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1. Introduction 
1.1 Regulatory elements of transcription 

Cis-elements 

Cis-elements or Cis-acting DNA sequences are gene regulatory elements that can be 
recognized by transcription factors. Cis-elements are non-coding DNA regions. Two groups 

of Cis-elements exist in mammals: the long-range regulatory elements and the proximal 
promoter elements.  

Long-range regulatory elements are DNA sequences that function most likely as enhancer or 

silencer regions. These are typically -1000 to -700 bp or more distant from the start of 
transcription and have a length of approximately 500 bp. They contain up to ten transcription 

factor binding sites within one region. Enhancers increase the gene promoter activity which 
leads to an increase of transcription. Long-range regulatory elements leading to a repression 

of the gene promoter activity are called silencers. There exist other long-range regulatory 

elements than enhancers and silencers, such as insulators, locus control regions and matrix 

attachments regions. 

Proximal promoter elements, sometimes called upstream regulatory elements, are most likely 
located in clusters and serve as transcription factor binding sites. Their location in promoter 

regions is just 5’ to the core promoter elements and near the transcription start site. If these 

Cis-elements are located near the transcription start site, they can increase the transcription 

rate of the gene located 3’ of the promoter. 

The transcription rate per gene is regulated by the entity of all Cis-elements, of enhancers and 

silencers. 

Core promoter elements 

The core promoter plays a pivotal role in the regulation of transcription, especially in its 
initiation (Smale and Kadonaga 2003). The core promoter is found approximately 35 bp up- 

and/or downstream from the transcription start site (+1). Within this promoter region the 
elements themselves can interact directly with parts of the basal transcription machinery. This 

group of minimal essential proteins for transcription includes the RNA polymerase II itself 

and other transcription factors as e.g. TFIID/TFIIA or TFIIB. Possibly the most important 
and certainly the best known core promoter elements are the TATA box, the initiator 

element, the BRE (TFIIB recognition element) and the downstream promoter element. These 
elements are found only in a subset of all mammalian gene promoters. A core promoter may 

contain a single, a group, or none of these elements. Some of the elements can work 

autonomously, others have to be combined for functionality. The well-known TATA box 
with its consensus sequence TATA(A/T)AA(G/A) can function without any other core 

promoter element and is the binding site for the TATA-binding protein, a major subunit of 

the TFIID. However, it is found in only in 32% of all human gene promoter regions.  

Transcription factors  

Transcription factors or trans-acting factors are proteins with the ability to bind to and 
interact with specific DNA sequences called Cis-elements. Via this DNA interaction, these 

proteins are able to regulate the gene activity at the level of transcription. The protein 
amounts of transcription factors themselves depend on the transcriptional regulation of their 

genes, activation or repression via proteolysis, ligand binding or modifications like 



 2 

phosphorylation. Transcription factors (TFs) can act as activators and/or repressors of the 
transcription depending on the Cis-elements - their specific binding site or an interaction with 

other proteins. A repressor leads to downregulation of the transcription via blocking the 
general machinery, whereas activators increase the transcription rate. Transcription factors 

can be subdivided in superclasses, classes, families and subfamilies. The three major 

superclasses contain the zinc finger transcription factors, the helix-turn-helix domain 
transcription factors with the homeodomain as a class, and the basic domain transcription 

factors with the basic leucine zipper class and the basic helix-loop-helix class. Minor 
superclasses are the all-α-helical DNA-binding domains, α-helices exposed by β-structures, 

Immunoglobulin fold, β-hairpin exposed by a α/β scaffold, β-sheet binding to DNA, β-barrel 

DNA-binding domains, and the as yet undefined DNA-binding domains (Wingender et al. 

2013). 

1.2 Reporter gene assays 

Reporter gene assays are wide-range measurement tools in molecular biology, biochemistry 

and pharmaceutical research. They have a broad range of applications and are often used to 

assess activity of regulatory elements (promoter or Cis-element), to measure transcription 
factor activity, to assess gene expression or as a selection marker. A reporter gene has two 

functional parts. The reporter that encodes for a protein and the Cis-regulatory element (or 
promoter) that drives the transcription. The reporter protein itself can easily be detected and 

quantified. The most commonly used reporter proteins are enzymes, fluorescent proteins or 

selection markers as antibiotic resistance (Bronstein et al. 1994). 
Some of the reporter gene assays are used for highly sensitive quantitative analysis, such as 

enzyme encoding reporter genes. This enzymatic activity is measured by chemiluminescence, 
fluorescence or light absorption, depending on the substrate used. Each enzyme molecule 

transforms substrate molecules corresponding to the enzymatic nature. This enzymatic 

readout leads to signal amplification. The most common reporter enzymes used for these 
readouts are different luciferases, β-galactosidase and β-lactamase. In pharmacological 

research, gene reporter assays are used for drug discovery in high throughput screenings. 
These screenings are helpful to find new receptor ligands out of chemical libraries. Reporter 

gene assays play an important role in the analysis of signal transduction and transcriptional 

regulation.  

Specific binding sites (Cis-elements) for TFs are often located near 5’to a gene or in a 

promoter of a gene. The activity of specific transcription activating TFs can be measured via 
gene reporter assays with isolated Cis-elements as promoter region (Levine and Tjian 2003). 

Protein/DNA binding for regulating but not directly acting as TFs can be measured by one 

hybrid method (Deplancke et al. 2004). protein/protein interactions in the nucleus can be 
assessed by two hybrid methods (Luo et al. 1997). Protein/protein interactions at plasma 

membranes and in the cytosol can be measured by use of multiple protein complementation 
assays that are coupled to the transcriptional readout (Stagljar et al. 1998). Applying these 

assays, the main body of the signal transduction network can be explored. Today, reporter 

gene assays are essential and flexible measurement tools with a broad range of applications 
that can detect a wide variety of cellular events by selection of assay design and the 

appropriate Cis-elements. 

1.3 Multiplexed reporter gene assays 

Transcription factor activity measurement through classical reporter gene assays is time- and 
cost-consuming. In a classical reporter gene assay, the activity of only one TF can be 
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monitored. This reporter construct has a specific Cis-element coupled to a minimal core 
promoter element and a reporter gene like β-galactosidase, luciferase or another enzymatic 

reporter protein. The activated TF recognizes the Cis-element, binds to it and initiates the 
transcription of the reporter gene. In classical reporter gene assays, the generation of data is 

based on the expression of proteins. For multiplexing reporter gene assays the readout has to 

be on the transcriptional level and not on translational level. Multiplexing can be achieved 
using a nucleic-acid based reporter by adding one unique restriction site at different locations 

resulting in homogeneous cDNA reporters with different but defined sizes. Using a capillary 
electrophoresis, the reporters can be separated by size and analyzed (Romanov et al. 2008). 

This approach reduces the background signal and yields robust and sustained cell signatures. 

However, the readout was done with only 43 reporter constructs and upscaling is limited to a 
few hundreds. For comprehensive genome-wide TF activity analysis this method cannot be 

used. Another method is to use reporters based on nucleic acids using unique expressed 
oligonucleotides that perform as RNA barcodes can be multiplexed up to high numbers. 

Analyzing the expression of a used nucleic acid reporter library by microarray technology or 

next generation sequencing the activity of the corresponding TFs can be measured (Li et al. 
2006). Theoretically, this method can be scaled up without limit and a high number of TF 

activities can be measured simultaneously.  

Multiplexed reporter gene assays are very useful for genome-wide analysis of transcription 

factor activity and signal transduction. Further development of methods for reporter gene 

assay multiplexing at a large scale analysis is needed. 

1.4 High-throughput technologies 

The generation of datasets in molecular biology research using e.g. classical reporter gene 
assays is extremely time- and cost- consuming. To test e.g. the activity of one TF one reporter 

gene construct with the corresponding Cis-element have to be cloned and tested within cell 

culture experiments under different conditions. In TF activity screenings e.g. high-throughput 
technologies enable the measurement of many different TFs and/or several conditions within 

the same time.  

The vast development in computational science enabled a revolutionary process in the whole 

–OMICS field (e.g. genomics, transcriptomics, proteomics etc.). Automated equipment 

allows an upscaling of experiments without influencing their quality. High-throughput 
screenings in drug discovery are often performed with the support of robotics. High 

throughput technologies are not only used in drug development and analysis of cell signalling 
(Chanda and Caldwell 2003). Also DNA and RNA sequencing via NGS (Next Generation 

Sequencing), microscopy and imaging technologies or flow cytometry are common fields or 

methods. 

1.5 EXTassays 

EXTassays represent a novel technique to monitor cellular signaling within living cells. It is a 
highly scalable reporter system using expressed oligonucleotide tag (EXT) as a nucleotide 

reporter instead of classical reporter proteins (Botvinnik et al. 2010). In comparison to 

classical reporter systems based on reporter proteins, EXTs perform better in kinetics and 
sensitivity. The EXT library performs with balanced melting temperature and virtually no 

intramolecular complementary regions. Each EXT is an oligonucleotide with its length of 49 
bases and consists of a core region flanked of 10 ‘words’. ‘Words’ are sequence stretches of 4 

nucleotides consisting of one cytosine and three adenosines or thymidines. A core region is a 
variable region with a length of 9 nucleotides. Three central nucleotides consisting of 
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cytosine and guanine are flanked by alternating adenosine, thymidine, cytosine and guanine 
(Botvinnik et al. 2010). An EXT is flanked by 5’ and 3’ with invariable primer regions for 

amplification and cloning. 

 

Figure 1.1: design of the EXT  

The core region consisting of 9 bases is 5’ and 3’ flanked of 5 words. Eight different words exist and consist of 

four bases. Every EXT is an oligonucleotide of 49 bases and is 5’ and 3’ flanked on primer sequences.  

 

1.6 Cancer 

The World Health Organization (WHO) describes cancer as follows: “Cancer is the 
uncontrolled growth and spread of cells. It can affect almost any part of the body. The 

growths often invade surrounding tissue and can metastasize to distant sites. Many cancers 
can be prevented by avoiding exposure to common risk factors, such as tobacco smoke. In 

addition, a significant proportion of cancers can be cured, by surgery, radiotherapy or 

chemotherapy, especially if they are detected early.”( http://www.who.int/topics/cancer/en/). 

Cancer comprises a large group of subtypes that can affect almost every organ or cell type in 

the human or animal body. Synonyms for cancer are neoplasm, malignant tumor or malignant 
process. The terminology of cancer depends on the tissue or cell origin. Cancer originating 

from epithelial cells is called carcinoma. A subgroup the adenocarcinomas are derived from 

epithelial glandular cells. Sarcomas are cancers derived from mesodermal cells e.g. bone, 
muscle, vessels, fatty- or connective tissue cells. Cancer from blood cells, especially 

granulocytes, monocytes, or lymphocytes, is called leukaemia or lymphoma. 

Cancer is a genetic disease driven by mutations in the genome. The majority of alterations in 

the genome are somatic mutations. A minority of cancers are hereditary origin with mutations 

in the germline genome. Syndromes as Li-Fraumeni with a germline mutation in TP53 or 
HNPCC (hereditary non-polyposis colorectal cancer) or Lynch-syndrome with microsatellite 

http://www.who.int/topics/cancer/en/
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instability take a higher incidence of carcinogenesis of divers cancers compared to the normal 

population. 

In some cancer types a so called adenoma-carcinoma sequence is known. In the model of 
adenocarcinomas of the colon the first driver mutation is the loss of APC, that cause the 

formation of an adenoma in the epithelial cell layer. Several following mutations in these 

adenoma cells containing KRAS, DCC and TP53 lead to the arising of an invasive 
adenocarcinoma. Also in a subgroup of the pancreatic ductal adenocarcinomas (PDACs) an 

adenoma-carcinoma sequence exist. The intraductal papillary mucinous neoplasia (IPMN) 
show a progression that follows an adenoma-carcinoma sequence including mutations in 

GNAS, KRAS and TP53. 

Common driver mutations in most cancers are loss of function mutations or deletions that 
occur in tumour suppressor genes (e.g. TP53, CDKN2A) and DNA repair mechanism genes 

(e.g. BRCA1, BRCA2). Gain of function mutations or activating mutations often occur in 
genes coding for receptors or kinases (e.g. EGFR, KRAS) that are involved in cell 

proliferation processes.  

Malignant tumours are characterized with the nature of prolonged viability and resistance to 
cell death stimuli, enhanced proliferative signalling and promotion of neo-angiogenesis to 

support optimal nutrition of the tumour. Also mutations in genes coding for cell skeletal 
proteins and cell-cell adhesion molecules play a pivotal role leading to enhanced invasive 

growth and metastasis. Not only enhanced growth and invasion are typical characteristics of 

cancer, also modulation of the immune system with tumour promoting inflammation and 
tumour masking to avoid tumour cell destruction via the immune system are central features 

(Hanahan and Weinberg 2011).  

Cancer types with the highest incidences in the western civilization are lung, colorectal, 

prostate and breast cancer. Cancer diseases with the worst 5 year survival rate are small cell 

lung cancer (SCLC), pancreatic ductal adenocarcinoma (PDAC), cholangiocarcinoma (CC) 
and glioblastoma. Well known risk factors or carcinogenesis inducing factors are e.g. obesity, 

tobacco smoke, alcohol and ionizing radiation. 

1.7 Transcriptional profiling in cancer cells  

One of the key features in cancer cells are upregulated cell growth and prolonged viability 

(Hanahan and Weinberg 2011). There the key players are often mutated oncogenes coding 

for proteins that are involved in cell signalling leading to up- and /or dysregulated pathway 

signalling (e.g. PDGFR, EGFR, KRAS). These signalling pathways end in the activation of 

transcription factors that lead to changes in the transcription pattern of the cell. In cancer cells 

several transcription factor groups seem to be important. Hormone receptors as oestrogen or 

androgen receptors play a central role in breast or prostate cancer. STATs and c-JUN are also 

known transcription factors that can be persistently activated in different tumour diseases 

(Darnell 2002, Yeh et al. 2013). Not only persistently activated TF are important and 

interesting for cancer research. Changes in transcription activity patterns of cancer cells 

compared to normal cells during carcinogenesis (Siletz et al. 2013) or chemotherapy play a 

pivotal role in the understanding of cell signalling pathways. There the focus on transcription 

factor activity patterns and changes could also be an interesting as new therapy strategies 

(Darnell 2002).  
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1.8 Aim of the thesis 

This thesis is based on the scientific results of the development of EXTs (Botvinnik et al. 

2010). Here I describe further development from an oligo scalable reporter gene system to a 
highly scalable high throughput reporter system – called EXTassays – for the activity 

analysis of multiple transcription factors in parallel in living cells.  

Highly complex reporter gene libraries were synthesized with an on-chip synthesis method 
(agilent technologies). During the cloning of the reporter gene libraries functionality 

experiments of the barcode system itself – the EXTs – and of the 36-mer Cis-element cluster 
were performed. In an optimisation process several different plasmid backbones were tested 

to improve the sensitivity and specificity. 

In a proof-of-principle experiment we used Cis-regulatory elements to monitor the activity of 
transcription factors during a proliferation assay. In parallel, we measured the activity of 

more than thousand different transcription factor binding sites and their transcription factors 

and compared different cancer cell lines. 

During the development of the EXTassays, several key questions were addressed: 

 Is it possible to cover the complexity of the libraries during the cloning process? 
 Do the Cis-elements show a specific activation profile in combination with the 

corresponding transcription factor? 
 Do not specific transcription factors perform an activation via binding on the Cis-

element? 

 Is it possible to get stable and viable readouts of complex libraries of the assay in 
transient cell culture experiments? 

 If transient cell culture experiments are not working for complex libraries, are stable 

cell lines the solution? 
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2. Materials and Methods 
Materials 

2.1 Laboratory material and equipment 

 

Equipment 

Arium 611 ultrapure water system   Sartorius 

Axiovert 25      Zeiss 

Biofuge pico      Heraeus Instruments 

Biofuge fresco     Heraeus Instruments 

BioPhotometer     Eppendorf 

Cell Culture Hood     Heraeus Instruments 

Centrifuge 5810R     Eppendorf 

Concentrator 5810R     Eppendorf 

Galaxy Mini      VWR 

GenePulser XCell     BioRad 

HeraCell 150 CO2     Heraeus 

Herasave KS 12     Heraeus 

Ika Vibrax VXR     Janke&Kunkel 

Ion OneTouch      Ion torrent, life technologies 

Ion PGM Sequencer     Ion torrent, life technologies 

Ion Proton Sequencer     Ion torrent, life technologies 

Labofuge 400      Heraeus 

Microplate reader Mitras LB940   Berthold Technologies 

Multitron shaking incubator    Infors AG 

pH meter      Sartorius 

Pharmacia EPS 500/400    Pharmacia 

Picodrop Spectrometer    PicodropLimited 

R-202 microwave     Sharp 

Sorval Ultracentrifuge    Thermo Scientific 

ThermocyclerT3     Biometra 

ThermocyclerT3000     Biometra 

Thermomixer5436     Eppendorf 

Ultra-Low Temperature Freezer U725-VIP  New Brunswick Scientific 
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UV-System      iNTAS 

Vortex Genie2     Bender&Hobein AG 

WNE 10 waterbath     memmert 

XCell SureLock Mini-Cell chamber   Invitrogen 

 

Kits 

NucleoBond PC100 Kit    Macherey-Nagel (740573.100) 

NucleoBond Xtra Maxi EF Kit   Macherey-Nagel (740424.10) 

NucleoSpin Gel and PCR clean-up Kit  Macherey-Nagel (740609.50) 

NucleoSpin Plasmid QuickPure Kit   Macherey-Nagel (740615.250) 

RNAse free DNAse kit    Qiagen (79254) 

RNeasy Mini Kit     Qiagen (74106) 

 

Software  

Adobe Illustrator CS3    Adobe 

LaserGene 8      DNA Star Inc. 

Mac OS X      Apple Inc. 

Microsoft Office 2008 for Mac   Microsoft 

Microwin 2000     Berthold Technologies 

R (statistical computing environment)  Open Source 

 

Plastic ware 

General laboratory materials from Eppendorf, BD Falcon, Gilson, ABgene and Menzel-

Gläser were used for molecular biology applications.  

For cell culture applications plastic wear from BD Falcon, Eppendorf and Greiner-Nunc was 

used. 

 

2.2 Reagents 

General chemicals from Sigma-Aldrich or Merck were used unless stated otherwise. 

 

Chemicals 

2-Propanol      Merck 

6x DNA Loading Dye    Fermentas 

Agarose low EEO     AppliChem 
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Bacto Agar      BD 

Bacto Peptone      BD 

Bacto Tryptone     BD 

Bacto Yeast Extract     BD 

Boric acid      Merck 

Bovine serum albumine (BSA)   Roche 

Bromophenol blue     Merck 

Chloroform      Roth 

Complete tablet, Mini, EDTA-free   Roche (11 836 170 001) 

Dithiothreitol (DTT)     Sigma-Aldrich 

Ethanol (EtOH)     J.T.Baker 

Ethidiumbromide (EtBr)    Sigma-Aldrich  

Ficoll 400      Pharmacia 

Flag M2 resin      Sigma-Aldrich (A2220) 

Gene Ruler 50 bp DNA ladder   Fermentas 

Gene Ruler 100 bp DNA ladder   Fermentas 

Gene Ruler 1 kb DNA ladder    Fermentas 

Glacial acetic acid     Merck 

Glucose      Merck 

Glycerol      Merck 

Glycogen (20 mg/mL)    Roche (10 901 393 001) 

Isoamylalcohol     Roth 

Methanol (MetOH)     J.T.Baker 

No-fat milk powder     drug store 

NuPAGE 4-12%Bis-Tris Gels    Invitrogen (NP0321BOX) 

Phenol       Roth 

Phosphatase Inhibitor Cocktail II   Sigma-Aldrich (P5726) 

PhosStop tablet     Roche 

Potassiumchloride (KCl)    Merck 

Potassiumhydroxide (KOH)    Merck 

Power SYBR Green PCR Master Mix   Applied Biosystems 

PVDF Membrane Hybond P     Amersham Biosciences  

RNAse free water     Qiagen 

Sodiumacetate (NaAc)    Merck 
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Sodiumchloride (NaCl)    Merck 

Sodiumhydroxide (NaOH)    Merck 

6% TBE gels      Invitrogen (EC6265BOX) 

Titriplex III (EDTA)     Merck 

Tris-base      Sigma-Aldrich 

Tween 20      Sigma-Aldrich 

Whatman paper     Sigma-Aldrich 

Xylene cyanol FF     Sigma-Aldrich 

 

Antibiotics for molecular biology (with the concentration to use) 

Ampicillin  200 g/mL   Sigma-Aldrich (A9518) 

Blasticidin  75 g/mL   Invivogen (ant-bl-1) 

Chloramphenicol 50 g/mL   Sigma-Aldrich (C0378 

Zeocin   35 g/mL   Invivogen (ant-zn-1) 

 

Enzymes 

BP clonase II      Invitrogen (11789-020) 

Easy A  Taq-polymerase    Stratagene (600400) 

Hot StarTaq Plus     Qiagen (203643) 

KOD       Novagen (71085-3) 

LR clonase II      Invitrogen (11791-020) 

Pfu Turbo Cx      Stratagene (600410) 

Pfu Ultra High-Fidelity AD    Stratagene (600385) 

Proteinase K      Invitrogen (25530-015) 

Pwo Polymerase     Roche (03789403001) 

Restriction Enzymes     New England Biolabs 

RNase A      Invitrogen (12091-021) 

RNAse free DNase     Promega (M6101) 

RNAse free DNAse     Qiagen (79254) 

Superscript III reverse transcriptase   Invitrogen (18080-093) 

T4 DNA ligase     Promega (M1801) 
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Bacterial E.coli transformation competent cell strains 

DH-5 (chem. comp.)    MPI 

DH-5a (electro comp.)    MoBiTec (9027-TK) 

DH-10b (electro comp.)    MPI 

ElectroMax DH-10b (electro comp.)   Invitrogen (18290-015) 

Mach1 (chem. comp.)    Invitrogen (C862003) 

Top10 (chem. comp.)     Invitrogen (C4040-10) 

XL-1 blue (chem. comp.)    MPI 

 

Media and solutions for molecular biology 

LB-Medium (Luria-Bertani Medium) 

Per liter: dissolve in 950 mL dH2O 

YeastExtract      5 g 

Bacto Peptone      10 g 

Sodiumchloride (NaCl)    10 g 

was adjusted to a pH to 7.0 with 5N NaOH, adjusted to a volume of 1 liter with dH2O and 

then autoclaved 

 

LB-low salt-Medium 

Per liter: dissolve in 950 mL dH2O 

Yeast Extract      5 g 

Bacto Peptone      10 g 

Sodiumchloride (NaCl)    5 g 

was adjusted to a pH to 7.0 with 5N NaOH, adjusted to a volume of 1 liter with dH2O and 

then sterilized by autoclaving 

 

SOC-Medium 

Per liter: dissolve in 950 mL dH2O 

Sodiumchloride (NaCl)    0.5 g 

Bacto Tryptone     20 g 

Yeast Extract      5 g 

Potassiumchloride (KCl) solution (250 mM) 10 mL 

http://www.mobitec.com/?order=9057-TK
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was adjusted to a pH to 7.0 with 5N NaOH, adjusted to a volume of 1 liter with dH2O and 

then autoclaved; after autoclavating add 

glucose solution (1M)    20 mL 

 

Bacterial stock freezing medium 

Glycerol       65% (v/v) 

MgSO4       0.1 M 

Tris-HCl, pH 8.0     25 mM 

the solution was autoclaved 

 

LB-Agar plates 

Yeast extract       0.5% (w/v) 

Bacto Peptone pH 7.5     1% (w/v) 

NaCl        1% (w/v) 

Bacto Agar       1.5% (w/v) 

Autoclave, cool down to 55°C in a water bath, add antibiotics and pore the plates 

 

For blue-white selection include 

X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 35 μg/mL 

IPTG (Isopropyl-β-D-thiogalactopyranosid)   15 μg/mL 

 

dNTP mix 50x 

(dATP, dCTP, dGTP, dTTP)    10 mM (2,5 mM each) 

Final concentration in the PCR   200 μM (50 μM each) 

 

Primers 

Delivery concentration     50 pmol/μL 

Final concentration in the PCR reaction   0.2 μM (5-10 pmol/reaction) 

 

TAE Buffer (50x) 

Tris base      242 g 

Glacial acetic acid     57.1 mL 

EDTA solution (0.5M pH 8.0)   100 mL 

Volume was adjusted to 1 liter with dH2O 
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TBE Buffer (10x) 

Tris base       108 g 

Boric acid      55 g 

EDTA-solution (0.5M pH 8.0)   20 mL 

Volume was adjusted to 1 liter with dH2O 

 

TE (Tris-EDTA 10x) 

Tris-Base pH 7,4     10 mM 

EDTA (0.5 M; pH 8)     1 mM 

Volume was adjusted to 1 liter with dH2O 

 

Gel loading Buffer (6x) 

Bromophenol blue     0.25% (w/v) 

Ficoll (Type 400; Pharmacia)in H2O  15% (w/v) 

Xylene cyanol FF     0.25% (w/v) 

 

DNA extraction Buffer 

Tris-HCl pH 8.0     10 mM 

EDTA       100 mM 

NaCl       100 mM 

SDS       0.5% 

 

Luciferase assay buffers 

Firefly Luciferase Assay Buffer 

Tricine       20 mM 

(MgCO3)4*Mg(OH)2*5H2O     1.07 mM 

MgSO4       2.67 mM 

EDTA        0.1 mM 

DTT        33.3 mM 

Add 0,001 V of 37% HCl to dissolve the magnesium carbonate 

When the solution becomes clear adjust the pH to 7.8 using 5M NaOH 

Add remaining components: 

Coenzym A       270 μM 
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D-Luciferin, free acid     470 μM 

ATP        530 μM 

 

Renilla Luciferase Assay Buffer 

NaCl        1.1 M 

Na2-EDTA       2.2 mM 

KxPO4 (pH 5.1)     0.22 M 

BSA        0.44 mg/mL 

NaN3        1.3 mM 

Adjust pH value to 5.0 and add 

Coelenterazin (dissolved in EtOH)    1.43 mM 

 

KxPO4 (pH 5.1) 

Prepare 1M KH2PO4 solution, adjust the pH to 5.1 using 2M KOH 

 

Western blotting buffers 

RIPA Buffer 

Per 250 mL dissolve in 100 mL dH2O 

Tris-HCL 1M pH 7.4     12.5 mL 

NaCl 3M      12.5 mL 

EDTA 0.5M, pH 8     0.5 mL 

Triton-X100 (10% solution)    25 mL 

sodium deoxycholate (10% solution)  25 mL 

SDS (10% solution)     2.5 mL 

was adjusted to a volume of 250 mL with dH2O 

 

Triton-X standard IP Buffer 

Per 250 mL dissolve in 200 mL dH2O 

Tris 1M pH 7.5     12.5 mL 

NaCl 5M      7.5 mL 

Triton-X100 (10% solution)    25 mL 

EGTA 0.5M, pH 8     0.5 mL 

was adjusted to a volume of 250 mL with dH2O 
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Triton-X cell lysis Buffer 

Triton-X standard IP buffer    50 mL 

Complete tablet (Roche) for 50 mL   1 piece 

Zinc-chloride (ZnCl2, 1M)    50 µL 

Sodium-vandate (Na3VO4; 0.2M)   250 µL 

Sodium-pyrophosphate (Na4P2O7; 0.2M)  1125 µL 

Sodium-fluoride (NaF; 0.5M)   1000 µL 

Stored at 4°C 

 

TBS (Tris-buffered Saline 20x) 

Per liter: dissolve in 800 mL dH2O 

Tris-base      1 M 

Sodiumchloride (NaCl)    3 M 

was adjusted to a pH to 7.4 and adjusted to a volume of 1 liter with dH2O 

 

TBS-T (Tris-buffered saline with Tween 1x) 

Per liter: dissolve in 800 mL dH2O 

TBS (20x)      50 mL 

Tween20      300 µL 

was adjusted to a volume of 1 liter with dH2O 

 

NuPAGE running Buffer MES (20x) 

2-(N-morpholino)-Ethansulfonate (MES)  1 M 

Tris-base      1 M 

Sodiumdodecylsulfate (SDS)    2% 

EDTA       20 mM 

was adjusted to a pH 7.3 and a volume to 1 liter with dH2O; store at 4°C 

 

NuPAGE LDS sample Buffer (4x) 

Tris-HCl      424 mM 

Tris-base      564 mM 

Lithiumdodecylsulfate (LDS)   8% (w/v) 

EDTA       2.04 mM 

Glycerol      40% (w/v) 
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ServaBlue G250 (1% solution)   7.5% (v/v) 

Phenolred (1% solution)    2.5% (v/v) 

Was adjusted to a volume of 10 mL and stored at -20°C 

 

NuPAGE transfer Buffer (20x) 

Bicine       500 mM 

Bis-Tris (free base)     500 mM 

EDTA       20 mM 

Chlorobutanol      1 mM 

was adjusted to a pH 7.2 and a volume to 1 liter with dH2O; store at 4°C 

 

NuPAGE transfer Buffer (1x) 

NuPAGE transfer buffer (20x)   50 mL 

Methanol      200 mL 

was adjusted to a volume of 1 liter with dH2O 

 

Blocking Buffer 

Non-fat milk powder     50 g 

TBS-T (1x)      1000 mL 

Stored at 4°C 

 

2.3 Reagents for cell culture 

 

Chemicals for cell culture 

dbcAMP      BioLog, Bremen (D 009) 

DMEM (Dulbeco’s modified eagle medium) Lonza (BE12-707F) 

DMEM (high glucose)    Lonza (BE12-914F) 

DMEM-F12 + GlutaMAX    Gibco (31331-028) 

DMSO (Dimethylsulfoxide)    Sigma-Aldrich (D 8418-500ML) 

Fetal Bovine Serum (FBS)    Gibco (10500-064) 

GlutaMAX 100x     Gibco (35050038) 

Horse Serum (HS)     Gibco (16050-122) 

Hygromycin B     Gibco (10687-010) 

Leibovitz’s L-15 Medium    Gibco (11415-049) 
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Lipofectamine 2000     Invitrogen (11668-019) 

McCoy`s 5A Medium + GlutaMAX   Gibco (36600-088) 

MEM (Minimum Essential Media)+ GlutaMAX Gibco (42360-024) 

Opti-MEM      Gibco (31985-047) 

Penicillin/Streptomycin (Pen/Step)   Lonza (17-602E) 

PMA (phorbol 12-myristate 13-acetate)  Sigma-Aldrich (P8139) 

Polyethylenimine (PEI)    Sigma-Aldrich (408727) 

Poly-L-Lysine (PLL)     Sigma-Aldrich (P4707) 

Puromycin      life technologies (A1113802) 

RPMI-1640 Medium + GlutaMAX   Gibco (61870-010) 

Trypsine 10x      Lonza(BE17-160E) 

 

Media and solutions for cell culture 

Freezing medium for eukaryotic cell lines 

DMEM       60% 

DMSO       5-10% 

Fetal bovine serum (FBS)     30% 

 

293HEK growth-medium (also for 293HEK_FT) 

DMEM (high Glucose)    450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

GlutaMAX (L-Glutamine) 1% f.c.   5 mL 

 

Caco-2 growth medium 

MEM (Minimum Essential Media)+GlutaMAX 400 mL 

Fetal Bovine Serum 20% f.c.    100 mL 

Pen/Strep 1% f.c.     5 mL 

 

LS411N growth medium (also for LS513, LS1034) 

RPMI-1640 Medium + GlutaMAX   450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

 



 18 

MCF-7 growth medium (also for HeLa, Hs 633T, HT-1080) 

DMEM (low Glucose)    450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

GlutaMAX (L-Glutamine) 1% f.c.   5 mL 

 

PC12 growth-medium 

DMEM (low Glucose)    450 mL 

Horse Serum 5% f.c.     25 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

GlutaMAX (L-Glutamine) 1% f.c.   5 mL 

 

SH-SY5Y growth medium 

DMEM-F12 + GlutaMAX    450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

 

SW403 growth medium (also for SW480, SW620, SW837, SW1116, SW1463) 

Leibovitz’s L-15 Medium    450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

 

TE-671 growth medium 

DMEM (low Glucose)    400-425 mL 

Fetal Bovine Serum 15-20% f.c.   75-100 mL 

Pen/Strep 1% f.c.     5 mL 

GlutaMAX (L-Glutamine) 1% f.c.   5 mL 

 

U-2OS growth medium (also for A-204, HT-29) 

McCoy’s 5A + GlutaMAX    450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 
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WiDr growth medium 

MEM (Minimum Essential Media)+GlutaMAX 450 mL 

Fetal Bovine Serum 10% f.c.    50 mL 

Pen/Strep 1% f.c.     5 mL 

 

Phosphate-buffered Saline (PBS) 10x 

Sodiumchloride (NaCl)    100 g 

Potassiumchloride (KCl)    2.5 g 

Disodiumhydrogenphosphate (Na2HPO4 x 2H2O) 7.2 g 

Potassiumdihydrogenphosphate (KH2PO4)  2.5 g 

Disolve, adjust pH to 7.2 with NaOH and add H2O to 1000 mL and then sterilized by 

autoclaving 

 

Mammalian cell lines 

293HEK  Human embryonal kidney (ATCC) (Graham et al. 1977) 

293HEK_FT Human embryonal kidney cells expressing SV40 large T-antigen 

(Invitrogen) 

A-204   Human Rhabdomyosarcoma (ATCC) (Giard et al. 1973)  

Caco-2   Human colorectal adenocarcinoma (ATCC) (Fogh et al. 1977) 

HeLa    Human cervix adenocarcinoma (ATCC) (Scherer 1954) 

Hs 633T  Human fibrosarcoma (ECACC) 

HT-29   Human colorectal adenocarcinoma (ATCC) (Fogh et al. 1977) 

HT-1080  Human fibrosarcoma (ATCC) (Rasheed et al. 1974) 

MCF-7 Human adenocarcinoma of the mammary gland metastasis (ATCC) 

(Soule et al. 1973) 

LS411N Human colorectal carcinoma of the cecum, stage Duke’s B (ATCC) 

(Suardet et al. 1992) 

LS513 Human colorectal carcinoma of the cecum, stage Duke’s C (ATCC) 

(Suardet et al. 1992) 

LS1034 Human colorectal carcinoma of the cecum, stage Duke’s C (ATCC) 

(Suardet et al. 1992) 

PC12 tet OFF rat pheochromocytoma cell line stably expressing tetracycline-

controlled transactivator (tTA) under neomycine resistance. 

(Clontech)(Greene and Tischler 1976) (ATCC) 
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SH-SY5Y Human neuroblastoma metastasis (ATCC) (Biedler et al. 1978) 

SW403 Human colon adenocarcinoma, stage Duke’s C (ATCC) (Leibovitz et 

al. 1976) 

SW480 Human colon adenocarcinoma, stage Duke’s B (ATCC) (Leibovitz et 

al. 1976) 

SW620 Human colon adenocarcinoma metastasis, stage Duke’s C (ATCC) 

(Leibovitz et al. 1976) 

SW837 Human rectal adenocarcinoma, stage IV (ATCC) (Leibovitz et al. 

1976) 

SW1116 Human colon adenocarcinoma, stage Duke’s A (ATCC) (Leibovitz et 

al. 1976) 

SW1463 Human rectum adenocarcinoma, stage Duke’s C (ATCC) (Leibovitz et 

al. 1976) 

TE-671 Human Rhabdomyosarcoma (CLS) (McAllister et al. 1977) 

U-2 OS  Human Osteosarcoma (ATCC) (Pontén and Saksela 1967) 

WiDr Human colon adenocarcinoma (ATCC) (Noguchi et al. 1979) 

 

2.4 Vectors and Plasmids 

construct      antibiotic resistance 

pDONR/ Zeo      Zeocin, Chloramphenicol(Cm) 

pDEST_GL3      Ampicillin, Chloramphenicol 

pDEST_GL4.14_ß-globin    Ampicillin, Chloramphenicol 

pDEST_Lenti-promoter    Ampicillin, Cm, Blasticidin 

pENTR_TF library     Zeocin 

pENTR_Xie library     Zeocin 

PENTR_Co library     Zeocin 

pEXPR_GL3_TF library    Ampicillin 

pEXPR_GL3_Xie library    Ampicillin 

pEXPR_GL3_Co library    Ampicillin 

pEXPR_GL4.14_ß-globin_TF library  Ampicillin 

pEXPR_GL4.14_ß-globin_Xie library  Ampicillin 

pEXPR_GL4.14_ß-globin_Co library  Ampicillin 

pEXPR_Lenti-promoter_TF library   Ampicillin, Blasticidin 

pEXPR_Lenti-promoter_Xie library   Ampicillin, Blasticidin 
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pEXPR_Lenti-promoter_Co library   Ampicillin, Blasticidin 

pEXPR_TripZ-promoter_TF library   Ampicillin, Zeocin, Puromycin 

pEXPR_TripZ-promoter_Xie library  Ampicillin, Zeocin, Puromycin 

pEXPR_TripZ-promoter_Co library   Ampicillin, Zeocin, Puromycin 

pGEM-T (Promega)     Ampicillin 

pGEM-T_ß-globin     Ampicillin 

 

2.5 Primers 

Cloning primers 

16128  TF_F CTTGGACAGGGTGGTGGG 

16129  X_F CGAGCGCTTCCGGTAAGA 

16130  Co_F AGAGCCACGGGCGAAAAG 

117804 TF_R ACTGCTGTCCGCTCTGCC 

117805 X_R CCACACCGACATGGGGAG 

117806 Co_R TACCTGGAATGGGGCAGC  

 

16137  TF_Dec CCTCCCCGATGAATTGCA 

16138  X_Dec GACACAGTGGCGCAGTGG 

16139  Co_Dec ACGCTCACCCCGAGAATG 

 

16501  B1_TF_F GGGGCAAGTTTGTACAAAAAAGCAGCTTGGACAGGGTGGTGGG 

16502  B1_X_F GGGGCAAGTTTGTACAAAAAAGCAGCGAGCGCTTCCGGTAAGA 

16503  B1_Co_F GGGGCAAGTTTGTACAAAAAAGCAGAGAGCCACGGGCGAAAAG 

117912 B2_TF_R GGGGCCACTTTGTACAAGAAAGCTGACTGCTGTCCGCTGTGCC 

117913 B2_X_R GGGGCCACTTTGTACAAGAAAGCTGCCACACCGACATGGGGAG 

117914 B2_Co_R GGGGCCACTTTGTACAAGAAAGCTGTACCTGGAATGGGGCAGC  

 

16495  T3_TF_F AATTAACCCTCACTAAAGGGCTTGGACAGGGTGGTGGG 

16496  T3_X_F AATTAACCCTCACTAAAGGGCGAGCGCTTCCGGTAAGA 

16497  T3_Co_F AATTAACCCTCACTAAAGGGAGACCCACGGGCGAAAAG 

117909 T7_TF_R TAATACGACTCACTATAGGGACTGCTGTCCGCTCTGCC  

117910 T7_X_R TAATACGACTCACTATAGGGCCACACCGACATGGGGAG 

117911 T7_Co_F TAATACGACTCACTATAGGGTACCTGGAATGGGGCAGC  
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17749  ß-globin intron ATATAAGCTTGAGAACTTCAGGGTGAGTTTGGGG 

17750  ß-globin rev. ATATAAGCTTGTTGCCCAGGAGCTGTAGGAAAAAG 

18225  pDEST_GL4 rev CGCAAACGGATCCTTATCGATTTTACCAC 

18226  pDEST_GL4 ATATACGCGTCGAGGATATCAACAAGTTTGTACAAAAAAGCTG 

21015  pLenti ClaI rev ATAATTAACGCGTAAGCTTATCGATACCGTCGAGA 

21016  pLenti MluI rev CGCGGTTCGAAGGTAAGCCTATCC 

23984  ccdB XbaI for AATTTACCGTTCTAGAATCAACAAGTTTGTA 

23985  ccdB MluI rev TAATATAATACGCGTATCAACCACTTTGTA 

24125  ccdB rev  AACCACTTTGTACAAGAAAGCTGAAC 

24277  ccdB NheI for AATTTAGCTAGCCCCGGCCGCCATGGCCGCGG 

25170  ccdB ClaI for AATTAATCGATTCCCGGCCGCCATGGCCGCGG 

24279  ccdB reverse CGGCCGCACTAGTGATTTCTAGAATCAACCACTTTGTAC 

 

25124 B1_CMV for GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCCGCCATGCATTAGTTATTAATAG 

25125 B2_EYFP_MCS rev GGGGACCACTTTGTACAAGAAAGCTGGGTCGATCAGTTATCTAGATCCGGTG 

 

29391  B1 Sharp1 aa1 for GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGACGAAGGAATCCCTC 

29392  B2 Sharp1 aa98 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACGCTTTCAAGTGCTT 

29393  B2 Sharp1 aa185 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACCCAGAGCCCC 

29394  B1 S1-bHLH aa88 for GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGTCTTGGAATTAACTTTAAAGCA 

29395  B2 Sharp1 aa410 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGGGGGCGTCCTT 

29396  B1 Sharp2 aa1 for GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGAACGGATCCCCAGC 

29397  B2 Sharp2 aa122 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACTGCAGGGCAATGAT 

29398  B2 Sharp2 aa195 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAGCCGAGTCCAATG 

29399  B1 S2-bHLH aa113 for GGGGACAAGTTTGTACAAAAAAGCAGGCTCCCAGCAGCAGCAGAAAAC  

29400  B2 Sharp2 aa411 rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGTCTTTGGTTTCTAAGTTT 

 

Primers for Next Generation Sequencing 

18236  pGL4 RNA rev ATGGTGGCTTTACCAACAGTACCG 

18237  pGL4 DNA rev AACAATCAAGGGTCCCCAAACTCA 

18238  TF TATA Dec for GCTCCTCCCCGATGAATTGC 

18239  Xie TATA Dec for CAGCTGACACAGTGGCGCAGT 

18240  Co TATA Dec for CTAGCTACGCTCACTCCGAGAATG 

27505  TF Dec rev ACTGCTGTCCGCTCTGCC 
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27506  Xie Dec rev GCCACACCGACATGGGGAG 

27507  Co Dec rev GCTGTACCTGGAATGGGGCAGC 

 

27740  PGM_A_IXcode001_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACGATCAGCTGACACAGTGGCGCAG 

27741  PGM_A_IXcode002_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTAAGGAGAACGATCAGCTGACACAGTGGCGCAG 

27742  PGM_A_IXcode003_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGAAGAGGATTCGATCAGCTGACACAGTGGCGCAG 

27743  PGM_A_IXcode004_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACCAAGATCGATCAGCTGACACAGTGGCGCAG 

27744  PGM_A_IXcode005_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGAAGGAACGATCAGCTGACACAGTGGCGCAG 

27745  PGM_A_IXcode006_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGCAAGTTCGATCAGCTGACACAGTGGCGCAG 

27746  PGM_A_IXcode007_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCGTGATTCGATCAGCTGACACAGTCGCGCAG 

27747  PGM_A_IXcode008_Xie_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCGATAACGATCAGCTGACACAGTGGCGCAG 

27748  PGM_trP1_Xie_as CCTCTCTATGGGCAGTCGGTGAGCCACACCGACATGGGGAG 

27749  PGM_A_IXcode001_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACGATGCTCCTCCCCGATGAATTGC  

27750  PGM_A_IXcode002_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTAAGGAGAACGATGCTCCTCCCCGATGAATTGC  

27751  PGM_A_IXcode003_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGAAGAGGATTCGATGCTCCTCCCCGATGAATTGC  

27752  PGM_A_IXcode004_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACCAAGATCGATGCTCCTCCCCGATGAATTGC 

27753  PGM_A_IXcode005_TF_s

 CCATCTCATCCCTGCGTCTCTCCGACTCAGCAGAAGGAACGATGCTCCTCCCCGATGAATTGC  

27754  PGM_A_IXcode006_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGCAAGTTCGATGCTCCTCCCCGATGAATTGC 

27755  PGM_A_IXcode007_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCGTGATTCGATGCTCCTCCCCGATGAATTGC  

27756  PGM_A_IXcode008_TF_s

 CCATCTCATCCCTGCGTGTCTCCGACTCAGTTCCGATAACGATGCTCCTCCCCGATGAATTGC 

27757  PGM_trP1_TF_as  CCTCTCTATGGGCAGTCGGTGACTGCTGTCCGCTCTGCC  
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Sequencing primers 

10764  LUCI_seq  GGCGTCTTCCATGGTGGCTTTACC 

17303  pGL3 primer GGCTGTCCCCAGTGCAAGTGCA 

17358  pDONR-Zeo CGGCAACTGCGTGCACTTCGT 

18305  GL4_bGlob for CTAGCAAAATAGGCTGTCCCCAGT 

18306  GL4_bGlob rev ACACCCTGAAAACTTTGCCCCCTC 

18537  GL4_bGlob for TTCGTCTCAGCCAATCCCTGGG 

18538  GL4_bGlob for CGCATGATGACCACCGATATGGC 

18539  GL4_bGlob for CTACACCCTGGTCATCATCCTGC 

18540  GL4_bGlob for GAACAGTAGTGGCAGTACCGGATTG 

18541  GL4_bGlob for AACACCCCAACATCTTCGACGCC 

18542  GL4_bGlob for AGTCAGCAACCATAGTCCCGCC 

18543  GL4_bGlob for CATCACCGCCGTAATCGACTGG 

18544  GL4_bGlob for GGCGGTAATACGGTTATCCACAGAA 

18545  GL4_bGlob for TGATCAGTGAGGCACCGATCTCAG 

21792  pLenti for  CGCCTCCATCCAGTCTATTAATTGTTGC 
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Methods 

2.6 Molecular biology methods 

Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction is a common method for in vitro amplification of a defined 

DNA sequence. The PCR was developed by Kary Banks Mullis (Mullis 1990; Mullis and 
Faloona 1987). For the amplification of the DNA a thermostable DNA polymerse is needed. 

This DNA polymerase (Taq polymerase) derived from the thermophilic bacterium Thermus 
aquaticus amplifies selected template DNA molecules  multiple times. In a PCR reaction two 

DNA oligonucleotides (primers) that bind complementary to flank the strech of the DNA 

template are needed because the Taq polymerase is unable of de novo DNA synthesis. After 
primer annealing the templates can be extended by the enzyme to make a full-length PCR 

product. Both strands of the DNA are replicated in every cycle of amplification. One of the 
primers always binds as a sense primer on the plus strand and the other one as an anti-sense 

primer to the minus strand. The newly generated PCR products from every round of 

amplification serve as DNA templates leading to exponential amplification kinetics. Taq 
polymerases make about 0.8 mismatches per 1 kb per amplification cycle. To improve the 

DNA quality for the amplification of long fragments we used DNA polymerases with a 3’-5’ 
exonuclease-dependent proofreading function. DNA polymerases with this nature are Pfu 

polymerases (Stratagene), derived from the thermophilic archaea bacterium Pyrococcus 

furiosus or Pwo polymerases (Roche), derived from the thermophilic archaea bacterium 
Pyrococcus woesei. 

 

Composition of the PCR reaction:    final concentration 

10x reaction buffer 

template DNA       500 pg-5 ng/reaction 
MgCl2  (included in the buffer)    1-4 mM 

Deoxynucleotide (dATP, dCTP, dTTP, DGTP)  0.2 mM each 
Forward primer (5-10 pmol/reaction)   0.2 μM 

Reverse primer (5-10 pmol/reaction)    0.2 μM 

Taq polymerase (0.5-1 U/reaction)    0.01 U/μL 
H2O 

 

A PCR reaction is composed of three main steps: 

1. Melting of the DNA 

2 .Primer annealing and 

3. Elongation. 

The PCR steps run at different temperatures and are repeated in cycles multiple times. For 

desinging PCR programmes the following rules were regarded: 

Initial denaturation: 2-5 min at 95°C was used to remove secondary DNA structures. This 

step was extended up to 15 min when a hot-start Taq polymerase (Qiagen) was used. Hot-

start polymerases need prolonged initial denaturation steps to get aktivated. 

Denaturation: 30 sec at 95°C; In this first step of a cycle the DNA strands are melted and 

become available for the primers. 
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Annealing: 20-30 sec at a temperature 4 degrees lower than the calculated primer Tm. In 

some cases a gradient PCR machine was used for optimization of the annealing temperature. 

Elongation: at 72°C – the optimal activity temperature for Taq polymerases. The elongation 
time was calculated depending on the size of the PCR product and the enzyme used. Taq 

polymerases need roughly 30 sec elongation time per kb and DNA polymerases with 

proofreading activity need 1 min/kb. 

Final extention: when the whished number of cycles is completed, the PCR will further be 

incubated 5-10 min at 72°C to ensure that smaller PCR products that could be produced due 

to incomplete elongation will be filled up. 

Designing primer sequences 

Primer sequences were designed to have a melting temperature between 54° and 62°C. In 
some cases lower and higher temperatures had to be used. With the following formula the 

melting temperature of the primer can be roughly calculated: 

Tm = (A+T)x2 + (G+C)x4 , 

In the formula A, T, C and G stand for the number of the corresponding nucleotide in the 

primer sequence. For a more precise Tm calculation we used an online algorithm that was 
developed by Warren A. Kibbe (Kibbe 2007), online available at 

http://www.basic.northwestern.edu/biotools/oligocalc.html 

Cloning of PCR products via pGEM-T cloning 

The pGEM-T vector from Promega is a linearized cloning-vetor with a single 3’–terminal 

thymidine overhang. PCR products that were amplified with Taq polymerase (DNA-
Ploymerse from bacteria strain Thermus aquaticus), were cloned into the pGEM-T vector. 

The procedure is based on the nature of the Taq polymerase often to add template-
independent a single deoxyadenosine to the 3’–ends of the PCR product. This aspect leads to 

a complementary binding between PCR-product and cloning vector. Therefore an efficient 

ligation, catalyzed by the T4 DNA ligase (Promega) is enabled. 

Classical cloning  

When the gene of interest is cloned into the pGEM-T transfer vector, the gene of interest was 
cut out for further cloning with the help of restriction enzymes: Type II DNA endonucleases 

from New England Biolabs. The vector of interest was digested with the same enzymes or 
enzymes that produce compatible ends as the gene of interest. After the incubation the DNA 

fragments were separated by gel-electrophoresis. The agarose gels contained 0.01% ethidium 

bromide (EtBr) in 1x TAE buffer. The DNA fragments were visualized via the intercalating 
nature of EtBr with UV light. In order to extract the elected DNA fragments, the bands with 

the correct length of base pairs were excised from the gel and purified with the help of the 
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Cleaned up fragments (insert and 

vector backbone in a molar ratio 3:1) were mixed with 1 μL of ligation buffer in 10x 

concentration and ligated with the help of 1 μL T4 DNA ligase (Promega) in a final reaction 
volume of 10 μL. After sufficient incubation the ligation mix was transformed into E. coli 

strain XL-1 blue, DH-5α, DH-10b (self-made competent bacteria) or commercial available E. 

coli strains like Mach1, MegaX, TOP10, Stbl3 (all from Invitrogen, life technologies). 

 

http://www.basic.northwestern.edu/biotools/oligocalc.html
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DNA digest with restriction endonucleases 

For DNA restriction digests type II restriction endonucleases were used. Type II restriction 

endonucleases induce cleavage mostly within their palindromic recognition sites of 4-8 
nucleotides. This cleavage result in 5’- or 3’-DNA overhangs (sticky ends) or blunt ends 

depending on the enzyme. In a digestion reaction with restriction enzymes 2-5 μg plasmid 

DNA was applied to 2-5 units of the enzyme in a reaction volume of 40-60 μL. The 
restriction enzyme activity unit ‘U’ defines the amount of enzyme that is needed to digest 1 

µg DNA in 1 hour. Compatible reaction buffer in 10x concentration was selected according 

to the supplier’s recommendations. In most cases the incubation time was 1 hour at 37C. 

Dephosphorylation of 5’-DNA fragment overhangs, vectors only 

After a DNA restriction digest of vector plasmid the DNA was treated with calf intestinal 

alkaline phosphatase (CIP, Roche). The enzyme CIP removes the terminal 5’-phosphate 
groups of dsDNA. Through this treatment the unwanted re-ligation of vectors is reduced. To 

a completed DNA digest (e.g. volume 40 µL) 6 µL CIP 10x buffer, 12 µL H2O and 2 µL 

enzyme was added. This mix was incubated for 20 min at 37°C. To stop the reaction the 

DNA was separated by agarose electrophoresis. 

Agarose gel electrophoresis 

For the separation of DNA fragments between 0.1 kb and 10 kb agarose gels of 1% - 5% 

were used. To 1x TAE buffer the proper amount of agarose was added. The mix of buffer and 
agarose was boiled in the microwave at 800 W until the suspension was clear; this took 

approximately 5-10 min. Then the liquid agarose solution was cooled for 15 min to avoid 

toxic fumes of EtBr. When adding the EtBr into the gel at too high temperatures the EtBr 
evaporates as toxic bromine gas. After cooling down the agarose gel EtBr was added to a 

final concentration of 1µg/µL. into a gel-casting form with combs that define the pockets for 
sample loading the fluid agarose was poured. For solidification the gel needed 20-60 min 

depending on the concentration of agarose and room temperature. Into a chamber with buffer 

1x TAE the gel was placed. The DNA samples were prepared with 10x loading dye and 
loaded into the pockets of the gel. Depending on the size of the electrophoresis chamber and 

the agarose concentration the voltage applied was 140-180 V.  

The migration in the agarose gel of DNA fragments is towards the positive electrode because 

the phosphates in the DNA backbones are negatively charged. 

Depending on the length of base pairs of the DNA fragments and the obstruction by the 
fishnet like structure of the agarose gel the speed of the migration is lowered. This results in 

the size-dependent separation of DNA fragments by gel electrophoresis. The DNA fragments 
were visualized by the fluorescence of the intercalated EtBr when exposed to a UV light 

source emitting 260 nm. 

The O’GeneRuler 50bp DNA ladder, O’GeneRuler 100bp DNA ladder and O’GeneRuler 1kb 
(Fermentas, Thermo Scientific) were used as molecular size standards. Gel chamber, combs 

and casting form were produced by the Max-Planck-Institute fine mechanics facility. 
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Isolation of DNA from agarose gels 

After identification of the desired DNA band in the agarose gel, the DNA fragment was 

excised under UV light (356 nm, Intas UV systems) by scalpel in order to purify the selected 
DNA. To avoid DNA crosslinks caused of UV this excision should be as fast as possible. The 

gel particle was transferred into an Eppendorf reaction tube and weighted. Then the DNA 
was purified with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) according to 

the manufacturer’s protocol. To solve the agarose to each 100 mg gel 200 µL buffer NTI was 

added and incubated for 5-10 min at 50°C with moderate shaking. When the gel was 
dissolved completely the DNA was loaded onto a silica membrane, washed two times with 

600 µL buffer NT3 and dried by centrifugation. Depending on the amount of DNA seen on 
the gel previously the DNA was eluted in 30-50 µL buffer NE. After elution the size and 

quality of the purified DNA fragment was checked via gel electrophoresis and the 

concentration was determined via Spectrophotometer. 

Ligation of DNA fragments 

DNA molecules were ligated by using T4 DNA ligase (Promega). This enzyme derived from 
the bacteriophage T4 catalyzes the formation of covalent phosphodiester bonds between free 

3’-hydroxy and 5’-phosphate overhangs of double stranded DNA. ATP and Mg2+ are 
cofactors needed for this reaction. The cloning reaction of DNA fragments, that is the ligation 

of an insert and a vector, incubated for 1 hour at room temperature or at 4°C overnight.  

Transformation of chemically competent bacteria 

An aliquot of chemically transformation competent E. coli, strain XL1 blue, DH5α, or Mach1 

was thawed o ice. 2-20 µL ligation mix or recombination reaction was added to 20-100 µL 
bacteria. This transformation mix was incubated for 20 min on ice. After incubation the 

bacteria were heat-shocked at 42°C for 44 sec and immediately put back on ice for 2 min. 
Then 800 µL of SOC-Medium was added and the bacteria incubated at 37°C for 1 hour with 

shaking (160 rpm). When plasmids were transformed that contained retroviruses (pLenti or 

pTripZ) or adeno-associated viruses (AAV) the incubation steps after transformation were 
done at 30°C. During the incubation step the bacteria start expressing the appropriate 

resistance against antibiotic. After incubation the bacteria were centrifuged and resolved in 
50 µL LB-medium. This volume was plated on pre-warmed LB-agar plates containing the 

appropriate antibiotics. For equally distribution of the bacteria sterile glass bullets were used. 

The plates were incubated over night at 30-37°C, depending on the encoded genes (viral 

genes should be expressed on 30°C for two days). 

Transformation via electroporation of bacteria 

For the electroporation the bacteria (E. coli strain DH-10b, MegaX (Invitrogen)) were thawed 

and diluted 1:2 with sterile 10% glycerol. Then 2-2.5 µL of ligation mix or recombination 
reaction was added to the bacteria. The transformation mix was transferred into 1mm 

electroporation cuvettes (BioRad). 

With the following settings the electroporation was done with ‘GenePulserII’(BioRad): 1.75 
kV, 25 µF capacitance and 200 Ω resistance. The bacteria were resuspended in 800 µL SOC-

medium and incubated at 30-37°C for 1 hour with shaking (160rpm). After incubation the 
bacteria were treated as described above in section ‘Transformation of chemically competent 
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bacteria’. 

Plasmid DNA purification 

The two main steps at plasmid DNA preparations are the alkaline cell lysis followed by SDS 
precipitation of genomic DNA and proteins. The plasmid DNA preparation is based on a 

modified protocol of Birnboim and Doly (Birnboim and Doly 1979). The plasmid DNA 
bound on a silica column under appropriate high-salt conditions, washed and eluted in buffer 

TE. Plasmid DNA purification was extracted from fresh bacteria cultures, grown overnight in 

LB-medium with appropriate antibiotics. For the preparation plasmid DNA purification Kits 
with different scales (Macherey-Nagel) were used. Detailed description of the preparation is 

available in the manufacturer’s protocol. 

Plasmid DNA mini preparation 

For plasmid DNA purification in small scale (4mL) the NucleoSpin Plasmid QuickPure kit 
(Macherey-Nagel) was used. In brief, 2-4 mL bacterial culture was pelleted and resuspended 

in 250 µL buffer A1 with RNAse A. Cell lysis was done with 250 µL buffer A2, this reaction 

was stopped with 300 µL pre-cooled buffer A3. To pellet the genomic DNA and proteins the 
mix was centrifuged for 10 min. The supernatant was loaded to the silica column, washed 

with 600 µL buffer AQ, dried by centrifugation and eluted in 100 µL buffer TE. 

Plasmid DNA midi preparation 

For plasmid DNA purification in middle scale (100 mL) the NucleoBond PC 100 kit 
(Macherey-Nagel) was used. In brief, 100 mL bacterial culture was pelleted and resuspended 

in 4 mL buffer S1 with RNAse A. Cell lysis was done with 4 mL buffer S2, this reaction was 

stopped with 4 mL pre-cooled buffer S3. The silica columns were equilibrated with 2.5 mL 
buffer N2. The lysate was clarified through pressing into a folded filter. The cleaned lysate 

was loaded to the silica column, washed with 10 mL buffer N3, dried and eluted in 5 mL 
buffer N5. The eluted plasmid DNA was precipitated with 3.5 mL isopropanol. The DNA 

pellet was resolved in 100 µL buffer TE. After DNA concentration determination the DNA 

concentration was adjusted to 1 µg/µL. 

Plasmid DNA maxi preparation 

For endotoxin free plasmid DNA purification in big scale (200-300 mL) the NucleoBond 
Xtra Maxi EF kit (Macherey-Nagel) was used. In brief, 200-300 mL bacterial culture was 

pelleted and resuspended in 12 mL buffer RES-EF with RNAse A. Cell lysis was done with 
12 mL buffer S2, this reaction was stopped with 12 mL pre-cooled buffer S3. The silica 

columns were equilibrated with 2.5 mL buffer N2. The lysate was clarified through pressing 

into a folded filter. The cleaned lysate was loaded to the silica column, washed two times 
with 10 mL buffer N3 and two times with 8 mL buffer N4, dried and eluted in 5 mL buffer 

N5. The eluted plasmid DNA was precipitated with 3.5 mL isopropanol. The DNA pellet was 
resolved in 100 µL endotoxin free buffer TE. After DNA concentration determination the 

DNA concentration was adjusted to 1 µg/µL. 
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Generating frozen stocks of bacterial cultures 

To avoid the time consuming process of re-transformations of plasmids into bacteria, frozen 

stocks were prepared. After cloning and sequence verification of constructs, 2 mL of fresh 
bacterial culture were pelleted by centrifugation. The pellet was resuspended in 1 mL of 

bacterial freezing medium. The samples were shock frosted in liquid nitrogen and stored at -
80°C. Viable bacteria were recovered from the frozen stocks by scratching the frozen surface 

of the sample with a pipette tip and inoculating LB cultures. 

Photometric concentration determination of nuclear acids 

The purity and concentration of nucleic acid solution can be analyzed by spectrophotometry. 

The concentration of a solution is directly proportional to its extinction or absorption, 

according to the Lambert-Beer law, that is 

A = ε*c*l 

With ε, that is the molar extinction coefficient (unit M-1 cm-1), c representing the 

concentration (unit M) and l being the optic path length (cuvette thickness) where the light 

passes through the sample (unit cm). The extinction coefficients of nuclear acids at λ = 260 

nm are: 

Guanine:  ε = 12010 M-1 cm-1 

Cytosine:  ε = 7050 M-1 cm-1 

Adenine:  ε = 15200 M-1 cm-1 

Thymine:   ε = 8400 M-1 cm-1 

(Uracile:  ε = 8111 M-1 cm-1)  

The absorption at 260 nm (maximum of absorption of nucleic acids) and 280 nm (maximum 
of absorption of aromatic amino acids in proteins) of the nucleic acid solution was 

determined by using a spectrophotometer. For a reliable measurement it is really important 

that the value for the absorption at 260 nm is arranged between 0.1 and 1 to fit the linear 
range of the spectrophotometer. Therefore a dilution of the sample was necessary. For the 

determination of the concentration the following relation was applied: 

1 OD260 (optical density at 260 nm) = 50 mg/mL for double stranded (ds) DNA 

1 OD260 = 40 mg/mL for single stranded (ss) RNA 

1 OD260 = 33 mg/mL for ss oligonucleotides 

For the determination of the concentration of ds DNA following equation was used: 

C (µg/µL) = OD260 * 50 * dilution factor/1000. 

The purity of a sample was assessed by the relative absorption values at 260 nm over 280 nm. 

Values between 1.8 and 2.0 exist in a clean DNA or RNA preparation. Significant lower 

values indicated a protein contamination of the sample. 
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DNA sequencing 

DNA sequencing was done at the Institute’s DNA Core Facility (Department of 

Neurobiology, MPI of Experimental Medicine, Göttingen) lead by Fritz Benseler. DNA 
sequencing is based on a modified dideoxy chain reaction termination method according to 

Sanger (Sanger et al. 1977). The procedure is based on a linear DNA amplification in the 
presence of DNA polymerase, a sequencing primer, deoxynucleoside triphosphates (dNTPs), 

and modified nucleotides (dideoxyNTPs), that terminate the DNA strand elongation. 

DideoxyNTPs stochastically embedded into the newly synthesized DNA terminating the 
synthesis by replacing the normal dNTPs. The PCR products differ in their length and were 

separated by capillary electrophoresis. As each of the four dideoxyNTPs is coupled to a 
different fluorescent dye the DNA fragments can be characterized by size, and the terminal 

nucleotide can be identified. The DNA sequence is determined through a repetitive 

procedure. 

Oligonucleotide synthesis 

Oligonucleotide synthesis was done at the DNA Core Facility (Max-Planck-Institute for 

Experimental Medicine).  

Analysis of DNA sequences 

Using the DNAstar software, version 8, provided by Lasergene the sequencing data were 

analysed. The sequences were also aligned to databases of the ‘National Center for 

Biotechnology Information’ (NCBI, http://www.ncbi.nlm.nih.gov). 

DNA precipitation 

For concentration of DNA samples, DNA solutions were precipitated. The volumes of the 

samples were adjusted to 100 µL. Then 1 µL of glycogen or pellet paint was added for 

visualizing the precipitated DNA. After one vortexing step 10 µL of 3M Sodium-Acetate pH 
5.2 (NaAc) was added and the sample was mixed via vortexing. Then 250 µL of 100% 

ethanol was added and mixed via vortexing again. The sample was incubated at -20°C for 1 
hour and pelleted by centrifugation at 13.000 rpm for 20 min. The pellet was washed two 

times with 80% ethanol and centrifugation at 13.000 rpm for 5 min each. After a drying step 

the sample was resolved in a desired volume of buffer TE (pH 7.5). 

Gateway recombination cloning – One way Gateway cloning 

Classical cloning relies on type II DNA endonucleases and T4 DNA ligases divided in 
several steps with suboptimal efficiancy. Due to this fact it is a time consuming process. In 

contrast to classical cloning the Gateway cloning technology from Invitrogen (Invitrogen, life 
technology) is based on site-directed recombination enzymes derived from the bacteriophage 

lambda, that are able to transfer DNA fragments between vectors (Hartley et al. 2000), and 

more efficient. Detailed information about the Gateway cloning technology can be found 
online in the manufacterer’s protocol. The desired DNA sequence was ampilfied via PCR in 

order to clone these product. The DNA primer carry two specific recombination sites: attB1 
and attB2. In a so called ‘BP raction’, catalysed by the Gateway BP Clonase II enzyme mix, 

containing the viral recombination enzyme Integrase, the E. coli-encoded protein Integration 

http://www.ncbi.nlm.nih.gov/
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Host Factor and the reaction buffer, the PCR product was recombined with the pDONR 

vector carrying attP1 and attP2 recombination sites. Each BP reaction included: 

attB-PCR product  3 µL (PCR purified, 100 ng) 

pDONR_Zeo   1 µL (100 ng) 

BP clonase II   1 µL 

Total reaction volume5 µL 

The incubation of the reaction was at room temperature for 1 hour or at 4°C overnight. After 

the sufficient incubation 1 µL was used for a electroporation of DH-10b (selfmade, MPI EM) 
bacteria. The bacteria were selected by Zeocine resistance, analytically DNA digested and 

sequenced. The bacteria that contained the unrecombined pDONR vector could not produce 

any colonies, because pDONR vectors carry within theis recombination cassette a gene called 
ccdB flanked by the recombination sites. This ccdB (control of cell death) gene encodes a 

protein that is inhibiting the GyrA subunit of DNA gyrase. The ccdB gene was replaced by 
the respective insert during the recombination. Through the ccdB gene a selective growth of 

only the correct recombined clones was ensured. Correct recombined contructs carrying the 

pDONR backbone and the desired insert are desingated ‘entry clones’ (pENTR). These 
pENTR serve as a shuttle vector for fast transfer of the insert into any expression vector of 

interest.  The pENTR plamids carry attL sites as result of the recombination between attB and 
attP sites. In the last recombination, for generating expression constucts (pEXPR), the attL 

sites recombine with the attR sites of a so-called destination vector (pDEST). This 

recombination named ‘LR reaction’ is catalysed by the Gateway LR Clonase II enzyme mix, 
containing the viral enzymes Integrase and Excisionase, the Integration Host Factor and the 

reaction buffer. Each LR reaction contained: 

pENTR (75-100 ng)  1 µL 

pDEST (75-100 ng)  1 µL 

LR clonase II   1 µL 

H2O    2 µL 

Total reaction volume 5 µL 

The reactions were incubated at room temperature for 1 hour or at 4°C overnight. After a 

sufficient incubation 1 µL of the reaction mix was transformed by electroporation into DH-

10b bacteria.  

The following sequences were added to the 5’-end  of the primers to provide the PCR product 

with the abbB1 and attB2 recombination sites: 

attB1 5’- GGGGACAAGTTTGTACAAAAAAGCAGGCTCC –insert specific sequence – 3’ 

attB2 5’- GGGGACCACTTTGTACAAGAAAGCTGGGTC –insert specific sequence- 3’ 
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Synthesis of an Oligonucleotide Library by Agilent Technologies 

The ordered Oligonucleotide library (Oligo library) has to have a special design. To make it 

possible to amplify the Oligo library they need to have flanking primer regions on the 5’- and 
on the 3’-end. In the Oligo inside there is a sequence so called Dec-primer region. To that 

sequence fits the decoding primer. The name decoding primer because this primer region 

stands in front of the EXT in 5’-3’ direction, and the reverse flanking primer region stands 
behind the EXT. So the oligo can be decoded with a PCR where the Dec-primer and the 

reverse flanking primer are used. The Cis-element is combined with a TATA-minimal 

promoter and stands inbetween the 5’-flanking primer region and the Dec-primer region. 

The 180mers from the sythesized Oligo library were amplified by Polymerase Chain 

Reaction (PCR) using the forward and reverse flanking primer. Several established DNA 
polymerases were tested. To get an acceptable yield and high qualitiy of the DNA we used 

the HotStartTaqPlus with its proofreading function. 

The amplified Oligonucleotides were loaded on a high percentage polyacrylamide gel to get a 

better size resolution. The corresponding gel band was cut out and the amplfied DNA was 

extracted. Then the PCR product was used as template DNA for a re-PCR using attB primer 
for Gateway cloning. These PCR products were also purified over gelelectrophoresis and 

were subcloned into DONR vectors for cloning into the corresponding EXPR vectors. 
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2.7 Cell biology Methods 

Coating of plastic surfaces with Poly-L-Lysine (PLL) 

For a better adherence of low-detaching cells (PC12, 293HEK_FT) culture dishes were pre-
treated with 0.02 mg/mL PLL in water. After 1 hour incubation at 37°C the dishes were 

washed two times with sterile water and dried under the laminar air flow of the tissue culture 

hood. The coated dishes were stored at 4°C for up to one month. 

Passaging of eukaryotic cells 

Eukaryotic cell lines (293HEK, 293HEK_FT) were cultivated on 10 cm or 15 cm plastic 
dishes at 37°C in a humidified incubator containing 5% CO2. When the cells reached a 

confluence of 80-90%, cells were subcultured by washing two times with isotone buffer PBS 

and mild treatment with 1 mL trypsin/EDTA for 1-3 min at 37°C until the cells were 
detached from the culture dish. With 9 mL fresh growth medium the reaction was stopped 

and the cells were pelleted by centrifugation for 3 min with 700 rpm. After centrifugation the 
supernatant was discarded and the cells were resuspended in 10 mL fresh growth medium. 

For further culturing of the cells 1 mL out of the suspension was plated onto the dishes 

(coated or uncoated depending on the cell line type). 

Thawing of eukaryotic cell lines 

Frozen stocks of eukaryotic cell lines were kept in 2 mL cryotubes at -196°C dipped in liquid 
nitrogen. An aliquot was quickly thawed at 37°C in the waterbath, transferred into a 15 mL 

falcon tube containing 1 mL pre-warmed fresh growth medium and centrifuged for 3 min at 

700 rpm. The supernatant was discarded and the pellet was resuspended in fresh growth 

medium and plated out onto a 15 cm culture dish. 

Generating frozen stocks of eukaryotic cells 

To get a good quality of well growing cells the cells were preferentially frozen at a stage of 

around 60-70% confluence and low number of passages. After a treatment with trypsin the 

cells were pelleted by centrifugation and resuspended in pre-cooled freezing medium 
containing a high concentration of serum preferentially Fetal bovine serum (FBS, up to 30%) 

and DMSO with a final concentration of 5-10% to avoid the formation of water crystals. In 
each aliquot of frozen cells the density was between 5-8 million cells per 1 mL medium. The 

tubes were transferred into a freezing box with isopropanol and directly frozen at -80°C. 

After one day at -80°C the tubes were transferred to -196°C into liquid nitrogen for long term 

storage.  

Transfection of mammalian cell lines 

For luciferase assay the cells were typically transfected in 96-well plates. For sequencing 

experiments and protein analysis by western blotting preferentially cells were transfected in 

6-well plates. Depending on the cell line and the well-size, for transfection different cell 

numbers were plated as indicated below: 

 

Cell line 96-well 6-well 10 cm dish 

293HEK 20.000 500.000 3-5 x10^6 
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WiDr 20.000 500.000 3-5 x10^6 

SH-SY5Y 15.000 400.000  

U2OS 15.000 400.000  

MCF-7 15.000 400.000  

    

For transfection Lipofectamine 2000 Transfection Reagent (Invitrogen, life technologies) was 
used to introduce plasmid DNA into mammalian cells. Most of the time the cells were 

transfected in 96-well flat bottom and 6-well cell culture plates (BD Falcon). To achieve 
optimal results the original protocol of the manufacturer was modified. For transfections 

mini- as well midi-prep quality DNA was used. Per one well in 96-well plate 10-60 ng of 

plasmid DNA and 0.2 µL of the Lipofectamine 2000 were diluted in 15 µL Opti-MEM 
(Gibco, Invitrogen) each. After an incubation of 5 min the two solutions were combined 

resulting in 30 µL, vortexed for 2 sec and incubated for 20 min at room temperature. After 
sufficient incubation the growth medium was completely removed from the plate and the 

cells were covered with 30 µL per well Opti-MEM containing the DNA-Lipofectamine 

transfection complexes. After an incubation of 2 hours at 37°C, 60 µL of fresh pre-warmed 
growth medium per well was added to the cells. For transfection in 6-well plates the DNA 

amount, the Lipofectamine 2000 (LF2000) and Opti-MEM were upscaled. In 6-well plates 

300-1000 ng plasmid DNA and 7 µL LF2000 were used in 500 µL Opti-MEM each. 

Generation of stable cell lines 

To produce stable cell lines expressing the Cis-element libraries the plasmids carried a 
hygromycin B (Hygrogold, Invivogen) resistance gene as selection marker. To have a high 

complexity 5 million cells on a 10 cm dish were transfected with 10 µg plasmid  DNA as 
described above – for the transfection 40 µL of Lipofectamine 2000 was used. The cells were 

incubated for 24 hours, then the selection using lethal hygromycin B concentrations for non-

transfected was started. Two days after starting the selection the cells were passaged and 
1/10th was plated on a 15 cm dish for counting the clones and estimating the complexity. 

After one week selection all cells without hygromycin B resistance were dead. The stable 

cells were cultivated in large scale for generating of frozen stocks. 

Following concentrations of the hygromycin B was used in: 

293HEK  75 µg/mL 

SH-SY5Y  150 µg/mL 

WiDr   400 µg/mL 

MCF-7  50µg/mL 
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Generation of lentiviruses 

For some cancer cell lines it is not possible to get foreign plasmid DNA into these cells 

neither by transfection with Lipofectamine2000 or other phospholipid-particles nor by 
electroporation of the mammalian cells. For those non-transfectable cell lines we used 

lentiviral expression systems to infect these cells. To fit in our approach we modified 

commercial available viral systems as the pLenti6/V5-DEST (Invitrogen, life technologies) 
and pTripZ (Open biosystems, Thermo Scientific) by classical cloning. In order to get a 

reproductive-incompetent biological safe virus the viral genes gag, pol and env are not 
located in one plasmid. We used a two plasmid packaging system with pMD2.G and psPAX2 

that are responsible for the correct packaging of the viral RNA. The pLenti6/V5 and pTripZ 

plasmids carried the viral information of the RNA, in our case the Cis-element libraries 
coupled to EXTs. A virus is only formed in the case that all three plasmids co-transfect into 

the same cell. For stability reasons of the viral particles we decided to use the pTripZ only. 
For the production of the viruses we used the 293HEK_FT cell line. The 293HEK_FT cells 

are optimized cells that stably expresses the SV40 large T-antigen under the control of the 

human CMV promoter and facilitates optimal production of virus. To generate optimal virus 
titer the cells had to have a density of 60% on a 15 cm dish. Two hours before transfection 

the cells got 15 mL of fresh growth medium without any antibiotics (Penicillin, 
Streptomycin). Then the DNA was mixed in a strict ratio. We used 15 µg of pTripZ with Cis-

element library (transfer plasmid), 10 µg of psPAX2 and 5µg of pMD2.G diluted into 500 µL 

of pre-warmed Opti-MEM and mixed by vortexing. To get an impression of the ability to 
infect cells we added 1 µg of a pTripZ_EYFP construct driven by a CMV promoter. As a 

transfection reagent we used the polyethylenimine (PEI) that build complexes with the DNA. 
The ration between DNA and PEI was 1:4 (w/v), so 120 µL PEI was added to the warm DNA 

Opti-MEM mix and vortexed for 10 sec. The the mix was allowed to incubate for 10 min at 

room temperature. After incubation the mix was added drop wise to the dish and the cells 
were incubated overnight at 37°C. The next days (2-3 days) the medium was harvested and 

stored at 4°C and fresh growth medium without antibiotics was added to the cells. Due to the 

fact that lentiviruses get secreted out from the cells the harvested medium was purified. 

Enrichment of viral particles 

To get rid of dead cells and cellular particles the harvested medium was centrifuged in 50 mL 
falcons for 10 min at 3000 rpm. Then the supernatant was filtered by a 0.45 µm syringe filter 

(Millex, Millipore). The filtered medium containing viral particles was concentrated using the 
Ultra-15 Centrifugal Filter Unit (Amicon, Millipore) and centrifugation for 15 min at 3000 

rpm. This concentration by centrifugation was repeated until 2 mL of supernatant was left. 

The viruses were washed two times with 10 mL fresh DMEM and concentrated again. Then 

the viruses were used directly for infection or stored at -80°C. 

Titration of viral particles 

Before the viruses were stored 5 µL of virus solution was used to determine the viral titer. To 

get rid of genomic or plasmid DNA these 5 µL virus solution were treated with DNAse 

(Promega) at 37°C for 30 min in a 30 µL reaction. To stop the DNAse digest 3 µL of stop 
solution was added and to open the viral capsids for RNA release the reaction was heated for 

10 min at 75°C. Then 4 µL out of this reaction were used for a cDNA synthesis. With a 

quantitative-PCR reaction the titer of the virus was calculated. 
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Generating stable cell lines via viral infection  

To generate stable cancer cell lines, the cells were infected with a MOI of 10. MOI is the 

Multiplicity of infection, it is the ratio of infectious virus particles to the number of cells in 
culture, and for every cell on the dish 10 viruses were added to the medium. The virus 

libraries do not carry the Cis-elements with the EXTs only; they also carry a Puromycin 

resistance as selection marker. Two days after infection some cells expressed the EYFP 
construct visible by fluorescent microscopy. After two weeks of selection with Puromycin all 

cells that were not infected died. The stable cells were cultured and some aliquots were 

frozen in liquid nitrogen for long term storage. 

Luciferase reporter gene assay 

For normalization of the measurements of the firefly luciferase (ff-luciferase) activity the 
readings of a different reporter gene, e.g. renilla luciferase (renilla) were used. Renilla is 

expressed under a constitutively active promoter. To correct differences in cell numbers, 
transfection efficiency, RNA and protein expression and general performance of the cells 

from well to well this type of normalization is used. To get rid of cell performance dependent 

expression differences we used a combination of three different plasmids to express the 
renilla luciferase under the control of three different promoters (renilla-Mix). The amount of 

plasmid DNA was adjusted to balance the expression levels from each of the promoters 
(SV40:TK:CMV = 10:2:1). The renilla-Mix was co-transfected along with many firefly 

reporter gene assays. For the measurement of endogenous transcription factor activity by 

binding on Cis-elements and stimulation with drugs only the renilla plasmid with the TK-
promoter was used. To monitor the transfection efficiency an equal amount of pEYFPnuc, a 

CMV-promoter driven expression of the nuclear localized Enhanced Yellow Fluorescent 

Protein was included (renilla-Mix : pEYFP = 1:1). 

Composition of the renilla-Mix: 

pRLuc/SV40   100 µg 

phRLuc/TK   20 µg 

phRLuc/CMV   10 µg 

pEYFPnuc   13 µg 

10 mM Tris pH 8.5 up to  1.3 mL final conc. 110 ng/µL 

Luciferase assays with cell lysis were always performed in 96-weel format. Per well 10-60 ng 
plasmid DNA was transfected including 10 ng renilla-Mix. To ensure the statistical reliability 

of the results each assay was performed in 6-12 replicates. This means usually 6-12 wells on 
the 96-well plate were transfected with the same DNA-Lipofectamine master mix. Depending 

on the design of the experiment the cells were allowed different time to express the 

recombinant proteins and reporter genes. After finishing the experiment the growth medium 
was removed completely and the cells were lysed with 30 µL per well Passive Lysis Buffer 

(Promega). The plates were incubated for 20 min at room temperature with shaking (200 
rpm) and assayed immediately or frozen at -20°C. For the measurement the lysates were 

transferred into a white plastic microtiter plate to reduce the light signal leakage and cross 

mixing due to light reflection. The dual luciferase assay measuring the bioluminescence of 
both firefly and renilla luciferases was done with the help of the Microplate reader Mitras 

LB940 (Berthold Technologies) and the associated software MicroWin 2000. The Microplate 
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reader injected to each well 75 µL of the firefly substrate, the reaction was allowed to 
stabilize for 2 sec and for the next 10 sec the light signals were collected. Then 75 µL of 

renilla substrate was injected and after 2 sec stabilization time the signals were collected for 
another 10 sec. Due to a high substrate specificity of the firefly and renilla luciferase during 

the measurement there is no cross-activation. Moreover the activity of the ff-luciferase is 

inhibited by the pH conditions of the renilla substrate. 

The data were exported from MicroWin2000 and analyzed with the help of Excel 

(Microsoft). The firefly readings were divided by the corresponding renilla readings 
producing values in relative luciferase units (RLU). An average over the replicates (6-12 

replicates) was taken and the standard deviation was calculated. 

Online Luciferase assay measurement 

The measurement of luciferase activity can not only be done by a protein assay with cell 

lysates. We also measured the luciferase activity in living cells. These were stable cell lines 
containing the pGL4 plasmid with Cis-elements coupled to EXTs. The cell lines were split 

onto 3.5 cm cell culture dishes one day before activity measurement. The luciferase activity 

was measured for 6 hours with adding 0.1 mM luciferin to normal growth media to get the 
basal activity. Then the cells were starved for 18 hours in starvation media containing 0.1 % 

FBS and 0.1 mM luciferin. After starvation the cells were activated with growth media 
containing 10% FBS and 0.1 mM lucinferin. The activation of the cells was measured for up 

to 30 hours. For the measurement we used a light-tight incubator coupled to a Hamamatsu 

photomultiplier tube detector assemblies (Yamazaki et al. 2000, Yoo et al. 2004) to monitor 
the bioluminescence. With the LumiCycle v 2.0 software from Actimetrics and MS Excel the 

data were analyzed.  

Phenol Chloroform extraction of genomic DNA (gDNA) 

An adequate number of stable cells were pelleted by centrifugation. The supernatant was 

discarded and the cells were lysed by freezing at -20°C for 1 hour, the pellet was thawed and 
solved in 1 mL DNA extraction buffer. Then 2.5 µL of RNAse A was added and incubated 

for 3-4 hours at 37°C shaking. After the RNA digest 40 µL of proteinase K was added and 
the solution was incubated at 55°C overnight. The solution was transferred into a 2 mL 

Eppendorf reaction tube (Eppi) and the gDNA was extracted by adding 1 mL of Phenol. The 

sample was mixed by a rotation wheel for 10 min at room temperature. Then the phases were 
separated by centrifugation for 10 min at 3500 rpm. The upper phase wes transferred into a 

new 2 mL Eppi and 1 mL Phenol was added. The solution was mixed by rotation wheel for 
10 min at room temperature and the phases were seperated by centrifugation for 10 min at 

3500 rpm. The upper phase was transferred into a new 2 mL Eppi and 1 mL of a mixture of 

Phenol/Chloroform/Isoamyalcohol (25/24/1) was added and mixed by rotation for 10 min at 
room temperature. The phases were separated by centrifugation for 10 min at 3500 rpm again 

and the upper phase was transferred into a new 2 mL Eppi. Then 1 mL of 
Chloroform/Isoamylalcohol (24/1) was added and mixed by rotation for 10 min at room 

temperature. The phases were separated by centrifugation for 10 min at 3500 rpm and the 

upper phase was transferred into a new 2 mL Eppi. The gDNA was precipitated by adding 1 
mL of Isopropanol. The mixture was inverted for 2-3 times and the DNA was pelleted by 

centrifugation for 30 min at 13000 rpm at 4°C. The pellet was airdried and resuspended in 

100 µL of buffer TE.  
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RNA isolation 

To get high quality and yield of RNA we used the RNeasy Mini Kit (Qiagen). Cells stably 

expressing Cis-elements coupled to EXTs were lysed in an appropriate volume of RLT lysis 
buffer and the lysate was homogenized by pipetting up and down. The lysate was mixed with 

an equal volume of 70% ethanol vortexed very short and loaded immediately to a RNeasy 

spin column and cetrifuged for 15 sec at 10.000 rpm. The column was washed with 350 µL 
buffer RW1 and centrifuged for 15 sec again. To get rid of genomic DNA an on-column 

DNAse digest (DNAse kit, Qiagen) was performed. Per sample 80 µL of DNAse diluted in 
buffer RDD was added to the column and incubated for 15 min at room temperature. Then 

the column was washed with 350 µL buffer RW1 and centrifuged for 15 sec at 10.000 rpm. 

Then the column was washed two times with buffer RPE dried by centrifugation and the 

RNA was eluted in 100 µL of RNAse free water. 

RNA precipitation 

The RNA was precipitated with ammonium acetate salt and ethanol (EtOH). To 100 µL of 

RNA solution 50 µL of 7.5 M ammonium acetate was added and mixed by vortexing. For a 

better visualization of the pellet 1 µL of glycogen solution (20 mg/mL, Roche) was added 
and mixed by vortexing. The RNA was precipitated by adding 450 µL of 100% EtOH. The 

samples were mixed by vortexing and the RNA was pelleted by centrifugation for 30 min at 
13000 rpm. The RNA pellet was washed with 1 mL of 80% EtOH, airdried and resuspended 

in 5-10 µL RNAse free water. 

First Strand cDNA synthesis 

First srand cDNA was generated from 0.5-2 µg total RNA using the Superscript III reverse 

transcriptase (Invitrogen, life technologies). For each sample of an experiment equal amounts 
of RNA were precipitated and resupended in 4.5 µL RNAse free water, 1 µL of the random 

nonamer primer (# 4542) was added to the final volume of 5.5 µL. The samples were heated 

for 2 min at 70°C and placed on ice. Then the other components were added: 

5x First Srand buffer      2 µL 

0.1 M DTT       1 µL 

dNTP mix (10 mM each)     0.5 µL 

Superscript III reverse transcriptase (200 U/ µL)  1 µL 

Total reaction volume     10 µL 

To allow the annealing of random nonamer primers the samples were incubated for 10 min at 

25°C. For theRNA dependent DNA synthesis the samples were incubated at 50°C and 55°C 
each 45min. After the DNA synthesis the samples were heated for 5 min at 85°C for heat 

inactiovation of the enzyme. 1 µL out of the cDNA synthesis was used for PCR 

amplification. 

Next Generation Sequencing via Ion Torrent PGM 

Next Generation Sequencing (NGS) is a general term for new sequencing methods. These 
methods are faster and cheaper than the classical sequencing by Sanger`s technique. However 

the main advantage is that sequencing is done in parallel as a high throughput method. Most 

of the NGS methods are based on a very expensive optic to detect photons. The technique we 
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used is based on the measurement of protons. Jonathan M. Rothberg (Rothberg et al. 2011) 
developed this method. In brief, during the elongation of a DNA template a proton is released 

by the hydrolysis of the dNTP to a dNMP plus the diphosphate. The released proton changes 
the pH to 0.02 pH units per single base incorporation. This pH shift is measured and 

converted to a voltage and digitalized by electronics. If the wrong base is in the reaction well 

no proton is released and the base will be washed out. A signal processing software changes 
the raw data into sequences in each well. This technique allows the sequencing of the reporter 

gene libraries TF, Xie and Co with a high complexity.  

The EXTs in the gDNA and the synthesized cDNA pools are amplified via PCR using the 

Dec-primer. A balancer as an internal control and bioinformatic tool is added to the PCR 

reaction in a dilution of 1:10.000. This balancer mix are unique EXTs with the corresponding 
primer sites at 3’ and 5’ end. After this amplification step a so called code-sequence with an 

adaptor-sequence on its 5’ end is added to the amplified EXTs in a second PCR. Each sample 

gets an unique code to identify the signals out of the sequencing data.  

The PCR products of the Code-PCR will be purified. After measurement of the DNA 

concentration the samples will be diluted. In the next step the samples bind with their adaptor 
sequence on so called Ion Sphere Paticles (ISPs). These particles will be the template for a 

next amplification step. After the PCR amplification the Ion Spheres will be purified and 
enriched. Before every sequencing run the PGM has to be cleaned and initialized. For every 

run Control Ion Sphere Particles are added as an internal quality control to the enriched ISPs. 

In the next step the sequencing primers are annealed to the templates. The sequencing chip 
will be tested on a automatic self-test with the Ion Torrent PGM. After the Chip Check the 

sequencing polymersae is added to the reaction mix (loaded ISPs, Control ISPs and primers) 
and incubated for 5 min at RT. Then the sequnecing chip is loaded with the reaction mix by 

pipetting slowly the complete reaction volume onto the chip without producing air bubbles. 

Then the chip will be cetrifuged for 30 sec to fill the micro wells with Ion Sphere Particles 
and the polymerase. In the sequencing run itself the bases are loaded stepwise onto the chip. 

If the correct base is in the microwell the pH is changed, transformed into voltage and 
measured. The signals will be transformed into sequences by an automated software from Ion 

Torrent. The analysis of the raw data will be done with R, a free ware software. 

 

2.8 Biochemical methods 

Western Blotting 

For the immunological detection of proteins in biological samples we performed western 

blotting as a classical method (Towbin et al. 1992). In most cases proteins were 

overexpressed in 293HEK cells by transfection of plasmid DNA carrying the desired protein 
tagged with a polypeptide for better antibody recognition. Depending on the experiment the 

cells were lysed between 24 and 48 hours after transfection in different lysis buffers.  

Cell lysis 

Depending of the experiment and the protein fraction to be analyzed different lysis buffers 

were used. Lysis buffers differ in their ability to solubilize the proteins, the higher the sodium 
dodecyl sulfate (SDS) or other ionic detergents the higher the protein yield like RIPA buffer. 

But these buffers denature proteins. For some applications and antibodies native non-
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denatured proteins are needed. There lyse buffers without detergent or with relatively mild 

non-ionic detergents like Triton X-100 buffer have to be used. 

Sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE) 

Depending on the amino acids and their chemical character the charge of proteins vary and 

they have no linear relationship between weight and charge as DNA molecules have. To 

make a directed migration of proteins in an electric field possible SDS is used as a detergent 
and produces a negative charge on the protein surface. The tertiary and secondary structure of 

the proteins will be destroyed after the heat denaturation step. The polypeptide chains expose 
the hydrophobic regions and the lipophilic alkyls of the SDS bind via non-covalent bonds at 

the stoichiometry of 1 SDS per 2 amino acids. An additional treatment with dithiothreitol 

(DTT) reduces all intra- and intermolecular disulfide bonds. 

The protein lysates were mixed with a 4x NuPAGE LDS (lithium dodecyl sulfate) sample 

loading buffer and DTT with a final concentration of 0.1 M. The samples were heated for 10 
min at 70°C. 25-30 µg of protein lysate was loaded into the pockets of the NuPAGE Novex 

Bis- Tris gels (Invitrogen, life technologies). For the SDS-PAGE we used the XCell 

SureLock Mini-Cell chamber (Invitrogen) that was cooled by ice and the pre-cooled 

NuPAGE running buffer. The electrophoresis was performed at 200V for 30 min.  

Transfer of proteins to membranes 

According to the manufacturer’s protocol the transfer of proteins from a SDS-gel to a 

methanol activated PVDF membrane was performed with the XCell SureLock Western Blot 

System (Invitrogen) in transfer buffer containing 20% methanol. The transfer was performed 

at 30V for 2 hours and cooled by ice. 

Detection of the proteins 

After a successful transfer of the proteins the membrane was incubated in blocking buffer 

(5% non-fat milk powder in TBS-T for normal antibodies, 5% BSA in TBS-T for α-phospho 

antibodies) for 1 hour shaking at room temperature. Then the membrane was incubated with 
the primary antibody in a dilution 1:1000 in blocking buffer for 1-2 hours at room 

temperature or overnight at 4°C. After the incubation with the primary antibody the 
membrane was rinsed three times with TBS-T and washed four times in TBS-T shaking for 5 

min at room temperature. Then the membrane was incubated with the secondary antibody 

that is conjugated with horseradish peroxidase (HRP) for 1 hour in a 1:5000 dilution with 
blocking buffer at room temperature. After a sufficient incubation the membrane was rinsed 

three times with TBS-T and washed seven times in TBS-T shaking for 7 min at room 
temperature. This last washing step is the most critical step to get low background signals. 

For the detection the membrane was incubated for 1 min in enhanced chemiluminescence 

(ECL) detection solution mix (Perkin-Elmer) by gentle agitation at room temperature. Excess 
reagent was drained off and the membrane was placed into transparent plastic folders. The 

visualization of the signals was performed with the ChemoCam Imager (INTAS) a 

chemiluminescence scanner. The data were analyzed by the software (INTAS). 
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Co-Immunoprecipitation (Co-IP) 

The immunoprecipitation is an often used method to precipitate a peptide-antigen out of a 

solution via a specific binding of the antigen to an antibody. A Co-IP is used to identify 
binding partners of that peptid-antigen. When the target protein has a strong binding with its 

interaction partner, the partner will be pooled out of the solution, too.  

In brief, the cell lines were split onto 6-well dishes 18 h before transfection. On the next day 
the cells were transfected with the needed experiment setup, including the binding and 

interaction partners and binding controls. 24 hours after transfection the cells were washed 
with pre-cooled 1x PBS buffer one to two times. All following steps were done on ice to 

protect the proteins from degradation, especially the phosphorylated ones. Then 600µl of pre-

cooled Triton-X cell-lysis-buffer were added to the cells. After the lysis step the samples 
were sonicated two times for ten seconds to break up the nuclei. To spin down the proteins 

and get rid of the cell debri a centrifugation step for ten minutes at 13.000 rpm and 4°C 
followed and the protein concentration was measured. Then the pre-washed and prepared 

Anti-Flag-M2 beads were added to the samples. The Anti-Flag-M2 beads contain a mouse 

antibody that recognizes every flag-tagged protein, binds on it and pulls it down. To bind the 
antibody coupled beads to the flag-tagged protein the samples have to incubate for two hours 

at 4°C in a rotation wheel. For very strong antibody antigen bonds the incubation is less. 
Then the antigen-bound beads were purified by several washing and centrifugation steps. The 

more washing steps you make, the cleaner the western blot is. After the last washing step 

most of the lysis buffer was removed and the beads were dispensed in 60-70 µl of loading 
buffer containing DTT. Then the samples were heated for 10 minutes at 70°C, as protein 

denaturation step. The samples were load on SDS-gel depending on the protein amount and 

western blotting for protein identification followed. 

  



 43 

3. Results 
3.1 Construct design of the TF, Xie and Co reporter gene libraries 

The Cis-element coupled EXT oligonucleotides were designed for the measurement of 

transcription factor activity. The aim of EXTassays was to generate a valid high-throughput 
method for the readout of TF activity and signalling pathways. The EXTs are coupled to 

regulatory elements. All libraries were built according to the same scheme (figure 3.1); an 
EXT is 5’ and 3’ flanked of a library specific sequence for amplification and cloning. On the 

5’ end the 36 bases long Cis-element with a 41 nucleotide stretch of a minimal promoter 

(TATA) as transcription regulating region is added. On the 5’ end of the Cis-element an 18 
base pair long library specific primer is added for amplification and cloning. Each Cis-

element is coupled to a unique EXT containing three technical replicates. 

Three different libraries were generated, each library contained specific features for solving 

different issues. The first library, the TF library is based on the TRANSFAC database. There 

all data on eukaryotic transcription factors with the experimentaly-proven Cis-elements are 
provided. The TF library contains all experimental validated human and mouse Cis-elements 

out of the TRANSFAC database of the release 12.1 (2008.1) (Wingender et al.1997). The TF 

library contains in total 3987 constructs. 

The second library is based on the comparative analysis of the genomes of humans, rats, mice 

and dogs (Xie et al. 2005). The Xie library consists phylogenetic conserved regulatory 
elements out of promoter regions and 3’ untranslated regions (UTR) from rat, mouse and 

human that may work as transcription factor binding sites (Xie et al. 2005). The Xie library 

contains 2223 constructs in total. 

The third library, the Co library is based on the COMPEL database. In this database 

combinatorial motifs with specific transcription factor-DNA binding / interaction are 
enclosed. The Co library contains human and mouse composite regulatory elements from 

COMPEL database of the release 12.1 (2008.1) (Heinemeyer et al. 1998). The Co library 

contains in total 948 different constructs. 

 

Figure 3.1: construct design of the oligonucleotides  

The Cis-element is coupled 3’ to a minimal promoter region (TATA-box) and 5’ and 3’ flanked with primers. 

On the 3’ end the EXT and the amplification primer is added. 

 

3.1.1 Covering the complexity of the libraries 

To reduce the risk of any loss of complexity during the cloning of the libraries every cloning 

and subcloning step was upscaled to reach a 10 fold complexity at least. 

This means for the TF library more than 40.000 bacterial clones in every subcloning step. For 

the Xie library more than 22.000 and for the Co library more than 10.000 bacterial clones. 
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3.2 DNA Quality control 

Due to the fact that the synthesis of the three oligonucleotide libraries was done with a novel 

technique - the on-chip synthesis with agilent technologies – random samples for quality 
control had to be generated. After the amplification via PCR using the HotStartTaqPlus 

Polymerase the oligonucleotides were subcloned into pDONR-Zeo to generate the ENTR-

libraries. These ENTR-libraries were subcloned via Gateway-cloning into the pGL4 
destination vector. Out of these EXPR libraries bacterial single clones were picked out as 

random samples. The single clone plasmid DNA was extracted and sequenced. In total 122 

single clones were picked and sequenced. 
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Figure 3.2: Sequencing results of the random picked samples  

In the TF library 55% of the picked random samples had a 100% sequence match, the samples of the Xie library 

had to 52% a 100% sequence match. And 73% of the Co samples had a 100% sequence match. Out of all 

samples 80% should be functional. 

Out of 42 picked single clones of the TF library 55% (23 clones) have a 100% sequence 
match. 23 % (10 clones) show one mismatch mutation and 11 % (5 clones) have more than 3 
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mutations within the oligo structure (figure 3.2). From the Xie library 17 single clones were 
picked and sequenced. 52 % (9 clones) were free of mutations, 17 % (3 clones) had one 

mutation and 5 % (1 clone) showed more than three mutations (figure 3.2). Within the Co 
library 73 % (46 clones) out of 63 picked single clones showed a 100 % sequence match. 11 

% (7 clones) had one (a single) point-mutation and 9 % (6 clones) of the Co library showed 

more than 3 mutations (figure 3.2). 

Matching the sequences does not say anything about the functionality. Functionality depends 

in which part of the oligonucleotide the mutations exist. To know more about the 
functionality we performed a deep sequencing of the plasmid DNA of all three libraries 

within the pGL4 expression vector. 

In the analysis of the deep sequencing 10 % of all constructs were coupled to an EXT that 
belong to another library. These could be filtered out within following experiments via 

bioinformatic computing. 78 % of the EXTs of the TF library could be detected within the 
corresponding library. In the Co library 77 % of all EXTs that belong to the Co library could 

be detected. From the Xie library only 53 % could be detected via deep sequencing (figure 

3.3), the other EXTs of the Xie library were not functional. 

 

Figure 3.3: Results of the library wide deep sequencing 

Only 53% of the EXTs of the Xie library could be mapped within the Xie library. Nearly 80% of the EXTs of 

the TF and Co library could be mapped in the deep sequencing. 

3.3 Proof-of-principle experiments 

After testing the functionality of the EXTs via deep sequencing, the libraries had to be tested 
in Cis-element functionality. Selected single clones out of the libraries in the pGL4 

(promega) expression vector were used for this approach. 

In contrast to the pGL3 the pGL4 expression vector is characterised with a codon 
optimization especially for usage in mammal cell lines, the firefly luciferase2 (luc2) an 

optimized luciferase with a reduced background activity, removal of cryptic transcription 
factor binding sites and a hygromycine resistance(HygR) in addition, too. In addition a rabbit 

β-Globin intron was cloned in 5’ position to the luc2 with classical cloning method (figure 

3.4). 
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Figure 3.4: scheme of the pGL4-Intron plasmid 

The oligonucleotide is 5’ of an intron of the rabbit ß-globin gene and the firefly luciferase 2. The transcript of 

the plasmid is the EXT with its flanking primers 5’ and 3’, the intron that will be spliced out and the firefly 

luciferase 2. 

By using the selected single clones classical luciferase assays were performed. In these 

luciferase assays a transient co-transfection of the Cis-element and the corresponding 

transcription factor was done in 293 HEK wt cells. The used Cis-elements were the canonical 
E-Box, the cAMP-responding element (cre), the nuclear factor kappa B binding site (NFκB) 

and the hypoxia induced factor (HIF) binding site. 

 

Figure 3.5: single construct validation:  

With the activation of the transcription the firefly luciferase values and the relative luciferase units (rLUs) 

increase. Sharp 1 and 2 (S1 and S2) work as repressors of the transcriptional machinery; the rLUs decrease 

compared to the sample with NPAS2 and BMAL1. 

The canonical enhancer box (E-Box) has the palindromic sequence CACGTG and represents 

a binding motif for transcription factors to initiate transcription. E-boxes represent Cis-

elements for neuronal PAS domain protein 2 (NPAS2) and the brain and muscle Arnt-like 
protein 1 (BMAL1). Both transcription factors belong to the basic Helix-Loop-Helix –PAS-

containing family. NPAS2 and BMAL1 are able to form a functional heterodimer that is able 
to bind to the E-Box, leading to transcriptional initiation. E-Boxes with NPAS2/BMAL1 or 

CLOCK/BMAL1 binding are the main components of the molecular clock (Ko and 

Takahashi 2006). The two basic Helix-Loop-Helix (bHLH) transcription factors SHARP1 
(DEC2, S1) and SHARP2 (DEC1, S2) work as negative regulators of the molecular clock.  

In all classical luciferase assays 10 ng of renilla-Mix plasmid DNA were co-transfected for 
data normalisation reasons. In the cell culture experiment NPAS2 and BMAL1 bind as 

transcription factors on the canonical E-Box and lead to transcription of the luc2 gene and 
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further expression of the luc2 protein. The assay show a significant increase of the relative 
luciferase units (rLUs) compared to the baseline (figure 3.5). S1 and S2 work as repressors; 

the transcription is downregulated. The assay shows a significant reduction of the rLUs in the 
S1 and S2 co-transfection samples. S1 works as a more efficient repressor compared to S2. In 

the S1 and S2 bHLH transcription factors the basic domain interacts with the DNA. In this 

assay functional mutations of S1 and S2 were also tested (figure 3.5). 

Loss-of-function mutations of these two repressors have less influence in the transcriptional 

regulation like the –b variant where the basic domain is missing and the protein is not able to 
bind on the DNA or the site directed mutagenesis (Sdm) where a point mutation leads to a 

weaker protein DNA binding (Rossner et al. 2008). 

 

Figure 3.6: single clone validation of the NFκB Cis-element: 

Rel-a the binding partner of the NFκB complex binds on the Cis-element and activates the transcription. The 

luciferase activity increases depending on the co-transfected Rel-a amount. 

The next performed luciferase assay was focused on the binding site of the NFκB complex. 
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) is a protein 

complex acting as a transcription factor. NFκB plays a pivotal role in cell differentiation, 
proliferation, inflammation and cell survival (Oeckinghaus and Ghosh 2009). The NFκB 

protein complex is expressed in almost every cell type. The NFκB / Rel transcription factor 

family is characterised with the Rel homology domain (RHD). In mammals, also in humans 
five different Rel proteins are existing containing RELA (alias p65), RELB, c-REL, NF-κB1 

and NF-κB2. The acting transcription factor NFκB is a heterodimer of NF-κB1 and RELA. 
RELA and NF-κB1 itself are able to form homodimers and bind to the DNA. Whereas the 

thermodynamically preferred form is the heterodimer (Chytil and Verdine 1996). 

In this assay two different plasmid backbones containing murine Rel-A were co-transfected. 
Rel-A is forming a homodimer or heterodimer with endogenous NF-κB1. These transcription 

factor complexes bind directly on our Cis-element called NFκB (Brivanlou and Darnell 2002) 
and initiate the transcription of the luc2. In the assay the rLUs increase in proportion to the 

co-transfected Rel-A containing plasmid.  
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Figure 3.7: single clone validation CRE Cis-element: The activated co-transfected CREB forms a dimer and 

binds on the CRE Cis-element; the firefly luciferase activity is upregulated. 

 

The cAMP response element binding protein (CREB) is a transcription factor that belongs to 

the CREB / ATF transcription factor family. The characteristic domain of these transcription 
factors is the homological basic leucine zipper (bZIP) domain (Lee and Masson 1993). CREB 

is activated by phosphorylation of various proteins that act as kinases as PKA ( protein kinase 

A), MAPK, Ca2+ - calmodulin-dependent protein kinase IV (CaMKIV) (Lee and Masson 
1993). Activated CREB is able to form homo- or heterodimer and bind to the DNA on its 

specific Cis-element. CRE, the cAMP response element with its consensus core sequence 
TGACGTCA is found in many enhancer or promoter regions. In the assay the pGL4 plasmid 

containing the CRE Cis-element was transfected into 293HEKwt cells (baseline) (figure 3.7). 

In the activation assay 10 ng of CREB containing plasmid was co-transfected. The 
phosphorylated CREB is able to bind on the CRE Cis-element and transcription of luc2 is 

enabled. In the co-transfection assay the rLUs are increased compared to the baseline (figure 

3.7). 
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Figure 3.8: single clone validation HIF Cis-element: The co-transfected HIF1a and HIF2a are not able to form a 

functional heterodimer; binging on the HIF Cis-element does not occur; the firefly luciferase activity is not 

upregulated. 

The hypoxia inducible factor 1 (HIF1) is a transcription factor that belongs to the bHLH 
transcription factor family (Semenza et al. 1997). It acts as a transcription factor of genes 

including erypoetin, vascular endothelial growth factor (VEGF) and lactacte dehydrogenase 
A (LDHA) (Semenza et a. 1997). The acting transcription factor HIF 1 is composed of two 

different proteins, HIF1α and aryl hydrocarbon receptor nuclear translocator (ARNT), also 

known as HIF1β. During hypoxia in cells HIF1α and ARNT form a heterodimer, HIF1. HIF1 
is able to bind with the basic domain on its Cis-element HIF with its core sequence RCGTG 

(Semenza et al. 1997). In this assay the specificity of the HIF Cis-element was tested. The 
cell culture experiments were performed under hypoxic conditions with only 5 % oxygen 

during the cell culturing. The transfected pGL4 plasmid containing the HIF Cis-element as 

key motif. During hypoxia in the cell endogenous activated HIF1α and ARNT form the 
working heterodimer HIF1 and bind on the HIF Cis-element. The control shows during 

hypoxia a relatively high baseline (approx.. 150 rLUs). The co-transfected HIF1α and HIF2α 
are not able to form an acting heterodimer and to initiate the transcription of luc2, the rLUs 

are not elevated compared to the baseline (figure 3.8). 

All single clone validation assays were done with three biological replicates at least. 

 

3.4 Transient cell culture experiments 

After the proof-of-principle experiments the first transient Cis-element library assays were 

performed. In a series of experiments proliferation assays were performed but within the 

measurement with the NimbleGen hybridization method technical problems occurred and the 

measurement failed (figure 3.9). 
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Figure 3.9: Scan of a NimbleGen chip after hybridization 

Due to technical problems the hybridization with the NimbleGen chips didn’t work, here a chip after the 

hybridization. The visible parts on the chip are the technical direction controls and dust.  

In the next step the validation of the proof-of-principle experiments with the EXT reads via 
Next Generation Sequencing was performed. In a co-transfection experiment as shown with 

the single clones the whole libraries were transiently transfected, together with the plasmid 
carrying the Rel-A gene in PC12 tetOFF rat cell line. After an incubation of 24 hours the cells 

were lysed and the RNA and DNA were extracted. In a c-DNA synthesis step the RNA 

samples were reverse transcribed and both the RNA and DNA samples were amplified and 
re-amplified with the corresponding sequencing primers in PCR steps. These PCR products 

were purified and sequenced via Next Generation Sequencing. 

More than 2.5 million reads were detected (figure 3.10), so technically the experiment 

worked. In the analysis a high variability of the EXT signals out of the DNA and RNA 

samples especially the DNA samples was observed (figure 3.11). It was impossible to make 

precise clusters of the activity of transcription factors within cells with these imprecise data. 
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Figure 3.10: sequencing quality report:  

With a loading density of 100 % the sequencing run worked technically fine. Overall more than 2.5 M reads 

could be detected and analyzed. 

 

 

 

Figure 3.11: sequencing reads of the transient Rel-a Co-transfection experiment: 

Examples of DNA and RNA reads, with this variety within the data especially within the DNA samples, it is not 

possible to make a correct statement about the activity of the transcription factors in the living cells. 
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3.5 Stable cell culture experiments 

In the previous experiments was shown, that these complex Cis-element libraries are 

inappropriate for transient in vitro experiments and signal read outs on RNA level. With the 
hygromycin resistance gene, the optimized pGL4 plasmid containing the Cis-element 

libraries was used to create stable cell lines. The generation of stable cell lines was performed 

as described in chapter material and methods 2.7. For all cell culture experiments stable 
human cancer cell lines with a low passage number were used. Within these cells the pGL4 

plasmid was transfected and the cells were selected with an appropriate concentration of 

hygromycin B tested on previous killing curves (material and methods 2.7).  

For the cell line WiDr, a colorectal cancer cell line coming from the colorectal cancer cell 

line HT-29 6000 stable single clones were created. For the cell line 293 HEK wt 5000 stable 
single clones were created. SH-SY5Y a human neuroblastoma cell line were used for the 

generation of 1000 stable single clones and the human cell line of an adenocarcinoma of the 

breast MCF-7 was also used for 1000 stable single clones.  

 

Figure 3.12: online luciferase measurement during starvation:  

The figure shows the luciferase values during 24 h of starvation with duplicates. The replicates within the 

subgroups show a high similarity and a clear trend. 

The first planned experiment with the conventional stable cell lines was a proliferation assay 

with previous serum starvation. Therefore different serum starvation conditions were tested 
by an online luciferase The best starving conditions for a planned proliferation assay were 

tested by an online luciferase measurement for 24 hours. In this test the starvation with no 
fetal bovine serum showed the lowest luciferase activity (figure 3.12) but these cells showed 

also the highest apoptosis rate (rounded cells) (figure 3.13. The cells with starvation 

condition with 0,1% fetal bovine serum showed much more vital cells with low luciferase 
expression (figure 3.13). Therefore for all following proliferation assays 0.1% FBS as 
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starving condition was used. This condition showed the best performance of the cells as well 

in the luciferase measurement as histologically compared to the 10% FBS control.  

 

 

Figure 3.13: 293 HEK wt stable cells after 24 h of starvation and online luciferase measurement: 

293 HEK cells after 24h starvation with 0% FBS(a), 0.1% FBS(b), 1% FBS(c) and 10% FBS as control (d). 

Some cells start apoptosis in the samples with no or low concentrations of FBS (cells in round figures), however 

the cells with 0.1% FBS look much more alive than the cells without FBS. In between the samples with 1% and 

10% FBS (control) no visible effect was demarcated. 

The first starvation and proliferation assays were performed in the stable cell line SH-SY5Y. 

This assay was performed with three biological replicates for each condition. The samples 
were starved in culture media containing 0.1% FBS for at least 18 hours. The control samples 

were starved for further 48 hours while the proliferation samples were stimulated with 10% 

FBS and PMA (10 ng/l). PMA acts as a direct activator of the protein kinase C (Rydholm et 

al. 1995) 

Within the starvation and activation phase the luciferase activity was determined via the 
online luciferase reader Lumicycle. The stimulation group showed elevated luciferase activity 

compared to the starvation group (figure 3.14). 

The samples were lysed into RLT buffer and the DNA and RNA were extracted. The RNA 
samples were reverse transcribed in a cDNA synthesis step; all samples were amplified via 

PCR and sequenced in an Ion PGM (life technologies) (material and methods 2.6). The 
sequencing results were normed to total reads and 155 different EXTs of the TF library 

corresponding to their Cis-element could be identified. Within these Cis-elements e.g. AP1, 

SREBP, E-Box, GATA and IK could be found (table 3.1). 
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Figure 3.14: online luciferase measurement:  

The stable SH-SY5Y cells were starved with media containing 0.1% FBS and then stimulated with 10% FBS 

and PMA. The stimulation group showed higher luciferase activity during the stimulation phase. 

In this experiment in the SH-SY5Y cells upregulated EXT expression during the FBS 
stimulation was shown of the Cis-elements IK, SREBP, CRX, AP1 (table 3.1). IK_Q5 

showed a 300 times upregulation, AP1_Q2_01 and NKX25_Q5 showed doubled activation 
as well as GATA_Q6 and CRX_Q4. A downregulation of the transcription factor activity 

during the stimulation phase was seen by MTF1, CEBP, NFAT and MEF2 e.g. (figure 3.15). 

Table 3.1: abstract of the sequencing results of the stable SH-SY5Y proliferation experiment 

Cis-element 
SHSY5Y 
starv. R1 

SHSY5Y 
starv. R2 

SHSY5Y 
starv. R3 

SHSY5Y 
PMA R1 

SHSY5Y 
PMA R2 

SHSY5Y 
PMA R3 

ratio mean 
stim/starv 

IK_Q5 0 0 0 426 287 202 305.0 
SREBP_Q6 0 0 0 17 53 22 30.7 
CRX_Q4 35 0 0 209 44 34 8.2 

AP1_Q2_01 0 20 30 53 42 107 4.0 
TFE_Q6 28 0 44 63 78 95 3.3 
NKX25_Q5 404 164 300 626 720 1005 2.7 

AP1_Q2_01 276 257 438 863 856 891 2.7 
CREB_Q3 151 156 57 205 469 211 2.4 
CRX_Q4 64 90 172 244 179 275 2.1 

CRX_Q4 685 771 1428 1961 1606 2579 2.1 
GATA_Q6 612 523 293 1008 1135 866 2.1 
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Figure 3.15: heatmap with the EXT reads of the proliferation experiment with stable SH-SY5Y cells 
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The next performed proliferation assay was done with the conventional stable cell line 293 
HEK. There the same conditions as described in the SH-SY5Y cells were used with four 

biological replicates for each condition. The cells were starved for 18 hours and stimulated 
with 10% FBS and PMA for 26 hours, lysed, processed and the following samples sequenced 

with the Ion torrent PGM. 

As showed as in the previous experiment the luciferase reads of the stimulated samples were 
significantly elevated compared to the starvation samples in luciferase measurement (figure 

3.16).  

 

Figure 3.16: online luciferase measurement:  

The stable 293 HEK wt cells were starved with media containing 0.1% FBS and then stimulated with 10% FBS 

and PMA. The stimulation group showed higher luciferase activity during the stimulation phase. 

After sequencing of the samples via Next Generation Sequencing (NGS) 266 different EXTs 

of the TF library could be identified and were normalized to total reads. Here several AP1 

Cis-elements showed upregulated EXT expression (table 3.2). Within the first 10 Cis-
elements AP1 binding sites appeared five times and were upregulated up to 200 times (table 

3.2 and figure 3.17). 

Cis-element 

HEK 
starv 
R1 

HEK 
starv 
R2 

HEK 
starv 
R3 

HEK 
starv 
R4 

HEK 
PMA 
R1 

HEK 
PMA 
R2 

HEK 
PMA 
R3 

HEK 
PMA 
R4 

Ratio 
mean 
stim/starv 

AP1_Q4_01 1 2 1 1 185 236 175 598 238.8 
ETS_Q6 0 1 0 0 3 8 4 11 26.0 
MAF_Q6_01 0 0 23 0 99 37 386 0 22.7 

PPAR_DR1_Q2 53 24 67 44 769 988 732 1160 19.4 
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AP1_Q4_01 0 6 0 0 5 36 44 31 19.3 
TCF4_Q5 471 339 351 277 5330 6598 5513 6317 16.5 

AP1_Q2_01 69 45 21 44 622 774 612 868 16.1 
AP1_Q2_01 72 102 64 107 1052 1474 1139 1446 14.8 
AP1_Q4_01 6334 6017 4606 5265 79437 89262 66437 82067 14.3 

Table 3.2: part I of the sequencing results of the TF library RNA stable 293 HEK wt proliferation experiment  

 

Figure3.17: heatmap with the EXT reads of the proliferation experiment with stable 293 HEK wt cells. 
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Transcription factors that showed a downregulation of their activity in the RNA samples with 

serum and PMA stimulation was e.g. GATA, E-BOX and IRF (table 3.3). 

Cis-element 

HEK 
starv 

R1 

HEK 
starv 

R2 

HEK 
starv 

R3 

HEK 
starv 

R4 

HEK 
PMA 

R1 

HEK 
PMA 

R2 

HEK 
PMA 

R3 

HEK 
PMA 

R4 

Ratio 
mean 

stim/starv 
E2F_Q6_01 4430 3927 3059 3763 976 1005 806 980 0.2 
IRF_Q6 6 23 17 27 2 11 5 0 0.2 

GLI_Q2 275 217 200 486 84 72 74 54 0.2 
GATA_Q6 8540 8187 7776 8904 1757 2354 1780 2078 0.2 
GATA_Q6 471 364 334 433 115 125 73 56 0.2 

IRF_Q6 2842 2571 2571 2312 593 654 527 563 0.2 
IPF1_Q4_01 1047 381 332 725 122 150 136 156 0.2 
GATA_Q6 94 75 77 117 14 22 21 20 0.2 

HNF4ALPHA_Q6 180 154 156 160 40 45 21 31 0.2 
Table 3.3: part II of the sequencing results of the TF library RNA stable 293 HEK wt proliferation experiment  

 

3.6 TripZ-virus cell culture experiments 

The measurement of the transcription factor activity using EXT based assays worked with the 
conventional produced stable cell lines and Next Generation Sequencing. Only one problem 

has turned up: human cell lines especially cancer cell lines were often not transfectable. For 

these cell lines a plasmid pTripZ, carrying lenti virus genes, was used. Within this plasmid a 

destination box for the Gateway cloning was cloned (figure 3.18).  

Then the TF, Xie and Co libraries were cloned into this DEST-vector. 

 

Figure 3.18: pDEST-TripZ: 

Scheme of the cloned DEST-vector, the ccdB cassette was cloned in between the ubiquitin promoter and the 

EM7 promoter. 

A cytomegalovirus (CMV) promoter driven enhanced yellow fluorescent protein (EYFP) was 

cloned into the pDEST-TripZ via Gateway cloning first to test the functionality of the virus 

(figure 3.19). All virus production experiments were done in 15 cm cell culture dishes with 
the cell line 293 HEK FT. The pEXPR-TripZ-EYFP was co transfected with an appropriate 

amount of the two packaging plasmids psPAX2 and pMD2.G as described within the 
methods. The cleaned up virus was titrated and 293 HEK cells were infected with a MOI of 

10 (figure 3.20). 

 

Figure 3.19: pEXPR-TripZ-EYFP 

Scheme of the TripZ virus backbone carrying the EYFP gene. 
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Figure 3.20: infected 293 HEK cells of the virus TripZ-EYFP 

 

The virus libraries TF and Xie were produced after running the functionality test. These Cis-
element EXT libraries had no firefly luciferase 3’ to the EXTs, so these constructs could not 

be used for luciferase assays and the online luciferase measurement.  

 

Figure 3.21: pEXPR-TripZ 

Scheme of the cloned EXPR-vector containing a Cis-element with the coupled EXT 

To control the infection of the cell lines 1 µg of the pTripZ-EYFP construct was added to 

14µg of pEXPR-TripZ of the TF and Xie libraries into the TripZ virus production step. With 

the produced and purified virus cell lines as 293 HEK wt, HT-29 and U2OS were infected 
and selected with puromycine. After a short passaging process these cell lines were used for a 

proliferation experiment. In this experiment the cells were seeded on 10 cm cell culture 
dishes with a density of 2.5 to 3 million cells per dish. Then the cells were transfected with an 

expression vector containing the early growth response protein 1 (EGR1) promoter region 

coupled to the firefly luciferase - and incubated for 24 hours in normal growth media. The 
first samples were lysed in RLT buffer before starving, these were named t=0. The cells were 

starved for 18 hours with starvation media containing 0.1% FBS and the next samples were 
lysed after the starvation. The rest of the cells were stimulated with normal growth media 

containing 10% FBS and were lysed at three time points 6 hours, 12 hours and 24 hours after 

starvation. All samples were processed as described in the experiments before and the 
samples of the stable 293 HEK wt TF library were sequenced. During the experiment the 

firefly luciferase activity of the transfected EGR1 construct was measured. The luciferase 

activity showed a peak at hour 4 in the stimulation (figure 3.22).  

The EXT sequencing reads were normed to the total number of reads and analyzed. In the 

analysis of the EXT sequencing almost 3000 different EXTs were identified in the RNA and 

DNA samples. 

The 500 best performing EXTs were used for further analysis and heatmapping for better 

visualization.  
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Figure 3.22: luciferase results of the TripZ virus stable cell line experiment: 

The cell line HT-29 was not transfectable, so these cells had no significant luciferase reads. The cell lines 293 

HEK wt and U2OS showed a peak of the EGR1-luciferase construct at hour four of the stimulation.  

Comparing the RNA samples of the starvation versus the 24 h stimulation transcription 
factors AP1, CREB, sterol regulatory element binding protein (SREBP) and 

CCAAT/enhancer-binding-protein (C/EBP) were activated (figure 3.23). A downregulation 
was observed on transcription factors as octamer binding transcription factor (OCT) a stress 

sensor in cells (Tantin et al.2005), SMAD3 and cone-rod homebox protein (CRX) (figure 

3.23 and table 3.4). 
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Figure 3.23: heatmap with the EXT reads of the proliferation experiment with TripZ-infected 293 HEK wt cells. 
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Cis-element 
HEK 
t=0 R1 

HEK 
t=0 R2 

HEK 
t=0 R3 

HEK 
starv. 
R1 

HEK 
starv. 
R2 

HEK 
starv. 
R3 

HEK 
st. 24h 
R1 

HEK 
st. 24h 
R2 

HEK 
st. 24h 
R3 

ratio 
24hstim/t=0 

COREBIND.F._Q6 569 448 123 726 533 412 998 7521 2339 9.525 

AHRHIF_Q6 7308 4674 3579 7406 12518 12578 32756 43596 51379 8.208 

MYB_Q3 646 307 175 1041 713 2196 2273 5795 1128 8.152 

HIF1_Q3 1131 359 831 805 1056 2589 5390 5561 7607 7.996 

EBOX_Q6_01 477 2 921 465 426 1070 2653 3477 4064 7.281 

HNF3_Q6_01 478 0 89 4 741 390 1259 376 2460 7.222 

GATA_Q6 570 31 1 451 917 1389 3213 1072 14 7.141 

TFE_Q6 535 1 0 218 0 100 477 1215 2033 6.950 

NF1_Q6_01 710 506 219 524 2 1512 3957 1809 4164 6.920 

GATA_Q6 1081 624 333 515 1773 1815 2832 4849 5954 6.690 

NFAT_Q4_01 475 284 205 519 951 1075 1381 1469 3405 6.489 

CEBP_Q2_01 1162 896 646 648 2080 1365 5557 4754 6874 6.355 

PAX6_Q2 451 105 380 1092 841 1091 964 3992 873 6.228 

OCT_Q6 450 0 601 1017 745 491 1663 1069 3796 6.211 

EBOX_Q6_01 611 124 380 570 345 360 3276 2538 910 6.030 

SREBP_Q6 609 37 268 1147 1426 915 1601 2592 1307 6.018 

CREB_Q3 1297 213 775 1124 1 1203 4257 3228 6186 5.983 

E2F_Q6_01 475 1519 1981 3467 2461 3477 9065 8501 6106 5.955 

DR1_Q3 923 0 1 400 203 0 2015 2908 526 5.897 

NFKB_Q6_01 463 168 481 119 219 198 1668 2212 2622 5.847 

AP1_Q4_01 554 462 254 33 769 1440 1642 2008 3747 5.824 

CEBPGAMMA_Q6 1324 847 483 1120 988 1748 5587 4662 4881 5.701 

CEBP_Q2_01 942 506 1102 601 509 2896 4633 3367 6237 5.583 

CEBP_Q2_01 608 248 829 582 603 207 3488 5450 364 5.520 

AR_Q2 2779 2075 2357 3280 4080 3460 10080 13115 15881 5.419 

NFY_Q6_01 9132 2724 4826 3862 7325 3096 27499 32921 27387 5.264 

AHRHIF_Q6 1126 252 108 382 129 195 3850 3387 536 5.231 

RORA_Q4 1856 618 752 910 2328 2688 7643 2446 6281 5.074 

HIF1_Q3 566 0 1 613 382 254 751 287 1836 5.069 

SRF_Q4 1004 184 574 946 419 14 2131 1633 5154 5.061 

SREBP_Q6 665 967 953 387 1512 1563 5699 2971 4303 5.019 

HIF1_Q3 473 644 381 724 748 463 2577 2379 2379 4.897 

CREB_Q3 988 66 504 661 1513 983 5752 0 1799 4.847 

MTF1_Q4 792 598 396 788 1 111 4708 1434 2467 4.820 

GATA_Q6 705 816 940 429 708 477 2597 3455 5808 4.819 

GATA_Q6 446 78 57 18 275 0 1251 1436 79 4.761 

E12_Q6 828 451 1166 647 932 1824 3736 1160 6683 4.736 

AP1_Q2_01 671 204 15 339 1 0 1842 1295 1075 4.733 

DR3_Q4 1967 69 493 1184 1400 1769 4831 2941 4085 4.688 

TTF1_Q6 663 247 1 17 1 834 1 243 4007 4.666 

HSF1_Q6 974 169 159 188 550 1568 2336 627 3105 4.661 

GATA_Q6 2041 1087 2655 3143 2920 1078 11543 11988 3371 4.652 

CEBP_Q2_01 2040 1101 1168 1860 896 1635 5514 4816 9705 4.650 

GATA_Q6 2509 1588 2092 3629 2166 4484 5899 14703 8073 4.633 



 64 

Table 3.4: extraxt of the EXT reads of the proliferation experiment with TripZ infected 293 HEK wt cells. 

AHRHIF_Q6 1001 919 309 567 1758 580 3604 1270 5433 4.624 

EBOX_Q6_01 1759 418 222 655 2046 1690 2912 7121 1051 4.620 

TTF1_Q6 794 655 202 1689 5 2129 3679 199 3709 4.595 

SREBP_Q6 628 5 209 646 78 245 1425 7 2433 4.590 

GLI_Q2 1732 201 1545 624 669 1394 9953 3526 2472 4.586 

AP1_Q2_01 865 822 1145 2116 1804 3280 5985 1438 5555 4.583 

EBOX_Q6_01 499 622 435 168 682 668 2002 1282 3822 4.567 

CREB_Q3 634 394 904 715 367 1697 2466 1975 4375 4.563 

IPF1_Q4_01 774 685 319 506 1107 1136 1489 5262 1344 4.553 

ETF_Q6 651 908 601 858 139 661 3066 1845 4904 4.544 

AHRHIF_Q6 1129 168 326 335 1401 1366 3609 1953 1796 4.534 

TEL2_Q6 449 741 703 308 764 655 2825 2735 2927 4.483 

HNF4_Q6_01 455 351 219 264 261 31 636 1902 2053 4.479 

GATA_Q6 2546 2112 3245 7232 4129 5102 14431 12591 8133 4.448 

SRF_Q4 775 108 1388 1505 700 1100 3648 6294 137 4.438 

PPAR_DR1_Q2 655 670 84 814 625 1020 2868 1061 2280 4.407 

IK_Q5 535 2 557 962 227 489 1023 2576 1137 4.329 

CREB_Q3 593 460 443 534 581 780 1276 4312 812 4.278 

GATA_Q6 681 321 515 1091 199 0 3341 2388 747 4.269 

HNF3_Q6_01 789 406 359 606 334 1204 4003 183 2402 4.239 

SREBP_Q6 890 879 467 1083 1210 1304 2299 2346 4830 4.237 

SREBP_Q6 850 210 241 223 152 513 2318 1105 2073 4.224 

MTF1_Q4 606 1819 1108 1004 932 603 2796 8921 3172 4.214 

GFI1_Q6 620 1654 928 1255 1105 755 3904 3630 5802 4.165 

AHRHIF_Q6 1106 1220 2317 836 765 1381 5922 8270 5105 4.156 

AP1_Q2_01 508 427 280 260 579 509 1946 1474 1629 4.156 

AHR_Q5 836 611 531 744 1376 1060 2595 2424 3185 4.148 

HNF1_Q6 509 163 429 322 83 113 3292 402 868 4.144 

EBOX_Q6_01 777 324 829 902 979 1420 2860 2117 3003 4.135 

ETS_Q6 794 258 345 216 26 825 1820 3130 807 4.121 

NFAT_Q4_01 1586 2519 1436 3464 2200 2613 11826 3460 7464 4.106 

NRSF_Q4 529 1 2 835 314 172 9 822 1351 4.102 

OCT1_Q5_01 1378 23 1066 437 790 571 1489 3299 5298 4.088 

NFAT_Q4_01 1406 969 1749 2401 1638 1170 3025 3654 10177 4.087 

SF1_Q6 610 400 382 888 854 1541 3551 756 1366 4.075 

SRF_Q4 599 904 356 372 1 680 2277 1752 3543 4.073 

GATA_Q6 1693 1339 1797 2502 1538 1770 6946 3729 8887 4.051 

YY1_Q6 965 0 752 303 729 275 1661 2496 2785 4.043 

PAX_Q6 1032 597 144 646 482 1060 2461 3467 1223 4.033 

NFKB_Q6_01 776 812 1122 831 432 803 3420 2150 5134 3.950 

GFI1_Q6 811 0 451 32 15 308 3033 4 1924 3.931 

E2F_Q6_01 456 794 755 940 452 1794 3355 2063 2424 3.911 

NFY_Q6_01 752 37 319 143 719 3 851 1743 1705 3.880 

CEBP_Q2_01 564 775 1195 1231 31 202 1849 7806 145 3.867 

GATA_Q6 473 1015 500 737 129 103 4159 3250 279 3.867 



 65 

4. Discussion 
4.1 Reporter gene libraries 

The Cis-element libraries TF, Xie and Co coupled to unique EXTs were created for the 

measurement of transcription factor activity in parallel in living cells. The sensitivity and 

specificity of the EXTs as well as the dynamic response and stable readout in cell culture 

experiments was previously tested and shown by Anna Botvinnik (Botvinnik et al. 2010). 

The construct size of the oligonucleotide was 180 base pairs. The length and quality of the 

oligonucleotide was limited by the technique - the on-chip DNA synthesis - itself.  

The TF library was designed for the measurement of transcription factor activity in human or 

murine cell lines. The Xie library enables the discovery of unknown transcription factor 

binding sites. With the Co library readouts of cooperating and interacting transcription factors 

and signalling pathways might be possible. 

 

4.2 DNA quality 

In a first analysis the complexity and functionality of random single clones were evaluated 

via sequencing. 

In the sequencing of the random selected single clones of all three libraries 63% (78 clones) 

of all 122 single clones were free of mutation, 16 % (20 clones) had one mutation. These 

results led to the conclusion that approximately 70% out of these single clones were 

functional. During the analysis of the deep sequencing experiment we saw that 10% of all 

constructs were coupled to a wrong EXT and out of the Xie library only 53% of all EXTs 

could be mapped. The on-chip inkjet printing method could have led to the mismatching of 

Cis-elements with EXTs and the loss of almost 50% out of the Xie library. A further reason 

for the construct loss of the Xie library might be the concentration of repetitive sequences. 

There either the in the printing on-chip method or during the PCR amplification steps could 

have led to a significant quality loss. 

 

4.3 Proof-of-principle 

The dynamic response of extrinsic transcription factor activity was tested in a series of proof-

of-principle experiments. In co-transfections experiments selected Cis-elements were used 

for luciferase readout with their corresponding transcription factor. These data were normed 

by co-transfected renilla luciferase.  

The specificity of the Cis-elements was random negative tested with the HIF readout (figure 

3.8). The co-transfected transcription factors are not able to bind on the HIF Cis-element. The 

changes in the relative Luciferase Units (rLUs) were not significant. Respective to the 

specificity the HIF experiment should have been repeated with the correct binding partners – 

the transcription factors HIF1a and ARNT in a growth medium where CoCl2 is added.  
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The dynamic response of the luciferase assays was tested in a luciferase assay with the  Cis-

element NfkB using different amounts of DNA of the co-transfected transcription RelA 

(figure 3.6). Taken together, the functionality of the constructs could be validated in 

luciferase assay readout as a basis for the comprehensive follow-up studies. 

 

4.4 Stable cell culture and TripZ-virus cell culture experiments 

Plasmids containing Cis-element libraries coupled to unique EXTs were transfected to human 

cell lines 293 HEK wt, MCF-7, WiDr and SH-SY5Y. These cell lines were cultured under 

different culture selection conditions, respectively. Genomic DNA and RNA was isolated, 

amplified and analyzed with Next Generation Sequencing to (i) detect the DNA input and (ii) 

detect reporter expression differences as a change of the intrinsic transcription factor activity 

under different growth conditions. Out of the stable 293 HEK and SH-SY5Y cells 155 

different EXTs in the SH-SY5Y and 266 different EXTs in the 293HEK wt cells could be 

identified after normalization. Some of these EXTs show robust DNA and RNA signals in 

every biological replicate (table 3.1; 3.2 and table 3.3). However the EXTs of the technical 

replicates of the Cis-element libraries could be identified only in little cases with signal 

intensity above background level (data not shown). This finding could be due to the problem 

of the efficiency of the generation of stable cell lines and the aspect of the localization of the 

integration (Weis et al. 1991).  

In the virus cell culture experiment 293HEK wt, U2OS and HT-29 were infected via TripZ 

lentivirus containing the Cis-element libraries. A proliferation assay was performed in 

different growth media, respectively. The further analysis was done as described above. Via 

Next Generation Sequencing 2938 different EXTs of the TF library could be detected. The 

500 best performing EXTs were analyzed (table 3.4). In summary, the usage of virus systems 

increases dramatically the efficiency of the stable integration especially in non- 

transfectable cell lines, however the transcription factor activity pattern of the conventional 

stable cells in the 293HEK wt cell line could not have been validated (table 3.2 and table 

3.4). 

 

4.5 Selection of potential Cis-element candidates 

Cis-element reporter gene assays are a well understood and an often used method for direct 

monitoring of transcription factor activity. Transcription factors have the ability to bind to 

specific DNA regions and work as activators or repressors. Here we can only focus on 

transcription factors that act as activators. All transcription factors, binding sites and 

functions are still not known, so there is a demand on high-quality multiplexing detection 

assays. With the described Cis-element assay based on EXTs extrinsic transcription factor 

activity could be precisely monitored and validated in several luciferase assays. In the cell 

culture experiments some transcription factors could represent cell line specific prediction 

markers, respectively.  
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In the SH-SY5Y cell line experiment where the cells were stimulated with serum and PMA 

after a starvation period transcription factors as IK and CRX were upregulated. In contrast to 

the 293HEK wt cell line samples with the same treatment these transcription factors were 

downregulated. In the 293HEK wt virus cell line this effect was not validated. This might be 

due to the missing PMA stimulation; all virus generated cell lines were serum only stimulated 

after a comparable starvation period. Ikaros (IK), a member of the zinc finger transcription 

factors that also plays an important role in hematological malignancies (John and Ward 2011; 

Rebollo and Schmitt 2003). In this case follow-up experiments with individual and 

complementary assays for the validation of these findings are required. 

In SH-SY5Y and 293HEK wt cells multiple Cis-elements of the transcription factor AP1 

showed increased signal intensities. AP1 is a transcription factor that is active at multiple 

situations in the cell, as well as during proliferation, transformation and cell death (Karin et 

al. 1997; Shaulian and Karin 2002). follow-up experiments are essential to validate this 

observation. 

NFAT, an important member in immune response and in calcium signaling (Rao et al. 1997), 

showed in the SH-SY5Y cells a downregulation. In the 293HEK wt cells GATA, a member 

of the zinc finger transcription factor that is important for cell maturation, cell proliferation 

arrest and cell survival (Zheng and Blobel 2010) showed a massively downregulation.  

The virus cell culture experiments were done with 293HEK wt, U2OS and HT-29. A serum 

starvation and serum stimulation as a proliferation assay was done. However only the cell 

samples of the 293HEK wt cell line was analyzed by Next Generation Sequencing, so there it 

is impossible to make comparisons of the signal patterns between the different cell lines. 

Taken together, this approach of multiplexing Cis-element libraries coupled to unique EXTs 

could show some effects on transcription factor activity in cell proliferation that are described 

in literature. Although a set of first proof-of-principle experiments could be performed 

successfully within this thesis, further validation and optimization is essential to 

improve these Cis-element based EXTassays to increase robustness for future applications.  
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5. Conclusion 
In the present study an upscaling of a described method called EXTassays was established. In 

three different Cis-element libraries all currently described and validated as well as 

phylogenetic conserved potential transcription factor binding sites were covered for a 
simultaneous monitoring of the activity of transcription factors in living cells. Due to the 

replacement of classical reporter gene assays by unique DNA barcodes so called EXT assays 
or EXTassays a multiplexed quantification of intrinsic transcription factor activity was 

performed with the help of Next Generation Sequencing.  

Using classical generated and virus generated stable cell lines in cell culture experiments, 
proliferation assays including serum starvation and cell stimulation via high serum 

concentrations were performed with the aim to generate transcription factor activity patterns 
of different cancer cell lines under different situations, chemotherapy treatment e.g. to find 

new candidates of transcription factors as predictable markers for cell surviving mechanisms 

or cell proliferation e.g. several changes in the cell specific expression patterns of the EXTs 
were found depending on the experiment conditions. However, follow-up experiments are 

pending to validate these initial findings. 

These data suggest that virus systems could be the more reliable method for generation of 

stable cell lines with highly complex reporter gene libraries. Comparing the expression 

patterns of the virus generated cell lines is not possible yet, these samples have to be analyzed 

with Next Generation Signaling.  

In summary, the applicability of an EXT-based Cis-element reporter assay system to 

quantitatively measure the effects of cellular events on transcription factor activity could be 

demonstrated. However, as these experiments represent a first proof-of-principle experiment 

for the simultaneous assessment of possibly all cellular transcription factor activities further 

optimization is required to increase the robustness of this promising novel assay system. 
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6.0 Supplement 
6.1 Cis-element libraries 

TF: (abstract) 

unique ID matrix_name TF sequence species 

TF0001 V$VDR_Q3 GAGTTCACCGGGTGTGAGTTCACCGGGTGTGAGTTC  Homo sapiens 

TF0002 V$VDR_Q3 GAGTCAGCGAGGTGAGAGTCAGCGAGGTGAGAGTCA Homo sapiens 

TF0003 V$VDR_Q3 GGGTGAACGGGGGCAGGGTGAACGGGGGCAGGGTGA Homo sapiens 

TF0004 V$VDR_Q3 AGGGAGATTGGTTCAAGGGAGATTGGTTCAAGGGAG Homo sapiens 

TF0005 V$CEBPDELTA_Q6 GTTTGCGCCACTGTTTGCGCCACTGTTTGCGCCACT Homo sapiens 

TF0006 V$CEBPDELTA_Q6 CATTTCGTAATTCATTTCGTAATTCATTTCGTAATT Homo sapiens 

TF0007 V$CEBPDELTA_Q6 CATTGCACAATCCATTGCACAATCCATTGCACAATC  Homo sapiens 

TF0008 V$CEBPDELTA_Q6 GATTACATCACTGATTACATCACTGATTACATCACT Homo sapiens 

TF0009 V$CEBPDELTA_Q6 AATGACATCACAAATGACATCACAAATGACATCACA Homo sapiens 

TF0010 V$CEBPDELTA_Q6 AATTGCGTAAGCAATTGCGTAAGCAATTGCGTAAGC  Homo sapiens 

TF0011 V$CEBPDELTA_Q6 CATTTCGTCACACATTTCGTCACACATTTCGTCACA Homo sapiens 

TF0012 V$CRX_Q4 TCCATAAGACGATTCCATAAGACGATTCCATAAGAC Homo sapiens 

TF0013 V$CRX_Q4 CCTGTAATCCCAGCCTGTAATCCCAGCCTGTAATCC Homo sapiens 

TF0014 V$CRX_Q4 TGCTTAATGCTTATGCTTAATGCTTATGCTTAATGC Homo sapiens 

TF0015 V$CRX_Q4 TCATTTAGCTGTTTCATTTAGCTGTTTCATTTAGCT Homo sapiens 

TF0016 V$CRX_Q4 TGATTAAACTCAGTGATTAAACTCAGTGATTAAACT Homo sapiens 

TF0017 V$CRX_Q4 CAGCTAATGCGACCAGCTAATGCGACCAGCTAATGC  Homo sapiens 

TF0018 V$CRX_Q4 TGCATAACACCAGTGCATAACACCAGTGCATAACAC  Homo sapiens 

TF0019 V$CRX_Q4 CTGTTGATCCCCTCTGTTGATCCCCTCTGTTGATCC Homo sapiens 

TF0020 V$CRX_Q4 GAACTAATCCCCTGAACTAATCCCCTGAACTAATCC Homo sapiens 

TF0021 V$CRX_Q4 TTCCTAATCTCACTTCCTAATCTCACTTCCTAATCT Homo sapiens 

TF0022 V$DBP_Q6 AGCACACAGCACACAGCACACAGCACACAGCACACA Homo sapiens 

TF0023 V$DBP_Q6 AGCAAACAGCAAACAGCAAACAGCAAACAGCAAACA Homo sapiens 

TF0024 V$DBP_Q6 AGCAAACAGCAAACAGCAAACAGCAAACAGCAAACA Homo sapiens 

TF0025 V$DBP_Q6 AGCAAAAAGCAAAAAGCAAAAAGCAAAAAGCAAAAA Homo sapiens 

TF0026 V$FXR_Q3 CAGGGTGAATAACCCAGGGTGAATAACCCAGGGTGA Homo sapiens 

TF0027 V$FXR_Q3 CAAGGTCATTAACTCAAGGTCATTAACTCAAGGTCA Homo sapiens 

TF0028 V$HNF4ALPHA_Q6 GTGGACTTAGCCCGTGGACTTAGCCCGTGGACTTAG Homo sapiens 

TF0029 V$HNF4ALPHA_Q6 GCAATCTTTGACCGCAATCTTTGACCGCAATCTTTG Homo sapiens 

TF0030 V$HNF4ALPHA_Q6 GTGACCTTTGCCCGTGACCTTTGCCCGTGACCTTTG Homo sapiens 

TF0031 V$HNF4ALPHA_Q6 CAGAGCTTTGTCTCAGAGCTTTGTCTCAGAGCTTTG Homo sapiens 

TF0032 V$HNF4ALPHA_Q6 CAGAACCTTTAAGCAGAACCTTTAAGCAGAACCTTT Homo sapiens 

TF0033 V$LXR_Q3 TGGGGTCATTGTCGGGCATGGGGTCATTGTCGGGCA Homo sapiens 

TF0034 V$LXR_Q3 CAGGGTCACTGGCGGTCACAGGGTCACTGGCGGTCA Homo sapiens 

TF0035 V$MAZ_Q6 GGGGAGGGGGGGAGGGGGGGAGGGGGGGAGGGGGGG Homo sapiens 

TF0036 V$MAZ_Q6 GGGGAGGGGGGGAGGGGGGGAGGGGGGGAGGGGGGG Homo sapiens 

TF0037 V$MAZ_Q6 GGGGCGAGGGGGCGAGGGGGCGAGGGGGCGAGGGGG Homo sapiens 

TF0038 V$MAZ_Q6 AGGGAGCGAGGGAGCGAGGGAGCGAGGGAGCGAGGG Homo sapiens 

TF0039 V$MAZ_Q6 GGGGAGGGGGGGAGGGGGGGAGGGGGGGAGGGGGGG Homo sapiens 

TF0040 V$MAZ_Q6 TGTGAGGGTGTGAGGGTGTGAGGGTGTGAGGGTGTG Homo sapiens 

TF0041 V$MAZ_Q6 AGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGG Homo sapiens 

TF0042 V$MTF1_Q4 TTTGCACTCGTCCCTTTGCACTCGTCCCTTTGCACT Homo sapiens 

TF0043 V$MTF1_Q4 CCTGCACACGCCCCCCTGCACACGCCCCCCTGCACA Homo sapiens 

TF0044 V$MTF1_Q4 TCTGCACACGGGCCTCTGCACACGGGCCTCTGCACA Homo sapiens 

TF0045 V$MTF1_Q4 TGTGCACACGGCGGTGTGCACACGGCGGTGTGCACA Homo sapiens 

TF0046 V$MTF1_Q4 GGTGCGCCCGGCCCGGTGCGCCCGGCCCGGTGCGCC  Homo sapiens 

TF0047 V$MTF1_Q4 GCTGCACCCAGCCCGCTGCACCCAGCCCGCTGCACC Homo sapiens 

TF0048 V$SP3_Q3 ACCCTGGGGGCGGGACCCTGGGGGCGGGACCCTGGG Homo sapiens 

TF0049 V$SP3_Q3 ATCCCTGGGAGGGGATCCCTGGGAGGGGATCCCTGG Homo sapiens 

TF0050 V$TCF4_Q5 GCTTTGATGCTTTGATGCTTTGATGCTTTGATGCTT Homo sapiens 

TF0051 V$TCF4_Q5 CCTTTGATCCTTTGATCCTTTGATCCTTTGATCCTT Homo sapiens 

TF0052 V$TCF4_Q5 CCCTTTAGCCCTTTAGCCCTTTAGCCCTTTAGCCCT Homo sapiens 

TF0053 V$TCF4_Q5 CCTTTGAACCTTTGAACCTTTGAACCTTTGAACCTT Homo sapiens 

TF0054 V$TCF4_Q5 ACTTTGAAACTTTGAAACTTTGAAACTTTGAAACTT Homo sapiens 

TF0055 V$TCF4_Q5 GCTTTGAAGCTTTGAAGCTTTGAAGCTTTGAAGCTT Homo sapiens 

TF0056 V$TEL2_Q6 CTACTTCCTGCTACTTCCTGCTACTTCCTGCTACTT Homo sapiens 

TF0057 V$TEL2_Q6 TCACTTCCTGTCACTTCCTGTCACTTCCTGTCACTT Homo sapiens 

TF0058 V$E12_Q6 CGCAGATGTCCCGCAGATGTCCCGCAGATGTCCCGC Homo sapiens 

TF0059 V$ETF_Q6 GAGGAGGGAGGAGGGAGGAGGGAGGAGGGAGGAGGG Homo sapiens 

TF0060 V$ETF_Q6 GCGGCCGGCGGCCGGCGGCCGGCGGCCGGCGGCCGG Homo sapiens 

TF0061 V$ETF_Q6 GCGGAGGGCGGAGGGCGGAGGGCGGAGGGCGGAGGG Homo sapiens 

TF0062 V$SMAD3_Q6 TGTCTGACTTGTCTGACTTGTCTGACTTGTCTGACT Homo sapiens 

TF0063 V$SMAD3_Q6 TGTCTGTCTTGTCTGTCTTGTCTGTCTTGTCTGTCT Homo sapiens 

TF0064 V$SMAD3_Q6 CATCTGTCTCATCTGTCTCATCTGTCTCATCTGTCT Homo sapiens 

TF0065 V$SMAD3_Q6 CGGCTGACTCGGCTGACTCGGCTGACTCGGCTGACT Homo sapiens 

TF0066 V$SMAD3_Q6 TGTCTGTCTTGTCTGTCTTGTCTGTCTTGTCTGTCT Homo sapiens 

TF0067 V$USF2_Q6 CAGGCGCAGGCGCAGGCGCAGGCGCAGGCGCAGGCG Homo sapiens 

TF0068 V$SF1_Q6 GGACCTTGGGACCTTGGGACCTTGGGACCTTGGGAC Homo sapiens 

TF0069 V$SF1_Q6 TTACCTTGTTACCTTGTTACCTTGTTACCTTGTTAC Homo sapiens 

TF0070 V$SF1_Q6 TAACCTTGTAACCTTGTAACCTTGTAACCTTGTAAC  Homo sapiens 

TF0071 V$OSF2_Q6 ACCACATGACCACATGACCACATGACCACATGACCA Homo sapiens 

TF0072 V$OSF2_Q6 ACCGCAAAACCGCAAAACCGCAAAACCGCAAAACCG Homo sapiens 
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Xie: (abstract) 

Unique ID Xie-name Xie sequence 

X001 V$NRF1_Q6 GCGCATGCGTATAGCGCATGCGTATAGCGCATGCGTATAGCGCATGCGTA 

X002 - AAGCATGCCTATAAAGCATGCCTATAAAGCATGCCTATAAAGCATGCCTA 

X003 V$NRF1_Q6 CGCGTGTGCATTATACGCGTGTGCATTATACGCGTGTGCATTATACGCGT 

X004 - GCGCATACGCAGATAGCGCATACGCAGATAGCGCATACGCAGATAGCGCA 

X005 - GCGCACGTCCAGCATAGCGCACGTCCAGCATAGCGCACGTCCAGCATAGC  

X006 - CAGCATGTATACAGCATGTATACAGCATGTATACAGCATGTATACAGCAT 

X007 - ACGCAGCCGAAGTATAACGCAGCCGAAGTATAACGCAGCCGAAGTATAAC  

X008 - CATGTCCAGCATACATGTCCAGCATACATGTCCAGCATACATGTCCAGCA 

X009 - GCGCAAGCTCATAGCGCAAGCTCATAGCGCAAGCTCATAGCGCAAGCTCA 

X010 - AGCATGTAATAAGCATGTAATAAGCATGTAATAAGCATGTAATAAGCATG 

X011 V$MYC_Q2 CACGTGATACACGTGATACACGTGATACACGTGATACACGTGATACACGT 

X012 V$USF_Q6_01 TCACGTGATATCACGTGATATCACGTGATATCACGTGATATCACGTGATA 

X013 - GCCACGTCATAGCCACGTCATAGCCACGTCATAGCCACGTCATAGCCACG 

X014 V$MYCMAX_B GCCACGCCATAGCCACGCCATAGCCACGCCATAGCCACGCCATAGCCACG 

X015 V$USF_C AGCACGTGATAAGCACGTGATAAGCACGTGATAAGCACGTGATAAGCACG 

X016 - ACGCATGTGATAACGCATGTGATAACGCATGTGATAACGCATGTGATAAC  

X017 - GTTTCCTGTGATAGTTTCCTGTGATAGTTTCCTGTGATAGTTTCCTGTGA 

X018 V$ELK1_02 CCGGAAGCATACCGGAAGCATACCGGAAGCATACCGGAAGCATACCGGAA 

X019 - CCCGGAAAATACCCGGAAAATACCCGGAAAATACCCGGAAAATACCCGGA 

X020 - CATCCGGGTCATACATCCGGGTCATACATCCGGGTCATACATCCGGGTCA 

X021 - GACCTGGAAAATAGACCTGGAAAATAGACCTGGAAAATAGACCTGGAAAA 

X022 V$ELK1_02 CCGGAAGCATACCGGAAGCATACCGGAAGCATACCGGAAGCATACCGGAA 

X023 - ACATACGGATAACATACGGATAACATACGGATAACATACGGATAACATAC 

X024 V$ELK1_02 GGTTCCGGATAGGTTCCGGATAGGTTCCGGATAGGTTCCGGATAGGTTCC 

X025 - AAGTCCCGGATAAAGTCCCGGATAAAGTCCCGGATAAAGTCCCGGATAAA 

X026 V$PEA3_Q6 AACATCCGATAAACATCCGATAAACATCCGATAAACATCCGATAAACATC  

X027 - TTCCATATGTATATTCCATATGTATATTCCATATGTATATTCCATATGTA 

X028 V$RP58_01 CAGATGTTATACAGATGTTATACAGATGTTATACAGATGTTATACAGATG 

X029 - CTGGTTCCGATACTGGTTCCGATACTGGTTCCGATACTGGTTCCGATACT 

X030 - ACTATAGGGCCCAATAACTATAGGGCCCAATAACTATAGGGCCCAATAAC  

X031 - ACTACGTTACCCATAACTACGTTACCCATAACTACGTTACCCATAACTAC  

X032 - ACTACCTTTCCCAATAACTACCTTTCCCAATAACTACCTTTCCCAATAAC  

X033 - AGACTACAATAAGACTACAATAAGACTACAATAAGACTACAATAAGACTA 

X034 - AGACTCCATGTATAAGACTCCATGTATAAGACTCCATGTATAAGACTCCA 

X035 - GACGCCATTATAGACGCCATTATAGACGCCATTATAGACGCCATTATAGA 

X036 - AAACCACGCTTCCCATAAAACCACGCTTCCCATAAAACCACGCTTCCCAT 

X037 - GGATTACATAGGATTACATAGGATTACATAGGATTACATAGGATTACATA 

X038 V$NFY_Q6_01 GATTGGCATAGATTGGCATAGATTGGCATAGATTGGCATAGATTGGCATA 

X039 V$NFY_01 GGCCAATCAATAGGCCAATCAATAGGCCAATCAATAGGCCAATCAATAGG 

X040 V$NFY_01 GCCCAATGAATAGCCCAATGAATAGCCCAATGAATAGCCCAATGAATAGC 

X041 V$PBX1_02 TGATTGACATATGATTGACATATGATTGACATATGATTGACATATGATTG 

X042 V$NFY_Q6_01 TAATTGGTATATAATTGGTATATAATTGGTATATAATTGGTATATAATTG 

X043 - TCCAATGAATATCCAATGAATATCCAATGAATATCCAATGAATATCCAAT 

X044 - GCCCAATCAATAGCCCAATCAATAGCCCAATCAATAGCCCAATCAATAGC  

X045 V$CDP_01 CCAATAGATACCAATAGATACCAATAGATACCAATAGATACCAATAGATA 

X046 - TAATTGGATATATAATTGGATATATAATTGGATATATAATTGGATATATA 

X047 - CGACCAATATACGACCAATATACGACCAATATACGACCAATATACGACCA 

X048 V$SP1_Q6 GGGCGGGATAGGGCGGGATAGGGCGGGATAGGGCGGGATAGGGCGGGATA 

X049 V$SP1_Q6 GGGCGGATAGGGCGGATAGGGCGGATAGGGCGGATAGGGCGGATAGGGCG 

X050 V$SP1_Q6 AGGCGGGGCATAAGGCGGGGCATAAGGCGGGGCATAAGGCGGGGCATAAG 

X051 V$SP1_Q4_01 GGGAGGGATAGGGAGGGATAGGGAGGGATAGGGAGGGATAGGGAGGGATA 

X052 - GGGCGGAGTATAGGGCGGAGTATAGGGCGGAGTATAGGGCGGAGTATAGG 

X053 V$SP1_Q6 GGGCGGGATATAGGGCGGGATATAGGGCGGGATATAGGGCGGGATATAGG 

X054 - CAGGGGGCGCATACAGGGGGCGCATACAGGGGGCGCATACAGGGGGCGCA 

X055 - AGGTGGGGCATAAGGTGGGGCATAAGGTGGGGCATAAGGTGGGGCATAAG 

X056 - GCCCCTCCCATAGCCCCTCCCATAGCCCCTCCCATAGCCCCTCCCATAGC  

X057 - AGGCGTCGCTGATAAGGCGTCGCTGATAAGGCGTCGCTGATAAGGCGTCG 

X058 V$EGR_Q6 GGGGGCGATAGGGGGCGATAGGGGGCGATAGGGGGCGATAGGGGGCGATA 

X059 V$AP1_C TGACTCAATATGACTCAATATGACTCAATATGACTCAATATGACTCAATA 

X060 V$BACH2_01 TGAGTCAATATGAGTCAATATGAGTCAATATGAGTCAATATGAGTCAATA 

X061 - TGCGTCAATATGCGTCAATATGCGTCAATATGCGTCAATATGCGTCAATA 

X062 V$BACH2_01 TGACTCACATATGACTCACATATGACTCACATATGACTCACATATGACTC  

X063 - TGACTCATCATATGACTCATCATATGACTCATCATATGACTCATCATATG 

X064 - TGTCAGTCAATATGTCAGTCAATATGTCAGTCAATATGTCAGTCAATATG 

X065 - TGATCCAGAATATGATCCAGAATATGATCCAGAATATGATCCAGAATATG 

X066 - TGAATAACAGATATGAATAACAGATATGAATAACAGATATGAATAACAGA 

X067 - AATTAATCAATAAATTAATCAATAAATTAATCAATAAATTAATCAATAAA 

X068 - TGACTCACCTATATGACTCACCTATATGACTCACCTATATGACTCACCTA 

X069 - TGCAGCAATATGCAGCAATATGCAGCAATATGCAGCAATATGCAGCAATA 

X070 - TGATACAAATATGATACAAATATGATACAAATATGATACAAATATGATAC  

X071 - TCTCGCGACAATATCTCGCGACAATATCTCGCGACAATATCTCGCGACAA 

X072 - ATCGCGAGAATAATCGCGAGAATAATCGCGAGAATAATCGCGAGAATAAT 

X073 V$ATF3_Q6 TGATGTCAATATGATGTCAATATGATGTCAATATGATGTCAATATGATGT 

X074 - GTGAATCCACATAGTGAATCCACATAGTGAATCCACATAGTGAATCCACA 

X075 - TGATATAATCATATGATATAATCATATGATATAATCATATGATATAATCA 

X076 - TTTCATCAATATTTCATCAATATTTCATCAATATTTCATCAATATTTCAT 

X077 - GCTGATTTCAATAGCTGATTTCAATAGCTGATTTCAATAGCTGATTTCAA 

X078 - TGACGTGACAATATGACGTGACAATATGACGTGACAATATGACGTGACAA 
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Co: (abstract) 

unique ID Co_name Co sequence species 

Co001 
 

GCAAACATGTCTGGACCTCTAGACAATAGCAAACAT Homo sapiens 

Co002 MyoD/Sp1 GCCCCCACCCCTGCCCCATACAACTGACATAGCCCC Homo sapiens 

Co003 
 

GACCAAATAAGGATACCCCACCCCTGCCATACCAAC  Homo sapiens 

Co004 HNF4/HNF1 CTTAGCCCCTGTTTATAGGGTGACCTTGGTTAATAT Homo sapiens 

Co005 HNF4/HNF3 CTGAACCCTTGACCCCTGCCCTATATGCCCACTCTA Homo sapiens 

Co006 Ebox/HNF4 AGGTGATCAAATGACCAGGTGATATTCAACCTTTAC Homo sapiens 

Co007 Ebox/T3R AGTCCTGTCACCTGATAAGTCCTGTCACCTGATAAG Homo sapiens 

Co008 CEBP/HNF4 AGGCGCCCTTTGGACCTTTTGCAATCCTGGATAAGG Homo sapiens 

Co009 
 

TGACCTTTGCCCAGATATGACCTTTGCCCAGATATG Homo sapiens 

Co010 HNF1/IL6REBP CTGGGAAATAATTAAAATACTGGGAAATAATTAAAA Homo sapiens 

Co011 CEBP/HNF1 GTTGCTTAAATAATTAAATATTAACATAGTTGCTTA Homo sapiens 

Co012 CEBP/IL6REBP CTGGGAAATAGTTGCTTAAATACTGGGAAATAGTTG Homo sapiens 

Co013 
 

TGTCCATATTAGGATATGTCCATATTAGGATATGTC Homo sapiens 

Co014 Ets/SRF CAGGATGATACCATATTAGGATACAGGATGATACCA Homo sapiens 

Co015 
 

CAGGATGATACCATATTAGGACATATACAGGATGAT Homo sapiens 

Co016 
 

AGTTCCCGTCAATATACAGGATGATACCATATTAGG Homo sapiens 

Co017 SRF/HMG-I(Y) CCATATTAGGATACCATATTAGGATACCATATTAGG Homo sapiens 

Co018 AP1/Smad TGACATCAATACAGACAGACAGAATATGACATCAAT Homo sapiens 

Co019 AP1/Ets GAGGATGTATATGAGTCAATAGAGGATGTATATGAG Homo sapiens 

Co020 AP1/Smad TGAGTCAGACATATGAGTCAGACATATGAGTCAGAC  Homo sapiens 

Co021 HNF1/HNF1 TTGTAATAAATAACTCAATATGGAAAATTATTTACA Homo sapiens 

Co022 CEBP/NFkappaB GTGGCGCAAACTCCCTTATAGTGGCGCAAACTCCCT Homo sapiens 

Co023 Ebox/Ets GGAAATACAGCTGATAGGAAATACAGCTGATAGGAA Homo sapiens 

Co024 NFkappaB/HMGIY GGATATTCCCATAGGATATTCCCATAGGATATTCCC Homo sapiens 

Co025 NFkappaB/HMGIY GGGAAAGTTTTATAGGGAAAGTTTTATAGGGAAAGT Homo sapiens 

Co026 NFkappaB/HMGIY GGGGATTTCCTATAGGGGATTTCCTATAGGGGATTT Homo sapiens 

Co027 NFkappaB/NFkappaB GGGAAAGTTTTATAGGGGATTTCCTATAGGGAAAGT Homo sapiens 

Co028 AP1/HMGIY CTGACATCAATATTTTAATACTGACATCAATATTTT Homo sapiens 

Co029 AP1/NFkappaB CTGACATCAATAGGGGATTTCCTATACTGACATCAA Homo sapiens 

Co030 AP1/NFkappaB CTGACATCAATAGGATATTCCCATACTGACATCAAT Homo sapiens 

Co031 AP1/NFkappaB CTGACATCAATAGGGAAAGTTTTATACTGACATCAA Homo sapiens 

Co032 
 

TGGATATTCCCGGGAAAGTTTTTATATGGATATTCC  Homo sapiens 

Co033 
 

CCCCTGCTCTGACCCCGGGTGGCCCCTACCCCTGGC  Homo sapiens 

Co034 
 

TCTGACCTCTCGACCCTACCGGGCCTGAGGCCACAT Homo sapiens 

Co035 AhR/HNF4 TACGTGCTATATCTGACCTCTCGACCTATATACGTG Homo sapiens 

Co036 AP1/GATA TTATCTATATGACTAAATATTATCTATATGACTAAA Homo sapiens 

Co037 
 

TTATCTATAGCACGTATAGTGACTAAATATTATCTA Homo sapiens 

Co038 CEBP/NFkappaB CAGAGATTCCATAATTTCACAAAATACAGAGATTCC  Homo sapiens 

Co039 GATA/TSEB CCTAAGGGATAAGATAAATACCTAAGGGATAAGATA Homo sapiens 

Co040 CREB/GATA AGATAAATATGACGTCAATAAGATAAATATGACGTC  Homo sapiens 

Co041 AP1/NFAT GGAGCCCCTGAGTCAATAGGAGCCCCTGAGTCAATA Homo sapiens 

Co042 AP1/NFAT TGATGTCATCTTTCCAATATGATGTCATCTTTCCAA Homo sapiens 

Co043 AP1/NFAT TGACTCTATACTTTCCTATATGACTCTATACTTTCC  Homo sapiens 

Co044 AP1/NFAT TTAATCATTTCCTCATATTAATCATTTCCTCATATT Homo sapiens 

Co045 
 

AGTTCCCCATAATTAATCATTTCCTCATAAGTTCCC Homo sapiens 

Co046 NFkappaB/HMGIY GGAGATTCCAATAGGAGATTCCAATAGGAGATTCCA Homo sapiens 

Co047 
 

GGAGATTCCAATAGGAGATTCCAATAGGAGATTCCA Homo sapiens 

Co048 
 

GCTTTCCTATAGCTTTCCTATAGCTTTCCTATAGCT Homo sapiens 

Co049 PU1/IRF GTTTTCATTTCCTCATAGTTTTCATTTCCTCATAGT Homo sapiens 

Co050 IRF/STAT TTCTGATAAATAAGAAAAGGAAACCATATTCTGATA Homo sapiens 

Co051 NFkappaB/HMGIY GGGAATTTCCATAGGGAATTTCCATAGGGAATTTCC  Homo sapiens 

Co052 
 

TGGGAGGAGCATATTATCCATATATGGGAGGAGCAT Homo sapiens 

Co053 Pit/Pit TTATCCATATAATGCATAAATATTATCCATATAATG Homo sapiens 

Co054 AP2/NF1 TGGCCTGCGGCCAGAATATGGCCTGCGGCCAGAATA Homo sapiens 

Co055 CEBP/Stat CTGGAAAATACTGGAAATATACTGGAAAATACTGGA Homo sapiens 

Co056 NFkappaB/HMGIY GGGAAATTCCATAGGGAAATTCCATAGGGAAATTCC  Homo sapiens 

Co057 IRF/NFkappaB GAGAAGTGAAAGTGGGAAATTCCATAGAGAAGTGAA Homo sapiens 

Co058 AP1/HMGIY TGACATAGGAAAAATATGACATAGGAAAAATATGAC  Homo sapiens 

Co059 AP1/HMGIY TAAATGACATAGATATAAATGACATAGATATAAATG Homo sapiens 

Co060 AP1/NFkappaB TGACATAGATAGGGAAATTCCTCATATGACATAGAT Homo sapiens 

Co061 
 

GAAAACTGAAAGGGAGAAGTGAAAGTGGGAAATTCC  Homo sapiens 

Co062 GR/GR GGGACAAACAGTATGATATGAACACTCAGCTCCATA Homo sapiens 

Co063 PU1/IRF GGAAATAGAAACCATAGGAAATAGAAACCATAGGAA Homo sapiens 

Co064 CEBP/Ets TTGTGAAATATATACTTCTGCTTTATATTGTGAAAT Homo sapiens 

Co065 AP1/NFAT AGGAAAAAATATGTTTCAATAAGGAAAAAATATGTT Homo sapiens 

Co066 AP1/NFkappaB AAAGAAATTCCAATAAGAGTCATATAAAAGAAATTC  Homo sapiens 

Co067 
 

GGAGGAAAAACTGTTTCATACAGAAGGATAGGAGGA Homo sapiens 

Co068 AP1/NFkappaB AAAGAAATTCCATAAGAGTCAATAAAAGAAATTCCA Homo sapiens 

Co069 NFkappaB/HMGIY AAAGAAATTCCAATAAAAGAAATTCCAATAAAAGAA Homo sapiens 

Co070 Egr/NFAT CCCCACCCCATAGGAAAAATACCCCACCCCATAGGA Homo sapiens 

Co071 Ets/HMGIY AAAAAAAAAAAAAAAAAAAATAACTTCCTATATTAT Homo sapiens 

Co072 Stat/Stat TTCTAGGAAATATTCTGATAAATATTCTAGGAAATA Homo sapiens 

Co073 
 

TTCTAGGAAATATTCTGATAAATATTCCATATTCTA Homo sapiens 

Co074 
 

TTCTCAGAAATATTCTGAGAGATATTCTAGGAAATA Homo sapiens 

Co075 AP1/Ets TGAGTCAATACCCTTCCTGCCATATGAGTCAATACC Homo sapiens 

Co076 AP1/NFAT TGAGCTAATAGTTTTCCAATATGAGCTAATAGTTTT Homo sapiens 

Co077 NFAT/Oct TGGAAAATGCAAATATATGGAAAATGCAAATATATG Homo sapiens 

Co078 AP1/GATA GGCATTCTCTATCTGATTGTTATAATTCATTCCTCA Homo sapiens 
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Co079 AP1/Oct AATTATTCAATAAATTATTCAATAAATTATTCAATA Homo sapiens 

Co080 CEBP/NFkappaB ACATTGCACAATCTATAGGGATTTTCCATAACATTG Homo sapiens 

Co081 
 

ACATTGCACAATCTATATATCAAATGATAGGGATTT Homo sapiens 

Co082 
 

ACATTGCACAATCTATAGGGATTTTCCCATGATAAC  Homo sapiens 

Co083 CEBP/NFkappaB CAGTTGCAAATCGTGGAATTTCCTATACAGTTGCAA Homo sapiens 

Co084 AP1/NFkappaB TGACTCAATAGGAATTTCCTATATGACTCAATAGGA Homo sapiens 

Co085 NFkappaB/Stat TTTCCCCGAAAATAGGGGAATCCCATATTTCCCCGA Homo sapiens 

Co086 
 

TTTCCCCGAAAATAGGGGAATCCCATATTTCCCCGA Homo sapiens 

Co087 PU1/IRF GGGAAACCGAAAATAGGGAAACCGAAAATAGGGAAA Homo sapiens 

Co088 Ets/Myb CAGGAAGTATACGGTTTATACAGGAAGTATACGGTT Homo sapiens 

Co089 IRF/NFkappaB TGGGGATTCCCCACTCCCCTGAGTTTCACTTCTATA Homo sapiens 

Co090 
 

ACCAGCGACTGATATGATGCTAATACTGATTCGTTA Homo sapiens 

Co091 RFX/NFY CCTAGCAACAGATGATACTGATTGGCCAAAGATACC  Homo sapiens 

Co092 AP1/NFY ATGCGTCAATACTGATTGGCCAAAGATAATGCGTCA Homo sapiens 

Co093 AP1/RFX CCTAGCAACAGATGCGTCAATACCTAGCAACAGATG Homo sapiens 

Co094 
 

CCTAGCAACAGATGCGTCAATACTGATTGGCCAAAG Homo sapiens 

Co095 Sp1/NFY TGGGCGGAGTATAGACGAATCAGATATATGGGCGGA Homo sapiens 

Co096 RFX/NFY CCCAGAAACAAGTGATGAATACAGCCAATGGGATAC  Homo sapiens 

Co097 Ebox/Smad CCTAGACAATACACGTGGATACCTAGACAATACACG Homo sapiens 

Co098 Smad/Smad GTCTGGACATAGGAGTCAATAGTCTGGACATAGGAG Homo sapiens 

Co099 AP1/ER AGGTCACGGTGGCCAATATGAATCAATAAGGTCACG Homo sapiens 

Co100 CEBP/NFkappaB ACACAACTGGGAATAGGGACTTTCCATAACACAACT Homo sapiens 

Co101 AP1/Ets TGTGTCATTTCCTTATATGTGTCATTTCCTTATATG Homo sapiens 

Co102 AP1/Ets AGGAAATTAGTCAATAAGGAAATTAGTCAATAAGGA Homo sapiens 

Co103 Ets/AML GAAGCCACATCCTCTATAGAAGCCACATCCTCTATA Homo sapiens 

Co104 Ets/AML CAGGATGTGGTTTATACAGGATGTGGTTTATACAGG Homo sapiens 

Co105 Myb/AML TGTGGTTTATACCGTTAATATGTGGTTTATACCGTT Homo sapiens 

Co106 AP1/NFAT TGAGCTCAATAGGGTTTCTCCATATGAGCTCAATAG Homo sapiens 

Co107 AP1/CEBP ATGAGCTCAATAGGGTTTCTCCACCAAGGAAGTTTT Homo sapiens 

Co108 AP1/Ets TTCCTATAATGAGCTCATATATTCCTATAATGAGCT Homo sapiens 

Co109 AP1/NFkappaB TGAGCTCAATAGGGTTTCTCCATATGAGCTCAATAG Homo sapiens 

Co110 AP1/CEBPCREB/CREB TGAGTCAGATAATTTGCTTCAGAATATGAGTCAGAT Homo sapiens 

Co111 
 

TGAGTCAGATATGAGTCAGATATGAGTCAGATATGA Homo sapiens 

Co112 AP1/Pit AATTCAGTATGAATTTTCAATAGATGCTATATGGGT Homo sapiens 

Co113 AP1/Ets AGGAAATATGAGTCAATAAGGAAATATGAGTCAATA Homo sapiens 

Co114 Sp1/Oct GGGCGGGGATAATGCAAATATAGGGCGGGGATAATG Homo sapiens 

Co115 AP1/Ets AGGAAATGAAGTCAATAAGGAAATGAAGTCAATAAG Homo sapiens 

Co116 AP1/Ets AGGAAAATATGAATCATATAAGGAAAATATGAATCA Homo sapiens 

Co117 AP1/AP1 TGAAGTCAATATGAATCATATATGAAGTCAATATGA Homo sapiens 

Co118 AP1/Ets TGACTCAATATCTTCCTTATATGACTCAATATCTTC  Homo sapiens 

Co119 E2F/E2F TTTTCGCGCATATTTGGCGCATATTTTCGCGCATAT Homo sapiens 

Co120 
 

GGGTTTCCCCATAGGGATTTCCCATAACTTTCTATT Homo sapiens 

Co121 NFkappaB/NFkappaB GGGTTTCCCCATAGGGATTTCCCATAGGGTTTCCCC Homo sapiens 

Co122 CEBP/NFkappaB ATTGCATAGGAAATTCCGATAATTGCATAGGAAATT Homo sapiens 

Co123 Sp1/Stat TTTCCGGGAAAATACCGCCCATATTTCCGGGAAAAT Homo sapiens 

Co124 AP1/NFkappaB TGACTCTATAGGGTTTTCCATATGACTCTATAGGGT Homo sapiens 

Co125 NF1/Sp1 GTCATGGCGACTGTCCATAGTCATGGCGACTGTCCA Homo sapiens 

Co126 CEBP/AML ATTTCCAAAATATGTGGTATAATTTCCAAAATATGT Homo sapiens 

Co127 Ets/AML TGTGGTATAGGGGAAATATGTGGTATAGGGGAAATA Homo sapiens 

Co128 Sp1/Smad GGGCGGATAATGCAGACAATAGGGCGGATAATGCAG Homo sapiens 

Co129 Sp1/Smad GGGCGGATAATGCAGACAATAGGGCGGATAATGCAG Homo sapiens 

Co130 AhR/Sp1 CCCCGCCCATACACGCCGGCCGGATACCCCGCCCAT Homo sapiens 

Co131 ER/Sp1 GGGCAATAGGCGGGATAGGGCAATAGGCGGGATAGG Homo sapiens 

Co132 AP1/Ets AGCGGATGTGATATGAGTCAATAAGCGGATGTGATA Homo sapiens 

Co133 COUP/HNF4 ACGTGACCTTGGGGGACGTCATTATACTGTTGGCCA Homo sapiens 

Co134 Oct/Stat ATTTGCATTTCTATGAAATAATTTGCATTTCTATGA Homo sapiens 

Co135 IRF/STAT GGTTTCAGTTTTCCATATTCCTGTAAATAGGTTTCA Homo sapiens 

Co136 AP1/NFAT AGGAAAATAAACTACAATAAGGAAAATAAACTACAA Homo sapiens 

Co137 SREBP/Sp1 ATCACCCCACATACCTCCCCCTGCATAATCACCCCA Homo sapiens 

Co138 
 

GAAAATTTCCATAGAAAATTTCCATAGAAAATTTCC  Homo sapiens 

Co139 IRF/NFAT GAAAATTTCCATAGAAAATTTCCATAGAAAATTTCC  Homo sapiens 

Co140 CEBP/NFkappaB GTGATGTAAATAGGGACACTCCATAGTGATGTAAAT Homo sapiens 

Co141 
 

GGGGGTGACCCCATAGGGGGTGACCCCATAGGGGGT Homo sapiens 

Co142 IRF/NFkappaB GTTTTCTTTTCCATAGGGGATGCCCCATAGTTTTCT Homo sapiens 

Co143 RFLAT/NFkappaB TTTTGGAAACTCCCCTTAGGGGATGCCCCATATTTT Homo sapiens 

Co144 Egr/NFAT GTGGGCGGAAACTTATAGTGGGCGGAAACTTATAGT Homo sapiens 

Co145 
 

AGAAACGGAGGATAGGGGCGGGGCGCGATATGCGTC  Homo sapiens 

Co146 
 

TTCCATATTTCAAAGATATGAGTCAATATTCCATAT Homo sapiens 

Co147 Ets/HMG TTCCATATTTCAAAGATATTCCATATTTCAAAGATA Homo sapiens 

Co148 
 

ATTATGGGAAACCATAATTATGGGAAACCATAATTA Homo sapiens 

Co149 Ets/Myb CCGTTATCATAGGATATACCGTTATCATAGGATATA Homo sapiens 

Co150 SF1/Sp1 CCGCCCCATATATCCTTGACATACCGCCCCATATAT Homo sapiens 

Co151 PDX/HNF3 CTTTAATTGGTTATACAGCCTTTTTTGTTTATTTAT Homo sapiens 

Co152 Sp1/NFY CCCGCCCCATAATTGGATACCCGCCCCATAATTGGA Homo sapiens 

Co153 Sp1/Ets ACAGGAATATACTCGCCCATAACAGGAATATACTCG Homo sapiens 

Co154 Ebox/Stat TTCTGATAAAATACACGTGATATTCTGATAAAATAC  Homo sapiens 

Co155 
 

TTCTGATAAAATACACGTGATAGAAAGTGAAAGGAT Homo sapiens 

Co156 CEBP/Ets CCAATATAGAGGAAATACCAATATAGAGGAAATACC Homo sapiens 

Co157 CEBP/NFkappaB GAAATTCCCCATAATGTTGCAAATAGAAATTCCCCA Homo sapiens 

Co158 Sp1/Stat ATCACCCCACATAATTGGCATAATCACCCCACATAA Homo sapiens 

Co159 SF1/Sox TCTTTGAGAATACCAAGGTCGCATATCTTTGAGAAT Homo sapiens 

Co160 Sp1/Smad GGGGGCGGATAGCCTATAGGGGGCGGATAGCCTATA Homo sapiens 
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