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Summary 

The interconnection of developmental programs and secondary metabolism is regulated by the 

velvet domain proteins in numerous filamentous fungi. Velvet domain proteins constitute a 

family of fungal specific transcription factors with structural similarities in the DNA binding 

and dimerization domain of mammalian Rel-domains, including NF-κB as regulator for 

inflammation and infection. Velvet factors bind to promoters of thousands of genes and a 

large amount of their downstream targets remains to be analyzed. This study focuses on the 

Zinc cluster transcription factor A (ZtfA) as repression target of the velvet factor VosA in the 

filamentous fungi Aspergillus nidulans and A. fumigatus. The A. nidulans ΔztfA strain forms 

diminished numbers of conidiophores with conidiospores of short-term viability compared to 

the wild type. A ztfA overexpression strain forms conidiophores in conditions when the 

wildtype grows with vegetative hyphae. The ztfA overexpressing strain increases conidiophore 

formation during sexual development in the dark, where conidiation normally is repressed. 

The conidiation pathway proceeds in a strictly time-tuned manner and several regulators are 

involved in its temporal control. The ztfA gene product was exclusively found in nuclei of 

hyphae, conidiophores and germinating spores. ZtfA activates the conidiation pathway 

through the major regulatory gene brlA and the conidiation activator-encoding genes flbC and 

flbD. ZtfA represents a novel component of the timely adjusted choreography of conidiation. 

ZtfA controls expression of several secondary metabolite genes, including austinol or 

dehydroaustinol biosynthesis. It forms a complex with the transcription repressor RcoA and 

might execute parts of its regulatory functions as a heterodimer. The phosphorylation status of 

ZtfA is presumably part of its control function. ZtfA regulates genes of the oxidative stress 

response system in the presence of hydrogen peroxide. ZtfA is conserved among Aspergilli as 

exemplified by the characterization of the A. fumigatus counterpart. AfZtfA is part of the 

fungal adhesion, but dispensable for conidiation. In summary, ZtfA regulates asexual 

development, secondary metabolite expression and oxidative stress response downstream of 

the velvet factor VosA in the filamentous fungus A. nidulans and is involved in the regulation 

of adhesion factors in A. fumigatus. 
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Zusammenfassung 

Velvet-Domänen-Proteine verknüpfen Entwicklungsprogramme und Sekundärmetabolismus 

in zahlreichen filamentösen Pilzen. Velvet-Domänen-Proteine stellen eine Familie von Pilz-

spezifischen Transkriptionsfaktoren dar, welche in ihrer DNA-Binde- und 

Dimerisierungsdomäne strukturelle Gemeinsamkeiten mit Rel-Domänen, einschließlich der 

NF-κB Faktoren von Säugetieren aufweist. Velvet-Faktoren binden Promotoren tausender 

Gene und das Gros ihrer nachgeschalteten Ziele ist noch unbekannt. Die vorliegende Studie 

konzentriert sich auf den Zink Cluster Transkriptionsfaktor ZtfA als Repressions-Ziel des 

Velvet-Faktors VosA in den filamentösen Pilzen Aspergillus nidulans und A. fumigatus. Im 

Vergleich zum Wildtyp produziert der A. nidulans ztfA Deletionsstamm eine stark 

verminderte Zahl an Konidiophoren, welche Konidiosporen mit verkürzter Lebensfähigkeit 

hervorbringen. Eine ztfA Überexpression produziert Konidiophore sogar unter Bedingungen, 

unter denen der Wildtyp nur vegetative Hyphen bildet. Die ztfA Überexpression produziert 

eine erhöhte Anzahl an Konidiophoren während des sexuellen Wachstums im Dunkeln, in 

welchem normalerweise die Konidiosporulation reprimiert ist. Der Signalweg der 

Konidiosporulation läuft in einer strikten Zeitfolge ab und mehrere Regulatoren sind an seiner 

zeitlichen Kontrolle beteiligt. ZtfA aktiviert den Signalweg der Konidiosporulation über 

dessen Hauptregulator, kodiert durch das brlA Gen und über die Konidiations-Aktivatoren, 

kodiert durch flbC und flbD und stellt eine neue Komponente des zeitabhängigen Ablaufs der 

Konidiosporulation dar. ZtfA kontrolliert die Expression mehrere Sekundärmetabolit-Gene, 

einschließlich der Biosynthese von Austinol und Dehydroaustinol. Es bildet einen 

Proteinkomplex mit dem Transkriptionsrepressor RcoA und übt seine regulatorischen 

Funktionen vermutlich teilweise als Heterodimer aus. Der Phosphorylierungszustand von 

ZtfA ist vermutlich Teil seiner Funktionskontrolle. ZtfA reguliert Gene der oxidativen Stress-

Antwort in der Gegenwart von Wasserstoffperoxid. ZtfA ist konserviert in Aspergillen, wie 

beispielhaft durch die Charakterisierung seines Gegenstücks in A. fumigatus gezeigt wird. 

AfZtfA ist Teil der Regulation der pilzlichen Adhäsion, jedoch entbehrlich für die Bildung 

von Konidiophoren. Zusammenfassend reguliert ZtfA in A. nidulans asexuelle Entwicklung, 

Sekundärmetabolit-Expression und die Antwort auf oxidativen Stress, nachgeschaltet zu dem 

Velvet-Faktor VosA. In A. fumigatus ist es wichtig für die Adhäsion. 
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1. Introduction 

 

1.1 Aspergillus nidulans – a genetic model for filamentous fungi  

Aspergillus nidulans, member of the most common fungal genus Aspergillus, is a well-

established genetic model for filamentous fungi (de Vries et al., 2017). It is able to produce 

asexual conidiophores and sexual cleistothecia in response to environmental conditions, such 

as pH, temperature and light. The soil borne mold is a member of the phylum Ascomycota, 

which comprises the mostly unicellular saccharomycetes and mycelial ascomycetes with a 

short dikaryotic phase in their life cycle. The latter group propagates vegetatively via 

formation of indefinite hyphae and forms complicated multicellular structures upon 

establishment of suitable internal and external conditions. A characteristic of all members of 

the phylum Ascomycota is the formation of the name-giving multicellular structure: the ascus. 

This sac-like structure represents a compartment within the fruit body, which produces sexual 

meiospores, called ascospores (Braus et al., 2002; Pöggeler et al., 2006) (FIGURE 1). The 

ascus is protected by the ascocarp (Greek: askos = sac, karpos = fruit), the visible fruit body. 

The ascocarp is called cleistothecium in A. nidulans, due to its closed form (Greek: kleistos = 

closed, theke = case) and is surrounded and nursed by multi-nucleated Hülle cells, which 

differentiate from hyphae forming nest-like structures around the developing cleistothecium 

(Latin: nidulans = nest). Fruit bodies are highly complex structures of the sexual life cycle of 

fungi and represent overwintering structures.  

Aspergillus comprises a large genus with significant impact on humankind, since most 

Aspergilli are secondary metabolite producers. Fungal secondary metabolites can be useful or 

deleterious. Hence, several representatives of Aspergillus spp. are of medical or economic 

importance, such as A. niger, the main source for citric acid production, A. oryzae, 

indispensable for Asian cuisine, A. flavus, a wide-spread crop contaminant or A. fumigatus, a 

serious health threat in immunocompromised patients (Bhatnagar-Mathur et al., 2015; Chen et 

al., 2016; Despot et al., 2016; Jöhnk et al., 2016; Kobayashi et al., 2007; Wang et al., 2017). 

The large enzymatic variety of Aspergilli renders the genus a large source of industrially and 

medically important fungi.  

A. nidulans is a homothallic fungus and as such is able to undergo sexual development 

without the presence of a partner with a different mating type (FIGURE 1). Mitotic division 

during asexual development yields conidiophores, which produce haploid mitotic 

conidiospores in two to three days after germination whereas sexual cleistothecia form 
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binucleate ascospores, which mature after approximately seven days (Braus et al., 2002; 

Pöggeler et al., 2006). In contrast to homothallic fungi, heterothallic fungi like A. fumigatus 

need a partner of opposite mating type to undergo sexual differentiation.  

 

 

FIGURE 1: Developmental programs of A. nidulans.  

A. nidulans can undergo sexual (left hand side) as well as asexual (right hand side) 

development leading to the formation of sexual cleistothecia (predominantly formed in the 

dark under low oxygen supply) or asexual conidiophores (formed in light when oxygen is 

present) as spore forming units. Adapted from Bayram et al., 2010. 

 

Since the genome of A. nidulans is completely sequenced (Galagan et al., 2005) and an 

increasingly large number of phenotypical, transcriptomic and proteomic approaches have 

been carried out, it is one of the most feasible genetic models for haploid filamentous fungi. 

 

 

1.2 The velvet regulators 

Important regulators of developmental programs in filamentous fungi are the velvet proteins, 

which form complex regulatory networks (Bayram et al., 2008a, 2008b; Käfer, 1965; Kato et 

al., 2003; Kim et al., 2002; Park et al., 2012a; Satterlee et al., 2016). Velvet proteins 

constitute a family of fungal specific regulatory proteins, which mostly comprises four 

members. The founding member of this family, velvet A (VeA), was identified more than half 

a century ago as a developmental regulator with a central role in transduction of the 

development inducing light signal (Käfer, 1965). The velvet family further comprises the 

factors VelB, VelC (velvet-like B and C) and VosA (viability of spores A). Velvet proteins 

share the name-giving velvet domain and are highly conserved among filamentous fungi 
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(Ahmed et al., 2013; Bayram et al., 2008a; Ni and Yu, 2007). The velvet domain does not 

exhibit sequence similarities with known protein domains, but structural similarities to the Rel 

homology domain of NF-κBs were found recently (Ahmed et al., 2013). NF-κBs constitute a 

family of mammalian transcription factors. They are involved in apoptosis and inflammatory 

response but also in broad metabolic processes and cell proliferation (Engelmann and 

Haenold, 2016; Sun and Andersson, 2002). Velvet factors contain a DNA-binding and 

dimerization domain and act as transcription factors in A. nidulans and Penicillium 

chrysogenum (Ahmed et al., 2013; Becker et al., 2016).  

VeA is involved in the coordination of sexual development and secondary metabolism and is 

part of the light control of fungal development (Alkahyyat et al., 2015; Bayram et al., 2008a; 

Calvo, 2008; Kim et al., 2002; Mooney and Yager, 1990; Stinnett et al., 2007). VeA is 

necessary for cleistothecia formation (Kim et al., 2002). Involvement of VeA and other velvet 

proteins in virulence has been shown in several fungi, such as A. flavus, several Fusarium spp. 

and others (Duran et al., 2009; Merhej et al., 2012; Myung et al., 2012; Wang et al., 2016; 

Wiemann et al., 2010). VeA interacts with several proteins. It forms a protein complex with 

the white-collar (WC) proteins LreA and LreB and the phytochrome FphA, which fulfils 

light-triggered regulatory functions (Hedtke et al., 2015; Purschwitz et al., 2008; Ruger-

Herreros et al., 2011). WC proteins are involved in light regulation in fungi and activate 

expression of the major conidiation regulator-encoding bristle gene (brlA) in response to light 

(Chen et al., 2009; Froehlich et al., 2002; He and Liu, 2005; Ruger-Herreros et al., 2011; 

Smith et al., 2010). VeA forms a heterotrimeric complex with VelB and the methyltransferase 

LaeA (lack of aflR expression A) in the nucleus, known as the velvet complex, which acts as a 

major regulator of secondary metabolism (Bayram et al., 2008a; Estiarte et al., 2016; Lind et 

al., 2016; Sarikaya-Bayram et al., 2010; Schumacher et al., 2015; Wang et al., 2016) 

(FIGURE 2) (see CHAPTER 1.3). The VeA-VelB heterodimer, which forms in the cytoplasm 

prior to velvet complex formation, is presumably the main mechanism for VelB to enter the 

nucleus as VelB does not exhibit a conserved nuclear localization sequence (NLS) (Bayram et 

al., 2008a; Bayram and Braus, 2012; Sarikaya-Bayram et al., 2010). Nuclear import of the 

VeA-VelB heterodimer is controlled by the methyltransferases VipC (VeA interacting protein 

C) and the VipC associated protein VapB (Sarikaya-Bayram et al., 2014). Both 

methyltransferases are recruited by VapA to the plasma membrane and released upon 

environmental triggers (Sarikaya-Bayram et al., 2014). The VipC-VapB heterodimer 

negatively influences VeA-VelB nuclear entrance after release from the plasma membrane. It 

also forms heterotrimeric complexes with VeA in the nucleus. Either VipC-VapB or the 
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heterotrimer acts positively on asexual and negatively on sexual development and influences 

histone posttranslational modifications (Sarikaya-Bayram et al., 2014, 2015) (FIGURE 2). 

VelB was proposed to be an activator of conidiation since a loss of velB results in diminished 

conidiophores, whereas an overexpression (OE) leads to increased conidiation (Park et al., 

2012b). VelB exhibits a positive regulation on the biosynthesis of sterigmatocystin, a potent 

mycotoxin (Bayram et al., 2008a; Bayram and Braus, 2012; Bryant et al., 2016; Gruber-

Dorninger et al., 2016).  

 

 

FIGURE 2: The velvet regulatory network.  

The depicted schema summarizes the velvet protein network of A. nidulans. The α-importin 

KapA shuttles VeA-VelB into the nucleus. VipC-VapB is released from VapA at the plasma 

membrane and negatively regulates VeA-VelB nuclear entry. Both velvet proteins form 

several complexes in the nucleus. VeA-VelB recruits LaeA to form the velvet complex, which 

activates sexual development and secondary metabolism. VeA forms a heterotrimeric 

complex with VipC-VapB. Either this heterotrimer or VipC-VapB act as activator of asexual 

and repressor of sexual development and influence histone posttranslational modifications. 

VelB forms homodimers and presumably acts positively on asexual development. The VelB-

VosA heterodimer is important for spore viability and trehalose biosynthesis and acts as a 

repressor of early asexual development. The function of the VosA-VelC heterodimer is not 

clear, but it is proposed to positively regulate sexual development. Positive regulatory 

influences are shown in green, negative regulatory influences in red. Adapted from Sarikaya-

Bayram et al., 2014, 2015.  
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VelB forms an alternative heterodimer with VosA in the nucleus (Sarikaya-Bayram et al., 

2010) (FIGURE 2). The VelB-VosA heterodimer exhibits a time dependent dual function: it 

represses brlA expression during vegetative growth but regulates conidiospore viability and 

maturation by activation of wetA (wet-white A) and other genes, which products are important 

for conidiospore maturation and trehalose biosynthesis during late asexual growth (Bayram et 

al., 2008a; Lee et al., 2016; Ni and Yu, 2007; Park et al., 2012b; Sarikaya-Bayram et al., 

2010) (see CHAPTER 1.5.3). 

VelB and VosA, and their homologs, are inter-dependent in promoting spore maturation and 

viability (Sarikaya-Bayram et al., 2010; Wang et al., 2014; Webster and Sil, 2008). VosA is 

involved in conidiospore quality and virulence of several pathogenic fungi as well (Li et al., 

2015; Wang et al., 2015). VeA and VosA seem to be exchanged as VelB binding partners in 

VelB heterodimers, since a deletion of laeA leads to increased VosA-VelB heterodimer 

formation (Sarikaya-Bayram et al., 2010). 

The role of the fourth velvet protein VelC is a matter of ongoing investigation up to date. 

In vitro analyses suggest the formation of a VosA-VelC heterodimer, which was proposed to 

positively regulate sexual development (Park et al., 2012a, 2014). 

 

 

1.3 Secondary metabolism 

Filamentous fungi, and especially the Aspergilli, are a reservoir for yet undescribed secondary 

metabolites (SMs) (Alberti et al., 2017; Brakhage, 2013; Chen et al., 2016; Despot et al., 

2016). A. nidulans produces several SMs, such as penicillins, sterigmatocystin, 

benzaldehydes, emericellamides, orsellinic acid, orcinol and orcinol-related compounds, 

diindoles, austinol and dehydroaustinol (Brakhage, 2013; Gerke et al., 2012b; Giles et al., 

2011; Lo et al., 2012; Nahlik et al., 2010; Schroeckh et al., 2009). SM genes often are 

organized in clusters in fungal genomes and are controlled by cluster-specific transcription 

factors and master regulators, which interconnect developmental programs with SM 

biosynthesis (Bok and Keller, 2004; Calvo et al., 2002; Keller et al., 2005). Therefore, SM 

biosynthesis is activated by environmental triggers such as light, temperature, pH, nutrient 

availability and presence of other organisms and connected to developmental programs 

(Bayram et al., 2008a; Brakhage, 2013). Fruit body formation is genetically linked to 

secondary metabolism in response to illumination (Busch et al., 2003; Kato et al., 2003; Kim 

et al., 2002). Expression of secondary metabolite genes is reoriented during onset of 

conidiation (Garzia et al., 2013). SM gene clusters are often silent during laboratory growth 

(Gerke and Braus, 2014). 
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Bridging factors between developmental programs and secondary metabolism are the velvet 

factors. VeA regulates developmental programs together with secondary metabolism in 

response to environmental cues (Bayram et al., 2008a, 2008b; Calvo et al., 2004; Duran et al., 

2007; Kato et al., 2003; Li et al., 2006; Myung et al., 2012; Sarikaya-Bayram et al., 2010) 

(see CHAPTER 1.2). Deletion of veA leads to a change in secondary metabolite production and 

VeA is necessary for sterigmatocystin production (Dreyer et al., 2007; Estiarte et al., 2016; 

Kato et al., 2003; Myung et al., 2009). Sterigmatocystin is a potent toxin and in several 

Aspergilli the penultimate precursor of aflatoxin, which is related to apoptosis and 

disequilibrium between reactive oxygen species (ROS) and ROS defense mechanisms in host 

cells of pathogens (Chen et al., 2013; Mughal et al., 2017). This is reflected on transcriptional 

level: VeA is necessary for aflR expression, which encodes the major regulator of 

sterigmatocystin and penicillin biosynthesis in A. nidulans and is the ortholog of the aflatoxin 

regulator from A. flavus and A. parasiticus (Woloshuk et al., 1994; Yu et al., 1996a). A key 

element of the VeA-mediated regulation of secondary metabolism and developmental 

programs is the velvet complex (VelB-VeA-LaeA) (Bayram et al., 2008a; Bok and Keller, 

2004; Cohrs et al., 2016; Martín, 2016; Schumacher et al., 2015) (CHAPTER 1.2). LaeA is a 

master regulator of secondary metabolism in fungi and one of the very few SM regulators, 

which is conserved (Bok and Keller, 2004; Butchko et al., 2012; Jiang et al., 2016; Liu et al., 

2016; Reyes-Dominguez et al., 2010; Wang et al., 2016; Wu et al., 2012). Secondary 

metabolism is silenced in the absence of laeA, whereas its overexpression results in increased 

production of several secondary metabolites (Amaike and Keller, 2009; Bok et al., 2006b; 

Bok and Keller, 2004; Chettri and Bradshaw, 2016; Jiang et al., 2016; Martín, 2016; Shaaban 

et al., 2010). Its role in SM regulation, however, is species specific (Chettri and Bradshaw, 

2016; Linde et al., 2016; Liu et al., 2016). Involvement of LaeA and the other velvet complex 

members in virulence, probably via activation of mycotoxin production, has been 

demonstrated for several pathogenic fungi (Estiarte et al., 2016; Kumar et al., 2016; López-

Díaz et al., 2017) (see CHAPTER 1.2). Further SM master regulators have been identified, such 

as the multicluster regulator A (McrA), which represses a number of SM genes, or the 

remediator of secondary metabolism (RsmA) (Oakley et al., 2016; Yin et al., 2013). Other 

developmental regulators are involved in SM regulation as well, such as the Flb (fluffy low 

brlA) factor FlbA or the master transcription factor A (MtfA) (Hicks et al., 1997; Keller et al., 

1994; Lind et al., 2015; Yu et al., 1996a). 
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1.4 Vegetative polar growth in A. nidulans  

Initially, filamentous fungi form vegetative hyphae, also called mycelia. The filamentous 

growth mode allows fungi to adhere to substrates and invade them. Undifferentiated hyphae 

elongate by extending their plasma membrane and cell wall with new material from distal 

areas in a polarized manner until internal and external stimuli induce developmental programs 

(Adams et al., 1998; Herrero-Garcia et al., 2015; Riquelme, 2013). These hyphae form 

branched two dimensional networks by fusion via anastomosis tubes (Gabriela Roca et al., 

2005). A prerequisite for polarized hyphal growth is the Spitzenkörper, located at the center 

of the hyphal tip (Fajardo-Somera et al., 2015; Harris, 2009; Schultzhaus et al., 2017; Virag 

and Harris, 2006). The Spitzenkörper is a dynamic center for vesicle organization and supply, 

which is required for cell wall and plasma membrane component transport (Schultzhaus et al., 

2017; Virag and Harris, 2006). An important function of the hyphal tip is sensing and 

adaption to new environmental stimuli and the Spitzenkörper might serve as a signaling hub 

and protein-recycling center in this context (Harris, 2009; Schultzhaus et al., 2015; 

Schultzhaus and Shaw, 2016).  

An essential aspect of the vegetative life style is polarity of growth. FlbB and FlbE are 

transcription factors that are necessary for hyphal polarized growth and FlbB accumulates at 

the hyphal tip (Etxebeste et al., 2008; Garzia et al., 2009, 2010; Herrero-Garcia et al., 2015) 

(FIGURE 3).  

 

 

FIGURE 3: Repressors block conidiation during hyphal growth of A. nidulans.  

VosA-VelB heterodimers and NsdD block brlA expression during vegetative growth. SfgA 

restricts the FlbB-FlbE heterodimer to apical localizations (apical nuclei) and negatively 

influences FlbD and FlbC. FluG starts to accumulate what removes the repressing effect of 

SfgA upon the Flb factors. Adapted from Lee et al., 2016. 

 

FlbE forms heterodimers with FlbB and is necessary for the apical FlbB accumulation 

(Herrero-Garcia et al., 2015). Subsequently, FlbB migrates to the most apical nucleus, enters 

and accumulates in this and subsequent nuclei (Etxebeste et al., 2008, 2009; Garzia et al., 
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2009; Herrero-Garcia et al., 2015) (FIGURE 3). This migration depends on an intact actin 

skeleton and is crucial for the gain of competence to induce asexual development (Garzia et 

al., 2009; Herrero-Garcia et al., 2015). In the nucleus, FlbB binds to the brlA promoter (Kwon 

et al., 2010a) (see CHAPTER 1.5). brlA encodes the master regulator of conidiation and is 

repressed by VosA-VelB and NsdD (Adams et al., 1988; Lee et al., 2014, 2016) (FIGURE 3). 

The nuclear localization of FlbB is dependent on the conidiation repressor SfgA (suppressor 

of fluG A), which restricts FlbB localization to the most apical nuclei in newly formed hyphal 

branches (Etxebeste et al., 2008, 2009) (FIGURE 3).  

 

 

1.5 Asexual development 

1.5.1 The conidiophore 

Conidiophores are the asexual spore-producing structures in A. nidulans, which consist of 

four cell types (the stalk with a vesicle, metulae, phialides and airborne conidiospores) and are 

produced after achievement of developmental competence approximately 18 to 20 h post 

germination (Axelrod et al., 1973; Mims et al., 1988; Yager et al., 1982) (FIGURE 4). 

Conidiophores arise from a thick-walled hyphal foot cell, on which a stalk with a terminal 

multinucleated vesicle is produced (Mims et al., 1988). On top of this vesicle, a layer of 

uninucleated metulae is formed, which produce two to three spore forming phialides per 

metula in a budding-like process (Adams et al., 1998; Fischer, 2002; Garzia et al., 2013; 

Mims et al., 1988; Yu, 2010). Repeated mitoses of the phialides ultimately lead to formation 

of haploid airborne conidiospores, which are isogenic to the parental organism. Mature 

conidia are formed after approximately 15 to 24 h post induction of asexual development in 

light (Fischer, 2002; Mooney and Yager, 1990; Yu, 2010) (FIGURE 4).  

 

 

FIGURE 4: The conidiophore of A. nidulans.  

The formation of a conidiophore over time is shown. Cell nuclei are given in red. Note that 

conidiospores and phialides are mononucleated (not shown). Adapted from Yu, 2010. 
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Attributes of mature conidiospores are four-layered cell walls, covered by a rodlet layer of 

hydrophobins and accumulate trehalose, which is proposed to promote long-time viability 

(Bayry et al., 2012; Beever and Dempsey, 1978; d’Enfert and Fontaine, 1997; Ni and Yu, 

2007; Sewall et al., 1990a).  

Asexual development is induced in response to external (e.g. light, temperature, pH, nutrient 

availability) and internal (e.g. metabolites) signals (Oiartzabal-Arano et al., 2016; Rodríguez-

Urra et al., 2012). Transcriptional changes during ongoing development in response to 

illumination conditions affect approximately 19% of genes in A. nidulans (Bayram et al., 

2016). Developmentally competent mycelia differentially regulate approximately 5% of their 

genes when grown in light for only 30 min, the minimum time required for initiation of 

conidiation in A. nidulans, compared to growth in the dark (Mooney and Yager, 1990; Ruger-

Herreros et al., 2011). Several sexual development-related genes are downregulated during 

the transition from vegetative to asexual growth. brlA and genes, which products are involved 

in conidium differentiation, pigmentation and integrity are upregulated during this process 

(Garzia et al., 2013). Around 7% of the genes are differentially expressed after 24 h of growth 

in light, compared to vegetative growth (Bayram et al., 2016). Conidiation can be separated 

into two phases of genetic differentiation: the early phase where initiation of conidiophore 

development occurs due to upstream developmental activators (UDAs) of brlA, and the late 

phase, characterized by the central developmental pathway (CDP), which leads to spore 

formation and maturation (Etxebeste et al., 2010a; Garzia et al., 2013; Herrero-Garcia et al., 

2015; Oiartzabal-Arano et al., 2015).  

 

1.5.2 Upstream developmental activators induce conidiation after de-repression of brlA 

occurred 

Premature asexual development is hindered during vegetative growth in A. nidulans by 

repression of the major conidiation activator BrlA. This repression is accomplished indirectly 

by SfgA and directly by VosA and NsdD (never in sexual development D) (Han et al., 2001; 

Lee et al., 2014, 2016; Ni and Yu, 2007; Seo et al., 2006). De-repression occurs in a time 

dependent manner. Firstly, FluG (fluffy G) removes the repressive effects of SfgA on 

conidiation by accumulation of a small molecular weight marker (Lee and Adams, 1994a; Lee 

et al., 2014; Seo et al., 2003, 2006). Secondly, the repressors NsdD and VosA dissociate from 

the brlA promoter, allowing the Flb factors to activate brlA expression (Garzia et al., 2010; 

Lee et al., 2014, 2016) (FIGURE 5).  
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VosA is proposed to exhibit this repression as homodimer or heterodimer with VelB and 

DNA-binding of VosA as well as the VosA-VelB heterodimer to the brlA promoter was 

shown (Ahmed et al., 2013; Park et al., 2012b; Sarikaya-Bayram et al., 2010). Recently, a 

direct action upon the brlA promoter has been shown for NsdD as well (Lee et al., 2016). Lee 

and co-workers found that a ∆nsdD∆vosA double mutant produces conidiophores as early as 

12 h in submerged cultures whereas the WT hardly forms conidiophores under these culture 

conditions (Lee et al., 2016). The repression of conidiophore development by NsdD was 

observed in A. flavus and A. fumigatus, indicating a similar regulation of conidiation 

repression in Aspergilli in general (Lee et al., 2016). Binding of NsdD and VosA to the brlA 

promoter together determines full suppression of conidiation (Lee et al., 2016). After removal 

of, probably multiple, NsdD(s) and VosA from the brlA promoter (after approximately 18 h of 

vegetative growth), the Flb factors FlbB, FlbD and FlbC bind to the brlA promoter and 

activate brlA expression (Etxebeste et al., 2008, 2009; Garzia et al., 2010; Kwon et al., 2010a; 

Wieser and Adams, 1995). 

The conidiation cascade, or central developmental pathway (CDP), BrlAAbaAWetA is 

activated by the upstream developmental activators (UDAs) network (Adams et al., 1988, 

1998; Yu et al., 2006). These are the products of the flb genes (Adams et al., 1992; Wieser et 

al., 1994). The flb genes flbB, flbC, flbD and flbE encode transcription factors, which activate 

brlA expression (Etxebeste et al., 2008, 2009, Garzia et al., 2009, 2010, Kwon et al., 2010a, 

2010b; Wieser and Adams, 1995) (FIGURE 5). Conservation of function has been shown for 

several of these genes in other fungi as well (Kwon et al., 2010b; Malapi-Wight et al., 2014; 

Matheis et al., 2017; Son et al., 2014; Yao et al., 2016). 

 

 
FIGURE 5: The upstream developmental activators induce brlA expression of A. nidulans. 
The accumulating FluG signal represses SfgA. NsdD and VosA-VelB dissociate from the 

brlA promoter and allow the Flb factors to activate brlA, which initiates conidiophore 

formation. Adapted from Lee et al., 2016. 

 

The UDA genes are already expressed during vegetative growth (Garzia et al., 2013) (see 

CHAPTER 1.4). The flb gene products activate brlA in two cascades: the basic-leucine-zipper 
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(bZIP) transcription factor FlbB activates the cMyb transcription factor FlbD and, together 

with FlbE, which is important for proper FlbB activation (see CHAPTER 1.4), both 

transcription factors subsequently induce brlA expression (Etxebeste et al., 2008, 2009, 

Garzia et al., 2009, 2010; Herrero-Garcia et al., 2015; Wieser and Adams, 1995). A 

prerequisite for this activation is the absence of repressive effects of SfgA upon nuclear 

localization of the Flb factors (Etxebeste et al., 2009). Deletion of flb genes lead to the 

production of increased amounts of aerial hyphae and decreased and delayed conidiation due 

to impaired brlA activation, which leads to a fluffy cotton-like phenotype (Adams et al., 1998; 

Wieser et al., 1994; Yu et al., 2006). Besides the FlbB/FlbEFlbDBrlA cascade, a second 

cascade exists: FlbCBrlA (Kwon et al., 2010a). flbC encodes a C2H2 transcription factor 

that binds to promoter regions of brlA, abaA (abacus A) and vosA, but not of wetA in vitro 

(Kwon et al., 2010a; Sewall et al., 1990b). flbC OE is sufficient to induce brlA, abaA and 

vosA expression (but not wetA) independently of FlbB and FlbE (Kwon et al., 2010a).  

The RGS (regulator of G-protein signaling) domain protein FlbA functions in an indirect 

activation of conidiation. Together with the other Flb factors, FlbA is required for light 

dependent activation of brlA and required for response of fluG and flbB to light (Ruger-

Herreros et al., 2011). However, FlbA is involved in normal asexual growth but not 

absolutely required for conidiation (Adams et al., 1998; Lee and Adams, 1994b). FlbA 

regulates a heterotrimeric G-protein signaling pathway by inactivating FadA (Gα-subunit) 

(Yu et al., 1996b). FadA is in its active form guanosine triphosphate (GTP)-bound and 

inhibits asexual development and production of the secondary metabolite sterigmatocystin by 

transmitting a proliferation supporting signal to its downstream factor PkaA (Hicks et al., 

1997; Kato et al., 2003; Shimizu et al., 2003; Shimizu and Keller, 2001; Yu et al., 1996b). 

PkaA inhibits brlA and aflR expression (Shimizu and Keller, 2001; Yu et al., 1996a) 

(FIGURE 6).  

 

 
FIGURE 6: FlbA indirectly regulates conidiation of A. nidulans.  

FlbA indirectly activates conidiation, proposedly by repression of a G-protein signaling 

pathway, which represses development via FadA. Activating effects are shown in green, 

repressing effects in red. Adapted from Shimizu et al., 2003. 
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1.5.3 The central developmental pathway leads to conidiophore formation  

Activation of brlA expression is the key step in the pathway leading to the formation of 

conidiospores (Adams et al., 1988). brlA mRNA starts to accumulate during late vegetative 

growth at the onset of development after 24 h post germination, peaks at 6 h post asexual 

induction and is detectable until 48 h when asexual development is completed (Etxebeste et 

al., 2008; Garzia et al., 2009). brlA mRNA accumulation, as well as accumulation of abaA, 

flb gene, and fluG transcripts, is light dependent (Mooney and Yager, 1990; Ruger-Herreros et 

al., 2011). brlA consists of two overlapping transcripts, brlAα and brlAβ (Prade and 

Timberlake, 1993). brlAβ regulates brlAα expression (Barton and Prade, 2008; Han et al., 

1993). brlA OE leads to spore formation from hyphae in vegetative cultures whereas strains 

lacking brlA form aerial hyphae but vesicles, metulae or further cell types are absent (Adams 

et al., 1988; Boylan et al., 1987).  

The C2H2 zinc finger transcription factor BrlA activates abaA in the mid phase of conidiation 

(Adams et al., 1988, 1990; Andrianopoulos and Timberlake, 1994; Boylan et al., 1987). 

AbaA is necessary for phialide differentiation (Sewall et al., 1990b). abaA mutants produce 

cells with intermittent tumefactions and non-separated conidiospores instead of conidia-chains 

(Clutterbuck, 1969). Phialides are absent in these mutants and metula-like cells are formed 

instead (Sewall et al., 1990b). brlA as well as the AbaA downstream target wetA are 

differentially expressed in ΔabaA, indicating feedback regulation of the CDP (Boylan et al., 

1987) (FIGURE 7).  

  

 

FIGURE 7: The central developmental pathway exhibits autoregulatory feedback loops in 

A. nidulans.  

A model of the genetic interactions of the central developmental pathway (CDP) is shown. 

The CDP comprises BrlAAbaAWetA and exhibits several autoregulatory feedback 

loops. VelB-VosA represses brlA expression during vegetative growth and is necessary for 

spore viability and trehalose biogenesis during ongoing conidiospore formation and 

maturation. Green arrows indicate activating and red lines repressing effects. Dotted lines 

indicate proposed interactions. Adapted from Park et al., 2012a; Yu, 2010. 

 



Introduction 

15 

AbaA, in contrast to BrlA, is not sufficient to induce conidiation as abaA OE does not 

produce conidiophores under non-inducing conditions (Mirabito et al., 1989). In both, abaA 

OE as well as in ΔabaA, brlA expression is upregulated (Aguirre, 1993; Kwon et al., 2010a; 

Ni and Yu, 2007; Tao and Yu, 2011). wetA, which gene product has self-regulating abilities, 

is activated by AbaA in the late phase of conidiation (Adams et al., 1998; Boylan et al., 1987; 

Mirabito et al., 1989). WetA is necessary for the synthesis of conidiospore wall components 

and stability of mature conidia (Boylan et al., 1987; Clutterbuck, 1969; Marshall and 

Timberlake, 1991; Mirabito et al., 1989; Sewall et al., 1990a). wetA mutants form colorless 

autolyzing conidia and accumulation of sporulation-specific mRNAs is absent (Boylan et al., 

1987; Marshall and Timberlake, 1991; Sewall et al., 1990a). wetA OE is not sufficient to 

induce brlA or abaA expression but spore-specific mRNAs accumulate (Marshall and 

Timberlake, 1991).  

Important factors for conidiospore maturation and viability are the velvet proteins VosA and 

VelB (Ni and Yu, 2007; Sarikaya-Bayram et al., 2010) (see CHAPTER 1.2). Both are required 

for trehalose biogenesis and the activation of genes involved in spore maturation (Ni and Yu, 

2007; Sarikaya-Bayram et al., 2010; Wang et al., 2015, 2014). Trehalose is a storage 

component and an important factor for conidiospore viability and rapid loss of trehalose is 

accompanied by viability loss in conidiospores (Fillinger et al., 2001; Nguyen Van Long et 

al., 2017; Ni and Yu, 2007; Novodvorska et al., 2016; Sarikaya-Bayram et al., 2010). 

Expression of both, vosA and velB, is activated by AbaA in the late phase of conidiation 

(Garzia et al., 2013; Park et al., 2012b) (FIGURE 7). VosA activates wetA and other genes, 

which products are important for the formation of cell wall components and for trehalose 

biogenesis, during spore maturation in A. nidulans (Al-Bader et al., 2010; Borgia et al., 1996; 

Fillinger et al., 2001; Ni and Yu, 2007). VosA is abundant in phialides, metulae and 

conidiospores, but mRNA and protein levels decrease rapidly during vegetative growth after 

spore germination (re-establishment of a new colony) (Ni and Yu, 2007). Low levels of VosA 

are present in vegetative growth where it represses brlA expression (Ni and Yu, 2007) (see 

CHAPTER 1.2). 

 

 

1.6 Sexual development 

A. nidulans forms cleistothecia as closed sexual fruit bodies (FIGURE 1 and 8). The formation 

of fruit bodies is coupled to a plethora of environmental and endogenous factors like nutrient 

availability, surface contact, oxygen availability, illumination, pheromones or the cellular 

redox status (Busch and Braus, 2007; Ugalde and Rodríguez-Urra, 2016). It is an important 
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process because it opens up the possibility of genetic rearrangement. Two haploid nuclei from 

compatible mating partners are fused to a diploid (karyogamy). Since A. nidulans is a 

homothallic fungus, this can happen within the same individual (selfing) or involve two 

individuals (mating) (see CHAPTER 1.1). Selfing results in offspring genetically identical to 

the parent whereas mating results in genetic recombination events (Busch et al., 2007). 

Karyogamy is followed by meiosis during which the genome is reduced to a haploid. The 

newly formed haploid nuclei are enclosed in new cells during ascosporogenesis, resulting in 

the formation of ascospores. The asci are protected by the cleistothecium (ascocarb), which is 

surrounded by multi-nucleated Hülle cells. Hülle cells differentiate from hyphae forming nest-

like structures around the developing cleistothecium (FIGURE 8). The proposed function of the 

Hülle cells is the protection and nourishment of the maturating nests (Braus et al., 2002; 

Sarikaya-Bayram et al., 2010). Sexual ascospores are released from the cleistothecium after 

maturation and are easily transported by water and resistant to it. 

 

 

FIGURE 8: Cleistothecium development in A. nidulans.  

Development of cleistothecia from nests is schematically depicted (upper part). Ascospores 

(dark violet) are formed within asci (closed structures, light violet). The cleistothecium 

(violet) is surrounded by Hülle cells (yellow). Schematic presentation of important steps in 

the transition from vegetative hyphae to cleistothecia and involved genes (lower part). 

Adapted from Busch and Braus, 2007. 

 

Cleistothecia represent overwintering structures, which are formed in the soil. Darkness and 

limited oxygen supply, and thus increase in carbon dioxide pressure, are two major triggers of 

sexual development in A. nidulans (Busch and Braus, 2007; Champe et al., 1994; Pöggeler et 
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al., 2006). A number of G-proteins, such as FadA (Gα-subunit), SfdA (Gβ-subunit) and GpgA 

(Gγ-subunit) as well as the mitogen-activated protein kinase SakA/HogA, are crucial for 

transduction of development inducing signals (Busch and Braus, 2007; Pöggeler et al., 2006). 

Several transcription factors are involved in cellular rearrangement processes and 

cleistothecia formation, such as SteA, NsdD, StuA, DopA, MedA and CpcA (Busch and 

Braus, 2007; Han et al., 2001; Pöggeler et al., 2006; Vallim et al., 2000). Except for SteA, the 

aforementioned transcription factors are involved in asexual development in A. nidulans as 

well (Busby et al., 1996; Dutton et al., 1997; Pascon and Miller, 2000). Phosphorylation 

events triggered by the kinase SakA (e.g. of the stress regulator AtfA) are common regulation 

mechanisms of growth states, cell cycle arrest and spore dormancy in fungi (Lara-Rojas et al., 

2011). 

The ubiquitin-dependent proteasomal protein degradation machinery is necessary for fruit 

body formation. Defects in the COP9 signalosome, which acts as a negative regulator for 

ubiquitin ligases that mark specific proteins for proteasomal degradation, lead to a block of 

sexual development at the stage of primordia (Beckmann et al., 2015; Busch et al., 2007; 

Busch and Braus, 2007; Meister et al., 2016). Also deletions of particular F-box proteins, 

which act as substrate-specifying subunits of cullin ring ubiquitin ligases (CRL), such as 

Fbx15, Fbx23 and GrrA result in either blocked (Fbx15, GrrA) or constitutive (Fbx23) sexual 

development (Krappmann et al., 2006a; von Zeska Kress et al., 2012).  

Significant transcriptomic changes occur during sexual development in A. nidulans (Bayram 

et al., 2016). Genes involved in cell wall biogenesis, like the chitin synthase encoding chsC, 

are differentially regulated during these processes (Busch and Braus, 2007). Most specifically 

upregulated genes during sexual development are found after 72 h in contrast to asexual 

development, where induction of genes peaked at late developmental stage after 48 h (Bayram 

et al., 2016). At this time point, sexual development is not yet finished and ascosporogenesis 

is in progress (FIGURE 8). These changes do not only comprise cell structure specific gene 

expressions. Also primary metabolism is altered to efficiently utilize accumulated nutrients to 

nurture developing cleistothecia (Bayram et al., 2016; Busch and Braus, 2007).  

 

 

1.7 Oxidative stress defense: survival mechanism in fungi 

1.7.1 Enzymatic response to oxidative stress 

Organisms produce reactive oxygen species (ROS) as by-products of aerobic respiration and 

other metabolic functions due to oxygen excitation, partial reduction and radical and peroxide 
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formation (Aguirre et al., 2005). ROS are used as intracellular signaling molecules as well as 

for inter-species communication, for example in symbioses and in pathogenic processes 

(Marschall and Tudzynski, 2016; Nath et al., 2016; Zhang et al., 2016). The production of 

ROS, and thus oxidative stress during development can actively be regulated in fungi 

(Pöggeler et al., 2006). ROS are produced as defense mechanism by host immune systems of 

animals and their counterparts in plants (Camejo et al., 2016; Moye-Rowley, 2003). ROS can 

damage all kinds of biomolecules like nucleotides, proteins and lipids (Breitenbach et al., 

2015; Sato et al., 2009). Therefore, fast and potent mechanisms to counteract ROS stress are 

crucial for fungal fitness and success.  

ROS are detoxified by enzymatic mechanisms and redox systems, which provide reducing 

power (Aguirre et al., 2005; Matsuzawa, 2017). Several enzymes, such as superoxide 

dismutases and catalases are involved in the oxidative stress response (OSR). At least five 

catalases exist in A. nidulans: catalases A-D and the uncharacterized AN8553 gene product 

(Bayram et al., 2016; Kawasaki et al., 1997; Kawasaki and Aguirre, 2001; Navarro et al., 

1996). Deletion of catA, catB and catC, as well as double and triple deletions did not have 

developmental influences in A. nidulans (Kawasaki et al., 1997; Kawasaki and Aguirre, 

2001). CatA is preferentially found in conidiospores, whereas CatB is a hyphal catalase and 

both protect against external as well as internal H2O2 (Kawasaki et al., 1997; Navarro et al., 

1996). CatC is proposed to act on very specific stress situations since expression of catC is 

not induced during oxidative or osmotic stress and only slightly upregulated by heat shock 

stress (Kawasaki and Aguirre, 2001). The catalase-peroxidase CatD functions as a H2O2 

scavenger and during heat stress only in old mycelia (24 h and thereafter) (Kawasaki and 

Aguirre, 2001).  

 

1.7.2 Thioredoxin and glutathione system 

Besides the enzymatic OSR proteins, several oxidative stress defense systems have evolved. 

Key mechanisms in the OSR are the thioredoxin and the glutathione system (Aguirre et al., 

2005; Bakti et al., 2017; Carmel-Harel and Storz, 2000; Sato et al., 2009; Thön et al., 2007). 

The main cellular oxidative stress defense system is the glutathione system, a redox-buffer 

system (Bakti et al., 2017; Breitenbach et al., 2015). Glutathione peroxidase, for which 

glutathione functions as electron donor, specifically reduces H2O2 to H2O (Breitenbach et al., 

2015; Meister and Anderson, 1983; Sato et al., 2009). The glutathione system exhibits 

interplay with a second redox system, the thioredoxin system (Sato et al., 2009; Thön et al., 

2007). Thioredoxins are small, omnipresent proteins of 12 to 13 kDa, which function as 
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oxidoreductases. They act as electron donors for thioredoxin peroxidases, similarly to 

glutathione (Sato et al., 2009; Thön et al., 2007). Glutathione and thioredoxin are reduced by 

their specific reductases, which use NADPH as electron donor, after the oxidation processes 

(Breitenbach et al., 2015; Sato et al., 2009; Thön et al., 2007) 

 

1.7.3 Transcription factors involved in the oxidative stress response 

Rapid transcriptional regulation events are important for the fungal defense against ROS 

stress. The OSR is mainly regulated by nuclear localization control of specific transcription 

factors and their protein phosphorylation (Moye-Rowley, 2003). Several examples of fungal 

transcription factors are known, where nuclear localization is regulated by oxidative stress (da 

Silva Dantas et al., 2015; Glover-Cutter et al., 2014; Jin et al., 2015; Morano et al., 2012; 

Moye-Rowley, 2003). Yap1 from Saccharomyces cerevisiae, which corresponds to NapA of 

A. nidulans, is required for expression of thioredoxin TRX2 and involved in the regulation of 

the glutathione biosynthesis (Asano et al., 2007; Kuge and Jones, 1994; Moye-Rowley, 2003; 

Wu and Moye-Rowley, 1994). Transcriptional regulation by Yap1 in the OSR is regulated via 

an exportin: Yap1 enters the nucleus in unstressed situation but is rapidly shuttled out again, 

whereas oxidative stress leads to a nuclear Yap1 accumulation and subsequent transcriptional 

regulation of target genes (Isoyama et al., 2001). Localization of its homologs from other 

yeasts is controlled in an oxidant-responsive manner as well (Moye-Rowley, 2003). Skn7 is, 

together with Yap1, required for oxidative stress tolerance (Moye-Rowley, 2003). Yap1 and 

Skn7 are interdependent and likely function in the same OSR pathway via activation of TRX2 

(thioredoxin) expression (Krems et al., 1996; Morgan et al., 1997). NapA (A. nidulans AP-1 

homolog A) is the Yap1 ortholog in A. nidulans. It is important for the stress-mediated 

activation of several genes of the OSR, such as catB, trxR and trxA in A. nidulans. Strains, 

which lost napA are not able to grow on medium supplemented with oxidative stress inducers 

(Asano et al., 2007). Several transcription factors are activated by mitogen-activated protein 

kinase (MAPK) phosphorylation cascades upon oxidative stress, such as Atf1 of 

Schizosaccharomyces pombe or its homolog in A. nidulans, AtfA (Hagiwara et al., 2008; 

Lara-Rojas et al., 2011; Shiozaki and Russelp, 1996). Deletion of the gene encoding the 

MAPK SakA, which interacts with AtfA, leads to increased sensitivity of conidiospores to 

oxidative stress and decreased spore viability in A. nidulans (Kawasaki et al., 2002; Lara-

Rojas et al., 2011).  

Another fungal mechanism in response to stresses is the adjustment of the cellular protein 

composition. Target proteins are labeled for degradation by multi-subunit SCF Cullin RING 
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ligases, which employ F-box proteins as substrate specific adaptors (Jöhnk et al., 2016; Yu, 

2010). The F-box protein Fbx15 in A. fumigatus is necessary to shuttle SsnF into the nucleus 

in response to oxidative stress (Jöhnk et al., 2016). SsnF is a subunit of the transcriptional co-

repressor complex RcoA-SsnF and mislocalization of SsnF in Δfbx15 correlates with an 

upregulation of catB (Jöhnk et al., 2016). In S. cerevisiae, the corresponding Ssn6-Tup1 co-

repressor complex coordinates the expression of three to five percent of the whole genome 

and is involved in mating, nutrient sensing, DNA-damage repair and stress response (Derisi et 

al., 1997; Parnell and Stillman, 2011). 

 

 

1.8 Zinc cluster proteins: a fungal specific type of transcription factors 

Transcriptional control of genes is of importance for organisms in order to cope with 

changing environments and internal constitution. Cells possess a variety of regulatory proteins 

for these purposes. Amongst them the group of zinc binding proteins represents the largest 

group of transcription factors in eukaryotes. This group is divided into three subgroups: 

Cys2His2 (C2H2), Cys4 (C4) and Cys6 (C6). The last one, also called zinc cluster proteins, is 

primarily present in fungi (with few exceptions in other microorganisms) and is not found in 

bacteria, plants or animals (MacPherson et al., 2006; Scazzocchio, 2014; Schjerling and 

Holmberg, 1996). C6 proteins are mainly involved in the regulation of either i) carbon and 

nitrogen metabolism, ii) secondary metabolism or iii) asexual or sexual development (Chang 

and Ehrlich, 2013). A number of C6 proteins are involved in virulence and pathogenicity in 

several fungi, such as A. fumigatus and Candida albicans (Bok et al., 2006a; Boyce et al., 

2015; Dufresne et al., 2000; Issi et al., 2017; Lu et al., 2014; Rybak et al., 2017; Vandeputte 

et al., 2011). DNA-target sequence specificity of C6 proteins is given by a unique linker 

region between the zinc fingers and, in many cases, a dimerization domain, which together 

constitute the DNA binding domain (DBD) (Johnston and Dover, 1987; MacPherson et al., 

2006; Mamane et al., 1998; Reece and Ptashne, 1993). The DBD (C6) domain is often located 

near the N-terminus of proteins, but C-terminal localization has been shown as well 

(MacPherson et al., 2006). C6 proteins contain in many cases a region of weak similarity that 

follows the C6 domain. This region was designated the middle homology region (MHR) since 

it is framed by the C6 domain and the regulation domain at the C-terminus of the protein, 

which is in most cases an acidic activation domain forming a negatively charged area 

(Schjerling and Holmberg, 1996) (FIGURE 9). C6 proteins are known to be able to form 

homodimers and heterodimers with other zinc cluster proteins, as well as with non-zinc 

cluster proteins (Akache et al., 2004; Amar et al., 2000; Karpichev et al., 1997; Karpichev 
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and Small, 1998; Mamnun et al., 2002; Rottensteiner et al., 1997) (FIGURE 9). These 

monomers or dimers bind short DNA recognition sequences of inverted, everted or direct 

repeats (MacPherson et al., 2006). Self-regulation via feedback loops was found for several 

C6 proteins (Delahodde et al., 1995; Hiesinger et al., 2001; Hon et al., 2005; Larochelle et al., 

2006; Rottensteiner et al., 1997; Zhang et al., 2001).  

 

 

FIGURE 9: C6 proteins are fugal-specific DNA-binding proteins.  

The upper part depicts a model of the functional parts of a typical C6 protein. The DNA-

binding domain (DBD) comprises the zinc cluster (Zn), a linker region and the dimerization 

domain. The middle homology region (MHR) is framed by the DBD and the acidic activation 

region. A model of protein-DNA interactions exhibited by C6 proteins is depicted in the lower 

part. C6 proteins typically bind short DNA sequences with inverted, everted or repeated 

orientation as monomers, homo- and heterodimers. Adapted from MacPherson et al., 2006. 

 

Transcription factors need to be localized in the nucleus in order to fulfill their task of 

regulating gene expression. C6 proteins can be divided into two groups with respect to their 

localization: i) proteins, which are permanently localized in the nucleus and ii) proteins, 

which are localized in the cytoplasm and shuttled into the nucleus upon their activation signal 

(MacPherson et al., 2006). For the former group it is postulated that its members are activated 

by target molecules or metabolic intermediates and constitutive promoter binding has been 

shown for a number of C6 proteins (Flynn and Reece, 1999; Harbison et al., 2004; 

Kirkpatrick and Schimmel, 1995; MacPherson et al., 2006; Sellick and Reece, 2003, 2005).  

The second group needs to be transported into the nucleus with the help of importers. Several 

different and redundant import strategies have been shown for C6 proteins (Hasper et al., 

2004; MacPherson et al., 2006; Nikolaev et al., 2003). A general import strategy is not known 

for C6 proteins (MacPherson et al., 2006). Protein transport into the nucleus takes place by 

the binding of the α/ß importin heterodimer to nuclear localization sequences (NLS) of the 

respective cargo protein and the import of the complex into the nucleus through nuclear pores 
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(Beck and Hurt, 2017; Garcia et al., 2016; Görlich et al., 1995; Köhler et al., 1999; Lim et al., 

2015; Miyamoto et al., 2016; Nakielny and Dreyfuss, 1999; Schwartz, 2016). The NLS in C6 

proteins can be localized within as well as outside of the C6 domain. 

 

 

1.9 Aspergillus fumigatus – a pathogenic mold 

1.9.1 A. fumigatus as soil borne fungus with pathogenic potential   

A. fumigatus represents an opportunistic pathogenic member of the genus Aspergillus. Like 

A. nidulans, it is a soil borne fungus, which lives on decaying biological material and plays an 

important role in the natural recycling of carbon and nitrogen sources (Adav et al., 2015; 

Brakhage and Langfelder, 2002; Flipphi et al., 2009; Wang et al., 2012). Its versatile 

metabolism is one factor, besides other factors, like high thermotolerance, oxidative stress 

resistance, mycotoxin production, that renders A. fumigatus a potent pathogen (Krappmann 

and Braus, 2005). The saprophytic mold exhibits high genetic diversity, accompanied by high 

adaptability to changing environmental conditions (Debeaupuis et al., 1997; Verweij et al., 

2016b). Its increasing resistance towards widely used fungicides renders it a serious health 

treat in industrialized countries (Verweij et al., 2016a, 2016b). A. fumigatus is the second 

most common agent of fungal infections in humans after Candida albicans (Kaur and Singh, 

2013). Immunocompetent individuals rarely encounter problems by inhaling of spores due to 

an efficient innate immune response. In immunocompromised patients, however, A. fumigatus 

spores can evoke life threatening infections with high mortality rates of up to 90% (Dagenais 

and Keller, 2009; Denning, 1998; Kousha et al., 2011; Lamoth et al., 2016; Latgé, 1999; 

Wasylnka and Moore, 2003).  

 

1.9.2 Developmental programs of A. fumigatus 

Asexual development in A. fumigatus is similar to A. nidulans. The conidiophore in 

A. fumigatus resembles the characteristics of the A. nidulans conidiophore in organization, 

except for the missing layer of metulae (Brakhage and Langfelder, 2002; Tao and Yu, 2011; 

Yu, 2010) (FIGURE 10). Conidiospores of this opportunistic pathogenic mold are considerably 

smaller compared to A. nidulans, what contributes to their virulence since they easily reach 

the lung alveoli after inhalation (Dagenais and Keller, 2009; Kaur and Singh, 2013; Yu, 

2010). They are resistant to various stresses and stress defense mechanisms are extensively 

studied (Hagiwara et al., 2008; Jöhnk et al., 2016; Kwon-Chung and Sugui, 2009; Muszkieta 

et al., 2016). 
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FIGURE 10: Comparison of conidiophores of A. nidulans and A. fumigatus.  

Schematic comparison of conidiophores from A. nidulans and A. fumigatus is shown. The 

organization is similar in both fungi, but the conidiophores of A. fumigatus lack metulae. Cell 

nuclei are shown in red. Note that nuclei of the mononucleated conidiospores and phialides 

are not shown. Adapted from Yu, 2010. 

 

A. fumigatus is, in contrast to A. nidulans, a heterothallic fungus. For long, A. fumigatus was 

designated a member of the fungi imperfecti (Deuteromycota), which do not possess a sexual 

reproductive cycle or for which such a cycle has not been discovered (Geiser et al., 1996). 

The fungus possess all genetic requirements for a sexual life cycle (Galagan et al., 2005; 

Nierman et al., 2005). In 2009, sexual development could be shown for A. fumigatus 

(O’Gorman et al., 2009). The process of sexual propagation requires specific temperature, 

media and extended periods of time (up to six months) (O’Gorman et al., 2009). As for many 

other pathogenic fungi, the sexual life cycle remains a rare event in A. fumigatus and asexual 

propagation is favored (Dyer and O’Gorman, 2012; Ene and Bennett, 2014). 

Corresponding OSR genes from A. nidulans are present in A. fumigatus as well, such as trxR 

(trr1 in A. fumigatus), catA, catB and catD (catA, 1, 2) to name but a few (Abadio et al., 

2011; Calera et al., 1997; Paris et al., 2003). Moreover, conidiospores and hyphae of 

A. fumigatus are resistant to high temperatures of up to 75°C and 55°C, respectively 

(McCormick et al., 2010; Perez-Nadales et al., 2014; Sueiro-Olivares et al., 2015).  

 

1.9.3 The central developmental pathway is conserved in A. fumigatus 

Similarly to A. nidulans, BrlA of A. fumigatus is a necessary developmental activator, which 

function is conserved among both species (Mah and Yu, 2006; Tao and Yu, 2011). wetA and 

abaA expression are dependent on BrlA in this fungus as well (Tao and Yu, 2011). AbaA 

function is conserved among A. nidulans and A. fumigatus as AbaA is involved in phialide 

differentiation and activation of wetA expression in both fungi (Tao and Yu, 2011). WetA is 

involved in cell wall biogenesis of conidiospores and is necessary for trehalose biogenesis, 

spore viability and integrity and stress tolerance (Tao and Yu, 2011). An A. fumigatus ΔwetA 
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mutant produces colorless conidia with imperfect separation and drastically reduced viability 

(Tao and Yu, 2011). During vegetative growth, hyphal branching is reduced in ΔwetA, 

comparable to the situation in A. nidulans (Tao and Yu, 2011). In both, ΔabaA and ΔwetA, 

brlA expression is upregulated, indicating negative feedback regulatory circuits (Tao and Yu, 

2011). This shows that the conidiation cascade BrlAAbaAWetA is conserved between 

A. nidulans and A. fumigatus and plays a key role in both fungi. Nevertheless, regulatory 

details are distinctly different, especially with respect to autoregulation and feedback loops 

(Park et al., 2012a; Shin et al., 2015; Tao and Yu, 2011; Yu, 2010). 

 

1.9.4 Differences of upstream developmental activator functions between A. nidulans 

and A. fumigatus 

FluG is necessary for conidiation in A. nidulans (see CHAPTER 1.5). In contrast, FluG is not 

required for the activation of conidiation in A. fumigatus, as ΔfluG mutants conidiate like the 

WT during asexual development (Mah and Yu, 2006). A. fumigatus is able to sporulate in 

liquid cultures, where development is blocked in A. nidulans and only vegetative growth 

occurs. Though, sporulation under submerged conditions in A. fumigatus is dependent on 

FluG (Mah and Yu, 2006). Hence, existence of more than one conidiation pathway has been 

hypothesized in this fungus (Mah and Yu, 2006; Yu, 2010). FlbE is proposedly conserved 

among Aspergilli, as flbE of A. fumigatus fully complements the loss of flbE in A. nidulans 

(Kwon et al., 2010b). A loss of flbB in A. fumigatus leads to decreased conidiation and 

delayed expression of brlA and abaA, but not of wetA and vosA (Xiao et al., 2010). FlbB 

functions in the early phase of conidiation, comparable to the situation in A. nidulans (see 

CHAPTER 1.5). Production of the SM gliotoxin, a potent mycotoxin with antioxidant function, 

is absent in ΔflbB (Choi et al., 2007; Owens et al., 2014; Xiao et al., 2010). This phenotype 

could not be fully restored by introduction of flbB from A. nidulans into A. fumigatus ΔflbB 

(Xiao et al., 2010). This is due to the fact that A. nidulans flbB encodes one transcript, 

whereas flbB produces two transcripts in A. fumigatus (Etxebeste et al., 2008; Xiao et al., 

2010). Two FlbB polypeptides are present in A. fumigatus, which are both important for 

gliotoxin biosynthesis and morphological development (Xiao et al., 2010). Furthermore, flbE 

and brlA are involved in the regulation of gliotoxin production (Xiao et al., 2010). flbD 

mRNA only accumulates if products of both, flbB and flbE are present, indicating a similar 

genetic dependency as found in A. nidulans (Garzia et al., 2009, 2010; Xiao et al., 2010) (see 

CHAPTER 1.5). In contrast to A. nidulans, where FlbB and FlbE are interdependent and form a 
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complex, both factors are independently expressed in A. fumigatus (Garzia et al., 2009; 

Herrero-Garcia et al., 2015; Mah and Yu, 2006).  

 

1.9.5 Velvet factor control of secondary metabolism and development 

The four velvet proteins, crucial developmental and SM regulators (see CHAPTER 1.2) are 

conserved in A. fumigatus (Park et al., 2012a). Genomic and metabolomic analyses have 

revealed that A. fumigatus supposedly is able to produce several hundred secondary 

metabolites (Dolan et al., 2015; Frisvad et al., 2009; Frisvad and Larsen, 2016; Lind et al., 

2015). VeA and LaeA play important roles in the regulation of gliotoxin production, a potent 

mycotoxin, and couple SM production to virulence (Dagenais et al., 2010; Dhingra et al., 

2013; Perrin et al., 2007). Similar to the situation in A. nidulans, VeA represses brlA 

expression in A. fumigatus (Park et al., 2012a). VelB represses brlA in A. fumigatus as well, 

which is in contrast to the situation in A. nidulans, where VelB is hypothesized to positively 

regulate brlA expression (Park et al., 2012a). A loss of veA and velB, but not of velC, leads to 

conidiophore formation in submerged cultures in conidiation-suppressing media, whereas 

ΔvosA forms vesicle-like structures under these conditions and accumulates brlA mRNA after 

24 h of vegetative growth (Park et al., 2012a). Moreover, VosA and VelB are involved in 

trehalose biogenesis, as respective mutants showed decreased trehalose content of spores and 

decreased spore viability, indicating conservation of their general necessity for trehalose 

biogenesis (Park et al., 2012a). In contrast, trehalose is abolished in corresponding mutants in 

A. nidulans (Ni and Yu, 2007; Sarikaya-Bayram et al., 2010). VeA is besides VelB and VosA 

an important regulators of conidiosporogenesis and involved in the regulation of stress 

resistance of conidiospores in A. fumigatus (Shin et al., 2016). These findings show that 

several developmental genes from A. nidulans are involved in virulence and secondary 

metabolite regulation in A. fumigatus and distinct reprogramming of the genetic machinery 

occurred after species differentiation.  

 

 

1.10 Aim of this study 

The aim of this study was to analyze the regulatory level downstream of the VosA control of 

transcription. Therefore, a VosA controlled transcription factor (ZtfA) was analyzed in more 

detail. Velvet regulators bridge developmental programs and secondary metabolism in 

filamentous fungi. VosA binds to promoter sequences of approximately 1500 genes but the 

vast majority of these targets is uncharacterized, amongst them the ztfA gene (Ahmed et al., 
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2013). ztfA corresponds to A. niger scl-2 (sclerotia-like 2) (A.F.J. Ram, personal 

communication). scl-2 was originally described by Jørgensen and collaborators, who aimed at 

increasing secondary metabolite production in the industrial fungus A. niger (Jørgensen et al., 

2011). The A. niger scl-2 mutant exhibits diminished asexual sporulation and the formation of 

sclerotia-like structures, which are thought to correspond to cleistothecia in A. nidulans and 

are rarely produced in the laboratory (Frisvad et al., 2014; Jørgensen et al., 2011). Besides its 

developmental phenotype, the scl-2 mutant displays severe impairment in SM production. 

However, no further genetic analyses of this mutant or any putative ortholog among other 

fungi have been conducted so far. 

The ztfA gene product exhibits a C6 domain as the only obvious protein domain and was 

therefore denominated Zinc cluster transcription factor A (ZtfA). Genetic relationships 

between the velvet proteins and ZtfA are investigated in the present study. The regulatory 

influences of ZtfA upon the conidiation pathways are examined through phenotypical and 

transcriptional analyses in detail in A. nidulans. Involvement of ZtfA in the regulation of 

secondary metabolite biosynthesis is analyzed as well. An investigation of SM production and 

its transcriptional regulation reveals further connections between developmental programs and 

secondary metabolism in A. nidulans. Oxidative stress response is often coupled to secondary 

metabolism and hence is investigated in addition.  

A functional conversion of developmental to virulence regulators between non-pathogenic 

and pathogenic fungi is common and a possible role of the respective ortholog in 

pathogenicity of A. fumigatus is investigated. The examination of its involvement in important 

determinants for pathogenicity as well as virulence in an invertebrate model gives further 

insights into the aforementioned functional conversion of regulators between genetic and 

pathogenic model fungi.  
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2. Materials and methods 

2.1 Chemicals and materials 

Buffers, solutions and media were prepared with chemicals purchased from the companies 

APPLICHEM GMBH (Darmstadt, Germany), BD BIOSCIENCES (Heidelberg, Germany), CARL 

ROTH GMBH & CO. KG (Karlsruhe, Germany), FLUKA (Neu-Ulm, Germany), INVITROGEN 

(Carlsbad, CA, USA), MERCK KGAA (Darmstadt, Germany), BIOZYME SCIENTIFIC GMBH 

(Hessisch Oldendorf, Germany), ROCHE DIAGNOSTICS GMBH (Mannheim, Germany), SIGMA-

ALDRICH CHEMIE GMBH (Munich, Germany), SERVA ELECTROPHORESIS GMBH (Heidelberg, 

Germany), OXOID DEUTSCHLAND GMBH (Wesel, Germany).  

Plastic consumables, such as pipet tips, reaction tubes, inoculation loops etc., were purchased 

from SARSTEDT AG & CO. (Nümbrecht, Germany), STARLAB GMBH (Hamburg, Germany) and 

NERBE PLUS GMBH (Winsen/Luhe, Germany).  

Polymerases and restriction enzymes were obtained from THERMO FISHER SCIENTIFIC 

(Schwerte, Germany), trypsin was purchased from SERVA ELECTROPHORESIS GMBH 

(Heidelberg, Germany). Primers were obtained from EUROFINS GENOMICS GMBH (Ebersberg, 

Germany). The GeneRuler 1kb DNA ladder and the PageRuler
TM

 Prestained Protein Ladder 

(THERMO FISHER SCIENTIFIC) were used for DNA and protein on-gel band size determination. 

Filtropur filters with a pore size of 0.2 and 0.45 µm for small-scale sterile filtration of 

chemicals were purchased from SARSTEDT. Ampicillin (ROTH), pyrithiamine hydrobromide 

(SIGMA-ALDRICH), clonNAT nourseothricin dihydrogen sulfate from WERNER BIOAGENTS 

(Jena, Germany) and phleomycin (INVIVOGEN) were used for selection of microorganisms.  

DNA- and protein amounts were measured with a NanoDrop ND-1000 photospectrometer 

from PEQLAB BIOTECHNOLOGIE GMBH (Erlangen, Germany). Agarose gel electrophoresis was 

performed with Mini-Sub
®
 Cell GT chambers and the PowerPac

TM
 300 power supply and 

SDS-polyacrylamide gel electrophoresis and EMSAs were performed with the Mini-Protean
®

 

Tetra Cell, Mini Trans-Blot
®
 Electrophoretic Cell and powered with the PowerPac

TM
 3000 

from BIO-RAD LABORATORIES (Hercules, CA, USA). Proteins were transferred from SDS-

polyacrylamide gels onto Amersham
TM

 Protran
TM

 0.45 µm NC nitrocellulose blotting 

membranes and DNA was blotted to Amersham
TM

 Hybond-N
TM

 nylon membranes from GE 

HEALTHCARE (Little Chalfont, United Kingdom). Chemiluminescence was detected either by 

utilization of Amersham
TM

 Hyperfilm
TM

-ECL from GE Healthcare, which were exposed with 

the Optimax X-ray Film Processor from PROTEC GMBH & CO. KG (Oberstenfeld, Germany), 

or by exposure of the membranes with the Fusion SL chemiluminescence detector from 
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PEQLAB. For centrifugation of 1.5 and 2 ml reaction tubes, Biofuge fresco (cooled) and 

Biofuge pico centrifuges from HERAEUS INSTRUMENTS GMBH (Hanau, Germany) were used. 

For centrifugation of 10, 15 and 50 ml centrifuge tubes Rotixa/RP from ANDREAS HETTICH 

GMBH & CO. KG (Tuttlingen, Germany), 5804R from EPPENDORF AG (Hamburg, Germany) 

and 4K15C from SIGMA LABORZENTRIFUGEN GMBH (Osterode am Harz, Germany) were 

used. For pH determination a WTW bench pH/mV Routine meter pH 526 (SIGMA-ALDRICH) 

was used. 

Further materials, instrumentations and suppliers are indicated in the subsequent chapters. 

 

 

2.2 Media and growth conditions 

Chemicals for media preparation were dissolved in dH2O and sterilized by autoclavation at 

121°C for 20 min at two bar. Thermally unstable supplementations were dissolved in dH2O 

and sterile filtered. 

 

2.2.1 Bacterial growth 

Escherichia coli strains DH5α
TM

 (Hanahan, 1985), DH10B
TM

 (Lorow and Jessee, 1990) and 

One Shot
®

 TOP10 (INVITROGEN) were used for construction and amplification of recombinant 

plasmids. Genotypes of these strains are given in TABLE 1. E. coli strains were cultivated in 

lysogeny broth (LB) (Bertani, 1951) medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 

1% (w/v) NaCl) on a rotary shaker at 37°C. Ampicillin was used as selective agent in a 

concentration of 100 mg/ml. Solid medium was prepared by supplementation with 2% (w/v) 

agar.  

 

TABLE 1: E. coli strains used in this study. 

  

Strain name Genotype 
DH5α

TM
 F-, ∆(argF-lac)169, φ80dlacZΔM15, ∆phoA8, glnX44(AS), λ-, deoR481, rfbC1, 

gyrA96(NalR), recA1, endA1, thiE1, sdR17 

DH10B
TM

 F- mcrA Δ(mrr-hsdRMS-mcrBC), φ80dlacZΔM15, ΔlacX74, deoR, recA1, araD139, 

Δ(ara, leu)7697, galU, galK, rpsL, endA1, nupG 

One Shot
®

 TOP10 F- mcrA, Δ( mrr-hsdRMS-mcrBC), φ80dlacZΔM15, ΔlacX74, recA1, araD139, 

Δ(araleu)7697, galU, galK, rpsL (StrR), ndA1 nupG 

 

2.2.2 Fungal growth 

The A. nidulans veA
+
 strain AGB 551 (Bayram et al., 2012) was used as wildtype (WT) host 

for A. nidulans strains constructed in this study. A. fumigatus strain AfS35 (Krappmann et al., 

2006b) was used as host for A. fumigatus strains constructed in this study.  
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A. nidulans and A. fumigatus strains were grown in minimal medium (MM) (1% (w/v) 

glucose, 7 mM KCl, 2 mM MgSO4, 70 mM NaNO3, 11.2 mM KH2PO4, 0.1% (v/v) trace 

element solution pH 5.5 (Käfer, 1977)). London medium (LM) (1% (w/v) glucose, 7 mM 

KCl, 2 mM MgSO4, 5 mM (NH4)2C4H4O6, 11.2 mM KH2PO4, 0.1% (v/v) trace element 

solution pH 5.5 (Käfer, 1977)) was used to prevent expression of ztfA OE driven by 
P
niaD. 

2% (w/v) agar was added for solid MM plates. Aspergilli were grown at 37°C in baffled 

flasks under shaking conditions on a rotary shaker for vegetative growth for 24 h, or for 

shorter time periods when indicated. A. nidulans strains were grown on solid MM plates 

under constant white light for two to four days (d), or longer where indicated, to induce 

asexual development. Sexual development was induced by growing fungal strains in the dark 

for up to 7 d on solid MM plates, which were tightly sealed with Parafilm
®
 M (MERCK) to 

prevent oxygen supply. 

A. fumigatus strains were grown in the presence of oxygen but without illumination. Strains 

were grown for 24 h in submerged cultures for synchronized growth. After this, mycelia were 

harvested and washed through sterile Calbiochem Miracloth filters (MERCK) and subsequently 

shifted onto solid MM plates (Fischer, 2002). Tests including the ztfA OE were carried out on 

MM supplemented with 10 µg/ml doxycycline to induce ztfA expression (Helmschrott et al., 

2013). 

Conidiospores were harvested in 0.96% (w/v) NaCl with 0.002% (v/v) Tween-80 (SIGMA-

ALDRICH) and stored at 4°C. 

   

TABLE 2: Fungal strains used in this study.  
P
 = promoter, phleo

R 
= phleomycin resistance (non-recyclable), p.c. = personal 

communication. A. nidulans strains are denominated AGB or FGSC, A. fumigatus strains are 

denominated ACS, AfS or AfGB.  

   

Strain name Genotype Reference 

FGSC A4 veA
+
 McCluskey et al., 2010 

AGB551 ∆nkuA::argB, pyrG89, pyroA4, veA
+
 Bayram et al., 2012 

AGB596 
P
gpdA::sgfp-phleo

R
; pabaA1, yA2, veA

+
 Bayram et al., 2012 

AGB1007 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆ztfA::six This study 

AGB1008 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, six::

P
niaD::ztfA This study 

AGB1009 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ztfA::sgfp::six This study 

AGB1010 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, sgfp::ztfA::six This study 

AGB1011 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ztfA::six This study 

AGB1012 AGB1009, transformed with pME3173 This study 

AGB1013 AGB1010, transformed with pME3173 This study 

AGB1014 AGB551, transformed with pME3173 This study 

AGB1015 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, This study 
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P
ztfA::ztfA

S327A,T464A,S504-506A
::six 

AGB1016 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆fluG::six This study 

AGB1017 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆fluG::six, ∆ztfA::six This study 

AGB1018 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆fluG::six, 

six::
P
niaD::ztfA 

This study 

AGB1019 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, six::

P
niiA::fluG This study 

AGB1020 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆ztfA::six, 

six::
P
niiA::fluG 

This study 

AGB1022 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆aflR::six This study 

AGB1023 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆aflR::six, ∆ztfA::six This study 

AGB1024 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆aflR::six, 

six::
P
niaD::ztfA 

This study 

AGB1025 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, six::

P
niiA::aflR This study 

AGB1026 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆ztfA::six, 

six::
P
niiA::aflR 

This study 

AGB1028 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆abaA::six This study 

AGB1029 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆abaA::six, ∆ztfA::six This study 

AGB1031 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆brlA::six This study 

AGB1032 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆brlA::six, ∆ztfA::six This study 

AGB1033 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆brlA::six, 

six::
P
niaD::ztfA 

This study 

AGB1035 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbB::six This study 

AGB1036 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbB::six, ∆ztfA::six This study 

AGB1037 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbB::six, 

six::
P
niaD::ztfA 

This study 

AGB1039 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbC::six This study 

AGB1040 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbC::six, ∆ztfA::six This study 

AGB1041 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbC::six, 

six::
P
niaD::ztfA 

This study 

AGB1043 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbD::six This study 

AGB1044 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbD::six, ∆ztfA::six This study 

AGB1045 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbD::six, 

six::
P
niaD::ztfA 

This study 

AGB1047 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbE::six This study 

AGB1048 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbE::six, ∆ztfA::six This study 

AGB1049 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆flbE::six, 

six::
P
niaD::ztfA 

This study 

AGB1051 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, phleo

R
, 

P
niaD::ztfA::eyfp-C, 

P
niiA::rcoA::eyfp-N 

This study 

AGB1052 AGB1051, transformed with pME3173 This study 

AGB1053 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, phleo

R
, 

P
niaD::ztfA::eyfp-C, 

P
niiA::eyfp-N 

This study 

AGB1054 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, phleo

R
, 

P
niaD::eyfp-C, 

P
niiA::rcoA::eyfp-N 

This study 

AGB1055 AGB1053, transformed with pME3173 This study 

AGB1056 AGB1054, transformed with pME3173 This study 

AGB1057 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆vosA::six S. Thieme, p.c. 

AGB1058 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆vosA::six, ∆ztfA::six This study 

AGB1059 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆vosA::six, 

six::
P
niaD::ztfA 

This study 

AGB1062 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆velC::six This study 

AGB1063 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆velC::six, ∆ztfA::six This study 

AGB1064 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆velB::six S. Thieme, p.c. 
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AGB1065 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆velB::six, ∆ztfA::six This study 

AGB1066 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆veA::six J. Gerke, p.c. 

AGB1067 ∆nkuA::argB, pyrG89, pyroA4, veA
+
, ∆veA::six, ∆ztfA::six This study 

ACS39  ∆akuA::loxP, ΔpyroA::pyroA-TetOn-ztfA C. Sasse, p.c. 

AfS35 ∆akuA::loxP Krappmann et al., 2006b 

AfGB129 ∆akuA::loxP, ∆ztfA::six  This study 

 

 

2.3 Morphological methods: conidiospore and cleistothecia quantification 

Determination of conidiospore numbers was performed by utilization of a Coulter Z2 particle 

counter (BECKMAN COULTER GMBH, Krefeld, Germany) or spore numbers were determined 

with a Thoma cell counting chamber (hemocytometer) (PAUL MARIENFELD GMBH AND CO. 

KG, Lauda-Königshofen, Germany). Total numbers of conidiospores were determined by 

complete harvesting of all conidiospores from plates in 0.96% (w/v) NaCl with 0.002% (v/v) 

Tween-80 (SIGMA-ALDRICH). Conidiospores per 5 mm
2
 solid medium were determined by 

excising plugs of agar from point inoculated cultures with the larger end of a 200 µm pipette 

tip. Spores were harvested from these plugs and counted with a hemocytometer.  

For quantifying cleistothecia, 2000 spores of indicated strains were point inoculated and 

grown for 8 d in light or dark to induce asexual or sexual development. Agar plugs of 5 mm
2
 

were cut out using the larger side of a 200 µl pipette tip and cleistothecia were individualized 

on a new agar plate and counted with help of a SZX12-ILLB2-200 binocular microscope 

(OLYMPUS DEUTSCHLAND GMBH, Hamburg, Germany). The quantification was tested with 

plated cultures (1*10
7
 spores per strain) with similar results. 

 

  

2.4 Nucleic acid methods 

2.4.1 Isolation and purification of fungal genomic DNA 

Strains were grown overnight (o/n) in liquid cultures for extraction of genomic DNA. Mycelia 

were harvested through Miracloth filters, frozen in liquid nitrogen and ground with a MM400 

table mill from RETSCH TECHNOLOGY GMBH (Haan, Germany). Ground mycelia were mixed 

with 500 µl genomic DNA lysis buffer (Lee and Taylor, 1990) (50 mM Tris-HCl ph 7.2, 50 

mM EDTA, 3% (w/v) SDS, 1% (v/v) β-mercaptoethanol) and incubated 15 min at 65°C. 

Subsequently mycelia solution were mixed with 100 µl 8 M potassium acetate and 

centrifuged for 15 min at 13000 rpm at room temperature (rt). Supernatant was mixed with 

100 µl 8 M potassium acetate and centrifuged for 15 min at 13000 rpm at rt. Supernatant was 

transferred into new test tubes and mixed with 300 µl isopropanol and centrifuged 10 min at 



Materials and Methods 

 

32 

13000 rpm at rt. DNA pellets were washed twice with 70% (v/v) ethanol and dried at 42°C 

before resolving in H2O at 65°C.  

 

2.4.2 Isolation and purification of fungal RNA 

Strains were grown vegetatively or asexually for RNA isolation. Mycelia were harvested 

through sterile Miracloth filters (MERCK) and immediately frozen in liquid nitrogen. Frozen 

mycelia were ground with a table mill (RETSCH) directly before RNA extraction. RNA from 

approximately 200 µl of ground mycelia was isolated with the RNeasy
®
 Plant Miniprep Kit 

from QIAGEN (Hilden, Germany) according to manufacturer’s instructions without addition of 

β-mercaptoethanol. Concentrations were measured with a Nanodrop ND-1000 (PEQLAB). 

cDNA was transcribed from 0.8 µg RNA with the QuantiTect
®
 Reverse Transcription Kit 

(QIAGEN) according to manufacturer’s conditions. 

 

2.4.3 Isolation and purification of plasmid-DNA and linearized DNA fragments 

Plasmid DNA was extracted from E. coli cultures by utilization of the QIAprep
®
 Spin 

Miniprep Kit (QIAGEN) or the NucleoSpin
®
 Plasmid Kit (MACHEREY-NAGEL) according to 

manufacturer’s specifications. Plasmid DNA was eluted from spin columns with dH2O and 

stored at -20°C. 

Linearized DNA fragments from PCR amplification or enzymatic digests for plasmid 

linearization and construct excision were mixed with 10x DNA loading dye (10% (v/v) Ficoll 

400, 200 mM EDTA pH 8.0, 0.2% (w/v) bromophenol blue, 0.2% (w/v) xylene cyanol FF), 

separated by agarose gel electrophoresis and gel pieces with respective DNA bands were cut 

out of the gel. DNA was purified from agarose gels by employing the QIAquick
®

 Gel 

Extraction Kit (QIAGEN) or the NucleoSpin
®

 Gel and PCR Clean-up Kit from MACHEREY-

NAGEL GMBH & CO. KG (Düren, Germany). 

 

2.4.4 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) (Saiki et al., 1988) was employed to amplify DNA 

fragments for plasmid construction and to determine the presence of desired plasmids in 

E. coli after plasmid construction via seamless cloning or ligation (colony PCR) (Bergkessel 

and Guthrie, 2013; Hofmann and Brian, 1991). PCRs were performed in T Professional 

Standard 96, T Professional Trio 48 and T Professional Standard 96 Gradient thermocyclers 

from BIOMETRA GMBH (Göttingen, Germany) and in Primus 96 Thermal Cyclers from MWG 

BIOTECH AG (Ebersberg, Germany). Phusion
®

 High-Fidelity DNA Polymerase (THERMO 
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FISHER SCIENTIFIC) was used for DNA amplification via PCR and PCR programs were 

designed after manufacturer’s instructions and according to calculated melting temperatures 

(TM) of utilized primers. The OligoCalc program was used for calculation of primer TMs and 

salt adjusted temperatures were regarded as best assumption (Kibbe, 2007). 

 

2.4.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was employed for separation of DNA fragments according to size 

(Lee et al., 2012a). 1% (w/v) agarose gels containing 0.001 mg/ml ethidium bromide were 

used in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA). DNA was applied in 10x 

DNA loading dye and visualized in-gel by exposure to UV light (λ = 254 nm) in a Gel iX20 

Imager Windows Version and the Intas GDS gel documentation software from INTAS SCIENCE 

IMAGING INSTRUMENTS GMBH (Göttingen, Germany) or on a TFX-20 MX Vilber Lourmat 

Super Bright transilluminator (SIGMA-ALDRICH).  

 

2.4.6 Quantitative real-time polymerase chain reaction 

Gene expression was measured by quantitative real-time PCR (qRT-PCR) utilizing MESA 

GREEN qPCR MasterMix Plus for SYBR
®
 Assay purchased from EUROGENTEC (Lüttich, 

Belgium) in a CFX Connect
TM

 Real-Time System (BIORAD). The utilized qRT-PCR protocol 

is given in TABLE 3. Primers for qRT-PCR were designed utilizing the Primer3 software 

(Koressaar and Remm, 2007; Untergasser et al., 2012) and are given in TABLE 4. Gene 

expression was measured from 1:5 dilutions of respective cDNA. Obtained qRT-PCR data 

was analyzed with the CFX Manager
TM

 3.1 software package (BIO-RAD) using the 2-ΔΔCT 

method for relative quantification of gene expression (Schmittgen and Livak, 2008). 

Expression of gpdA, h2A (AN3468) and 15S rRNA were used for A. nidulans qRT-PCR and 

h2A (Afu3g05360) and gpdA expression were used for A. fumigatus as references for relative 

quantification.  

For measurement of the expression of oxidative-stress related genes, strains were grown in 

submerged cultures at 37°C on a rotary shaker for 24 h. Subsequently, 5 mM H2O2 was 

added. Control strains were left untreated. Incubation was prolonged for another 30 min 

shaking on the rotary shaker and mycelia were harvested as described above.  

qRT-PCR measurements were conducted in several biological replicates as indicated. Each 

biological replicate was measured in three technical replicates. 
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TABLE 3: qRT-PCR program used in this study.  

Steps 2 to 4 were repeated for 36 times.  

    

Step Temperature [°C] Duration [min]  
1 95 5:00  

2 95 0:15  

3 60 0:22 repeated 36 times 

4 72 0:40  

5 95 0:10  

6 Melt curve: 65 to 95, 

increment 0.5 

0:05 per step  

 

TABLE 4: Primers for qRT-PCR used in this study. 

Primers for qRT-PCR with A. fumigatus cDNA are marked with 
af

. All other primers are for 

A. nidulans cDNA.  

    

Designation Gene 5’ – sequence – 3’ Size 

HO277 Afu3g13110 
af 

A CCT GCC GTA ACA TTG CTT CTT G 22mer 

HO278 Afu3g13110 
af

 B CAC AGT CAT CAT CCT CCG ATC C 22mer 

HO660 Afu3g00880 
af

 A GCT CTG ACT CTC ACT GCC TTC G 22mer 

HO661 Afu3g00880 
af

 B AAG CTT GTT GAC GGG AGG GTA G 22mer 

HO788 uge3 
af

 A CCT ATG GCC GTA CCA AAT GGA T 22mer 

HO789 uge3 
af

 B GTG GGA GTC TGT CTG GGG TCT T 22mer 

jg787 flbA A CCC TTC TTC TTC TTC CCC TCC T 22mer 

jg788 flbA B AAA ACT GGG TGT GGT TGT GGT G 22mer 

jg793 aflR A GAA GGC AGG ACC ACC AGT TAC A 22mer 

jg794 aflR B CCC TCA AGA AGC GAA GGA GAA A 22mer 

jg814 veA A CAA CGA GCA TCA GCA CAA ACA T 22mer 

jg815 veA B AGC AGG AAT CGG CGT AGA AGA T 22mer 

jg816 velB A CCC CTC CGT GTA TCC GTC TAA T 22mer 

jg817 velB B AGC CGA GTG CTT CAC AAG ATT T 22mer 

jg818 vosA A CTT CCA TTC CAC CGT CTA CTG C 22mer 

jg819 vosA B CGT CCG TCT TTC GCA TTT CA 20mer 

jg824 stcU A TTG AGC ACT TCG GAT ACC TGG A 22mer 

jg825 stcU B TTG GAA CTT GTG AGG ATG ATG C 22mer 

jg1482 easA A ATC ACC AGC GAA CCT CTC TTA G 22mer 

jg1483 easA B AGG CTT TCA ATC ACC AGA CTC C 22mer 

jg1484 easB A TTC GTC AAG TTT AGT GGC GTT A 22mer 

jg1485 easB B CGT TGT GGG TCA AGA AGT AGG T 22mer 

jg1486 easC A ACC TTC ATT GGA AAC ATC AAC G 22mer 

jg1487 easC B TAG GGT CGT CAG GGA TTC TG 20mer 

jg1488 easD A AGC GAC TTC CAC CAT TAC AGT G 22mer 

jg1489 easD B AGT TTC TGC TTC CCT GAT GTT C 22mer 

kt272 ztfA (AN0585) A TTC AGT CTC ACC AAC GGG ACA T 22mer 

kt273 ztfA (AN0585) B GAT ACG CGA GTT TGG GTT TTC C 22mer 

kt274 brlA A CAG GAT CAC TCC CCA ACA ACA C  22mer 

kt275 brlA B GTA AGC GAG TCC TTG AGC GAC A  22mer 
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kt278 15S rRNA A GAT CCG CGA AAA ACC TTA CCA C 22mer 

kt279 15S rRNA B TGG CAC GTC TAT AGC CCA CAG T 22mer 

kt308 gpdA A AAC GCT TCT TGC ACC ACC AA  20mer 

kt309 gpdA B  ACC AGT GGA GGA GGG GAT GA 20mer 

kt310 velC A CCA ATC GAC TCC GCT CCT CT 20mer 

kt311 velC B AGA AGC ATG CCG GTG GTT TT 20mer 

kt312 h2A.X A TCT CGA GCT TGC TGG AAA CG 20mer 

kt313 h2A.X B CAC CCT GGG CAA TAG TGA CG 20mer 

kt316 h2A.X 
af

 A
 
 TGG AGT ATC TCG CTG CTG AA 20mer 

kt317 h2A.X 
af

 B GGA GAT GGC GAG GAA TGA TA 20mer 

kt320 ztfA (Afu6g11110) 
af

 A CAG CAG CAG ACT AGG GGT TC 20mer 

kt321 ztfA (Afu6g11110) 
af

 B TGA TGC GGA GCT ACT TCT CC 20mer 

kt332 brlA 
af

 A TCA TCA AGC AGG TGC AGT TC 20mer 

kt333 brlA 
af

 B TTG GAG TGG CTC TTC ATG TG 20mer 

kt397a flbB A AGT TCG ACT TCT CGT CAG TTC C 22mer 

kt398a flbB B TGG GGA TTG TCT TCA AAT ATC C 22mer 

kt399a flbC A ATC TCA TCT GCA GGC TCT TAC C 22mer 

kt400a flbC B GTT GTT GAG CTG TAA TCG GTG A 22mer 

kt401a flbD A CAA CAA AGC ATC AAC AGC TCT C 22mer 

kt402a flbD B GGT CCA TGA GGT ATA GGG TCT G 22mer 

kt404 fluG A GAC ATC AAT CTG CTG AAA TCC A 22mer 

kt405 fluG B TCG CGT GTA TAT GGG TAA GAT G 22mer 

kt436 ausA A AGG TGG AGA ACT GCT CAG GA 20mer 

kt437 ausA B CGA AGG AAA CGG ACT GAG AG 20mer 

kt438 ausF A TGT CCA CCA CAC GAG AAA AG 20mer 

kt439 ausF B TGC GAA TGG AGA GAA TTT CC 20mer 

kt440 ausH A GGA CTT CCA AGG GCT AAA GG 20mer 

kt441 ausH B ACT CGG TCT CAA ATC GAC CA 20mer 

kt491 nsdD A TCA TCT CAC CAG CCA CAA TTA C 22mer 

kt492 nsdD B  CAG AGG TCA TAA CAG TGC TTG C 22mer 

kt531 catB A TTA ATC GAA TCT CGA ACG ACC T 22mer 

kt532 catB B GGT CGT GTT GTC GTG GTA GTA A 22mer 

kt533 trxR A  CCC TAG AGG CTA ACG GTC TTT T 22mer 

kt534 trxR B ATG TAT CCG TCC TCA TCG AGT T 22mer 

kt548 flbE A TGA CGA AGA TGA GGA TGG TAT G 22mer 

kt549 flbE B TGT TAC TAG ACG ACC CAT CAC G 22mer 

kt550 sfgA A ACT TTT AGC GCT CTT CGA GAT G 22mer 

kt551 sfgA B AGG GTG ATT CAT TTC AGC AAC T 22mer 

kt578 catA A AGG AAG TTC TGG GCA ATG TG 20mer 

kt579 catA B GTC CTT GAG CAC CTT GAA GC 20mer 

kt584 napA (AN7513) A CCG GCA TCT TAC GAC ATT CT 20mer 

kt585 napA (AN7513) B ACT TTG TGG CAG GGT TGT TC 20mer 

kt586 rsmA A ATC GCT GGC AGT CAT TAT CC 20mer 

kt587 rsmA B  TAA TTC CGA TTC CGT CCT TG 20mer 

kt588 glrA A  CCG AAG TTG AGG ATT TGC AT 20mer 
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kt589 glrA B TCG ACG TTG GTG TTT TGG TA 20mer 

kt590 trxA A GAA ATT CGC CCA GAC CTA CA 20mer 

kt591 trxA B CCA ACC ACA TCG CTA ACC TT 20mer 

RH382 orsA A GAT GAT GAC GCA GAG GAG GAG A 22mer 

RH383 orsA B AGG GCT TTC AGG TGG ATG TAG G 22mer 

 

 

2.5 Plasmid construction for genetic manipulation of fungi 

2.5.1 Cloning strategies 

For the fusion of DNA sequences for plasmid construction fusion-PCR (Szewczyk et al., 

2006) and the GeneArt
®
 Seamless Cloning and Assembly Kit (INVITROGEN) or the GeneArt

®
 

Seamless Cloning and Assembly Enzyme Mix (INVITROGEN) was used. As templates for PCR 

amplified DNA fragments genomic DNA from A. nidulans FGSC A4 and A. fumigatus AfS35 

was used. All constructs harboring a recyclable marker cassette were cloned into the EcoRV 

multiple cloning site of pBluescript SK+. For excising of all genetic cassettes constructed this 

way outermost primers of each construct introduce MssI restriction sites. Linearization of 

constructs with this strategy results in on-locus integration into the genome of transformed 

fungi. 

 

2.5.2 Primer and plasmid design 

Plasmids generated and used in this study are listed in TABLE 5 and the primers used for their 

construction are listed in TABLE 6. Primers and genetic construct maps were designed with the 

Lasergene software package from DNA STAR INC. (Madison, WI, USA). Genetic information 

was obtained from AspGD (Cerqueira et al., 2014) and CADRE (Mabey Gilsenan et al., 

2012). Construction strategies are described in detail in the next chapter. For all plasmids 

containing constructs, which were excised with MssI (in GTTT/AAAC motives) for 

transformation into Aspergilli, a naturally occurring AAAC or GTTT quadruplet was used as 

terminal sequence towards the plasmid backbone. Terminal primers of these constructs 

introduced the respective second half of the MssI restriction site. This strategy leads to the 

absence of additional base pairs in the genomes of fungi transformed with respective plasmids 

and genes potentially lying in respective regions were not interrupted (FIGURE 11). Primers 

used for seamless cloning reactions were designed to introduce 15 base pairs (bp) 

complementary to adjacent sequences in the way that two adjacent sequences share a 15 bp 

homology region. 

 



Materials and methods 

37 

 

FIGURE 11: Cloning strategy employed for the generation of constructs for genetic 

manipulation of Aspergilli.  

Schematic depiction indicates primer design and general architecture of plasmids constructed 

in this study. Primers comprise regions with 15 bp end homology to the adjacent DNA-

fragment. Outermost nucleotide sequences naturally containing one half of the MssI 

restriction site were chosen as terminal sequences for PCR-amplified constructs. The 

fragment amplified from Aspergillus genomic DNA is shown in green, the second half of the 

MssI restriction site, introduced by the respective primer, is given in red, the plasmid 

backbone is given in black, RM = recyclable marker cassette. Note that after recycling of the 

marker cassette, only the mutated genomic region (green) and a six site as substitute for the 

recyclable marker cassette is present in the fungal genome. 

 

TABLE 5: Plasmid constructed and used in this study. 

A. nidulans genes are denoted with AN put in front, A. fumigatus genes are marked with Afu. 

All plasmids constructed in this study use pBluescript SK+ as backbone, if not stated 

otherwise.
 P

 = promoter, 
t
 = terminator, 

R
 = resistance, natRM = recyclable nat

R
 resistance 

cassette from pME4304, phleoRM = recyclable phleoRM resistance cassette from pME4305, 

ptrARM = recyclable ptrA resistance cassette from pSK485, p.c. = personal communication. 

   

Plasmid Description Reference 

pBluescript SK+ Cloning vector, amp
R
 FERMENTAS GMBH 

pJG137 Plasmid for BiFC containing niaD
t
-SwaI-

P
niaD/

P
niiA-PmeI-

niiA
t 
 

J. Gerke, p.c. 

pJG158 
P
veA::ANΔveA::natRM J. Gerke, p.c. 

pME3173 
P
gpdA::intron::mrfp::h2A cDNA in EcoRV and 

P
gpdA::natR in 

SmaI of pBluescript II KS 

Bayram et al., 2008a 

pME3741 BiFC vector; 
P
niiA::neyfp::culA::niiA

t
 and 

P
niaD::candA-

N::C::ceyfp::niaD
t
::AfpyrG::wA, bla 

Helmstaedt et al., 2011 

pME4292 Plasmid contains sgfp B. Jöhnk, p.c. 

pME4304 six-
P
xylP::β-rec::trpC

t
-nat

R
-six J. Gerke, p.c. 

pME4305 six-
P
xylP::β-rec::trpC

t
-phleo

R
-six J. Gerke, p.c. 

pME4575 ANΔztfA::natRM This study 

pME4576 
P
ztfa::ANztfA::sgfp::natRM This study 

pME4577 ANztfA::phleoRM This study 

pME4578 natRM::
P
niaD::ANztfA This study 

pME4579 
P
ztfA::sgfp::ANztfA::phleoRM This study 

pME4580 
P
ztfA::ANztfA

S327A,T464A,S504-506A
::phleoRM This study 

pME4581 ANΔfluG::phleoRM This study 

pME4582 phleoRM::
P
niiA::ANfluG This study 

pME4584 ANΔaflR::phleoRM This study 

pME4585 phleoRM::
P
niiA::ANaflR This study 

pME4587 ANΔabaA::phleoRM This study 
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pME4589 ANΔbrlA::phleoRM This study 

pME4591 ANΔflbB::phleoRM This study 

pME4593 ANΔflbC::phleoRM This study 

pME4595 ANΔflbD::phleoRM This study 

pME4597 ANΔflbE::phleoRM This study 

pME4599 
P
niaD::ANztfA::ceyfp in SwaI restriction site, 

P
niiA::ANrcoA::neyfp in PmeI restiction site of pJG137 

This study 

pME4600 
P
niaD::ANztfA::ceyfp, 

P
niiA::neyfp This study 

pME4601 
P
niaD::ceyfp, 

P
niiA::ANrcoA::neyfp This study 

pME4602 ANΔvelC::phleoRM This study 

pME4603 ANΔvosA::natRM S. Thieme, p.c. 

pME4605 ANΔvelB::natRM S. Thieme, p.c. 

pME4606 AfuΔztfA::ptrARM This study 

pSK485 six-pxylP::β-rec::trpCt-ptrA-six  Hartmann et al., 2010 

 

TABLE 6: Oligonucleotides used for sequence amplification and plasmid construction. 

   

Name 5’ – sequence – 3’ Size 

kt145 CTA TAG GCC TGA GTG TAA GAA GTC AAG AAG CGG TCA ATG 39mer 

kt146 ATA ATA TGG CCA TCT ATG TTT TGA GGG ACT CCA ACT C 37mer 

kt203 CTG CAG GAA TTC GAT GTT TAA ACG CTG AAG TTT GTG GGA G 40mer 

kt204 ATC GAT AAG CTT GAT GTT TAA ACG CTG TAA GTT GGA TCA GC 41mer 

kt208b CTG CAG GAA TTC GAT GTT TAA ACC TGG TAT GAA CGA CTT TCC 42mer 

kt209 CTG CAG GAA TTC GAT GTT TAA ACC ATC GCT CTG GTA GCT TC 41mer 

kt211 ATA ATA TGG CCA TCT CTC AAC CGC CTA TCA CTC TAG 36mer 

kt214 CTA TAG GCC TGA GTG CTG GTA GTC TTA CGG TGA GTT G 37mer 

kt215 CTG CAG GAA TTC GAT GTT TAA ACA GGA TTC GGT GAT TTC TTT C 43mer 

kt218 ATA ATA TGG CCA TCT TCG TCT CCT ACA GCA GGA C 34mer 

kt221 CTA TAG GCC TGA GTG TTG GTA GGT TGA GGG TCC C 34mer 

kt224 ATC GAT AAG CTT GAT GTT TAA ACC CTA CTT TCA CAA CGA GG 41mer 

kt225 ATC GAT AAG CTT GAT GTT TAA ACC GGA GCG TAT CAC CTA TC 41mer 

kt226 ATC GAT AAG CTT GAT GTT TAA ACC AAA GAC CCA GCT AAA AAC 42mer 

kt228 ACC ACC GCT ACC ACC GTC GTT GAC CAT ATC ATC CAA C 37mer 

kt229 CTA TAG GCC TGA GTG TTA CTT GTA CAG TTC GTC CAT G 37mer 

kt230 CTA CTT GTA CAG TTC GTC CAT GC 23mer 

kt231 CTA TAG GCC TGA GTG TTA GTC GTT GAC CAT ATC ATC C 37mer 

kt234 ACC ACC GCT ACC ACC GTC GTT CAC CAT ATC ATC CAA G 37mer 

kt241 ATG CAA TCA CTC GTC CTC CC 20mer 

kt251 ATA ATA TGG CCA TCT GAT GGC GGG CGC GGT GAT T 34mer 

kt252 GAC GAG TGA TTG CAT GTG AGA GTA TGG GAT AGG AAA ATA AT 41mer 

kt253 ATA AGC TTG ATG TTT AAA CAT TAA GTA TCC AGT ATG ATC AG 41mer 

kt300 GAT GGC GGG CGC GGT GAT 18mer 

kt302 GTG AGA GTA TGG GAT AGG AAA ATA 24mer 

kt307 GCC CTT GCT CAC CAT CTG GTA GTC TTA CGG TGA GTT G 37mer 

kt337 ATA ATA TGG CCA TCT GTG AGA GTA TGG GAT AGG AAA ATA 39mer 
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kt341 CTG CAG GAA TTC GAT GTT TAA ACA GAC ATC TCC ATG CCG GTT ATG 45mer 

kt342 CTA TAG GCC TGA GTG GGC GAT GAA CCA GCA AAC TAA AGG AC 41mer 

kt343 ATA ATA TGG CCA TCT GTC TAA TCT TTC TCC TGA GCG TAT TCA C 43mer 

kt345 ACC GCG CCC GCC ATC ATG GCC ACT CTC TCT TCA CTC CG 38mer 

kt348 CTG CAG GAA TTC GAT GTT TAA ACT GGC GTT GCA CCT TGG GTT G 43mer 

kt349 CTA TAG GCC TGA GTG GAT ATT TGC ATA TGA TAC AGG CCC GCA TTG 45mer 

kt350 ATA ATA TGG CCA TCT GGT TGA ATA ATC TGG AAT GAT ATT TAT GCG 

ATC 

48mer 

kt353 ACC GCG CCC GCC ATC ATG GAG CCC CCA GCG ATC AG 35mer 

kt354 CTG CAG GAA TTC GAT GTT TAA ACC CTG GTC AGA CAC TGA GCA TG 44mer 

kt355 CTA TAG GCC TGA GTG GGA GCA GAC CCC AAG ATT CGC TC 38mer 

kt356 ATA ATA TGG CCA TCT CCT CCT TTA CCA TGT CTA TGA ACA GAC G 43mer 

kt361 ATC GAT AAG CTT GAT GTT TAA ACA AAA TAT GAT CGT GCT TCG GCA 

CTT GG 

50mer 

kt362 ATC GAT AAGC TTG ATG TTT AAA CAC CAA CTG CAG GCC TCG G 41mer 

kt363 ATC GAT AAG CTT GAT GTT TAA ACG ACG AGT ACG CTG TAA CAG CAA 

TTC 

48mer 

kt364 ATC GAT AAG CTT GAT GTT TAA ACA CGC CGC CGC TAA GCG 39mer 

kt365 ATC GAT AAG CTT GAT GTT TAA ACT CGT CTG CGG CTG AGT CG 41mer 

kt407 CAT ACT CTC ACA TTT ATG CAA TCA CTC GTC CTC CC 35mer 

kt409 CGC CCG CCA TCG TTT ATG CGC AGC ATT GAC CAA CC 35mer 

kt415 TCT TGC AGG CCG GGC GGT CGT TGA CCA TAT CAT CCA AC 38mer 

kt416 TGC GAA CCC GTA TTT TCA CTT GTA CAG CTC GTC CAT 36mer 

kt417 CGC CCG GCC TGC AAG ATC 18mer 

kt418 CGT GGC GAT GGA GCG CCGT CCA GTG TAC GCG GAG 34mer 

kt421 CGC TCC ATC GCC ACG GTG AGC AAG GGC GAG GAG 33mer 

kt422 TAT CCT CGT CAG TTT TCA CAT GAT ATA GAC GTT GTG GCT 39mer 

kt430 GTG CGA CTG AAG TCA TTG AC 20mer 

kt431 TGA CTT CAG TCG CAC CAA CGG GAC ATG TCC CAA TC 35mer 

kt432 CTC TGG AGC TTG CTG CTG C 19mer 

kt433 CAG CAA GCT CCA GAG CCC CGC CAG GGC TTC ATG 33mer 

kt434 GGC GGC CAA GCC TAG TTG GCT TTG GCT TTG GCG C 34mer 

kt442 CCA ACT AGG CTT GGC CGC CGC G 22mer 

kt487 CTG CAG GAA TTC GAT GTT TAA ACG CCC AAC CCC ACA CTG 39mer 

kt488 CTA TAG GCC TGA GTG GTC TTC GAG CGA CGG GGC 33mer 

kt489 ATA ATA TGG CCA TCT AAC AGA AAC AAA GAG GGC TGA TC 38mer 

kt490 ATA AGC TTG ATG TTT AAA CAA GAA CGT AAC CTA CCG TAA G 40mer 

kt515 CTG CAG GAA TTC GAT GTT TAA ACG CTC CTT CTT CCA CTT C 40mer 

kt516 CTA TAG GCC TGA GTG GGT GGT CGA GCT GTG AAT AG 35mer 

kt517 ATA ATA TGG CCA TCT CCT GAC AGC TCG CTT TTT TTC 36mer 

kt518 ATC GAT AAG CTT GAT GTT TAA ACA TAG TGT ATG ACA CGC CC 41mer 

kt519 CTG CAG GAA TTC GAT GTT TAA ACC CAC TGC TCA AGC TCA G 40mer 

kt520 CTA TAG GCC TGA GTG TGA GGA TAG TCG TTT TGA AAG AG 38mer 

kt521 ATA ATA TGG CCA TCT TCG TTT CAA TCG ACC TGC CC 35mer 

kt522 ATC GAT AAG CTT GAT GTT TAA ACG GCG TCG AGA AGG C 37mer 

kt523 CTG CAG GAA TTC GAT GTT TAA ACG AAC AAG TGC CGA CTC 39mer 

kt524 CTA TAG GCC TGA GTG TTG CGA AAC TGT GTT GGT GAT G 37mer 
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kt525 ATA ATA TGG CCA TCT ACG ATC ACA CGA CTC TCT TC 35mer 

kt526 ATC GAT AAG CTT GAT GTT TAA ACA CCG TAG ACT TGT CCA G 40mer 

kt527 CTG CAG GAA TTC GAT GTT TAA ACG ACT TGT TTG CTC GTC TC 41mer 

kt528 CTA TAG GCC TGA GTG GGT AAG GCG ACG ACG GC 32mer 

kt529 ATA ATA TGG CCA TCT TTG CTG TAC GAG TTA TAT TAC GAC 39mer 

kt530 ATC GAT AAG CTT GAT GTT TAA ACT AGT GAG ACC TAC CAG C 40mer 

kt539 CTA TAG GCC TGA GTG TCA TGA ATA CAT CGT CTC ATC AG 38mer 

kt540 CTA TAG GCC TGA GTG TTA CTC TTC GTC ATC GCC TG 35mer 

kt541 CTA TAG GCC TGA GTG TCA GTT CAA GAG GTT GTC GAG 36mer 

kt542 CTA TAG GCC TGA GTG TCA CGA AAA CGT TTT GTT GAA GAA TC 41mer 

kt543 CTA TAG GCC TGA GTG TCA TTC ATC CCA GCC GTC C 34mer 

kt544 CTA TAG GCC TGA GTG TCA ATA CCT CTC CAC AAG CC 35mer 

kt545 CTA TAG GCC TGA GTG TCA GGC GTG GCG GAG GAT 33mer 

kt546 CTA TAG GCC TGA GTG CTA GAC AGC CTC AAC CGC 33mer 

SR120 ATG GTG AGC AAG GGC GAG GAG 21mer 

SR121 ACC ACC GCT ACC ACC CTT GTA CAG TTC GTC CAT GCC 36mer 

SR18 GGT GGT AGC GGT GGT GTG AGC AAG GGC GAG GAG 33mer 

SR193 CGC CCG CCA TCG TTT ATG GTG AGC AAG GGC GAG 33mer 

SR195 ACT CTC ACA TTT ATG GCC GAC AAG CAG AAG AAC G 34mer 

kt182 CAT CAG TGC CAG CTG TCT TCG 21mer 

kt183 GAT GTG CTG CAA GGC GAT TAA GTT G 25mer 

kt184 GGC TTT ACA CTT TAT GCT TCC G 22mer 

kt266 GAG AAG CGC GAT CAC ATG G 19mer 

kt267 GCA TGG CGG ACT TGA AGA AG 20mer 

kt268 GAA CCC GTG CCC TAT ACT ATC 21mer 

kt290 CTT TTT GTG GCC CTT CCT CC 20mer 

kt291 AAA CCA TCG CTC TGG TAG CTT C 22mer 

kt338 CGT GGA ACA GCT GAA GTC AC 20mer 

kt339 CTC TGA TAT CTA TAG GTC AAT AGA G 25mer 

kt372 CAT AGA TAG AGA TAG GGC TTG 21mer 

kt373 CAT AAT ATG GCC ATC TGT GAG  21mer 

kt374 GAA TCC TGT TAA AAT CAG TAT ATC ATG 27mer 

kt375 GGA ATG ATT CTT CTT TTG TTG AAG G 25mer 

kt424 CAA CTA GGC TTG AGC TCC TC 20mer 

kt425 GAA CAA TCT TCG AGA TTC TGC TC 23mer 

kt426 CCA ATC AGA GCC TCG GAA TC 20mer 

kt427 GTT CTA TGG ACT GTT ACC GAT TC 23mer 

 

2.5.3 Recyclable marker cassettes as selection markers 

All plasmids constructed during this study, which were used for homologues recombination, 

harbor recyclable marker cassettes based on the bacterial recombination system, which 

employs a prokaryotic small β-serine recombinase and its six recognition sequences (Canosa 

et al., 1996; Hartmann et al., 2010; Rojo et al., 1993; Rojo and Alonso, 1994). This system 
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allows the excision of the respective marker cassette off the fungal genome after successful 

transformation (FIGURE 12). This procedure allows a marker-free mutation and only leaves a 

relatively small six recognition site of 100 nucleotide base pairs (bp). After excision of the 

marker cassette, the same selection marker can be used again in the same host strain. This 

system prevents large resistance cassettes to interfere with the genetic equipment of the host. 

Three different recyclable marker cassettes were used, allowing utilization of three different 

selective agents. pSK485 harbors the A. oryzae ptrA gene, which confers resistance against 

pyrithiamine (Hartmann et al., 2010). The pyrithiamine resistance marker cassette from 

pSK485 is termed ptrARM (ptrA recyclable marker) in the following. pME4304 (J. Gerke, 

p.c.) harbors the nat1 gene from Streptomyces noursei, which grants resistance against 

nourseothricin (Kück and Hoff, 2006). The nourseothricin resistance marker cassette from 

pME4304 is termed natRM in the following. pME4305 (J. Gerke, p.c.) harbors the ble gene 

from Streptoalloteichus hindustanus, which confers resistance to phleomycin (Drocourt et al., 

1990). The phleomycin resistance marker cassette is termed phleoRM in the following.  

 

FIGURE 12: Schematic depiction of integration and recycling of a recyclable marker 

cassette. 

A gene deletion is given as example. The ORF (red) of the gene of interest (GOI) is replaced 

by a recyclable marker cassette, comprising the β-serine recombinase gene (β-rec), driven by 

the xylose-inducible promoter (
P
xylP) and employing the trpC terminator (trpC

t
). Expression 

of 
P
xylP::β-rec is induced by supplementation of the medium with xylose. This leads to an 

excision of the whole cassette from the fungal genome, only leaving a small six site as scar. 

Dotted lines indicate 5’ and 3’ region (green) adjacent to the GOI ORF, which are used for 

homologous recombination. This promotes on-locus integration of the respective construct.  

 

2.5.4 Sequencing of plasmids 

Plasmids constructed in this study were sequenced by SEQLAB SEQUENCE LABORATORIES 

GMBH (Göttingen, Germany). Obtained sequences were analyzed with the Lasergene 

software package (DNA STAR INC.). All plasmids constructed in this study and cloned in 
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pBluescript SK+ were sequenced with the primers kt182, kt183, kt184 and kt339, which bind 

near both six sites of the recyclable marker cassettes and near the EcoRV cloning site of 

pBluescript SK+. Further primers are indicated in the respective sub-chapters (see CHAPTER 

2.5.5). 

 

2.5.5 Plasmid and strain construction of A. nidulans mutant strains 

All DNA fragment sizes given in the upcoming sections are rounded. Genomic DNA of 

FGSC A4 (A. nidulans WT, veA
+
) and AfS35 (A. fumigatus WT, ΔakuA), respectively, was 

used as template, if not stated otherwise.  

2.5.5.1  Construction of the ΔztfA cassette and ΔztfA strain in A. nidulans 

For construction of an A. nidulans ΔztfA strain the 2.7 kb long 5’ region of the ztfA (AN0585) 

gene was amplified from A. nidulans FGSC A4 genomic DNA with primers kt208b/214 

introducing overhangs of 15 bp homolog to pBluescript SK+ and the six site of the recyclable 

marker cassette, respectively. The respective 2.2 kb long 3’ region was amplified with primers 

kt211/224 likewise introducing overhangs of 15 bp homolog to the six site of the recyclable 

marker cassette and pBluescript SK+. Both sequences and the natRM cassette were cloned 

into the EcoRV multiple cloning site of pBluescript SK+ in a seamless cloning reaction 

according to manufacturer’s conditions, resulting in pME4575. The deletion cassette was 

subsequently excised with MssI and integrated into AGB551, resulting in the strain 

AGB1007. The correct replacement of the original gene with the deletion construct was 

verified by Southern hybridization before as well as after marker recycling. 

2.5.5.2 Construction of plasmid pME4578 and ztfA OE strain in A. nidulans 

For the overexpression of ztfA the 1.3 kb nitrate-inducible promoter (
P
niaD) was amplified 

with primers kt251/252, which introduce overhangs of 15 bp complementary to the six site of 

the recyclable marker cassette and the ztfA gene, respectively. The ztfA open reading frame 

(ORF) itself and a small part of the 3’ region (1.8 kb) were amplified with primers kt241/253. 

The 5’ region was amplified with primers kt208b/214. The 5’ region, natRM cassette, 
P
niaD 

and the ztfA gene were fused and cloned into pBluescript SK+ in a seamless cloning reaction, 

resulting in plasmid pME4578. The plasmid was sequenced with additional primers kt290, 

kt291, kt338, kt372 and kt373. The ztfA OE construct was subsequently excised with MssI 

and integrated into AGB551, resulting in AGB1008. Homologous recombination was verified 

by Southern hybridization. 
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2.5.5.3 Plasmid and strain construction of GFP-fusions of ZtfA in A. nidulans 

sgfp was amplified from pME4292 using primers, which introduce a 15 bp linker region 

between the ztfA and the sgfp gene. For a ztfA::sgfp construct sgfp was amplified using 

primers SR18, introducing the 15 bp linker and kt229 introducing 15 bp overhang to six. The 

ztfA ORF and its 5’ flanking region (4.4 kb) was amplified using primers kt208b/228. The 

latter one introduces the deletion of the stop codon of ztfA and 15 bp homolog to the linker of 

sgfp. The ztfA 3’ region was amplified using primers kt211/224. The three sequences (5’ UTR 

and ztfA, sgfp, 3’ UTR) together with the natRM cassette were cloned into pBluescript SK+ 

resulting in pME4576. The plasmid was sequenced with additional primers kt266, kt267, 

kt290, kt291 and kt338. Subsequently, the ztfA::sgfp construct was excised off the plasmid 

and integrated into AGB1007 resulting in AGB1009. Successful transformation at the correct 

locus was verified by Southern hybridization. 

An N-terminally tagged fusion construct (sgfp::ztfA) was obtained by a seamless cloning 

reaction cloning the 5’ flanking region of ztfA, sgfp, ztfA ORF, the phleoRM cassette and the 

ztfA 3’ flanking region in pBluescript SK+, resulting in pME4579. Therefore, the 1.9 kb ztfA 

5’ flanking region was amplified with primers kt209/307. kt307 introduces a 15 bp overhang 

to sgfp and a start codon. sgfp was amplified with primers SR120/121. The ztfA ORF was 

amplified with primers kt230, introducing an overhang for the linker of sgfp and a deletion of 

the start codon, and kt231. The 1.3 kb 3’ flanking region was amplified using primers 

kt211/225. The plasmid was sequenced with additional primers kt266, kt267, kt290, kt291 

and kt338. Subsequently, the sgfp::ztfA construct was excised from pME4579 with MssI and 

integrated into AGB1007, obtaining AGB1010. Homologous integration of the construct was 

verified by Southern hybridization. The plasmid pME3173 containing 
P
gpdA::rfp::h2A was 

integrated into AGB1009 and AGB1010, resulting in AGB1012 and AGB1013, respectively, 

for a better visualization of nuclei and ectopic integration was verified by microscopy. To 

obtain a negative control for microscopy, pME3173 was integrated into AGB551 resulting in 

AGB1014.  

2.5.5.4  ztfA complementation in A. nidulans 

The ztfA ORF and its 5’ UTR (4.4 kb) was amplified with primers kt208b/231. The ztfA 3’ 

UTR was amplified with primers kt211/224 and both fragments together with the phleoRM 

cassette were cloned into pBluescript SK+, giving rise to pME4577. The plasmid was 

sequenced with additional primers kt290 and kt338. The ztfA complementation cassette was 

excised and cloned into AGB1007, resulting in AGB1011.  
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2.5.5.5  Construction of plasmid and strain: ztfA
S327A,T464A,S504-506A

 in A. nidulans 

A strain expressing a permanently dephosphorylated ZtfA protein was constructed. Therefore 

plasmid pME4580 was constructed as follows: 1.9 kb of the 5’ region adjacent to the ztfA 

ORF and first 1 kb part of the ztfA ORF was amplified with primers kt209/430. Thymine at 

position 1038 is exchanged with guanine using primer kt430, therefore introducing the first 

mutation in the gene product of the serine residue at amino acid position 327 to alanine. The 

next 431 bp of the ztfA ORF were amplified with primers kt431/432. kt432 introduces a 

mutation of arginine to guanine at bp position 1449, which leads to an exchange of threonine 

at amino acid residue 464 to alanine. Adjacent 135 bp were amplified with the primer pair 

kt433/434, which introduce a mutation of arginine and guanine to guanine and cytosine at bp 

position 1569 and 1570 and thymine to guanine at position 1572. The last 172 bp of the ztfA 

ORF were amplified with the primer pairs 442/231. kt442 introduces a mutation of thymine to 

guanine at bp position 1575. These alterations lead to an exchange of the serine stretch at 

amino acid position 504 to 506 with an alanine stretch. The four fragments together 

constituting the mutated ztfA ORF and its 5’ adjacent region were fused in a series of fusion 

PCRs (Szewczyk et al., 2006), resulting in one fragment. The 3’ adjacent region to the ztfA 

ORF was amplified with the primer pair kt211/225. Both fragments and the phleoRM cassette 

were cloned into pBluescript SK+ in a seamless cloning reaction. The plasmid was sequenced 

with additional primers kt290, kt291 and kt338. The ztfA
S327A,T464A,S504-506A

 cassette was 

excised and integrated into AGB1007, resulting in AGB1015. 

2.5.5.6 Construction of plasmids and strains: ΔfluG, fluG OE and the fluG/ztfA 

double mutants in A. nidulans 

1 kb of the 5’ flanking region of fluG was amplified with primers kt341/342, which introduce 

15 bp overhangs to the EcoRV restriction site of pBluescript SK+ and the six site, 

respectively. 1 kb of the 3’ flanking region was amplified with the primer pair 343/364 and 

both fragments together with the phleoRM cassette were cloned into the EcoRV restriction 

site of pBluescript SK+ in a seamless cloning reaction, giving rise to pME4581. The fluG 

deletion cassette was excised from pME4581 and integrated into the genome of AGB551, 

AGB1007 and AGB1008, resulting in AGB1016, AGB1017 and AGB1018, respectively. The 

same 5’ flanking region, the fluG gene with a short part of its 3’ region (3 kb), amplified with 

kt345/365, the 
P
niiA, amplified with primers kt337/300 and the phleoRM cassette were cloned 

into pBluescript SK+ in a seamless cloning reaction, resulting in pME4582. The plasmid was 

sequenced with additional primers kt372, kt373 and kt375. The 
P
niiA::fluG cassette was 

excised and integrated into AGB551 and AGB1007, resulting in AGB1019 and AGB1020.  
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2.5.5.7 Construction of plasmids and strains: ΔaflR, aflR OE and the aflR/ztfA 

double mutants in A. nidulans 

1 kb of the 5’ flanking region adjacent to aflR was amplified with kt348/349. 1.5 kb of the 3’ 

region adjacent to aflR was amplified with kt350/361. Both fragments together with the 

phleoRM cassette were cloned into pBluescript SK+ in a seamless cloning reaction, resulting 

in pME4584. The ΔaflR cassette was excised from pME4584 and integrated into AGB551, 

AGB1007 and AGB1008, resulting in AGB1022, AGB1023 and AGB1024, respectively. 

The aflR OE construct was accomplished by cloning the same 5’ region together with the 

phleoRM cassette, 
P
niiA, amplified with kt337/300, and the aflR ORF and a short 3’ flanking 

region, together spanning 2.5 kb (primer kt353/362), into pBluescript SK+, resulting in 

pME4585. The plasmid was sequenced with additional primers kt372, kt373 and kt374. The 

P
niiA::aflR cassette was excised and integrated into AGB551 and AGB1007, giving rise to 

AGB1025 and AGB1026, respectively. 

2.5.5.8 Construction of plasmids and strains: ΔabaA and the abaA/ztfA double 

mutants in A. nidulans 

1.5 kb of the 5’ region adjacent to the abaA ORF were amplified with kt354/355 and together 

with the phleoRM cassette and 1.4 kb of the 3’ region adjacent to abaA (primers kt356/363) 

cloned into pBluescript SK+, resulting in pME4587. The ΔabaA cassette was excised and 

integrated into AGB551 and AGB1007, resulting in AGB1028 and AGB1029, respectively. 

2.5.5.9 Construction of plasmids and strains: ΔbrlA and the brlA/ztfA double 

mutants in A. nidulans 

1.7 kb of the 5’ region adjacent to the brlA ORF was amplified with kt487/488. 1.2 kb of the 

brlA 3’ region was amplified with kt489/490. Both fragments and the phleoRM cassette were 

cloned into pBluescript SK+ in a seamless cloning reaction, resulting in pME4589. The ΔbrlA 

cassette was excised and integrated into AGB551, AGB1007 and AGB1008, resulting in 

AGB1031, AGB1032 and AGB1033, respectively. 

2.5.5.10 Construction of plasmids and strains: ΔflbB and the flbB/ztfA double 

mutants in A. nidulans 

1.2 kb of the 5’ region adjacent to the flbB ORF was amplified with kt515/516. 1 kb of the 

respective 3’ region was amplified with kt517/518. Both fragments together with phleoRM 

cassette were cloned into pBluescript SK+ in a seamless cloning reaction, resulting in 

pME4591. The ΔflbB cassette was excised from the plasmid and integrated into AGB551, 

AGB1007 and AGB1008, resulting in AGB1035, AGB1036 and AGB1037, respectively. 
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2.5.5.11 Construction of plasmids and strains: ΔflbC and the flbC/ztfA double 

mutants in A. nidulans 

1.2 kb of the 5’ region adjacent to the flbC ORF was amplified with kt519/520. 1 kb of the 

respective 3’ region was amplified with kt521/522. Both fragments together with the 

phleoRM cassette were cloned into pBluescript SK+ in a seamless cloning reaction, resulting 

in pME4593. The ΔflbC cassette was excised from the plasmid and integrated into AGB551, 

AGB1007 and AGB1008, resulting in AGB1039, AGB1040 and AGB1041. 

2.5.5.12 Construction of plasmids and strains: ΔflbD and the flbD/ztfA double 

mutants in A. nidulans 

1.1 kb of the 5’ region adjacent to the flbD ORF was amplified with kt523/524. 1.2 kb of the 

respective 3’ region was amplified with kt525/526. Both fragments together with the 

phleoRM cassette were cloned into pBluescript SK+, resulting in pME4595. The ΔflbD 

cassette was excised from the plasmid and integrated into AGB551, AGB1007 and AGB1008, 

resulting in AGB1043, AGB1044 and AGB1045, respectively. 

2.5.5.13 Construction of plasmids and strains: ΔflbE and the flbE/ztfA double 

mutants in A. nidulans 

1.3 kb of the 5’ region adjacent to the flbE ORF was amplified with kt527/528. 1.1 kb of the 

respective 3’ region was amplified with kt529/530. Both fragments together with the 

phleoRM cassette were cloned into pBluescript SK+, resulting in pME4597. The ΔflbE 

cassette was excised from the plasmid and integrated into AGB551, AGB1007 and AGB1008, 

resulting in AGB1047, AGB1048 and AGB1049. 

2.5.5.14 BiFC plasmid and strain construction for interaction studies of ZtfA with 

RcoA in A. nidulans 

For BiFC studies one half of a split yfp was fused to ztfA, resulting in ztfA::ceyfp, and the 

other half was fused to rcoA, leading to rcoA::neyfp. Both gene fusions were set under the 

control of the bidirectional nitrate-inducible 
P
niiA/

P
niaD promoter and terminators and 

integrated ectopically in respective mutants. All BiFC plasmids constructed in this study were 

sequenced with additional primers kt268, kt372, kt373, kt424, kt425, kt426 and kt427. 

For these constructs, ztfA was amplified from cDNA from vegetatively grown WT cultures 

(instead of genomic DNA) with primers kt407/415. ceyfp was amplified from pME3741 with 

primers kt416/417 and neyfp with primers kt421/422. rcoA was amplified from cDNA with 

primers kt409/418. pJG137 was utilized as backbone vector, which was digested in a two-step 

digestion with MssI and SmiI to excise the bidirectional nitrate-inducible promoter, which was 
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reintroduced as fragment amplified with the primers kt300/302. Prior to utilization of a 

seamless cloning reaction to clone the fragments together, resulting in pME4599, ztfA and 

rcoA were fused to their respective eyfp parts by fusion PCR (Szewczyk et al., 2006). 

pME4599 was ectopically integrated into AGB1007 resulting in AGB1051 and AGB1014, 

resulting in AGB1052. As controls for BiFC experiments both genes fused to the same half of 

the split eyfp used for pPME4599 were cloned into pJG137 as backbone together with the 

nitrate-inducible promoter and the respective other half of the split eyfp without a gene 

connected to it. For the free half of the eyfp primers introduced a start codon to allow for free 

eYFP expression. Free ceyfp was amplified with primers kt416/SR195 and cloned in a 

seamless cloning reaction with rcoA::neyfp and the bidirectional nitrate-inducible promoter 

into pJG137, resulting in pME4601. pME4601 was introduced into AGB551 and AGB1014, 

resulting in AGB1054 and AGB1056, respectively. Free neyfp was amplified with primers 

kt422/SR193 and cloned in a seamless cloning reaction into pJG137 together with ztfA::ceyfp 

and the nitrate-inducible promoter, resulting in pME4600. pME4600 was introduced into 

AGB551 and AGB1014, resulting in AGB1053 and AGB1055 respectively.  

2.5.5.15 Construction of plasmids and strains for velvet/ztfA double mutant strains 

of A. nidulans 

The 2.4 kb 5’ region of velC was amplified with primers kt203/145 and the 2.1 kb 3’ region 

was amplified with primers kt146/204. Both sequences together with the phleoRM cassette 

were cloned into pBluescript SK+, resulting in pME4602. The deletion construct was excised 

from the plasmid and integrated into AGB551 resulting in AGB1062. To obtain a double 

deletion of velC and ztfA, the ztfA deletion cassette from pME4575 was integrated into 

AGB1062, resulting in AGB1063.  

pME4603 (ΔvosA, harbors the natRM marker; S. Thieme, p.c.) was integrated into AGB1007 

and AGB1008, resulting in AGB1058 and AGB1059, respectively.  

The ztfA deletion cassette from pME4575 was integrated into AGB1066 (ΔveA::six; J. Gerke, 

p.c.) to obtain the ΔveAΔztfA strains (AGB1067) and into AGB1064 (ΔvelB::six; S. Thieme, 

p.c.) to obtain the ΔvelBΔztfA strain (AGB1065). 

2.5.5.16 Plasmid for ΔztfA and strain construction in A. fumigatus 

2 kb of the ztfA 5’ flanking region from A. fumigatus were amplified with the primer pair 

kt215/221 and 2 kb from the respective 3’ flanking region were amplified with the primer pair 

kt218/226. Both fragments and the ptrARM were cloned into pBluescript SK+, resulting in 
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pME4607. The ΔztfA cassette was excised from the plasmid and integrated into Afs35, 

resulting in AfGB129. 

 

 

2.6 Genetic manipulation of microorganisms 

2.6.1 Transformation of fungi 

A. nidulans and A. fumigatus were transformed by polyethylene glycol-mediated protoplast 

fusion as described before (Punt and van den Hondel, 1992). For all genetic modifications in 

A. nidulans, AGB551 (Bayram et al., 2012) or AGB551 derived strains were used as 

transformation hosts and AGB551 was used as WT. AfS35 (Krappmann et al., 2006b) was 

used as WT and transformation host of the A. fumigatus ΔztfA strain. All transformation hosts 

used in this study (AGB551 and AfS35 and their derivatives) harbor the ΔnkuA and ΔakuA 

mutation, respectively. Loss of these orthologous genes remarkably increases homologous 

recombination during transformation and results in on-locus integration of linearized genetic 

constructs (Krappmann et al., 2006b; Nayak, 2005). 

Host strains were grown o/n in submerged cultures on a rotary shaker at 37°C. Mycelia were 

harvested through sterile Miracloth filters (MERCK) and washed with sterile citrate buffer (150 

mM KCl, 580 mM NaCl, 50 mM Na-citrate pH 5.5). Mycelia were transferred into sterile 

filtered protoplastation solution (30mg/ml Vinoflow
®
 Max or Vinotaste

®
 Pro from 

NOVOZYMES (Bagsvaerd, Denmark) and 15 mg/ml lysozyme (SERVA), dissolved in citrate 

buffer and sterile filtered through 0.2 µm filters (SARSTEDT)) and incubated for 100 min at 

30°C under constant agitation to allow for protoplastation. Formation of protoplasts was 

monitored by microscopy. Protoplasts were filtered through sterile Miracloth filters and 

collected in pre-cooled sterile 50 ml centrifuge tubes (SARSTEDT), filled up to 50 ml with ice 

cold STC 1700 buffer (1.2 M sorbitol, 10 mM Tris pH 5.5, 50 mM CaCl2, 35 mM NaCl) and 

chilled on ice for 10 min. Subsequently, protoplasts were centrifuged at 2600 rpm at 4°C for 

12 min and washed with ice cold STC1700 and this step was repeated. Protoplasts were 

incubated with approximately 10 µg of respective DNA constructs (either linearized by 

excision from respective plasmids, or in circular form in case of pME3173, pME4599, 

pME4600 and pME4601) for 30 min on ice. 1.35 ml sterile PEG solution (10 mM Tris pH 

7.5, 50 mM CaCl2, 60% (v/v) PEG4000) was added successively in three steps to increase 

DNA uptake of protoplasts and they were incubated for another 40 min over the ice. 

Subsequently, protoplasts were centrifuged at 2600 rpm for 12 min and distributed on freshly 

prepared solid MM plates, supplemented with 1.2 M sorbitol and respective selecting agents 
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(pyrithiamine 1:1000, nourseothricin 0.7:1000, phleomycin 1:1000). Transformed clones were 

picked after three to seven days and individualized on selective MM plates. Successful 

transformation of constructs into A. nidulans and A. fumigatus hosts was verified by Southern 

hybridization. Recyclable marker cassettes were eliminated from the genome of respective 

mutants by singularizing clones on MM/xylose plates (0.5% (w/v) glucose, 0.5% (w/v) 

xylose, 7 mM KCl, 2 mM MgSO4, 70 mM NaNO3, 11.2 mM KH2PO4, 0.1% (v/v) trace 

element solution pH 5.5) (Hartmann et al., 2010). Successful marker recycling was monitored 

by Southern hybridization. 

 

2.6.2 Transformation of bacteria 

E. coli transformations were carried out as described in Hanahan et al., 1991; Inoue et al., 

1990. Briefly, chemi-competent E. coli cells were incubated with plasmid DNA for 30 min on 

ice and subsequently heat shocked at 42°C to allow plasmid uptake. Heat shocked E. coli cells 

were cooled on ice for one to two minutes, 600 µl LB was added and cultures were shaken for 

30 to 60 min at 37°C on a rotary shaker. That followed, E. coli cells were harvested by 

centrifugation and inoculated on solid LB plates supplemented with 1:1000 ampicillin to 

prevent plasmid loss and allow for selection of clones, which successfully took up the 

plasmid, and grown o/n at 37°C. E. coli clones were screened for successful uptake of 

constructs via PCR amplification of fragments specific to respective plasmids (colony PCR).  

 

 

2.7 Southern hybridization  

Southern hybridization was employed to confirm successful mutagenesis of genetic loci 

(Southern, 1975). Restriction enzymes (THERMO FISHER SCIENTIFIC) were utilized according 

to manufacturer’s instructions. Genomic DNA of respective fungal mutant strains was 

digested with restriction enzymes o/n, which were chosen the way that resulting DNA 

fragments span parts of the respective mutated locus and at least one restriction site was 

outside of the integrated construct to confirm on-locus integration. Moreover, restriction 

enzymes were chosen according to the premise that respective DNA fragments show clear 

size differences between mutants and the WT when separated by agarose gel electrophoresis.  

After separation of DNA fragments according to size by agarose gel electrophoresis, gels 

were washed for 10 min in wash buffer 1 (0.25 M HCl), followed by washing with buffer 2 

for denaturation (0.5 M NaOH, 1.5 M NaCl) for 25 min and 30 min in buffer 3 (0.5 M Tris, 

1.5 M NaCl, pH 7.4) for neutralizing. All washing steps were performed under constant 
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agitation at room temperature (rt). Subsequently, DNA was transferred onto Amersham
TM

 

Hybond
TM

-N nylonmembranes (GE HEALTHCARE) by dry blotting for 2 h at rt. Membranes 

were subsequently dried at 75°C for 10 min and DNA was cross-linked to the membrane by 

UV light exposure (λ = 254 nm) for 3 min per side. Membranes were pre-hybridized in 

hybridization solution from the Amersham
TM

 Gene Images AlkPhos Direct Labelling and 

Detection Sytem (GE HEALTHCARE, prepared after manufacturer’s instructions) for 30 min at 

55°C in a HERA hybrid R hybridization oven (HERAEUS INSTRUMENTS) prior to application of 

the DNA probe. DNA probes were prepared with the aforementioned kit according to 

manufacturer’s instructions (GE HEALTHCARE). Hybridization of the membranes with the 

respective DNA probes was performed o/n at 55°C. Subsequently, membranes were washed 

twice in post-hybridization buffer I (1 mM MgCl2, 3.5 mM SDS, 50 mM sodium phosphate 

buffer, 150 mM NaCl, 2 M Urea, 0.2% (w/v) blocking reagents) for 10 min at 55°C and twice 

in post-hybridization buffer II (2 mM MgCl2, 50 mM Tris, 100 mM NaCl, pH 10) for 5 min at 

rt under constant agitation. For detection of DNA bands CDP-Star (GE HEALTHCARE) was 

applied and membranes were exposed to Amersham
TM

 Hyperfilm
TM

 ECL (GE HEALTHCARE). 

 

 

2.8 Secondary metabolite extraction 

2.8.1 Sterigmatocystin isolation 

The isolation of sterigmatocystin and thin layer chromatography (see next chapter) was 

performed as described (Bayram et al., 2008a). 1*10
5
 spores were point inoculated on solid 

MM and grown for three to seven days at 37°C in light or dark. Colonies or colony centers 

were cut out with a 50 ml centrifuge tube (SARSTEDT) and the resulting agar plug was cut into 

small pieces. Agar pieces were shaken in 50 ml Falcon tubes and six small glass bullets in 

3 ml H2O for 30 min at rt. Subsequently, 3 ml chloroform was added and samples were 

shaken for another 30 min at rt. After this, tubes were centrifuged 10 min at 1000 rpm to 

separate phases and the lower chloroform phase was transferred into glass tubes and 

evaporated o/n at rt under the hood. 

  

2.8.2 Thin layer chromatography  

Sterigmatocystin samples were resuspended in 50 µl methanol and 15 µl of isolated 

sterigmatocystin per sample was applied to pre-coated SIL G/UV254 Polygram
®
 DC-foil 

TLC-sheets (MACHEREY-NAGEL) (thin layer chromatography plates) in three steps of 5 µl to 

prevent distribution over the TLC plate. TLC plates were run in 1:4 (v/v) acetone:chloroform 
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for 40-50 min and photographed at 366 and 254 nm with a Camag TLC Visualizer 2 system 

from CAMAG (Muttenz, Switzerland) after 5 min drying at rt. That followed, TLC plates were 

sprayed with 20% (v/v) aluminum chloride in 95% (v/v) ethanol and baked at 70°C for 10 

min. Developed plates were photographed again at 366 and 254 nm with a Camag TLC 

Visualizer 2 system and processed with the winCATS 1.4.4 software (CAMAG).  

 

2.8.3 Secondary metabolite isolation for HPLC measurements 

Procedure was followed as described by Gerke and collaborators for the extraction of SMs 

from vegetatively grown cultures (Gerke et al., 2012b). 1*10
7
 spores were grown vegetatively 

for 48 h at 37°C on a rotary shaker and mycelia were removed. Remaining media were 

adjusted to pH 5 with HCl, equal amounts of ethyl acetate were added and media and ethyl 

acetate were mixed in a shaking flask to extract secondary metabolites. The formed water 

phase was discarded and the ethyl acetate was transferred into round bottom flasks and 

evaporated in a Hei-VAP-Advantage rotary evaporator from HEIDOLPH INSTRUMENTS GMBH 

& CO. KG (Schwabach, Germany) with a MWG Lauda RM6 from LAUDA-BRINKMANN LP 

(Delran, NJ USA) and a Laboxact KNF vacuum system (SIGMA-ALDRICH) at 37°C under 

constant gyration. 

For extraction of secondary metabolites from asexually and sexually grown cultures 1*10
6
 

spores were plated and grown for three or seven days under asexual or sexual development 

promoting conditions. Subsequently, fungal cells were washed off with cotton swabs and 

0.96% (w/v) NaCl solution, containing 0.0002% (v/v) Tween. The agar was cut into small 

pieces and transferred into flasks, covered with 300 ml ethyl acetate and shaken at 160 rpm at 

30°C for 30 min followed by 15 min ultra-sonication in a Bandelin Sonorex
TM

 Digital 10P 

ultrasonic bath from BANDELIN ELECTRONIC GMBH & CO.KG (Berlin, Germany) at highest 

level. Ethyl acetate was transferred to round bottom flasks and evaporated in a rotary 

evaporator at 37°C under constant gyration. 

Secondary metabolites were resolved in 3 ml methanol by swirling and transferred into small 

glass tubes. Methanol was evaporated in a rotary evaporator at 37°C under constant gyration 

and samples were stored at -20°C. Samples were resolved in 500 µl methanol, centrifuged and 

250 µl taken for measurements with high-performance liquid chromatography (HPLC). 
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2.8.4 Secondary metabolite analysis by high-performance liquid chromatography 

(HPLC) coupled with a UV diode array detector (UV-DAD) 

HPLC measurements were executed by Dr. Jennifer Gerke (Department of Molecular 

Microbiology and Genetics, Georg-August University Göttingen, Germany). 

Analytical HPLC/UV-DAD measurements were performed using the following system: 

HPLC pump 420, SA 360 autosampler, Celeno UV-DAD HPLC detector, ELSD-Sedex 85 

evaporative light-scattering detector (ERC)) with a Nucleodur 100-5 C18 end-capped (ec) 

column (250 mm x 3 mm) and the solvent system: A = H2O + 0.1% (v/v) trifluoroacetic acid 

(TFA), B = acetonitrile + 0.1% (v/v) TFA (from GOEBEL INSTRUMENTELLE ANALYTIK GMBH, 

Au/Hallertau, Germany). Secondary metabolite extracts were dissolved in 500 µl methanol 

and an injection volume of 20 µl was analyzed under gradient conditions (20% B to 100% B 

in 20 minutes) with a flow rate of 0.5 ml/min. 

HPLC data was analyzed with the Geminyx III software from GOEBEL INSTRUMENTELLE 

ANALYTIK GMBH (Au/Hallertau, Germany).  

 

 

2.9 Protein methods 

2.9.1 Protein isolation 

Strains were grown under vegetative conditions. For protein isolation from asexually or 

sexually grown cultures, cultures were grown vegetatively for 22 h and subsequently shifted 

onto solid MM plates and grown asexually or sexually for 12 h. Mycelia were harvested 

through sterile filter (MIRACLOTH), washed with 0.96% (v/v) sterile NaCl supplemented with 

1 mM PMSF and 1% (v/v) DMSO and subsequently mycelia were frozen in liquid nitrogen. 

Frozen mycelia were ground in liquid nitrogen with a MM400 table mill (RETSCH) and 

approximately 200 mg was mixed with 300 µl B
+
 buffer (300 mM NaCl, 100 mM Tris pH 

7.5, 10% (v/v) glycerol, 1 mM EDTA, 0.1% (v/v) NP-40) supplemented with 1.5 mM DTT, 1 

tablet/50 ml complete EDTA-free protease inhibitor cocktail (ROCHE), 1 mM PMSF, 

phosphatase inhibitor mix (1 mM NaF, 0.5 mM sodium-orthovanadate, 8 mM ß-

glycerolphosphate disodium pentahydrate and 1.5 mM benzamidine) and centrifuged for 15 

min at 13000 rpm at 4°C. Supernatant was transferred into fresh test tubes and protein 

concentration was measured with a NanoDrop ND-1000 spectrophotometer (PEQLAB). 

Concentration of samples were adjusted to same values with B
+
 buffer and samples were 

mixed with 3x SDS sample buffer (250 mM Tris-HCl pH 6.8, 15% (v/v) β-mercaptoethanol, 

30% (v/v) glycerol, 7% (v/v) SDS, 0.3% (w/v) bromphenol blue) and boiled at 95°C for 5 min 
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followed by 5 min incubation on ice. Samples were either used directly for further 

experiments or stored at -20°C.  

 

2.9.2 SDS-PAGE and western hybridization  

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to separate proteins 

according to size for western hybridization (Laemmli, 1970; Schinke et al., 2016). Equal 

amounts of protein, which were determined with a NanoDrop ND-1000 photospectrometer 

(Thermo Fisher Scientific), were loaded on 10% SDS gels (separation gel: 2.8 ml H2O, 3.75 

ml 1 M Tris pH 8.8, 100 µl 10% (w/v) SDS, 3.3 ml 30% (v/v) acrylamide, 10 µl TEMED, 50 

µl 10% (w/v) APS; stacking gel: 3.67 ml H2O, 625 µl 1 M Tris pH 6.8, 30 µl 10% (w/v) SDS, 

650 µl 30% (v/v) acrylamide, 5 µl TEMED, 25 µl 10% (w/v) APS) and separated according 

to size at 200 V in running buffer (25 mM Tris, 0.25 M glycine, 0.1% (w/v) SDS). Proteins 

from SDS gels were blotted for 1 h at 100 V on Amersham
TM

 Protran
TM

 0.45 µm NC 

nitrocellulose membranes (GE Healthcare) in ice cooled transfer buffer (25 mM Tris, 192 mM 

glycine, 0.02% (w/v) SDS) or at 35 V o/n at rt in transfer buffer (Towbin et al., 1979). 

Membranes were blocked with 5% (w/v) skim milk powder dissolved in TBST buffer (10 

mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05% (v/v) Tween 20) for 1 h at rt and subsequently 

probed with 1:250 mouse α-GFP antibody (sc-9996, SANTA CRUZ BIOTECHNOLOGY, Dallas, 

TX, USA) in TBST-M (TBST buffer, supplemented with 5% (w/v) skim milk powder) and 

incubated o/n at 4°C. That followed, membranes were washed three times in TBST for 10 min 

under constant agitation at rt and incubated for 1 h with 1:1000 horseradish peroxidase 

coupled goat α-mouse antibody (115-035-003, JACKSON IMMUNO RESEARCH, West Grove, 

CA, USA) as secondary antibody in TBST-M. Subsequently, membranes were washed for 

three times 10 min with TBST under constant agitation at rt. That followed, membranes were 

covered with a 1:1 (v/v) mixture of solution A (2.5 µM luminol, 400 µM paracoumarat, 100 

mM Tris-HCl pH 8.5) and solution B (5.4 mM H2O2, 100 mM Tris-HCl pH 8.5) and 

incubated for 5 min under constant agitation at rt in the dark (Suck and Krupinska, 1996). 

Chemiluminescent signals were detected with a Fusion-SL7 chemiluminescence detection 

system (PEQLAB) and pictures were recorded with the Fusion 15.15 software from VILBER 

LOURMAT (Marne-la-Vallée cedex 3, France). As loading control membranes were stained 

with Ponceau staining (Romero-Calvo et al., 2010). 
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2.9.3 GFP-trap pull-downs  

Protein pull-downs employing GFP-Trap
®
_A beads from CHROMOTEK (Planegg-Martinsried, 

Germany) were conducted as described earlier (Jöhnk et al., 2016). A. nidulans strains were 

inoculated in a concentration of 5*10
8
 spores in 500 ml MM and grown vegetatively for 24 h 

(vegetative samples), or for 22 h vegetatively and subsequently mycelia were shifted onto 

solid agar plates and grown for 12 h in light (asexual samples) or in the dark and sealed with 

Parafilm
®
 to induce sexual development (sexual samples). Mycelia were harvested and 

immediately frozen in liquid nitrogen. Frozen mycelia were ground with a MM400 table mill 

(RETSCH) in liquid nitrogen. 5 ml ground mycelia were mixed with B
+
 buffer in a relation of 

1:1 (v/v) and centrifuged twice for 20 min at 4000 rpm at 4°C. Supernatant was filtered 

through 0.2 µm sterile filters (SARSTEDT) and mixed 1:100 with GFP-Trap
®
_A beads 

(CHROMOTEK) and incubated o/n rotating at 4°C. Subsequently, GFP-Trap
®

_A beads were 

washed twice with freshly prepared B
+
 buffer and transferred into 1.5 ml reaction tubes. GFP-

Trap
®
_A beads were centrifuged at 3000 rpm at rt for 1 min and subsequently boiled in 50 µl 

3x SDS sample buffer at 95°C for 10 min. Protein extracts were stored at -20°C until further 

processing.  

 

2.9.4 Bioinformatic analyses of protein features 

The InterPro database (Finn et al., 2016) was searched using InterProScan 

(https://www.ebi.ac.uk/interpro/search/sequence-search) (Jones et al., 2014) to predict protein 

domains. The presence of putative orthologs of ZtfA in other fungi was analyzed in silico 

with the Basic Local Alignment Search Tool (BLAST; 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990). Orthologs were investigated in 

pairwise sequence alignments using EMBOSS Needle 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) (Li et al., 2015; McWilliam et al., 2013; 

Rice et al., 2000). Putative nuclear localization sequences were searched with cNLS Mapper 

(http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Kosugi et al., 2009) and 

NucPred (http://www.sbc.su.se/~maccallr/nucpred/cgi-bin/single.cgi ) (Brameier et al., 2007). 

LocNES (http://prodata.swmed.edu/LocNES/LocNES.php) (Xu et al., 2015) and NetNES 1.1 

(http://www.cbs.dtu.dk/services/NetNES/) (La Cour et al., 2004) were employed to identify 

nuclear export signals in silico. Phosphorylation sites were determined in silico with NetPhos 

3.1 (http://www.cbs.dtu.dk/services/NetPhos/) (Blom et al., 1999). The cutoff was set to 0.7 

(score values from 0 to 1). 

 

 

http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://www.cbs.dtu.dk/services/NetPhos/


Materials and methods 

55 

2.10 Identification of proteins from GFP pull-downs with mass spectrometry 

2.10.1 Tryptic protein digestion 

Protein LoBind Tubes PCR Clean from EPPENDORF AG (Hamburg, Germany) were used for 

the whole procedure.  

Tryptic digestion of proteins was performed as published by Shevchenko and collaborators 

using Sequencing Grade Modified Trypsin (PROMEGA) (Shevchenko et al., 1996). Briefly, 

protein samples were separated according to size on a 10% SDS gel (see CHAPTER 2.9.2). 

Complete lanes were excised and cut into small pieces of approximately 2 mm. Gel pieces 

were shaken in acetonitrile for 10 min at rt and dried in a SpeedVac Concentrator (THERMO 

FISHER SCIENTIFIC). That followed proteins were reduced in-gel by incubating the gel pieces 

in 10 mM DTT in 100 mM NH4HCO3 at 56°C for 1 h. Subsequently, the DTT solution was 

exchanged with 55 mM iodoacetamid in 100 mM NH4HCO3 to allow alkylation of reduced 

cysteine residues, and the samples were incubated for 45 min in the dark. Afterwards, the gel 

pieces were washed with 100 mM NH4HCO3 for 10 min and dehydrated in acetonitrile for 10 

min. This procedure was repeated and the gel pieces were dried in a SpeedVac Concentrator 

(THERMO FISHER SCIENTIFIC) at 50°C. That followed, the gel pieces were covered with 

trypsin-digestion buffer (PROMEGA; prepared according to manufacturer’s specifications) and 

incubated on ice for 45 min, followed by an incubation in 25 mM NH4HCO3 o/n at 37°C. 

Following, supernatants were collected into new reaction tubes and the gel pieces were 

covered with 20 mM NH4HCO3 and incubated for 10 min at rt for the extraction of acidic 

peptides. Supernatants were collected and the gel pieces were incubated in 50% (v/v) 

acetonitrile and 5% (v/v) formic acid and incubated for 20 min at rt. Subsequently, 

supernatants were collected. This procedure was repeated three times to extract remaining 

peptides. The combined supernatants were dried completely in a SpeedVac Concentrator 

(THERMO FISHER SCIENTIFIC). Peptides were resolved in 20 µl resuspension buffer (98% H2O, 

2% (v/v) acetonitrile, 0.1% (v/v) formic acid) and incubated in an ultrasonic bath at 35°C for 

3 min at maximum power. 

 

2.10.2 C18 StageTip purification of trypsin-digested samples  

Protein LoBind Tubes PCR Clean from EPPENDORF AG (Hamburg, Germany) were used for 

the whole procedure.  

Prior to measurement with LC-MS/MS, peptides were purified from salts and other 

contaminations, using the StageTip purification method (Rappsilber et al., 2003, 2007). For 
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this, C18 (reversed-phase material) stage tips were prepared by introducing C18 plugs into 

200 µl pipet tips. StageTips were equilibrated with 100 µl of 0.1% (v/v) formic acid in HPLC 

grade methanol, followed by 100 µl of 0.1% (v/v) formic acid in 70% (v/v) acetonitrile and 

100 µl of 0.1% (v/v) formic acid in dH2O. The last step was repeated. Peptides resolve in 

resuspension buffer were loaded onto the StageTips and centrifuged 5 min at 3500 rpm. This 

was repeated. Subsequently, the StageTips were washed twice with 100 µl of 0.1% (v/v) 

formic acid in dH2O and peptides were eluted with 60 µl of 70% (v/v) acetonitrile containing 

0.1% (v/v) formic acid after incubation for 5 min. Peptides were dried completely in a 

SpeedVac Concentrator (THERMO FISHER SCIENTIFIC) at 50°C.  

For mass spectrometry, peptides were resolved in 20 µl resuspension buffer (98% H2O, 2% 

(v/v) acetonitrile, 0.1% (v/v) formic acid) and incubated in an ultrasonic bath at 35°C for 3 

min at maximum power. 

 

2.10.3 LC-MS/MS identification of proteins and protein phosphorylation 

Mass spectrometry was performed by Dr. Oliver Valerius (Department of Molecular 

Microbiology and Genetics, Georg-August University Göttingen, Germany) utilizing an 

Orbitrap Velos Pro (THERMO FISHER SCIENTIFIC) as described (Jöhnk et al., 2016; 

Kleinknecht et al., 2016; Lin et al., 2015; Schinke et al., 2016). 

Liquid chromatography-coupled mass spectrometry was done using the Orbitrap Velos Pro 

mass spectrometer and the RSLCnano Ultimate 3000 chromatography system (THERMO 

FISHER SCIENTIFIC). Peptides of proteins hydrolyzed by trypsin and purified with C18 stage 

tips were separated at nano-flow with Acclaim PepMap RSLC columns (THERMO FISHER 

SCIENTIFIC) through a water-acetonitrile gradient. Online ionization of eluting peptides 

through nano-electrospray was achieved by the use of the Nanospray Flex Ion Source 

(THERMO FISHER SCIENTIFIC). Full scans within the mass range of 300-1850 were recorded 

with the Orbitrap-FT analyzer at a resolution of 30.000. In parallel data-dependent top ten 

collision-induced dissociation (CID) in the LTQ Velos Pro linear ion trap took place. For 

phosphopeptide analyses precursor peptides were either CID fragmented in the multi-stage 

activation mode in the linear trap (MSA) or with higher-energy collisional dissociation (HCD) 

within the C-trap. The XCalibur
TM

 2.2 software (THERMO FISHER SCIENTIFIC) was used for 

LC-MS method programming and the mass spectra acquisition. MS/MS2 data processing for 

peptide analysis and protein identification was performed either with the MaxQuant 1.5.1.0 

and Perseus 1.5.3 or the Proteome Discoverer 1.4 software (THERMO SCIENTIFIC) using the 

SequestHT and the Mascot search engines. As protein database an A. nidulans specific 
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database with common contaminants was used. For further details see the LC-MS analysis 

section of Materials and Methods in the recent publication from Schmitt and co-workers 

(Schmitt et al., 2017). 

 

 

2.11 Spore viability assay 

Viability of spores over time was analyzed as described (Ni and Yu, 2007; Sarikaya-Bayram 

et al., 2010). Conidia were harvested after two days and counted with a Coulter Z2 particle 

counter (BECKMAN). 1*10
5
 spores were plated on solid MM plates, supplemented with 1.2 M 

sorbitol. Conidia were harvested after two, five and ten days and 200 spores were spread on 

solid MM plates and grown at 37°C in light. This test was performed in triplicates per 

experimental day. Colony formation was monitored after two days and calculated as ratio of 

the number of growing colonies to the number of inoculated spores. 

 

 

2.12 Trehalose assay 

Trehalose assays were performed as described (d’Enfert and Fontaine, 1997; Ni and Yu, 

2007; Sarikaya-Bayram et al., 2010). 1*10
7
 spores per strain were grown for two days on 

solid MM at 37°C in light. 1*10
7
 conidiospores were harvested and washed in dH2O. 

Subsequently, 1*10
8
 conidiospores per strain were resuspended in 200 µl dH2O and boiled at 

95°C for 20 min to allow for trehalose extraction from spores. Spores were collected by 

centrifugation, supernatants were transferred into fresh reaction tubes and mixed with equal 

amounts of 0.2 M sodium citrate pH 5.5 and incubated for exactly 8 h at 37°C with and 

without 3 mU trehalase (SIGMA-ALDRICH). Glucose amounts generated by the trehalase from 

trehalose were assayed by employing the Glucose (GO) Assay Kit (SIGMA-ALDRICH) 

according to manufacturer’s instructions. Glucose amounts from untreated samples were 

deducted from the amounts from trehalase treated samples.  

 

 

2.13 Electrophoretic mobility shift assay (EMSA) 

EMSA was performed as described (Ahmed et al., 2013). DNA probes were generated by 

annealing the reverse-complementary oligonucleotide pair kt379/380 with the sequences 

GACTTTCCTCCGCGGACGCCGCGTCGATTTTAG/CTAAAATCGACGCGGCGTCCGCGGAGGAAAGTC.

GST-VosA purified protein (Ahmed et al., 2013) in indicated concentrations was mixed with 
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1200 ng DNA and incubated for 15 min at rt in 2 µl HEPES/NaCl buffer (10 mM HEPES 

pH 7.4, 150 mM NaCl). The protein-DNA mix was mixed with 4x sample buffer (40% (w/v) 

glycerol in 0.25 M Tris-HCl, pH 6.8) and dispersed according to size on a native 6% (v/v) 

polyacrylamide gel in TBE running buffer (45 mM Tris-borate, 1 mM EDTA) prior to 

staining with ethidium bromide. As control the gel was stained with Coomassie brilliant Blue 

G-colloidal staining (SIGMA-ALDRICH). Prior to the staining, gels were incubated for 1 h 

under constant agitation in fixation solution (40% (v/v) ethanol, 10% (v/v) acetic acid) 

(Schinke et al., 2016), followed by rinsing with dH2O for several times. Fixation solution was 

subsequently utilized for destaining. 

 

 

2.14 Microscopy 

Photomicrographic images were obtained by utilization of an Axiolab microscope (CARL 

ZEISS MICROSCOPY GMBH, Jena, Germany) and a SZX12-ILLB2-200 binocular microscope 

(OLYMPUS). Both systems were equipped with a SC30 digital camera (OLYMPUS). Pictures 

were processed with the cellSens Dimension 1.4 software (OLYMPUS). 

For monitoring conidiophore development in liquid cultures, strains were grown in 

submerged cultures for 18 h and mycelial balls were transferred onto microscopic slides. For 

analyses of premature conidiophore development, strains were grown for 14 h in LM and 

transferred into liquid MM via filtration trough sterile Miracloth filters (MERCK) and grown 

for 9 h in liquid MM under vegetative conditions (see Chapter 2.2.2). 

Fluorescence microscopy was performed with a Zeiss AxioObserver Z.1 inverted confocal 

microscope, equipped with Plan-Neofluar 63x/0.75 (air), Plan-Apochromat 63x/1.4 oil and a 

Plan-Apochromat 100x/1.4 oil objectives (ZEISS) and a QuantEM:512SC camera 

(PHOTOMETRICS, Tucson, AZ, USA). Pictures were processed with the SlideBook 6.0 

software package (INTELLIGENT IMAGING INNOVATIONS GMBH, Göttingen, Germany).  

For fluorescence microscopy 2000 spores per strain were inoculated in 8-well borosilicate 

cover glass system (THERMO FISHER SCIENTIFIC) in 400 µl liquid MM for vegetative growth 

or on glass slides for microscopy, covered with 1 ml solid MM for asexual and sexual growth 

at 37°C or 30°C. Cultures were incubated for 24 to 36 h. Fluorescence values of WT 

background fluorescence were subtracted from strains expressing GFP-fusion proteins to 

allow for normalization of fungal auto fluorescence. Nuclei were visualized by ectopic 

integration of 
P
gpdA::rfp::h2A (pME3173) into respective strains or via staining with 0.1% 
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(w/v) 4’,6’-diamidino-2-phenylindole (DAPI) (ROTH) and incubation for 20 min at 37°C prior 

to microscopy.  

 

 

2.15 Isolation of polysaccharides of A. fumigatus 

Polysaccharides were extracted as described (Fontaine et al., 2011; Gravelat et al., 2013). 

5*10
7
 conidiospores per strain were inoculated in 100 ml modified Brian-medium (20 g/L 

asparagine, 2.4 g/L NH4HCO3, 10 g/L KH2PO4, 2g/L MgSO4*7 H2O, 26 mg/L ZnSO4*7 H2O, 

2.6mg/L CuSO4*5 H2O, 1.3 mg/L CoCl2*6 H2O, 65 mg/L CaCl2, pH5.4, supplemented with 

5% (w/v) glucose after sterilization) and grown for 24 h at 37°C on a rotary shaker. Mycelia 

were removed by filtration trough Miracloth filters (MERCK) and flow through was transferred 

into 500 ml bottles and mixed with 250 ml 70% (v/v) ethanol to precipitate polysaccharides. 

To increase precipitation yields, bottles were shaken o/n at 4°C. The liquid was transferred 

into centrifugation tubes and centrifuged in a Sorvall RC-3B Plus Refrigerated Centrifuge 

(THERMO FISHER SCIENTIFIC), supernatant was discarded and precipitated polysaccharides 

were dried o/n at rt. Weight of the centrifugation tubes was determined prior and after 

polysaccharide precipitation to calculate weight of total precipitated polysaccharides. 

 

 

2.16 Fungal stress tests 

Stress tests with 1% (v/v) H2O2 or 1% (w/v) sodium dodecyl sulfate (SDS) dissolved in dH2O 

were carried out as described (Lessing et al., 2007). 1*10
7
 spores were mixed with 25 ml MM 

with 2% (w/v) agar and supplemented with 10 µg/ml doxycycline to induce ztfA expression, 

when needed, shortly before solidification (Helmschrott et al., 2013). This allows pouring 

plates, which incorporate evenly distributed spores in the agar. After solidification, an agar 

plug was removed by excision with a 15 ml centrifugation tube and the hole was filled with 

150 µl of the respective stress inducing agent in indicated concentrations. Strains were grown 

for 2 d at 37°C in light (A. nidulans) or dark (A. fumigatus) and inhibitions zones were 

measured.  

 

 

2.17 A. fumigatus infection assay with Galleria mellonella larvae  

G. mellonella larvae were infected as described (Renwick et al., 2006). Larvae were obtained 

from FAUNA TOPICS GMBH (Marbach am Neckar, Germany) and directly employed upon 

arrival to ensure maximal initial health. Larvae were infected in groups of 12 individuals with 
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8*10
6
 spores in 20 µl sterile 0.96% (w/v) NaCl, supplemented with 0.002% (v/v) Tween-80 

(SIGMA-ALDRICH) per strain. 10 µg/ml rifampicin was added to prevent infection with other 

microorganisms. Per experimental repetition, 12 larvae were mock infected with NaCl Tween 

solution and six larvae were left untreated to monitor general health of the animals and to 

ensure that neither the infection procedure nor the storage conditions were responsible for 

observed mortality. Micro-Fine
TM

+ 0.3 ml insulin syringes (BD BIOSCIENCES) were utilized 

for inoculation and sterilized with 100% ethanol after each treatment and discarded after 

infection of three individuals to decrease contamination risk. Larvae were kept at 30°C in 

petri dishes, separated according to the fungal strain they were infected with, and with litter 

they came in. Survival was monitored at least daily. Moribund larvae were suspended when 

no movement was observable upon contact and dark discoloration was observable. Suspended 

larvae were sacrificed at -20°C prior to autoclave sterilization.  
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3. Results 

 

3.1 AN0585/ztfA encodes the putative Zinc cluster transcription factor ZtfA 

3.1.1 The AN0585 gene product is a Zn(II)2Cys6 fungal transcription factor 

The velvet domain transcription factor VosA binds to promoters of approximately 1500 genes 

(Ahmed et al., 2013). Amongst these putative VosA targets are several so far uncharacterized 

genes. By employment of UV-mediated random DNA damage Jørgensen and collaborators 

generated a mutant strain (scl-2), which showed reduced asexual sporulation and the 

formation of sclerotic-like structures in Aspergillus niger that correspond to cleistothecia in 

A. nidulans (Jørgensen et al., 2011). Velvet proteins are fungal master regulators of 

developmental programs and secondary metabolism and VosA specifically negatively 

regulates the major conidiation activator-encoding brlA gene. The gene corresponding to the 

scl-2 mutant phenotype could therefore be a downstream factor of one of the velvet proteins. 

The A. niger gene later was identified as An08g07710 but so far, no further research has been 

conducted to characterize it (A.F.J. Ram, personal communication). The putative ortholog in 

A. nidulans, AN0585, is among the genes regulated by the velvet factor VosA (Ahmed et al., 

2013).  

The AN0585 open reading frame (ORF) comprises 1730 nucleotides with one intron of 59 

nucleotides (FIGURE 13). The gene product is a protein of 556 amino acids with a predicted 

molecular mass of 60.3 kDa. The AN0585 protein shows an amino acid sequence similarity of 

65.2% to An08g07710 of A. niger, 55.4% to Afu6g11110 of A. fumigatus and 63.2% to 

AO090023000506 of A. oryzae in pairwise sequence alignments carried out with EMBOSS 

Needle (Li et al., 2015; McWilliam et al., 2013; Rice et al., 2000). Sequence similarity 

indicates percentage of matches between two sequences. Further putative orthologs among 

Aspergilli were found in searches employing the Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1990) for A. flavus, A. terreus, A. acidus, A. aculeatus, 

A. carbonarius, A. brasiliensis, A. glaucus, A. tubingensis, A. wentii, A. zonatus, A. kawachii. 

All orthologs from these Aspergilli are C6 proteins with Aacu16872_038210 being the only 

exception: in silico screens could not identify any conserved domains in the ortholog of 

A. aculeatus (FIGURE 13). Amino acid sequence based searches using the AN0585 sequence 

as query reveal putative orthologs in other Ascomycota as well. Several Penicillium spp. 

harbor proteins with high query coverages of 70 to 100% and sequence identities around 40% 

to A. nidulans ZtfA. A number of Talaromyces spp. might harbor orthologs as well (query 
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coverage of 54 to 91% and sequence identities of 30 to 40%). Query coverage indicates the 

percentage of the alignment that covers the primary amino acid sequence of A. nidulans ZtfA. 

 

 

FIGURE 13: ztfA (AN0585) encodes a C6 transcription factor.  

Graphical representation of ztfA (zinc cluster transcription factor A; AN0585) and its gene 

product (upper part). The grey box represents an intron, bp = base pairs, Zn = Zn(II)2-Cys6 

fungal-type DNA-binding domain, NLS = nuclear localization sequence, NES = nuclear 

export signal, aa = amino acids. Multiple amino acid sequence alignments of the C6 domain 

(colored) of ZtfA orthologs from Aspergilli (lower part). Red = absolutely conserved, orange 

= conserved in ≥ ½ of indicated sequences. Residues presumably involved in DNA-binding 

are given in green. Asterisks mark the cysteine residues of the C6 domain. The small arrow 

indicates the absolutely conserved antecedent alanine residue. 

 

AN0585 orthologs have not yet been characterized up to date. Query coverages for putative 

orthologs from most other Ascomycota identified in BLAST searches are below 30% and in 

almost all of these cases the region harboring the C6 domain is the only region with 

similarities to AN0585. BLAST analyses using the AN0585 amino acid sequence as query 

against Basidiomycota, Zygomycota, Glomeromycota and Chytridiomycota revealed query 

coverages in single-digit or low double-digit percental range (< 20% query cover, with 

exception of two putative proteins from Rhizophagus irregularis with 21% and 22% query 
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cover, respectively). Therefore, orthologs of AN0585 are abundant in Aspergilli and 

supposedly present in other Ascomycota, but seem to be absent in other fungal taxa. 

A search of the InterPro database (Finn et al., 2016) using InterProScan (Jones et al., 2014) 

for conserved domains revealed a Zn(II)2-Cys6 (C6) fungal-type DNA-binding domain as the 

only conserved domain. Therefore, the protein was given the name ZtfA (Zinc cluster 

transcription factor A) and, consequently, its gene was named ztfA.  

NucPred (Brameier et al., 2007) and cNLS Mapper (Kosugi et al., 2009) both predict a 

nuclear localization sequence (NLS) with high probabilities, starting at amino acid position 

541 or 543 to position 548 or 550, respectively. LocNES (Xu et al., 2015) and NetNES 1.1 

(La Cour et al., 2004) conformably predict a nuclear export signals (NES) starting at position 

259 (LocNES) or 265 (NetNES) to 273. The predicted score, indicating the probability of the 

actual existence of the NES, was relatively low (score value between 0 and 1, predict score 

for NES in ZtfA around 0.6). 

 

3.1.2 The C6 domain architecture of ZtfA is found in 5.7% of all A. nidulans C6 

proteins 

Typical DNA-binding sites of C6 proteins consist of terminal trinucleotides of direct or 

inverted repeats separated by six to eleven residues. Whereas this structure is conserved, the 

consensus sequence of the trinucleotides of targets differ greatly (Todd and Andrianopoulos, 

1997). Gal4 of Saccharomyces cerevisiae is the founding member of the group of C6 proteins 

and one of the best studied examples for this protein group. The zinc cluster DNA-binding 

domain (DBD) of Gal4 has a CX2CX6CX6CX2CX6C architecture. Concurrently, this is the 

most common C6 architecture in A. flavus and A. nidulans (Chang and Ehrlich, 2013). In 

general, the cysteines within the first part of this motif are absolutely conserved, whereas the 

second part varies and forms CX2CX6CX5-16CX2CX6-8C (Todd and Andrianopoulos, 1997). A 

previous study found 330 C6 proteins in A. nidulans (Wortman et al., 2009). An up-to-date 

in silico analysis conducted in the present study under employment of the AspGD and 

FungiDB databases (Cerqueira et al., 2014; Stajich et al., 2012) reveals two additional C6 

proteins. This increases the number of C6 proteins to 332 in A. nidulans. ZtfA shows a 

CX2CX6CX5CX2CX8C architecture, which is found in 19 out of 332 C6 proteins in 

A. nidulans (approximately 5.7%). The amino acid residues within the first CX2CX6C motif 

are conserved to a certain extent among all C6 proteins known up to date, and mutagenesis 

studies showed their importance for DNA binding (Johnston and Dover, 1987; Todd and 

Andrianopoulos, 1997; Yuan et al., 1991). The first, third, fourth and sixth residue between 
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the second and third cysteine of the C6 domain are in most cases basic residues and mutations 

of these residues have been shown to abolish DNA-binding in several C6 proteins (Todd and 

Andrianopoulos, 1997). For ZtfA, these four residues are lysine, lysine, histidine and glycine 

in orthologs of all Aspergilli (except A. aculeatus) (shown in green in FIGURE 13). A 

conserved proline at position C4 – X1-2 functions in DNA binding in several known C6 

proteins and was shown to prevent twist in the loop formed between the cysteines (Johnston 

and Dover, 1987; Marmorstein et al., 1992; Todd and Andrianopoulos, 1997; Turcotte and 

Guarente, 1992; Yuan et al., 1991). This proline is conserved in all putative Aspergilli ZtfA 

orthologs (shown in green in FIGURE 13). The entire C6 domain is strongly conserved among 

ZtfA orthologs in Aspergilli. The antecedent residue of the C6 domains is in most cases a 

small amino acid (Todd and Andrianopoulos, 1997) and for all ZtfA orthologs it is alanine. In 

conclusion, ZtfA has a quite uncommon C6 domain architecture and its orthologs in 

Aspergilli share high conservation of their amino acid sequences.  

 

 

3.2 ZtfA is necessary for conidiation of A. nidulans 

A mutant of the ztfA ortholog in A. niger (scl-2) produces drastically diminished numbers of 

conidiophores but is able to form sclerotia-like structures (Jørgensen et al., 2011). 

Consequently, an A. nidulans knock out strain was created to analyze the influence of ztfA on 

developmental programs. The absence of ztfA leads to a phenotype with drastically 

diminished conidiophore numbers under asexual growth promoting conditions (FIGURE 14).  

 

 

FIGURE 14: ZtfA is necessary for conidiation. 
The absence of ztfA leads to diminished conidiophore formation. 2000 spores of WT, ΔztfA, 

ztfA comp and ztfA OE (
P
niaD::ztfA) were point inoculated on solid minimal medium (MM) 

and incubated for 3 d at 37°C in light. Cultures were photographed from above (top) and 

below (bottom). Photomicrographs (PMG) show that ΔztfA forms reduced numbers of 

conidiophores (green). Black bars = 200 µm. 



Results 

65 

A. nidulans produces high numbers of conidiophores during asexual development in light and 

reduces conidiophore formation during sexual growth (in the dark with limited oxygen 

supply). A strain that overexpresses ztfA (ztfA OE) under a nitrate-inducible promoter 

(
P
niaD::ztfA) produces increased numbers of conidiophores under sexual inducing conditions 

(FIGURE 15A). The ztfA OE phenotype is especially intense when the strains are plated instead 

of point inoculated on minimal medium (MM). This leads to a greenish appearance of the ztfA 

OE strain in comparison to WT, ΔztfA and the complemented strain (ztfA comp) when grown 

in the dark (FIGURE 15A). Point inoculation leads to simultaneous germination and circular 

growth of the whole colony from the same location. Such radial colonies exhibit zones of 

different age due to ongoing growth: the center comprises the oldest parts of the colony 

whereas structures at the periphery are the youngest (vegetative zone) (Etxebeste et al., 

2010b). In contrast, plated strains comprise colonies emerging from single germinating 

spores, which form a coherent mycelium due to hyphal fusion via anastomosis tubes, and are 

of same age at every spot (Etxebeste and Espeso, 2016; Gabriela Roca et al., 2005). This 

leads to simultaneous developmental progression of the whole culture. 

Quantification of conidiospores produced by ztfA mutants confirms that ∆ztfA forms 

drastically diminished numbers of conidiospores compared to WT, ztfA OE and the 

complemented strain (FIGURE 15B). ztfA OE produces one order of magnitude more 

conidiospores in the dark, compared to WT and the complemented strain (FIGURE 15B).  

The A. niger scl-2 mutant strain produces sclerotia-like structures, which are rarely formed by 

A. niger WT under laboratory conditions, indicating a repressing effect of scl-2 upon sclerotia 

formation (Frisvad et al., 2014; Jørgensen et al., 2011). Hence, cleistothecia formation, which 

presumably corresponds to sclerotia, was monitored in A. nidulans. It is noteworthy, that the 

WT (AGB551) used in this study produces increased amounts of cleistothecia compared to 

the commonly used FGSC A4 WT even in light (Bayram et al., 2012; McCluskey et al., 

2010). The ΔztfA mutant produces similar amounts of cleistothecia compared to WT when 

grown in light (FIGURE 15C). In contrast, ztfA OE produces slightly more cleistothecia when 

grown in the dark under tested conditions. Differences between ztfA mutants and the WT are 

relatively small in both asexual and sexual development, indicating, that ZtfA is not a major 

regulator of cleistothecia formation in A. nidulans. Nests and cleistothecia in the ΔztfA strain 

are more apparent compared to WT when grown in light, where these structures are covered 

by green layers of conidiophores (FIGURE 16). Ascospores of ΔztfA are viable. These findings 

indicate that the ztfA gene product is not required for ascospore formation. 
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FIGURE 15: ZtfA is important for asexual development.  

A) Colony morphology of plated cultures of WT, ∆ztfA, ztfA comp and ztfA OE strains. Solid 

MM plates were inoculated with 1*10
7
 spores and incubated for 7 d in light or dark at 37°C. 

B) Amount of conidiospores produced by indicated strains during a 10 days’ time course 

during asexual development (light) and sexual development (dark), given in a logarithmic 

scale (Log10). Plates were inoculated with 1*10
5
 spores of WT, ∆ztfA, ztfA comp or ztfA OE 

and spores were counted after 2, 5 and 10 days grown in light or dark at 37°C. C) Amounts of 

cleistothecia produced by WT and the ztfA mutant strains after 8 d grown in light or dark.  
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FIGURE 16: ztfA is dispensable for cleistothecia formation and ascospore viability.  

A) ΔztfA forms only few conidiophores (black arrows) and mostly nest like structures (white 

arrows), which produce mature cleistothecia. Black bars = 200 µm, white bars = 100 µm. B) 

Crushed cleistothecia (violet) of 7 d old cultures from WT and ΔztfA. Black bars = 50 µm. 

Ascospores of WT and ΔztfA were plated on solid MM and incubated for 3 d in dark.  

 

 

3.3 The velvet protein VosA is a repressor of ztfA gene expression 

3.3.1 VosA is a negative regulator of ztfA  

VosA binds a palindromic CCGCGG recognition sequence upstream of approximately 1500 

target ORFs (Ahmed et al., 2013). ztfA is among these genes putatively regulated by VosA. 

The region containing the CCGCGG motif was identified upstream of the ztfA ORF. 

Electrophoretic mobility shift assays (EMSAs) with a synthesized DNA probe of this region 

show that GST-VosA (Ahmed et al., 2013) binds this region in vitro and dosage-dependently 

(FIGURE 17A). This shows a specific binding of VosA to this motif upstream of ztfA and 

confirms the ChIP-on-Chip results from Ahmed and collaborators. 

The molecular mechanism of regulation is unclear for most of the putative VosA targets. 

Hence, VosA’s regulatory role upon ztfA expression was analyzed. cDNA was transcribed 

from RNA isolated from asexually grown WT, ΔztfA and ΔvosA (S. Thieme, p.c.) cultures 

and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were conducted to 

analyze whether VosA regulates ztfA expression (FIGURE 17B). ztfA transcription is 

upregulated in the absence of vosA in asexually grown cultures after 24 h but not during 

vegetative growth. This shows that VosA represses ztfA expression during the late phase of 

conidiation.  
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FIGURE 17: VosA binds upstream of the ztfA open reading frame and represses ztfA gene 

expression.  

A) Electrophoretic mobility shift assay (EMSA) using serial diluted GST-VosA protein and a 

33 bp DNA probe of the vosA recognition site upstream of ztfA. DNA and protein were used 

in molar ratios of 1:0.3, 1:1, 1:3 and 1:4. Free GST is shown as negative control. B) ztfA 

expression is upregulated in the absence of vosA during asexual growth, as indicated by qRT-

PCR analyses. Strains were grown for 24 h in submerged cultures and mycelia were harvested 

(vegetative), or shifted onto solid MM plates and grown for 24 h in light (asexual). 

 

3.3.2 ztfA is epistatic towards vosA 

VosA forms heterodimers with VelB and VelC (Park et al., 2012, 2014), which fulfill 

different functions in fungal development and interconnected secondary metabolism. Single 

and double knock out mutants of the velvet factors and ztfA were constructed to investigate 

whether ZtfA functions up- or downstream of VosA and to analyze possible genetic relations 

with other velvet factors.  

The ∆vosA strain forms grey-greenish conidiophores (Ni and Yu, 2007). The ∆ztfA phenotype 

predominates in a ∆ztfA∆vosA double mutant strain (FIGURE 18). This indicates that ztfA is 

epistatic towards vosA. The ∆veA and ∆velB single mutants both show drastic phenotypes on 

solid MM without cleistothecia formation and with production of dark reddish pigments 

(Bayram et al., 2008a; Palmer et al., 2013; Park et al., 2012b) (FIGURE 18). Both ∆ztfA∆veA 

and ∆ztfA∆velB double mutants show additive phenotypes. The dominant phenotype is similar 

to the ∆veA and ∆velB single mutant, respectively, but with increased amounts of aerial 

hyphae and drastically reduced greenish colony centers (FIGURE 18). These additive 

phenotypes indicate an action of ZtfA independently of VeA or VelB, or their heterodimers. 

The ∆velC single mutant shows an almost WT-like phenotype on solid MM but with 

increased amounts of conidiophores (Park et al., 2014) (FIGURE 18). The ∆ztfA∆velC double 

deletion strain shows an additive phenotype with the ∆ztfA phenotype as the predominant 
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phenotype but an increased greenish colony center. Taken together, ZtfA functions 

specifically downstream of VosA, because it does not function in VeA, VelB or VelC 

governed pathways. 

 

 

FIGURE 18: Phenotypes of ztfA and velvet mutants.  
Phenotypic analyses indicate that ztfA is epistatic towards vosA. Double mutants with ΔztfA 

and either ΔveA, ΔvelB or ΔvelC show additive phenotypes. Strains were point inoculated on 

solid MM and grown for 4 d in light at 37°C. PMG = photomicrograph, black bars = 200 µm. 

 

3.3.3 ZtfA is necessary for spore viability 

VosA and VelB are crucial for trehalose biogenesis (Ni and Yu, 2007; Sarikaya-Bayram et 

al., 2010). Conidiospore viability assays were conducted to test whether ZtfA is involved in 

spore viability as well. These tests were carried out on solid MM supplemented with 1.2 M 

sorbitol to decrease Hülle cell contaminations in conidiospore solutions (Han et al., 2003). 

Conidiospores of ∆ztfA show a rapid loss in spore viability (FIGURE 19A). This can be 

complemented by reintroducing the ztfA gene into the ztfA deletion background (ztfA comp). 

The assay was performed several times with similar results without sorbitol to exclude an 

effect of sorbitol on spore viability. Consequently, trehalose amounts were analyzed in spores 

of WT and the ztfA mutants. However, no difference in trehalose amounts in spores of ∆ztfA 

or ztfA OE in comparison to WT could be found (FIGURE 19B). This finding shows that ZtfA 

specifically supports spore viability without affecting trehalose biogenesis, which might 

require a second VosA controlled regulatory gene. 
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FIGURE 19: ZtfA supports spore viability.  
A) Conidiospores show a rapid loss in viability in the absence of ztfA. 1*10

5
 spores were 

plated and grown for up to 10 d in light at 37°C. Spores were harvested at indicated time 

points and 200 spores per strain were plated. Emerging colonies were counted after two days. 

Numbers of emerging colonies are given as percent of inoculate. This assay was performed in 

three biological replicates on MM supplemented with sorbitol and repeated several times 

without sorbitol with similar results. B) Trehalose amounts do not differ between WT and the 

ztfA mutant strains. Trehalose amounts of WT and the ztfA mutant strains were analyzed in 2 d 

old conidiospores from asexually grown cultures. Amounts are given in pg (picogram) per 

spores.  

 

 

3.4 ZtfA activates the conidiation pathway 

3.4.1 ztfA overexpression results in conidiophore formation during vegetative growth 

ztfA OE forms increased numbers of conidiospores during sexual development (FIGURE 16). 

Phenotypes of WT and the ztfA mutants were monitored in submerged cultures to investigate 

whether ztfA OE is sufficient to induce conidiophore formation even during vegetative 

growth. Submerged culture conditions completely suppress developmental programs in 

A. nidulans and result in solely vegetative hyphal growth. Strains were grown in liquid 

cultures for 18 h and mycelia were investigated under the microscope. ztfA OE forms 

conidiophores in submerged cultures (FIGURE 20), whereas no conidiophores are found in 

cultures of WT, ∆ztfA or ztfA comp. This shows that ztfA OE is able to undergo asexual 

development even under development suppressing conditions. 

A. nidulans achieves developmental competence after approximately 18 h of vegetative 

growth (Axelrod et al., 1973; Lee et al., 2016). Experiments were conducted to investigate if 

an overexpression of ztfA is sufficient to induce conidiophore development earlier than 18 h 

post germination. ztfA OE and the WT were grown for 14 h in submerged London medium 



Results 

71 

(LM), which represses the expression of ztfA driven by the nitrate-inducible promoter 

(
P
niaD::ztfA) in the ztfA OE strain. Subsequently, cultures were shifted into liquid MM, which 

contains nitrate as sole N-source and therefore induces expression of 
P
niaD::ztfA in the ztfA 

OE strain. ztfA OE forms conidiophores as early as 9 h post induction, whereas the WT does 

not form conidiophores under described culture conditions. This underlines an activating 

effect of ZtfA towards conidiation. 

 

 

FIGURE 20: ztfA OE induces A. nidulans conidiophore formation in submerged cultures.  

Photomicrographs of strains grown for 18 h in submerged cultures in liquid MM. White 

arrows indicate conidiophores. White bars = 20 µm. 

 

3.4.2 ZtfA functions downstream of the conidiation-pathway activator FluG 

Phenotypes of the ΔztfA and ztfA OE strains suggest that ZtfA is a conidiation activator. FluG 

is a key upstream activator of the conidiation pathway (Lee and Adams, 1994b). A fluG 

deletion cassette was constructed and integrated into the WT and the ∆ztfA strain, as well as 

the ztfA OE strain. The deletion of fluG leads to a drastically reduced conidiation and a fluffy 

phenotype (Lee and Adams, 1994a) (FIGURE 21A). The back of the colony shows a light 

orange color indicating an alteration in secondary metabolite production. The ∆fluG∆ztfA 

double mutant shows an additive phenotype to the ∆fluG single mutant and completely failed 

to produce conidiophores (FIGURE 21A). The orange color of metabolites released by this 

mutant is less bright compared to the single ∆fluG mutant. 

The ∆fluG phenotype is not rescued by an overexpression of ztfA. However, an 

overexpression of fluG does not rescue the ∆ztfA deletion phenotype. This indicates an action 

of the ZtfA protein downstream, or independently of the FluG pathway. 
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FIGURE 21: ZtfA regulates fluG expression.  
A) Phenotypic analyses of ztfA and fluG mutants. 2000 conidiospores of each strain were 

point inoculated and grown for 4 d in light (upper panel) and dark (lower panel) at 37°C. 

PMG = photomicrographs, black bars = 200 µm. B) and C) qRT-PCR shows that fluG gene 

expression during vegetative growth after 24 h is downregulated B) but upregulated during 

late asexual phase (24 h post induction) in the absence of ztfA (***P < 0.005). 1*10
7
 spores 

were inoculated in MM and grown for 24 h vegetatively and harvested B) or transferred to 

plates and incubated for 24 h in light at 37°C to promote asexual development C). Gene 

expression is given relative to WT from three biological replicates. 
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In qRT-PCR analyses, fluG is not found to be upregulated during vegetative growth in ztfA 

OE, as would be expected if ztfA would be an activator of fluG (FIGURE 21B). In the absence 

of ztfA, however, a slight downregulation of fluG of about two fold is found. In contrast, fluG 

is upregulated fivefold in the absence of ztfA during asexual growth after 24 h in comparison 

to WT (FIGURE 21C). The differential expression in ΔztfA is completely restored in ztfA comp. 

This indicates that ZtfA has different influences on fluG transcription during vegetative 

growth and during late asexual development. 

 

3.4.3 ZtfA regulates upstream activators of conidiation 

Several upstream developmental activators (UDAs) are involved in the activation of brlA 

gene expression, downstream of FluG. These UDAs are the flb (fluffy low brlA expression) 

genes, which gene products activate brlA expression in two cascades: 

FlbB/FlbEFlbDBrlA and FlbCBrlA (see CHAPTER 1.5) (Seo et al., 2003). Expression 

of the flb genes was analyzed in vegetative and asexual growth to investigate whether ZtfA 

regulates the UDA pathway. qRT-PCR analyses show that several flbs are differentially 

regulated in the absence of ztfA or in a ztfA OE background during vegetative growth 

(FIGURE 22). flbB and flbE, which encode co-activators of brlA via FlbD, were not found to be 

significantly differentially regulated in the ztfA mutants compared to WT during late 

vegetative growth. Strikingly, flbD is found to be downregulated about 11 times compared to 

WT in the absence of ztfA (FIGURE 22). flbC is downregulated about 2.5 fold in ∆ztfA 

compared to WT but upregulated in ztfA OE. This suggests an activating role of ZtfA towards 

the UDA cascade during vegetative growth and especially towards flbC and flbD gene 

expression. 

During asexual growth flbB, flbC and flbD are upregulated about three fold in the absence of 

ztfA (FIGURE 22). These findings indicate that ZtfA coordinates expression of genes of the 

conidiation pathway differentially at different developmental stages. In vegetative growth, 

ZtfA activates the UDA pathway, which members then bind to the brlA promoter (Garzia et 

al., 2010; Kwon et al., 2010a). ZtfA represses expression of the UDA genes during late 

asexual growth after 24 h post induction, when conidiophores are present and conidiospores 

mature. 

The fifth flb gene is flbA and codes for a RGS domain protein, which antagonizes the action 

of a G-protein mediated pathway through FadA. This pathway represses conidiation and 

sterigmatocystin biosynthesis (see CHAPTER 1.5.2) (Hicks et al., 1997). flbA gene expression 

was monitored during vegetative and during asexual growth as well. Expression levels of flbA 
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were not altered during vegetative growth in ztfA mutant strains in comparison to WT 

(FIGURE 22). However, ZtfA has a repressing effect on flbA expression during asexual growth 

since flbA is upregulated in the absence of ztfA (FIGURE 22). As flbA expression was not 

affected during asexual growth in ztfA OE, this regulation might be indirect.  

 

 

FIGURE 22: ZtfA regulates flb genes in a time dependent manner.  
Expression of the flb genes in WT and the ztfA mutants determined by qRT-PCR. Gene 

expression of flbC and flbD is downregulated in ΔztfA compared to WT during vegetative 

growth (left hand side). flbC expression is upregulated under same growth conditions in 

ztfA OE. Gene expression of flbA, flbB, flbC and flbD is upregulated in ΔztfA during asexual 

development after 24 h (right hand side). 1*10
7
 spores were grown in submerged cultures for 

24 h and mycelia were harvested (vegetative) or transferred onto solid agar plates and grown 

for 24 h in light (asexual). Gene expression relative to WT is given from three (asexual) and 

four (vegetative) biological replicates with three technical replicates (***P<0.005).  

 

Single and double knock out strains were created to investigate genetic relations between ztfA 

and the flb genes. All single deletions of the flb genes show fluffy phenotypes (Wieser et al., 

1994) (FIGURE 23). ΔflbC shows a phenotype very similar to ΔztfA. Double deletions of ztfA 

and each of the flb genes show distinct phenotypes with additional phenotypical effects. 
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Conidiophore development in the double deletions is completely absent in all mutant 

combinations (FIGURE 23). Notably, ΔflbCΔztfA resembles the ΔflbB and ΔflbE phenotype as 

well as all ΔflbΔztfA double mutant phenotypes. In contrast to the single ΔztfA mutant, all 

double deletion strains produce increased numbers of aerial hyphae, which leads to a fluffy 

phenotype. ZtfA is a positive regulator of flbC and flbD gene expression (FIGURE 22). The 

fact that ΔflbBΔztfA and ΔflbEΔztfA show a similar phenotype to ΔflbDΔztfA supports this, 

since FlbB and FlbE function upstream of FlbD. Furthermore, this is supported by the 

observation that ΔflbCΔztfA resembles the other ΔflbΔztfA phenotypes. Taken together, this 

indicates that ZtfA functions upstream of both, FlbC and FlbD. This shows that ZtfA activates 

both cascades of the Flb pathway through FlbD and FlbC. These findings suggest a necessity 

for both, ZtfA and the Flb factors for conidiation. 

 

 

FIGURE 23: ztfA and the flb genes are necessary for conidiation of A. nidulans. 

Loss of ztfA has additional effects in Δflb mutants. 2000 conidiospores per strain were point 

inoculated on solid MM and grown for 3 d in light (upper panel) or dark (lower panel) at 

37°C. PMG = photomicrograph, black bars = 200 µm. 

 

flb genes were knocked out in ztfA OE background to test whether ztfA OE is sufficient to 

rescue the flb phenotypes. ztfA OE is not sufficient to complement flb knock out phenotypes 

in any case (FIGURE 24). This clearly shows that ZtfA does not act downstream of the Flb 

factors. Taken together, these epistasis analyses show a necessity of both, ztfA and the flb 
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genes for asexual development in an interdependent manner. These findings indicate that ZtfA 

functions upstream of the UDA pathway and is important for conidiation, specifically through 

activation of flbC and flbD gene expression. 

 

 

FIGURE 24: ztfA OE is not sufficient to rescue fungal ∆flb phenotypes.  

2000 conidiospores per strain were point inoculated on solid MM and grown for 3 d in light 

and dark at 37°C. PMB = photomicrograph, black bars = 200 µm. 

 

3.4.4 ZtfA is an activator of brlA gene expression 

BrlA is the major regulator of conidiophore development (Adams et al., 1988). Since ztfA OE 

forms conidiophores under development repressing conditions and ZtfA together with the Flb 

factors are necessary for conidiation, the question arises, whether ZtfA activates brlA 

expression. brlA gene expression in WT and ztfA mutant strains was analyzed by qRT-PCR. 

The WT only expresses basal levels of brlA when grown in liquid cultures. In contrast, 

transcript levels of brlA are highly upregulated in ztfA OE (FIGURE 25A).  

brlA is also upregulated during vegetative growth in the absence of vosA (Lee et al., 2016; Ni 

and Yu, 2007) (FIGURE 25A). This opens the question whether ZtfA activates brlA 

expression. Expression of brlA in a ΔvosA mutant in ztfA OE background was tested to 

investigate this possibility. brlA gene expression is already upregulated about 40 times in 

ztfA OE compared to WT under submerged culture conditions. The ΔvosA ztfA OE mutant 

shows a more than 10 times higher upregulation of brlA compared to the ztfA OE single 

mutant and over 400 times more compared to WT (FIGURE 25A). This additional upregulation 

indicates that ztfA OE is sufficient to activate brlA expression in the absence of vosA. 

Phenotypical analyses were conducted to confirm an epistasis of ztfA towards brlA. The ∆brlA 

mutant strain shows a phenotype with drastically diminished conidia and increased numbers 

of aerial hyphae, leading to a fluffy phenotype when grown in light (FIGURE 25B). It 
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resembles the ∆ztfA strain when grown in the dark, where no aerial hyphae are formed 

(FIGURE 25B). 

 

 

FIGURE 25: ZtfA activates brlA gene expression.  
A) qRT-PCR shows that ztfA OE induces brlA gene expression in vegetatively grown 

cultures. This is intensified in the absence of vosA. Note that the axis of ordinates is 

interrupted to allow a better visibility of the expression values below 50 relative to WT. This 

was repeated with three biological and three technical replicates. B) ztfA is epistatic towards 

brlA. Strains were point inoculated on solid MM and grown for 3 d in light or dark at 37°C. 

PMG = photomicrograph, black bars = 200 µm.  

 

The ∆brlA∆ztfA double mutant shows the ∆ztfA single mutant phenotype in both light and 

dark. This underlines an action of ZtfA upstream of BrlA in developmental programs. A 

∆brlA ztfA OE mutant shows a fluffy phenotype due to increased amounts of aerial hyphae. 

This shows that ZtfA alone is not able to induce conidiation but ZtfA-mediated conidiation 

induction relies on brlA. AbaA is a direct downstream factor of BrlA (Andrianopoulos and 

Timberlake, 1994). Hence, the genetic relations of abaA and ztfA were analyzed as well. A 

loss of abaA leads to the formation of brownish conidiophores, which are impaired in correct 

conidiospore separation and distinctly decreased in number (Sewall et al., 1990b) (FIGURE 
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26). The ∆ztfA∆abaA mutant shows the ∆ztfA single mutant phenotype but lost the greenish 

colony center when grown in light (FIGURE 26). The double mutant is indistinguishable from 

the ΔztfA single mutant, but distinctly different to the ΔabaA single mutant when grown in the 

dark. This confirms an action of ZtfA upstream of BrlA and AbaA. 

 

 

FIGURE 26: ztfA is epistatic towards abaA.  

ztfA and abaA mutants, grown in light (left hand side) or dark (right hand side), are shown. 

2000 conidiospores per strain were point inoculated on solid MM and grown for 4 d in light or 

dark at 37°C.  

 

3.4.5 ZtfA regulates conidiation independently of developmental repressors 

Activation of the conidiation pathway is hindered by the repressors NsdD and VosA during 

vegetative growth, which are released from the brlA promoter when the fungus becomes 

developmentally competent (Lee et al., 2014; Ni and Yu, 2007). SfgA represses conidiation 

through negative regulation of the Flb factors (Seo et al., 2003, 2006). Expression of sfgA, 

nsdD and vosA genes during vegetative growth and late asexual development was analyzed 

via qRT-PCR to exclude the possibility that ZtfA influences the conidiation pathway via 

downregulation of these repressors. None of the three genes is differentially regulated neither 

during vegetative nor during asexual growth in ztfA mutants (FIGURE 27). This clearly shows 

that ztfA does not negatively regulate gene expression of the conidiation repressors and it 

supports the hypothesis that ZtfA is a direct activator of brlA expression. 
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FIGURE 27: Gene expression of various regulatory genes of fungal development is 

independent of cellular ZtfA protein levels.  
qRT-PCR shows that gene expression of repressors of asexual development is not 

significantly altered in absence or overexpression of ztfA. 1*10
7
 spores were grown in 

submerged cultures for 24 h and mycelia were harvested (left hand side) or transferred onto 

solid agar plates and grown for 24 h in light (right hand side). This was repeated with three 

biological and three technical replicates. 

 

 

3.5 ZtfA supports expression of several secondary metabolite genes  

3.5.1 ZtfA regulates gene expression of aflR and sterigmatocystin biosynthesis 

Secondary metabolite (SM) production is tightly interconnected with developmental programs 

in filamentous fungi (Brakhage, 2013). The velvet regulatory networks play key roles in this 

interconnection (Bayram et al., 2008a). It was examined whether ZtfA, as a downstream 

factor of VosA, is involved in the regulation of secondary metabolism. Sterigmatocystin 

production was compared in different ztfA mutant strains. Cells were grown for three days 

under asexual or sexual conditions. Sterigmatocystin samples were extracted and analyzed 

using thin layer chromatography (TLC). Sterigmatocystin production is increased during 

asexual as well as sexual development in both, the ΔztfA strain as well as in the ztfA OE strain 

(FIGURE 28A). AflR is the major sterigmatocystin regulator in Aspergilli (Yu et al., 1996a). It 

was examined whether the deletion or overexpression of ztfA is sufficient to restore 

sterigmatocystin production in ∆aflR. aflR was knocked out in ∆ztfA or ztfA OE background 

(FIGURE 28B). Neither a loss nor an overexpression of ztfA restored ST production in the 

absence of aflR (FIGURE 28B).  
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qRT-PCR analyses were carried out to examine whether this increase in sterigmatocystin 

production can be retraced to changes in gene expression of aflR and stcU in asexually grown 

cultures. stcU encodes a ketoreductase and transcript levels are commonly used as indicator 

for sterigmatocystin cluster activation (Hicks et al., 1997; Kato et al., 2003). In accordance 

with the TLC results, aflR expression is upregulated about three fold in ztfA OE and about 

eight fold in ΔztfA (FIGURE 28C). Confirmatively, stcU is highly upregulated in both ztfA OE 

and ΔztfA (FIGURE 28C).  

 

 

FIGURE 28: ZtfA is involved in the regulation of sterigmatocystin production and aflR 

and stcU gene expression.  
A) Absence and overexpression of ztfA lead to increased sterigmatocystin production. B) ztfA 

OE is not sufficient to induce ST production in ∆aflR. A) and B) ST was isolated from strains 

grown for 3 d in light or dark. Thin layer chromatography was performed and TLC plates 

were sprayed with aluminum chloride to allow ST analysis. C) qRT-PCR shows that loss and 

overexpression of ztfA result in increased transcription of aflR and stcU during asexual growth 

(***P < 0.005, **P < 0.01).  

 

The relation between aflR and ztfA on developmental levels was analyzed. ∆aflR, ∆ztfA and 

the double mutants, together with the ztfA OE and aflR OE mutants, were point inoculated on 

solid MM and grown for three days under asexual or sexual conditions (FIGURE 29). The 

∆aflR single mutant resembles in its colony morphology the WT (Wilkinson et al., 2004) 

(FIGURE 29). The ∆aflR∆ztfA double mutant exhibits the ∆ztfA phenotype, indicating an 

epistasis of ztfA towards aflR in developmental programs. Consistently, the phenotype of a 

strain, which lacks the aflR gene, but overexpresses ztfA shows the ztfA OE phenotype. The 

aflR OE mutant shows a phenotype with decreased conidiation and dispensing of a red 
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pigment into the surrounding medium (FIGURE 29). The ∆ztfA in aflR OE background shows 

further diminished conidiophores (FIGURE 29). This confirms an epistasis of ztfA towards aflR 

in developmental programs. 

 

 

FIGURE 29: ztfA is epistatic towards aflR.  
Point inoculated colonies of ztfA and aflR mutants grown in light (upper part) or dark (lower 

part) are shown. ztfA mutant phenotypes predominate the ΔaflR phenotype grown in light 

(asexual development) and dark (sexual development). 2000 spores per strain were point 

inoculated on solid MM and grown for 3 d in light at 37°C.  

 

3.5.2 ZtfA is a positive regulator of austinol cluster genes and is required for austinol 

and dehydroaustinol biosynthesis 

High-performance liquid chromatography (HPLC) was employed to analyze production of 

further secondary metabolites in ztfA mutants. Secondary metabolites were extracted with 

ethyl acetate from cultures grown for three and seven days in light or dark. Austinol and 

dehydroaustinol were identified according to their masses and UV/VIS absorption maxima 

(Szewczyk et al., 2008) in SM samples extracted from asexually grown WT and ztfA OE 

cultures after both, three and seven days of asexual growth (light) (FIGURE 30A), but not 

during sexual growth (dark) (FIGURE 30B). Both compounds were absent in HPLC 

measurements from SM samples extracted from ΔztfA cultures (FIGURE 30A and B). The 

production of austinol and dehydroaustinol during asexual growth is restored by 

reintroduction of the ztfA gene (ztfA comp) into the knock out mutant (FIGURE 30A).  

Transcriptional analyses were conducted to investigate whether the HPLC measurements 

correlate to transcriptional changes of genes of the austinol cluster in the ztfA mutants. 

Expression of three genes, which products are involved in the austinol and dehydroaustinol 

synthesis pathway, was analyzed in vegetatively grown cultures: ausA, coding for a 

polyketide synthase producing 3,5-dimethyl orsellinic acid, the first intermediate in the 

austinol and dehydroaustinol biosynthesis pathway, as well as ausH, whose gene product is 
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required for production of both secondary metabolites (Lo et al., 2012; Nielsen et al., 2011). 

The third tested gene, ausF, codes for a protein required for austinol and dehydroaustinol 

production at WT levels (Lo et al., 2012). The ausA and ausF transcripts were not expressed 

during vegetative growth, neither in WT nor in the ΔztfA or the ztfA comp strain. ausH gene 

expression could be detected in WT and ztfA comp, but not in ΔztfA. ztfA OE is sufficient to 

induce gene expression of all three genes (FIGURE 31). This shows that ZtfA activates aus 

(austinol cluster) gene expression. 

 

 

FIGURE 30: ztfA is necessary for austinol and dehydroaustinol production.  
Secondary metabolites were extracted from cultures grown for 3 d in light or dark on solid 

MM plates at 37°C. SM profiles shown resemble these after 7 d. A) Austinol (1) and 

dehydroaustinol (2) are not produced in the absence of ztfA, but in WT, ztfA comp and ztfA 

OE during asexual growth (light). B) Austinol and dehydroaustinol are absent in SM samples 

extracted from sexually grown cultures (dark).  

 

Neither austinol nor dehydroaustinol were identified in SM samples extracted from ztfA OE 

grown in liquid submerged cultures for 48 h (FIGURE 32). This indicates that the upregulation 

of austinol cluster genes in the ztfA OE strain is not sufficient to induce austinol and 

dehydroaustinol production during vegetative growth. The ΔztfA strain produces compounds 

during vegetative growth, which were identified as peaks at 21 and 21.5 min retention time 

and thereafter with HPLC (FIGURE 32, in red). These compounds were absent in WT, as well 

as in ztfA comp and ztfA OE strains. These peaks might represent SMs, which are not 

produced in WT under these conditions or SM intermediates, where formation of the final 

product is blocked in the absence of ztfA. This finding underlines the importance of ZtfA for 

secondary metabolite production in A. nidulans. 
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Taken together, ZtfA acts as activator of genes of the austinol and dehydroaustinol cluster and 

is important for regulation of further, yet unidentified, SMs. 

 

 

FIGURE 31: Overexpression of ztfA leads to an upregulation of aus genes during 

vegetative growth.  

Gene expression of selected aus genes measured with qRT-PCR. Note that values with a 

quantification cycle (Cq) > 30 were considered as not expressed and are therefore not shown. 

1*10
7
 spores were grown for 24 h under submerged culture conditions. Data from three 

biological and three technical replicates is shown. 

 

 

FIGURE 32: Further secondary metabolites are produced in the absence of ztfA during 

vegetative growth.  
Strains were grown vegetatively for 48 h and subsequently secondary metabolites were 

extracted with ethyl acetate and analyzed with HPLC. ΔztfA (red) produces several 

unidentified compounds, which are not found in WT (light blue), ztfA comp (dark blue) or 

ztfA OE (black). Examples of these compounds are indicated by arrows. mAbs = milli 

absorbance units. 

 

3.5.3 ZtfA activates expression of emericellamide and orsellinic acid cluster genes 

Gene expression of novel ZtfA controlled secondary metabolite genes was tested in an 

attempt to better understand the regulatory effects of ZtfA upon SM expression in A. nidulans. 
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orsA encodes the polyketide synthase (PKS) of the F9775 secondary metabolite gene cluster 

and is required for biosynthesis of orsellinic acid and its derivatives F9775A, F9775B and 

lecanoric acid (Bok et al., 2009; Gressler et al., 2015; Sanchez et al., 2010; Schroeckh et al., 

2009). orsA is basally expressed in WT and ztfA comp but significantly upregulated in 

ztfA OE during vegetative growth (FIGURE 33). In contrast, orsA is not expressed in the 

absence of ztfA. This shows that ztfA is required for orsA gene expression during vegetative 

growth. 

Gene expression of four representatives of the emericellamide synthesis cluster was analyzed 

as well (easA, easB, easC and easD). easA and easB code for the non-ribosomal peptide 

synthase and the PKS of the emericellamide cluster, respectively (Chiang et al., 2008). easC 

and easD code for an acyltransferase and an acyl-CoA ligase, respectively (Chiang et al., 

2008). easA and easD are expressed in WT and ztfA comp during vegetative growth 

(FIGURE 33). easA, but not easB, easC or easD, is expressed under same conditions in ΔztfA. 

In contrast, easA, easB, easC and easD are highly upregulated in ztfA OE. This shows that 

ZtfA activates the emericellamide gene cluster. 

 

 

FIGURE 33: ZtfA is an activator of eas and orsA gene expression. 

Gene expression of orsA, easA, easB, easC and easD was measured with qRT-PCR in 

vegetatively grown cultures. orsA, easB, easC and easD are not expressed in the absence of 

ztfA. Note that values with a quantification cycle (Cq) > 30 were considered as not expressed 

and are therefore not shown. Data from three biological and three technical replicates is 

shown (***P < 0.005). 
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3.6 ZtfA is involved in the regulation of an appropriate oxidative stress response in 

A. nidulans 

3.6.1 ZtfA reduces the cellular response to hydrogen peroxide induced stress 

The adaptive response to oxidative stress is crucial for developmental programs in fungi, 

since reactive oxygen species (ROS), which are by-products of metabolic functions, can 

damage all kinds of biomolecules. Tests with H2O2 as stressor were executed to analyze a 

possible influence of ZtfA upon cellular response to oxidative stress. The loss of ztfA leads to 

an increased tolerance towards oxidative stress (FIGURE 34). This suggests a repressive role of 

ZtfA in the regulation of the oxidative stress response (OSR) in A. nidulans. 

 

 

FIGURE 34: ZtfA is involved in the oxidative stress response.  
Loss of ztfA leads to an increased tolerance towards H2O2. Spores were plated on solid MM 

and plugs of agar were cut out and filled with 150 µl 1% (v/v) H2O2. Inhibition zones were 

measured after 2 d growth in light at 37°C.  

 

3.6.2 ZtfA regulates redox systems in A. nidulans 

Transcriptional analyses were carried out to investigate regulatory influences of ZtfA upon 

genes, which products are involved in the OSR. The glutathione and the thioredoxin systems 

are core elements of the fungal OSR (Moye-Rowley, 2003). Consequently, expression of 

genes encoding parts of these redox systems was monitored by qRT-PCR during vegetative 

growth in unstressed cultures in comparison with cultures which were treated with 5 mM 

H2O2 for 30 min.  

glrA encoding a glutathione reductase (Bakti et al., 2017; Sato et al., 2009) is upregulated in 

WT, ztfA comp and ztfA OE in response to H2O2. In ∆ztfA, only a very slight induction below 

threshold of two fold is found (FIGURE 35). The thioredoxin system-encoding genes trxA 

(thioredoxin) and trxR (thioredoxin reductase) were tested as well. trxA is induced in WT, ztfA 

comp and ztfA OE about two to four times upon H2O2 treatment compared to unstressed 

situation. In ∆ztfA induction upon treatment with H2O2 is below threshold (FIGURE 35). In 

addition, trxR, which is induced about three fold in WT in the presence of H2O2, is not 



Results 

 

86 

induced in ∆ztfA (FIGURE 35). ztfA OE induces trxR expression above six fold in the presence 

of H2O2. These findings indicate that ZtfA is necessary to induce trxR expression upon 

oxidative stress. 

 

 

FIGURE 35: ZtfA regulates gene expression of the fungal redox systems.  
qRT-PCR analyses show that ZtfA regulates parts of the thioredoxin systems in response to 

H2O2. Submerged cultures were incubated with 1*10
7
 spores per strain and grown for 24 h at 

37°C on a rotary shaker. Subsequently, cultures were supplemented with (grey) or without 

(black) 5 mM hydrogen peroxide and incubated for 30 min at 37°C on a rotary shaker 

(***P < 0.005).  

 

3.6.3 ZtfA activates catA gene expression for catalase A in response to H2O2  

Gene expression of catA and catB was analyzed to test whether ZtfA is involved in the 

regulation of catalase expressing genes as well. The expression of catA, encoding the spore-

specific catalase A, is four fold upregulated in WT and ztfA comp, but the gene is not induced 

in ∆ztfA in presence of H2O2 in comparison to unstressed situation (FIGURE 36).  

Expression of catA in ztfA OE, where the gene was already upregulated about eight fold in 

unstressed situation compared to WT, is induced about six fold in the presence of H2O2 

compared to unstressed growth (about 38 fold compared to WT unstressed growth). catB, 

which codes for the hyphal catalase B, is not significantly upregulated in WT, ztfA comp or 

∆ztfA. In ztfA OE, however, catB expression is four fold induced in the presence of H2O2 in 

contrast to the non-stressed situation. These findings indicate a necessity of ZtfA for 

appropriate activation of the enzymatic OSR. Furthermore, an upregulation of genes of redox 

systems or catalase encoding genes is not sufficient to induce an appropriate OSR. Other 

factors seem to be more important for the fungal OSR, which were not tested. These might be 

other enzymes, such as further catalases or catalase-peroxidases. 
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FIGURE 36: ZtfA regulates expression of catA and catB in response to oxidative stress.  
qRT-PCR indicates that ZtfA is necessary for the upregulation of catA gene expression and 

sufficient to induce catB expression in the presence of H2O2. Submerged cultures were 

incubated with 1*10
7
 spores per strain and grown for 24 h at 37°C on a rotary shaker. 

Subsequently, cultures were supplemented with (grey) or without (black) 5 mM hydrogen 

peroxide and incubated for 30 min at 37°C on a rotary shaker (***P < 0.005). 

 

3.6.4 ZtfA regulates gene expression for transcription factors during oxidative stress  

RsmA (remediator of secondary metabolism A) is a transcription factor, which is involved in 

the regulation of both, secondary metabolism and OSR (Emri et al., 2015; Yin et al., 2013). 

rsmA gene expression is induced in WT when H2O2 stress is applied (FIGURE 37). In ztfA OE 

rsmA expression is strongly upregulated in the presence of H2O2. In ∆ztfA, rsmA expression is 

not induced during H2O2 stress. This shows that ZtfA is involved in upregulation of rsmA 

gene expression during oxidative stress. ztfA itself is upregulated in WT, ztfA comp and in ztfA 

OE upon addition of H2O2 in comparison to an unstressed situation (FIGURE 37).  

This activation of ztfA gene expression by oxidative stress underlines its involvement in the 

oxidative stress response regulation. In contrast to these findings, the most prominent 

oxidative stress regulator in A. nidulans, encoded by napA (A. nidulans AP-1 homolog A), 

was not found to be upregulated under conditions applied in this study (FIGURE 37). 

Taken together, ZtfA is involved in the regulation of the oxidative stress response via 

expression regulation of redox, catalase and transcription factor encoding genes. However, 

expression of the genes tested in this study is not sufficient to induce an appropriate OSR as 

they were not upregulated in the absence of ztfA and still, the strain is more tolerant towards 

H2O2. This shows that additional ZtfA controlled OSR genes are important for the cellular 

response to oxidative stress, which have not been identified as ZtfA targets yet. The increased 

tolerance of the ΔztfA strain suggests that these are repression targets of ZtfA. 
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FIGURE 37: ZtfA regulates other transcription factor-encoding genes in response to 

oxidative stress.  
rsmA upregulation in response to H2O2 is ZtfA-dependent. napA is not regulated by ZtfA 

under these conditions. ztfA expression is upregulated in response to H2O2. Submerged 

cultures were incubated with 1*10
7
 spores per strain and grown for 24 h at 37°C on a rotary 

shaker. Subsequently, cultures were supplemented with (grey) or without (black) 5 mM 

hydrogen peroxide and incubated for 30 min at 37°C on a rotary shaker (*P < 0.05, 

***P < 0.005). 

 

 

3.7 ZtfA forms protein-complexes in nuclei 

3.7.1 ZtfA is localized in the nucleus 

Transcription factors need to be localized in the nucleus in order to execute DNA-binding and 

regulation of gene expression. In accordance with the assumption that ZtfA is a nuclear 

protein, CELLO (Yu et al., 2004) and WoLF PSORT (Horton et al., 2007) predict ZtfA to be 

localized exclusively in the nucleus with almost 100% probability. ZtfA was fused to sGFP to 

examine subcellular localization in vivo. An N- and C-terminally tagged version (sGFP-ZtfA 

and ZtfA-sGFP) was constructed and expressed in the ΔztfA strain to analyze, whether both 

versions are functional. Both fusions were expressed under control of the native ztfA promoter 

and complemented the loss of ztfA (FIGURE 38A). Whereas ZtfA-sGFP produces slightly less 

conidiospores compared to WT, sGFP-ZtfA produces slightly more spores (FIGURE 38B). 

Expression of both sgfp-tagged versions of ztfA is slightly upregulated during vegetative 

growth in both GFP strains (FIGURE 38C). Taken together, both GFP-tagged versions of ZtfA 

are functional and mostly complement the loss of ztfA. 

The predicted molecular masses of the fusion proteins are 87.46 kDa in both cases. Western 

hybridization experiments show slightly higher molecular masses (FIGURE 39A). This 

indicates possible post-translational modifications of ZtfA. Fluorescence microscopy reveals a 
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subcellular localization of both versions of the ZtfA fusion protein in nuclei of hyphae during 

all growth conditions tested (vegetatively, asexually and sexually grown) as well as in 

conidiospores (FIGURE 39B) and germlings (FIGURE 39C).  

 

 

FIGURE 38: GFP-fusions of ZtfA are functional.  
A) Strains expressing an N- or C-terminally tagged version of ZtfA (sgfp::ztfA and ztfA::sgfp) 

in the ΔztfA background are shown. Expression of both GFP-tagged versions of ZtfA 

complements the ΔztfA phenotype. Strains were point inoculated on solid MM and grown for 

6 d in light. B) Strains were point inoculated for 6 d in light. Spores were counted from agar 

plugs with a diameter of 5 mm
2
. Four plugs were cut out per plate and the average was 

calculated. Error bars indicate standard deviation from three biological repetitions. C) qRT-

PCR shows that ztfA is slightly overexpressed in GFP fusions compared to WT. RNA was 

extracted from strains grown in submerged cultures for 24 h (*P < 0.05, **P < 0.01, ***P < 

0.005).  
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FIGURE 39: GFP-fusions of ZtfA are localized in the nucleus of hyphae, conidiospores 

and germlings.  
A) Western hybridization shows expression of ZtfA-sGFP and sGFP-ZtfA under native 

promoter. Ponceau stained membrane (Pnc) is shown as loading control. The black arrow 

indicates the protein band representing the full-length fusion protein. B) and C) Fluorescence 

microscopic photos of ZtfA-sGFP (green) in ΔztfA background. RFP-H2A was introduced 

into this strain to allow identification of nuclei (red). White arrows show co-localization of 

GFP and RFP signals. Strains were grown for 24 h in submerged culture (upper panel) or for 

36 h on solid MM to induce asexual differentiation (lower panel and C).  

 

3.7.2 ZtfA is phosphorylated at S327, T464 and S506, respectively 

Western hybridization show higher molecular masses for the ZtfA GFP-fusion proteins and 

therefore indicates post-translational modifications (FIGURE 39). To investigate this 

possibility, the phosphorylation status of ZtfA was monitored. The in silico prediction of 

phosphorylation sites in the ZtfA amino acid sequence with NetPhos 3.1 (Blom et al., 1999) 

predicted 24 serine, ten threonine and four tyrosine residues to be phosphorylated (score value 

between 0 and 1, cutoff >0.7) (FIGURE 40A). LC-MS/MS analyses were conducted to 

investigate these putative phosphorylation sites in more detail. The peptide coverage of the 

whole ZtfA protein in LC-MS/MS analyses was around 40%.  
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FIGURE 40: Phosphorylation of ZtfA has regulatory effects.  
A) Putative phosphorylation sites in the ZtfA amino acid sequence, determined with NetPhos 

3.1 (Blom et al., 1999). The cutoff was set to 0.7 (score values from 0 to 1). Arrows indicate 

phosphorylation sites, which were mutated in a strain that expresses a permanently 

dephosphorylated ZtfA (ztfA
S327A,T464A,S504-506A

). A model of the ZtfA protein is shown (dark 

blue). Mutated amino acid (aa) residues and their position within the amino acid sequence are 

indicated. S = serine, T = threonine, NLS = nuclear localization sequence, NES = nuclear 

export signal, Zn = zinc cluster. B) Colony morphology of the ztfA
S327A,T464A,S504-506A

 strain in 

comparison to WT, ΔztfA and ztfA OE strains. Permanently dephosphorylated version of ZtfA 

(ztfA
S327A,T464A,S504-506A

) shows a lacerated phenotype when point inoculated and grown in 

light (left side) and might produce more conidiophores in the dark (right side). Strains were 

point inoculated and grown for 3 d in light and dark at 37°C.  
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Three phosphorylation sites for ZtfA were found in vegetatively grown cultures: a serine 

residue at position 327 (S327), a threonine residue at position 464 (T464) and a serine residue 

at position 506 (S506). At the latter position the protein exhibits a short stretch of three 

serines, spanning from position 504 to 506. All of these identified positions (S327, T464 and 

S506) were predicted by NetPhos 3.1 (FIGURE 40A). A mutant strain was constructed, in 

which all three serines at position 504 to 506, the serine at position 327 and the threonine at 

position 464 were replaced by alanine to mimic permanent dephosphorylation 

(ztfA
S327A,T464A,S504-506A

). The respective genetic construct was integrated in ΔztfA background 

and rescues conidiophore formation (FIGURE 40B). The ztfA
S327A,T464A,S504-506A

 strain shows 

lacerated colony morphology comparable to the ztfA OE phenotype when point inoculated and 

grown in light. These findings suggest that the ztfA OE strain might produce more 

insufficiently phosphorylated ZtfA protein and that correct ZtfA phosphorylation is important 

for WT colony morphology. 

 

3.7.3 ZtfA pulls down several proteins in GFP-trap experiments 

LC-MS/MS showed phosphorylated amino acid residues in ZtfA. GFP-trap pull-downs, 

followed by LC-MS/MS analyses, were executed with both versions of GFP-fusion proteins 

of ZtfA (sGFP-ZtfA and ZtfA-sGFP) to analyze, if ZtfA interacts with phosphatases or 

kinases and other proteins. Several proteins were identified in these experiments (FIGURE 41). 

GFP-trap pull-downs were conducted with cultures grown vegetatively, asexually and 

sexually.  

 

 

FIGURE 41: ZtfA pulls down proteins as putative interactions partners.  
GFP-trap pull-downs with ZtfA followed by LC-MS/MS revealed several proteins, which 

might be putative interactions partners. Protein compositions differ in vegetative (blue), 

asexual (green) and sexual (red) growth. Numbers represent proteins identified in at least two 

biological repetitions with unique peptides ≥ 3 and MS/MS counts ≥ 3 and which were absent 

in the negative control. 



Results 

93 

Proteins with three or more unique peptides (Zhao and Lin, 2010) and three or more MS/MS 

counts identified in at least two out of three biological repetitions were considered for further 

analyses. Proteins for which also unique peptides or MS/MS counts were found in the 

negative control (
P
gpdA::gfp) were excluded from further analyses. In vegetative cultures 

GFP-tagged ZtfA pulled 77 and in asexually grown cultures 36 proteins, respectively 

(FIGURE 41). 40 proteins were identified from sexually grown cultures. Out of these, seven 

proteins were identified in both, vegetative and asexual samples and seven proteins were 

identified in both, vegetative and sexual samples. Three proteins were identified in samples 

from asexually and sexually grown strains and three (including ZtfA bait) were identified in 

samples of all three growth states. Identified candidates were scanned for kinases, 

phosphatases, potential transcription factors, DNA binding proteins, nuclear transporters and 

proteins involved in chromatin remodeling. These criteria were chosen to investigate, whether 

the group of identified proteins comprises candidates, which possibly might support ZtfA in 

its regulatory roles. Identified proteins with these functions, are given in TABLE 7. Proteins 

with these roles, which were identified in two or more biological replicates below threshold, 

are given in TABLE 8. A comprehensive list of all proteins identified with the above 

mentioned threshold (three or more unique peptides and three or more MS/MS counts) is 

given in TABLE 9. 

TABLE 7: Selection of proteins identified in GFP pull-downs with ZtfA, followed by LC-

MS/MS.  
For pull-downs ZtfA-sGFP and sGFP-ZtfA were used as bait. Descriptions from AspGD 

(Cerqueira et al., 2014) are given. Sys. name = systematic name, Std. name = standard name, 

Ident. in = identified in (refers to the growth state of the sample): v = vegetative, a = asexual, 

s = sexual. Unchar. = uncharacterized protein. * = RcoA was identified in two biological 

replicates in asexual growth, but below threshold in one of these two biological replicates. 

    

Sys. name Std.name Description Ident. in 

  

Nuclear transport  

AN6734 KapF Essential karyopherin (importin) v 

AN2120 KapJ Karyopherin (importin)  v, a 

AN0906 KapB Essential karyopherin (importin) a, s 

AN5717 KapI Non-essential karyopherin family protein; required for normal 

hyphal growth and conidial development 

a, s 

    

Chromatin remodeling    

AN6705 unchar. Ortholog of S. pombe Ssr2 (subunit of chromatin remodeling 

complex) 

v 

AN5102 unchar. Putative ortholog of S. pombe Spt16 (FACT complex subunit) s 

AN6687 unchar. Putative ortholog of S. pombe Pob3 (FACT complex subunit) s 
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Transcription factors    

AN2012 RfeF Putative transcription factor v 

AN6505 RcoA Tup1 homolog of S. cerevisiae repressor domain, WD40 repeat 

protein; required for sexual development and for sterigmatocystin 

production, RcoA-SsnF repressor complex member 

v, s, (a)* 

    

Kinases   

AN2943 RfeA Putative regulatory role in secondary metabolism, protein kinase 

domain 

a 

 

TABLE 8: Proteins identified in at least two out of three biological repetitions, but below 

threshold in GFP pull-downs with ZtfA.  
For pull-downs both ZtfA-sGFP and sGFP-ZtfA were used as bait. Descriptions from AspGD 

(Cerqueira et al., 2014) are given. Sys. name = systematic name, Std. name = standard name, 

Ident. in = identified in (refers to the growth state of the sample): v = vegetative, a = asexual, 

s = sexual. Unchar. = uncharacterized protein. All putative interactions partners given here 

were identified in two or more biological replicates, but identification was below threshold. 

    

Sys. name Std. name Description Ident. in  

    

RNA maturation and processing    

AN0327 unchar. Putative RuvB-like helicase 2 a, s 

AN1971 unchar. Putative RuvB-like helicase 1 v, s 

AN10944 unchar. Putative ortholog Cdc5 (S. pombe) is involved in mRNA splicing s 

    

DNA-binding    

AN0242 unchar. Putative transcription factor (putative ortholog of S. pombe Snd1)  s 

AN0809 unchar. DNA binding activity s 

    

Signaling    

AN3719 MpkB MAP kinase, involved in regulation of secondary metabolism and 

developmental programs 

v 

 

The majority of the identified proteins (85 out of 129) pulled down with ZtfA are 

uncharacterized proteins. Two protein kinases were identified: the mitogen-activated protein 

(MAP) kinase MpkB and the uncharacterized RfeA protein. MpkB might be important for 

phosphorylation of ZtfA. RfeA is uncharacterized in A. nidulans but in silico analyses indicate 

that it is a protein kinase with a predicted role in secondary metabolism. Interactions with 

kinases are of short duration what explains the relatively low MS/MS counts and unique 

peptides identified for MpkB. 

Four karyopherins (importins) were identified in total. This indicates a strong nuclear import 

for ZtfA. The putative, so far uncharacterized, transcription factor RfeF was identified solely 

in vegetative samples. Notably, the transcription repressor RcoA was found in samples of all 

three developmental stages, even though in asexual samples, RcoA was found slightly below 
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the above mentioned threshold (it was identified above threshold in one, but below threshold 

in a second biological replicate). RcoA is involved in asexual development and secondary 

metabolism in A. nidulans (Hicks et al., 2001). This finding indicates that RcoA and ZtfA 

might form complexes during all parts of the A. nidulans life cycle. 

 

TABLE 9: Comprehensive list of proteins identified in GFP-trap pull-downs with sGFP-

tagged ZtfA (sGFP-ZtfA and ZtfA-sGFP) as bait.  

Proteins were identified in at least two out of three biological replicates with a threshold of 

3 ≥ MS/MS counts and 3 ≥ unique peptides, according to functional groups. Descriptions 

from AspGD (Cerqueira et al., 2014) are given. Proteins identified solely in vegetative 

samples are highlighted in blue, proteins identified solely in developmental samples are given 

in green, proteins identified in vegetative and developmental samples are given in orange. 

Sys. Name = systematic name, std. name = standard name, ident. in = identified in, v = 

vegetative, a = asexual, s = sexual, 
1
 = ZtfA was used as bait, * = RcoA was identified in two 

biological replicates in asexual growth, but below threshold in one of these two biological 

replicates. 

    

Sys. name Std.name Description  Ident. in  

    

Bait    

AN0585 ZtfA
1
 Activator of asexual development and secondary metabolism v, a, s 

    

Nuclear transport   

AN6734 KapF Essential karyopherin (importin) v 

AN2120 KapJ Karyopherin (importin)  v, a 

AN5717 KapI Non-essential karyopherin family protein; required for normal 

hyphal growth and conidial development 

a, s 

AN0906 KapB Essential karyopherin (importin) a, s 

    

Transcription/chromatin   

AN2012 RfeF Putative transcription factor v 

AN6505 RcoA Tup1 homolog of S. cerevisiae repressor domain, WD40 repeat 

protein; required for sexual development and for sterigmatocystin 

production, RcoA-SsnF repressor complex member 

v, s, (a)* 

AN6705 unchar. Ortholog of S. pombe Ssr2 (subunit of chromatin remodeling 

complex) 

v 

AN5102 unchar. Putative ortholog of S. pombe Spt16 (FACT complex subunit) s 

AN6687 unchar. Putative ortholog of S. pombe Pob3 (FACT complex subunit) s 

    

RNA processing   

AN10557 unchar. Putative ATP-dependent RNA helicase, putative A. fumigatus 

ortholog Ded1 

v 

AN5931 unchar. Putative ATP-dependent RNA helicase, putative  S. cerevisiae 

ortholog of Dbp2 

v 

AN7659 unchar. Putative ortholog of S. pombe Dbp5 (RNA helicase) v 

AN0646 unchar. Putative ortholog of S. pombe Upf1 (ATP-dependent RNA 

helicase) 

s 

AN6004 unchar. Protein with an RNA recognition motif, putative ortholog of 

S. pombe Vip1 

v 
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AN10257 unchar. Putative ortholog of C. albicans Pbp2 (putative RNA binding 

protein) 

v 

AN2068 unchar. Putative ortholog of S. pombe Vgl1 (RNA binding protein) v, a  

AN1408 unchar. Putative U5 snRNP-specific protein, putative ortholog of 

S. pombe Cwf1 

s 

AN0111 unchar. Putative ortholog of S. pombe and S. cerevisiae Syf1 (pre-mRNA 

splicing factor) 

s 

AN0289 unchar. Putative ortholog of S. pombe Cwf22 (pre-mRNA splicing factor) s 

AN1208 unchar. Putative ortholog of S. pombe Prp5 (pre-mRNA splicing factor) s 

AN4523 Prp8 Putative mRNA-splicing protein s 

AN0310 unchar. Putative ortholog of S. pombe Pwp1 (RNA processing protein) s 

AN6906 unchar. Putative ortholog of S. pombe Prp19 (pre-mRNA processing 

factor) 

s 

AN11052 unchar. Putative ortholog of S. pombe Exo2 (exonuclease) v 

    

Translation    

AN3413 unchar. Putative ribosomal protein S2 and S5, putative ortholog of 

S. cerevisiae Rps2 

a  

AN0074 unchar. Putative ortholog of S. cerevisiae Ebp2 (required for 25S rRNA 

maturation and 60S ribosomal subunit assembly) 

s 

AN0247 unchar. Putative ortholog of S. pombe Nat10 (ribosome biogenesis 

ATPase) 

s 

AN10740 unchar. Ortholog of Afu2g07970 (60S ribosomal protein L19), putative 

ortholog of S. pombe Rpl1902 

s 

AN1095 unchar. Putative ortholog of S. pombe Mrpl10 (predicted ribosomal 

protein subunit L15) 

s 

AN3167 Nop58 Putative ribosome biogenesis protein s 

AN6902 unchar. Putative ribosomal protein, putative ortholog of S. cerevisiae 

Mrt4 

s 

AN10182 unchar. Putative translation initiation factor 3, subunit f (eIF-3f) v 

AN4038 unchar. Putative translation initiation factor eIF5B v 

AN7540 unchar. Putative ortholog of S. pombe Moe1 (translation initiation factor 

eIF3d) 

v 

AN6060 unchar. Ortholog of A. fumigatus eukaryotic translation initiation factor 

subunit eIF-4F 

v 

AN7350 unchar. Ortholog of A. fumigatus translation initiation factor 4B v 

AN1158 unchar. Putative ortholog of S. cerevisiae Ssd1 (translational repressor) v, s 

AN10475 unchar. Putative ortholog of S. pombe Wrs1 (tryptophan-tRNA ligase) v 

AN4086 unchar. Putative ortholog of S. pombe Frs1 (phenylalanine-tRNA ligase) v 

AN8867 unchar. Putative ortholog of S. pombe Srs1 (serine-tRNA ligase) v 

AN1913 unchar. Putative lysyl-tRNA synthetase, putative ortholog of S. pombe 

Krs1 

a  

AN8224 unchar. Putative ortholog of S. pombe cytoplasmic glutamate-tRNA ligase 

Gus1 (predicted)  

a  

AN3702 unchar. Putative ortholog of S. pombe Lrs1 (leucine-tRNA ligase) s 

AN0705 unchar. Putative ortholog of S. pombe Irs1 (isoleucine-tRNA ligase) v, s 

AN10474 unchar. Has domain(s) with predicted tRNA binding activity, putative 

ortholog of S. cerevisiae Arc1 

v, s 

    

Protein folding/chaperons  

AN0858 Hsp104 Putative chaperone v 

AN5713 Cct7/CctA Putative chaperonin complex component, TCP-1 eta subunit; 

ortholog of S. cerevisiae Cct7p 

a  

AN2149 Cct1 Putative chaperonin complex component, TCP-1 alpha subunit; 

ortholog of S. cerevisiae Tcp1p 

s 
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AN10351 unchar. Putative ortholog of S. pombe Aap1 (aspartyl 

metalloaminopeptidase, chaperone-mediated protein folding) 

v 

AN3592 ClxA Putative calnexin with a predicted role in protein folding and 

protein quality control on the ER membrane 

v 

AN4583 Cyp7/Cpr6 Putative peptidyl-prolyl cis-trans isomerase D   v 

AN8605 Cyp1 Peptidyl-prolyl cis-trans isomerase (PPIase); cyclophilin v 

    

Protein degradation   

AN1700 unchar. Putative 26S proteasome regulatory subunit (S. pombe Rpn2 

ortholog) 

v 

AN1922 unchar. Putative ortholog of A. niger RpnG (proteasome regulatory 

subunit) 

v 

AN2213 unchar. Putative ortholog of S. pombe Rpt2 (proteasome regulatory 

subunit) 

v 

AN4236 unchar. Putative 26S proteasome subunit (S. pombe Rpt5 ortholog) v 

AN4282 unchar. Putative ortholog of A. oryzae AspB (lysine aminopeptidase) v 

    

Primary metabolism   

AN10901 unchar. Putative ortholog of S. pombe Gcv2 (glycine cleavage complex 

subunit), one-carbon metabolic process  

v 

AN2873 LysA Saccharopine dehydrogenase (NAD
+
, L-lysine-forming)  v 

AN3031 unchar. Putative threonine synthase, predicted role in glycine, serine, and 

threonine metabolism, putative ortholog of S. cerevisiae Thr4 

v 

AN5610 unchar. Putative L-aminoadipate-semialdehyde dehydrogenase, predicted 

role in lysine metabolism, putative ortholog of S. pombe Lys1 

v 

AN6639 McdB Putative 2-methylcitrate dehydratase, predicted role in lysine 

metabolism 

v 

AN0708 AromA Putative pentafunctional AROM polypeptide with 3-

dehydroquinate synthase, 3-dehydroquinate dehydratase, 

shikimate 5-dehydrogenase, shikimate kinase, and EPSP synthase 

activities, predicted role in aromatic amino acid biosynthesis 

a  

AN7451 GdhB Putative NAD-glutamate dehydrogenase, predicted role in 

glutamate and glutamine metabolism  

a  

AN2964 PdhX Pyruvate dehydrogenase complex component v 

AN3829 unchar. Putative succinate-semialdehyde dehydrogenase [NAD(P)
+
], 

putative ortholog of A. fumigatus Uga2 

v 

AN3894 unchar. Putative aconitate hydratase, predicted role in the TCA cycle, 

putative ortholog of S. cerevisiae Aco2 

v 

AN3901 unchar. Putative lactic acid dehydrogenase, predicted role in energy 

metabolism, putative ortholog of S. cerevisiae Cyb2 

v 

AN6525 AciA  Formate dehydrogenase, predicted role in oxalic acid metabolism v 

AN0034 unchar. Putative glycerone kinase, predicted role in glycerol metabolism, 

putative ortholog of N. crassa Dak1 

a  

AN0565 PyrABCN Multifunctional enzyme with carbamoyl-phosphate synthase and 

aspartate carbamoyltransferase activities  

a  

AN0567 unchar. Putative alcohol oxidase, predicted role in glycerol metabolism a  

AN5162 PdhB Putative pyruvate dehydrogenase (lipoamide), predicted role in 

pyruvate metabolism 

a  

AN7895 CipB Oxidoreductase; contains Zn-dependent alcohol dehydrogenase 

domain 

v, a, s 

AN5716 unchar. Putative inosine-5'-monophosphate dehydrogenase, predicted role 

in purine metabolism, putative ortholog of S. pombe Mug70 

v 

AN6541 AdF/Ad9 Putative ligase, predicted role in purine metabolism v 

AN1015 unchar. Putative phosphorylase, predicted role in glycogen degradation, 

putative ortholog of S. cerevisiae Gph1 

v, a 

AN8010 unchar. Putative glycogen (starch) synthase, predicted role in glycogen 

biosynthesis, putative ortholog of N. crassa Gsy-1 

v, a, s 
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Secondary metabolism   

AN5130 unchar. Putative ortholog of A. niger HemF (coproporphyrinogen III 

oxidase) 

v 

AN11008 ErgA Putative ortholog of S. pombe Erg1 (squalene monooxygenase) v 

AN2943 RfeA Putative reguatory role in secondary metabolism, protein kinase 

domain 

a  

AN8435 unchar. Putative ortholog of A. oryzae tyrosinase MelB a  

AN7897 DbaB FAD-binding monooxygenase with a role in secondary 

metabolism; member of the dba gene cluster 

s 

AN7902 DbaH FAD-binding monooxygenase with a role in secondary 

metabolism; member of the dba gene cluster 

s 

    

Cell compartments/cytoskeleton/septa  

AN9149 unchar. Putative ortholog of S. pombe Tcb3 (ER-plasma membrane 

tethering protein) 

v 

AN0261 Sec23 COPII coat component; considered a prototypic marker of 

transitional ER (endoplasmic reticulum) 

v, a 

AN8233 unchar. Putative ortholog of S. cerevisiae Sfh5 (phosphatidylinositol 

transfer protein) 

v, a 

AN3720 unchar. Putative ortholog of S. pombe Sec24 (COP II cargo receptor) v 

AN6257 unchar. Putative ortholog of A. oryzae Sec31 (subunit of vesicle coat 

complex COPII, ER to Golgi transport) 

a  

AN1177 unchar. Putative ortholog of S. pombe Sec26 (coatomer subunit, ER-Golgi 

transport) 

s 

AN4547 unchar. Putative ortholog of S. pombe Sec21 (coatomer subunit, ER-Golgi 

transport) 

s 

AN8023 VpsA Putative ortholog of S. pombe Vps1 (dynamin), required for 

vacuole biogenesis 

v 

AN7687 unchar. Putative ortholog of S. pombe Tom70 (translocase receptor) v 

AN3843 unchar. Putative ortholog of S. cerevisiae Mic60 (mitochondrial complex 

member) 

v 

AN4064 unchar. Putative ADP/ATP carrier protein a  

AN4402 unchar. Putative ortholog of S. cerevisiae Por1 mitochondrial porin a  

AN5803 FimA Predicted fimbrin protein v 

AN8862 MyoV Myosin V v 

AN6838 TubC Beta-tubulin a  

AN6341 unchar. Protein with similarity to S. cerevisiae Crn1p; predicted role in 

actin patch assembly 

v, a 

AN4667 AspA Septin, involved in development; prevents formation of 

inappropriate germ tubes and branches; required for formation of 

normal conidiophores 

a  

AN6688 AspB Putative septin B; localizes to septa during early septum 

formation and to branch points during vegetative growth; 

localizes to the vesicle/metula, the metula/phialide and the 

phialide/conidium interfaces during conidiophore development 

a  

AN4695 HexA Putative Woronin body protein; HapX-regulated gene v, s 

AN3026 CopA Alpha-COP coatamer-related protein involved in the 

establishment and maintenance of polarized growth 

v, s 

AN7111 FoxA Peroxisomal multifunctional enzyme involved in fatty acid beta-

oxidation 

a  

    

Membranes/cell wall   

AN0595 unchar. Putative NADPH-cytochrome P450 reductase with a predicted 

role in energy metabolism, putative ortholog of S. pombe Ccr1 

v 

AN2210 unchar. Probable ABC-transporter, putative ortholog of S. cerevisiae 

Arb1 

v 
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AN3163 StoA Putative stomatin ortholog, predicted to have scaffolding 

functions in maintenance of lipid microdomains in membranes 

v 

AN6287 unchar. Putative F1F0-ATPase complex subunit, predicted role in energy 

metabolism, putative ortholog of A. niger Atp5 

v 

AN0317 unchar. Putative ortholog of S. cerevisiae Ede1 (scaffold protein involved 

in endocytosis) 

v 

AN0870 unchar. Putative transmembrane transporter with a predicted role in small 

molecule transport, putative ortholog of S. cerevisiae Mir1 

a  

AN6232 VmaB Putative F1F0-ATPase complex subunit, nitrogen and amino acid 

metabolism 

s 

AN12492 unchar. Putative dynamin s 

AN2532 unchar. Putative ortholog of A. oryzae AoxA (amine oxidase) v 

AN1911 unchar. Putative mannose-1-phosphate guanyltransferase, putative 

ortholog of S. pombe Mpg2 

v 

AN2314 unchar. Putative 1,4-alpha-glucan branching enzyme, predicted role in 

starch metabolism, putative ortholog of A. niger GbeA 

a  

AN4727 UgeA UDP-glucose 4-epimerase, involved in galactose metabolism a  

AN7657 GelA Putative 1,3-beta-transglycosidase with a predicted role in glucan 

processing; predicted glycosyl phosphatidylinositol (GPI)-anchor 

v, a 

    

Oxidative stress response  

AN9339 CatB Hyphal catalase  v 

    

Unknown function   

AN0753 unchar. Protein of unknown function v 

AN1378 unchar. Protein of unknown function v 

AN5141 unchar. Protein of unknown function v 

AN7710 unchar. Protein of unknown function v 

AN5421 unchar. Protein of unknown function a  

AN5741 unchar. Protein of unknown function s 

AN7014 unchar. Protein of unknown function s 

AN7836 unchar. Protein of unknown function s 

AN5446 unchar. Protein of unknown function v, s 

AN2954 unchar. Protein of unknown function a, s 

 

3.7.4 ZtfA interacts with the repressor RcoA in hyphal nuclei in vivo 

RcoA was identified in pull-down experiments conducted with vegetatively, asexually and 

sexually grown samples. Bimolecular fluorescence (BiFC) experiments (Kerppola, 2008) 

were performed to verify direct interaction of ZtfA and RcoA in vivo. For BiFC analyses, a 

strain was constructed, which expresses fusion proteins of ZtfA and one half of a split YFP 

(cYFP) and RcoA fused to the other half (nYFP). A signal of the joint YFPs is only emitted, if 

both YFP halves are in close proximity due to a direct interaction of ZtfA and RcoA. This 

strain was grown vegetatively and investigated under a fluorescence microscope. A signal of 

the joint YFP halves could be identified in nuclei of hyphae. This indicates a direct interaction 

of ZtfA with RcoA in vivo (FIGURE 42A).  
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Two control strains expressing either ZtfA-cYFP and free nYFP or RcoA-nYFP and free 

cYFP were constructed to verify that this signal is a result of the direct interaction of ZtfA and 

RcoA and not of YFP-tagged ZtfA or RcoA with the respective other YFP part cleaved off its 

carrier protein. No YFP signal could be identified in either control strain at any condition 

tested (FIGURE 42B). These findings support that ZtfA interacts with RcoA in vivo and that 

both proteins form heterodimers or multimeric complexes in nuclei.  

 

 

FIGURE 42: ZtfA interacts with RcoA in vivo.  
A) Bimolecular fluorescence studies show interaction of ZtfA (ztfA::cyfp) and RcoA 

(rcoA::nyfp). Strains were grown for 36 h at 30°C in liquid cultures. Nuclei were stained with 

DAPI (left, blue) or by expression of RFP-H2A (red, right hand side). White arrows indicate 

double stained nuclei. B) Control strains expressing either ZtfA-cYFP and a free nYFP or 

RcoA-nYFP and a free cYFP do not show fluorescence signals.  

 

 

3.8 ZtfA ortholog of A. fumigatus 

3.8.1 ztfA encodes a C6 transcription factor in A. fumigatus 

Bioinformatic analyses indicate that ZtfA is conserved among Aspergilli (see CHAPTER 3.1). 

The ZtfA ortholog of A. fumigatus was analyzed to examine conservation of ZtfA between the 

genetic model A. nidulans and its opportunistic counterpart. Blast analyses with the ZtfA 

amino acid sequence of A. nidulans as query reveal Afu6g11110 of A. fumigatus as putative 

ortholog (see CHAPTER 3.1 and FIGURE 43). The ztfA (Afu6g11110) ORF of A. fumigatus 

comprises 1724 nucleotides with one intron of 68 nucleotides (FIGURE 43). InterProScan 
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predicted a C6 domain as the only conserved protein domain in ZtfA of A. fumigatus, similar 

to ZtfA of A. nidulans. The ZtfA protein in A. fumigatus comprises 551 amino acids. In silico 

analyses revealed a putative NLS, starting at amino acid residue 535 to residue 546 for which 

cNLS mapper calculated a high score indicating high probability that this region really 

harbors a NLS (Kosugi et al., 2009). Furthermore, LocNES (Xu et al., 2015) predicts a 

putative NES (LocNES) with a relatively low score of approximately 0.4 (score value 

between 0 and 1), which spans from position 269 to residue 283. The C6 domain architecture 

of A. fumigatus ZtfA is similar to the one of A. nidulans (see CHAPTER 3.1) and completely 

conserved to ZtfA of A. nidulans, except the two amino acid residue antecedent to the last C-

X1 residue of the domain (FIGURE 13 and 43).  

 

 

FIGURE 43: ZtfA of A. nidulans and A. fumigatus.  

Comparison of ztfA and its gene products of A. nidulans (AN0585, upper part in blue) and 

A. fumigatus (Afu6g11110, lower part in green). The grey boxes represent introns, bp = base 

pairs, Zn = Zn(II)2-Cys6 fungal-type DNA-binding domain, NLS = nuclear localization 

sequence, NES = nuclear export signal, aa = amino acids. The amino acid sequences (aa) of 

the C6 domains (highlighted in orange) of both proteins is conserved with two exceptions 

(marked in grey, shown in the middle). Asterisks mark the six cysteines.  
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3.8.2 ZtfA is involved in regulation of brlA expression in A. fumigatus  

ZtfA is a regulator of asexual development and activates brlA expression in A. nidulans (see 

CHAPTER 3.4). The BrlAAbaAWetA conidiation pathway is conserved between 

A. nidulans and A. fumigatus, but regulatory feedbacks and details of this cascade are different 

between both fungi (see CHAPTER 1.5 and 1.9).  

The ztfA gene in A. fumigatus (Afu6g11110) was deleted and transcriptional analyses via qRT-

PCR verify complete abolishment of ztfA transcription (FIGURE 44A). Deletion of the ortholog 

in A. fumigatus does not result in an obvious developmental phenotype, but the ΔztfA mutant 

shows more diffuse colonies compared to WT, what can be best seen from below the colony 

(FIGURE 44A).  

 

 

FIGURE 44: ZtfA is dispensable for conidiation in A. fumigatus.  
A) The WT colony exhibits a defined morphology, while the ΔztfA is more diffuse. B) qRT-

PCR analyses indicate that ZtfA is involved in activation of brlA in A. fumigatus. Submerged 

cultures were inoculated with 1*10
7
 spores and grown for 24 h at 37°C. Subsequently mycelia 

was shifted onto solid agar plates and incubated for 24 h at 37°C in the dark. RNA from two 

independent clones of ΔztfA was tested. 

 

ZtfA activates brlA expression in A. nidulans (see CHAPTER 3.4.4). Consequently, brlA 

expression was tested in A. fumigatus ΔztfA (FIGURE 44B). brlA expression is downregulated 

about two times in ΔztfA.  

One explanation for this finding might be the putative presence of a redundant transcription 

factor in A. fumigatus, which exhibits similar regulatory roles like ZtfA. 

ztfA is a downstream target of, and negatively regulated by, VosA in A. nidulans (see 

CHAPTER 3.3). Hence, qRT-PCR experiments were carried out to analyze whether ZtfA 

regulates velvet gene expression in A. fumigatus. Expression of none of the velvet factors is 
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ZtfA dependent (FIGURE 45). This indicates that ZtfA is not a regulator of velvet gene 

expression and is in accordance with the finding that ZtfA in A. nidulans does not regulate 

vosA gene expression. 

 

 

FIGURE 45: ZtfA is dispensable for expression of the velvet factors in A. fumigatus.  
qRT-PCR analyses do not indicate regulatory effects of ZtfA upon the velvet-factor encoding 

genes as a loss of ztfA does not change their expression. Strains were grown vegetatively for 

24 h and subsequently shifted onto solid MM and grown for 24 h in dark conditions at 37°C. 

Two independent clones of ΔztfA were screened.  

 

3.8.3 ZtfA regulates polysaccharide production and biofilm formation in A. fumigatus 

Polysaccharides, like the cell-wall component galactosaminogalactan, were shown to be 

involved in surface adhesion, a crucial step for host infection and virulence in pathogenic 

fungi (Gravelat et al., 2013; Kaur and Singh, 2013; Lin et al., 2015). Mutants, which exhibit 

developmental phenotypes in A. nidulans often have virulence phenotypes in A. fumigatus 

(examples are discussed in CHAPTER 4.8.1). Hence, polysaccharide production was analyzed 

in A. fumigatus ∆ztfA. The amount of polysaccharides produced by the mutant is only 20% of 

the quantity of WT (FIGURE 46A). This hints towards a putative decreased capability for 

surface adhesion. Consequently, expression of three genes associated with adherence was 

tested in WT and ΔztfA to further elucidate a possible influence of ZtfA on surface adhesion 

capabilities: Afu3g00880, Afu3g13110 and uge3 (Chaudhuri et al., 2011; Lin et al., 2015). 

Afu3g00880 and Afu3g13110 encode putative adhesins (Chaudhuri et al., 2011; Gravelat et 

al., 2010). Afu3g00880 is slightly downregulated in the absence of ztfA during asexual growth 

(FIGURE 46B). Importantly, Afu3g13110 transcript is not detectable under these growth 

conditions in ΔztfA, but expressed in WT (FIGURE 46B). Uge3 is a UDP-glucose 4-epimerase, 

which is involved in galactosaminogalactan synthesis (Gravelat et al., 2013). uge3 gene 

expression, however, was not significantly altered in ΔztfA in comparison to WT. 
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FIGURE 46: ZtfA regulates polysaccharide formation and adhesin gene expression.  
A) Polysaccharides were extracted from vegetatively grown cultures. Total amount of 

polysaccharides produced was measured and WT amounts were set to 100%. B) qRT-PCR 

indicates that ztfA regulates genes coding for putative adhesins. cDNA was transcribed from 

RNA extracted from cultures grown vegetatively for 24 h and subsequently 24 h on solid 

MM. Gene expression of two individual ΔztfA clones was tested. 

 

3.8.4 ZtfA is involved in H2O2 and cell wall stress response in A. fumigatus 

Cell wall stress was tested since polysaccharide production was diminished in ΔztfA. Stress 

tests were carried out with sodium dodecyl sulfate (SDS) as stressor. No significant difference 

between the size of the inhibition zones of ΔztfA and the WT are found (FIGURE 47).  

 

 

FIGURE 47: ZtfA is involved in SDS stress response in A. fumigatus.  
A ztfA OE leads to decreased tolerance towards SDS stress. Strains were plated and agar plugs 

were cut out and filled with SDS. Formed inhibition zones were measured after 2 d incubation 

at 37°C in the dark. Three independent clones of ΔztfA were tested. Media were supplemented 

with 10 µg/ml doxycycline to induce TetOn-ztfA (ztfA OE) expression. 

 

The ztfA OE strain shows slightly larger inhibition zones of approximately 2.4 cm in contrast 

to WT (1.75 cm). This indicates that ZtfA might be involved in the cell wall stress response. It 
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has to be mentioned that the ztfA OE (TetOn-ztfA; C. Sasse, p.c.) shows impaired growth in 

comparison to WT, which might enhance the effect of SDS stress on this mutant strain. 

ZtfA is an inhibitor of the OSR and regulates expression of redox and catalase genes in 

A. nidulans (see CHAPTER 3.6). Stress tests were carried out in A. fumigatus to examine 

whether ZtfA might be involved in stress responses in this fungus as well. A loss of ztfA 

increases the tolerance towards H2O2 stress in A. fumigatus only to a small extent 

(FIGURE 48). In comparison, loss of ztfA in A. nidulans leads to distinctly increased tolerance 

towards H2O2 compared to WT (see CHAPTER 3.6). The ztfA OE strain in A. fumigatus shows 

slightly larger inhibition zones in H2O2 tests. This indicates that ZtfA has negative influences 

upon the OSR in this fungus as well. As in both cases differences to WT were small, this 

suggests that redundant genetic systems exist in A. fumigatus, which can compensate for the 

loss of ztfA.  

 

 

FIGURE 48: ZtfA negatively influences oxidative stress response in A. fumigatus.  
Strains were plated and agar plugs were cut out and filled with 150 µl H2O2 1%. Strains were 

grown for 2 d at 37°C in the dark. Three independent clones of ΔztfA were tested. Media were 

supplemented with 10 µg/ml doxycycline to induce TetOn-ztfA (ztfA OE) expression. 

 

3.8.5 ZtfA is dispensable for virulence in Galleria mellonella 

Larvae of the wax moth Galleria mellonella are frequently used as a non-vertebrate infection 

model (Brennan et al., 2002; Reeves et al., 2004; Renwick et al., 2006; Smith and Calvo, 

2014). Virulence studies often show correlations between infections in these larvae and 

Mus musculus, even though G. mellonella larvae do not exhibit pulmonary structures 

(Brennan et al., 2002). G. mellonella larvae were infected with 8*10
6
 spores of WT and ΔztfA 

and survival rates were monitored for several days. Survival rates of larvae infected with the 

ΔztfA mutant were comparable to WT (FIGURE 49). This shows that ztfA is not required for 

virulence in an invertebrate model.  
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FIGURE 49: ZtfA is not involved in virulence of A. fumigatus in G. mellonella.  
Larvae of the greater wax moth G. mellonella were infected with 8*10

6
 spores of WT and 

ΔztfA and incubated at 30°C for 4 d. 12 larvae were utilized per strain. This infection assay 

was conducted with three independent clones of ΔztfA and repeated with similar results. 

 

In summary, the presence of ztfA and its gene product is conserved in A. nidulans and 

A. fumigatus, but its regulatory role between these fungi differ. ZtfA is an important activator 

of conidiation and secondary metabolism in A. nidulans but is dispensable for conidiation in 

A. fumigatus. It is involved in adhesion in this pathogenic mold. The regulatory role of ZtfA 

however is distinctly different in A. nidulans and A. fumigatus. 
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4 Discussion 

 

4.1 ZtfA is a regulator of conidiation and secondary metabolism in A. nidulans 

Members of the genus Aspergillus are among the most widespread fungi worldwide and 

colonize diverse ecological niches. Most of these filamentous fungi are saprophytic and 

important for biological substance cycles. A number of Aspergilli are secondary metabolite 

producers and several Aspergilli have deleterious as well as beneficial effects on humankind.  

Secondary metabolism is linked to developmental programs in filamentous fungi through the 

velvet proteins. This study characterizes a novel target of the velvet factor VosA: the 

transcription factor ZtfA. ztfA gene expression is repressed by VosA and both factors are 

necessary for spore viability. ZtfA activates conidiophore formation by expression regulation 

of the major conidiation activator-encoding brlA gene and its upstream activators, encoded by 

flbC and flbD. Moreover, ZtfA regulates biosynthesis of several secondary metabolites 

through activation of expression of their gene clusters. Besides, ZtfA is important for an 

appropriate response towards oxidative stress. It acts as activator of the thioredoxin system 

and catA gene expression, but represses other factors of the OSR. A summarizing model of 

the regulatory influences of ZtfA is shown in Figure 50.  

 

 

FIGURE 50: Comprehensive model of the regulatory role of ZtfA in A. nidulans.  

The model describes the major regulatory roles of ZtfA as activator of conidiation and 

secondary metabolism and regulator of the oxidative stress response. Green arrows indicate 

positive and red lines negative influences on gene expression.  
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4.1.1 The C6 domain of ZtfA is highly conserved in Aspergilli 

Proteins with a C6 domain constitute a group of fungal specific DNA binding proteins, which 

act as transcription factors (Chang and Ehrlich, 2013; MacPherson et al., 2006; Schjerling and 

Holmberg, 1996). The C6 domain of ZtfA deviates from the domains of most common zinc 

cluster proteins in A. nidulans. Wortman and collaborators identified 330 C6 proteins in 

A. nidulans (Wortman et al., 2009). An up-to-date in silico search, employing the fungal 

databases FungiDB and AspGD (Cerqueira et al., 2014; Stajich et al., 2012) reveals a recent 

number of 332 putative C6 proteins in A. nidulans. Less than six percent of all C6 proteins in 

A. nidulans exhibit a CX2CX6CX5CX2CX8C domain architecture, amongst them ZtfA. Only 

two other C6 proteins with this architecture have been characterized in A. nidulans so far: 

AcuM and ClrB (Coradetti et al., 2012; Hynes et al., 2007). Both are involved in primary 

metabolism: AcuM is involved in gluconeogenesis, whereas ClrB was identified as a regulator 

of cellulase gene expression. Its uncommon C6 architecture together with its broad regulatory 

influences renders ZtfA a very unique protein among C6 proteins in A. nidulans.  

The C6 domain of the yeast DNA-binding protein Gal4, the best-studied C6 protein, has a 

CX2CX6CX6CX2CX6C architecture (Giniger et al., 1985; Marmorstein et al., 1992; Pan and 

Coleman, 1990; Rodgers and Coleman, 1994). This is the most common C6 architecture in 

A. flavus and A. nidulans, followed by CX2CX6CX5CX2CX6C in a ratio of 2:1 (Chang and 

Ehrlich, 2013). In general, the cysteines within the first part of this motif are conserved 

whereas the second part varies and forms different architectures: CX2CX6CX5-16CX2CX6-8C 

(Todd and Andrianopoulos, 1997). The databank searches conducted in this study as well as 

the data published by Wortman and collaborators reveal that the last part has to be extended 

for A. nidulans to CX2CX6CX5-16CX2CX4-12C and that few exceptions from this general 

architecture exist. An overview of the different architectures present in A. nidulans and 

characterized proteins exhibiting these architectures is given in TABLE 10.  

The C6 domain is required for DNA binding (Bai and Kohlhaw, 1991; Burger et al., 1991; 

Defranoux et al., 1994; Johnston and Dover, 1987; Pfeifer et al., 1989; Todd et al., 1997; 

Todd and Andrianopoulos, 1997). Amino acids within the first CX2CX6C motif are conserved 

and mutagenesis studies showed their importance for DNA binding (Johnston and Dover, 

1987; Todd and Andrianopoulos, 1997; Yuan et al., 1991).  

DNA recognition sites consisting of terminal trinucleotides of direct or inverted repeats, 

which are separated by six to eleven nucleotide residues, have been characterized for several 

C6 proteins. CCG triplets as everted or inverted repeats have been proposed to be typical C6 

consensus sequences (MacPherson et al., 2006; Marmorstein et al., 1992). AcuM binds a 
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CCGN7CCG nucleotide consensus sequence, presumably as a heterodimer (Suzuki et al., 

2012). ClrB was shown to bind to CGGN8CCG inverted repeats in a co-factor dependent 

manner, as well as to CGG/CCG single triplets in the absence of a co-factor (de Groot et al., 

2009; Li et al., 2016; Yamakawa et al., 2013). However, binding to triplets of different 

structure has been shown for other C6 proteins as well (Chang et al., 1995; Todd et al., 1998; 

Todd and Andrianopoulos, 1997). 

 

TABLE 10: Comprehensive overview of C6 architectures present in A. nidulans. 

The table provides an overview over the frequency of C6 architectures in A. nidulans, 

according to Wortman and collaborators, amended with the two additional proteins found in 

AspGD and FungiDB database searches (Cerqueira et al., 2014; Stajich et al., 2012; Wortman 

et al., 2009). All characterized representatives of each group are indicated. ZtfA and its 

architectural group are given in bold.  
     

C6 motif Quantity Metabolic processes Development Stress response 

CX2CX6CX6CX2CX6C 149 
AflR, DbaA, MdpE, ArcA, 

ClrA, FacB, QutA, UaY 

NosA, RosA, 

SfgA, OefC 
PacX 

CX2CX6CX5CX2CX6C 73 
AmyR, ApdR, GalR, GalX, 

InuR, PrnA, ScfA, XlnR 
  

CX2CX6CX8CX2CX6C 27 FarA, FarB, TamA   

CX2CX6CX5CX2CX8C 19 AcuM, ClrB, ZtfA ZtfA ZtfA 

CX2CX6CX6CX2CX8C 12 AcuK   

CX2CX6CX7CX2CX6C 11    

CX2CX6CX9CX2CX6C 11 LeuB   

CX2CX6CX10CX2CX6C 4    

CX2CX6CX6CX2CX9C 4    

CX2CX6CX12CX2CX6C 2    

CX2CX6CX6CX2CX5C 2    

CX2CX6CX7CX2CX7C 2    

CX2CX6CX8CX2CX7C 2 AmdR   

CX2CX10CX5CX2CX6C 1    

CX2CX10CX6CX2CX6C 1    

CX2CX5CX6CX2CX6C 1 
 

  

CX2CX6CX14CX2CX6C 1 
 

SilA  

CX2CX6CX15CX2CX6C 1 
 

  

CX2CX6CX16CX2CX6C 1 AlcR   

CX2CX6CX5CX2CX11C 1 
 

  

CX2CX6CX5CX2CX5C 1 AraR   

CX2CX6CX5CX2CX7C 1 
 

  

CX2CX6CX6CX1CX6C 1    

CX2CX6CX6CX2CX12C 1   SonC 

CX2CX6CX6CX2CX7C 1 NirA   

CX2CX7CX6CX2CX6C 1    

CX2CX9CX12CX2CX6C 1    
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Several conserved amino acid residues are present in ZtfA giving a hint that ZtfA might 

recognize nucleotide triplet repeats as well. In Gal4, the lysine residues K17 and K18 were 

identified to be necessary for the specific base pair contact to the CGG triplet forming the 

DNA binding motif (Marmorstein et al., 1992; Marmorstein and Harrison, 1994). RhaR is an 

example for a C6 protein in A. nidulans, which shows conservation of K18 but replacement of 

lysine K17 to arginine (R68) (Pardo and Orejas, 2014). RhaR binds to a CGGN11GGC DNA 

motif. ZtfA exhibits a stretch of three lysines at this position (K4-6). The relatively 

uncommon C6 architecture of ZtfA and indications for different interaction partners suggest 

that ZtfA is able to bind different DNA-binding sequences. Importantly, among ZtfA 

orthologs in Aspergilli the whole C6 domain of ZtfA is strongly conserved. These similarities 

in ZtfA orthologs imply that it might bind to similar binding motifs in different Aspergilli. It 

is therefore assumed, that ZtfA regulates the expression of orthologous genes and exhibits 

influences similar to the ones found for A. nidulans in other Aspergilli as well.  

 

4.1.2 C6 proteins and their role in A. nidulans 

The A. nidulans genome encodes 332 putative C6 proteins. In contrast to this high number, 

which makes up approximately three percent of all genes in A. nidulans, a relatively small 

number of only 33 C6 proteins (approximately 10%) has been characterized yet (TABLE 10). 

Several proteins of this group regulate primary or secondary metabolite gene clusters as 

cluster specific regulators in A. nidulans, such as AmdR, AlcR, QutA, NirA, PrnA, UaY, 

FacB, MdpE and AflR (Andrianopoulos and Hynes, 1990; Bergmann et al., 2007; Beri et al., 

1987; Brown et al., 1996; Burger et al., 1991; Cazelle et al., 1998; Chiang et al., 2009, 2010; 

Felenbok et al., 1988; Scazzocchio, 1994; Suarez et al., 1995; Todd et al., 1997). Two C6 

proteins, SfgA and OefC, are involved in the regulation of asexual sporulation, and three C6 

proteins, RosA, NosA and SilA, were found to be involved in sexual development (Han et al., 

2008; Lee et al., 2005; Seo et al., 2003, 2006; Vienken et al., 2005; Vienken and Fischer, 

2006). Employment of the AspGD Gene Onthology slim mapper (Cerqueira et al., 2014) 

showed, that most manually annotated C6 proteins cluster with the terms carbohydrate 

metabolic processes, developmental processes and response to chemical or stress. Three are 

annotated to secondary metabolic processes, three for sexual sporulation and two for asexual 

sporulation. So far, most of the C6 proteins analyzed for A. nidulans regulate metabolic 

processes as cluster specific transcription factors or are involved in developmental programs. 

Regulation and interconnection of several processes and programs on a higher level, as this 

study shows for ZtfA, is uncommon for C6 proteins in A. nidulans. As only 10% of this 
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protein group has been investigated so far, it is likely to find more proteins which interconnect 

different pathways in this transcription factor group in future analyses.  

In conclusion, ZtfA is one of the first C6 proteins that act as activator for asexual 

development and secondary metabolism. 

 

 

4.2 ZtfA is a repression target of VosA and acts as a conidiation regulator in 

A. nidulans 

4.2.1 The upstream developmental activator pathway is regulated by ZtfA 

Velvet proteins are transcription factors, which interconnect developmental programs and 

secondary metabolism and regulate expression of thousands of genes (Ahmed et al., 2013; 

Becker et al., 2016). The velvet factor VosA represses premature conidiation and is important 

for spore viability (Ni and Yu, 2007). The present study shows that ZtfA is a downstream 

target of VosA. VosA is a repressor of ztfA gene expression and both factors together are 

important for viability of conidiospores.  

VosA represses expression of the major conidiation regulator-encoding brlA gene during 

vegetative growth and therefore regulates developmental competence (Lee et al., 2016; Ni 

and Yu, 2007). BrlA is the first factor in the central developmental pathway (CDP) 

(BrlA  AbaA  WetA) and is activated by the upstream developmental activators (UDAs) 

(Adams et al., 1998; Lee and Adams, 1996; Lee et al., 2016; Marshall and Timberlake, 1991; 

Mirabito et al., 1989). The UDAs are repressed by SfgA and comprise the Flb pathway, which 

functions in two parts in parallel: FlbB/FlbE  FlbD  BrlA and FlbC  BrlA (Lee et al., 

2016; Ruger-Herreros et al., 2011; Seo et al., 2006; Yu et al., 2010). FluG counteracts the 

repressing effect of SfgA, what allows activation of the Flbs (Garzia et al., 2010; Kwon et al., 

2010a, 2010b; Ni and Yu, 2007; Seo et al., 2006; Wieser and Adams, 1995).  

It was previously hypothesized, that another yet unknown factor might exist that regulates 

conidiation together with the Flb cascades (Garzia et al., 2010; Lee and Adams, 1996). Such a 

factor was anticipated to activate brlA gene expression or expression of either flb factors in 

the last steps of the UDA pathway, namely flbC and flbD (FIGURE 51). flb gene knock outs 

share the name-giving phenotype: a fluffy appearance of the colony due to increased aerial 

hyphae and decreased conidiophore production (Wieser et al., 1994).  

Phenotypical and transcriptional analyses show that ZtfA functions downstream of FluG and 

upstream of FlbC and FlbD. It is not involved in the regulation of sfgA expression but is an 

activator of flbC and flbD gene expression during late vegetative growth. Taken together, 
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ZtfA represents a new activator of conidiation, which functions upstream to the UDA 

pathway and is important for activation of both parts of the Flb cascade (FIGURE 51).  

 

 

FIGURE 51: Gene expression of flbC, flbD and brlA is activated by ZtfA.  

The model summarizes the current understanding of the regulatory role of ZtfA upon the 

UDA factors and brlA during late vegetative growth at the onset of conidiation. ZtfA activates 

brlA gene expression and is important for activation of FlbC and FlbD, downstream of FluG. 

Positive regulations are given in black, negative regulations (repression) are given in red.  

 

4.2.2 ZtfA activates brlA expression in A. nidulans 

ZtfA is sufficient to induce premature conidiophore development during vegetative growth 

and activates brlA expression under these conditions. This is further supported by the finding 

that this activation is significantly higher in the absence of vosA. VosA and NsdD repress brlA 

expression during vegetative growth (Lee et al., 2016; Ni and Yu, 2007). ztfA OE produces 

normal conidiophores during these conditions, whereas the WT is not able to form 

conidiophores. Overexpression of brlA leads to conidiophore formation under vegetative 

conditions directly from vesicles formed at the hyphal tips (Adams et al., 1988, 1998). 

Therefore, several aspects of the regulatory role of ZtfA are important for the formation of 

conidiophores, besides its activating role upon brlA. ZtfA regulates flbD expression and is 

important for flbC expression during vegetative growth. However, this is not sufficient to 

induce conidiophore development, since a flbC OE does not form conidiophores but vesicle-

like structures at hyphal tips (Kwon et al., 2010a). Therefore, induction of gene expression of 

flbC, flbD and brlA together is necessary for the conidiophore formation. BrlA activates abaA 

and wetA, which both encode transcription factors necessary for conidiation (Andrianopoulos 

and Timberlake, 1994; Lee et al., 2016; Marshall and Timberlake, 1991; Ni and Yu, 2007; 

Sewall et al., 1990a). In accordance with the finding that ZtfA activates brlA, phenotypical 

analyses show that ztfA is epistatic to both, brlA and abaA. Taken together, ZtfA activates 

both, the UDA factors through flbC and flbD and the CDP through brlA. 
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4.2.3 ZtfA and VosA function in achievement of developmental competence and spore 

maturation in A. nidulans 

The onset of conidiation is genetically characterized by a time dependent de-repression of 

brlA expression (see CHAPTER 1.4 and 1.5) (Lee et al., 2016). The conidiation cascade itself is 

also time dependent: brlA is activated by the UDA factors and ZtfA during the achievement of 

developmental competence (Etxebeste et al., 2009, 2008; Garzia et al., 2009, 2010; Kwon et 

al., 2010a, 2010b; Wieser and Adams, 1995) (FIGURE 52).  

 

 

FIGURE 52: ZtfA and VosA regulate achievement of developmental competence and 

spore maturation.  

The model depicts the regulatory roles of ZtfA and VosA upon conidiation during 

achievement of developmental competence (upper part) and ongoing spore formation and 

maturation (lower part). ZtfA activates gene expression of brlA, flbC and flbD during late 

vegetative growth and supports achievement of developmental competence. brlA expression is 

repressed by VosA and NsdD during this stage (upper part). ZtfA negatively regulates fluG 

and flb gene expression during ongoing development and supports spore maturation. vosA 

expression is activated by AbaA and WetA and VosA is necessary for trehalose biogenesis 

and spore maturation as well. VosA negatively regulates ztfA expression during asexual 

growth (lower part).  

 

BrlA activates abaA expression during the mid-phase of conidiation (approximately 12 h post 

induction), whose product then activates wetA and vosA expression during the late phase of 
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conidiation (after 24 h post induction) (Adams et al., 1988, 1990; Andrianopoulos and 

Timberlake, 1994; Boylan et al., 1987; Marshall and Timberlake, 1991; Ni and Yu, 2007; Tao 

and Yu, 2011). VosA is involved in early time tuning of conidiation by repressing brlA 

expression until developmental competence is achieved (Lee et al., 2016; Ni and Yu, 2007) 

(FIGURE 52). During late asexual growth, VosA negatively regulates ztfA expression, thereby 

exhibiting another level of regulation of the time adjusted choreography of conidiation. ZtfA 

is involved in late time tuning of the conidiation cascade as well: it negatively regulates fluG 

and the flb genes during late asexual growth after 24 h (FIGURE 52). This regulatory role 

confirms the model that ZtfA functions upstream of the UDA pathway as a rather global 

regulator of conidiation. 

AbaA induces vosA expression during late asexual development (Park et al., 2012b) 

(FIGURE 52). VosA is necessary for spore viability and trehalose biogenesis together with 

VelB (Ni and Yu, 2007; Sarikaya-Bayram et al., 2010). Trehalose is a non-reducing 

disaccharide that is found in fungi, plants, bacteria and insects, where it functions as storage 

compound, but is also involved in stress resistance (Becker et al., 1996; Elbein et al., 2003; 

Jorge et al., 1997; Ocón et al., 2007). In germinating conidiospores, trehalose is rapidly 

degraded and deletion of the trehalose-6-phosphate synthase results in delayed germination 

(Al-Bader et al., 2010; Fillinger et al., 2001; Kane and Roth, 1974; Shin et al., 2009).  

Conidiospores are able to germinate in the absence of ztfA, but show a rapid loss in viability. 

Decreased spore viability has been shown before for vosA and velB mutants and for other 

A. nidulans mutant strains as well (Hagiwara et al., 2008; Kawasaki et al., 2002; Lara-Rojas 

et al., 2011; Leiter et al., 2016). Trehalose has been shown to be important for conidiospore 

viability: a loss in spore viability accompanies an insufficient trehalose concentration in 

conidiospores in ΔvosA and ΔvelB strains (Ni and Yu, 2007; Sarikaya-Bayram et al., 2010). 

Loss in spore viability in ΔztfA is not coupled to trehalose biogenesis and ZtfA is not 

important for regulation of trehalose biosynthesis. Hence, ZtfA is not involved in the VosA-

governed trehalose biogenesis regulation. Nevertheless, ZtfA probably is a factor of a VosA-

governed spore viability regulation. ZtfA’s role in spore viability, together with the activation 

of brlA and flb genes during late vegetative growth, supports the model that ZtfA is involved 

in the activation of conidiation and its regulation during ongoing spore formation and 

maturation. Such a regulation is probably not based upon VeA-VelB or VelB-VosA 

heterodimers since phenotypic analyses with ΔveAΔztfA and ΔvelBΔztfA double mutants do 

not imply relations between these velvet genes and ztfA. A VosA-VelC heterodimer has been 

proposed but has not been proven in vivo up to date (Park et al., 2014). Since little is known 
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about VelC at the moment, a regulatory effect upon spore viability cannot be excluded. A 

ΔvelCΔztfA double mutant does not show clear epistatic effects. Therefore, the regulatory 

effects of ZtfA are probably not dependent upon VelC. 

 

4.3 Phosphorylation might represent an activity control of ZtfA 

Three phosphorylated residues (S327, T464 and S506, respectively) were identified in ZtfA of 

A. nidulans in LC-MS/MS analyses and their importance could be demonstrated by 

construction of a strain that expresses a version of ZtfA, in which these residues were 

exchanged to alanine to mimic permanent dephosphorylation. Changes in the phosphorylation 

status have been shown to be important for function of several regulatory proteins (Bayram et 

al., 2012; Jöhnk et al., 2016; Rauscher et al., 2016; Schinke et al., 2016; Shimizu et al., 

2003). The phenotype of the dephosphorylated mutant (ztfA
S327A,T464A,S504-506A

) does not 

resemble the ΔztfA phenotype. This shows that ZtfA is still able to execute its activating 

effects on conidiation in the dephosphorylated mutant. Therefore, permanent 

dephosphorylation of identified residues does not hinder nuclear localization of ZtfA and does 

not lead to inactivation of the protein. The possibility exists that dephosphorylation of S327, 

T464 and S506 leads to increased ZtfA import into the nucleus. The dephosphorylated mutant 

strain resembles the ztfA OE strain in the scope of lacerated colony morphology. This suggests 

that the ztfA OE strain might produce increased numbers of incorrectly phosphorylated ZtfA 

protein and that this influences colony morphology. Several possible explanations for these 

findings exist. Phosphorylation might have a destabilizing effect and might represent an 

activity control for ZtfA (FIGURE 53).  

 

 

FIGURE 53: The phosphorylation status of ZtfA might influence DNA-binding specificity, 

protein-protein interaction and stability of the ZtfA protein. 

The model depicts possible influences of the phosphorylation status of ZtfA on DNA-

sequence specificity. The phosphorylation state of ZtfA might have influences on recruitment 

of different interaction partners and thus on DNA-binding specificity. It could also destabilize 

the ZtfA protein. Phosphorylation sites identified in this study are indicated. Note that blue 

arrows do not differ between activating and repressing effects.  
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It is also possible that the phosphorylation status of ZtfA influences interaction with other 

proteins and thereby changes DNA-sequence specificity (FIGURE 53). It could also lead to 

hyperactivation of ZtfA. This would be an interesting task for further studies.  

Two kinases, MpkB and RfeA, were identified as putative interaction partners. The three 

identified phosphorylation sites in ZtfA notably do not match the recognition site for MpkB 

(Thr-Glu-Tyr) (Kobayashi et al., 2007). RfeA is not characterized yet and its recognition site 

is not known. The identified phosphorylation sites in ZtfA differ in their sequences. 

Therefore, RfeA might only be responsible for phosphorylation of one of these sites. RfeA is 

annotated as putatively involved in secondary metabolism. This might indicate that the 

phosphorylation status of ZtfA could be important for its regulatory roles in secondary 

metabolism. Not all peptides of the ZtfA protein were identified in LC-MS/MS analyses and 

bioinformatic analyses of the ZtfA amino acid sequence revealed 34 putative additional 

phosphorylation sites besides the ones investigated in this study. This implies that the 

constructed ztfA
S327A,T464A,S504-506A

 strain might not produce a fully dephosphorylated ZtfA 

protein and that further phosphorylation sites with regulatory function exist. Moreover, the 

phosphorylation status of ZtfA might differ during different growth and developmental 

phases. This has to be analyzed in future studies.  

 

 

4.4 Orthologs of ZtfA have regulatory roles in developmental programs in Aspergilli 

Orthologs of ZtfA were found in Aspergilli as well as in non-Aspergilli during in silico 

analyses (see FIGURE 13 in CHAPTER 3.1).  

The scl-2 mutant of A. niger shows sporulation defects, similar to the situation in ΔztfA of 

A. nidulans (Jørgensen et al., 2011). The scl-2 mutant has defects in the ztfA orthologous 

genetic locus (A.F.J. Ram, p.c.). This is in good agreement with the above proposed 

hypothesis, that ZtfA might show functional conservation among Aspergilli (see CHAPTER 

4.1.2). The scl-2 mutant forms sclerotia and the respective A. niger gene product might 

represent a repressor of sclerotia formation. Sclerotia are thought to correspond to 

cleistothecia in A. nidulans. ZtfA of A. nidulans is not a major repressor of sexual 

development since an absence of ztfA does not lead to a distinct increase in cleistothecia 

formation.  

A loss of ztfA does not lead to an obvious conidiation phenotype in A. fumigatus (see 

CHAPTER 3.8). However, slight morphological effects on colony morphology are visible in 

A. fumigatus ΔztfA as well. This discrepancy in conservation between A. nidulans, A. niger 
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and A. fumigatus is interesting as A. niger and A. fumigatus are more closely related to each 

other than the two species to A. nidulans (Peterson, 2008; Varga et al., 2003).  

The conidiation cascade of A. fumigatus exhibits some striking differences to the one in 

A. nidulans (see CHAPTER 1.9.3 to 1.9.4 and FIGURE 54). Factors, which regulate distinct 

events in one fungus, might exhibit a change in regulation in the other as has been shown for 

the velvet factors, but also for WetA and AbaA and several Flb factors (Mah and Yu, 2006; 

Park and Yu, 2012; Tao and Yu, 2011; Xiao et al., 2010) (FIGURE 54).  

 

 

FIGURE 54: Differences in the regulation of conidiation between A. nidulans and 

A. fumigatus.  

Regulation of the central developmental pathway for asexual propagation in A. nidulans (top) 

and A. fumigatus (bottom) reveals differences between both fungi. Black lines indicate trusted 

knowledge, grey dotted lines indicate proposed regulations. Modified from Park et al., 2012a.  

 

Notably, deletion of the upstream developmental factor-encoding fluG and flbA genes, which 

lead to fluffy phenotypes in A. nidulans due to decreased and delayed conidiation, do not 

result in fluffy phenotypes in A. fumigatus (Mah and Yu, 2006; Yu et al., 2006). Levels of 

conidiation in ΔflbA are reduced but the colony appearance is WT-like. Loss of fluG does not 

result in a conidiation phenotype on solid medium when oxygen is present but hinders 

conidiophore development in submerged cultures, where the A. fumigatus WT is able to form 

conidiophores. ZtfA is a conidiation activator in A. nidulans and A. niger. However, this is not 

the case in A. fumigatus: a ΔztfA mutant does not show an obvious sporulation defect. This is 

interesting as A. niger and A. fumigatus are more closely related to each other than the two 
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species to A. nidulans (Peterson, 2008; Varga et al., 2003). Both species are proposed to be 

heterothallic, even though thallism is not completely clear for A. niger (Frisvad et al., 2014; 

Varga et al., 2003). 

Loss of ztfA in A. fumigatus leads to a downregulation of brlA expression. This implies that 

ZtfA is involved in conidiation regulation in this fungus as well. More than one conidiation 

pathway have been hypothesized in other studies for A. fumigatus (Mah and Yu, 2006; Yu, 

2010). Therefore, a redundancy in conidiation regulation is assumed, where another 

transcription factor would fulfill similar functions as ZtfA and might circumvent deleterious 

effects caused by ztfA deletion. Another possibility is that ZtfA might have undergone a 

functional conversion and might regulate different aspects of the A. fumigatus life cycle 

compared to A. nidulans. 

In summary, A. nidulans ZtfA and its ortholog in A. niger share conserved functions, such as 

activation of conidiation. The A. niger ZtfA ortholog further functions as repressor of sclerotia 

formation. This function is probably not conserved in A. nidulans. The ZtfA ortholog of 

A. fumigatus is dispensable for conidiation and might have undergone a functional 

conversion. This is further discussed in CHAPTER 4.8. 

 

 

4.5 ZtfA interconnects asexual development and secondary metabolism in 

A. nidulans 

4.5.1 ZtfA is an activator of secondary metabolism 

Several studies show a link between secondary metabolite (SM) production and 

developmental programs (Bayram et al., 2008a; Bayram and Braus, 2012; Calvo, 2008; Calvo 

et al., 2002; Estiarte et al., 2016; Gerke et al., 2012a; Lee et al., 2012; Ramamoorthy et al., 

2012; Wang et al., 2016; Yin et al., 2013). ZtfA is a new transcription factor that 

interconnects asexual development and secondary metabolism in A. nidulans. This function is 

conserved to its ortholog in A. niger: the scl-2 mutant exhibits diminished conidiophore 

formation and impaired secondary metabolite production (Jørgensen et al., 2011).  

ZtfA of A. nidulans is required for austinol and dehydroaustinol production, since both 

compounds are absent in the ΔztfA mutant. Transcriptional analyses show that ztfA OE is 

sufficient to activate austinol-pathway gene expression during vegetative growth. 

Furthermore, ztfA OE is sufficient to upregulate expression of important genes of the 

F9775/orsellinic acid (orsA) and the emericellamide gene (easA, easB, easC and easD) cluster 

during vegetative growth. It was shown that expression of the orsA gene, encoding the PKS of 

the F9775 cluster, depends on environmental constituents: orsA expression is upregulated 
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when A. nidulans is co-cultivated with the soil bacterium Streptomyces hygroscopius but only 

basally expressed when the fungus is cultivated alone (Schroeckh et al., 2009). An 

overexpression of ztfA is sufficient to induce orsA gene expression in the absence of another 

organism. ZtfA is a permanently nuclear localized transcription factor. Transcription factors 

with permanent nuclear localization are thought to be activated by environmental stimuli or 

secondary metabolite intermediates. It is therefore possible that intermediates produced by 

other organisms, such as S. hygroscopius activate ZtfA in the nature, where the fungus grows 

in diverse ecological environments. HPLC profiles of ztfA mutants suggest that further SMs 

are regulated by ZtfA as well. These might be SMs not produced in WT in the conditions 

tested and would indicate that ZtfA is not solely an activator but has also repressing capacities 

for specific SM gene clusters. On the other hand the possibility exists that these peaks in 

HPLC profiles represent SM intermediates in pathways where production of the final SM 

product is blocked in the absence of ztfA due to gene misregulation of crucial steps of the 

respective pathway. 

Bridging factors in the interconnection of secondary metabolism and development are the 

velvet proteins, which form the velvet complex, a heterotrimer composed of VelB, VeA and 

the SM master regulator LaeA (Bayram et al., 2008a; Bok and Keller, 2004; Sarikaya-Bayram 

et al., 2010, 2015) (see CHAPTER 1.2 and 1.3). Phenotypic analyses show that ZtfA does not 

act in VeA- or VelB-governed pathways.  

In conclusion, ZtfA interconnects asexual development and secondary metabolism and acts as 

activator of both programs.  

 

4.5.2 Activation of conidiation is independent of ZtfA-mediated secondary metabolite 

regulation 

As discussed above, ZtfA influences the conidiation pathway downstream of FluG and 

upstream of the Flb factors FlbC and FlbD. FluG is necessary for the synthesis of an unknown 

low molecular weight molecule, which is proposed to be important for conidiation activation 

(Lee and Adams, 1994a): Lee and Adams found that the conidiation defect in a ΔfluG strain 

can be rescued by a WT colony grown next to the ΔfluG colony and that a diffusible barrier 

does not hinder this rescue. Rodríguez-Urra and collaborators found that an adduct of 

dehydroaustinol and diorcinol is able to overcome the conidiation defect of the ΔfluG mutant. 

They hypothesized that one or both SMs, or dehydroaustinol- or diorcinol-like compounds are 

involved in the FluG signaling pathway (Rodríguez-Urra et al., 2012). This would be an 

explanation for the developmental phenotype of ΔztfA: the FluG signal cannot be formed 
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since austinol and dehydroaustinol are not synthesized and therefore, the conidiation cascade 

cannot be activated. In contrast to this hypothesis it was shown that both, austinol as well as 

dehydroaustinol, are not essential for conidiation: a ΔausA strain is able to sporulate and the 

ausA gene is not necessary for asexual development (Nielsen et al., 2011). FluG counteracts 

SfgA, which represses translocation and therefore conidiation activation of the FlbB-FlbE 

heterodimer (Etxebeste et al., 2008, 2009; Herrero-Garcia et al., 2015; Lee et al., 2014; Seo et 

al., 2006). Therefore, the phenotype of a flbB or flbE deficient mutant should resemble the 

ΔztfA phenotype if ZtfA would be involved in the FluG signal upstream of the flb genes. 

Phenotypical analyses of the flb mutants in ΔztfA contradict this (see CHAPTER 3.4.3). 

Deletion of sfgA completely bypasses fluG in conidiation and sterigmatocystin production 

(Seo et al., 2006). This indicates that FluG mainly exhibits its activation towards the 

conidiation cascade by antagonizing negative effects of SfgA. Expression of sfgA is not 

regulated by ZtfA. A regulatory role of ZtfA upon sfgA expression would have been expected 

if ZtfA would be important for the activating effect of FluG on conidiation. Seo and co-

workers proposed a model in which FluG activates FlbE, which then represses SfgA (Seo et 

al., 2006). Neither phenotypical nor gene expression analyses support the possibility that ZtfA 

might act as a FluG-signal transducer in such a model. 

 

4.5.3 Sterigmatocystin production is regulated by ZtfA 

The SM sterigmatocystin is a potent mycotoxin and FluG is involved in its regulation (Hicks 

et al., 1997; Seo et al., 2003). This regulation is proposed to be accomplished via the 

activation of FlbA (Hicks et al., 1997). FlbA is necessary to inhibit the FadA-mediated G-

protein signaling pathway, which leads to a repression of conidiation and sterigmatocystin 

production via PkaA (Hicks et al., 1997; Shimizu et al., 2003) (FIGURE 55).  

The deficiency in sterigmatocystin production in ΔfluG is a result of a lack of flbA activation 

(Hicks et al., 1997). aflR, encoding the sterigmatocystin transcriptional regulator, and 

consequently stc gene (sterigmatocystin cluster) transcripts fail to accumulate in the absence 

of flbA (Hicks et al., 1997). Likewise, a loss of fluG leads to a loss of stc transcript 

accumulation (Hicks et al., 1997). An overexpression of flbA is able to induce premature stc 

transcript accumulation, followed by early sterigmatocystin production (Hicks et al., 1997; 

Keller et al., 1994). flbA expression is repressed by SfgA and absence of sfgA rescues 

sterigmatocystin production in ΔfluG (Seo et al., 2006). Sterigmatocystin regulation is not a 

common function of conidiation regulators, as, besides FluG and FlbA, no other factor of the 

UDA or CDP pathway seems to be involved in sterigmatocystin regulation (Hicks et al., 
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1997). ZtfA acts downstream of FluG and is involved in a feedback regulation of fluG 

expression during asexual growth. Nevertheless, ZtfA does probably not act in a 

sterigmatocystin regulation in between FluG and FlbA: ZtfA represses flbA expression during 

asexual growth. However, this might be indirect since a ztfA OE does not downregulate flbA 

expression.  

Sterigmatocystin production is increased in both, the absence and the overexpression of ztfA. 

AflR is the major regulator of sterigmatocystin production in Aspergilli (Ehrlich et al., 2003; 

Yu et al., 1996a). Both, absence and overexpression of ztfA lead to upregulation of aflR and 

stcU, suggesting a tight balance of ztfA expression for maintenance of sterigmatocystin 

production at WT level. stcU transcript levels are used as indicator for stc cluster activation 

(Hicks et al., 1997; Kato et al., 2003). A similar regulation was found for the bZIP 

transcription factor RsmA, for which direct binding to the aflR promoter was shown (Yin et 

al., 2012). Comparable to the regulation of sterigmatocystin via ZtfA, ΔrsmA as well as rsmA 

OE upregulate production of this SM (Shaaban et al., 2010; Yin et al., 2012). Since RsmA 

directly binds to the aflR promoter and rsmA OE upregulates aflR, Yin and collaborators 

proposed an induction of aflR through RsmA. A similar regulation could explain the observed 

sterigmatocystin increase in ztfA mutants even though direct binding of ZtfA to the aflR 

promoter is unclear at the moment (FIGURE 55). 

 

 

FIGURE 55: ZtfA is involved in sterigmatocystin biosynthesis regulation in A. nidulans.  

The depicted simplified model summarizes the regulatory role of ZtfA on sterigmatocystin 

production during asexual development. Red lines indicate negative regulations, green arrows 

show activating effects. Recently, MtfA was analyzed and might act as an antagonist of ZtfA 

in the regulation of sterigmatocystin biosynthesis; RsmA and ZtfA might have similar 

regulatory roles in sterigmatocystin regulation (Lind et al., 2015; Ramamoorthy et al., 2013; 

Yin et al., 2012). 

 

MtfA, downstream of VeA, regulates sterigmatocystin production in an inverted manner: loss 

as well as overexpression of mtfA resulted in reduced sterigmatocystin production and loss of 

aflR and stcU mRNA accumulation (Ramamoorthy et al., 2013). Comparable SM regulation 

is known for VeA: a tight control of veA expression is necessary for penicillin biosynthesis, as 
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suggested by knock out and overexpression experiments (Kato et al., 2003; Spröte and 

Brakhage, 2007). ZtfA and MtfA both are downstream factors of the velvet network. VosA 

and VeA both share VelB as binding partner (Bayram et al., 2008a; Sarikaya-Bayram et al., 

2010). MtfA might therefore be an antagonist of ZtfA in sterigmatocystin production 

(FIGURE 55). This is further supported by the fact that transcriptomic analyses of a ΔmtfA 

strain showed an upregulation of ztfA gene expression, indicating a repressing effect of MtfA 

upon ztfA expression (Lind et al., 2015).  

 

4.5.4 Transcription factors with regulatory roles in secondary metabolism and 

oxidative stress response are regulated by ZtfA 

Several transcription factors interconnect SM biosynthesis and the oxidative stress response 

(OSR) (Emri et al., 2015; Hong et al., 2013a, 2013b; Montibus et al., 2015; Reverberi et al., 

2010; Roze et al., 2011; Yin et al., 2013, 2012). For instance, RsmA is involved in 

sterigmatocystin regulation and is important for the OSR (Emri et al., 2015; Shaaban et al., 

2010). Hence, a putative regulatory role of ZtfA upon rsmA gene expression in response to 

H2O2 stress was investigated. rsmA expression is upregulated in the presence of hydrogen 

peroxide. This upregulation is ZtfA-dependent as it is intensified in ztfA OE upon H2O2 stress 

but no upregulation is found in response to H2O2 in ΔztfA. A rsmA overexpression is able to 

overcome the block in sterigmatocystin production in ΔlaeA (Shaaban et al., 2010). ZtfA is 

necessary for rsmA activation during H2O2 stress but not for general expression of rsmA under 

non-stressed conditions. ZtfA therefore might be involved in stress-mediated SM regulation 

via rsmA gene-expression regulation. 

In several cases, transcription factors, which couple SM and the OSR, are negative regulators 

of SM and positive regulators of the OSR. For instance, NapA negatively regulates 

emericellin, sterigmatocystin and other SMs as a napA OE strain produces lower amounts of 

these compounds compared to WT (Yin et al., 2013). On the other hand, NapA is a positive 

regulator of the OSR as ΔnapA shows decreased resistance against oxidative stress in 

A. nidulans and other fungi (Asano et al., 2007; Thön et al., 2010). NapA is the ortholog of 

the yeast Yap1 factor (Asano et al., 2007; Toone et al., 2001). Yap1 is important for 

expression of both, the thioredoxin and the glutathione system in S. cerevisiae (Kuge and 

Jones, 1994; Moye-Rowley, 2003; Wu and Moye-Rowley, 1994). napA expression was 

screened as well but was not influenced by the H2O2 stress conditions tested in this study. 

ZtfA seems to function in an inverted manner compared to NapA. It is an activator of 

secondary metabolism and a repressor of the OSR. Expression of ztfA itself is upregulated 
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upon oxidative stress as well. This stress-coupled induction emphasizes the finding that ZtfA 

is involved in regulation of the OSR in A. nidulans.  

 

 

4.6 ZtfA is involved in the oxidative stress response of A. nidulans and A. fumigatus 

4.6.1 ZtfA is an inhibitor of the oxidative stress response  

Fungi have to cope with several stress factors. Amongst them, oxidative stress is one of the 

most prevalent stresses. It occurs due to reactive oxygen species (ROS) formed during aerobic 

respiration and other metabolic processes or derived from environmental sources (Aguirre et 

al., 2005; Marschall and Tudzynski, 2016; Moye-Rowley, 2003; Nath et al., 2016; Zhang et 

al., 2016). Fungal pathogens have to face increased ROS production as defense mechanism of 

the innate immune system (Braem et al., 2015; Leal et al., 2012; Cramer et al., 2013).  

ZtfA is an inhibitor of the OSR since loss of ztfA leads to distinctly increased tolerance 

towards H2O2 in A. nidulans, but only slightly increased tolerance to H2O2 in A. fumigatus. 

This difference can be explained with the sophisticated OSR system in A. fumigatus. Loss of 

either conidial or mycelial catalases can be circumvented due to a high quantity of OSR 

mechanisms in this pathogen (Brandon et al., 2015; Dagenais and Keller, 2009; Paris et al., 

2003). Therefore, malfunction or loss of one element of the OSR can probably be 

compensated by factors with redundant function.  

 

4.6.2 ZtfA activates the thioredoxin system during H2O2 stress in A. nidulans  

The OSR in fungi comprises enzymes, such as catalases, as well as redox systems (Bayram et 

al., 2016; Carmel-Harel and Storz, 2000; Kawasaki et al., 1997; Kawasaki and Aguirre, 2001; 

Navarro et al., 1996; Sato et al., 2009; Thön et al., 2007). The glutathione- and thioredoxin-

dependent redox systems are important parts of the cellular oxidative stress defense 

mechanisms in fungi (Carmel-Harel and Storz, 2000; Emri et al., 2015; Jamieson, 1998; 

Kawasaki et al., 1997; Larochelle et al., 2006; Thön et al., 2007, 2010). ZtfA is necessary for 

induction of several stress response genes when H2O2 is present. The thioredoxin system 

comprises thioredoxin (TrxA) and its reductase (TrxR) (Holmgren, 1985, 2002). The small 

thioredoxins reduce disulfides in their targets and are re-reduced by their thioredoxin 

reductases, which use NADPH as electron donor and FAD as co-factor (Thön et al., 2007) 

(FIGURE 56). ZtfA is necessary for induction of trxR gene expression in response to H2O2 but 

not involved in the general expression of the thioredoxin system during unstressed conditions.  
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The thioredoxin system possesses a key role in the redox regulation and is important for 

development in A. nidulans (Thön et al., 2007, 2010). Hence, this regulation upon oxidative 

stress might represent a second layer of developmental regulation by ZtfA in response to 

intracellular redox homeostasis. The glutathione system functions similar to the thioredoxin 

system. Glutathione reduces ROS and is re-reduced by its glutathione reductase (GlrA) using 

NADPH as electron donor (Bakti et al., 2017; Meister and Anderson, 1983). Influences of 

ZtfA upon the glutathione system were less pronounced and upregulation of glrA expression 

during H2O2 stress is not ZtfA dependent. The thioredoxin and the glutathione system interact 

in the redox regulation in fungi (Sato et al., 2009; Song et al., 2006; Thön et al., 2007; Trotter 

and Grant, 2003). The weak regulatory effects upon the glutathione system observed in this 

study might be explainable by its interplay with the ZtfA-dependent thioredoxin system. 

 

 

FIGURE 56: ZtfA regulates gene expression in response to hydrogen peroxide in 

A. nidulans.  

A simplified model of ZtfA-dependent gene regulation in response to H2O2 in A. nidulans is 

shown. H2O2 stress (yellow) leads to oxidation of proteins (Ox., grey), which are reduced 

(Red., grey) by thioredoxin (TrxA). TrxA in turn is oxidized at its redox-active cysteine pair 

and subsequently is re-reduced in a NADPH-dependent reaction catalyzed by thioredoxin 

reductase (TrxR), which itself uses a redox-active cysteine pair. ztfA transcription is 

upregulated during H2O2 stress and increased ZtfA amounts result in upregulation of crucial 

parts of the OSR, such as trxR, catA and rsmA. The transcription factor RsmA then regulates 

further downstream genes. 
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4.6.3 ZtfA is important for catalase gene upregulation in response to H2O2 in 

A. nidulans 

Antioxidant enzymes, such as catalases, are involved in the fungal OSR. At least five 

catalases exist and from these at least four are involved in the A. nidulans OSR (Bayram et 

al., 2016; Kawasaki et al., 1997; Kawasaki and Aguirre, 2001; Navarro et al., 1996). CatA 

and CatB are involved in general OSR, whereas CatC and CatD activity was found in only 

certain stress situations or certain cellular structures (Kawasaki and Aguirre, 2001; Scherer et 

al., 2002). Deletion of catA, B and C, as well as double and triple deletions did not have 

developmental influences in A. nidulans (Kawasaki et al., 1997; Kawasaki and Aguirre, 

2001). The hyphal catalase B (CatB) protects against external as well as internal H2O2 

(Kawasaki et al., 1997). catC is not induced during oxidative or osmotic stress and only 

slightly upregulated by heat shock stress whereas CatD activity was found to be even more 

specific (Kawasaki and Aguirre, 2001). catA and catB mRNA accumulate upon oxidative 

stress treatment in A. nidulans (Navarro and Aguirre, 1998; Noventa-Jordão et al., 1999). In 

contrast to WT, catA expression is not induced in ΔztfA upon H2O2 treatment but strongly 

induced in ztfA OE during vegetative growth. This might be due to the diminished 

conidiophores in ΔztfA, since CatA is a spore specific catalase. However, it has been shown 

that spore formation is not a requirement for catA expression (Navarro et al., 1996). Notably, 

in ztfA OE, catA is already upregulated in a non-stressed situation compared to WT. This 

might be due to the fact that ztfA OE already forms conidiophores during vegetative growth. 

Thereby, ROS are produced, which have to be detoxified. catA upregulation upon oxidative 

stress is strongly ZtfA dependent since a regulation upon hydrogen peroxide treatment was 

absent in ΔztfA. catB expression is not upregulated in WT or ΔztfA under tested conditions 

upon hydrogen peroxide treatment. This can be explained by the fact that different parts of the 

OSR react to different oxidative stressors (Emri et al., 2015). Non-equivalent response to 

different oxidative stressors has been shown for OSR in other fungi as well (Moye-Rowley, 

2003). Nevertheless, ztfA OE is sufficient to induce catB upregulation even under tested 

conditions. Since ztfA OE does not show increased tolerance towards H2O2, it is assumable 

that further mechanisms exist, which are more important in the OSR than the products of the 

genes tested in this study. It is likely that ZtfA regulates the OSR in general as the conditions 

tested here only show a snapshot of the total OSR in A. nidulans.  

ZtfA is presumably not necessary for the general expression of OSR genes under non-stressed 

conditions since all tested genes are expressed, but several OSR genes are not regulated in the 

absence of ztfA upon hydrogen peroxide stress. A loss of ztfA does not result in increased 
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sensitivity but in a decreased sensitivity towards hydrogen peroxide stress. For several other 

mutants, where OSR genes are misregulated, increased sensitivity due to disturbed OSR was 

found. Deletion of catA and catB leads to decreased tolerance of conidiospores towards H2O2 

and impaired colony growth in the presence of H2O2, respectively (Kawasaki et al., 1997; 

Navarro et al., 1996). Loss of sskA or srrA leads to hypersensitivity towards hydrogen 

peroxide and downregulation of catA and catB expression (Hagiwara et al., 2007). Loss of 

atfA or sakA increases oxidative stress sensitivity as well (Emri et al., 2015; Kawasaki et al., 

2002). ZtfA in general acts as repressor for the oxidative stress tolerance but positively 

regulates expression of redox system and catalase encoding genes in response to H2O2. ZtfA 

presumably regulates expression of further, yet unknown, factors of the OSR in A. nidulans, 

which are important for oxidative stress tolerance. 

 

 

4.7 ZtfA is localized in nuclei of germlings, hyphae and conidiophores and interacts 

with RcoA in A. nidulans 

4.7.1 Nuclear localization of ZtfA is important for A. nidulans 

Transcription factors need to be localized in the nucleus in order to regulate gene expression. 

Zinc cluster proteins can be divided into two groups with respect to their localization: 

i) proteins, which are permanently localized in the nucleus and ii) proteins, which are 

localized in the cytoplasm and shuttled into the nucleus upon their activation signal 

(MacPherson et al., 2006). For the first group it is postulated that its members are activated by 

target molecules or metabolic intermediates (Flynn and Reece, 1999; Harbison et al., 2004; 

Kirkpatrick and Schimmel, 1995; Sellick and Reece, 2003, 2005). α/ß importin heterodimers 

bind to the NLS of cargo proteins and the complex shuttles into the nucleus through nuclear 

pores (Beck and Hurt, 2017; Garcia et al., 2016; Lim et al., 2015; Miyamoto et al., 2016; 

Schwartz, 2016). In silico analyses predicted a NLS with high confidence for ZtfA and a NES 

with lower scores. Fluorescence microscopic analyses of GFP-tagged ZtfA proteins show a 

nuclear localization during all conditions tested. Four importins were identified in pull-down 

experiments as putative interaction partners of ZtfA. This suggests that a rapid nuclear 

localization of ZtfA is important for the fungus. This is supported by the nuclear localization 

of ZtfA in germlings, hyphae and conidiophores, which in conclusion, is important for 

A. nidulans during asexual growth and ongoing asexual development. 
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4.7.2 The RcoA-ZtfA complex might function in secondary metabolism and 

development 

Several proteins were identified in pull-downs with GFP-tagged ZtfA. A number of these 

putative binding partners of ZtfA are uncharacterized proteins. Importantly, ZtfA pulled down 

different interaction partners during different developmental stages. This indicates that ZtfA 

might specifically interact with different proteins depending on developmental stages. RcoA 

was identified as putative interaction partner during vegetative, asexual and sexual growth. 

The interaction of RcoA and ZtfA was further verified in vivo, demonstrating the presence of 

a ZtfA-RcoA complex. RcoA is a VeA-dependent WD40 repeat protein, which regulates 

developmental programs, as well as sterigmatocystin production (Bayram and Braus, 2012; 

Hicks et al., 2001; Todd et al., 2003, 2006). RcoA fulfills its regulatory functions partly in a 

conserved co-repressor complex together with SsnF (García et al., 2008; Hicks et al., 2001; 

Jöhnk et al., 2016; Todd et al., 2003). SsnF was not found in GFP-trap experiments with ZtfA 

as bait. Therefore, it is not clear at the moment if ZtfA interacts with this co-repressor 

complex. The SsnF-RcoA co-repressor complex corresponds to the yeast Ssn6-Tup1 co-

repressor, which binds different DNA-binding proteins as substrate linkers (Cupertino et al., 

2015; Hanlon et al., 2011; Roy et al., 2013). The Ssn6-Tup1 co-repressor is involved in 

hypoacetylation of H3 and H4 histones and the positioning of nucleosomes, thereby blocking 

DNA-accessibility for the transcription machinery (Church et al., 2017; Davie et al., 2003; 

Fleming et al., 2014; Rizzo et al., 2011; Watson, 2000). Furthermore, the co-repressor 

competes with transcription factors for promoter binding and can occlude promoters, thereby 

repressing gene transcription (Islam et al., 2011; Merhej et al., 2015) (FIGURE 57).  

 

 

FIGURE 57: Regulatory roles of RcoA-ZtfA upon target genes. 

The model summarizes two possibilities of gene expression regulation of RcoA-ZtfA. The 

complex could compete with the SsnF-RcoA co-repressor complex in both, special promoter 

binding and RcoA disposability (left hand side). ZtfA itself could also function as protein 

linker between SsnF-RcoA and DNA (right hand side). Both possibilities might coexist.  
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Transcriptional data gathered in this study suggest mainly activating effects of ZtfA towards 

downstream targets, but repressing effects upon flb genes were found during late asexual 

development as well. A switch from repression to activation of downstream targets in 

response to physiological conditions has been shown for RcoA (Hicks et al., 2001). 

Accumulation of brlA mRNA is delayed in the absence of rcoA (Hicks et al., 2001). 

Therefore it is possible, that an RcoA-ZtfA complex regulates flbC, flbD or brlA expression. 

In this scenario, RcoA-ZtfA could compete with the SsnF-RcoA co-repressor for promoter 

binding of target genes as well as for RcoA disposability (FIGURE 57). A second possibility 

emerges: ZtfA could also function as substrate linker between the SsnF-RcoA co-repressor 

and respective target promoters (FIGURE 57). 

RcoA is involved in regulation of secondary metabolism in A. nidulans. aflR and stcU 

transcripts were not detected in the absence of rcoA and sterigmatocystin is not produced 

(Hicks et al., 2001). Therefore, it is tempting to speculate that ZtfA regulates sterigmatocystin 

production as an RcoA-ZtfA complex. ZtfA or RcoA could further act as monomers or 

heteromeric complexes with other proteins in such a scenario. This would explain why a loss 

as well as an overexpression of ztfA upregulates sterigmatocystin biosynthesis: both situations 

would change the equilibrium of possible monomers or complexes. An interaction of RcoA 

and ZtfA is also interesting since HPLC data suggest that ZtfA regulates the production of 

further SMs, which could not be clarified in this study. Most SM gene clusters are silent under 

laboratory conditions in fungi and the proportion of unknown SMs is presumably significantly 

larger than the proportion of already known SMs (Gerke et al., 2012b; Gerke and Braus, 

2014; Hoffmeister and Keller, 2007; Khaldi et al., 2010). Therefore, a better understanding of 

this RcoA-ZtfA protein complex, especially with respect to putative regulation of SM gene 

clusters, is important. 

 
 

4.8 ZtfA regulates adhesion in A. fumigatus  

4.8.1 Functional conversion of transcription factors between A. nidulans and 

A. fumigatus 

Functional conversion of transcription factors and other regulatory proteins, which act as 

developmental regulators in A. nidulans, to SM or virulence factors in A. fumigatus has been 

shown in several studies. VeA is the most prominent example for such a functional 

conversion: VeA is a negative regulator of asexual development in response to light in 

A. nidulans (Bayram et al., 2008a, 2008b; Käfer, 1965; Terfrüchte et al., 2014). In contrast, 
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loss of veA in A. fumigatus does not result in an obvious phenotype under normal growth 

conditions, but VeA is rather a positive SM regulator in this fungus (Dhingra et al., 2012, 

2013; Krappmann et al., 2005). MtfA is another example for a transcription factor, which is 

required for development in A. nidulans, but underwent a functional conversion in 

A. fumigatus (Ramamoorthy et al., 2013; Smith and Calvo, 2014). aflR gene expression and 

sterigmatocystin production are decreased in the absence of mtfA and conidiation and Hülle 

cell numbers are diminished in A. nidulans (Ramamoorthy et al., 2013). Deletion of mtfA in 

A. fumigatus leads only to a minor developmental phenotype, but virulence in G. mellonella 

infection is decreased (Smith and Calvo, 2014). Functional conversions of proteins, which do 

not act as transcription factors, have been shown as well. F-box proteins are substrate linkers 

for SCF complexes which, together with the COP9 signalosome (CSN), function in the 

conserved ubiquitin proteasome pathway (UPP) as target carriers for protein degradation via 

the ubiquitin 26S proteasome system (Braus et al., 2010; Ciechanover, 1998; Meister et al., 

2016; von Zeska Kress et al., 2012). Deletion of the F-box protein Fbx15 in A. nidulans 

results in drastically reduced sexual and asexual development (von Zeska Kress et al., 2012). 

In contrast, the ortholog in A. fumigatus is not involved in asexual development, but essential 

for general stress response and virulence (Jöhnk et al., 2016). 

 

4.8.2 ZtfA is involved in the regulation of polysaccharide production, gene expression 

of adhesion factors and the response to cell wall stress in A. fumigatus 

Polysaccharides are an important virulence determinant and crucial for surface adhesion, an 

important step during host invasion of pathogenic fungi (Gravelat et al., 2013; Kaur and 

Singh, 2013; Lin et al., 2015; Sheppard, 2011). ZtfA is involved in regulation of 

polysaccharide production in A. fumigatus. The genes Afu3g13110 and Afu3g00880 encode 

putative adhesins and Afu3g00880 is regulated by MedA (Chaudhuri et al., 2011; Gravelat et 

al., 2010; Lin et al., 2015). MedA is regulated by SomA and has been shown to regulate 

conidiation and adhesion in A. fumigatus (Gravelat et al., 2010, 2013; Lin et al., 2015). The 

function of MedA is conserved in A. nidulans as it is involved in conidiophore development 

via regulation of temporal brlA expression (Busby et al., 1996; Clutterbuck, 1969). ZtfA 

induces Afu3g00880 expression and is essential for Afu3g13110 expression. This indicates 

that ZtfA regulates adhesion in A. fumigatus and might render ZtfA a possible virulence factor 

(FIGURE 58).  

The fungal cell wall is an important interface between host and fungal cells and contains 

adhesins and other molecules necessary for host invasion (Bruneau et al., 2001; Karkowska-
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Kuleta et al., 2009; Latgé et al., 1993). At least two pigments are present in the A. fumigatus 

cell wall, which have protective functions against environmental stresses, such as UV-

radiation and ROS (Heinekamp et al., 2012; Rambach et al., 2015; Schmaler-Ripcke et al., 

2009; Sugareva et al., 2006). Tolerance to SDS was reduced in ztfA OE in A. fumigatus. SDS 

induces cell wall stress by disrupting the cell membrane (Fortwendel et al., 2008; Ram et al., 

2004). Involvement of ZtfA in the regulation of defense against cell wall stress might 

represent another layer of a possible involvement in virulence. 

 

 

FIGURE 58: ZtfA regulates surface adhesion in A. fumigatus. 

ZtfA regulates adhesion through regulation of expression of adhesin-encoding Afu3g00880 

(3g00880) and Afu3g13110 (3g13110) and regulation of polysaccharide production in 

A. fumigatus. It might be involved in brlA gene expression regulation, but is dispensable for 

conidiation.  

 

The A. fumigatus ΔztfA strain did not show an obvious virulence phenotype in a G. mellonella 

infection assay. G. mellonella has been shown to serve as a suitable virulence model for 

developmental- and adhesion-defective A. fumigatus mutants and virulence data obtained in 

several studies are congruent with data from mice infections (Brennan et al., 2002; Lin et al., 

2015; Renwick et al., 2006; Slater et al., 2011; Smith and Calvo, 2014). Similarly, 

G. mellonella has successfully been established as virulence model for other fungal 

pathogens, such as C. albicans strains defective in development and hyphal growth (Brennan 

et al., 2002). The conformity in virulence between WT and ΔztfA might be due to the fact that 

loss of ztfA did not lead to an obvious developmental defect in A. fumigatus. Utilization of 

insects as infection models emerged due to the fact that the innate immune response of insects 

and mammals, which is an important defense against fungal infections, is highly similar even 

though their immune systems differ greatly (Brennan et al., 2002; Cohn et al., 2001; Ratcliffe, 
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1985; Romani, 1999; Salzet, 2001). However, striking differences in virulence between 

G. mellonella and mice infections have been reported previously (Loh et al., 2013; Olsen et 

al., 2011). Cook and McArthur pointed out that, since genomic information are limited and 

standardized sources for G. mellonella larvae are missing, genetic variability might influence 

virulence tests, as previously shown for Drosophila melanogaster (Cook and McArthur, 

2013; Tinsley et al., 2006). Moreover, propagation conditions of G. mellonella larvae might 

differ greatly between suppliers and might influence associated microbiota, which may impact 

virulence assays as well (Cook and McArthur, 2013). Therefore, an involvement of ZtfA in 

other infection models cannot be excluded. 

Taken together, ZtfA of A. fumigatus is involved in the regulation of fungal adhesion. ZtfA 

might be involved in virulence, since adhesion is an important virulence determinant, but is 

dispensable for G. mellonella infection. 

 

 

4.9 Conclusion and outlook 

This study shows that the transcription factor ZtfA is a novel activator of conidiation and 

secondary metabolism in A. nidulans. Its presence is conserved in Aspergilli. ZtfA is 

dispensable for conidiation in A. fumigatus, but regulates adhesion in this opportunistic 

pathogenic mold. ZtfA acts downstream of the velvet factor VosA in A. nidulans, which 

represses ztfA gene expression during late asexual growth.  

Velvet factors constitute a family of transcription factors, which are important for the 

interconnection of developmental programs and secondary metabolism in fungi. This study 

underlines the importance of the genetic networks regulated by the velvet factors. Even 

though velvet factors are fungal specific proteins, these findings are of importance for the 

understanding of genetic networks in general, since fungal growth has striking similarities in 

common with neuronal development (Etxebeste and Espeso, 2016). The fungal-specific velvet 

proteins share structural similarities with NF-κBs of animals (Ahmed et al., 2013), indicating 

a certain conservation of defense mechanisms and growth of cellular networks. NF-κBs can 

function as activators as well as repressors of target gene expression and possess auto-

regulatory features (Snow and Albensi, 2016). NF-κBs are involved in regulation of 

neurogenesis and neuronal differentiation, cell viability, neuronal network formation, 

neuronal and synaptic plasticity and synaptic transmission in humans (Engelmann and 

Haenold, 2016; Snow and Albensi, 2016). Both, the fungal velvet genetic network as well as 

the NF-κB network exhibit nuclear import control mechanisms and execute their regulatory 

roles as homo- and heterodimers (Bayram et al., 2008a; Sarikaya-Bayram et al., 2015; Zabel 
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et al., 1993). The present study suggests further similarities between both regulatory 

networks, especially with respect to functions of their downstream factors (fungal 

growth/neuronal development). In conclusion, genetic networks of organisms, evolutionary as 

far away from each other as mammalians and fungi, share similarities on regulatory levels. 

ZtfA is a new activator for brlA gene expression, which encodes the master conidiation 

regulator and its activators, encoded by flbC and flbD. EMSA or ChIP experiments are 

interesting to proof direct promoter binding of ZtfA to brlA, flbC and flbD and to further ZtfA 

targets. This is also interesting regarding ZtfA’s regulation of the fungal OSR. 

The ZtfA protein is phosphorylated at at least three amino acid residues and it will be 

interesting to learn more about its regulatory mechanisms. Further analyses of the 

ztfA
S327A,T464A,S504-506A

 strain and investigations of possible further phosphorylation sites are 

attractive. Construction and analysis of a permanently phosphorylated ZtfA-expressing strain 

is of interest as well. Further studies of ZtfA in A. fumigatus are promising to increase 

knowledge about the mechanisms underlying functional conversions of regulators between 

genetic models and pathogenic fungi. Construction and analyses of mutants of ztfA and velvet 

or other developmental genes are promising in this respect. 

ZtfA is an activator of several SM cluster genes in A. nidulans and represents a promising 

candidate for the identification of new SMs through further analyses of the ztfA mutant strains 

and the RcoA-ZtfA complex. A better understanding of SM regulation is important, as a vast 

amount of bioactive natural products is still unknown, which might have deleterious as well as 

beneficial potential to humankind (Gerke et al., 2012b; Gerke and Braus, 2014; Keller et al., 

2005; Soukup et al., 2016). The group of unknown SMs, which are not produced under 

laboratory conditions, is presumably significantly larger than the proportion of already known 

SMs (Hoffmeister and Keller, 2007; Khaldi et al., 2010). Broadened knowledge of 

appropriate strategies against fungal food contaminants and health treats is another crucial 

outcome of future studies. Analyses of ZtfA's regulatory influences upon SM production in 

A. fumigatus are appealing in this respect as well. 

Taken together, ZtfA is an important activator of conidiation and SM gene expression in 

A. nidulans. Parts of its functions are conserved in other Aspergilli, but functional conversion 

was observed as well. ZtfA represents a promising candidate to identify new SMs. Future 

studies will broaden our knowledge about interconnection of SM production and asexual 

development, as well as functional conversion of important regulators between A. nidulans 

and A. fumigatus. 
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