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Abstract 

 

The N-terminally truncated pyroglutamate Aβ3−42 (AβpE3−42) and Aβ4−42 peptides are 

known to be highly abundant in the brain of Alzheimer’s disease (AD) patients. Both 

peptides show enhanced aggregation and neurotoxicity in comparison to full-length Aβ, 

suggesting that these Aβ isoforms play an important role in the pathogenesis of AD. 

Hence, in the current work, the in vivo effect of the combination of AβpE3−42 and Aβ4−42 

on ongoing AD-related neuron loss, pathology, and neurological deficits was 

investigated using the newly generated TBA42/Tg4-42 mouse model.  

The TBA42/Tg4-42 mouse model was generated by crossing the established 

TBA42 and Tg4-42 models expressing AβpE3−42 and Aβ4−42, respectively. TBA42/Tg4-42 

mice exhibited an accelerated loss of CA1 pyramidal neurons in comparison to 

homozygous single transgenic TBA42 and Tg4-42 mice, which nicely correlated with 

prominent intraneuronal Aβ accumulation in the CA1 region. Additionally, reduced 

anxiety levels and enhanced motor deficits were determined in TBA42/Tg4-42 mice in 

an age-dependent manner. The sensory-motor deficits strongly correlated with the 

robust intracellular Aβ accumulation within motor neurons and extracellular Aβ 

deposition in the spinal cord. Despite the massive neuron loss in the CA1 region, no 

deficits in working and spatial refence memory could be detected in TBA42/Tg4-42 

mice at any ages studied. Furthermore, aggregation kinetics analysis indicates that 

under physiological conditions, when AβpE3-42 and Aβ4-42 peptides are combined, 

aggregation propensity is enhanced. These observations confirm the importance of 

AβpE3-42 and Aβ4-42 in the progression of AD and suggest a possible in vivo interaction 

between these two N-truncated Aβ peptides.  

One of the key pathological hallmarks of AD is the extracellular aggregation and 

deposition of Aβ in the form of plaques. However, the presence of Aβ plaques has also 

been found in cognitively normal subjects. Additionally, accumulated evidence from AD 

brains suggests that the levels of soluble Aβ oligomers correlate better with the risk and 

severity of the disease than insoluble amyloid plaques. In order to study the association 

between soluble Aβ oligomers and insoluble fibrillar plaques in vivo, the 5XFAD and the 



 

 
 

Tg4-42 mouse models were crossed to produce the novel FAD4-42 model. The 5XFAD 

model exhibits early and aggressive amyloid pathology, while the Tg4-42 develops age-

dependent CA1 neuron loss and does not develop amyloid plaques. FAD4-42 mice 

showed an increased amyloid burden compared to 5XFAD mice at 3 months of age. 

However, at 12 months of age, no differences could be detected between 5XFAD 

and FAD4-42 mice. Furthermore, no neuron loss in the CA1 region of the hippocampus 

was observed in the FAD4-42 model at 3 or 12 months of age. These results indicate 

that soluble Aβ4-42 binds to amyloid plaques resulting in a reduction of Aβ4-42 toxicity, 

suggesting a potential protective effect of amyloid plaques against soluble toxic Aβ 

oligomers. 
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1. INTRODUCTION 

 

1.1 ALZHEIMER’S DISEASE 
 

It was more than 100 years ago when the German psychiatrist and pathologist Alois 

Alzheimer gave his seminal presentation to the 37th Meeting of South-west German 

Psychiatrists held in Tübingen, Germany. Alois Alzheimer described the case of a 51-

year-old female patient named Auguste Deter, who had developed severe loss of 

memory, disorientation, aphasia, agnosia and delusions. Post-mortem 

histopathological examination showed general cortical atrophy accompanied by 

striking neurofibrillary pathology (Alzheimer 1907). Further analysis also revealed 

“miliary foci” (senile plaques), which together with the neurofibrillary tangles are 

recognized nowadays as one of the typical features of Alzheimer ’s disease (AD).    

 

1.2 EPIDEMIOLOGY 
 

According to the World Health Organization (WHO), it is estimated that around 50 

million people worldwide are living with dementia. AD is the most common type of 

dementia and contributes approximately to 60-70 % of the cases. The total number of 

people with dementia is projected to increase to 82 million in 2030 and 152 million in 

2050 (WHO, 2018). It is suggested that much of the increase will take place in low and 

middle-income countries. In 2015, deaths due to dementia were of 1.54 million 

worldwide, making it the 7th leading cause of global deaths. For 2018, the total 

estimated cost of dementia is around a trillion dollar, rising to approximately US$ 2 

trillion by 2030 (Alzheimer’s Association 2015).
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1.3 RISK FACTORS FOR ALZHEIMER’S DISEASE 
 

1.3.1 Nongenetic risk factors 

 

The strongest known risk factor for AD is aging. Most patients with the disease are 65 

years or older. After the age of 65, the probability of developing AD doubles about every 

five years. The risk reaches nearly 50% beyond the age of 85 (Alzheimer’s Association, 

2018). On the other hand, further epidemiological studies have linked AD with general 

health status. Raised systolic blood pressure and high cholesterol levels in midlife 

increase the risk of developing AD in later life (Kivipelto et al. 2001; Kennelly et al. 

2009).  Additionally, underweight, overweight and obesity at midlife are associated 

with an increased risk of AD at older age (Kivipelto et al. 2005; Anstey et al. 2011). 

Furthermore, longitudinal population-based studies have shown that the risk of AD is 

higher among people with diabetes mellitus than in the general population (Leibson et 

al. 1997; Zhang et al. 2017). Other modifiable risk factors such as smoking, alcohol 

consumption, depression and traumatic brain injuries have also been reported (Barnes 

et al. 2012; Giunta et al. 2012; Weiner et al. 2014; Stirland et al. 2017; Topiwala & 

Ebmeier 2017). Interestingly, accumulated evidence has demonstrated that high 

education, consumption of certain food, an active and socially integrated lifestyle might 

delay the onset of AD and have a positive impact on cognitive function (Fratiglioni et al. 

2004; Fratiglioni & Wang 2007; Gu et al. 2010; Wang et al. 2012). 

 

1.3.2 Genetic risk factors 

 

After age, family history is the second strongest risk factor for AD (Bertram et al. 2010). 

AD can be divided into two forms based on its age of onset: (1) early-onset  AD (EOAD, 

onset < 65 years), which accounts only for a small fraction of all AD cases (≤5%) and 

(2) late onset AD (LOAD, onset > 65 years), accounting for > 95% of AD cases (Reitz & 

Mayeux 2014). The EOAD form, also called familial AD (FAD), is caused by dominantly 
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inherited mutations in the β-amyloid precursor protein (APP) located at chromosome 

21q21 (Goate et al. 1991), presenilin 1 (PSEN1) located at chromosome 14q24.3 

(Sherrington et al. 1995)  and  its homolog presenilin 2 (PSEN2) located at chromosome 

1q31-q42 (Levy-Lahad et al. 1995; Rogaev et al. 1995). To date, more than 50 dominant 

mutations have been identified in APP, 215 mutations in PSEN1 and 31 mutations in 

PSEN2 (Cruts et al. 2012). The majority of these mutations exhibit a high penetrance 

(>85%) and have been suggested to increase the production of total Aβ, the Aβ42 to 

Aβ40 ratio and Aβ aggregation, leading to EOAD (Holtzman et al. 2011; Reitz & Mayeux 

2014).  

Mutations in the APP, PSEN1 and PSEN1 genes account for all the cases in FAD, 

whereas the Apolipoprotein E (APOE) is the strongest genetic factor for LOAD or so-

called sporadic AD (SAD). The APOE gene is located at chromosome 19q13.2 and 

encodes three common alleles (ε2, ε3 and ε4) that differ on two amino acid residues at 

either position 112 or 158 (Siest et al. 1995). Several studies have shown an association 

of APOEε4 in FAD and SAD. The presence of one copy of the APOEε4 allele increases the 

risk to develop AD by 3-fold, while having two copies is associated with a 15-fold 

increase (Corder et al. 1993; Pastor et al. 2003). Moreover, APOEε4 is associated with a 

dose-dependent decrease in age of onset. Interestingly, APOEε2 has been associated 

with a protective effect by decreasing the risk for LOAD and delaying age of onset 

(Corder et al. 1994). Unlike the mutations in the APP and PSEN1/2, the APOEε4 was 

considered neither sufficient nor necessary to cause AD (Myers et al. 1996). However, 

a recent study has demonstrated that APOEε4 is a risk factor not only for LOAD but also 

for EOAD, suggesting that APOE should be reconsidered as a “major genetic risk factor” 

(Genin et al. 2011). Regardless of the well-known genetic association of APOE in AD, its 

role in the pathogenesis of AD has to be clarified. In vitro and in vivo evidence suggests 

that APOE binds to Aβ and influences the clearance of soluble Aβ, leading to Aβ 

aggregation (Kim et al. 2009; Castellano et al. 2011). Indirectly, APOE also regulates Aβ 

metabolism by interacting with low-density lipoprotein receptor-related protein 1 

receptors (Verghese et al. 2013). In addition, it has been shown that APOE influences 

the structure, level and amount of intraparenchymal Aβ deposits in an isoform-specific 

manner (Holtzman et al. 2000; Fagan et al. 2002). 
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In the last few years, the advancement of technologies able to evaluate 

simultaneously millions of single nucleotide polymorphisms (SNPs) have contributed 

to the quest for new LOAD genetic risk factors. Several genome wide associated studies 

(GWAS) have identified more than 20 genes with common variants associated to LOAD 

risk (Naj et al. 2017). These novel potential risk genes include ABCA7, BIN1, CASS4, 

CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, 

MEF2C, NME8, PICALM, PTK2B, SLC24H4 RIN3, SORL1, ZCWPW1 (Bertram et al. 2008; 

Harold et al. 2009; Hollingworth et al. 2011; Naj et al. 2011; Lambert et al. 2013). Many 

of these common variants identified through GWAS have been implicated in 

inflammatory response, APP processing, Tau pathology, cell migration, lipid 

metabolism and endocytosis, reinforcing the relevance of these pathways in LOAD 

etiology (Karch & Goate 2015). Additionally, whole genome and exome sequencing 

studies have also given evidence of rare coding variants in two genes with moderate to 

large effects associated with LOAD risk: TREM2 (triggering receptor expressed on 

myeloid cells 2) (Guerreiro et al. 2013; Jonsson et al. 2013) and PLD3 (phospholipase 

D3) (Cruchaga et al. 2014). TREM2 is expressed on microglia and has been associated 

with the activation of the immune response and regulation of phagocytosis, suggesting 

that the role of TREM2 in AD may be trough the clearance of Aβ and/or 

neuroinflammatory mechanisms (Neumann & Takahashi 2007; Guerreiro et al. 2013). 

On the other hand, little is known about the function of PLD3 and its role in AD. Recent 

in vitro studies have demonstrated that overexpression of PLD3 influences APP 

metabolism by lowering extracellular Aβ levels, while knockdown of PLD3 has the 

opposite effect. However, the exact mechanism still needs to be elucidated (Cruchaga et 

al. 2014). 
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1.4 PATHOLOGICAL HALLMARKS OF ALZHEIMER’S DISEASE 
 

1.4.1 Amyloid deposits 

 

One of the main pathological hallmarks of AD is the presence of extracellular deposits 

(also known as senile/amyloid plaques) mainly composed of amyloid-β (Aβ) peptide 

(Glenner & Wong 1984a; Masters et al. 1985), which is a 37 to 43 amino acid peptide 

derived by proteolytic cleavage from the larger β-amyloid precursor protein (APP). 

Two different types of amyloid plaques can be distinguished based on morphological 

criteria, namely diffuse and neuritic or dense-core plaques (Fig. 1). In diffuse plaques, 

Aβ is aggregated in a non-β sheet conformation (non-fibrillar) and can be detected by 

anti-Aβ antibodies. The size of these plaques ranges from 50 µm to several hundred µm. 

On the other hand, neuritic plaques are composed of aggregated Aβ in a β-sheet 

conformation (fibrillar) and can be visualized with dyes such as Congo red or 

Thioflavin-S, as well as with immunohistological methods. Neuritic plaques are 

commonly surrounded by dystrophic neurites (axons and dendrites), activated 

astrocytes and microglial cells, and are also associated with detrimental effects 

including synaptic and neuron loss (Itagaki et al. 1989; Masliah et al. 1994; Knowles et 

al. 1999; Urbanc et al. 2002; Vehmas et al. 2003). The spatiotemporal progression of Aβ 

deposition is poorly predictable. However, it has been proposed by Thal et al. that Aβ 

deposition in the brain follows a descendent progression. According to the authors, Aβ 

deposition starts in isocortical areas, followed by allocortical and limbic structures, and 

at later stages, spreads to subcortical areas comprising basal ganglia and some 

diencephalic and brainstem nuclei (Thal et al. 2002). Interestingly, diffuse plaques have 

been detected in the brains of healthy elderly subjects with intact cognitive functions. 

Therefore, it has been suggested that diffuse plaques may not be directly pathological 

but rather neuritic plaque precursors (Delaère et al. 1990; Dickson et al. 1992). 

However, although Aβ deposition is a key pathological hallmark of AD, accumulative 

evidence has shown a poor correlation between amyloid burden and cognitive 

impairment (Katzman et al. 1988; Hulette et al. 1998; Price & Morris 1999; Aizenstein 

et al. 2008). In addition to the amyloid deposits found in the brain parenchyma, Aβ 
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aggregates can also be detected inside the vessel walls in the form of cerebral amyloid 

angiopathy (CAA) (Vinters 1987). CAA is highly present in AD patients, however, it can 

also appear in some subjects lacking parenchymal Aβ plaques (Smith & Greenberg 

2009; Brenowitz et al. 2015)        

 

 

Fig. 1. Aβ plaques and neurofibrillary tangles (NFTs). Senile neuritic plaques (black arrow) and 

NFTs (red arrow) in the cortex of an Alzheimer’s disease patient visualized by a Bielschowsky stain. 

Picture taken from (Perl, 2010) 

 

 

1.4.2 Neurofibrillary tangles 

 

Besides the senile plaques, neurofibrillary tangles (NFTs) are another important 

pathological hallmark of AD which were first described more than one century ago by 

Alois Alzheimer as intraneuronal, filamentous inclusions in the perikaryal and 

processes of pyramidal neurons (Fig. 1) (Alzheimer 1907). However, it was not until 

the early-sixties when it was discovered that NFTs were mainly made of paired helical 

filaments (PHFs), namely fibrils of ~10 nm in diameter forming pairs with a helical 

tridimensional conformation (Kidd 1963). Twenty years later, further studies revealed 

that PHFs are predominantly composed of aberrantly misfolded and highly 

phosphorylated forms of the microtubule-associated protein tau (Grundke-Iqbal et al. 

1986; Kosik et al. 1986; Wood et al. 1986; Lee et al. 1991). Tau is an axonal 
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phosphoprotein highly abundant and produced in all neuron types. In humans, tau is 

encoded by a single gene on chromosome 17 and alternatively spliced, resulting in six 

major isoforms (Goedert et al. 1989; Himmler et al. 1989). Under normal physiological 

conditions, tau functions as a microtubule-binding and stabilizing protein 

(Weingarten). However, in AD, tau undergoes abnormal hyperphosphorylation, which 

leads to its disassociation from microtubules and following self-aggregation, giving rise 

to NFTs and to neuropil threads (dystrophic neurites with hyperphosphorylated and 

aggregated tau) (Iqbal et al. 2010). NFTs can be detected with Thioflavin-S fluorescent 

dye, or by immunostaining with anti-tau antibodies (Braak et al. 1994; Augustinack et 

al. 2002). Tau pathology follows a predictable and stereotypical progression, starting 

in the transentorhinal region, followed by limbic structures (hippocampus and 

amygdala) and finally progressing to all isocortical areas (Arnold et al. 1991; Braak & 

Braak 1991; Braak et al. 2006). Unlike amyloid pathology, clinicopathological evidence 

has demonstrated that NFT amount and distribution strongly correlates with the 

severity and duration of AD (Arriagada et al. 1992; Gomez-Isla et al. 1997; 

Giannakopoulos et al. 2003; Ingelsson et al. 2004).  

 

1.4.3 Brain atrophy and neuronal loss 

 

At the macroscopic level, brain atrophy is the most notable characteristic of AD. 

Nonetheless, cerebral atrophy can also be found in other types of dementia and even in 

normal ageing brains (Fig. 2) (Blennow et al. 2006). In AD patients, atrophic changes 

are first observed in the medial temporal lobe, including the entorhinal cortex, the 

hippocampus and the amygdala (Duyckaerts et al. 2009). Additionally, atrophy 

concentrates in the inferior temporal and the superior and middle cortices, but not in 

the inferior frontal and orbifrontal cortices (Halliday et al. 2003). As a consequence of 

this cortical thinning, the lateral ventricles appear conspicuously enlarged. Using 

magnetic resonance imaging (MRI), subtle changes in the stereotypical pattern of 

cortical atrophy can be detected in asymptomatic individuals almost 10 years before 
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dementia. (Dickerson et al. 2011). Therefore, it can be utilized as a potential clinical 

diagnostic method of AD. 

Neuronal loss is considered to be the main pathological alteration that causes the 

region-specific cortical atrophy observed in AD. Among other structures, neuronal 

death has been reported in the layer II of the entorhinal cortex, the cornu ammonis area 

(CA1) pyramidal layer of the hippocampus, the amygdala and some areas of the frontal, 

parietal, and temporal neocortex of AD patients (Vereecken et al. 1994; West et al. 1994; 

Gomez-Isla et al. 1996; Grignon et al. 1998). However, the cause of the neuron loss is 

still a matter of debate. Early observations found a direct relationship between the 

presence of NFTs and the neuron loss (Cras et al. 1995), while later studies reached 

opposite results, showing that neuron loss exceeds NFTs (Gomez-Isla et al. 1997; Kril 

et al. 2004). Alternatively, growing evidence from transgenic mice and human patients 

suggests that intraneuronal Aβ accumulation and/or soluble Aβ oligomers might be the 

principal driving forces behind the events leading to neuronal death (Haass & Selkoe 

2007; LaFerla et al. 2007; Bayer & Wirths 2011).  

In addition to neuronal death, synaptic pathology also contributes to the 

atrophic changes in AD brains. Ultrastructural and immunohistochemical methods 

have been applied to describe the loss of synaptic terminals. Synaptic and neuron loss 

overlap in their spatiotemporal and laminar pattern. In specific cortical areas, synaptic 

pathology can exceed neuronal loss (Duyckaerts et al. 2009; Serrano-Pozo et al. 2011a). 

Early studies showed that synaptic loss correlates better with cognitive decline than 

neuronal loss or amyloid plaques (Terry et al. 1991). More recently, analysis of the 

synaptic density in the stratum radiatum of the hippocampal CA1 subfield showed that 

individuals with mild AD had 55% less synapses compared to MCI and healthy patients. 

Hence, synaptic loss represents a major correlate of cognitive impairment and may be 

one of the first pathological events in AD (Scheff et al. 2007).  
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Fig. 2. Brain atrophy. While the non-demented control (left) shows a normal brain volume, an AD brain 

(right) is characterized by enlarged ventricles, shrinkage of gyri and widening of sulci. Modified from 

http://www.alz.org/braintour.asp. 

 

1.4.4 Inflammation 

 

Next to the previously mentioned neuropathological hallmarks, neuroinflammatory 

processes such as micro- and astrogliosis are prominently found in AD brains (Fig. 3). 

Activated microglia and reactive astrocytes are usually associated to neuritic plaques, 

suggesting a major role of Aβ as an activator of glial response (Itagaki et al. 1989; Pike 

et al. 1995a; Vehmas et al. 2003). However, more recent observations have also found 

a significant positive correlation between reactive glia and NFT burden (Ingelsson et al. 

2004; Serrano-Pozo et al. 2011b). Some studies revealed that plaque-associated 

microglia and astrocytes can exert a neuroprotective role via endocytosis and 

degradation of Aβ (Nagele et al. 2003; Wyss-Coray et al. 2003; Koistinaho et al. 2004; 

Nicoll et al. 2006). Conversely, glial activation may also trigger a cascade of 

neuropathological events trough the expression of several inflammation-related factors 

(Wyss-Coray & Rogers 2012). Therefore, it is still unclear whether inflammation causes, 

contributes or protects against AD pathology. 

  

Non-demented Alzheimer’s disease
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Fig. 3. Neuroinflammatory response in AD. Confocal image of activated Iba1-positive microglia cells 
(green) in the cortex of 12-month-old 5XFAD mice. Amyloid plaques (pink) are surrounded by the 
activated immune cells. 

 

1.5 THE AMYLOID PRECURSOR PROTEIN 
 

The isolation and characterization of Aβ from the amyloid plaque cores of AD and Down 

syndrome (DS) brains led to the assumption that the gene encoding Aβ was located on 

chromosome 21(Glenner & Wong 1984b; Masters et al. 1985). A few years later, cloning 

of the gene encoding Aβ demonstrated that it was indeed located on chromosome 21 

and that Aβ was synthesized from a much larger precursor protein named the amyloid 

precursor protein (APP) (Goldgaber et al. 1987; Kang et al. 1987; Robakis et al. 1987; 

Tanzi et al. 1987).  APP is a member of a family of highly conserved type I single-pass 

transmembrane proteins that also includes the two APP-like proteins (APLP) 1 and 2 

in mammals (Wasco et al. 1992, 1993; Slunt et al. 1994). APP and APLP1/2 proteins 

share a significant homology in their ectodomains and cytoplasmic carboxy-terminal 

portions. Importantly, the Aβ containing domain is not conserved and is unique to APP 

(Bayer et al. 1999). The human APP gene is ubiquitously expressed and contains 18 

exons that, by alternative splicing, generate several APP isoforms ranging from 365 to 

770 amino acids residues. Among these, the major isoforms are APP695, APP751 and 

APP770, named after the number of amino acids residues. (Kang et al. 1987; Yoshikai 
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et al. 1991; Lamb et al. 1993). APP751 and APP770 contain a protease inhibitor domain 

in the extracellular sequence and are preferentially expressed in non-neuronal tissues. 

The shorter APP695 isoform lacks the protease inhibitor domain and is mainly 

expressed in neurons accounting for the majority of APP in the brain (Kitaguchi et al. 

1988; Tanzi et al. 1988; Tanaka et al. 1989; Sola et al. 1993). Upon expression, APP can 

undergo post-translational modifications like palmitoylation, phosphorylation, 

sulphation and glycosylation before it reaches the plasma membrane (Selkoe 2001; 

Bhattacharya et al. 2013). The majority of APP is retained in the trans-Golgi network 

under basal conditions, whereas just a small fraction is transported to the plasma 

membrane (Koo et al. 1996). Once there, if proteolytic cleavage does not occur, APP is 

quickly internalized and subsequently trafficked into endosomes where it can be 

recycled (Lai et al. 1995; Marquez-Sterling et al. 1997). Also, a small portion can 

undergo degradation in lysosomes (Haass et al. 1992).  

Despite the large amount of evidence accumulated since the molecular cloning 

of APP, its physiological functions are not yet completely understood. Nevertheless, a 

number of in vitro and in vivo studies have shown that APP is a multimodal protein that 

participates in a diversity of different processes like cell proliferation and 

differentiation, neurite outgrowth and synapse development (Dawkins & Small 2014; 

Müller et al. 2017). APP has also been implicated in synaptic plasticity and 

neuroprotection (Ludewig & Korte 2016). Furthermore, some APP isoforms 

(APP751/770) are believed to play a role in the blood coagulation cascade (Van 

Nostrand et al. 1989; Smith et al. 1990). 

 

1.5.1 APP processing 

 

1.5.1.1 Amyloidogenic and non-amyloidogenic pathways 

 

Physiologically, APP can undergo complex proteolytic processing by at least three 

different secretases called alpha- (α), beta- (β) and gamma- (γ) secretase. This results 

in the formation of distinct biologically active fragments. APP processing occurs mainly 
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via two alternative and competing pathways commonly referred to as the 

“amyloidogenic” and the “non-amyloidogenic” pathways, respectively (Fig. 4) (Müller 

et al. 2017). 

In the non-amyloidogenic pathway, APP is cleaved within the Aβ region 

(between residues Lys16 and Leu17) by the α-secretase, thus precluding the formation 

of Aβ (Esch et al. 1990; Sisodia et al. 1990). Various zinc metalloproteases members of 

the “a disintegrin and metalloprotease” (ADAM) family, including ADAM9, ADAM10 and 

ADAM17, can function as α-secretases (Allinson et al. 2003). However, in the brain, the 

main constitutive α-secretase activity is mediated by ADAM10 (Kuhn et al. 2010; Prox 

et al. 2013). The α-secretase cleavage of APP liberates a large soluble α-APP fragment 

(sAPPα) into the extracellular/lumen and generates the membrane-associated 83-

residue α-carboxyl-terminal fragment (αCTF or C83), which lacks the N-terminal 

portion of the Aβ domain. The αCTF is subsequently cleaved by γ-secretase producing 

a 3-kDa truncated Aβ peptide named p3, which is readily degraded and apparently has 

no important function (Haass et al. 1993). Simultaneously, γ-secretase generates the 

APP intracellular domain (AICD) (Gu et al. 2001; Sastre et al. 2001), which is released 

into the cytoplasmic space and which may have a function in regulation of gene 

expression (Cao & Sudhof 2001; von Rotz et al. 2004).  

Alternatively, in the amyloidogenic pathway, APP is processed by the 

consecutive cleavage of β- and γ-secretase (Haass 2004). First, cleavage is initiated by 

β-secretase generating a soluble large part of the ectodomain of APP (sAPPβ) and a 

membrane-tethered 99-residue β-carboxyl-terminal fragment (βCTF or C99) (Vassar et 

al. 1999). Thereafter, βCTF is cleaved by γ-secretase in multiple sequential steps within 

the transmembrane domain, resulting in the production of Aβ and AICD (Haass et al. 

2012).   

The β-secretase that mediates the initial steps during Aβ production is the β-site 

APP cleaving enzyme-1 (BACE1), which was originally named memapsin 2 or aspartyl 

protease 2 (Sinha et al. 1999; Vassar et al. 1999; Yan et al. 1999; Hong et al. 2000). 

BACE1 is a type 1 transmembrane aspartyl protease with its active site facing the 

lumen/extracellular space and is structurally similar to that of the pepsin family (Hong 

et al. 2000). BACE1 can cleave APP at the Asp1 and Glu11 of the Aβ domain (Liu et al. 
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2002a). BACE2 was identified as a homolog of BACE1 (Solans et al. 2000), however, it 

has been demonstrated in both human and mouse brains to be considerably lower 

expressed than BACE1 (Bennet). Also, as BACE2 cleaves APP more efficiently near the 

α-secretase site, its activity might not be directly involved in Aβ production (Yan et al. 

2001). Studies using BACE1 knockout mice confirmed the relevance of BACE1 in 

amyloidogenesis. BACE1 KO mice showed no major phenotypical deficits and no 

detectable levels of Aβ (Luo et al. 2001). However, further studies found some subtle 

phenotypic abnormalities in BACE1 null mice, such as hyperactive behavior, memory 

impairment, changes in spontaneous activity and hypomyelination (Harrison et al. 

2003; Dominguez et al. 2005; Hu et al. 2006). Besides APP, other BACE1 substrate have 

been identified including neuroligin-1, voltage-gated sodium channels, APP-like 

proteins and interleukin-like receptor II (Vassar et al. 2009).  

γ-Secretase is a high molecular transmembrane complex that consists of four 

protein subunits: presenilin (PS) 1 or PS2, nicastrin (NCT), anterior pharynx defective 

(APH)-1a or APH-1b and the presenilin enhancer 2 (PEN2)(Wolfe et al. 1999; Yu et al. 

2000; Francis et al. 2002; Kimberly et al. 2003). PSs possess the catalytic region for APP 

cleavage consisting of two highly conserved aspartyl residues within the 

transmembrane domains 6 and 7, while the biological functions of NCT, APH-1a/b and 

PEN2 are not well known. Yet, the four components are indispensable for the proper γ-

secretase activity (Steiner et al. 2008; De Strooper et al. 2012). The APP intramembrane 

cleavage by γ-secretase is a type of regulated intramembrane proteolysis (RIP) and can 

occur at distinct sites. These cleavage sites are known as the ε-, ζ- and γ- sites, which 

are approximately three amino acids separated from each other (Lichtenthaler et al. 

2011). Therefore, the final γ-secretase cleavage can occur at different sites within the 

Aβ domain, yielding a variety of Aβ peptides ranging from 37 to 43 amino acids in 

length. Under non-pathologic physiological conditions, the most common isoform 

produced is Aβ1-40 and to a minor extend Aβ1-42, the more amyloidogenic isoform 

(Thinakaran & Koo 2008).  
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Fig. 4. APP processing. In the non-amyloidogenic pathway (left), APP is cleaved by the α- and γ-

secretases which results in the release of p3 and AICD. During the amyloidogenic pathway (right), APP 

initially is cleaved by the β-secretase BACE1 followed by subsequent cleavage by γ-secretase. The second 

cleavage event leads to the release of the Aβ peptide and AICD. Adapted from (Haass et al. 2012) 

 

1.5.2 The amyloid cascade hypothesis 

 

Almost 30 years ago it was first proposed that accumulation of Aβ, the main constituent 

of plaques, is the causative factor in AD pathogenesis. This assumption was termed as 

“the amyloid cascade hypothesis”, also commonly known as “the amyloid hypothesis” 

(Fig. 5). According to the amyloid cascade hypothesis, amyloid-β deposition and 

aggregation renders the downstream pathological events associated with AD such as 

the neurofibrillary tangles, neuron death, brain atrophy, vascular damage, cognitive 

impairments and other associated clinical symptoms (Beyreuther & Masters 1991; 

Hardy & Allsop 1991; Selkoe 1991; Hardy & Higgins 1992). Several lines of evidence 

support this theory. For instance, DS patients, who exhibit a triplication of the gene 

encoding for APP, develop the amyloid and tau pathology typically found in AD brains 

(Wisniewski et al. 1985). Genetic studies of FAD cases strongly support the amyloid 
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cascade hypothesis by demonstrating that mutations or duplications in APP, PS1 and 

PS2 genes enhance production and aggregation of Aβ causing EOAD (Rovelet-Lecrux et 

al. 2006; Reitz & Mayeux 2014). Furthermore, the most relevant genetic risk factor in 

LOAD, APOE ε4, is related with an increase in Aβ aggregation and reduction in Aβ 

clearance (Kim et al. 2009; Castellano et al. 2011). In addition, transgenic mice 

overexpressing FAD mutations develop some of the pathological key features of AD 

including amyloid plaques, neuroinflammation and memory impairment in an age-

dependent manner (Duyckaerts et al. 2008; Radde et al. 2008). Interestingly, in a more 

recent study, researchers found a coding mutation in the APP gene (Ala to Thr; A673T) 

that protects against AD. In vitro, the mutation caused a ~40% reduction in Aβ 

generation. Also, they found that elderly heterozygous individuals carrying the 

mutation performed better in cognitive tests than control subjects. This protective 

effect provides additional support for the amyloid hypothesis by showing that reducing 

Aβ production may be protective against AD (Jonsson et al. 2013). On the other hand, 

tau mutations cause frontotemporal dementia with parkinsonism, which is 

characterized by severe tau pathology in the brain with no amyloid deposition (Hutton 

et al. 1998; Poorkaj et al. 1998; Goedert & Spillantini 2000). Analysis of transgenic mice 

overexpressing mutant tau and APP revealed an enhanced neurofibrillary tangle 

pathology in comparison with mice overexpressing mutant tau only, while amyloid 

pathology remained unaltered (Lewis et al. 2001). Taken together, this suggests that 

the NFTs observe in AD brains are likely to be a consequence of either APP or Aβ and 

not the cause of the AD pathological events. 

Nonetheless, the amyloid cascade hypothesis remains controversial. One of the 

main arguments undercutting this hypothesis is that, in contrast to the amount of NFTs, 

amyloid burden correlates poorly with the cognitive status in AD. Likewise, post 

mortem analysis of brains from non-demented individuals revealed abundant amyloid 

deposits (Katzman et al. 1988; Hulette et al. 1998; Price & Morris 1999; Aizenstein et 

al. 2008). Furthermore, transgenic AD mouse models overexpressing APP and/or PSs, 

exhibit no correlation between Aβ plaques and cognitive deficits or neurodegenerative 

alterations (Benilova et al. 2012).  
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Due to the development of better qualitative and quantitative methods for 

analyzing Aβ, in addition to more recent evidence from transgenic AD mouse models, 

cell culture and human genetic data, modifications to the early versions of the amyloid 

cascade hypothesis have been proposed in the last years. 

 

1.5.3 The soluble amyloid hypothesis 

 

As mentioned above, the “original” amyloid cascade hypothesis attributed AD onset to 

the toxic effect caused by the large insoluble amyloid fibrils. However, a number of 

studies have demonstrated that either synthetic or natural soluble oligomeric forms of 

Aβ (e.g., dimers, trimers, dodecamers and higher oligomers larger than 100kDa) are 

neurotoxic and might have direct neurodegenerative effects, whilst fibrillar or 

monomeric Aβ appeared to be less detrimental in vitro (Lambert et al. 1998; Dahlgren 

et al. 2002; Wang et al. 2002), as well as in vivo using animal models (Walsh et al. 2002; 

Cleary et al. 2005; Lesne et al. 2006; Shankar et al. 2008). Additionally, a series of 

studies utilizing brain tissue extracts from AD patients collected post mortem have 

revealed the presence of soluble oligomeric Aβ species (Kuo et al. 1996; Roher et al. 

1996; Shankar et al. 2008; Tomic et al. 2009). Also, it has been shown that the existence 

of such soluble Aβ species is a better correlate of the presence and the degree of 

cognitive decline than amyloid plaques in AD (McLean et al. 1999; Mc Donald et al. 

2010; Esparza et al. 2013). This gave rise to the concept that soluble bioactive Aβ 

oligomers might be the key players in AD pathogenesis and not the inactive insoluble 

amyloid plaques. This concept has also been supported by several laboratories 

demonstrating that nearly all Aβ oligomer species can impair synaptic function through 

changes in dendritic spine morphology, altered long-term potentiation (LTP) and long-

term depression (LTD) in hippocampal slice cultures (Walsh et al. 2002; Wang et al. 

2002; Li et al. 2009; Wu et al. 2010). Moreover, electrophysiological and behavioral 

alterations have been observed in APP transgenic mice in the absence of amyloid 

plaques (Holcomb et al. 1998; Hsia et al. 1999; Mucke et al. 2000; Tomiyama et al. 

2010).  
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1.5.4 Intraneuronal amyloid hypothesis 

 

Soon after the discovery of Aβ as the main component of extracellular amyloid plaques 

three decades ago, the first reports describing that Aβ is first deposited intracellularly 

and later in the extracellular space started to appear (Masters et al. 1985; Grundke-

Iqbal et al. 1989). Subsequent studies demonstrated that intracellular Aβ highly 

accumulates in neurons from regions susceptible of developing early AD pathology. 

These regions include the hippocampus and the entorhinal cortex. Curiously, 

intracellular Aβ accumulation occurred prior to the appearance of NFTs and 

extracellular Aβ deposition (Gouras et al. 2000; Fernandez-Vizarra et al. 2004). 

Likewise, it has been shown that intraneuronal Aβ strongly accumulates in young DS 

patients, but it declines as extracellular amyloid plaques accumulate. The subsequent 

maturation of the amyloid plaques induce inflammatory responses prior the formation 

of NFTs (Mori et al. 2002).  

More recently, studies combining laser capture microdissection and sensitive Aβ 

ELISA showed elevated levels of Aβ1-42 and an increase in the ratio Aβ1-42/Aβ1-40 in CA1 

pyramidal and Purkinje neurons of both sporadic and familial AD compared to control 

subjects. Yet, the levels of Aβ1-40 remain unchanged between AD cases and controls, 

suggesting that high intraneuronal concentration of Aβ1-42 correlates with increase 

susceptibility to AD pathology (Aoki et al. 2008; Hashimoto et al. 2010). Using immuno-

electron microscopy, the subcellular site of intraneuronal Aβ accumulation was 

determined. Neurons of normal mouse, rat, and human brains exhibited localization of 

Aβ1-42 predominantly on endosomal multivesicular bodies (MVBs). In transgenic APP 

mice and AD brains, intraneuronal Aβ1-42 increased in an age-dependent manner and 

localized in MVBs within pre- and post-synaptic compartments (Takahashi et al. 2002). 

Furthermore, evidence from neuron cultures (Runz et al. 2002; Takahashi et al. 2004; 

Almeida et al. 2006) and AD brains (Cataldo et al. 2004; Van Broeck et al. 2008) have 

also revealed intraneuronal Aβ1-42 accumulation within endosomes and lysosomes. It 

has also been demonstrated that Aβ accumulation in the aforementioned sites might 

lead to neuronal death probably via disruption of the endosomal/lysosomal system 



Introduction 

18 
 

functions (Nixon 2005; Liu et al. 2010) or inhibition of the ubiquitin-proteasome 

system (Oh et al. 2005; Almeida et al. 2006; Tseng et al. 2008). 

Besides intracellular Aβ production, an alternative source that might contribute 

to intraneuronal Aβ accumulation is the re-uptake of Aβ from the extracellular space. 

Several potential internalization mechanisms have been proposed to mediate this 

process. One possible mechanism implicates the binding of Aβ to α7nicotinic 

acetylcholine receptors which are then internalized resulting in intracellular Aβ 

accumulation (Nagele et al. 2002; Oddo et al. 2005). It has been suggested that in 

addition to Aβ production, APOE receptors, members of the low-density lipoprotein 

receptor (LDLR) family, may also modulate Aβ cellular uptake(Bu et al. 2006). 

Additional other mechanisms involving integrins, N-methyl-D-aspartate (NMDA) (Bi et 

al. 2002) and advanced glycation end products (RAGE) receptors (Takuma et al. 2009) 

as well as passive diffusion of extracellular Aβ (Nagele et al. 2002) have been suggested. 

The role of intraneuronal Aβ in AD pathology has also been supported by evidence 

collected from transgenic mouse models (LaFerla et al. 2007; Bayer & Wirths 2010). 

For instance, early intraneuronal Aβ accumulation has been reported in transgenic 

mice carrying FAD mutations such as the APP/PS1 (Schmitz et al. 2004), the APP/PS1KI 

(Casas et al. 2004; Christensen et al. 2008; Breyhan et al. 2009) and the 5XFAD model 

(Oakley et al. 2006; Jawhar et al. 2012), which nicely correlates with neuron loss, 

synaptic and behavioral alterations. Additionally, intraneuronal Aβ accumulation has 

been observed in more recently generated transgenic mouse models expressing only 

N-truncated AβpE3-42 (Wirths et al. 2009; Wittnam et al. 2012) or Aβ4-42 (Bouter et al. 

2013). In these models, severe hippocampal neuron loss and associated neurological 

deficits were detected as well (Wittnam et al. 2012; Bouter et al. 2013; Meissner et al. 

2015). Interestingly, extracellular amyloid deposits were scarcely detected in these 

animals. Overall, accumulating evidence suggests that intraneuronal Aβ accumulation 

is likely to be an early step in AD pathogenesis, preceding the formation of extracellular 

amyloid plaques and tau pathology (Wirths et al. 2004). 
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Fig. 5. Classic and modified amyloid cascade hypothesis. While the classical amyloid hypothesis 

(left) states that the extracellular deposition of Aβ plaques is the causative event of AD pathology, the 

modified amyloid cascade (right) rather considers intracellular accumulation of Aβ as the key event 

during AD pathology. Adapted from (Wirths et al. 2004). 

 

1.5.5 Amyloid peptide heterogeneity  
 

The Aβ peptide can be found in a plethora of different isoforms, being Aβ1-42 and Aβ1-40 

the two major variants. It was reported that Aβ1-42 is the main component of amyloid 

plaques, while Aβ1-40 is abundantly present in CAA (Iwatsubo et al. 1994; Suzuki et al. 

1994; Saido et al. 1995). Hence, particular interest has been focused on Aβ1-42 and its 

association with AD pathology. In vitro and in vivo studies have demonstrated that PS 

AD-associated mutations enhance Aβ1-42 production at the expense of Aβ1-40, thus, 

altering the Aβ1-42 /Aβ1-40 ratio, which is a critical factor by which PS mutations cause 

FAD (Borchelt et al. 1996). Moreover, it has been shown that Aβ1-42 is more neurotoxic 

and prone to aggregate than the shorter Aβ1-40 variant (Jarrett et al. 1993; Jan et al. 

2008). In addition to the so called full length Aβ1-40/42 peptides, other isoforms differing 

in their C-terminal domain ranging from Aβ1-39 down to Aβ1-17 have been found  

(Wiltfang et al. 2002; Portelius et al. 2011; Reinert et al. 2016). Moreover, longer Aβ 

peptides including Aβ1-43/45/46/48 have been described in cell lines (Qi-Takahara et al. 
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2005; Yagishita et al. 2006). Longer forms of Aβ have also been detected in transgenic 

mice (Esh et al. 2005; Shimojo et al. 2008; Van Vickle et al. 2008). Furthermore, in 

sporadic and familial AD brains, the Aβx-43 variant was more frequently found in 

amyloid plaque cores than Aβx-40 (Welander et al. 2009).  

 

1.5.6 Amino-terminally truncated amyloid beta peptides 

 

Besides various C-terminal Aβ isoforms, several N-terminally truncated Aβ variants 

have been reported (Bayer & Wirths 2014). In fact, different studies have shown that 

these N-terminal Aβ isoforms constitute the majority of Aβ species in AD brains 

(Masters et al. 1985; Mori et al. 1992; Sergeant et al. 2003; Portelius et al. 2010). This 

has been further supported by a very recent study using high-resolution mass 

spectrometry where Wildburger and colleagues analyzed the brains of severely 

demented AD patients. They found that approximately 70% of the total Aβ species 

detected corresponded to N-terminal Aβ proteoforms including Aβ2/3/4/5/8/11-x. 

(Wildburger et al. 2017). So far, little is known about the specific enzymes involved in 

the N-truncation of Aβ; nevertheless, some potential candidate enzymes have been 

suggested (Bayer & Wirths 2014). The Aβ2-x variants have been found to be elevated in 

AD brains (Arai et al. 1999; Wiltfang et al. 2001). Treatment with aminopeptidase A 

(APA) inhibitor in cells over- expressing the Swedish APP mutations increased full 

length Aβ levels, thereby, suggesting APA as the enzyme responsible for the cleavage of 

Asp-1 (Sevalle et al. 2009). Furthermore, more recent studies demonstrated that the 

metalloprotease meprin-β was capable to cleave APP in a BACE1-independent manner, 

generating Aβ isoforms with N-terminals starting at Asp-1 or Arg-2. Therefore, it was 

proposed that besides APA, meprin-β might also participate in Aβ2-x production (Bien 

et al. 2012; Schonherr et al. 2016). Moreover, it has been demonstrated that one of the 

major Aβ-degrading enzymes, the zinc-metalloprotease neutral endopeptidase or 

neprilysin (NEP), cleaves Aβ species at several sites. Among other cleavage sites, NEP 

is supposed to cleave Aβ peptides between Arg-2 and Glu-3, Glu-3 and Phe-4 or Arg-5 

and His-6, generating Aβ3-x, Aβ4-x and Aβ6-x, respectively. In contrast, NEP had no effect 
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on full-length APP metabolism (Howell et al. 1995; Leissring et al. 2003). Another 

enzyme, the myelin basic protein (MBP), has been suggested in the N-terminal 

truncation of Aβ. Mass spectrometry analysis showed that in vitro, MBP is able to cleave 

between Phe-4 and Arg-5 of the Aβ sequence (Liao, 2009). Hu et al. demonstrated that 

the angiotensin converting enzyme (ACE) degrades Aβ by cleaving Aβ1-40 at the site 

between Asp7 and Ser8, leading to the production of Aβ8-40. Interestingly, they also 

found that ACE inhibited Aβ aggregation and cytotoxicity in vitro (Hu et al. 2001). 

Besides the generation of Aβ1-x, BACE1 also mediates Aβ11-x liberation by the cleavage 

of Aβ between Tyr-10 and Glu-11 (Vassar et al. 1999).  

Pike and collaborators reported that N-terminally truncated Aβ peptides exhibit 

enhanced aggregation and neurotoxicity in relation to full-length Aβ in vitro (Pike et al. 

1995b). The authors compared the biophysical and bioactive properties of Aβ peptides 

with progressively shortened N-termini (starting at positions Asp-1, Phe-4, Ser-8, Val-

12, and Lys-17) and C-termini extending to residue 40 or 42. Altogether, peptides with 

N-terminal truncations and ending at residue 42 showed enhanced peptide aggregation 

relative to full-length species. Moreover, N-truncated Aβ peptides exhibited fibrillar 

morphology as seen by transmission electron microscopy, and significant toxicity in 

cultures of rat hippocampal neurons (Pike et al. 1995b).  

Besides N- and C- terminal truncations, post-translational modifications of Aβ such as 

oxidation, glycosylation, phosphorylation, isomerization, racemization, nitration and 

pyroglutamation have been identified (Kummer & Heneka 2014). These modifications 

generate Aβ peptides with different biophysical and bioactive properties that might be 

relevant for AD progression as well.  

 

1.5.7 Pyroglutamate-modified amyloid beta 3-42 

 

Mori and colleagues were the first who described the presence of Aβ peptides 

bearing a pyroglutamate at their N-terminus in AD brains  (Mori et al. 1992). Using a 

pyroglutamyl peptide hydrolase they were able to unravel the glutamate blocked by 

conversion to pyroglutamate. Further amino acid sequencing and mass spectrometric 
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analysis of the Aβ peptides extracted and purified from cortices of AD brains, revealed 

that ~15 to 20 % of the total N-terminally truncated Aβ fragments corresponded to 

species starting at Glu-3. The presence of pyroglutamate modified Aβ3-x (AβpE3-x) was 

further sustained by Saido et al. trough immunohistochemical and biochemical 

methods. They showed that AβpE3-x is present in equivalent or even greater quantities 

than full length Aβ1-X in senile plaques. Additionally, the authors suggested that AβpE3-x 

deposition may precede that of Aβ1-x based on their observations in DS brains (Saido et 

al. 1995). In line with this, analysis of frontal cortex extracts from AD and DS patients 

using specific sandwich ELISAs revealed that AβpE3-42/43 represented ~25% of total Aβx-

42/43. Additionally, AβpE3-40 was closely related with the extent of Aβ deposition in blood 

vessels, which was not the case for AβpE3-42/43 (Harigaya et al. 2000). Ever since, further 

studies employing different technical and methodological approaches have supported 

the presence of Aβp3-x as an important pathological component in AD brains (Sergeant 

et al. 2003; Guntert et al. 2006; Portelius et al. 2010; Moore et al. 2012; Rijal Upadhaya 

et al. 2014). 

 

1.5.8 Pyroglutamate amyloid beta formation 

 

Prior AβpE formation, the removal of the first two amino acids of the Aβ sequence is 

required in order to expose the glutamate at position 3. As mentioned earlier, it is 

thought that this process might involve the proteolytic activity of neprilysin (Bayer & 

Wirths, 2014). Additionally, it was proposed that truncated Aβ3-40/42 might be 

generated by Cu2+-mediated amide hydrolysis (Drew et al. 2009). The enzyme 

glutaminyl cyclase (QC) was identified as the enzyme responsible to catalyze Aβ3-40/42 

conversion to form AβpE3-40/42 in vitro and in vivo. In addition to glutamate, QC can also 

catalyze N-glutamine cyclization (Schilling et al. 2004, 2008; Cynis et al. 2006). 

Furthermore, QC expression was found to be upregulated in the cortices of AD patients 

which correlated with the occurrence of pyroglutamate modified Aβ (Schilling et al. 

2008).   
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It has been shown that AβpE3 modification leads to alterations in the biophysical 

and biochemical properties. Saido and coworkers suggested that the formation of the 

lactam ring in combination with the loss of two negative charges and one positive 

charge substantially increases hydrophobicity resulting in more stability and 

aggregation tendency of AβpE3 (Saido et al. 1996). On the other hand, it has also been 

proposed that the loss of N-terminal charges may decrease charge repulsion between 

strands, facilitating β-sheet formation (He & Barrow 1999). Additionally, in vitro 

studies of Russo et al. revealed that AβpE3-40/42 are more cytotoxic than full-length Aβ1-

40/42. Also, they reported that AβpE3-40/42 peptides exhibited significant degradation 

resistance by astrocytes, while full-length Aβ peptides were partially degraded (Russo 

et al. 2002). In a similar manner, other studies showed that treatment of neuroblastoma 

cells with mixtures of AβpE3-42 to Aβ1-42 at ratios resembling to those detected in AD, 

resulted in an increased cell membrane permeability and reduced cell viability 

compared to Aβ mixtures consisting of AβpE3-42/Aβ1-42 ratios similar to that found in 

non-demented brains (Piccini et al. 2005). 

The toxic effect of AβpE3-42 has also been studied in vivo using different 

approaches. It was demonstrated that pharmacological inhibition of QC in two different 

transgenic AD mouse models resulted in reduction of AβpE3-42 and amyloid plaque 

burden, which was accompanied by improvement in cognitive tests performance. On 

the other hand, overexpression of QC by crossing mice expressing human QC and 

transgenic AD mice resulted in increased AβpE3-42 levels, enhanced amyloid plaque load 

and more severe behavioral deficits (Jawhar et al. 2011). Passive immunization of 

transgenic AD mice with specific anti-AβpE3-x antibodies has been shown to reduce 

amyloid plaque burden and reverse cognitive impairments (Wirths et al. 2010). 

Moreover, to directly investigate the toxic effect of AβpE3-42 in vivo, transgenic mouse 

models expressing exclusively truncated mutant human AβpE3-42 have been created. 

Such models include the TBA2 and TBA2.1/2.2 lines, which exhibit strong intraneuronal 

accumulation of AβpE3-42, progressive motor deficits, neurodegeneration and 

inflammatory responses  (Wirths et al. 2009; Alexandru et al. 2011). In addition, a more 

recent TBA42 mouse model also expressing AβpE3-42 has been well characterized.  
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1.5.9 Amino-truncated amyloid beta 4-42 

 

When Masters and colleagues isolated and sequenced the amyloid plaque cores of 

patients with SAD and DS back in 1985, they found that the majority of Aβ species 

started with a phenylalanine at position 4 of amyloid-β (Aβ4-x) (Masters et al. 1985). 

Curiously, they reported that 64% of the peptides in amyloid plaques of the SAD cases 

analyzed begin with a Phe-4 residue. Later studies utilizing Matrix-assisted laser-

desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry of core amyloid 

extracts from AD brains revealed high heterogeneity of peptides ending with Ala-42, 

whereas CAA possessed less N- and C-terminal heterogeneity. In the amyloid core 

preparation, the major component started with Phe-4 followed by Ser-8 and Glu-3. Also, 

the MALDI-TOF data suggested the presence of pE-3 and pE-11 (Miller et al. 1993). 

Furthermore, Näslund et al. tested SAD and FAD brain tissue by means of electrospray-

ionization (ESI) mass spectrometry. They found that Aβ4-42 together with Aβ8-42 were 

the most prevalent minor Aβ isoforms (Näslund et al. 1994). More recent studies have 

supported these previous findings. Lewis and colleagues analyzed Aβ peptides 

extracted from post mortem cerebral cortices of patients with AD, vascular dementia 

and non-demented elderly controls. According to their mass spectrometric data, N-

terminally truncated Aβ4-42 species represent the most prominent Aβ variants in all 

groups tested (Lewis et al. 2006). Furthermore, in a detailed study by Portelius et al. 

using immunoprecipitation in combination with mass spectrometry (IP/MS) analysis, 

they determined the Aβ variants pattern in three different brain regions of SAD, FAD 

and non-demented controls (Portelius et al. 2010). The authors reported that in all the 

regions studied, Aβ1-42, AβpE3-42, Aβ4-42 and Aβ1-40 were the most prominent isoforms, of 

which Aβ1-42 and Aβ4-42 were the dominating variants in the hippocampus and cortex of 

all groups analyzed. In a similar approach, Moore and colleagues profiled the Aβ species 

present in the prefrontal cortex obtained from brain tissue of (i) patients with AD, (ii) 

individuals with pathological aging (PA) (AD-like neuropathology without clinical 

cognitive symptoms), and (iii) elderly subjects with no clinical evidence of dementia. 

They found that in the SDS soluble fractions Aβ1-42, Aβ4-42 and Aβ1-40 were the most 

dominant peptides in all groups tested, while in the plaque-associated (insoluble) 
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fractions, the group with PA revealed higher Aβ4-42, AβpE3-42 and Aβ1-42 levels in 

comparison with the non-demented control group (Moore et al. 2012). More recently, 

these findings were supported and extended by studies showing that besides Aβ1-40/42 

species, Aβ4-42 and AβpE3-42 are the most abundant peptides present in AD and PA brains. 

However, in AD subjects, Aβ4-42 was found to be ~4 times more elevated than in PA 

subjects (Portelius et al. 2015). 

Despite the high amount of evidence showing that Aβ4-42 is one of the major 

components of amyloid plaques, relatively little is known about its properties and role 

in AD pathology. It has been suggested that Aβ4-x may originate from the cleavage of 

full-length Aβ between Glu-3 and Phe-4 by NEP (Bayer & Wirths 2014). In vitro assays, 

have shown that similar to the AβpE3-42 isoform, Aβ4-42 is rapidly converted into soluble 

oligomers and its propensity to aggregation is more pronounced than the one of intact 

Aβ1-42 (Pike et al. 1995b; Bouter et al. 2013). In addition, cell viability assays have shown 

that exposure to Aβ4-42 has similar toxic effects as AβpE3-42 and Aβ1-42 (Bouter et al. 

2013). The direct toxic in vivo effect has been analyzed in the Tg4-42 transgenic mouse 

model which expresses solely Aβ4-42 (Section 1.6.2) In general, these mice develop 

strong intraneuronal Aβ accumulation accompanied by massive neuron loss in the 

hippocampus and spatial reference memory deficits (Bouter et al. 2013). 

 

1.6 TRANSGENIC ALZHEIMER’S DISEASE MOUSE MODELS 
 

1.6.1 The TBA42 mouse model 

 

The TBA42 mouse model was created to exclusively produce and secrete the N-

terminally truncated AβpE3-42 peptide. TBA42 mice (truncated beta amyloid 42) express 

the murine thyrotropin-releasing-hormone-Aβ (mTRH-Aβ3-42) under the control of 

the murine Thy1.2 regulatory sequence (Fig. 6) (Wittnam et al. 2012). In order to 

facilitate enhanced production of AβpE3-42, the glutamate at position 3 of the Aβ 

sequence was mutated into glutamine. Accordingly, the TBA42 mice express 
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unmodified Aβ3Q-42 (as for now called Aβ3-42), which can be readily converted to AβpE3-

42 (Cynis et al. 2006; Wirths et al. 2009; Wittnam et al. 2012).  

 

 

 

Fig. 6. The TBA42 transgene. The Aβ3Q-42 sequence is fused to the pre-pro-TRH peptide in order to 

ensure secretion of the peptide. The neuronal expression is induced by the Thy1 promoter. After the 

release of Aβ3Q-42, its free N-terminus can undergo cyclization by QC which results in the formation of 

AβpE3-42. Picture taken from (Wittnam,  2012). 

 

Already at the age of three months, abundant intracellular Aβ accumulation can 

be detected in the pyramidal neurons of the CA1 area of the hippocampus in the TBA42 

mice. Moreover, at 6 months of age, intraneuronal Aβ accumulation can be detected in 

the cerebellar nuclei. Marked astrogliosis is observed in the hippocampus of 12-month-

old mice with additional Aβ accumulation in the spinal cord (Wittnam et al. 2012). 

Extracellular Aβ deposits are barely observed in the TBA42 at all ages studied. 

Furthermore, unbiased-stereology quantification revealed a significant 35% percent 

neuron loss in the pyramidal layer of the CA1 area at 12 months of age (Meissner et al. 

2015). 

Age-dependent behavioral and cognitive alterations have been detected in the 

TBA42 mice. Using the cross maze, working memory deficits were revealed at 12 

months of age. Also, learning and spatial working memory impairment is observed at 
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12 months of age as measured by the Morris water maze test (MWM) (Meissner et al. 

2015). TBA42 mice also develop reduced anxiety levels in an age-dependent manner. 

At 6 months of age, motor and sensory deficits are detected, which aggravate as the 

animals age (Wittnam et al. 2012; Meissner et al. 2015). Taken together, the TBA42 

model reveals that long-term exposure to AβpE3-42 induces neurodegeneration in the 

CA1 region of the hippocampus, which is accompanied by cognitive and behavioral 

deficits. Interestingly, this model does not develop amyloid plaque pathology, thus 

supporting the concept that soluble Aβ oligomeric forms are likely to play a pivotal role 

in AD pathogenesis.  

 

1.6.2 The Tg4-42 mouse model 

 

The recently created Tg4-42 model is the first, and currently only mouse model 

uniquely expressing the N-truncated human Aβ4-42 peptide, one of the most abundant 

Aβ variants found in the brain of AD patients (Masters et al. 1985; Lewis et al. 2006; 

Portelius et al. 2010). In order to produce and secrete the Aβ4-42 peptide, the human 

Aβ4-42 sequence was fused to the TRH signal peptide under the control of the Thy1 

promoter, thus ensuring extracellular secretion of Aβ4-42 in a neuron-specific fashion 

(Bouter et al. 2013). Unlike the TBA42 model, Tg4-42 mice overexpress Aβ4-42 without 

any mutation.  

At two months of age, intraneuronal Aβ can be detected predominantly in the 

CA1 region of the hippocampus in the hemizygous Tg4-42 mice (Tg4-42hem). In 

addition, Aβ is also found in the occipital cortex, striatum, superior colliculus and 

piriform cortex (Bouter, 2013). Active astrocytes and reactive microglia accompany 

hippocampal Aβ expression beginning at two months of age. The Tg-4-42 mice do not 

develop extracellular amyloid plaques, yet the secreted Aβ4-42 forms soluble neurotoxic 

oligomers that induce severe neuron loss in the CA1 region of the hippocampus in an 

age- and dose-dependent manner (Bouter et al. 2013; Antonios et al. 2015). At 8 months 

of age, Tg4-42hem mice show a 38% neuron loss, which is even enhanced in age-matched 

homozygous Tg4-42 mice (Tg4-42hom) with a massive 66% neuron loss when compared 
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to wild-type (WT) controls (Bouter et al. 2013). Moreover, 12-month-old Tg4-42hem 

mice display a 49% decline in neuron numbers compared to WT controls. The loss of 

neurons is accompanied by spatial reference learning and memory deficits as measured 

by the MWM in 6-month-old Tg4-42hom and 12-month-old Tg4-42hem mice (Bouter et al. 

2013). These latter mice also display impaired contextual learning as demonstrated by 

the contextual and tone fear conditioning task (Bouter et al. 2014). However, in spite of 

the exacerbated neuron death and cognitive deficits developed in the Tg4-42 model, 

these mice are able to respond to different therapeutic approaches. For instance, 

passive immunization of Tg4-42 mice with an antibody against N-terminal Aβ4-x 

resulted in a diminished CA1 neuron loss and a rescue of spatial reference memory 

deficits (Antonios et al. 2015). Likewise, it was demonstrated that long-term voluntary 

exercise and cognitive stimulation reduces hippocampal neuron loss and completely 

rescues spatial memory deficits in Tg4-42 mice (Hüttenrauch et al. 2016).  

Additionally, unlike the majority of transgenic AD mouse models relying on APP/PS 

mutations, the Tg4-42 model is devoid of any mutation, thereby, it represents a 

convenient model to study SAD which accounts for the majority of AD cases.  

 

 

 

 

 

Fig. 7. The Tg4-42 transgene. The Aβ4-42 sequence is fused to the pre-pro-TRH peptide in order to 
ensure secretion of the peptide. The neuronal expression is induced by the Thy1 promoter. Figure 
adapted from (Bouter et al. 2013). 

 

1.6.3 The 5XFAD mouse model 

 

The extensively-used 5XFAD mouse model first described by Oakley et al. is an APP/PS1 

double transgenic mouse line co-expressing a total of five FAD mutations (Oakley et al. 

2006). Overexpression of both transgenes is driven by the neuron-specific murine Thy1 

promoter (Fig. 8). These animals co-overexpress the human APP695 isoform harboring 

the Swedish K670N/M671L, Florida I716V, and London V717I FAD mutations, and 
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human PS1 containing the M146L and L286V FAD mutations. 5XFAD mice breed as 

single transgenics, as shown by the stable genomic cointegration and germline 

transmission of both transgenes (Oakley et al. 2006).  

 

 

 

Fig. 8. The 5XFAD transgenes. 5XFAD mice are co-expressing the human APP695 and PSEN1 transgenes 
under the control of the Thy1 promoter. APP695 harbors the Swedish, Florida and London mutation 
while PSEN1 contains the mutations M146L and L286V. Figure taken from (Bouter et al. 2013). 

 

 

The specific FAD mutations present in the 5XFAD mice increase Aβ levels and   

accelerate amyloid plaque formation. While the Swedish mutation enhances the 

production of total Aβ, the APP Florida/London, and PS1 M146/L286V mutations 

promote the production of Aβx-42. The additive effects of the five FAD mutations can be 

already observed at 1.5 months of age with the prominent accumulation of 

intraneuronal Aβx-42 in the pyramidal neurons of the 5th cortical layer and subiculum 

prior extracellular Aβ deposition. Moreover, significant neuron loss is detected in these 

regions beginning at 9 months of age. Surprisingly, no neuron loss is observed in the 

CA1 region of the hippocampus in which intraneuronal Aβ is lacking (Oakley et al. 2006; 

Ohno et al. 2007; Jawhar et al. 2012; Eimer & Vassar 2013). Also, Aβ accumulation has 

been detected within the motor neurons of the spinal cord in the 5XFAD mice (Jawhar 

et al. 2012).  

As seen by Thioflavin S staining, amyloid deposits start to appear in the 5XFAD 

brains at the age of two months (Oakley et al. 2006). Amyloid pathology increases in an 

age-dependent manner spreading to different brain regions including the cortex and 

the hippocampus. Likewise, the 5XFAD strain exhibits astro- and microgliosis which is 
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proportional to the Aβx-42 levels and Aβ deposition (Oakley et al. 2006). Besides the 

extracellular Aβ deposition observed in the brain, amyloid plaques have been detected 

in the spinal cord of 5XFAD animals beginning at three months of age (Jawhar et al. 

2012). Curiously, the Aβx-42 levels are higher in young female 5XFAD compared to age-

matched 5XFAD male mice, however this trend seems to decrease as the mice age 

(Oakley et al. 2006). 

5XFAD mice exhibit progressive behavioral deficits already at young ages. 

Between 4 and 5 months of age, these mice display hippocampus-dependent spatial 

working memory deficits, as analyzed by the Y-maze task (Oakley et al. 2006). 

Additionally, reduced anxiety levels have been detected at 6 months of age (Jawhar et 

al. 2012). Furthermore, learning and memory deficits in the 5XFAD line have also been 

reported using other behavioral paradigms such as the MWM, the conditioned taste 

aversion task, the cross maze and the contextual fear conditioning test. (Ohno et al. 

2007; Devi & Ohno 2010; Jawhar et al. 2012; Bouter et al. 2014). In addition, sensory-

motor deficits start to appear  with 9 months of age (Jawhar et al. 2012). 

In sum, the 5XFAD mouse model recapitulates some of the major 

neuropathological hallmarks of AD such as neuron loss, amyloid plaque formation and 

inflammation, along with characteristic behavioral and cognitive deficits. Therefore, 

this mouse model represents a suitable tool to study the molecular and cellular 

mechanisms involved in AD pathogenesis as well as potential therapeutic treatments to 

fight it. 
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1.7 PROJECT OBJECTIVES 

1.7.1 Project I: Studies of the combined effect of AβpE3-42 and Aβ4-42 on ongoing 

Alzheimer’s disease pathology using the TBA42/Tg4-42 bigenic mouse 

model 

 

The N-terminally truncated Aβ isoforms AβpE-42 and Aβ4-42 have been shown to 

represent major species in the brain of AD patients. Moreover, it has been 

demonstrated that Aβ4-42 is as toxic as AβpE3-42 and that both peptides show high 

aggregation propensity when compared to full-length Aβ (Bouter et al. 2013). In order 

to study the direct in vivo toxicity of these two N-truncated Aβ peptides, the TBA42 and 

Tg4-42 mouse models expressing AβpE3-42 and Aβ4-42, respectively, were previously 

created in our lab (Wittnam et al. 2012; Bouter et al. 2013). The TBA42 mouse develops 

intraneuronal Aβ accumulation, massive pyramidal neuron loss in the CA1 region of the 

hippocampus, motor impairments and behavioral deficits (Wittnam et al. 2012; 

Meissner et al. 2015). In good agreement with the observations in the TBA42 model, 

Tg4-42 mice expressing only intraneuronal Aβ4−42 develop severe hippocampal 

neurons loss accompanied by spatial reference memory deficits (Bouter et al. 2013). 

Based on the observations that AβpE3-42 and Aβ4-42 play an important role in AD 

pathology, the aim of the first project was to elucidate a possible impact of a 

simultaneous expression of both AβpE3-42 and Aβ4-42 on pathological and behavioral 

deficits in transgenic mice.  

 

The objectives of project I are the following: 

• Generation of the TBA42/Tg4-42 mouse model by crossing the established 

TBA42 and Tg4-42 mouse models. 

• Investigate the effect of the co-expression of AβpE3-42 and Aβ4-42 on 

neuropathology in young and aged mice. 

• Study the toxic effect of AβpE3-42 and Aβ4-42 on neuron loss in TBA42/Tg4-42 

mice.    

• Determine if behavioral and cognitive deficits are enhanced in TBA42/Tg4-42 

mice.    
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• Test if the combination of AβpE3-42 and Aβ4-42 has an effect on their aggregation 

propensity by measuring their aggregation kinetics. 

 

1.7.2 Project II: Exploring the in vivo association between Aβ plaques and 

soluble Aβ aggregates using the FAD4-42 mouse model 

 

 

According to the classic amyloid cascade hypothesis, the insoluble extracellular 

amyloid plaques are the triggering factors of AD pathogenesis. However, the presence 

of amyloid plaques has also been found in non-demented elderly subjects(Katzman et 

al. 1988; Hulette et al. 1998; Price & Morris 1999; Aizenstein et al. 2008). In addition, 

several studies have shown the presence of soluble Aβ oligomeric forms in extracts of 

cerebral tissue from AD patients (Kuo et al. 1996; Roher et al. 1996; Shankar et al. 2008; 

Tomic et al. 2009). Furthermore, based on the analysis of the Aβ soluble and insoluble 

pools in AD brains, it has been demonstrated that the levels of soluble Aβ oligomers 

correlate better with the risk and degree of AD than levels of insoluble Aβ (McLean et 

al. 1999; Wang et al. 1999; Mc Donald et al. 2010; Esparza et al. 2013). Additionally, 

studies suggest that amyloid plaques might act as reservoirs of soluble Aβ oligomers, 

thus preventing their toxicity (Shankar et al. 2008; Koffie et al. 2009, 2012; Hong et al. 

2014). These findings gave rise to the question of whether fibrillar Aβ plaques or 

soluble Aβ oligomers are the key players in the pathogenesis of AD. Hence, the aim of 

the second project was to study the association between soluble Aβ oligomers and 

amyloid plaques in a transgenic mouse model of AD.  

 

The objectives of the project II are the following: 

 

• Generation of the FAD4-42 mouse model by crossing the 5XFAD and Tg4-42 

mouse models. 

• Study the effect of additional Aβ4-42 on the extracellular Aβ deposition in the 

FAD4-42 mice at 3 and 12 months of age. 
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• Investigate if extracellular Aβ plaques have an impact on Aβ4-42 neurotoxicity in 

the CA1 region of the hippocampus of 3- and 12-month-old FAD4-42 mice. 
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2 MATERIAL AND METHODS 

 

2.1 AGGREGATION ASSAY 
 

2.1.1 Preparation of synthetic Aβ peptides 

 

Stock solutions of synthetic AβpE3-42 and Aβ4-42 peptides (Peptide Specialty Laboratory 

SL, Heidelberg, Germany) were solubilized in 10 mM NaOH at a final concentration of 1 

mg/mL and volumes of 20 µL were aliquoted in 0.5 mL low binding microcentrifuge 

tubes (Eppendorf®, Hamburg, Germany). Shortly after, aliquots were sonicated for 5 

min in a water bath (Sonorex RK 100H, Bandelin electronic, Berlin, Germany) and snap 

frozen in liquid nitrogen, before their storage at -80°C (modified from Wirths et al., 

2010). 

 

2.1.2 Thioflavin T aggregation assay 
 

Peptide solutions were prepared on the basis of their molecular mass in a physiological 

buffer (50 mM PBS (PAN-Biotech, Aidenbach, Germany) 50 mM NaCl (Roth, Karlsruhe, 

Germany) K, 0.01 % NaN3 (Fluka, St. Louis, MO, USA), pH 7.0) and mixed with 20 µM 

Thioflavin T (ThT) (Sigma, St. Louis, MO, USA) to a final concentration of 50 µM. An 

equimolar mixture of AβpE3-42 and Aβ4-42 was prepared by adding 25 µM of each peptide 

in order to reach a final concentration of 50 µM. Then, 100 µL peptide solution per well 

was applied in triplicates to a 96-well microplate. The microplate was sealed, incubated 

at 37°C and shaken at 180 rpm between reads. ThT fluorescence was recorded every 

10 minutes using a Synergy HTX Multi-Mode microplate reader (BioTeK Instruments 

Inc., Winooski, VT, USA). The excitation and emission wavelengths were 440/30 and 

485/20 nm, respectively. 
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2.2 LABORATORY ANIMALS 
 

2.2.1 Animal housing and general considerations 

 

All mouse lines were maintained in the central animal facility of the University Medicine 

Göttingen under specific-pathogen-free conditions. Animals were kept under a 

controlled environment on a 12 hour/12 hour inverted light cycle (light from 8:00 pm 

to 8:00 am) and provided with free access to food and water. All animal experiments 

were performed in accordance with the German guidelines for animal care and were 

approved by the local legal authorities. All effort was made to minimize the number and 

the suffering of animals used in the present study. All animal experimental procedures 

were performed during the night cycle (8:00 am to 8:00 pm). 

 

2.2.2 TBA42 transgenic mice 

 

The generation of TBA42 mice has been described previously (Section 1.6.1). In brief, 

TBA42 mice express the murine thyrotropin-releasing hormone-Aβ (mTRH-Aβ3-42) 

sequence under the control of the murine Thy1.2 regulatory sequence. The glutamate 

at position three of the Aβ amino acid sequence has been mutated into glutamine to 

facilitate enhanced generation of pyroglutamate Aβ3-42 (AβpE3-42)(Wittnam et al. 2012). 

All animals were generated and maintained on a C57BL/6J genetic background. For the 

present study, hemizygous TBA42 (TBA42hem) and homozygous TBA42 (TBA42hom) 

mice we used. Due to strong motor deficits, the TBA42hom mice had to be sacrificed at 

an age of 2 months.  

 

2.2.3 Tg4-42 transgenic mice 
 

Tg4-42 mice express the human Aβ4-42 sequence fused to the signal peptide sequence 

of the thyrotropin-releasing hormone under the control of the Thy1 promoter. All 

animals were generated and maintained on a C57BL/6J genetic background. For the 
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first project, both female and male hemizygous Tg4-42 (Tg4-42hem) and homozygous 

Tg4-42 (Tg4-42hom) mice were used. In the second project, only female Tg4-42hem were 

utilized. 

 

2.2.4 TBA42/Tg4-42 bigenic mice 

 

For the first project, the Tg4-42/TBA42 bigenic line was generated by breeding 

transgene positive Tg4-42 mice with transgene positive TB42 mice. Wild type (WT) and 

transgenic offspring were identified subsequently using PCR and qRT-PCR. All animals 

were generated and maintained on a C57BL/6J genetic background. Both female and 

male TBA42/Tg4-42 mice were utilized 

 

2.2.5 5XFAD mice 

 

The generation of the 5XFAD mouse model has been described previously (Oakley et al. 

2006). In brief, this line expresses the human APP (695) transgene with the Swedish, 

Florida and London mutations. Additionally, the model expresses a PS1 transgene 

containing the M146L and L286V mutations. Both, the APP and PS1 transgenes are 

expressed under the control of the murine Thy1.2 regulatory sequence. The 5XFAD line 

was originally kept on a B6/SJL hybrid background. Thus, in order to facilitate 

comparison and mating with other AD transgenic mouse models, these mice were 

backcrossed for several generations to obtain a pure C57BL/6J genetic background 

(Jawhar et al. 2011). Only female 5XFAD mice were used in the present work.  

 

 

2.2.6 FAD4-42 bigenic mice 

 

For the second project, the FAD4-42 bigenic mouse model was generated by crossing 

the established familiar (5XFAD) and the sporadic (Tg4-42) AD mouse models. WT and 

transgenic offspring were subsequently identified using PCR. The mice designated as 
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FAD/4-42 were hemizygous for both, 5XFAD and Tg4-42 transgenes. Only female mice 

were used. 

 

2.3 GENOTYPING OF TRANSGENIC MICE 
 

2.3.1 Isolation of genomic DNA 

 

All mice were genotyped before any further use. To this end, genomic DNA isolated from 

tail biopsies was used. First, a volume of 500 µL lysis buffer (100 mM Tris/HCl (pH 8.5; 

Roth, Karlsruhe, Germany) 5 mM EDTA (AppliChem, Darmstadt, Germany), 0.2% 

dodecyl sulfate (SDS; Biolmol, Hamburg, Germany) and 200 mM NaCl (Roth, Karlsruhe, 

Germany) supplemented with 5 µL proteinase K (20 mg/ml stock; Peqlab, Erlangen, 

Germany) was added to every tail biopsy and incubated overnight at 55°C under 

shaking conditions (450 rpm) in a Thermomixer Compact (Eppendorf, Hamburg, 

Germany). After incubation, samples were centrifuged for 20 min at 17,000 rpm at 4°C. 

The supernatants were then transferred into a 1.5 mL microtube containing 500 µL ice-

cold isopropanol (Roth, Karlsruhe, Germany) and centrifuged at RT for 10 min at 13,000 

rpm. Then, supernatants were discarded and the pellet was washed with 500 µL of ice-

cold 70% absolute EtOH (Merck, Darmstadt, Germany), followed by a 13,000 rpm 

centrifugation step for 10 min at RT (Biofuge Pico, Heraeus). The resulting supernatant 

was drained and the pellet left to dry at 55°C for 2 h. Finally, the pellet was dissolved in 

30 µL molecular-grade water (Braun, Melsungen, Germany), incubated ON at 55°C and 

stored at 4°C until further use.  

 

2.3.2 Nucleic acid concentration calculation 

 

Using a Biophotomer (Eppendorf, Hamburg, Germany), the genomic DNA concentration 

and purity was measured. Before DNA measurements, 80 µL of molecular-grade water 

was used as a blank for the photometer settings. Subsequently, 2 µL of genomic DNA 
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was diluted with 78 µL of molecular-grade water. Samples with A260/A230 and 

A260/A280 values greater than 1.8 were considered accurate for further analyses.   

 

2.3.3 Polymerase chain reaction (PCR) 

 

Genomic DNA samples were diluted to a final concentration of 20 ng/µL and utilized for 

genotyping by standard polymerase chain reaction (PCR). The reaction mixtures and 

the thermal cycling program for DNA amplification are given in the Tables 1, 2 and 3, 

respectively. Afterwards, in order to corroborate the presence of the transgenes in the 

samples, the PCR products were identified by agarose gel-electrophoresis. For this 

purpose, a 2% agarose gel was prepared by mixing 3.0 grams of agarose (Lonza, Basel, 

Switzerland) with 150 mL of 1X TBE  and boiled in a microwave before 4 µL of ethidium 

bromide [10 mg/mL] (Roth, Karlsruhe, Germany) was added to the mixture. Then, the 

agarose solution was poured into a casting tray with a comb to form the wells. Once the 

gel was solidified, 10 µL of the PCR product was mixed with 5 µL of 10X loading buffer 

and added into the wells. For size identification, a volume of 5 µL 100 bp DNA ladder 

(Bioron, Ludwigshafen, Germany) was loaded into the first well and gel electrophoresis 

was conducted at 141 mV for 1 hour. The PCR product bands were then visualized in 

an UV-chamber (Gel-Doc 2000, BioRad, Hercules, CA, USA) and data were analyzed with 

the Quantity One software program (Biorad, Hercules, CA, USA). 

10XTBE buffer: 108 g Tris (Roth, Karlsruhe, Germany) and 55 g boric acid (Sigma, St. 

Louis, MO, USA) were dissolved in 900 ml ddH2O. Then 40 ml 0,5 M Na2EDTA (pH 8.0; 

Roth, Karlsruhe, Germany) was added to the solution and the volume was adjusted to 1 

liter with ddH2O. Before use the solution was diluted 1:10 in ddH2O to obtain 1XTBE 

buffer. 
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Table 1. Reaction mixture for 5XFAD and FAD/4-42 genotyping 

 

Reagent Volume (µL) 

DNA (20 ng/µL) 2 

Primer hAPP for 0.5 

Primer hAPP rev 0.5 

dNTP’s (2 mM) 2 

MgCl2 (25 mM) 3.2 

10x reaction buffer 2 

Molecular grade water 9.6 

Taq polymerase (5 U/µL) 0.2 

Total reaction volume per sample 20 

 

Table 2. Reaction mixture for Tg4-42 and TBA42 genotyping 

 

Reagent Volume (µL) 

DNA (20 ng/µL) 2 

Primer Aβ3-42 for 0.5 

Primer Aβ3-42 rev 0.5 

dNTP’s (2 mM) 2 

MgCl2 (25 mM) 3.2 

10x reaction buffer 2 

Molecular grade water 9.6 

Taq polymerase (5 U/µL) 0.2 

Total reaction volume per sample 20 
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Table 3. Thermal cycling program for Tg4-42, TBA42, 5XFAD and FAD/4-42 genotyping 

Step Temperature [°C] Duration [s] 

1 94 180 

2 94 45 

3 58 60 

4 72 60 

5 Repetition of steps 2-4 (40 cycles) 

6 72 300 

7 4 ∞ 

 

2.3.4 Quantitative Real-Time PCR for Genotyping 
 

Quantitative Real-Time PCR (qRT-PCR) was applied in order to identify bigenic 

TBA42/Tg4-42 mice. For this purpose, genotyping was performed using the Biotool™ 

2x SYBR Green qPCR master mix which contains ROX as an internal reference dye. The 

reaction mix and the thermal cycling program for amplification are shown in Table 4 

and Table 5 respectively. A total reaction mix volume of 20 µL was added in duplicates 

into 200 µL qRT-PCR tubes (Biozym Scientific) and spun down briefly. To start the qRT-

PCR reaction, tubes were then transferred into a Mx3000P Real-Time Cycler 

(Stratagene, Santa Clara, CA, USA) and data were gathered using the MxPro Mx3000P 

software (Stratagene, Santa Clara, CA, USA). The CT-values were measured and 

averaged from the duplicates. For relative quantification, CT-values of the respective 

human Aβ3-42 and Aβ4-42 genes (target genes) were normalized to those of murine APP 

(reference gene) and calibrated to a selected control mouse using the 2−𝛥𝛥𝐶𝑇 method 

(Schmittgen & Livak 2008) as follows: 

For both the test mouse (test) and the control mouse (calibrator), the CT of the target 

gene was normalized to that of the reference gene: 

𝛥𝐶𝑇(𝑡𝑒𝑠𝑡)  = 𝐶𝑇(𝑡𝑎𝑟𝑔𝑒𝑡,   𝑡𝑒𝑠𝑡) −  𝐶𝑇(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,   𝑡𝑒𝑠𝑡) 

𝛥𝐶𝑇(𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟) = 𝐶𝑇(𝑡𝑎𝑟𝑔𝑒𝑡,   𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟) −  𝐶𝑇(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,   𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟) 



Material and Methods 

41 
 

Then, the ΔCT of the test mouse was normalized to the ΔCT of the calibrator: 

∆∆𝐶𝑇 = ∆𝐶𝑇(𝑡𝑒𝑠𝑡) − ∆𝐶𝑇(𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟) 

Finally, the gene amount of the target gene in the test mouse is  2−𝛥𝛥𝐶𝑇  times of the 

control mouse. An example of the identification of mice carrying both transgenes 

(TBA42 and Tg4-42) is shown in Fig. 9. 

 

Table 4. Reaction mixture for TBA42/Tg4-42 genotyping 

 

Reagent Amount per reaction (µL) 

2x Biotool™SYBR Green Master Mix 10 

DNA template 2 

Forward Aβ3-42 or mAPP primer 1.5 

Reverse Aβ3-42 or mAPP primer 1.5 

ROX reference dye 0.4 

Molecular grade water 4.6 

Total reaction volume per sample 20 

 

Table 5. Thermal cycling program for TBA42/Tg4-42 genotyping 

Step Temperature [°C] Duration [s] 

1 95 600 

2 95 15 

3 60 60 

4 Repetition of steps 2 and 3 (40 cycles) 

5 95 60 

7 55 30 

8 95 30 
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Fig. 9. Identification of potential TBA42/Tg4-42 bigenic mice. The presence of Aβ3-42 and Aβ4-42 was 
quantified relative to murine APP. All mice were calibrated to control mouse number 1 (negative for both 
Aβ3-42 and Aβ4-42). Animals 2 (confirmed TBA42hem) and 3 (confirmed Tg4-42hem), 4 (confirmed 
TBA42hom) and 5 (confirmed Tg4-42hom) were used as positive controls. Then, mice 7, 8, 10, 11, 12 and 
14 were identified as bigenic, while the rest of the animals analyzed were considered Tg4-42hem as one 
of the parents was Tg4-42hom homozygous. 

 

2.3.5 Primers 
All primers used for genotyping (Table 6) were used at a final concentration of 10 

pmol/µL (100 pmol/µL original stock diluted 1:10 in molecular grade water) and 

purchased from Eurofins (Ebersberg, Germany). 

 

Table 6 .List of primers used for mouse genotyping 

 

Name Sequence (5’ → 3’) Usage 

Murine APP forward TCT TGT CTT TCT CGC CAC 

TGG C 

qRT-PCR 

Murine APP reverse GCA GTC AGA AGT TCC TAG 

G 

qRT-PCR 

Human APP forward GTA GCA GAG GAA GAA GTG PCR 

Human APP reverse CAT GAC CTG GGA CAT TCT 

C 

PCR 
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Aβ3-42 forward TCC GGC CAG AAC GTC GAT 

TC 

qRT-PCR 

Aβ3-42 reverse GGA GAA GCA AGA CCT CTG 

C 

qRT-PCR 

 

2.4 TISSUE COLLECTION AND PRESERVATION 
 

2.4.1 Perfusion 
 

Mice were anesthetized with an intraperitoneal injection containing a mixture of 

ketamine (100 mg/kg; Medistar, Ascheberg, Germany) and xylazine (10 mg/kg; 

Ecuphar, N.V. Oostkamp, Belgium) diluted in molecular-grade water. The pedal 

withdrawal reflex was used as an indicator of depth anesthesia. Once mice were deeply 

anesthetized, they were placed on a perfusion tray. A small lateral incision was made 

through the abdominal wall, the diaphragm was carefully cut and the rib cage was lifted 

away by cutting it laterally from both sides. After exposing the beating heart, an incision 

was made in the right atrium to allow for blood to drain from the circulatory system. 

Then, a sterile needle attached to the tubing system of a peristaltic pump was inserted 

into the posterior end of the left ventricle. The mice were then perfused with 

approximately 30 mL ice-cold 0.01 M PBS until the fluid was running clear and the liver 

was clear of blood. Perfusion continued with and administration of 30 mL ice-cold 4% 

(weight/volume (w/v)) paraformaldehyde (PFA; Roth, Karlsruhe, Germany) in 0.01 M 

PBS. Rigidity of the mice’s tail indicated a successful perfusion. 

Following perfusion, the mice were decapitated. The right brain hemisphere and 

the cervical/thoracic spinal cord were placed into embedding cassettes and post-

fixated with a 4% formalin Histofix solution (Roth, Karlsruhe, Germany) for at least one 

week before embedding in paraffin. The left brain hemisphere was post-fixated for 24 

hours in 4% PFA in 0.01 M PBS. The brain tissue was then placed into a 30% (w/v) 

sucrose (Roth, Karlsruhe, Germany) solution in 0.01 M PBS for cryoprotection and 
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incubated until it sank to the bottom of its container. Subsequently, the brain tissue was 

flash-frozen on dry ice and stored at -80°C until further use.     

 

2.4.2 Immunohistochemistry 

 

2.4.2.1 Paraffin embedding of mouse brain and spinal cords 

 

After perfusion, the right brain hemisphere and spinal cord were placed into a TP 1020 

Automatic Tissue Processor (Leica). First, the tissue was submerged for 5 min in 4% 

histofix solution followed by 30 min in deionized water. Then, dehydration was carried 

out by placing the tissue into aqueous solutions containing different ascending 

quantities of ethanol (50%(v/v), 60%, 70%, 80%, 90%) for one hour each. Then, the 

tissue was incubated twice in 100% ethanol for one hour each followed by an 

incubation in xylol for one hour. Finally, tissue samples were transferred into melted 

paraffin twice for one hour each, before being embedded in paraffin blocks using an 

EG1140 H Embedding Station (Leica). 

Sagittal brain sections and spinal cord cross sections were cut with a HM 335E 

microtome (Thermo Fisher Scientific). Sections of 4 µm thickness were transferred into 

a ddH2O water bath at RT and then mounted onto Superfrost® slides (Thermo Fischer 

Scientific). The sections were fixed by immerging the slides into a 55°C water bath and 

followed by 30 min on a 55°C hot plate. Before using them for immunohistochemistry, 

the sections were incubated at 37°C ON. 

 

2.4.2.2 3,3’-Diaminobenzidine (DAB) immunohistochemistry     

 

DAB immunohistochemistry was performed on 4 µm paraffin sections that were 

deparaffinized and rehydrated using the following protocol: 2 x 5 min xylol; 10 min 

100% EtOH; 5 min in 95% EtOH; 5 min in 70% EtOH and 1 min in ddH2O. Endogenous 

peroxidases were blocked by treating sections with 0.3% (v/v) H2O2 in 0.01 M PBS for 

30 min. Antigen retrieval was achieved by heating sections for 10 min (approx. 2 min 
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at 800 W (until boiling), approx. 8 min at 80 W) in 0.01 M citrate buffer pH 6.0 and 

cooling them down for 15 min at RT. Sections were then washed for 1 min in ddH2O, 

permeabilized for 15 min in 0.01 M PBS supplemented with  0.1% (v/v) Triton X-100 

(Roth, Karlsruhe, Germany) and washed for 1 min in 0.01 M PBS. A second antigen 

retrieval treatment (to reveal intracellular Aβ) was applied by incubating the sections 

for 3 min in 88% (v/v) formic acid (Roth, Karlsruhe, Germany). Then, two consecutive 

washing steps of 1 min and then 5 min in 0.01 M PBS were performed to remove any 

residual content of formic acid. For nonspecific antigen block, sections were circled 

with a lipid pen and a solution of 10% fetal calf serum (FCS; Thermo Fisher Scientific, 

Waltham, MA, USA) including 4% (w/v) skimmed milk powder (Roth, Karlsruhe, 

Germany)  in 0.01 M PBS was added. Sections were incubated for 1 hour at RT. Primary 

antibodies were diluted (Table 7) in 0.01 M PBS containing 10% (v/v) FCS. After 

removing the blocking solution, diluted primary antibodies were added and sections 

were incubated ON in a humid chamber at RT. 

On the second day, sections were washed for 15 min in 0.01 M PBS 

supplemented with 0.1% (v/v) Triton X-100 and then rinsed with 0.01 M PBS for 1 min. 

The corresponding biotinylated secondary antibodies were diluted (Table 8) in 0.01 M 

PBS containing 10% (v/v) FCS. Then, the sections were incubated with the secondary 

antibodies for 1 hour at 37°C. During this time, the Avidin-biotin complex (ABC) 

solution was prepared using the VECTASTAIN Elite ABC Kit (Vector Laboratories). To 

this end, solution A and B were diluted 1:100 in 0.01 M PBS supplemented with 10% 

(v/v) FCS and kept at 4°C for at least 30 min prior to use. After the one-hour incubation 

period with the secondary antibodies, sections were washed for 15 min in 0.01 M PBS 

and then incubated with the previously prepared ABC solution for 1.5 h at 37°C. The 

ABC solution was removed by a 15-min wash in 0.01 M PBS. Using DAB as a chromogen, 

the staining could be visualized. The DAB developing solution was prepared using the 

DAB Substrate Kit (Vector Laboratories) according to the instructions of the 

manufacturer. Sections were incubated with DAB solution until the desired staining 

pattern was observed (incubation time was the same for sections used for plaque load 

quantification). After development, sections were washed for 15 min in 0.01 M in PBS 

and then counterstained with a hematoxylin solution for 40 s (except for sections used 



Material and Methods 

46 
 

for plaque load quantification). Samples were dipped in ddH2O and washed under 

running tab water for 5 min. Prior to mounting, sections were dehydrated in an 

ascending series of ethanol baths as follows: 1 min in 70% (v/v) EtOH, 5 min in 95% 

(v/v) EtOH, 10 min in 100% (v/v) EtOH. Following dehydration, sections were treated 

twice for 5 min each in xylol. Finally, each section received 2-3 drops of Roti®-Histokit 

mounting medium before a microscope cover slip was placed onto the slide.   

 

2.5 IMAGING AND AΒ QUANTIFICATION ANALYSIS 
 

Extracellular and intracellular Aβ load was evaluated in the cortex (Ctx), subiculum 

(Sub), dentate gyrus (DG), thalamus (Thal) and spinal cord (SC) of transgenic mice. 

Serial images of 200X magnification from the Ctx, Sub, DG and Thal were captured on 

three sections per animal which were at least 30 µm apart from each other. Slides were 

then imaged using an Olympus BX51 microscope equipped with MoticamPro 282B 

digital camera. Illumination conditions and exposure settings were maintained stable 

throughout the analysis. Using the Image J software package (V1.41, NIH, USA), the 

pictures were binarized to 8-bit black and white images and a fixed intensity threshold 

was applied defining the DAB signal. The percentage of DAB positive area was 

calculated as the Aβ deposition load. Respectively, SC sections were analyzed as 

described but with a 400X magnification objective.   
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2.5.1 Quantification of intracellular Aβ accumulation in the motor neurons of 

the spinal cord 
In order to quantify the number of motor neurons with Aβ accumulation, paraffin 

sections of the cervical spinal cord were analyzed. The total number of positive Aβ 

motor neurons in the grey matter of the ventral horn was identified by their large size 

(nuclear diameter > 9-10 µm; cell body diameter > 20 µm). Aβ accumulation in the 

motor neurons was based on Aβ staining intensity and were then classified as follows: 

motor neurons with a) low, b) intermediate or c) high intracellular accumulation. Serial 

images of 100x magnification were captured on three sections per animal with a 

minimum of 30 µm distance from each other. For quantification, the Meander Scan 

option of the StereoInvestigator 7 software package (Microbrightfield, Williston, VT, 

USA) was used. 

 

2.6 QUANTIFICATION OF NEURON NUMBERS 
 

2.6.1 Sample preparation 

 

The previously treated left brain hemisphere was cut frontally into 10 series of 30 µm 

tick sections using a cryostat (Leica CM1850 UV, Germany). Every 10th section was 

systematically sampled and stored at -80°C until further use. One series was randomly 

selected and transferred into ice-cold 0.01 M PBS. Sections were then carefully mounted 

onto Superfrost® slides and allowed to dry overnight at RT prior staining. 

 

2.6.2 Cresyl violet staining  

 

Sections were treated as follows: 2 x 10 min in solution A, then for 20 min in solution B 

and 2 x 10 min in solution A for delipidation. Staining was performed by immerging the 

section twice for 8 min each with a cresyl violet staining solution (Fluka, St. Louis, MO, 

USA). Sections were dehydrated by treating them 3 x 1 min with solution A, followed by 

3 min in 100% (v/v) EtOH, 10 min in isopropanol and 2 x 5 min in xylol. Finally, 4-5 
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drops of Roti®-Histokit mounting medium were applied to each slide, then a 

microscope cover slip was placed onto the slide and left to dry ON before further 

analysis.   

The solutions previously mentioned were prepared as follows: 

 

Working solution A: 40 ml of 1 M sodium acetate was added to 9.6 ml of glacial acetic 

acid (Merck, Darmstadt, Germany) and completed to 1 L with ddH2O. 

Cresyl violet staining solution: 0.1 g cresyl violet was dissolved in 1 L of working 

solution A, stirred overnight, protected from light and filtered before use.  

Working solution B: 20 ml of Triton X-100 was added to 980 mL of ddH2O and stirred 

for 1 h. From this solution, 2.5 mL was diluted with 50 mL of ddH2O and 150 mL of 

100% EtOH.  

 

2.6.3 Stereological analysis 
 

Cresyl violet stained brain sections were analyzed by design-based stereology to 

quantify the neuron numbers in the CA1 region of the hippocampus. To this end, a 

stereology working station BX51 (Olympus, Shinjuku, Japan) with a motorized 

specimen stage for automatic sampling and the Stereo Investigator 7 software 

(Microbrightfield Bioscience, Williston, VT, USA) were used. In order to avoid biased 

counting, quantification was carried out by an observer blinded for the genotype of the 

mice. The stereological analysis of the project I was carried out together with Nicolai 

M.E. Giessen. 

The CA1 pyramidal cell layer was delineated at a low magnification (4x) from 

Bregma -1.22 to -3.80 mm (Franklin & G. 2012) and quantified at a high magnification 

(100x oil objective, NA = 1.35). Neuronal nuclei were sampled in a systematic random 

manner using optical dissector probes and the total number of neurons was estimated 

by the optical fractionator method using a 2 µm top guard zone (West et al. 1991). The 

optical dissector height (Z) used on every grid site was 5 µm. The section thickness was 

measured while counting and the total number of neurons (N) in the area of interest 
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was estimated according to the principle of stereology (West et al. 1991; Schmitz & Hof 

2005)(Schmitz and Hof 2005; West 2002; West et l., 1991) by the following formulas: 

 

• 𝑃 = 𝑎𝑠𝑓 ∙ 𝑠𝑠𝑓 ∙ 𝑡𝑠𝑓 

 

• 𝑁 =  ∑ (𝑃 ∙ 𝑄)𝑖𝑛
𝑖=1  

 

Where: 

𝑃 = number of neurons 

𝑎𝑠𝑓 = area sampling fraction (𝛿𝑋 ∙ 𝛿𝑌 ÷ 𝑋 ∙ 𝑌) 

𝑠𝑠𝑓 = section sampling fraction  

𝑡𝑠𝑓 = thickness sampling fraction (𝑇 𝑍⁄ ) 

𝑄 = numbers of markers counted 

The remaining stereological parameters together with their values are listed in Table 7 

Table 7. Stereological parameters used for neuron counting analysis in the CA1 

 

Parameter Value 

Sampling grid (𝜹𝑿) [µm] 50 

Sampling grid (𝜹𝒀) [µm] 150 

Sampling grid area (𝜹𝑿 ∙ 𝜹𝒀) [µm2] 5250 

Counting frame width (𝑿) [µm] 14 

Counting frame height (𝒀) [µm] 14 

Counting frame area (𝑿 ∙ 𝒀) [µm2] 196 

𝒂𝒔𝒇 26.78 

𝒔𝒔𝒇 10 

Mean section thickness (𝑻) [µm] 10.6 

Optical dissector height (𝒁) [µM] 5 
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2.7 ANTIBODIES 
 

2.7.1 Primary Antibodies 

 

Table 8. Primary antibodies for immunohistochemistry 

Antiserum Host Isotope Immunogen Working 

dilution 

Manufacturer 

24311 rabbit polyclonal Pan-Aβ 1:500 AG Bayer 

NT4X mouse monoclonal AβpE3/4-x 1:500 AG Bayer 

 

2.7.2 Secondary Antibodies 

 

Table 9. Secondary antibodies used for immunohistochemistry 

 

Antiserum Host Conjugate Working 

solution 

Manufacturer 

anti-rabbit rabbit biotinylated 1:200 Dako 

anti-mouse rabbit biotinylated 1:200 Dako 

 

2.8 BEHAVIORAL TASKS 
 

2.8.1 General considerations 
 

Behavioral phenotyping of mice was performed during the dark phase (between 8 a.m. 

and 8 p.m.) and always at the same time to exclude any effects of circadian rhythms. 

Young (2-3 months) and aged (5-6 months) WT, TBA42hem, Tg4-42hem, Tg4-42hom and 

TBA42/Tg4-42 mice were tested. Both, female and male mice were used. Due to severe 

motor deficits, the TBA42hom mice had to be sacrificed at two months of age. Therefore, 

these animals were discarded for the behavioral tasks. To minimize stress levels, only 
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one motor and one cognitive test was carried out per day. Likewise, to reduce the 

number of animals tested and due to technical limitations, some groups were 

completed with data previously generated in our lab under the same conditions.  

 

2.8.2 String suspension 

 

The string suspension test was performed to evaluate strength and motor coordination 

and was described in detail previously (Jawhar et al. 2012). It consists of a 3-mm tick 

cotton string (50 cm length) tied between two vertical wooden supports, which is 

elevated approximately 40 cm above a padded surface. Mice were placed in the middle 

of the string and permitted to grasp it with their forepaws before they were released. 

For data evaluation, a scoring system of 0 to 5 was used during a 60 second single trial, 

where: 0 = unable to stay on the string; 1 = hanging on the string only by fore- or hind 

paws; 2 = as for 1, but with attempt to climb onto string; 3 = sits on string and holds 

balance; 4 = four paws and tail around string with lateral movement; and 5 = escape to 

one of the wooden supports. During a single day of testing, three trials with an interval 

of at least 10 min between trials were given for every animal and the average score was 

used for the statistical analysis. Between trials, the string was cleaned with 70% EtOH 

to avoid odor cues left by previously tested animals. 

2.8.3 Balance beam 

 

The balance beam task was used to assess balance and fine motor coordination (Wirths 

& Bayer 2008). The apparatus comprises a 1-cm wide wooden bar (50 cm length) 

attached between two 44- cm height vertical wooden supports. At both ends of the 

wooden bar, 9 x 15 cm wooden escape platforms were installed. Each animal was given 

three 60-second trials during a single day of testing. The time each mouse remained on 

the beam was recorded and the resulting time of all three trials was averaged. If an 

animal remained on the beam for 60 seconds or escaped to one of the platforms, the 

maximum time of 60 seconds was recorded. To diminish olfactory cues, both escape 

platforms were cleaned with 70% EtOH between trials. 



Material and Methods 

52 
 

2.8.4 Inverted grip task 

 

Neuromuscular abilities, vestibular function and muscle strength, were tested with the 

inverted grip task (Wirths & Bayer 2008).The testing apparatus consisted of a wire grid 

(45 cm long and 30 cm wide with a grid spacing of 1 cm). The grid was suspended 40 

cm above a padded surface using foam supports. Every animal was positioned onto the 

center of the grid. The grid was then inverted and the latency to fall was recorded 

during a single 60 second trial. If the mouse was able to stay on the grid for the entire 

trial or escaped over the edge of the grid, the maximum time of 60 seconds was 

recorded. Prior to every trial, the grid was cleaned with 70% EtOH to decrease odor 

cues. 

 

2.8.5 Elevated plus maze 

 

The elevated plus maze test was used to assess anxiety-related behavior (Jawhar et al. 

2012). The apparatus consisted of four arms arranged in a “+” configuration and raised 

75 cm above a padded surface. Two of the arms were open (15 x 5 cm) and situated 

180° apart from each other and perpendicular to two closed arms (15 x 5 x 15 cm) with 

a central region (5 x 5 cm). The 15-cm height walls of the closed arms were made of a 

transparent plastic material. Before every trial, the apparatus was cleaned with 70% 

EtOH to reduce olfactory cues. Then, the animal was placed in the 25 cm2 central 

platform of the maze facing one of the open arms and allowed to freely explore the maze 

for a single 5 min trial. The distance travelled and the time spent in the open arms was 

measured using the ANY-Maze automatic video tracking software (Stoelting Co., Wood 

Dale, IL, USA). The elevated plus maze test is based on the tendency of mice to explore 

novel environments and the aversion to explore open and elevated spaces (Karl et al. 

2003; Komada et al. 2008; Campos et al. 2013). Therefore, the time spent in the open 

arms was used as an indicator of anxiety-like behavior. 
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2.8.6 Cross Maze 

 

In order to examine the working memory, the spontaneous alternation rate cross maze 

test was used (Jawhar et al. 2012). The entire maze was made of a black plastic material. 

It consisted of four cross-shaped arms, in which each arm was 30 cm long, 8 cm wide, 

15 cm high with a 90° angle extending from a center square platform (8 x 8 cm). Each 

animal was randomly positioned at the end of one of the arms facing the wall. Then, it 

was let free to explore for a single trial with a duration of 10 min. The distance travelled 

and the sequence of the arm entries were recorded using the ANY-Maze automatic 

video tracking software (Stoelting Co., Wood Dale, IL, USA). Alternation was defined as 

successive entries into the four arms in overlapping quadruple sets (Arendash et al. 

2001). The alternation percentage was then calculated as the total of actual alternations 

made to the potential number of arms entries. Between trials, the apparatus was 

cleaned of urine and feces with 70% EtOH.        

 

2.8.7 Morris Water Maze 

 

The Morris Water Maze (MWM) was used to evaluate spatial reference memory(Morris 

1984). The MWM comprised a 110-cm diameter pool filled with opacified water (by 

adding a non-toxic white paint) which was kept at 20-22°C during the entire 

experiment. The pool was divided into four virtual symmetrical quadrants that were 

defined based on their spatial relationship to the escape platform: left (L), right (R), 

opposite (O) and target (T) quadrant, which contained the goal platform. The MWM 

comprised a 9-day protocol divided into three stages: cued training, acquisition training 

and probe trial.  

The test began with the three-day cued training. During this stage, a cylindrical 

platform (15 cm in diameter) marked with a triangular flag was submerged and 

positioned into one of the quadrants. The mouse was then introduced into the water at 

the edge of the pool facing the wall. It was given 60 sec to locate the platform. The trial 

ended once the animal found the platform and remained on it for 1-2 sec. When a mouse 

was not able to find the platform, it was gently guided to it. Every mouse was allowed 
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to stay on it for 10 sec and received four training trials per day. Between trials, the 

platform was moved to a different quadrant and the mouse was introduced from a 

different location. Animals that showed a significant decrease in the escape latencies 

were included for the further analyses. 

The acquisition training began 24 h after the last day of the cued training. For 

this phase, the triangular flag was removed from the platform and proximal visual cues 

(attached to the north, south, east and west edges of the pool) were added. The platform 

remained hidden in the target quadrant during the 5-day acquisition training. Mice 

were released into the pool from different entry points and allowed to swim for 60 sec. 

Trials were automatically stopped once the mice located the hidden platform within the 

given time. Like in the cued training, animals were given four trials per day. 

Twenty-four hours after the last day of the acquisition training stage, the probe 

trial was carried out to evaluate the spatial reference memory. To this end, the platform 

was removed from the pool and mice were enabled to swim freely for 60 sec. The 

percentage of time spent in the target quadrant was recorded and compared to the time 

spent in the other three quadrants.      

The ANY-Maze automatic video tracking software (Stoelting Co., Wood Dale, IL, 

USA) connected to a digital camera (Computar, Commack, NY, USA) attached to the 

ceiling was used to record escape latency, swimming speed and quadrant preference.  

 

 

2.9 STATISTICAL ANALYSIS 
 

Differences between groups were tested with one-way analysis of variance (ANOVA) 

followed by Tukey’s multiple comparison test, two-way repeated measures (RM) 

ANOVA followed by Tukey’s multiple comparison test or unpaired t-test. All data were 

given as means ± standard error of the mean (SEM). Significance levels were given as 

follows: ***p<0.001; **p<0.01; *p<0.05. All calculations were performed using 

GraphPad Prism version 7 for Windows (Graph Pad Software, San Diego, USA). 
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3 RESULTS 

3.1 PROJECT I: STUDIES OF THE COMBINED EFFECT OF AΒPE3-42 AND AΒ4-42 ON 

ONGOING ALZHEIMER’S DISEASE PATHOLOGY USING THE TBA42/TG4-42 

BIGENIC MOUSE MODEL 
 

The aim of the present study was to investigate the direct in vivo effect of the 

combination of AβpE3-42 and Aβ4-42 on AD pathology. To this end, the established TBA42 

and Tg4-42 mouse models, expressing AβpE3-42 and Aβ4-42, respectively, were crossed. 

The resulting TBA42/Tg4-42 bigenic mice were then phenotypically characterized in 

detail. Additionally, WT, TBA42hem, TBA42hom, Tg4-42hem and Tg4-42hom mice were 

analyzed for comparison purposes. The animals were divided in groups of young (2-3 

months) and aged (5-6 months) mice. The results of sections 3.1.1, 3.1.2.4, 3.1.3, 3.1.4 

and 3.1.5 have been already published in Lopez-Noguerola et al., 2018.  

 

3.1.1 Abundant intraneuronal Aβ accumulation in the CA1 region of the 

hippocampus in TBA42/Tg4-42 bigenic mice 

 

Abundant intraneuronal Aβ accumulation in the CA1 region of the hippocampus in the 

TBA42 and Tg4-42 models has been previously reported by our group (Wittnam et al. 

2012; Bouter et al. 2013). Therefore, in order to evaluate the effect of the co-expression 

of AβpE3-42 and Aβ4-42 on Aβ accumulation in the CA1 area, brain sections were 

immunostained using the pan-Aβ antibody 24311. Intraneuronal Aβ accumulation in 

the CA1 pyramidal layer of the hippocampus was already detected in all the young 

single transgenic and bigenic mice analyzed (Fig.10 A-E). Particularly, in the young 

TBA42/Tg4-42 mice prominent intraneuronal Aβ immunoreactivity was observed in 

the CA1 pyramidal neurons (Fig. 10 E’ arrows), which was accompanied by small 

extracellular granules (Fig. 10E’ arrowheads). Conversely, Aβ immunoreactivity in the 

CA1 region declined with age in all the groups analyzed (Fig. 11 A-D). Besides the 

hippocampus, Aβ deposition was found in the cortex, inferior colliculus, cerebellum and  
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brainstem of TBA42/Tg4-42 mice (data not shown). Furthermore, it is worth 

mentioning that regardless of age and genotype, no neuritic amyloid plaques were 

found in any of the groups analyzed.  

Fig 10. Strong intraneuronal Aβ accumulation in the CA1 pyramidal cell layer of the hippocampus 
in TBA42/Tg4-42 mice. Immunohistochemistry using a pan-Aβ antibody (24311) showed Aβ 
accumulation already in young (3-month-old) mice of all genotypes tested (A-E). Particularly, prominent 
intraneuronal Aβ accumulation was observed in young TBA42hom mice (B), which was even more 
pronounced in TBA42/Tg4-42 mice (E). (E’) Represents a magnification of (E) demonstrating 
intraneuronal Aβ (arrows) and small extracellular Aβ aggregates (arrowheads). Scale bars, A-E = 100 µm 
and E’ = 50 µm (Taken from Lopez-Noguerola et al., 2018). 
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Fig 11. Aβ immunoreactivity in aged TBA42hem, Tg4-42hem, Tg4-42hom and TBA42/Tg4-42 mice. 

Reduced immunoreactivity in the CA1 region using a pan-Aβ antibody (24311) was observed in all the 

aged (5-6 months) mice examined (A-D). Scale bar = 100µm. 

 

3.1.2 Behavioral characterization of TBA42/Tg4-42 mice 

3.1.2.1 Reduced anxiety levels in TBA42/Tg4-42 mice 

 

In order to study if the anxiety behavior of mice is altered when AβpE-42 and Aβ4-42 are 

combined, the elevated plus maze test was employed. Young TBA42/Tg4-42 mice 

(mean = 26.44, SEM ± 1.28 %) revealed reduced anxiety levels compared to age-

matched WT (One-way ANOVA, mean = 12.22, SEM ± 1.58 %, p = 0.0017) and Tg4-42hem 

(One-way ANOVA, mean =p = 0.0157) mice, as seen by a higher percentage of time spent 

in the open arms (Fig. 12A). No change in the anxiety-like behavior was found in young 

TBA42hem (mean = 17.08, SEM ± 2.27 %), Tg4-42hem (mean = 14.32, SEM ± 1.94 %) and 

Tg4-42hom mice (mean = 20.15, SEM ± 2.02 %). The anxiety levels were even further 

TBA42hem Tg4-42hem

TBA42/Tg4-42Tg4-42hom
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decreased in aged bigenic mice (mean = 53.13, SEM ± 16.82 %) when compared to age-

matched WT (One-way ANOVA, mean = 5.76, SEM ± 1.06 %, p < 0.0001), TBA42hem 

(One-way ANOVA, mean = 22.98, SEM ± 4.95 %, p = 0.0122), Tg4-42hem (One-way 

ANOVA, mean = 9.41, SEM ± 1.86 %, p = 0.0005) and Tg4-42hom animals (One-way 

ANOVA, mean = 15.38, SEM ± 5.26 %, p = 0.0029) (Fig. 12A). In addition to the time 

spent in the open arms, the distance travelled during the entire test was used as an 

index of general activity during the testing period. No significant differences in the 

distance travelled could be detected in all the young (One-way ANOVA, p = 0.4401) and 

aged (One-way ANOVA, p = 0.2310) mice tested (Fig. 12B). 

 

Fig 12. Reduced anxiety levels in TBA42/Tg4-42 mice. Reduced anxiety-like behavior could be 
observed already in young TBA42/Tg4-42 mice as reflected by a significantly greater amount of time 
spent in the open arms when compared to WT and Tg4-42hem mice. Anxiety levels were further decreased 
in an age-dependent manner in TBA42/Tg4-42 mice compared to age-matched WT, TBA42hem, Tg4-42hem 
and Tg4-42hom mice (A). No difference in the distance travelled between analyzed groups in the young or 
aged mice could be detected (B). One-way ANOVA followed by Tukey’s multiple comparison test. All data 
were given as means ± SEM *p<0.05; **p<0.01; ***p<0.001; n = 4-12 (Taken from Lopez-Noguerola et al., 
2018) 

 

3.1.2.2 Intact working memory in TBA42/Tg4-42 mice 

 

In order to evaluate the spatial working memory of TBA42/Tg4-42 bigenic mice, the 

cross maze alternation task was used. Young and aged WT, TBA42hem, Tg4-42hem, Tg4-

42hom and TBA42/Tg4-42 mice were analyzed. Independent of age and genotype, the 

results revealed no differences in the alternation rate nor the distance travelled in all 

animals tested (Fig. 13A, B). 

A B

0

2 0

4 0

6 0

8 0

1 0 0 * * *

* * *
*

* *

* *
*

W T

T B A 42
hem

T g 4 -4 2
hem

T g 4 -4 2
hom

T B A 4 2 /T g 4 -4 2

Y o u n g A g e d

T
im

e
 i

n
 O

p
e

n
 A

r
m

s
 [

%
]

0

2

4

6

8

Y o u n g A g e d

D
is

ta
n

c
e

 T
r
a

v
e

ll
e

d
 [

m
]



Results 

59 
 

Fig 13. No working memory deficits in TBA42/Tg4-42 mice. No differences in alternation rate (A) in 
young and aged TBA42/Tg4-42 bigenic mice were detected. Likewise, no differences in distance travelled 
could be detected (B). One-way ANOVA followed by Tukey’s multiple comparison test. The dotted line 
represents the chance level. All data were given as means ± SEM. n = 4-12 per group.  

 

 

3.1.2.3 No spatial reference memory deficits in TBA42/Tg4-42 mice 

 

The Morris water maze test was used to examine spatial reference memory 

performance in TBA42/Tg4-42, TBA42, Tg4-42hem, Tg4-42hom and wild-type mice. Each 

animal was subjected to a nine-day protocol, starting with a three-day cued training 

followed by a five-day acquisition training and a final one-day probe trial. 

The three days of the cued training phase serve to familiarize the animals with the pool 

and to avoid misinterpretation of results due to potential sensory and/or motor 

deficits. All young mice showed progressively decreased escape latencies in the cued 

training (Fig. 14 A; two-way repeated measures (RM) ANOVA; main effect of days: p < 

0.0001). The swimming speed did not differ between the groups analyzed (Fig. 14B; 

Two-way RM ANOVA; main effect of genotype: p = 0.64). Nevertheless, due to severe 

motor deficits observed in the aged TBA42/Tg4-42 mice, these animals failed to reach 

the criteria to continue the task. Therefore, they were discarded and only young mice 

were used for the subsequent acquisition training and probe trial. 
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Fig 14. No deficiencies in eyesight and motor abilities were detected in young TBA42/Tg4-42 
mice. Cued training was conducted to familiarize the mice with the pool and to exclude effects due to 
sensory and/or motor deficits. Young wild-type, TBA42hem, Tg4-42hem, Tg4-42hom and TB42/Tg4-42 mice 
were evaluated. (A) All groups tested showed progressively shorter escape latencies in response to 
training. (B) Swimming speed did not differ between the groups. (A, B) Two-way repeated measures 
ANOVA. All data were given as means ± SEM. n = 5-8 per group. 

 

In the five-day acquisition training phase, spatial learning of mice was evaluated 

by testing their ability to find the location of a hidden platform using proximal and distal 

cues. All groups tested displayed a significant decrease in escape latencies over the 

entire duration of the acquisition training (Fig. 15A, two-way RM ANOVA; main effect 

of days: p < 0.0001). No significant differences in the swimming speed could be found 

between the animals tested (Fig. 15B; two-way RM ANOVA; main effect of genotype: p 

= 0.13). 

Finally, a probe trial was performed one day after the last acquisition training 

trail in order to evaluate spatial reference memory. To this end, the platform was 

removed and mice were allowed to swim in the pool for 60 seconds. Wild-type, single- 

and double-transgenic mice exhibited a clear preference for the target quadrant, as 

shown by the percentage time spent in the different quadrants of the pool (Fig.16 A). 

Swimming speeds were comparable among the groups analyzed in the probe trial (Fig. 

16B). 
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Fig 15. No spatial learning impairment in young TBA42/Tg4-42 mice. Acquisition training was 
performed to evaluate spatial learning. (A) Animals tested revealed progressively decreased escape 
latencies over the five-day training. (B) Comparable swimming speeds were observed between the 
groups analyzed. (A, B) Two-way repeated measures ANOVA. All data were given as means ± SEM. n = 5-
8 per group. 

 

 

Fig 16. No spatial reference memory deficits in young TBA42/Tg4-42 mice. The probe trial was used 
to evaluate spatial reference memory. (A) Young wild-type, TBA42, Tg4-42hem, Tg4-42hom and 
TBA42/Tg4-42 mice were examined. All groups tested spent a significantly greater percentage of time in 
the target quadrant. (B) No significant differences were observed in the swimming speed during the 
probe trial. (A, B): One-way ANOVA followed by Tukey’s multiple comparisons test. All data were given 
as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; n = 5-8 per group. T = target, L = left, R = right and O 
= opposite. 
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3.1.2.4 Co-expression of AβpE3-42 and Aβ4-42 aggravates motor function in an age-

dependent manner 
 

In order to evaluate whether the co-expression of AβpE3-42 and Aβ4-42 has an impact on 

the sensory-motor abilities of TBA42/Tg4-42 mice, the string suspension, balance 

beam and inverted grip tasks were performed.  

The string suspension task evaluates motor strength and coordination by 

measuring the ability of mice to remain on a string (Moran et al. 1995). In this task, no 

significant differences in the scores could be detected in the young TBA42/Tg4-42 mice, 

as these animals performed similarly to age-matched WT, TBA42hem, Tg4-42hem and 

Tg4-42hom mice (Fig. 17A). Yet, in the aged groups, TBA42/Tg4-42 (mean = 0.33, SEM ± 

0.19) mice exhibited a poorer performance compared to same-aged WT (One-way 

ANOVA, mean = 4.66, SEM ± 0.22, p < 0.0001), Tg4-42hem (One-way ANOVA, mean = 

4.09, SEM ± 0.42, p < 0.0001) and Tg4-42hom mice (One-way ANOVA, mean = 3.52, SEM 

± 0.66, p = 0.0003).  Aged TBA42hem (mean = 1.33, SEM ± 0.44) also performed poorly 

compared to age-matched WT (One-way ANOVA, p < 0.0001), Tg4-42hem (One-way 

ANOVA, p = 0.0004) and Tg4-42hom mice (One-way ANOVA, p = 0.0061). No significant 

difference could be observed between aged TBA42hem and aged TBA42/Tg4-42 mice in 

this task.  

The balance beam task was used to assess balance and fine motor coordination 

(Arendash et al. 2001). No motor impairment in this task was detected in any of the 

young mice analyzed, including the TBA42/Tg4-42 mice (Fig. 17B). In contrast, aged 

TBA42/Tg4-42 (mean = 1, SEM ± 0.14 s) mice performed worse than age-matched WT 

(One-way, mean =52.5, SEM ± 3.10 s, p < 0.0001), TBA42hem (One-way ANOVA, mean = 

27.5, SEM ± 5.35 s, p < 0.0039), Tg4-42hem (One-way ANOVA, mean = 60, SEM ± 0.0016, 

p < 0.0001) and Tg4-42hom mice (One-way ANOVA, mean = 35.33, SEM ± 8.57 s, p = 

0.0007). Motor deficits were also observed in aged TBA42hem mice when compared to 

age-matched WT (One-way ANOVA, p = 0.0023) and Tg4-42hem animals (One-way 

ANOVA, p = 0.0006). In addition, aged Tg4-42hom performed poorer than aged Tg4-

42hem (One-way ANOVA, p = 0.0311).  
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Finally, motor abilities, vestibular function and muscle strength, were tested 

with the inverted grip task by analyzing the latency to fall (Erbel-Sieler et al. 2004) (Fig. 

17C). As observed in the other tasks, regardless of genotype, no motor deficits could be 

detected in the young groups analyzed. Nevertheless, aged TBA42/Tg4-42 mice (mean 

= 9.14) demonstrated strong motor deficits shown by shorter latencies to fall compared 

to same-aged WT (One-way ANOVA, mean = 60, SEM ± 0 s, p<0.0001), TBA42hem (One-

way ANOVA, mean = 34.75, SEM ± 7.98 s, p = 0.0083), Tg4-42hem (One-way ANOVA, 

mean = 58.29, SEM ± 1.71 s, p < 0.0001) and Tg4-42hom mice (One-way ANOVA, mean = 

60, SEM ± 0 s, p < 0.0001). Likewise, aged TBA42hem performed worse than WT (One-

way ANOVA, p = 0.0032) and Tg4-42hem animals (One-way ANOVA, p = 0.0179). 
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Fig. 17. Severe motor deficits in TBA42/Tg4-42 mice. The string suspension (A), the balance beam 
(B) and the inverted grid task (C) revealed severe motor deficits in aged TBA42/Tg4-42 mice. No 
significant difference could be observed between aged TBA42hem and TBA42/Tg4-42 mice in the string 
suspension task. One-way ANOVA followed by Tukey’s multiple comparison test. All data were given as 
means ± SEM *p<0.05; **p<0.01; ***p<0.001; n = 5-12 per group (Taken from Lopez-Noguerola et al., 
2018) 
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3.1.3 Co-expression of AβpE3-42 and Aβ4-42 accelerates neuron loss in the 

hippocampus of transgenic mice  
 

In order to analyze the impact of the co-expression of AβpE3-42 and Aβ4-42 on the neuron 

numbers of the CA1 pyramidal layer of the hippocampus, unbiased designed-based 

stereological studies were conducted as previously described.  

 

Figure 18. Accelerated neuron loss in the hippocampal CA1 pyramidal cell layer of TBA42/Tg4-
42 bigenic mice. Design-based stereological analysis revealed a significant reduction in the CA1 neuron 
numbers of young TBA42/Tg4-42 mice when compared to the rest of the age-matched groups (A). Like 
for the CA1 neuron numbers, significant reduction in the CA1 volume of young TBA42/Tg4-42 mice was 
found when compared to same-aged WT, TBA42hem, TBA42hom, Tg4-42hem and Tg4-42hom mice (B). Aged 
TBA42/Tg4-42 mice showed higher neuron loss when compared to the rest of the age-matched groups 
(C). Significantly lower CA1 volume could be observed in aged TBA42/Tg4-42 mice compared to the rest 
of the age-matched groups with exception of the Tg4-42hom mice (D). One-way ANOVA followed by 
Tukey’s multiple comparison test. TBA42/Tg4-42 vs Tg4-42hom : One-way ANOVA followed by un-paired 
t-test (In A, B and C). All data were given as means ± SEM *p<0.05; **p<0.01; ***p<0.001; n = 3-6 per 
group (Taken from Lopez-Noguerola et al., 2018) 
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The neurons of the CA1 pyramidal layer were quantified in young (2-3 months 

of age) and aged (5-6 months of age) mice. Stereological analysis revealed a highly 

significant neuron loss (36%) in young TBA42/Tg4-42 mice (Fig. 18A, One-way ANOVA, 

mean = 170,845, SEM ± 5,744, p<0.001) compared to age-matched WT mice (mean = 

266,076, SEM ± 8,723). In young TBA42hem (mean = 240,353, SEM ± 7,517), TBA42hom 

(mean = 222,841, SEM ± 11,182) and Tg4-42hem (mean = 262,277, SEM ± 12,423) mice, 

no significant neuron loss could be detected when compared to young WT mice, while 

Tg4-42hom (mean = 203,664, SEM ± 9,155) mice showed a significant neuron loss when 

compared to Tg4-42hem (One-way ANOVA, p = 0.0016) and WT animals (One-way 

ANOVA, p = 0.0008). Furthermore, young TBA42/Tg4-42 mice exhibited reduced CA1 

neuron numbers compared to TBA42hem (One-way ANOVA, p = 0.0002), TBA42hom 

(One-way ANOVA, p = 0.0192), Tg4-42hem (One-way ANOVA, p < 0.0001) and Tg4-42hom 

mice (t-test, p = 0.0161).  

No significant difference in the neuron numbers could be found between aged 

WT (mean = 253,803, SEM ± 20,581), TBA42hem (mean = 204,432, SEM ± 4,023) and 

aged Tg4-42hem mice (mean = 203,092, SEM ± 15,743) (Fig. 18C). However, aged 

TBA42/Tg4-42 mice (mean = 131,339, SEM ± 5,131) revealed reduced neuron numbers 

compared to aged WT (One-way ANOVA, p < 0.0001), TBA42hem (One-way ANOVA, p = 

0.0047) and aged Tg4-42hem mice (One-way ANOVA, p = 0.0177). Significant reduction 

in CA1 neuron numbers between aged TBA42/Tg4-42 and aged Tg4-42hom (mean = 

159,779, SEM ± 7,882) could be detected after a student’s t-test (p = 0.0165).  

A quantitative analysis of the CA1 volume was additionally performed in the 

young and aged mice. Significant CA1 volume reduction was found in the young 

TBA42/Tg4-42 (mean = 1.87 x 108, SEM ± 9.33 x 106 µm3) mice in comparison to age-

matched WT controls (One-way ANOVA, mean = 2.701 x 108, SEM ± 1.37 x 107 µm3, p = 

0.0044) (Fig. 18B). Moreover, young TBA42/Tg4-42 mice revealed a reduced CA1 

volume compared to young TBA42hem (One-way ANOVA, mean = 2.91 x 108, SEM ± 9.4 

x 106, p = 0.0003) and young Tg4-42hem animals (One-way ANOVA, mean = 3.15 x 108, 

SEM ± 2.40 x 107, p < 0.0001). Additionally, young Tg4-42hom showed a significantly 

lower CA1 volume compared to age-matched TBA42hem (One-way ANOVA, p = 0.0003) 

and Tg4-42hem mice (One-way ANOVA, p = 0.0016). Only after an unpaired t-test, 
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significant differences in the CA1 volume between the young TBA42/Tg4-42 and young 

TBA42hom (t-test, p = 0.0178) and between young TBA42/Tg4-42 and young Tg4-42hom 

(t-test, p = 0.0109) animals could be detected. At 6 months of age, a higher decrease in 

CA1 volume (~48%) in TBA42/Tg4-42 mice (mean = 1.89 x 108, SEM ± 5.98 x 106 µm3) 

was observed compared to age-matched WT (One-way ANOVA, mean = 2.64 x 108, SEM 

± 1.49 x 107 µm3, p = 0.0008) and Tg4-42hem mice (One-way ANOVA, mean = 2.65 x 108, 

SEM ± 9.77 x 106 µm3) (Fig. 18D). At this age, Tg4-42hom (mean = 1.98 x 108, SEM ± 1.47 

x 107 µm3) mice also showed significant reduction in CA1 volume compared to age-

matched WT (One-way ANOVA, p = 0.0026) and Tg4-42hem (One-way ANOVA, p = 

0.0123) mice, while no differences could be detected when compared to aged 

TBA42/Tg4-42 mice. 

 

3.1.4 Amyloid pathology in the spinal cord of TBA42/Tg4-42 mice 

 

AβpE3-42 and Aβ4-42 are expressed under the control of the neuron-specific murine Thy-

1 promoter, which is active in both hippocampus and spinal cord. Thus, in order to 

study the Aβ staining profile in the spinal cord of TBA42/Tg4-42 mice, 

immunohistochemical staining of spinal cord sections using a pan-Aβ antibody were 

performed. The immunostainings revealed intraneuronal and small extracellular Aβ 

aggregates already in the young mice without regard for the genotype (Fig. 19 A-E). 

However, the extracellular Aβ aggregates and intraneuronal Aβ accumulation looked 

more prominent in young TBA42hom and TBA42/Tg4-42 mice (Fig.19 B, E). Moreover, 

with ageing (Fig. 19 F-I), the amyloid spinal cord pathology was specifically increased 

in the TBA42/Tg4-42 mice (Fig. 19 I).  

A further quantitative analysis of the spinal cord area covered by Aβ staining 

revealed a significant greater abundance in young TBA42hom (mean = 2.49, SEM ± 0.37 

%) when compared to age-matched TBA42hem (One-way ANOVA, mean = 0.14, SEM ± 

0.03 %, p < 0.0001), Tg4-42hem (One-way ANOVA, mean = 0.11, SEM ± 0.04 %, p < 

0.0001), Tg4-42hom (One-way ANOVA, mean = 0.18, SEM ± 0.03 %, p < 0.0001) and 

TBA42/Tg4-42 (One-way ANOVA, mean = 1.02, SEM ± 0.19 %, p < 0.0001) mice (Fig. 19 
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J). Additionally, young TBA42/Tg4-42 mice exhibited an increased amyloid pathology 

when compared to young TBA42hem (One-way ANOVA, p = 0.0019), Tg4-42hem (One-

way ANOVA, p = 0.0014) and Tg4-42hom (One-way ANOVA, p = 0.0029) mice. The same 

held true for aged TBA42/Tg4-42 mice (mean = 1.53, SEM ± 0.39 %), where amyloid 

pathology was increased in comparison to age-matched TBA42hem (One-way ANOVA, 

mean = 0.25, SEM ± 0.05 %, p 0.0019), Tg4-42hem (One-way ANOVA, mean = 0.03, SEM 

± 0.01 %, p = 0.0004) and Tg4-42hom (One-way ANOVA, mean = 0.32, SEM ± 0.04 %, p = 

0.003) mice. Weak Aβ immunoreactivity was detected in the spinal cord of TBA42hem, 

Tg4-42hem and Tg4-42hom at all time points analyzed. 
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Fig. 19. Extra- and intraneuronal Aβ deposition in the spinal cord of transgenic mice. 
Immunohistochemical staining using the pan-Aβ 24311 antibody revealed extracellular Aβ aggregates 
and intraneuronal Aβ accumulation in the motor neurons (arrows) of the spinal cord starting already at 
2-3 months of age (young mice) (A-E), which increased in aged mice (5-6 months) (F-I). Quantification 
of the percentage of Aβ positive area showed a high Aβ positive area already in young TBA42hom and 
TBA42/Tg4-42 bigenic mice, which increased in aged TBA42/Tg4-42 mice (J). Similarly, the total number 
of Aβ-positive motor neurons was significantly higher in young TBA42hom and TBA42/Tg4-42 mice when 
compared to the rest of the analyzed groups. A higher number of Aβ-positive motor neurons was also 
observed in aged bigenic animals (K). One-way ANOVA followed by Bonferroni’s post hoc test. All data 
were given as means ± SEM *p<0.05 **p<0.01; ***p<0.001; n = 3-5 per group; scale bar = 50µm (Taken 
from Lopez-Noguerola et al., 2018). 
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3.1.5 High Aβ accumulation in the motor neurons of TBA42/Tg4-42 mice 

 

In order to investigate whether the motor deficits seen in the TBA42/Tg4-42 mice 

correlated with the spinal cord pathology observed in these animals, a quantification of 

Aβ positive motor neurons was conducted (Fig. 19 K). The results revealed higher 

numbers in young TBA42/Tg4-42 mice (mean = 8.16, SEM ± 0.31) when compared to 

age-matched TBA42hem (One-way ANOVA, mean = 1.4, SEM ± 0.24, p < 0.0001), Tg4-

42hem (One-way ANOVA, mean = 0, SEM ± 0, p < 0.0001) and Tg4-42hom (One-way 

ANOVA, mean = 3.63, SEM ± 0.40, p < 0.0001) mice. Similarly, young TBA42hom mice 

displayed higher numbers when compared to same aged TBA42hem (One-way ANOVA, 

p < 0.0001), Tg4-42hem (One-way ANOVA, p < 0.0001) and Tg4-42hom mice (One-way 

ANOVA, p < 0.0001) (Fig. 19 K). Young Tg4-42hom mice exhibited higher numbers of Aβ 

immunopositive motor neurons than TBA42hem (One-way ANOVA, p = 0.0006) and Tg4-

42hem mice (One-way ANOVA, p < 0.0001). No significant differences could be detected 

in the total number of Aβ positive motor neurons between young TBA42hom and 

TBA42/Tg4-42 mice. In aged animals, significant difference could be found only in 

TBA42/Tg4-42 mice (mean = 5.96, SEM ± 0.86) when compared to age-matched 

TBA42hem (One-way ANOVA, mean = 2.2, SEM ± 0.30, p = 0.0021), Tg4-42hem (One-way 

ANOVA, mean =0.46, SEM ± 0.24, p < 0.0001) and Tg4-42hom mice (One-way ANOVA, 

mean = 2.13, SEM ± 0.73, p = 0.001). Furthermore, a comprehensive and quantitative 

analysis of the total number of motor neurons with low, intermediate and high 

intracellular Aβ accumulation was performed in young and aged mice (Fig. 20). In 

young animals (Fig. 20 C), the results revealed a higher number of motor neurons with 

low Aβ accumulation in TBA42/Tg4-42 mice (mean = 3.2, SEM ± 0.33) in comparison 

to same-aged TBA42hem (One-way ANOVA, mean = 0.93, SEM ± 0.12, p = 0.0002), 

TBA42hom (One-way ANOVA, mean = 1, SEM ± 0.34, p = 0.001) and Tg4-42hem animals 

(One-way ANOVA, mean = 0, SEM ± 0, p < 0.0001). Likewise, young Tg4-42hom mice 

exhibited greater numbers than same aged TBA42hem (One-way ANOVA, p = 0.0009) 

TBA42hom (One-way ANOVA, p = 0.0048) and Tg4-42hem mice (One-way, ANOVA, p < 

0.0001), while no significant differences were found between young Tg4-42hom and 

TBA42/Tg4-42 mice. Intermediate accumulation was similar in the young TBA42hom 
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(mean = 3.88, SEM ± 0.76) and TBA42/Tg4-42 (mean = 3.66, SEM ± 0.69) groups, 

whereas TBA42hem (mean = 0.46, SEM ± 0.2), Tg4-42hem (mean = 0.06, SEM ± 0.06) and 

Tg4-42hom mice (mean = 0.63, SEM ± 0.03) showed significantly lower overall motor 

neuron numbers. High intracellular Aβ accumulation was only found in the motor 

neurons of TBA42hom mice (mean = 2.66, SEM ± 0.63) (Fig.6C). In the aged mice (Fig. 20 

D), no differences in the total number of motor neuron with low Aβ accumulation were 

found among the all the groups analyzed. Nevertheless, increased numbers of motor 

neurons with intermediate and high intracellular Aβ levels were found only in the 

TBA42/Tg4-42 mice (Fig. 20D).  

 

Fig 20. Quantification of motor neurons with varying levels of intracellular Aβ accumulation. (A) 
Schematic picture of the cervical region of the spinal cord showing the dorsal horn (DH) and the ventral 
horn (VH). (B) Three different Aβ intraneuronal accumulation levels could be found in the motor neurons 
located in VH and were defined as: low, intermediate and high. In young animals (C), quantification of 
motor neurons with low Aβ accumulation revealed a high number in the Tg4-42hom and TBA42/Tg4-42 
mice. Intermediate accumulation was similar in young TBA42hom and TBA42/Tg4-42 bigenic mice. 
Moreover, motor neurons with high accumulation were only found in TBA42hom mice. In aged mice (D), 
no significant difference in the number of motor neurons with low Aβ accumulation could be detected 
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among the groups. However, motor neuron numbers with intermediate and high Aβ levels were higher 
in the aged TBA42/Tg4-42 mice when compared with the rest of the groups. One-way ANOVA followed 
by Tukey’s multiple comparison test. All data were given as means ± SEM *p<0.05; **p<0.01; ***p<0.001; 
n = 3-5 per group (Taken from Lopez-Noguerola et al., 2018). 

3.1.6 Aggregation kinetics of the combination of AβpE3-42 and Aβ4-42 

 

In order to assess whether the combination of AβpE3-42 and Aβ4-42 has an effect on their 

aggregation properties in vitro, the aggregation profiles of AβpE3-42, Aβ4-42 and an 

equimolar mixture of both peptides (50 µM final concentration) were monitored by 

Thioflavin-T (ThT) fluorescence under physiological conditions at pH 7.0 and 37°C.  

Under the applied conditions, an initial raise in ThT-fluorescence was observed 

in the AβpE3-42, Aβ4-42 and equimolar mixture (Fig. 21), indicating an early rapid 

acceleration in the formation of intermediate assemblies, which may include oligomers 

and protofibrils. Interestingly, fibril formation seemed to be enhanced in the equimolar 

mixture of AβpE3-42 and Aβ4-42 compared to the peptides alone, as seen by the higher 

peaks in the equimolar mixture between the 0 and 1000 minutes. After this time, the 

maximum peaks were similar for the equimolar mixture and AβpE3-42 with lower peaks 

corresponding to the Aβ4-42 peptide. 

 

Fig 21. Aggregation kinetics of AβpE3-42, Aβ4-42 and an equimolar mixture of both peptides were 
monitored by Thioflavin T fluorescence.  AβpE3-42 and Aβ4-42 displayed a similar accelerated initial fibril 
formation phase, which was enhanced when both peptides were combined. Each condition was 
measured in triplicates. 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0

5

1 0

1 5

2 0

50 M A  4 -4 250 M A  p E 3 -42

25 M A  p E 3 -42 +  2 5 M A  4 -4 2

T im e  (m in )

fl
u

o
r
e

s
c

e
n

c
e

 f
o

ld
 c

h
a

n
g

e

o
v

e
r
 b

a
c

k
g

r
o

u
n

d



Results 

73 
 

3.2 PROJECT II: EXPLORING THE IN VIVO ASSOCIATION BETWEEN Aβ PLAQUES AND 

SOLUBLE Aβ AGGREGATES USING THE FAD4-42 MOUSE MODEL 
 

It has been suggested that soluble Aβ oligomers, and not fibrillar Aβ, are the main 

neurologically toxic Aβ species during the progression of AD. Additionally, it has been 

proposed that amyloid plaques may act as reservoirs for the more toxic soluble Aβ 

oligomeric forms and thus protect neuronal structures from their toxicity (Haass & 

Selkoe 2007; Brody et al. 2017). Therefore, the aim of the present study was to study 

the association of amyloid plaques and soluble Aβ oligomers. To achieve this, we 

crossed the well-studied 5XFAD mouse model with Tg4-42 transgenic mice to produce 

a novel FAD4-42 mouse model. 5XFAD mice develop extracellular amyloid deposits 

beginning at 2 months of age, which increase in an age-dependent fashion and spread 

to different brain areas (Oakley et al. 2006). The Tg4-42 model produces and liberates 

soluble toxic Aβ4-42 oligomers that induce neuronal death in the CA1 pyramidal layer of 

the hippocampus in an age-dependent manner. Moreover, Tg4-42 mice do not develop 

extracellular amyloid plaques (Bouter et al. 2013). Hence, the effects on amyloid 

pathology and neuron loss were examined in the FAD4-42 transgenic animals.  

 

3.2.1 Analysis of amyloid pathology in 5XFAD and FAD4-42 mice 

 

In order to evaluate the impact of additional Aβ4-42 expression on total Aβ deposition, 

plaque load was measured in the cortex, subiculum, dentate gyrus and thalamus of 3- 

and 12-month-old 5XFAD and FAD4-42 mice using the 24311 pan-Aβ antibody and the 

NTX-167 antibody binding to AβpE3-x and Aβ4-x. 
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Fig. 22. Quantification of total Aβ plaque load in 5XFAD and FAD4-42 mice. (A) At 3 months of age, 
FAD4-42 showed significant higher levels of plaques reacting with the 24311 pan-Aβ antibody in the 
cortex, subiculum and thalamus. For the dentate gyrus a trend towards a higher plaque load deposition 
was detected, however, it did not reach statistical significance. (B) In the 12-month-old groups, no 
significant differences could be observed in the different brain regions analyzed. Abbreviations: Ctx = 
cortex, Sub = subiculum, DG = dentate gyrus and Tha = thalamus. Unpaired t-test; *p < 0.05. n = 5-6 per 
group. 

 

At 3 months of age, a significant increase in plaque load in FAD4-42 mice using 

the 24311 antibody could be detected in the cortex (+123%; unpaired t-test; p = 0.01), 

subiculum (+71%; unpaired t-test; p = 0.02) and thalamus when compared to age-

matched 5XFAD mice (+88%; unpaired t-test; p = 0.003) (Fig. 22A). Even though a trend 

towards higher plaque load could also be observed in the dentate gyrus of FAD4-42 

mice, it did not reach a significant difference. Twelve-month-old mice did not show 

differences in the plaque load in any of the brain regions analyzed (Fig. 22 B).  

Total AβpE3-x and Aβ4-x plaque area was significantly increased in the cortex 

(+236%; unpaired t-test; p = 0.001), subiculum (+189%; unpaired t-test; p = 0.002), 

dentate gyrus (+200%; unpaired t-test; p = 0.01) and thalamus (+290%; unpaired t-

test; p = 0.0003) of three-month-old FAD4-42 mice (Fig. 23A) when compared to 5XFAD 

animals. However, no significant differences could be detected between old 5XFAD and 

FAD4-42 mice (Fig. 23B). 

 

A B

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

P
la

q
u

e
 L

o
a

d
 [

%
 o

f 
5

X
F

A
D

 g
r
o

u
p

]

C tx S u b D G T h a

* * *

3  m o n th s

5 X F A D F A D 4 -4 2

0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

P
la

q
u

e
 L

o
a

d
 [

%
 o

f 
5

X
F

A
D

 g
r
o

u
p

]

C tx D GS u b T h a

1 2  m o n th s



Results 

75 
 

Fig. 23. Quantification of Aβ pE3-x and Aβ4-x-positive plaque load in 5XFAD and FAD4-42 mice. (A) 
At 3 months of age, FAD4-42 showed significant higher levels of plaques reacting with the antibody 
NTX4X-167 recognizing Aβ pE3-x and Aβ4-x in the cortex, subiculum, dentate gyrus and thalamus. (B) At 12 
months of age, no significant differences could be observed in the different brain regions analyzed. 
Abbreviations: Ctx = cortex, Sub = subiculum, DG = dentate gyrus and Tha = thalamus. Unpaired t-test; *p 
< 0.05; **p < 0.01; ***p < 0.001. n = 5-6 per group. 

 

3.2.2 No neuron loss in the CA1 region of FAD4-42 mice 
 

To assess whether amyloid plaques may elicit an effect on neurotoxic Aβ4-42 soluble 

oligomers, unbiased designed-based stereological studies were conducted. The 

neurons of the CA1 pyramidal layer were quantified in 3- and 12-month-old WT, 

5XFAD, Tg4-42 and FAD4-42 mice.  

At three months of age, no differences in the CA1 neuron numbers could be 

detected between wild-type (mean = 264,386, SEM ± 9,978), 5XFAD (mean = 286,242, 

SEM ± 9,052), Tg4-42 (mean = 278,630, SEM ± 16,547) and FAD4-42 mice (mean = 

262,938, SEM ± 14197) (Fig. 24A). Similarly, no difference in the CA1 volume could be 

assessed in any of the groups analyzed (Fig. 24B). At twelve months of age, a significant 

decrease in neuron numbers was observed in Tg4-42 mice (One-way ANOVA, mean = 

201,614, SEM ± 10,646, p = 0.0063) compared to age-matched wild type mice (mean = 

267,801, SEM ± 17,297) (Fig. 24C). Moreover, no neuron loss was observed in 5XFAD 

(mean = 235,233, SEM ± 11,548) mice compared to age-matched WT controls, which 

corroborates previous studies reporting no neuron loss in the CA1 region in 12-month-
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old 5XFAD mice (Jawhar et al. 2012). Curiously, no reduction in the number of neurons 

was detected in the CA1 area of FAD4-42 mice (mean = 222,643, SEM ± 9,489) when 

compared to same-aged WT animals. Furthermore, stereological analysis of the CA1 

volume revealed a significant volume reduction in 12-month-old Tg4-42 mice (mean = 

2.2 x 108, SEM ± 1 x 107) when compared to same-aged WT (mean = 2.8 x 108, SEM ± 

9.2 x 106, One-way ANOVA, p = 0.003) and FAD4-42 mice (mean = 2.7 x 108, SEM ± 8.5 

x 107, One-way ANOVA, p = 0.02) (Fig. 24D), whereas no differences in the CA1 volume 

could be determined in the FAD4-42 and 5XFAD mice when compared to WT controls. 
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Fig 24. No neuron loss in the CA1 pyramidal cell layer of the hippocampus in 12-month-old FAD4-
42 mice. (A) Design-based stereological analysis revealed no differences in the CA1 neuron numbers at 
3 months of age in any of the groups analyzed. (B) Likewise, no reduction in the CA1 volume could be 
detected. (C) At 12 months of age, neuron loss was observed only in Tg4-42 mice when compared to age-
matched WT controls. (D) A reduction in CA1 volume was detected in Tg4-42 mice compared to WT and 
FAD4-42 mice. One-way ANOVA followed by Tukey’s multiple comparison test. All data were given as 
means ± SEM *p < 0.05; **p<0.01; m = months; n = 4-7 per group. 
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4 DISCUSSION 

 

4.1 PROJECT I: STUDIES OF THE COMBINED EFFECT OF AβpE3-42 AND Aβ4-42 ON 

ONGOING ALZHEIMER’S DISEASE PATHOLOGY USING THE TBA42/TG4-42 

BIGENIC MOUSE MODEL 
 

Several studies have reported that N-truncated Aβ peptides account for the majority of 

Aβ species in AD brains (Masters et al. 1985; Sergeant et al. 2003; Portelius et al. 2010; 

Wildburger et al. 2017). Additionally, it has been shown that the Aβ4-42 and AβpE3-42 

peptides represent the most prominent Aβ variants of these N-terminally ragged 

peptides(Masters et al. 1985; Näslund et al. 1994; Saido et al. 1995; Portelius et al. 2010; 

Moore et al. 2012; Rijal Upadhaya et al. 2014). Hence, attempts to unravel the 

pathogenic properties of these two N-truncated species have been carried out in the 

last years. In vitro studies from our lab and others have demonstrated that AβpE3-42 and 

Aβ4-42 peptides exhibit a high aggregation propensity, thus, enhancing the formation of 

soluble oligomers and fibrillar aggregates(Pike et al. 1995b; Bouter et al. 2013). 

Additionally, Russo et al. demonstrated that AβpE3-40/42 species are more cytotoxic than 

full length Aβ (Russo et al. 2002). Likewise, we have corroborated these findings and 

also showed that Aβ4-42 is as toxic as AβpE3-42 and Aβ1-42 in vitro (Antonios et al. 2013). 

In order to study the direct in vivo toxicity of AβpE3-42 and Aβ4-42, transgenic mouse 

models expressing uniquely these two N-truncated Aβ peptides have been created. The 

TBA42 mouse model has been utilized to study the toxic effect of AβpE3-42 as this mouse 

line expresses Aβ starting with an N-terminal glutamine residue at position 3, to 

enhance the spontaneous and enzymatic conversion of Aβ3-42 into AβpE3-42 (Wittnam et 

al. 2012). The TBA42 model develops intraneuronal accumulation of Aβ in the 

pyramidal neurons of the CA1 region followed by a significant neuron loss as well as 

alterations in behavioral and motor functions, which increase in an age-dependent 

manner (Wittnam et al. 2012; Meissner et al. 2015). On the other hand, the Tg4-42 

mouse model, previously created in our lab, exclusively generates Aβ4-42 without any 
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mutations. Phenotypical characterization of this mouse model revealed that Tg4-42 

mice exhibit an early accumulation of intraneuronal Aβ in the hippocampus, which 

coincides with a robust age-dependent pyramidal neuron loss observed in the CA1 

region (Bouter et al. 2013). Besides, age-related behavioral impairments were detected 

in these mice. Altogether, it has been proven that AβpE3-42 and Aβ4-42, when individually 

expressed, can elicit detrimental effects in transgenic mice.  

Therefore, based on the evidence that AβpE3-42 and Aβ4-42 are highly present in AD brains 

and have similar toxic and aggregation properties, the aim of the present study was to 

elucidate the pathological and behavioral impact of the expression of both AβpE3-42 and 

Aβ4-42 by crossing TBA42 and Tg4-42 mice to create the TBA42/Tg4-42 mouse model. 

 

4.1.1 Prominent intraneuronal Aβ accumulation in the CA1 pyramidal layer of 

TBA42/Tg4-42 mice 
 

Traditionally, Aβ has been viewed as mainly causing extracellular amyloid pathology in 

AD brains, however, increasing evidence in the past decades suggests that Aβ can be 

deposited intracellularly which may have a critical role in AD pathogenesis (LaFerla et 

al. 2007; Bayer & Wirths 2010; Gouras et al. 2010). First reports of intraneuronal Aβ 

come from studies of Grundke-Iqbal and colleagues back in 1989. Using monoclonal 

anti-Aβ antibodies, they reported on intraneuronal Aβ deposits in neurons from the 

cerebral and cerebellar cortices as well as in motor neurons of the spinal cord. 

Strikingly, the authors found strong Aβ immunoreactivity in granular and pyramidal 

neurons of the hippocampus. Additionally, utilizing anti-tau or anti-PHF antibodies, 

they showed that tangles were less frequent in those neurons than Aβ (Grundke-Iqbal 

et al. 1989). In the following years, several studies have extended these findings. Gouras 

and colleagues have shown that in human AD brains, intracellular accumulation of Aβ 

occurs in areas prone of developing early AD pathology. Such regions include the 

pyramidal neurons of the hippocampus and the entorhinal cortex. Moreover, 

intraneuronal Aβ accumulation tended to decrease with increasing cognitive 

impairment and extracellular Aβ deposition (Gouras et al. 2000). Additionally, it has 

been shown that the accumulation of Aβ within neurons may precede the appearance 
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of NFTs (Gouras et al. 2000; Fernandez-Vizarra et al. 2004). Therefore, it has been 

suggested that intraneuronal Aβ accumulation might be an early event in AD 

pathogenesis (Wirths et al. 2004). 

In the present study, using a pan-Aβ antibody, prominent intraneuronal Aβ 

immunoreactivity was particularly observed in the CA1 pyramidal layer of the 

hippocampus in the newly created TBA42/Tg4-42 model beginning with 2-3 months of 

age, followed by a less pronounced staining in the TBA42hom and Tg4-42hom mice, 

respectively (Lopez-Noguerola et al. 2018). To a minor extend, intraneuronal Aβ could 

also be observed in TBA42hem and Tg4-42hem mice. The region-specific intraneuronal 

Aβ accumulation in the TBA42, Tg4-42 and TBA42/Tg4-42 models coincides with the 

transgene expression pattern driven by the murine Thy-1 promoter (Caroni 1997). 

However, Aβ immunoreactivity in the CA1 region declined with age in all groups 

analyzed. Furthermore, without regard of genotype and age, no extracellular amyloid 

plaque formation could be observed (Lopez-Noguerola et al. 2018). The progressive 

decline in Aβ immunoreactivity might be a consequence of the neurotoxic effect caused 

by the high expression of AβpE3-42 and Aβ4-42 in this brain region due to the Thy-1 

promoter. In line with these observations, studies from patients with AD and DS suggest 

that intraneuronal Aβ is more abundant at early stages of the disease, yet, as the disease 

progresses, less intraneuronal Aβ and more extracellular Aβ can be observed (Gouras 

et al. 2000; Gyure et al. 2001; Mori et al. 2002). This inverse correlation might be a 

consequence of cell lysis which has been proven to occur in Aβ-burned neurons. Once 

the content is released, it might serve as a relevant source for amyloid plaque formation 

(D’Andrea et al. 2001). However, it cannot be ruled out that besides the intraneuronal 

production of Aβ, re-uptake from the extracellular space might contribute to 

intracellular Aβ accumulation. It has been shown that Aβ internalization can occur in a 

neuron-specific manner, particularly in regions susceptible to AD as reported by Bahr 

et al. They demonstrated that after Aβ1-42 was exogenously applied into rat organotypic 

hippocampal slice cultures, progressive Aβ1-42 accumulation was prominently detected 

in the CA1 field, while other regions such as the CA3 and the DG remained almost intact 

(Bahr et al. 1998). In addition, this selective internalization led to an enhanced 

production of amyloidogenic precursor material and a decrease of synaptic markers 
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(Bahr et al. 1998). More recently, studies combining laser capture microdissection and 

sensitive Aβ ELISA showed elevated levels of Aβ1-42 and an increase in the Aβ1-42/Aβ1-40 

ratio in CA1 pyramidal and Purkinje neurons of both sporadic and familial AD patients 

compared to controls. Yet, the levels of Aβ1-40 remain unchanged between AD cases and 

controls, suggesting that high intraneuronal concentration of Aβ42 correlates with 

increase susceptibility to AD pathology (Aoki et al. 2008; Hashimoto et al. 2010).  

 

4.1.2 Accelerated neuron loss in the TBA42/Tg4-42 mouse model 

 

Besides extracellular amyloid plaques and NFTs, neuron loss and brain atrophy are 

additional neuropathological hallmarks of AD. However, modeling neuronal loss in 

transgenic AD mouse models has been less successful in comparison with the vast 

number of transgenic mice producing Aβ deposits and tau pathology (Bayer & Wirths 

2010). The first successful attempt showing prominent neurodegeneration in the 

hippocampus came from the APP23 mouse model, which harbors the APP Swedish 

mutation. This model develops significant CA1 neuron loss which is inversely 

correlated with the amount of extracellular Aβ deposits in the CA1 region (Calhoun et 

al. 1998). More recently, neuronal death in the APP/PS1KI mouse model could be 

detected at the age of 6 months with a 33% reduction of CA1 pyramidal neurons 

compared to PS1KI littermates (Breyhan et al. 2009). Next to the hippocampus, other 

brain regions with decreased neuronal numbers in the APP/PS1KI model were the 

frontal cortex (Christensen et al. 2008) and various cholinergic brain stem nuclei 

(Christensen et al. 2010). However, it is worth to mention that neuron loss was only 

detected in brain areas where intraneuronal Aβ accumulation occurred. Similarly, 

detailed unbiased stereological quantification in the 5XFAD mouse model revealed a 

reduced number of cortical layer 5 neurons, a region with robust intracellular Aβ 

accumulation. In contrast, no neuron loss could be detected in the CA1 region, which 

correlated with the absence of intraneuronal Aβ deposits (Jawhar et al. 2012). 

Moreover, studies from our lab using mass spectrometric analysis have demonstrated 

that 5XFAD mice show a heterogeneous population of Aβ species. In addition to the full-



Discussion 

82 
 

length Aβ1-42 and Aβ1-40 peptides, Aβ4-42 and AβpE3-42 are present in high amounts 

(Wittnam et al. 2012). This data parallels observations made in the APP/PS1KI mouse 

model, where an age-dependent accumulation of N-truncated Aβ species was found, 

being AβpE3-42 one of the most abundant variants (Wirths & Bayer 2010). Hence, the 

pathological events leading to the observed neuron loss in the APP/PS1KI and the 

5XFAD model could be partially triggered by the presence of N-terminally truncated 

Aβx-42 peptides. In line with these observations, it has been shown that AβpE3-42 and Aβ4-

42, respectively, are able to induce strong neurotoxic effects in vivo, as reported in 

mouse models expressing uniquely one of the aforementioned N-truncated 

peptides(Wirths et al. 2009; Alexandru et al. 2011; Wittnam et al. 2012; Bouter et al. 

2013; Meissner et al. 2015). Therefore, given that AβpE3-42 and Aβ4-42 are major Aβ 

species in AD brains and their neurotoxic properties in vivo have been demonstrated, it 

seems plausible to study their neurotoxic effect when combined. In the current work, 

unbiased stereological analyses of the CA1 subfield of the hippocampus suggest that co-

expression of AβpE3-42 and Aβ4-42 enhances their neurotoxicity, as seen by the 

accelerated neuronal death in the TBA42/Tg4-42 mice already at young ages when 

compared to age-matched WT mice (Lopez-Noguerola et al. 2018). A gene-dosage effect 

could be possible, as seen by the significant reduction in neuron numbers of the 

TBA42/Tg4-42 mice in comparison with the TBA42hem and Tg4-42hem mice. Therefore, 

in order to corroborate whether the neurotoxic effect observed was merely due to the 

higher amount of genes expressing toxic Aβ species or actually due to the combination 

of the two peptides, the TBA42/Tg4-42 bigenic mice were compared with TBA42hom 

and Tg4-42hom single transgenic mice. The results revealed a higher neuron loss in the 

bigenic than in the single transgenic homozygous mice, corroborating the increased 

neurotoxicity of a combined expression of AβpE3-42 and Aβ4-42. In addition to the neuron 

loss, a reduction in the CA1 volume was also observed in young TBA42/Tg4-42 mice 

when compared to age-matched TBA42hom and Tg4-42hom mice (Lopez-Noguerola et al. 

2018). Neuron loss and hippocampal atrophy continued in the TBA42/Tg4-42 mice as 

they aged, however, only to a minor extend. Taken together, it can be assumed that 

AβpE3-42 and Aβ4-42, when expressed together, display enhanced neurotoxic properties. 
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Nevertheless, the underlying cellular and molecular mechanisms leading to neuronal 

death remain to be elucidated.  

4.1.3 Reduced anxiety levels in TBA42/Tg4-42 mice 

 

Besides cognitive symptoms, AD patients can also suffer from behavioral and 

psychological symptoms like dysphoria, social withdrawal and depression. However, 

disinhibited behavior has also been reported in AD subjects and is often accompanied 

by socially unacceptable behaviors and inappropriate euphoria (Frisoni et al. 1999; 

Chung & Cummings 2000; Hart et al. 2003). Moreover, it has been reported that anxiety 

has a high occurrence in patients with dementia (Ferretti et al. 2001). 

The most common behavioral assay to investigate anxiety levels in rodents is the 

elevated plus maze (EPM). This task relies on the natural tendency of mice to avoid 

open spaces; thus, a healthy WT control mouse will tend to spend more time exploring 

the enclosed arms than the anxiogenic area represented by the open arms (Walf & Frye 

2007). Interestingly, as observed in the AD patients, hypo- and hyper-anxious behavior 

has been reported in several AD mouse models. For instance, reduced anxiety levels 

have been described in the Tg2576, APP/PS1KI, 5XFAD and TBA42 models, just to cite 

a few (Lalonde et al. 2003; Cotel et al. 2012; Jawhar et al. 2012; Meissner et al. 2015). 

On the contrary, increased anxiety levels have been reported in the 3xTg (Pietropaolo 

et al. 2008)(Pietropaolo, 2009), APPSwe/PS1A246E (Puolivali et al. 2002) and APPSwe 

models (Savonenko et al. 2003).   

In the present study, a reduction of anxiety levels in the TBA42/Tg4-42 bigenic 

mice was demonstrated by a higher time spent in the open arms of the EPM in 

comparison with their WT and Tg4-42hem littermates starting from an early age (three 

months). Anxiety levels decreased even more in aged TBA42/Tg4-42 compared to the 

rest of the groups analyzed (Lopez-Noguerola et al. 2018). Alterations in the 

connectivity between the amygdala, septum and hippocampus have been related with 

changes in the anxiety behavior (Lalonde et al. 2012). Evidence suggests that within the 

hippocampus, the anxiety-related behaviors are more associated with the ventral 

region (Bannerman et al. 2004; McHugh et al. 2004). However, several studies also 
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indicate that the dorsal hippocampus may be able to modulate anxiety levels (Andrews 

et al. 1994; Dos Santos et al. 2008; Freeman-Daniels et al. 2011). Taking this into 

account, the hypo-anxious phenotype observed in the TBA42/Tg4-42 mice might be a 

consequence of the massive pyramidal neuron loss observed in the CA1 region. 

However, a possible altered function in other circuitries of the limbic system including 

the septum and amygdala should not be ruled out (Lalonde et al. 2012). Hence, future 

studies comprising these cerebral areas in the TBA42/Tg4-42 mice are recommended.  

 

4.1.4 No working and spatial reference memory deficits in TBA42/Tg4-42 mice 

 

Besides long-term memory impairment, a wide range of studies have demonstrated 

that working memory is severely affected in AD. Working memory in rodents can be 

defined as the short-term memory for a location, stimulus or an object which is used 

within a test session, but typically not between different sessions (Dudchenko 2004). 

The tests commonly used to asses working memory in mice are based on the 

natural tendency of mice to explore novel environments. Such tasks include the T-maze, 

Y-maze or cross maze. The spontaneous alternation rate between the different arms in 

these aforementioned tasks is used to measure short-term memory as well as 

exploratory behavior and has been shown to be very sensitive to impairments of the 

hippocampus. However, other brain structures besides the hippocampus might also be 

involved in these tasks (Lalonde 2002; Deacon & Rawlins 2006). 

Age-related reduction in alternation rates has been reported in several 

transgenic AD animals including the Tg2576, 3xTg, 5XFAD and APP/PS1KI 

models(Hsiao et al. 1996; Holcomb et al. 1998; Carroll et al. 2007; Wirths et al. 2008; 

Jawhar et al. 2012). However, other studies have reported mixed results in some of 

these transgenic AD mice (King et al. 1999; Liu et al. 2002b). 

Despite the high neuron loss observed in the hippocampus of TBA42/Tg4-42 

mice, no significant differences in the spontaneous alternation rates could be detected 

at any age analyzed. Similarly, other transgenic mouse models including the 

APP/PS1(Arendash et al. 2001), APP23 (Lalonde 2002) and PD-APP (Karl et al. 2012) 
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did not show changes in working memory. Importantly, it has to be noted that 

discrepancies among the different studies may be partially explained due to differences 

in the transgene promoter and thus transgene expression patterns and levels in the 

brain, genetic background, age and sex of the animals used and/or variants in the 

paradigms used (e.g. number of arms). Moreover, besides the hippocampus, 

exploratory behavior of novel environmental stimuli also depends on the integrity of 

other brain areas such as the basal forebrain, thalamus, prefrontal cortex, dorsal 

striatum as well as the vestibular system and cerebellum (Lalonde 2002). 

The Morris water maze (MWM) test (Morris 1984) is one of the most widely 

used paradigms to study age- and hippocampal-dependent memory deficits in rodents, 

hence, it represents an adequate task to assess cognitive impairment in AD mouse 

models (Duyckaerts et al. 2008). In this task, spatial learning as well as spatial memory 

can be examined. To this end, animals must learn to locate and swim towards a hidden 

platform in a circular water tank by using proximal and/or distal visual cues. Moreover, 

this task has demonstrated to have a high sensitivity for hippocampal lesions (Moser et 

al. 1995). 

In the present study, no impairment in the spatial learning could be detected in 

the young TBA42/Tg4-42 mice, as they performed similarly to age-matched WT 

controls and single transgenic mice. Likewise, no spatial reference memory deficits 

were reported in the young bigenic animals. Unfortunately, due to the severe sensory-

motor deficits found in the TBA42/Tg4-42 at 6 months of age, these mice could not be 

used in the MWM. Some studies have determined the relationship between 

hippocampal lesion size and acquisition of a spatial memory. Moser et al. reported that 

even only ~26% of the entire hippocampus can support learning in the MWM (Moser 

et al. 1995). Moreover, Broadbent and colleagues showed that spatial memory started 

to be impaired after bilateral dorsal hippocampal lesion comprising 30 to 50 % of the 

total volume (Broadbent et al. 2004). This might partially explain why even though the 

young TBA42/Tg4-42 showed a significant reduction in the CA1 neuron numbers 

(~36%) and total volume (~30%), they were still able to perform normally in the 

MWM. Furthermore, it has been shown that other brain areas such as the cerebral 
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cortex, striatum, basal forebrain and even the cerebellum might be involved in MWM 

performance (D’Hooge & De Deyn 2001). 

 

 

4.1.5 Age-dependent motor deficits accompanied by aggravated amyloid 

pathology in the spinal cord of TBA42/Tg4-42 mice 

 

Besides the typical neurobehavioral and neuropsychiatric symptoms observed in AD 

patients (Chung & Cummings 2000), motor impairments including rigidity and 

disturbances in gait or posture have also been repeatedly reported (O’Keeffe et al. 1996; 

Kluger et al. 1997; Scarmeas et al. 2004; Pettersson et al. 2005). Likewise, longitudinal 

studies have shown that motor slowing and gait disturbances are commonly present in 

patients with MCI and it has been suggested that the severity of motor impairment may 

help to distinguish those with a high risk to develop AD later on (Aggarwal et al. 2006; 

Schmidt et al. 2010).This suggests that motor impairment is an important aspect of 

cognitive decline in AD.  

The string suspension, the balance beam and the inverted grid tasks, revealed 

age-dependent sensory-motor deficits in the TBA42/Tg4-42 model at the age of 5-6 

months, compared to same-aged TBA42hem, Tg4-42hem and Tg4-42hom mice. These 

results suggest that the observed motor deficits in the TBA42/Tg4-42 mice are more 

aggravated due the presence of both AβpE3-42 and Aβ4-42 peptides. However, motor 

deficits were also observed in aged TBA42hem mice, suggesting that the presence of 

AβpE3-42 seems to be relevant for the observed phenotype. No motor deficits were 

detected in the hemi- and homozygous Tg4-42 mice regardless of age (Lopez-

Noguerola et al. 2018). These observations are in line with other studies also showing 

motor dysfunction in AD mouse models only expressing AβpE3-42 such as the TBA42, 

TBA2 and TBA2.1hom mice (Wirths et al. 2009; Alexandru et al. 2011; Wittnam et al. 

2012; Meissner et al. 2015). Motor disturbances have also been reported in AD mouse 

models carrying APP and/or PS1 mutations like the Tg2576, 5XFAD, APP/PS1KI and 

APP23 mice (Lalonde et al. 2003; Wirths & Bayer 2008; Seo et al. 2010; Jawhar et al. 

2012) among others. Moreover, the sensory-motor deficits seen in the TBA42/Tg4-42 
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bigenic mice nicely correlate with the significant extra- and intraneuronal Aβ 

deposition observed in the spinal cord of these animals. Yet, significant amyloid 

pathology was also found in young TBA42hom mice, suggesting that AβpE3−42 might co-

aggregate with Aβ4−42. Interestingly, high extra- and intracellular accumulation was 

more pronounced in the aged bigenic mice compared to rest of the aged single 

transgenic mice, as reflected by the higher amount of motor neurons with high levels of 

intracellular Aβ (Lopez-Noguerola et al. 2018). This suggests that higher Aβ amounts in 

the spinal cord correlate better with the severity of the motor phenotype. Indeed, it has 

been shown that the occurrence of amyloid pathology in the spinal cord coincides with 

the motor deficits in the 5XFAD (Jawhar et al. 2012) and APP/PS1KI mice (Wirths et al. 

2007; Wirths & Bayer 2008). Additionally, it has been also suggested that alterations in 

the axonal transport might be the cause of the motor impairments in the 

aforementioned mice, as shown by axonopathy which includes spheroids and swollen 

axons in the spinal cord (Wirths et al. 2007, 2008; Jawhar et al. 2012). Furthermore, 

Seo and colleagues reported that the motor function deficits found in the Tg2576 model 

might be the consequence of motor neuron loss, since histological analyses showed a 

severe reduction in the spinal motor neuron numbers (Seo et al. 2010). In contrast, very 

recent observations from Yuan and coworkers using TgCRND8 mice revealed that the 

motor deficits found in these mice are independent of axonopathy and motor neuron 

loss (Yuan et al. 2017). 

Taking all together, the severe motor deficits detected in the TBA42/Tg4-42 

model might be attributed to the high accumulation of Aβ in the motor neurons derived 

from the presence of both AβpE3-42 and Aβ4-42 in the spinal cord. However, given that 

motor function involves the coordination of other brains regions such as the motor 

cortex, basal ganglia and cerebellum (Lalonde & Strazielle 2007), additional studies 

involving these brain structures are advisable. 

 

4.1.6 The combination of AβpE3-42 and Aβ4-42 affects their aggregation kinetics  

Previous in vitro studies from our lab have demonstrated that AβpE3-42 and Aβ4-42 

peptides are rapidly converted into soluble toxic oligomers and ThT-reactive fibrillar 
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aggregates (Bouter et al. 2013). Moreover, it was shown that this proclivity to develop 

aggregates is more prominent than in N-terminally intact Aβ1-42 peptides (Bouter et al. 

2013). Hence, to test whether the combination of AβpE3-42 and Aβ4-42 has an effect on 

their biochemical properties, the aggregation kinetics of both peptides were analyzed 

by a ThT-binding assay. The results revealed that the combination of AβpE3-42 and Aβ4-

42 seems to enhance their aggregation propensity, as observed by the accelerated 

aggregate formation. Interestingly, the mixture of both peptides displayed a faster 

initial aggregation compared to the peptides alone. The lack of an initial lag phase under 

the applied conditions suggests the formation of seeding material, which is known to 

enhance fibril elongation. In good agreement with these findings, Nussbaum et al. 

reported that small amounts of AβpE3−42 co-oligomerized with excess of full-length 

Aβ1−42 in vitro, thus potentiating the toxicity of Aβ1−42 by inducing the formation of toxic 

mixed oligomers (Nussbaum et al. 2012). Additionally, they showed that AβpE3−42 

induced tau-dependent neuronal death and template-induced misfolding of Aβ1−42 into 

structurally distinct low-molecular weight oligomers that propagated by a prion-like 

mechanism (Nussbaum et al. 2012). More recently, Dammers and coworkers elucidated 

the co-aggregation mechanism of AβpE3−42 with Aβ1−42. They found that AβpE3−42 

monomers increased the primary nucleation of Aβ1−42 and that AβpE3−42 fibrils are 

efficient templates for Aβ1−42 elongation. Interestingly, fibrils of Aβ1−42 prevented 

AβpE3−42 aggregation (Dammers et al. 2017). Thus, it is tempting to speculate that a 

similar mechanism of co-aggregation between AβpE3−42 and Aβ4−42 may partially explain 

the observed phenotype in TBA42/Tg4-42 mice co-expressing the two N-truncated 

peptides. Additional studies involving the interaction of Aβ4−42 with other Aβ isoforms 

would allow us to better understand the impact of this peptide in AD. 
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4.1.7 Conclusions of Project I 

 

Based on the results of the present study: 

• Co-expression of AβpE3-42 and Aβ4-42 induces prominent intraneuronal Aβ 

accumulation in the CA1 pyramidal region of the hippocampus in young 

TBA42/Tg4-42 mice compared to age-matched TBA42hom and Tg4-42hom 

mice. 

• AβpE3-42 and Aβ4-42 have a synergistic effect on neurodegeneration as observed 

by the accelerated neuron loss in the CA1 pyramidal layer of young 

TBA42/Tg4-42 in comparison to single transgenic mice producing either 

AβpE3-42 or Aβ4-42. 

• Under physiological conditions, when AβpE3-42 and Aβ4-42 are combined, their 

aggregation propensity seems to be enhanced.  

• No working memory deficits could be detected in young nor aged 

TBA42/Tg4-42 mice. 

• No spatial reference memory impairment was observed in young 

TBA42/Tg4-42 mice. 

• Loss of anxiety is increased in an age-dependent manner in TBA42/Tg4-42 

mice. 

• Sensory-motor deficits in the TBA42/Tg4-42 mice strongly correlate with the 

strong spinal cord pathology, as demonstrated by abundant intracellular Aβ 

accumulation within motor neurons and extracellular Aβ deposition. 
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4.2 PROJECT II: EXPLORING THE IN VIVO ASSOCIATION BETWEEN Aβ PLAQUES AND 

SOLUBLE Aβ AGGREGATES USING THE FAD4-42 MOUSE MODEL 
 

One of the pathological hallmarks of AD is the cerebral aggregation and deposition of 

Aβ in the form of amyloid plaques. However, the presence of Aβ plaques has also been 

found in cognitively normal elderly subjects (Katzman et al. 1988; Hulette et al. 1998; 

Price & Morris 1999; Aizenstein et al. 2008). This observation has raised the question 

of whether fibrillar Aβ plaques really play a pivotal role in the pathogenesis of AD. 

Moreover, several studies have demonstrated the presence of soluble Aβ oligomeric 

forms in post mortem tissue from AD patients (Kuo et al. 1996; Roher et al. 1996; 

Shankar et al. 2008; Tomic et al. 2009). Additionally, accumulated evidence from AD 

brains suggests that the levels of soluble Aβ oligomers correlate better with the risk and 

severity of the disease than insoluble amyloid plaques (McLean et al. 1999; Wang et al. 

1999; Mc Donald et al. 2010; Esparza et al. 2013). Therefore, it has been proposed that 

rather than insoluble fibrillar Aβ, soluble Aβ oligomers may be the crucial players in AD 

etiology.  

The association of soluble Aβ oligomers and fibrillar plaques have been studied 

in detail by several groups. For instance, in two independent experiments, Shankar and 

colleagues extracted soluble Aβ oligomers and insoluble amyloid cores from the 

temporal and frontal cortices of AD brains (Shankar et al. 2008). In the first experiment, 

the extracted Aβ oligomers inhibited long-term potentiation (LTP), enhanced long-term 

depression (LTD), reduced spine density and impaired the memory learning behavior 

in normal rats. Interestingly, in the second experiment, the insoluble amyloid plaques 

isolated from the same AD brain cortices did not impair LTP, however, once they were 

solubilized, the amyloid plaques released Aβ dimers that did so (Shankar et al. 2008). 

In line with this, using array tomography, Koffie et al. examined synaptic loss as a 

function of distance from amyloid plaques in APP transgenic mice and human AD 

brains. They found that synaptic density progressively decreased near plaques but 

raised towards normal at distances further than 50 µm (Koffie et al. 2009, 2012). Taken 

together, these and other studies suggest that the insoluble and relatively inactive 

amyloid plaques might serve as a reservoir of the soluble ‘toxic Aβ oligomers’, but once 
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the reservoir is saturated, the excess oligomers can diffuse and bind other targets, 

resulting in local neurotoxicity, which might trigger inflammatory responses and 

ultimately result in neuronal death (Haass & Selkoe 2007; Benilova et al. 2012; Selkoe 

& Hardy 2016; Brody et al. 2017). 

The current study aimed to explore the in vivo association of soluble Aβ 

oligomers and insoluble amyloid plaques. For this purpose, we crossed the two well-

characterized AD models 5XFAD and Tg4-42 in order to create the novel FAD4-42 line. 

The 5XFAD model develops extracellular amyloid deposition beginning at 2 months of 

age which increases in an age-dependent fashion and spreads to different brain areas 

(Oakley et al. 2006). Tg4-42 mice produce and liberate soluble toxic Aβ4-42 oligomers 

that induce neuronal death in the CA1 pyramidal layer of the hippocampus in an age-

dependent manner. Moreover, these mice do not develop extracellular amyloid plaques 

(Bouter et al. 2013). Hence, the effects on amyloid plaque deposition and neuron loss 

were examined in the FAD4-42 transgenic animals, which are characterized by both 

amyloid plaque deposition and Aβ oligomer generation, at young (3 months) and old 

(12 months) ages.   

 

4.2.1 Amyloid-beta deposition in young and old FAD4-42 mice 

 

In order to assess whether additional soluble Aβ4-42 production may influence the Aβ 

deposition profile in 3- and 12-month-old FAD4-42 mice, quantification of extracellular 

Aβ plaque load was performed using the 24311 and NT4X-167antibodies against total 

Aβ and AβpE3/4-x, respectively. At 3 months of age, total Aβ plaque load levels in the 

cortex, subiculum and thalamus were significantly increased in FAD4-42 compared to 

5XFAD mice. The total Aβ plaque load in the dentate gyrus of FAD4-42 mice showed a 

trend towards higher plaque burden, however, it did not reach statistical significance. 

Furthermore, AβpE-3/4-x plaque load was significantly higher in the FAD4-42 mice in all 

regions analyzed. On the other hand, analysis of the total Aβ and AβpE/4-x plaque burden 

in 12-month-old 5XFAD and FAD4-42 mice did not show significant differences in any 

of the brain regions studied. Taking these results together, the high elevation of total 
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Aβ and Aβp3/4-x positive plaques observed at 3 months of age in FAD4-42 mice coincides 

with the strong intraneuronal Aβ4-42 immunoreactivity observed in the Tg4-42 model 

beginning at 2 months of age(Bouter et al. 2013). Therefore, it can be hypothesized that 

the Aβ4-42 produced by the expression of the Tg4-42 transgene might diffuse and bind 

to newly formed amyloid plaques and probably even accelerates their formation at 

young ages. However, at 12 months of age, this effect is not seen anymore, probably due 

to a plaque saturation effect. In fact, it has been previously reported that amyloid plaque 

deposition in the 5XFAD mice starts ~2 months of age and increases rapidly, reaching 

plateau levels around 10-14 months of age, depending on the sex of the mice (Oakley et 

al. 2006; Bhattacharya et al. 2014; Richard et al. 2015). This phenomenon has also been 

reported for other AD double transgenic animals carrying both APP and PS1 

mutations(Holcomb et al. 1998; Gordon et al. 2002).  

 

4.2.2 Potential protective effect of amyloid plaques against neurotoxic N-

truncated Aβ4-42 oligomers 

 

The aim of this part of the project was to test whether the amyloid plaques may have 

an effect on the toxicity of soluble Aβ4-42 oligomers. To this end, we took advantage of 

the Tg4-42 mouse model, which develops age- and dose-dependent neuron loss in the 

CA1 region of the hippocampus (Bouter et al. 2013; Antonios et al. 2015). Moreover, 

this model does not express human APP and does not develop extracellular amyloid 

plaques; hence, the loss of neurons reported in the CA1 can be attributed to the 

expression and intraneuronal accumulation of Aβ4-42 in this brain region. In the 5XFAD 

mouse model, neuron death has been reported in the fifth cortical layer at 9 and 12 

months of age (Jawhar et al. 2012; Eimer & Vassar 2013), while no neuron loss has been 

detected in the CA1 region at any age studied (Shao et al. 2011; Jawhar et al. 2012). 

Interestingly, the loss of neurons in the cortical layer 5 strongly correlates with 

intraneuronal Aβx-42 accumulation (Jawhar et al. 2012; Eimer & Vassar 2013). 

 Unbiased stereological analyses of the hippocampal CA1 region revealed no 

differences in the pyramidal neuron numbers between 3-month-old WT, 5XFAD, Tg4-

42 and FAD4-42 mice. Likewise, no changes in the CA1 volume could be observed. This 
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means that the elevated plaque burden observed at 3 months of age in the FAD4-42 

mice had no neurotoxic effect on the CA1 region of the hippocampus. At 12 months of 

age, Tg4-42 mice exhibited profound neuron loss compared to wild type controls, which 

was expected since neuron death in these animals can be detected already at 8 months 

of age (Bouter et al. 2013). However, surprisingly, 12-month-old FAD4-42 mice 

displayed no difference in the number of neurons when compared to same-aged WT, 

5XFAD and Tg4-42 mice, respectively. In addition, old FAD4-42 mice showed a higher 

CA1 volume loss than Tg4-42 mice.  

Altogether, it can be assumed that the elevated amyloid deposition observed in 

FAD4-42 mice might be the result of the binding of soluble Aβ4-42 oligomers to the newly 

formed amyloid plaques. Furthermore, it is tempting to speculate that as the mice aged, 

more Aβ4-42 bound to the amyloid plaques, thus preventing their toxicity. This is 

partially supported by the fact that no differences in CA1 neuron numbers were 

observed between old FAD4-42 and WT controls and supports the hypothesis that Aβ 

plaques can function as buffers for soluble toxic Aβ oligomers. However, no difference 

in the CA1 neuron numbers between old Tg4-42 and old FAD4-42 could be detected. 

This raised the question whether amyloid plaques might have a limited buffering 

capacity. In fact, it has been proposed that initially amyloid plaques may serve as 

“reservoirs” for the soluble toxic Aβ oligomers, but once they have reached their 

capacity, they might release the soluble toxic Aβ oligomers which are able to freely 

diffuse and exert their toxicity (Hong et al. 2014; Brody et al. 2017). So, it might be 

possible that the buffering capacity of the amyloid plaques was reached before 12 

months. If this is the case, this might partially explain why no differences in neuron loss 

could be detected between FAD4-42 and Tg4-42 at 12 months of age. Therefore, further 

studies are required to determine the relationship between insoluble amyloid plaques 

and soluble Aβ oligomeric forms. 

 

 

 

 

 



Discussion 

94 
 

4.2.3 Conclusions of project II 

Based on the results of the present study: 

 

• Additional Aβ4-42 production in FAD4-42 mice via the Tg4-42 transgene 

increased the amyloid plaque load in all brain regions studied at 3 months of age, 

compared to age-matched 5XFAD mice. 

• At 12 months of age, no differences in amyloid deposition could be detected 

between FAD4-42 and 5XFAD mice, suggesting a saturation effect. 

• The absence of neuron loss in the FAD4-42 mice at 12 months of age suggests a 

potential protective effect of amyloid plaques against soluble toxic Aβ oligomers, 

which might be limited once the plaques are saturated. 

 



Summary and Conclusions 

95 
 

5 SUMMARY AND CONCLUSIONS 

The brain of Alzheimer’s disease (AD) patients contains a heterogeneous mixture of 

amyloid beta (Aβ) isoforms. Besides Aβ peptide isoforms possessing different C-

termini, several N-terminally truncated Aβ species have been identified. From these, 

the AβpE3-42 and Aβ4-42 peptides are known to be the most prominent Aβ variants. Hence, 

transgenic mouse models have been created to study their direct effect in vivo, showing 

that when individually expressed, AβpE3-42 and Aβ4-42 can exert pathological and 

behavioral alterations.  

The aim of the first part of the present thesis was to investigate the in vivo effect 

of AβpE3-42 and Aβ4-42 when concurrently expressed. Therefore, the TBA42 and the Tg4-

42 mouse models expressing AβpE3-42 and Aβ4-42, respectively, were crossed. The 

resulting TBA42/Tg4-42 bigenic line showed prominent intracellular Aβ accumulation 

in the CA1 pyramidal neurons of the hippocampus at a young age, which was reduced 

in older animals. The decline of intraneuronal Aβ accumulation can be attributed to the 

early robust neuron loss detected in this area in the young TBA42/Tg4-42 mice 

compared to age-matched TBA42hom and Tg4-42hom mice, respectively. This suggests 

that AβpE3-42 and Aβ4-42 might have a synergistic effect on neurodegeneration. 

Additionally, aggregation kinetics analysis indicates that under physiological 

conditions, when AβpE3-42 and Aβ4-42 peptides are combined, their aggregation 

propensity is enhanced, as observed by the faster initial aggregation compared to the 

individual peptides alone.   

Behavioral analysis of TBA42/Tg4-42 mice revealed reduced anxiety levels at an 

early age when compared to WT controls, which was not the case for TBA42 and Tg4-

42 mice. Furthermore, TBA42/Tg4-42 anxiety levels decreased further in an age-

dependent manner. Interestingly, no working and spatial reference memory deficits 

were detected in TBA42/Tg4-42 mice at any age studied. Additionally, the TBA42/Tg4-

42 model displayed sever sensory-motor deficits when compared to WT and single 

transgenic mice, which strongly correlated with significant extra- and intraneuronal Aβ 

deposition in the spinal cord of these mice. However, significant amyloid pathology was 



Summary and Conclusions 

96 
 

also found in young TBA42hom mice, suggesting that AβpE3−42 might co-aggregate with 

Aβ4−42.  

In sum, the effect on neuron loss, neuropathological alteration and neurological 

deficits was enhanced when AβpE3-42 and Aβ4-42 were simultaneously expressed. This 

suggest a possible in vivo interaction between these two N-truncated Aβ peptides, 

which seems plausible, as both peptides are two of the most abundant Aβ isoforms in 

AD brains. Therefore, their potential role in AD pathogenesis should be further studied 

in order to generate better therapeutic strategies to fight AD. 

The second part of the current work aimed to explore the in vivo association 

between soluble Aβ oligomers and insoluble fibrillar plaques. To this end, the 5XFAD 

and Tg4-42 mouse models were crossed to produce the FAD4-42 model. The well-

studied 5XFAD mouse model rapidly develops extracellular Aβ deposition which 

increases in an age-dependent manner spreading to different brain areas. On the other 

hand, the Tg4-42 mouse model does not generate extracellular Aβ deposits, however, 

the expression of Aβ4-42 induces progressive neuron loss in the pyramidal neurons of 

the CA1 region. FAD4-42 mice showed increased amyloid plaque burden in all regions 

studied at 3 months of age, compared to same-aged 5XFAD mice, indicating that Aβ4-42 

might bind to the amyloid plaques. However, at 12 months of age, no differences in 

amyloid plaque deposition between the FAD4-42 and 5XFAD model could be detected 

anymore. This might be caused by a saturation effect, meaning that no more Aβ4-42 can 

bind to the amyloid plaques if the plaques are already saturated. Next, in order to test 

whether amyloid plaques have an effect on the toxicity of soluble Aβ4-42 aggregates, 

neuron counting was performed in the CA1 region of FAD4-42 mice. Interestingly, no 

neuron loss could be detected in FAD4-42 mice compared to WT controls at any age 

analyzed. Likewise, no differences between FAD4-42 and Tg4-42 could be seen. 

However, at 12 months of age, Tg4-42 mice showed a significant loss of neurons in 

comparison with age-mated WT mice. The absence of neuron loss in the FAD4-42 model 

suggests that the binding of Aβ4-42 to amyloid plaques reduced its toxicity, however, this 

potential protective effect might be decreased when more Aβ4-42 binds during aging. It 

can be speculated that once the plaques reach their binding capacity, free Aβ4-42 is free 

to diffuse onto the surrounding exerting its toxicity. 
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Based on the results from the second project, it can be concluded that binding of soluble 

Aβ4-42 to amyloid plaques seems to result in a reduction of Aβ4-42 toxicity, suggesting a 

potential protective effect of amyloid plaques against soluble toxic Aβ oligomers. 

However, further work is necessary to clarify the relationship between plaques and 

soluble Aβ aggregates. 
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8 APPENDIX 

8.1 LIST OF FIGURES 
 

Fig. 1. Aβ plaques and neurofibrillary tangles (NFTs) 

Fig. 2. Brain atrophy 

Fig. 3. Neuroinflammatory response in AD 

Fig. 4. APP processing 

Fig. 5. Classic and modified amyloid cascade hypothesis 

Fig. 6. The TBA42 transgene 

Fig. 7: The Tg4-42 transgene 

Fig. 8: The 5XFAD transgenes 

Figure 9. Identification of potential TBA42/Tg4-42 bigenic mice 

Fig 10. Strong intraneuronal Aβ accumulation in the CA1 pyramidal cell layer of the hippocampus  

in TBA42/Tg4-42 mice 

Fig 11. Aβ immunoreactivity in aged TBA42hem, Tg4-42hem, Tg4-42hom and TBA42/Tg4-42 mice 

Fig 12. Reduced anxiety levels in TBA42/Tg4-42 mice 

Fig 13. No working memory deficits in TBA42/Tg4-42 mice 

Fig 14. No deficiencies in eyesight and motor abilities were detected in young TBA42/Tg4-42 mice 

Fig 15. No spatial learning impairment in young TBA42/Tg4-42 mice 

Fig 16. No spatial reference memory deficits in young TBA42/Tg4-42 mice 

Fig. 17. Severe motor deficits in TBA42/Tg4-42 mice 

Figure 18. Accelerated neuron loss in the hippocampal CA1 pyramidal cell layer of TBA42/Tg4 

-42 bigenic mice 

Fig. 19. Extra- and intraneuronal Aβ deposition in the spinal cord of transgenic mice 

Fig 20. Quantification of motor neurons with varying levels of intracellular Aβ accumulatio 

Fig 21. Aggregation kinetics of AβpE3-42, Aβ4-42 and an equimolar mixture of both peptides were 

monitored by Thioflavin T fluorescence 

Fig. 22. Quantification of total Aβ plaque load in 5XFAD and FAD4-42 mice 

Fig. 23. Quantification of Aβ pE3-x and Aβ4-x-positive plaque load in 5XFAD and FAD4-42 mice 

Fig 24. No neuron loss in the CA1 pyramidal cell layer of the hippocampus in 12-month-old FAD4- 

42 mice 
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8.2 LIST OF TABLES 

 
Table 1. Reaction mixture for 5XFAD and FAD/4-42 genotyping 

Table 2. Reaction mixture for Tg4-42 and TBA42 genotyping 

Table 3. Thermal cycling program for Tg4-42, TBA42, 5XFAD and FAD/4-42 genotyping 

Table 4. Reaction mixture for TBA42/Tg4-42 genotyping 

Table 5. Thermal cycling program for TBA42/Tg4-42 genotyping 

Table 6. List of primers used for mouse genotyping 

Table 7. Stereological parameters used for neuron counting analysis in the CA1 

Table 8. Primary antibodies for immunohistochemistry 

Table 9. Secondary antibodies used for immunohistochemistry 
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8.3 LIST OF ABBREVIATIONS 
 

Abbreviation Description 

ABC Avidin-biotin complex 

ACE Angiotensin-converting enzyme 

AD Alzheimer’s disease 

ADAM A disintegrin and metalloproteinase 

AICD Amyloid precursor protein intracellular domain 

ANOVA Analysis of variance 

APA Aminopeptidase A 

APH Anterior pharynx defective 

APLP APP-like protein 

ApoE Apolipoprotein E 

APP Amyloid precursor protein 

Aβ Amyloid beta 

BACE1 Beta-site cleaving enzyme 1 

CA1-3 Cornu ammonis area 1-3 

CAA Cerebral amyloid angiopathy 

cDNA Complementary DNA 

CTF C-terminal fragment 

Ctx Cortex 

DAB 3,3’-diaminobenzidine 

DCX Doublecortin X 

DG Dentate gyrus 

DH Dorsal horn 

DNA Deoxyribonucleic acid 

DS Down Syndrome 

ELISA Enzyme-linked immunosorbent assay 

EOAD Early-onset Alzheimer’s disease 

EPM Elevated plus maze 

ESI Electrospray-ionization 

FAD Familial Alzheimer’s disease 

FCS Fetal calf serum 

GWAS Genome-wide association studies 
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Het Heterozygous 

Hom Homozygous 

LDLR LDL receptor family 

LOAD Late-onset Alzheimer’s disease 

LTD Long-term depression 

LTP Long-term potentiation 

MALDI-TOF Matrix-assisted laser-desorption/ionization-time-of-flight 

MBP Myelin basic protein 

MCI Mild cognitive impairment  

MRI Magnetic resonance imaging 

mTRH Murine Thyrotropin-releasing hormone 

MVB Multivesicular bodies 

MWM Morris water maze 

NCT Nicastrin 

NEP Neprilysin 

NFT Neurofibrillary tangle 

NMDA N-methyl-D-aspartate 

PA Pathological aging 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PEN2 Presenilin enhancer 2 

PFA Paraformaldehyde 

PHF Paired helical filament 

PLD3 Phospholipase D3 

PSEN 1/2 Presenilin 1/2 

QC Glutaminyl cyclase 

qRT-PCR Quantitative real-time PCR 

RAGE Receptor for advanced glycation end products 

RIP Regulated intramembrane proteolysis 

RM Repeated measures 

RNA Ribonucleic acid 

rpm Rounds per minute 

RT Room temperature 

SAD Sporadic Alzheimer’s disease 
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sAPP soluble APP 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

SNP Single nucleotide polymorphisms 

Sub Subiculum 

TAE buffer Tris base/acetic acid buffer 

TBE buffer Tris/borate/EDTA buffer 

Thal Thalamus 

ThT Thioflavin-T 

TREM2 Triggering receptor expressed on myeloid cells 2 

v/v Volume/volume 

VH Ventral horn 

w/v Weight/volume 

WHO World Health Organization 

WT Wildtype 
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