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Abstract

Software systems are becoming more and more widespread in all areas of everyday

life. Due to the increasing reliance on such systems, there is a need to keep them

operational over longer periods of time under constantly changing circumstances and

increasing demands. Thus, it becomes essential to develop and maintain software with

an evolutionary mindset. Various kinds of software assessment are employed to gain a

better understanding of the nature of software evolution and provide methods and tools

to support the evolution of software. Artifact-centric assessment captures the state of

affairs at a given point in time as reflected in the characteristics of the different artifacts

that comprise a software system. Change-centric assessment, in contrast, considers

how a software system evolved into the state it is at a given point in time and how it

can be expected to evolve in the future. Since changes do not occur by themselves,

in this thesis we shift to focus to the developers performing the changes, by proposing

developer-centric software assessment.

The overarching goal of this thesis is to investigate means for characterising devel-

oper contribution behaviour and assessing its impact on the resulting software products

with respect to certain events of interest. The characterisation and assessment are based

on traces collected from different kinds of software-related assets, containing informa-

tion related to software artifacts at different levels of granularity. Pursuing this goal,

we make several contributions within the scope of this thesis, which are related to the

identification of potential causes for events of interest and the characterisation of de-

veloper behaviour, as well as a model-based approach for mining software repositories

and conducting software assessment. We perform case studies to evaluate the methods

described in the thesis.

The approach for the identification of potential causes for events of interest adds

quantitative information on top of existing approaches for origin analysis in order to

provide more accurate information across multiple levels of granularity. The approach

for the characterisation of developer behaviour seeks to capture and assess the circum-

stances in which development activities are performed. We present a selection of char-

acteristics across different dimensions and discussed different approaches for making

use of the resulting data based on visualisation and data mining techniques. Both ap-

proaches are realised within a model-based software mining infrastructure aiming to

ease the integration of heterogeneous data produced and used by third-party tools. It

serves as a glue for loosely coupling software mining solutions at a high level of ab-

straction. The corresponding case studies demonstrate the application of the approaches

and their strengths and limitations.
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1. Introduction

Software systems are becoming more and more widespread in all areas of everyday

life. With the increasing reliance on software for accomplishing various tasks as well

as keeping equipment operational for longer and often unforeseen length of time, it be-

comes necessary to maintain and evolve software for long periods of time, often well

beyond the originally anticipated lifespan of the software. In addition to the longer lifes-

pan of software, the requirements for the software also change over time and with the

increasingly widespread adoption, they change more frequently due to several related

factors. The broader user-base has more and diverse usage scenarios requiring new and

extended functionality. The broader user-base is also more sensitive to shortcomings

and defects in the software which have a larger impact and potential for disruption. As

a consequence, software systems are gaining more and more attention from regulatory

bodies which push further requirements on the development and operation of software.

The diversified usage scenarios, the pressure from users and legislation, along with the

rapidly changing hardware and software landscape in which a software system oper-

ates and depends on lead to continuously changing requirements. The realisation of the

changing requirements leads to changes in the artifacts related to the software, which

also manifest in changes in the characteristics of the software artifacts.

The field of software evolution is concerned with studying and understanding the

continuous change of software systems over time. This is achieved by collecting obser-

vations on how things changed in the past, predicting how things are likely to change in

the future based on the observations from the past, and guiding decisions about the de-

velopment and maintenance of the software the present based on the past observations

and the future predictions. Thus, on the one hand, software evolution is concerned with

understanding the nature of the evolution phenomenon and its underlying drivers. On

the other hand, software evolution is concerned with the achievement of evolution by

providing methods, tools, and techniques for changing characteristics of the software

in a controlled, disciplined, reliable, fast, and cost-effective manner [107]. In order to

gain a better understanding of the nature of software evolution and provide methods

and tools for the achievement of evolution, various kinds of software assessment are

employed.

Software assessment is the process of posing specific questions about the software

system under study and carrying out specialised analyses to answer these ques-

tions [131]. When assessing software systems, the most intuitive approach is to look

at the software itself and contemplate the characteristics of the different artifacts that
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comprise the software. This approach, which we will refer to as artifact-centric as-

sessment, captures the state of affairs at a given point in time. As software systems are

continuously evolving, it becomes more and more important to ask questions related

to how the software evolved into the state it is at a given point in time and how it can

be expected to evolve in the future. When considering such questions, we are also

concerned with how the software changed over time rather than only how it is at the

certain point in time. In this case we are speaking of change-centric assessment. But

changes do not occur by themselves. Changes are performed by developers.

Similar to the use of software, the development of software is also becoming more

and more widespread and diversified. With the rise of open source software, the very

nature of software development has changed fundamentally. People from all walks of

life can contribute to software development, regardless of their training, experience, and

location. They may choose to contribute only towards a specific requirement that they

are affected by, dedicate continuous contributions to a project, or even be required to

contribute by organisational policies. Depending on the individual strengths and weak-

nesses of each developer as well as on the collaborations between different developers,

the contributions may have a different impact on the software. The amount, scope, and

impact of contributions, as well as the reasons and motivations for the contributions

may also change over time. Finally, the experience and working habits of the develop-

ers are also likely to change over time. All of this can have an effect on the governance

of the software project and the organisation and coordination of the contributions, re-

sulting in different guidelines, policies, roles, and processes for contributors. In order

to better understand how developer contribution behaviour evolves over time as a core

factor in determining how software evolves over time, we propose developer-centric

software assessment. After looking at artifacts and at changes to the artifacts over time,

it is now time to look at the developers behind the changes. Based on developer-centric

software assessment, tools can provide relevant feedback specific to a particular devel-

oper under particular circumstances. Developer-centric software assessment can also

yield potentially helpful insights for guiding organisational decisions.

Existing research has shown some promise and potential benefits of considering

developer-related information and building developer-specific models for identifying

risky changes [163] and personalised defect prediction [84]. This thesis pursues this

direction further bringing developers and developer-related information even more to

the forefront of software assessment.

1.1. Goals and Contributions

The overarching goal of this thesis is to investigate means for characterising developer

contribution behaviour and its evolution, as well as assessing its impact on different

aspects of the evolution of software. The characterisation and assessment is based on
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traces collected from different kinds of software-related assets, such as Version Control

Systems (VCSs) and Issue Tracking Systems (ITSs).

The work towards this goal is guided by the following high-level research questions

and addressing subsequent challenges associated with these questions:

• How can we characterise developer behaviour based on information collected

from software-related assets?

• How can we determine potential causes for events of interest across multiple

levels of abstraction?

• How can we mine information related to developer behaviour and its impact on

potential causes for events of interest from software-related assets in an effective

and agile manner?

• What are the advantages of using developer-centric software assessment?

The first challenge with regard to characterising developer behaviour is to determine

what constitutes developer behaviour. We need to consider the different circumstances

under which developers operate. This includes various sources of information, different

levels of granularity, as well as collaborations with other developers. The circumstances

are characterised by both situational factors related to the artifacts on which a developer

works as well as dispositional factors related to the developer working on the artifacts.

The next challenge is to assess the impact of the contribution behaviour with respect

to certain events of interest and their potential causes. Events of interest could be bug

fixes or refactorings, for example. In order to better understand the potential causes

for these events of interest, such as introducing defects and smells, we contemplate the

circumstances that are associated with them.

The third challenge is to investigate the impact of changes in the behaviour of de-

velopers. Developers gain experience over time. They may also become more or less

involved in a project over time. Consequently, different developers may assume dif-

ferent roles over time or also express different modes of operation while assuming the

same role. This may affect the outcome of their activities with respect to potential

causes for events of interest.

The fourth challenge is to investigate transfer opportunities between different devel-

opers and different projects, e.g., in new projects for which there is no sufficient data

available for assessment, or in existing projects when new developers join the project.

Different assessment applications, such as defect prediction, risk assessment, soft-

ware process simulation, and visualisation can benefit from better characterisation of

the developers over time. Such applications can be utilised to guide organisational

decisions and also provide relevant feedback to developers that is specific to the cir-

cumstances at a particular point in time.

In order to tackle the research questions and challenges noted above, the contributions

of this thesis can be summarised as follows:
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• A method for characterising developer behaviour from both situational and dispo-

sitional perspectives, considering different facets, sources of information, levels

of granularity, as well as potential changes in the behaviour of developers.

• A method for identifying potential causes for events of interest across different

levels of granularity.

• A model-based approach for mining software repositories and conducting soft-

ware assessment with a concrete instantiation for developer-centric software as-

sessment.

• Case studies for the evaluation of the methods described in this thesis, including

refinements of the research questions to target specific aspects.

1.2. Impact

The results of this thesis as well as work related to the application of the methods dis-

cussed in this thesis have been published in several peer-reviewed journals, international

workshop and conference proceedings, as well as book chapters, including:

Journal Articles

• Fabian Trautsch, Steffen Herbold, Philip Makedonski, Jens Grabowski Address-

ing problems with replicability and validity of repository mining studies through

a smart data platform, Empirical Software Engineering, Springer, 2017

• Philip Makedonski, Jens Grabowski Testbeschreibung mit TDL: Konzepte und

Notationen der ETSI Test Description Language, OBJEKTspektrum Online The-

menspezial: Testing, SIGS DATACOM, 2016

• Janka Koschack, Lara Weibezahl, Tim Friede, Wolfgang Himmel, Philip Make-

donski, Jens Grabowski. Scientific versus experiential evidence: Discourse anal-

ysis of the CCSVI debate in a multiple sclerosis forum, Journal of Medical Internet

Research, JMIR - Publications, http://www.jmir.org/2015/7/e159/, 2015

• Philip Makedonski, Fabian Sudau, Jens Grabowski. Towards a Model-based Soft-

ware Mining Infrastructure, ACM SIGSOFT Software Engineering Notes 40(1),

ACM, 2015

• Fabian Sudau, Tim Friede, Jens Grabowski, Janka Koschack, Philip Makedon-

ski, Wolfgang Himmel. Sources of Information and Behavioral Patterns in

Health Online Forums, Journal of Medical Internet Research, JMIR - Publica-

tions, http://www.jmir.org/2014/1/e10/, 2014

• Philip Makedonski, Jens Grabowski, Florian Philipp. Quantifying the evolution

of TTCN-3 as a language, International Journal on Software Tools for Tech-

nology Transfer (STTT). (ISSN 1433-2779) DOI: 10.1007/s10009-013-0282-1,

Springer-Verlag Berlin Heidelberg, 2013
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• Jens Grabowski, Philip Makedonski, Thomas Rings, Benjamin Zeiß. Systema-

tische Qualitätssicherung für Testartefakte, OBJEKTspektrum Online Themen-

spezial: Testing, SIGS DATACOM, 2009

Articles in Conference Proceedings

• Philip Makedonski, Gusztav Adamis, Martti Käärik, Finn Kristoffersen, Xavier

Zeitoun. Evolving the ETSI Test Description Language, Proceedings of the 9th

System Analysis and Modelling Conference (SAM 2016), Springer, 2016

• Fabian Trautsch, Steffen Herbold, Philip Makedonski, Jens Grabowski. Address-

ing Problems with External Validity of Repository Mining Studies Through a

Smart Data Platform, 13th International Conference on Mining Software Repos-

itories, 2016

• Philip Makedonski, Jens Grabowski. Weighted Multi-Factor Multi-Layer Iden-

tification of Potential Causes for Events of Interest in Software Repositories, To

appear in: Proceedings of the Seminar Series on Advanced Techniques & Tools

for Software Evolution (SATToSE), 2015

• Philip Makedonski, Helmut Neukirchen, Jens Grabowski. Validating the Behav-

ioral Equivalence of TTCN-3 Test Cases, First International Conference on Ad-

vances in System Testing and Validation Lifecycle (VALID 2009), IEEE, 2009

Book Chapters

• Philip Makedonski, Tim Friede, Jens Grabowski, Janka Koschack, Wolfgang

Himmel. Sources of Information and Behavioural Patterns in Health Online

Fora, To appear in: Social Network Analysis: Interdisciplinary Approaches and

Case Studies, CRC Press, 2016

• Philip Makedonski, Verena Herbold, Steffen Herbold, Daniel Honsel, Jens

Grabowski, Stephan Waack. Mining Big Data for Analyzing and Simulating

Collaboration Factors Influencing Software Development Decisions, To appear

in: Social Network Analysis: Interdisciplinary Approaches and Case Studies,

CRC Press, 2016

• Jürgen Großmann, Philip Makedonski, Hans-Werner Wiesbrock, Jaroslav

Svacina, Ina Schieferdecker, Jens Grabowski. Model-Based X-in-the-Loop

Testing, Model-Based Testing for Embedded Systems (Computational Analysis,

Synthesis, and Design of Dynamic Systems Series), CRC Press, 2011

In addition, during the work on this thesis, the author defined and supervised three

master’s theses, one bachelor’s thesis, and several students’ projects on topics related to

this thesis, including:
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Master’s Theses

• Sonja Neue. Determining Test Focus and Priorities in an Industrial Environ-

ment, Masterarbeit im Studiengang Angewandte Informatik am Institut für Infor-

matik, ZAI-MSC-2014-04, 1612-6793, Zentrum für Informatik, Georg-August-

Universität Göttingen, 2014

• Florian Philipp. Model-diven Language Implementation Using the Example of

a Test Description Language, Masterarbeit im Studiengang Angewandte Infor-

matik am Institut für Informatik, ZFI-MSC-2013-04, ISSN 1612-6793, Zentrum

für Informatik, Georg-August-Universität Göttingen, 2013

• Fabian Sudau. Analysis of Controversial Debates in Online Fora - A Showcase

Analysis of the CCSVI Discussion in the DMSG Layperson Forum, Masterarbeit

im Studiengang Angewandte Informatik am Institut für Informatik, ZAI-MSC-

2013-04, ISSN 1612-6793, Zentrum für Informatik, Georg-August-Universität

Göttingen, 2013

Bachelor’s Theses

• Daniel May. Observing Activity Patterns in Software Development, Bache-

lorarbeit im Studiengang Angewandte Informatik am Institut für Informatik,

ZAI-BSC-2012-07, ISSN 1612-6793, Zentrum für Informatik, Georg-August-

Universität Göttingen, 2012

The author has also actively contributed to the standardisation of the Test Descrip-

tion Language (TDL) at European Telecommunications Standards Institute (ETSI), co-

authoring all sixteen versions of the seven standards related to the language. The tools

and technologies developed during the work on this thesis have been integrated into

further projects, such as SmartSHARK1, the TDL open source project2, the Testing

and Test Control Notation (TTCN-3) guideline checking and documentation generation

tools3, and a platform for assuring software quality by means of simulation methods4,

fostering further work and continued development of the methods and tools described

in this thesis.

1.3. Thesis Structure

This thesis covers several aspects related to the central topic of developer-centric soft-

ware assessment. It is structured as follows:

1See https://smartshark2.informatik.uni-goettingen.de
2See https://tdl.etsi.org/index.php/open-source
3See https://t3tools.informatik.uni-goettingen.de/trac
4See https://www.simzentrum.de/en/education/softwarequalitaetssicherung-
mit-hilfe-von-simulationsverfahren/
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Chapter 2 summarises the essential background information that is necessary for un-

derstanding the rest of this thesis, including software evolution (Section 2.1),

data mining and data analytics (Section 2.2), mining software repositories (Sec-

tion 2.3), and modelling and model driven engineering (Section 2.4).

Chapter 3 is concerned with identifying likely causes for events of interest based on

information derived by applying a line-tracking approach (Section 3.1). The ap-

proach relies on a generic framework (Section 3.2) to qualify events as fixes and

determine their likely causes, where weights are calculated for different factors

(Section 3.3) and distributed across different levels of granularity (Section 3.4)

according to various weight distribution strategies (Section 3.5) emphasising dif-

ferent characteristics of the states.

Chapter 4 contains the description of the behaviour characterisation methodology, in-

cluding a conceptual overview (Section 4.1), a description of the different charac-

teristics across the various dimensions (Section 4.2), and means for making sense

of the collected data and gaining further insights (Section 4.3).

Chapter 5 describes a model-based approach to software mining, outlining mining

challenges (Section 5.1), building a case for a model-based mining approach

(Section 5.2), detailing the mining process and overall framework of the ap-

proach in general terms (Section 5.3), and presenting a concrete instantiation of

the mining approach for the purposes of developer-centric software assessment

(Section 5.4).

Chapter 6 presents the case studies used for the evaluation of the methods described

in this thesis, including the specific goals for the evaluation (Section 6.1), the

evaluation criteria (Section 6.2), a description of the data sets (Section 6.3), and

the case study results (Section 6.4).

Chapter 7 includes a discussion of the results from the case studies and their interpre-

tation (Section 7.1), a comparison to related approaches (Section 7.2), assessment

of the strengths and limitations of the different methods described in this thesis

and their realisation (Section 7.3), as well as potential threats to validity (Sec-

tion 7.4).

Chapter 8 concludes this thesis with a summary and an outlook on future work.



2. Background

In this chapter, we describe the background information related to this thesis and the

broader context of the work. We first present a brief introduction to the field of software

evolution as the main domain for the present work. Then, we include short summaries

of relevant aspects from related domains, including data mining and data analytics,

mining software repositories, as well as modelling and model based engineering, which

form the foundations of the approaches presented in this thesis.

2.1. Software Evolution

Software evolution [104, 105, 106] describes the phenomenon of continuous change to

software systems in order to maintain their usefulness and operability in continuously

changing environments. With changing operational environments, including changes to

hardware, related software, legislation, business and user needs, the requirements of the

software system change as well to address the changes in the environment. The arti-

facts that make up the software system also need to be changed as a consequence. The

different artifacts are characterised by a number of properties which in turn change as

well, as the artifacts themselves are subjected to changes corresponding to the changes

in the requirements. A better understanding of the nature of these changes in the ar-

tifacts and in their characteristics can be inferred based on observations of how the

software evolved the past. This understanding can then be used in the assessment of

certain characteristics of interest projected into the future. Characteristics of interest

typically include estimated growth and associated effort as well as resulting complex-

ity and potential risks for defects or other undesirable consequences. Insights obtained

from past observations and future predictions can be put to action in order to steer and

control the evolution of a software system in a desired direction. Consequently, the field

of software evolution is concerned with investigating and understanding the nature of

the evolution phenomenon and its underlying drivers, as well as defining engineering

principles for achieving software evolution in a controlled manner [107].

At a high level, a lot of activities revolving around understanding, guiding, and sup-

porting software evolution involve five fundamental steps:

• collecting measurements for various characteristics of activities, artifacts, and

people,

• keeping records of measurements over time,
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• learning from the recorded measurements,

• acting upon what has been learned, and

• measuring the impact of the actions.

The measurements require the definition of adequate characteristics with respect to an

assessment task or a set of tasks, and corresponding means for performing the measure-

ments efficiently at a large scale. The historical records require detailed transactional

data about activities, artifacts, and people in order to associate the obtained measure-

ments to these entities. The learning requires a problem definition and corresponding

data, possibly partitioned and projected over the problem domain, as well as scalable

computational infrastructure for processing the data. The actions require an organisa-

tional strategy that takes learning outcomes into consideration for future decisions. The

assessment of the impact requires adequate evaluation criteria to differentiate and com-

pare the outcomes of different decisions. Data mining and data analytics techniques can

be adopted for these purposes and further specialised into software mining and software

analytics.

2.2. Data Mining and Data Analytics

Data mining techniques have found widespread application in software evolution stud-

ies over the past decade. We consider two fundamental categories of data mining

techniques: directed data mining for constructing models that explain and/or predict

outcomes related to a target characteristic (often referred to as target variable); and

undirected data mining for finding patterns that are not related to a particular target

characteristic and whose usefulness is open to human interpretation [110]. Both cat-

egories of data mining techniques are used in software assessment for accomplishing

various business goals. The choice of a technique depends on the business goal that is

to be accomplished and on the given circumstances. Translating the business goal into

a data mining task is a fundamental step in the data mining process. The data mining

tasks outline the requirements towards the technique, as well as the input and the output

data.

When it comes to specifics of the terms data mining and data analytics, there are no

universally agreed upon definitions and clear lines between the terms, resulting in their

interchangeable use. Both terms have been used as buzzwords at different points in time

to denote a broad domain of techniques, approaches, and processes.

Data mining is concerned with extracting and analysing raw data, typically collected

for operational purposes, and looking for patterns and relationships. While there may

be certain expectations towards the outcome of the data mining process, data mining

is often more exploratory in nature. It may also require taking domain knowledge into

account in order to guide the evaluation and interpretation of discovered findings.
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Data analytics is concerned with analysing data to draw conclusions about what is

going on in the subject described by the data, be it a process, an event, or an entity,

and guiding decisions or taking actions according to the conclusions. The data is often

collected with the specific goal of the analysis and decision making in mind.

2.2.1. Directed Data Mining

Directed data mining techniques rely on the availability of training data with regard

to the target characteristic. The target characteristic may be categorical or numerical,

where binary categorical characteristics, which are particularly popular as data mining

goals, often revolve around modelling binary yes/no questions. Directed data mining

techniques are also referred to as supervised learning.

Classification, as one of the most frequently used directed data mining techniques, is

concerned with assigning new unknown data items to one of a set of known classes with

regard to the values of the target characteristic. The training data containing data items

with known classes are used to infer a model which determines the class of a data item

based on other characteristics of the data item. The model shall abstract form the train-

ing data sufficiently well so that unknown data can still be successfully classified. While

classification is concerned with categorical characteristics, estimation is concerned with

continuous numerical characteristics. Some classification techniques, such as decision

trees [143], logistic regression [31], and neural networks [169], produce an estimate

of the probability of the different categories in addition to or instead of the categories

themselves. The probability can either be compared against a set threshold or used for

ranking. In software engineering, classification and estimation can be used to identify

defect-prone artifacts and activities and steer quality assurance efforts [4, 46, 95]. Of-

ten times when using directed data mining techniques in software assessment, and in

general, the scoring can be considered of primary interest.

In software assessment, and in particular in the classification of e.g. defect-prone vs

non-defect-prone artifacts, the outcome is usually concerned with which artifacts should

be examined more closely and tested more thoroughly. However, in many cases there is

also added value in the ability of the model to explain the classification outcomes. It can

provide better understanding of the underlying factors contributing to the classification

outcome, such as prominent common characteristics of defect-prone artifacts. Based on

this understanding, further measures can be implemented to reduce the prevalence of

these characteristics. Some data mining techniques, such as decision trees and logistic

regression, are better suited for this purpose than others. The importance of the ability

to explain the classification outcomes as well as the characteristics of the input and

output data are determining factors in the selection of appropriate technique for a given

data mining task, since there are usually trade-offs between explanatory power and

accuracy [110].
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time time

Testing Data

Training Data

Testing Data

Training Data

Classification Scenario Prediction Scenario

Figure 2.1.: Data partitioning for classification and predictive modelling

If the data includes temporal properties, such as the time of measurement, in directed

data mining, there is a further distinction to be made with regard to the temporal rela-

tionship between the training and testing data for the model. In predictive modelling

the testing data comes from a timeframe which strictly after the timeframe of the train-

ing data, whereas in profiling (or classification), the timeframe is the same. Figure 2.1

illustrates both scenarios. In the classification scenario shown on the left, the training

and testing data are not temporally separated. In the prediction scenario on the shown

on the right, the training and test data are strictly temporally separated.

2.2.2. Undirected Data Mining

While in undirected mining there is no specific target characteristic, there are usually

one or more goals that need to be addressed. To address the goal of finding defect-prone

software artifacts, we may apply directed data mining if there are available data char-

acterising such software artifacts. If there are no such data, we may rely on undirected

data mining to identify software artifacts that appear unusual or dissimilar to the major-

ity of artifacts [197]. Similarly, undirected mining techniques can be applied to identify

commonly occurring combinations of characteristics related to the goal in question, or

even provide insights for refining the goal or identifying new goals. Undirected mining

techniques are also referred to as unsupervised learning.

Clustering is one commonly used undirected data mining technique for segmenting

multi-dimensional data into groups exhibiting high similarity, where the interpretation

of the clustering results is up to the user. A subsequent examination of the defining char-

acteristics of each cluster can yield new insights regarding common characteristics of

the members of each cluster, and possibly also result in new dimensions characterising
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the original data. New data can then be allocated to the existing clusters or used to con-

tinuously refine and redefine the existing clusters. In software assessment, clustering

can be used to identify common patterns among developers in order to steer develop-

ment guidelines and training focus [109, 150]. Clustering can even be used for directed

data mining tasks, depending on the similarity of the data items in each cluster with

regard to a target characteristic, which determines the ability of the identified clusters

to separate the possible values of the target characteristic.

Association rules are another frequently used undirected data mining technique for

identifying patterns between co-occurring characteristics. It can be particularly useful

for inferring relationships between characteristics of interest, such as ones related to

technical risks within individual data points. Association rules can also be applied to

multiple (subsequent) data points in order to infer patterns between co-occurring events.

This particular scenario is an example of sequential pattern analysis.

2.2.3. Data Preparation

Before the application of data mining techniques, there is often need for processing the

data in various ways. This is referred to as data pre-processing or data preparation.

This involves the application of data transformation, selection, and data partitioning

techniques which are either aligned with business goals, seek to improve some aspect

of the data mining process, or help in better understanding the underlying data and

guiding the application of subsequent data mining techniques.

Data transformation techniques such as normalisation seek offset any side effects

due to high variance in the data ranges for different characteristics (also referred to as

“scale-effects”). Normalisation also provides a relative scale view on a data point to be

able to better assess where it stands in the context of all other data points.

Information gain [124] with regard to a target characteristic is a main constituent in

various data mining techniques such as decisions trees. Information gain can also be

used to score the importance of each characteristic in its ability to differentiate data

points with regard to the target characteristic. The scores for the characteristics based

on their information gain can then be used to rank and filter the most important charac-

teristics with regard to the target characteristic. This is referred to as attribute selection

or feature selection. It can help in reducing the dimensionality of the data, simplifica-

tion of resulting models, as well as reducing over-fitting. The ranking of characteristics

can also be used for the characterisation of data sets, in particular in combination with

undirected data mining techniques.

Undersampling [42] and oversampling [28, 108] are approaches to balancing data

with regard to a target characteristic when the distribution of the target values is not

balanced. Strong imbalance in the data used for training in directed data mining may

result in biased models that favour one target value over another. Selecting only a subset

of data points with the more prevalent value (undersampling) or synthetically produc-
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ing more data points with the less prevalent value (oversampling) during training can

improve the performance of the applied technique by reducing inherent bias. However,

undersampling and oversampling may also have the opposite effect if the testing data is

also following a distribution skewed towards one target value.

Weighting adds meta information to each data point which may be taken into con-

sideration by a data mining technique in order to place higher importance on particular

data points. Weighting can be used to offset some of the effects of imbalanced data sets,

where data points having the minority target value are assigned higher weight, inversely

proportional to their ratio within the data set. Correspondingly, data points having the

majority target value are assigned a lower weight, also inversely proportional to their

ratio within the data set.

2.3. Mining Software Repositories

Software development produces rich data sets containing operational data related to

different activities by various stakeholders, which are scattered across multiple assets.

Software repositories, such as a VCS and an ITS, are common kinds of assets which

containing detailed information related to the evolution of a software system. How-

ever, the data stored in VCS and ITS is primarily intended for the operational needs

of such systems and not necessarily for the purposes of understanding software evolu-

tion. Hence, such assets need to be processed in order to extract different kinds facts

relevant for the understanding of software evolution phenomena and for aiding decision

making. Adequate tools, techniques, and skills are necessary to make the most out of

the potentially powerful information sources. The field of Mining Software Reposito-

ries (MSR) explores different approaches for the systematic extraction of information

from software repositories both in the form of basic facts (measurable information) and

in the form of derived knowledge (actionable insights) [20].

2.3.1. Data Sources, Metrics, and Facts

Version Control Systems (VCSs) are used to keep track of incremental changes in files.

In the earliest form, VCSs were focused on providing means to record successive ver-

sions of files and to revert to earlier versions if necessary. In addition to individual

versions of the files, meta-data regarding the time, purpose, and person responsible for

the version was added in order to make navigating the different versions easier. Later

on, text-based differencing algorithms were integrated in VCSs in order to reduce re-

dundancy due to mostly unchanged parts of files and make the storage of different ver-

sions more efficient. As an added benefit, it became possible to identify and navigate

individual changes within textual files, rather than contemplating a version of a file as

a monolithic unit. Changes to multiple files are often related, so it is often necessary
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to record such changes as change sets. Change sets are particularly important in man-

aging changes to software systems as a functional addition to a software such as a new

feature often involves changes to multiple files. Thus, a change set can record all the

changes related to a particular feature and enable a user to restore the software system

to a state before the feature was introduced with a single action, rather than having to

restore each relevant file separately to a corresponding state where the system is still

consistent. Such approaches to manage sets of changes were inherited from well estab-

lished practices in industrial design and manufacturing, where for different models and

prototypes of machines, different versions of individual components were required. In

an environment where components are manufactured and assembled independently, a

disciplined approach to managing the different versions of related components and their

corresponding designs were essential.

Along with changes in the ways people work with files within a VCS, the evolution

of VCSs also brought changes to the ways people work with other people. Server-

based and networked VCSs enabled multiple people to collaborate and share the same

centralised code-base by checking in their changes and checking out changes from other

people. With added benefits of centralised networked VCSs such as Subversion5, there

were still some limitations, such as the need to have network connection in order to store

changes. To overcome some of the limitations, distributed VCSs, such as Git6 emerged,

where everyone working on a project would have a local copy of the complete history

of a project or part of a project. Changes can then be exchanged among all involved

people and gradually integrated in the end result in a distributed manner.

As far as terminology is concerned, various terms are used to refer to similar notions,

where revision, version, change set, commit, state are often used interchangeably in

the context of VCSs7. Correspondingly, VCSs are also sometimes referred as revision

control, source control, or configuration management systems (although the latter has

a broader meaning). Changes between successive versions of a file are referred to as

patches, diffs (short for “difference”), or deltas. File comparison tools, such as GNU

Diffutils 8, operate at the line level of granularity where lines in a file are compared and

if they do not match, the corresponding lines are either added, removed, or replaced

(where a replacement is a combination of removing a line and adding a new line at the

same place). Such functionality is integral in VCSs. More sophisticated approaches

such as LSDiff [48, 93] and ldiff [23] provide more detailed and refined comparison.

While there are various Graphical User Interface (GUI) tools for working with

VCSs, most VCSs provide Command Line Interface (CLI) shells for accessing their

functionalities, as well as files and meta-data stored in them. An example showing the

5See https://subversion.apache.org
6See https://git-scm.com
7See https://git-scm.com/docs/gitglossary for example
8See http://www.gnu.org/software/diffutils/
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$ git show d439c8dfe5ec521fc0f66cf956d9a5c7e63cadd3 
commit d439c8dfe5ec521fc0f66cf956d9a5c7e63cadd3 
Author: Hugo Arès <hugo.ares@ericsson.com> 
Date:   Thu Jun 5 15:16:26 2014 -0400 

    Fix DeltaTask infinite loop 
     
    DeltaTask$Block.partitionTask was doing an infinite loop if number of 
    threads was greater than the totalWeight. The weightPerThread was 0 
    which was causing the infinite loop. Set the weightPerThread to a 
    minimal value of one. 
     
    Bug: 420915 
    Change-Id: Ia8e3ad956d53d8193937b7fa1bc19aafde9767ff 
    Signed-off-by: Hugo Arès <hugo.ares@ericsson.com> 

diff --git  
  a/org.eclipse.jgit/src/org/eclipse/jgit/internal/storage/pack/DeltaTask.java  
  b/org.eclipse.jgit/src/org/eclipse/jgit/internal/storage/pack/DeltaTask.java 
index c4b01949..9534053b 100644 
--- a/org.eclipse.jgit/src/org/eclipse/jgit/internal/storage/pack/DeltaTask.java 
+++ b/org.eclipse.jgit/src/org/eclipse/jgit/internal/storage/pack/DeltaTask.java 
@@ -121,7 +121,7 @@ void partitionTasks() { 
                        ArrayList<WeightedPath> topPaths = computeTopPaths(); 
                        Iterator<WeightedPath> topPathItr = topPaths.iterator(); 
                        int nextTop = 0; 
-                       long weightPerThread = totalWeight / threads; 
+                       long weightPerThread = Math.max(totalWeight / threads, 1); 
                        for (int i = beginIndex; i < endIndex;) { 
                                DeltaTask task = new DeltaTask(this); 
                                long w = 0;

Figure 2.2.: Git VCS example from the jgit project

information related to a change in the jgit project accessed through the CLI shell is

shown in Figure 2.2. The example includes:

• the identifier for the change (d439c8..add3),

• the author (Hugo Arès) and their e-mail address,

• the date and time of the change (15:16 on Jun 5, 2014),

• a textual description of the change (Fix DeltaTask . . . ),

• the files affected by the change (DeltaTask.java),

• the location and length of the changes within the files (@@ -121,7 +121,7 @@),

• as well as the context and content of the changes.

The content of the changes is typically shown as lines that have been removed (in-

dicated by a “-” prefix) and lines that have been added (indicated by a “+” prefix) pre-

sented in the context of (typically three) unchanged lines before and after each change.

The exact location of the changed lines (excluding the context) can be computed by

using the information regarding the location of the shown context (starting at line 121)

and the prefixes for indicating the changed lines, resulting in line 124.
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The textual description of the change may contain further structured information,

including who reviewed or signed off the change, as well references to other sources of

information, such as review management platforms and Issue Tracking Systems (ITSs).

ITSs, also commonly referred to as bug databases in the literature, are used for reporting

and managing issues related to products. We prefer the more neutral terms issue and

ITS since not all reported issues are bugs as requests for new features or other kinds of

changes are also reported as issues. In some projects issue tracking systems are also

used more broadly for task coordination. Issues in ITSs typically contain an identifier,

both a short and long description of the issue, name and e-mail of the person who

reported the issue, the date and time the issue was reported, as well as its current status.

Incoming issues are typically recorded with the status new, then they may be assigned

to someone, and finally resolved in one way or another. There may be additional stages

in between depending on the established processes within a project.

Additional meta-data may indicate the product and component the issue is concern-

ing, related issues and the nature of the relations, as well the version in which it was

discovered and possibly the version in which it was addressed or the target version

in which it will be addressed. Targeted version or milestone in an ITS is one way of

recording process information regarding development and release milestones, providing

additional context for development activities. Some information regarding milestones

is also available in VCSs in the form of tags. Depending on the project needs, even

more meta-data may be recorded through further customisations of the ITS. Some ITSs

provide means for discussing an issue so that further details describing the issue can be

requested and possible solutions can be provided and tested before the issue is marked

as resolved, or at the very least keep track of people that need or want to be informed

when there are changes to an issue. Finally, attachment may be provided as part of

the description or as part of the solution for an issue. Modern ITSs also keep track of

detailed information regarding all modifications to the issue.

The identifier of an issue is typically used for referencing the issue in other systems

such as VCSs. The issue referenced in description of the change shown in the example

in Figure 2.2 (“BUG: 420915”) is illustrated in Figure 2.3 (excerpt, the complete de-

scription and comments are not shown). In this example, we can observe that the issue

was reported on 2013-11-01 and last modified on 2014-06-06. A look at the detailed

event history shown in Figure 2.4 confirms that indeed the issue was resolved on the

later date. From this example we can conclude that it took around seven months to

process that issue. We also observe that the ITS was updated about one day after the

corresponding change was recorded in the VCS.

In the examples discussed so far, there were explicit references from one data source

(VCS) to another (ITS). This makes linking activities in both systems both for opera-

tional and for research purposes rather easy, where information regarding the purpose or

impact of a change can be enriched with additional information from the ITS. However,

linking is not always straightforward, especially when it comes to merging different
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Description

First Last Prev Next    This bug is not in your last search results.

Bug 420915 - jgit gc hangs in partitionTasks with a very small repo

Status: RESOLVED FIXED

Product: JGit

Component: JGit

Version: 3.1

Hardware: PC Linux

Importance: P3 normal

with 1 vote (vote)

Target Milestone: 3.5

Assigned To: Project Inbox  

QA Contact:

URL:

Whiteboard:

Keywords:

Depends on:

Blocks:

 Show dependency tree

 

Reported: 2013-11-01 16:28 EDT by Doug Kelly 

 

Modified: 2014-06-06 08:37 EDT (History)

CC List: 7 users (show)

See Also:

Attachments

Add an attachment (proposed patch, testcase, etc.)

Note

You need to log in before you can comment on or make changes to this bug.

Doug Kelly   2013-11-01 16:28:51 EDT

When running jgit gc on a *very* small repo (maybe 1-3 commits, and a single file), 

I've noticed that the gc will hang after "Getting sizes" shows 100%.  I took a 

jstack dump and found it sticks in partitionTasks(), which makes me think it never 

finds an exit condition to the for loop (if I'm looking at the right version that 

corresponds with jgit version 3.1.0.201310021548-r -- 

https://eclipse.googlesource.com/jgit/jgit/+/v3.1.0.201310021548-

r/org.eclipse.jgit/src/org/eclipse/jgit/internal/storage/pack/DeltaTask.java).  I 

can work around the issue by setting pack.threads=1 for these repos, but obviously, 

this is less than ideal.

-- snip --

"main" prio=10 tid=0x00007f4638007800 nid=0x180f runnable [0x00007f463f278000]

   java.lang.Thread.State: RUNNABLE

 at 

org.eclipse.jgit.internal.storage.pack.DeltaTask$Block.partitionTasks(DeltaTask.java:161)

 at 

org.eclipse.jgit.internal.storage.pack.PackWriter.parallelDeltaSearch(PackWriter.java:1364)

 at 

org.eclipse.jgit.internal.storage.pack.PackWriter.searchForDeltas(PackWriter.java:1331)

Figure 2.3.: Bugzilla ITS example from the jgit project
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Back to bug 420915

Who When What Removed Added

robin 2013-11-01 16:31:49 EDT CC christian.halstrick, robin

tardyp 2014-02-17 05:56:43 EST CC tardyp

hugares 2014-04-30 08:54:15 EDT CC hugares

hugo.ares 2014-06-05 15:27:16 EDT CC hugo.ares

robin.rosenberg 2014-06-06 07:41:37 EDT Status NEW RESOLVED

CC robin.rosenberg

Resolution --- FIXED

matthias.sohn 2014-06-06 08:37:03 EDT CC matthias.sohn

Target Milestone --- 3.5

Back to bug 420915

Figure 2.4.: Bugzilla ITS events example from the jgit project

identities of the same developer across multiple systems, or when there is no explicit

information provided in either system [152, 180].

Apart from VCSs and ITSs, mailing lists and user forums are other sources of in-

formation regarding the evolution of a software system. Mailing lists typically contain

information regarding communication among developers whereas user forums provide

more information regarding communication among users. However, often projects also

setup mailing lists for users, and on the other hand developers may be involved in dis-

cussions on user forums by providing further support or information to users. Similar

to linking activities between VCSs and ITSs, links between these systems and mailing

lists and/or user forums can be established as well in order to keep track of developer

activity and interactions on mailing lasts or user forums, for example.

Based on the information stored in the different data sources, various metrics can be

calculated to obtain quantitative measurements regarding the state of a software system

at a given point in time as well as regarding how it got to that state over time. These

include the number and size of changes applied to a file, the frequency of changes

to a file, or the number of developers working on a file, for example, or also more

sophisticated measurements [54, 129]. Such metrics have been used in software evo-

lution research in various application scenarios, such as finding refactorings [38] and

predicting defects [69, 100, 126, 129]. Information regarding collaboration among de-

velopers based on social and other metrics has been similarly used for various applica-

tions [37, 40, 123, 172, 188, 201].

Besides exploiting the meta-data stored in VCSs and ITSs, a more traditional and
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common approach to measurement in software development is to quantify different

characteristics of the actual files in the VCSs. Such characteristics include various

size and complexity metrics [30, 119]. Approaches such as the Goal Question Met-

ric (GQM) approach [8] seek to make the application of software metrics more sys-

tematic and goal-oriented. Traditional size and complexity metrics are widely used in

software engineering research and practice, including effort estimation [1, 158], evalu-

ate maintainability [146] and reliability [160], and predict defects [4, 46, 122, 128, 139].

Such measurements can only be performed on structured text files such as source code

files, provided they are in a programming language for which means for performing

such measurements are available. In addition, available measurements may vary from

programming language to programming language.

Computing size and complexity metrics falls under the broader category of static

analysis. Other types of static analysis include detecting code smells [50], as well as de-

tecting duplicated code [9] as a particular type of smell with considerable implications

on the evolution of software systems [6, 43, 94]. Static analysis is also useful for identi-

fying and tracking the evolution of logical entities such as classes and methods, as well

as dependencies among them. Various tools supporting different types of static anal-

ysis, both standalone, and integrated in Integrated Development Environments (IDEs)

and Continuous Integration (CI) platforms have already found widespread use.

All of the characteristics regarding the state of a software system and its evolution up

to that state can be generalised as basic facts — observations and evidence regarding the

state of affairs concerning a software system at a given point in time. Any additional

information obtained by assessing these facts we will refer to as derived knowledge.

Since software systems continuously evolve, so do facts and derived knowledge.

Operational systems such as VCSs and ITSs are designed for a specific purpose, serv-

ing users along intended usage scenarios. They produce and maintain data as needed for

the intended purposes. As a consequence the data is not necessarily easily accessible

or in a suitable format for mining. Related data often is spread across multiple op-

erational systems, each serving its designated purpose and relationships between data

from the different systems are often only implicit. A big part of software mining in-

volves extracting, organising, and integrating software development data from different

sources. While the available data can be considered truthful, in that it is not biased as

a result of the measurements, since at the time it is produced, measurements are likely

not considered, it can also be considered often rather noisy, possibly incomplete, and

even incorrect. The availability and quality of data are often cited as limiting factors in

software mining and its adoption by practitioners [65, 142, 162].

2.3.2. Change Labelling and Classification

Determining and understanding the purpose and consequences of changes is central

topic in software assessment. It can help in characterising the work performed on
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evolving systems as well as in better understanding and potentially improving the main-

tenance and evolution process.

Evolutionary annotations [55] describe how code evolves over time by capturing ra-

tionale and intent of changes based on various indicators, such as change logs, VCS

and ITS data, mailing lists, code comments, etc. They aim to provide a framework for

the analysis and understanding of changes by means of enriched meta-data describing

changes, patterns, and activities related to the software development process and soft-

ware evolution, based on directly and indirectly measurable change-related properties.

This, in turn, enables qualitative assessment of the impact and risks associated with

making certain types of changes.

The simplest way to classify changes is by their size [68]. Literature and prac-

tice indicate, for example, that large changes are indicative of code management,

re-engineering, and corrective engineering tasks, such as formatting, documentation,

refactoring, and bug fixing. Small changes on the other hand are indicative of develop-

ment and forward engineering tasks such as the implementation of new features.

Another common and simplistic approach to identifying the purpose of changes

based on keywords [68]. While VCSs record information regarding the purpose of a

change. However, this information is usually provided in informal free text. While

there may be some (semi-) structured parts within it, those can be difficult to iden-

tify consistently. One common approach is to look for references to issues in an ITS

and then look up relevant information from the ITS. However, the ITS, while provid-

ing some additional meta-data, still relies mostly on unstructured textual information.

Looking designated keywords in both the description of referenced issue in the ITS, as

well as the description of the change in the VCS, can provide further clues as to what

the intended purpose of the change really is.

More sophisticated approaches consider changes to the structure, signatures and de-

pendencies of logical elements within code files in order to identify refactorings [96,

183], provided that static analysis is available. Considering changes in the broader

context of other changes enables the identification of behavioural patterns [57] of inter-

actions between developers. The changes can then be described by the role they play

within these patterns.

Apart from investigating the consequences of changes, approaches based on origin

analysis [58, 59] and line tracking [22, 97, 117] seek to identify causes for consequences

in subsequent changes [165]. Such approaches typically identify when a piece of code

within a file that is considered to be fixing some problem was last changed and consider

the corresponding change as the cause for the problem.

Further ways to describe changes can be based on power consumption [78] which

is particularly relevant for power constrained devices but may also correlate with other

change attributes, such as invocation of error handling routines due to introduced faults.

Test-related change patterns [194] can also be used to describe the type of changes

taking place, where increase in test code without corresponding increase in production
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code can be indicative in testing refinement or other test-related changes.

Due to the nature of how VCSs operate and in particular how people work, we need to

consider the possibility of tangled changes [76, 148]. Tangled change sets incorporate

changes exhibiting different characteristics individually, but when collapsed together

may be difficult to discern in any meaningful way, despite being seemingly natural

from a developer’s point of view.

All of the approaches discussed in this section are concerned with identifying the

intent of changes based on direct indicators when it comes to consequences. But when it

comes to the causes for these consequences, these can only be identified retrospectively

once the consequences have been identified. Data mining techniques used in software

assessment aim to identify other characteristics that are associated changes that cause

certain consequences. A common application of data mining techniques in software

assessment is defect prediction.

2.3.3. Defect Prediction and Software Analytics

The extraction of basic facts can be considered well established in software engineering

research and practice. Making sense of all the extracted facts is still a non-trivial task.

Defect prediction [4, 65, 95] is the application of data mining techniques to data re-

lated to software development with the purpose of identifying parts of the software or

changes to the software that are particularly susceptible to defects based on models ex-

trapolated from available data. The available data is typically in the form of various

facts. The models are extrapolated from the facts by applying directed data mining

techniques in order determine which characteristics of the code correlate with high de-

fect likelihood. The extrapolated models produce predictions indicating the most likely

suspects with regard to defects. The predictions, if reliable, may be used to make pre-

dictions about new data and guide quality assurance efforts in order aid practitioners

in different decision scenarios, such as targeting review, testing, and refactoring. In or-

der to obtain the prediction models, sufficient training data containing also information

regarding the target variable (defective or not) shall be available.

Related to software mining is the emerging field of software analytics [195], where

analysis, data, and systematic reasoning are applied in a layered manner to obtain in-

sightful and actionable information to aid in software development decision making.

In [20] and [21], the authors surveyed professional software engineers about their in-

formation needs with regard to data-driven decision making. While MSR can be con-

sidered a more data-focused approach, in [20] and [21] the authors call for software

analytics to pursue a more user-focused approach, where a user is to be taken as the

starting point and the relevant data is determined based on their specific needs and on

the problems they need solutions for. The authors organised a set of analysis types that

can address such needs by time frame (past, present, future) and category of technique

(exploration, analysis, and experimentation):
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• Trends analyses such as regression analysis quantify how artifacts are changing.

• Anomaly detection can raise alerts on unusual events.

• Forecasting through extrapolation can serve as an indication for future events

based on trends.

• Summarisation through topic analysis can characterise key aspects of artifacts.

• Different views on data in interactive overlays and correlations can help in manual

analysis.

• Including goals in analyses provides assistance for planning can serve in impact

analysis with respect to the goals.

• Machine learning can be used to model normal development behaviour

• Benchmarking can be used to compare the outcomes of different practices and

decisions.

• Simulation can be used to explore and test the outcomes of different decisions in

the future.

To address such specific needs and problems, the authors extrapolated from their

study that analytics tools shall be easy to use, fast, and produce concise output, while

supporting different types of artifacts and indicators, and enabling drill-down into data

based on different perspectives. With the increasing attention to human-related fac-

tors, software mining and software analytics can also be used to aid team organisation,

training, and knowledge management decisions in software development.

While it is often performed retrospectively, there is a growing recognition that soft-

ware analytics should be applied as an ongoing process, integrated into the software

development process [113]. This integration allows software analytics to feed from

data produced during the software development and provide actionable insights based

on multi-faceted analyses. Measurement of the impact of the actions undertaken based

on the insights from the software analytics in turn produces new data. This data are

fed into the software analytics again to assess their impact in the last round, generating

new insights and so on, resulting in a cyclic ongoing process. Such an integration re-

quires alignment of development and business strategies in order to include continuous

application of software analytics, allocating necessary resources for it, and determining

adequate ways to act on the insights resulting from the software analytics. The neces-

sary resources include data analysts that can define the problem in data mining terms

and understand the results from the analytics, rather than concentrating on the applica-

tion of readily available facilities without considering the peculiarities of the specific

application context.

As with all data mining in general, software mining models also need to evolve,

otherwise they become obsolete [173]. Considering that software mining models are

software systems, the principles of software evolution apply to them as well. As the

environment in which these models are used continuously changes, with new data re-
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flecting the changing circumstances which software systems are developed becomes

available, old data may become less and less useful over time.

Mining results can be used for recommendation systems to provide personalised feed-

back to developers when they perform activities under particular circumstances. Soft-

ware mining can also been used to prioritise certain development and organisational

activities, as well as adjusting human resources and team structures. Ultimately, the

acceptance of various approaches for getting actionable insights and putting them into

practice is still called into question [142].

2.4. Modelling and Model Based Engineering

Modelling and related terms have a broad variety of meanings depending on the context

in which they are being used. Every scientific and engineering practice employs some

sort of modelling. Even daily activities often rely on modelling of various aspects of

every day life.

2.4.1. Modelling and Meta-modelling

Modelling, in broader terms, involves any activity that results in creating a representa-

tion of a subject with certain goals in mind. The representation is abstract and simplified

in that it does not include characteristics of the subject that are not relevant to the goals

for which the model was created. The goals typically include reasoning about the sub-

ject and answering specific questions regarding the subject [13]. Thus, a model shall

support reasoning about the subject and for it to be useful, the model shall make rea-

soning and answering questions regarding the subject easier in comparison to using the

actual subject for the same purposes.

Applying the same reasoning to modelling, meta-modelling involves creating a rep-

resentation of what can be a part of a model. This step is also referred to as domain

modelling. It involves identifying the constituents of a model including relevant con-

cepts and relationships among them that are specific to the domain. Taking this a step

further leads to meta-meta-modelling which determines the necessary constituents of

meta-models.

The Unified Modelling Language (UML) [132] standardised by the Object Manage-

ment Group (OMG) has found widespread use in industry and academia. It aims to

address modelling needs by a set of concepts and representations for various uses at

different levels of abstraction. The UML architecture shown in Figure 2.5 describes

four layers reflecting the different abstraction levels noted above.

The M3 layer defines the fundamental concepts necessary for the specification of

meta-models. The Meta-Object Facility (MOF) [134] can serve as the high-level foun-

dation in this architecture. The M2 layer is where the meta-model for the domain is
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M3: Meta-meta-model

M2: Meta-model

M1: Model

M0: Object

instance of

instance of

instance of

e.g. MOF

e.g. UML

Domain model

What is modelled

Figure 2.5.: UML architecture

defined. This can be the UML meta-model for the domain of modelling languages

including UML itself or a custom meta-model for different domain. The M1 layer is

where instances of the meta-model are defined. For UML, this includes UML models

defined by users of the UML. For other domains, this includes models that are instances

of the corresponding domain models defined in M2. Finally, the M0 layer is where the

real-world objects described by the models are.

The meta-models defined using MOF are represented by using a subset of the UML

Class Diagram, where relevant concepts are defined as Classes and relationships be-

tween them are defined as Associations. Further constraints can be applied on top

of the meta-model by means of languages such as the Object Constraint Language

(OCL) [133]. OCL is declarative language for the specification of rules and expressions

over meta-models based on MOF.

An example of the basic constituents of a meta-model is shown in Figure 2.6. The

meta-model in this example is concerned with the domain of user interfaces consisting

of toolbars containing one or more buttons, where each button has a label and triggers

a functionality. Using the notation of the UML Class Diagram, the corresponding con-

cepts for toolbars, buttons, and functionalities are represented as (meta-) classes, with

the relationships among them represented as associations. The associations are quan-

tified by means of multiplicities next to the association name. The classes may also

contain attributes such as the label attribute for the Button class. An instance of this

meta-model will contain one or more toolbar elements, each toolbar containing one or

more buttons, where each button refers to one functionality that can be triggered by

pressing the button. At this point, this representation is still very abstract and simpli-

fied, omitting any information regarding the size and color of the buttons for example,

or even how exactly the buttons shall be interacted with and how the corresponding

functionality shall be triggered as a result. The actual buttons in an implementation of

the modelled user interface are the real objects that are subjected to modelling. Further

restrictions, such as limiting the size of the label in a button to 10 characters, may also

be specified by means of OCL as shown in the example in Listing 2.1.
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Figure 2.6.: Meta-modelling example

1 context Button

2 inv: self.name.size() <= 10

Listing 2.1: OCL constraint example

Even such a simplified model, enables reasoning about questions such as whether

all available functionalities are accessible via buttons. One way to pose such questions

is by means of constraints. Listing 2.2 illustrates the constraint of having at least one

button that triggers a given functionality.

Modelling frameworks and related supporting technologies enable the validation,

storage, visualization, and transformation of all model instances conforming to meta-

models described by using a given modelling framework. The Eclipse Modeling Frame-

work (EMF)9 [19] provides an implementation of OMG’s Essential Meta-Object Fa-

cility (EMOF) supplying the necessary facilities in order to enable pragmatic realisation

of modelling and meta-modelling tasks.

2.4.2. Model Based Engineering

Model Based Engineering (MBE), in the broadest sense, includes any engineering prac-

tice or process that makes use of modelling, where models may also play a supporting

rather than central role in the process. Models may be used only for design and com-

munication, but are not processed automatically to produce building blocks of the end

product. While they are considered important, they are not the basis for the development

process.

Model Driven Engineering (MDE) is a subset of MBE where models play a central

role and are thus considered part of the principal output of the engineering process. The

actual implementation is then partially or completely generated from the models by au-

tomated means. In MDE, models may also be used beyond the development activities,

including supporting the evolution of the system or also reverse engineering legacy sys-

9See http://www.eclipse.org/modeling/emf/
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1 context Functionality

2 inv: Button.allInstances()>exists(b | b.functionality = self)

Listing 2.2: Using OCL to pose questions

tems. In contrast, the scope of Model Driven Development (MDD) is slightly narrower,

where models are primarily used for development in order to streamline the imple-

mentation of repetitive standard tasks that are frequent source of errors and additional

overhead. Consequently, models become (part of) the implementation of a system. The

Model Driven Architecture (MDA) [164] approach standardised by the OMG takes this

further, envisioning the use of sufficiently sophisticated models that can be automati-

cally transformed through various abstractions from computation independent through

platform independent to platform specific models targeting different deployment plat-

forms by means of corresponding tools. As an OMG standard, MDA is focused on the

application of UML and other OMG standards in MDD.

Traditionally there has been an assumption that models are created during analysis

and design and then frozen during implementation. Advancements in technology and

adoption among agile software development practitioners have shown that MDD can be

applied iteratively as well and, in particular, that modelling can be applied during imple-

mentation as well. While there is still an assumption that the models are sufficiently de-

tailed to be useful during implementation, Agile Model Driven Development (AMDD)

seeks to drop that assumption as well, and take the middle way by focusing on agile

models that are “barely good enough” [2] and letting them evolve incrementally and

iteratively just in time during the development. Domain-Specific Modeling (DSM) [89]

is a related approach to dealing with modelling complexity by raising the level of ab-

straction while narrowing the focus of the modelling activities by using concepts from

the target problem domain rather than higher level concepts that are still tied to generic

programming notions. By using domain specific code generators it enables full code

generation tailored to the target domain.

2.4.3. Model Translation and Transformation

Models describe higher level abstract representations. To make use of these abstract

representations in practice, they need to be stored and accessed by the various mod-

elling tools and platforms such as the EMF. The EMF relies on Resource implemen-

tations containing serialisations of model instances. The XML Metadata Interchange

(XMI) [135] standard by the OMG defines a simple way to represent abstract models in

the form of Extensible Markup Language (XML) documents. The EMF also relies on

XMI as the standard Resource implementation for the serialisation and de-serialisation

of model instances. Beyond XMI, the EMF also provides support for a binary Re-

source implementation which has certain benefits with regard to space and memory
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Figure 2.7.: Representations to applications

requirements at the expense of certain compatibility constraints. Other concrete rep-

resentations, such as textual documents, relational databases, and NoSQL databases,

can be mapped to a given meta-model by means of corresponding Resource implemen-

tations. This enables both the reuse of existing (legacy) data representations, as well

as the translation of model instances from one concrete representation to to accommo-

date different usage scenarios, while still relying on a common underlying information

model.

Figure 2.7 illustrates the relationships between different applications relying on a

common underlying meta-model, the instances of which may be stored in various con-

crete representations. Given a meta-model, a concrete representation of an instance of

that meta-model, and a corresponding mapping for the type of concrete representation

to the meta-model in the form or a Resource implementation, an application can access

and modify the instance transparently regardless of its concrete representation. Simi-

larly, a given concrete representation of a model can be seamlessly translated to another

concrete representation provided corresponding mappings are available.

Consider an example instantiation of the user interface meta-model illustrated in Fig-

ure 2.8 represented as an UML object diagram. In the given example, there is one Tool-

bar instance mainToolbar containing three Button instances, open, close, and quit,

with corresponding labels and relationships to corresponding functionalities. Two dif-

ferent concrete representations for this model instance are shown in Figure 2.9. On the

bottom left, an XMI representation in the form of an XMI Resource according to the

generic mappings in the XMI standard is shown. On the bottom right, a textual repre-

sentation in the form of an Xtext10 Resource according to a customised Xtext mapping

is shown. Xtext is a framework for specification of textual representation of models. It

provides further facilities targeted towards the development of model-based program-

ming languages and domain-specific languages in particular. Xtext mappings are spec-

10See https://eclipse.org/Xtext/
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mainToolbar : Toolbar

openFile: Functionality

open: Button

label=“Open”

closeFile: Functionality quitApp: Functionality

close: Button

label=“Close”

quit: Button

label=“Quit”

functionality functionality functionality

Figure 2.8.: Object diagram for toolbar model instance

ified in the form of annotated Extended Backus–Naur Form (EBNF) grammars. The

annotations indicate how the textual representations are related to corresponding meta-

model elements. For example the text Functionality "openFile" is mapped to an

instance of the Functionality meta-class with the same name. Conforming to the same

meta-model, both representations can be used interchangeably and translated into one

another. A similar approach is pursued to provide mappings for relational databases

by means of Hibernate and Teneo11. While both Xtext and Hibernate/Teneo require

custom mappings (default ones can be automatically generated), NeoEMF12 relies on

a more generic approach, similar to XMI where the user has no influence on how the

meta-model is mapped to the NoSQL database.

Beyond translation between different resources for the same model instance, model

transformations allow existing models to be transformed to new models or enriched

with further information at a higher level of abstraction. Model transformations are

typically specified in the form of rules defining relationships between elements of the

corresponding meta-models. Figure 2.10 summarises the idea behind Model-to-Model

(M2M) transformation. Given a source meta-model and a target meta-model, a set of

transformation rules specified for mapping concepts from the source meta-model to

concepts of the target model can be used to automatically obtain target model instances

corresponding to existing source model instances. Worth mentioning is that the source

and target meta-models and corresponding model instances need not necessarily be

different. M2M transformation can also be performed on the same model to transform

or enrich the model with additional information (sometimes referred to as endogenous

transformation). Additionally, there may be multiple source and target models involved

in a transformation specification.

Various model transformation technologies have been developed over the past

11See https://wiki.eclipse.org/Teneo/Hibernate
12See http://www.neoemf.com
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<Foundations:Model 

    xmi:version="2.0" 

    xmlns:xmi="http://www.omg.org/XMI" 

    xmlns:Foundations="http://foundations/1.0">

  <toolbars name="mainToolbar">

    <button name="open" label="Open" functionality="//@functionalities.0"/>

    <button name="close" label="Close" functionality="//@functionalities.1"/>

    <button name="quit" label="Quit" functionality="//@functionalities.2"/>

  </toolbars>

  <functionalities name="openFile"/>

  <functionalities name="closeFile"/>

  <functionalities name="quitApp"/>

</Foundations:Model>

XMI Resource

Functionality "openFile"

Functionality "closeFile"

Functionality "quitApp"

Toolbar "mainToolbar":

Button "open" with label "Open" triggers openFile;

Button "close" with label "Close" triggers closeFile;

Button "quit" with label "Quit" triggers quitApp;

;

Xtext Resource

Toolbar returns Toolbar:

'Toolbar' name=EString ':' 

button+=Button (button+=Button)* 

';';

Button returns Button:

'Button' name=EString 'with' 'label' label=EString

'triggers' functionality=[Functionality|EString]

';';

Functionality returns Functionality:

'Functionality'

name=EString;

Xtext Mapping

mainToolbar : Toolbar

openFile: Functionality

open: Button

label=“Open”

closeFile: Functionality quitApp: Functionality

close: Button

label=“Close”

quit: Button

label=“Quit”

functionality functionality functionality

Toolbar Model Instance

                                                                                                                      Date: April 2014

XML Metadata Interchange (XMI) Specification

Version 2.4.2
(Prepared in response to Urgent Issues # 17718-17745)

OMG Document Number:  formal/2014-04-04
Standard document URL:  http://www.omg.org/spec/XMI/2.4.2
Normative Machine Consumable Files: 

http://www.omg.org/spec/XMI/20110701/XMI.xsd 
http://www.omg.org/spec/XMI/20110701/XMI-model.xmi

 

XMI Mapping

Toolbar Meta-Model

Figure 2.9.: Different concrete representations for a toolbar model instance

decades. A set of languages collectively known as Query / View / Transforma-

tion (QVT) [136], which includes the imperative QVT-Operational and declarative

QVT-Relations, is standardised by the OMG. The Epsilon family of languages and

tools for working with EMF-based models providing facilities for various tasks, such as

code generation, M2M transformation, validation. Of particular interest are the Epsilon

Object Language (EOL)13 and Epsilon Transformation Language (ETL)14 [98]. EOL

is a domain-specific language for creating, querying, and modifying EMF models by

means of common programming constructs, as well as first-order logic OCL opera-

tions. ETL is a domain-specific language for hybrid, rule-based M2M transformations

built on top of EOL. It provides common transformation capabilities, as well as the

ability to transform many input to many output models by means of both declarative

and imperative transformation specifications, allowing for sophisticated transformation

logic, as well as abstraction and reuse.

Going back to the user interface example discussed above, assuming that after adding

13See http://www.eclipse.org/epsilon/doc/eol/.
14See http://www.eclipse.org/epsilon/doc/etl/.
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M3: Meta-meta-model

M2: Source Meta-model

M1: Source Model

M2: Target Meta-model

M1: Target Model

Transformation rules

from to

Figure 2.10.: Model to model transformation (based on [13])

the toolbar buttons, there is now a need to add corresponding menu items in a menu,

it is necessary to first define corresponding meta-model for the menu which is very

similar to the one for the toolbar, containing concepts for Menu, which in turn con-

tains MenuItems that have a label as well as a Functionality than shall be triggered.

Figure 2.11 illustrates the transformation specified by means of ETL for this scenario.

There are two transformation rules mapping Toolbar to Menu and Button to MenuItem

correspondingly. During the transformation of the Toolbar elements, the MenuItems

resulting from the transformation of the corresponding Buttons are added to the corre-

sponding Menu resulting from the transformation of the Toolbar. In addition to creat-

ing Menus automatically from existing Toolbars, such transformations can also be used

keep Toolbars and Menus synchronised so that for every new Button, corresponding

MenuItem is created automatically ensuring that the same Functionality is accessible

through both types of user interfaces. In this scenario, a bi-directional transformation

can also ensure that a new Button is added for every MenuItem added to the Menu if

both Toolbars and Menus are modified manually independently from one another and

need to be kept consistent.

In this simplified example, the mapping is fairly straightforward one-to-one. In prac-

tice this is not necessarily always the case, often multiple concepts from the source

model need to be aggregated into one concept from the target model, or one concept

from the source model needs to be distributed among several concepts from the target

model.

As noted above, M2M transformations can also be performed on the same model.

Considering the toolbar example and assuming the functionalities are defined first, a

transformation rule can be specified that adds a new button for each functionality auto-

matically.
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M3: Meta-meta-model

M2: Toolbar Meta-model

M1: Toolbar Model

M2: Menu Meta-model

M1: Menu Model

from to

Transformation rules

rule Toolbar2Menu 

transform toolbar : UI!Toolbar

to menu : UI!Menu {

menu.name = toolbar.name;

for (b in toolbar.button) {

menu.items.add(b.equivalent());

}

}

rule Button2MenuItem

transform button : UI!Button

to item : UI!MenuItem {

item.label = button.label;

item.name = button.name;

item.functionality = button.functionality;

}

Figure 2.11.: Transformation from toolbars to menus



3. Finding Causes for Events of Interest

While software repositories provide a wealth of information related to the development

and evolution of software projects, most of it is of empirical nature, that is, describ-

ing consequences rather than causes. For example, developers typically describe their

development and maintenance activities as fixing issues and problems, improving char-

acteristics, adding features and functionality, and refactoring code. In contrast, during

software assessment, we are often more interested in the potential causes for such ac-

tivities. For example, if a problem in an artifact was fixed during at some point in time

leaving the artifact in a fixed state, it is often the case that the same artifact was left

in a “broken” state at an earlier point in time. Thus, there was activity which left the

artifact in a state that needed subsequent fixing. Such kind of information, although

highly valuable, is rarely available in software repositories. This is due to the fact that it

is either not known at a given point in time, with developers unknowingly introducing

potential faults in their daily development and maintenance activities, despite their best

intentions, or, if it is known, based on documented issues that have been addressed, it is

very time consuming to add in retrospect.

Within the context of this thesis, we are concerned with the assessment of developer

behaviour with respect to certain activities which contribute to causing undesirable phe-

nomena, such as reported failures that need fixing, or difficult to maintain code that

needs refactoring and restructuring. We refer to these phenomena as events of interest.

In this chapter, we explore means for the retrospective identification of the potential

causes for events of interest based on empirical data. The potential causes for events

of interest can be ultimately designated as technical risks based either on individual

indicators or a combination of indicators. The generic approach is also suitable for as-

sessment tasks that are not strictly concerned with technical risks. This chapter is based

on an extended and revised version of [114].

3.1. Line Tracking

VCSs store information about the evolution of a software project and its artifacts in

terms of revisions of files. For textual files, VCSs also store differences between sub-

sequent revisions of a file, referred to as diffs. These differences are described in terms

of changes to lines, which are typically grouped together in fragments of contiguous

changed lines, often referred to as hunks. The kinds of changes to fragments include:
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• additions — new lines are inserted in the subsequent revision, introducing a new

fragment,

• removals — lines are removed in the subsequent revision, thus removing a frag-

ment, and

• modifications — lines are modified in the subsequent revision, where a modified

line is typically represented as a line that has been removed and then added; any

number of lines may be added and/or removed in addition to the modified lines,

thus the number of lines in the subsequent revision may be substantially different

from the number of lines in the previous revision of a modified fragment.

This kind of information about the evolution of software artifacts provides the foun-

dation for a number of applications, such as:

• measuring the amount and density of changes by means of code churn met-

rics [90, 91, 115, 127],

• identifying hotspots of frequently changed pieces of code by means of hot-spot

analysis [102, 115],

• determining the origin of a piece of code by means of origin analysis [58, 59],

and

• tracking the evolution of a piece of code across revisions by means of line track-

ing [22, 97, 117].

To illustrate the relevant notions, consider the line change map shown in Figure 3.1.

A line change map [115] is a visual representation of the changes to the lines of a

file across revisions as reflected by the diffs stored in the VCS. The lines of a file

are plotted on the vertical axis, indicating the corresponding line numbers, against the

subsequent revisions of the file plotted on the horizontal axis. The contents of the file in

the different revisions are overlaid in the respective segments for illustrative purposes.

In this artificial example, we are contemplating a file initially containing 10 lines in

revision 1, to which three lines are added in revision 2, followed by modifications to

lines 4–5 and 8–9 in revision 3. Further on, in revision 4 two new lines (1a–2a) are

added between the original lines 6 and 7 and lines 8–9 have been modified again and

shifted by two lines due to the addition of the new lines 1a–2a. Finally, in revision 5

lines 4–5 and 7–8 (newly added in revision 4) are modified again. The coloured areas

represent changed fragments between subsequent revisions, with incremental numbers

overlaid on each changed fragment for referencing purposes.

We can then utilise this kind of information to determine the potential causes for

events of interest. This is achieved by applying a line-tracking algorithm, such as the

ones described in [23, 97], in order to identify when a fragment was last changed (which

is also a functionality that is often provided by VCSs) and also in order to track a code

fragment across multiple revisions all the way back to its origin.
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Figure 3.1.: Line change map

Consider for example Figure 3.2, in which the line-tracking for fragment 3 from

Figure 3.1 is visualised by means of red lines tracking the location of the fragment

across revisions. Here, it is determined that the content of fragment 3 was last changed

in revision 1. Thus, we state tentatively that revision 1 is the cause for the changes

to fragment 3 in revision 3. Similarly, applying this approach to the other fragment in

revision 3 (fragment 4), we determine that its content was also last changed in revision 1.

Given this information, we state that revision 1 is the cause for the changes in revision 3

in this example. Inversely, revision 3 is referred to as a fix (also effect) for the changes

in revision 1 in this case. At this point, the notions of causes and fixes are independent

from the nature of the fix — it may be a fix for a reported issue or an event of interest

in general, but it may also be a change not related to any issue. Note that while the

set of revisions identified as causes for a given revision is definitive, meaning that no

additional causes may be added for that revision, the set of revisions identified as fixes

for a given revision reflects the state of knowledge at a given point in time, meaning

that future revisions may also fix issues introduced in that revision.

If we consider revision 5, the line-tracking for fragment 7 as shown in Figure 3.3

indicates that its content was last changed in revision 3 as fragment 3. In contrast,

the content of fragment 8 in revision 5 was introduced and last changed in revision 4

as fragment 5. In this case, we can then state that both revision 3 and revision 4 are

determined to be the causes for the changes in revision 5. Inversely, revision 5 is referred

to as a fix for the changes in both revision 3 and revision 4 in this case.

3.2. Causes and Fixes

In Section 3.1, we exemplified and outlined relationships between states of an artifact

identified as causing and fixing states based on the line-tracking information. In the

beginning of this chapter we also outlined the notion of an event of interest. Before

we proceed, we need to establish these and other related notions in order to be able to
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Figure 3.2.: Line tracking for fragment 3

Figure 3.3.: Line tracking for fragment 7

reason about them in formal terms:

Artifact: An entity A at any level of granularity, such as project, file, class, or method,

on which developers perform development and maintenance activities. An arti-

fact may contain other artifacts at finer levels of granularity.

State: A revision Rt of artifact A at a point in time t, where Rt ∈ REV ISIONS denoting

all the revisions of the artifact.

Event of interest: A state Rt of an artifact A at a point in time t which can be described

by some quantitative or qualitative characteristic factor, such as the content of a

descriptive message associated with the state.

Fix: A modification to an existing part of an artifact in a given state Ft , that was last

modified or created in a previous state Ct−n, where where Ft ,Ct−n ∈REV ISIONS.

The modification may, but does not strictly need to, relate to fixing a problem.

Cause: A modification of a part of an artifact at a given state Ct that was modified in a

later state Ft+n, where Ct ,Ft+n ∈ REV ISIONS.
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R5
time

R3 R4

causes

causescauses

fixes

R2R1

causes

Figure 3.4.: Cause-Fix Graph for Figure 3.1

Cause-Fix Relationship: A relationship Ct−n
causes
−−−→ Ft between two states (Ct−n,Ft)

of an artifact A, where a part of A that was modified in Ct−n was subsequently

modified in a later state Ft , hence Ct−n is considered a cause for Ft .

Cause-Fix Graph: A hierarchical directed graph GA = (N,E), where the set of nodes

N includes representations for each state of an artifact A. A state may contain

other states at finer levels of granularity based on the containment relationships

between the corresponding artifacts for the states. For example, the state for

a class may contain also states for methods modified at the same time as the

class. The set of directed edges E includes representations for each cause-fix

relationship between states of artifact A.

Based on the cause-fix relationships, for a given state Ft identified as a fix, we define

the set of states fixed by Ft (i.e. the set of causes for Ft) as:

FFIXES
t = {Ct−n ∈ REV ISIONS|Ct−n

causes
−−−→ Ft} (3.2.1)

Conversely, for a given state Ct−n identified as a cause, the set of known caused fixes

for Ct−n is defined as:

CCAUSES
t−n = {Ft ∈ REV ISIONS|Ct−n

causes
−−−→ Ft} (3.2.2)

A cause-fix graph for each artifact can be constructed by utilising information ex-

tracted from VCSs and applying the line tracking approach described in Section 3.1 or

any of the approaches for tracking the location of modified fragments already described

in the literature [23, 187]. A visualisation of such a graph for the example from Fig-

ures 3.1–3.3 is shown in Figure 3.4, where the cause-fix relationships for the states at

the project level are shown.

The cause-fix relationships help us identify the potential causes for any event, but we

are primarily concerned with finding causes for events of interest. For illustrative pur-

poses we will consider the changes in revision 5 to be one such event of interest. In this

case, identifying revision 5 as an event of interest is based on the content of the changes
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themselves — as illustrated in Figure 3.1, lines 4–5 and 8–9 in revision 5 are considered

to be “fixing” the previous content of these lines. Based on this property of revision 5

and the constructed cause-fix graph, we can identify revision 3 and revision 4 as the po-

tential causes for the event of interest. Both states as well as the relationships between

them and the “fixing” state are highlighted in Figure 3.4 by using a different colour, red

in this case. While in reality such explicit labeling is only rarely present in the form

of comments, there is usually some indication that something was “fixed” within the

revision description message in the VCS. Alternatively, a revision can be described as

an event of interest based on changes to measurable attributes, such as recorded mea-

surements for size, complexity, and documentation density. In the approach discussed

in this chapter, it is assumed that there are such means or that there are labels for events

of interest already present in the data obtained from the VCS.

3.3. Weights and Factors

The simplified binary classification of nodes in the graph as causes for events of interest

discussed in Section 3.2 presents two fundamental limitations. The basic artificial ex-

ample from Figure 3.4 already illustrates these, raising the following questions related

to the significance of the classification:

1. Given that both revision 3 and revision 4 are identified as causes for the fixes in

revision 5, are they both equally likely causes and thus to be considered of equal

importance?

2. Given that revision 3 is identified as causing both revision 4 and revision 5, is it

then considered a less likely cause for revision 5, and thus to be considered of

less importance?

In order to reason about these questions, we need means to quantify the relationships

between fixes and causes. Even from the rather simple example discussed so far, we can

already establish that cause-fix relationships are many-to-many, that is, a cause may lead

to many subsequent fixes, and fix may address multiple previous causes. Conceptually,

we consider a fix as an activity that is “removing a weight” from a state of an artifact.

Consequently, the activities that contributed to the causes for the fix “added weight” to

the corresponding states of the artifact. Our approach for the quantification of the de-

gree to which a revision can be considered as the cause for another revision is based on

this conceptual premise. In addition, there may be different types of “weights” based

on different characteristics of the fixing revision, e.g. “fixing an issue”, “refactoring

code”, etc., reflecting the different kinds of events of interest. In order to accommodate

multiple independent types of weights, we extend and generalise the notion to “remov-

ing a weight related to a weight factor wf ”, where w f ∈ {fixes, refactors, . . .}. Thus, we
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speak of a fixing state Ft as having removed weight (rw) with respect to weight factor

w f , where:

rw(Ft ,w f ) =

{

1 if w f property holds for Ft

0 otherwise
(3.3.1)

Conversely, each of the causes can be regarded as contributing to that weight, thus

for each cause-fix relationship Ct−n
causes
−−−→ Ft and for each weight factor w f , we define

the notion of contributed weight (cw) of a causing revision Ct−n to a fixing revision Ft

with regard to a weight factor w f as:

cw(Ct−n,Ft ,w f ) =
rw(Ft ,w f )

|FFIXES
t |

(3.3.2)

For each fix Ft caused by a causing state Ct−n, the causing state Ct−n is then said to

accumulate a total weight (tw) with regard to weight factor w f , defined as:

tw(Ct−n,w f ) = ∑
Ft∈CCAUSES

t−n

cw(Ct−n,Ft ,w f ) (3.3.3)

For example, if the fix in revision 5 (R5) is removing a weight rw(R5,fixes) = 1 with

respect to the weight factor “fixes”, and if there are two revisions RFIXES
5 = {C5−n ∈

REV ISIONS|C5−n
causes
−−−→ R5} = {R3,R4} identified as causes for this fix, that are con-

sidered to be contributing equally to that weight, then each cause-fix relationship is

contributing a weight cw(C5−n,R5,fixes) = 0.5. On the other hand, since R4 can be

considered neutral with respect to the “fixes” weight factor (i.e. rw(R4,fixes) = 0),

as it is not identified as an event of interest, hence R3 does not contribute any weight

to R4 (i.e. cw(R3,R4,fixes) = 0). In this case, we speak of R3 and R4 as having a

tw(R3,fixes) = tw(R4,fixes) = 0.5. Thus, at first glance it may seem that R3 and R4 can

be considered equally important.

In order to reason about the second question, we need to contemplate the inverse re-

lationship. If we consider R3 in the example, it causes both R4 and R5, thus RCAUSES
3 =

{F3+n ∈ REV ISIONS|R3
causes
−−−→ F3+n} = {R4,R5}, whereas R4 only causes R5, i.e.

RCAUSES
4 = {R5}. To take this into account, we define the notion of average weight

(aw) with regard to weight factor w f as:

aw(Ct−n,w f ) =
tw(Ct−n,w f )

|CCAUSES
t−n |

(3.3.4)
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Figure 3.5.: Cause-Fix Graph for Figure 3.1 (with details)

In the example above, this yields aw(R3,fixes) = 0.25 and aw(R4,fixes) = 0.5, re-

spectively. Thus, we can state that while both R3 and R4 can be considered important as

causes for the fix in R5 with respect to the weight factor “fixes”, since R3 is also a cause

for R4, it is less important than R4 as it also caused a “neutral” change with respect to

the factor “fixes” in addition to the fixing change.

If we consider a different weight factor — let’s assume that R4 is identified as an event

of interest of a different kind, e.g. a “refactoring", the removed weight with respect

to the “refactoring" weight factor for R4 is then rw(R5, refactors) = 1. Consequently,

the weights for the “refactors” weight factor are distributed differently, where R3 is the

only identified cause contributing all the removed weight, hence cw(R3,R4, refactors) =
tw(R3, refactors) = aw(R3, refactors) = 1. The detailed view of the cause-fix graph

from Figure 3.4 shown in Figure 3.5 includes the corresponding removed weight, total

weight, and average weight for each weight factor in every state. In addition, it also

includes annotations for the contributed weights for each weight factor on the cause-fix

relationships between the states.

Similarly, arbitrary other factors can be considered in order to accommodate dif-

ferent assessment tasks, focusing on different characteristics or even combinations of

characteristics of states that can serve as indicators for events of interest. In addition, a

“default” weight factor with rw(Ft ,default) = 1 for all revisions can serve as a baseline

for all other weights.

Note again, that while information about the causing states for a given fix can be con-

sidered definitive, information about the fixing states for a given state is only partially

known as far as the data indicates up to a given point in time. Future states may still

include fixes for already existing states, thus also potentially altering their weights.
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Figure 3.6.: Layered Cause-Fix Graph for Figure 3.1

3.4. Layers and Granularities

In the examples considered so far, only the project level of granularity was considered

for simplicity, assuming that only one file was modified in each revision of the project.

In this case, the assigned weights will also be identical at both project and file levels of

granularity, thus we can simply copy the weights from the project states to the file states,

as shown in Figure 3.6. In practice, this simplification is rarely applicable as usually

multiple (and often related) files are changed together as part of a revision, thus a state

at the project level would contain multiple states at the file level. Furthermore, once

additional levels of granularity are considered, such as the logical level of e.g. methods,

classes, modules, and functions, even changes within the same file often affect multiple

logical entities within the file. This may result in multiple states at the logical level

contained in a single state at the file level.

A further complication stems from the fact that while a set of related artifacts may be

changed within a fixing revision, only a subset of these artifacts and possibly a set of

additional artifacts may be changed within a corresponding causing revision. Thus, the

causes and fixes for a state of an artifact at a finer level of granularity may be a subset of

the causes and fixes for a containing state at a coarser level of granularity. Consequently,

the weight distribution may also vary across the different levels of granularity. Two

fundamental challenges emerge as a result:

1. Given a state that is identified as the cause for a fix, where the state contains

multiple states of artifacts at a finer level of granularity, are all of the states at the

finer level of granularity contributing equally to the cause for the fix?
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Figure 3.7.: Copy approach for distributing weights across different levels of granularity

2. Given a state that is identified as a fix, where the state contains multiple states

of artifacts at a finer level of granularity, are all of these states at finer level of

granularity contributing equally to the fix?

To illustrate the first challenge, consider a different scenario, sketched in Figure 3.7.

In this scenario, there are three files, A, B, and C, two of which are modified as part of

revisions 3, 4, and 5. There are two states at the file level for each state at the project

level. The naive approach would be to simply copy the weights from the project level

to the file level. With regard to the first challenge, the question arises whether the states

B3 and B4 at the file level are contributing at all to the cause for the fix in R5, given that

in R5 only A and C have been modified. In other words, shall B3 and B4 be assigned any

weights at all? The same is also applicable at the logical level.

Even from this simplified example, we can observe that the naive copy approach can

potentially result in a lot of noise since the sets of states of artifacts at a finer level of

granularity may vary between the causing and the fixing states at the coarser level of

granularity. A more adequate approach is to construct a distinct cause-fix graph at each

layer corresponding to a given level of granularity based on the cause-fix relationships

among the states at that level. This enables weight redistribution within the correspond-

ing layers, yielding more accurate weighting for each layer. Consider the same scenario

from Figure 3.7, where instead of copying the weights from the project layer, we calcu-

late the weights at the file layer based only on the cause-fix relationships at that layer,

as illustrated in Figure 3.8. This approach yields more accurate weight distribution,

taking into account that only A and C were modified as part of the fix in R5. Hence, the

corresponding states A3 and C4 carry the full responsibility for causing the fix in R5 and
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Figure 3.8.: Layer approach for distributing weights across different levels of granular-

ity

thus shall be assigned the corresponding weights, whereas the states B3 and B4 can be

considered neutral in this case and shall be assigned no weights at all.

This brings us to the second challenge, which can be exemplified in the given scenario

as follows: given that both states A5 and C5 at the file level are considered as part of the

fix in R5 at the project level, are both A5 and C5 contributing equally to the fix in R5? So

far, states at finer levels of granularity simply inherited the removed weights from the

containing state at a coarser level of granularity, that is rw(A5,fixes) = rw(C5,fixes) =
rw(R5,fixes). Inheriting the removed weights from the containing state does not take

into account potential dilution of the contribution of each individual state at the finer

level of granularity. If there is a single state at the finer level of granularity, it can be

considered solely responsible for the fix, but if there are a large number of states at the

finer level of granularity, each one of them may be contributing only a small part to the

fix.

Even in this simple artificial scenario, we need to account for both the number of

states at a finer level of granularity involved in a fix and potentially also other character-

istics of each state in order to obtain a more accurate picture. This raises the following

concerns that need to be taken into account:

• Does the number of states of artifacts at a finer level of granularity involved in a

fix dilute the contribution of each individual state to the fix?

• Do states of certain types of artifacts contribute more to a fix than others (e.g.

states of code vs. image artifacts)?

• Do states of larger artifacts contribute more to a fix than states of smaller artifacts?
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• Do states of artifacts containing larger changes contribute more to a fix than states

of artifacts containing smaller changes?

In order to take these concerns into account in the weighting approach, we define dif-

ferent weight distribution strategies, which distribute removed weights in fixing states

across artifact states at finer levels of granularity depending on their contribution to a fix.

Consequently, the weights calculated for the causing states are also updated according

to the strategy being used.

3.5. Weight Distribution Strategies

As noted in Section 3.4, when we consider the contribution of each state of an artifact

at a finer level of granularity to a fix in a state of a containing artifact at a coarser level

of granularity, we need to take different aspects into account. These include as the

number of states at the finer level of granularity involved in the fix, the type and size

of the corresponding artifacts, as well as the amount of change to each corresponding

artifact. To address these concerns, we define four weight distribution strategies which

refine the notion of removed weight (rw) to distributed removed weight (drw). The

distributed removed weight according to a distribution strategy ds for a state of artifact

At contained in a state Rt is defined based on the following expression:

drw(At ,w f ,ds) = rw(Rt ,w f ) ·d f (At ,ds) (3.5.1)

where the distribution factor (d f ) for a distribution strategy ds, denoted as d f (At ,ds),
determines the proportion of the removed weight from the containing state Rt allocated

to the contained state At according to the distribution strategy of choice. As a baseline,

the distribution factor for the inherit strategy discussed in Section 3.4 and shown in

Figure 3.8 can be defined as:

d f (At , inherit) = 1 (3.5.2)

Substituting the removed weight with the distributed removed weight in the calcu-

lation of the contributed weights enables the support for distributed removed weights

according to a given strategy throughout the approach.

3.5.1. Shared Strategy

The shared strategy takes into account number of states of artifacts at a finer level of

granularity involved in a fix based on the assumption that a large number of states dilutes
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Figure 3.9.: Shared strategy for distributing removed weights across layers

the contribution of each individual state to the fix. This strategy distributes the removed

weight equally, assuming that each state at a finer granularity contributes equally to

the fix. As a consequence, the more states contributing to a fix the less impact each

individual state has. The distribution factor for the shared strategy is defined as:

d f (At ,shared) =
1

|RCONT ENT S
t |

(3.5.3)

where RCONT ENT S
t denotes the set of states at a finer level of granularity contained in

state Rt and At ∈ RCONT ENT S
t .

The application of the shared strategy to the running example from Figures 3.7–

3.8 and the resulting weight redistribution is shown in Figure 3.9. Since two states

at the file level of granularity are involved in the fix at the project level of granu-

larity, the d f (A5,shared) = d f (C5,shared) = 0.5 and hence drw(A5,fixes,shared) =
drw(C5,fixes,shared) = 0.5. Consequently, the total and average weights of the cor-

responding causing states at the file level of granularity are also adjusted. Thus, the

dilution of the contribution of each state at the finer level of granularity to the fix is also

extended to the total and average weights of the corresponding causing states.

While we exemplify only the application of the strategy to the project and file levels

of granularity, this strategy is also applicable at different logical levels of granularity.

Note, however, that it shall be applied at each logical level of granularity (e.g. Class,

Method, Function, etc.) separately, which makes its application at that level more simi-

lar to the type strategy.
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3.5.2. Type Strategy

The type strategy takes into account how much states of artifacts at a finer level of

granularity contribute to a fix based on the type (at) of the corresponding artifact. This

strategy distributes the removed weight equally among states of artifacts of a selected

type (indicated as a parameter), while states of artifacts of other types do not get any

removed weight assigned. It can be used to emphasise the importance of states of

code artifacts and de-emphasise the importance of image artifacts, for example. The

distribution factor for the type strategy for a given type T is defined as:

d f (At , type(T)) =

{

1

|{st∈RCONT ENT S
t :at(st)=T}|

if at(At) = T

0 otherwise
(3.5.4)

where {st ∈ RCONT ENT S
t : at(st) = T} denotes the set of states of artifacts of type T

contained in Rt .

The application of the type strategy for the type code to the running example

from Figures 3.7–3.9 and the resulting weight redistribution is shown in Figure 3.10.

Of the two states at the file level of granularity involved in the fix at the project

level of granularity, only A5 is of type code, hence d f (A5, type(code)) = 1, whereas

d f (C5, type(code)) = 0 since at(C5) = image. As a result drw(A5,fixes, type(code)) = 1

and drw(C5,fixes, type(code)) = 0. The total and average weights of the corresponding

causing states at the file level of granularity are adjusted respectively. Thus, the empha-

sis on the contribution of states of code artifacts to the fix is also extended to the total

and average weights of the corresponding causing states.

This strategy can be applied multiple times for different types of artifacts, essentially

resulting in a distribution of removed weights “within type”, i.e. the removed weight

of a fixing state at the project level of granularity is distributed once among all states

of code artifacts, then again independently among all states of test artifacts, and so on.

In a similar manner, it can also be applied at the different logical levels of granularity

(e.g. Class, Method, Function, etc.) individually in order to obtain the equivalent of the

shared strategy at the file level of granularity applied at the logical levels of granularity.

3.5.3. Size Strategy

The size strategy emphasises the impact of the size of an artifact (as) in a given state that

is considered as a part of a fixing state at a coarser level of granularity. The underlying

assumption is that larger artifacts require more time and effort to maintain [4] and thus

potentially contribute more to the occurrence of an event of interest, such as a fix.

Hence, if there is weight to be removed in a fix, the chunk of that weight to be removed

from a given artifact is assumed to be proportional to the size of the artifact. The size
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Figure 3.10.: Type strategy for distributing removed weights across layers

of an artifact is generally measured in terms of Lines of Code (LOC), however other

measures may be used as well. The distribution factor for the size strategy is defined as:

d f (At ,size) =
as(At)

cs(Rt)
(3.5.5)

where the content size (cs) for a state of an artifact Rt is the sum of the sizes of all

artifacts in the states contained in Rt , defined as:

cs(Rt) = ∑
st∈RCONT ENT S

t

as(st) (3.5.6)

The application of the size strategy to the running example from Figures 3.7–3.10

and the resulting weight redistribution is shown in Figure 3.11. Given the artifact sizes

as(A5) = 40 and as(C5) = 60, the corresponding distribution factors are d f (A5,size) =
0.4 and d f (C5,size) = 0.6, which are also identical to the respective distributed re-

moved weights for A5 and C5. The total and average weights of the corresponding

causing states at the file level of granularity are also adjusted respectively, emphasising

the impact of the size of the corresponding artifacts in the fixing state on their contri-

bution to the fix as indicated by the removed weight assigned to them, and also on the

total and average weights of the corresponding causing states.

Similar to the shared strategy, the size strategy shall be applied at each logical levels

of granularity (e.g. Class, Method, Function, etc.) separately, which effectively results
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Figure 3.11.: Size strategy for distributing removed weights across layers

in a refinement of the size strategy that also integrates the type strategy. In that case,

the size strategy takes a parameter T denoting the type of artifacts it shall be applied to.

This refinement is integrated in the distribution factor as:

d f (At ,size(T)) =

{

as(At)
tcs(Rt ,T )

if at(At) = T

0 otherwise
(3.5.7)

where the typed content size (tcs) for a state of an artifact Rt and an artifact type T is

the sum of the sizes of all artifacts of type T in the states contained in Rt , defined as:

tcs(Rt ,T ) = ∑
st∈{ct∈RCONT ENT S

t :at(ct)=T}

as(st) (3.5.8)

Apart from the application at the logical levels of granularity, this refinement also

combines the emphasis on the type and the size of the artifact. When applied at the file

level of granularity, only the size of artifacts of the given type is taken into considera-

tion. If a fixing state at the project level includes states of artifacts of different types,

e.g. code and test, and we are interested primarily in artifacts of type code, the typed

size strategy distributes the removed weight according to the size of code artifacts only.

Thus, even if the fixing state contains large test artifacts, they will have no impact on

the weight distribution among the code artifacts.
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3.5.4. Churn Strategy

The churn strategy emphasises the impact of the amount of change (churn) of an artifact

(ac) in a given state that is considered as a part of a fixing state at a coarser level of

granularity. The underlying assumption is that larger changes in artifacts require more

time and effort to perform and potentially contribute more to the occurrence of an event

of interest, such as a fix. Hence, if there is weight to be removed in a fix, the chunk

of that weight to be removed from a given artifact is assumed to be proportional to the

amount of change that needed to be performed in the artifact. The distribution factor

for the churn strategy is defined as:

d f (At ,churn) =
ac(At)

cc(Rt)
(3.5.9)

where the content churn (cc) for a state of an artifact Rt is the sum of the churn for all

artifacts in the states contained in Rt , defined as:

cc(Rt) = ∑
st∈RCONT ENT S

t

ac(st) (3.5.10)

The application of the churn strategy to the running example from Figures 3.7–3.11

and the resulting weight redistribution is shown in Figure 3.12. Given that ac(A5) = 4

and ac(C5) = 1, the corresponding distribution factors are d f (A5,churn) = 0.8 and

d f (C5,churn) = 0.2, which are also identical to the respective distributed removed

weights for A5 and C5. The total and average weights of the corresponding causing

states at the file level of granularity are also adjusted respectively. This emphasises the

impact of the amount of change in the states of the corresponding artifacts in the fixing

state on their contribution to the fix. Their contribution is indicated by the removed

weight assigned to them. By extension, this also emphasises the impact of the amount

of change on the total and average weights of the corresponding causing states.

Contemplating the application of both the size and the churn strategies, as illustrated

in Figure 3.11 and Figure 3.12, respectively, we may observe a contradiction in the

weight distributions. The size strategy indicates that C5 is contributing more to the fix

in R5 due to its larger size and hence its causing state C4 is the more likely cause for

the fix in R5. On the other hand, the churn strategy indicates that A5 is contributing

more to the fix in R5 due to the larger amount of change in A5 and hence its causing

state A3 is the more likely cause for the fix in R5. The different strategies ultimately

enable emphasising different characteristics of events of interest. Which one is to be

used depends on the application context and the assessment task. If the size of artifacts

is perceived as resulting in more effort involved in understanding them during main-
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Figure 3.12.: Churn strategy for distributing removed weights across layers

tenance and development tasks, then the size strategy will be more adequate. On the

other hand, if the amount of change in states of artifacts is considered more critical with

respect to the effort involved in performing maintenance and development tasks, then

the churn strategy will be more adequate. The states of artifacts that contribute both to

events of interest and to their likely causes can be identified and emphasised based on

their relative importance with respect to the effort involved in modifying them.

There are different kinds of churn measures described in the literature [90, 91, 115,

127]. We consider a rather simple absolute measure of churn defined as the sum of

additions and removals in terms of lines (Churned LOC in [127]), where a modification

is considered both a removal and an addition of one or more lines that are part of the

modification. Other notions of churn can also be used in the churn strategy, however if

a relative churn measure is used, such as the ones described in [127], the distribution

factor may need to be adjusted as well.

Similar to the shared and the size strategy, the churn shall be applied at each logical

level of granularity (e.g. Class, Method, Function, etc.) separately. In that case, the

churn strategy takes a parameter T denoting the type of artifacts it shall be applied to.

This refinement is integrated in the distribution factor as:

d f (At ,churn(T)) =

{

as(At)
tcc(Rt ,T )

if ac(At) = T

0 otherwise
(3.5.11)

where the typed content churn (tcc) for a state of an artifact Rt and an artifact type T is

the sum of the sizes of all artifacts of type T in the states contained in Rt , defined as:
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tcc(Rt ,T ) = ∑
st∈{ct∈RCONT ENT S

t :at(ct)=T}

ac(st) (3.5.12)

Apart from the application at the logical levels of granularity, this refinement also

combines the emphasis on the type of the artifact and the amount of change in the arti-

fact. When applied at the file level of granularity, only the churn of artifacts of the given

type is taken into consideration. If a fixing state at the project level includes states of ar-

tifacts of different types, e.g. code and test, and we are interested primarily in artifacts

of type code, the typed churn strategy distributes the removed weight according to the

churn of code artifacts only. Thus, even if the fixing state contains large changes to test

artifacts, they will have no impact on the weight distribution among the code artifacts.

Similar to the type and the typed size strategy, the typed churn strategy can be applied

multiple times for different types of artifacts, essentially resulting in a distribution of

removed weights “within type”.

3.6. Related Work

Existing approaches are typically based on some form of origin analysis [58], involving

line tracking and annotation graphs [97], line histories [22], line mapping [117], as well

as refinements to these [23, 187] in order to map and track entities across revisions.

Historage [67] is an approach for tracing fine-grained entity histories including renam-

ing changes. The approach presented in this chapter builds on top of these approaches,

applying origin analysis to events of interest in order to determine their potential causes

and then quantifying the cause-fix relationships by means of weights. Our approach

also considers different levels of granularity. Any of the existing approaches can be

used as a foundation and generally the accuracy of the weighting depends in part on the

quality of the results from the underlying origin analysis approach.

Different applications for the existing approaches have been discussed in the liter-

ature, ranging from finding fix-inducing changes [165] and understanding the role of

authorship on implicated code [144] to defect-insertion circumstance analysis [142].

While such applications do serve a similar purpose — identifying potential causes for

events of interest, they are focused on identifying causes before the event of interest

has occurred. Such applications generally require sufficient information about known

causes for events of interest, which serves as training data in order to build pattern

recognition models that are then used to identify potential causes for events of inter-

est. Both, the training and the validation of such pattern recognition models requires

data annotated with known causes for events of interest. The approach discussed in this

chapter can be applied to produce such data emphasising different characteristics across

multiple levels of granularity for different kinds of events of interest.
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The challenge of “tangled changes” [76] is somewhat related to the topic of this chap-

ter. The authors study the prevalence of changes that are unrelated or loosely related to

events of interest and apply a multi-predictor approach to untangle them, based on dif-

ferent confidence voters. The approach discussed in this chapter relies on weighting and

different weight distribution strategies to emphasise certain characteristics of changes

related to events of interest, that are considered to be of importance in a given context.

It can further benefit from a more sophisticated untangling approach such as the one de-

scribed in [76], which can be incorporated as an additional weight distribution strategy

to refine the distribution of weights among fixing and causing states of artifacts across

the different levels of granularity.

To the best of our knowledge none of the existing approaches has incorporated quan-

tification of the extent to which a change in one state contributes to a subsequent fix

in a later state of an artifact. Also, none of the approaches has explored how to apply

cause-fix analysis across multiple levels of granularity.

3.7. Summary

In this chapter, we discussed an approach for finding potential causes for events of in-

terest in software repositories. An event of interest can be any occurrence that may

be of relevance for an assessment task, such as fixing issues and problems, improving

properties, adding features and functionality, and refactoring code. The approach adds

quantitative information on top of existing approaches for origin analysis, such as ones

based on line tracking. The quantitative information is in the form of weights, where

an event of interest regarded as a fix is considered to be removing a weight, and the po-

tential causes for the event of interest are considered to be contributing to that weight.

Distinct weights can be calculated across different dimensions, based on the kind of

event of interest, such as a bug fix, refactoring, etc., designated by a factor for each

kind of interest. The approach accommodates weight redistribution across multiple lay-

ers corresponding to different levels of granularity in order to provide more accurate

information at these levels of granularity. We outlined different strategies for weight

redistribution across the different levels of granularity, which enable emphasising dif-

ferent characteristics of the states of artifacts involved in an event of interest, such as

their type, size, or the amount of change they have undergone. The emphasis on dif-

ferent characteristics allows us to account for the importance of these characteristics

in the effort involved in performing an activity that leads to an event of interest or its

causes. Further weight distribution strategies may be defined in order to emphasise

other characteristics or combinations of characteristics of events of interest.

There are different related approaches described in the literature, which seek to es-

tablish relationships between fixes and their likely causes. However, none of them have

incorporated quantification of the extent to which a likely cause contributes to a sub-
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sequent fix, especially across multiple levels of granularity. The presented approach

builds on top of these approaches and generally any of them can serve as a foundation,

providing the relationships between fixes and their likely causes. Based on these re-

lationships, the proposed approach can be used to calculate the corresponding weights

and quantify the cause-fix relationships. There are also different related applications

discussed in the literature which can be used for similar purposes. However, their scope

and focus is mostly on identifying potential causes for events of interest, where the

event of interest has not yet occurred. The approach discussed in this chapter can be ap-

plied to provide necessary information for the configuration, validation, and refinement

of such applications.

While the set of revisions identified as causes for a given revision is definitive, mean-

ing that no additional causes may be added for that revision, the set of revisions iden-

tified as fixes for a given revision reflects the state of knowledge at a given point in

time, meaning that future revisions may also fix issues introduced in that revision. This

affects the reliability of the calculated weights. In future work, a suitable cut-off point

in time needs to be defined, after which the calculated weights for causing states can

be considered unreliable. Such a cut-off point may be based on release tags, or on the

distance between causing and fixing states with respect to a particular factor, or on the

distance between causing and fixing states in general.



4. Characterising Developer Behaviour

Developer-related information has already been used for software assessment tasks in

the literature [57, 163, 184]. Most approaches focus on defect prediction and typically

make use of the author of the code, and perhaps some basic indication of their expe-

rience, such as the number of activities they have performed, or the amount of time

they have been working on the project. This information is typically combined with

characteristics related to the artifacts, such as their size and complexity, as well as char-

acteristics related to the process, such as the number of changes within a period of time,

and utilised to build project-specific prediction models. However, project-specific mod-

elling ignores the differences in the behaviour of individual developers. Developers

have been indicated to exhibit different programming styles [84, 163, 184]. In addition,

they usually have different amount of experience with the project as a whole as well

as with certain parts of it. Consequently, developers may have different strengths and

weaknesses resulting in different defect patterns [51, 84, 163, 184].

In contrast, when contemplating a project as a whole, differences in the behaviour

of individual developers are diffused, which can result in noisy assessment results.

Frequently there are organisation- and project-specific guidelines and policies seek-

ing to normalise the behaviour of developers. However, as developer exhibit different

strengths and weaknesses, feedback based on a global project-specific assessment will

likely have different applicability for different developers. As a consequence, the ac-

ceptance for such global assessment may suffer due to the lack of specificity.

The remainder of this chapter is structured as follows: Section 4.1 contains a high-

level conceptual overview of the approach for characterising developer behaviour. A

detailed breakdown of the different characteristics across five dimensions is included

in Section 4.2. Means for making sense of the collected data regarding the various

characteristics and for identifying potential patterns, as well as applications for gaining

further insights are discussed in Section 4.3. Related work is discussed in Section 4.4.

4.1. Conceptual Overview

Software products are comprised of various artifacts, including source code files, as well

as logical constructs within source code, such as classes and methods in object-oriented

software development. When reasoning about different characteristics of software dur-

ing software assessment, the first aspect to look at are the characteristics of the artifacts
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comprising the software product. This can be referred to as artifact-centric software

assessment. It can be considered as the first kind of software assessment. As a soft-

ware product evolves over time, the related artifacts and their characteristics evolve as

well. In addition, there are further characteristics describing the evolutionary changes

themselves. We refer to an assessment considering change-related characteristics as

well as changes to artifact characteristics as change-centric software assessment. Since

changes do not occur by themselves, but are rather the result of activities performed by

developers, the natural next step in software assessment is to consider developer-related

characteristics in software assessment as well. It is this kind of assessment, which we

refer to as developer-centric software assessment, that is the central topic of this thesis.

The first challenge is to determine what constitutes developer behaviour and how it

can be characterised. As noted above, artifacts can be measured in different ways, thus

they are described by different measurable characteristics, where the values of these

characteristics at a given time point determine the state of the artifact. Activities per-

formed on an artifact determine the observable changes to the values of the measurable

characteristics of the artifact between the state on which an activity was performed and

the new state emerging as a result of the activity. Traces related to both the states of

the artifacts, as well as the activities performed on them can be collected from the dif-

ferent kinds of software related assets, such as VCSs and ITSs. Based on these traces

we can infer the observable behaviour [77] of a developer as the sequence of activities

performed by the developer on the different software related artifacts. The observ-

able behaviour spans activities across different levels of granularity and characteristics

across different dimensions, obtained from different sources.

The next challenge is to assess the impact of the observed behaviour with respect to

an assessment task. As discussed in Chapter 3, we are often interested in the causes for

different kinds of events of interest, such as bug fixes or refactorings. Once we have

obtained the different characteristics related to the observable behaviour of a developer,

we want to assess how these are related to events of interest, and whether and how

they can be best leveraged to gain additional actionable knowledge and insights. The

obtained knowledge and insights can be used to improve the outcome of activities per-

formed by a developer, e.g. to lower the chances of causing an event of interest, such as

a bug fix.

As software artifacts and their characteristics change over time, developers also gain

more experience, become more (or less) involved in a project (or different parts of a

project). Consequently, the behaviour of the developers is expected to change as well.

Thus, the third challenge is to determine whether changes in the behaviour of developers

can be observed and identified, and whether they have an impact on assessment-related

outcomes. Furthermore, the role of the temporal circumstances of an activity, and not

just the activity in isolation, need to be investigated as well.

The fourth challenge is to investigate transfer opportunities — between different de-

velopers within the same project, between different time periods for the same developer
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within the same project, as well as across projects — between different developers in-

volved in different projects and for the same developer involved in different projects.

Transferring behaviour models to different contexts can provide early insights in new

projects for which there is no sufficient data available for assessment, or in existing

projects when new developers join the project.

The results from developer-centric assessment can be incorporated into automated

personalised recommendation systems. Such systems can provide suggestions applica-

ble to the individual developers that target their strengths and weaknesses, rather than

generic suggestions that many developers may feel are not applicable to their own way

of working. Alternatively, generic suggestions may be prioritised depending on their

applicability to a particular developer. The results may also be used to trigger alerts

and send personalised messages to developers or managers in case of anomalies de-

viating from typically observed developer behaviour. The ultimate goal is to better

understand how each developer works and produce personalised knowledge that can

be directed to those who need it the most in order to make the development process

more efficient, rather than flood everyone with generic information that often may not

be relevant or useful to them in a given situation. The better understanding of the

behaviour of each developer can indicate which kinds of activities can be considered

risky in a given context, and incentivise activities that can compensate for potential

risks. Such understanding can also be used for taking targeted organisational quality

assurance measures, such as specific training sessions, or team reorganisation, where

applicable. This kind of understanding lays down the foundation for a change in per-

spective from broad organisation-wide measures designed for normalised and conform-

ing behaviour to developer- and team-specific measures embracing the strengths and

weaknesses arising from different ways of working of each individual developer. This

change in perspective and better understanding of the behaviour of individual develop-

ers is long overdue given the shift to globally distributed software development both in

industrial and open source contexts over the past decades.

4.1.1. Situational and Dispositional Factors

The characterisation of developer behaviour is inspired in part by the notions of disposi-

tional and situational factors determining the behaviour of an individual in a given con-

text, discussed in the human social psychology literature [71]. With a comprehensive

characterisation of the circumstances in which a development activity is taking place,

as well as potential consequences resulting from the activity, we are concerned with

identifying the factors that contribute to the causes for such consequences in a given

context. Thus, conceptually we are contemplating the circumstances of a development

activity in relation to these notions as defined by:

• the situation in which the activity takes place, described by the artifacts on which
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the activity was performed and their characteristics at the point in time in which

the activity was performed (situational factors),

• the developer that performed the activity, described by characteristics pertaining

to their experience up to the point in time in which the activity was performed

(dispositional factors),

• the activity that was performed, described by changes in the characteristics of the

artifacts, as well as relations between the characteristics of the artifacts and the

characteristics of the developers (activity factors),

• the outcome of the activity described by the characteristics of the artifacts after

the activity was performed, and in particular characteristics related to an assess-

ment task, such as the presence of a defect or the increase in technical debt as the

result of an activity (consequences).

The artifacts considered in the characterisation of developer behaviour include pri-

marily the building blocks comprising the software, at different levels of granularity,

such as projects, components, packages, files, classes, methods. However, other soft-

ware related artifacts can be contemplated as well, including issue reports, requirements

specifications, test cases and test specifications, mailing list and forum discussions.

These may be considered in relation to the behaviour of developers on the building

blocks of the software — e.g. activities performed on a file in relation to an issue re-

port, or changes in the test coverage of a method as a result of an activity performed by

a developer. Such artifacts may also be considered in relation to activities performed on

them directly, where they comprise the primary situational factors. For example, con-

tribution behaviour of developers in an online forum can be characterised with respect

to certain topics of interest or also with respect to the roles of individual developers in

the forum (in a similar manner as in Sudau et al. [171]). In this case, the behaviour of

the developers is considered with respect to the circumstances related to their activities

on such artifacts. This can provide us with a broader perspective on the characterisation

of developer behaviour.

Consider the conceptual overview for an example scenario illustrating these notions

shown in Figure 4.1. Contemplating the behaviour of a developer joe that works (or

performs development activities) on artifacts a and b at two different points in time t

and t + 2. At time point t, developer joe is in state s
joe
t , reflecting joe’s experience

and knowledge at that time. It is indicative of the dispositional factors in the given

circumstances of the activities in question. The artifacts a and b are also in states sa
t

and sb
t , respectively, reflecting their characteristics at that at the time of the activities.

They are indicative of the situational factors in the given circumstances of the activi-

ties in question. As a result of the activities, the developer gains new experience and

knowledge. The next time joe performs some development activities, this new expe-

rience and knowledge indicative of changed dispositional factors is reflected in s
joe
t+2.

As an outcome of the activities performed by joe at time t, the characteristics of the
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Figure 4.1.: Behavior characterisation conceptual overview

artifacts on which they were performed have also changed. These are reflected in states

sa
t+1 and sb

t+2 resulting from these activities, which are indicative of the changed situa-

tional factors that developers performing subsequent activities on these artifacts will be

confronted with. Changes to certain characteristics, such as the presence of defects or

increase in technical debt are of particular interest for assessment tasks. When at time

point t +2, developer joe performs new activities on these artifacts, joe has new expe-

rience and is confronted with a new context. In these new circumstances, the activities

performed by joe at time point t + 2 may have different consequences with regard to

characteristics of interest, even if the actual activities are identical in scope and content.

While the approach discussed in this chapter is conceptually inspired from human

social psychology, the current scope of the approach is restricted to characteristics that

can be automatically measured from software-related assets, such as VCSs, ITSs, mail-

ing lists, etc. There is already large body of work focusing on personality types and

related characteristics of software developers [25, 26, 33, 87, 179] which are relying

on data gathered through interviews and questionnaires. However, these require man-

ual intervention, possibly also at different points in time. Such characteristics may be

integrated with the characteristics discussed in this chapter as part of future work.
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4.1.2. Collaboration Factors

In the example illustrated in Figure 4.1, at time point t + 1 there is different developer

that performed an activity on artifact a in the meantime thus changing its characteristics

again between time points t +1 and t +2. This is where collaboration comes into play.

Collaboration characteristics describe interactions between developers. Collaboration

characteristics are reflected both in the situational factors — e.g. how many developers

have worked on a given artifact up to a given point in time, and in the dispositional

factors — e.g. how many developers has a given developer collaborated with up to a

given point in time. The characterisation of collaboration behaviour is based on the

premise illustrated in Figure 4.2. Given:

• a developer joe in a state s
joe
t at a time t that performed an activity on an artifact

a at a time t resulting in a state sa
t of a,

• a developer tom in a state stom
t+1 at a time t + 1 that performed an activity on the

artifact a at a time t +1 resulting in a state sa
t+1 of a, and

• a developer pat in a state s
pat
t+2 at a time t + 2 that performed an activity on the

artifact a at a time t +2 resulting in a state sa
t+2 of a,

we state that:

• developer tom in state stom
t+1 directly collaborated with developer joe, since tom

worked on a state sa
t of artifact a as left by joe, thus producing state sa

t+1, and

• developer pat in state s
pat
t+2 directly collaborated with developer tom, since pat

worked on a state sa
t+1 of artifact a as left by tom.

We can then define the direct collaboration (dc) relationship between two developers

d and c, where d is said to have directly collaborated with c, i f f for any given artifact

a up to a given time point t, there exists a state sa
i authored15 by developer d, such that

the previous state sa
i−1 of that artifact was authored by developer c. That is:

d
dc
−→ c = {sa

i ∈ Sa
t : author(sa

i ) = d ∧author(sa
i−1) = c} (4.1.1)

Since artifact states build on each other, that is each state of the artifact is typically not

completely overwritten by the corresponding author, but rather only partially modified,

we also define the indirect collaboration (ic) relationship between developers d and

c. It complements the direct collaboration relationship and accounts for the fact that

developers are also at least partially exposed to the contributions of all other developers

that have performed activities on a given artifact a up to a time point t. Given two

15A state of an artifact is authored by a developer if it is the result of an activity performed on the artifact

by that developer.
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Figure 4.2.: Collaboration characteristics conceptual overview

developers d and c, d is said to have indirectly collaborated with c, i f f for any given

artifact a up to a given time point t, there exists a state sa
i authored by developer d, such

that an earlier state sa
j of that artifact was authored by developer c, that is:

d
ic
−→ c = {sa

i ,s
a
j ∈ Sa

t : author(sa
i ) = d ∧author(sa

j) = c∧ i > j} (4.1.2)

Indirect collaborations include direct collaborations by definition. In Figure 4.2, the

indirect collaboration relationship is illustrated by means of a directed dashed line with

an arrowhead between pat and joe, whereas the direct collaboration is illustrated by

means of directed solid lines with arrowheads between pat and tom, and between tom

and joe. The indirect collaborations between pat and tom, and between tom and joe

are not shown explicitly as indirect collaborations also include direct collaborations.
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4.2. Dimensions and Characteristics

The conceptual framework for the characterisation of developer behaviour described in

Section 4.1 lays down the foundations of our approach towards reasoning about devel-

opment activities and developer behaviour. In the following sections we contemplate

a non-exhaustive list of characteristics describing both the situational and dispositional

factors related to the behaviour of developers. The characteristics are tentatively cat-

egorised across different dimensions. However, a definitive categorisation is hard to

achieve as some characteristics fit into multiple dimensions.

Most of the characteristics are language- and technology-agnostic. They depend to an

extent on the granularity and scope of the information provided by the corresponding

assets the characteristics are derived from, such as the peculiarities of the VCS, ITS,

mailing list or online forum platform. Still, they are applicable to any project making

use of a particular VCS, ITS, mailing list or online forum platform.

Some of the characteristics, such as ones based on static analysis results, are spe-

cific to a particular language and potentially also a particular tool. While there are a

number of measurable characteristics described in the literature [30, 73], different tools

may implement only a subset of these. We exemplify several characteristics based on

static analysis results provided by a specific tool (InFamix16) which cover two popular

languages (Java and C++). Similar characteristics can be derived for other languages

based on corresponding static analysis results, which can then be integrated into the

overall framework for characterising developer behaviour.

Another multi-faceted aspect of characteristics is granularity. From a temporal per-

spective, granularity has to do with the level of detail in terms of how frequently mea-

surements are (or can be) obtained — hourly, daily, weekly, monthly, yearly, per release,

per revision, per key press. Depending on the level of granularity of the intended as-

sessment, measurements may need to be aggregated or distributed. This is of particular

interest when it comes to the granularity of developer states, where we can contemplate

the state of a developer after every single activity (micro-granularity) or the state of the

developer between major milestones in the developer’s experience (macro-granularity).

The latter may be based on a linear or non-linear scale. It may also be based on clus-

tering or regression models identifying different modes of operation of a developer or

different stages based on experience and contribution behaviour.

Similarly, from a spatial perspective granularity has to do with the level of detail

of artifacts — methods, classes, packages, files, components, projects. Measurements

at different levels may again need to be aggregated into coarser levels of granularity

or distributed into finer levels of granularity (see also Section 3.5) depending on the

level at which the measurements are available. Adequate aggregation and distribution

strategies need to be put in place where applicable.

16The tool was discontinued in 2016.
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4.2.1. Static Analysis

As noted in Section 4.1, characteristics of the artifacts themselves are usually the first to

be utilised for software assessment (artifact-centric). With static analysis tools readily

available for most popular languages and technologies, such characteristics are often

systematically collected within organisations and within projects, although the tempo-

ral granularity may vary, e.g. daily, weekly, monthly, yearly, per release. For a detailed

characterisation of developer behaviour, such characteristics need to be obtained with

every artifact state, e.g. for every revision. This can be achieved also retrospectively,

provided adequate tools for retrospective analysis are available. Static analysis usu-

ally also provides structural information at the logical levels of granularity, including

the location of classes and methods within physical artifacts such as files, as well as

relationships among them.

We make use of static analysis results as both situational and dispositional charac-

teristics. On the one hand, the static analysis results characterise the states of artifacts

directly. On the other hand, developers are indirectly characterised by the states of arti-

facts they have performed activities on. For example, a developer that typically works

with small artifacts may be more likely to increase technical risks when working on a

large artifact, as that can be considered an anomaly with respect to typical behaviour.

The behaviour model can then be calibrated based on observed behaviour for the devel-

oper in order to identify which anomalies lead to technical risks.

4.2.1.1. Situational Factors

A number of measurable characteristics have been described in the literature under the

umbrella term “software metrics" [30, 73, 103, 119], where object-oriented metrics

in particular have been widely accepted as means for quantitative characterisation of

artifacts. We contemplate a subset of these that were available as the result of static

analysis provided by the tooling we relied on. The metrics-based characteristics are

summarised in Table 4.1.

The metrics listed in Table 4.1 serve as an example, based on a particular language

and tooling of interest. As noted above, other tools and languages may provide dif-

ferent sets of metrics. It is not the main focus of this chapter to argue which sets of

metrics are most appropriate. The literature has come up with various sets of metrics

for different purposes and we also argue that the exact metric selection may vary based

on the assessment task of choice. In order to obtain sufficiently detailed data for the

characterisation of each activity performed by a developer, we extract metrics for each

known state of each artifact.

Another kind of static analysis that is frequently applied in practice and has been

extensively discussed in the literature is clone (or duplicate) detection [6, 9]. Similar to

software metrics, there are various notions on what constitutes duplicated code and dif-
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Short Name Granularity Full Name

MX.AMW Class Average Method Weight

MX.BOvR Class Base Class Overriding Ratio

MX.BUR Class Base Class Usage Ratio

MX.CBO Class Coupling Between Objects

MX.CPFD Class Capsules Providing Foreign Data

MX.CW Class Class Weight

MX.DIT Class Depth of Inheritance Tree

MX.LCC Class Loose Class Cohesion

MX.LCOM Class Lack of Cohesion in Methods

MX.NAS Class Number of Added Services

MX.NOA Class Number of Attributes

MX.NOACCM Class Number of Accessor Methods

MX.NOAM Class Number of Abstract Methods

MX.NOCHLD Class Number of Children

MX.NOM Class Number of Methods

MX.NOPRTA Class Number of Protected Attributes

MX.NOPRTM Class Number of Protected Methods

MX.NOPUBA Class Number of Public Attributes

MX.NOPUBM Class Number of Public Methods

MX.NOVRM Class Number of Overriding Methods

MX.PNAS Class Percentage of Newly Added Services

MX.RFC Class Response for Class

MX.SPIDX Class Specialisation Index

MX.TCC Class Tight Class Cohesion

MX.WOC Class Weighted Operation Count

MX.StartLine Method Starting Line

MX.EndLine Method Ending Line

MX.ALD Method Access to Local Data

MX.ATFD Method Access to Foreign Data

MX.CYCLO Method McCabe’s Cyclomatic Number

MX.DR Method Dispersion Ratio

MX.ICDO Method Incoming Coupling Dispersion for an Oper-

ation

MX.ICIO Method Incoming Coupling Intensity for an Opera-

tion

MX.LDA Method Locality of Data Accesses

MX.LOC Method Lines of Code

MX.LOCOMM Method Lines of Comments

MX.MAXNESTING Method Maximum Nesting Level of Instructions

MX.NOAV Method Number of Accessed Variables

MX.NOOC Method Number of Outgoing Calls

MX.NOPAR Method Number of Parameters

MX.OCDO Method Outgoing Coupling Dispersion for an Oper-

ation

MX.OCIO Method Incoming Coupling Dispersion for an Oper-

ation

Table 4.1.: Object oriented metrics used as situational factors.
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Short Name Granularity Full Name

DD.NCL File, Class, Method Number of Cloned Lines

DD.NCF File, Class, Method Number of Cloned Fragments

DD.PCL File, Class, Method Percentage of Cloned Lines

DD.CFR File, Class, Method Clone Fragment Ratio

DD.VCL File, Class, Method Variance of Cloned Lines

DD.ALPF File, Class, Method Average Cloned Lines per Cloned Fragment

DD.MLPF File, Class, Method Mean Cloned Lines per Cloned Fragment

DD.VLPF File, Class, Method Variance of Cloned Lines per Cloned Frag-

ment

DD.CDR File, Class, Method Clone Dispersion Ratio

Table 4.2.: Duplication information as situational factors.

ferent approaches to detecting duplicated code discussed in the literature [44, 99, 155].

The available information resulting from the application of duplicate detection may vary

depending on the language and tooling. It is not the main focus of this chapter to argue

which approach to duplicate detection is most appropriate. Rather, we resort to relying

on basic indicators of the amount and location of duplicated code as characteristics for

situational factors. For example, we contemplate whether an activity involved creating,

modifying, or removing duplicated code, as well as the size and proportion of the du-

plicated code with respect to the size of overall changes and the corresponding artifacts.

The duplication-related characteristics are summarised in Table 4.2. All duplication-

related characteristics are applicable on all granularity levels. At the logical level of

granularity, duplicated code may span beyond the boundaries of the logical artifact de-

fined by its starting and ending line. In such cases, only the duplicated code within the

boundaries of the logical artifact is considered.

Code duplication is also referred to as a “code smell” [50]. Detection of code smells

can be used to enrich the description of the context in which an activity was performed

and the activity itself even further. In this chapter we contemplate code duplication as

an example. Further code smells can be added as needed, depending on the assessment

task, and also depending on the availability of tool support for a given language.

While code smells are considered “anti-patterns” in software development describ-

ing poor development practices that often lead to increased technical debt, design pat-

terns [49] describe best practices in software development that outline design solutions

to common problems. The presence or absence of such design patterns can be used to

provide additional description of the context in which an activity was performed and of

the activity itself.

The application of bag-of-words [145] and characteristic vectors [83] in software as-

sessment represents light-weight approaches to static analysis. Bag-of-words relies on
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frequency distributions of individual words in the content of an artifact, thus highlight-

ing the prevalence of referencing particular entities within that artifact. It can be applied

on any artifact that has textual content, including commit messages in a VCS, issue de-

scriptions and comments in an ITS, postings in user forums, and messages in mailing

lists. An example for the application of bag-of-words is shown in Table 4.3. The text

from the previous two paragraphs has been processed for illustrative purposes. Para-

graph 1 refers to the paragraph starting with “Code duplication is also referred to as

. . . ” and Paragraph 2 refers to the paragraph starting with “While code smells are con-

sidered. . . ”. During the processing, common terms, such as articles and prepositions,

referred to as “stop words” have been excluded. Both paragraphs are combined to cre-

ate a common list of words. The table includes all the words occurring more than once

in both paragraphs combined, with a breakdown for each paragraph. If we contemplate

each paragraph individually, the list of the most frequent words will be different, thus

it will be difficult to compare them. Instead, relying on the occurrences of all words

across the individual paragraphs provides a common ground for comparison against a

shared vocabulary. The bag-of-words approach is also the foundation for concept-space

analysis [29], term-document matrices [101], and topic models [16], which are used for

identifying the prevalence of concepts and the main topics of natural-language docu-

ments. Based on the occurrence counts in the example, we can infer that Paragraph

1 has more to do with the concepts code, duplication, and smells, whereas Paragraph

2 is concerned more with the concepts patterns, design, development, and practices.

In addition, stemming is frequently used to remove morphological variations. More

sophisticated approaches consider also word co-occurrences, such as code smells and

design patterns, which provide more detailed insights about the concepts used. The

bag-of-words approach is used in a similar manner for identifying the concept-space of

source code [137], so that frequent mentions of concepts from the GUI domain (such

as references to GUI libraries) can be used to infer that a class or a method deals with

GUI-related functionality, for example. Apart from absolute occurrence counts, bag-of-

words may also rely on density measurements which relate the number of occurrences

to the size of the document or the size of all the documents.

A characteristic vector is similar to a bag of words, but instead of using the content

directly, it relies on a higher level syntactical representation of the content. Thus, instead

of the frequencies of the textual tokens, it considers the frequencies of the corresponding

Abstract Syntax Tree (AST) nodes, where the level of the AST nodes may also vary.

As such, characteristic vectors are better suited for source code artifacts rather than

natural language. However, while they provide more structural information, due to the

abstraction they also lose domain information, since all identifiers are represented by

the same type of AST nodes.

Characteristic vectors were first used in software assessment for the application of

defect prediction in [84]. For the evaluation, the authors considered only the charac-

teristic vector after a change and the difference to the characteristic vector before the
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Word Both Paragraphs Paragraph 1 Paragraph 2

code 5 4 1

activity 4 2 2

design 3 0 3

development 3 0 3

patterns 3 0 3

smells 3 2 1

duplication 2 2 0

practices 2 0 2

software 2 0 2

depending 2 2 0

context 2 1 1

description 2 1 1

perform 2 1 1

used 2 1 1

Table 4.3.: Bag-of-words example.

change. As we are contemplating the situational factors describing the context where an

activity takes place, it makes sense to also consider the characteristic vector before the

change in our context. The same applies to bag-of-words. While the number of AST

nodes is naturally limited by the grammar of the language, the number of words can be

arbitrarily long. For characteristic vectors, it often makes sense to focus on AST nodes

representing constructs of particular interest, such as loops and conditional statements,

which can be used to reduce the number of characteristics being considered. In the

bag-of-words approach, it is not as straightforward to determine adequate threshold for

the number of words to be considered. It can be based on minimum occurrence count

(e.g. words occurring more than once), ranking (e.g. top ten most frequently occurring

words), or other constraints.

For all characteristics discussed above, we calculate the differences between the val-

ues in the state on which an activity was performed and the state resulting from the

activity. These differences characterise the activity itself (activity factors).

4.2.1.2. Dispositional Factors

We extrapolate a set of characteristics describing the state of a developer at a given

point in time based on the available artifact and activity characteristics. The measure-

ments obtained from the static analysis of the individual states of the artifacts a devel-

oper has worked on, as well as the corresponding deltas are considered indicative of

the experience of the developer. In order to capture this aspect of the behaviour, we in-

clude characteristics for the distribution (mean, standard deviation) of the static analysis
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measurements and deltas in each developer state. These characteristics can be further

refined into:

• lifetime distribution encompassing the distribution of the characteristics obtained

from measurements collected throughout the complete sequence of activities per-

formed by a developer, and

• sliding window distribution encompassing the distribution of the characteristics

obtained from measurements collected from a subset of the activities performed

by a developer, limited to the most-recent activities determined either by the last

n activities, by the activities within the time period t, or by activities within the

last n states of the developer.

In order to capture the relation between the situational and dispositional situational

factors, we can also keep track of the distances between the situational and correspond-

ing dispositional factors (mean in this case), or the distances between the activity factors

and the corresponding dispositional factors (standard deviation in this case). These can

serve as an indication of the typical operational ranges for a developer, where larger de-

viations are indicative of unusual behaviour. Consider the example shown in Figure 4.3

which illustrates some of the static analysis characteristics applied to the conceptual ex-

ample from Figure 4.1. For illustrative purposes, we assume that the dispositional char-

acteristics for joe in s
joe
t reflect the experience after five activities with m.MX .LOC = 32

(mean LOC) and sd.MX .LOC = 6 (standard deviation for LOC). The characteristics of

the activities describing joe’s work on a (shown in gray) include:

• the difference between the measurements for the characteristic LOC in the state

of a on which joe was working and the state of a resulting from joe’s work

(d.MX .LOC = 5),

• the difference between the measurements for the characteristic LOC in the state

of a on which joe was working and joe’s mean for this characteristic so far

(d.m.MX .LOC = 7), which in this case indicates that the artifact is smaller than

the average size of artifacts that joe is working on,

• the absolute difference between d.MX .LOC and joe’s standard deviation for the

LOC characteristic so far (d.sd.MX .LOC = 1), which in this case suggests that

the difference from the average size of artifacts is close to the range of variation

with respect to the size of artifacts within which joe is typically working.

In comparison, the corresponding characteristics of the activities describing joe’s

work on b are d.MX .LOC = 8, d.m.MX .LOC = 18, d.sd.MX .LOC = 2. After these

activities, the corresponding dispositional characteristics for joe in s
joe
t+2 have changed

correspondingly to reflect the new experience collected by joe. Similar characteristics

are calculated for the remaining static analysis measurements. While we only illustrated

the use of the mean and standard deviation here, other distributional characteristics,
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time

joe

time

a

works onworks on

time

b

works on works on

st

MX.LOC 25

MX.CYCLO 5

DD.NCL 0

… …

a st+1

MX.LOC 30

MX.CYCLO 7

DD.NCL 5

… …

a st+2

MX.LOC 40

MX.CYCLO 7

DD.NCL 5

… …

a

st

MX.LOC 50

MX.CYCLO 10

DD.NCL 0

… …

b st+2

MX.LOC 42

MX.CYCLO 7

DD.NCL 0

… …

b

st

m.MX.LOC 32

sd.MX.LOC 6

m.MX.CYCLO 5

… …

joe st+2

m.MX.LOC 33.5

sd.MX.LOC 7.6

m.MX.CYCLO 5.7

… …

joe

(assumed 5 previous activities by joe)

st —> st+1

d.MX.LOC 5

d.m.MX.LOC -7

d.sd.MX.LOC 1

… …

joest
aa

st —> st+2

d.MX.LOC -8

d.m.MX.LOC 18

d.sd.MX.LOC 2

… …

joest
bb

Figure 4.3.: Example characterisation based on static analysis

such as minimum, maximum, etc., can also be considered for the characterisation of

dispositional factors.

4.2.2. Spatial

The spatial characteristics are concerned with the location of changes within an artifact.

They are based on the changed lines in a given state of an artifact. The spatial charac-

teristics are indicative of the dispersion of changes. Both the lines before the change

and the lines after the change are considered in separate sets. The lines before (Lbe f ore)

denote the set of lines of the previously recorded revision of an artifact that were modi-

fied or deleted in a given revision. The lines after (La f ter) denote the set of lines in the

revision that were modified or added in that revision. Thus, the lines before lack any

information regarding added lines that were not part of a modification, while the lines

after lack any information regarding removed lines that were not part of a modification.

For illustrative purposes, we will rely on an annotated representation of a line change

map, similar to the ones discussed in Chapter 3. An example of such an annotated line

change map is shown in Figure 4.4. As with previous line change maps, revisions are

represented as segments on the x-axis and lines are represented on the y-axis. Coloured
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Figure 4.4.: Spatial characteristics example (see Figure A.4 for a larger version)

blocks highlight changed fragments between revisions (within a revision’s segment). In

addition, an overlay shows the actual content of the lines of a file in each revision (near

the right hand side of a segment on the x-axis). This is mostly for illustrative purposes.

For artificially constructed examples the content may still be readable, but in a file from

an actual software system with a large number of revisions, this overlay will quickly

become illegible. Above the changed lines, an overlay shows additional data points

related to the spatial and temporal characteristics (Section 4.2.3). Around the vertical

middle of the line change map in Figure 4.4, a timeline overlay indicates the relative

time point of each revision plotted against the lifetime of the artifact.

Consider the example shown in Figure 4.4. In revision 10, Lbe f ore = {1,2,6}, thus

it lacks information regarding the three added lines in revision 10. Note also, that due

to additions, deletions, and modifications the location of a given line may shift between

revisions, as is the case of line 6 in revision 9 which becomes line 7 in revision 10,

for example. In order to account for these peculiarities, the lines merged (Lmerged) set

is defined. It aims to address some of the concerns above. This set is constructed by

taking the lines from both sets (Lbe f ore and La f ter) and projecting them on the same

domain, while taking into account any offsets where applicable. In particular, for every

fragment it takes all lines before the change and to each line it adds an offset (Oa f ter)

resulting from an increase in the number of lines after modifications or additions in prior

fragments of a revision. If the fragment only adds lines, then the set takes all the lines
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after the change and to each line it adds an offset (Obe f ore) resulting from a decrease

to the number of lines after modifications or deletions in prior fragments of a revision.

Consider, for example, revision 10, given (Lbe f ore = {1,2,6} and La f ter = {1,3,4,5,8},

we contemplate the following fragments:

• lines 1 and 2 are changed in that line 1 is removed and line 2 is modified;

• three new lines are added after line 3, which effectively becomes line 2 after line

1 is removed in the preceding fragment, where the new lines become lines 3,4,

and 5 after the revision;

• in a third fragment, line 6 is modified, and because of the offset resulting from the

removal of line 1 and the addition of the three new lines, it effectively becomes

line 8 after the revision.

The result is a sequence of operations on lines, which transform an artifact from one

state into another within a revision. Table 4.4 summarises the application of this ap-

proach on revision 10. The Merged column plots all line on the same domain following

the approach described above. The Before column maps the lines before the change to

the merged lines domain, whereas the After column maps the lines after the change to

the merged lines domain and to the corresponding lines before the change. Finally, the

Change column indicates the whether a line was added (+), modified (*), removed (-),

or preserved ( ). Each row corresponds to a line, regardless of whether it is affected

by changes in a revision. In terms of change operations, the Merged column indicates

the sequential number of each line operation (add, remove, modify, preserve) and the

change column indicates the type of operation. In this case, Lmerged includes the lines

from the Merged column for which there is an operation other than preserve, resulting

in Lmerged = {1,2,4,5,6,9}. Based on the three sets, we calculate the variance of each

set as a spatial characteristic.

The spatial characteristics can also be used to approximate recurring changes in an

artifact, affecting the same lines or lines in close proximity. Consider the example

shown in Figure 4.5. In revision 2, lines 3, 5, and 7 are modified. The subsequent

revision 3 adds three new lines between line 1 and line 2. Then, in revision 4, the same

lines from revision 3 ({3,5,7}) are modified again, but because of the three new lines

introduced in revision 3, their location has now shifted to {6,8,10}. The variance in

this case remains the same, thus it can serve as an indication that there was a recurring

change in same location. If in this case revision 2 is considered as the cause for an event

of interest, the fact that revision 4 is identical with respect to the spatial characteristics

can be used to guide further inspection of the changes in revision 4. Similar to the

line-based spatial characteristics, we also obtain fragment-based spatial characteristics,

which reflect the dispersion of changes at a coarser level of granularity.
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Merged Before Change After

1 1 -

2 2 * 1

3 3 2

4 + 3

5 + 4

6 + 5

7 4 6

8 5 7

9 6 * 8

10 7 9

Table 4.4.: Line merging example

Short Name Granularity Full Name

SP.NLB File, Class, Method Number of Changed Lines (before)

SP.NLA File, Class, Method Number of Changed Lines (after)

SP.NLM File, Class, Method Number of Changed Lines (merged)

SP.VLB File, Class, Method Variance of Changed Lines (before)

SP.VLA File, Class, Method Variance of Changed Lines (after)

SP.VLM File, Class, Method Variance of Changed Lines (merged)

SP.NCF File, Class, Method Number of Changed Fragments

SP.VCF File, Class, Method Variance of Changed Fragments

SP.CM1 File, Class, Method M1 from [127]: Churned LOC / Total LOC

SP.CM2 File, Class, Method M2 from [127]: Deleted LOC / Total LOC

Table 4.5.: Spatial information as situational factors.

4.2.2.1. Situational Factors

The spatial characteristics are used primarily for the characterisation of the situational

factors. An overview of the situational factors based on the spatial characteristics is

shown in Table 4.5. The characteristics at the logical levels of granularity (Class,

Method) need to be interpolated within the scope of the corresponding artifact. The

number of changed lines before (SP.NLB) and after (SP.NLB) are frequently used in

the literature as the basis for the so-called churn metrics [91, 127]. We consider churn

metrics as part of the spatial characteristics. We adopt two of them (SP.CM1,SP.CM2)

for the characterisation of the situational factors17.

17The original authors used number of non-commented executable lines, we use the total number of lines,

including comments and blank lines.
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Figure 4.5.: Recurring changes example (see Figure A.5 for a larger version)

4.2.2.2. Dispositional Factors

The dispositional spatial characteristics are derived from the situational spatial charac-

teristics in a way similar to the characteristics based on static analysis. Here, we only

contemplate the characteristics based on the number of changed lines and fragments,

for which we calculate distributional characteristics indicative of the experience of a

developer up to a given point in time.

4.2.3. Temporal

To account for temporal relationships between development activities, we introduce the

notion of temporal characteristics. The temporal characteristics are primarily based on

distance (time span between subsequent states) and relative time (time span between the

first state of an artifact or a developer and a given point in time). In addition to capturing

temporal characteristics over all states, we can also project the temporal characteristics

over states exhibiting a particular characteristic, such as being identified as causes for

events of interest. Since all temporal measurements are originally collected in millisec-

onds, which can be impractical for feedback and some calculations, we transform them

into larger time units such as minutes, hours, and days for a coarser level of temporal

granularity. While the temporal granularity of minutes can be useful for the illustrative

examples, working with data from real software projects usually requires even coarser
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level of granularity, such as days. Whichever level of granularity is selected, it should

be used throughout all measurements and experiments in order to avoid confusion.

4.2.3.1. Situational Factors

To characterise artifact states temporally, we record the number of states (T M.NOS) up

to a given point in time, the age (T M.AGE) of the artifact up to that point in time, and

the distance (T M.DIST ) to the previous state of the artifact. Based on these direct mea-

surements, we also calculate the frequency (T M.FREQ) of activities performed on the

artifact. In order to establish the temporal dispersion of the activities, we also consider

the variance of the age (T M.VAGE) and the variance of the distance (T M.V DIST ) up

to the point in time a state was created. Finally, we also contemplate the mean of the

distances (T M.ADIST ) and frequencies (T M.AFREQ) up to the point in time a state

was created. The example in Figure 4.4 already includes these characteristics, as well

as other temporal characteristics used for informative purposes.

The frequency notion is similar, in a sense, to the notion of speed — distance (number

of states) over time (age). The intuition is that, if an artifact has high frequency it

“moves with a faster speed”, meaning it “travels” a longer “distance” (is subjected to

more activities) for a given time period. This potentially entails further consequences

associated with “higher speed”, such as higher risk of accidents, while also implying

the opposite about lower speeds. The basic concept corresponds to a notion of “average

speed”. However, there is also a need for the notion of “current speed”, reflected by the

current frequency (T M.CFREQ).

Beyond contemplating spatial and temporal characteristics individually, we also iden-

tify several characteristics converging on the spatial and temporal domains. These in-

clude measures for churn per state of an artifact (ST.CLS, ST.DLS), but also churn per

time period (day, week, month) (ST.CLP.∗, ST.DLP.∗). An overview of the situational

factors based on the temporal characteristics is shown in Table 4.6 and Table 4.7.

4.2.3.2. Dispositional Factors

In addition to the distribution characteristics for the situational temporal and spatio-

temporal factors (m.T M.∗, sd.T M.∗, m.ST.∗, sd.ST.∗), which are derived in a similar

manner to the distribution characteristics for the static analysis situational factors, we

also contemplate several temporal characteristics that are based on the states of the de-

veloper. We consider the frequency of activities (T M.DFREQ), the distance between

activities (T M.DISTA), the “age” (T M.DAGE) of the developer (here we mean the

time they have spent on a project rather than their actual human age). As discussed

previously, developer states may be determined based on different criteria. Thus, char-

acteristics related to the developer states need to be carefully considered, depending on

the criteria and the concrete assessment application. Consequently, we also include the
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Short Name Granularity Full Name

TM.NOS File, Class, Method Number of States

TM.AGE File, Class, Method Artifact Age

TM.DIST File, Class, Method Distance to Previous State

TM.FREQ File, Class, Method Frequency of Activities

TM.VAGE File, Class, Method Variance of Artifact Age at States

TM.VDIST File, Class, Method Variance of Distances to Previous States

TM.ADIST File, Class, Method Mean of Distances to Previous States

TM.AFREQ File, Class, Method Mean of Frequency of Activities

TM.CFREQ File, Class, Method Current Frequency of Activities

Table 4.6.: Temporal information as situational factors.

Short Name Granularity Full Name

ST.CLS File, Class, Method Churned Lines per State

ST.DLS File, Class, Method Deleted Lines per State

ST.CLP.* File, Class, Method Churned Lines per Time Period

ST.DLP.* File, Class, Method Deleted Lines per Time Period

Table 4.7.: Spatio-temporal information as situational factors.

characteristics related to the developer’s activities which provide more detailed infor-

mation that is not influenced by the way the developer states are determined. However,

activities also have a shortcoming in that multiple activities may occur at the same time,

such as multiple artifacts being changed and committed together, especially across mul-

tiple levels of granularity. Thus, activity-related characteristics may be further refined

across different levels of granularity. An overview of the dispositional factors based on

the temporal characteristics is shown in Table 4.8. We do not include the breakdown

of activity-related characteristics across multiple levels of granularity here as this de-

pends on the available levels of granularity in a particular context. An application in a

particular context may include such a breakdown as necessary.

Short Name Granularity Full Name

TM.DNOS Developer Number of Developer States

TM.DAGE Developer Developer “Age”

TM.DISTS Developer Distance to Previous State

TM.DISTA Developer Distance to Previous Activity

TM.DFREQ Developer Frequency of Activities

Table 4.8.: Temporal information as dispositional factors.
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4.2.4. Experience

Experience characteristics are based on the number of contributions and the notion of

ownership derived from the size of contributions (based on [57]). Experience character-

istics are indicative of the previous knowledge of a developer with respect to a particular

artifact or overall.

4.2.4.1. Situational Factors

Experience characteristics are primarily concerned with the contribution experience of

developers. As a consequence, experience information that is used as situational factors

is projected over the artifact and the developer. Thus, it is attributable to the activity

rather than the state of the artifact. The number of contributions of a developer to an

artifact (EXP.CC) accounts for the domain experience of the developer up to the time

of the activity performed on the artifact. A developer with more experience of working

on an artifact can be considered more familiar with it. The ratio of the number of con-

tributions by a developer to all contributions to an artifact (EXP.CCR) accounts for the

relative domain experience of the developer up to the time of the activity performed on

the artifact. A developer with more experience of working on an artifact in comparison

to other developers can be considered more familiar with it. The average developer con-

tribution count ratio (EXP.ACCR) accounts for the diversity of developers contributing

to an artifact and serves as a baseline for what can be considered above or below aver-

age relative author experience on the artifact. The fractal distribution of the contribution

ratios (EXP.FCCR) accounts for the diversity of developers contributing to an artifact.

It serves as an indication of the distribution of ownership among the developers. A high

value would indicate a large number of contributing developers, each contributing to a

small proportion of states. A low value would indicate the presence of a major contrib-

utor authoring a large proportion of the states. It is based on the notion of fractal value

as defined in [35]. The artifact LOC owned by a developer (EXP.OWN) is indicative

of the amount of code that is known to the developer. While a developer may have

made most of the contributions to an artifact, another developer may have modified a

large portion of the content of the artifact recently. Thus, the former developer may not

be familiar with the current content of an artifact despite the large number of contri-

butions to it. The ratio of artifact LOC owned by a developer (EXP.OWNR) indicates

the percentage of artifact LOC owned by a developer. The artifact LOC contributed by

a developer (EXP.OWNC) sums up all the code contributed to an artifact by a given

developer up to a given point in time. The contribution retention ratio (EXP.CRR) in-

dicates the stability of contributions by a developer. Low retention ratio indicates that

contributions by are more likely to be overwritten either by the same developer or by

other developers. The developer contribution focus (EXP.CF) is based on the number

of contributions to an artifact over the total number of contributions by a developer. It
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Short Name Granularity Full Name

EXP.CC File, Class, Method Developer Contribution Count

EXP.CCR File, Class, Method Developer Contribution Count Ratio

EXP.ACCR File, Class, Method Average Developer Contribution Count Ratio

EXP.FCCR File, Class, Method Fractal Distribution of ACCR

EXP.OWN File, Class, Method Artifact LOC Owned by Developer

EXP.OWNR File, Class, Method Ratio of Artifact LOC Owned by Developer

EXP.OWNC File, Class, Method Artifact LOC Contributed by Developer

EXP.CRR File, Class, Method Contribution Retention Ratio by Developer

EXP.CF File, Class, Method Developer Contribution Focus

Table 4.9.: Experience information as situational factors.

is indicative of the focus of the developer on the artifact. The experience characteristics

can also be refined further over the type of activity (e.g. EXP.CC.∗), such as fix for an

issue (EXP.CC.FIX), refactoring (EXP.CC.REF), etc. An overview of the situational

factors based on the experience characteristics is shown in Table 4.9.

4.2.4.2. Dispositional Factors

Dispositional experience characteristics include the distribution characteristics for the

situational experience characteristics (m.EXP.∗, sd.EXP.∗) and characteristics describ-

ing the overall experience of a developer. The distribution characteristics for the sit-

uational experience characteristics are derived in a similar manner to the distribution

characteristics for the other situational factors. The characteristics describing the over-

all experience of a developer include the number of activities (EXP.NOA), the number

of artifacts a developer has worked on (EXP.NKA), and the ratio of artifacts a developer

has worked on to the total number of artifacts (EXP.RKA). The latter characteristics are

indicative of the breadth of knowledge and experience of the developer based on work-

ing on different artifacts rather than the depth of knowledge while working on the same

artifact. The number of activities can also be refined further over the type of activity

(EXP.NOA.∗), such as fix for an issue (EXP.NOA.FIX), refactoring (EXP.NOA.REF),

new feature (EXP.NOA.NF), issue report comment (EXP.NOA.IRC), etc. We also con-

sider the fractal distribution of EXP.FCCR (EXP.DCCR) as an indication of the di-

versity of the developers that contributed to the state of the artifacts the developer has

performed activities on at a certain point in time. Higher diversity is a potential indi-

cator for more heterogeneity in the corresponding artifacts. The overall LOC owned

by a developer (EXP.DOWN) and the ratio of the owned LOC (EXP.DOWNR) are in-

dicative of the overall proportion of code known to a developer. When compared to

EXP.OWN and EXP.OWNR, these characteristics can be used to infer that a developer

is getting in a new territory contributing to an artifact with low-ownership, while having
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Short Name Granularity Full Name

EXP.NOA Developer Number of Developer Activities

EXP.NKA Developer Number of Known Artifacts

EXP.RKA Developer Ratio of Known Artifacts

EXP.DCCR Developer Fractal Distribution of FCCR

EXP.DOWN Developer Overall LOC Owned by Developer

EXP.DOWNR Developer Ratio of Overall LOC Owned by Developer

EXP.DOWNC Developer Overall LOC Contributed by Developer

EXP.DCRR Developer CRR for Developer Overall

Table 4.10.: Experience information as dispositional factors.

high overall ownership. Similar to the EXP.DOWN, the overall LOC contributed by a

developer sums up the amount of code contributed by the developer. The overall contri-

bution retention ratio for a developer (EXP.DCCR) is indicative of the overall stability

of code contributed by the developer. An overview of the dispositional factors based on

the experience characteristics is shown in Table 4.10. We do not include the breakdown

of experience-related characteristics across multiple levels of granularity here as this

depends on the available levels of granularity in a particular context. An application in

a particular context may include such a breakdown as necessary. Here we also do not

include dispositional characteristics derived from the distribution characteristics for the

situational experience characteristics.

4.2.5. Collaboration

Collaboration characteristics are based on the notions of collaboration discussed in Sec-

tion 4.1.2. Collaboration characteristics are indicative of the interactions between de-

velopers reconstructed based on their work on shared artifacts and overall. While we

extrapolate characteristics from the domain of VCSs, the collaboration characteristics

discussed below are also applicable to ITSs, mailing lists, and user forums. In this case,

the concrete notions of issues, comments, messages, and postings need to be mapped to

the more abstract conceptual notions of artifacts and states.

4.2.5.1. Situational Factors

The collaboration characteristics are primarily concerned with relationships between

developers. However, since these relationships are derived from shared artifacts on

which developers work, some of the collaboration characteristics are also projected

on the corresponding artifacts. This provides us with situational information, such as

whether the developer working on a given state of an artifact is the same as the devel-

oper that worked on the previous state of that artifact (COL.SAL), which can indicate a
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Short Name Granularity Full Name

COL.SAL File, Class, Method Same Author as Last

COL.ACC File, Class, Method Artifact Collaborator Count

COL.ACR File, Class, Method Artifact Collaborator Ratio

COL.CBLA File, Class, Method Collaborations Between Author and Last Au-

thor

COL.RBLA File, Class, Method Collaboration Ratio Between Author and Last

Author

Table 4.11.: Collaboration information as situational factors.

better familiarity of the developer with the content of the artifact since no one else has

modified it in the meantime. The number of developers that have collaborated on an

artifact up to a given point in time (COL.ACC) accounts for the diversity of developers

contributing to the artifact. The ratio of developers that have collaborated on an artifact

up to a given point in time to the total number of developers up to that point in time

(COL.ACR) reflects the proportion of all developers that have contributed to an artifact

up to a given point in time, i.e., how popular is a given artifact within the population of

developers. The number of direct collaborations between the developer working on a

given state of an artifact and the developer that worked on the previous state of that arti-

fact (COL.CBLA) accounts for the experience of the developer working the target state

with working on states of the artifact resulting from activities of the developer working

on the previous state. It is an indication of the collaboration between both developers.

The developers need not be different, that is if the author of the source state is the same

as the author of the target state, it is an indication of how often the developer worked on

the artifact as they left it. The collaboration ration between the developer working the

target state and the developer working on the previous state (COL.RBLA) accounts for

the relative collaboration experience of the developer working on the target state with

working on states of the artifact resulting from activity of the developer working on the

previous state, when contemplating the total collaboration experience of the developer

working on the target state. It is an indication of the proportion of activities of the devel-

oper on the artifact that followed activities of the developer that worked on the previous

state to the total number of activities of the developer on the artifact. The developers

need not be different, that is if the author of the source state is the same as the author of

the target state, it is an indication of how often the developer worked on the artifact as

they left it.

4.2.5.2. Dispositional Factors

Similar to other dispositional characteristics, the dispositional collaboration character-

istics include the distribution characteristics for the situational collaboration character-
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Short Name Granularity Full Name

COL.DCC.* Developer Direct Collaborator Count

COL.ICC.* Developer Indirect Collaborator Count

COL.DCR.* Developer Direct Collaborator Ratio

COL.ICR.* Developer Indirect Collaborator Ratio

COL.DIR.* Developer Direct to Indirect Collaborator Ratio

Table 4.12.: Collaboration information as dispositional factors.

istics (m.COL.∗, sd.COL.∗, with the exception of COL.SAL). They also include char-

acteristics describing the overall collaboration of a developer. The number of direct

(COL.DCC.∗) and indirect (COL.IDC.∗) collaborators account for diversity of devel-

opers contributing to artifacts on which a given developer has worked and emphasises

the amount of collaborations for a developer. The corresponding ratios (COL.DCR.∗,

COL.ICR.∗) indicate the proportion of the developer population that a given developer

has collaborated with directly or indirectly up to a given point in time. The ratio of

direct to indirect collaborations (COL.DIR.∗) indicates the proportion of activities a de-

veloper performs on artifacts that have been previously changed by developers that the

developer is familiar with. All dispositional characteristics are qualified by a type of

artifact to which they relate to. That is, a developer d may have collaborated with a set

of other developers Dp on a project p, but the developer may have collaborated with

only a subset D f ⊆ Dp of these developers on a particular file artifact f ∈ Ap from the

project p, and it may be even a further subset Dm ⊆ D f of these for artifacts at a finer

level of granularity, such as a method m ∈ A f where Ag = ∀ag+1 : contains(a).

4.2.6. Aggregation and Distribution

Given that measurements and observations are often made at different levels, both spa-

tially and temporally, the aggregation and distribution of the characteristics needs to be

considered.

4.2.6.1. Spatial

From a spatial perspective, we are concerned with structural levels of artifacts, such

as methods, classes, files, packages, components, projects. Typically there are contain-

ment relationships between these different structural levels, where classes contain meth-

ods, files contain classes, etc. Measurements at finer levels need to be aggregated into

coarser levels of granularity where applicable. For relative measurements, we aggregate

the measurements by computing the mean of the values based on the containment re-

lationships. For absolute measurements we aggregate the measurements by computing

both the mean and the sum of the values based on the containment relationships.
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Inversely, measurements at coarser levels need to be distributed into finer levels of

granularity where applicable. Here we rely on an approach that is somewhat similar to

the one discussed in Section 3.5. Since we focus on the distribution of measurements

regardless of factors, we only weight them against the size of a contained artifact or

distribute them evenly.

4.2.6.2. Temporal

The frequency of available measurements and their intended application determines the

temporal granularity. When it comes to developer states, and project phases, measure-

ments from individual activities need to be aggregated. As discussed in the individual

dimensions above, we consider the mean and standard deviation for situational charac-

teristics up to the state of a developer as part of the dispositional characteristics. While

in this case we considered the cumulative distributional characteristics, each state is

also characterised by the distributional characteristics for the situational characteristics

related to the activities performed by the developer in that state.

In order to determine the state boundaries, we consider two kinds of linear scales.

The contribution-based linear scale increments the developer state after every n activ-

ities. The time-based linear scale increments the developer state every n time periods.

In addition, we also consider a time-based non-linear scale where activities that are

performed close to each other determine the developer state. Finally, we consider a

clustering approach for identifying different modes of operation of a developer based

on the contribution behaviour. In this approach, the developer may switch between

the modes multiple times, resulting in a cyclic graph, rather than a linear sequence of

states. Regardless of the approach, we need to aggregate measurements temporally to

characterise the developer states.

4.3. Patterns and Applications

So far, we considered the characterisation of individual development activities with

respect to the state of the artifacts on which they are performed and the state of the

developers who performed them. Sequences and groups of development activities can

be considered for determining the wider context of an activity. Additionally, the num-

ber of available characteristics grows considerably with the addition of new sources of

information, levels of granularity, as well as depending on the applied aggregation and

distribution strategies. By definition, each activity by a developer is characterised by a

large number of values related to the state of the artifact before and after the activity,

the state of the developer, as well as the activity itself. This results in vast amounts of

data related to the behaviour of developers. In this section we discuss means for making
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sense of the collected data and identifying potential patterns, as well as applications for

gaining further insights.

Software visualisation can be a a useful tool for navigating and comprehending vast

amounts of data in order to gain initial insights from the available data. Various as-

pects of the available data can be highlighted and put into relevant contexts for visual

inspection. The obtained qualitative insights can serve as the foundation for automated

assessment by means of data mining and simulation, which in turn produce quantitative

insights. The results from the automated assessment can then be visualised as well for

further inspection.

4.3.1. The Importance of Characteristics

High-dimensional data can pose some challenges for its subsequent use in various ap-

plications such as visualisation and data mining. As one of the main goals of this thesis

is identifying the circumstances under which developers are likely to cause events of

interest, thus possibly contributing to technical risks, we want to focus on the char-

acteristics that are associated with causing events of interest. Directed data mining

approaches often rely on various measures of the importance of individual characteris-

tics with regard to the target characteristic. One such measure is information gain [124]

which serves as an indication of the ability of a characteristic to partition a data set

with regard to the target characteristic. In order words, it provides means to measure

the information regarding the values of the target characteristic provided by the values

of a given characteristic. Information gain is used as the basis for machine learning

with decision-trees. It is also used for attribute selection in order to reduce the num-

ber of characteristics to a subset of the most important ones with regard to the target

characteristic. Information gain has certain shortcomings with respect to characteristics

with many values. Other measures for the importance of characteristics, such as gain

ratio [124], seek to address these shortcomings. The gain ratio provides means to pe-

nalise characteristics with many uniformly distributed values. However, the gain ratio

has some shortcomings of its own, as do other related measures. In the following we

will rely on information gain as basis for the examples. In practice, other measures for

determining the importance of the different characteristics can be used as well.

When used in attribute selection or machine learning, information gain is typically

calculated over the all the available data (which is usually the training data). This pro-

vides a single score for each characteristic. This score can be used to order the char-

acteristics based on their importance resulting in a ranking of characteristics. In the

context of this thesis, this can be useful for describing various partitions such as data

related to a particular developer or a group of developers. As such, it can also be useful

as an indication of similarity between individual developers or groups of developers.

The ranking of characteristics in high-dimensional data can be challenging to represent

visually in a useful way. Kiviat diagrams (also known as spider charts, star plots, radar
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charts, among other terms) [27] can be helpful for displaying high-dimensional multi-

variate data. The scale for each characteristic is plotted as a radial line (or a ray) from

the center of a circle to its perimeter boundary. The radial lines are generally arranged

at equal angles between any two lines. The value of each characteristic is plotted as

a point on the corresponding radial line. A polygon defined by connecting the points

corresponding to each value defines a shape or signature of data being represented. For

comparison purposes, it is necessary to align the rays and scales in a consistent manner.

While it may be difficult to compare the exact positions of the plotted values visually,

patterns emerging from notable differences and similarities between different data sets

can be easily recognized. The dominant characteristics of different data sets can be

accessibly inspected and compared in this way.

An example of a Kiviat diagram for the ranking of the different characteristics for

developer A at source code file level of granularity from the log4j project is shown

in Figure 4.6. The names of the different characteristics are included for reference,

however, in subsequent examples they will be omitted for brevity. In this example,

we can observe that certain spatial characteristics are ranked rather high, whereas most

collaboration characteristics are ranked very low. Overall, the characteristics are well

differentiated with regard to their rank.

An example for comparison based on the visual representation of multiple rankings

is shown in Figure 4.7. In this example we consider two developers — A and B, which

have rather different rankings. In addition, we compare the rankings for both developers

with the rankings over the first half of the available data. In a practical scenario where

the available data is used for data mining, the first half of it may be used as training data

(depending on the chosen partitioning and evaluation approaches). When comparing

the rankings for the first half with the rankings for the complete data set, we observe

that while the rankings for developer B are rather similar, the rankings for developer A

show some differences. For illustrative purposes, we only consider a visualisation of the

ranking for different developers. The same approach can also be applied for studying

and comparing rankings at other levels of granularity, as well as for other partitions,

such as whole projects, individual artifacts, groups of developers, or also groups of

activities for a developer.

The ranking can also be used to determine how the importance of the individual

characteristics evolved over time. By applying more generalized approach for contem-

plating the importance of individual characteristics at different points in time, we can

assess the stability of the different characteristics [41, 86, 177], and also infer potential

changes in behaviour.

Consider the example in Figure 4.8. It shows the evolution of the ranking of the

characteristics for developer A from the log4j project with regard to causing events

of interest of type BugFix. The ranking based on all available data determines the final

placement of the characteristics which is plotted on the y-axis. The available data is split

in n increments plotted on the x-axis (in this case n = 10), where starting from all data,
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Figure 4.6.: Characteristics ranking for developer A in log4j (see Figure A.6–A.7 for a

larger version)

one increment is removed and ranking is performed again for the n−1 increments. Then

the next increment is removed and ranking is performed again for the n−2 increments,

and so on. Characteristics that have the same score are placed at the same rank (hence

thicker lines, especially at the lowest ranks). Characteristics that have a score of 0 in all

the available data are discarded. The legend includes the highest ranked characteristics

(ordered by rank). In this example, we can observe that while the highest ranks are

rather stable, there is some variance in the lower ranks especially around the middle.

Depending on the number of activities by a developer, a larger number of increments

may provide a more detailed view on the dynamics in the ranking of the characteristics,

whereas a lower number of increments may mask some peculiarities. Figure 4.9 shows

the ranking evolution for the same developer at a higher resolution with n = 50. In this
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(a) Developer A (b) Developer A (first half)

(c) Developer B (d) Developer B (first half)

Figure 4.7.: Comparison of characteristics ranking for two developers in log4j (see Fig-

ure A.8–A.11 for a larger version)
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case we can observe somewhat increasing stability in the last 20% of activities

Comparing four different developers as shown in Figure 4.10 can yield some further

insights based on visual inspection. Somewhat similar to last 20% of developer A, the

ranking of the characteristics for developer B is mostly stable after the first 20%. On the

other hand, the ranking evolution for developers C and D appears exhibit more drastic

changes where ranks may vary substantially at the different increments.

So far we considered data from the start up to a certain number of increments. This

mimics practical application, where as more data becomes available during the lifetime

of a software project, more insights can be gained with regard to the importance of the

individual characteristics. In some cases, there may be very substantial and permanent

changes in the importance of the characteristics after a certain point, due to a shift to

new technology for example. In such cases, it may make sense to only contemplate

distinct periods in the lifetime of the project in isolation. This can be based either

on considering different increments in isolation, e.g. only the data between n− 1 and

n− 2, or by using global offsets and limits. While we only considered examples for

developers, the evolution of the importance of the characteristics can be studied at the

project level, for individual artifacts, as well as for groups of developers, e.g. small

developers.

As noted by Kalousis et al. [86], the ranking of characteristics can be indicative of

their importance in data mining. However, it cannot serve as a definitive estimate of

the discriminatory power of the characteristics, since it does not construct classifica-

tion models whose error could be estimated. Conversely, instability is not necessarily

associated with low classification performance either, as noted in [86]. Stable rank-

ing should intuitively lead to stable classification models, periods of stability can be

potentially useful for data partitioning and filtering.

4.3.2. Mapping Developer Activities in Time

Developers are usually performing activities on different artifacts at different points

in time. Sometimes a single developer may perform a burst of activities over a short

period of time, spanning one or multiple artifacts. At other times, several developers

may collaborate on a group of artifacts over a longer period of time. A visual inspection

such as the one proposed by Girba et al. [57] can be helpful for gaining an initial insight

into how the activities of developers are related to artifacts over time.

Figure 4.11 shows an example for a projection of all activities on source code files for

the log4j project, which will be referred to as an artifact activity map. Each artifact is

assigned a horizontal “lane” on the vertical axis. The artifacts may be ordered by time

of creation or based on other characteristics. All activities for an artifact are plotted as

squares on the same horizontal line corresponding to the artifact. The location of the

square on the horizontal axis corresponds to the time between the recorded start and

end of the project. Activities on multiple artifacts at the same time are plotted under
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Figure 4.8.: Characteristics ranking for developer A in log4j over time (see Figure A.12

for a larger version)

Figure 4.9.: Detailed characteristics ranking for developer A in log4j (see Figure A.13

for a larger version)
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(a) Developer A (b) Developer B

(c) Developer C (d) Developer D

Figure 4.10.: Detailed characteristics ranking over time for different developers in log4j

(see Figure A.13–A.16 for a larger version)

one another. The color of the squares corresponds to the developer that performed the

activity. The narrow green bands near the end of the recorded period indicate that the

green developer performed many activities on many of the artifacts over a short period

of time or at the same time. Similar occurrences can be observed for the dark blue

developer around the middle of the recorded period as well as for the light green de-

veloper at various points in time. Most of the activities of the blue developer on the

other hand are performed around the middle of the recorded period, on artifacts created

around the same period. In the last third of the recorded period there were generally

fewer activities than during the first half of the recorded period (except for the above

mentioned narrow bands), performed by a small number of developers, potentially in-

dicating a certain level of maturity of the project or perhaps also a loss of interest from

developers.

This visual representation can serve as the basis for displaying additional information

as overlays. One such overlay is shown in Figure 4.12, where the likelihood of an

activity for causing an event of interest of the BugFix type is shown as red circles on top

of the squares for each activity. The size of a circle is proportional to the likelihood for

causing an event of interest. In this example, we can observe that while many activities
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Figure 4.11.: Developer activities on source code files for log4j

have a risk for causing an event of interest, in a lot of the cases the likelihood is rather

low. Most of the high-likelihood cases occur in the second half of the recorded period.

4.3.3. Roles and Ranks

Over the course of a project, developers usually assume different roles, either explicitly

or implicitly, which in turn are associated with different responsibilities and potentially

also result in different behaviour. Whether the role determines the behaviour or whether

the behaviour determines the role can be considered a chicken-and-egg problem. It can

be assumed that when roles are assigned explicitly, the role is expected to determine the

behaviour, whereas implicit role assignment is based on the experience of a developer

indicated by previous behaviour. Even with explicit role assignment, the decisions are

typically based on previous experience for which there may be no detailed behaviour

records for a particular project, e.g. when the experience was acquired within a different

project or organisation. Whichever the case, the different roles are expected to have

different influence on the development and also on the community in the broader context

(e.g. answering questions on mailing lists, etc.).

We consider means for the identification of different roles and the assignment of these

roles to developers based on observed behaviour (implicit role assignment). Thus, the
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Figure 4.12.: Developer activities on source code files for log4j with risk overlay

role of a developer at a given point in time is determined based on the overall behaviour

of the developer up to that point in time. We consider different perspectives on devel-

oper roles, partially based on the previous approaches discussed in the literature. One

perspective is to consider the role of a developer as a dynamic characteristic of the be-

haviour of the developer at a given point in time. As such, the role of a developer may

change over time, depending on their own contributions as well as on the contributions

of other developers working on a project. For example, a core developer that becomes

inactive for a period of time would eventually move down the ranks as other developers

contribute more and more. In this regard, rather than having descriptive roles, such as

core and peripheral developers, we can pursue a dynamic rank-based approach.

The ranking approach is inspired by Wald’s approach for graphical sequential analy-

sis [182]. It plots the path of each developer according to a measure of the developer’s

own contributions against the contributions of other developers in two-dimensional

(x,y) space. Contributions may be measured based on the number of activities a de-

veloper has performed, the size of the changes within the activities, the amount of code

owned by the developer, or other measures. Consider the artificial example shown

in Figure 4.13. A developer’s own contributions are plotted on the vertical (y) axis,

whereas the cumulative contributions of other developers (foreign contributions) are
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plotted on the horizontal (x) axis. In each state, a developer moves up according to the

size of the contributions, and right according to the size of the contributions of all other

developers at the point in time associated with the developer’s state. In this example,

the red developer made an initial contribution of size 10, thus at time point t, the red

developer is located at (0,10), represented as a red circle. At the same time, the yellow

developer has not yet made any contributions, therefore, the yellow developer is located

at (10,0). Since the yellow developer is not active at the given point in time, the loca-

tion is not marked by a circle (implied location). The blue dashed line represents the

project front at a given point in time. The position of a developer on project front line

represents the rank of the developer at the corresponding point in time. At time point

t, the red developer has a higher rank than the yellow developer. The next contribution

of size 5 at time point t +1 is by the yellow developer, therefore, the yellow developer

moves to (10,5). As the red developer is inactive at this point in time, the implied

location for the red developer is (5,10). At this point in time the red developer still

has a higher rank thank the yellow developer, although the gap is narrower. The next

contribution of size 5 at time point t +2 is again by the red developer, both developers

are relocated accordingly as the ranking remains and the gap widens again. The last

two contributions are by the yellow developer. The first of size 5 at time point t + 3

narrows the ranking gap again, and the second of size 10 at time point t +4 places the

yellow developer at a higher rank than the red developer, which, due to inactivity, has

been demoted to a lower rank. This is a simplified example serving as an illustration of

the basic principles for constructing the graphical representation of the path of a devel-

oper through the ranks at different points in time in relation to other developers based

on the contributions of each developer against the contributions of all other develop-

ers. In practice multiple developers make contributions of varying sizes, often in quick

succession, but sometimes also only sporadically.

An example for a real-world project is shown in Figure 4.14. In addition to the

elements discussed so far, in this case, black lines originating from the lower left corner

represent various thresholds for different ratios between own and foreign contributions.

The example is based on the number of activities at the file level of granularity where

only activities on source code files are considered. In addition, only the project front

in the last recorded point in time is shown as a blue solid line. In this example, we

can observe that the yellow developer was dominant from the very start of the project,

but became rather inactive towards the end of the recorded period. With regard to

the subsequent ranks, there were several changes where the dark green and dark blue

developers made some considerable contributions to rise through the ranks, followed by

the light blue developer making larger contributions over rather few states, with some

inactivity in between. Both of the latter were overtaken by the light green developer who

rose through the ranks in a rather short time towards the end of the recorded period.

Figure 4.14 highlights the relationships between own and foreign contributions

among the individual developers over time. To further emphasise the ranking changes
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Figure 4.13.: Developer ranking with graphical sequential analysis

over time, we can project the ranking on the project front over discrete time (incre-

mented with each developer state), as shown in Figure 4.15. In this projection, the ranks

of the developers are plotted on the vertical axis and the developer states are plotted

incrementally on the horizontal axis with a coloured circle at the corresponding rank.

A line in the corresponding colour connects the states of a developer during inactivity.

Developers that cannot be differentiated due to them being at the same rank given point

in time are displayed with overlaid lines. For example, in the beginning of the project

when only the yellow developer is active, all other developers are sharing the lowest

(second) rank. Over time, the lowest rank becomes more and more differentiated.

With this approach, there is a natural penalty for late joiners by default. As a conse-

quence, they need to make more contributions in order to go up the ranks. As observed

in Figure 4.14, it is still plausible with very active contributors where at the same time

high-ranked developers become inactive for a period of time. The penalty can be fur-

ther offset by using a gradual descent or by using a moving window strategy where

only contributions from a limited period are considered so there can be a yearly rank,
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Figure 4.14.: Developer ranking for log4j

Figure 4.15.: Developer ranking at project front for log4j
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monthly rank, and global rank or rank over last n states or contributions. Temporally

constrained ranks are related to the operational mode of a developer, whereas the global

rank is indicative of the role.

Based on the visual inspection approach, more sophisticated approaches for ranking

and role assignment, as well as related characteristics can be derived from the under-

lying representation. So far we considered only relative ranking, that is the relative

ordering of the developers on the project front. As indicated in Figure 4.14, differ-

ent thresholds may be used to partition the space into ranks and roles. These may

be static — based on fixed ratios between own and foreign contributions (as shown

in Figure 4.14), or dynamic — based on ratios derived from the number of involved

developers or also on the positions on the project front. Characteristics related to the

time spent at a rank or the number of rank changes can provide further insights into the

dynamics of the roles developers play within a project.

So far, the approach has only provided insights into the dynamics of the contribution

behaviour of the developers according to a certain measure of contributions, such as

number of activities, size of contributions, size of owned artifacts, etc. We are ultimately

interested in the circumstances and consequences associated with the observed roles

and ranks, as well as potential patterns related to these. For this purpose, we can project

various characteristics on the resulting visual representations. For example, we can

project the estimated risk of each developer state. The risk of a developer state can

be derived from the risks associated with each activity performed at the corresponding

developer state. The risks associated with an activity are based on the likelihood of the

activity causing an event of interest, such as a fix. The resulting projections derived from

Figure 4.14 and Figure 4.15 are shown in Figure 4.16 and Figure 4.17, respectively.

The risky developer states are highlighted with red circles, where the size of the circle

is proportional to the amount of risk. Based on the resulting visual representations, we

can observe that in this example the most active developers are also most likely to be

in a risky state, especially at high ranks, but also when rising through the ranks. Lower

ranked developers in this example are generally less likely to be in a risky state.

4.3.4. Identifying Similar Activities

Developers may often perform similar activities throughout the lifetime of a project.

Determining whether activities can be considered similar can be based on the intent of

the activity or on the observed circumstances determined by measurable characteristics

of the activity as well as of the context in which it was performed. In this section, we

are concerned with the latter. We consider undirected data mining approaches, such as

clustering, as means to identify groups of similar activities. Such groups can be used

to determine the mode of operation of a developer or even a whole project. Apply-

ing a variant of the k-means clustering algorithm [5] over all activities for a developer

or a project can provide a partitioning of the activities based on similarity. The parti-
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Figure 4.16.: Developer ranking for log4j with risk overlay

Figure 4.17.: Developer ranking at project front for log4j with risk overlay
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 4.18.: Defining characteristics for developer A in log4j across three clusters (see

Figure A.17–A.19 for a larger version)

tioning can be helpful for more refined assessment providing additional capabilities for

visual inspection and data mining. Predictive models tailored for individual groups can

be more specific and new activities can be evaluated against the models for the similar

groups, rather than a generic global model. Additionally, there may be transfer opportu-

nities between similar groups across developers and projects. Similar across developers

and project groups can be identified based on meta-clustering using the resulting clus-

ters for individual developers and whole projects as input

Depending on the characteristics of each cluster, a corresponding description can be

added. Similar to Sudau et al. [171], we use Kiviat diagrams to visualise the defin-

ing characteristics for each cluster as a visual signature and also for further visual

inspection. Consider the examples for developer A from the log4j project shown in

Figure 4.18. Clustering the activities of the developer across three groups (k = 3), the

normalised values for the cluster centroids are plotted on the radial lines for each char-

acteristic. The defining characteristics for each cluster are highlighted, with additional

overlays in the background indicating the defining characteristics of the other clusters

for comparison. We can notice that there is some overlap between the defining char-

acteristics for cluster 1 and 3, however, there are also some differences. In contrast,

cluster 2 is more visibly differentiated from the other clusters.

Another way to characterise different groups is by the importance of the character-

istics with regard to causing events of interest, as discussed in Section 4.3.1. Similar

to the visualisation of the overall ranking of characteristics, we can also inspect the

ranking of characteristics in each cluster. An example for the clusters discussed above

is shown in Figure 4.19. In this case we can observe that while there is some overlap

between clusters 1 and 2, cluster 3 is more differentiated from the other clusters with

respect to the ranking of characteristics. At the same time, the ranks of the character-

istics are not very well differentiated in cluster 3. If we consider how the ranking of
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 4.19.: Ranking of characteristics for developer A in log4j across three clusters

(see Figure A.20–A.22 for a larger version)

(a) Cluster 1 (b) Cluster 2

Figure 4.20.: Characteristics ranking over time for developer A in log4j (see Fig-

ure A.23–A.24 for a larger version)

the characteristics changed over time, we can gain further insights into the stability of

the rankings. Consider the comparison between clusters 1 and 2 shown in Figure 4.20.

We can note that in cluster 1 steady variation with characteristics slowly going up and

down the ranks. In contrast, in cluster 2 there were three distinct periods, where there

was high variation in the beginning and in the end with a period of relative stability in

the middle. Different views on the distribution and importance of characteristics can

serve complementary roles in describing and comparing the individual groups.

Clustering can also be applied on part of the activities in order to determine initial

groups, where subsequent activities can then be assigned to the initial groups depending

on which group is most similar to each activity. This mimics a practical application

scenario, where clusters may be identified based on the available data at a given point

in time, and subsequent activities are assigned to the most similar group. This can be

combined with the artifact activity map in order to obtain an insight into the location

of the activities in each group across artifacts and across time. Figure 4.21 shows an
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Figure 4.21.: Developer activities on source code files for log4j with cluster overlay

example for a projection of cluster assignments as an overlay on top of the artifact

activity map for the log4j project. The little circles in the lower left corner of each square

indicate the cluster to which an activity was assigned. In this example we consider all of

the activities on source code files for the project which are clustered across three groups

(k = 3). Alternatively, we can also inspect only the activities of a single developer. We

can observe that in the first half of the recorded period, most activities were from the

blue cluster, with some occasional activities from the red and green clusters. Towards

the end most activities were from the red cluster with occasional activities from the

green and blue clusters. The activities from the green cluster are mostly concentrated in

two narrow bands towards the middle of the recorded period. Finally, the red line near

the middle of the recorded period is the boundary for the initial clustering.

4.3.5. Collaboration

In Section 4.2.5 we discussed different notions related to collaboration. By using col-

laboration relationships, we can construct collaboration graphs for direct and indirect

collaborations. A visual representation of collaboration relationships can be helpful in

understanding the position of a developer with regard to other developers as well as

distribution of developers with regard to collaboration. Graph visualisation techniques
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(a) Direct (b) Indirect

Figure 4.22.: Collaboration between developers in log4j

and various layout algorithms are frequently used to highlight different characteristics

of graphs for visual inspection. Force-directed graph layout algorithms in particular

aim to position nodes of a graph in two or three dimensional space so that the result is

suitable for visual interpretation, while focusing on a particular aspect of the graph. We

use the Fruchterman-Reingold algorithm [52] which produces compact graphical repre-

sentations placing highly connected nodes (representing individual developers) closer

together, typically towards the core of a circle, while less-connected developers are

placed on the periphery. The size of a node can be made proportional to the number

of connections of the node. An example for collaboration at the source code file level

from the log4j project is shown in Figure 4.22. We can observe that with regard to di-

rect collaboration, there are several less-connected developers in the periphery. In terms

of indirect collaboration, however, most developers are much more highly-connected,

with only two developers having a lower number of indirect collaborations.

Collaboration visualisation can also be applied to individual clusters of similar activ-

ities, providing further means to characterise the cluster. Consider the examples for di-

rect collaboration within the three clusters from the log4j project shown in Figure 4.23.

In cluster 1 we can note that two developers are more central, whereas in cluster 2 three

developers are more central, and in cluster 3 only one developer is more central. We

note that not all developers are represented in each cluster.

Distinct highly-connected groups of nodes within a graph (connected components)

may represent distinct closely integrated teams within a project. With force-directed
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 4.23.: Direct collaboration between developers in log4j within three clusters

algorithms such as the one used in the visualisations so far, these can be easily recog-

nised upon visual inspection. Examples from two simulations are shown in Figure 4.24.

The examples depict simulations for two and four teams, respectively. The developers

are collaborating more with developers from the same team than with developers from

other teams. Developers from the periphery are occasionally collaborating with devel-

opers from the different teams or among themselves. The identification of teams can

be useful for further assessment, such as characterising a team as a whole, rather than

individual developers.

So far we discussed visualisation of collaboration based on the notions described

in Section 4.1.2. Further collaborative aspects can be considered as well. Utilising

the cause-fix relationships between states of artifacts described in Chapter 3 we can

also establish cause-fix relationships between developers across the different factors

and use these for visualisation and inspection in order to gain further insights into the

collaboration behaviour of developers.

By utilising the artifact activity maps and the developer ranking, we can also study

potential collaboration patterns based on the behaviour of developers over time. Girba et

al. [57] discuss a comprehensive approach for identifying behavioural and collaboration

patterns based on ownership maps. They showcase ten patterns, three of which focus

on collaboration, including monologue where most artifacts and most changes on them

are performed by the same developer, dialogue where multiple authors perform changes

during a given period and artifact ownership is distributed among them, with teamwork

being a special case of dialogue where two developers perform a quick succession of

changes over a short period of time. Another two patterns focus on the transfer of

ownership over periods of time of different lengths. The takeover describes a case

where a developer seizes ownership over large chunks of code in a short period of time.

Similar to takeover, familiarisation also describes a change in ownership, but it takes
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(a) 2 teams (b) 4 teams

Figure 4.24.: Collaboration simulations highlighting different teams

place over a longer period of time.

Based on the inspection and interpretation of visualisations, such as artifact activity

maps, developer rankings, and ownership maps, an approach for the automated identi-

fication of such collaboration patterns can be defined by using the various collaboration

related characteristics discussed in Section 4.2.5.

4.3.6. Predicting Causes for Events of Interest

Directed data mining techniques for classification and prediction are widely used in

software engineering research for various assessment tasks [4, 65]. Change and artifact

classification in particular has been actively researched as it can have direct practical

consequences with respect to software quality assurance. Defect prediction as a spe-

cific application of directed data mining techniques for predicting which changes may

introduce new defects or which artifact are most likely to contain defects has emerged

as an area of research in its own right. The application of the directed data mining

techniques results in a model of the relationships between a set of characteristics and a

target characteristic.

With respect to characterising developer behaviour, directed data mining techniques

provide means to model the relationship between the circumstances of a development

activity and its outcome. The circumstances are defined by the characteristics discussed

in this chapter. The outcome is defined by the consequences of the activity such as a

high likelihood for causing an event of interest in the target state of an artifact resulting

from the activity. The available data regarding the circumstances and outcomes of activ-

ities can be used to train a predictive model, which can then be used to evaluate evaluate

future activities for which the outcomes are not known, based on the data regarding cir-
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Figure 4.25.: Developer-centric and project-centric predictive modelling

cumstances alone. The behaviour of a developer with respect to causing a particular

type of events of interest is then characterised by the resulting predictive model.

In the literature, predictive models are typically constructed for whole projects or

even groups of projects, seeking to identify universal relationships between circum-

stances and outcomes and aiming for generic applicability. In contrast, we are interested

in identifying relationships between circumstances and outcomes specific to each de-

veloper, emphasising the strengths and weaknesses of each developer. This can provide

more refined feedback, tailored to a developer. To illustrate the difference, consider the

conceptual overview depicting an abstract representation of artifact activity map shown

in Figure 4.25. In project-centric predictive modelling (black arrow), all activities up

to a given point in time (red vertical line) are considered as training data for predicting

the outcome of all activities beyond that point in time. In contrast, in developer-centric

predictive modelling (green and yellow arrows), for each developer, only the activities

of that developer up to a given point in time are considered as training data. Future ac-

tivities for each developer are then evaluated against the corresponding model for that

developer in order to predict their outcomes. Each model reflects the specific circum-

stances associated with causes for events of interest for the corresponding developer.
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As exemplified in Section 4.3.1, for each developer different characteristics may be

determining the likelihood for causing an event of interest. Still, there may also be

similarities between the behaviour of some developers, which can enable transferring

models across different developers (commonly referred to as transfer learning [140]

in the machine learning literature). Additionally, developers may be involved in mul-

tiple projects, which provides further transfer opportunities for models for the same

developer (or also similar developers) across different projects. Similar approaches

for transferring models across whole projects have been pursued in the literature in

the areas of cross-project defect prediction [74, 198] and cross-company defect predic-

tion [176]. A conceptual overview of the developer-centric predictive modelling and

various transferring opportunities is shown in Figure 4.26. Given two projects A and B,

where developers pat and tom are contributing to project A, developers sue and ben are

contributing to project B, and developer joe is contributing to both projects, we define

and exemplify the following modelling and transferring opportunities:

• using training data from project A for predicting the outcomes of future activities

in project A (within-project)

• using training data from project B for predicting the outcomes of activities in

project A (cross-project)

• using training data from developer pat in project A for predicting the outcomes

of future activities of developer pat in project A (same developer, within-project)

• using training data from developer ben in project B for predicting the outcomes

of activities of developer sue in project B (different/similar developer, within-

project)

• using training data from developer sue in project B for predicting the outcomes of

activities of developer tom in project A (different/similar developer, cross-project)

• using training data from developer joe in project B for predicting the outcomes of

activities of developer joe in project A (same developer, cross-project)

Project-centric transfer opportunities (cross-project) for predictive modelling have

been extensively studied in the literature [70, 74, 198]. Instead, we focus on developer-

centric transfer opportunities, both within the same project and across different projects.

As indicated in Section 4.3.1, the importance of the characteristics determining the

outcome of interest may change over time, which may also affect the stability and re-

liability of the predictive models over time. This may be due to new experiences of

the developer, or also due to the dynamics of the overall circumstances in the project.

Ekanayake et al. [47] found certain periods of variability and stability with respect to

prediction performance for whole project over time. We are interested in the stability of

predictive models for individual developers as well as for transferring models between

different developers and different projects. Further inspection by utilising the different

methods for visualisation and data mining can shed some light on the potential causes
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Figure 4.26.: Developer-centric predictive modelling and transferring opportunities

for shifts in behaviour and corresponding variability in prediction performance. Tan

et al. [173] discussed challenges related to time-sensitive defect prediction, including

imbalanced data and available knowledge at different points in time, representativeness

of data from different periods of time, and aging of predictive models due to changes

in experience, tasks, and styles of developers. They used resampling, gaps, and online

learning to address these challenges. Kim et al. [95] noted that for classifying changes

data for 100–200 changes is usually sufficient for training, with further data not con-

tributing to significant improvements. In more general terms, this is related to data

partitioning. With regard to the training and testing data for predictive modelling, we

can introduce three gaps:

• training offset from the start of the recorded period to the start of the training data

• testing offset from the end of the training data and the start of the testing data

• testing limit from the end of the testing data to the end of the recorded period.

The different gaps are conceptually illustrated in Figure 4.27. By adjusting the size of

the different gaps, we can explore various partitioning scenarios and schemes. We can

then evaluate the stability of the predictive models across these scenarios and schemes.
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Figure 4.27.: Refined data partitioning for predictive modelling with gaps

As the causes for events of interest are not equally distributed over time, we have to

consider that for the different data partitioning schemes and during the evaluation the

results from the predictive models.

The grouping of similar activities as discussed in Section 4.3.4 presents another re-

finement opportunity. Variability in the behaviour of developers may not be strictly tem-

porally bound. Developers may be performing activities under similar circumstances at

different points in time. Thus, while the overall behaviour of a developer may vary, pre-

dictive models based on groups of similar activities may provide further refinements. A

conceptual overview on an abstract representation of artifact activity map is shown in

Figure 4.28. Similar activities for the green developer are clustered in two groups, out-

lined in blue and purple. Developer-centric predictive modelling for the green developer

will consider all activities of a developer up to a given point in time (red vertical line)

as training data for predicting the outcome of all activities beyond that point in time

(green arrow). Instead, by grouping similar activities of a developer, only the activities

in a given group are considered as training data. Future activities for each developer are

then associated with the most similar group and evaluated against the corresponding

model for that group in order to predict their outcomes (blue and purple arrows). Each

model reflects the specific circumstances associated with causes for events of interest

for the corresponding group.

While the overall behaviours of different developers may be dissimilar, there may be

similarities between groups of activities across developers and across projects. This en-

ables further transfer opportunities. Similar to the transfer opportunities for developer-

centric predictive models, a conceptual overview of the extended transferring opportu-

nities based on groups of similar activities is shown in Figure 4.29. Considering the

same constellation of developers across the two projects A and B, we identify the fol-
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Figure 4.28.: Developer-centric predictive modelling with grouping of similar activities

lowing modelling and transferring opportunities based on groups of similar activities

(for simplicity, we are assuming there are two groups of activities for each developer):

• using training data from group G1 of developer pat in project A for predicting the

outcomes of future activities within group G1 of developer pat in project A (same

group, same developer, within-project)

• using training data from group G2 of developer pat in project A for predicting the

outcomes of activities in group G1 of developer tom in project A (similar groups,

different developer, within-project)

• using training data from group G1 of developer sue in project B for predicting

the outcomes of activities group G2of developer tom in project A (similar groups,

different developer, cross-project)

• using training data from group G1 of developer joe in project B for predicting the

outcomes of activities in group G2 of developer joe in project A (similar groups,

same developer, cross-project)

Finally, to locate and better understand the prediction results in time and space, we

can visualise them as an overlay on the artifact activity map. This way we can also
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Figure 4.29.: Transferring opportunities for groups of similar activities

qualitatively compare the outcomes of different prediction models. Consider the exam-

ple from the log4j project shown on Figure 4.30. Using the first half of the recorded

activities for the whole project for training and the second half for evaluation, correctly

and incorrectly predicted outcomes of activities are indicated by means of green and

red diagonal lines over the corresponding activities, respectively. The length of the line

is proportional to the confidence in the predicted outcome. We can observe that most

prediction errors seem to occur in activities performed at around the same time, for ex-

ample when multiple artifacts were changed at the same time and in particular when the

first recorded activities on the artifacts were earlier in the recorded period. However, the

opposite is not necessarily the case — there are also correctly predicted outcomes that

fulfill the same criteria. The confidence in the predicted outcomes is generally high.

The prediction overlay can be refined further to also show the type of error (false

positive or false negative). The breakdown of prediction errors is shown in Figure 4.31.

False positives (type 1 errors), where an outcome of an activity was incorrectly pre-

dicted to be causing an event of interest, are shown in purple. False negatives (type

2 errors), for outcomes of activities incorrectly predicted not to be causing events of

interest are shown in orange. The correctly predicted outcomes are not shown in this
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Figure 4.30.: Developer activities on source code files for log4j with prediction overlay

case. We can observe that, with a few exceptions, the errors for activities on artifacts

for which there are no recorded activities in the training data are mostly false negatives.

4.4. Related Work

When it comes to defining developer behaviour, there are vastly different perceptions

in the literature. Some are primarily concerned with program comprehension and code

navigation [149, 192], where the authors study the facilities provided by IDEs and the

extent to which developers make use of them in order to accomplish certain tasks. Oth-

ers are more focused on the tasks and activities themselves [154] where the authors

infer developer activities by recording observations from IDEs aiming to determine

whether a developer is facing a problem, locating the cause of a problem, searching for

a solution, or applying a solution. Still others study the behaviour based on the con-

tributions of the developers, focusing on topics developers are working on. Linstead

et al. [111] used statistical author-topic modelling to determine developer competences

and demonstrated how that topic models can provide an effective basis for developer

similarity analysis. Fritz et al. [51] found that the frequency and recency of interaction

of a developer with parts of the code does indicate which parts of the code a developer
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Figure 4.31.: Developer activities on source code files for log4j with error overlay

knows well based on interviews and mining. However, other factors such as authorship,

the role of the code in the system, and the task of the developer play a role as well.

Schuler and Zimmermann [161] discussed the concept of usage expertise based on the

Application Programming Interface (API) calls associated with individual developers.

Girba et al. [57] discuss a comprehensive approach for identifying behavioural and

collaboration patterns based on ownership maps, showcasing ten patterns. Vcavrak and

Cmokvic [201] collected data from fourteen distributed student projects and identified

a set of collaboration patterns and discussed their causes and implications. Dos Santos

et al. [40] conducted an exploratory study targeting the identification and classification

of characteristics of collaboration based on social networks properties such as centrality

and density. Miranskyy et al. [123] proposed a temporal collaboration network model

based on the history of collaboration among developers, testers, and other issue origi-

nators to estimate the defect exposure for the next month. Wiese et al. [186] present a

systematic overview of the use of social metrics in prediction models in software en-

gineering by conducting a mapping study. We discuss collaboration with regard to the

notions related to this thesis. Some of the collaboration-related characteristics from the

literature have been reused and refined. Future extensions of the approach may integrate

further collaboration characteristics from the literature.
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Different classifications of developer roles have been proposed previously in the liter-

ature. Von Krogh et al. [181] investigated the developer-initiation process in the Freenet

project, based on interviews, mining e-mail exchanges and VCS repositories. They

identified three roles, including joiners who joined the mailing list but do not have

commit privileges, newcomers who have recently started contributing code, and devel-

opers who have been contributing core code to the project for longer periods of time.

Lu and Ramaswamy [193] studied the interaction frequency of open source develop-

ers in two relatively small projects and derived two main roles for developers based

on complete-linkage hierarchical clustering — core developers and associate develop-

ers. They also investigated which external attributes can be used to characterise the

role of a developer and found that the percentage of modified lines and revisions can

be good indicators for the role of a developer. For larger projects involving a large

number of developers, they suggested further refinement of developer roles. In their

topological analysis, Xu et al. [190, 191] identify three main groups of developers: core

developers involved with significant contributions over long periods of time, central

developers contributing regularly, and peripheral developers contributing fixes and new

features irregularly. They note that a developer may belong to different groups in dif-

ferent projects, thus any classification can be considered project-specific. Nevertheless,

the prevalence of different roles for a particular developer across all projects can still

be considered as a characteristic of the developer. Honsel et al. [81] employed Hidden

Markov Models (HMMs) to model the dynamic activities and workload of developers

according to the level of involvement and the role of different developers in a project by

considering four characteristics. They considered only static implicit role assignment.

Given the high importance of determining which changes can be considered bug-

introducing for any software project, there has been a large body of research dealing

precisely with this problem within the field of defect prediction [4, 46, 127, 128] in

software engineering and in particular focusing on the classification of changes as clean

or buggy [95, 165]. Lumpe et al. [112] evaluated activity-centric measures in the con-

text of inspection optimization [3] focusing on reducing the size of code to be inspected

in order to find the most defects. However, they used the term activity in a different

context — for detecting and measuring change of a class, where activity for a class is

inferred by means of its volumetric and structural properties. Matsumoto et al. [118]

investigated the effects of developer-related characteristics on software reliability. They

found that such characteristics are a good predictor of software quality and indicated

a need for considering further human factors for improving software reliability. The

impact of code ownership and developer experience with certain artifacts have been

investigated as well. Rahman and Devanbu [144] considered the impact of code owner-

ship and developer experience on software quality. Their findings indicated that quality

control efforts could benefit from targeting changes made by developers with limited

prior experience on a given artifact. Bird et al. [15] found that high levels of owner-

ship are associated with fewer defects. Posnett et al. [141] sought to unify the related
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notions of developer focus and artifact ownership and found that more focused devel-

opers tend to introduce fewer defects than developers which are not focused, while at

the same time artifacts that receive narrowly focused activity are more likely to contain

defects than other files. Bernstein et al. [12] proposed the use of non-linear models for

defect prediction and argued that temporal aspects of data can be useful in improving

prediction accuracy. While we make use of some of the characteristics discussed in

the literature, we also define additional characteristics and discuss a refined conceptual

view on characterising developer behaviour. We may integrate additional characteris-

tics found in the literature in the future. The various related approaches are concerned

with different levels of granularity, which are usually considered in isolation. Our ap-

proach seeks to provide a unified framework for integrating artifacts at different levels

of granularity.

Two recent contributions [84, 163] described approaches of building separate

developer-specific defect prediction models for the purposes of change classification.

Shihab et al. [163] focused on risky rather than buggy changes, that is whether addi-

tional attention is needed for review and/or testing, regardless of whether or not the

changes introduce bugs. They relied on industrial data which was manually annotated

at commit time. The annotation was based on the intuition of the corresponding de-

velopers, reflecting the estimated uncertainty of changes with regard to delays and/or

poor user satisfaction. They identified different characteristics as determining factors

for individual developers and an overall improvement from using developer-specific

predictive models. Jiang et al. [84] proposed personalised defect prediction based on

predictive models for individual developers in order to account for different coding

styles, contribution frequencies, and individual experiences. In their evaluation, they

found significant improvements when using personalised defect prediction. They noted

that data for at least 80 changes per developer are required for training personalised

predictive models. These developer-specific defect prediction models seek to account

at least partially for the different developer behaviours and highlight different factors

contributing to increased defect likelihood for individual developers. This chapter

presents further refinements of the approaches presented in these contributions, in

particular transferring opportunities are also considered.

Applications of transfer learning techniques [140] for reusing of predictive models

across projects have recently emerged as a new research direction in software min-

ing. Approaches for transferring predictive models across whole projects have been

investigated and evaluated in the literature in the related areas of cross-project defect

prediction [74, 198] and cross-company defect prediction [176]. We pursue a refined

approach for transferring predictive models for individual developer within the same

project as well as across projects.

Agent-Based Modelling (ABM) [130] of software development processes has been

gaining increasing attention. By definition, it requires a description of developer be-

haviour on some level. Wickenberg and Davidsson [185] were among the first to inves-
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tigate the applicability of ABM for simulating software development processes. They

provided a set of general guidelines concerning when to use ABM as well as con-

crete examples where ABM seems particularly promising. Dalle et al. [34] studied the

mechanisms of allocating code-writing efforts within open source projects. They first

described them analytically in a discrete choice framework, and then simulated them

ABM experiments In a more refined approach, Smith et al. [167] also considered the

complexity of software modules, the fitness of the software with regard to the require-

ments and the motivation of developers. In separate work, they also considered the

modelling role of users in their simulation models [166]. Stopford and Counsell [170]

outlined an even more sophisticated approach for simulating the structural evolution

of software with stateful agents, evolution policies, and change operators. Zhang et

al. [196] performed a systematic review of software process simulation modelling. Hon-

sel et al. [80, 82] discussed refined ABM for simulating software processes based on the

behavior of different types of developers. The characteristics and insights discussed in

this chapter can be utilised to refine ABM for software development process simulation.

4.5. Summary

In this chapter, we discussed a conceptual overview of the approach to characterising

developer behaviour based on the notions of situational and dispositional factors, as

well as collaborative factors. A selection of characteristics across different dimensions

was presented as basis for measurement. The measurements for the characteristics can

result in vast amounts of data. We discussed different approaches for navigating and

understanding the data, based on visualisation and data mining techniques. While the

conceptual approach to characterising developer behaviour is novel, many of the indi-

vidual characteristics have already been discussed in existing research and some have

also found their way into practice. The selection of characteristics discussed in this

chapter is used as basis for illustration and evaluation, however, the nature of the over-

all approach permits the use of essentially any other set of characteristics related to the

artifacts and activities the developers are involved in. Generalising even further be-

yond the scope of this thesis, the approach can be used to systematically describe the

behaviour of any type of entities performing activities on certain artifacts.

Sequential pattern analysis can be used to discover frequent sequences of activities

associated with particular outcomes such as introducing a defect, or successfully im-

plementing a new feature. Complementary to the sequential pattern analysis, clustering

approaches can be used to segment activities into groups with similar circumstances

and/or similar outcomes. Clustering can be applied to produce higher level character-

istics which can then be used for sequential pattern analysis. While some clusters may

not appear to be very interesting at first sight, combining properties that stand out with

the outcomes of sequential patterns and classification results can produce added value.



5. Model-based Software Mining

For the realization of the approach for the identification of potential causes for events

of interest described in Chapter 3 and the characterisation of developer behaviour de-

scribed in Chapter 4, we need an appropriate infrastructure to manage all the neces-

sary data extraction and processing steps along the way from raw artifacts to derived

knowledge. In this chapter, we first contemplate the conceptual overview of the process

and identify challenges arising along the way. These are then addressed in a generic

model-based approach to software mining. A concrete instantiation of the model-based

approach seeks to address the needs and challenges of software mining in the specific

context of this thesis. This chapter is based on an extended and revised version of [116].

5.1. Mining Challenges

Software repositories store and organize software-related artifacts throughout the lifes-

pan of a software project, maintaining successive revisions of the artifacts over time.

Beyond source code files and related assets, software-related artifacts also include issue

reports, development and user mailing list messages, and even user discussion forums.

Software mining is the process of extracting useful information from software repos-

itories and software-related artifacts. This information typically comprises:

1. basic primary facts about the artifacts, including artifact histories and changes, as

well as measurable attributes of artifacts and changes, and

2. derived knowledge resulting from assessment of the basic facts, such as defect

prediction for artifacts and changes, pattern-detection, etc.

The extraction of basic facts and derived knowledge are also referred to as data

extraction, and synthesis or application, respectively. The mined information is

used for a number of assessment tasks and other purposes, such as guiding software

development [200], detecting faults [139], predicting defect-prone artifacts [128]

and changes [95], as well as assessing issue report reopening [199], costs [11] and

risks [163] of development, etc.

The value and usefulness of mined information often depends on the context it is

intended to be used in. Context in general describes the unique circumstances in which

software mining is applied. The large variability in the different contextual dimensions



Model-based Software Mining 112

has so far also resulted in a wide variety of context-specific methods and tools. These

are often on a rather low level of abstraction and difficult to adapt to a different set

of circumstances. This is often due to a tight coupling between data extraction and

application.

This is one of the reasons researchers often resort to publicly available benchmark

data sets, such as the PROMISE repository [121]. Such data sets provide a common

ground of basic primary facts for the purposes of developing, evaluating, and comparing

methods for knowledge derivation. While this allows for a relatively low-effort entry

into the MSR field and for easy comparison and replication of method evaluation, there

are inherent limitations in relying on such ready-made data sets. First, traceability to

the original artifacts from which the data sets have been mined is difficult or impossible.

This limits further investigation and validation of obtained results. Second, the available

data is severely limited, and further potentially useful information, or information at

finer levels of granularity, cannot be easily added to the existing data sets, due to the

first limitation. Third, it is difficult to transfer the methods to other projects, without

building the necessary infrastructure to produce the necessary basic facts in at least the

same scope as the ready-made data sets.

Building the necessary software mining infrastructure presents a number of chal-

lenges of its own, and as a consequence collecting the necessary data can be both time

consuming and computationally intensive. In [120], the authors note that most of data

mining is actually data pre-processing. That is, before the data can be used for learn-

ing or other applications, a lot of effort is dedicated to selecting and accessing the data

to process, pre-processing, and transforming it into a suitable form for the application

in question. Due to the cyclic nature of data mining, finding one pattern related to a

given question usually prompts new questions, and each question refines the goals of

the data mining. This in turn leads to another cycle of the data mining process. This

cyclic nature requires the process to be easily refined and repeatable in an agile stepwise

manner without the need to dig through technical details every time. Furthermore, the

authors note the frequent “quirkiness" of real-world data, often requiring the applica-

tion of different methods before in order to identify an adequate approach for finding

patterns in the data. Hence, at different stages in the application of data mining, differ-

ent assessment applications based on visualisation, clustering, prediction, or simulation

may come in question.

The starting point for a software mining infrastructure is usually a set of raw as-

sets [62], i.e. source code files, revisions of source code files stored in VCSs, reported

issues stored in ITSs, mailing list messages stored in Mailing List Archives (MLAs),

etc. In their raw form, these assets are often only suited for (mostly manual) qualitative

assessment. Thus, they usually need to be processed in some way in order to obtain a

set of basic facts [18] about the assets, which describe in a structured manner differ-

ent attributes of the assets that are relevant to assessment tasks in a given context, both

qualitatively and quantitatively. An example for such processing is calculating soft-
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ware metrics or detecting duplicates in source code. In practice, this process is further

complicated by the heterogeneity of the raw assets, i.e. the source code may include

components in different programming languages, different components may be man-

aged with different VCSs, issues related to these components may be reported across

different ITSs, etc. While there may be tools and methods already available for extract-

ing some basic facts from these heterogeneous raw assets, using different tools may

further exacerbate the problem of heterogeneity. On the one hand, different tools may

extract different sets of facts for the same type of raw asset, e.g. there may be different

measurable attributes for different programming languages, leading to heterogeneity in

the structure and content of the extracted facts. On the other hand, different tools may

extract facts for different types of assets in different formats, and this often applies even

for the same type of raw assets, leading to heterogeneity in the representation of the

extracted facts.

Managing heterogeneity of raw assets and basic facts is one challenge that gains

even more importance with the need to integrate related facts. Facts obtained from

different assets by different means may contain implicit relationships that may need to

be reconstructed and made explicit. For example, a revision in the VCS may refer to

an issue from the ITS that has been addressed in the revision or an issue may refer to

the revision in which it has been addressed. Furthermore, the importance of different

relations may vary across different assessment tasks and applications. On the other

end of the knowledge derivation chain, similar to the tools and methods for extracting

basic facts from raw assets, existing tools and methods for generating knowledge may

also rely on heterogeneous assessment assets, both in terms of structure and in terms of

representation, which presents similar challenges.

5.2. The Case for Model-based Mining

Bridging basic facts and the application tools and methods to generate actionable knowl-

edge are assessment tasks. An assessment task starts out as a set of relevant concepts

and relationships between them form the assessment domain that a practitioner is in-

terested in. The high-level concepts may not necessarily reflect all the details available

as basic facts, and they may not be directly related to the assessment assets expected

by the tools and methods for generating knowledge. In practice, these high-level con-

cepts and assumptions about them are often only implicitly or informally defined, and

an actual realisation of the assessment task reflects them either only partially or not at

all. A model-based assessment task on the other hand, seeks to formalise the relevant

concepts and make them explicit throughout the realisation of the assessment task, in

order to make the realisation understandable, traceable, extensible, and, most of all, al-

low practitioners to focus on the relevant concepts rather than the technical details of

the underlying representations of both basic facts and assessment assets.
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Model-based approaches such as MDE and supporting technologies enable practi-

tioners to focus on higher-level domain-specific concepts, and the relationships among

them, rather than on implementation details. The relevant concepts and relationships

are typically described by means of domain-specific meta-models. This core principle

is also one of the main strengths of the model-based approaches — the meta-model is

the single point of truth with regard to the structure of domain-specific concepts and

their relationships. Different concrete representations can then be mapped to the meta-

model, enabling the interchange of model instances from one concrete representation to

another, while still relying on the underlying common information model. Technologies

supporting a given modelling framework enable the validation, storage, visualization,

and transformation of all model instances conforming to meta-models described by us-

ing that modelling framework.

A model-based approach to software mining aims to provide a framework that re-

lies on homogeneous high-level domain-specific models of facts extracted from raw

assets. These facts models can then be combined and enriched by means of stepwise

transformations into domain-specific assessment models related to particular assess-

ment tasks. The domain-specific assessment models serve as a bridge between the data

extraction and the assessment applications. The model-based approach seeks to address

pragmatic challenges of extracting and integrating necessary data, while decoupling the

data extraction from the application steps. This enables mining methods to be trans-

ferred to different contexts, including in-house assessment scenarios, and thus it lowers

the barrier to entry for researchers and practitioners. Instead of integrating all available

facts into one superstructure, practitioners can mix and match different domain-specific

model instances at a high level of abstraction according to the needs of the specific as-

sessment task at hand. The approach can be considered conceptually similar to Lego

building blocks, which can be assembled according to a specific purpose.

5.3. Mining Process and Framework

To address the challenges related to the realisation of software mining infrastructures,

we outline a framework that relies on defining domain-specific meta-models represent-

ing the structure and relationships of concepts related to the assessment tasks at hand.

The approach serves as a glue between different existing third-party and custom-made

mining solutions, interconnecting the various tools and assets, related to both data ex-

traction and knowledge derivation, at a high level of abstraction, without unnecessarily

tight coupling.

Software mining processes described in the literature commonly involve the follow-

ing fundamental steps: data extraction, data modelling, synthesis, and analysis [72]. In

the context of the present model-based approach, we refine these steps as follows (also

shown as a visual overview in Figure 5.1):
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Domain Modelling. When confronted with an assessment task, following a model-

based approach, a practitioner would naturally first consider the concepts that

are subject to assessment and how they are related among each other. This would

form the basis for the conceptual domain model for the assessment task, serv-

ing as the foundation for the core of the proposed approach — the assessment

meta-model resulting from the formalisation of the conceptual domain model.

Depending on the intended level of abstraction, this assessment meta-model may

be directly or indirectly related to the available facts concepts. The facts concepts

themselves need to be formalised as well in the form of facts meta-models. While

the foundations for both the assessment and the facts meta-models need to be de-

fined in the beginning, the domain modelling step may ultimately span the entire

process.

Facts Extraction. The facts extraction step handles processing of heterogeneous raw

assets, such as VCS repositories and logs, ITS databases, source code files, and

MLAs, in order to obtain basic facts and meta-data about these assets in a struc-

tured machine- (and human-) readable format. A number of existing approaches

and tools already provide the necessary facilities for this step. The level of ab-

straction may vary, but the resulting assets are generally at a lower level of ab-

straction. In addition, since the resulting facts assets are usually extracted by

different means, independently from one another, they are usually also not linked

to each other, even if they refer to the same underlying raw assets and conceptual

entities.

Facts Translation. Extracted facts assets are typically heterogeneous in both structure

and representation format. In order to work with multiple assets using different

representation formats, it becomes necessary to either translate all the assets to

the lowest-common denominator format, or create a common access layer on top

of the assets, which would require a common means for the description of the

asset structures. Meta-modelling provides such means, where domain-specific

meta-models describing the structure of the corresponding facts assets are cre-

ated based on existing data structure descriptions or derived (automatically where

applicable) from the facts assets. The concrete representation formats are then

mapped to the corresponding meta-models, enabling the translation of the het-

erogeneous facts assets into homogeneous facts model instances conforming to

the corresponding meta-models, resulting in a common high-level access layer.

Facts Transformation. Even with a common format or access layer, the relevant con-

cepts in the different facts model instances need to be linked to each other and

possibly mapped to corresponding higher-level concepts with respect to the par-

ticular assessment task at hand. This could be done during the translation into

a common format or within the common access layer, but introducing such cou-
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Figure 5.1.: Mining process overview

pling may restrict the flexibility of the approach as the assessment tasks evolve

or different assessment tasks need to be considered. In our approach, we link

related concepts from the different facts models instances during the transforma-

tion from facts model instances into assessment model instances according to the

assessment task in question. This enables assessment-specific linking of relevant

data only, as well as stepwise enrichment of the assessment model instances as

new facts become available or necessary. Facts transformations can also be used

to derive new facts from existing facts while still working at the model level.

Assessment Transformation. After the assessment-specific model instances have

been derived from the facts model instances through stepwise transformation,

queries and transformations over the assessment model instances are used to

answer assessment related questions directly, or to produce application-specific

assessment assets.

Assessment Application. The assessment assets are fed into corresponding assessment-

specific applications, such as clustering, prediction, simulation, and visualization

applications, which produce assessment results assets containing derived knowl-

edge. These results assets can then be used as new facts assets, translated into

new facts models, and integrated back into the assessment model, for example

using cluster assignments for defect prediction, or for visualisation.

In the following sections, we contemplate a concrete instantiation showcasing the

application of the model-based mining approach and addressing the challenges related
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Figure 5.2.: Model-based framework instantiation overview

to the realisation of the approaches for finding events of interest (described in Chapter 3)

and characterising developer behaviour (described in Chapter 4).

5.4. Instantiation

A high-level overview of the concrete instantiation of the model-based software mining

framework is shown in Figure 5.2. The overview depicts the main steps decomposed

into individual activities used for processing and transforming the different kinds of raw

assets on one end and providing input for the assessment applications on the other end.

These are interleaved with the intermediate assets and models resulting from each step

for each raw asset and each application. It shall serve as a road map for the following

sections.

5.4.1. Domain Modelling

As noted in Section 5.3, we first contemplate the domain under study and identify the

relevant concepts that we are interested and the relationships among them. We first

contemplate the concepts related to Chapter 3. These include States, differentiated into

Project States, File States, and Logical States for the different levels of granularity, as

well as Factors aggregating Values of Attributes, such as weights, related to a particular

factor. The concepts are visually summarised in Figure 5.3.
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Once we have identified the relevant concepts and their relationships, we proceed to

formalize them by implementing them in a modelling framework, resulting in a corre-

sponding meta-model. This process involves translating the concepts and relationships

and adding necessary additional information, such as the nature of the relationships

— e.g. direction, containment, multiplicities, names, etc., and characteristics of the

concepts — e.g. names, descriptions, values of attributes, etc. Additional concepts

and relationships may need to be introduced in order to describe further characteristics

necessary for the realisation of the meta-model or make working with instances of the

meta-model more convenient.

For the modelling tasks, we rely on UML [132] and the EMF18 [19] which provide

the necessary facilities for meta-modelling. The EMF provides an implementation of

OMG’s EMOF enabling pragmatic realisation of modelling and meta-modelling tasks.

The meta-models are represented by using a subset of the UML Class Diagram, where

relevant concepts are defined as Classes and relationships between them are defined as

Associations.

The resulting meta-model for the cause-fix-analysis (or CFA for short) is shown as

a class diagram in Figure 5.4. It reflects the conceptual overview with a meta-class

corresponding to each concept. The relationships between the different meta-classes

refine the relationships between the concepts. Notable refinements include:

• Abstract State meta-class that has possibly empty sets of causing and fixing states.

18See http://www.eclipse.org/modeling/emf/
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Figure 5.4.: Cause-fix-analysis — meta-model

• ProjectState, FileState, and LogicalState refine the abstract State meta-class,

where a ProjectState may contain any number of FileStates and LogicalStates,

and any number of LogicalStates may be associated with a FileState. Intuitively,

one would expect LogicalStates to be contained within FileStates, however in

practice this information may not be available depending on the language and

tooling being used, thus the containment relationships have been adjusted to ac-

commodate such cases.

• A State has a possibly empty set of FactorEntries which describe a relationship

between a Factor and a possibly empty set of AttributeEntries comprising the

Values assigned to the different Attributes for a given Factor in a given State.

• Factors are associated with a Strategy indicating how the Values assigned to the

different Attributes for a given Factor in a given ProjectState shall be distributed

across the corresponding FileStates and LogicalStates.

• Both Factors, Attributes, and Strategies have a name and a description informally

describing their semantics.

Next, we contemplate the concepts related to Chapter 4, which are related to the as-

sessment task of interest. We are concerned with a developer-centric assessment task,

where conceptually the behaviour of a Developer is defined as a sequence of Activ-

ities performed on different software-related Artifacts. Developers and Artifacts are

described by a sets of Attributes. Since both Artifacts and Developers evolve after each

Activity in that the Values for the respective Attributes change after each Activity, both

Artifacts and Developers have a sequence of States which is extended with each Ac-

tivity. Artifact States are then described by a set of quantitative and qualitative Values

of the Attributes characterising the corresponding Artifact at a certain point in time.
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Figure 5.5.: Developer-centric software assessment — conceptual overview

Similarly, Developer States are described by a set of Values that characterise the cor-

responding Developer at a certain point in time, indicative of their experience at that

point. Consequently, an Activity is performed in a given context defined by the State

of the Artifact on which it is performed and the State of the Developer performing the

Activity, resulting in a new State for the Artifact and potentially also for the Developer.

Activities are described by a set of Deltas, which characterise the quantitative changes

between the State of an Artifact in which the Activity was performed and the State re-

sulting after the Activity was performed. Activities are also described by a set of Activity

Values of Attributes which are related to the transition between the States. An visual

overview of these concepts is shown in Figure 5.5.

Similar to the concepts related to the description of cause-fix relationships, once we

have identified the relevant concepts and relationships, for the characterisation of de-

veloper behaviour, we proceed to formalize them by implementing them in a modelling

framework, resulting in a corresponding meta-model.

The core-part of the resulting meta-model for the developer-centric (or DECENT for

short) assessment task of interest is shown as a class diagram in Figure 5.6. It reflects

the conceptual overview very closely with a meta-class corresponding to each concept.

The relationships between the different meta-classes refine the relationships between

the concepts. The gray coloured associations in Figure 5.6 are not strictly necessary

and may be inferred indirectly. They are included as convenience shortcuts to make the

use of the meta-model easier. Notable refinements include:

• An Activity is associated with 0 to 1 (source) ArtifactStates on which it is per-

formed — the initial ArtifactState is also the result of an Activity, which is not
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performed on any pre-existing state, hence the 0 to 1 multiplicity.

• Conversely, an ArtifactState is associated with 0 or more Activities which are

performed on that state. This reflects the fact that different development branches

may result in multiple Activities being performed on the same ArtifactState. Also,

multiple Activities on an ArtifactStates may be performed as a result of copying,

where the first ArtifactState of the newly created copied Artifact is associated with

the ArtifactState of the Artifact from which it was copied by means of the copying

Activity, while there may still be further Activities performed on the ArtifactState

from which the copy originated.

• An Activity is associated with 1 target ArtifactState resulting from the Activity

being performed

• Conversely, an ArtifactState is associated with 1 or more Activities which it is the

result from, where an ArtifactState may be the result of merging different devel-

opment branches of an artifact, hence there may be multiple Activities resulting

in that ArtifactState.

• A Delta is associated with an Attribute, which also serves as an indication of the

corresponding Values in the source and target ArtifactStates related to the Activity

containing the Delta.

• A Delta is associated with 1 target Value and 0 to 1 source Value as a shortcut

representing the corresponding Values for the Attribute of the Delta in the source

and target ArtifactStates of the Activity containing the Delta, respectively. The

difference between the source and target Values is represented by the Delta, where

for an Activity resulting in the initial ArtifactState of an Artifact, the source Value

is not defined, in which case the Delta has the same content as the target Value.

• The generic notion of Artifact captures different levels of granularity, such as

projects, files, classes, methods, etc., where an artifact may contain arbitrary

number of other Artifacts as children.

• An ArtifactState is associated with 0 or more previous and next ArtifactStates as

a shortcut for ArtifactStates that may be reached via Activities performed on or

resulting in an ArtifactState.

• An ArtifactState is associated with 0 to 1 parent ArtifactStates as a shortcut for

the ArtifactState of the parent Artifact of the corresponding Artifact at the same

point in time.

• Conversely, an ArtifactState is associated with 0 or more children ArtifactStates

as a shortcut for all the ArtifactStates of the children Artifacts of the correspond-

ing Artifact at the same point in time.

• A DeveloperState is associated with 0 to 1 previous and next DeveloperStates as

a shortcut for the DeveloperStates that temporally precede or follow the Devel-

operState.
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Figure 5.6.: Developer-centric software assessment — meta-model (core part)

In addition to the meta-classes directly related to the concepts from conceptual

overview in Figure 5.5 described in the core part in Figure 5.6, some further meta-

classes are needed to refine some of the concepts. The Dimension meta-class associated

with the Attribute meta-class enables the classification of Attributes according to various

properties, such as their origin (e.g. static analysis, duplicate detection, etc.) and their

nature (e.g. temporal, spatial, experience-related, etc.). The ArtifactType meta-class as-

sociated with the Artifact meta-class enables the classification of Artifacts according to

their type and level of granularity (e.g. project, component, file, package, class, method,

etc.).

The Value meta-class in the DECENT meta-model is defined as abstract in order

to accommodate different kinds of values. The refinement of the Value meta-class is

shown in FIgure 5.7, including, string, integer, and real values, as well as lists of these.

Finally, a top-level container meta-class Model is included to contain the Attributes,

Dimensions, ArtifactTypes, Artifacts, and Developers as shown in Figure 5.8. This

top-level container enables grouping all elements related to a particular model instance

together.

All meta-classes inherit directly or indirectly from the abstract Element meta-class as

shown in the complete inheritance hierarchy in Figure 5.9, with the DeveloperState and

ArtifactState meta-classes inheriting from the abstract State meta-class and all value-

related meta-classes inheriting from the abstract Value meta-class. The Element meta-
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Figure 5.7.: Developer-centric software assessment — meta-model (values part)

Figure 5.8.: Developer-centric software assessment — meta-model (top-level con-

tainer)

class provides an optional name attribute and the State meta-class provides a mandatory

ID attribute.

The purpose of the assessment meta-model in general is to abstract way from the

peculiarities of facts extracted by different means from the available raw assets and en-

able practitioners to focus on the concepts related to the assessment domain of interest.

This also applies to the DECENT meta-model which provides a rather generic frame-

work able to accommodate information from different sources. After establishing and

formalising the domain of the assessment task in a corresponding meta-model, we need

to consider how we can create instances of the model. This also applies to the CFA

model. For instances of both models we need to determine what information will be

used, where this information can be obtained from, and how it needs to be transformed

in order for it to fit into framework provided by the corresponding meta-model. We also

need to consider how instances of both models can be integrated in order to incorporate

information from the CFA model into the DECENT model. In the next sections we will

look into how facts commonly extracted for assessment purposes are integrated into

instances of the DECENT and CFA meta-models and define the necessary meta-models

for the different kinds of extracted facts.
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Figure 5.9.: Developer-centric software assessment — meta-model (inheritance part)

5.4.2. Facts Extraction

The facts extraction is concerned with processing the raw assets by means of facts

extractors, resulting in facts assets. Concrete raw assets considered in our instantiation

are a Git VCS repository containing revisions of files and other information related to

the development history of the project and its associated artifacts, and a BugZilla ITS

repository containing issue reports. For the extraction of basic facts, we employ readily

available task-specific facts extractors, complemented by custom facts extractors where

necessary.

5.4.2.1. VCS Repository Facts

For the VCS repository we rely on CVSAnalY19 [153] and its fork MininGit20 (also

used by Lewis et al. [157]). CVSAnalY/MininGit processes VCS logs and stores ex-

tracted facts into a relational database (e.g. MySQL). The resulting facts are related to

concepts common to the domain of VCS, such as Repositories, Branches, Revisions,

Files, Actions, and People. Apart from the core functionality, a number of extensions

19See https://github.com/MetricsGrimoire/CVSAnalY,
20See https://github.com/SoftwareIntrospectionLab/MininGit.
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for CVSAnalY/MininGit can be executed to obtain additional facts21. The available ex-

tensions are:

FileTypes providing information about the type of the file assets within the VCS repos-

itory, e.g. code, documentation, image, etc.

BugFixMessage providing information on whether a revision is considered a fix for

an existing issue based on matching the commit message for the revision against

a set of regular expressions22, which can also be further customised by the user.

Content providing the complete content for file assets in each revision (for textual files

only).

Patches providing information about the content of the fragments changed in a revi-

sion (for textual files only).

Hunks providing information about the location of the fragments changed in a revision,

comprising the start and end lines for each fragment, before and after the change

(for textual files only).

HunkBlame providing information about the revisions in which a fragment (hunk) was

last changed (for textual files only).

LineBlame providing information about the revision in which a line or a fragment was

introduced (or last changed) (for textual files only).

PatchesLOC providing information about the number of lines added and removed for

each file changed in a revision (often used for calculating code-churn metrics).

CommitsLOC providing information about the number of lines added and removed in

each revision as a whole (often used for calculating code-churn metrics).

Blame providing information about the number of lines changed in each file asset in

each revision and the corresponding author (often used for calculating ownership

metrics).

We extract all the available facts by executing all the available extensions (with the

default regular expressions for the BugFixMessage extension), as we do not want to

21See https://github.com/SoftwareIntrospectionLab/MininGit/blob/master/

docs/miningit.mdown.
22The default set of regular expressions includes:

"defect(s)?","patch(ing|es|ed)?","bug(s|fix(es)?)?",

"(re)?fix(es|ed|ing|age|\s?up(s)?)?", "debug(ged)?","\#\d+",

"back\s?out","revert(ing|ed)?"
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limit the applicability of the extracted facts, even if we do not strictly need all of them

for the concrete instantiation of the mining infrastructure.

In addition, due to limitations of CVSAnalY / MininGit, which does not extract the

revision hierarchy, we also extract a Directed Acyclic Graph (DAG) of the revision hi-

erarchy by means of a separate custom facts extractor (DAG-GitExtractor23), which

produces a Comma Separated Values (CSV) representation of the revision branching hi-

erarchy where each row contains a revision and its parent revision(s). Correct hierarchy

is important for both getting the correct context in which an activity was performed, as

well as getting the correct deltas describing the activity.

5.4.2.2. Static Code Analysis Facts

Static code analysis is an established field, where analysis tools are applied to extract

statically computable facts about source code, including calculating software metrics,

detecting duplicated code fragments and other anomalies (so called code smells [50]),

analysing dependencies among artifacts, both on the logical and file level, etc. A num-

ber of commercial, open source, and research solutions exist for virtually every mod-

erately popular programming language in use. The scope of the extracted facts varies

among solutions and technologies, and also depends on the language features.

Within the scope of this thesis, we are primarily contemplating object-oriented soft-

ware systems implemented in the languages C++ and Java, but the proposed approach is

not limited to the object-oriented programming paradigm or the particular languages of

interest and further technologies can be easily supported as long as there are tools avail-

able that can perform static code analysis and extract the necessary facts. For the static

code analysis, we used the InFamix24 facts extractor. InFamix processes C/C++ and

Java code files and produces a FAMIX 3.0 model instance for each revision in the MSE25

format containing source code metrics, as well as structural and dependency informa-

tion, which are associated with artifacts at the logical level of abstraction, represented

by concepts such as Classes, Methods, Inheritance, Attributes, and Invocations.

A particular type of static analysis is duplicate detection. There are different ap-

proaches to duplicate detection taking into consideration different measures of similar-

ity, and employing different approaches to detect duplicates. These also vary with re-

spect to the required information and the supported languages and assets. We selected

the DuDe26 duplicate detector which employs a rather simple approach based on the

concept of duplication chains. DuDe works on text-based assets and is language inde-

23The results can be effectively obtained also by using:

git log --topo-order --pretty=format:"%H %P" --parents

-M -C --cc --decorate=full --all > model.dagx
24See https://www.intooitus.com/products/infamix.
25See http://www.moosetechnology.org/docs/mse.
26See http://www.inf.usi.ch/phd/wettel/dude.html.
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pendent and thus widely applicable. It produces duplication facts assets in XML format

for each revision, containing facts represented as concepts common to the domain of

code duplicates, such as (cloned) Code Fragments and Clone Pairs. An extension for

DuDe was created to enable support for storing duplication facts in a relational database

(MySQL) in addition to the XML format.

We applied the InFamix and the DuDe facts extractors to the files within each re-

vision of the Git VCS repository by successively checking out the respective revision

and running the facts extractors. This task was accomplished by a custom facts ex-

tractor automation framework (FX) which controls the overall process and manages

the resulting facts assets. The extensible FX-framework supports arbitrary facts ex-

tractors operating at the revision level. Since the process can be very time consuming,

and given that the facts that are extracted are largely independent at this stage, the FX-

framework also supports distributed execution within a computing cluster by assigning

sequences of revisions to be processed on individual compute nodes within the cluster.

The FX-framework was deployed on a computing cluster of 40 nodes which reduced

the processing times by a factor roughly equal to the number of nodes.

5.4.2.3. ITS Repository Facts

ITSs are collaboration tools used to create and manage issue reports by different stake-

holders, such as users, managers, and even developers themselves. They serve as means

for coordination and transparency, as well as enabling users to participate in the devel-

opment of software systems. Issues may range from bug and error reports, to questions

needing clarification, as well as requests for new features. ITS repositories store in-

formation related to the reported issues, often covering their entire life-cycle, from the

initial report to their final resolution, including any modifications, assignments, and

comments in between. As such, they provide further evidence describing the behaviour

of developers, and often events and artifacts within an ITS repository may be related to

events and artifacts within a VCS repository by means of semi-formal links between the

underlying raw assets based on conventions, such as using references to issues within

revision messages, or references to revisions within comments related to an issue.

There are a number of commercial and open source ITSs in use, sharing common and

related concepts, yet differing in the details and the amount of information recorded.

Even the same ITS may be configured in different ways for different contexts. As a

consequence, extracting facts from ITSs may be a challenging task depending on the

specific context, and facts extracted from one ITS may not necessarily be compatible

with facts extracted from another ITS or even from a different configuration of the same

ITS. As a result, facts extractors for ITSs often resort to the lowest common denom-

inator approach by covering the essential and common concepts across different ITSs

while leaving out details specific to a particular configuration or ITS. For our purposes,

we used a custom facts extractor for the BugZilla ITS which enables us to extract more
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detailed information for specific contexts, at the expense of needing further adaptation

for additional application settings. The custom BZExtractor is used to extract facts

about issue reports from a BugZilla repository into a relational database (MySQL), rep-

resenting concepts common to the ITS domain, such as Products, Components, Issues,

Comments, as well as Events related to modifications of the meta-data of an issue.

5.4.3. Facts Translation

Due to the reliance on third-party facts extractors, the resulting heterogeneous facts

assets in different formats and utilizing different storage paradigms are usually what

software mining practitioners are confronted with once they get past the raw assets. As

it is often the integration of these heterogeneous assets that practitioners are most inter-

ested in, the next challenge is figuring out how to achieve that. One way to approach

this is to convert all facts assets in a common format, such as a relational database, but

that approach is still too concerned with the concrete storage paradigm. Another ap-

proach is to lift the level of abstraction above the concrete storage paradigms and work

at a homogeneous structural level with model instances representing the extracted facts

rather than with their concrete storage representations. In this section we pursue the

latter approach.

In this step, we translate the heterogeneous facts assets into homogeneous facts model

instances conforming to a set of meta-models describing the structure of the facts. We

first need define or derive (automatically where applicable) the meta-models for the

facts, which would serve as the basis for the subsequent mapping and transformation

descriptions. In Section 5.4.2 we already mentioned some of the essential concepts re-

lated to the domains of VCSs, static analysis, code duplication, and ITSs. By inspecting

the structure of extracted facts more closely we identify all the relevant concepts and

their relationships, and, based on these, define the corresponding domain meta-models.

The meta-models may be based on existing specifications, if such are available, or they

need to be reverse engineered if no suitable specification is available. After defining

the meta-models, we need to also map the concrete representations of the facts assets

to instances of the corresponding meta-models. The mapping may be based on avail-

able means, such as Model-to-Text (M2T) mappings for structured textual representa-

tions, Object Relational Mapping (ORM) frameworks for relational databases, or even

custom-made mappings if no other means are available.

In the following sections, we discuss the concrete realisation of the facts translation

steps for the various facts assets obtained during the facts extraction step.

5.4.3.1. VCS Repository Facts

While there are some descriptions for the data structure resulting from the application of

CVSAnalY/MininGit, these are mostly informal for informative purposes and partially



129 5.4. Instantiation

outdated or incomplete. The best and up-to-date description available is the database

schema for the extracted facts. Hence, we decided to rely on it as a basis for the domain

meta-model.

Based on the structure of the relational database produced by the application of

MininGit, we derive the MG meta-model for representing VCS repositories shown in

Figure 5.10. The MG meta-model is comprised of meta-classes for concepts closely

related to VCSs (as noted in Section 5.4.2.1), with additional details for the relevant re-

lationships between them, and their attributes. These include meta-classes for the core

concepts Files, Revisions, Branches, Patches, etc., shown in the middle and the right

part of Figure 5.10, as well as meta-classes for concepts related to the facts extracted

by means of the optional extensions of MininGit, such as Hunks, Patches, and Content,

among others, shown in the left part of Figure 5.10.

Once the domain meta-model for the extracted facts is defined, the next step is to

define the mappings from the concrete representation to the meta-model. In the case of

relation databases, this can be achieved by means of ORM frameworks, such as Hiber-

nate27 and EclipseLink28. Depending on the selected approach, the overhead of defining

the mappings may vary. We selected a combination of Hibernate and Teneo29 which

provides automated and customizable model-relational mapping generation and good

integration with the modelling framework with little overhead. As a result, the MySQL

database storing the extracted facts is treated as a concrete representation of a model in-

stance, accessible by a Uniform Resource Identifier (URI), just like any other concrete

representation. If necessary, the relational database representation can be translated into

a different concrete representation, such as an XMI representation which is commonly

supported among model-based applications out of the box, or a more compact binary

representation, in order to remove the dependency on the database. Details regarding

the mappings can be found in Appendix A.2.

As noted in Section 5.4.2.1, a complementary facts extraction covering the revision

hierarchy needed to be performed in order to obtain the correct context of changes in

the case of multiple branches being used during the development. Since the extracted

facts cover only a rather simple concept, the respective DAG meta-model shown in Fig-

ure 5.11 is also fairly inconspicuous, but also usable as a generic graph meta-model. It

includes meta-classes for a Graph concept containing any number of Nodes, which may

reference any number of parent and children Nodes, and Edges, where Nodes reference

incoming and outgoing Edges, which in turn have back-references to the source and

target Nodes.

Once the domain meta-model is defined, we proceed to define the mappings from

the concrete representation to the meta-model. In the case of structured textual rep-

27See http://hibernate.org
28See http://www.eclipse.org/eclipselink/
29See https://wiki.eclipse.org/Teneo/Hibernate/
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Figure 5.10.: MG meta-model for the structure of facts extracted with MininGit
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Figure 5.11.: DAG meta-model for the structure of facts extracted with DAG-

GitExtractor

resentations, this can be achieved by means of a M2T transformation, which involves

parsing the textual representation in to an AST, and reconstructing relevant relation-

ships between the AST nodes based on static analysis. Available Domain-Specific Lan-

guage (DSL) specification frameworks, such as Xtext30 and EMFText31, enable con-

venient high-level specification of concrete textual representations for a given domain

meta-model. Such frameworks provide all the necessary facilities to serialise and de-

serialise model instances of the domain meta-model into the specified concrete rep-

resentations. Based on previous experiences, we selected Xtext as the framework of

choice. It relies on an annotated EBNF dialect for defining the concrete textual repre-

sentation with annotations defining the mappings to the domain meta-model elements.

The full annotated EBNF for the DAG meta-model can be found in Appendix A.2.

5.4.3.2. Static Code Analysis Facts

The FAMIX 3.0 model instances in the MSE format resulting from the application of

the InFamix facts extractor on each revision pose an interesting challenge. The text-

based MSE format is used as the exchange format for Moose and related technolo-

gies. In many ways, it is similar to XMI, where it can be used for the serialisation

de-serialisation of any FM3 model instance.

Since our mining infrastructure is build around EMF, we need to derive the corre-

sponding domain meta-model for FAMIX 3.0 model instances and then define the nec-

essary mappings from the concrete MSE representations to the instances of the FAMIX

meta-model defined in EMF.

30See https://eclipse.org/Xtext/
31See http://www.emftext.org
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While there is a grammar for the MSE format32, the MSE format is intended for the

interchange of all FM3 compliant models and meta-models, hence the grammar is at

a much higher level of abstraction (corresponding to M3), covering the serialisation of

abstract elements and their attributes. De-serialisation of MSE assets according to the

grammar would hence produce a very abstract representation of the underlying model or

meta-model which needs to be interpreted further. This interpretation may be performed

against a known meta-model enabling also structural and semantic validation during

de-serialisation. In case there is no known meta-model, it may be inferred based on

information collected from available assets. While there are descriptions of the FAMIX

3.0 meta-model [44], we pursued the latter approach as an experimental feasibility

study for integrating complex structured data in possibly proprietary formats.

Based on an initial pre-processing of available MSE assets, we inferred a possible

meta-model structure, based on which we also inferred a specific concrete syntax tai-

lored to the inferred meta-model and able to serialise and de-serialise instances of the

inferred meta-model corresponding to the observations made on the available assets.

This effectively comprises reverse engineering of the underlying meta-model and the

necessary facilities to operate with assets from possibly proprietary third-party tools.

The core of the inferred FAMIX meta-model is shown in Figure 5.12. It includes abstract

meta-classes for concepts such as Measurable Declared Types and Behaviour Entities

containing measurable attributes of these concepts. Refinements of these meta-classes

include concrete meta-classes representing concepts for artifacts at the logical level of

abstraction, such as Classes, Methods, and Functions, as well as other related concepts.

The File Anchor meta-class indicates the location of the logical artifacts within artifacts

at the file level of abstraction, thus providing a link to artifacts represented in the facts

extracted from the VCS. The File Anchor meta-class is related to all Anchored Elements

early in the overall inheritance hierarchy of the inferred FAMIX meta-model, as shown

in Figure 5.13. Since the inferred meta-model is based on observations, it is inherently

incomplete, and only covers concepts that have been already observed. In order to keep

track of potentially interesting concepts or properties that have not been observed yet, a

meta-class for the concept of Water (based in part on a similar notion from island gram-

mars [125]) is introduced to store any unknown structural properties of known concepts

or unknown concepts altogether. These can then be inspected and if considered useful

incorporated into the meta-model iteratively.

The partial view on the reconstructed FAMIX meta-model shown in Figure 5.10 cov-

ers only the essential constructs that are of primary interest for the assessment task of in-

terest. The reconstructed FAMIX meta-model includes a number of additional concepts

that capture structural dependencies among logical constructs which are not shown here

for brevity. The additional views on the reconstructed FAMIX meta-model are included

in Appendix A.1.

32See http://scg.unibe.ch/wiki/projects/archive/fame/msespecification



133 5.4. Instantiation

Figure 5.12.: FAMIX meta-model based on the structure of data extracted with InFamix

(core-part)
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Figure 5.13.: FAMIX meta-model based on the structure of data extracted with InFamix

(elements-part)
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Figure 5.14.: DUDE meta-model based on the structure of data extracted with DuDe

Once the domain meta-model is defined, the next step is to define the mappings from

the concrete representation to the meta-model. Similar to the handling of the revision

hierarchy facts extracted with the DAG-GitExtractor, we employ a M2T approach based

on Xtext for this purpose. The full annotated EBNF for the FAMIX meta-model can be

found in Appendix A.2.

For the translation of the code duplication facts extracted with DuDe, we chose to rely

on the relational database representation of the extracted facts produced by the custom

extension, as noted in Section 5.4.2.2, which provides additional information and more

flexibility. Based on the structure of the relational database, we derived the DUDE

meta-model for representing concepts related to code duplication. A class diagram

for the resulting DUDE meta-model is shown in Figure 5.14. The structure of the

underlying facts is comprised of Runs containing Clone Pairs and (duplicated) Code

Fragments, where a Clone Pair refers to exactly two Code Fragments. A Run typically

represents the application of DuDe on a particular revision of a project, but it may also

be restricted to a particular subset of the project as indicated by the sub path attribute.

A Run also contains attributes for other parameters used in the application of DuDe,

in case it was executed multiple times on the same revision with different parameters

(e.g. using different detection strategies and/or thresholds). A Code Fragment contains

attributes describing the location of the fragment and optionally also its content.

Once the domain meta-model for the extracted facts is defined, the next step is to de-

fine the mappings from the concrete representation to the model instances. As we chose

to rely on the relational database representation of the extracted facts, the mapping ap-

proach is similar to the one employed for the mapping of the MG domain meta-model,

based on a combination of Hibernate and Teneo. Details regarding the complete map-

pings can be found in Appendix A.2.
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Figure 5.15.: BZ meta-model based on the structure of data extracted with BZExtractor

5.4.3.3. ITS Repository Facts

For the translation of the ITS repository facts extracted with the custom BZExtractor

which stores the facts into a relational database, we follow the same steps as with other

facts stored in relational databases. Based on the structure of the relational database, we

derived the BZ meta-model for representing concepts related to ITSs. A class diagram

for the BZ meta-model is shown in Figure 5.15. The structure of the underlying facts

is comprised of Repositories containing Products, which in turn contain Components.

The main model elements of interest are the Issues contained within the Components.

Each Issue may contain any number of Comments and Events reflecting changes to the

meta-information related to the Issue.

Once the domain meta-model for the extracted facts is defined, we proceed to define

the mappings from the concrete representation to the meta-model. As the extracted facts

are stored in a relational database representation, the mapping approach is similar to the

one employed for the mapping of other facts stored in relational databases. Details

regarding the complete mappings can be found in Appendix A.2.

With the steps discussed above, we can obtain homogeneous high-level model repre-

sentations of the heterogeneous facts assets containing the facts extracted by third-party

tools from the available raw assets. Once these are available, we can transform and

integrate the facts models into instances of the assessment model.

5.4.4. Facts Transformation

Having obtained the high-level model representations for the extracted facts by means

of the facts translation approaches described in Section 5.4.3, we can proceed and trans-

form the relevant parts of the facts models into instances of the domain meta-model for
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the assessment task of interest. This is done in a stepwise manner, by means of M2M

transformations. The overall transformation approach is based on EOL33 and ETL34

[98]. EOL is a domain-specific language for creating, querying, and modifying EMF

models. It supports the access and modification of multiple models conforming to po-

tentially different meta-models, by means of common programming constructs, as well

as first-order logic OCL operations. EOL also provides a good integration of Java-based

external tools which can be reused when working with models within EOL. ETL is a

domain-specific language for hybrid, rule-based M2M transformations built on top of

EOL. It provides common transformation capabilities, as well as the ability to trans-

form many input to many output models, including modifying both source and target

models in place. The transformations are defined by means of both declarative and im-

perative transformation specifications, allowing for sophisticated transformation logic,

as well as abstraction and reuse. Traceability links between transformed elements can

be recorded as well. While there are a number of other technologies for model trans-

formation available, based on previous experiences, we selected the Epsilon family of

languages as the most convenient solution. In the following we outline the essential

steps in each transformation defined according to the following template:

SYMBOLIC NAME: SOURCE MODEL → TARGET MODEL

Summary description of the transformation from the SOURCE MODEL instance

to the TARGET MODEL instance. The SYMBOLIC NAME is used for referencing

in Figures and textual descriptions.

Input: Description of the input model instance (SOURCE MODEL)

Output: Description of the output model instance (TARGET MODEL)

Dependencies and Requirements: Description of dependencies on other trans-

formation steps and requirements towards the model instances.

Pre-processing: Description of any necessary pre-processing during the trans-

formation before any of the transformation rules are executed.

SOURCE ELEMENT → TARGET ELEMENT Description of the transformation

of a SOURCE ELEMENT from the SOURCE MODEL into a TARGET EL-

EMENT of the TARGET MODEL. There may be any number of element

transformation descriptions. The order of the element transformation de-

scriptions does not reflect the execution order. The execution order is deter-

mined by the ETL runtime environment.

OPERATION: Description of an imperative operation executed on the whole

model instance. There may be any number of operations. The operations

33See http://www.eclipse.org/epsilon/doc/eol/.
34See http://www.eclipse.org/epsilon/doc/etl/.
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are generally listed in the order of intended or required execution, unless

specified otherwise.

Post-processing: Description of any necessary post-processing during the

transformation after all of the transformation rules are executed.

The placeholders SOURCE MODEL, TARGET MODEL, SOURCE ELEMENT, and

TARGET ELEMENT are replaced with concrete model instances and elements in the

transformation descriptions, and the placeholder OPERATION is replaced by a name for

a concrete operation. The descriptions according to this template shall provide a more

accessible summary of the transformation activities without requiring prior knowledge

of the implementation technology. Snippets of relevant EOL and ETL code may be

provided where necessary. The complete detailed transformation specifications can be

found in Appendix A.2.

While Figure 5.2 presents a rather simplified view on the transformation activities

during the facts transformation step, in practice the transformation workflow is a bit

more complicated, due to dependencies between the different transformations as well as

intermediate transformations added for performance or convenience reasons. The main

part of the transformation workflow is shown in Figure 5.16. The transformation activ-

ities (shown in gray) are ordered according to their general temporal precedence from

left to right, where certain transformations such as MG2CFA and FAMIX2DECENT

may be performed in parallel as they are independent from each other and operate on

different target models. Additional transformations for enriching the DECENT model

with collaboration, experience, and temporal characteristics are shown in Figure 5.17,

where the list of transformations can be extended beyond the listed ones. The only

constraint is that the DELTA2DECENT transformation is executed before the DECENT

model is used in an assessment task in order update the Deltas for any new Attributes.

5.4.4.1. VCS Repository Facts

The VCS repository model described by the MG meta-model serves as the backbone

both for the target assessment model described by the DECENT meta-model and for

the intermediate model used for the realisation of the cause-fix analysis described in

Chapter 3. Hence, the VCS repository facts are involved in two transformations — the

transformation of the parts of the MG instance relevant to the assessment task into a

new DECENT instance (MG2DECENT) and the transformation of the parts of the MG

instance relevant to the cause-fix analysis into a new CFA instance ((MG2CFA)). Fur-

thermore, the revision hierarchy information from the DAG instance is also integrated

in the DECENT at a later point (DAG2DECENT).

MG2DECENT: MG → DECENT

The transformation from the MG to the DECENT model takes an existing MG
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model instance and creates a new DECENT model instance containing relevant

facts from the MG model instance.

Input: An existing MG model instance.

Output: A new DECENT model instance.

Dependencies and Requirements: The MG model instance shall be pre-

processed to include normalised Hunks descriptions.

Pre-processing: Initialise the necessary Attribute element definitions. Initialise

the “Spatial”, “Change”, and “File” Dimensions. Initialise the list of se-

lected Branches.

Model → Model: Transform the top-level Model elements from the MG instance

into top-level Model elements of the DECENT instance. Add all Attribute

elements to the Model.
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People → Developer: Transform People elements from the MG instance into

Developer elements in the DECENT instance.

Revision → Developer State: Transform Revision elements from the MG in-

stance into DeveloperState elements in the DECENT instance. Assign the

ID property of the DeveloperState to the commit_id property of the Revi-

sion. Add a Value for the “Timestamp” attribute containing the timestamp

derived from the author_date property of the Revision.

Branch → Artifact: Transform Branch elements from the MG instance into Ar-

tifact elements of the branch ArtifactType.

File → Artifact: Transform File elements from the MG instance into Artifact el-

ements of the corresponding ArtifactType in the DECENT instance, creating

missing ArtifactType elements as necessary. Reconstruct the respective Arti-

fact hierarchy based on the File hierarchy reflected in the FileLink elements

in the MG instance.

Action → Artifact State: Transform Action elements from the MG instance into

ArtifactState elements in the DECENT instance. The resulting ArtifactState

elements are contained in the Artifact elements corresponding to the File

elements associated with each Action element. The ID property of the Ar-

tifactState element is assigned to the commit_id property of the Revision

associated with each Action element. Value elements for the “FilePath”,

“BranchName”, “FileSize”, “LOC”, and “AggregateFragmentCount” at-

tributes are added to the resulting ArtifactState based on corresponding

properties from the MG instance, derived from the Action, the associated

Branch, the Content and LineBlames associated with the Revision and File

related to the Action, respectively. The previous ArtifactState for the con-

taining Artifact is determined and associated with the resulting Artifact-

State. Activity elements are created to link the resulting ArtifactState to the

respective previous ArtifactState and to the corresponding DeveloperState.

Value elements for the characteristics “ChangedFragmentCount”, “Line-

sAdded”, “LinesRemoved”, and “CommitMessage” related to the Activity

itself are created based on corresponding properties derived from the num-

ber of Hunks and the properties of the PatchLines associated with the Re-

vision and File related to the Action, as well as the “message” property of

the associated Revision, respectively. Finally, Value elements for the Spatial

Characteristics are added to the resulting ArtifactState.

Post-processing: Add a Value for the “Tags” attribute to each ArtifactState el-

ement in the DECENT instance. The Tags attribute contains the names of

all the Tag model elements from the MG instance that were assigned to re-

visions spanning the time frame between the time of the activity leading
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to the ArtifactState and the time of the next activity performed on the Ar-

tifactState. Add a Value for the “TagCount” attribute to each ArtifactState

element in the DECENT instance containing the number of elements in the

“Tags” value.

MG2CFA: MG → CFA

The transformation from the MG to the CFA model takes an existing MG model

instance and creates a new CFA model instance containing cause-fix relationships

at the project and file levels of granularity derived from the MG model instance.

Input: An existing MG model instance.

Output: A newly created CFA model instance.

Dependencies and Requirements: None.

Pre-processing: Initialise the necessary Attribute element definitions for the

different weights, including “RemovedWeight”, “TotalWeight”, and “Av-

erageWeight”. Initialise the “Default” and “BugFix” Factor elements. Ini-

tialise the “Inherit” Strategy. Assign the “Inherit” Strategy to both Factor

elements.

Model → Model: Transform the top-level Model elements from the MG instance

into top-level Model elements of the CFA instance. Add all Attribute and

Factor elements to the Model.

Revision → Project State: Transform Revision elements from the MG instance

into ProjectState elements. Assign the values of the “name” and “ID”

properties of the ProjectState to the values of the “rev” and “commit_id”

properties of the Revision, respectively. Add the FactorEntry elements for

the “Default” and “BugFix” Factors. Add AttributeEntry elements for the

“RemovedWeight" Attribute for each Factor, where the value for the “De-

fault” Factor is always 1, and the value for the “BugFix” Factor is assigned

to the value of the “is_bug_fix” property of the Revision. Determine the

causing ProjectStates by navigating the Hunks related to the Revision and

the corresponding HunkBlames related to each Hunk.

Action → File State: Transform Action elements from the MG instance into

FileState elements. Assign the values of the “name” and “ID” proper-

ties of the FileState to the values of the “current_file_path” property of

the Action and the “commit_id” property of the Revision associated with

the Action, respectively. Determine the containing ProjectState and add the

resulting FileState to it. Add the FactorEntry elements for the “Default”

and “BugFix” Factors. Add AttributeEntry elements for the “Removed-

Weight" Attribute for each Factor, where the value for the “Default” Fac-

tor is always 1, and the value for the “BugFix” Factor is assigned to the
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value of the “is_bug_fix” property of the Revision associated with the Ac-

tion (inherit strategy). Determine the causing FileStates by navigating the

Hunks related to the Revision associated with the Action and the correspond-

ing HunkBlames related to each Hunk.

Post-processing: Calculate the values for the “TotalWeight” Attribute for all

States. Calculate the values for the “AverageWeight” Attribute for all States.

DAG2DECENT: DAG → DECENT

The transformation from the DAG to the DECENT model takes an existing DAG

model instance and refines an existing DECENT model instance for the same

project.

Input: An existing DAG model instance, an existing DECENT model instance,

both shall be related to the same project.

Output: A refined DECENT model instance.

Dependencies and Requirements: Both the DAG and the DECENT model in-

stances shall be related to the same project.

Check Correct Artifact State Sequence: Check the state sequences for each

Artifact against to the DAG Graph and fix mismatching state sequences

where necessary.

Assign Developer State Sequence: Assign the previous DeveloperState for

each DeveloperState of each Developer based on the DAG Graph.

In the MG2CFA transformation we relied on information already provided within the

MG model to determine the causes for each state. As discussed in Chapter 3, other

more sophisticated approaches may be used instead to refine the resulting cause-fix re-

lationships. In addition, we only assigned weights for two Factors and used the inherit

strategy by default for assigning RemovedWeights to FileStates so far. In subsequent

transformations, we will discuss adding other Factors and applying different strategies

for weights distribution between the different levels of granularity. In the descriptions

of the transformations from the MG model, we assumed that each Model element in the

MG model represents a single project. This simplification may not necessarily apply in

practice, thus some interpolation may be necessary. The DAG2DECENT transforma-

tion checks for the correct ArtifactState sequence, hence it shall be executed after all

ArtifactStates have been added.

5.4.4.2. Static Code Analysis Facts

The FAMIX model instances containing the extracted static code analysis facts for each

revision are used to enrich and refine the target assessment model described by the
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DECENT meta-model with information about artifacts at the logical level of granularity.

Each FAMIX model instance is transformed individually into the target DECENT model

instance. After that, facts from the DUDE model instance containing related to detected

duplicates are also transformed into target assessment model by creating Value elements

for the duplicate-related attributes within the corresponding ArtifactState elements.

FAMIX2DECENT: FAMIX → DECENT

The transformation from the FAMIX to the DECENT model takes a set of existing

FAMIX model instances for individual revisions and refines an existing DECENT

model instance for the same project. Transformations for Class, Method, Module,

and Function elements are nearly identical, therefore they are summarised as

LOGICAL elements.

Input: A set of existing FAMIX model instances, an existing DECENT model

instance, both shall be related to the same project.

Output: A refined DECENT model instance.

Dependencies and Requirements: Both the FAMIX and the DECENT model

instances shall be related to the same project. The FAMIX model instance

shall include an indication of the revision for which it was extracted, allow-

ing model elements to be mapped to corresponding ArtifactStates at the file

level of granularity in the DECENT model.

Pre-processing: Identify ArtifactStates at the file level of granularity that corre-

spond to the revision for which the FAMIX model instance was produced.

Initialise the “Logical” Dimension.

LOGICAL → Artifact State Transform LOGICAL elements to ArtifactState ele-

ments. Identify the corresponding parent ArtifactState. Ignore LOGICAL

elements for which the containing Artifact element does not have a cor-

responding ArtifactState for the revision for which the FAMIX model was

produced. Create necessary Artifact elements contained in the correspond-

ing parent Artifact element where necessary. Set the previous ArtifactState

if it exists. Add Value elements for the “FileAnchor”, “StartLine”, and

“EndLine” Attributes of the ArtifactState for the corresponding properties

of the FileAnchor element associated with the LOGICAL element in order

to record the location of the LOGICAL element. Assign the “Spatial” Di-

mension to these Attributes. Add Value elements for each property of type

Real from th e LOGICAL element to the resulting ArtifactState element,

creating the necessary Attributes and assigning the “Logical” Dimension to

them. Create an Activity element to link the ArtifactState to the previous

ArtifactState and to the corresponding DeveloperState.

Post-processing: None.
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DUDE2DECENT: DUDE → DECENT

The transformation from the DUDE to the DECENT model takes an existing

DUDE model instance and refines an existing DECENT model instance with

clone-related information at the file and logical levels of granularity.

Input: An existing DUDE model instance, an existing DECENT model instance,

both shall be related to the same project.

Output: A refined DECENT model instance.

Dependencies and Requirements: Both the DUDE and the DECENT model

instances shall be related to the same project.

Pre-processing: Initialise the necessary Attribute element definitions and the

“Clone” Dimension.

Assign Clone Information to States: Assign cloned lines and the number of

cloned fragments in each ArtifactState, based on the information from the

Run executed on the revision corresponding to the ArtifactState.

Post-processing: None.

HITS2DECENT: DECENT → DECENT

The transformation enriches an existing DECENT model with information on

which parts Artifacts at the logical level of granularity were modified in each

ArtifactState.

Input: An existing DECENT model instance already containing information for

Artifacts at the logical level of granularity (FAMIX2DECENT has been ex-

ecuted).

Output: A refined DECENT model instance.

Dependencies and Requirements: The FAMIX2DECENT transformation shall

be executed before the HITS2DECENT transformation.

Pre-processing: Initialise the necessary Attribute element definitions and the

“Hits” Dimension.

Assign Modified Lines Information to States: Assign modified lines and Spa-

tial Characteristics to ArtifactStates at the logical level of granularity based

on the Spatial Characteristics of the corresponding parent ArtifactState at

the file level of granularity. This is done by comparing the “StartLine” and

“EndLine” Values of the ArtifactState at the logical level of granularity to

the “LinesPost” values for the corresponding parent ArtifactState. In addi-

tion, a Value for the “VariancePostLines” attribute describing the variance

of the modified lines within the artifact is also added to the ArtifactState at

the logical level of granularity.
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Post-processing: None.

In order to add cause-fix relationships at the logical level of granularity to the CFA

model instance, we use the DECENT model instance already containing the relevant

information and relationships between Artifact and ArtifactStates at the file and logical

levels of granularity.

DECENT2CFA: DECENT → CFA

The transformation enriches an existing CFA model with information at the log-

ical level of granularity derived from a DECENT model instance for the same

project.

Input: An existing CFA instance containing cause-fix relationships at the project

and file levels of granularity, an existing DECENT model instance already

containing information for Artifacts at the logical level of granularity

(FAMIX2DECENT has been executed) and which ArtifactStates at the

logical level of granularity have been modified (HITS2DECENT has been

executed).

Output: A refined CFA model instance containing information about cause-fix

relationships at the logical level of granularity.

Dependencies and Requirements: The FAMIX2DECENT transformation and

the HITS2DECENT transformation shall be executed before the DE-

CENT2CFA transformation.

Pre-processing: None.

Artifact State → Logical State: Transform modified Artifact State elements for

Artifacts of logical ArtifactTypes from the DECENT instance into Logical-

State elements. Assign the values of the “name” and “ID” properties of

the LogicalState to the values of the “name” property of the correspond-

ing Artifact associated with the ArtifactState and the “ID” property of the

Artifact, respectively. Determine the containing ProjectState and add the re-

sulting LogicalState to it. Add the FactorEntry elements for the “Default”

and “BugFix” Factors. Add AttributeEntry elements for the “Removed-

Weight" Attribute for each Factor, where the value for the “Default” Factor

is always 1, and the value for the “BugFix” Factor is assigned to the value

of the corresponding Attribute of the ProjectState. Determine the FileState

corresponding to the parent Artifact for the Artifact associated with the Ar-

tifactState. Determine the causing LogicalStates.

Post-processing: Reset the values for the “’TotalWeight’ Attribute in all States.

Calculate the values for the “TotalWeight” Attribute for all States. Calculate

the values for the “AverageWeight” Attribute for all States.
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5.4.4.3. ITS Repository Facts

The BZ model instance containing the facts extracted from the ITS are used to enrich

CFA model instance with additional Factors and associated weights based on the rela-

tionships between ProjectStates and reported Issues. We consider the following Factors

for which the value of the “RemovedWeight” Attribute can serve as an indication of the

importance or impact of a fixing state and hence also indicate that the corresponding

causes for the fixing state also have a potentially high impact and shall be treated with

more caution:

Issue Count: Number of Issues related to a State.

Comments Per Issue: Average number of Comments per related Issue.

Users Per Issue: Average number of distinct users submitting Comments per related

Issue.

Issue Importance: Average importance ranking per related Issue. The importance

classification may vary across projects, hence a project-specific mapping from

the ordinal scale of importance classifications to the interval [0,1] is necessary.

Additional Factors related to ITS facts may be added at a later point as well. In

addition to the Factors derived from the ITS, we also add several other Factors based

on regular expressions evaluated against the description of a Revision as indicated in its

“message” property:

Refactoring: Whether or not a fixing state includes a refactoring, based on the regular
expression .+(factored|factoring).*.

Fix: A softer version of the “BugFix” Factor (which is derived from the classification al-

ready present in the MG model). The “Fix” Factor is based on the regular expression

.*(fix|bug|bug:).*.

EXTRA2CFA: BZ → CFA

The transformation from the BZ to the CFA model takes an existing BZ model

instance and refines an existing CFA model instance with ITS-related factors and

weights.

Input: An existing BZ model instance, an existing CFA model instance, both

shall be related to the same project.

Output: A refined CFA model instance.

Dependencies and Requirements: Both the BZ and the CFA model instances

shall be related to the same project.
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Pre-processing: Initialise the necessary Factor elements for the “IssueCount”,

“CommentsPerIssue”, “UsersPerIssue”, “IssueImportance”, “Refactor-

ing”, and “Fix” factors. Assign the “Inherit” Strategy to all new Factor

elements. Map BZIssues to ProjectStates based on multiple indicators, such

as references to the “name” of the ProjectState (derived from the Revision

in the MG model instance during the MG2CFA transformation).

Add Factors and Removed Weights to States: Add the FactorEntry elements

for the “IssueCount”, “CommentsPerIssue”, “UsersPerIssue”, “IssueIm-

portance”, “Refactoring”, and “Fix” Factors to each State. Add At-

tributeEntry elements for the “RemovedWeight" Attribute for each Factor.

FileStates and LogicalStates inherit the values of the “RemovedWeight”

Attribute for each FactorEntry.

Post-processing: Calculate the values for the “TotalWeight” Attribute for the

newly added Factors for all States. Calculate the values for the “Aver-

ageWeight” Attribute for the newly added Factors for all States.

So far the values for the “RemovedWeight” Attribute for all the Factors added to the

CFA model were simply copied across the different levels of granularity (inherit strat-

egy). Next, we discuss the application of the different strategies described in Section 3.5

to the CFA model.

SHARED2CFA: CFA → CFA

The transformation refines an existing CFA model with redistributed weight ac-

cording to the different strategies discussed in Section 3.5. It creates additional

Factors for each existing Factor and each applied strategy so that weighting re-

sulting from the different strategies can be compared and combined.

Input: An existing CFA model instance already containing information for Arti-

facts at the file and logical levels of granularity (DECENT2CFA has been

executed).

Output: A refined CFA model instance containing additional Factors for each

Factor and each applied strategy.

Dependencies and Requirements: The DECENT2CFA transformation shall be

executed before the SHARED2CFA transformation. If the EXTRA2CFA

transformation is executed, the SHARED2CFA shall be executed (again) af-

ter it.

Pre-processing: Initialise the additional Strategy elements for the “Shared”,

“Type”, “Size”, and “Churn” strategies. Initialise the additional Factor el-

ements for each existing Factor associated with the “Inherit” strategy and

each new Strategy and associate them with the corresponding Strategy.
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Apply Strategies to Factors: Add the new FactorEntry elements for all Fac-

tors associated with a Strategy different than the default “Inherit” Strat-

egy to each State. Add AttributeEntry elements for the “RemovedWeight"

Attribute for each Factor. Assign the values of the “RemovedWeight” At-

tribute for each Factor according to the Strategy for the corresponding Fac-

tor.

Post-processing: Calculate the values for the “TotalWeight” Attribute for the

newly added Factors for all States. Calculate the values for the “Aver-

ageWeight” Attribute for the newly added Factors for all States.

After obtaining a comprehensive CFA model instance containing weights related to

different properties, distributed across different levels of granularity according to dif-

ferent strategies, we need to integrate the weighting information back into the DECENT

model instance.

CFA2DECENT: CFA → DECENT

The transformation refines an existing DECENT model with weighting informa-

tion from an existing CFA model, which is assigned to ArtifactStates indicating

their likelihood for causing different kinds for events of interest.

Input: An existing CFA model instance and an existing DECENT model in-

stance, both related to the same project.

Output: A refined DECENT model instance containing weighting information

indicating the likelihood of ArtifactStates for causing different kinds of

events of interest.

Dependencies and Requirements: The CFA2DECENT transformation shall be

executed after any changes have been made to the CFA model (e.g. applying

a different Strategy or adding a new Factor).

Pre-processing: Initialise the “Cause-Fix” Dimension. Initialise Attributes in

the DECENT model for each combination of Factors and Attributes from

the CFA model. Initialise additional Attributes for “CarriedWeight” for

each of the newly initialised Attributes. Initialise Attributes for the number

of caused future ArtifactStates (“CausesCount”) and the number of past

ArtifactStates causing the ArtifactState (“FixesCount”).

Add Weights to Artifact States: Map FileStates and LogicalStates to corre-

sponding ArtifactStates. Transform the values for all AttributeEntries into

corresponding Values of the mapped ArtifactState. Add Values for the

“CausesCount” and “FixesCount” Attributes to the mapped ArtifactState.

Add Fixes and Causes Counts to Developer States: Map ProjectStates to

corresponding DeveloperStates. Add Values for the “CausesCount” and

“FixesCount” Attributes to the mapped DeveloperState.
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Add Carried Weights: Add Values for the “CarriedWeight” Attributes based on

the sum of “TotalWeights” for the corresponding Factor accumulated over

time, where “RemovedWeights” derived from the corresponding Factor are

subtracted in each ArtifactState.

Add Temporal Characteristics: Calculate temporal distances between Causes

and Fixes for each Factor at each level of granularity. Add the minimum,

maximum, mean, and standard deviation characteristics to the DECENT

model, which can be used to determine the confidence windows for the

weights.

Post-processing: None.

5.4.4.4. Derived Facts and Deltas

Beyond the integration of facts from the different facts models in to the assessment

model, we also derive additional facts based on the characteristics and structure of the

assessment model. These include collaboration-related facts, experience-related facts,

and temporal facts. Finally, we also calculate the Deltas between the source and target

ArtifactStates for each Activity.

COLLAB2DECENT: DECENT → DECENT

The transformation refines an existing DECENT model with the collaboration-

related facts described in Section 4.2.5.

Input: An existing DECENT model instance.

Output: A refined DECENT model instance containing Values for collaboration-

related Attributes.

Dependencies and Requirements: If the FAMIX2DECENT transformation has

been executed, the HIT2DECENT transformation shall be executed as well.

Pre-processing: Initialise the “Collaboration” Dimension. Initialise necessary

collaboration-related Attributes.

Add Collaboration Characteristics to Artifact States: Identify collaborating

Developers up to the point in time a given ArtifactState was created.

Calculate and add the Values for the collaboration-related Attributes.

Add Collaboration Characteristics to Developer States: Identify Artifacts on

which a given Developer has collaborated up to the point in time of the

DeveloperState. Based on these, identify collaborating Developers up to

the point in time of the DeveloperState. Calculate and add the Values for

the collaboration-related Attributes across each ArtifactType individually.

Post-processing: None.
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EXP2DECENT: DECENT → DECENT

The transformation refines an existing DECENT model with the experience-

related facts described in Section 4.2.4.

Input: An existing DECENT model instance.

Output: A refined DECENT model instance containing Values for experience-

related Attributes.

Dependencies and Requirements: If the FAMIX2DECENT transformation has

been executed, the HIT2DECENT transformation shall be executed as well.

Pre-processing: Initialise the “Experience” Dimension. Initialise necessary

experience-related Attributes.

Add Experience Characteristics to Artifact States: Calculate and add the Val-

ues for the experience-related Attributes for each ArtifactState.

Add Experience Characteristics to Developer States: Calculate and add the

Values for the experience-related Attributes for each DeveloperState across

each ArtifactType individually..

Post-processing: None.

TEMPO2DECENT: DECENT → DECENT

The transformation refines an existing DECENT model with the temporal facts

described in Section 4.2.3.

Input: An existing DECENT model instance.

Output: A refined DECENT model instance containing Values for temporal At-

tributes.

Dependencies and Requirements: If the FAMIX2DECENT transformation has

been executed, the HIT2DECENT transformation shall be executed as well.

Pre-processing: Initialise the “Temporal” Dimension. Initialise necessary tem-

poral Attributes.

Add Temporal Characteristics to Artifact States: Calculate and add the Val-

ues for the temporal Attributes for each ArtifactState.

Add Temporal Characteristics to Developer States: Calculate and add the

Values for the temporal Attributes for each DeveloperState across each

ArtifactType individually..

Post-processing: None.

DELTA2DECENT: DECENT → DECENT

The transformation refines an existing DECENT model with Deltas between the

source and target ArtifactStates for each Activity.
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Input: An existing DECENT model instance.

Output: A refined DECENT model instance containing Deltas.

Dependencies and Requirements: The DELTA2DECENT transformation

shall be executed after any changes have been made to the DECENT model

resulting in Values for new Attribute or new ArtifactStates and Activities.

Pre-processing: None.

Add Deltas to Activities: Calculate Deltas for all IntegerValues and RealValues

of a modified Artifact State and add them to the corresponding Activity from

which the ArtifactState resulted.

Post-processing: None.

5.4.5. Assessment Transformation

After obtaining a comprehensive DECENT model instance containing multi-faceted

information describing the behaviour of developers, we proceed to make use of this

information in various assessment applications. We query the DECENT model instance

to obtain different views on the information, such as the behaviour of a given developer

at a particular level of granularity as defined by the activities of the developer at that

level of granularity as well as the context in which they occurred and their outcome.

Assessment applications, such as machine learning approaches for defect prediction,

typically provide binary classification and hence also require training data with corre-

sponding binary classifications. A binary indication (true or false) of whether an activity

contributed to causing an events of interest, such as a bug fix or a refactoring, can be

computed based on the value for the associated weight-related attributes derived from

the CFA model, such as the average weight for the corresponding factor. The threshold

for determining the binary value can be based on the distribution of the average weights.

In addition, a confidence indicator (high or low) can be added to note whether the binary

indicator can be trusted, e.g. if it is very close to the threshold.

On the other hand, a visualisation may use color shading to indicate the likelihood

that a state of an artifact can be considered a cause of an even of interest. Thus, de-

pending to the target assessment application, further characteristics may need to be

calculated during the transformation into the assessment assets expected by the assess-

ment application. For certain applications, part of the characteristics may also need

to be hidden. Contemplating the machine learning approach again, if we calculate a

binary classification based on a threshold applied to the weight-related attributes, then

the basis for that classification shall not be part of the exported data. Otherwise, the

machine learning application is quickly going to learn that indeed a given threshold on

the weight-related attribute (likely very close to the one used for deriving the binary

indicators in the first place) is the best way to partition the data.
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Depending on the target assessment applications it can be beneficial to address the

needs of each individual application by means of transformations to the corresponding

types of target assets, as shown in Figure 5.2. As a feasibility study, for the realisation of

the patterns and applications discussed Section 4.3 we decided to consolidate our efforts

around a single integrated platform and single type of assessment assets for simplicity.

For data mining applications, including determining the importance of characteris-

tics, clustering similar activities, and predicting causes for events of interest, we rely

on Weka [64]. Weka provides rich facilities for various machine learning tasks. It sup-

ports input in CSV and Attribute-Relation File Format (ARFF)35 format. Data from the

DECENT model instance can be exported in these formats by means of M2T transfor-

mation. However, once the data is in that format it is “dumbed down”, thus no longer

accessible at the model level and it does not contain any additional meta-data. For more

convenient pre-processing of the application-specific data at the model level, we de-

signed an intermediate model representation that is closely related to the ARFF format

used by Weka. This model representation is described by the ARFFx meta-model shown

in Figure 5.18. The ARFFx meta-model includes concepts related to the input for Weka,

including Instances containing Values of Attributes, which have a Type and a Dimen-

sion. The Dimension is a convenience extension to the original ARFF format, which

is based on the concept of the same name in the DECENT meta-model. It is used for

categorising and filtering Attributes so that the same ARFFx model can be used to de-

rive multiple concrete views, such as a data set including only collaboration or temporal

characteristics. The ARFFx model also includes the MetaData concept which is used

for describing the contents of the concrete model instance and any pre-processing steps

that may have been applied to it, as well as additional information, such as relevant

thresholds.

The ARFFx model instances are populated by querying and transforming the DE-

CENT model.

DECENT2ARFFx: DECENT → ARFFx

The transformation transforms an existing DECENT model instance into a new

ARFFx model instance, containing individual Models for each Developer at each

level of granularity, as well as for all Developers.

Input: An existing DECENT model instance.

Output: A new ARFFx model instance containing multiple Models.

Dependencies and Requirements: The DECENT2CFA transformation shall be

executed before the DECENT2ARFFx transformation.

Pre-processing: None.

35See http://www.cs.waikato.ac.nz/ml/weka/arff.html.
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Figure 5.18.: ARFFx meta-model for the structure of assessment assets used in Weka

Export Developer Behaviours: Create new Model element for each Developer,

at each level of granularity, containing the behaviour of the Developer at

that level of granularity. Each Instance of the Model contains Values for

Attributes based on the source ArtifactState of an Activity, the target Arti-

factState of the Activity, the associated DeveloperState for the Activity, and

Values and Deltas of the Activity itself.

Export Baseline: Create new Model element for each level of granularity, con-

taining the behaviour of all Developers, described in an identical way as the

individual Developer behaviours.

Post-processing: None.

Once the ARFFx model instances are populated, they are processed further and ex-

ported by M2T transformation to individual CSV assets which are used for experiments

with Weka. The processing involves assigning binary classifications based on different

weight-related Attributes and a given threshold (based on the mean value for the At-

tribute), as well as confidence labels indicating the confidence in the assigned binary

classification. The attributes on which the classifications are based, as well as related

attributes can be filtered during the transformation to CSV assets. Models for individual

Developers at a given level of granularity containing a small number of Instances (be-

low a given threshold) can be grouped together to describe a generic behavior of “small

contributors” at that level of granularity. Similarly, Models for individual Developers

containing a large number of Instances can be grouped together to describe a generic

behavior of “big contributors”. Finally, using temporal characteristics related to the

distances between events of interest and their causes can be used to determine confi-

dence windows for activities across the different factors. Since the information related

to the causes for events of interest depends on knowing the events of interest, the in-
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formation for the last activities for a recorded period of time is inherently incomplete.

Based on the average time span dcause→ f ix between an event of interest and its cause, we

can infer the point in time tcon f ident = tmax −dcause→ f ix after which we cannot be certain

that the information regarding the causes for events of interest is reliable. For additional

confidence, we may also consider the standard deviation of the time spans so that the

point in time after which we cannot be certain that the information regarding the causes

for events of interest is reliable becomes textracon f ident = tmax − (dcause→ f ix +σcause→ f ix).
The confidence windows may vary for different factors.

For visual inspection, including mapping developer activities in time, visualising de-

veloper ranks and collaboration networks, as well as outcomes from the data mining

applications, we rely on the Processing36 platform. Processing is a flexible platform for

design and prototyping of large-scale motion graphics and complex data visualisation

in the context of the visual arts. Since we integrate outcomes from the data mining ap-

plications, we decided to use the facilities provided by Weka for managing the data for

the visualisation in order to rely on a unified data access layer and streamline the over-

all process. Hence, we can reuse the assessment assets produced for the data mining

applications.

5.4.6. Assessment Application

The data mining applications for determining the importance of characteristics, cluster-

ing similar activities, and predicting causes for events of interest are realised by means

of a customised interface to Weka, based on CrossPare37 [74]. CrossPare is a tool for ex-

ecuting cross-project defect-prediction experiments and benchmarks. The customised

interface based on CrossPare provides facilities for automating the assessment applica-

tions discussed in Section 4.3. By means of a comprehensive set of parameters, different

modes of operation can be selected and configured according to the task at hand. The

modes include:

• rank-attributes for determining the importance of characteristics over time

• predict for predicting causes for events of interest, supporting different kinds of

machine learning algorithms

• cluster for clustering similar activities by means of the kmeans algorithm, in-

specting the defining characteristics of the clusters, as well as predicting causes

for events of interest within the clusters

• developer-centric for predicting causes for events of interest based on predictive

models for individual developers or groups of developers

36See https://www.processing.org.
37See https://crosspare.informatik.uni-goettingen.de/trac.
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• developer-crossover for predicting causes for events of interest based on predic-

tive models transferred across individual developers, both within the same project

and across different projects

• cluster-crossover for predicting causes for events of interest based on predictive

models for groups of similar activities transferred across individual developers or

whole projects

• artifact-centric for predicting causes for events of interest based on predictive

models for individual artifacts or groups of artifacts

The different modes can be configured to apply various pre-processing steps, such as

normalising the values of the different characteristics, sorting the activities, weighting

to offset imbalanced data for predictive modelling, applying sub-sampling, as well as

selecting subsets of characteristics based on their importance or other criteria. Further-

more, the parameters can be used to determine the data partitioning for the training and

testing of the predictive models, as well as the resolution for the ranking of the charac-

teristics. The output is typically in a structured textual format, including measurements

of success indicating how good a predictive model performed against a test set, as well

as an optional description of the circumstances determining the outcome of activities

by a given developer or group of developers.

In order to support the visual inspection and visualise different patterns as well as

outcomes from the data mining applications, we implemented custom viewers based

on the Processing platform. While off-the-shelf tools and libraries for visualisation

can provide a quick and easy way to get a first glimpse into the data by means of

common visual representations, there are often limitations when it comes to advanced

visualisation and interaction capabilities. The Processing platform provides full control

and flexibility over everything that is drawn as well as how a user can interact with it,

while still hiding most of the low-level complexity. We created the following viewers:

• activity-viewer for mapping developers activities on artifacts over time, with

additional overlays for visualising prediction results and cluster assignments

• ranking-viewer for displaying developer ranks over time

• front-ranking-viewer for displaying developer rankings at the project front

• attribute-ranking-viewer for displaying the importance of characteristics over

time

• spider-viewer for displaying the importance of characteristics at a given point in

time in the form of a Kiviat diagram

• collaboration-viewer for displaying and laying out the collaboration networks

To aid the navigation and exploration of data, we created additional GUI viewers by

means of the Standard Widget Toolkit (SWT)38 which glue the various assessment and

38See https://www.eclipse.org/swt/.
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visualisation functionalities together.

In a related project [80, 82], agent-based simulation applications making use of the

developer centric assessment have been realised by means of the Repast Symphony39.

They are used for simulating software evolution and answering research questions re-

lated to system growth, software changes, as well as developer collaboration and in-

volvement.

5.5. Related Work

Existing work often stresses that data extraction and preparation in the context of MSR

is a complex and time-intensive task [66, 72, 151]. A frequent critique is that there is no

common vocabulary of terms or data representation techniques across different works

on MSR. Instead, assessment-specific ad-hoc data representations are used (compare,

for example [60, 138, 147, 168, 193]). Aside from the lost research efficiency, the mul-

titude of data extraction and representation approaches makes it hard or even impossible

to reproduce results [151]. The need for a unified infrastructure has been addressed in

several ways.

Most importantly, Gousios and Spinellis [63] designed and implemented a platform

for integrated analysis of VCS, mailing list, and issue tracking data. The platform

includes data collection and transformation into a common relational data model. Re-

searchers can implement their own analyses as plug-ins which make use of the solid

infrastructure able to parallelise tasks. However, the approach is processing centered

and does not discuss the data extraction and transformation in detail.

Another unification approach is followed in [45] where a DSL and an infrastructure

for MSR are presented. Using the proposed language Boa, programming efforts are

greatly reduced and scalability and reproducibility of results are improved. However,

the approach focuses only on VCS and does not discuss the issues related to the in-

tegration of various heterogeneous data sources. Data extraction from VCS alone is

non-trivial [53].

Several works exist that aim to describe the data under study by means of ontologies.

Facts are described as 3-tuples (subject, predicate, object). Keivanloo et al. [88] publish

a large data collection of integrated VCS, issue tracking, and quality evaluation data on

the web in Linked Data format. The work focuses on creating a common vocabulary

and sharing knowledge, not on data extraction and transformation. Very close to our

work is [92] where VCS, mailing list, and issue tracking data is represented in the

Web Ontology Language (OWL). They use a similar meta-modelling approach and the

structural part is also based on the FAMOOS Information Exchange Model (FAMIX)

model. A layered extraction and transformation architecture that reuses existing tools

that is similar to ours, is discussed in some detail in [61] and used in [60].

39See http://repast.sourceforge.net.
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A mature platform for generic data analysis, visualization, and mining is Moose40.

It is based on extensive meta-modelling, an extensible plug-in structure and a rich va-

riety of existing tools. Although generic in principle, Moose focuses specifically on

the analyses of software. At Moose’s core lies the FAMIX meta-model family that

models object-oriented programs in a language independent manner. While FAMIX

models focus on describing static snapshots of object-oriented systems, Hismo [56] en-

ables the incorporation of historical information related to artifacts by means of model

transformations. We follow a similar approach, relying on information obtained from

FAMIX models, as well as meta-models derived from other information sources, and

incorporating notions similar to those found in Moose and Hismo. However, we rely on

facilities provided by EMF and related technologies to design and implement a flexible

high-level infrastructure that can be integrated into Eclipse-based environments.

CODEMINE [32], a conceptually similar approach developed in parallel as a propri-

etary solution at Microsoft forgoes the assessment-specific abstraction, instead provid-

ing an API to the data store of extracted facts through a common data model, integrating

all available facts. They also feature a set of platform services related to data cataloging,

security and access permissions, event logging, data archiving, and data publishing.

Apart from archiving and logging, such services have not yet been considered for the

approach discussed in this chapter and may be the subject of future work.

Finally, Scheidgen [159] mentions modelling software repositories in EMF as an

application of their EMF fragmentation technique. Our approach is similar in that we

rely on a set of MSR meta-models developed on top of EMF, but while they focus

primarily on methods for scaling large model instances, we focus on providing a flexible

software mining infrastructure. The approaches can be considered complementary, in

that our infrastructure will benefit from better handling of large model instances and

at the same time, it can serve as a case study for different fragmentation strategies to

improve the scalability of EMF models.

5.6. Summary

In this chapter, we discuss a high-level model-based approach to software mining. The

approach is based on domain-specific meta-models related to assessment tasks of inter-

est, describing the relevant concepts and their relationships as the common core infor-

mation model. Facts needed for the assessment are extracted often by third-party ap-

proaches and tools where available, which results in heterogeneous facts assets. To ease

the integration of these diverse heterogeneous facts assets, we translate them into ho-

mogeneous high-level facts model instances. These can then be assembled together and

mapped to the high-level concepts in the assessment-specific meta-models by means

40See http://www.moosetechnology.org.
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of model transformations, which are used to populate and enrich instances of the as-

sessment meta-models in a stepwise manner. The assessment model instances are then

queried to produce assessment assets which can be fed into third-party assessment appli-

cations for prediction, clustering, simulation, and visualisation purposes. The approach

serves as a glue between different existing third-party and custom-made mining solu-

tions, interconnecting the various tools and assets, related to both data extraction and

knowledge derivation, at a high level of abstraction, without unnecessarily tight cou-

pling. The proposed approach can provide traceability links between transformations in

order to support validation of obtained results and actions upon these results, as well as

extensibility at any point in the process. We presented a concrete instantiation for the

realisation the approaches described in Chapter 4 and Chapter 3. We relied on various

tools for facts extraction which are widely used in research. The modelling approach

and the corresponding technologies provide interfaces for obtaining models from vari-

ous lower-level representations by means of corresponding mappings which makes the

integration of various input and output formats very convenient and reusable. The in-

tention of the proposed approach is to lower the barrier to entry for researchers and

practitioners alike and allow them to focus on the assessment tasks rather than the min-

ing technicalities, without imposing any restrictions with regard to the available facts,

their integration, and their application.

The presented instantiation showcase describes one concrete instantiation scenario

related to approaches discussed in this thesis. The model-based software mining infras-

tructure can be tailored for other assessment tasks as well, even beyond the domain of

software mining and software assessment. Other types of facts assets, such as test cov-

erage reports, can be integrated in a similar manner to support the presented assessment

task or related ones. Similarly, a different set of raw and facts assets can be considered

for further assessment tasks, such as investigating the activity on mailing lists and ITS.

In addition, other applications, can be integrated as well, reusing the facilities related to

particular asset and facts types between instantiations.

Certain aspects remain the subject of further work. To support larger scale models

and assessment tasks, viable and transparent scalability solutions need to be investi-

gated. Deploying the mining infrastructure in a cloud environment is of particular inter-

est for future work. We have started exploring a deployment of the approach within a

cloud-based smart data platform for supporting empirical software research [174, 175].

While the approach supports a wide range of integration scenarios by extension of the

flexible underlying transformation technologies, some assets and assessment scenarios

may pose new integration challenges.



6. Case Studies

In this chapter, we describe case studies performed to evaluate the approaches for the

identification of causes for events of interest described in Chapter 3 and for the charac-

terisation of developer behaviour discussed in Chapter 4. In the following sections we

focus on the description of the experiments and their results. In Chapter 7 we discuss

the results and their interpretation in the context of this thesis.

6.1. Goals

The overall goal for the experiments is to demonstrate and evaluate the effectiveness of

the approaches discussed in this thesis. We formulate specific goals aligned with the

overall challenges and high-level questions identified within Chapter 1.

Before we address the main challenges, we need to assess the approach for the iden-

tification of potential causes for events of interest. The primary goal is to asses the

impact of the multi-layer approach. For this goal, we investigate the potential benefits

of using the multi-layer weighting approach at finer levels of granularity as compared to

simply inheriting labels or even weights from containing artifacts across the used data

sets. We evaluate the impact of different weight distribution strategies and thresholds.

Based on the results, we select the strategies and thresholds that will be used for the

experiments addressing the subsequent challenges.

In order to determine what constitutes developer behaviour, we considered the dif-

ferent circumstances under which developers operate, based on the various sources of

information, levels of granularity, and collaborations with other developers. We defined

different dimensions and characteristics related to the circumstances and grouped them

under situational factors (related to the artifacts on which a developer works) and dispo-

sitional factors (related to the developer working on the artifacts). To assess the impact

of the different characteristics as well as the two groups of factors as a whole, we fo-

cus on the impact of the different characteristics with respect to predictive modelling

for defect prediction. We evaluate the additional characteristics across the different di-

mensions against a baseline of only considering part of the situational characteristics

relating to the target state.

Next, we proceed to assess the impact of the circumstances that are associated with

potential causes for events of interest globally and for individual developers and/or

groups of developers. We focus on bug fixes as events of interest and corresponding
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bugs as their potential causes. We evaluate predictive modelling for defect prediction

based on the activities of individual developers against a baseline considering the activ-

ities of all developers.

To investigate the impact of changes in the behaviour of developers, we identify sim-

ilar activities in the behaviour of developers with respect to potential causes for bug

fixes as events of interest. To achieve this, we need to identify clusters of similar cir-

cumstances that are associated with potential causes for events of interest within the

behaviour of individual developers and assess their impact with respect to potential

causes for events of interest. Correspondingly, we cluster activities based on their sim-

ilarity and use them in predictive modelling for defect prediction against a baseline

considering all activities.

Finally, to investigate transfer opportunities between different developers and differ-

ent projects, we assess the impact of using differentiated predictive models trained on

the behaviour of one developer to predict causes for events of interest in the behaviour

of other developers. We use the activities of each developer to train a predictive model

and predict the outcomes of activities of all other developers, both within the same

project and within other projects. In some cases, the same developers contributed to

multiple projects in the data sets, so we evaluated also using the activities of one devel-

oper within one project to predict the outcomes of the activities of the same developer

within another project.

6.2. Evaluation Criteria

The case studies seek to assess the impact of the approaches discussed in this thesis

with regard to several different goals. While the goals are related and rely on the same

data, the different focus of the approaches requires different evaluation criteria. In this

section we discuss the individual criteria for each approach.

6.2.1. Identifying Potential Causes for Events of Interest

To evaluate the impact of the multi-layer approach we consider several different aspects.

As a baseline we first consider the scenario where no weighting is applied (binary clas-

sification of causes), that is every potential cause is considered as the cause for an event

of interest. In this case, any revision at the project layer that is identified as the potential

cause for an event of interest carries full responsibility. This applies also to all artifacts

modified within that revision both at the file and at the logical layer (copy strategy).

Second, we consider the scenario where weighting is applied at the project layer

based on the approach described in Section 3.3 (weighted classification of causes), that

is potential cause is assigned a contributed weight for each event of interest it has con-
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tributed to. The contributed weight is divided among all potential causes. At the file

and logical layers we still apply the copy approach for weight distribution.

Third, we consider the scenarios where both the weighting approach and the weight

distribution strategies are applied at all layers based on the approach described in Sec-

tion 3.5 (distributed classification of causes). In this case, the contributed weight is

divided among all potential causes at the project layer, whereas the different weight

distribution strategies are applied at the file and logical layers.

The main goal of the approach is to quantify and refine the identified causes for events

of interest at different levels of granularity. We report and compare the distribution of

the identified causes for each scenario and corresponding amount of artifacts and code

that is potentially causing events of interest, focusing on the reduction of the number of

artifacts and amount of code implicated in causing events of interest. We focus on one

type of events of interest — bug fixes based on keyword search.

6.2.2. Developer-Centric Assessment

To evaluate the impact of the developer-centric assessment, we compare the outcomes

of applying predictive modelling for defect prediction in different scenarios. Predictive

models for defect prediction are typically evaluated based on common measures for the

evaluation of binary classification approaches. Defect prediction can be considered as

a binary classification problem, where a predictive model classifies data instances into

defective (class true) or not (class false). The outcome from the classification is the ob-

servation from a defect prediction experiment. The actual classes for the data instances

used for the evaluation are typically known in advance and define the expectation. The

comparison between the observation and the expectation, or the predicted and actual

classes after an experiment results in a so-called confusion matrix. The conceptual idea

behind the confusion matrix is shown in Figure 6.1. In a binary classification experi-

ment, there are four possible outcomes for each data instance:

• true positive (tp) if it observed and expected, that is both predicted to be defective

and actually defective in the context of defect prediction,

• false positive (fp) if it observed but not expected, that is, it is predicted to be

defective and but not actually defective (also referred to as Type I error),

• false negative (fn) if it is not observed, but expected, that is, it is predicted to be

not defective, but it is actually defective (also referred to as Type II error,

• true negative (tn) if it not observed and not expected, that is, both predicted to be

not defective and actually not defective in the context of defect prediction.

Based on the relationships between these outcomes, various measures are defined to

assess the performance of a predictive model. Commonly used among them are preci-

sion (also known as positive predictive value) and recall (also known as true positive
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Figure 6.1.: Confusion matrix: expectations and observations in binary classification

rate and probability of detection). Precision in this context is indicative of the propor-

tion of outcomes predicted as defective that are actually defective and defined as:

precision =
t p

t p+ f p
(6.2.1)

Recall in this context is indicative of the proportion of actual defective outcomes that

are predicted as such and defined as:

recall =
t p

t p+ f n
(6.2.2)

Considering precision and recall as indicative of the performance of a predictive

model with respect to false positives and false negatives is more transparent and easily

interpretable. However, contemplating both measures over extensive experiments may

be too cumbersome. The F-measure (also known as F-score) as the harmonic mean

between the precision and recall is well suited for summarising and comparing results

from multiple experiments in a more concise way. It is defined as:

F −measure = 2 ·
precision · recall

precision+ recall
(6.2.3)

These measures are frequently used in the evaluation of defect prediction approaches,

however, there are other measures that are also commonly used, including area under
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the curve (both based on receiver operating characteristic and precision-recall curves),

G-measure, Matthews’ Correlation Coefficient, among others. Currently, there is no

common agreement regarding the best suited measures for the evaluation of predictive

models and in particular when applied to defect prediction [75, 85]. Weighted averages

of precision, recall, and F-measure can be considered as indicative of the discrimination

ability of a predictive model. However, due to the typically low prevalence of activi-

ties resulting in a defect in the data sets used for defect prediction, weighted averages

can mask poor performance with respect to correctly predicting activities resulting in a

defect. Correspondingly, we focus on the precision, recall, and F-measure for the true

class only, that is for activities resulting in a defect. Nonetheless, we collected vari-

ous other performance measures during the experiments which will be the subject for

further analysis in the future.

6.3. Data Sets Description

The projects used for the case studies were selected on randomised basis from the K

Desktop Environment (KDE), Apache, and Eclipse communities. These communities

were selected as some of the largest sources of mostly homogeneous data due to estab-

lished guidelines for contributors and supporting infrastructure. The main criteria for

the selection of projects were the use of the git VCS, implementation in the C++ and

Java languages, as well as the use of the respective BugZilla ITS for each community

(indicated by the presence of a corresponding BugZilla project with at least 10 reported

issues). The projects were selected in such a way that they represent a mixture of dif-

ferent classes with respect to number of revisions, number of developers, and number

of reported issues.

The VCS and ITS assets related to the projects were processed in order to extract

basic facts and transform them into facts models according to the model-based mining

approach described in Chapter 5. This resulted in a separate data set for each project

comprising an MG model from the VCS, a BZ model from the ITS, as well as a set

of FAMIX models containing static analysis data for each revision in the VCS. An

overview of the resulting data sets is presented in Table 6.1. The selected projects are

grouped by language (C++ and Java) and sorted by number of revisions in each group.

The time span indicates the years of the first and last recorded revision in the data set.

Since most projects are still in active development, collecting the data at a later point

will likely result in different numbers. The number of developers indicates the size of

the contributor community which is typically roughly proportional to the number of

revisions, however, there are also some anomalies, such as egit and jgit, which have

unusually high number of developers for the corresponding number of revisions. This

suggests that a lot of the contributors participated in the project only sporadically. Fi-

nally, the number of issues is an indication of the community involvement in requesting
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Project Revisions Time Span Developers Issues Lang.

amarok 32823 2003–2012 349 17181 C++

kate 15112 2001–2014 352 7263 C++

konsole 6426 1998–2014 262 4153 C++

k3b 6217 2001–2012 129 3832 C++

ktorrent 4129 2005–2014 77 2576 C++

rekonq 2814 2008–2012 78 2140 C++

plasma-nm 1662 2013–2014 36 165 C++

ksudoku 802 2007–2014 69 93 C++

yakuake 516 2006–2014 28 267 C++

ant 15321 2000–2014 50 5849 Java

emf 8690 2004–2014 23 2574 Java

poi 6125 2002–2014 34 3140 Java

log4j 3551 2000–2014 21 1365 Java

egit 3219 2009–2014 84 2803 Java

jgit 2558 2010–2014 111 669 Java

sirius 701 2013–2014 16 132 Java

egit-github 592 2011–2014 15 2803 Java

Table 6.1.: Overview of selected data sets.

new features and reporting issues related to the project. While a lot of the issues are

typically reported by the developers themselves for the purposes of project management

and transparency, depending on the type of the project and its target audience, the num-

ber of issues can reflect the involvement and size of the broader community, including

developers of other projects relying on a particular project and end users. For exam-

ple, most of the C++ projects selected from the KDE community are targeted towards

end users, whereas most of the Java projects selected from the Apache and Eclipse

communities are targeted towards other developers which integrate them into their own

projects. The scope, purpose, and distinctive characteristics of the selected projects are

summarised below:

amarok Amarok (amarok.kde.org) is a comprehensive music and media playback

and management software. It is integrated in the KDE package and as such bun-

dled with many Linux distributions hence exposed to a large number of end users.

Its first release was published in 2003.

kate Kate (kate-editor.org) is an advanced text editor delivered as part of the KDE

package. Similar to Amarok, it is bundled with many Linux distribution and

hence also exposed to a large number of end users. In addition, it is possible
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to embed Kate as an editing component in other KDE applications, thus Kate

serves both end users and downstream developers. Its first release was published

in 2001.

konsole Konsole (konsole.kde.org) is a terminal emulator integrated in the KDE

environment. Due to its nature it is targeted towards more technical end users.

Similar to Kate, it can be integrated in other KDE applications in order to pro-

vide embedded terminal functionality, thus it also serves downstream developers

within the KDE community. First recorded tagged revision in the VCS repository

referring to v1.1.0 is from 1999.

k3b K3b (k3b.org) is a CD and DVD authoring application bundled with the KDE en-

vironment. While it has been around reportedly since 1998, the first VCS records

are from 2001.

ktorrent Ktorrent (ktorrent.org) is a BitTorrent client delivered with the KDE en-

vironment. Version v1.0 was tagged in the VCS repository in 2005.

rekonq Rekonq (rekonq.kde.org) is a lightweight web browser developed within

the KDE environment. While the larger KDE projects are generally bundled with

KDE and serve as default applications for the corresponding purposes, rekonq an

optional application that may be installed in addition to the default web browser

bundled with KDE. Given the wider popularity of other cross-platform browsers

such as Firefox and Chrome, and the presence of another browser included by

default with KDE, rekonq has remained comparatively small and as of 2014 it is

no longer actively developed. Its initial release was published in 2008.

plasma-nm The Plasma Network Manager applet is a small project providing a GUI

front-end for managing network connections within the KDE environment. It was

first released in 2013.

ksudoku Ksudoku (games.kde.org/game.php?game=ksudoku) is a logic-based

symbol placement puzzle game for the KDE environment. The first recorded

revisions in the VCS repository are from 2007.

yakuake Yakuake (yakuake.kde.org) is a terminal emulator for the KDE environ-

ment. Similar to rekonq, it is an optional application providing a different set of

features and as such it is exposed to a smaller audience of end users. However,

similar to Kate and Konsole it may be integrated into other applications, thus also

serving downstream developers within the KDE community. The first recorded

revisions in the VCS repository are from 2006.
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ant Apache Ant (ant.apache.org) is a tool for automating software build processes.

Its end users are typically software developers, although it may be integrated in

products targeting a wider audience. It saw its first release in 2000.

emf EMF (eclipse.org/emf) is an Eclipse-based modelling platform providing fa-

cilities for the specification of structured data models, as well as instantiating and

manipulating model instances. It provides a foundation for the interoperability

between EMF-based tools and applications. While its direct users are software

developers, it is also often integrated into various end users software products.

The first recorded revisions in the VCS repository are from 2004.

poi Apache Poi (poi.apache.org) is a collection of libraries providing Java inter-

faces for reading, writing, and manipulating Microsoft Office documents. Its

direct users are software developers, but it is usually integrated into end user soft-

ware products. While its first version was released in 2001, the VCS repository

provides records going only as far back as 2002.

log4j Apache Log4j (logging.apache.org/log4j) is a Java-based logging frame-

work. Similar to Apache Poi, while it is targeted at developers as its direct users,

it is often integrated in a wide range of end user software products. Its first version

was released in 2001.

egit EGit (eclipse.org/egit) is a plug-in for the Eclipse platform providing an in-

tegration with the Git VCS. It relies on JGit as a back-end providing an interface

to the VCS. Its primary users are developers working with the Git VCS within

Eclipse. The first recorded revisions in the VCS repository are from 2009.

jgit JGit (eclipse.org/jgit) is a lightweight Java-library for working with Git VCS

repositories. Similar most of the Java projects, it is targeted at developers as

its direct users, and even users of downstream applications using JGit are often

developers. The first recorded revisions in the VCS repository are from 2010.

sirius Sirius (eclipse.org/sirius) is a platform for creating custom graphical mod-

elling workbenches built on top of other Eclipse modelling technologies, such as

EMF and the Graphical Modeling Framework (GMF). Similar to other selected

Java projects, it is targeted at developers as its direct users, but it is also integrated

in a wide range of end user software products. The first recorded revisions in the

VCS repository are from 2013.

egit-github EGit-Github (eclipse.org/jgit) is an extension for EGit providing ad-

ditional integration for working with Git VCS repositories hosted on Github. The

first recorded revisions in the VCS repository are from 2011.
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6.4. Case Study Results

In this section we describe the results from two case studies performed to evaluate

different aspects of the approaches for the identification of causes for events of interest

described in Chapter 3 and the characterisation of developer behaviour discussed in

Chapter 4.

6.4.1. Identifying Potential Causes for Events of Interest

In this section, we investigate the impact of using the multi-layer weighting approach

at finer levels of granularity and of the different weight distribution strategies. First

we investigate the potential benefits of using the layered approach at finer levels of

granularity in comparison to inheriting weights from containing artifacts. Weights are

inherited to all contained artifacts under the assumption that without any refinement all

states of contained artifacts at the file and logical layer corresponding to a given state at

the project layer identified as a potential cause for an event of interest. This results in

a set of states projected to be contributing to causing an event of interest. In contrast,

the layered approach distributes weights on each layer based on independent cause-fix

relationships.

6.4.1.1. Methodology

To assess the impact of the layering, we initially consider 2-fold grouping of states of

artifacts, where states are grouped based on their average weights as either having a

weight of 0 (not considered as a cause for an event of interest) or 1 (including all states

considered as causes for events of interest where their weight is more than 0). We

compare the number of states identified as causes for events of interest when using the

layered approach at finer levels of granularity and the baseline approach of inheriting

weights from containing artifacts. This way, we can determine the number of states that

would otherwise be incorrectly identified as causing events of interest resulting in noise

in the data if the baseline approach is used.

To gain further insight into the impact of the weighting approach we consider 10-fold

grouping. In this case, we assign states considered as causing events of interest to 10

groups based on their weight. The groups represent 10 intervals between 0.0 and 1.0,

where each interval has a lower (lb) and an upper (ub) bound, for example the for the

interval between 0.0 and 0.1, lb = 0.0 and ub = 0.1. The states are assigned to the

corresponding intervals based on lb < aw ≤ ub. This provides us with a summarised

insight into the distribution of the weights among the states. It also can help in pri-

oritising high confidence causes that have higher average weight and filtering out low

confidence causes that can also be considered noise.
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1 "defect(s)?"

2 "patch(ing|es|ed)?"

3 "bug(s|fix(es)?)?"

4 "(re)?fix(es|ed|ing|age|\s?up(s)?)?"

5 "debug(ged)?"

6 "\#\d+"

7 "back\s?out"

8 "revert(ing|ed)?"

Listing 6.1: Regular expressions for the BugFix factor

Finally, we assess the impact of the weight distribution strategies. Since the strate-

gies do not affect the binary grouping, we consider their impact based on the 10-fold

grouping. We compare the differences in the distributions of average weights from the

projection approach when using the different weight distribution strategies.

6.4.1.2. Layered Approach

We consider the BugFix factor. It is based on the is_bug_ f ix property of the Revi-

sion in the MG model. Revisions in the MG model are mapped to GlobalStates in the

CFA model and correspond to states at the project layer. The BugFix factor has the

value 1 if the message of the Revision matches one of the regular expressions defined

in Listing 6.1 and 0 otherwise. The regular expressions are adopted from the CVSAna-

lY/MininGit tool that was used for the extraction of facts from the VCS.

As an example, we first contemplate a 2-fold grouping scenario to showcase the

differences between the layered approach and a projection from the project layer to finer

levels of granularity. Consider the summary for the BugFix factor for the randomly

selected Konsole project shown in Table 6.2. At the project level of granularity we

consider only the project states that involve the modification of artifacts of type code

at the file level of granularity. Naturally, in this case there is no difference between the

layered approach and the projected number of states since the layering approach does

not affect the project layer. At the project layer we observe that 1509 states or 30.7%

of the states are considered to be causes for events of interest with regard to the BugFix

factor (i.e. considered to be causes for bug fixes, or, put simply, considered to be adding

bugs that needed fixing). If we do not apply the layering approach, this would implicate

5485 states or 46.5% of the states at the file layer as projected to be causing bug fixes.

As noted in Section 3.4, it is often the case that only a subset of the artifacts at the

file level of granularity contribute to a cause for an event of interest for a given state

at the project level of granularity. Applying the layered approach results in 2616 states

or 22.2% of the states at the file layer of granularity. Thus, in this case the layered

approach helps to reduce the number of states incorrectly considered to be causing bug

fixes by 52.3%, which would otherwise introduce noise at the file level of granularity.
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Projected Layered

Group Total Count Ratio Count Ratio Change

Project (code) 4915 1509 30.7% 1509 30.7% 0.0%

File (code) 11794 5485 46.5% 2616 22.2% -52.3%

Logical (Class) 2757 1999 72.5% 432 15.7% -78.4%

Logical (Method) 15584 10999 70.6% 1865 12.0% -83.0%

Table 6.2.: Causes for events of interest: Konsole (2-fold, factor BugFix).

The differences at the logical level of granularity are even more substantial with re-

ductions of 78.4% and 83.0% in the number of states considered as causes for bug fixes

for artifacts of type Class and Method, respectively. Considering the fact that without

the layered approach more than 70% of the states would have been projected to be caus-

ing bug fixes, where in fact only 12–15% should be considered as such, as the remaining

have no direct relationships with the bug fixes. In this case the layered approach makes

a clear difference in reducing noise. These findings for the Konsole project are also

visualised in Figure 6.2 where we see comparisons of the respective number of states

causing events of interest with regard to the BugFix factor in the different layers when

using projection from the project and when using the layered approach.

To emphasise the impact of the layered approach on the binary grouping, the amount

of changes in the grouping of the states for the Konsole project at the file and logical

layer are also visualised in Figure 6.3. In this case we see the percentage of states that

were reassigned in each group when using the layered approach in comparison to the

projected approach.

A summary of the results in the 2-fold grouping over all projects is shown in Table 6.3

(file layer) and Table 6.4 (logical layer)41. We focus on the grouping in the interval be-

tween 0.0 and 1.0 as it is of primary interest. The grouping for the states that are not

considered as causes for events of interest can be inferred based on the provided counts

and ratios. At the file layer, the application of the layered approach leads to reduction in

the number of potential causes for events of interest in the range between 50% and 80%,

with the Egit-github project reaching even 93%. This way the ratios of causing states

are reduced from 45–80% to 10–30%, considerably reducing the amount of noise. At

the logical layer, the reduction in the number of potential causes for events of interest

is even more substantial, ranging from 75% to 95%. This leads also to corresponding

reduction in the ratios of causing states from 50–95% to 4–18%, thereby also reducing

the amount of noise. The Egit-github project again presents some anomalous results,

41Logical layer results for the projects amarok, ant, emf, kate, and poi were not available at the time of

writing. Based on the results for these projects at the file layer as well as the overall trend for the other

projects at the logical layer, the results for these projects at the logical layer are expected to follow the

overall trends
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Figure 6.2.: Causes for events of interest: Konsole (2-fold, BugFix)
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Figure 6.3.: Changes to causes for events of interest: Konsole (2-fold, BugFix)



171 6.4. Case Study Results

Projected Layered

Project Count Ratio Count Ratio Change

amarok 52622 0.635 22188 0.268 -57.8%

kate 15201 0.466 6132 0.188 -59.7%

konsole 5485 0.465 2616 0.222 -52.3%

k3b 22420 0.718 9056 0.290 -59.6%

ktorrent 11668 0.552 2681 0.127 -77.0%

rekonq 5230 0.697 2464 0.329 -52.9%

plasma-nm 2015 0.488 478 0.116 -76.3%

ksudoku 653 0.587 267 0.240 -59.1%

yakuake 317 0.437 151 0.208 -52.4%

ant 26246 0.404 4798 0.074 -81.7%

emf 12194 0.463 2539 0.096 -79.2%

poi 25854 0.677 9997 0.262 -61.3%

log4j 8819 0.580 3359 0.221 -61.9%

egit 4808 0.584 1583 0.192 -67.1%

jgit 4094 0.478 990 0.116 -75.8%

sirius 19300 0.796 6088 0.251 -68.5%

egit-github 177 0.112 12 0.008 -93.2%

Table 6.3.: Overview of results at the file layer (code, 2-fold, BugFix).

where the ratios of states causing events of interest to states not causing events of in-

terest are much lower than the rest of the projects. Nonetheless the reduction resulting

from the application of the layered approach falls in the range of the other projects.

6.4.1.3. Weighting Approach

Next, we contemplate a 10-fold grouping scenario to showcase the weight distribution

differences between the layered approach and the projection from the project layer to

finer levels of granularity. Consider the summary for the BugFix factor for the Konsole

project shown in Figure 6.4. As in the 2-fold grouping, the weight distribution has

no impact at the project layer, however, there are noticeable differences at the file and

logical layers. Notably, at the lower end of the spectrum, with the layered approach

there is a sharp reduction in the number of states that are assigned an average weight

in the interval between 0.0 and 0.1. At the same time there is a visible increase in the

number of states that are assigned an average weight in the interval between 0.9 and 1.0

when using the layered approach. Consequently, this results in a lower number of low

confidence causes and at the same time in a higher number of high confidence causes,

both of which are desirable outcomes of the approach.
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Projected Layered

Project Count Ratio Count Ratio Change

Class

konsole 1999 0.725 432 0.157 -78.4%

k3b 9256 0.899 1344 0.130 -85.5%

ktorrent 5057 0.642 354 0.045 -93.0%

rekonq 1339 0.826 244 0.150 -81.8%

plasma-nm 466 0.612 29 0.038 -93.8%

ksudoku 347 0.792 58 0.132 -83.3%

yakuake 127 0.641 31 0.157 -75.6%

log4j 6442 0.619 1237 0.119 -80.8%

egit 6563 0.597 1709 0.155 -74.0%

jgit 4482 0.510 1014 0.115 -77.4%

sirius 13294 0.867 2682 0.175 -79.8%

egit-github 168 0.100 11 0.007 -93.5%

Method

konsole 10999 0.706 1865 0.120 -83.0%

k3b 42523 0.887 5406 0.113 -87.3%

ktorrent 27940 0.610 1719 0.038 -93.8%

rekonq 7011 0.800 1335 0.152 -81.0%

plasma-nm 2121 0.619 247 0.072 -88.4%

ksudoku 1794 0.827 195 0.090 -89.1%

yakuake 1123 0.734 172 0.112 -84.7%

log4j 17146 0.593 1404 0.049 -91.8%

egit 13776 0.681 1943 0.096 -85.9%

jgit 17561 0.639 1268 0.046 -92.8%

sirius 64926 0.947 3932 0.057 -93.9%

egit-github 523 0.104 18 0.004 -96.6%

Table 6.4.: Overview of results at the logical layer (2-fold, BugFix).
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Figure 6.4.: Causes for events of interest: Konsole (10-fold, BugFix)

To have a more detailed look at the changes in each group, we consider the amount

of changes in the respective groups visualised in Figure 6.5. In the provided example,

we can observe increases in the number of states corresponding to the increase in confi-

dence. At the file layer, there are two exceptions (0.5 to 0.6 and 0.8 to 0.9) where there

is a decrease in the number of causes with corresponding confidence. At the logical

layer for artifacts of type Class, the groups for the intervals between 0.3 and 0.4 as well

as 0.5 and 0.6 showed little or no difference, and in the groups for the intervals between

0.6 and 0.7 as well as 0.8 and 0.9, the projection approach did not produce any causes

with that confidence, whereas the layered approach did produce 11 causes leading to an

increase. For the type Method, there is only one decrease for the interval between 0.5

and 0.6.

Examining the results related to the amount of change in the 10-fold grouping for two

other randomly selected examples for projects Ktorrent and Log4j, shown on Figure 6.6

and Figure 6.7, respectively, we obtain a somewhat similar impression. When using the
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layered approach, the number of states in the high confidence groups for the interval

between 0.9 and 1.0 has increased substantially at the logical layer for artifacts of the

Class type for both projects, as well as for artifacts of the Method type in the Ktorrent

project, whereas there is only a marginal increase for artifacts of the Method type in

the Log4j project. At the same time there is an overall decrease in lower confidence

groups. However, there are also some notable differences. At the logical layer, for the

Log4j project there is also a substantial increase in the medium confidence groups for

the interval between 0.4 and 0.5 for artifacts of both types. At the file layer for the

project Ktorrent there is a slight decrease (−24.4%) in the high confidence group for

the interval between 0.9 and 1.0, which is rather atypical when compared to all other

projects. This suggests that among the states projected to be causing events of interest

with high confidence at the file layer, there is still a considerable amount of noise.

This is due to the fact that even states causing events of interest with high confidence

the project layer frequently contain multiple states at the file layer, not all of which are

related to causing the event of interest. Ultimately, while the layered approach generally

leads to redistribution of weights towards increasing the number of states considered as

causing events of interest with high and medium confidence and decreasing the number

of states considered as causing events of interest with low confidence, the distribution

of the weights may still vary between projects depending on the nature of changes

developers commit.

A summary over all projects of the 10-fold grouping for the changes in the num-

ber of causes for events of interest when comparing the layered approach is shown in

Figure 6.8. The overall trends are largely similar to the individual projects discussed

above. We note that smaller projects tend to exhibit larger changes compared to larger

and more mature projects.

6.4.1.4. Weight Distribution Approach

So far we considered the case where no weight distribution strategy is applied, that

is, the removed weights for events of interest at the project layer are inherited by the

corresponding states at the file and logical layers. Next, we contemplate the impact

of the different strategies on the distribution of causes for events of interest. Similar

to the results in Figures 6.5, 6.6, and 6.7 discussed above, we consider the changes to

the number of causes for events of interest when compared to the projection approach.

We compare the differences in distribution of the causes for events of interest within

the 10-fold grouping from the projection from the project layer to finer levels of gran-

ularity. We consider the scenario when using the layered approach without any weight

distribution strategy (inheriting the removed weight) as discussed above, and when us-

ing the layered approach with the different weight distribution strategies described in

Section 3.5.
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Figure 6.5.: Changes to causes for events of interest: Konsole (10-fold, BugFix)
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Figure 6.6.: Changes to causes for events of interest: Ktorrent (10-fold, BugFix)
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Figure 6.7.: Changes to causes for events of interest: Log4j (10-fold, BugFix)
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Figure 6.8.: Average changes to causes for events of interest (10-fold, BugFix)

The results for the three projects discussed above are summarised in Figures 6.9,

6.10, and 6.11. Several observations can be made based on the three projects. The use

of weight distribution strategies reduces the number of high confidence causes (in the

interval between 0.9 and 1.0) when compared to not using weight distribution strategies

(and in some cases even when compared to the projection approach). This is expected,

as where removed weights in the fixing states are inherited from the project state, a

weight distribution strategy splits the removed weight among all states at a finer level

of granularity, and in most cases changes affect multiple artifacts. All strategies have

largely similar effect on lower confidence causes (in the groups between 0.1 and 0.5),

however, the effects on higher confidence causes (in the groups between 0.6 and 0.9)

vary between projects and levels of granularity. This is a desirable outcome as different

strategies are intended to highlight different aspects of fixes for causes of events of in-

terest in order to facilitate prioritisation based on a particular characteristic. Depending

on the nature of the changes in a project, these become evident also in the summarised

results.

A more detailed view on the distribution of the average weights across the different

layers for the Konsole project is shown in Figures 6.12, 6.13, and 6.14. In this case, each

state of each artifact at the corresponding layer is plotted on the horizontal axis and the

average weights are plotted on the vertical axis. Different colours and symbols are used

to distinguish the average weights when using the different distribution strategies. Black

dots are used to indicate the average weights when using inherited weights (no weight

distribution). From the detailed view, we can observe that without weight distribution,

the resulting average weights tend to form narrow bands at 1.0, 0.5, 0.33, and 0.25

(especially at the file layer and at the logical layer for type Method). On the other hand,

the use of weight distribution strategies provides a more nuanced view with weights

spread across a wider spectrum.

6.4.1.5. Other Factors

So far we focused only on the BugFix factor discussed above. In addition to it,

we explored several other factors. They were based on simpler regular expressions
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Figure 6.9.: Changes to causes for events of interest: Ktorrent (10-fold, BugFix, with

distribution strategies)
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Figure 6.10.: Changes to causes for events of interest: Konsole (10-fold, BugFix, with

distribution strategies)
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Figure 6.11.: Changes to causes for events of interest: Log4j (10-fold, BugFix, with

distribution strategies)
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Figure 6.12.: Average weights for causes for events of interest with distribution strate-

gies: Konsole (File layer (Code))
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Figure 6.14.: Average weights for causes for events of interest with distribution strate-

gies: Konsole (Logical layer (Method))

such as the Fix factor matching commit messages against the regular expression

“.*(fix|bug|bug:).*”. The Fix factor yielded comparable results as the more

elaborated BugFix factor, with only occasional minor deviations. This prompted the

investigation of the Refactoring factor based on a similarly simple regular expression

“.+(factored|factoring).*” for detecting potential refactorings. However, this

approach yielded very few results across all projects (typically < 5% at the project layer

and < 1% at the logical and file layers). Further investigation into refactorings needs

to be considered in order to determine whether refactorings are in fact very rare in the

contemplated projects or whether a more effective classification approach, such as the

ones described in [14, 24, 68, 79, 183], needs to be applied to improve the results. The

weighting approach itself is independent from the assignment of the removed weights

for events of interest across the different factors. It only serves for the identification of

the potential causes for these events of interest.

6.4.2. Developer-Centric Assessment

In this section we describe the results from the case studies performed to evaluate dif-

ferent aspects of the developer-centric assessment based on the characterisation of de-
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veloper behaviour discussed in Chapter 4. While we aim to cover several aspects of the

approach, the experiments discussed in this section and the extent to which the results

are presented are still limited in scope and not exhaustive. We have reduced the results

to F-measure averages comparisons for summarisation due to the broad scope of the

evaluations. Considering other measures as well as looking beyond the averages merit

additional discussion which is necessary to better understand the consequences of the

different options described in this chapter.

For the evaluation, we considered data from all projects except egit-github, which

was left with only three causes for events of interest after excluding activities from the

confidence window. The ratio of causes for bug fix events of interest to total number

of activities ranged between 6% and 33% (code) at the file layer and between 7% and

19% (class) as well as 3% and 19% (method) at the logical layer.

For each experiment, we split the activities into training and testing data. We fol-

lowed a percentage split (PS) approach, splitting the data at 50%. In general, the ac-

tivities included a low number of causes for events of interest resulting in a strong bias

in the data. In addition, the causes for the events of interest are not evenly distributed

throughout the recorded timeframes. Thus, in addition to the plain percentage split, we

also consider true split (TS), where the activities are split based on the percentage of

the causes for events of interest. In this case, the split is performed after reaching 50%

of the causes for events of interest. This resulted in splits at points between 11% and

52% of the activities when considering all the activities in a project, and between 9%

and 92% of the activities when considering the activities for each individual developer.

We considered five algorithms which are frequently used in the literature and are

representative of different classes of machine learning approaches: C4.5 decision tree

(DT) [143], logistic regression (LR) [31], naïve Bayes (NB) [156], random forest

(RF) [17], and support vector machine (SVM) [178]. During the experiments, we used

the default parameters for all of the machine learning algorithms as specified in the

Weka [64] platform.

We applied the machine learning approaches on all activities within the project (re-

ferred to as All), as well as on the subsets of activities for each developer (referred to

as DS). We considered only developers that have performed at least 100 activities and

at least one activity caused an event of interest. At the file level of granularity, such

developers performed 93% of the activities and 94% of the causes for events of inter-

est across all projects, ranging between 76% and 99% for the individual projects. We

summarised the results for the individual developers by taking the averages among all

developers. Additionally, the low overall number of causes for events of interest trans-

lates to even smaller number of causes for events of interest for individual developers

with fewer activities and thus resulting in a stronger bias in the data. Consequently, we

also report the average of developers having at least 100 causes for events of interest in

the training data (referred to as DS 100). At the file level of granularity, such developers

performed 70% of the activities and 76% of the causes for events of interest across all
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Activities Causes

Application Count % of All Count % of All Causes Ratio

All 263582 100% 49196 100% 18.7%

DS 245375 93.1% 46376 94.3% 18.9%

DS 100 186603 70.8% 37406 76.0% 20.0%

Table 6.5.: Overview of the data at the file layer (code)

projects, ranging between 22% and 95% for the individual projects. The causes for bug

fixes amounted to 18% of all activities in the All application, 18% of all activities in

the DS application, and 20% of all activities in the DS 100 application. An overview

of the total number of activities and causes for events of interest, as well as the ratio

of causes for events of interest to all activities for the three applications at the file level

of granularity for artifacts of type code is shown in Table 6.5. Similar relationships

between the different applications were observed at the logical level of granularity as

well, although the ratios between the number of causes and the number of activities

were lower at 10–13%.

6.4.2.1. Developer-Centric Models

To get an initial insight into how developer-specific models perform against project-

specific models, we compared the three applications at the file level of granularity for

artifacts of type code using the DT machine learning algorithm. When considering the

three ways applying the machine learning algorithms (All, DS, and DS 100), there are a

few issues to be discussed. The DS and DS 100 applications rely on subsets of all the

activities in All. As shown in Table 6.5, the difference between DS and All is smaller

(6.9%), but the difference between DS 100 and All is much larger (29.2%). To evaluate

the impact of considering only the activities from the DS and DS 100 applications in

a project specific manner, we performed corresponding experiments, referred to as All

(DS) and All (DS 100). To obtain the activities for All (DS) and All (DS 100) we put

together all the activities from DS and DS 100 and split them into training and testing

data the same way as in the All application.

The results from the experiments are summarised in Figure 6.15. For each applica-

tion, we report the average F-measures for the causes for events of interest. Applying

the algorithms in developer-specific manner (DS) in this scenario performs better than

applying in project-specific manner (All). However, the All application also contains ac-

tivities from small developers with less than 100 activities per developer. Removing the

small developer from the project-specific application (All (DS)) performs similarly to

All, indicating that the impact of the small developers can be considered to be negligible.

Considering only very active developers for predictive modelling in developer-specific

manner (DS 100) performs best in this case. On the other hand, considering only the
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Figure 6.15.: F-measure comparison of different applications at the file (code) layer

activities of very active developers in a project-specific manner (All (DS 100)) performs

even worse than All.

6.4.2.2. Developer-Centric Characteristics

To evaluate the impact of developer-centric characteristics, we considered three sets of

characteristics at the different levels of granularity. We considered the file (code) and

logical (class and method) levels of granularity. The default sets at each level of gran-

ularity include all characteristics available at the corresponding level. The target set

includes only the characteristics at the target state of an activity, i.e. the source state

characteristics as well as the deltas between the source and the target state are not used.

The target-core set is a subset of the target set which only includes the core characteris-

tics of the target state, excluding characteristics related to collaboration and experience.

The relationships between the different sets of characteristics are summarised by means

of a Venn-diagram in Figure 6.16

We performed experiments with all machine learning algorithms (DT, LR, NB, RF,

SVM) considering the three sets of characteristics and the three levels of granularity,

which produced nine results for each machine learning algorithm. The results from the

experiments are summarised in Figure 6.17. For each machine learning algorithm, we

report the F-measures for the causes for events of interest. We compare the different

sets of characteristics at the different levels of granularity. The three ways applying the

machine learning algorithms shown in different colors: All the average for all projects

when all activities for each project are used; DS the average for all developers that have

performed at least 100 activities; DS 100 the average for all developers that have per-

formed at least 100 activities and there are at least 100 events of interest in the training

data of each developer. Several observations can be made based on Figure 6.17. In

general, the results at the file level of granularity are better than the results at the logical

levels of granularity. Depending on the algorithm, the additional characteristics may

produce similar, or, at times, even worse results. LR and SVM in particular can still

benefit from the additional characteristics, especially at the logical levels of granularity.

Applying the algorithms in developer-specific way produces similar or better results

in most cases. In particular, considering only developers having at least 100 events of
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Figure 6.16.: Characteristics sets (code level of granularity)

interest in the training data seems to improve results even more substantially in most

cases. This comes at the cost of excluding smaller developers. Grouping smaller devel-

opers together or applying the algorithms on the project as a whole could provide better

results for activities performed by smaller developers.

6.4.2.3. Thresholds for Small Developers

There have been reports in the literature related to the minimum number of activities for

good results from which we can infer the threshold for small developers. Kim et al. [95]

reported that their technique requires about 100 changes (activities) to “train a project-

specific classification model before the predictive accuracy achieves a “usable” level of

accuracy”. Jiang et al. [84] noted that their personalised technique perform better than

an equivalent non-personalised technique when there are at least 80 (changes) activities

per developer for training.

We evaluated different thresholds, both for the number of activities and for the num-

ber of events of interest. We evaluated the same machine learning algorithms (DT, LR,

NB, RF, SVM) in a developer-specific manner against the data sets at the file (code)

layer with true splitting and all characteristics included. We considered three different

thresholds for the total number of activities for a developer: 100 activities (reported as

sd100), 150 activities (reported as sd150), and 200 activities (reported as sd200). For

these three thresholds, we also considered filtering the developers based on the num-

ber of events of interest in the training data, considering only developers that have at
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Figure 6.17.: F-measure evaluation for characteristics subsets at different layers
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Figure 6.18.: F-measure comparison of thresholds for small developers at the file (code)

layer

least 10 events of interest (reported as sd100, true > 10, sd150, true > 10, and sd200,

true > 10, respectively). Additionally, for the sd100 threshold, we considered further

thresholds for the minimum number of events of interest at increments of 25 between

0 and 200 events of interest, resulting eight additional thresholds for sd100 (reported

as true > 25, true > 50, true > 75, true > 100, true > 125, true > 150, true > 175,

true > 200, respectively). The average results over all developers for the F-measure are

summarised in Figure 6.18. We can observe that the thresholds based on the number of

activities have little impact. Instead, the thresholds based number of events of interest

lead to some improvements. Surprisingly, it is not necessarily the case that the results

keep improving for larger thresholds based on the number of events of interest. There

are some improvements for the F-measure for all algorithms at true > 25, true > 50,

true > 75, but beyond true > 100 the improvements stay flat or even decrease.

6.4.2.4. Small and Big Developers

Since predictive modelling for developers with fewer contributions typically does not

perform well, we evaluated how grouping all the activities from such developers within

a project (reported as small) compares to using all the activities within a project. Ad-

ditionally, we also evaluated how well grouping all the activities from the developers

with more contributions (reported as big) performs in the same context. Finally, we

evaluated whether one group of activities can be used as training data for predicting the

outcomes of activities in the other group.

We considered three different ways of partitioning the developers within each project,

based on the absolute number of activities for each developer within the project, whether
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a developer has performed more than a given percentage of all the activities within the

project, and whether the developer ranks among the top N developers based on the total

number of activities within the project. For the partitioning based on the number of

activities, we used the thresholds at 50 (reported as bs50), 100 (reported as bs100) and

200 (reported as bs200). For the partitioning based on the percentage of activities, we

used thresholds at 10% (reported as bsr10), 20% (reported as bsr20), and 30% (reported

as bsr30). For the partitioning based on ranks, we used top 1 (reported as bst1), top 5

(reported as bst5), top 10 (reported as bst10), and top 20 (reported as bst20).

For the first experiment, we performed predictive modelling within the small and big

partitions for each project at the file (code) layer using all characteristics and TS. We

only used DT as algorithm in this scenario. We summarised the averages for the F-

measure for each partition across the different ways of partitioning. In addition, we also

included the averages from using both the small and big partitions (reported as com-

bined). The results from this experiment are shown in Figure 6.19a. In general, there

are small improvements over using all activities for a project without any partitioning

(all), particularly when using threshold based on the number of activities of develop-

ers, where bs100 and bs200 yield the best results, especially for the small partitions. A

closer look at the results revealed that the improvements are mainly due to increased

precision for the small. Partitioning based on percentage of activities and ranks yield

similar or even worse (bsr10 and bs30) results compared to not using any partitioning.

Additionally, we also considered the scenario where only small and big partitions

containing more than 100 events of interest (reported as small true > 100, big true

> 100, and combined true > 100, respectively). The results from this experiment are

shown in Figure 6.19b. There is overall increase compared to Figure 6.19a, especially

in the partitioning based on percentage of activities and ranks, where the improvements

are mostly in the averages for the small partitions.

For the second experiment, we performed transfer predictive modelling using the

small partition to predict the big partition for each project (reported as Small -> Big)

and the other way around (reported as Big -> Small) at the file (code) layer using all

characteristics. In addition to TS within the partitions, since there is no overlapping

between the small and big partitions, we also considered using the the complete par-

titions without any percentage splitting (reported as Small -> Big NoPS and Big ->

Small NoPS, respectively). Finally, we considered a scenario where only small and big

partitions containing more than 100 events of interest without percentage splitting are

included (reported as Small -> Big NoPS, True > 100 and Big -> Small NoPS, True >

100, respectively).

In this experiment we also used only DT as algorithm. We summarised the averages

for the F-measures for both transfer scenarios in Figure 6.20. For both the Big -> Small

and Small -> Big scenario, using TS generally yields comparable or worse results to

not using any partitioning. Not using percentage splitting (NoPS) yields comparable or

slightly improved results. Considering only partitions containing more than 100 events
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Figure 6.19.: Partitioning developers into big and small according to different criteria at

the file (code) layer

of interest yields best results with partitioning based on the number of activities again

providing best option.

6.4.2.5. True Splitting

Due to the uneven distribution of the events of interest in time, in some of the exper-

iments we applied the TS strategy for percentage splitting in order to ensure that the

training and test data used for predictive modelling has the same number of events of

interest. In a real-world application, it is unlikely that the operational data (for which

the events of interest are not known) will include the same number of events of interest

as the training data.

We performed an experiment to evaluate the impact of the TS strategy. We compared

the averages of the F-measure results from predictive modelling using the three ways

(All, DS, DS 100) of applying all algorithms ((DT, LR, NB, RF, SVM) for each project

at the file (code) layer using all characteristics with and without TS. The results are

summarised in Figure 6.21. We can observe that the impact of TS varies depending on

the algorithm used. For DT there is very small difference, noticeable only when con-

sidering the DS application of the algorithm. For LR, NB, and RF there is a noticeable

decrease in performance across all ways of applying the algorithms. However, for SVM

there is even a noticeable improvement when TS is not used.

6.4.2.6. Undersampling

One of the ways to deal with bias in the data in predictive modelling is undersam-

pling [42] (or subsampling), where all the data from the minority class is included and
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Figure 6.20.: Transferring between big and small developers at the file (code) layer
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Figure 6.21.: F-measure comparison for percentage splitting at the file (code) layer

only a subset of the data from the majority class is used in order to reach a desired ratio

between the different classes. In other words, with undersampling we attempt to obtain

a specific ratio of events of interest and events of no interest.

To assess the impact of undersampling, we performed an experiment considering the

different sets of characteristics (target-core, target, all) when applying the DT algorithm

in the different ways (All, DS, DS 100) for all projects at the file (code) layer. We

defined three different ratios — 0.1 where there is 1 event of interest per 10 activities,

which is close to the original ratio of most projects, 0.25 where there is 1 event of

interest for every 4 activities, which is close to the ratio of the projects with the highest

ratios, and 0.5 where there is 1 event of interest for every 2 activities. We applied

undersampling only to the training data (split without TS) which is more similar to

a real-world application. Undersampling can only be performed to the training data

since the events of interest in the test data are usually not known. The average F-

Measures from the experiment are summarised in Figure 6.22. The baseline without
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Figure 6.22.: F-measure comparison for undersampling at the file (code) layer

undersampling is shown at the top.

When we apply the undersampling, the F-measures for the All and DS are mostly

similar and increase slightly with the increasing ratios. The baseline for All and DS per-

forms similarly to using the 0.1 undersampling ratio. For the DS 100 application, the

F-measure stays largely the same, where at 0.1 there is even a small decrease. The DS

100 application of the algorithm provides better results in all cases, however, the advan-

tage of using it decreases as the undersampling ratio increases. The use of the different

subsets of characteristics makes little difference, regardless of the undersampling ratio.

To investigate how the other algorithms perform with of undersampling, we per-

formed an experiment using all characteristics at the file (code) layer. For brevity, we

only report on the All and DS 100 applications of the algorithms. The DS application

usually scored somewhere between All and DS 100. We used the same three ratios (0.1,

0.25, and 0.5) and splitting without TS. The results for the F-measures averaged over

all projects are summarised in Figure 6.23 with the baselines without undersampling

shown on the top. As already noted for DT in the previous experiment, there is some

increase in the performance as the ratio increases. For LR and SVM there are drops for

All at 0.1, otherwise along RF they see the biggest gains as the ratio increases. For NB,

the performance stays the same for All, but for DS 100 there is even a slight decrease in

performance as the ratio increases. DS 100 is ahead in most cases with all algorithms,

but the advantages diminish as the ratios increase, where for RF the All application

performs slightly better than DS 100 at 0.5.

6.4.2.7. Transfer Opportunities

In Section 4.3.6 we discussed different opportunities for applying transfer learning to

developer-specific predictive models, both within the same project (wp) and across

projects (cp). We consider two scenarios where we use the data from one developer
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Figure 6.23.: F-measure algorithm comparison for undersampling at the file (code)

layer

to predict the outcomes of activities for the same developer (wd) and to predict the out-

comes of activities for other developers (cd), both within the same project and across

projects. This results in four scenarios (wp-wd, wp-cd, cp-wd, cp-cd).

We performed experiments with the DT algorithm at the file (code) layer, in order

to get an initial evaluation of how the different scenarios compare to each other. We

considered the three ways of applying the algorithms (All, DS, DS 100), where All

serves as a baseline for which there is no difference between wd and cd since in this

case there is no differentiation between developers. The results for the F-measures

averaged over all projects are summarised in Figure 6.24.

Using transfer learning among developers within the same project (wp-cd) yields ap-

proximately the same results on average when applying DS, for developers with more

contributions (DS 100) it performs slightly better. Across projects, using data for one

developer from one project to predict the outcomes of activities for the same developer

in another project (cp-wd) performs worse than using data for all activities of all de-

velopers (cp with All), on average. However, using data from one developer from one

project to predict the outcomes of other developers in other projects (cp-cd) performs

similarly to using data for all activities of all developers (cp with All), on average.

When considering the different possibilities for partitioning the activities of devel-

opers in groups for small and big developers in Section 6.4.2.4, we evaluated whether

these add any benefit for transfer learning within the same project. In addition to trans-

fer learning within the same project (wp), we evaluate transfer learning across projects

(cp) when using the partitioning into small and big developers. We use the base sce-

nario where developers are considered as small if they have less than 100 activities.

We evaluated five scenarios, considering the combined effect of the small and big par-

titions (bs-wp and bs-cp), the small (bs-wp-small and bs-cp-small) and big (bs-wp-big
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Figure 6.24.: F-measure comparison for transfer opportunities within and across

projects at the file (code) layer
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Figure 6.25.: Transfer for small and big developers at the file (code) layer

and bs-cp-big) partitions in isolation, using the big partition to predict the small parti-

tion (bs-wp-big-small and bs-cp-big-small), and using the small partition to predict the

big partition (bs-wp-small-big and bs-cp-small-big).

We performed experiments only with the DT algorithm at the file (code) layer. The

results for the F-measures averaged over all projects are summarised in Figure 6.25.

Overall, the partitioning into small and big developers has little impact predictive mod-

elling across projects. Using only the big partitions (bs-cp-big) can provide minor im-

provement on average when compared to using both small and big partitions, whereas

the small partitions seem to have a negative effect on all other scenarios involving them

(bs-cp-small, bs-cp-small-big, and bs-cp-big-small).

In Section 4.3.6 we also discussed the grouping of similar activities by means of clus-

tering and different opportunities for applying transfer learning to developer-specific

predictive models considering these groups (or clusters).

We consider scenarios where we use the data from one cluster to predict the outcomes

of activities for the same cluster (wc) within the same project (wp-wc) and to predict

the outcomes of activities for other clusters within the same project (wp-cc) as well as

across projects (cp-cc).

We performed experiments only with the DT algorithm at the file (code) layer, in
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Figure 6.26.: Transfer for groups of similar activities at the file (code) layer

order to get an initial evaluation of how the different scenarios compare to each other.

We considered the three ways of applying the algorithms (All, DS, DS 100), where

for All we applied clustering to all activities from all developers within the project,

whereas for DS and DS 100 we applied clustering to the activities of each developer

individually. The results for the F-measures averaged over all projects are summarised

in Figure 6.26. Within the same project (wp), clustering all the activities for the project

(All) yields comparable results for predictive modelling both within the same cluster

(wp-wc) and across clusters (wp-cc). Across projects and across clusters (cp-cc) the

results are also comparable but a bit worse than predictive modelling across project

boundaries without clustering. Clustering the activities for each developer separately

(DS) yields slightly worse results within the same project (wp-wc, wp-cc) on average,

and comparable across projects (cp-cc. Considering only developers with more contri-

butions (DS 100), there is a notable improvement within the same project and the same

cluster (wp-wc), as well as across clusters (wp-wc).



7. Discussion

In this chapter, we discuss the results from the case studies and their interpretation with

regard to the goals for the case studies and for the thesis as a whole, as well as results

from evaluations in closely related work. Then, we discuss the strengths, limitations,

and lessons learned from the work on this thesis. Finally, we discuss the identified

threats to the validity of the results and findings in this thesis.

7.1. Results Interpretation

In this section, we summarise the findings from the case studies and reflect on them

with regard to the goals for the case studies, and the thesis as a whole.

7.1.1. Identifying Potential Causes for Events of Interest

To asses the impact of the multi-layer approach, we investigated the potential benefits

of using the multi-layer weighting approach at finer levels of granularity and evaluated

the impact of using different weight distribution strategies. When comparing the multi-

layer approach to simply inheriting labels from containing artifacts, the multi-layer ap-

proach achieved a reduction in the number of potential causes for events of interest

between 50% and 80% at the file layer. At the logical layer, the reduction was between

75% and 95%. Consequently, the multi-layer approach can be applied to effectively re-

duce the amount of noise at finer levels of granularity when identifying potential causes

for events of interest.

Considering weights rather than binary classification adds a further refinement, where

causes for events can be prioritised based on the confidence indicated by the weight. In

the case studies, we observed that the application of the weighted multi-layer approach

generally results in a lower number of low confidence causes and at the same time in

a higher number of high and medium confidence causes, both of which are desirable

outcomes of the approach. However, the distribution of the weights may still vary

between projects depending on the nature of changes recorded in the VCS.

During the application of weight distribution strategies, we observed that all strate-

gies have largely similar effect on lower confidence causes. The effects on higher con-

fidence causes vary between projects and levels of granularity, which is a desirable out-

come as different strategies are intended to highlight different aspects of fixes for causes

of events of interest. Overall, the use of weight distribution strategies provides a more
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nuanced view enabling prioritisation based on certain characteristics of the changes and

the context in which they occurred.

Overall, the results from the case studies demonstrated the application of the ap-

proach for the identification of potential causes for events of interest and its benefits for

obtaining more refined data and filtering out noise at finer levels of granularity. For the

identification of potential causes for events of interest, we focused only on one kind of

events of interest, namely bug-fixes, as identified by the BugFix factor. The applica-

bility of the approach to other kinds of events of interest remains to be investigated in

future work.

7.1.2. Developer-Centric Assessment

We proposed a more comprehensive way to characterise developer behaviour based on

situational and dispositional characteristics related to the context in which an activity

occurs. To assess the impact of the different characteristics, we performed experiments

considering three sets of characteristics, including all characteristics, only characteris-

tics related to the target state of an activity as well as only characteristics related to the

target state of an activity, excluding characteristics related to collaboration and expe-

rience. The experiments indicated that the additional characteristics have little impact

on the predictive models with some benefits for LR and SVM, but no or even negative

impact for other machine learning algorithms.

Applying predictive modelling in a developer-specific way produces similar or better

results in most cases. In particular, for active developers having at least 100 events of

interest in the training data, there is larger improvement in most cases, but this comes at

the cost of excluding smaller developers. The latter can be addressed by applying pre-

dictive modelling to all smaller developers together or using a project-specific predictive

model, both of which performed similarly in our experiments. While the threshold was

initially selected based on related notes from the literature [95, 84], we also consid-

ered other thresholds, both with respect to the number of activities and with respect to

the number of events of interest. The thresholds based on the number of activities had

little impact, whereas the thresholds based number of events of interest lead to some

improvements. There were some improvements for all algorithms when considering

only developers having at least 25, 50, 75, and to a lesser extent 100 events of interest.

Above 100 events of interest there was even a slight decrease.

We observed limited opportunities for transferring developer-specific predictive mod-

els from one developer to another, which varied depending on the algorithm being

used. In particular, predictive models for the same developer transferred across dif-

ferent projects performed worse on average when compared to generic project-specific

predictive models transferred across different projects. In general, predictive models for

developers transferred across different projects performed similarly or better when com-

pared to generic project-specific predictive models transferred across different projects.
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We made similar observations on the transfer opportunities for predictive models

based groups of similar activities. On average, using predictive models on groups

of similar activities has some benefits for active developers. However, transferring

predictive models between different groups of similar activities performs worse than

developer-specific predictive models (but still better than generic project-specific pre-

dictive models). Across projects, grouping of similar activities for predictive modelling

yielded no benefit.

Besides the grouping of similar activities, changes in the behaviour of developers

were explored only qualitatively to a limited extent in Section 4.3.1 with respect to the

changes in the importance of the different characteristics. Other experiments indicated

that there is some variability, however, we did not observe any specific patterns. Further

studies shall be performed to quantify the attribute stability and investigate correlations

between the attribute stability and the changes in the reliability of predictive models

more systematically.

7.1.3. Reflections

In the following, we reflect on the ways the work on this thesis contributed to answering

the research questions defined in Chapter 1.

Regarding the first research question, “How can we characterise developer behaviour

based on information collected from software-related assets?”, we described a compre-

hensive approach for the characterisation of developer behaviour seeking to characterise

the circumstances in which development activities are performed. The conceptual ap-

proach is based on the notions of situational and dispositional factors, as well as collab-

orative factors. Characteristics across different dimensions can be used to capture the

context and outcome each activity. While we considered only information that can be

automatically extracted from software-related assets, further information collected by

other means, such as questionnaires and interviews, can be integrated in the conceptual

model as well. Visualisation and data mining techniques can be used to gain further

insights based on the resulting data. We discussed six different approaches which can

be applied to support decision making during software development.

Regarding the second research question, “How can we determine potential causes

for events of interest across multiple levels of abstraction?”, we described an approach

adds quantitative information on top of existing approaches for origin analysis. The

quantitative information in the form of weights can be calculated independently for

different kinds of events of interest, such as bug fixes, refactorings, etc., and distribution

across multiple levels of granularity. This way, we can obtain more accurate information

regarding the likely causes for the events of interest at finer levels of granularity. The

different strategies for weight redistribution can emphasise different aspects, such as the

size of the affected artifacts and the amount of change they have undergone, in order to

account for the importance of these aspects when prioritising quality assurance efforts.
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The corresponding case studies demonstrated the application of the approach its benefits

for obtaining more refined data and filtering out noise at finer levels of granularity.

Regarding the third research question, “How can we mine information related to

developer behaviour and its impact on potential causes for events of interest from

software-related assets in an effective and agile manner?”, we described a model-based

software mining approach which is based on domain-specific meta-models. The ap-

proach can serve as a glue for loosely coupling different existing third-party and custom-

made software mining solutions at a high level of abstraction, easing the integration of

diverse and heterogeneous assets. As a proof of concept, a concrete instantiation of

the approach was used for the realisation the approaches for identification of potential

causes for events of interest and characterising developer behaviour. It demonstrated the

integration of various tools which are widely used in research, providing a convenient

solution for the integration of various input and output formats.

Regarding the fourth research question, “What are the advantages of using developer-

centric software assessment?”, in addition to providing more detailed and personalised

information, the developer-centric approach has the potential to provide more accurate

predictive models. We performed experiments to assess the impact of the different char-

acteristics, the application of predictive modelling in a developer-specific way, as well

as transfer opportunities for developer-specific predictive models. The experiments in-

dicated that the additional characteristics have little impact on the predictive models. On

the other hand, applying predictive modelling in a developer-specific way produces sim-

ilar or better results in most cases, particularly for very active developers. We observed

limited opportunities for transferring developer-specific predictive models from one de-

veloper to another. Predictive models for the same developer performed worse across

different projects, but predictive models for different developers performed similarly

or better across different projects when compared to generic project-specific predictive

models across different projects.

7.2. Comparison to Related Work

With respect to the approach for the identification of potential causes for events of

interest, to the best of our knowledge there are no other approaches incorporating the

quantification of the extent to which a change in one state contributes to a subsequent

fix in a later state of an artifact, in particular also how to apply such quantification of

the cause-fix analysis across multiple levels of granularity.

In terms of developer-centric assessment, multiple approaches have pursued the inte-

gration of various developer-related characteristics with varying degrees of success. In

particular, two recent contributions [84, 163] evaluated developer-specific defect pre-

diction models.
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Shihab et al. [163] focused on risky rather than buggy changes in an industrial set-

ting. Changes and commits are used interchangeably in their work, corresponding to

an activity / state at the project level of granularity in this thesis. They achieved an

overall improvement by using developer-specific predictive models, however, they re-

ported their results in an unusual manner, making them hard to compare. In addition,

they used different characteristics and performed cross-validation rather than percent-

age splitting. They reported the “predictive and explanative power results for the top

10 developers” [163] (based on the total number of changes) where they report 87%

improvement in precision over the baseline model, while achieving an average recall

of 0.677. The baseline model they considered is “a model that randomly predicts risky

changes” [163]. The selection criteria for the developers they considered are also dif-

ferent, where they “selected developers who made at least 20 changes over the year

studied” while requiring “that at least 20% of a developer’s changes belong to either

class, risky or non-risky” [163].

Jiang et al. [84] evaluated predictive models for individual developers and observed

significant improvements when using personalised change classification. They evalu-

ated their approach on six large open source projects, none of which are included in the

data set for this thesis, and they also used different characteristics, including character-

istic vectors. They used an unusual approach to data selection where they used arbitrary

gaps in the beginning and end of the recorded periods for the selected projects. The au-

thors also selected only the top 10 developers from each project who have the most

commits. Note that the authors refer to their approach as a change classification prob-

lem, where “A change is the lines modified in one file of a software version control

system commit.” [84], which would correspond to an activity / state at the file level of

granularity in this thesis. It is unclear why they select the top 10 developers based on

the number of commits. For the baseline they picked “the same number of changes

(100) from each of the developers to prevent any developer’s performance from domi-

nating” [84], where it is not clear whether they really distinguish between commits and

changes. Finally, they also performed cross-validation. In their results, they observed

some minor improvement on average in terms F-measure (0.03), in particular in their

enhanced approach considering a majority vote meta-classifier combining the outcomes

from the baseline and developer-specific predictive models. They also noted that the im-

provements were not limited to a specific machine learning algorithm (although there is

some variation in the results reported in their work).

More recently, Xia et al. [189] followed up on the work of Jiang et al. [84] by lever-

aging a multiobjective genetic algorithm to combine predictive models for different

developers with different weights. They evaluated their approach on the same six open

source projects as Jiang et al., using a similar setup and assumptions. In their results,

they observed some minor improvement on average in terms F-measure with respect to

the results from Jiang et al. (0.01 and 0.02).
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7.3. Strengths and Limitations

In this thesis, we proposed three approaches to address challenges in software assess-

ment and in particular developer-centric software assessment. For every approach there

are corresponding strengths and limitations. In the following sections we discuss these

from a pragmatic point of view, as well as the lessons we learned along the way.

7.3.1. Events of Interest. . . or No Interest

In the approach for the identification of events of interest and their causes we had to

make certain assumptions that are also commonly relied upon in the literature. How-

ever, there are also concerns regarding the quality of the data found in software repos-

itories, especially for open source projects where there may be no clear conventions

regarding development practices and traces, or if there are, they may not be strictly

enforced. Thus, the reliability of the identified events of interest hinges upon the con-

sistent use of certain keywords or other indicators for events of interest, which may also

vary from project to project. The approach discussed in this thesis is decoupled from

the exact way of identifying events of interest which serves as a foundation. Thus, more

refined and reliable approaches for the identification of events of interest can be used as

a foundation in order to improve the overall accuracy of the results.

We focused our investigation on only one kind of event of interest — bug fixing which

is commonly used in the literature and has a potentially high impact on practitioners.

Other kinds of events of interest, such as refactorings and reductions in technical debt

can yield different results. The suitability of the approach for these kinds of events of

interest remains to be investigated.

While in theory changes related to different events of interest shall be neatly sepa-

rated, in practice, these are often tangled together [76]. A bug fix and a refactoring,

which may or may not be related to the bug fix, may be recorded as a single change in a

VCS. The strategies for weight distribution discussed in this thesis can offset the impact

of tangled changes to an extent. A more targeted approach for untangling changes, as

discussed in [76], may be necessary to obtain more accurate information regarding the

different kinds of events of interest.

The different strategies for weight distribution discussed in this thesis are rather

generic. Selecting the appropriate strategy depends, in part, on the intended applica-

tion context. Further strategies may be defined to target additional application contexts.

Even with the application of adequate strategies for weight distribution, noise may still

have a considerable impact. The application of the strategies seeks to aid rather than re-

place careful data inspection and cleansing. Visualisations based on the strategies may

be helpful for understanding the impact of the strategies, but automated heuristics and

filtering are required for application at scale.
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7.3.2. On the Shoulders of Giants. . . or Dwarves

Relying on third-party tools can be both a blessing and a curse. Due to the scope of the

work needed for this thesis, we had to rely on a number of existing third-party tools and

integrate them to produce the data for the case studies.

In general, the use of third-party tools can lower the barrier to entry by providing

a quick access to a multitude of facts, however, they shall be evaluated with caution.

While the intuition was to benefit from upstream development and reuse existing capa-

bilities, there are a number of challenges related to the (over-) reliance on third-party

tools. First, every tool has been designed for certain usage scenarios envisioned by its

creators and/or users. Consequently, there are inherent limitations to how a tool can be

used beyond the scenarios which it was originally designed for. In addition, the tools

themselves may have inherent problems and fail to provide accurate results in certain

circumstances. While open source tools can be customised and fixed in theory, in prac-

tice this often incurs considerable overhead. Commercial tools on the other hand can

only be used as they are provided. If there are problems, they can be reported to the tool

vendor. However, depending on the priority of the problems, it may take a while before

they are addressed or they may not be addressed at all.

Despite careful consideration and selection of sustainable tools, there is a risk that

tools may cease to be available or compatible during the course of a project. This

concerns both open source and commercial tools. Open source tools may no longer be

maintained or acquired by a commercial organisation. Commercial tool vendors may

stop producing a tool or even run out of business. It is hard to foresee whether the tools

will continue to be available and compatible in the future. Therefore, it shall be easy to

integrate new tools and substitute existing tools with as little overhead as possible.

The model-based approach seeks to alleviate emerging problems to an extent in that

makes it easy to replace tools and add new ones. As new tools emerge, they may become

attractive for a variety of reasons, but it also may become a necessity to switch at some

point. During the course of this thesis, we switched between three different tools for

static analysis, and two different tools for duplicate detection. An open source test

coverage tool that was considered early on turned into commercial tool and received no

further maintenance after a certain point.

While the model-based prototype provided a foundation for further integration, the

next frontier is scaling it up and moving to the cloud. With that step, new challenges

emerge, as the facilities available from the cloud provider need to be considered as

well. Due to the complexity of the mining tasks, testing and debugging can be very

challenging. Moving to the cloud, this becomes even more challenging and also even

more important. Deployment environments need to be replicated, otherwise differences

in deployment targets may add further overhead. Ultimately, deployment and testing

shall be integrated and streamlined to facilitate quick turn around during development

of new assessment tasks.
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7.3.3. Scaling Up. . . or Down

We collected and evaluated data from 16 projects of varying sizes and durations. The

data extraction, transformation, and processing was performed directly on the raw assets

and was a very computationally- and data- intensive process. While the required level

of detail implies working with large amounts of data as well as corresponding com-

putational demand, the operational data from the third-party tools used to extract facts

did account for considerable overhead both in terms of required storage space and in

terms of additional processing required to filter and transform this data into models and

integrate the models from the different sources into the assessment model. Addition-

ally, third-party tools incur considerable overhead for their repeated execution where

initialisation steps have a high impact on the total runtime of the facts extraction step.

Alternative tooling can lead to substantial improvements in both aspects, however, tools

providing additional or different facts may also come at an increased cost in terms of

computational demand.

Working with large models can be challenging. Several approaches [7, 10, 36, 159]

seek to address different aspects of dealing with very large models. Due to their focus,

they do come with some limitations and while initial benchmarks with the different

prototypes have shown some promise, they are not yet mature enough for generic large-

scale deployment. In our experiments, we did run into some limitations for the selected

technologies, both in terms of required memory, runtime, and parallelisation opportu-

nities. We explored some alternative solutions but they were not suitable at the time.

Further investigations are necessary to evaluate their suitability as these solutions be-

come more mature. Currently, assessment models for very larger projects do require

substantial amounts of time and memory to process and use.

In addition, more sophisticated analytics can be quite demanding as well. Running

experiments with SVM, for example, took several hours and in some cases also several

days. Some visualisations can also take a while to be computed. More scalable and

distributed approaches can improve the processing times where applicable.

With the lessons learned during the course of the work on this thesis, new cloud-based

integrated software mining and assessment platform emerged to scale up the mining

efforts further. The initial version of the SmartShark [174, 175] platform integrated the

model-based software mining infrastructure proposed in this thesis. A newer version of

the SmartShark platform addresses some of the limitations identified during the initial

experiments and relies on custom facts extraction tools and a more scalable approach

for all tasks related to software assessment.

Mining at a massive scale presents new opportunities for more refined experiments.

Considering more projects and especially more diverse projects can help to validate

the conclusions from this thesis and also yield new insights. More projects involving

similar or identical developers can present further transfer opportunities. Considering

further sources of information as well as additional facts enables new assessment tasks
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and can also improve the outcomes of the assessment tasks and approaches discussed in

this thesis. However, adding more data and especially more diverse data increases the

inherent complexity of the integration tasks and demands further validation. Finally,

deploying developer-centric software assessment in an industrial software development

setting may yield new insights in comparison to open source software development.

7.4. Threats to Validity

As with all empirical studies, there are certain threats to the validity of the findings from

the case studies discussed in this thesis. In the following sections we discuss the threats

we identified with regard to the internal, external, and construct validity of the findings.

7.4.1. Internal Validity

The threats to the internal validity are concerned with systematic bias in the conclusions

with regard to the data and methods being used.

With respect to the identification of causes for events of interest and the evaluation

of the strategies for weight distribution, the outcomes depend on the quality of the

underlying data and the assumptions about the importance of different aspects related

to the events of interest. The ground truth difficult to establish without extensive manual

inspection, which can in turn be used to determine the best suited strategy for the weight

distribution. Tangled changes in particular may also have a substantial impact on the

outcome of the identification of causes for events of interest. Untangling changes [76,

39] can be an option, but, depending on the underlying data, it may still not be reliable

enough. It is also not readily available in practice.

With respect to the overall quality of the tools being used and resulting data, the de-

pendence on third-party tools can result in flawed data, but on the other hand, given the

wider user-base it is less likely that issues would go unnoticed. Nonetheless, automated

data validation is essential, given the size and scale of the data being collected. Dur-

ing the data collection, we did perform semi-automated validation at the initial stages,

however, fully automated validation is still needed to rule out any issues. We relied on

the same tools for all projects, thus, any unnoticed flaws would affect all the studied

projects equally. Still, even with the same tool, the quality of the data may also vary

between different supported languages. To this end, the logical level studies are done

largely as proof of concept at this point and have been excluded from some of the results

until further validation can be performed. A comparison with other tools would also be

helpful to identify outstanding discrepancies.

With respect to the selected techniques, the approaches discussed in this thesis de-

scribe fundamental shifts in perspective. We illustrated their applicability with a se-

lection of techniques, including directed and undirected data mining techniques, data
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visualisation, model-based software development, weight- and factor- based identifica-

tion of potential causes of events of interest. The case studies performed in this thesis

serve as an initial indication of the potential of the described approaches. The full ex-

tent of practical applicability is still subject to further studies. Due to the modularity

of the proposed approaches, different constituents of the selected techniques may be

substituted with more sophisticated alternatives as far as these are available.

With respect to the data used for the prediction of causes for events of interest, as

is quite common in publicly available data sets, and observed for software projects

in general, the artifacts containing defects and the defect-related activities comprise a

rather small proportion of the overall data set. This leads to an inherent imbalance in

the data used for predictive modelling. One of the approaches to deal with such data

sets is undersampling and we investigated its impact on the overall results. The range

of selected projects in terms of size and proportion of defect-related activities is similar

to other studies reported in the literature, however, it is by no means representative of

all the different kinds of software projects.

7.4.2. External Validity

The threats to the external validity are concerned with the generalisation of the con-

clusions beyond the specific data being used. We selected at random 16 open source

projects using two different programming languages (Java and C++) spanning different

domains and different ecosystems. The varied project sizes and durations can be con-

sidered representative for other projects. Still, given the vast number of open source

projects and broad diversity of languages and development approaches being used, the

results may not generalise beyond the selected languages, domains, and ecosystems, or

even within them. We selected projects at random for a pilot study, a more systematic

approach to project selection may be beneficial for further investigations. A scaled up

investigation with supporting cloud platform could yield a more comprehensive under-

standing of the benefits and drawbacks of the presented approaches.

Regarding the approach for the identification of causes for events of interest and the

different strategies, the quality of the results depends on the quality of the data available

in the repositories. The results on other data sets may be better or worse depending on

the quality of those data sets.

With respect to the developer-centric modelling, depending on the project size and

work distribution among the developers, the outcomes may vary. While we selected

projects exhibiting different patterns in the contribution behaviour of developers, differ-

ent circumstances such as different development approaches may lead to other patterns

in the contribution behaviour of developers.

When mining software repositories at a large scale, considering the vast amounts of

data collected and the various tools involved in the extraction of data, other tools for

other languages or additional measurements may yield different results.
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7.4.3. Construct Validity

The threats to the construct validity are concerned with the suitability of the chosen

measurements with regard to the conclusions. To assess the overall suitability of the

tools and techniques being used, we performed manual inspection and isolated testing,

using both constructed examples and real-world data for validation and exploration.

During identification of causes for events of interest we rely on reasonable and con-

sistent recording of reasons for changes in VCSs. The weight-based approach seeks to

quantify the contribution of each change to causing a particular event of interest. In

practice, the recording of the reasons for changes may not always be consistent, espe-

cially in open source projects. In addition, changes affecting multiple artifacts, such as

unrelated or tangled changes, dilute the weight of each individual change. While this

is intended by design in the proposed approach, and the weight distribution strategies

can be used for further refinement to allow focusing on larger modifications or larger

artifacts affected by a change, further filtering, such as excluding certain types of mod-

ifications can yield more accurate results. Manual analyses were performed at a small

scale to check the validity of assumptions. Considering the scale of the studies and the

diversity of the studied projects, especially in cases where a project has undergone a

switch of VCS, ITS, or other infrastructure component, further investigations shall be

performed to asses the impact of such changes. Furthermore, a shift in development

strategy, which is common as projects mature, can have similar consequences, where

assumptions about the way how information is recorded in the VCS and/or the ITS may

need to be adapted over time.

The selection of 16 random open source projects of different sizes, using two different

programming languages, spanning different domains and different ecosystems, seeks to

reduce the impact of peculiarities in individual projects. However, a larger selection of

even more diverse projects is needed to assess the impact of the size, domain, language,

and other aspects, in order to derive more refined conclusions specific to certain groups

of projects as well as also universally applicable conclusions.



8. Conclusions

In this last chapter, we summarise the overall findings and contributions of this thesis,

as well as draft ideas for future work on extending and refining the research presented

in this thesis.

8.1. Summary

The overarching goal of this thesis is to investigate means for characterising developer

contribution behaviour and assessing its impact on the resulting software products with

respect to certain events of interest. The characterisation and assessment is based on

traces collected from different kinds of software-related assets, containing information

related to software artifacts at different levels of granularity. Pursuing this goal, we

made several contributions within the scope of this thesis, which are related to the iden-

tification of potential causes for events of interest and the characterisation of developer

behaviour, as well as a model-based approach for mining software repositories and

conducting software assessment. We performed case studies to evaluate the methods

described in this thesis.

The approach for the identification of potential causes for events of interest adds

quantitative information on top of existing approaches for origin analysis. The quanti-

tative information in the form of weights can be calculated independently for different

kinds of events of interest, such as bug fixes, refactorings, etc. The approach accommo-

dates weight redistribution across multiple levels of granularity in order to provide more

accurate information regarding the likely causes for the events of interest. We outlined

different strategies for weight redistribution, which emphasise different aspects, such

as the size of the affected artifacts and the amount of change they have undergone, in

order to account for the importance of these aspects. While there are different related

approaches described in the literature, none of them incorporate quantification, espe-

cially across multiple levels of granularity. The present approach builds on top of these

approaches where any of them can serve as a foundation, upon which quantitative infor-

mation can be added at the various levels of granularity. The corresponding case studies

demonstrated the application of the approach its benefits for obtaining more refined data

and filtering out noise at finer levels of granularity.

The approach for the characterisation of developer behaviour is based on the notions

of situational and dispositional factors, as well as collaborative factors, all of which
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seek to characterise the circumstances in which development activities are performed.

We presented a selection of characteristics across different dimensions and discussed

different approaches for making use of the resulting data based on visualisation and

data mining techniques. While the conceptual approach to characterising developer be-

haviour is novel, many of the individual characteristics have already been discussed

in the literature. The generic nature of the approach permits the use of other sets of

characteristics beyond the ones discussed in this thesis, effectively also enabling the

systematic description of the behaviour of any kind of entities performing activities on

any kind of artifacts, beyond the domain of software engineering. In the corresponding

case studies, we performed experiments to assess the impact of the different character-

istics, the application of predictive modelling in a developer-specific way, as well as

transfer opportunities for developer-specific predictive models. The experiments indi-

cated that the additional characteristics have little impact on the predictive models. On

the other hand, applying predictive modelling in a developer-specific way produces sim-

ilar or better results in most cases, particularly for very active developers. We observed

limited opportunities for transferring developer-specific predictive models from one de-

veloper to another. Predictive models for the same developer performed worse across

different projects, but predictive models for different developers performed similarly

or better across different projects when compared to generic project-specific predictive

models across different projects.

The model-based software mining approach is based on domain-specific meta-

models related to both the assessment tasks and the facts extracted by third-party tools

aiming to ease the integration of the typically diverse and heterogeneous facts assets.

The integration is achieved by means of model transformations in a stepwise manner.

The integrated assessment model can be queried to produce assessment assets which

used by third-party assessment applications. The approach serves as a glue for loosely

coupling different existing third-party and custom-made software mining solutions at

a high level of abstraction. A concrete instantiation of the approach was used for the

realisation the approaches for identification of potential causes for events of interest

and characterising developer behaviour. For the instantiation we relied on various tools

which are widely used in research. The model-based approach was a convenient solu-

tion for obtaining high-level models from the various lower-level representations. This

made the integration of various input and output formats very convenient and reusable.

The proposed approach can lower the barrier to entry for researchers and practitioners

by allowing them to focus on the assessment tasks rather than the technicalities.

8.2. Outlook

The work on this thesis explored several novel areas of research. While it advanced the

state of the art in these areas, there are also numerous opportunities for further research
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to address open questions, refine the described approaches, and apply the approaches in

further contexts under different circumstances.

For the identification of potential causes for events of interest, we focused only on one

kind of events of interest, namely bug-fixes. The suitability of the approach for other

kinds of events of interest such as refactorings needs to be investigated in future work.

In addition, the overall approach can benefit from more refined and reliable approaches

for the identification and untangling of events of interest which serve as a foundation

for the approach discussed in this thesis.

Changes in the behaviour of developers were explored only to a limited extent. Fur-

ther studies shall be performed to investigate the variability of developer-specific pre-

dictive models, as well as possible correlations between the stability of attributes and

the reliability of predictive models more systematically.

Despite the benefits of using a model-based approach to software mining, working

with large models can be challenging. Several approaches seek to address different as-

pects of dealing with very large models. Initial evaluation indicated that they were not

suitable for our needs. Further investigations are necessary to evaluate their suitabil-

ity as these solutions become more mature. To support larger scale software mining

and software assessment, a deployment in a cloud environment is of particular interest

for future work. We have started exploring this scenario within a cloud-based smart

data platform for supporting empirical software research at a massive scale. Consider-

ing more projects can help to validate the conclusions from this thesis and also yield

new insights. Further sources of information as well as additional facts can enable

new assessment tasks and can also improve the outcomes of the assessment tasks and

approaches discussed in this thesis. However, adding more data and especially more

diverse data increases the inherent complexity of the integration tasks and demands

further validation.

The investigations in this thesis are primarily concerned with object-oriented open

source software implemented in the Java and C++ programming languages. The over-

all methodology can be adapted to other programming paradigms and programming

languages. We rely on open source software due to the wide availability of publicly ac-

cessible information related to software projects from very diverse domains involving

developers of various backgrounds from around the world. Subsequent case studies may

apply the methodology to industrial software development and compare the findings.

While the work on this thesis sparked interesting academic discussions, ultimately,

the intention is to also transfer the approaches into practice and allow the software de-

velopers unwittingly serving as subjects for various studies to benefit from the findings

in these studies. Directing targeted feedback to the developers who are most likely to

benefit from it, rather than producing generic feedback that may or may not apply to

a large part of the developer population, can make the software development process

more efficient. Complementing the quantified understanding that developer can gain

regarding their own strengths and weaknesses, forward-looking organisations shall em-
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brace a better understanding of their developers and teams and use this understanding

to guide organisational strategies in order to maximise productivity and job satisfaction

of developers. By looking at the strengths and weaknesses of each developer, organisa-

tions can invest in reinforcing these strengths and taking actions to compensate for or

reduce known weaknesses. This can be achieved by incentivising and optimising de-

velopment activities, implementing targeted organisational quality assurance measures

where applicable, and organising targeted training to boost certain skills of the devel-

opers.
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‘When I look back over the last 25 years, in some ways what seems most

precious is not what we have made but how we have made it and what we

have learned as a consequence of that. I always think that there are two

products at the end of a programme; there is the physical product or the

service, the thing that you have managed to make, and then there is all that

you have learned. The power of what you have learned enables you to do

the next thing and it enables you to do the next thing better.’42

— Sir Jonathan Ive

42From https://www.wallpaper.com/design/jony-ive-apple-park
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A. Appendix

The appendix complements the thesis with additional information that was considered

too detailed, complicated, or technical for the main text. The contents can be helpful

for reproducing and extending the work described in this thesis.

A.1. Additional Views on the FAMIX Meta-model

For the sake of completeness, the additional views on the reconstructed FAMIX meta-

model, including the concepts related to inheritance, invocation, and variables shown in

Figure A.1, Figure A.2, and Figure A.3.

A.2. Model-based Software Mining Infrastructure

The instantiation of the model-based software mining infrastructure is published online

as a collection of open source projects43. A dedicated project44 provides an overview

of general technical aspects related to the instantiation and further technical informa-

tion related to this thesis, including technical specifications and representations of the

meta-models, mappings, transformations, and metrics. Where applicable, the individual

projects include further technical and usage-related information specific the correspond-

ing project.

A.3. Enlarged Figures

Enlarged versions of selected figures are included for reference.

43See https://github.com/DECENTSoftwareAssessment
44See https://github.com/DECENTSoftwareAssessment/DECENT.Documentation
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Figure A.1.: FAMIX meta-model based on the structure of data extracted with InFamix

(inheritance-part)

Figure A.2.: FAMIX meta-model based on the structure of data extracted with InFamix

(invocation-part)
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Figure A.3.: FAMIX meta-model based on the structure of data extracted with InFamix

(variable-part)
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Figure A.4.: Spatial characteristics example (large, original in Figure 4.4)
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Figure A.5.: Recurring changes example (large, original in Figure 4.5)
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Figure A.6.: Characteristics ranking for developer A in log4j (larger, left half, original

in Figure 4.6)
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Figure A.7.: Characteristics ranking for developer A in log4j (larger, right half, original

in Figure 4.6)
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Figure A.8.: Characteristics ranking for developer A in log4j (large, original in Fig-

ure 4.7a)
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Figure A.9.: Characteristics ranking for developer A in log4j (first half, large, original

in Figure 4.7b)
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Figure A.10.: Characteristics ranking for developer B in log4j (large, original in Fig-

ure 4.7c)
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Figure A.11.: Characteristics ranking for developer B in log4j (first half, large, original

in Figure 4.7d)
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Figure A.12.: Characteristics ranking for developer A in log4j over time (large, original in Figure 4.8)



2
3
9

A
.3

.
E

n
larg

ed
F

ig
u
res

Figure A.13.: Detailed characteristics ranking over time for developer A in log4j (large, original in Figure 4.9)
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Figure A.14.: Detailed characteristics ranking over time for developer B in log4j (large, original in Figure 4.10b)
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Figure A.15.: Detailed characteristics ranking over time for developer C in log4j (large, original in Figure 4.10c)
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Figure A.16.: Detailed characteristics ranking over time for developer D in log4j (large, original in Figure 4.10d)
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Figure A.17.: Defining characteristics for developer A in log4j across three clusters

(cluster 1, large, original in Figure 4.18a)
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Figure A.18.: Defining characteristics for developer A in log4j across three clusters

(cluster 2, large, original in Figure 4.18b)



245 A.3. Enlarged Figures

Figure A.19.: Defining characteristics for developer A in log4j across three clusters

(cluster 3, large, original in Figure 4.18c)
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Figure A.20.: Ranking of characteristics for developer A in log4j across three clusters

(cluster 1, large, original in Figure 4.19a)



247 A.3. Enlarged Figures

Figure A.21.: Ranking of characteristics for developer A in log4j across three clusters

(cluster 2, large, original in Figure 4.19b)
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Figure A.22.: Ranking of characteristics for developer A in log4j across three clusters

(cluster 3, large, original in Figure 4.19c)
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Figure A.23.: Characteristics ranking over time for developer A in log4j (cluster 1, large, original in Figure 4.20a)
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Figure A.24.: Characteristics ranking over time for developer A in log4j (cluster 2, large, original in Figure 4.20b)
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