulariza-
tion function [132, 143]. Hence, OFM uses unnormalized negative entropy as the regulariza-
tion function, i.e., h(x) = x logx− x and the corresponding Bregman divergence expression
can be found in Appendix A.2. The pseudo-code of OFM is presented in Algorithm 6.1. OFM
works in two stages. The prices are predicted in the first stage and the objective function is
updated in the later stage. Let m0 be the resources offered at time t = 0. Initially, OFM deter-
mines the number of resources randomly and the corresponding unit simplex. Furthermore,

prices for all resources are initialized to
1

m0
such that the unit simplex property

m0

∑
j=1

p j = 1

is satisfied.

For every period t, OFM first predicts the number of resources (line 5). If the number of
resources offered is not the same as in the previous period t−1, then either new resources
are added or existing resources have been removed. The removal of a resource is straight-
forward and involves only updating the length of the set ∆ (line 12). Moreover, it does not
violate budgets. Let δ be the difference between the number of resources predicted during
t and the actual number of resources offered in t− 1, i.e., δ = m′t −mt−1. Let σt−1 be the
sum of all prices at instance t− 1. OFM performs the following during the addition of new
resources (δ > 0).

• Compute the new prices for mt using OMD update. These resources are old resources.



95 6.4 OFM Algorithm

• Compute the difference between the sum of current prices of old resources and σt−1.

The new prices are initialized with the value
∑

mt−1
j=1 x j−σt−1

δ · t
since equilibrium prices

form unit simplex. If new resources are introduced later, then they should be initial-
ized with low prices to satisfy the unit simplex property. Otherwise, will lead to the
budget violation. Therefore, it is necessary to penalize the offering of new resources
at a later period.

OFM computes the difference and updates the length of the current price vector xt(line 6).
The prices are predicted before the input is revealed (line 13) using algorithm 6.2. Once
prices are predicted, the function `t along with the input parameters m,n, and ui j are re-
vealed to OFM. These parameters are used to update the online mirror descent of the OFM

algorithm. Further, we compute the optimal prices for the current period using the closed-
form expression provided in lemma 6.2(line 15).

Algorithm 6.1 OFM algorithm
Require: `t ,mt ,nt

1: m0← random()

2: ∀ j ∈ m0,x0 =
1

m0
3: ∆ = ∆m0

4: for t← 1,T do
5: m′t ← predictResources(predict, t)
6: if m′t 6= mt−1 then
7: δ ← m′t −mt−1
8: if δ > 0 then

9: ∀k ∈ δ ,xt [k]←
∑

mt−1
j=1 x j−σt−1

δ · t
10: Set |xt | ←max{mt−1,m′t}
11: else
12: Set |xt | ←min{mt−1,m′t}
13: xt ← OFM−MD(predict, t)
14: Observe `t

15: xt ← arg`t(x∗)
16: if mt−1 6= mt then ∆← ∆∪{∆mt}
17: onlinePrice(update, `t ,xt)
18: predictResources(update,mt)

Algorithm 6.2 is the pseudo-code for online price prediction. The primary function of
Algorithm 6.2 is to predict the current prices based on the previous period t. OMD performs



ARPP Online Pricing 96

the price prediction in two stages. They are:

• In the first stage, an update is performed on the regularization function h(x). Let yt

be the update for h at instance t. In OFM, the update rule is given by ∇h(yt+1) =
∇h(xt)−η∇t , where ∇t is the gradient of `t .

• Once yt+1 is calculated, then the prediction at time t +1, i.e., xt+1 is the projection on
∆ that minimizes Bregman divergence between points in ∆ and yt+1 on the function
h. Formally, we can write as the following optimization problem:

maximize
x ∈ ∆

Bh(x,yt+1) (6.4.3)

Eq. (6.4.3) is minimized if ∇Bh(x,yt+1) = 0. This implies that xt+1 = yt+1. The proof
can be found in Appendix A.2.

In OFM, the structure of the objective function f is time-invariant but the number of con-
sumers, resources offered and utility are time variant. Hence, we get a closed-form expres-
sion for updates and predict the prices for the next instance instantly as soon as the input is
revealed in Algorithm 6.2(line= 5).

Algorithm 6.2 onlinePrice algorithm
1: procedure ONLINEPRICE(state, f ′,x′)

2: x0←
1
e

3: for t← 1,T do
4: if state == predict then return xt

5: if state == update then
6: `t ← `′

7: xt ← x′

8: ∇t = ∇`t(xt)
9: xt+1 = e(logxt−η∇t)

In summary, OFM performs the computation of market equilibrium prices for the resources
and prediction of resources offered at every period. The computation of optimal prices
requires m · n steps. Furthermore, the minimum prices need n steps. Computing the slope
using previous prices and current price prediction require n steps each. Hence, the time
complexity for every round is O(m ·n). The total time complexity for T periods is given by
O(T · (mmm ·nnn)) where mmm = maxmt , t < T and nnn = maxnt , t < T .

Lemma 6.3 (OFM regret bound) The regret bound of OFM is RRRooo ≤ 2
√

2T lognnn.

Proof In OFM, ∆ is a simplex and the sum of optimal offline prices (equilibrium prices) never
exceeds 1 [122]. Hence, the slope of OFM is bounded even though it is logarithmic. Let ‖∇t‖



97 6.5 OFM Evaluation

be the dual norm of the slope at period t and for ∆, ‖∇t‖ ≤ 1. Let nnn = maxnt , t < T be the
maximum number of resources offered in OFM. By substituting these values in [126, §5.4],
we get the regret bound RRRooo ≤ 2

√
2T lognnn.

6.5 OFM Evaluation

6.5.1 Methodology

Resource pricing is of strategic importance for any service provider. Generally, the inter-
nal pricing mechanisms are private due to the fear of losing a competitive edge over other
service providers. We believe that cloud pricing data of service providers are unavailable.
Balserio et al. [128] generate stochastic dataset based on Google AdX real data to evalu-
ate their AdX placement algorithms. Bateni et al. [49] extend this dataset by augmenting
volatile information to model the sensitivity of shocks due to social and news trends such
as negative publicity about the resources in the news.

Each dataset consists of varying advertisers (6 to 101) and impression types (7 to 406).
The number of advertisers and impressions are different in each dataset. Also, the utilities
of the advertisers are sparse in one data set while dense in another dataset. Arrivals are
assumed to be the Ornstein-Uhlenbeck process. An Ornstein-Uhlenbeck process is a diffu-
sion process for modeling the velocity of a particle in Brownian motion and widely used in
mathematical finance to model market prices and volatility. The parameters for Ornstein-
Uhlenbeck process are estimated on the dataset presented in [128] and emulated arrival data
is generated by preserving statistical properties of the real dataset. The mean values of im-
pression type j and advertiser i is considered as utility ui j. The estimation methodology can
be found in [49].

We divide our evaluation into two scenarios namely the case of a fixed set of resources and
the case of a varying set of resources. The latter scenario is more generic and challenging
than the earlier. We measure the regret and competitive ratio of OFM. Regret is the distance
between our OFM online algorithm objective without hindsight and an optimal algorithm
with hindsight. Conversely, the competitive ratio is the ratio of OFM online solution and
optimal offline solution.

6.5.1.1 Fixed resource set

It is evident from Section 6.2 that buyer utility affects the resource prices but not the number
of buyers. The modified AdX dataset [49] cannot be directly applied for evaluating OFM



ARPP Online Pricing 98

since the probability distribution is limited to an Ornstein-Uhlenbeck process. We perform
the following steps to modify the dataset for evaluating OFM.

• Each impression type is treated as a resource and advertisers are treated as buyers.
Let Λ

t
j be the Ornstein-Uhlenbeck arrival rate of the resource j at time interval t.

In our case, we treat mean values of impression type j and advertiser i as a base
utility u∗i j and generate a new utility ui j for a resource and a buyer at every period as
the product of base utility and Ornstein-Uhlenbeck arrival rate of the resource, i.e.,
ut

i j = u∗i jΛ
t
j. In this way, we ensure that the volatility of buyer utilities in every period

t. In OFM random permutation model, the expectation of the data varies at each time
interval. Hence, maintaining volatility captures the random permutation scenario in
the evaluation.

• In a real marketplace, buyers arrive with different budgets, and it is essential to incor-
porate them in our OFM evaluation. In the dataset of [49], the budget of an impression
type is calculated based on C j, the total number of the impression type of j which
advertisers are willing to buy. We also calculate budget along similar lines. In our

case, the budget of buyer i is given by bi =
∑ j ui j∣∣{ j : ui j > 0}

∣∣ .
• The goal of OFM is to handle utilities from a different distribution. Hence, we use

different distributions for generating utilities, namely uniform and normal distribu-
tions. A uniform distribution is a simple and widely used distribution and the utility
is generated in the interval [0,1] uniformly. According to the central limit theorem,
non-heavy tailed distribution over a period will converge to a normal distribution [70].
Hence, evaluation on a normal distribution guarantees similar behavior as in other
non-heavy-tailed distributions.

In summary, the AdX dataset is modified to evaluate with different probability distributions
of a buyer’s utility for a fixed set of resources scenario.

6.5.1.2 Varying resource set

Consider the scenario where the resources vary every time instance. Hence, the OFM solution
set is frequently modified. Since the number of resources offered at the current time instance
is revealed only after current prices are predicted, this scenario is not trivial. Furthermore,
this is a typical real case scenario in cloud subletting. In cloud subletting, the users can
monetize their unused or underutilized resources by subletting to other users [138]. The
service provider can act as a broker for subletting resources. At every period, interested
users can submit underutilized resources to the service provider. The service provider can
sublet for a specified period. Hence, the service provider lacks complete knowledge of the
total number of resources offered at every instance.



99 6.5 OFM Evaluation

The AdX dataset cannot be used for this scenario since both buyers and resources are
fixed. Hence, we perform a trace-based simulation for OFM evaluation in this scenario.

We use a Google cluster data trace [129] of around 12.5k machines collected over a period
of 29 days in a Google data center. In this dataset, jobs arrive and VMs are allocated for the
execution. Each job has different CPU requirement and hence, different VMs are allocated
which eventually leads to different CPU usage and CPU demand. In other words, the CPU
demand is not uniform for all time intervals and depends on the demands of incoming jobs.
We use this demand information to simulate the demand behavior of resources in OFM.
We generate the number of resources offered at each time instance by randomly sampling
CPU usage without replacement from the 41GB dataset since random permutation model
is sampling without replacement. Furthermore, we assume that service providers introduce
more resources during high demand time periods. We perform time series analysis and
use Box Jenkin’s method to build an ARIMA model to predict the CPU usage for future
prediction. OFM uses this prediction information to set the prices for current time instance.

The results of OFM evaluation for both the scenarios are presented in the next subsection.

6.5.2 Results

6.5.2.1 Predicting number of offered resources

We use three types of time series models namely AR (autoregressive), MA (moving aver-
age) and ARIMA. In AR model, the output is regressed from the previous values. Similarly,
in MA model, the output is regressed from the residual of the previous values. ARIMA
combines both AR and MR. In other words, ARIMA forecasts the current output by tak-
ing previous values and residuals into account. Apart from time series models, we perform
additional prediction. In the first method, the current prediction is the mean of all the pre-
vious values. In the second method, the current prediction is the immediate past value. The
result of time series modeling and additional approaches of the randomly sampled CPU us-
age is presented in Figure 6.2. We tested the series for non-stationary of CPU usage using
Dickey-Fuller test (test for finding stochastic process affecting time series statistical prop-
erties). The sampled series is stationary with 99% confidence level. We determined order
(number of past data in time series) and moving average statistically using autocorrelation
plots 6.1. The mean absolute error of the prediction approaches is presented in Table 6.2.

It is evident from the Table 6.2 that ARIMA outperforms other approaches. However,
the immediate previous approach is not only computationally more straightforward than the
rest of the approaches but also closer to ARIMA forecast. For time-sensitive applications,
the immediate previous approach is an ideal candidate for predicting the number of offered



ARPP Online Pricing 100

0 50 100 150 200
Lags

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Autocorrelation

0 50 100 150 200
Lags

Partial Autocorrelation

Figure 6.1: Autocorrelation and partial autocorrelation of CPU demand data.

0 25 50 75 100 125 150 175 200
Time period

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sc
al

ed
 C

PU
 d

em
an

d

Actual and ARIMA models of CPU demand 

Actual
MA(0,0,1)

Mean
Previous

AR(1,0,0)
ARIMA(1,0,1)

Figure 6.2: Comparison of prediction based on ARIMA, mean and previous values of sam-
pled CPU demand of Google cluster trace



101 6.5 OFM Evaluation

Approach MAE

ARIMA(1,0,1) 0.038524
AR(1,0) 0.038602
MA(0,1) 0.044700

Mean of previous 0.053589
Immediate previous 0.039389

Table 6.2: Mean absolute error (MAE) for ARIMA, mean and previous values of sampled
CPU demand of Google cluster trace.

resources.

6.5.2.2 Fixed Resource set

The experiment is performed for a total period T = 500 on both AdX dataset (Ornstein-
Uhlenbeck process) and AdX augmented with both uniform and normally distributed utility.
We performed normal distribution fit on the collected CPU usage trace and the estimated
parameters are used to generate normally distributed utility. The regret for AdX dataset
can be found in Figure 6.3a, while Figure 6.3b and 6.3c represent regret for uniformly
distributed and normally distributed data respectively.

The competitive ratio for AdX dataset can be found in Figure 6.4a, while Figure 6.4b
and 6.4c represent regret for uniformly distributed and normally distributed data respec-
tively. The convergence of OFM over a period is readily evident from all the figures. Hence,
the regret is reduced with time and competitive ratio increases over time. The prediction is
about 95% of optimal prices on all three datasets AdX, normal and uniformly distributed
data.

There are some cases (for instance in Figure 6.4a AdX 4) where the competitive ratio
is higher than one and the corresponding regret is negative. In such cases, the value of
predicted objective of OFM is higher than the optimal objection due to constraint violation of
Eq. (6.2.4). In other words, the predicted prices would result in a budget violation. As soon
as the input is revealed, OFM corrects itself in the next period as evident in the figures due
to an absence of successive violations. The number of violations is negligible on both AdX
data set and the normally distributed set. The maximum number of violations observed is
7.8% for the uniformly distributed data. In a uniform distribution, all kind of input data
(best case, average case, worst case) appear with equal probability. Hence, we find a higher
violation when the data is uniformly distributed.



ARPP Online Pricing 102

0.0

0.5
Re

gr
et

AdX1 AdX2 AdX3

0 200 400
0.0

0.2

0.4

0.6

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(a) Real Adx Dataset

0.00

0.25

0.50

0.75

Re
gr

et

AdX1 AdX2 AdX3

0 200 400
0.0

0.1

0.2

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(b) Uniformly distributed

0.00

0.25

0.50

0.75

Re
gr

et

AdX1 AdX2 AdX3

0 200 400
0.00

0.05

0.10

0.15

Re
gr

et

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(c) Normally distributed

Figure 6.3: Regret for fixed resource set



103 6.5 OFM Evaluation

0.5

1.0
Co

m
pe

tit
iv

e 
ra

tio

AdX1 AdX2 AdX3

0 200 400
0.0

0.5

1.0

Co
m

pe
tit

iv
e 

ra
tio

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(a) Real Adx Dataset

0.5

1.0

Co
m

pe
tit

iv
e 

ra
tio

AdX1 AdX2 AdX3

0 200 400
0.0

0.5

1.0

Co
m

pe
tit

iv
e 

ra
tio

AdX4

0 200 400
Time period

AdX5

0 200 400

AdX6

(b) Uniformly distributed

0.00

0.25

0.50

0.75

Co
m

pe
tit

iv
e 

ra
tio

AdX1 AdX2 AdX3

0 100 200

0.25

0.50

0.75

Co
m

pe
tit

iv
e 

ra
tio

AdX4

0 100 200
Time period

AdX5

0 100 200

AdX6

(c) Normally distributed

Figure 6.4: Competitive ratio for fixed resource set



ARPP Online Pricing 104

6.5.2.3 Varying Resource set

The Figure 6.5 shows the regret for uniform and normally distributed data for three predic-
tion approaches namely ARIMA, immediate previous and mean. In this scenario, regret is
not smooth and varies unlike the fixed set of resources due to the difference between the
actual and predicted resource offered. We see a sudden decrease in competitive ratio, when
the actual values are decreased suddenly, i.e., a smaller value in an increasing sequence.

6.5.2.4 OFM Buyer Scalability

We evaluate the OFM scalability to handle a large number of buyers. We measure the time
taken by OFM to compute prices using timeit function in Matlab. timeit calls a function mul-
tiple times and returns the median of actual time taken. As we know, most of the functions
are vectorized for performance improvement. Hence, we fix the number of resources of-
fered to large number 1000 for the entire period. Initially, we start with 1000 buyers and at
every period, we increase the buyers by 1000. At the end of the period t = 50, the number of
buyers is 50000. We repeat the experiment with 2000,3000,4000 and 5000 as the number
of resources offered. Figure 6.7 shows the time required by OFM to compute price. It is
evident from the figure that the computational time is in the order of microseconds which
implies that OFM is an apt candidate for real-time deployment.

6.6 Summary

In this chapter, we proposed OFM for computing prices for Fisher marketplace with integer
allocation for varying buyers and resources at every time instance. OFM is an online algo-
rithm and based on a stricter adversarial model compared to state-of-the-art solutions, i.e.,
the prices once computed cannot be altered. Further, prices for next time instant is predicted
even before all the inputs are revealed. The experimental evaluation on both real world and
emulated dataset demonstrate the low regret bound and faster convergence over the period
achieving around 95% of optimal prices. The updates in OFM are closed-form expressions
and are computationally efficient as evident from the evaluation. OFM computation time is in
the order of microseconds even for a large number of buyers. Hence, OFM is an ideal choice
for deploying online marketplace for cloud resources, especially in edge computing.



105 6.6 Summary

0.0

0.5

Re
gr

et

0 100 200
0.0

0.1

0.2

Re
gr

et

0 100 200
Time period

0 100 200

Mean ARIMA Previous

(a) Uniformly distributed

0.0

0.5

Re
gr

et

0 100 200
0.00

0.05

0.10

0.15

Re
gr

et

0 100 200
Time period

0 100 200

Mean ARIMA Previous

(b) Normally distributed

Figure 6.5: Regret for varying resources for ARIMA, immediate previous and mean model



ARPP Online Pricing 106

0.0

0.5

1.0
Co

m
pe

tit
iv

e 
ra

tio

0 100 200
0.0

0.5

1.0

Co
m

pe
tit

iv
e 

ra
tio

0 100 200
Time period

0 100 200

ARIMA Previous Mean

(a) Uniformly distributed

0.00

0.25

0.50

0.75

Co
m

pe
tit

iv
e 

ra
tio

0 100 200

0.25

0.50

0.75

Co
m

pe
tit

iv
e 

ra
tio

0 100 200
Time period

0 100 200

ARIMA Previous Mean

(b) Normally distributed

Figure 6.6: Competitive ratio for varying resources for ARIMA, immediate previous and
mean model



107 6.6 Summary

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 1 AdX 2 AdX 3

20000 40000

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 4

20000 40000
Buyers

AdX 5

20000 40000

AdX 6

1000 resources 2000 resources 3000 resources 4000 resources 5000 resources

(a) Uniformly distributed

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 1 AdX 2 AdX 3

20000 40000

25

50

75

100

Ti
m

e(
m

icr
os

ec
on

ds
) AdX 4

20000 40000
Buyers

AdX 5

20000 40000

AdX 6

1000 resources 2000 resources 3000 resources 4000 resources 5000 resources

(b) Normally distributed

Figure 6.7: Measured time for varying buyers for fixed resources.





Chapter7
ARPP Resource Provisioning

Service providers face an important challenge of allocating resources to services optimally.
Most often service providers ignore the issue of what to provision during deployment. This
chapter proposes RConf and RConfPD as the answer to the question what to provision.

Initially, we motivate and formalize the problem of finding optimal configurations as
VCP. Afterward, we propose a performance estimation model to estimate latency of a con-
figuration based on robust queueing theory. Finally, we propose RConf and RConfPD. Fur-
thermore, it presents the theoretical complexity and performance analysis.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 VCP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . 114
7.2.2 Formal Definitions . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Modeling a Complex Service . . . . . . . . . . . . . . . . . . . . 118
7.3.1 Robust queue Motivation . . . . . . . . . . . . . . . . . . . 118
7.3.2 Service’s Component Modeling . . . . . . . . . . . . . . . 119
7.3.3 VCP Metrics . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 RConf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.2 Complexity and Performance analysis . . . . . . . . . . . . 125

7.5 RConfPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5.1 RConf Primal-dual and complementary slackness formulation . 127
7.5.2 RConfPD Algorithm . . . . . . . . . . . . . . . . . . . . . 128
7.5.3 Complexity and Performance Analysis . . . . . . . . . . . . 130

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131





111 7.1 Introduction

7.1 Introduction

One major challenge for cloud providers is resource management which typically involves
monitoring of resources, provisioning resources to customers, and finally scheduling these
provisioned resources. Optimizing resource management tasks frequently can yield sub-
stantial benefits in performance, revenue or energy consumption for the provider [50]. Here,
one challenge in resource provisioning is optimally allocating resources to applications or
services6 requested in an ad-hoc fashion. In particular, when considering complex services,
for example, multi-tier services and NFV service chains, which are composed of several
distributed components, such as web servers, load balancers, and databases as illustrated
in Figure 1.3. In the context of complex services, adequately provisioning resources while
enforcing the Service Level Objectives (SLOs) expected by the customer is an arduous task.

There have been proposals, from within both industry and academia to address the prob-
lem of when to provision more resources (adding more component instances) for an ap-
plication under high load. Proposed solutions span from threshold-based autoscaling(e.g.,
Google AppEngine, Microsoft Azure, Amazon AWS), to more sophisticated control theory
based solutions [51–53, 144] or empirical service modeling [54, 55]. Furthermore, some
proposals adopt time series analysis to make workload predictions and decide how many re-
sources to provision [56,57]. These strategies are used jointly with other tools that facilitate
the task of how to provision these resources, such as Puppet, OpenStack Heat, Ansible, and
Chef.

Generally, service providers configure a requested service as a combination of various
components. Furthermore, assigning a set of virtual instances and resources to each com-
ponent. For instance, Network Function Virtualization (NFV) usually combines various
Virtual Network Functions (VNFs) in a service chain, and assign a set of virtual instances
to each VNF. Typically, each assigned instances is deployed using a single flavor (i.e., one
VM size for a typical web server) and provisioned on demand. A component configuration
can be defined through its instances, as a number of cores and an amount of memory.

However, most often service providers disregard what to provision and assign the same
flavor for every instance of each component in a service, commonly known as one-size-fits-
all. However, one-size-fits-all results in the following drawbacks:

• Deciding the flavor for handling incoming load requires expert knowledge of the com-
ponent.

• Each flavor has different performance due to different capacities. Therefore, one
unique flavor may not be suited for every amount of incoming load or type of traffic.

6In this chapter, term services and applications are used interchangeably.



ARPP Resource Provisioning 112

• Evaluating a configuration in isolation of other components in the service might result
in inefficient utilization or unexpected performance degradation. Generally, a one-
size-fits-all solution results in deploying unneeded resources generating additional
costs.

In this chapter, we address the what to provision problem, which we refer to as Vir-
tual Configuration Problem (VCP). VCP consists of discovering the optimal flavors (using
Amazon EC2 terminology) and the number of instances to be deployed for each component
of a service, given a set component configurations and a workload input, while maximizing
the resource utilization and ensuring the agreed SLOs requirements. Furthermore, VCP is
reduced to Multiple choice Multidimensional Knapsack Problem (MMKP).

Our system offers two novel techniques to service providers for finding the answer to the
what to provision question automatically. Furthermore, it acts as one of the fundamental
building blocks to automated resource management and can be used jointly with the solu-
tions as mentioned earlier addressing the when and how to challenges in order to build a
comprehensive automated and optimized resource provisioning framework.

The first—dubbed RConf—requires solving a relaxed version of the integer linear pro-
gramming (ILP) formulation of VCP and performs deterministic rounding to obtain an
approximated solution to the problem. We believe that RConf [108] describes the first ana-
lytical approach to find the optimal configuration for multi-tier services by approaching the
problem from a robust queueing theory [70] perspective.

Since the complexity of solving the ILP formulation of VCP can be prohibitive for more
time-critical applications such as micro-services or edge applications, service providers can
also opt for our second method, RConfPD. Here, instead of solving the ILP problem, we
propose a framework based on the primal-dual approximation paradigm [67]. Intuitively,
RConfPD settles for a slightly less optimal solution of VCP and can thereby provision a ser-
vice faster than RConf by trading off solution quality for lower computational complexity.
Concretely, our contributions are:

• A profiling implementation that gives accurate service rate and utilization estimations
using an analytical model based on robust queueing theory. This model evaluates and
estimates the impact on the service latency of various component configurations. The
robust queueing theory uses uncertainty sets instead of randomization (as the stan-
dard queueing theory does), and in that way, it is possible to capture both: network
traffic following arbitrary distributions; and different processing powers of various
components.

• We introduce RConf, the first analytical solution to the what to deploy question in
automated resource provisioning for complex services. Our evaluation, based on a



113 7.2 VCP Problem

real-world deployment on Amazon EC2, shows that RConf can provide solutions for
complex service deployment that yield up to 50% higher resource utilization while de-
ploying up to 22% fewer resources than one-size-fits-all solutions. The core strength
of RConf is that it can handle network traffic following arbitrary distributions as well
as different resource capabilities of various components due to robust queueing the-
ory, which uses uncertainty sets instead of randomization (as the standard queueing
theory does).

• We further propose RConfPD, a scalable and time-efficient method that trades off
some optimality against computation complexity. We propose an algorithm that can
find an approximated solution for service provisioning based on a primal-dual frame-
work with an approximation ratio of ρ > 1. We believe that this chapter describes the
first primal-dual approach to find an approximate solution for MMKP problem. The
basic idea is to incrementally find feasible solutions for both primal and dual formu-
lations simultaneously. For each component, RConfPD selects the configuration with
the tightest constraints after removing dominated solutions. We evaluate RConfPD an-
alytically with MMKP benchmarks with hundreds of components and thousands of
configurations for scalability [145] and a three-tiered cloud service. Our results show
that while RConfPD yields a utilization close to that of the optimal solution found by
RConf, it can provision even large services within 1−10 ms and thereby one to two
orders of magnitude faster.

The remainder of this chapter is structured as follows. In Section 7.2, we formally de-
scribe the problem of finding the optimal configuration for multi-tier services. Section 7.3
describes the system model that provides the input for both approaches. In Section 7.4
and 7.5, we introduce and analyze RConf and RConfPD respectively. Finally, we summa-
rize in section 7.6.

7.2 VCP Problem

The provisioning of resources for a complex service can be performed in multiple ways.
For instance, every instance from every component in the service can be instantiated with
the same flavor. As we see from the previous section, the one-size-fits-all approach results
in either over-provisioning or under-provisioning. Instead, in this chapter, we propose to
leverage the usual variety of instance flavors when creating a configuration for each com-
ponent of the service. Thus, the same (virtual) functionality can be provided with varying
resource capacities such as CPU cores and memory. For instance, a load balancer might
run in a “small” instance (e.g., 1 core, 2GB memory, and 1 Gbps bandwidth), instead of a
“large” instance (e.g., 4 cores, 4GB memory) when the traffic load is low.



ARPP Resource Provisioning 114

7.2.1 Numerical Example

Let us consider a hypothetical service configuration for which a customer has expressed an
SLO latency requirement of u(l) = 300ms. In this example, our service consists of four
components, a firewall (FW), a load balancer (LB), deep packet inspection (DPI) and a web
server (WS). Table 7.1 shows the result of using various instance flavors (e.g., the small-
est instance of an LB take 80ms to process the traffic, while medium instances combined
achieve in 40ms), as well as their total utilization, and the end-to-end service latency. Each
row of Table 7.1 represents a feasible service configuration, that is, it satisfies the customer
SLOs. The first five columns of the table represent the configuration name and the latency
for the FW, LB, DPI and WS respectively, while the sixth and seventh column represents
the service utilization and service latency.

While all instance combinations satisfy u(l), they differ in their total utilization. Con-
figuration A may represent the traditional way of one-fits-all (over-provisioning) approach,
which meets the SLOs but results in low resource utilization. Moreover, even though both E
and G exhibit the lowest latency, F represents the best configuration, as it results in a higher
aggregate utilization of the components than in any other service configurations.

The challenge is then to find the combinations of configuration for each component in
the service such that the complete service satisfies both service provider and customer con-
straints. While one particular problem may yield a large number of feasible service config-
urations, our goal is further to find the one single configuration of a service that maximizes
the resource utilization of all service components. We define the problem of finding the
optimal configuration for a complex service as the Virtual Configuration Problem (VCP).

Config FW LB DPI WS Utilization Latency

A 40 40 40 40 0.2 160
B 60 60 100 60 0.1 280
C 80 60 120 40 0.4 300
D 40 80 100 40 0.6 260
E 60 60 60 40 0.7 220
F 60 60 60 60 0.8 240
G 40 40 100 40 0.5 220

Table 7.1: A summary of feasible service configurations for an SLO requirement u(l) =

300ms. The utilization is given as
n

∑
i=1

υ(πi). All values are given in ms (millisec-

onds).



115 7.2 VCP Problem

7.2.2 Formal Definitions

We present formal definitions for VCP. We denote a service composed of n virtual com-
ponents as S = {v1,v2, . . . ,vn}. The components service the flows passing through S in
order, i.e., flows enter S through v1 and leave through vn. To capture the order in which
flows are serviced we assume S to be a partially ordered set (poset).

A component consists of one or more instances, using the same or various flavors. We
denote this set of instances as component configuration. Then, we define the set of feasible
configurations c of the ith component as the array ci = {ci1, . . . ,ci|ci|}. Similarly, each of
these configurations can be defined as ci j = {xi1, . . .xi|θ |}, where xiθ represents the number
of instances of a given flavor θi, and θi is the set of available flavors. Each flavor θi has
an associated tuple of m dimensions describing its allocated resources (e.g., CPU cores,
memory, . . . ). We denote the resources for the kth flavor as θk = 〈θ 1

k , . . . ,θ
m
k 〉. The set of

configurations ci is sorted in non-decreasing order of resource requirements. Finally, we
denote the set of all possible configurations for the components in a service S as C =
{ci|∀i≤ n}. Note that there is no restriction about the choice of instance flavors within the
configuration. For instance, one configuration for a load balancer might contain multiple
instances of the same type, while another configuration might contain only instances of
various flavors.

Regarding resources, we denote the aggregated required resources of type l within config-

uration ci j as rl
i j =

|θ |

∑
k=1

x jkθ
l
k . The required resources are upper bounded by ul that represents

the maximum resources of type l available for service S . Finally, regarding the service, we
define the utilization of ci j as υi j, which represents the ratio between the workload being
served and the aggregated capacity of a component. Furthermore, gi j is defined as the SLOs
of a configuration — in optimization terms, this represents the cost of a configuration. Table
7.2 summarizes the notation used in this chapter.

The optimal solution for VCP is that service configuration that maximizes the overall
resource usage while enforcing SLOs. Before trying to find such a configuration, we need to
define the set of possible configurations for a component and the entire service. Assume that
we have a method that allows us to find the set of feasible configurations ci for a component,
estimate their utilization υi j, required usage rl

i j and cost in performance gi j, given an input
workload. Having these estimations, we can formulate VCP as the following integer linear



ARPP Resource Provisioning 116

Symbol Description

S Service
vi ith virtual component
ci Set of configurations for vi

ci j Configuration j for vi

θ Set of available flavors
λi Traffic arrival rate at vi

µik Service rate for flavor type θk, and vi

ρik Traffic intensity for flavor type θk, and vi

τik System time for flavor type θk, component i
U a

i , U s
ik Uncertainty set for arrival and departure processes

Γ
a
i , Γ

s
ik Arrival and departure process variability.

σ
a
i , σ

s
ik Standard deviation of arrival and departure processes

rl
i j Aggregated required resources of type l for ci j

υi j Utilization of ci j

x jk Number of instances of a given flavor θk for ci j

ul Upper bound of resource type l
gi j Performance cost for ci j

wi j Binary indicator of configuration selection

Table 7.2: A list of notations used in this chapter.



117 7.2 VCP Problem

program (ILP):

maximize
w

n

∑
i=1

|ci|

∑
j=1

υi jwi j

subject to (C1)
n

∑
i=1

|ci|

∑
j=1

rl
i jwi j ≤ ul(S ), ∀l = 1,2, . . . ,m,

(C2)
|ci|

∑
j=1

gi jwi j ≤ SLO(S ),

(C3)
|ci|

∑
j=1

wi j = 1, ∀i = 1,2, . . . ,n,

(C4) wi j ∈ {0,1}.

(7.2.1)

where wi j is a binary indicator that represents whether a given configuration is selected
or not (C4). If wi j = 1 then configuration ci j is included, otherwise it is excluded. The
first constraint (C1) implies that the resources required by a configuration cannot exceed
any of the budgeted resources. The second constraint (C2) controls that the performance
costs are not exceeded (e.g., latency). Furthermore, (C3) limits the number of selectable
configurations for every component to 1.

Theorem 7.1 (VCP complexity ) VCP is NP-hard.

Proof In a classical multiple-choice multidimensional knapsack problem (MMKP), we
have n mutually exclusive item classes, |Ji| items per class, and multiple dimensions per
item (l). Out of these items, we can only select one per class. Moreover, each item has an
associated profit, and the goal is to maximize the total profit while respecting the knapsack
constraints [146].

The reduction from MMKP to VCP is as follows. In VCP, the item classes are the
various components, the items are the various component configurations (|ci|), and the types
of resource in a configuration are the various item dimensions. The profit in VCP depends
on the utilization υi j of the configuration resources.7 Finally, VCP aims to maximize the
utilization of resources by selecting one configuration for each component. Therefore, as
MMKP is NP-hard [146], VCP is also NP-hard.

7In the remainder of this chapter, we use the terms utilization and profit interchangeably.



ARPP Resource Provisioning 118

7.3 Modeling a Complex Service

We have seen that VCP formulation assumes knowledge of performance cost that workload
experiences when injected into a system with a particular configuration (Constraint C2).
To acquire this knowledge, we need to model the latency of the different components for
the different flavors. The accuracy of the service provisioning depends on the accuracy
achieved when modeling the service key performance indicators (KPI) subject to SLOs.
This section describes how to model latency accurately with robust queueing theory, as it
is one of the significant KPIs for cloud services. Section 2.3 presents the fundamentals of
robust queueing theory.

7.3.1 Robust queue Motivation

The basic idea is to model each combination of VM flavor θk and component vi as a queue
qik using one or multiple servers (i.e., CPU cores) with either limited or unlimited buffer
capacity. Arrival processes enter the system (i.e., VM), and are either processed or wait in
a queue (if the system is busy). Once a process is served and leaves the system, it is known
as a departure process.

Applying traditional queueing theory to model complex services is either not possible or
highly inaccurate due to the assumption that process’s arrivals and departures are Markovian
or deterministically distributed, contrary to many cloud or networks services [58,147–150].
For instance, Ethernet traffic is heavy-tailed and self-similar [148].

Complex services could be modeled as networks of queues, where each component of
the service is modeled as a G/G/m queue [76]. However, this translates to making the sys-
tem analysis computationally intractable [70, 77]. To overcome these limitations, Bandi et
al. [70] apply robust optimization for analyzing a single, or network of G/G/m queues, and
subsequently, derive a closed-form expression for the system time.

Robust queue analysis does not consider arrival and departure processes to be arbitrarily
distributed, as traditionally done in G/G/m queue models. Instead, robust optimization is
performed on uncertainty sets (constraints are allowed to vary within this set) without af-
fecting the optimality of the solution [71], and then determines the expected system time
based on those uncertainty sets. In this chapter, we apply [70]to model the complex cloud
services. Furthermore, both RConf and RConfPD use this model as a decision-making tool
when evaluating different component configurations.



119 7.3 Modeling a Complex Service

7.3.2 Service’s Component Modeling

In this chapter, we model each instance flavor type of a given service’s component as a
robust queue qik. We assume that each flavor θk is duple of assigned CPU cores (θ 1

k ) and
memory (θ 2

k ). Our goal is to obtain an estimation of the latency of a component configura-
tion ci j given CPU cores, memory and load.

The system time for qik is calculated for network traffic flow instead of traffic request.
Limiting the solution to a specific request type, especially in the application layer, would
affect the applicability of the solution [59]. For instance, in a typical data center, there are
hundreds or thousands of different services. Therefore, it would be beneficial not to model
each request of each service as a unique process, but instead to monitor the transport layer,
where one can capture traffic either at packet or flow level. Packets give more information
compared to flows, but require significant processing overhead, especially in environments
where the number of packets grows exponentially (e.g., data centers). Robust queue models
require only the arrival and departure times of the requests, which can be obtained at the
flow level.

Flows enter a given component with an arrival rate λi and are processed at rate µik (service
rate). If there are available servers (CPU cores) in the system, the flows are processed,
otherwise flows have to wait. Using standard definitions from queueing theory [76], we
define ρik as the utilization of an instance with flavor k for the ith component:

ρik =
λi

θ 1
k µik

(7.3.1)

where λi is the arrival rate of component i, µik the service rate and θ
1
k

the total number of
CPU cores of an instance θk.

Moreover, as indicated in chapter 2.3, robust queue models require the construction of
uncertainty sets for both arrival and departure processes. Before presenting the closed form
expression for the system time, it is necessary to construct these sets. The uncertainty
sets are based on a stable distribution. According to the central limit theorem, any non-
heavy tailed distribution converges to a normal distribution as n→ ∞ [70]. The normal
distribution is a special case of the stable distribution [70, 151]. Nolan [151] proves that by
setting the tail coefficient α = 2, the stable distribution behaves like a normal distribution.
In this way, a non-heavy tailed distribution can be converted to a stable distribution. Heavy-
tailed distributions are those whose tails are not exponentially bounded like in Pareto or
log-normal distributions (e.g., Ethernet traffic is heavy-tailed and self-similar [148]). In
our model, heavy-tailed distributions are converted to stable distributions by setting the
tail coefficient α to appropriate values using Hill’s estimator [152] with order statistics



ARPP Resource Provisioning 120

approximately < 0.13% of sample size [153]. Hence, our model can handle both heavy-
tailed and non-heavy tailed traffic.

7.3.2.1 Uncertainty set for arrivals

In this chapter, robust queue models are created per flavor type θk and component vi. More-
over, we assume that the arrival traffic requests are the same for all the instances. Therefore,
at least for arrivals, one uncertainty set is sufficient.The uncertainty set for inter arrivals of
component i is denoted by:

U a
i =

(T a
i,1,T

a
i,2, . . .T

a
i,t)

∣∣∣∣∣∣∑
t
j=t ′+1 T a

i, j−
(t−t ′)

λi

(t− t ′)
1
αi

≥−Γ
a
i , ∀0≤ t ′ ≤ t−1

 (7.3.2)

where T a
i,1,T

a
i,2, . . .T

a
i,t denotes the inter-arrival times of the flows at component i with an

expected arrival rate
1
λi

. Moreover, t− t ′ is the number of arrivals considered while con-

structing the uncertainty set. If t ′ is equal to 0, it means that all arrivals are considered for
uncertainty set construction. In our case, we set t ′ = 0 to validate the robust queue model
with measured data. In the above equation, Γ

a
i captures the variability in the inter-arrival

times. Since the standard deviation measures the spread of data around the mean, we set Γ
a
i

as the standard deviation of inter-arrival times, i.e., Γ
a
i = σ

a
i .

7.3.2.2 Uncertainty set for departures

The service rate of an instance depends on the instance attributes (i.e., number of proces-
sors, memory allocated, and SLOs requirements). Hence, the departure set is defined per
instance, and the uncertainty set for θik is denoted by:

U s
ik =

(T s
ik,1,T

s
ik,2, . . .T

s
ik,t
)∣∣∣∣∣∣∑

t
l=t ′ T

s
ik,l−

(t−t ′+1)
µi j

(t− t ′+1)
1
αi

≤ Γ
s
ik, ∀0≤ t ′ ≤ t

 (7.3.3)

where T s
ik,1,T

s
ik,2, . . .T

s
ik,t denotes the service times of the flows at the i-th component with

an expected service rate
1

µik
. Furthermore, Γ

s
ik captures the variability of departure pro-

cess. Since the service rate depends on instance type θk, component utilization, arrival
process variability and standard deviation of the departure process, we thereby define as



121 7.3 Modeling a Complex Service

Γ
s
ik = f (θk,ρik,Γ

a
i ,σ

s
i ,αi), and given that each system is different and the function f is not

known, we perform general linear regression to determine Γ
s
i .

Γ
s
ik = β1θik +β2ρik+β3Γ

a
i +β4σ

s
i +β5αi + ε (7.3.4)

where ε is the difference between measured and estimated Γ
s
ik. We use the closed form

expression of linear regression to compute the values β1, . . . ,β5.

Then the estimated system time τik is given by:

τik=
(αi−1)

α

αi
(αi−1)

i

λ

1
(αi−1)

i Γa
i +

(
Γs

ik

(θ 1
i j)

1
αi

) αi
(αi−1)

(1−ρik)
+

θ 1
k

λi
(7.3.5)

Initially, we calculate output variability Γ
s
ik by substituting the observed average system

time in Equation (7.3.5). We also consider the standard deviation of arrivals as input vari-
ability Γ

a
i . Once we have set Γ

s
ik, we perform a linear regression using Equation (7.3.4) to

predict the next Γ
s
ik values and use these values again in Equation (7.3.5) to estimate the

system time. Even though Bandi et al. [70] derive the system time expression for the worst
case, we train the model using average flow processing times.

7.3.3 VCP Metrics

We now describe and formalize the metrics required for solving the VCP problem as intro-
duced in Section 7.2.

Utilization: the utilization of jth configuration of an ith component υi j is defined as:

0≤υi j =
∑
|θ |
k=1 ρikx jk

∑
|θ |
k=1 x jk

≤ 1, (7.3.6)

where x jk represents the number of instances of θk for configuration ci j. In order to
compute ρik, we compute the service rate µik (Equation (7.3.1)) as follows.

In a queueing model, system parameters are derived based on arrival and departure time
epoch, i.e., T s

ik,t ,T
a

i,t . Hence, only the system time is observed. The system time is the sum
of waiting time and processing time. The service rate measures how fast a server serving
requests. Therefore, we compute the processing time from system time based on Lindley’s



ARPP Resource Provisioning 122

recursion [154] which represents the waiting time of a current request as a recursive relation
between system and processing times of the arrival and departure processes. Conversely, it
is non-trivial in the case of m multiserver queues since m servers are servicing in parallel
and anyone among them can service a flow. Krivulin [155] extends the idea of Lindley’s
recursion to a G/G/m and derives a recursive relationship between the system, waiting and
processing time. The basic idea of Kirvulin is to sort the departure time epochs and then
compute the difference between arrival and departure time epochs. Also, in an m server
queue, the first m departure processes have zero waiting time. Hence, once we know the

processing time T s
ik,t we can compute µik =

1
E(Xik,t)

.

Resource usage: In our case, the resource requirements function is trivial for the number

of cores and memory, rl
i j =

|ci|

∑
k=1

θ
l
kx jk, for l=1,2.

Performance cost: Our performance metric for a configuration is latency. We compute
it using Equation (7.3.5). Hence, gi j = max

∀k∈θk
τik. Intuitively, in a scenario with multiple

instances, the traffic is split between component instances since different instances work in
parallel. Therefore, we define the latency of a component as that of the instance with the
highest system time.

Capacity: We define the capacity as the quantity of available resources or type l, i.e.,
cores or memory. We denote it as ul

SLO: As we use latency as our performance metric, our SLO is the maximum acceptable
latency for the service.

7.4 RConf

In this section, we present an approximation algorithm for VCP based on the relaxation of
the formulation presented in Section 7.2, and a deterministic rounding process. Further-
more, we analyze complexity and performance of RConf.

7.4.1 Algorithm

Algorithm 7.1 presents the pseudo-code for VCP. The algorithm takes an expected work-
load λ as input and computes the set of configurations C that can serve it. From C we can
compute the set of resources of each type l required by each ci j, rl

i j, its utilization υi j, and



123 7.4 RConf

its performance cost gi j. The set C can be trivially computed with greedy approaches. For
instance, for each vi, take the minimum number of instances of the flavor with the fewer
resources as the first configuration. From there, we start replacing a number of these in-
stances by equivalent superior instances iteratively. A configuration is finally given by a set
of instances, which is sufficient to serve λ but that would not be if we remove any of the

selected instances. Knowing C , their resource requirements are computed as rl
i j =

|θ |

∑
k=1

x jkθ
l
k .

We start by computing the set of initial parameters (line 1). Then, we relax condition C4,
converting our ILP into a linear problem. Using the formulation from Equation 7.2.1 with
solvers such as CPLEX, we can obtain a fractional optimal configuration, obtaining the set
of coefficients wi j (line 2). In case of a solution, we initialize variables P and R to store our
intermediate rounding steps. Otherwise, the algorithm terminates (line 4).

RConf first evaluates the trivial rounding making the highest coefficient for each compo-
nent equal to 1 and zeroing the rest (lines 6-8). This configuration is returned if it meets
C1 and C2. If not, RConf tackles them alternatively in an iterative process. First, if per-
formance constraints are not satisfied (C2), we select the component contributing the most
to the performance costs and try to select a configuration with more resources to reduce its
cost. As ci is sorted in non-decreasing order of resources, we choose the highest coefficient
between the current and the configuration with most resources for that component, make
it 1 and zero the rest (lines 11-13). Before updating the coefficients w′i j, we check if the
selected component has not been previously pushed in the other direction, i.e., we have not
reduced its resources. If we have not, it is absent in set R. Similarly, we also check P[i′] to
see whether we have already increased the resources of this component configuration, but
not as much as now. If the condition is satisfied, we update the coefficients w′i j and add the
duple (i′, j′) to P. If not satisfied, we try with the next component regarding the performance
cost. If no component can be updated, RConf fails to find a valid configuration in terms of
performance constraint (lines 14-20).

Then, we evaluate constraint C1. If it is not satisfied, we follow a similar procedure, but
this time taking the component consuming the most resources (line 22). We try to switch
to a configuration with fewer resources by choosing the largest coefficient between wi1 and
our current w′i j, making it 1 and zeroing the others (lines 23-24). We then check whether
this component has been updated before or not by checking sets P and R. If conditions
are satisfied, we update w′i j and add the duple (i′, j′) to R (lines 25-27). Otherwise, we
try with the next component regarding resource requirements (line 29) or fail to return a
configuration (line 30). When both constraints C1 and C2 are satisfied, RConf returns the
current w′i j that indicates the required configuration for each component (line 31).

It is worth noting that the models obtained following the robust queue based models are



ARPP Resource Provisioning 124

Algorithm 7.1 RConf algorithm.
Require: λ

1: {C ,
m

∑
l=1

rl
i j, υi j,gi j}← get init params(λ )

2: wi j← solution of relaxed VCP
3: if No valid wi j then
4: exit()
5: P,R← /0
6: for i≤ n do
7: w′i j′ ← 1 for j′ : j′ : wi j′ ≥ wi j ∀ j 6= j′

8: w′i j← 0

9: while C1 or C2 are not met do
10: if C2 not met then
11: i′ : w′i′ j ·gi′ j > w′i j ·gi j, ∀ i 6= i′, j
12: j′′ : w′i′ j′′ == 1
13: j′ : wi′ j′ > wi j, for j′′ < j′ ≤ |c′i|
14: if i′ /∈ R or (i′ ∈ P and P[i′]< j′) then
15: w′i′ j′ ← 1, w′i 6=i′, j 6= j′ ← 0
16: P[i′] = j′

17: else if w′i′ j ·gi′ j 6 min(w′i j) ·gi j) then
18: try next i′

19: else
20: No valid configuration found; Exit
21: if C1 not met then
22: i′ : w′i′ j · (rk

i′ j/υ
k)≥ w′i j · (rk

i j/υ
k), ∀ i 6= i′, j,k

23: j′′ : w′i′ j′′ == 1
24: j′ : wi′ j′ > wi j, for 0≤ j′ < j′′

25: if i′ /∈ P or (i′ ∈ R and R[i′]> j′) then
26: w′i′ j′ ← 1, w′i 6=i′, j 6= j′ ← 0
27: R[i′] = j′

28: else if w′i′ j · (rk
i′ j/υ

k) 6 min(w′i j) ·gi j) then
29: try next i′

30: else
31: No valid configuration found; exit()

Return w′i j



125 7.4 RConf

crucial for the performance of RConf. Inaccurate models would lead to over or under-
provisioning, lowering the resource utilization or degrading service performance respec-
tively. Similarly, RConf’s primary asset is the rounding process performed over the solution
provided by linear solvers (CPLEX in our case) to the relaxed version of VCP. That ini-
tial solution is not implementable (we cannot deploy fractions of instances) and applying a
trivial rounding will usually not meet both C1 and C2 constraints, requiring a more elabo-
rate solution like the one proposed. RConf can find near-optimal solutions. However, this
comes at a price of complexity. To quantify this trade-off, we present a performance and
complexity analysis of RConf in this section.

7.4.2 Complexity and Performance analysis

At its core, RConf solves a relaxed linear problem using a linear solver (e.g., CPLEX)
applying the simplex algorithm [156]. For problems with n variables and m constraints,
simplex finds an optimal solution in polynomial time (on average), or in the best case
in O(m · logm) [156]. However, in problems with a large number of variables, it is more
appropriate to assume O(nm) [157], the simplex worst-case complexity.

VCP has
n

∑
i=1
|ci| variables, where |ci| are the configurations per component, and n is the

number of components. The number of constraints is m+ 1, m different resources plus
one for performance. In production environments, we may need to choose among a large
number of feasible configurations for multiple components as well as consider multiple re-
sources. Therefore, we assume a simplex worst-case complexity in our analysis. The com-

plexity for the linear programming part is O
( n

∑
i=1
|ci|
)m+1. The posterior iterative rounding

process can take up to O
( n

∑
i=1
|ci|
)

in the worst case. Combining both components, RConf

has a worst-case time complexity of O
(( n

∑
i=1
|ci|
)m+1

+
( n

∑
i=1
|ci|
))

.

We now show the approximation ratio of RConf with Theorem 7.2.

Theorem 7.2 (RConf approximation ratio) RConf has 1+ ε approximation ratio.

Proof Let us define ZZZ?
VVVCCCPPP as the aggregated resource utilization of the optimal solution

for an instance of VCP(Eq. 7.2.1). The decision variable wi j = {0,1} represents whether
the optimal solution selects configuration j for component i. We also define wi j = {0,1}
to denote the configuration selected for each component after rounding the solution to the
relaxed instance of VCP. Then, we have that



ARPP Resource Provisioning 126

ZZZ?
VVVCCCPPP =

n

∑
i=1

υi j ·wi j =
n

∑
i=1

υi j ·wi j +
n

∑
i=1

δi.

The optimal resource utilization is larger or equal than that of the rounded solution us-
age. The term δi captures the difference across component resources utilization. Note

that, hence,
n

∑
i=1

δi ≥ 0. Additionally, the result obtained by rounding the relaxed instance

solution may lead to a global configuration that violates the resource or performance con-
traints. RConf iterates over the solution replacing some of the selected configurations by
other with less resources if the budget was exceeded; or more if performance constraints
were exceeded. This results in

ZZZ?
VVVCCCPPP =

ψ

∑
i=1

υil · ŵi j +
n

∑
i=ψ+1

υi` ·wi j +
ψ

∑
i=1

ηi +
n

∑
i=1

δi.

Here, ψ is the set of components whose configuration changed due to constraint violations.
The new configuration is denoted by ŵi j. These ψ components also change their contribu-
tion to the total utilization. This variation is captured per component by the term ηi. Note
that, differently to δi, ηi is negative when resource budget constraints are violated (new con-
figuration has less resources, higher utilization). When performance constraints are violated
ηi ≥ 0 (new configurations has more resources, lower utilization).

Let ZZZRCon f
VVVCCCPPP be the final total utilization of RConf and ∆ =

ψ

∑
i=1

ηi +
n

∑
i=1

δi. Observe that,

necessarily, ∆≥ 0. Therefore

ZZZ?
VVVCCCPPP = ZZZRCon f

VVVCCCPPP +∆ =⇒ ZZZ?
VVVCCCPPP

ZZZRCon f
VVVCCCPPP

= 1+
∆

ZZZRCon f
VVVCCCPPP

= 1+ ε

where ε = ∆/ZZZRCon f
VVVCCCPPP ≥ 0. If no constraints are violated after the rounding, ψ = 0 and

ψ

∑
i=1

ηi = 0. This expression also captures the case where the linear solver returns the optimal

solution. In that case, δi = 0 ∀i and, inherently, ηi = 0 ∀i, leading to ε = 0.

7.5 RConfPD

RConf computational complexity grows exponentially with problem size. Additionally,
requires running a linear solver on every execution. Therefore, in practice, RConf can be



127 7.5 RConfPD

used for services such as web hosting, data analytics, among others, but it is not suitable
for many networking or cloud services (e.g., edge computing applications or high-sensitive
micro-services) which require near-instant provisioning [158]. We now introduce RConfPD,
a primal-dual algorithm to find near-optimal approximations for resource provisioning with
execution times substantially lower than RConf.

Section 2.1 presents the fundamentals of duality theory prerequisite for this section. The
intuition behind the primal-dual approximation is to relax the complementary slackness
(with the weak duality theorem) and to find a primal feasible solution starting from a feasible
dual solution [67].

7.5.1 RConf Primal-dual and complementary slackness formulation

We presented the VCP ILP in Section 7.2. For RConfPD we use its relaxed version which
eliminates the integrality constraint (C4), allowing 0≤ wi j ≤ 1. Next, we associate the dual
variables πl , ψ and ζi with the constraints (C1), (C2) and (C3) of Eq. (7.2.1), respectively.
Then, the corresponding linear program (i.e., the dual LP) is given as

minimize
π,ζ ,ψ

m

∑
l=1

π
lul +

n

∑
i=1

ζi +SLO(S )ψ

subject to (D1)
m

∑
l=1

π
lrl

i j +gi jψ +ζi ≥ υi j, ∀i = 1,2, . . . ,n, j = 1,2, . . . , |ci|.
(7.5.1)

According to theorem 2.2, at optimality, both primal and dual satisfy complementary
slackness [65]. In a primal-dual approximation, either primal or dual complementary slack-
ness is relaxed to construct a feasible solution. For solving VCP, we relax the primal com-
plementary slackness. Hence, the complementary slackness definitions for VCP are:

(i) ∀i ∈ N, j ∈ ci =⇒
n

∑
i=1

|ci|

∑
j=1

rl
i jwi j = ul(S ) and

n

∑
i=1

|ci|

∑
j=1

gi jwi j = SLO(S ).

(ii)
m

∑
l=1

π
lrl

i j +gi jψ +ζi ≥
υi j

ρ
such that ρ > 1.

For VCP, the dual slackness implies that violation of the resource or SLO constraints, which
in turn would increase the primal profit, or the resource utilization. We therefore keep dual
slackness tight. On the other hand, the (now relaxed) primal slackness implies that RConfPD

is allowed to settle for a slightly reduced profit (at least
υi j

ρ
) if it does not use additional

resources.



ARPP Resource Provisioning 128

7.5.2 RConfPD Algorithm

In MMKP-Knapsack problems, the concept of dominance plays an important role [159].
Consider two items p and q with weights wp and wq, respectively. Let Pp and Pq be the
corresponding profits. If Pp >Pq and wp < wq, then item q is dominated by item p, i.e., it
offers greater profit at lesser weight [159]. In this case, we can remove the dominated item
to save computation time without affecting the solution. Geometrically, the non-dominated
(i.e., dominating) items are extreme points while dominated items are interior points of
the polyhedron [146]. Since optimal solutions are located at the extreme points of the
polyhedron [65], we can reduce the complexity of RConfPD without affecting the optimality
by safely removing dominated items during a preprocessing stage [159].

Thus, removing dominated configurations requires to accurately determine their respec-
tive weights (i.e., resource consumption). In MMKP, each item is a multidimensional vec-
tor. One option to reduce this multi-dimensionality into a single dimension is to norm the
vector [145]. In RConfPD, we use a similar idea and perform scaling of each resource based
on its limits. We call it the resource norm. Consider two flavors F1 and F2 with resource
requirements as shown in Table 7.3 and resource limits of 20 cores and 30GB memory (the
norms for both flavors are also in the table). F1 uses a much smaller fraction of memory
compared to F2. Therefore, scaling resources with the resource norm allow for a more
precise estimation of resource consumption.

Flavor vCPU Mem (GiB) norm resource norm Max. vCPU Max. RAM

F1 10 1 10.04 0.5011
20 30

F2 1 10 10.04 0.337

Table 7.3: A numerical example of resource norm scaling.

We now describe RConfPD in detail. We provide its pseudo-code in Algorithm 7.2.
First, we initialize both primal and dual variables of Eq.(7.2.1) and Eq.(7.5.1). In most
primal-dual algorithms, the dual variables are increased based on some predefined rate. As
Knapsack is a variant of the packing problem, we increase the dual variables based on the
remaining capacity (Alg. 7.2, lines 1-5).

The main loop in RConfPD iterates over the different components in the service. Each
of these iterations has two differentiated steps. The first step is presented as a different
algorithm, Algorithm 7.3, that aims to eliminate dominated configurations. Here, we first
compute the resource norm for the resource requirement of each configuration (Alg. 7.3,
line 1). To compute this norm, we make use again of the robust queue based models pre-
sented in Section 7.3, as we require the performance cost for each configuration. Again,



129 7.5 RConfPD

Algorithm 7.2 RConfPD

Require: λ

1: limitl ← ul,∀l ∈ 1,2, . . . ,m
2: limg← SLO(S)
3: ψ ← 0
4: ∀l = 1,2, · · · ,m,π l ← 0
5: ∀i ∈ N, j ∈ |ci|,wi j← 0
6: for i← 1 to n do
7: Remove dominated configurations for ith component using Algorithm 7.3

8: winner← argmax
j∈ci

max
j∈ci

υi j∥∥ri j
∥∥

9: ζi←min
j∈ci

υi j

10: ∀l = 1,2, · · · ,m,π l ← 1
limitl

11: ψ ← 1
limg

12: ∀i ∈ N,ζi←min υi j,∀ j ∈ |ci|
13: while constraint (D1) is tight in Eq.(7.5.1) do
14: Increase π

l , ψ and ζi

15: wi j← 1
16: limitl ← limitl− rl

i j,∀l = 1, . . . ,m
17: limg← limg−gi j

return wi j

Algorithm 7.3 Dominated configuration removal for ith component
Require: ci,∀i ∈ N

1: Compute
∥∥ri j
∥∥=

√√√√ m

∑
l=1

r2
i j

ul +
g2

i j

SLO
,∀ j ∈ ci, i ∈ N

2: for p← 1 to |ci| do
3: for q← p+1 to |ci| do
4: if (‖ri p‖< ‖riq‖) and (υip > υiq) then
5: ci← ci \{q}

Return non-dominated configurations



ARPP Resource Provisioning 130

using imprecise models would invalidate the outputs of the algorithm. Afterward, we com-
pare all configurations to check for domination relations. If a configuration q has higher
resource norm and lesser profit than a configuration p, then q is dominated and removed
from the configuration set for the ith component, (Alg. 7.3, lines 4-5). Back to the main
loop in Alg. 7.2, we select a winner from the remaining configurations. This winner is the
configuration that yields the maximum profit per unit resource norm (a.k.a. profit-to-weight
ratio in a 0-1 knapsack problem)(Alg. 7.2, line 8). Then, we increase the dual variables until
the constraint (D1) becomes tight in Eq.(7.5.1)(Alg. 7.2, line 13). We set the corresponding
primal variable of that configuration to 1 (Alg. 7.2, line 15). Finally, we update the limits
based on the resource usage of the selected configuration (Alg. 7.2, lines 16 and 17). Once
we have gone through all the components, we return the final service configuration.

7.5.3 Complexity and Performance Analysis

The removal of dominant configurations takes O(|ci| log |ci|) steps due to sorting. Arranging
configurations in non-increasing profit-to-weight ratio, we can determine the maximum and
tighten constraint in O(1) steps. Hence, time complexity is O(|ci| log |ci|) per component

and of O
( n

∑
i=1
|ci| log |ci|

)
for n components.

RConf finds an optimal solution for relaxed Eq.(7.2.1), which is a primal linear program.
Therefore, by the duality theorem, Eq. (7.5.1) has a feasible solution [65]. Shamir and
Rawitz [160] prove that the linear programming formulation of MMKP has a polynomial
approximation time scheme (PTAS) for fixed m resource dimensions. As RConfPD does not
modify resource dimensions of the flavors, it is also a PTAS. We now study its approxima-
tion ratio.

Theorem 7.3 (RConfPD approximation ratio) RConfPD has an approximation ratio ρ .

Proof We denote the total utilization of an optimal solution for Eq.(7.2.1) as

ZZZ?
VVVCCCPPP =

n

∑
i=1

υi j ·wi j ≤ ρ

{ m

∑
l=1

π
l ·

n

∑
i=1

rl
i j ·wi j +ψ

n

∑
i=1

gi j ·wi j +
n

∑
i=1

ζi ·wi j

}
,

The inequality is the result of relaxing the dual complementary slackness that implies υi j ≤

ρ
( m

∑
l=1

π
l ·rl

i j+ψ ·gi j+ζi
)
. At the same time, since wi j = 1, due to complementary slackness

(i)
n

∑
i=1

rl
i j ·wi j = ul and ii)

n

∑
i=1

gi j = SLO(S). Therefore,

ZZZ?
VVVCCCPPP ≤ ρ

{ m

∑
l=1

π
l ·ul +ψ ·SLO(S)+

n

∑
i=1

ζi

}
.



131 7.6 Summary

Finally, by Eq.(7.5.1), we have

ZZZ?
VVVCCCPPP ≤ ρ ·ZZZRCon f PD

VVVCCCPPP =⇒ ZZZ?
VVVCCCPPP

ZZZRCon f PD
VVVCCCPPP

≤ ρ,

where ZZZRCon f PD
VVVCCCPPP is the total utilization of RConfPD and ρ ≥ 1.

7.6 Summary

Optimal deployment of complex services in a virtualized environment is still an open prob-
lem. These services typically consist of a set of connected components, and each component
may consist of multiple instances. Each instance can, in turn, be run in different virtual fla-
vors, while the service constructed by the combination of these instances must satisfy a
customer SLO.

While there have been efforts to answer the questions of when to provision additional
resources in a running service, and how many resources are needed, the question of what
(i.e., which combination of instances) should be provisioned has not been investigated yet.
In this chapter, we offer to service providers the first system that automatically deploys
component instances for complex services to maximize resource utilization at the providers’
premises in the presence of customer constraints.

Our system consists of two key technologies (RConf and RConfPD), both of which build
on an analytical model based on robust queueing theory to accurately model arbitrary com-
ponents. With the aid of this model, RConf proposes an algorithm to ultimately find the
optimal combination of component instances, such that the overall utilization of the run-
ning instances is maximized while meeting SLO.





Chapter8
ARPP Resource Provisioning Evaluation

This chapter presents the evaluation results of approaches and models proposed in the pre-
vious chapter namely RConf, RConfPD and robust queueing based performance model.

First, we describe our experimental setup. Afterward, we motivate the need for profiling
and present profiling results. Subsequently, we not only evaluate RConf over state-of-the-
art solutions but also validate on real cloud instances. Finally, we evaluate and compare the
performance and solution quality of RConfPD over state-of-the-art solutions.

Contents

8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 RConf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 RConfPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147





135 8.1 Experimental Setup

In this chapter, we evaluate RConf and RConfPD in both a real-world deployment and
simulations. Specifically, we show that both solutions, constrained by a customer SLOs, do
indeed find (near-)optimal configurations that increase resource utilization when compared
to one-size-fits-all approaches. Further, RConfPD does find a near-optimal configuration at
a computational expense order of magnitude below that of RConf.

8.1 Experimental Setup

The primary contribution of both RConf and RConfPD is to allow each component of a
service to be run in different instance flavors if this improves the resource utilization while
meeting SLOs. To obtain representative flavors for our experiments, we use a subset of the
flavors offered by Amazon EC2 as listed in Table 8.1.

Instance vCPU Mem (GiB) Usecase

T2.small 1 2 General purpose
T2.medium 2 4 General purpose
T2.large 2 8 General purpose
M3.medium 1 3.75 Enterprise applications
M3.large 2 7.5 Backend servers
M3.xlarge 4 15 Cluster computing
C3.large 2 3.75 Webservers
C3.xlarge 4 7.5 Batch processing
C3.2xlarge 8 15 Distributed analytics

Table 8.1: A summary of the instance flavors and their CPU (in cores) and RAM (in GB)
resources used in our experiments.

This subset offers a variety of combinations of processors and memory, and each flavor
has a different preferred use case. Generally, flavors of the M3 category are intended to
be used in memory-hungry components such as the DB in our case, and C3 instances are
well-suited for compute-intensive components such as the WS in our three-tiered service.
We also use some general purpose instances that are not designed for a particular type of
component.

To measure the real-world flavor capabilities, we deploy on Amazon EC2 the CloudSuite
web serving benchmark [161] as a real-world example of a three-tier web-service as de-
picted in Figure 8.1. Web requests generated by httperf [162] arrive at a load balancer



ARPP Resource Provisioning Evaluation 136

(LB), for which we use HAProxy8. The LB forwards user requests to a web server (WS)
running Elgg9, a widely used social networking engine. Finally, the WS queries a MySQL
database (DB) to fetch requested content.

Figure 8.1: Experiment Setup

8.2 Profiling

Our goal in profiling instance flavors is to evaluate performance accuracy of our robust
queue model. We first measure the performance in a real-world deployment and then com-
pare our findings with the predictions obtained by a robust queueing model, as well as with
the predictions obtained by employing a traditional G/G/m queue.

8.2.1 Methodology

We deploy our service on Amazon EC2 such that each component is running on a different
instance and profile, and each component running on each flavor. To be able to profile
each component of the service individually, we isolate that component, in the sense that we
intentionally over-provision all other components in the service with the goal of finding the
limits of the component under investigation. For example, to profile a DB on a T2.small
instance, we intentionally deploy both LB and WS on C3.2xlarge instances, so that the DB
is the bottleneck of the complete chain.

After that, we perform profiling by increasing the system load at a constant rate and
determine the system time (i.e., the total time spent in the component between arrival and
departure) of each flow for the instance at that load. Further, it is essential to calculate

8http://haproxy.org
9http://elgg.org/



137 8.2 Profiling

the service rate of that component to determine the load of a component. The service rate
computation requires deriving the processing time from the system time which is not trivial
for multi-server queues since multiple servers are servicing in parallel and anyone among
them can service the flow. Krivulin [155] extends the idea of Lindley’s recursion to a G/G/m
queue and derives a recursive relationship between the system, waiting and processing time.
We thus implement Krivulin’s equations for computing the processing time and service rate
of the flows.

8.2.2 Results

Figure 8.2 shows the results of profiling EC2 instances. Each figure shows the following
system times:

• The measured system time in profiling.
• The predicted system time by RConf robust queue model.
• The maximum system time of a G/G/m queue for all types of components we consider

in our service and their most reasonable instance flavors.

Our key observations are as follows:

• Components scale well on different flavors. Each row in Figure 8.2 (e.g., (a) to
(c)) shows one scaled type of instance for a particular component. Each step in one
row roughly represents a doubling of resources, and the right-most plotted point for
each measure or prediction marks the breaking point of an instance, i.e., the point at
which the instance cannot handle more requests. Here, we can see that more capable
instance flavors can handle higher arrival rates, which is not surprising. One interest-
ing find is however that some instances scale very well with an increasing number of
requests. For instance, we can observe that the latency for running a DB on the mem-
ory optimized instance flavors (see (d) to (f)) decreases with an increasing arrival rate,
which may seem counter-intuitive initially. The reason for this is that the DB with in-
creasing load also starts more worker threads internally and is thus able to handle the
load appropriately. We can observe this effect up to a certain point, at which the DB
begins to struggle with the load and finally reaches a breakpoint, at which it can not
handle any more requests (e.g., at around 220 requests for an M3.medium instance).

• RConf is accurate. More importantly, our model can accurately predict the real-
world system time of each component. RConf predicts the capabilities of most in-
stances well. We see the most accurate predictions for an LB running on T2.small,
a DB running on M3.large and a WS running on C3.2xlarge. In these cases, RConf
is at most a few milliseconds off target, and in some cases (e.g., DB @ M3.large,
Figure 8.2(e)) yields a perfect prediction. For the remaining six depicted flavors we



ARPP Resource Provisioning Evaluation 138

LB T2.small

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300

Measured System time
RQueue Expected System time
G\G\m Queue Max System time

200100

(a) LB @ T2.small

LB T2.medium

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300200100

(b) LB @ T2.medium

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300200100

LB T2.large

(c) LB @ T2.large

DB M3.medium

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+9

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300200100

(d) DB @ M3.medium

1e+9

1e+8

1e+7

Arrival Rate (flows/second)

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

DB M3.large

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300200100

(e) DB @ M3.large

DB M3.xlarge

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+9

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
400300200100

(f) DB @ M3.xlarge

1e+9

1e+8

Arrival Rate (flows/second)

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

WS C3.large

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
25020015010050

(g) WS @ C3.large

1e+9

1e+8

Arrival Rate (flows/second)

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

WS C3.xlarge

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
25020015010050

(h) WS @ C3.xlarge

WS C3.2xlarge

E
xp

ec
te

d 
S

ys
te

m
 ti

m
e 

(m
ill

i s
ec

on
ds

)

Arrival Rate (flows/second)

1e+9

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1
25020015010050

(i) WS @ C3.2xlarge

Figure 8.2: Measured (profiled) system time vs. RConf prediction vs. theoretical G/G/m
system time (maximum).



139 8.2 Profiling

also receive encouraging results, which deviate in the scale of 10s of milliseconds for
most cases. We have profiled all three components on all nine instance flavors and
this result generalizes to the combinations not shown in Figure 8.2.

• If RConf is wrong, it does the right thing. It is further worth noting that if RConf
deviates from the actual measured values, the deviation goes in the correct direction.
RConf is a conservative approach that over-predicts the time required to process a
specific load with a particular combination. While over-predictions are not desirable,
their downside is that RConf might occasionally miss a combination that can do the
job with fewer resources. In contrast, if it would systematically under-predict the
latency, it would run in the much more severe danger of violating customer SLOs
by selecting instance flavors too optimistically. The only case of under-prediction is
for a WS running on C3.large, and there only for a few intermediate request rates.
Over-predicting in other cases balances this rare under-prediction.

• RConf will adapt to dynamic load. Our model is also able to adapt to dynamic (e.g.,
increasing) load. As we now know the maximum service rate for each combination
(indicated by the breaking point), RConf will know at which point it will need to scale
up a specific component. For instance, consider a service dealing with an arrival rate
of 100 requests per second (rps) and has thus deployed a single M3.medium instance
for the DB. If the load increases to 200 rps, RConf will not scale up the DB, as it
knows that the M3.medium instance can handle this load well (Figure 8.2(d)). In
contrast, if the load further increases to 250 rps, RConf will add one or more addi-
tional instance(s). Note that these instances do not necessarily have to be M3.medium
again, as now RConf only needs to provide resources for an additional 50 rps.

• G/G/m queues are unsuitable for our purpose. Employing a G/G/m queue results
in significantly over-predicting the system time, often by several orders of magnitude.
The reason is that we can only use the maximum system time in a standard G/G/m
queue, while we can not compute the average system time as done in RConf [76].
As a consequence, employing G/G/m queues for resource provisioning would result
in a prohibitive resource over-provisioning. Concretely, deploying a DB component
that matches a 30ms SLO can be done with one M3.large instance in RConf, while a
G/G/m queue would deploy 1344 such instances (see Figure 8.2(e), note the log scale
of the y-axis for the expected delay of a single instance predicted by a G/G/m queue).
Additionally, when using a G/G/m queue, we can not find a solution always (indi-
cated by breaks in the respective curve). The reason is that for a G/G/m queue, the
maximum system time is computed as follows:

τ ≤ λ (σ2
a +σ2

s /m+(1/m−1/m2)/µ2)

2(1−ρ)
+

1
µ

(8.2.1)

From the above equation, we observe that τ is undefined when ρ ≥ 1. That is, when
the system is fully loaded, the system time is undefined for G/G/m.



ARPP Resource Provisioning Evaluation 140

8.3 RConf

In our second step, based on the results obtained from the profiling, we evaluate RConf with
regards to its real-world feasibility. Here, we first let RConf find the optimal solution for the
deployed service and show that RConf improves utilization over one-size-fits-all solutions.
In a second step, we show based on real experiments that the solution RConf found in the
first step satisfies the customer SLOs.

8.3.1 Methodology

In our experiment, a customer wants to set up a three-tiered web service as introduced
above. Here, the customer demands that each request towards that service is handled in less
than 300ms as per typical SLO in virtual infrastructures [50]. The customer also indicates
that the service will experience a load of 200 rps and that she is not willing to pay for more
than 20 CPU cores and 40 GB memory. To show the adaptability of RConf, we also assume
that this load is not static, but increases over time, and will thus evaluate the configurations
chosen by RConf for varying request rates. Note that we fix the LB to the largest instance in
the experiment for all approaches, as all traffic enters our experimental deployment through
that node.

We compare the solution found by RConf to several one-size-fits-all solutions. Specifi-
cally, we evaluate whether it is possible to find a solution that matches the customer SLO
and budget in any of these approaches (including RConf), and how well each approach uti-
lizes the deployed resources. More concretely, we compare RConf against configurations
that only choose the largest available instances (i.e., over-provisioning), configurations that
only choose the smallest available instances, and an expert configuration. In the latter, we
scale up a component by adding instances that best match that component’s requirements.
For instance, memory-dominated instances are added to scale the DB component. Here, the
expert determines a flavor that matches component’s requirements in general, but it is im-
portant to note that the expert can not know the resource requirements of particular services.
Thus, this allocation is a superior choice than the largest-only approach (which is not fit to
any component) but is still likely to result in over-provisioning to some extent.

8.3.2 Results

Table 8.2 shows the solutions found by each approach for 200 rps. We can observe that
only RConf and the expert choice can find solutions in this case, and further that RConf out-
performs all other approaches regarding average resource utilization (ARU) of each com-



141 8.3 RConf

ponent. In particular, we increase utilization by 38% over over-provisioning, 50% over
choosing only small instances, and 16% over the expert choice, which uses computation-
ally powerful C3.xlarge instances for the WS and M3.large as a memory-optimized instance
for the DB. Note that this utilization gain is achieved even though RConf over-predicts the
latency for some configurations as indicated above.

Flavor Largest Smallest Expert RConf

Load Balancer
C3.2XLarge 1 1 1 1

Webserver
T2.small 5 5
C3.xlarge 2
C3.2xlarge 2

Database
T2.small 2

M3.medium 1
M3.Large 1
C3.2xlarge 1

SLO (ms) 300 300 300 300
Latency (ms) 299.28 303.93 293.28 296.3

CPU/RAM used 32/60 15/30 18/37.5 14/29
Valid (20/40) No (Budget) No (SLO) Yes Yes
Valid (15/30) No (Budget) No (SLO) No (Budget) Yes

ARU (%) 53.423 48.864 63.638 73.503

Table 8.2: Comparison of resource allocation and resulting utilization among different ap-
proaches under the specified budgets and latency SLO. Instance flavors not
shown were not chosen by any approach.

In detail, selecting large instances results in over-provisioning with only approximately
half of the resources provisioned being used. Also, the solution found in over-provisioning
is violating the customer budget and thus not valid. Simultaneously, we cannot match the
SLO by selecting small instances only. The reason for this is that here we are limiting the
DB component to T2.small instances (which are not a good match for the DB requirements)
results in increased latency for this component. As a result, no matter how many T2.small
instances we deploy, we can not get below the SLO of 300ms. In contrast, the expert choice
solution avoids this dilemma and selects an appropriate instance type for the DB component.
We also see that with this allocation, resource utilization increases over over-provisioning



ARPP Resource Provisioning Evaluation 142

and that the solution satisfies both customer SLO and budget.

Still, RConf outperforms the expert choice. To find the configuration that maximizes
utilization, it finds a configuration that is a mixture of smallest only (web servers) and the
expert choice (database). Here, the strength of RConf is that it is not bound to a single
instance flavor, but can instead choose from all available flavors and thus yield significant
utilization gain. This utilization gain is also reflected in saving resources: RConf also de-
ploys 22% fewer resources. Consequently, RConf can even meet stricter customer budgets.
As shown in Table 8.2, unlike to RConf, the expert choice approach cannot find a valid
solution if we decrease the budget to 15 cores and 30 GB RAM.

Requests/second 200 250 350 450

Configuration DB 1x M3.medium 1x M3.medium + 1x T2.small 1x M3.medium + 2x T2.small 1x M3.medium + 3x T2.small

Configuration WS 5x T2.small 5x T2.small + 2x M3.medium
5x T2.small + 2x M3.medium +
1x C3.xlarge

5x T2.small + 2x M3.medium +
1x C4.xlarge + 4x T2.medium

Latency (ms) 217.1 213.0 207.6 215.3

Table 8.3: RConf meets the pre-defined SLO requirements and scales up components as
required.

Finally, we show that the configuration found by RConf for 200 rps is meeting the SLO
set by the customer. For that, we deploy our three-tiered system under this configuration
and measure the end-to-end latency of the complete service as configured by RConf. To
demonstrate the ability to dynamically scale-up a service on demand, we increase the load
towards the service sequentially. In Table 8.3, we indeed see that even for dynamic request
rates, RConf can comply with the SLO always. Moreover, RConf scales up instances and
runs with various combinations over time. In this case, RConf provides additional web
servers and databases for each increase in the request rates. Here, once RConf receives the
information about the new (increased) load, it finds the optimal configuration for the differ-
ence between the new load and the previous maximum service rate and deploys instances
accordingly. For instance, the five WS running on T2.small are (almost) completely utilized
with 200 rps (each having a maximum service rate of 40 rps), and thus RConf finds an opti-
mal solution for the remaining 50 requests when configuring the service for the new load of
250 rps. It then deploys the found solution in addition to already running instances to avoid
complete reconfiguration of the service. For the opposite way (decreasing load), RConf
can similarly find the new configuration. In that case, the set of possible configurations to
choose from for provisioning the new (reduced) load would be the set of combinations of
the currently deployed instances. That way, the required instances will be kept running,
while RConf can shut down unused instances. Note however that for stateful applications
such as a DB or a firewall, this requires the transfer of application state to the remaining
instances, which is out of the scope of this chapter.



143 8.4 RConfPD

8.4 RConfPD

Next, we show that RConfPD is capable of arriving at a solution much faster than RConf

while providing a near-optimal configuration of a requested service.

8.4.1 Methodology

Computational Complexity. We first evaluate RConfPD in our three-tiered service against
the results obtained from RConf. Then, to evaluate the scalability of both approaches, we
use extended MMKP benchmarks10 to simulate large-scale experiments [158].

There are 17 MMKP benchmarks divided into two classes, INST and RTI. Each bench-
mark i describes ni components (100≤ ni ≤ 500 for INST benchmarks, and 10≤ ni ≤ 500
for RTI benchmarks) and each component offers ci ≤ 20 configurations. Each configuration
consists of up to 10 different dimensions that we assimilate as resource types, e.g., CPU
cores or memory. The following table 8.4 shows the number of components and configura-
tions (max in RTI) benchmarks.

Benchmark n max |ci| Total configurations Benchmark n max |ci| Total configurations

INST21(I21) 100 10 1000 RTI07(R07) 10 10 100
INST22(I22) 100 10 1000 RTI08(R08) 20 10 200
INST23(I23) 100 10 1000 RTI09(R09) 30 10 300
INST24(I24) 100 10 1000 RTI10(R10) 40 20 800
INST25(I25) 100 20 2000 RTI11(R11) 40 20 800
INST26(I26) 100 20 2000 RTI12(R12) 40 10 4000
INST27(I27) 200 10 2000 RTI13(R13) 50 10 5000
INST28(I28) 300 10 3000 INST29(I29) 400 10 4000
INST30(I30) 500 10 5000

Table 8.4: INST and RTI benchmark information.

Hence, we have scenarios in which our solutions need to provision highly complex ser-
vices with 10 to 500 components, each with up to 20 different 10-dimensional configura-
tions. We use these benchmarks to complement the results of our three-tiered architecture.
In essence, with the benchmarks, we evaluate RConf and RConfPD computational complex-
ity on a large-scale; highly complex services that can consist of up to 500 tiers.

Solution Quality. Besides a lower computational complexity, RConfPD should also pro-
vide near-optimal results. To measure the solution quality, we provide two different exper-
iments. First, we compare RConfPD and RConf performance for the benchmarks as men-
10http://www.es.ele.tue.nl/pareto/MMKP/benchmark_files/

http://www.es.ele.tue.nl/pareto/MMKP/benchmark_files/


ARPP Resource Provisioning Evaluation 144

0 10000 20000 30000
Request rate (request/second)

10 1

100

101

102

103

Ti
m

e 
(m

illi
se

co
nd

s)
(a) Three-tiered service

RConf
RConfPD

I21 I22 I23 I24 I25 I26 I27 I28 I29 I30
Benchmark Instance

(b) INST Benchmark

R07 R08 R09 R10 R11 R12 R13
Benchmark Instance

(c) RTI Benchmark

Figure 8.3: Measured running time of RConf vs RConfPD.

tioned earlier. Secondly, we emulate our initial experiment. Unfortunately, however, RTI
and INST benchmarks were not thought of as a cloud service, so we modify them varying
the per-resource budget to emulate the capacity of our initial three-tiered scenario. We use
the configuration descriptions of each component as instance flavors and their profit as the
number of requests that instance flavor can handle11. We then let RConf and RConfPD find
(near-)optimal combinations of these instances. Inline with our three-tiered service evalua-
tion for RConf, the aim of both solutions is maximizing resource utilization, i.e., the ratio of
the number of requests that either solution provisions to the number or requests requested
by the customer.

This modification allows us to vary both the customer budget as well as the request rate,
similar to our RConf evaluation. Further, it enables a statistical comparison that goes be-
yond the 17 benchmarks provided by [158]. Moreover, we can now also compare RConf

and RConfPD against one-size-fits-all solutions. In particular, the largest-only solution is
based on the instance configuration that handles the most requests, while the smallest-only
solution would pick a number of the smallest capacity instances.

8.4.2 Results

Computational Complexity. Figure 8.3 shows the measured time for various request rates
and benchmarks. We find that RConfPD is orders of magnitude faster than RConf across all
experiments. These results reflect our intuition behind the use of a primal-dual approxima-
tion. More importantly, for both our three-tiered service and the RTI benchmarks, RConfPD
can determine its selected configuration within a time of one millisecond, whereas RConf
often needs hundreds of milliseconds to arrive at its proposed configuration. Even for a

11Note that there is a linear relation between the profit and the resources provisioned in the benchmark, which
makes this transformation feasible



145 8.4 RConfPD

highly complex service with 500 different components (INST benchmark I30), RConfPD
computes a solution in at most 9ms. This difference makes RConfPD the go-to tool for
time-sensitive applications.

Solution Quality. The improvement in computational complexity is only valid if at the
same time RConfPD proposes a solution of high quality, close to the optimal solution of
RConf. Therefore, we subsequently compare the solution quality (i.e., the ratio of the ob-
jective value achieved to the optimal objective value) of both methods. In Figure 8.4, our
key observations are as follows.

First, RConfPD achieves at least 80% of the optimal objective value in all cases. Note that
this does not indicate that RConfPD achieves 20% less resource utilization when compared
to RConf, but is merely an indicator of how close both solutions are regarding the MMKP
profit. Practically, RConfPD in many cases finds an exact solution as RConf does. Second,
RConfPD is much closer to the optimal solution in the real-world scenario of our three-
tiered service than in the standard MMKP benchmarks. Concretely, RConfPD achieves
a solution quality of ≈ 99% of the RConf solution. The reason is that here the number
of components is limited to three, which leaves little room for substantial differences in
choosing configurations, while the benchmarks offer much larger problem sizes. Third, note
that RConfPD is unable to find a solution for benchmarks R07 and R13 due to a violation of
the resource limiting constraint. The Eq. (7.2.1) formulation requires a selection from every
component. In both R07 and R13, there are components with a single configuration. Hence,
RConfPD has to include these configurations and then later violates the resource constraint,
and does not find a feasible solution. Note, however that single configuration components
are not an issue in practice, as both RConf and RConfPD are targeted at environments where
there exist multiple flavors for each component.

Finally, while RConfPD often finds the same solution as RConf, it frequently chooses a
different configuration with less overall resource utilization. Table 8.5 shows the selected
configurations of both RConf and RConfPD for a subset of different request rates in our ex-
periments. Here, we see that RConf chooses a different set of instances across components
and request rates, which results in higher resource utilization with RConf.

Req./second 225 450 650 1500 2500 6250

Component Webserver Webserver Database Database Database Database

RConf Choice 3x M3.large 7x T2.medium 7x T2.small 4x T2.large 26x T2.small 16x T2.large
RConfPD Choice 6x T2.small 12x T2.small 3x C4.large 8x M3.medium 13x M3.medium 32x M3.medium

RConf Util. 99.29% 99.21% 94.48% 95.99% 97.83% 99.99%
RConfPD Util. 93.74% 93.73% 88.55% 93.75% 96.15% 97.65%

Table 8.5: Difference in configurations for RConfPD vs. RConf.



ARPP Resource Provisioning Evaluation 146

0 10000 20000 30000
Request rate (request/second)

80

90

100

110

120

No
rm

al
ize

d 
Ob

je
ct

iv
e 

va
lu

e (a) Three-tiered service
RConf
RConfPD

I21 I22 I23 I24 I25 I26 I27 I28 I29 I30
Benchmark Instance

(b) INST Benchmark

R07 R08 R09 R10 R11 R12 R13
Benchmark Instance

(c) RTI Benchmark

Figure 8.4: Measured solution quality of RConf vs. RConfPD.

Solution quality in extended benchmarks. We now evaluate our approaches with the
modified benchmarks as mentioned above. We focus on two key results. First, how both
RConf and RConfPD perform for a single benchmark. Second, by randomly picking 100
different customer budgets and request rates for each benchmark, we evaluate 1700 different
instances for richer statistical evaluation.

Figure 8.5 shows the objective value or profit achieved by RConf and RConfPD com-
pared with the one-fits-all configurations for the most complex benchmark, INST30 with
500 components. We can observe i) that in most cases the largest-only approach does not
find a feasible configuration as it violates the customer budget; ii) RConf starts finding solu-
tions with lower customer budget compared to all other approaches; iii) RConf always finds
the best solution, while RConfPD and smallest-only are within 4% of that solution qual-
ity. These results are in line with what we saw when evaluating RConf on the three-tiered
service. Note that there we also showed that the smallest-only strategy usually results in
violating the SLO.

Finally, Figure 8.5 shows the statistical evaluation of the 1700 configurations in the form
of a CDF, comparing the results of RConfPD, smallest-only and largest-only to that of
RConf. Although no approach matches RConf solutions quality, RConfPD achieves the best
results (right-most curve in the CDF). One peculiarity is that, while the largest-only strategy
is not able to find any budget-satisfying solution in 81% of the cases, it beats RConfPD in
roughly 2−3% of the cases where the workload was close to a multiple of the requests the
largest instance could handle.

In summary, we have initially shown that the robust queueing framework which RConf

and RConfPD are built on delivers accurate profiling results for measuring flavor capabil-
ities. Additionally, RConf yields an improvement of up to 50% resource utilization when
compared to one-size-fits-all solutions, and simultaneously also provisions more than 20%
fewer resources. For time-sensitive applications, RConfPD yields a speed-up factor of at



147 8.5 Summary

10000 15000 20000
Budgets

0.94

0.96

0.98

1.00

No
rm

al
ize

d 
re

so
ur

ce
 u

til
iza

tio
n (a) Relative quality

Rconf RconfPD Large Small

0.8 0.9 1.0
Quality ratio

0.00

0.25

0.50

0.75

1.00

F(
x)

(b) Solution quality

0 1000 2000 3000
Speed-up factor

0.00

0.25

0.50

0.75

1.00

F(
x)

(c) Performance

Figure 8.5: Solution quality comparison of RConf, RConfPD, large and small approaches.
Furthermore, statistical evaluation of RConfPD, large and small approaches.

least 40× and more than 200× in ≈ 70% of the cases compared to RConf—and decides
within at most 10ms. Simultaneously, it finds the same solution as RConf in ≈ 30% of the
cases. Where it does not do so, even for huge problems with hundreds of components, it
maintains at least 80% and up to 99% of the solution quality of RConf, while outperforming
one-size-fits-all solutions.

8.5 Summary

In this chapter, we evaluated RConf and RConfPD along with a robust queueing based ana-
lytical model on real-world deployment as well as simulations. The profiling results clearly
illustrate the adaptability and applicability of our analytical model for predicting the per-
formance of a specific instance flavor when used for a given component in the complex
service.

Our real-world experiments show that RConf can increase utilization by 16− 50% over
one-size-fits-all solutions and deploys 22% fewer resources than the best of the studied
approaches. Further, RConf manages to find valid configurations where the one-size-fits-all
approaches either violate the customer SLO or the budget constraints, and thus gives the
service provider additional opportunities to satisfy incoming customer requests, and thus
gives the service provider additional opportunities to satisfy incoming customer requests.

For time-sensitive applications, RConfPD computes a near-optimal solution with up to
99% of the solution quality of RConf two orders of magnitude faster. Both approaches man-
age to find valid configurations where one-size-fits-all approaches violate either customer
SLO or budget constraints. Thus, it gives the service provider additional opportunities to
satisfy the incoming customer requests.





Chapter9
Discussion and Future Work

This dissertation underlines the importance of optimizing both pricing and resource provi-
sioning and introduced the challenges. As a result, previous chapters presented ARPP pricing
and provisioning modules.

First, we start with the summary of whether ARPP modules addressed the challenges
presented in Section 1.3. Finally, we suggest the possible enhancements to ARPP modules.

Contents

9.1 Recap: Does ARPP Meet the Challenges? . . . . . . . . . . . . . . 151
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.1 ARPP Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.2 ARPP Resource Provisioning . . . . . . . . . . . . . . . . . 152





151 9.1 Recap: Does ARPP Meet the Challenges?

9.1 Recap: Does ARPP Meet the Challenges?

In this section, we recap how ARPP addressed the challenges presented in Section 1.3. In
cloud computing, customers are often strategic. Moreover, sealed bid auctions are sus-
ceptible to bidder collusion. Hence, incentive compatible auctions are designed to motive
truthful behavior among users. RAERA satisfy not only incentive compatibility but also in-
dividual rationality. Additionally, RAERA determines allocation and prices based on the bid
history and submitted bids which guarantee profit for service provider even in case of price
uncertainty due to different bid distributions. As a result, RAERA does not require prior
knowledge about the bid distribution of the customers.

The goal of ERM is to price resources differentially and at the same maximize Nash Social
Welfare – a Pareto outcome between efficiency and fairness. In ERM, differential prices are
determined based on resource demand and customer budget. Hence, the customer pays dif-
ferential prices for highly demanded resources without violating their budget. Furthermore,
ERM is an auction-based market and scales with a large number of customers and resource
types as evident from the evaluation.

In ARPP, OFM is proposed to compute resource prices online, and input appears the calcu-
lation of the equilibrium prices. Similar to ERM, OFM also maximizes Nash Social Welfare
and scales with a large number of customers and resources. Contrary to state of the art
solutions, OFM neither assumes utility distribution nor the number of resources offered. Fur-
thermore, the OFM adversarial model achieves a balance between pessimistic and stochastic
models by taking well-behaved data observed in the Cloud. The experiments demonstrate
the convergence and performance of OFM. Both ERM and OFM guarantee integer allocation
and avoid the conventional approach of rounding to the nearest integer.

RConf finds an optimal configuration for the services using robust queueing theory-based
model. The robust queueing model addressed multiple challenges in estimating perfor-
mance cost of a complex service. First, the model predicts the end-to-end time for generic
arrivals and departures for a complex service. Second, considers processing capacity of the
configuration in performance estimation. Third, the prediction is adaptive to the load as
evident from the experiments on real cloud instances. Finally, the model prediction based
on arrival and departure of the traffic flows only. Therefore, the model is application inde-
pendent.

The configuration found by RConf is near optimal and does not violate budget con-
straints. RConfPD is apt for edge applications which require near-instant provisioning.
RConfPD finds configuration faster than RConf with a loss of optimality. The experiments
on real deployment and simulation demonstrate the superiority regarding resource utiliza-
tion and usage over state-of-the-art approaches. Therefore, an edge or cloud can incorporate



Discussion and Future Work 152

both RConf and RConfPD for automating the decision of finding optimal configurations for
a complex service.

9.2 Future Work

In this dissertation, we proposed ARPP for automating resource pricing and provisioning. In
this section, we present extensions to our work that we did not address in this dissertation.

9.2.1 ARPP Pricing

RAERA addresses price uncertainty due to different bid distributions in a sealed bid auction
by constructing uncertainty set. Currently, the central limit theorem is the basis for an uncer-
tainty set construction. Furthermore, RAERA can consider covariance or dependency among
the resources during the uncertainty set construction. In theory, individual end users could
also be buyers interested in offloading computation, (pre-)process big data, making use of
IoT edge functionality. However, the scale would increase many-folds, and we consider it to
be future work. Furthermore, RAERA can be extended to create an independent multi-seller
marketplace.

ERM, an auction-based market for pricing resources differentially. The buyers’ utilities
are assumed to be SPLC. In cloud computing, Leontief utility models complementary re-
sources. Garg [163] proves the existence of market equilibrium for buyers with p-Leontief
– discretized Leontief utility with decreasing returns. Hence, ERM can be extended to p-
Leontief utilities and guarantee integer allocation.

OFM is an online Fisher market for pricing cloud resources. OFM is based on Shymerov’s
alternate formulation for maximizing Nash Social Welfare. OFM can be extended to compute
differential prices by extending Shymerov’s formulation for multiple resource copies which
not only maximize Nash Social Welfare but also guarantee integer allocation.

9.2.2 ARPP Resource Provisioning

In ARPP, RConf and RConfPD address the question what to deploy. Both the proposed
approaches estimate performance cost of both individual components and complete service
based on robust queueing theory model. Model estimation is adaptive to incoming load
since uncertainty set parameters are tuned using linear regression model. However, there



153 9.2 Future Work

are cases of over and under-prediction. Hence, recent research in regression models can be
leveraged to improve the prediction accuracy of the robust queueing model.

In cloud subletting, a cloud user can rent his allocated resources temporarily for other
users, and a service provider can act as the broker for the user. As a result, there is an uncer-
tainty about resources configuration offered at the time instance i.e., resource configurations
are online. Both RConf and RConfPD are offline algorithms. An online algorithm extension
can address the challenges of cloud subletting use cases.





Chapter10
Conclusion





157

In recent times, cloud service providers are offering complex services in addition to tra-
ditional cloud services. Moreover, these services are deployed on edge to improve user
experience and performance. Current service pricing schemes are beneficial neither to ser-
vice providers nor cloud users. Furthermore, dependency and heterogeneity among ser-
vices have resulted in a complicated marketplace affecting both pricing and performance.
Consequently, resource pricing and provisioning are inseparable in the context of complex
services. In this dissertation, we propose ARPP for automatically pricing and deploying
complex services in both edge and cloud environments.

This dissertation proposes RAERA based on robust optimization for multi-item auctions
for edge computing resources. RAERA can guarantee the profit to providers even in the pres-
ence of price uncertainty. Furthermore, it satisfies incentive compatibility and individual
rationality simultaneously. Therefore, RAERA can determine a time-dependent fair price
that benefits both buyers and sellers.

This dissertation proposes ERM, an auction-based market with SPLC utilities for edge
and cloud resource allocation. ERM computes differential prices based on the customer
utility and budget. As a result, provides ability for service providers to introduce differential
services. The prices are market clearing and maximize Nash Social Welfare. Furthermore,
guarantee integer allocation and scales with resource types and customers.

This dissertation proposes OFM, an online Fisher marketplace for varying buyers and re-
sources. The adversarial model incorporates tail behavior commonly observed in cloud
computing. OFM achieve low regret bound and faster convergence over a time period. Fur-
thermore, OFM is computationally efficient and scales with a large number of consumers and
resources.

This dissertation offers RConf and RConfPD for automating the deployment of compo-
nent instances of a complex service. Both approaches find configurations that maximize
resource utilization without violating SLOs. The robust queueing model proposed to esti-
mate performance cost. Furthermore, considers processing capacity of configuration and
can be applied for generic arrival and departure processes unlike state of the art models in
cloud computing. Both approaches manage to find valid configurations where one-size-fits-
all approaches violate either the customer SLOs or the budget constraints. Thus, give the
service provider additional opportunities to satisfy incoming customer requests.



Conclusion 158

10.1 Dissertation Impact

The author of this dissertation was the lead investigator and first author of several research
papers.

In particular, the work on designing, implementing and evaluating RConf and RConfPD

has been published in the following peer-reviewed international conference and journal pro-
ceedings:

• Abhinandan S. Prasad, David Koll, Jesus Omana Iglesias, Jordi Arjona Aroca,
Volker Hilt and Xiaoming Fu, Optimal Resource Configuration of Complex Services
in the Cloud. In: 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID 2017).

• Abhinandan S. Prasad, David Koll, Jesus Omana Iglesias, Jordi Arjona Aroca,
Volker Hilt and Xiaoming Fu, RConf(PD): Automated resource configuration of com-
plex services in the cloud. To appear: Special Issue on Mobile, hybrid, and heteroge-
neous clouds for cyberinfrastructures, Future Generation Computer Systems (FGCS
2018).

The work RAERA has been published in the following peer-reviewed international confer-
ence proceedings:

• Abhinandan S. Prasad, Mayutan Arumaithurai, David Koll and Xiaoming Fu
RAERA: A Robust Auctioning Approach for Edge Resource Allocation. In: Pro-
ceedings of the Workshop on Mobile Edge Communications (MECOMM 2017).

The works ERM and OFM are currently under submission in the following peer-reviewed
conference proceedings:

• Abhinandan S. Prasad, David Koll, Mayutan Arumaithurai, and Xiaoming Fu,
ERM: Edge Resource Market. In: 36th International Symposium on Computer Per-
formance, Modeling, Measurements and Evaluation 2018 (IFIP Performance 2018)
(under submission).

• Abhinandan S. Prasad, David Koll, Mayutan Arumaithurai, Yuming Jiang and Xi-
aoming Fu, OFM: Online Fisher Market. In: 36th International Symposium on
Computer Performance, Modeling, Measurements and Evaluation 2018 (IFIP Per-
formance 2018) (under submission).



ChapterA
Appendix

A.1 Optimal pricing for Fisher market

We derive optimal prices based on the duality theory. The basic concepts of duality theory
can be found in the chapter 2.1.1. The convex program for Fisher market (Eq. 2.2.3)is given
by

Maximize
n

∑
i=1

bi logUi

s.t Ui =
m

∑
j=1

ui jxi j,∀i ∈ B

n

∑
i=1

xi j ≤ 1,∀ j ∈ G

xi j ≥ 0,∀i ∈ B, j ∈ G.

The basic idea is to derive Lagrangean dual of above equation and apply KKT [68] condi-
tions on derived Lagrangean dual to find optimal prices. The KKT conditions can be found
in chapter 2.1.2.

Let p j and µi j be the Lagrangean multipliers of constraints
n

∑
i=1

xi j ≤ 1 and xi j ≥ 0 of Eq.

(2.2.3) respectively. Also, p j ≥ 0,µi j ≥ 0. The Lagrangean dual of Eq. (2.2.3) is given by

L (x, p,µ) =
n

∑
i=1

bi logUi−
m

∑
j=1

p j

(
n

∑
i=1

xi j−1

)
−

n

∑
i=1

m

∑
j=1

µi j(−xi j) (A.1.1)

According to KKT condition
∂L

∂x
= 0, we have following:



Appendix 160

According to KKT complementary slackness, we have

∀ j ∈ G,p j

(
n

∑
i=1

xi j−1

)
= 0

∀i ∈ B, j ∈ G,µi jxi j = 0.

(A.1.2)

∂L

∂x
= bi

1
Ui

ui j− p j +µi j

=
biui j

Ui
− p j +µi j

∂L

∂x
= 0 =⇒ p j =

biui j

Ui
+µi j

p j ≥
biui j

Ui
.

(A.1.3)

In case of successful allocation, we have xi j > 0 and substituting in Eq. (A.1.2) (comple-
mentary slackness), µi j = 0. In other words, µi j = 0 for successful allocation. Using µi j = 0
in Eq. (A.1.3), the optimal price is given by

p j =
biui j

Ui
(A.1.4)

A.2 Bregman divergence

In our case, h(x) = x logx− x. Hence, ∇h(y) = logy. Bregman divergence Bh(x,y) is given
by

Bh(x,y) = h(x)−h(y)−〈∇h(y),x− y〉

Substituting values, we have

= x log
x
y
− x− y.

The Bregman divergence is minimized when ∇Bh(x,y) = 0

∇Bh(x,y) = 1+ logx− logy−1

=⇒ x = y.

Therefore, Bregman divergence Bh(x,y) of unnormalized negative entropy function h(x) =
x logx− x is minimized when x = y.



Bibliography

[1] Christabel Lum. 4 Things Steve Jobs Taught Us About Cloud Computing, 2016.

[2] P M Mell and T Grance. SP 800-145. The NIST Definition of Cloud Computing.
Technical report, Gaithersburg, MD, United States, 2011.

[3] Mateusz Guzek, Pascal Bouvry, and El-Ghazali Talbi. A Survey of Evolutionary
Computation for Resource Management of Processing in Cloud Computing [Review
Article]. IEEE Computational Intelligence Magazine, 10(2):53–67, May 2015.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge Computing: Vision and Challenges.
IEEE Internet of Things Journal, 3(5):637–646, October 2016.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-Based
Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4):14–23, October
2009.

[6] A. L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju. Auction Mechanisms Toward
Efficient Resource Sharing for Cloudlets in Mobile Cloud Computing. IEEE Trans-
actions on Services Computing, 9(6):895–909, November 2016.

[7] R. Landa, M. Charalambides, R. G. Clegg, D. Griffin, and M. Rio. Self-Tuning
Service Provisioning for Decentralized Cloud Applications. IEEE Transactions on
Network and Service Management, 13(2):197–211, June 2016.

[8] Rahul Potharaju and Navendu Jain. When the Network Crumbles: An Empirical
Study of Cloud Network Failures and Their Impact on Services. In Proceedings of
the 4th Annual Symposium on Cloud Computing, pages 15:1–15:17. ACM, October
2013.

[9] Jonatha Anselmi, Danilo Ardagna, John C. S. Lui, Adam Wierman, Yunjian Xu, and
Zichao Yang. The Economics of the Cloud. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 2(4):18:1–18:23, August 2017.

[10] Ranjan Pal and Pan Hui. Economic models for cloud service markets: Pricing and
Capacity planning. Theoretical Computer Science, 496:113–124, July 2013.



Bibliography 162

[11] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouillet, and Dimitrios
Pendarakis. Efficient Resource Provisioning in Compute Clouds via VM Multiplex-
ing. In Proceedings of the 7th International Conference on Autonomic Computing,
pages 11–20. ACM, June 2010.

[12] Srinivasan Jagannathan and Kevin C. Almeroth. Price Issues in Delivering E-content
On-demand. ACM SIGecom Exchanges, 3(2):18–27, March 2002.

[13] Zijun Zhang, Zongpeng Li, and Chuan Wu. Optimal Posted Prices for Online Cloud
Resource Allocation. Proceedings of the ACM on Measurement and Analysis of
Computing Systems , 1(1):23:1–23:26, June 2017.

[14] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. Interconnected
Cloud Computing Environments: Challenges, Taxonomy, and Survey. ACM Com-
puting Surveys, 47(1):7:1–7:47, May 2014.

[15] Frank Ridder and Alexa Bona. Four Risky Issues When Contracting for Cloud Ser-
vices, 2011.

[16] Kamal Jain, Tung Mai, and Vijay V. Vazirani. A Performance-Based Scheme for
Pricing Resources in the Cloud. In Web and Internet Economics (WINE), pages 281–
293. Springer, December 2017.

[17] I. A. Kash and P. B. Key. Pricing the Cloud. IEEE Internet Computing, 20(1):36–43,
January 2016.

[18] Jian Zhao, Hongxing Li, Chuan Wu, Zongpeng Li, Zhizhong Zhang, and Francis
C. M. Lau. Dynamic Pricing and Profit Maximization for the Cloud with Geo-
distributed Data Centers. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, pages 118–126, April 2014.

[19] Abhinandan S. Prasad and Shrisha Rao. A Mechanism Design Approach to Resource
Procurement in Cloud Computing. IEEE Transactions on Computers, 63(1):17–30,
January 2014.

[20] Hong Xu and Baochun Li. Dynamic Cloud Pricing for Revenue Maximization. IEEE
Transactions on Cloud Computing, 1(2):158–171, July 2013.

[21] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic The-
ory. Oxford University Press, 1995.

[22] Ishai Menache, Asuman Ozdaglar, and Nahum Shimkin. Socially Optimal Pricing
of Cloud Computing Resources. In Proceedings of the 5th International ICST Con-



163 Bibliography

ference on Performance Evaluation Methodologies and Tools, pages 322–331. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), May 2011.

[23] Ashraf Al Daoud, Sachin Agarwal, and Tansu Alpcan. Brief Announcement: Cloud
Computing Games: Pricing Services of Large Data Centers. In Idit Keidar, editor,
23rd International Symposium on DIStributed Computing (DISC), pages 309–310.
Springer Berlin Heidelberg, September 2009.

[24] Ranjan Pal, Sung-Han Lin, and Leana Golubchik. The Cloudlet Bazaar Dynamic
Markets for the Small Cloud. CoRR, abs/1704.00845, 2017.

[25] Hervé Moulin. Fair Division and Collective Welfare . The MIT Press, January 2003.

[26] Kamal Jain and Vijay V. Vazirani. Eisenberg–Gale markets: Algorithms and game-
theoretic properties. Games and Economic Behavior, 70(1):84–106, September
2010.

[27] Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani.
Market Equilibrium via a Primal–Dual Algorithm for a Convex Program. Journal of
the ACM, 55(5):22:1–22:18, November 2008.

[28] James B. Orlin. Improved Algorithms for Computing Fisher’s Market Clearing
Prices: Computing Fisher’s Market Clearing Prices. In Proceedings of the Forty-
second ACM Symposium on Theory of Computing, pages 291–300, June 2010.

[29] Simina Brânzei, Yiling Chen, Xiaotie Deng, Aris Filos-Ratsikas, Søren Kristof-
fer Stiil Frederiksen, and Jie Zhang. The Fisher Market Game: Equilibrium and
Welfare. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, pages 587–593. AAAI Press, July 2014.

[30] Richard Cole and Vasilis Gkatzelis. Approximating the Nash Social Welfare with
Indivisible Items. In Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing, pages 371–380, June 2015.

[31] Richard T.B. Ma, Dah Ming Chiu, John C.S. Lui, Vishal Misra, and Dan Ruben-
stein. On Resource Management for Cloud Users: A Generalized Kelly Mechanism
Approach. Technical report, Electrical Engineering, May 2010.

[32] Arun Anandasivam, Philipp Best, and Simon See. Customers' Preferences for Infras-
tructure Cloud Services. In 2010 IEEE 12th Conference on Commerce and Enterprise
Computing, pages 144–149. IEEE, November 2010.



Bibliography 164

[33] Vijay V. Vazirani and Mihalis Yannakakis. Market Equilibrium Under Separable,
Piecewise-linear, Concave Utilities. Journal of the ACM, 58(3):10:1–10:25, June
2011.

[34] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V. Vazirani. Nash Social
Welfare for Indivisible Items under Separable, Piecewise-Linear Concave Utilities.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 2274–2290. SIAM, January 2018.

[35] Sergei Chichin, Quoc Bao Vo, and Ryszard Kowalczyk. Towards Efficient Greedy
Allocation Schemes for Double-Sided Cloud Markets. In 2015 IEEE International
Conference on Services Computing, pages 194–201. IEEE, June 2015.

[36] Sourav Chakraborty, Nikhil R. Devanur, and Chinmay Karande. Market Equilibrium
with Transaction Costs. In 6th International Workshop on Internet and Network
Economics (WINE), pages 496–504. Springer Berlin Heidelberg, December 2010.

[37] Haoming Fu, Zongpeng Li, Chuan Wu, and Xiaowen Chu. Core-Selecting Auctions
for Dynamically Allocating Heterogeneous VMs in Cloud Computing. In 2014 IEEE
7th International Conference on Cloud Computing, pages 152–159. IEEE, June 2014.

[38] M. Bichler, J. Kalagnanam, K. Katircioglu, A. J. King, R. D. Lawrence, H. S. Lee,
G. Y. Lin, and Y. Lu. Applications of Flexible Pricing in Business-to-business Elec-
tronic Commerce. IBM Systems Journal, 41(2):287–302, 2002.

[39] Simon Parsons, Juan A. Rodriguez-Aguilar, and Mark Klein. Auctions and Bidding:
A Guide for Computer Scientists. ACM Computing Surveys, 43(2):10:1–10:59, Jan-
uary 2011.

[40] Chaithanya Bandi and Dimitris Bertsimas. Optimal Design for Multi-Item Auc-
tions: A Robust Optimization Approach. Mathematics of Operations Research,
39(4):1012–1038, April 2014.

[41] Andrew V. Goldberg, Jason D. Hartline, Anna R. Karlin, Michael Saks, and Andrew
Wright. Competitive auctions. Games and Economic Behavior, 55(2):242–269, May
2006.

[42] Adel Nadjaran Toosi, Kurt Vanmechelen, Farzad Khodadadi, and Rajkumar Buyya.
An Auction Mechanism for Cloud Spot Markets. ACM Transactions on Autonomous
and Adaptive Systems, 11(1):2:1–2:33, February 2016.

[43] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis C. M. Lau. On-
line Auctions in IaaS Clouds: Welfare and Profit Maximization With Server Costs.



165 Bibliography

IEEE/ACM Transactions on Networking, 25(2):1034–1047, April 2017.

[44] Weijie Shi, Chuan Wu, and Zongpeng Li. RSMOA: A Revenue and Social Welfare
Maximizing Online Auction for Dynamic Cloud Resource Provisioning. In 2014
IEEE 22nd International Symposium of Quality of Service (IWQoS), pages 41–50.
IEEE, May 2014.

[45] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis C. M. Lau. An On-
line Auction Framework for Dynamic Resource Provisioning in Cloud Computing.
IEEE/ACM Transactions on Networking, 24(4):2060–2073, August 2016.

[46] Sebastien Bubeck, Nikhil R. Devanur, Zhiyi Huang, and Rad Niazadeh. Online Auc-
tions and Multi-scale Online Learning. In Proceedings of the 2017 ACM Conference
on Economics and Computation, pages 497–514. ACM, June 2017.

[47] Spyros Angelopoulos, Atish Das Sarma, Avner Magen, and Anastasios Viglas. On-
Line Algorithms for Market Equilibria. In 11th Annual International Conference
Computing and Combinatorics (COCOON), pages 596–607. Springer Berlin Heidel-
berg, August 2005.

[48] Yossi Azar, Niv Buchbinder, and Kamal Jain. How to Allocate Goods in an Online
Market? Algorithmica, 74(2):589–601, February 2016.

[49] Mohammad Hossein Bateni, Yiwei Chen, Dragos Florin Ciocan, and Vahab Mir-
rokni. Fair Resource Allocation in A Volatile Marketplace. In Proceedings of the
2016 ACM Conference on Economics and Computation, pages 819–819. ACM Press,
July 2016.

[50] Buyya, Rajkumar and Broberg, James and Goscinski, Andrzej M. Cloud Computing:
Principles and Paradigms, volume 87. John Wiley & Sons, 2010.

[51] Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann. Au-
tomated Control for Elastic N-tier Workloads Based on Empirical Modeling. In Pro-
ceedings of the 8th ACM International Conference on Autonomic Computing, pages
131–140. ACM Press, June 2011.

[52] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic Resource Provision-
ing for Cloud-based Software. In Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages 95–104.
ACM Press, June 2014.

[53] Cheng Chen, Jordi Arjona Aroca, and Diego Lugones. RobOps: Robust Control
for Cloud-Based Services. In Service-Oriented Computing, pages 690–705. Springer



Bibliography 166

International Publishing, October 2017.

[54] Rui Han, Li Guo, Moustafa M. Ghanem, and Yike Guo. Lightweight Resource Scal-
ing for Cloud Applications. In 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing ((CCGRID)), pages 644–651. IEEE, May 2012.

[55] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi. Integrated
and Autonomic Cloud Resource Scaling. In 2012 IEEE Network Operations and
Management Symposium, pages 1327–1334. IEEE, April 2012.

[56] Sheng Di, Derrick Kondo, and Walfredo Cirne. Google hostload prediction based
on Bayesian model with optimized feature combination. Journal of Parallel and
Distributed Computing, 74(1):1820–1832, January 2014.

[57] Daniel Jacobson, Danny Yuan, and Joshi Neeraj. Scryer: NetflixâC™s Predictive
Auto Scaling Engine. The Netflix Tech Blog. Retrieved on: April, 2016.

[58] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Timo-
thy Wood. Agile Dynamic Provisioning of Multi-tier Internet Applications. ACM
Transactions on Autonomous and Adaptive Systems, 3(1):1:1–1:39, March 2008.

[59] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. Adap-
tive, Model-driven Autoscaling for Cloud Applications. In 11th International Con-
ference on Autonomic Computing, pages 57–64. USENIX Association, June 2014.

[60] Xiaoke Wang, Chuan Wu, Franck Le, Alex Liu, Zongpeng Li, and Francis Lau.
Online VNF Scaling in Datacenters. In 2016 IEEE 9th International Conference on
Cloud Computing(CLOUD), pages 140–147. IEEE, June 2016.

[61] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai Men-
ache. Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter Trans-
fers. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 73–86. ACM
Press, August 2016.

[62] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2008.

[63] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu Han. Re-
source Management in Cloud Networking Using Economic Analysis and Pricing
Models: A Survey. IEEE Communications Surveys & Tutorials, 19(2):954–1001,
2017.

[64] Euiwoong Lee. APX-hardness of maximizing Nash social welfare with indivisible



167 Bibliography

items. Information Processing Letters, 122:17–20, June 2017.

[65] Dimitris Bertsimas, John N. Tsitsiklis, John Tsitsiklis, Dimitris Bertsimas, and John
Tsitsiklis. Introduction to Linear Optimization (Athena Scientific Series in Optimiza-
tion and Neural Computation, 6). Athena Scientific, 1st edition, 1997.

[66] Gilbert Strang. Calculus. Wellesley College, 1991.

[67] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems.
Course Technology, first edition, 1996.

[68] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[69] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[70] Chaithanya Bandi, Dimitris Bertsimas, and Nataly Youssef. Robust Queueing The-
ory. Operations Research, 63(3):676–700, April 2015.

[71] A. Ben-Tal, L. El Ghaoui, and A.S. Nemirovski. Robust Optimization. Princeton
Series in Applied Mathematics. Princeton University Press, October 2009.

[72] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and appli-
cations of robust optimization. SIAM Review, 53(3):464–501, 2011.

[73] Francesca Maggioni, Florian A. Potra, and Marida Bertocchi. A scenario-based
framework for supply planning under uncertainty: stochastic programming versus
robust optimization approaches. Computational Management Science, 14(1):5–44,
January 2017.

[74] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press, 2013.

[75] Kishor Shridharbhai Trivedi. Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, 2nd Edition. Wiley, 2001.

[76] R. B. Cooper. Introduction to Queueing Theory. North-Holland, New York, NY,
second edition, 1981.

[77] Fèlix Pollaczek. Problémes stochastiques posés par le phénoméne de formation d́une
queue d́attente à un guichet et par des phénomènes apparentés. Gauthier-Villars,
1957.



Bibliography 168

[78] Gennady Samorodnitsky and Murad S. Taqqu. Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance (Stochastic Modeling Series). Chap-
man and Hall/CRC, 1994.

[79] Valerio Di Valerio, Valeria Cardellini, and Francesco Lo Presti. Optimal Pricing and
Service Provisioning Strategies in Cloud Systems: A Stackelberg Game Approach.
In 2013 IEEE Sixth International Conference on Cloud Computing, pages 115–122.
IEEE, June 2013.

[80] Cheng Wang, Neda Nasiriani, George Kesidis, Bhuvan Urgaonkar, Qian Wang, Ly-
dia Y. Chen, Aayush Gupta, and Robert Birke. Recouping Energy Costs From Cloud
Tenants: Tenant Demand Response Aware Pricing Design. In Proceedings of the
2015 ACM Sixth International Conference on Future Energy Systems, pages 141–
150. ACM, July 2015.

[81] Sijia Gu, Zongpeng Li, Chuan Wu, and Chuanhe Huang. An Efficient Auction Mech-
anism for Service Chains in the NFV Market. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications, pages 1–9.
IEEE, April 2016.

[82] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. J. McGrath,
G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kourtis. T-NOVA:
A Marketplace for Virtualized Network Functions. In 2014 European Conference on
Networks and Communications (EuCNC), pages 1–5. IEEE, June 2014.

[83] Salvatore D’Oro, Sergio Palazzo, and Giovanni Schembra. Orchestrating Soft-
warized Networks with a Marketplace Approach. Procedia Computer Science,
110:352–360, 2017.

[84] Gagan Goel and Vijay V. Vazirani. A Perfect Price Discrimination Market Model
with Production, and a Rational Convex Program for It. Mathematics of Operations
Research, 36(4):762–782, November 2011.

[85] Weijie Shi, Chuan Wu, and Zongpeng Li. An Online Mechanism for Dynamic Virtual
Cluster Provisioning in Geo-distributed Clouds. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications, pages 1–9.
IEEE, April 2016.

[86] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis C. M. Lau. Online
Stochastic Buy-Sell Mechanism for VNF Chains in the NFV Market. IEEE Journal
on Selected Areas in Communications, 35(2):392–406, February 2017.

[87] Ruiting Zhou, Zongpeng Li, Chuan Wu, and Zhiyi Huang. An Efficient Cloud Market



169 Bibliography

Mechanism for Computing Jobs With Soft Deadlines. IEEE/ACM Transactions on
Networking, 25(2):793–805, April 2017.

[88] Avrim Blum, Tuomas Sandholm, and Martin Zinkevich. Online Algorithms for Mar-
ket Clearing. Journal of the ACM, 53(5):845–879, September 2006.

[89] Christina Delimitrou and Christos Kozyrakis. HCloud: Resource-Efficient Provi-
sioning in Shared Cloud Systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 473–488. ACM, March 2016.

[90] Lei Jiao, Antonia Tulino, Jaime Llorca, Yue Jin, and Alessandra Sala. Smoothed
Online Resource Allocation in Multi-tier Distributed Cloud Networks. IEEE/ACM
Transactions on Networking, 25(4):2556–2570, August 2017.

[91] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. Auto-
mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-
puting(CCGRID), pages 34–41. IEEE, May 2013.

[92] Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagiotis Kat-
saros, Dimitrios Tsoumakos, Ioannis Konstantinou, and Spyros Sioutas. Dependable
Horizontal Scaling Based on Probabilistic Model Checking. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing(CCGRID), pages
31–40. IEEE, May 2015.

[93] Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible
and Efficient Workflow Deployment of Data-Intensive Applications On Grids With
MOTEUR. The International Journal of High Performance Computing Applications,
22(3):347–360, August 2008.

[94] Tram Truong Huu and Johan Montagnat. Virtual Resources Allocation for Workflow-
Based Applications Distribution on a Cloud Infrastructure. In 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CCGRID), pages
612–617. IEEE, May 2010.

[95] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems for Grid
Computing. ACM SIGMOD Record, 34(3):44, September 2005.

[96] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H.J. Epema. Deadline-
constrained workflow scheduling algorithms for Infrastructure as a Service Clouds.
Future Generation Computer Systems, 29(1):158–169, January 2013.



Bibliography 170

[97] Amandeep Verma and Sakshi Kaushal. Deadline Constraint Heuristic-based Genetic
Algorithm for Workflow Scheduling in Cloud. International Journal of Grid and
Utility Computing, 5(2):96–106, March 2014.

[98] Zhiming Zhao, Paul Martin, Junchao Wang, Ari Taal, Andrew Jones, Ian Taylor,
Vlado Stankovski, Ignacio Garcia Vega, George Suciu, Alexandre Ulisses, and Cees
de Laat. Developing and Operating Time Critical Applications in Clouds: The State
of the Art and the SWITCH Approach. Procedia Computer Science, 68:17–28, 2015.

[99] Cisco. Cisco visual networking index: Forecast and methodology, 2014-2019
white paper. http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/ip-ngn-ip-next-generation-network/white_paper_

c11-481360.html, 2016.

[100] William Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders.
The Journal of Finance, 16(1):8–37, 1961.

[101] Chaithanya Bandi and Dimitris Bertsimas. Tractable stochastic analysis in high di-
mensions via robust optimization. Mathematical Programming, 134(1):23–70, June
2012.

[102] Sushil Bikhchandani and Joseph M. Ostroy. The Package Assignment Model. Jour-
nal of Economic Theory, 107(2):377–406, December 2002.

[103] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube Traffic
Characterization: A View from the Edge. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, pages 15–28. ACM, October 2007.

[104] Chunfeng Cui, Hui Deng, Deutsche Telekom, Uwe Michel, Herbert Damker, Ivano
Guardini, Elena Demaria, Roberto Minerva, and Antonio Manzalini. Network Func-
tions Virtualisation. Technical report, ETSI, 2012.

[105] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing. Computer,
49(5):78–81, May 2016.

[106] Mayutan Arumaithurai, Jiachen Chen, Edo Monticelli, Xiaoming Fu, and Kadan-
gode K. Ramakrishnan. Exploiting ICN for Flexible Management of Software-
Defined Networks. In Proceedings of the 1st ACM Conference on Information-
Centric Networking, pages 107–116. ACM, September 2014.

[107] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley,
and Hideyuki Tokuda. Is It Still Possible to Extend TCP? In Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, pages 181–194.



171 Bibliography

ACM Press, November 2011.

[108] Abhinandan S. Prasad, David Koll, Jesus Omana Iglesias, Jordi Arjona Aroca, Volker
Hilt, and Xiaoming Fu. Optimal Resource Configuration of Complex Services in the
Cloud. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pages 42–53. IEEE, May 2017.

[109] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, pages 13–16. ACM, August 2012.

[110] Neda Nasiriani, Cheng Wang, George Kesidis, Bhuvan Urgaonkar, Lydia Y. Chen,
and Robert Birke. On Fair Attribution of Costs Under Peak-Based Pricing to Cloud
Tenants. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems, 2(1):3:1–3:28, November 2016.

[111] Rini T. Kaushik, Prasenjit Sarkar, and Abdullah Gharaibeh. Greening the Compute
Cloud's Pricing Plans. In Proceedings of the Workshop on Power-Aware Computing
and Systems, pages 6:1–6:5. ACM, November 2013.

[112] Zhenhua Liu, Iris Liu, Steven Low, and Adam Wierman. Pricing Data Center De-
mand Response. ACM SIGMETRICS Performance Evaluation Review, 42(1):111–
123, June 2014.

[113] Marian Mihailescu and Yong Meng Teo. Dynamic Resource Pricing on Federated
Clouds. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing (CCGRID), pages 513–517. IEEE, May 2010.

[114] Bruno Codenotti, Benton Mccune, Sriram Pemmaraju, Rajiv Raman, and Kasturi
Varadarajan. An Experimental Study of Different Approaches to Solve the Market
Equilibrium Problem. Journal of Experimental Algorithmics, 12:3.3:1–3.3:21, Au-
gust 2008.

[115] Bruno Codenotti and Kasturi Varadarajan. Efficient Computation of Equilibrium
Prices for Markets with Leontief Utilities. In 31st International Colloquium Au-
tomata, Languages and Programming (ICALP), pages 371–382. Springer Berlin Hei-
delberg, July 2004.

[116] Philippe Menanteau, Dominique Finon, and Marie-Laure Lamy. Prices versus quan-
tities: choosing policies for promoting the development of renewable energy. Energy
Policy, 31(8):799–812, June 2003.

[117] Pablo del Rı́o González. Ten years of renewable electricity policies in Spain: An



Bibliography 172

analysis of successive feed-in tariff reforms. Energy Policy, 36(8):2917–2929, Au-
gust 2008.

[118] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the complexity of price
equilibria. Journal of Computer and System Sciences, 67(2):311–324, September
2003.

[119] Vijay V. Vazirani. The Notion of a Rational Convex Program, and an Algorithm
for the Arrow-debreu Nash Bargaining Game. Journal of the ACM, 59(2):7:1–7:36,
April 2012.

[120] B.Curtis Eaves. A finite algorithm for the linear exchange model. Journal of Mathe-
matical Economics, 3(2):197–203, July 1976.

[121] Vilfredo Pareto. Cours d’Economie Politique. 1896.

[122] V. I. Shmyrev. An Algorithm for Finding Equilibrium in the Linear Exchange Model
with Fixed Budgets. Journal of Applied and Industrial Mathematics, 3(4):505–518,
December 2009.

[123] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V.
Vazirani, and Sadra Yazdanbod. Convex Program Duality, Fisher Markets, and Nash
Social Welfare. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pages 459–460. ACM, June 2017.

[124] Nikhil R. Devenur and Thomas P. Hayes. The Adwords Problem: Online Keyword
Matching with Budgeted Bidders Under Random Permutations. In Proceedings of
the 10th ACM Conference on Electronic Commerce, pages 71–78. ACM, July 2009.

[125] Nikhil R. Devanur. Online Algorithms with Stochastic Input. ACM SIGecom Ex-
changes, 10(2):40–49, June 2011.

[126] Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends®
in Optimization, 2(3-4):157–325, August 2016.

[127] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A Descent Lemma Be-
yond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applica-
tions. Mathematics of Operations Research, 42(2):330–348, May 2017.

[128] Santiago R. Balseiro, Jon Feldman, Vahab Mirrokni, and S. Muthukrishnan. Yield
Optimization of Display Advertising with Ad Exchange. Management Science,
60(12):2886–2907, October 2014.

[129] John Wilkes. More Google cluster data. Google research blog, Novem-



173 Bibliography

ber 2011. Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.

[130] Arash Asadpour and Amin Saberi. An Approximation Algorithm for Max-Min Fair
Allocation of Indivisible Goods. SIAM Journal on Computing, 39(7):2970–2989,
May 2010.

[131] Rupert Freeman, Seyed Majid Zahedi, and Vincent Conitzer. Fair and Efficient Social
Choice in Dynamic Settings. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, pages 4580–4587. AAAI Press, August 2017.

[132] Benjamin Birnbaum, Nikhil R. Devanur, and Lin Xiao. Distributed Algorithms via
Gradient Descent for Fisher Markets. In Proceedings of the 12th ACM Conference
on Electronic Commerce, pages 127–136. ACM, June 2011.

[133] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[134] 2ndwatch.com. Top 30 Most Popular AWS Products 2017. Cloud Re-
sources. Posted at http://2ndwatch.com/wp-content/uploads/2018/01/

2017Top30AWSProducts.pdf.

[135] Shipra Agrawal and Nikhil R. Devanur. Fast Algorithms for Online Stochastic Con-
vex Programming. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1405–1424. SIAM, January 2015.

[136] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic Regret Algorithms for
Online Convex Optimization. Machine Learning, 69(2-3):169–192, December 2007.

[137] Huahua Wang and Arindam Banerjee. Online alternating direction method (longer
version). CoRR, abs/1306.3721, 2013.

[138] Yifei Zhu, Silvery Fu, Jiangchuan Liu, and Yong Cui. Truthful Online Auction for
Cloud Instance Subletting. In 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 2466–2471. IEEE, June 2017.

[139] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and
Control (Revised Edition). Holden-Day, 1976.

[140] Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. Founda-
tions and Trends® in Machine Learning, 4(2):107–194, February 2011.

[141] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. On the Universality of Online
Mirror Descent. In Proceedings of the 24th International Conference on Neural

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://2ndwatch.com/wp-content/uploads/2018/01/2017Top30AWSProducts.pdf
http://2ndwatch.com/wp-content/uploads/2018/01/2017Top30AWSProducts.pdf


Bibliography 174

Information Processing Systems, pages 2645–2653. Neural Information Processing
Systems Foundation, December 2011.

[142] L.M. Bregman. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. USSR Com-
putational Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[143] Benjamin Birnbaum, Nikhil R. Devanur, and Lin Xiao. New Convex Programs and
Distributed Algorithms for Fisher Markets with Linear and Spending Constraint Util-
ities. Technical report, August 2010.

[144] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. Automated Control for Elastic
Storage. In Proceedings of the 7th International Conference on Autonomic Comput-
ing, pages 1–10. ACM, June 2010.

[145] Md Mostofa Akbar, M. Sohel Rahman, M. Kaykobad, E.G. Manning, and G.C.
Shoja. Solving the Multidimensional Multiple-choice Knapsack Problem by Con-
structing Convex Hulls. Computers & Operations Research, 33(5):1259–1273, May
2006.

[146] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer-
Verlag Berlin Heidelberg, 2004.

[147] Kihong Park, Gitae Kim, and M. Crovella. On the relationship between file sizes,
transport protocols, and self-similar network traffic. In Proceedings of 1996 Interna-
tional Conference on Network Protocols, pages 171–180. IEEE, October 1996.

[148] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the Self-similar Nature
of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking,
2(1):1–15, February 1994.

[149] P. R. Jelenkovic, A. A. Lazar, and N. Semret. The Effect of Multiple Time Scales and
Subexponentiality in MPEG Video Streams on Queueing Behavior. IEEE Journal on
Selected Areas in Communications, 15(6):1052–1071, August 1997.

[150] Robert J. Adler, Raisa E. Feldman, and Murad S. Taqqu, editors. A Practical Guide
to Heavy Tails: Statistical Techniques and Applications. Birkhäuser, 1998.

[151] John Nolan. Stable Distributions. Birkhauser, 2002.

[152] Bruce M. Hill. A Simple General Approach to Inference About the Tail of a Distri-
bution. The Annals of Statistics, 3(5):1163–1174, 1975.

[153] Pavel Cı́zek, Wolfgang Härdlem, and Rafa Weron. Statistical Tools for Finance and



175 Bibliography

Insurance, 2016.

[154] D. V. Lindley. The Theory of Queues with a Single Server. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 48(2):277–289, April 1952.

[155] N.K. Krivulin. A Recursive Equations Based Representation for the G/G/m Queue.
Applied Mathematics Letters, 7(3):73–77, May 1994.

[156] David P. Dobkin and Steven P. Reiss. The Complexity of Linear Programming. The-
oretical Computer Science, 11(1):1–18, May 1980.

[157] A.H.G. RinnooyKan and J. Telgen. The Complexity Of Linear Programming. Sta-
tistica Neerlandica, 35(2):91–107, June 1981.

[158] Hamid Shojaei, Twan Basten, Marc Geilen, and Azadeh Davoodi. A Fast and Scal-
able Multidimensional Multiple-choice Knapsack Heuristic. ACM Transactions on
Design Automation of Electronic Systems, 18(4):51:1–51:32, October 2013.

[159] Martin E. Dyer and John Walker. Dominance in multi-dimensional multiple-choice
knapsack problems. Asia-Pacific Journal of Operational Research, 15(2):159–168,
1998.

[160] Boaz Patt-Shamir and Dror Rawitz. Vector bin packing with multiple-choice. Dis-
crete Applied Mathematics, 160(10-11):1591–1600, July 2012.

[161] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads
on Modern Hardware. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
37–48. ACM, March 2012.

[162] David Mosberger and Tai Jin. httperf —A Tool for Measuring Web Server Perfor-
mance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37, Decem-
ber 1998.

[163] Jugal Garg. Market equilibrium under piecewise Leontief concave utilities. Theoret-
ical Computer Science, 703:55–65, December 2017.


	Table of Contents
	List of Figures
	List of Tables
	List of Definitions and Theorems
	Acronyms
	Introduction
	Complex Services
	The Problem
	Pricing
	Resource Provisioning

	Challenges
	Pricing
	Resource Provisioning
	Summary

	Contributions
	Dissertation Overview

	Background
	Optimization theory
	Linear Programming and Duality
	Karush-Kuhn-Tucker Conditions

	Microeconomic theory
	Robust Queueing Theory
	Robust Optimization
	Queueing Theory
	Robust Queueing Theory


	Related Work
	Pricing
	Offline Pricing
	Online Pricing

	Resource Provisioning
	Summary

	ARPP Sealed-bid Auction
	Introduction
	RAERA Problem
	RAERA Algorithm
	RAERA Evaluation
	Methodology
	Results

	Summary

	ARPP Market
	Introduction
	ERM Problem
	ERM Algorithm
	ERM Evaluation
	Methodology
	Results

	Summary

	ARPP Online Pricing
	Introduction
	OFM Problem
	OFM Adversarial Model
	OFM Algorithm
	OFM Evaluation
	Methodology
	Results

	Summary

	ARPP Resource Provisioning
	Introduction
	 Problem
	Numerical Example
	Formal Definitions

	Modeling a Complex Service
	Robust queue Motivation
	Service's Component Modeling
	 Metrics

	RConf
	Algorithm
	Complexity and Performance analysis

	RConfPD
	RConf Primal-dual and complementary slackness formulation
	RConfPD Algorithm
	Complexity and Performance Analysis

	Summary

	ARPP Resource Provisioning Evaluation
	Experimental Setup
	Profiling
	Methodology
	Results

	RConf
	Methodology
	Results

	RConfPD
	Methodology
	Results

	Summary

	Discussion and Future Work
	Recap: Does ARPP Meet the Challenges?
	Future Work
	ARPP Pricing
	ARPP Resource Provisioning


	Conclusion
	Dissertation Impact

	Appendix
	Optimal pricing for Fisher market
	Bregman divergence

	Bibliography

