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Data intensive ATLAS workflows in the Cloud

Abstract

Large physics experiments, such as ATLAS, have participating physicists and institutes all over
the Globe. Nowadays, physics analyses are performed on data that is stored thousands of kilo-
metres away. This is possible due to the distributed computing infrastructure known as the
Worldwide LHC Computing Grid (WLCG). In addition to the analyses, all the previous data
transformation steps, such as raw data reconstruction, are performed within the WLCG. Within
the next decade, the computing requirements are projected to exceed the available resources by
a factor of ten. In order to mitigate this discrepancy, alternative computing solutions have to
be investigated. Within this thesis, the viability of Cloud computing is evaluated. The concept
of Cloud computing is to rent infrastructure from a commercial provider. In contrast to that,
in the WLCG computing concept the hardware within the computing centres is purchased and
operated by the WLCG. In order to examine Cloud computing, a model that predicts the work-
flow performance on a given infrastructure is created, validated and applied. In parallel, the
model was used to evaluate a workflow optimisation technique called overcommitting. Overcom-
mitting means that the workload on a computer consists of more parallel processes than there
are CPU cores. This technique is used to fill otherwise idle CPU cycles and thereby increase
the CPU utilisation. Using the model, overcommitting is determined to be a viable optimisation
technique, especially when using remote data input, taking into account the increased memory
footprint. Introducing the overcommitting considerations to the Cloud viability evaluation in-
creases the feasibility of Cloud computing. This is because Cloud computing may not include
a storage solution and has the flexibility to provision virtual machines with additional memory.
The final conclusion is drawn by taking the above described results and by combining them with
the cost of the WLCG and the Cloud. The result is that Cloud computing is not yet competitive
compared to the WLCG computing concept.
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Zusammenfassung

Die grofien Physikexperimente, wie zum Beispiel ATLAS, bestehen aus Kollaborationen mit
Physikern und Instituten auf der ganzen Welt. Heutzutage werden physikalische Analysen
an Daten durchgefiihrt, die Tausende von Kilometern entfernt gespeichert sind. Dies ist auf-
grund der verteilten Computing-Infrastruktur, die als Worldwide LHC Computing Grid (WLCG)
bekannt ist, moglich. Zusétzlich zu den Analysen werden alle vorherigen Datentransformation-
sschritte, wie die Rekonstruktion von Rohdaten, innerhalb des WLCG durchgefiihrt. Innerhalb
des néchsten Jahrzehnts wird erwartet, dass die Anforderungen an die Computerinfrastruktur
die verfiighbaren Ressourcen um den Faktor zehn iibersteigen werden. Um diese Diskrepanz zu
mindern, miissen Alternativen zur jetzigen Computerinfrastruktur untersucht werden. Im Rah-
men dieser Arbeit wird Cloud Computing evaluiert. Das Konzept von Cloud Computing besteht
darin, eine Computerinfrastruktur von einem kommerziellen Anbieter zu mieten. Dies steht im
Gegensatz zum WLCG Konzept, in dem die Ausstattung der Rechenzentren gekauft und selbst
betrieben wird. Um Cloud Computing zu untersuchen, wird ein Modell erstellt, validiert und
angewendet, dass das Verhalten von Arbeitsfliissen auf einer beliebigen Infrastruktur vorher-
sagt. Parallel dazu wurde das Modell zur Bewertung einer Arbeitsfluss-Optimierungsmethode
namens Overcommitting verwendet. Overcomitting bedeutet, dass die Arbeitslast auf einem
Computer aus mehr parallelen Prozessen besteht, als CPU-Kerne vorhanden sind. Diese Tech-
nik wird verwendet, um ansonsten ungenutzte CPU-Zyklen zu fiillen und dadurch die CPU-
Auslastung zu erhéhen. Unter der Verwendung des Modells wird das Overcommitting als eine
brauchbare Optimierungstechnik ermittelt. Dies gilt insbesondere dann, wenn die Daten nur
auf weit entfernten Speichermedien vorhanden sind und unter der Beriicksichtigung des erhéhten
Bedarfs an Arbeitsspeicher. Der Einbezug dieser Uberlegungen in die Cloud Computing Eval-
uation verbessert dessen Stellung. Dies liegt daran, dass Cloud Computing nicht unbedingt
Speichermoglichkeiten enthélt und flexibel genug ist, um virtuellen Maschinen zusétzlichen Ar-
beitsspeicher zuzuweisen. Unter Berticksichtigung all dieser Gesichtspunkte und in Kombination
mit den Kostenmodellen des WLCG und der Cloud, ergibt sich, dass Cloud Computing noch
nicht konkurrenzfahig gegeniiber dem bisherigen WLCG Konzept ist.
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CHAPTER 1

Introduction

It is in our human nature to be curious and to thirst for knowledge. These human char-
acteristics combined with a complex world result in the field of physics. The ultimate
goal of physics is to have a complete and accurate description of the universe and every-
thing in it. In order to make such a description, many experiments and measurements
are necessary. Nowadays, the boundary of the unknown has been pushed to include par-
ticles that are infinitely small, according to our current understanding, but is far from
complete.

The search for new particles in the 21st century is taking place through cosmic obser-
vations and terrestrial particle acceleration. With recent advancements in technology,
the scale of these experiments has increased massively. Not only are the experimental
setups several kilometres in size, but the amounts of data that are being collected is also
enormous.

These efforts culminated in the discovery of the Higgs Boson. The Higgs Boson was
one of the missing pieces, that were needed in order to complete the Standard Model
and the understanding of the universe. Finding the Higgs Boson was, however, only one
of the many purposes of the ongoing High Energy Physics (HEP) experiments. There
are still a multitude of open questions about the universe, which to this day, remain
unanswered.

1.1 Motivation

The times in which a computer could handle the data processing of an experiment have
long since passed. Nowadays, thousands of interconnected Central Processing Units
(CPUs) are necessary to keep up with the ratio at which physics data is collected.
There is no end in sight, to the steady increase in data that is analysed to further the
understanding of the universe.



1 Introduction

The increase in computational requirements can even be observed within the same
experiments. According to the latest prognoses, the computing and storage requirements
that the four major HEP experiments will pose, is ten times higher than what can be
delivered, assuming a flat budget. There are several approaches to solve this issue. In
this thesis, a cost reduction by outsourcing the computing to commercial providers is
investigated.

1.2 Thesis structure

In Chapter 2 the Standard Model is introduced. It is the basis of modern particle
physics. It is being experimentally tested in large experiments, one of the biggest being
ATLAS, which is described in Chapter 3. The ATLAS collaboration, that consists of
many physicists located around the Globe, is able to work together due to the distributed
computing infrastructure. The infrastructure is explained in detail in Chapter 4, that
introduces the most important components. The workflows that are enabled by this
infrastructure are described in Chapter 5. They are the basis and provide the boundary
conditions of a possible outsourcing of the computing infrastructure into the Cloud. In
order to understand, whether this would be beneficial, and in order to optimise the whole
computing infrastructure, the Workflow and Infrastructure Model was created. It is
introduced in Chapter 6, where the underlying logic is described in detail. Measurements
of the workflow performance within the Cloud are undertaken in Chapter 7. The same
Chapter also uses the measured data to verify the model as well as applying it to different
use cases. In Chapter 8, Overcommitting, an optimisation technique is investigated in
detail. This is done by comparing the results of measurements and by applying the
model. In Chapter 9 a final conclusion of the previous measurements and the viability
of Cloud computing is drawn. At the end, a summary of all activities described within
this thesis is given, see Chapter 10. The thesis concludes with an indication of the future
direction of the ATLAS computing.



CHAPTER 2

The Standard Model of particle physics

The Standard Model (SM) describes the current knowledge of elementary particles and
the interactions between them. A schematic overview of the SM particles is given in
Figure 2.1.

There are six different types of quarks and leptons. Each have corresponding antipar-
ticles, which are not included in the diagram. These antiparticles are similar to their
corresponding particle, except that they have the opposite electric charge. The excep-
tion are neutrinos which do not carry an electric charge. Quarks and leptons are spin %
particles, so called fermions.

In addition, six different spin 1 particles (bosons) are included in the SM. The five

force carrying bosons and their interaction are described in the following.

2.1 Interactions

Apart from gravitation, which is not included in the SM, there are three fundamental
interactions. Particles can interact via the strong, the weak and the electromagnetic
force. The forces can be described by fermions interacting with each other by exchang-
ing gauge bosons, the force carriers.

These three interactions all conserve the energy, the momentum, the angular momen-
tum, the electric charge, the weak isospin, the colour, the baryon number, and the lepton
numbers.

2.1.1 Weak interaction

The weak force couples to the weak isospin. Charged as well as neutral leptons interact
via the weak force which couples to the weak isospin. The force carriers of the weak
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three generations of fermions
12 fermions (+12 anti-fermions)
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Figure 2.1: The elementary particles of the Standard Model of Particle Physics, including
categorisations in quarks and leptons (in three generations) and bosons. The
letter ¢ in the upper right corner indicates particles carrying a colour charge.
The indicated masses represent results from measurements.

interaction are the W+ and Z° bosons. The high mass of these gauge bosons (80.385 +
0.015 GeV for the W* and 91.1876 +0.0021 GeV for the Z° bosons [1]) leads to a short
lifetime, which explains the short range of the weak force. The weak interaction violates
the parity- (P) and the charge-parity- (CP) symmetry.

One example of a weak interaction is the S~ decay, the Feynman diagram of which
can be seen in Figure 2.2. The coupling of a W~ boson to quarks as well as leptons is
shown. The down quark is converted into an up quark by emitting a W~ boson which
decays into electron and electron-neutrino.

The weak interaction couples only to left handed fermions and right handed an-
tifermions. This is explained by the V-A-theory which introduces a Vector minus Axial
vector Lagrangian for the weak interaction.
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4 udu Ve

udd

Figure 2.2: Feynman diagram of the beta minus decay, transforming a neutron into
a proton (down into up quark) via the weak interaction. This process is
common in unstable atomic nuclei (excess of neutrons) or free neutrons. The
released electron can be identified as beta-radiation.

2.1.2 Electromagnetic interaction

The electromagnetic interaction is mediated by a massless photon and couples to the
electric charge. The range of this interaction is infinite, which makes the electromagnetic
force (apart from gravity) the predominantly observed force in the macroscopic and
visible universe.

2.1.3 Electroweak unification

At high energies, above the electroweak unification energy of around 246 GeV, weak
and electromagnetic interactions appear as one interaction. The electroweak unification
theory by Glashow Salam and Weinberg [2] [3] [4], describes how these two interactions
are manifestations of the same force.

According to this theory, the gauge bosons would have to be massless, which is in
contradiction to the heavy mass of the W* and Z° bosons. This conflict is solved by
the Higgs mechanism described in Subsection 2.1.6.

2.1.4 Strong interaction

The strong force is mediated by massless gluons and described by quantum chromody-
namics (QCD). The gluons couple to the colour charge, which exists in three different
versions (red, green, and blue). Each gluon carries a colour and an anticolour. This
leads to eight different gluons, according to the combinations that are possible with
three different colours and anti-colours.

The range of the strong interaction is short due to the self-interactions of the gluons.
At very short distances or high energies, these self-interactions weaken the strong force
(asymptotic freedom).
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At long distances or low energies, the interaction becomes very strong leading to a so
called confinement of the quarks.

2.1.5 Quarks and leptons

In the SM, quarks and leptons are grouped into three generations, with the same prop-
erties apart from the mass.

The quark doublet of each generation consists of an ”up-like” quark (up-, charm-,
top-quark) with an electric charge of +2/3 and a "down-like” quark (down-, strange-,
bottom-quark) with an electric charge of —1/3. In addition to the electric charge, quarks
carry also colour charge and weak isospin. Hence, they interact via the electromagnetic,
weak and strong interactions. They can change their flavour via the charged weak inter-
action. The probability of these decays is described by the unitary Cabibbo-Kobayashi-
Maskawa matrix (CKM matrix). Flavour changing neutral currents are suppressed by
the Glashow-Iliopoulos-Maiani mechanism. They have been observed for the first time
at the Collider Detector at Fermilab (CDF) [5].

The electrically charged leptons of the three generations are called electron, muon
and tau. Since they also carry weak isospin, they interact via the electromagnetic and
the weak interactions. To each of the charged leptons exists an electrically neutral
neutrino. The masses of the neutrinos are found to be extremely small. They carry only
weak isospin and thus interact via the weak force, which makes them difficult to detect.
An explanation for the small mass could be that neutrinos are their own antiparticles
(Majorana particle), which is possible because they have no electric charge.

2.1.6 The Higgs mechanism

The problem of the unexplained high mass of the W* and Z° bosons, which break the
gauge symmetry, can be solved with the Higgs mechanism. The Higgs mechanism gives
mass to the gauge bosons of the weak interaction, without introducing mass terms that
are not consistent with the local gauge invariance.

It can be explained by a Higgs field, that is present everywhere. The Lagrangian for
this field is:

L iiggs = (0u2)1(8,2) — V(@) (2.1)
The Higgs potential can be described by:
V(®) = i2Td + \(DTd)? (2.2)

where )\ has to be positive and j is not constrained. For ;2 > 0, the potential has only one
minimum at zero, preserving the symmetry. For p? < 0 an infinite number of minima is
prevalent and the choice of the physical vacuum expectation value spontaneously breaks
the symmetry. The asymmetry of the vacuum ground state can be illustrated by looking
at the Higgs potential, which has the shape of a Mexican hat, illustrated in Figure 2.3.

The spontaneous breaking of the symmetry caused by this asymmetry gives mass to
the W* and Z° bosons. Because the photon is required to remain massless, the only
free parameter left is the Higgs field which can be identified with the Higgs boson.
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Figure 2.3: Graphical representation of the Higgs potential, where p? < 0.

The Higgs boson has been discovered by the ATLAS [6] and CMS [7] collaborations
at the LHC [8] [9]. It has a mass of 125 £ 0.21(stat) &+ 0.11(syst) GeV [10].

2.2 Beyond the Standard Model

There are phenomena that are unexplained by the SM, a few of them are stated briefly
in the following.

Over one quarter of the visible universe is hypothesised to be made of dark matter.
Dark matter has not been observed directly, hence the name. Strong indicators of its
existence are the measurements of the cosmic microwave background and the rotational
speed of galaxies, that according to calculations would need to have much more mass
than is visible. There is no SM candidate for dark matter which could account for all
the dark matter in the universe.

Similarly, there is no SM candidate for dark energy. Dark energy explains the observed
acceleration of the universe’s expansion. These observations lead to the conclusion that
over % of the universe consist of dark energy. It is hypothesised to exist throughout all
of space, but has never been measured.

Moreover, the matter-antimatter asymmetry cannot be explained by the SM. The big
bang should have created equal amounts of matter and antimatter, yet more matter than
antimatter is observed. One explanation would be the charge parity (CP) violation in
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weak interactions. The measured CP violations are however not big enough to explain
the extent of the existing asymmetry.

Furthermore, gravity could not yet be included in the SM, but plays an important
role at very high energies.



CHAPTER 3

The ATLAS detector

3.1 LHC

3.1.1 CERN

CERN, the European Organization for Nuclear Research, is home to multiple linear! as

well as circular? particle accelerators. The Large Hadron Collider (LHC) is the biggest
amongst them. CERN was founded in 1954 and is located close to Geneva in Switzerland,
spanning across the border into France. Amongst its major achievements is the discovery
of the W and Z bosons, as well as the founding of the World Wide Web. CERN is funded
by contributions from its 22 member states. There are around 2500 staff members
employed by CERN, only 3% of which are actually research physicists. The staff is
mostly constructing, maintaining and running the machines and experiments. The ratio
of physicists is much higher when looking at the over 13000 associated CERN members,
that come mostly from international collaborations. They do not have to be based at
CERN. The distributed computing infrastructure, see Chapter 4, enables physics analysis
to be performed remotely, from anywhere in the world.

3.1.2 Machine specifics

New accelerators in particle physics are pushing the energy levels higher, in order to
detect heavier unknown particles and processes. There are several possibilities to reach
these energies, the first one is to achieve a better acceleration. Acceleration is achieved
through electric fields, which only work on electrically charged particles. The more
energy a particle should have, the longer it has to be accelerated.

'E.g.: LINAC3
’E.g. PS, SPS
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The size and therefore the material costs are a limit when considering linear colliders,
where the length determines the energy.

In a circular collider, the acceleration length is increased, by having the particles go
around the same ring multiple times. This is limited by the circular track on which
the particles have to be kept. With increasing energy, either the magnets keeping the
particles on the circular orbit through the Lorentz force [11] have to be stronger, or there
has to be a larger radius, meaning less curvature, which in turn increases the size.

Another possibility to achieve higher energies, is to use heavier particles. The LHC
uses protons, which in contrast to electrons lose less of their energy via synchrotron
radiation, when being accelerated by the bending magnets [12].

The LHC itself is a proton-proton collider consisting of two circular beam-pipes with
a length of 26.7 km. Within these beam-pipes, proton bunches consisting of around 10!
protons are accelerated in opposite directions. There are four interaction points, where
the beams cross paths and where the protons can collide with each other. The four big
experiments ALICE, ATLAS, CMS and LHCb are built around these interaction points,
in order to capture the resulting particles. The design similarities between ATLAS and
CMS exist purposely to verify and cross-check results.

One of the goals of the LHC is to generate physics processes beyond the Standard
Model [13].

Event rates

Apart from the energy, another important characteristic of an accelerator is its luminos-
ity. Especially when trying to get statistically significant data, as well as when trying to
observe rare processes, the amount of collected data, the integrated luminosity, becomes
important.

A higher luminosity means more collisions per bunch crossing. As a consequence, the
background noise in the collected data, called ‘minimum-bias’, increases [14]. In the end,
there is a trade-off between luminosity and background [14].

The High-Luminosity LHC (HL-LHC) has been approved and will be commencing
operations in 2026. It will increase the design luminosity by a factor of five [15]. This
can be achieved by reducing the beam size, and the bunch distance and length, and by
having bunches with more protons.

The LHC does not consist of only one ring, but is part of a system of pre-accelerators
that supplies the LHC with high velocity protons. A schematic view can be seen in
Figure 3.1.

The starting point of the acceleration is a bottle of hydrogen gas. First, the hydrogen
is stripped of its electrons. The resulting protons are then injected into the LINear
ACcelerator LINAC 2 that is close to the bottom in Figure 3.1. At the end of this
acceleration, the protons have an energy of 50 MeV.

Following the path in the picture, the next acceleration step happens in the Booster in
front of the Proton Synchrotron. This Booster accelerates the protons until they reach
an energy of 1.4 GeV.
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Figure 3.1: Schematic view of the LHC accelerator complex.

From there, they pass into the Proton Synchrotron (PS), which can accelerate the
protons to 25 GeV.

Afterwards, the protons are accelerated further in the Super Proton Synchrotron
(SPS), that discovered the W and Z bosons. In there, they are accelerated up to 450 GeV,
before reaching the final accelerator, the LHC.

The LHC accelerates the protons to their maximum energy of 7 TeV.

It can be said, that the previous generations of accelerators that CERN has, act as
pre-accelerators for the newest collider.

11



3 The ATLAS detector

3.2 ATLAS

With 46 m in length and 25 m in diameter A Toroidal LHC ApparatuS (ATLAS) [6] is
the biggest experiment at the LHC. It is a multiple purpose detector that was designed
over a period of 15 years specifically to match the conditions of the LHC. It is built in
several layers around the interaction point, as can be seen in Figure 3.2.

3.2.1 Detector components

In order to determine which particles have been created by a collision, without having
the possibility to directly measure them, most resulting collision and decay products
have to be measured by the detector.

The only exception are neutrinos which only interact via the weak force and therefore
pass through matter almost unobstructedly [1]. The ATLAS detector cannot detect
them directly, the presence of neutrinos is inferred from the missing transverse energy as
well as the missing transverse momentum. There is no favoured direction, so the total
sum of all momenta/energies from a collision should add up to zero. The neutrino is
therefore detected only indirectly.

25m

Tile calorimeters

LAr hadronic end-cap and

forward calorimeters
Pixel detector \

Toroid magnets LAr eleciromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation fracker

Semiconductor tracker

Figure 3.2: Schematic view of the ATLAS detector, taken from [6].

In Figure 3.2 it becomes clear that the ATLAS detector encompasses almost the entire
space around the interaction point. The only exception is the beam pipe from and to
which the particles come and go.
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A large part of the detector consists of magnets. The magnetic field, which the detector
is immersed in, helps to identify the momentum and charge of a particle. The Lorentz
force bends the track of a charged particle into a circular shape.

The figure illustrates that the detector consists of several different layers. The layers
of the detector are built in a way, that low energetic particles which interact strongly
with the detector materials are detected first. Less strongly interacting particles can
transverse these innermost layers almost unaffectedly.

3.2.2 Inner detector

The Inner Detector (ID) is used for pattern recognition, momentum and vertex mea-
surements, and electron identification. The strength of the magnetic field in the ID is
~2T.

The innermost part is made of pixels and the semiconductor tracking (SCT) detectors,
consisting of silicon microstrips [16]. They are constructed in a way that at least four
layers of strips and three layers of pixels are crossed by each particle. Further out, the
inner detector contains the Transition Radiation Tracker (TRT), which is a straw tube
tracker that allows a continuous track-following [16].

3.2.3 Calorimeters

The calorimeters determine the energy of the particles, which is deposited entirely in
the calorimeter. From this they generate an output signal that is proportional to the
particle energy deposited in the detector. Therefore, calorimeters consist of two layers,
namely an absorber and an active material that produces the output signal. There are
multiple processes of particles reacting with matter. Especially for different energies,
different processes can become more or less influential on the absorption, as can be seen
in Figure 3.3.

The particles entering the calorimeter generate a particle shower, that has to be con-
tained in the calorimeter. The absorption strength and the particle energy determine
the size of the calorimeter.

In ATLAS, two different kinds of calorimeters are used. The first one is the electro-
magnetic calorimeter, which can detect electrons and photons. The second type is the
hadron calorimeter which detects pions, protons, kaons, and neutrons. How different
particles can be distinguished is shown in Figure 3.4.

The types of particles shown leave distinctive signatures within the different detector
components/calorimeters. A further differentiation between particles with similar sig-
natures, such as protons and kaons can be done, by looking at additional parameters,
such as the ionisation energy loss.

Electromagnetic calorimeters

In ATLAS, the electromagnetic calorimeter uses Liquid Argon (LAr) as its active mate-
rial [18]. Lead is chosen as an absorber. The size is over 22 radiation lengths in order to
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Figure 3.3: Fractional energy loss per radiation length in lead as a function of electron
or positron energy. Electron and positron scattering is considered as ionisa-
tion when the energy loss per collision is below 0.255 MeV, and as Mgller
(Bhabha) scattering when it is above. X is the absorption length and E the
particle energy. (Adapted from Fig. 3.2 from [17]. Messel and Crawford use
Xo(Pb) = 5.82 g/cm?, here the figure reflects the value given in the Table of
Atomic and Nuclear Properties of Materials (Xo(Pb) = 6.37 g/cm?) [1].)

prevent electrons and photons from reaching the next detector layer, where they might
not be detected.

Hadronic calorimeters

The hadronic calorimeters consist of LAr and Tile calorimeters. The LAr calorimeter
uses tungsten and copper as absorbers. In the Tile calorimeter, steel is used as the
absorber and scintillating tiles made out of plastic as the active material [19].

3.2.4 Muon spectrometer

The muon spectrometer consist of four parts, which detect muons without absorbing
them completely. The Monitored Drift Tubes (MDT) measure the curves of the tracks
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Figure 3.4: Schematic representation of different particle tracks within the ATLAS de-
tector. Electrically neutral particles are not detected in some parts of the
detector, this is represented by a dashed line.

[20]. In addition, Cathode Strip Chambers track the position in the end caps [20]. The
Thin Gap and Resistive Plate Chambers provide the required trigger information, see
Subsection 3.2.5 [20].

3.2.5 Trigger and data acquisition

The Trigger and Data AcQuisition (TDAQ) systems are needed in order to collect all the
relevant data of the particle collisions. While running, the detector parts that have been
described above, deliver a constant stream of event data. However, due to monetary and
technological constraints, it is not possible to process and store every collision. In order
to reduce the amount of data that is coming out of the detector, the Trigger system is
in place. It reduces the data rate from the design rate of 40 MHz, to a few hundred
Hertz, [21] [22].
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This large reduction is possible, because many bunch crossings do not contain physics
analysis relevant collisions. These can be, for example, scattered protons or already well
known processes, that do not have to be examined again.

The trigger system consists of several levels, that perform increasingly complex deci-
sions on whether to store the event data.

The level 1 trigger reduces the incoming event data to around 100 kHz [22]. The
high trigger speed is achieved, by looking at only a subset of the data from the detector
components. This high level filtering is hardware based.

The level 2 trigger analyses further regions of interest, that were indicated by the level
1 trigger. The events that go from the level 2 trigger to the next trigger level, have been
reduced to a frequency of around 1 kHz [22].

The level 3 trigger analyses the full event data and reduces the event rate to a final
frequency of a few hundred Hertz.
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CHAPTER 4

LHC offline computing

“I do not fear computers. I fear the lack of them.” - Isaac Asimov

In the title of this chapter, a distinction between two different computing concepts is
hinted at - online and offline. Offline computing encompasses all data processing from
the raw-data input buffer to the result of a physics analysis, whereas online computing
encompasses the computing up to that point, meaning triggering and data acquisition
(see Subsection 3.2.5). Within this thesis, computing refers to the offline computing
unless stated otherwise.

The computing at the LHC faces a drastic increase in required resources. It is difficult
to predict what the exact needs will be, as they highly depend on the luminosity, the
pileup and the LHC performance. The LHC performance can be characterised by the
fraction of time within a year in which data is taken. The HL-LHC is estimated to
increase the resource requirements manifoldly. The predictions for the year 2016 for ex-
ample, were wrong, because the LHC performed above expectations, with a luminosity
above the design level and a very high availability. In the end, additional computing
resources, especially storage, had to be made available.

Moore’s law [23] successfully predicted the technological evolution of processors. In-
deed, not only have processors been improving, but most components of modern com-
puters, like disks, RAMs, networks, etc. have become better and faster over time [24].
This technological evolution is one of the driving reasons why, for the same budget,
better infrastructure can be bought at a later point in time.

In terms of computing, the increased luminosity means that there will be an estimated
factor of ~12 more data, and an additional CPU power requirement of the factor of ~60,
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4 LHC offline computing

compared to 2016'. In contrast, the budget for computing is flat. With the current
technological growth of around 20% per year, the additional requirement for computing
power boils down to a factor of ~10.

In order to close the gap between estimated and available computing resources, either
the software or the hardware have to become better. In this thesis, only infrastructure
improvements are considered, whereas software improvements, such as more efficient al-
gorithms, are ignored. The only overlap between the domains would be the scheduling.
It is, however, a combination of workflow (see Chapter 5) and hardware configurations
(see Chapter 8) and therefore falls into the infrastructure improvement domain. This
scheduling technique is an example of the positive impact of the evolving technology of
Cloud computing described in Section 4.2.

In the end, there will most likely not be one miraculous solution that can mitigate
the discrepancy. It is expected that a combination of many smaller improvements, like
the introduction of Cloud computing, will solve the issue. The problem with Cloud
computing so far is, that the gains are difficult to quantify as there are many factors
that have to be considered. In this thesis, the issue was solved by developing and applying
a model, that is able to directly compare different Cloud computing offers with the Grid
computing concept, see Chapters 6 and 7.

4.1 Distributed and Grid computing

A key concept for the LHC data processing is distributed computing. Distributed com-
puting consists of a system of dispersed computers and computing centres, that are
interconnected through a network and unified by a high-level system with transparent
components [25].

From a physicist’s point of view, it does not matter where in the world the data
pre-processing happens. The location where a physicist’s analysis is computed is also
of no importance to the physicist, as long as the correct results are delivered within a
reasonable time. However, the main reasons why the computing was distributed, were of
a sociological and not a technical nature. Namely, the fact that computing investments
are local. This means even small institutes make contributions to the computing through
their clusters, which would not have happened otherwise. In addition, there are benefits
in providing training for students, while being able to leverage the resources for other
local uses [26].

A more in-depth look reveals that the scenario profiting the most from distributed
computing, is the one in which complex problems can be broken down into several smaller
problems. This applies to High Energy Physics (HEP) where, as we have seen before,
each detector event is a small sub-problem. In practice, multiple events are computed
in one process or workflow and multiple workflows are then computed in parallel. This

! According to the presentation of Ian Bird at the 2016 WLCG computing workshop in San Francisco.
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parallel computing is equivalent to an increase in computing power, which results in a
faster solution. An example would be the processing duration of 10000 events on one
computer. It can be roughly cut in half by having a computer that is twice as fast, or
by processing the events on two computers of the same speed. Easy scaling by adding
computers, is one of the benefits of distributed computing.

Another benefit is that resources can be shared between different groups around the
globe, achieving less idle CPU time. This also adds a kind of reliability to the distributed
computing as there is no single point of failure. Finally, it might be cheaper than
buying one powerful computer. More on the benefits, challenges, disadvantages and
implementations can be found in Section 4.4.

4.2 Cloud computing

“Cloud computing is the third wave of the digital revolution.” - Lowell McAdam

Cloud computing might be a solution to the impeding resource shortage. Since the
emergence of Cloud computing from different commercial companies on the open market,
the prices have been falling. The most extreme cuts in prices happened in the early years,
between 2011 and 2015, when the big providers cut their prices roughly in half. This
development has slowed down and changed since, by providers offering better hardware
for the same prices for example.

One factor is of course the technological evolution that was already mentioned earlier.
A white paper by ESG Labs, commissioned by Google, states that Google will pass
on price reductions from technology-driven advancements to all customers [27]. A big
Cloud company can build computing centres that are multiple times bigger than what
each individual customer would have to build. This bigger scale reduces the overall
operational and even infrastructural costs, making Cloud computing more profitable for
both sides.

Another factor is the competition on the market between the individual providers.
Since many vendors are selling similar products and competing with their prices, the
Cloud market could almost be considered to be in “perfect competition”?, as described
in [28]. This has downsides, especially for the customer. In order to undercut the com-
petition, the offer of a provider only has to seem as if it is better. This leaves room for
Cloud providers to use their freedom to deceive customers, by for example making their
Cloud seem cheaper by applying hidden fees. Another possibility is that the provider
supplies a lower computing performance, which is difficult to figure out from the cus-
tomer side. One possible solution to this problem could be a universal Cloud service
certification, that would make the different offers comparable, as suggested in [29]. The
real cost and performance of Cloud providers are evaluated in Chapter 7. A different
prediction of the market behaviour is that the pricing pattern follows longer periods of
stable prices, with price wars between providers at certain points [30].

2The opposite of a monopoly.
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4.2.1 Concept

The idea of a huge network of interlinked computers exists since as far back as the
1950s and 1960s>. Selling computing as a commodity is the next logical addition to this
picture, but only with the growth of the global networking infrastructure did it become
achievable, especially for individual users.

The real motors behind the sudden emergence of Cloud computing were big online
companies. After realising the extent of their unused infrastructure, which is designed to
be able to handle peaks in demand, Cloud computing must have seemed like a lucrative
solution. Especially, since the hardware had already been purchased and was already
constantly running.

Cloud computing is a broad field, and the boundaries between what is considered
Cloud computing, and what is not, are blurry. Even years after the emergence of
Cloud computing, there was no clear-cut definition. A summary was attempted in
2008, that can be paraphrased as: Clouds are many easy-to-use and -access virtualised
resources [31]. These are adjustable and configurable to a varying workload on a pay-
as-you-go model.

The NIST definition of Cloud computing, that appeared later, is more specific and is
therefore the one adopted in this thesis. It is not too different from what was previously
found. “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [32].

The main characteristics according to this definition are on-demand self-service, broad
network access, resource pooling, rapid elasticity and measured service [32]. Even though
the Cloud providers that are discussed later on fulfil these criteria, there will be limita-
tions. These can be found especially in the rapid provisioning and releasing of resources.
The NIST definition divides Cloud computing into three service models.

The first one, Software as a Service (SaaS), means that a customer can run a provided
application (on a provided Cloud infrastructure).

Platform as a Service (PaaS) is the second service model, which provides more freedom
to the customer, to deploy their own applications.

These two models are not viable for most computing in high energy physics, as a high
level of freedom to control the underlying operating system and storage is required.
This is achieved via the Infrastructure as a Service (IaaS) model [32]. In this thesis when
not explicitly stated otherwise, Cloud computing refers to laaS.

It makes sense to distinguish between three different kinds of Clouds: private, public
and hybrid.

The private Cloud is deployed within the organisation, reducing the security exposure
and legal ramifications that may result from the usage of outside resources.

3For example in literature, short story ” Answer” by Fredric Brown
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In a public Cloud all the infrastructure is located at the third party provider and provi-
sioning happens over the Wide Area Network (WAN).

A hybrid Cloud combines the two previous concepts, by having Cloud resources on- and
off-premise, combining them through common technology [33] [34] [32]. A popular use
case is called bursting [35], meaning to absorb peaks in resource demands. An example
of an online shop using bursting can be found in Subsection 4.2.2. The workload in HEP
could benefit from bursting, as it follows a pattern that has peaks in demands, especially
before high-profile physics conferences. In that time frame, everyone wants to include
the latest and most recent results in their presentations.

The NIST definition does not explicitly mention the model in which Cloud infras-
tructure is procured statically, meaning for example purchasing X amount of machines
over a period of Y months. It technically falls within the IaaS model. The reason it
is mentioned here, is because of certain boundary conditions with procurements within
some organisations, like CERN. First of all, for these organisations the only possibility
to procure something is for a fixed amount of funds, so the pay-as-you-go scenario is
not possible. Furthermore, for procurements above a certain threshold it is mandatory
to have an open tendering phase, during which companies can bid for the contract. In
order to compare offers, the whole procurement has to be well defined in advance. On
the upside, studies have shown that these kinds of procurements are more cost effective,
because the Cloud providers can also plan their resources better. The Amazon prices
for these type of resources for example can be significantly cheaper. Amazon states that
a discount of up to 75% is possible by purchasing reserved instances instead of the on-
demand ones. Other providers also offer discounts and incentives to commit to a certain
amount of resources beforehand, which will be discussed in further detail in Subsection
4.2.2.

This broad Cloud computing definition corresponds to offers from companies such as
Amazon, Google, Microsoft, etc. There exist differences between what and how compa-
nies offer. As a customer the most important thing is to understand these differences
and how they impact the performance and overall cost. There are some downsides, since
the hardware that one receives from a provider is more or less a black box. One of these
downsides is drops in performance due to overallocated resources. An analogy would be
the overbooking of an air plane. As long as there is a sufficient amount of customers
that do not make the flight, the airline increases its income. If too many passengers
show up, there will be negative consequences.

The overallocation is possible due to the virtualisation of physical machines. One
example for this is hyperthreading, where two logical processors share one physical pro-
cessor. Cloud providers could take this even further and overcommit much more. Up to
a certain degree this makes sense.

Even though customers procure Cloud computing on a per-usage model, they still do
not use 100% of what they buy. There are inefficiencies within the applications, such
as the peaky demand or I/O intensive applications. In addition, suboptimal usage can
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stem from overheads and possibly the procurement of more resources than needed. An
example would be a customer that cannot accurately predict their own workloads. Over-
committment strategies have been studied, see for example [36], where most workflows
used less than 20% of the available CPU capacity, making overcommittment viable even
when large safety margins are applied.

There are even examples of Cloud providers that do not own hardware themselves,
but are instead procuring their hardware from another Cloud provider. Dropbox is an
example of such a provider.

4.2.2 Pricing

One of the big advantages of Cloud computing is the pricing model. The prices that
the providers publish are given as X euros per hour per instance. Therefore the cost of
one server for a million hours is the same as the cost for a million servers for one hour.
In practice, the infrastructure of a Cloud provider is not infinite, so this may not hold
on large scales. For highly parallelisable workflows this becomes very attractive as the
results can be returned in an instant at no additional cost.

Conversely, the Cloud provider benefits from the economy of scale. This effect can be
visualised by the fact that the personnel needed to run bigger clusters scales at less than
a 1:1 ratio. This means that doubling the size of the cluster needs fewer than twice the
employees. Also the unit price for hardware, for example, drops for a larger bulk order.

In the early stages however, it was a result of companies renting out their spare
resources. An example for companies with unused resources are online shops, whose
needs in the period leading up to Christmas are many times than what is needed during
the year. In order to not lose business during these profitable times, their infrastructure
must be able to handle these circumstances. As a consequence these companies have
a computing capacity that is many times larger than what they need outside of these
rarely occurring peak scenarios. This spare capacity lies idle most of the time.

The reason why Cloud computing is attractive from the sellers perspective should now
be clear. The same example as above can be used to explain why it can make sense to
acquire Cloud resources for a buyer. An online shop that is not very big cannot afford to
invest much money in its infrastructure just to be able to deal with the mentioned peaks.
It would therefore lose business, were it not for Cloud computing. Now the shop can buy
some on-demand resources during peaks and discard them afterwards, without having
to invest heavily in otherwise unneeded infrastructure. Of course these two examples do
not work together as both stores would have computing troubles during the same time,
but Cloud providers and customers are not limited to online shops.

Cloud pricing is on a downward trend as mentioned at the beginning of this Section
4.2. Due to the complex pricing system and the large amount of offers, it is difficult
to quantify just how fast this trend is. Indeed, it is difficult to estimate how much
a customer would pay on each of the providers and which Cloud offer would be the
best/cheapest. There are several tens of thousands of price points per provider. In an
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article on InfoWorld, only a small subset of price points for each provider are compared,
as a comparison between providers is close to impossible otherwise. Even after narrowing
these price points down, there is not one provider that wins out over the others, as the
use case strongly influences the result. This is exemplary for the challenge that has to
be tackled when comparing the Cloud to the WLCG.

An estimation of the price developments can be seen in Figures 4.1 and 4.2. The first
figure indicates that the average annual price reductions lie at around 10%, over the last
eight years. This is less than would be expected from Moore’s law, but a Cloud site also
has other costs than only hardware [37].
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Figure 4.1: EC2 price reductions, with the on-demand payment model. Annual price
reduction since their public release. Source: [37]

In Figure 4.2, the history of these price drops can be seen. It becomes apparent
that the reductions are not a smooth process, but that they consist of jumps that are
triggered by, for example, market competition. The biggest drop happened after Google
lowered their fees significantly [37]. Another observation that can be made is that the
downwards trend has reduced. The Cloud price development becomes important later
in the thesis, when evaluating the viability of moving to the Cloud, see Chapter 9.

The previous figures showed the different kinds of infrastructures that are on offer,
but there is more to the pricing complexity. The simple choice of operating system, for
example, can change the pricing structures, as different operating systems are priced
differently. In addition, the same operating system costs differently depending on the
provider. More impactful factors are the various discounts that the Cloud providers of-
fer, which can lead to a price reduction of up to 75%. Another factor is the geographical
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region, in which the data centres are located, leading to a difference in pricing of up to
50%. In the end, every use case has to be evaluated separately.

Another substantial cost factor that a potential Cloud customer should not neglect
is inefficiencies. In an article published on Rightscale, it is stated that ten billion US
Dollars were wasted on unused Cloud resources in the year 2017 alone. Two of the biggest
sources of this waste are named as overprovisioning of instances and idle instances. This
gives an indication that inefficiencies are a general, large scale problem. Independent
of these numbers, idle CPUs or even virtual machines (VMs) can also be observed in
the CERN data centre. These inefficiencies are causing providers to use optimisations,
such as overcommitting. The overcommitting concept is used later in this thesis, see
Chapter 8. The consequences of these optimisations can be drops in performance, as
well as fluctuating performance, which is examined in Chapter 7.

4.2.3 Storage

The storage plays an important role, as it has a large impact on the overall cost and
personnel requirement of a computing centre. Several factors have to be considered,
the most important one being the impact of the storage on the overall processing time.
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Whenever a CPU is idle because it is waiting for data input, resources, which in this
case can be translated directly into money, are wasted. The CPU waiting time depends
on the speed of the storage as well as on the distance to the storage.

In order to store data, there are two possibilities. The first one is to procure storage
space within the Cloud. This is the most intuitive approach as it mimics the current
scenario of Grid sites, which provide internal storage space. The benefits are for example
that the required input data of workflows can be placed close to the CPUs. This leads
to a reduction in latency and typically the bandwidth is higher within a site than across
different sites. In the end this results in a faster workflow execution.

Furthermore, having storage available offers the possibility to store intermediate work-
flow products. More importantly, in case it is not possible to directly write to the remote
storage, for example when there is little-to-no bandwidth available, the workflow outputs
can be stored inside the Cloud and the VM can continue processing data.

In addition, some workflows have common input data. For those, every subsequent
workflow can exploit an existing data locality. The benefit in speed is achieved without
increasing the required storage space, and therefore without increasing the cost. The
WAN traffic would also be greatly reduced, as the data have to be transferred only once.
In the case of ATLAS, an example that follows this usage pattern would be the pileup,
see Subsection 5.3.3.

Conversely, there are the downsides, which for the most part manifest themselves in
the cost. They therefore highly depend on the cost models of the providers. The pay-as-
you-go model for storage means, one usually pays for the amount, duration, and type of
used storage space. Sometimes this also includes data egress, ingress, and/or Input/Out-
put Operations per Seconds (IOPS). Depending on the use case, the cost model of the
provider can make the Cloud storage procurement completely unfeasible. An example
would be analysis data, see Section 5.4, that are stored in a Cloud that charges for IOPS.
A popular analysis dataset is accessed around the clock. The cost of this scenario would
by far outweigh the benefit of the gain in speed.

The second possibility is to not make use of the storage offers of the Cloud providers.
Instead, the required inputs are either copied to the local disk of the VMs at the be-
ginning of each workflow or read on the fly, during the workflow execution. These
capabilities are already in place and actively used by multiple LHC experiments. An
example of the latter would be the “Any Data, Anytime, Anywhere (AAA)” service
of CMS. It is an XRootD (see Subsection 4.5.1) service that enables CMS data to be
read remotely. This helps to distribute the CMS workload to sites that do not have the
necessary input data.

The money that would have been spent on storage can then be invested in different
aspects of the infrastructure. An example would be to invest in better bandwidth and
receive a similar performance for a reduced cost, compared to investing in storage. An-
other possibility would be to acquire more computing power, or a combination of the
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two.

In the case of workflows that read different input data, such as raw data reconstruc-
tion, the input has to be transferred into the Cloud exactly once. In terms of WAN
transfers, this scenario would not benefit from additional storage within the Cloud.

The downside to not having data stored within the Cloud is that the bandwidth may
become a bottleneck. Generally speaking, for too large input datasets, bandwidths today
do not scale sufficiently. Too large means not only the size, but also the speed at which
the data are processed, since a faster data processing requires more input data in the
same amount of time.

This can be illustrated by the Amazon “Snowmobile”, a service that transfers up to
100 PB of data by physically transporting storage media on a large truck from the cus-
tomer’s data centre to the Cloud data centre. Other experiments which highlight the
WAN?’s limitations, tested the data transfer via the internet versus a pigeon carrying a
USB stick. In that experiment, the pigeons came out as viable alternatives [38].

Apart from the data that is under analysis, the LHC experiments also have certain
data which is archived. This can be, for example, the raw detector data. Cloud providers
also offer storage space for archival purposes. This storage space is usually much cheaper,
but accessing the data may come at a cost, usually in terms of time as well as money?.

A risk of having data archived inside the Cloud is the vendor or data lock-in, which
has to be avoided [39] [40]. It means a customer is depending on a single vendor and
changing vendors would be accompanied by substantial cost. One factor may be in-
compatible storage technologies between the providers. It can also be the case when all
data has been transferred (in whichever way) to one provider and the effort of switching
providers means having to transfer the data again. Especially when time constraints and
also the cost of transfer can make this nearly impossible, resulting in a situation where
the vendor can abuse this position of power by raising prices.

Object storage

In contrast to the WLCG, most Cloud providers use object storage as their storage
technology of choice. Object storage treats data as storage-objects in a flat, unstructured
hierarchy. Objects are accessed via RESTful interfaces, which are simpler than regular
file systems, through the unique identifier that is attached to them. In addition they
come with a flexible amount of metadata. The object store validates user credentials
that are attached to each operation. Access control therefore happens on a per-object
basis [41]. The advantages for this method are scalability and cost-effectiveness, which
makes it attractive for Cloud providers. They can simply attach more and more storage
devices in order to scale up [42].

Conversely, object storage comes with a decrease in performance [43]. In addition, the

4An example would be Amazon Glacier.
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REST-based calls of the object storage have to be integrated with the existing WLCG
storage infrastructure.

4.2.4 Security, safety and integrity

Studies have shown, that security is one of the biggest areas of concern for companies
regarding Cloud computing [44].

There is a wide variety of problems that go along with computing and storing data
at a third party site. Most of these issues are a result of the fact that Cloud computing
customers effectively give up the control over their own data. However, in the case of
LHC data processing, some risks that would affect other customers only play a minor
role.

The LHC data, although it is private, is not very confidential or sensitive, and there
are no explicit laws regarding its handling and security. Private companies may run
into trouble with the multi-national nature of Cloud providers, that have data centres
around the Globe. From the fact that the WLCG also spans the Globe, it can already
be seen that no national laws prohibit the distribution of the data, as might be the case
for e.g. hospitals.

Outside of physics, the LHC data is not valuable. Considering also the large amount
of data, it is not attractive for thieves to try and steal the data.

In case the Cloud provider loses data, the most that will be lost are some results that
were temporarily stored within the Cloud. No permanent Cloud storage would be used
for archival purposes, the original data will rest within the WLCG.

Despite these mitigating factors, there are still risks associated with using Cloud
providers. The immediate concern is whether the Cloud provider can be trusted. Dis-
honest providers or system administrators may violate the privacy by stealing user cre-
dentials, making usage of their privileged role. For example, by directly accessing the
memory of a VM as described in [45] or by accessing the private data in the Cloud
storage.

Another issue may be, that the Cloud provider does dishonest computation, meaning
instead of executing a CPU intensive computation, the provider could simply give a
wrong result and thereby save resources [46] [44]. Apart from malicious intent, the
result may simply be wrong [46] [44]. This could be due to, for example, hardware
failures or software bugs over which the customer has no control or knowledge. In the
worst case, this could falsify many physics analysis results.

Data integrity can suffer from similar problems, such as hardware failures. The conse-
quences are similar, therefore the data integrity has to be ensured by the Cloud provider.

Furthermore, the security of the data rests with the Cloud provider. In addition to
the regular threats, the attack surface is much higher as hacks may be attempted from
within. An attacker may even execute malicious code on the same hardware as the
customer and the Cloud provider has to make sure that these cross-VM attacks cannot
threaten any customers [47]. Prominent recent examples, where collocation on the same
hardware can be an issue, are Spectre [48] and Meltdown [49]. These are hardware
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exploits prevalent in almost all modern (micro-)processors. The associated risk is to lose
resources and/or user credentials as well as having results manipulated.

Trust in the provider is also required considering the pay-as-you go model. Combined
with a highly dynamic environment, this can make it difficult to accurately charge for
the services used. From the customers point of view, it is difficult to verify whether the
invoice represents reality or not, especially considering the high complexity of the cost
models.

Many trust related issues are handled in the Service Level Agreement (SLA), a binding
contract or policy of a Cloud provider, where infrastructure as well as, for example,
privacy and security guarantees are given to the customer.

In general there is access control over all data/VMs in the Cloud [45].

Another proposed solution are external audits that a Cloud provider should undergo
[44].

4.2.5 Availability

A very important factor when using Clouds is the availability. After outsourcing data
or computational workload to the Cloud, a customer wants to be sure that the data
or the result of the computation can be accessible when needed. Depending on how
time critical these processes are, it can be catastrophic for a customer if the Cloud is
down at the wrong time. In general, Cloud providers sell their services together with a
guaranteed availability level. However, it could be that a Cloud provider knows that its
infrastructure is not built to actually reach this guaranteed uptime [28]. The benefits
of promising this too high of a guarantee may outweigh the penalties that the provider
will incur, when the uptime is not reached. For a customer, who is depending on the
guarantee, this business model can have very bad consequences as the compensation
may be only a small fraction of the lost business. For a WLCG site, it could lead to a
loss in reputation and have consequences to its funding if it is not able to provide the
availability it guaranteed in its SLA.

The same may happen if the provider suddenly goes bankrupt and all resources are
lost.

Apart from the Cloud provider, there are outside factors that can compromise a cus-
tomer. As with any data centre, natural disasters such as floods, earthquakes, lightnings,
etc., can lead to data loss, as can be seen from the loss of data at Google due to lightning
strikes®.

Further factors, related to law enforcement are the behaviour of other customers on the
same Cloud, which can have an impact on all customers, so called “fate-sharing” [50].
For example Spamhaus blacklisted many EC2 IP addresses after a spammer abused
the Cloud this way. Afterwards, even legitimate users could not send emails via EC2
anymore [51]. Another example was the FBI raid during which all hardware at a data

5Google publishes information on incidents that happened on their platform.
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centre in Texas was confiscated, due to the suspected malicious activity of one customer,
disrupting the business of many innocent customers [51].

Some example solutions include the fact that Cloud providers allow customers to
choose where® they want to store/process their data. This can eliminate some issues
with law enforcement agencies and limit the exposure to natural disasters. Data back-
ups across several data centres decreases the risk of data loss. Most importantly, a
customer should choose its provider carefully. This can already avoid many problems.
One of these problems that can thereby be avoided with a high probability, is the provider
going bankrupt.

4.3 Grid Computing

The term Grid computing is being used in analogy to the power grid, which provided a
standardised, dependable and transparent access to electricity [52] [53]. Grid computing
is one form of distributed computing. It is the solution to the resource sharing needs
of multiple interest groups. These interest groups, that define the access conditions of
the users/institutes are called virtual organisations (VOs). The ATLAS collaboration,
as well as the other LHC experiments, form VOs. The Grid gives access to computers,
software, data, and other resources to the VOs [54]. Sometimes data grids and compu-
tational grids are distinguished, in this thesis the Grid refers to a combination of the two.

The Grid handles the entire resource sharing strategies, including the access control,
the resource quotas and the placement of workloads. This is handled in a flexible way,
as users, resources and VOs can join or leave at any time. It includes management tools
for the computational, storage and network resources as well as for code repositories and
catalogues [54].

Some of the benefits of the Grid are, amongst others, that collaborators achieve a
better sharing and cooperation with results being immediately available for everyone.
Furthermore, the Grid can achieve a better utilisation of idle resources, as well as provide
high computing power for individual use cases that need it at certain intervals [55].

In general, the Grid can be a heterogeneous mixture of different hardware and software
components. These are centralised and accessed through a uniform interface [55].

4.4 WLCG

The WLCG focuses on High Throughput Computing (HTC), meaning it tries to exploit
its resources efficiently on a long term basis [56]. In the end, as many physics events
as possible should have been processed, in contrast to, for example, High Performance
Computing (HPC), where the emphasis lies on how many floating point operations per
second (FLOPS) can be performed. Since the WLCG workflows are highly parallelisable

5Geographical location of the data centres, usually specified in regions or zones.
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and oftentimes I/O intensive, it is not important to simply have the most powerful ma-
chines. Factors such as the layout, organisation or the scheduling have to be considered,
which will be explained in detail in the following sections.

4.4.1 Concept and purpose

The Worldwide LHC Computing Grid is one of the biggest Grids in the world, con-
structed for the purpose of computing the physics data generated by the LHC [57]. It
consists of around 170 interconnected computing centres in 42 different countries around
the world. Its sole purpose is to provide computing power and storage space for the LHC
experiments and the physicists analysing the LHC data.

Tier structure

The WLCG computing sites are split into different categories, called “Tiers”. These
were originally intended to distinguish more powerful and better-connected sites that
handle different tasks from less powerful ones. Higher Tiered sites have also stricter re-
quirements for the availability. The network connections were initially chosen according
to the hierarchical Models of Networked Analysis at Regional Centres for LHC Experi-
ments (MONARC) model. It assumed that the network bandwidth would be the scarcest
resource [58] [59]. From there, the concept evolved to the current situation, where the
tasks get increasingly distributed to all sites and the computing power does not corre-
spond to the classification anymore [60].

What remained the same, is the Tier 0 centre at CERN, which is still the centre of
the whole WLCG. Due to the short distance between the Tier 0 centre and the ATLAS
detector, all raw data is stored and reconstructed there, see Section 5.3. The raw and
reconstructed data is then distributed amongst the other Grid sites, which was originally
only the Tier 1s. The raw data is distributed in order to have a replica as a fail-safe and
to speed up reprocessing campaigns (see Subsection 5.3.6), whereas the reconstructed
data can be used by physicists for their analyses, see Section 5.4.

There are 13 Tier 1 sites distributed around the world. Their responsibility is to fur-
ther distribute the reconstructed data to the Tier 2 sites. In addition they perform some
raw data reprocessing and store simulation results (see Section 5.2) from the Tier 2s.
The Tier 1s are connected to CERN via the LHC Optical Private Network (LHCOPN),
which runs on high-bandwidth optical fibre links [61].

The many Tier 2 sites are located at universities and research institutes, and their
tasks are to process simulations, reconstruction of simulated data, and data analysis.
The II. Institute of Physics at the Georg-August-University of Gottingen operates a
Tier 2 centre called “GoeGrid”, located at the Gesellschaft fiir wissenschaftliche Daten-
verarbeitung mbH Gottingen (GWDG).
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At the lowest level are the small institute clusters which are called Tier 3s, even though
they are not formally engaged with the WLCG.

Figure 4.3: MONARCH model. Figure 4.4: Evolution from MONARCH.

Figure 4.3 gives a schematic view of the original Tier hierarchy and network inter-
connections according to the monarch model. Figure 4.4 shows the evolution, giving
an overview of the above explained structures. As already mentioned there are much
more sites than in the two figures. The same principles apply to all the additional sites,
namely that the boundaries between different Tiers become less and less.

Wigner institute data centre

The CERN Tier 0 data centre was expanded by adding an additional data centre in
Budapest at the Wigner institute [62] [63]. It was a logical extension that was transparent
to the end user. The two data centres are connected via two 100 Gb/s bandwidth circuits.
The latency between the two data centres is around 23 ms.

4.4.2 Composition

Apart from typical Grid sites, which consist of pledged hardware from universities and
research institutes, there are other types of resources that have been included into the
WLCG. These are called opportunistic resources and they were introduced in order
to maximise the physics throughput. They include the above mentioned HPC. The big
HPC clusters can have spare resources, meaning idle cores, when for example not enough
workflows are available. Another scenario would be that the available computing power
is not enough for some workflows in the queue, which are then waiting until more re-
sources become available. Significant effort has been put into the integration of HPC
resources [64]. The WLCG experiments can use these idle resources, like for example at
NERSC or Titan, without additional cost.

Other opportunistic resources that are used by the experiments are volunteer com-
puting. Volunteer computing is a concept that lets PC owners donate some of their
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spare computing resources to science, as an example. In ATLAS this project is called
ATLAS@HOME [65]. The contribution from volunteers fluctuates, but looking at the
contribution from 02.01.2018 to 02.02.2018 (PanDA monitoring), volunteer computing
provided around 2486920 CPU hours for MC simulation. This corresponds to 3% of the
overall MC simulation CPU consumption that took place on the whole WLCG during
that period. Overall, ATLASQHOME produces around 2% of MC simulation events [66].
In that sense, volunteer computing contributes as much to the computing as a Grid site.
In January, according to the PanDA monitoring, ATLASQHOME provided around three
times as many CPU hours as GoeGrid for production jobs.

Commercial Cloud computing is already being used by several of the LHC experiments
to increase their computing capacity. The CMS experiment, for example, used Ama-
zon’s AWS over a period of one month on a scale that increased the overall computing
capacity of CMS by 33% [67]. In September 2015, ATLAS performed a scale test on
Amazon’s EC2 that successfully processed 437000 ATLAS event generation and simula-
tion jobs [68]. These examples highlight that the experiments recognise the importance
of Cloud computing and are actively working on integrating these resources.

In Figure 4.5 an overview over the overall CPU consumption, including opportunistic
resources, is given. The diagram is taken from the ATLAS dashboard”. It is important
to note, that the CPU consumption does not translate one-to-one to the physics through-
put. Some machines or CPUs can be faster than others and process more workload in
the same time. Of special note is that HPC (light blue and green, around 13% and Cloud
computing (yellow, around 9% make up over 20% of the overall ATLAS resources. The
biggest contribution of around 78% comes from the Grid.

The distribution of the computing in the WLCG and the addition of other resource
types makes the whole WLCG very heterogeneous. Each computing cluster is responsi-
ble for purchasing their own hardware, therefore the WLCG consists of many different
hardware components from many different vendors.

There is also no unified policy for decommissioning old hardware. This is why many
generations of hardware can be found across the WLCG. The hardware therefore varies
between sites as well as within a site. This makes it difficult to predict how long a given
set of workflows will run on the Grid. The prediction of workflow durations is attempted
in Chapter 7.

Storage

There are several possibilities to store data. The first differentiation can be made between
the underlying hardware, namely tape storage, hard disk drives (HDDs) and solid state
disks (SSDs).

Magnetic tapes have a long lifetime and the cost per Gigabyte (GB) is the lowest.

7(02.02.2018) dashb-atlas-job.cern.ch
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CPU consumption Good jobs in seconds (Sum: 7,072,854,541,675)

grid - 78.16%

hpc_special - 10.41%

M grid - 78.16% (5,528,485,907,626) M hpc_special - 10.41% (736,308,434,531)
[ cloud - B.78% (620,712,986,846) M hpc - 2.65% (187,344,248,985)
M None - 0.00% (2,363,687) M local - 0.00% (0.00)

Figure 4.5: Comparison of CPU hours provided by resource type. (ATLAS dashboard)

Typically, tape cartridges are stored inside libraries. The data is read by mounting a
cartridge on a tape drive. Usually there are many cartridges per drive. The read speed
for sequential reads once a tape is mounted exceeds even those of disks. The downsides
of tape are that random reads as well as the reading of many small files is slow. This
is due to the fact that to access data at the end of a tape, the whole tape has to be
mounted and then wound to that position. If all tape drives are already occupied, the
read job has to wait in a queue, which increases the read time as well. In addition, it
can be that the files are distributed over different cartridges that have to be mounted
and unmounted in order to access them.

HDDs contain spinning magnetic disks that are always mounted, either in a storage
system or attached to a computer. Therefore the possibly large overheads of the tape
system are avoided. On the other hand they consume power while being idle, in contrast
to a tape archive. HDDs are slightly more expensive than tape in terms of cost per
GB. They have a good sequential and random read/write speed. The input output
operations per second (IOPS) a hard disk can perform, are at the order of one to two
hundred. A negative aspect is their relative short lifetime, which can be understood
from the maximum three to five year warranty that manufacturers give.
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SSDs are the most expensive storage solution. They deliver the best performance in
terms of read/write speed. The IOPS an SSD can perform, are at the order of tens
of thousands. Their lifetime is rather high, because they have no mechanically moving
parts. Instead, the lifetime depends on how often and also how much data is written on
them. SSDs incur the most cost per GB.

To get the maximum performance for a minimum in cost, all three of these storage
hardware types are used, serving different use cases. Magnetic tapes are usually used for
archival purposes. At CERN, physics data is archived in the CERN Advanced STORage
manager (CASTOR), which is a hierarchical storage management system. In Figure 4.6
the extent and fast growth of data that is stored within CASTOR, reaching up to 200
PB, can be seen.

Physics Data in CASTOR
225 FB 550 Mil

500 Mil
200 PB

450 Mil
175 PB

400 Mil
150 PB

350 Mil

125 PB
300 Mil

size

100 PE 250 Mil

Junod

200 Mil
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150 Mil
S0 PB

100 Mil

25PB
50 Mil

20031 2004-1 2005-1 2006-1 2007-1 20081 20091 20101 20111 2012-1 2013-1 20141 20151 20186-1 2017-1
fileSize Current: 197.7 PB sizeOnTape Current: 212.6 PB fileCount Current: 520.7 Mil

Figure 4.6: Historical development of the amount of physics data stored within CAS-
TOR. The green and blue curve depict the file size and the size of the data
on tape in PB. The yellow curve indicates the number of files stored within

CASTOR.

Due to the technological evolution, tape cartridges can usually be repacked within
their lifetime. After a repack they have a higher data density and can therefore store
more data. Tape has a high lifetime and CERN has even stricter requirements on when
to decommission a cartridge. In addition, regular checks are performed. Even though all
these securities are in place, CERN lost some data due to the contamination of tapes with

8From the official castor webpage (http://castor.web.cern.ch/ http://castorwww.web.cern.ch/
castorwww/namespace_statistics.png , 13.09.2017).
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particles of concrete. In order to prevent this, a monitoring system has been installed.
This illustrates that tape archival is not 100% guaranteed to preserve all data [69].

The most common use cases for HDDs are for storing frequently accessed data. At
CERN, physics analysis data is stored within EOS, a disk-only storage system [70] [71].
It provides data access with low latency to physicists. Figure 4.7 shows the development
of the EOS usage and space.

Figure 4.7: Development of the amount of physics data stored within EOS over the
last two years. The green curve that depicts the used space rises steadily to
about 76 PB.

Different Grid sites use also other disk storage technologies, such as e.g. the Disk Pool
Manager DPM [72] or dCache [73].

For all use cases of HDDs, SSDs would be the better alternative, if it were not for the
cost. Generally, SSDs are used wherever the speed of HDDs is not sufficient and would
be a big bottleneck.

The ratio and area on which different storage technologies are operated may change
in the future, as the prices develop differently. Figures 4.8 and 4.9 show that the annual
growth and revenues of manufactured HDDs become less and less. They represent num-
bers that were published by IBM and indicate the trend that can be observed on the
whole market. HDDs have been developed for a long time and improving them becomes
increasingly expensive. SSDs (labelled as NAND) are a newer technology and have more
room to be developed. Development in technology in this case goes hand-in-hand with
a decrease in cost per GB.

°From the official EOS dashboard (https://filer-carbon.cern.ch/grafana/dashboard/db/
eos-space-dashboard?refresh=5m&orgld=1&from=now-2y&to=now, 13.09.2017).
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Figure 4.8: Historical view of manufactured Exabytes of HDD vs SSD (NAND). Numbers
published by IBM (Decad, G and Fontana, R.).
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Figure 4.9: Historical development of HDD and SSD (NAND) revenue. Numbers pub-
lished by IBM (Decad, G and Fontana, R.).

Looking additionally at the development of the prices for tape it can be seen that the
downward trend starts to stagnate. In addition, the revenue that companies make from
magnetic tapes is receding.

Technological advances are difficult to predict, but these market trends indicate that
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the landscape of storage will continue to change. If crossover points for the price-per-
GB are reached, it is quite possible that one technology will be replaced by another. An
example would be, that instead of HDDs, only SSDs are purchased. However, it looks
like this point lies far in the future.

4.4.3 Evolution

Even though most of the WLCG’s infrastructure persists for several years, the WLCG
is in flux. This becomes apparent when looking at the transition out of the MONARCH
model. There are several possible future courses on which this development can continue.

One viable direction is to consolidate the storage further into bigger sites. None of
the smaller sites would host any data anymore, except for caching. The extreme of that
scenario would be to have one big storage facility per continent. The reason for this
centralisation is that the storage is the most manpower and maintenance intensive part
of the WLCG. Afterwards, fewer experts and personnel would be required to handle the
upkeep of the storage, relieving especially smaller sites.

Another path would be to shift the computing more and more into the Cloud. This
would most probably be done at the site level. Each WLCG site has pledges it has
to fulfil. It does not matter where the pledged resources originate from. The resource
origin could even be completely transparent from outside of the site. A second option
would be to spend budget on the WLCG level for Cloud computing, for example during
times when there is a peak in demand. These considerations depend on whether the
Cloud infrastructure will be cheaper than acquiring and running the infrastructure by
the sites/WLCG themselves. The situation can be different for each site individually,
depending on factors such as the country they are located in. A summary of the viability
and cost considerations of the Cloud can be found in Section 9.

4.5 ATLAS computing components

Below, some ATLAS specific Grid components/implementations are introduced. These
are introduced briefly, as they are relevant for an understanding of later chapters.

4.5.1 XRootD

XRootD is a system designed to enable access to data repositories [74]. It is used in
HEP for concurrent access to repositories containing multiple petabytes of data. Scala-
bility and high performance were important design parameters that were incorporated
alongside with features such as authentication [74]. Throughout this thesis, when using
remote data access, it is done via XRootD.
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4.5.2 Athena

Athena is the ATLAS control framework. It handles all levels of ATLAS data processing,
such as simulation, reconstruction, and analysis [75] [76]. Throughout this thesis it was
used to execute the different workflows that were tested and examined. Athena was
created with the goal in mind to keep the data and algorithms, as well as transient and
persistent data, separate.

Most notably is that Athena includes a performance and resource monitoring, which
was used in some cases to compare the performance of different VMs with each other [76].
Also worth noting is that Athena uses Python as a scripting language. This allows for
a job steering and configuration, that can be understood and reproduced easily. In
this thesis, multiple completely different workflows are used. Each of these uses tens of
thousands of different lines of code and there are several hundreds of different software
versions and millions of different input files. By providing the steering and configuration
files for the different workflows (in the Appendix), each of the used workflows can be
reproduced.

4.5.3 AthenaMP

AthenaMP (Athena Multi Process) is the framework that lets Athena run in a multi-core
environment.

ATLAS works hard on not running into the hard RAM limit. Saving memory is one
reason why many workflows have been parallelised within the multi-process framework
AthenaMP. The idea behind this is, that a single-process forks into multiple ones, which
share parts of their memory. The shared memory reduces the overall memory footprint
on a multi-core machine, by decreasing the redundancies.

An important setting that is inherent to AthenaMP is the number of paral-
lel processes that it spawns. This is steered by setting the environment variable
“ATHENA_PROC_NUMBER?”. Setting it to zero results in single-process execution.
On the WLCG this setting is used to set the number of parallel processes equal to the
number of cores that a VM on the Grid has, which can deviate from one VM to another.
In Chapter 8 it is additionally used to deviate from this setting and run a larger or
smaller number of parallel processes.

4.5.4 PanDA

The Production and Distributed Analysis (PanDA) workload management system is
responsible for processing Monte-Carlo simulations, performing the data reprocessing
and executing the user and group production jobs [77].

In Figure 4.10, it is shown how jobs and production jobs are submitted by the user
and the production managers. All job information and the task queue is then handled
centrally by PanDA [78]. This means PanDA takes care of the entire scheduling.
Depending on the job requirements, the jobs get subsequently scheduled to matching
available resources. This is done using the pilot model [79] [80] [81]. Pilot jobs are
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Figure 4.10: Schematic of the PanDA System [78] - DQ2 has been updated to Rucio.

basically “place-holders” for the actual payload that have been sent by the pilot factory
to a batch system or Grid site. It prepares the computing element, and then pulls the
job, executes it, and cleans up afterwards. This means the pilot job also handles the
data stage-in and stage-out. All tests performed in this thesis were run in a controlled
environment, therefore outside of the Grid, PanDA, and the pilot model. This is
important to keep in mind for data staging considerations, as it is usually done by the
pilot, see Subsection 5.3.2.

Another important aspect of PanDA is its monitoring capability. It collects a plethora
of metrics of each job, containing for example: the CPU consumption time, the job
duration, and the input size. This information can be accessed from the web and is
stored and replicated to multiple places, one of which being the analytix cluster at
CERN IT. The analytix cluster was used to perform data analytics in Chapter 7.

4.5.5 Rucio

Rucio is the new version of the ATLAS Distributed Data Management (DDM) sys-
tem [82] [83]. It evolved from Don Quijote 2, which was previously used. It handles
the accounts, the distributed storage systems and the distribution of the ATLAS data,
including files and datasets. For easy usage it has a CLI and a web interface which makes
the replication of datasets easier for users. Rucio was used to locate, move, and repli-
cate input datasets for all the workflows that required input data in this thesis. It was
important especially for moving the data, when investigating the workflow performance
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in dependence to the input data location, see Subsection 8.2.2.

4.5.6 JEDI

The Job Execution and Definition Interface (JEDI) is a PanDA component that was
implemented in order to have a workload management at the task level [84]. It translates
tasks definitions from the Database Engine For Tasks (DEFT) that user requested into
jobs that are then executed by PanDA.

4.5.7 CVMFS

The CernVM File System (CVMFS) is used across the HEP experiments in order to
access their software and conditions data [85] [86]. It is a read-only file system capable
of delivering the necessary data to all different kinds of VMs located on the WLCG via
HTTP, making use of caching. It acts like a cache for the ATLAS software and data.
A short investigation into the impact of the CVMFS cache on a workflow was done in
Subsection 5.3.2. Throughout this thesis, all VMs were using CVMFS.

4.5.8 Tags

The TAG data is metadata, containing information about key quantities of events, which
make it easier and faster to select specific events for a physics analysis [76] [87]. Individual
physics events can be identified and selected via their TAG data, that is stored in a
relational database.

4.5.9 AMI

The ATLAS metadata is accessed via the ATLAS metadata interface (AMI). It enables
the aggregation of distributed meta data and the retrieval in web applications [88]. It
is the tool for dataset selection within ATLAS [89]. The AMI components include the
Tag Collector, which manages the various releases of the ATLAS software [88]. The
processing history of datasets is saved using the AMI-Tags interface [88].

4.6 General concepts

In this section, further concepts are introduced, that are required for the understanding
of the work done in this thesis.

4.6.1 Benchmarking

Especially in distributed computing almost all hardware and software setups differ from
another. In order to have an understanding of how this difference impacts the perfor-
mance, benchmarking is used. Benchmarking means executing the same defined set of
operations on a defined dataset in a controlled environment.
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Benchmarks are executed on different systems and the individual performances are
compared to a reference. The resulting relative performance can be measured for a
specific operation, such as disk read or more complex combinations as in the case of
HEPSPECO06 (see Subsection 4.6.1). Ideally, a Benchmark is representative of all the
processes that will actually run on the system, in order to get the most useful results.

This is especially important when trying to predict the performance of a workflow
on a machine and in the context of Cloud Computing, as will be seen in Chapter 7.
When wanting to purchase Cloud resources, a customer has to choose between different
providers. Within each provider, better hardware costs more. In addition, the hard-
ware performance between the providers will differ, even if the underlying hardware was
the same. Reading the hardware specifications the Cloud provider publishes, does not
make it possible to make an estimation of the job-performance [90]. The dilemma is,
for example, whether to acquire the more expensive hardware or to acquire more of
the cheaper hardware instead. This decision in view of cost-efficiency cannot be made
without benchmarking.

In the end however, benchmarking alone cannot provide all the answers. This is
due to the actual workflows differing from the benchmarks or from changes within the
environment, such as neighbouring VMs. What benchmarking can provide, is a good
first order estimation.

There is another type of benchmarking, called passive benchmarking [91]. Instead of
running a dedicated piece of software that only produces a measure of the performance,
a look at the actual workflows can be taken. Passive benchmarking therefore does not
use additional time on the infrastructure. The results are however workflow specific and
not universal. In addition, the workflow composition has to be of workflows that would
all perform similarly on the same machine.

Computing power

The High Energy Physics - Standard Performance Evaluation Corporation 2006 (HEP-
SPECO06) benchmark is a subset of the SPEC CPU2006 benchmark tuned for HEP [92].
It stresses the CPU with operations and algorithms that are common for the HEP
community [93]. The HEP-SPEC06 benchmark is resource consuming as it takes several
hours to complete [94] [91]. It is therefore usually run only once. It does not account
for changes in configurations, updated software or the environment. Understanding the
infrastructure is also important for accounting, here the CPU consumption is calculated
in HEP-SPECO06 seconds (HS*s) - not only for ATLAS [95], but all the LHC experiments
[96].

4.6.2 Storage

Over the years, the LHC data and storage strategies evolved alongside the WLCG. In
ATLAS, all Grid jobs, except the raw data reconstruction at the Tier 0, are handled by
a central PanDA system that manages all workflows. As a consequence, the user should
only see a single computing facility. PanDA faces several challenges, the most prevalent
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difficulty is to provide the CPUs with the required input data. In the current approach,
this is solved by running the jobs on sites where the input data is already available.
The logical consequence of this data locality is that if some data is sparsely distributed
but very popular, the sites that have this data will receive a disproportionate amount
of jobs, while other sites are idle.

As a fail over mechanism, data can be fetched from a remote location to the local
disk. This cannot be done for every job, because there is only a limited amount of
bandwidth, which would be quickly saturated, leading to idle CPUs that are waiting for
their downloads to finish.

A similar third alternative is to read the input data on the fly, meaning event by event,
from a remote location. The same limitations as above apply.

There are multiple mechanisms in place to mitigate these negative effects. For one,
popular datasets are automatically distributed to multiple sites, so the job load is more
distributed. This is handled by the Distributed Data Management (DDM) system.

Additional complexity enters when looking at the different storage media. The above
cases only considered data stored on hard disks, but as described in Subsection 4.4.2
there are also magnetic tapes to consider. For jobs that have to access data that is only
available on tapes, such as the reprocessing, a delay is to be expected, as the data is
first copied from tape to disk. Since the amount of tape drives that can read cartridges
is limited, this delay can be long. Therefore for large campaigns the experiments do an
organised tape-to-disk staging before the job execution. The breakdown of tape usage
can be seen in Figure 4.11.

dCache

One storage middleware system that solves some of the above mentioned difficulties is
dCache [73] [97] [98]. The dCache system unifies heterogeneous disk storage systems
under a single file system tree. It optimises access to tape storage, handles hot spots,
load balancing, and replication.

4.6.3 Swapping

The swapping mechanism involves the fact that the CPU performs its I/O operations
through the RAM [99] [100] [101]. Swap space enables the kernel to run processes that
exceed the physical memory capacity. This is done by writing pages out from memory
to a backing storage, known as “swapping out”. If the pages are needed, this process is
reversed, known as “swapping in”.

In most cases, and throughout this thesis, the backing storage is a hard disk. Since the
disk is much slower than the RAM, the access of a swapped-out page takes significantly
longer than if it was in the RAM. The time the CPU is idle due to swapping operations
is called swap time. In the following chapters, the swap time is indicated in equations
by the variable Swap_Time.
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Figure 4.11: ATLAS tape recalls over six months from March to September 2017. In
this case, WM refers to the on-demand staging for jobs which is composed
of around 30% analysis jobs and around 70% production jobs. For DM,
this means organised staging for large campaigns. Users are individuals
requesting copies on disk.

If there are pages in memory that are accessed rarely or never, swapping them to disk
barely impacts the performance, because they do not have to be swapped back in. This is
called light swapping. Conversely, heavy swapping, or thrashing, occurs when the space
in memory is not enough. Then, pages that are accessed by the CPUs more regularly
are being swapped out. A vicious circle is entered and in order to swap this page back
in, another regularly accessed page is swapped out. This one has to be swapped in again
later, and so on. At this point the CPUs are in I/O wait longer and longer, which can
slow down a workflow significantly. An exemplary profile can be found in the Appendix,
see Figure A12.

4.6.4 CPU efficiency

One controversial possibility to assess the goodness of an infrastructure or workflow is
to look at the CPU consumption time divided by the overall duration [102]. This metric
is called CPU efficiency and a high value is considered good, because the CPU is busy.
On the other hand, this favours slow CPUs, as their ratio between processing and 1/0
wait is larger.

4.6.5 Undercommitting

Undercommittment (UC) is the practice of using fewer resources than are available.
Even though it is wasteful to not utilise CPUs, there are scenarios in which the alterna-
tive is even worse. The prime example are applications that need more memory-per-core
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than is available, which therefore have to keep one or several cores idle.

The general WLCG configuration, for example, is to have 2 GB of RAM per CPU
core. In some cases, additional memory is required, for example, for the ATLAS raw data
reconstruction with a high pileup, see Subsection 5.3.1. These jobs did heavy swapping
with the standard machine configuration. Therefore, they took a very long time to finish.
In order to shorten the workflow duration, fewer parallel processes than available CPU
cores were run on the machines. This gave a better than 2-to-1 GB of RAM to CPU core
ratio. With sufficient RAM to keep the swapping light, the jobs finished much faster,
even though fewer CPU cores, and therefore processing power, was utilised.

4.6.6 Control groups

Linux control groups (cgroups) are used to limit the resources of processes within the
same operating system [103]. Each cgroup can have different limits on the available
resources such as the memory or the CPU. Processes assigned to a cgroup share the
limited assigned resources.

In this thesis, cgroups are used mainly to simulate VMs with less memory. This is
done by creating one cgroup with only a memory limitation and assigning all processes
to it.
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CHAPTER b

Workflows

In the context of computing, there are several definitions for “workflows”, for example:
a workflow passes information or smaller units of work between participants within a
defined set of rules, according to their dependencies and in order to reach a common
goal [104] [105]. Workflows are also defined as computational tasks that are linked by
data- and control-flow dependencies [106].

According to these definitions, within the WLCG (and according to ATLAS terminol-
ogy, which is used in this thesis) the term workflow describes the whole system around
and including a job execution. This can consist of e.g. the scheduling, the data trans-
fers, the job execution, the monitoring and the retrying. Within the WLCG, jobs are
submitted by the users and can contain any code, typically performing a data trans-
formation or analysis. They produce outputs that are then used by subsequent jobs,
whereas communication takes place through a file system.

In the previous chapters, the only workflows considered were for physics analysis. In
the general picture, analysis workflows use up a not-insignificant amount of resources,
but far more resources are consumed by all the processing that happens beforehand.
The resource consumption distribution can be seen in Figure 5.1. The wallclock or wall
time corresponds to the total duration of a workflow Wall Time = T _finish — T _start,
where T_finish is the time the workflow finished and T_start the time it started. The
name is in analogy to measuring the duration with a clock hanging on a wall.

Looking at the pie chart it becomes clear, that MC simulation, event generation and
MC reconstruction require a much larger amount of resources than physics user analysis.
Over 60% of the overall wallclock time is used by the combination of production jobs,
compared to around 10% used by the analyses'. The ratio may vary amongst the different
experiments, but the general trend stays the same.

!Tier 0 raw data reconstruction jobs are monitored separately. The monitoring data for these was
unfortunately incomplete. The monitoring experts that were contacted did not provide further data.
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Figure 5.1: This pie-chart shows the wallclock time consumption of different types of
workflows. It is a one year aggregation from 01.04.16 - 01.04.17, taken from
the ATLAS job dashboard. The only caveat is that raw data reconstruction
jobs are not included in the PanDA monitoring from which this plot is taken.

In this thesis, the focus lies on computing resources for the LHC. Therefore the
workflows described contain the whole data processing, from the raw detector data (see
Section 5.3.1) of the LHC experiments to physics analyses results.

The different workflows can be divided into two classes. This classification is done in
accordance to the job model, dividing the jobs into data intensive or CPU intensive.

It is possible that an I/O intensive job also uses much CPU power. For simplification,
the dominating attribute of the job is chosen as the describing class. This may simply be
the most limiting factor with respect to an average infrastructure setup, also known as
the bottleneck. The performance of the job is then only dependent on that component,
see for example [107].

The classification has to be performed individually, by investigating i.e. what percent-
age of the jobs runtime is spent in CPU compared to how much is spent on I/O. The
classification is done in a more abstract way, in order to have a unified classification of
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the jobs. This way, CPU intensive jobs of all four experiments and outside HEP can be
aggregated in the same class, even though the absolute numbers can differ by a large
margin.

5.1 General model

Physics analyses are not performed on the raw recorded data, but on simulated and
processed data. The whole chain of workflows can be seen schematically in Figure 5.2.
The term chain refers to a set of linked, consecutive workflows, where the results are
the input to the following workflow.

 Detector Data Simulation

RAW Dat@ RAW Dat@

Reconstruction
Format

Analysis

Figure 5.2: This diagram describes the chain of workflows. The detector /simulation data
is computed several times until it is used for the physics analysis in the end.
Workflows are represented in boxes, whereas data types are represented in
ellipses.

The different experiments all perform a similar processing, although the details, such
as workflows and workflow chains, differ according to their processing models. A short
overview can be found in Section 5.1.1.

The general workflow consist of three job categories.

1. Reconstruction
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In the reconstruction, the information of the raw detector data is combined to a
higher level analysis object, meaning a different data format, that can be analysed
by a physicist later on.

2. Monte Carlo simulation

In order to confirm a physics model or to disprove it and therefore possibly discover
new physics phenomena, such as a previously undiscovered particle, the real data
needs to be compared to Monte Carlo (MC) simulations. These simulated proton-
proton collisions and the corresponding decay products.

In the digitisation which follows, these particles get translated to electrical detector
signals, in order to stick as closely to the data processing as possible. The simulated
data at this point has the same format as the real raw data.

At the next stage, in order to treat the simulated data the same way as real data, it
also undergoes reconstruction. This similar treatment is important for the interpre-
tation of the detector data, since for the simulated signals the truth information?
is available. After the reconstruction, the resulting data can be compared to the
true input decays to make sure there are no big discrepancies. There can be small
discrepancies, which have to be understood and considered in all analyses, as they
will also appear in the real data. These discrepancies can, for example, appear
due to a dead region in the detector, through which a real or simulated signal or
particle passed undetected. This particle will not show up in the reconstructed
data, even though it was there originally. Other sources of discrepancies such as
software bugs, can also be found by this comparison.

3. Analysis

The final step is the analysis of the previously reconstructed data, including both
simulated and real data.

Reprocessing of the raw data is the same as re-doing reconstruction, so it is not
a category of its own. A reprocessing campaign is started, if there are significant
developments in either the calibration and alignment and/or the software, so that the
resulting data are improved.

The data that have been processed get a tag, that is a short event summary which is
used for event identification and selection. Tag data is stored in a relational database.

The previous three job categories, reconstruction, MC simulation and analysis, can
be split further into several intermediate procedures. A more detailed description of
these is shown in the following subsections.

2The truth information is information about which decays were originally simulated.
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5.1.1 All experiments

Even though the detector layout and the software frameworks of the four major exper-
iments of the LHC differ from each other, they face similar challenges and have many
commonalities. Therefore, from a rough point of view the whole data processing is rather
similar. The experiments all collect signals from a detector with a certain geometry. All
four of them have the goal of physics analysis in the end, so Monte-Carlo simulations are
required. The biggest accordance is the computing infrastructure, the WLCG. In order
to give a good overview, the biggest differences between the computing approaches of
the experiments are presented.

CMS

CMS has the Any Data, Anytime, Anywhere (AAA) data federation, which is helping to
solve the problem of data locality. With AAA, the CMS input data can be read directly
over the WAN by the jobs.

Traditional pileup mixing has to be done anew for every simulated signal event. CMS
does pileup premixing. ‘Premixed’ pileup means that the mixing is done only once
beforehand and the response is saved to pileup events in a premixed pileup dataset,
which is only around 1 MB per event, compared to around 100 MB of traditional pileup
input per event. This dataset is basically a minimum-bias-only dataset that is overlaid
over the simulated collisions. This reduces the I/O of the job significantly.

ALICE

The ALICE experiment has much larger and more complex events with respect to the
other LHC experiments. The size ranges up to 6 MB per raw data event for lead-lead
collisions [96]. In order to increase their efficiency for individual analyses, the ALICE
collaboration combines analyses using the same/similar datasets into one job. This is
done in order to read the data only once and then process it many times, according to
the different jobs. The analysis jobs are combined in LEGO (Lightweight Environment
for Grid Operators) trains [108].

LHCb

One big difference in workflows for LHCb compared to the other experiments is, that a
MC simulation job encompasses event generation, simulation and reconstruction. One
job processes the data from the event generation to a physics analysis ready output file.
Some simulation jobs even reduce the output data by filtering uninteresting events at
the end.

Another fundamental difference between LHCb and, for example, ATLAS is in the
pileup. It is around 1.4 collisions per event for LHCb and therefore significantly lower
than for ATLAS, where it is at around 20. The LHCb workflows are adapted to this,
by simulating the low pileup directly for each collision. In contrast to that, in ATLAS
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the MC simulation does not include the pileup generation. The minimum bias is instead
overlaid/added afterwards.

5.1.2 ATLAS

In ATLAS terminology a job can consist of several transformations, see Figure 5.3. Each
transformation delivers, as the name suggests, processed or transformed data. These
transformations can be grouped together into jobs, in order to increase the efficiency
by reducing overheads. This can be seen easily, when looking into a VM where the
input data for a consecutive transformation is already locally available from the previous
transformation, instead of having to be staged out and in to the local disk again.

Different jobs can partly consist of the same transformations. For example the RAW-
toESD transformation is contained in both a raw data reconstruction job, as well as a
digitisation—+reconstruction job for simulated data. The job composition is different, but
some parts, some transformations, can be similar.

The diagram in Figure 5.3 depicts that all jobs within a task are comprised of
the same transformations, whereas jobs of a different task can consist of different
transformations.

{Substep 1| L‘%ubstep 2‘ ‘Substep 3| |Substep 4} {Substep 1| lSubstep 5‘ ‘Substep 6‘

——
Transformation l| |Transformation 2| |Transformation 3| Transformation 4‘ ‘Transformation 5

Request 1

Figure 5.3: This diagram describes the general ATLAS workflow and terminology of
computing.

When looking into what happens inside individual transformations, some repeating
patterns can be observed. This can be between jobs inside different tasks or even
requests. For example, this can include the input/output file validations that happen
at the beginning/end of many transformations. Another similarity may be the fetching
of conditions data that occurs in some transformations. The different parts of a
transformation are called substeps, see Figure 5.3. The stage-in and stage-out are also
categorised as substeps. Not many transformations within a job have similar substeps.

Below the job level are tasks. Tasks are typically comprised of many jobs that
compute the same transformations, do the same thing, only on different datasets.
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Due to various limitations?, a job typically computes between 100 and 10000 events,
depending on the jobtype. Therefore, in order to compute all events delivered by the
ATLAS detector, there have to be many jobs doing the same processing in parallel - to
finish within a reasonable time. Jobs doing the same processing on different input data
are called “similar jobs”. This is not to be confused with executing a job twice with the
same input data, which would be called the “same job”. Jobs that do not consist of the
same transformations/substeps are “different jobs” or of a “different jobtype”. This is
the case even if the input dataset is the same.

On the bottom-most layer are the requests, see Figure 5.3. Requests consist of many
different tasks, that do different types of processing. They are typically logically linked
together, meaning that the outputs of jobs from one task are inputs of jobs of another
task of the same request. Thereby requests can represent a whole processing chain,
excluding analysis.

At certain points in time, data reprocessing campaigns, see Subsection 5.3.6, are
started. A campaign includes all jobs, tasks or requests that were executed on the data
that had to be reprocessed.

Conditions data

During data taking it is important to know the exact conditions, the state of the whole
experiment, in order to achieve a precise simulation and reconstruction. This conditions
data set consists of hundreds of parameters, including, for example, alignment, beam
position, magnetic field map, cabling, calibration, corrections, detector status, noise,
pulse shapes, timing and dead channels [109]. Each subsystem provides these parameters,
which are stored in the conditions database. They are updated on the fly, some much
more frequently than others. An example would be the cabling, that stays the same
much longer than the alignment parameters.

5.2 Monte Carlo simulation

Monte Carlo simulation generally consists of three subsequent computations, event gen-
eration, simulation and digitisation. Each part is described in the following subsections.

5.2.1 Event generation

Mostly external, meaning non-ATLAS specific, tools are used to generate events. In the
event generation, collisions (events) and immediate decay products are generated. This
means everything that would happen in an actual collision up to the point when the

3Limitations are e.g. the maximum lifetime of a Grid job. Other considerations why the wall time
should not be too long are errors. If a long job fails towards the end, much computing time is wasted.
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particles hit the detector. Depending on the lifetime of the resulting particles (¢ * 7 <
10 mm), they are already decayed by the event generator and only the resulting particles
are considered to interact with the detector. Particles with a higher lifetime are then
handled later on, by the simulation. Before the events are passed to the simulation, the
specific beam conditions are applied.

The resulting data can be uniquely identified via the software version and inputs, e.g.
job parameters, random seed [110]. For reproducibility, the processor chip architecture
has to be taken into account, since it influences the pseudo-random numbers which may
be generated differently, especially between different manufacturers. The information of
the parents of unstable particles is preserved.

In Figure 5.4 the profile of a single core event generation job, that was run on a four
core VM, can be seen. Since the job does not process any data and the output file
is very small, there is very little disk activity. The job is entirely CPU bound (25%
CPU usage corresponds to one CPU core), using very little memory and almost no
network bandwidth. There is almost no variation of the resource usage during the whole
processing. The generator that was used was Pythia v8.8186.
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Figure 5.4: Profile of a singlecore event generation job run on the VM at CERN, pro-
cessing 1000 events, using Athena version 19.2.3.6.

Event generation fluctuation

The fluctuations of the wall time of the different workflows will become extremely im-
portant for the model later on in Chapter 6. Initially, the same event generation job,
with the same random seed input, was run 50 times on two different machines. The
specifications can be found in the appendix, for the VM at CERN see Subsection A.7.2,
for the VM at Gottingen see Subsection A.7.1.

In Table 5.1 it can be seen that the job duration does not fluctuate much. Though,
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‘ Average wall time [s] Standard deviation %
CERN VM 4488 1.59
Gottingen VM 5475 0.52

Table 5.1: Summary of executing the same event generation job 50 times on two different
VMs, located at CERN and Géttingen.

the fluctuation is slightly higher on the CERN VM than on the one in Gottingen. The
standard deviation of the sample (s) is obtained by:

s = ! Z(xz —T)? (5.1)

where n is the number of measurements, x; the observed values and z is the mean value
of the measurements.
The standard error of the mean (o) is obtained by:
s

where s is taken from Equation 5.1 and n is the number of measurements.

A plot depicting the wall time average over 1, 2 ... 50 jobs with the corresponding
estimation of the standard error of the mean has been created, see Figure 5.5. It can be
described as a sliding window analysis, where the step-size is one and the window-size
increases by one with each step.

In order to exclude effects that appear due to the ordering of the jobs, the same plot
has been created multiple times. The only difference is that the ordering of the input
data points has been rearranged pseudo-randomly by hand, see Figures A1, A2 and A3
in the Appendix.

The fluctuations are very small, considering that the y-axis does not start at zero.
Approaching a high number of jobs (n > 25) the wall time average converges within a
reasonably small standard error of the mean.

The same investigation has been performed for similar jobs*. Since similar jobs are
different from each other, it is expected that the variation in wall time will become larger
than before, which is confirmed by the numbers in Table 5.2.

Figure 5.6 shows the wall time average for an increasing number of jobs.

The plot shows the behaviour for the jobs at Gottingen. The same plot showing the
results for the CERN VM can be found in the Appendix, see Figure A4. The fluctuations
of the wall time average increased together with the standard deviation. Overall these

4Similar jobs have different random seeds as inputs for each job
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Figure 5.5: The wall time average over an incrementing number of the same event gen-
eration jobs, run at Gottingen, starting at one. The black error bars show
the standard error of the mean (see Equation 5.2). Note: in order to improve
readability, the y-axis does not start at zero.

| Average wall time [s] Standard deviation %
CERN VM 4510 3.97
Géttingen VM 5368 3.34

Table 5.2: Summary of executing 41 similar event generation jobs.

fluctuations are still very small and they also converge - albeit after a larger amount of
jobs are included.

Changing the workflow to an older version, which was used in 2015, does not show
different results in terms of fluctuations.

5.2.2 Simulation

The simulation workflow simulates the detector and physics interactions of the particles
with the detector. This is done by the GEANT4 [111] toolkit which models the physics
and particle transportation through the detector. It takes the resulting data from the
event generation as input.

The truth information from the event generation is kept and particles from the simu-
lation step are added.

In Figure 5.7 the profile of a MC simulation is shown. The whole processing is CPU
bound with very little disk and network activity. In this case the job ran on four cores in
parallel. There is little variation of the resource usage during the processing, from about
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Figure 5.6: The wall time average over an incrementing number of similar event gener-
ation jobs, starting at one, at the VM at Gottingen. The black error bars
show the standard error of the mean (see Equation 5.2). Note: in order to
improve readability, the y-axis does not start at zero.

200s to about 5600s. Towards the end of the job, after 5500s, it can be observed how
the individual processes finish the simulation of the last events at different times and
the CPU usage decreases in steps (100% to 75% to 50% to 25%) to zero. The memory
profile of the job is rather flat and a low RAM requirement can be seen.

Monte-Carlo simulation fluctuation

The fluctuations of the wall time of the different workflows will become extremely im-
portant for the model later on in Chapter 6. The variation amongst repeating the same
simulation job were much lower (0.78% for CERN and 0.28% for Gé&ttingen) than for
similar simulation jobs. This is why only the results for similar jobs are shown, see
Table 5.3, which in any case includes the same job fluctuations.

Figure 5.8 shows the wall time average over an increasing number of similar Monte-
Carlo simulation jobs. The outputs of the similar event generation jobs in Subsection
5.2.1 were taken as inputs for these simulation jobs.

The plot depicts the results for the VM in Goéttingen. The same plot, showing the
results of the VM at CERN can be found in the Appendix, see Figure A5. Overall the
fluctuations are rather small, in the order of a few percent, compared to the wall time.
Towards a higher number of jobs (n > 30) a convergence can be seen.
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Figure 5.7: Profile of a multicore simulation job run at a 4-core VM at CERN;, processing
100 events, using Athena version 19.2.3.3.

‘ Average wall time [s] Standard deviation %
CERN VM 5010 4.37
Gottingen VM 3097 4.42

Table 5.3: Summary of executing 26 similar Monte-Carlo simulation jobs at CERN and
38 similar Monte-Carlo simulation jobs at Gottingen.

5.3 Reconstruction

A reconstruction workflow takes detector-hits data and transforms it into physics objects
that can be used by a physics analysis. This is done by deriving particle information
from the signals of the detector components. By using the geometry of the detector,
individual particle tracks in the detector can be calculated. The track then provides in-
formation that can identify the individual particle properties and its identity, see Chapter
3 about the ATLAS detector. All of this is done using multiple, sub-detector dependent,
algorithms, which are in the end combined. Combined information is for example jets
or missing transverse energy.

The same reconstruction is applied to the raw data as well as the simulated data. The
only difference is that simulated data usually has to include the digitisation step, which
happens right before the reconstruction.

In addition, for simulated data the truth information is available, which can be used
to validate and improve on the reconstruction.
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Figure 5.8: The wall time average over an incrementing number of similar Monte-Carlo
simulation jobs, starting at one, at the VM at Gottingen. The black error
bars show the standard error of the mean (see Equation 5.2). Note: in order
to improve readability, the y-axis does not start at zero.

5.3.1 Raw data reconstruction

The individual transformations that the data undergoes are RAWtoESD, ESDtoAOD,
ESDtoDPD and POOLMerge.

5.3.2 Raw data reconstruction profile

In the previous subsection, individual processing steps were introduced. These can also
be seen when looking at the job profile, as they have different requirements from the
hardware.

In Figure 5.9, the profile of a raw data reconstruction job is shown. The first aspect
to look at is the green solid line that highlights the overall CPU usage. On a four core
machine, 25% CPU usage corresponds to one core being used. There are three different
states that can be observed, namely zero, one, or four CPU cores that are used.

Secondly, the dashed purple line shows the memory usage of the job. It roughly
follows the CPU usage.

The finely dashed red line depicts the network activity. Here, notably at the very
beginning a high activity can be observed, depicting the stage-in of the input data from
a remote storage to the local disk. Throughout the rest of the job the network activity
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Figure 5.9: The profile of a raw data reconstruction job, run with AthenaMP on a ma-
chine with four CPU cores.

remains low.

Finally the disk activity, depicted by a blue dashed line (disk write) and a yellow
dashed/finely-dashed line, can be seen. Overall the disk activity is rather low through-
out the job, even though the input data is read from disk and the output written back
to it.

The overall profile corresponds to the different transformations described in Subsection
5.3.1. In the beginning, up until about 500 s, a high network activity can be seen. This
corresponds to the stage-in of the data. Afterwards, from about 500 s to 11200 s, the
RAWtoESD processing takes place. The ESD data is then processed in the ESDtoAOD
step from about 11200 s to 12500 s, followed by a merging step that lasts until 13700 s.
In the end, a second processing of the ESD data from ESDtoDPD happens from about
13700 s to 15300 s, which is again followed by a merging step that lasts to the end. The
merging steps are serialised /synchronised, meaning during merging only one CPU core
is used.

Technically creating DPDs is part of the group production, see Subsection 5.4.1. How-
ever, it turned out that in some cases this approach can be inefficient if processing is
duplicated across the different groups. Therefore a common set of primary DPDs is
centrally produced during reconstruction and the groups can then use it further.

Network usage

Reconstruction is a workflow that has a large amount of input data. In this example
case, it was ~ 2.6 GB per job. These 2.6 GB correspond to 3025 events, resulting in

o8



5.3 Reconstruction

an average event size of ~ 860 kB. The workflow standard is to stage the data to disk
before the processing. This is not different from any other download and therefore does
not require a special examination. In the following, the remote reading is investigated.

In order to distinguish between the noise and the network traffic of interest, a baseline
was taken. The baseline of the Network traffic that was captured was very low and
almost steady. The background peaks up to 2 kB/s. This is negligible compared to the
traffic that was observed from the job, where the smallest peaks of interest start at ~
400 kB/s. For these reasons, the background is ignored in the following plots.

The following Figure 5.10 depicts the network profile when reconstructing 100 events,
using remote input data. The data was captured via the tcpdump command and is
displayed in wireshark®. The graph was cut off at around 1450 s in the horizontal
direction for better readability. Originally it simply continued with the small bumps
until ~ 2550 s, when the job ends. Furthermore, the CVMFS cache was already filled.

INetwork
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thﬁ- Ll bt L el L L L L
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Figure 5.10: Network profile of a job that reconstructed one hundred events. It was cut
off at approximately t = 1450 s for better readability.

The red curve depicts all traffic, whereas the black curve is what remains after applying
the filter that restricts the ports to port 1095, used by xroot.

Around 53 little black and red peaks can be observed. In the plot without the cut-
off, the total amount of little peaks is ~ 100, indicating that the individual events are
read /streamed one after the other as input during job execution. Due to the filter, it is
possible to easily identify the source of these peaks to originate from an EOS disk server
at CERN. This corroborates that they are the physics events being read. The remaining
traffic, displayed by the red curve that is not overlaid by the black curve, can be seen in
the conversations list in Figure 5.11.

SWireshark is a tool that is used to analyse captured network traffic.
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IPv4 Endpoints

Address Packets  Bytes ~ TxPackets Tx Bytes Rx Packets Rx Bytes City
lalalalala.cern.ch 85036 211875194 35 986 5490 294 49050 206 384 500 Geneva, 07
p05153065463047.cern.ch 20139 84722 649 12 261 84168 957 7878 553692 Cern, 07
caproxylbp.cern.ch 12 067 33321162 8888 32850896 3179 470 266 Cern, 07
caproxylbp.cern.ch 8597 27444433 6214 26996 333 2383 448 100 Cern, 07
caproxylbp.cern.ch 7682 16431436 4724 15533 004 2958 898 432 Cern, 07
caproxylbp.cern.ch 4054 13852038 2700 13 560 884 1354 291 154 Geneva, 07
caproxylbp.cern.ch 3791 10442 088 2497 10115 404 1294 326 684 Cern, 07
caproxylbp.cern.ch 4243 9936515 2576 9504158 1667 432 357 Geneva, 07
caproxylbp.cern.ch 3815 5611457 2372 5156199 1443 455258 Cern, 07
caproxylbp.cern.ch 1950 4330310 1196 4168778 754 161 532 Geneva, 07
caproxylbp.cern.ch 2291 2 666998 1233 2323226 1058 343772 Cern, 07
p05153065513165.cern.ck 806 1563114 441 1526463 365 36651 Cern, 07
cert-op-004.cern.ch 12 360 1112712 3537 360774 8823 751938 Cern, 07
[513-c-rbrmx-1-ci122.cern 3470 242 900 3470 242 900 0 0-
vrrp.mcast.net 3470 242 900 0 0 3470 242900 -
ghgfFgfgfhfgh.cern.ch 2230 208972 0 0 2230 208972 Cern, 07
eosatlas.cern.ch 229 98 804 98 45272 131 53532 Cern, 07
ip-dns-1.cern.ch 406 62 803 203 46 817 203 15986 Geneva, 07
ccwbvip14.in2p3.fr 39 27 069 19 20121 20 6948 Villeurbanne, B9
caproxylbp.cern.ch 128 23 064 18 1332 110 21732 Cern, 07
pcitgt1012.cern.ch 105 12674 66 5652 39 7022 Geneva, 07
224.0.0.251 64 4574 0 0 64 4574 -
jenkins-master-5e27bdgeé 8 1998 8 1998 0 0 Geneva, 07
f513-c-ip122-lhp6m-10.cel 28 1288 28 1288 0 0 Geneva, 07
all-systems.mcask.net 28 1288 0 0 28 1288 -
deis-03.cern.ch 28 1288 28 1288 0 0 Cern, 07
224.0.0.252 28 1288 0 0 28 1288 -
ntp1.as34288.net 9 810 0 0 9 810 -
ns2.pmodwrc.ch 9 810 0 0 9 810 -
91.240.0.5 9 810 0 0 9 810 -
ip-time-2.cern.ch 8 720 4 360 4 360 Geneva, 07
ds1789963.dedicated.soll 7 630 0 0 7 630 Zuchwil, 18
ip-time-1.cern.ch 6 540 3 270 3 270 Geneva, 07
213.184.127.45 1 62 1 62 0 0-
|cellall.cern.ch 1 62 0 0 1 62 Cern, 07
pinger-j2.ant.isi.edu 1 46 1 46 0 0-
zce3xbgweth.cern.ch 1 46 0 0 1 46 Geneva, 07

Figure 5.11: List of all network conversations of the VM called ‘lalalalala.cern.ch’; where
the jobs were run on. The captured traffic is from the beginning of the job
to the end. This list is sorted by bytes.

The first item on the list is the machine itself. It shows the total of sent/received
traffic. The second item (p051....cern.ch) is the EOS disk server eosatlas.cern.ch, which
is contacted directly. The traffic of 84.7 MB divided by 100 events corresponds roughly
to the expected event size of 860 kB/event. It represents the transfer of the input
data. The following element, caproxylbp.cern.ch, can be separated into two things,
namely CVMFS and ATLAS frontier. The Frontier caching system delivers the detector
calibrations, geometries and constants that are required for the reconstruction. It also
acts as a Squid cache for CVMFS. Since the local CVMFS cache was already filled,
the CVMFS contribution is small. At the beginning of the job, ccwbvipl4.in2p3.fr is
contacted, which is the ATLAS Metadata Interface (AMI). The domain name systems
can be found under ip-dns-*.cern.ch. Everything else contributes little to the traffic and
can be attributed to background.
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5.3 Reconstruction

In addition, mylcgvoms2.cern.ch is contacted in order to create a proxy.

CVMFS cache

In the beginning it was mentioned that all these jobs were executed with a filled /hot
local CVMFS cache.

To have an idea how an empty CVMEFS cache impacts the network usage, the same
job as above was executed with an empty CVMFS cache. The local cache was cleared
as much as possible, using “sudo cvmfs_config wipecache”. A quick check afterwards,
using “df”, reveals that the cache is mostly, but not entirely, empty, see Table 5.4.

Filesystem ‘ 1K-blocks ‘ Used ‘ Available ‘ Use% ‘ Mounted on
cvmfs2 | 4096000 | 125175 | 3970826 | 4% | /cvmfs/atlas.cern.ch

Table 5.4: Output of the ‘df’ command on the VM after the local cache was cleared.

Figure 5.12 depicts the changed profile.
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Figure 5.12: Network profile of a job that reconstructs one hundred events with an empty
CVMFS cache beforehand. It was cut off at approximately t = 1450 s for
better readability.

As expected, compared to the traffic with a hot cache, an increase in network traffic
at the beginning of the job can be seen. Looking at the size of the cache afterwards,
using “df”, reveals an increase in size of ~ 1.2 GB, see Table 5.5.

RAM requirement

An important next step was to look at how the memory influences the wall time. An un-
derstanding of the RAM requirements will be needed when overcommitting, see Chapter
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Filesystem ‘ 1K-blocks ‘ Used ‘ Available ‘ Use% ‘ Mounted on
cvmfs2 ‘ 4096000 ‘ 1317537 ‘ 2778464 ‘ 33% ‘ /cvmfs/atlas.cern.ch

Table 5.5: Output of the ‘df’ command on the VM after a reconstruction job was run
(cache filled).

8. This was performed by putting a limit in place, that restricts the amount of available
memory on the VM. This limit was then varied while monitoring the workflow perfor-
mance. Initially the RAM limitation was achieved by using cgroups, see Subsection
4.6.6. An even easier solution was to allocate memory to another process instead (see
Appendix 1). This easier approach was adopted later on. One encountered limitation
was that when lowering the available RAM too much, at some point the VM runs out of
swap space. Then the Linux kernel Out-Of-Memory Killer [112] starts killing processes.
This is a protective measure of the kernel in order to stay operational. After this hap-
pened, the swap space was increased. In general, VMs performing ATLAS workflows
have a limited swap space, the maximum size is twice the amount of available RAM.

In Figure 5.13, the wall time, as a function of the available memory is plotted. The
interesting part is that the jobs at 6 GB of available memory use over 4.5 GB of swap
space, but a significant slow down can only be observed below 4.5 GB of memory. Indeed,
the used swap space is not a good indicator when trying to understand how much the
wall time is affected. A better metric are the pages that are swapped in and out per
time interval. In the Appendix, a comparison of the page swap activity of two jobs, see
Figures A7 and A8, can be found. This highlights the difference between light and heavy
swapping as explained in Subsection 4.6.3.

The explanation why the job duration increases is swapping, see Subsection 4.6.3. The
restricted memory forces the system to swap pages from the memory to the disk, which
is much slower. As a consequence, the CPU has to wait longer for input data that has
to be retrieved from the disk, which increases the wall time. One conclusion that can be
drawn from this plot is that the available memory for this job should not be below 5 GB
of RAM, otherwise a slowdown in the wall time has to be expected. This is not true
for every raw data reconstruction job, as with newer software versions or input data the
memory requirement changes.

The profile of a job that heavily swaps pages in and out of memory can be found in
Figure 5.14.

As expected, the disk read and write activity is heavily inflated, whereas the CPU us-
age drops significantly. After around 6000 s the disk is reading and writing at maximum
capability and the CPU activity fluctuates between 0 — 70%. Half of the CPU activity
after 6000 s is used by the system, that is swapping heavily, trying to handle the low
amount of available RAM. These results on memory restrictions are important for the
(memory limited) overcommittment, see Chapter 8.
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Memory limitations, raw data reconstruction
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Figure 5.13: Average wall time of memory restricted jobs over four jobs using cgroups.
This were four parallel processes on a four core VM. The input data was on
the local disk. As can be seen from the error bars indicating the standard
deviation (see Equation 5.1), the wall time fluctuates more, as soon as the
jobs start to swap heavily. The data point at 3.875 GB RAM has a small
error bar because it only consists of two instead of four measurements,
which incidentally performed similarly. The measurement focused on the
interesting region, when the memory limit impacts the wall time. Therefore
there are no data points between 6 — 8 GB of RAM. The job specifics are
in the Appendix A.1.2.

Reconstruction fluctuation

The fluctuations of the wall time of the different workflows will become extremely im-
portant for the model later on in Chapter 6. The variation amongst repeating the same
reconstruction job was of the same order, around 2.02% for CERN and 5.20% for Gottin-
gen, as the similar simulation job variation. In Table 5.6, the similar job results are
shown.

Figure 5.15 shows the wall time average as a function of an increasing number of
similar reconstruction jobs.

The plot depicts the results for the VM in Gottingen, the results for the VM at CERN
can be found in the Appendix, see Figure A6. Overall the fluctuations are small, in the
order of a few percent, compared to the wall time.

The reconstruction workflow is the first workflow that uses a large set of input data.

63



5 Workflows

,_.
o
=

o PV R o W e R L 4N S L i e P sinited 100

,_.
o
T

102

CPU User+System [%]

Disk read 20
- - Disk write

Disk read/write transactions [1/s]

Figure 5.14: Profile of a memory restricted job. The input data were on the local disk.
Note the logarithmic scale of the disk transactions.

‘ Average wall time [s] Standard deviation %
CERN VM 14863 2.07
Gottingen VM 17043 4.92

Table 5.6: Summary of executing nine similar reconstruction jobs.

This is one explanation why the same job case already exhibits large fluctuations. These
are introduced by having the disk as an additional component that can act as a bottle-
neck.

5.3.3 Simulated data reconstruction

The only difference between raw data reconstruction and simulated data reconstruction
is that there are additional steps in the beginning, namely the pileup/digitisation, as
can be seen in the diagram in Figure 5.16.

The higher the luminosity, the more interactions happen during a beam crossing.
In 2012 there were, on average, 20 collisions per bunch crossing. Most of these are,
however, inelastic proton-proton interactions, that are understood and therefore of no
interest. These extra interactions are termed minbias events, whereas in the data these
are called a pileup of 20. For a physics analysis, pileup can impact the choice of cuts
or object selections. Also, efficiencies separating data from background may change,
which is why the pileup of the data and the simulated data have to be the same. The
luminosity will increase over the years and with it the pileup. This has an impact on the
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Figure 5.15: The wall time average over an incrementing number of similar reconstruc-
tion jobs, starting at one, at the VM at Gottingen. The black error bars
show the standard error of the mean (see Equation 5.2). Note: in order to
improve readability, the y-axis does not start at zero.
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Figure 5.16: Simulation workflow chain with regard to the different data types.

MC simulation, because these additional minbias events have to be simulated. Since it
would take too many resources to simulate the pileup every time, in the current model
simulation leaves the minbias simulation out. The pileup is generated separately and
overlaid afterwards.
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Simulated data reconstruction profile

The profile is shown in Figure 5.17. The part after approximately 21000 seconds looks
identical to the raw data reconstruction. The two additional steps RAWtoRDO and
RDOtoRDOTrigger take up over two thirds of the whole job, from 0 s to 14000 s and
14000 s to 21000 s. In addition, the first transformation up until around 14000 s is
reading much more data from disk, than is read afterwards, or in the other types of
workflows.
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Figure 5.17: The digitisation and reconstruction workflow profile.

5.3.4 Digitisation

Digitisation transforms the simulated data, consisting of detector hits, into the detector
response “digits” [110]. The detector response can range from a time range where a
threshold in a certain sub-detector part was exceeded, to the signal profile. It mirrors
how it would look for the real detector. The threshold is usually a current/voltage
in a readout channel. This also takes into account the specifics of each subdetector
component, like channel dependent variations or electronic noise [110]. The overall
detector behaviour is taken from previous laboratory tests of the components, cosmic
runs and test beam data. In addition the conditions for each run, such as dead channels
and noisy rates, are read from a database and included.

As previously explained, there is not only one clean event in the detector at any time,
all of the additional noise has to be included in the pileup [110]. Per bunch crossing,
multiple proton-proton collisions happen. In addition, due to long signal integration
times, additional background from adjacent bunch crossings can be registered. In the
extreme case, for the muon chambers, at a bunch spacing of 25 ns, a window of around
70 bunch crossings has to be taken into account for the “out-of-time” pileup. This
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background can be simulated and overlaid onto the simulated data from additional hits
input files [110]. It scales linearly with the luminosity and the bunch spacing. There
are also further inelastic proton-proton reactions and long lived particles within the
detector, as well as beam-gas and beam-halo interactions that have to be taken into
account [110]. The beam-halo originates from the beam interacting with accelerator
elements, whereas beam-gas interactions are reactions of the beam with residual gas in
the beam pipe. These interactions are taken from “zero bias” trigger data. It is reused
with independent simulated data sets.

Digitisation and reconstruction fluctuation

In Table 5.7, the similar digitisation and reconstruction (DigiReco) job results are shown.

‘ Average wall time [s] Standard deviation %
CERN VM 26142 0.83
Gottingen VM 2188 2.88

Table 5.7: Summary of executing ten similar DigiReco jobs. At CERN 2000 events were
processed, whereas at Gottingen only 200 events were processed.

At CERN, ten times as many events were processed, which explains the large discrep-
ancy between the wall times. Figure 5.18 shows the wall time average as a function of
an increasing number of similar DigiReco jobs.

The plot depicts the results for the VM in Gottingen. Overall the fluctuations are
small, in the order of a few percent, compared to the wall time.

5.3.5 Trigger simulation

Up to this part, the trigger, see Subsection 3.2.5, has not been considered for the sim-
ulated data. For a later analysis, it is important to stick as closely to the real data as
possible, which is why the trigger has to be taken into account [113]. This will provide
an accurate simulation of the selection efficiencies as well as the signal sensitivities. The
trigger simulation takes the RDO data format as input. Since the trigger rates and
cut-offs change in accordance with the luminosity and pileup, the software releases need
to correspond to the releases used for the real data, unlike the MC simulation releases
which evolve over time [113].

5.3.6 Reprocessing

Data reprocessing is basically a repetition of the reconstruction, which happens at a
later point in time. Data is reprocessed due to a major improvement in the conditions
status of the detector and/or software. Reprocessing applies, for example, updated
calibrations, conditions, and improved tracking and corrects previously problematic
regions of the detector. The data is reprocessed from the raw data format. The
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Figure 5.18: The wall time average over an incrementing number of similar DigiReco
jobs, starting at one, at the VM at Gottingen. The black error bars show
the standard error of the mean (see Equation 5.2). Note: in order to improve
readability, the y-axis does not start at zero.

MC simulation data might also be reprocessed to give consistent reconstruction re-
sults. This is generally well defined and the resource requirements are known beforehand.

5.4 Analysis

In principle, a user can submit any piece of code, as long as the correct permissions are
present. This means, even something that has nothing to do with a physics analysis®
would be accounted as an analysis job. The fraction of non-physics jobs is probably
very low, but it highlights the fact that the job behaviour can be hard or impossible to
predict. Therefore and because the overall load of analysis jobs can vary widely, they
are referred to as “chaotic” [114] as one analysis differs very much from another.

In general, however, an analysis job runs over large datasets and is therefore mainly
I/0O intensive. Mostly due to the small cross-section of most of the processes of interest,
high statistics are required. High statistics means that the input data set has to be
large. The decays/processes of interest can be very rare, meaning more data increases
the chance of observing them in the first place. A nice example is the Higgs discovery,
which did not happen moments after the LHC recorded the first Higgs-event, but after
collecting and analysing several years worth of data.

5For example printing “Hello World!”, or mining crypto currencies.
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5.4.1 Group production

In the context of a group production, physicists within a group are interested in similar
physics processes. Group production is a pre-processing step to the end user analysis,
selecting specific tags and reducing the overall amount of data that has to be processed
by individual analyses. It creates derived physics datasets, which are then used by the
group members. This analysis step is more structured and easier to predict than an
individual user analysis.

It mainly consists of the three steps: skimming, slimming and thinning.

Skimming means to reduce a set of ATLAS events to include only events of interest
for subsequent analyses [87]. Depending on the use case, this reduction can be quite
significant, reaching several orders of magnitude.

Thinning removes objects from within an event, based on the properties of the object
[115].

Slimming is the process of reducing the event size by removing event information, such
as variables, that are unnecessary for the analysis [116]. This is done uniformly and does
not vary between different events.

5.4.2 Complete processing

Combining Figure 5.2 with the more in-depth information from the previous subsections
gives a more complete picture, see Figure 5.19.

In principle, each of these steps can be run separately or everything can be combined
into one job. This is handled differently between the different experiments. In ATLAS,
pileup, digitisation and reconstruction are combined as previously explained.

Another important thing to note is that this graph does not only depict one sequence
of workflows. There are many different analyses that require a plethora of different
inputs. In the end, all of them require a plethora of different simulation, reconstruction
and analysis workflows and combinations thereof.

Coincidentally, the classification of the different workflows agrees with the order of
the workflows. Everything up to reconstruction, meaning the simulation chain excluding
reconstruction in Figure 5.19, can be classified as CPU intensive as could be seen from
their profiles. From the reconstruction onward, the workflows are I/O intensive.
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CHAPTER O

Models and predictions

“Prediction is very difficult, especially about the future.” - Niels Bohr

In order to describe the workflow behaviour on an arbitrary infrastructure, a model was
created. The goal was to make predictions that indicate the best workflow infrastructure
combinations. The best infrastructure includes different Cloud offers.

The initial approach of the model can be seen in the paper published in the CHEP
proceedings, see [117]. At that point, the idea was to split a workflow into very fine
substructures which are the basis for the model. This, however, led to a plethora of
input parameters. In order to reduce the number of input parameters, a whole new
approach was used. This approach started with as few inputs as possible, to keep the
complexity low. From there, input parameters were added successively once it was clear
that the accuracy of the prediction could be improved significantly with this additional
value.

There is a trade-off that has to be made, between keeping it simple and making it
accurate. With this approach, the ideal model configuration has been found, making
the model as simple as possible with a good predictive power. The benefits of a
simpler model are that it is applicable without expert knowledge of the workflow and
infrastructure and that it is more accessible to other experiments or users. Especially
for Cloud computing, where some infrastructure aspects are unknown, a less complex
model may be the only option. Disadvantages are that it might not be applicable to
some special cases or configurations.

In the previous Chapter 5 an in-depth look at the profile of different workflows was
given. These profiles are examples of how the workflows should look if they are run
under good and stable hardware conditions. In reality, everything will be more chaotic
due to constant changes to the software, input data and outside influences such as
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neighbouring VMs with which resources are shared. The model is introduced to predict
how different workflows will perform under these conditions.

The model is specifically tailored to make predictions within the Cloud, presented
in Chapter 4.2, but the results and conclusions can just as easily be applied to the
Grid. The significance of having a prediction already becomes apparent during the
procurement. Here, the customer has to communicate their requirements to the Cloud
provider(s). The correct balance between computing power, storage, input/output speed
and memory has to be known. If the resources do not match the workflow requirements,
money is wasted. It may be lost because too much of one resource was procured and
the resources stayed unused, such as requesting too much network bandwidth for the
needs. It can also be lost because too little of one resource was procured, in which case
it becomes the bottleneck. This is then at the expense of the other resources that lie
partly idle, e.g. too little network bandwidth and jobs (CPUs) waiting for input. The
same is true for a Grid site.

To have a fair comparison, it is not only the workflow performance that is important,
but also the optimal configuration of the site. The model is able to provide both.

In addition, an important question to be answered is, at which point using the Cloud
is economically viable. A wrong understanding of the workflow behaviour in the Cloud
can tilt this answer in either direction as the Cloud could be more/less performant than
expected. This can potentially have a big impact in management decisions, e.g. whether
to build a computing centre.

Furthermore, there is more than one type of workflow. Understanding how all of
them would perform individually can help to decide which workflows to run on which
infrastructure, even independently of the Cloud. On the Cloud, due to the hardware
flexibility, this becomes even more attractive. Theoretically each workflow could run on
a dedicated, specifically configured hardware.

6.1 Related work

There are different descriptive languages, such as TOSCA [118] and DADL [119], that
describe application requirement and infrastructure resources. These were not adapted,
as they were not flexible enough and because in the Cloud environment benchmarking
is necessary. The descriptive languages match workflows to an infrastructure that fit
their requirements. The model on the other hand, predicts the workflow performance
on infrastructures that do not exactly match the workflow requirements, as is described
in Chapter 8. This is necessary in order to find the optimal Cloud configuration, mean-
ing to exploit the flexibility of the resource configuration. Additionally, optimisation
techniques of the workflows could easily be investigated by the model, which would not
have been possible using these descriptive languages. Furthermore, since some of the in-
frastructure parameters within a Cloud are unknown, benchmarking becomes necessary.
The workflows can therefore already be described by their respective benchmarks and
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thereby used by the model directly, making an additional descriptive language unneces-
sary.

Several models that predict workflows on different infrastructures already exist. Some
of these concern themselves with different resulting metrics, such as the response time
in [120], so they are not applicable. The more relevant ones, such as [121] and [122]
concern themselves mostly with the memory access to predict the performance. When
considering different memory limitations and swapping, these models become unreliable
or very cumbersome.

In [123], a neural network is used to predict the application performance in a virtualised
environment. This approach concerns itself with static infrastructures.

Further approaches are to model the entire infrastructure, such as in [124] and [125].
Modelling the whole WLCG is out of the scope of predicting and comparing different
Cloud providers. In the end, focusing on the Grid as a whole and investigating how
adding another Cloud site would impact the overall Grid is unnecessary. A Cloud site,
can be different, with regards to the resources it provides and workflows it accepts,
when compared to any of the existing Grid sites. A Cloud site that receives dedicated
workflows, influences the overall Grid in a very minimal way.

Many of the models do not solve the problem of how to obtain the performance metrics
for a Cloud site, or a generic benchmark is used. For Cloud sites not all the hardware and
configuration information is available, in contrast to a Grid site. In the model introduced
in this thesis, an approach that classifies and benchmarks the ATLAS workflows is used.

Another big difference to the presented tools is that they do not consider scenarios,
in which the available resources are not enough. This means for example, they cannot
explain what happens if a workflow is run on a machine that does not provide enough
RAM, or how the performance is impacted in case CPUs are overcommitted, see Chapter
8.

The biggest advantage of the model in this thesis over the above presented models is,
that they compute only the performance of one specific configuration. The possibility to
find the optimal configuration of a Cloud site is an integral part of the model presented
in this chapter. This allows the flexibility of the Cloud infrastructure to be consid-
ered, by matching the different workflows with the best corresponding infrastructure
configuration.

6.2 The Workflow and Infrastructure Model

In order to predict workflow performances on different infrastructures, the “Workflow
and Infrastructure Model” (WIM) was created. The model has been designed in a very
general way, so that all ATLAS workflows, all the other experiments’ workflows and
even non-physics workflows can be described by it.

For the Cloud use case, there are several scenarios how the model can be used. The

difficulty lies in the fact that when buying a CPU core, the performance for a given
task is almost impossible to predict accurately, even if the manufacturer, generation and
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clock speed are given. In addition, in a virtualised environment the provider can decide
how many virtual cores run on any given machine. The provider could simply double the
number of cores that are accessible to the customer, even though the underlying hardware
remains the same, which would lead to a drop in performance. Therefore there is no
way around benchmarking, meaning to measure the performance, see Subsection 4.6.1.

The first possibility is that the user has access to part of the Cloud infrastructures
beforehand. In this case it is possible to run benchmarks and thereby acquire information
on the performance of the Cloud infrastructures.

The second scenario is that there is no customer Cloud access. In that case, the cus-
tomer has to supply a benchmark suite to the providers. The results are then published.
This would usually already take place during the tendering phase of the procurement.

In either case, it is unavoidable to have infrastructure information from benchmarks,
that can be used as input for the WIM.

The standard benchmark in HEP is HEPSPECO06, which could be used for this pur-
pose, see Subsection 4.6.1. However, there are several downsides to the HEPSPEC06
benchmark, one of it being that it takes a long time to finish, in the order of one day,
and is therefore very costly. Furthermore, there are very different workflows within HEP,
some are better and some are badly represented by the HEPSPEC06 benchmark. For
these reasons it was decided not to use the HEPSPEC06 benchmark as a normalisa-
tion in the WIM, but to use the actual ATLAS workflows that represent the workload
instead.

6.2.1 Functionalities

A chronological view of the model shows that it was originally created to make a predic-
tion on the required bandwidth of a future Cloud site. It evolved from there to include
further prediction values. In order to compare Cloud sites, the overall output metric
events/time/cost (ETC), which is measured in events/second/CHF, was chosen as a
good comparative value. The abbreviation CHF stands for Swiss francs, the currency
used at CERN. The ETC metric describes the “amount of physics”, that can be com-
puted per time and money. It solves the problem of comparing Clouds and different
infrastructure configurations, as well as other optimisations, with each other.

Results

The WIM takes a set of input parameters and returns a predictive value. For different
use cases, the overall model needs to be more flexible than just returning one possible
output.

Any input metric can become the result, which is useful for cases where infrastructure
requirements are unknown, e.g. the bandwidth, see Subsection 7.3.2. The model provides
these results to choose from: ETC, events/cost, events/time, workflow duration, required
bandwidth, cost/event, number of events produced in case of a fixed duration Cloud
activity, download speed, total input size, download duration or overall CPU time.
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Variations

The model has a built-in mechanism that provides the possibility to vary input param-
eters over a range. This then produces multiple results, one for each variation of the
input.

Even multiple input parameters can be varied in parallel, leading to additional results.
The best resulting value is provided, for example the one maximising the ETC ratio.

Correlations

Comparing these different results from varied input parameters with each other can
easily show trends and the impact of the inputs.

Looking at trends can help to decide how to allocate resources, for example if the
result increases or decreases significantly by increasing one infrastructure parameter.
In a procurement, beneficial high-impact infrastructure aspects would then be favoured
over low-impact ones, when tuning the hardware configuration.

A comparison can also highlight correlations between the different infrastructure
and/or workflow aspects. This could, for example, indicate a possible bottleneck in
one infrastructure aspect in the case where another aspect is varied.

Comparisons

Another application of the WIM, is the comparison of different Cloud sites. In this case
the model is run once for each site or Cloud provider. This shows which site performs
better in the given use case.

When searching for optimisations on an existing infrastructure, for example, cost does
not play a role. Then the WIM can provide the events/s metric as output, which is a
measure for the physics throughput and favours fast, usually more expensive hardware.
If there is no time pressure, the infrastructure should be optimised for events/CHF,
producing physics results as cheaply as possible. This favours cheap, usually slower
hardware.

Plots

The model can vary input values over a range and display the results in a plot. In order
to represent the changing results when input A and input B vary, a 3D-plot is generated.
An example can be found in Chapter 8, see Figure 8.10. The input A would be on the
x-axis, input B on the y-axis and the result on the z-axis. The maximum result value
is given in the output and highlighted in the plot. This 3D-plot is colour coded for the
z-value and can be rotated for better visibility.

In case more than two input values need to be compared, the model creates multiple
of these 3D-plots, each of them with a different input C value. The corresponding input
C values are indicated in the file name of the plots.

Since it would be tedious to look through all the plots just to get the best result,
the overall maximum result value is given in the standard output, together with the
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corresponding input values.

Overcommitting

Overcommitting is one of the possible optimisations that can be applied. It is described
in detail in Section 8.1. In order to fully integrate overcommitting into the model,
further input parameters have been added. With this functionality, that is described
in Subsection 8.4.1, the model is able to indicate whether it is beneficial to run more
parallel processes than there are available cores on a VM, at the cost of a higher RAM
requirement.

Overview

With these powerful illustrative capabilities, the model is able to not only deliver the
optimal hardware configuration, but also to show which input parameters are of lesser
or higher importance for the overall outcome. This immediately indicates bottlenecks
and the potential for optimisations.

The presented features provide answers to questions such as: there is a fixed budget,
which Cloud infrastructure should be acquired in order to maximise the processed events?
Which combination of bandwidth, caches and Cloud storage is the most beneficial?
Similarly: what combination of workflows (combination of simulation, reconstruction
and analysis) is the best to run on this Cloud?

The general use case includes:

e For an infrastructure and a workflow, how much bandwidth is needed?

For a flat budget, how many events can be produced?

Does this optimisation have a positive impact?

o How many events per second are produced?

Does the event size affect the processing duration?

6.2.2 Model input

One of the WIM’s goals is to describe how a workflow will behave within the Cloud.
Therefore, the required input cannot be too specific, as some Cloud specific information
is not publicly available.

A balance was struck, between accuracy and complexity, by creating a very basic model
and carefully adding only relevant components to it. The relevance was determined by
comparing results from the error and validation considerations.

The input parameters that were chosen in order to describe the workflow performance
depend mostly on the benchmarks. In Figure 6.1, the different input and the most
commonly used output parameters are depicted.
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Figure 6.1: Model outline, depicting the different inputs and possible outputs.

On the bottom, the different possible outputs are shown. The list is not complete,
as there are many more possibilities and combinations that can be obtained as a result.
The left side depicts infrastructure and workflow related values that are obtained from
the benchmarking. Due to the nature of the benchmarking these values are intertwined
and cannot be separated into workflow or infrastructure inputs.

The values on the right side are either known or can be precisely specified during the
procurement, so no benchmarking is necessary. The exhaustive list of input parameters
that the model needs for the infrastructures, the workflow and the plot, can be found in
the Appendix, see Subsection A.3. The central part labelled “Model”, which contains
the transformations of the inputs into the different outputs, is described in detail in the
next Section 6.3.

The previously described functionalities in Subsection 6.2.1, describe how it is possible
to compare the results of varied input parameters. This is achieved in the WIM by using
lists as the variable input. An example is the default value of the number of CPU cores
“Nr_Cores”: [8.0, 9.0]. Having a list of input values as input for a variable can be
done for at most three input values. The model will then create plots of all possible
combinations.

Usage

The WIM is used in a simple way. First of all, in order to predict a workflow, the model
needs to have some workflow parameters as input. These are obtained by running the
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workflow on a reference machine and on the target hardware (e.g. Cloud). Running the
workflow on the reference machine, where all the monitoring possibilities are available,
provides the workflow specific metrics, such as the run time and the time the CPU
was utilised. The hardware parameters, such as the CPU factor indicating the CPU
power, are obtained by additionally looking at the results from the target hardware.
Variables related to the reference machine are subscripted by ¢, variables related to the
target machine are subscripted by ;4. Further details can be found in the appendix, see
Subsection A.3.1.

6.3 Model logic

After seeing what the WIM can do, it is important to have a look at how it is done - to
see the inner workings of the model. The most crucial part of the model is to determine
the workflow duration on a given infrastructure. Most of the other outputs can then be
derived from this duration.

A typical ATLAS workflow consists of several transformations as well as substeps, as
could be seen, for example, in Section 5.3.1. Since the model uses the actual workflow
as a benchmark, for basic usage it is not necessary to have detailed information about
the intricacies of the workflow. These are looked at during the testing and validation in
Chapter 7.

6.3.1 Workflow duration

The workflow duration prognosis is the central part of the model. It is chosen as a
starting point, from which the underlying structure of the model can be explained in
detail. The workflow duration is a complex combination of all the input parameters.

It can be divided into times when the CPU is used and times when it is idle. In the
following subsections, first the CPU consumption time (Subsection 6.3.2) is explained
and then consecutively all scenarios in which the CPU is idle (Subsection 6.3.4 to 6.3.6).
Afterwards, an additional consideration is undertaken, that enters the equation when
looking at multi-core systems (Subsection 6.3.7). Then the overall cost considerations
are integrated in the number of resulting machines in Subsection 6.3.8. In the end, it
is shown how the workflow duration is used to determine further final model results,
see Subsection 6.3.9. The addition of the overcommittment functionality is done in
Subsection 8.4.1.

At the topmost level, the workflow duration (W F _Time) is a linear combination of
three different aspects, the CPU consumption time (CPU_Time), the CPU idle time
(Idle-Time), and the CPU I/O wait time (IO_Wait_Time).

WF Time = CPU _Time + Idle_Time + I0_Wait_Time (6.1)

In order to understand some of the factors in the following formulas, it may be useful
to understand in which format the input values are put into the model. As an example,
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many input values are on a per event basis, which is why some results are obtained
by multiplying by the number of events (Nr_FEuvts). More details can be found in the
appendix, see Subsection A.3.

6.3.2 CPU consumption time

The CPU consumption time (see Equation 6.3) consists of the duration the CPU is in
usage by a program. This is also called the processing time and processing happens all
throughout the workflow.

The more powerful a CPU is, the more clock cycles it can perform in a given time
and the more instructions it can perform per clock cycle. As a result, a program that
is mostly CPU intensive will execute faster on a machine with a more powerful CPU.
The CPU consumption time is therefore infrastructure and workflow dependent. How
the CPU consumption time is obtained and what is exactly put into the WIM can be
found in the Appendix, see Section A.3.

CPU power

In order to use the CPU consumption time on multiple infrastructures, it has to be
normalised. This is done through benchmarks, that provide a measure for the relative
CPU speed of two or more machines.

The reference machine, which can be any (virtual) machine that can run the bench-
mark, gets an arbitrary CPU power default value (CPU _power, ). The model input for
the CPU power of the target machine CPU _powery, is obtained by:

CPU Time,y * CPU _powery
CPU Timey,

CPU _poweryg = (6.2)

This is the relative power of the target machine compared to the (arbitrary value of
the) reference machine. Note that it is possible to use any kind of benchmark for this
purpose, even HEPSPECO06 or non-physics workflows. According to this definition, a
more powerful CPU gets a larger C PU _power value.

In the model, the CPU consumption time is easily calculated by multiplying the input
CPU time with the Cloud infrastructure’s CPU power, number of events and parallel
AthenaMP processes.

CPU _consumption_time =

CPU Time, s * CPU _powery * nr_processes x Nr_Events (6.3)

Here, the multiplication with the number of parallel processes is important, because
the model is created in a way, that more processes mean additional workload. Each
additional process increases the number of processed events, which will be relevant in
Section 8.1.

79



6 Models and predictions

6.3.3 Idle time

The idle time, as the name suggests, is the part of a workflow, in which the CPUs are
idle. This excludes time spans during which the CPU is idle because it is waiting on an
I/O operation going through the block layer of the system. In general, CPUs waiting
for network I/O operations are accounted in the idle time.

Other big contributors to the idle time can be found in multi-core VMs. At any point
in time, if only one CPU core is used, the remaining cores count as idle. This is usually
the case during the start-up phase, until all code is loaded into memory, and at the end
of the job, when the different threads or processes finish at different times. In ATLAS
jobs there are single-core merging steps that additionally contribute to the idle time.

The model treats idle time in a similar manner as the CPU time. Since benchmarks
have already been run in order to obtain the CPU power, additional metrics from these
results are used for the idle factor. The idle factor for the target machine (Idle_factory)
is generated by comparing the idle time of the reference (Idle_T'ime,s) and target ma-
chine (Idle_Timeg):

Idle_Time,;
Idle_fact = — (64
e-factory, Idle Timey, (6-4)

For simplicity, the arbitrary idle factor of the reference machine is (Idle_factor,; = 1).

6.3.4 1/0 wait time

The I/O wait time refers to the time the CPUs are waiting for I/O operations to be
performed. This includes all I/O that goes through the block layer, mainly to the disk
or a network attached storage. Therefore the I/O wait time is mostly dependent on the
disk speed. There are different kinds of disks, such as SSDs and HDDs. Some disks can
handle more read/write operations per second. These are better suited to handle I/O
operations, therefore positively influencing the 1/O wait time. Of course there are also
speed differences between the same kind of disks, albeit much smaller ones. If however,
while one process is waiting on an I/O operation, another process could use the CPU
in the meantime, it will. This will then not be accounted as I/O wait time. That is to
say, there are scenarios in which the I/O wait time is close to zero but processes had to
wait for I/0.

The model treats I/O wait time in a similar manner as the CPU and idle time, reusing
the monitoring results from the previous benchmarks. The I/O power for the target
machine (IO_powery) is generated by comparing the I/O wait time of the reference
(10 Time,s) and target machine (10 _Timey):

10 Time,;
10_ = — (6.5
powerty 10 Timesq (6.5)

The I/O power of the reference machine is set to one (IO0_power,s = 1).
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6.3.5 Overhead time

There are some overheads that happen during a workflow. Their total duration is
relatively short, therefore any improvements, such as better hardware, have only a
slight impact on the overall workflow duration.

The most impactful overheads are the stage-in and stage-out duration. In the WIM
it is intended to treat them separately from the idle time. The stage-in duration can be
described by:

Nr_FEvents_Files x Size_Evt_input
tageIn T = .
Stageln-Time Download_Speed (6:6)

Where Nr_Events_Files is the number of events within the input files, Size_Evt_input
is the size of an event on disk. Since the model is not only describing one workflow, but
an entire site, the overall download speed (Download_Speed [B/s]) is limited.

The total download speed of a worker node (Download_Speed) is limited by the band-
width (Bandwidth). The worst case can be determined from the available bandwidth
and the number of parallel downloads:

Bandwidth

D load_Speed < Nr_Machines
owntoaa_spee = Nr_Machines

(6.7)
Nr_Machines is the number of available (virtual) machines.

Since the time it takes to download the input is smaller than the processing time,
there are two scenarios. The first scenario is that all workflows are trying to download
at the same time. This can happen when the Cloud infrastructure is first initiated. Here
the many parallel downloads are limited by the bandwidth and compete with each other.
After some time, however, with some workloads finishing faster than others, the second
scenario takes place. In it, the downloads of the workflows are distributed in time and
only a smaller fraction of the downloads are overlapping.

A similar calculation is done for the stage-out time, replacing “input” with “output”
and “download” with “upload”.

Another possibility is that instead of downloading the data, it could be read event-
by-event during job execution. This is additionally negatively affected by high latencies,
also known as the “event access time”. In this case, it is not feasible to separate the
stage-in and stage-out from the idle time. The idle time would be used as it is, while
bypassing the bandwidth considerations.

The remaining overheads can be summarised into a single input value. For most
scenarios they can be set to zero, as all overheads should be included already. There
is one exception, however, namely if a Cloud user creates and destroys a VM for every
workflow. Since this happens completely outside and independent of the workflow, it
has to be considered in addition.
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6.3.6 Swap time

Swapping (see Subsection 4.6.3) is a special case of I/O wait, that is accounted as I/O
wait time. An investigation of swap time is therefore only necessary when trying to
describe the job behaviour in scenarios where too little RAM is available. This is for the
most part relevant when doing overcommittment, see Chapter 8, and when changing the
available amount of RAM within, for example, the Cloud.

There have been efforts to describe the swap time as a function of the swap space,
but this is difficult and different for each transformation. An investigation into how
the available RAM affects the wall time of a reconstruction workflow can be found in
Subsection 5.3.2.

Since heavy swapping slows down the workflow significantly, this will never be a re-
alistic option for an acceptable event throughput. This was illustrated in Subsection
4.6.5, where having an idle CPU core was preferred over having heavy swapping. Heavy
swapping occurs if the available RAM (RAM) is smaller than the required amount
(RAM _limit). Therefore, instead of describing the exact progression (non-linear), a
large but constant penalty function is applied to the area where heavy swapping occurs:

0, for RAM limit < RAM

(6.8)
100000000000000, else

Swap_Time = {
This effectively cuts off any heavy swapping scenario from the viable results.

6.3.7 Undercommitted idle time

Undercommittment is another scenario that is implemented by the model, but can be
ignored for regular usage.

The idle time when undercommitting (UC _Idle_T'ime) is only relevant for cases, in
which less processes than cores are executed in parallel, for example, see Subsection
4.6.5. This effectively wastes CPU time in the amount of:

UC_IdleTime = (Nr_cores — nr_processes) *x Time_-One-Workflow (6.9)

which is accounted in the workflow time at the end. In general, the UC_Idle_T'ime is
already accounted in the idle time. When comparing VMs with a similar core count and
number of processes, it is also not needed.

It can be useful when the reference machine has more cores than the target machine,
which is not recommended. Then, in order to get comparable results, one would run
as many parallel processes on the reference machine as there are cores on the target
machine. The UC idle time will then help to compare the results.

The overall duration of the workflow Owerall W F_Time is calculated by applying
undercommittment from Equation 6.9 to the standard workflow time:

Overall WF Time = (WF_Time — UC_Idle-Time)/Nr_Cores (6.10)
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For regular workflows, the UC idle time is zero.

6.3.8 Number of machines

According to the different use cases, there are several possibilities of how to determine
the resulting amount of machines. The important final metric is how many machines
are available over which period of time (Nr_machines).

In the Cloud scenario, the assumption is, that there is a budget (Total_Cost) that
cannot be exceeded and a given time frame in which the Cloud activity takes place
(infrastructure_duration)':

Nr_machines =  Total_Cost/machine_cost * infrastructure_duration (6.11)

When increasing/lowering the amount of RAM per core (from RAM to RAM new),
the number of machines decreases/increases (from Nr_machines to Nr_machines_new).
The new number of machines is calculated with the help of an exchange rate between
CPUs and RAM (RAM CPU _factor). This exchange rate is Cloud provider specific
and depends on their pricing scheme.

Nr_machines_new = (Nr_Cores — (RAM -new — RAM)
« RAM _CPU _factor) * Nr_machines/Nr_Cores (6.12)

Alternatively, the infrastructure may already be owned by the user, in which case
the number of machines does not have to be computed and can simply be put into the
model. In that case, the infrastructure duration becomes obsolete. The overall duration
of the exercise in the Grid case is determined by the workload.

6.3.9 Final result

There are different metrics that are meaningful. The model can output several metrics,
as they are just different combinations of the already calculated values. The most useful
metric, the events/time/cost value ETC is obtained by the following equation:

ETC = (Nr_Events x OCF) * Nr_machines_new/
Overall WF Time/Total_Cost (6.13)

where OCF' is the overcommit factor that will be introduced in Subsection 8.1.1. For
the general case without overcommitting OCF = 1. The metric events/time can be
obtained by removing the Total_Cost from Equation 6.13.

The schematic of how the inputs are computed up to the final result can be found in
Figure 6.2.

!The infrastructure duration cannot be smaller than the workflow duration.
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Figure 6.2: The model calculation schematics. The red numbers on the left side indicate
the level [117].

The calculation starts at the bottom with the input values, some of which are displayed
on level zero. These are combined to higher level input metrics, which are shown in level
one. In level two, combined workflow and infrastructure metrics are created. These are
combined to represent the duration of the different workflow substeps in level three. A
combination of those, gives the wall clock time of the entire workflow. In parallel to
this, the cost considerations in level four were computed, using inputs from level zero
and one. The final result in level five is obtained by combining the workflow duration
with the cost.

6.3.10 Estimation of uncertainties

The WIM provides an uncertainty to each of its results, that indicates the accuracy of
the prediction.

The variations of each workflow can be measured in detail, which was done in Section
7.1.3. In the case of Cloud computing, the infrastructure underlies further fluctuations.
This is dealt with by considering the standard deviation on the target infrastructure,
thereby including workflow as well as infrastructure fluctuations. The CPU time, I/O
wait time and idle time (z;) each have a standard deviation (s;). These get propagated
up to the final result, which automatically takes care of the impact they have on the
final result R:

R = R(xl,.%‘g,...) (6.14)
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i=1 k=i+1

In this case m = 3, corresponding to the count of x;. This formula includes covariance
terms (s(x;,x)) that become zero if the two values are uncorrelated. This is the case,
except for the C PU _Time and the Idle_T'ime for which the exact correlation is unknown.
An upper bound of the uncertainty is estimated through:

(6.16)

6.4 Programming tools

The model was realised in Python v2.7.12. The modules that were used, were numpy
v1.11.0, json v2.0.9, math, pandas v0.17.1, unittest and matplotlib v1.5.1.

6.5 Complex workflow model

Initially, in order to give a good prediction, a job was split into several transformations.
These were put into the model separately.

Transformations were treated independent of each other and put together afterwards in
a modular way, because different jobs and workflows can consist of different combinations
of these transformations. An example would be DigiReco and raw data reconstruction,
which both use the same reconstruction transformation, but also transformations that
cannot be found in the other workflow. Ultimately, a job or a workflow, consisting of
multiple jobs, are both treated as a series of their consisting transformations.

As mentioned at the beginning of this chapter, this approach has been abandoned.
A positive side effect is that the possibility to use several transformations as input still
remains. This now provides the functionality that a mix of several workflows can be
entered at the same time into the model.
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CHAPTER [

Cloud workflow modelling

Over the course of this thesis, several commercial Cloud procurements took place within
CERN IT. The most recent pre-commercial procurement tender, called HNSciCloud,
took place within the HelixNebula initiative. Most notably, this EU project provided
access to several commercial Cloud providers and consortia. With access to multiple
providers, a good understanding of the Cloud environment and its behaviour could be
experienced and measured, see Section 7.2.

In order to make statements about the Cloud, especially comparisons between the
providers, the WIM is used. Before using the WIM, that was described in detail in
Chapter 6, it is imperative to understand the Model’s accuracy. This includes the
inherent uncertainty estimation that is provided by the Model. This chapter therefore
first explores the parameter space of the WIM, while comparing its predictions to
independent measurements, see Section 7.1

Two of the Cloud providers offered an object storage. The possibilities to make use
of these, was however very limited. The results are explained in Subsection 7.2.2.

7.1 Validation

7.1.1 Strategy

In order to do a precise validation, the strategy was to start the validation from a sim-
ple controlled environment and to increase the complexity step-by-step. The validation
is only meaningful, if it is ensured, that different combinations of workflows and in-
frastructures will be predicted correctly. The schema can be seen in detail in Figure
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Figure 7.1:

Detailed plan of how the validation was performed. The starting point is at
the top and the validation progresses towards the bottom. In reality, this
flow would continue further down. The diagram would have been longer,
but for space purposes it has been cut off at the end, since the principle can
already be understood from this diagram.

The validation begins on a well-defined, simple workflow on a well-known infrastruc-

ture. Even

though the infrastructure is already known, it is benchmarked to provide a

precise Model input.
Then, hardware and workflow aspects are changed alternatingly. This is indicated by
a different coloured downward arrow, either on the left or right side. Each change in
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the configuration requires a new benchmarking iteration. The different colours of the
benchmarks in Figure 7.1 indicate, whether the same benchmark is used to describe
hardware or workflow aspects.

After every step, the Model results are compared to the measurement and, if neces-
sary, improved. Necessary in this case means, that the difference between the results
is large. The improvements range from removing software bugs, to adding workflow or
infrastructure parameters, to increase the accuracy. Each improvement requires the
results of all previous configurations to be cross-checked. Initially, an overall accuracy
of 20% was aimed for. After seeing the results, this goal became more ambitious.

After reaching the bottom of the diagram, the validation is not finished. Further
workflow and hardware parameters can be varied, following the same principle. In
reality the steps were parallelised as much as possible in order to save time. This meant
having several different hardware configurations on different VMs at the same time and
processing the tests in parallel.

The workflows that were used, were ATLAS workflows. An increase in complexity
was achieved by going from the simplest to the most complex workflows. The workflows
that were chosen in the above described order were: event generation, Monte-Carlo sim-
ulation, raw data reconstruction, and simulated data reconstruction. Event generation
is the simplest workflow, because it does not use input data and creates very little out-
put data. It is therefore CPU bound and also the only workflow that runs on only a
single core. Monte-Carlo simulation uses only the output generated by event genera-
tion as input, which is very little. It is therefore also CPU bound, using multiple cores.
Raw data reconstruction is more data intensive than Monte-Carlo simulation. Simulated
data reconstruction, including digitisation and pileup, is the most data intensive of the
investigated workflows.

Direct validation

Before this structured approach, a more direct validation had been attempted. In it,
the WIM results were immediately compared to Cloud results within T-Systems. This
T-Systems Cloud procurement happened before the HNSciCloud activity.

The direct validation approach skipped over the small iterations, in which the
complexity should be increased step wise. In the diagram in Figure 7.1, it would mean
to start from the bottom most step.

The T-Systems Cloud was integrated into the ATLAS production system as an
additional Grid site. In order to account for the differences to a Grid site, not
all job types were allowed to run on the T-Systems infrastructure. The work-
flows that were run, were taken from the ATLAS job queue. This means, no specific
tests were performed on this infrastructure, which makes a comparison more challenging.
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In order to decrease the parameter space, the job variety for the model was limited by
looking only at ATLAS reconstruction jobs. In order to have a point of reference and a
possibility to compare, a further condition was that these are similar jobs, running on
both the T-Systems Cloud and at CERN.

While this gave an indication that the Model is able to describe the job behaviour on
these infrastructures within a reasonable error of 20%, it was not clear where this error
originates from and what influences it. The complexity of the non-homogeneous infras-
tructures and the reconstruction workflow did not allow for a thorough investigation.
This becomes clear, when attempting to improve the Model. A very simple example
would be, that the overall wall time of the workflows is underestimated by the Model.
By modifying the time it takes to download the input data, this can be compensated,
but what if in truth this discrepancy comes from a slower disk? In this case, a look at the
actual download duration of the jobs can indicate that this compensation is incorrect,
but other factors such as slower CPUs within the infrastructure can be harder to detect.
In Subsection 7.3.3 the results for the above mentioned T-Systems activity can be found.

7.1.2 Setup

In order to give a prediction, the Model needs input information about the workflow
and the target infrastructure. In the following, there is an overview of parameters that
have been varied during the testing. Each of these variations can manifest itself in
multiple Model input parameters.

The input parameters are obtained from benchmarking. In the following sections,
actual ATLAS workflows are chosen as benchmarks. The range of different jobtypes for
ATLAS is sufficiently narrow, that not too many benchmarks have to be performed. The
results are more precise than when using a generic benchmark. The downside is that
they are also more specific to the types of benchmarks used, meaning each jobtype needs
its own benchmark.

Workflows

The workflow variations happened on three different levels, which were applied in the
tests. First, all different jobtypes, namely event generation, Monte-Carlo simulation,
reconstruction, digitisation and pileup jobs are covered. On the second level, software
versions and the corresponding input data from different time periods are varied. The
third and bottom most level covers similar jobs, meaning the variation of input data
within the same ATLAS run or fill.

Infrastructure

The infrastructure differences are covered by running on many different VMs. The
most precise measurements were achieved by using VMs that were located on dedicated
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hardware located at CERN and Gottingen. These two VMs were hosted on machines
that no other users had access to, so there was no influence from neighbouring VMs,
known as noisy neighbours”. True independence of these machines is guaranteed by the
physical separation of these machines. The specifications for these VMs can be found in
the Appendix, see A.7.2 and A.7.1.

Initially, there was a 4-core VM at CERN and an 8-core VM at Goéttingen, but as
later results show, it is sub-optimal to compare machines with different numbers of
CPU cores. Therefore, all measurements were re-done with an 8-core VM at CERN
as well. Some more specifications can be found in the appendix, for the 4- and 8-core
CERN VMs see Subsection A.7.2, for the 8-core VM at Gottingen see A.7.1. More
information on the specifications of the particular CPUs of the two VMs can be found
in the Appendix 2 and 6. The reason why eight cores were chosen is because it is the
most commonly used ATLAS multi-core setup, see Figure 7.2. The many single-core
jobs are event generation jobs as well as individual merging jobs and specialised
jobs such as trigger reconstruction. It also includes the many ganga test jobs, that
check whether a site is functional. In addition almost all analysis jobs are single core jobs.

Count

actualcorecount: Descending

Figure 7.2: Cumulative number of jobs per core configuration over one year.
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Further infrastructure variations result from using VMs from commercial Cloud
providers. There is an overlap with the investigation into the Cloud, as the results
can also be used to validate the Model.

Through HNSciCloud, access to three different Cloud providers was granted. Due to
the nature of these resources, it was difficult to obtain the specifications of the underlying
hardware. The three providers were: Exoscale, IBM and T-Systems. Their machine
specifications can be found in the Appendix, see Subsections A.7.3, A.7.4 and A.7.5.

There was no control over what the provider and other customers did on the
underlying hardware and neighbouring VMs.

Initially, the tests were performed on only one VM at T-Systems, one VM at IBM
and three VMs at Exoscale. These tests took place from the end of September until the
middle of October. The conclusions about Cloud computing that could be drawn from
the single-VM scenario were limited. It was therefore mainly used in order to validate
the Model, the results can be found in Subsection 7.1.4.

At a later stage, from the middle of October until the end of November, additional
resources became available. This increased the amount of VMs to a total of 10 on each
provider. A better understanding of the job behaviour on commercial Cloud providers
could be gained from the larger scale tests. These can be found in Subsection 7.2.1.

Some providers were not very flexible with the amount of RAM per VM they could
offer. If the desired configuration was unavailable, one with too much RAM was chosen.
The standard 2 GB RAM per core configuration of the grid was then achieved by limiting
the RAM on the machine artificially. This was realised by executing a program, that
reserved a block of memory the size of the difference between the existing and the desired
configuration. The source code of the program can be found in the Appendix, see 1.

Monitoring and accounting

The different metrics used in this investigation were obtained from several sources.
First of all, the ATLAS workflows themselves have a built-in monitoring functional-
ity, whose results can be obtained from the log files (mem.full.*, mem.summary.* and
jobReport.json) and the standard output. In order to get a more granular monitoring,
the ‘sar’ commands of the sysstat package were executed every 5 seconds, see Appendix
3. Additional metrics are collected via the /proc and /sys pseudo-filesystems that pro-
vide interfaces to the system kernel, see Appendix 4 and 5. Since the ‘sar’ and ‘/sys’
metrics refer to the entire system, not just the processes of interest, it was ensured that
no other processes influence these measurements. Nothing else was executed and all
automatic ‘cron’ processes were disabled.

7.1.3 Validation - workflow fluctuation

When measuring or even when running the exact same workflow on the same machine
at a different time, the duration of the processing will experience statistical fluctuations.
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Moreover, a set of similar workflows will show additional fluctuations regarding its
duration. Both of these types of fluctuations have been investigated in Chapter 5.

The workflow behaviour will also differ when moving to newer software and input
data, as well as when looking at different jobtypes. It is important to understand these
systematic differences as the model will have to consider these either by adapting the
input or by including them in the error estimation. In the following, they are eliminated
by re-benchmarking for all different jobtypes. Some jobtypes were split further into
additional benchmarking categories.

This was done for cases in which the resource usage pattern within the jobtype showed
large variations and a discrepancy between the infrastructure input parameters was seen.
These large variations can be easily found by looking at the discrepancy between the
WIM prediction and the measurement. If the discrepancy becomes larger than 10% it
is useful to try and benchmark anew. If the new results are improved significantly
and a discrepancy between the infrastructure input parameters can be seen, a new
benchmarking category should be used.

Instead of this phenomenological approach, the ATLAS workflows have an inherent
separation into different jobtypes. These jobtypes roughly classify the resource usage
patterns. Some additional differences enter, when different transformations are used.

An investigation into covering the different workflow behaviour not by re-
benchmarking, but by an error estimation has been undertaken in Subsection
7.3.1. These numbers highlight how the discrepancy quickly surpasses the 10% thresh-
old, when combining very different jobs into one benchmark.

The WIM predicts the run time of a large ensemble of jobs, giving a prediction for
the mean duration. In fact, it is assumed that the amount of jobs that will be run,
for example on a Cloud, will average out most fluctuations that can be observed in
individual workflows. This is confirmed for all workflows by the convergence of the
averages in Figures 5.6, 5.8, and 5.15.

However, the WIM accuracy in the end still suffers from fluctuations within the work-
flows. This is due to the fact, that reference workflows are used in order to benchmark
the infrastructure and to describe the behaviour of future workloads. Therefore, be-
fore any statements about the accuracy of the Model can be made, a closer look at the
workflow behaviour and its fluctuations has to be undertaken. This was done for each
individual workflow in the corresponding Subsections 5.2.1, 5.2.2, 5.3.2, and 5.3.4. For
the WIM, only the fluctuations among similar jobs are relevant, as they represent what
is done in a real production environment.

The effect of the fluctuations is lessened by benchmarking multiple times, but they
cannot be completely discarded. If the input values deviate too much from reality, the
predictions of any Model will differ from reality. How often the benchmark should be
run, for sufficiently good input values for the Model, can be answered by Figures 5.6,
5.8 and 5.15. Judging from the plots and the low fluctuations therein, it is enough
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to run a small number of event generation/simulation/reconstruction jobs in order to
get good input values for the Model. In principle, the little amount of fluctuations
would justify benchmarking with only one job. In order to be sure that the first job
is not an outlier of some kind, throughout this thesis (n = 3) jobs have been used for
the benchmarking. Using at least this many jobs is generally recommended. Another
reason for multiple benchmarks are the uncertainties which are estimated from the
fluctuations of the benchmark, see Subsection 6.3.10.

The goal of the WIM is to have an estimation that agrees with reality at a better than
20% level. A successful validation shows that the predictions do not deviate more than
20% from the measurements.

7.1.4 Results

In this subsection the validation results are presented. This validation of the WIM was
done by predicting the wall time of a set of jobs on different VMs. The predictions are
then compared to the results of subsequent measurements.

This was performed as follows. The reference VM at CERN was used to obtain the
workflow input parameters. Three benchmark jobs per workflow were then performed on
different target VMs located at Gottingen, IBM, T-Systems and Exoscale. On Exoscale
three different VMs were use: EXO 1, EXO 2, and EXO 3.

Afterwards, the Model is used to predict how subsequent workflows will perform.
Finally, further workflows are executed on these infrastructures and the wall time is
compared to the Model prediction.

In order to correctly interpret the results, it has to be kept in mind that there are
workflow fluctuations. These were described in Sections 5.2 and 5.3.

Event generation

The resulting Model prediction for the event generation workflow agrees well with reality,
as can be seen in Table 7.1.

The biggest deviation in wall time was found on the EXO 3 VM. Since the event
generation workflow is dominated by CPU processing, the large deviation originates
from that component.

This also explains why a deviation in the I/O wait time of over 60% for the TSY VM
has a small impact on the wall time, which is predicted with over 99% accuracy. The
fraction of I/O Wait time compared to the wall time is very small.

Monte-Carlo simulation

There is a good agreement between prediction and measurement, as can be seen in Table
7.2. The CPU factor, CPU, Idle and IO wait times have been obtained from 25 reference
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Model

Discrepancies [%] | Wall Time CPU Time I/O Wait Time Idle Time
IBM 0.15 0.95 0.78 0.95
TSY 0.84 1.48 -66.14 1.50
EXO 1 -0.34 0.72 16.92 0.85
EXO 2 0.02 0.86 -18.13 1.08
EXO 3 3.00 3.97 -8.35 4.13
GOE 0.68 0.90 -2.17 0.84

Table 7.1: Deviation of the Model prediction from the measurement of similar event
generation jobs. The wall time has been split into its components in the last
three columns to 5. The benchmark was performed three times, the results
are the average over 23 jobs.

Monte-Carlo simulation jobs run at CERN and three reference jobs run at the respective
provider.

Model

Discrepancies [%] | Wall Time CPU Time I/O Wait Time Idle Time
IBM 2.49 2.58 -1.56 3.01
TSY 1.98 0.96 7.28 6.83
EXO 1 2.63 1.92 2.02 D.77
EXO 2 1.83 1.12 11.29 4.53
EXO 3 2.68 1.47 16.95 9.13
GOE 2.49 1.86 3.03 1.11

Table 7.2: Deviation of the Model prediction from the measurement of similar Monte-
Carlo simulation jobs. The benchmark was performed three times, the results
are the average over 23 jobs.

Trying to model the simulation with event generation input factors resulted in much
worse results, with a large deviation between the prediction and the measurement. This
is described further in Subsection 7.3.4.

An attempt to find a constant conversion factor between the event generation and
the simulation CPU factor has been undertaken unsuccessfully. The factor changed too
much between different workloads.

Reconstruction

The reconstruction workflow includes more I/O operations than event generation and
Monte-Carlo simulation workflows. The results can be found in Table 7.3.

Since reconstruction is more data intensive, the IO wait and idle durations become
more relevant.
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Model

Discrepancies [%] | Wall Time CPU Time Idle Time I/O Wait Time
IBM 1.85 0.22 4.12 15.16
TSY -0.40 -0.11 0.22 -2.83
EXO 1 -0.17 0.18 -0.50 4.37
EXO 2 0.51 0.26 1.53 1.85
EXO 3 -0.05 -0.07 0.61 3.70
GOE 1.02 0.17 1.66 3.29

Table 7.3: Deviation of the Model prediction from the measurement of similar recon-
struction jobs. The benchmark was performed three times, the results are the
average over 10 jobs

The results of the Model agree on a 2% level, however there are some larger discrepan-
cies in the wall time components. Especially the I/O wait time shows a large deviation
for IBM in relative numbers.

In absolute numbers, however, the I/O wait time is comparatively small, see Table 7.4.
This simply shows that small fluctuations have a high impact in the relative numbers.
For the model validation these discrepancies can therefore be disregarded.

Durations | Wall Time [s] CPU Time [s] Idle Time [s] I/O Wait Time [s]
IBM 4849 17225 17740 3281
TSY 4330 18531 15473 501
EXO 1 3144 13080 12012 56
EXO 2 3107 13253 11462 62
EXO 3 3145 13358 11662 62
GOE 5437 25532 17394 669

Table 7.4: Absolute numbers of the job duration measurement from similar reconstruc-
tion jobs. The results are the average over 10 jobs.

The high idle time can be explained by the single core merging steps. The recon-
struction profile in Figure 5.9 shows, how during this merging only one of eight cores is
active. The merging therefore quickly accumulates idle time.

Uncertainties

In Table 7.5 the deviation of the Model prediction to the measurement is compared to the
prediction of the uncertainty. How the model uncertainty is propagated was described in
Subsection 6.3.10. The input values are obtained from the three benchmarks, especially
their fluctuations.

What can be seen, is that the prediction of the uncertainty fluctuates a little between
the different providers, but differs significantly between different workflows. This means
that the workflows themselves are the limiting factor for the prediction in this scenario.
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% Event Generation | Simulation Reconstruction
[7] Error Uncertainty | Error Uncertainty | Error Uncertainty
IBM 0.15 1.56 2.49 4.23 1.85 4.34
TSY 0.84 0.74 1.98 4.46 -0.40 0.35
EXO 1| -0.34 1.12 2.63 4.36 -0.17 0.62
EXO 2| 0.02 1.78 1.83 4.33 -0.51 0.93
EXO 3| 3.00 1.03 2.68 4.43 -0.05 0.94
GOE 0.68 1.11 2.49 4.41 1.02 0.73

Table 7.5: The columns labelled “Error” show the already seen wall time deviation [%)]
between the measurement and the Model prediction. The columns labelled
“Uncertainty” show the percental uncertainty that is estimated by the Model
and provided together with the prediction.

It must be kept in mind, however, that these are single VMs.

Another observation that can be made, is that the range of the uncertainty does not
always include the measured deviation, e.g. Event Generation / EXO 3. This is to be
expected, as the uncertainty estimation is not an upper boundary. As most deviations
lie within the given uncertainty, this highlights that the uncertainty estimation is a good
and useful indicator.

7.1.5 Conclusion

In conclusion, for single VMs within different Cloud providers, the WIM is sufficiently
accurate. This can be seen from the fact that the model deviations do not exceed 5%,
which is well within the 20% goal. It should be kept in mind, however, that the WIM is
dependent on the benchmark.

In addition to the accuracy, the estimations of the uncertainties agree well with the
deviations of the Model predictions.

For these reasons the WIM is deemed complete and ready for usage. The WIM is
applied in different scenarios in Section 7.3.

7.2 Cloud measurement

Before applying the model to the large scale Cloud procurement, the different providers
are investigated in detail. The HNSciCloud procurement at CERN provided access to
VMs at three different commercial Cloud providers, namely: Exoscale, IBM and T-
Systems. In the following, different (previously introduced) workflows are run on the
VMs of these providers. For this real life Cloud exercise, there is no knowledge of
which VMs share the same hardware, how many there are, or what workload is run
on them. Furthermore, the conditions are not stable, meaning it can be possible that
any of the infrastructure parameters suddenly changes during a measurement. These
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measurements will provide valuable information of how the workflows behave in this
kind of environment.

In addition, insights into whether the WIM predictions are still valid, or whether the
uncertainty estimation has to be adapted, are obtained.

7.2.1 HNSciCloud: large scale

The single-VM measurements were already presented along with the Model validation.
In the later stages of the prototyping phase, additional resources became available. A
total of ten VMs per provider, with eight CPU cores per VM, were provisioned. This
increased the scale of the tests significantly to 240 CPU cores.

There was no information available on which VMs were collocated on the same
underlying hardware. Therefore resource contention among these ten VMs was possible,
as all tests were run in parallel on all VMs.

The same workflows have been run on all providers, see Tables 7.6, 7.8 and 7.7. The
in-depth details of the underlying workflows, with which the tests could be repeated,
can be found in the Appendix in Section A.6. On a coarse level, the workflows that
have been run correspond to the different ATLAS job categories, namely: event genera-
tion, simulation, reconstruction and digitisation. A more fine grained division has been
undertaken for the reconstruction workflows. This was done because reconstruction is
data intensive and therefore more complex, so additional parameters could be varied.
Each job category was repeated at least ten times per VM. This means, that for each
job category around 300 measurements were done.

Due to various reasons, individual jobs failed. It was attempted to re-run each failed
job. Time constraints limited the amount of repetitions of failed jobs. After this be-
came clear, more than ten jobs per category and per VM were run. The total amount
of measurements per provider and job category therefore stayed above 100, even with
job failures. The exception is Reco 2, with slightly fewer jobs. Due to the failures,
the averages that are presented below, can consist of a varying number of underlying
measurements.

Exoscale

In Table 7.6, all Exoscale results are summarised, together with their standard devia-
tions. The wall time is split into its components.

From the previous measurements it is already understood, that the different job cat-
egories represent a diverse mixture of jobs. This is reflected in the measurements.

A difference between the measurements over ten VMs on a Cloud provider compared
to single VMs in a controlled environment, see Sections 5.2 and 5.3, can be observed.
The standard deviation is increased for the larger setup. This is due to the fact that on
top of the fluctuations that were already observed, there are infrastructure fluctuations.
These result from differences among the VMs and the more volatile environment.
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Exoscale Wall CPU Idle I/O Wait
Time [s] Time [s] Time [s] Time [s]
EvGen 2915 £ 137 2875 £ 171 20179 £+ 980 4+1
MC Sim 1279 + 61 8489 + 434 1669 £ 244 10+1
Reco 1 5737 £ 440 29524 £ 2225 15293 + 2046 732 £+ 134
Reco 2 5700 + 190 26222 £ 748 18519 £+ 1203 489 + 290
Reco 3 4547 £ 478 18672 £ 2142 17235 £ 1877 184 + 57
Reco 4 4528 + 398 18578 £ 1874 17185 + 1529 180 + 25
Reco 5 3147 £ 88 13250 £ 410 11731 &+ 594 54 £ 6
Reco 6 3529 £ 451 16909 £ 2267 11173 + 1563 101 £+ 91
Reco 7 5550 + 943 29660 + 5587 13801 £ 1610 725 £ 646
Digi Reco 1 | 1210 £ 123 4945 + 214 4568 £ 928 30 £5
Digi Reco 2 | 8381 £ 681 55780 4+ 4814 10495 + 912 121 £ 15

Table 7.6: In this table all test results of the jobs run on the Exoscale infrastructure
are shown. Each line constitutes similar jobs. Jobs that took less than 500
seconds CPU time are excluded, as these failed.

One example would be the different performance of the VMs as illustrated in Figure
7.3. What can be seen is that VMs 5 and 7 take much longer to complete the same
workload than the other VMs. Furthermore, the other eight faster VMs differ slightly
in their performance as well. These kinds of differences in the performance of VMs can
have different root causes, which are not necessarily stable in time. In addition, different
workflows may be more or less sensitive to these differences, meaning the impact varies.

Single jobs also appear within VMs that deviate largely from the others. The three
cases can be found in VM 1 job number 10, in VM 5 job number 3 and in VM 8 job
number 3. These outliers represent an additional type of short termed fluctuation.

In Figure 7.4 the same VMs as in Figure 7.3 are used.

Ignoring the fact, that a different workflow is run, what can be seen immediately is
that now, only VM b5 is taking longer to finish the workload. VM 7 that was slower
than VM 5 in Figure 7.3, is now performing at the level of the other 8 faster VMs.
This drastic change in performance hints at a change to VM 7 that lay outside of the
influence or knowledge of the Cloud procurer. Luckily for the procurer, the two figures
are in chronological order, so this change represents an increase in overall computing
power.

This shows, that including volatile hardware can have a negative impact on the stabil-
ity of the wall time, making predictions more difficult and more error-prone. Assuming
that the provider offers better hardware as a bonus, the model can however predict a
lower bound for the event throughput.

IBM

The overview over the IBM results can be found in Table 7.7.
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Figure 7.3: Wall times [s] of all Reco 6 jobs executed on Exoscale. The jobs are organised
according to the VMs they ran on and in the same order.
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Figure 7.4: Wall times [s]| of all Digi Reco 2 jobs executed on Exoscale. The jobs are
organised according to the VMs they ran on and in the same order.
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IBM Wall CPU Idle I/O Wait
Time [s] Time [s] Time [s] Time [s]
EvGen 3927 £ 118 3906 £+ 120 27263 £ 850 9+1
MC Sim 2321 + 353 16184 £ 2709 2352 + 324 11 £ 2
Reco 1 8193 £ 571 43588 + 4073 19600 £ 876 2065 £ 641
Reco 2 8165 + 598 37346 £ 2776 26573 £ 2008 848 + 130
Reco 3 7061 + 629 30786 £+ 5083 23708 &+ 3257 617 £ 120
Reco 4 7009 + 604 29713 £ 4002 25223 £ 1605 643 £ 101
Reco 5 4756 + 680 20352 £ 3155 17214 +£ 2501 257 £ 79
Reco 6 4919 + 468 25036 £+ 3562 13943 + 645 247 £ 59
Reco 7 7630 + 760 39786 £ 5063 19953 £ 1519 836 + 148
Digi Reco 1 2019 £ 172 8690 £ 1145 7276 £ 358 61 £ 14
Digi Reco 2 | 15116 + 2395 104959 + 18841 15155 + 846 439 £ 75

Table 7.7: In this table all test results of the jobs run on the IBM infrastructure are
shown. Jobs that took less than 500 seconds CPU time are excluded, as these
failed.

The VM performance is lower than in Exoscale. What can be seen is that different
job types are impacted more or less by the differences between the two infrastructures.
Some workflows are significantly slower, such as Digi Reco 2, whereas others are not
slowed down as much, such as Reco 7.

The differences in fluctuations are shown and described in detail later.

The IBM infrastructure was found to be heterogeneous as was seen before for Exoscale
in Figure 7.3.

T-Systems

One difference between the T-Systems VMs and the VMs from the other providers is
that eight of the T-Systems VMs were located on the same underlying host. This was
achieved by choosing a “dedicated host” as the underlying infrastructure for these VMs
in the T-Systems interface.

The T-Systems results are summarised in Table 7.8.

In comparison to what has been seen for Exoscale in Table 7.6 and for IBM in Table
7.7, the wall times are increased. An interesting fact is that different job categories are
affected differently by the difference in the infrastructure. The slow-down factor between
the wall times from Exoscale and T-Systems, differs between the job categories. There
it ranges from around 1.4 for event generation to around 3.75 for simulation.

The fluctuations are also higher, as is shown and discussed in detail later in Table
7.9.

101



7 Cloud workflow modelling

T-Systems Wall CPU Idle I/O Wait
Time [s] Time [s] Time [s] Time [s]
EvGen 4089 + 126 4098 £ 126 28394 £ 885 15 £ 25
MC Sim 4808 £ 1298 22863 £ 3930 3944 £ 1227 78 + 74
Reco 1 + + + +
Reco 2 15430 £ 2612 59086 £ 9645 34790 £ 3420 14318 £ 3326
Reco 3 8681 £ 1827 32646 + 5262 29511 + 4847 5061 £ 4525
Reco 4 10785 £ 1534 42030 £ 4942 31941 £ 3296 3876 + 3162
Reco 5 7099 + 1203 28419 £ 3597 18479 £ 2247 387 + 62
Reco 6 7986 £ 1810 34097 £ 4936 20870 4+ 5020 1712 £ 3241
Reco 7 15348 £ 2886 61478 £+ 11789 27058 + 5703 17861 + 3272
Digi Reco 1 2789 £ 524 10497 £ 1546 7588 £ 1200 208 £ 53
Digi Reco 2 | 25821 + 6151 168476 + 16656 23207 £ 5077 1441 £ 573

Table 7.8: In this table all test results of the jobs run on the T-Systems infrastructure
are shown. Jobs that took less than 500 seconds CPU time are excluded, as
these failed.

Figure 7.5 highlights the heterogeneity of the infrastructure that was also observed for
Exoscale.

One issue that can be spotted when looking at Figure 7.5, is that there appears to be
a pattern. This wall time pattern, can be seen throughout VMs 2-8 and VM 10. The
series of jobs was started at the same time and the VMs in question were located on the
same host.

The pattern manifests itself especially in the second job, which took longer than
the neighbouring ones. In addition, from the third job onward, the wall time seems
to be rising steadily. Due to the almost flat wall time distribution in VMs 1 and 9,
the possibility that the pattern originates from the differences between the jobs can be
excluded. This has also been double-checked by repeating the same jobs on different
VMs. No pattern of this kind has been found in the other VM’s wall time distribution.

Due to the role as customer, the possibilities to investigate the origin of this pattern
were very limited. One possible factor that played a role in creating the pattern, is that
the VMs may have contended for a hardware resource. This could have impacted the
different workflows differently. Another explanation would be an outside interference,
such as a neighbouring VMs. Finally, it could also have been a combination of the two,
or something entirely different.

Comparison

First of all, for all three providers the wall times fluctuated more using multiple VMs
compared with single VMs. The standard deviations of the wall time within the three
providers are compared in Table 7.9.

The different workflows themselves seem to behave more or less stable in their duration.
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Figure 7.5: Wall times [s] of all Reco 5 jobs executed on T-Systems. The jobs are organ-
ised according to the VMs they ran on and in the same order.

For example, EvGen has a lower standard deviation than Reco 6 throughout all three
providers. It has to be kept in mind however, that the tests took place at different
periods in time. A change in outside influences, such as the VM speed-up that was
demonstrated in Figures 7.3 and 7.4, could have taken place between and during the
tests.

EvGen seems to be impacted the least by the VM heterogeneity. This was not inves-
tigated in detail, but the EvGen workflow differs the most from the other workflows. It
can be seen from the fact that it is the only workflow that does not have the built-in
functionality of running on multiple CPU cores. Modern CPUs are very complex,
making it probable that the different workflows do not touch on the same CPU aspects
and optimisations. Especially for code that is less modern and less optimised for specific
CPU functionalities, the differences in a heterogeneous mixture of CPUs can appear
smaller.

The numbers in Table 7.9 also indicate differences between the providers. Exoscale
and IBM appear to fluctuate less than T-Systems. An important thing to keep in mind is
that a high standard deviation is not necessarily a reflection of an unstable infrastructure.
This can be made clear from Figures 7.3, 7.4 and 7.5. There appears to be a mixture of
more and less powerful VMs, which result in a large standard deviation.

Due to the independence of the workflows running on the different VMs, a large
variation in performance is not negative. What counts in the end is to have a high

103



7 Cloud workflow modelling

Exoscale IBM T-Systems
Wall Time | StdDev [%] | StdDev [%] | StdDev [%]
EvGen 4.70 3.02 3.07
MC Sim 4.77 15.19 27.00
Reco 1 7.68 6.97
Reco 2 3.34 7.32 16.93
Reco 3 10.50 8.90 21.05
Reco 4 8.78 8.62 14.22
Reco 5 2.79 14.31 16.95
Reco 6 12.77 9.52 22.66
Reco 7 16.99 9.95 18.80
Digi Reco 1 10.21 8.52 18.77
Digi Reco 2 8.12 15.85 23.82

Table 7.9: Comparing the Clouds. Displayed are the standard deviations of the wall
time. A comparison between the wall times can be found in the Appendix in
Table A2.

event throughput. Therefore a diverse and difficult to predict infrastructure with high
throughput is preferable over a homogeneous infrastructure with a low throughput.

A high variability can however lead to a low performance, if the provider did not
account for it correctly. This could be the case if the provider guarantees a computing
power that is equal to the average of the infrastructure. Depending on how the VMs
are provisioned, the customer could get ‘unlucky’ and therefore get less than the agreed
upon performance.

Different hardware types or generations within the infrastructure make an accurate
prediction of the overall performance more difficult. This can be seen in Subsection
7.3.3, where the model results are shown.

Taking into account that there are two different generations of hardware reduces the
standard deviation in the wall time, as can be seen in Table 7.10.

A comparison between these results and the ones in Table 7.9 show that the large
spread that is reflected in the standard deviation of T-Systems decreases. The IBM
results are impacted less, when splitting them into two categories. The biggest impact
can be found in Digi Reco 1 and 2 (IBM and T-Systems) and in MC Sim (T-Systems).
The reason why the T-Systems standard deviation seems to benefit more from this split,
is because the difference between the faster and regular machines is bigger than for IBM.

7.2.2 HNSciCloud: object storage

In Table 7.11 the last three T-Systems Digi Reco results are summarised.
The last three digitisation measurements are T-Systems specific, because IBM did not
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IBM fast IBM T-Systems fast | T-Systems

Wall Time | StdDev [%] | StdDev [%] | StdDev [%] StdDev [%)]
EvGen 3.02 3.07
MC Sim 4.07 12.79 19.28 5.40
Reco 1 6.97

Reco 2 1.42 7.06 11.38 5.22
Reco 3 1.27 7.49 5.25 21.50
Reco 4 9.04 7.44 4.85 8.68
Reco 5 2.56 13.93 8.95 4.74
Reco 6 1.29 7.98 10.75 13.34
Reco 7 4.08 10.13 10.72 11.85
Digi Reco 1 5.48 3.94 18.20 4.47
Digi Reco 2 9.66 7.63 16.19 3.55

Table 7.10: Comparing the Clouds. Displayed are the standard deviations of the wall
time, after splitting the VMs of T-Systems and IBM into two categories.
The fast category contains two VMs for T-Systems and three VMs for IBM,
excluding event generation which was not impacted by the different speeds.

‘Wall CPU

Time [s] Time [s] Time [s]

14552 + 1091 17429 £ 5501 97190 £ 8370 93 £ 13
109193 £ 1276 81535 £ 1235 784891 £ 8975 182 £ 9

109897 4+ 1146 81094 £ 1529 790626 & 7596 223 £ 8

Idle I/O Wait

T-Systems Time [s]

Digi Reco 3
Digi Reco 4
Digi Reco 5

Table 7.11: In this table, the digitisation test results of the jobs run on the T-Systems
infrastructure are shown. Jobs that took less than 500 seconds CPU time
are excluded, as these failed.
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provide an object storage and all jobs using the Exoscale object storage failed. They
were doing direct I/0, accessing the data remotely.

Digi Reco 3-5 represent the attempt to evaluate the workflow performance with data
input from the T-Systems object storage. Digi Reco was chosen, because it is the
workflow that has the biggest input file size. Furthermore, Digi Reco is the only workflow
that is reusing input data between different jobs. Therefore, this workflow would be the
most logical choice to make use of native Cloud storage.

Due to time constraints and frequent failures, the two last digitisation measurements
(Digi Reco 4 and 5) contain only a few (18 and 9) measurements, which are evenly
distributed amongst the VMs. Digi Reco 3 fetches its input data via XRootD remotely
from EOS, which is located at CERN. In contrast to that, Digi Reco 4 and 5 fetch it
from the T-Systems object storage. Digi Reco 5 is a repetition of Digi Reco 4. The
bucket within the object storage was accessed via the https interface that T-Systems
provides for files within buckets. The job details for Digi Reco 3, 4 and 5 can be found
in the Appendix, see Subsections A.6.12, A.6.13 and A.6.14.

Another problem that occurred, was that constraints with the utilised AthenaMP
version made it impossible to run Digi Reco 3-5 with AthenaMP. They were therefore
run in single-core mode and cannot be compared easily to the previous Digi Reco 1 and
2 workflows.

What can be seen is that the results of Digi Reco 4 and 5 are similar, which is
unsurprising as they represent the same jobs. Comparing these to Digi Reco 3 shows
that it is much faster to have direct I/O access to the input data through EOS than
the object storage. Considering that EOS was located in a different data centre, further
away, this is unexpected.

As a cross-check, the input data was copied to the local disk from the two different
sources. The download speed revealed that downloading the input dataset from EOS to
the local disk takes about 20 minutes. Downloading it via the S3 API from the object
storage takes around 16 to 18 minutes. This is the opposite behaviour from what was
seen for the job duration using direct I/O. This means, that the bandwidth does not
explain the large discrepancy and that the direct download slightly favours the object
storage.

This was investigated further, even after the T-Systems exercise was finished. One
possible explanation for the inflated numbers of Digi Reco 4 and 5 is the different access
mechanism, which happened via https. The “s” in https stands for secure and it has
been shown, that it can have a negative impact on the performance compared to http.
In order to reject this theory, the job was repeated with input data from CERNBox that
was exposed via https as well. A significant slow down was observed there as well, so
the theory could not be rejected. As there was no possibility for further tests on the T-
Systems infrastructure, it will remain uncertain whether the object storage contributed
to the slow down.

The high idle time is a result of the high network activity.
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7.2.3 Grid sites

In order to make a comparison, below are the numbers of how the jobs performed
within the WLCG. The two Grid sites chosen for comparison are CERN (CERN-PROD-
preprod_ MCORE), located in Geneva, and GoeGrid (GoeGrid-MCORE) in Géttingen.
Both queues consist of 8-core VMs. Also, the single-core queue of Gottingen is used for
a comparison of the event generation jobs. The usage of queues already indicates, that
the jobs run within the Grid were regular production jobs, run through PanDA. There
was no special treatment or customisation, which is why they differ in the number of
processed events, compared to what was run within the Cloud. In addition, not all jobs
that ran within the Cloud corresponded to production jobs, meaning only a subset of
jobs is compared.

Furthermore, the monitoring information that can be extracted from the PanDA mon-
itoring is limited to the Wall and CPU times.

Wall CPU
CERN Time [s] Time [s]
MC Sim | 28952 + 10821 222503 + 82196

Reco 5 3470 £+ 1163 10660 £ 2606

Table 7.12: In this table, successful Grid jobs run at CERN that correspond to the tests
run within the Cloud are displayed. The Reco 5 jobs at CERN processed
only 2025 events, whereas the ones within the Cloud providers processed
double that number. The Reco 5 numbers are taken from 69 jobs. MC Sim
processed 1000 events on the Grid and 100 events within the HNSciCloud

exercise.
vy ‘Wall CPU
Gottingen | e ] Time [s]
EvGen 1895 + 257 1774 £+ 240
MC Sim 14090 + 4361 109106 4 34246

Table 7.13: In this table successful Grid jobs run at Gottingen that correspond to the
tests run within the Cloud are displayed. The EvGen jobs were run on single-
core VMs within the GoeGrid queue. EvGen processed 500 events on the
Grid, whereas it processed 1000 events within the Cloud. MC Sim processed
1000 events and 100 events within the HNSciCloud exercise.

What can be seen in the two Tables 7.12 and 7.13 is that the fluctuations within
similar jobs are high, both for CERN and for Go6ttingen. For MC Sim and Reco 5 they
are above 30%. Only the single-core EvGen workflow has a lower fluctuation of around
14%. This is unsurprising, as it is known that there are several different generations
of hardware within both computing centres. It has also already been observed when
comparing the Cloud measurements, that EvGen seems to be less affected by different
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types of hardware.

A direct comparison of the absolute numbers is possible between the two Grid sites,
which shows that the performance of GoeGrid is much higher compared to CERN. This
can be gleaned from the direct comparison of the two sites MC Sim numbers. The
absolute performance between the Grid and Cloud is more difficult to compare, as the
jobs processed a different number of events. A discussion about comparing jobs with a
different number of events is briefly done in Subsection 7.3.4. A rough estimation can
be gained by, for example, doubling the wall time of Reco 5 and comparing it to the
Cloud performances. Following this, CERN performs roughly between T-Systems and
IBM. For MC Sim, the event discrepancy is a factor of 10. Multiplying the Cloud wall
times by this factor leads to an inflation, as the overheads are basically included ten
times, instead of once like for the Grid numbers. The performance of CERN would still
be placed in between T-Systems and IBM.

Comparing the GoeGrid performance to that of the Cloud providers, places it between
Exoscale and IBM.

7.3 Model application

The above measurements show that the largest fluctuations originate from differences in
the infrastructure, rather than variations in the workflows. This opens up the question
of, whether it is necessary for the WIM to benchmark on more than one VM. Increasing
the number of VMs will increase the accuracy, but the question is: how many VMs should
be benchmarked? If the subset of the VMs does not represent the final composition, it
is not very useful. In order to get the most accurate prediction, it would be ideal to
benchmark all of the VMs that will be used. Additionally, as was shown above, the
performance of a VM can change over time, so regular benchmarks would be required.
Following these considerations, the cost that is incurred from benchmarking is very
high. For Cloud computing, the duration of the benchmarks can be directly translated to
a cost. On the Grid, every second a benchmark is run, no data processing is taking place.

For the WIM application as little benchmarking as possible was used. Since the bench-
marking is done with actual workflows, no resources are wasted, see passive benchmark-
ing in Subsection 4.6.1. As it turned out, for the provider with the largest variations,
two different generations of VMs were used, which were modelled separately. In that
case, looking at more than one VM was useful, although a larger amount of VMs is
needed to have a relative certainty that all variations are included. It is necessary to
know however, that the VM is not an outlier.

In general, the VM performance should be guaranteed in the contract with the
Cloud provider. Therefore deviations from that contract should only be towards higher
performance. When using only one VM for the benchmarking, it needs to be clear
that the VM is not an outlier. The WIM then estimates the lowest boundary and the
average should be higher.
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In addition to this section, another WIM application can be found in Chapter 8.

7.3.1 Combining benchmarks

The idea behind combining benchmarks is that not every workflow needs to benchmark
the infrastructure anew. This approach was already used to a certain extent, as similar
jobs are grouped together and benchmarked only once. The question that remains is: to
what extent can workflows be grouped together and still produce accurate WIM results?

Using the benchmark results of one workflow to describe the infrastructure for a second
workflow is from here on called cross-modelling.

Table 7.14 shows the cross-modelling results of three different reconstruction work-
flows on single VMs. The reason why single VMs are used, is to keep the base line of
fluctuations low, in order to detect smaller model discrepancies.

Model IBM VM1 | T-Systems VM1 | Exoscale VM1
discrepancies [%] | Wall Time Wall Time Wall Time
Reco 1 1.11 -0.80 -0.91
Reco 2 -3.74 1.64 0.97
Reco 3 0.48 -1.53 -0.52
Reco 1 with 2 31.96 -13.96 13.90
Reco 1 with 3 7.41 -19.46 3.04
Reco 2 with 1 -23.22 6.60 -13.59
Reco 2 with 3 -18.73 -6.63 -10.16
Reco 3 with 2 18.56 5.94 11.22

Table 7.14: In this table, model deviations from the measurements are shown. The top
three rows are the regular scenario that has been shown before. In the
other rows, cross-modelling is taking place. The benchmark results from one
reconstruction were used in order to describe the infrastructure of another
reconstruction. For example, Reco 1 with 2 means that Reco 1 was modelled
with the infrastructure input from Reco 2. Percentages larger than 10% are
highlighted in bold.

What can be seen in the table is that the model discrepancies are below 4% for
the single VM and typical benchmark cases. When cross-modelling, the discrepancies
increase drastically to over 10% for most cases, reaching up to 32% for Reco 1 with 2 at
IBM. Some infrastructure-workflow combinations work better than others, but there is
no clear pattern that can be discerned.

When looking into the wall time components of the cross-modelling, the biggest CPU
discrepancy is 4.53%, staying below 3% in most cases. The I/O wait time is in general
at least a factor of ten smaller than the CPU or idle time, so the impact of a wrong
prediction on the wall time is relatively small. The large wall time discrepancies therefore
result from the idle time.
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7.3.2 Bandwidth estimation

This use case was already presented in the CHEP paper [117]. It is one of the reasons
the WIM was created in the first place. The issue that came up was to determine how
much bandwidth would be required by running ATLAS reconstruction on a given Cloud
infrastructure. The Cloud site was T-Systems, but the activity happened before the
HNSciCloud activity. There was a valid concern that the existing 10 Gb/s WAN link
between this Cloud site and CERN would not be sufficient. The link would have to
satisfy the input requirement of 4000 CPU cores running reconstruction in parallel. In
order to evaluate this concern, the WIM was used.

It highlights an example in which a typical infrastructure input value can also be
investigated as an output. The result showed that the existing network would be enough,
regarding the specifications: 1000 x 4-core VMs, 116 HS*s/evt CPU time, 850 kB/evt
input, 2701 Evts per job and 1417 kB/s instantaneous network read. The caveat was,
that the exact specifications of the infrastructure were not clear, one example being
the computing power. Back then, the benchmarking approach did not yet exist. The
solution to accommodate different types of hardware, was to model a broad range of e.g.
the computing power. This means, that the computing power became a varied input and
the WIM calculated results for many different ones. In order to be thorough, changes
within the ATLAS job configuration that were known to happen, were also considered.
These parameters were then varied. The resulting bandwidth gave indications of what
is to be expected, as well as worst case scenario estimations. Figure 7.6 shows the result.
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Figure 7.6: Infrastructure limit and Model output [117].

The 10 Gb/s bandwidth limit (Bandwidth_Limit) is depicted by the black horizontal
line. Any bandwidth estimations going over this line indicate a possible bottleneck, if
the underlying conditions are met.

Within the chosen range, the impact of the size of the events (Size_Event), the
number of events per job (Number Events) and the instantaneous bandwidth (Net-
work_InstRead) is small enough not to be of concern. The instantaneous bandwidth
is relevant when reading the input data event by event.

The one variable that could make the result reach the critical value is the CPU time
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per event (CPU_Time_Event). Taking a closer look, it can be seen that the cross over
point is reached at ~ 20 HS % s. For the processing this would mean either a decrease
in event complexity, which is unlikely as the complexity is rising with the pileup or a
drastic increase in CPU power. Extrapolating from the technological evolution of the
past several years leads to the conclusion that the gain in computing power over a year
is small and this is unlikely to happen.

7.3.3 HNSciCloud large scale

Previously, the results of the measurements on the HNSciCloud were discussed. The
WIM was used to predict the performance of the different Cloud providers.

As the resulting performance was already discussed, Table 7.15 shows the deviation
of the Model results from the measurements.

Model Exoscale | IBM | IBM | T-Systems | T-Systems
Discrepancies [%] fast fast
EvGen 1.92 | 0.62 2.15

MC Sim 447 | 6.39| 3.07 -36.01 21.80
Reco 1 -4.46 | -0.87 | -1.38

Reco 2 -3.97 | -2.09 | 0.83 -18.80 7.71
Reco 3 -6.01 | 1.73 | -2.26 -3.05 -5.70
Reco 4 239 0.73| 3.03 3.41 2.00
Reco 5 -3.97 | -2.09 | 0.83 -18.80 7.71
Reco 6 1.25 | 1.09 | -1.30 -19.02 10.88
Reco 7 8.04 | -5.08 | 8.72 -23.24 5.77
Digi Reco 1 -10.55 | 1.72 | 8.24 -21.77 14.18
Digi Reco 2 0.80 | 3.43 | 11.92 -4.77 14.23

Table 7.15: Model error on the large scale HNSciCloud tests using ten VMs per provider.

The model predictions for Exoscale and IBM are deviating from the actual perfor-
mance by only a small margin. The biggest discrepancies, exceeding the 20% goal, can
be found with T-Systems, even though it is already divided into the two VM generations.
The explanation is that the VM on which the benchmarks were performed, deviated in
its performance from the average. In addition, the workflow performance within a VM
fluctuated more than in the other providers. This is consistent with the higher standard
deviation that was found for T-Systems compared with the other providers.

7.3.4 Error sources
Idle time measurement

One of the reasons for the TSY model discrepancy comes from the idle time. The setup
of the T-Systems VMs differs from the others. It seems to be slow with regards to I/O
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operations, which manifests itself in a low IO-factor. In this particular case there seems
to be a correlation between the IO and the idle time, which is shown below.

In Figures 7.7 and 7.8 the monitoring numbers of the T-Systems VM and the Exoscale
VM are plotted. Comparing the idle profile of the two figures, which can be found on
the bottom plot, looking at the pink curve, indicates a difference in the overall profile.
This is especially apparent between 16:55 and 17:25 in the T-Systems plot. This period
is during a CPU intensive stage in the job.

50
80
70

60

CPU all for tsy-01

——

50

% usedcpu

40

30

20

10

B

0.0000000
=

N ,*uﬂ' LMottty
s ‘ ‘Tm m ‘
8 s ‘ ‘

| bbbl

17:10 17:20 17:30 17:a0 17:50 18:00 18:10 18:20 18:30 18:a0 18:50 19:00 19:10 19:20 19:30 19:a0

[— user — system — waiting YO — Steal  Nice —Idle]

Figure 7.7: T-Systems VM CPU sysstat monitoring result of a reconstruction job with
merging at the end.

In Figure 7.8 the CPUs are either busy or waiting for IO in that phase. For T-Systems,
there seems to be a percentage of CPUs in idle state, in parallel with a high 10 wait,
which can be found in Figure 7.7, looking at the black curve of the top plot. The high
IO wait is not consistent throughout the job, therefore, for example, between 18:00 and
18:30 no idle time was measured. A change in the amount of idle time that happens in
parallel to the heavy 10-wait period, will have an impact on the idle factor.

One reason why the T-Systems VMs may behave differently is the different setup,
such as the storage that is attached through the network. Influences from other users
may lead to congestion and therefore this CPU inefficient job behaviour.

Idle factor

Due to the job characteristics, the initial assumption for jobs that have very little network
activity was that the idle time of the target machine can be obtained from the reference
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Figure 7.8: For comparison: Exoscale VM CPU sysstat monitoring result of a recon-
struction job with merging at the end.

machine, through the following equation:

Tdle_timey, _ Idle_Time,; * CPU _power,; x Nr_Euvts (7.1)
CPU _powery

The logic being, that the faster the CPU the lower the idle time. This is because during
a serialised phase such as merging, the duration of the serialisation depends on how
fast the merging is performed using only one core at a time. If the serial part that is
waited upon finishes faster, the idle time is decreased. Depending on how many CPU
cores the VM has, the decrease can be significant. This assumption held for event
generation and Monte-Carlo simulation jobs, for which the idle time is low, but not for
reconstruction jobs (see Chapter 7). In order to gain a more accurate result, the idle
factor was introduced.

The idle factor greatly increased the accuracy of the model, when the benchmark was
similar to the workflow. In the case of modelling, for example, a reconstruction job with
little merging, but using input values from a job that heavily merges, the results using
an idle factor were worse, see Table 7.14, than the ones without, see Table 7.16.

This behaviour seems surprising, considering that the infrastructure itself is the same
for both reconstruction 2 and 3. It can be explained by a change in the overall workflow
pattern. The disk access, for example, happens in a completely different manner than
before, inflating or deflating the disk speed. An explanation lies in the different access
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patterns, which are associated with different disk performances, such as random and
sequential read speed.
In addition, the results for the I/O wait time are much worse, but the absolute I/O
wait time is much smaller than the idle time, making its impact on the wall time small.
In Table 7.16 the cross-modelling discrepancies without an idle factor input are shown.

Model IBM VM1 | T-Systems VM1 | Exoscale VM1

discrepancies [%] | Wall Time Wall Time Wall Time
Reco 1 with 2 17.68 -18.63 3.18
Reco 1 with 3 1.41 -18.78 0.58
Reco 2 with 1 -25.25 1.94 -12.48
Reco 2 with 3 -23.22 -5.80 -12.26
Reco 3 with 1 -8.71 7.83 -4.35
Reco 3 with 2 3.41 -0.83 -0.54

Table 7.16: Modelling across workflows without an Idle factor.

Comparing these results with the previous results, that had an idle factor as input, see
Table 7.14, shows that the model deviations have mostly become smaller. The results
are still not satisfactory. They show, however, that in cross-modelling it is better to
estimate the idle factor from the CPU power rather than from the performance of a
different workflow. This is not the case for regular modelling, where the benchmarked
idle factor results are more accurate. Since there is no additional benchmarking needed
to retrieve the idle factor and since the workflows are carefully classified, the approach
that uses an idle factor as input was chosen as the WIM default.

Number of Cores

After several measurements on single-, 4- and 8-core VMs, it became clear that the
number of cores is an additional potential error source. The error gets introduced
when benchmarking a VM with a certain number of cores and then trying to model an
infrastructure that consists of VMs with a different number of cores. It can be easily
avoided by only comparing VMs with the same number of cores.

It was found that modelling, for example, MC simulation with event generation infras-
tructure input parameters gives large discrepancies. This seems to be surprising, as both
workflows are CPU intensive and do not include many I/O operations. The explanation
is the single core nature of the event generation job.

Using single-core CPU factors to predict multi-core CPU factors introduces a large
error, even if the jobs are similar. This is in part due to overheads that are introduced by
running on multiple cores. One example would be that all AthenaMP workflows process
the first event on only a single core. For reconstruction, a large discrepancy between
the CPU factors stems from the serial merging step, that is not performed in the single
core scenario. Additionally, the CPUs and operating systems themselves use different
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optimisations that have a different impact on the single- or multi-core scenario.

Number of events

It is also possible to extrapolate the number of events that are processed per workflow
between the benchmark and the actual workflow. This is not recommended, as the
overheads are not considered separately in the latest version of the model. The overheads
will therefore have a higher impact in a job with fewer events. This means that when
benchmarking, for example, a workflow with five times fewer events than are to be
modelled, the resulting wall time will be too large by four times the overhead. It can be
avoided by benchmarking the workflows with the correct length.

This number of event extrapolation was however used in Subsection 7.2.3 for compar-
ing the different results. The difference in the overheads was taken into consideration
and the overall wall times were only compared very roughly.
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CHAPTER 8

Overcommitting

“The perils of overwork are slight compared with the dangers of inactivity.” - Thomas

A. Edison

8.1 Principle

Overcommitting means allocating more resources than are available. In computing, this
means hosting virtual workflows that have a higher maximal demand than the physi-
cal availability [126]. This can be in terms of all components, CPU, Network, Storage
or RAM. The idea behind overcommittment (OC) is that it counteracts underused re-
sources.

This can happen in several ways. In Cloud computing, VMs (users) located on a
physical machine are maximised, distributing a maximum workload that exceeds the
physical capacity of the physical machines [127]. Cloud providers use this technique to
exploit the effects of resource overprovisioning by customers, which can be significant.

One example is the Cloud computing cluster data released by Google. Google
allocated 80% of the actual memory and over 100% of the actual CPU capacity of its
cluster. Still, the overall usage was only at 50% of the total capacity for memory and
60% for CPU [128]. This difference between resource requests and actual usage, is a
pattern that can be observed throughout the whole IaaS business. This can also be
seen, for example, in papers by Liu, Ghosh and Naik and Dabbagh et al. [129] [36] [127].
In these examples, the actual resource utilisation is even lower than described above.

There are several reasons for these wasted resources. Due to the Bullwhip Effect [130],
it is often hard for a customer to know the exact amount of resources that are needed,
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leading to a VM sprawl [131]. The resource consumption of a VM can vary with time,
meaning it is often not running at maximum capacity. An example would be a web
server, that is accessed more or less frequently during the course of a day [127]. The
same that is true for one VM can equally apply to a customer that uses several VMs.
In general, Cloud providers are using some sort of OC, however they do not disclose
how, or how much, of their resources are overcommitted.

A second way in which OC can be beneficial, is underutilised CPUs due to the workflow
profile. Jobs at CERN, for example, are running around the clock and almost all of the
available resources are occupied by jobs full time.

However, the CPUs are not utilised 100%, leading to another kind of inefficiency.
As seen before, a CPU that is computing a job can be in an idle state or waiting for
input data to compute, known as the I/O wait time. Depending on the job type, the
CPU efficiency (see Subsection 4.6.4) varies greatly. Simulation jobs have a very high
efficiency, greater than 95%, while multicore digitisation and reconstruction (DigiReco)
jobs in particular have a low efficiency of around 60%. These DigiReco jobs read a large
amount of input data. The example jobs used in Subsection 5.3.4, for example, read 32
GB per 1000 events and the CPU is often waiting for input.

Hyperthreading is one example of OC that is used on several WLCG sites [132]. It
creates two virtual processors for every logical processor. Overcommitting is thus intro-
duced at the infrastructure level. Some workflows, such as DigiReco, profit more from
hyperthreading than others, such as simulation which does not benefit from it at all [133].

A low job-efficiency can be observed throughout the WLCG, this is due to the job
mix described in Chapter 5. A large portion of jobs is I/O intensive. The idea on how
to improve the CPU utilisation is to use OC in order to occupy idle CPU cycles during
the time they are idle or in I/O wait. In contrast to the previously explained OC use
cases at the infrastructure level, this OC happens at the job level. This means that the
infrastructure setup is not changed, but the jobs themselves run more parallel processes
than there are (virtual) CPU cores.

The biggest difference between the two levels of OC is the knowledge about the re-
source usage. For example, a Cloud provider does not know how much resources a
customer will consume. Therefore, the provider overcommitts a percentage of its re-
sources, including a safety margin, that is based on their best guess. For OC at the job
level, the profiles of the workflows are well known and can be adapted to each other by
choosing the best combinations. The obvious choice would be to combine a very I/0O
intensive job with a CPU bound job, or vice versa. In the first case, the OC makes use
of the fact that disk I/O is a bottleneck and CPU resources are free, while at the same
time not piling additional I/O on top.

An example would be the workflow profile presented in Subsection 5.3.2, which indi-
cates that there is room for optimisation, especially during the single-core merging steps.

There are also downsides to OC. The biggest drawback is that more workload on a
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VM means that it will require more memory. This case is similar to the case, in which
more logical CPU cores than physical cores are created.

Secondly, the job submitting frameworks of the experiments are very inflexible. In
the ATLAS case, the attempt to test OC on the Grid failed due to various restrictions.
Circumventing the standard user submission and attempting to overcommit via the
HammerCloud functional and stress testing framework [134] [135] was also unsuccessful.
Therefore, it is difficult to implement OC at the job level.

If there are too many parallel processes running at some point they might suffer from
resource contention. This means that the processes are competing for resources amongst
each other, slowing down the VM.

8.1.1 Overcommitting scenarios

In Figures 8.1 and 8.2, a theoretical look at the progression of overcommitted multicore
applications is sketched. It highlights how the OC works and from where the possible
gains will come, making it clear which of the different scenarios can benefit more or less
from OC. For simplicity, the example in these Figures does not include memory or other
I/O considerations.

In Figure 8.1, the overall duration increases from 32 s to 40 s, whereas in Figure 8.2
it only increases from 32 s to 34 s. The only difference between these two scenarios are
the types of workflows that are run. In the first example, no CPU idle or I/O wait time
is prevalent. Therefore the five processes cannot be parallelised further and the overall
duration is the sum of the duration of all workloads divided by the number of cores. The
second example shows how this result can change if the workflows have a lowered CPU
efficiency. For example, data-intensive workflows with an increased number of 1/O wait
periods provide the potential for more workload to be done.

In Figure 8.1, the event yield is exactly the same with or without OC. This can be
seen, when interpreting the figure in the following way: one second of CPU activity of
Process 5 (red box) represents one event. Since Process 5 (red) and Processes 1-4 (blue)
are equivalent, one second of Processes 1-4 (blue) also corresponds to one event. The
Non-OC and OC yields are therefore equal:

non_OC yield = 128 cvts 4% = OC_yield = 100 evts 4% (8.1)
32 s s 40 s S
evts stands for events.
The scenario and yield change when looking at Figure 8.2. Here, CPU idle and I/O
wait times (white boxes) existed and could be replaced by Process 5 (red boxes). This
means additional workload was done in the OC case and therefore the yield increases:

2 evt t 124 evt t
%@ ~ 29 0Cyield = -~ 365 (8.2)
S S

_OC _yield =
non yie 1 s S
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Figure 8.1: Schematic view of the OC progression. The green scale at the top represents
the elapsed time in arbitrary units. Underneath are four processes, indicated
by four blue bars. These bars indicate the usual progression of these four
processes on a four core machine (non-OC scenario). After adding another
process (indicated in red), the picture changes (following the black arrows)
to the four bars labelled “Core 1-4”. The fifth process is equivalent to the
other four, the red colour is to highlight the differences between the two
scenarios. This is a schematic view of how the five processes would run on
a four core machine (overcommitted). Since the processes are similar, the
scheduler distributes them equally amongst the CPUs.

The distribution of the processes, and the interactions between them and the CPUs,
are much more complex than shown in Figure 8.2. In reality, each of the blocks from
the example would last only a few milliseconds and be switching between the CPU cores
much more. Furthermore, the fifth process would include some CPU idle and I/O wait
blocks.
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Figure 8.2: Schematic view of the OC progression. The green scale at the top represents
the elapsed time in arbitrary units. Underneath are four processes, indicated
by four blue bars. These bars indicate the usual progression of these four
processes on a four core machine (non-OC scenario). The white boxes in-
dicate idle or I/O wait times. After adding another process (indicated in
red), the picture changes (following the black arrows) to the four bars la-
belled “Core 1-4”. The fifth process is equivalent to the other four, the red
colour is to highlight the differences between the two scenarios. This is a
schematic view of how the five processes would run on a four core machine
(overcommitted). Since the processes are similar, the scheduler distributes
them equally amongst the CPUs.

Overcommit factor

In order to quantify the benefits of OC, the overcommit factor “OCF” is intro-
duced. Unused CPU cycles of the non-OC case can be potentially used by OC.
In reality, not all of this potential is actually used. The OCF gives the percentage
of the OC workflows that were computed using the unused cycles of the non-OC scenario.

This can be illustrated with the help of two examples. In Figure 8.1, there is no CPU
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idle or I/O wait time in the non-OC case, indicated by white boxes. The additional
yield, see Subsection 8.1.1 and the OCF are zero, OCF = 30—2 = 0. The fraction
represents the additional workload (red boxes) computed instead of the idle and I/0O
wait time (white boxes) divided by the total workload.

In contrast to the first example, there are unused CPU cycles in the second example:
in Figure 8.2 the OC used potential CPU cycles that were available in the non-OC
scenario. Comparing the non-OC and OC scenarios, some idle and I/O wait times
(white boxes) have disappeared, replaced by Process 5 processing (red boxes). The
yield in the OC case is therefore increased. The OCF is OCF = % =0.75 = 75%. The
numerator of 24 corresponds to the number of red blocks that were computed instead
of previously white blocks.

According to this definition: 0 < OCF < 1. The worst case, with no OC benefits and
OCF = 0 has already been shown in Figure 8.1. The best case of OC'F = 1 would be
achieved if the OC scenario has the same wall time as the non-OC scenario. In Figure
8.2, an OCF = 1 would mean the OC wall time is (32 s). This can only be the case
if all Process 5 processing (red blocks) replaces previously unused CPU cycles (white
blocks).

The next Section 8.2 shows the OC results of real ATLAS workflows.

8.2 Study

8.2.1 Overcommitting with AthenaMP

The simplest way to overcommit is to make use of the built-in AthenaMP functionality
that determines the number of parallel processes that are spawned. Changing the number
of parallel processes does not change the workload, meaning the number of events that
are processed stays the same. In Figure 8.3, the different wall times resulting from a
varied number of parallel processes are shown. Each bar represents the average over
three jobs, the error bars depict the standard deviation. The variation of the wall time
amongst the sets of three jobs was very low. The best configuration is at eight processes,
as it takes the shortest amount of time for the same workload. This is expected, if one
considers the job profile, one of which is shown in Figure 5.9.

The profile regions in which the setup would benefit the most from additional processes
are the serialised phases, i.e. the merging steps. However, these regions do not see an
increase in CPU utilisation. This is due to the AthenaMP restrictions that produce the
same outcome, meaning that still only one CPU core is used when merging. Therefore,
the nine and ten core scenarios do not benefit from OC but suffer due to the increased
memory requirement and the resource contention.

The effects of too little memory have been shown in Subsection 5.3.2. In this case, OC
will only make the situation worse. This is due to the fact, that the memory requirement
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Figure 8.3: Raw data reconstruction job duration averages, combining three repetitions,
including the standard deviation (see Equation 5.1), of an increasing number
of parallel processes on an 8-core VM. Note: for better visibility, the y-axis
does not start at zero. The exact numbers can be found in the appendix, see
Table Al. The input data was on the local disk.

goes up with each additional process. The effect of increasing the number of processes is
therefore similar to lowering the amount of available RAM, in the sense that the VM will
have to start swapping in both cases. Therefore, it is important to know the memory
requirements and availabilities. Only then can the decision be made, whether OC will
deliver additional performance, or the opposite.

The reason why the undercommitted case takes longer, is that a part of the VM is
not used for processing, lowering the CPU efficiency further and increasing the duration.

Since this kind of OC does not produce any benefits, it is not used in the following.
The next approach that is used for the rest of this chapter, was to simultaneously start
multiple AthenaMP instances, instead of just one. In that scenario, OC is achieved from
the combined number of parallel processes of the two or more AthenaMP instances, even
if each individual instance does not overcommit.

8.2.2 Overcommitting job profiles

In Chapter 5, the profiles of the different workflows were examined. This subsection
will show the changed situation when OC is taking place. The following examples were
executed on the same VM, located at CERN, for more details see Subsection A.7.2 in
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the appendix. The time-axis of the following graphs has the same range, so the wall time
between different jobs can be compared more easily. The same applies to the different
y-axes.

In order to limit the number of profiles displayed in this chapter and to avoid confusion,
only the two most significant Figures 8.4 and 8.5 are displayed. Together they combine
all the information and changes. Additional graphs that highlight the changes step-by-
step can be found in the appendix.
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Figure 8.4: Reconstruction profile, showing the execution of eight parallel AthenaMP
processes on an 8-core VM. The input data was not on the local disk. It was
read through the network from a remote storage at BNL across the Atlantic.

In Figure 8.4 a reconstruction profile of a job reading the input data from a remote
location, is shown. The remote reading is used by CMS and much effort has been put
into investigating it by ATLAS. The usual setup of eight parallel processes on eight
cores was used. It can be seen that there is a high network activity during the first large
processing step (RAWtoESD, 0 s to around 6500 s). At the same time the CPU usage
is below 100%, it stays below 60% most of the time. This is in contrast to the case of
local data that can be seen in the appendix in Figure A9. There the network activity is
low and the CPU usage high.

The large contrast results from the fact that the remote data location is purposely
chosen to be far away at BNL, so a higher latency comes into effect. The “ping” command
between the VM and a ping-able host at BNL shows an average latency over 10 packets
of 93.775 ms with a standard deviation of 0.221 ms. The latency manifests in the lower
CPU usage (from 100% down to 30-60%), as the CPUs are constantly waiting for input
data to be read from the remote storage. For an even more granular comparison, in the
Appendix, see Figure A10, a profile of the same job with remote data input, but a low
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latency, can be found. There, the negative CPU usage impact is much less.

What can also be noted is the merging step at the end after around 9000 s. The
merging is done serially, meaning only a single CPU core is used. The disk read/write
limit is not reached during the merging and most of the merging step is CPU bound.

The profile changes significantly with OC. In Figure 8.5, the number of processes
was doubled, by executing the same reconstruction twice at the same time. In contrast
to before, the total workload was also doubled. This increased the number of parallel
processes to 16. The choice of doubling the processes and workload is a consequence of
an AthenaMP restriction that is discussed in Subsection 8.3.1.
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Figure 8.5: Overcommitted profile, showing the execution of two times 8 (16) parallel
AthenaMP processes on the same 8-core VM. The workload is doubled. The
input data was read through the network from a remote storage at BNL
across the Atlantic.

The two jobs together did not require double the amount of time, even though they
were computing twice the workload, see Figure 8.5. The profile shows, that during the
serialisation, the CPU utilisation is doubled. This gain in the CPU utilisation in the
serialised part of the job is prevalent in the other scenarios of local data or low latency
remote data input as well. In the Appendix, see Figure All, a profile of the same
overcommitted job with remote data input, but a low latency can be found. It can be
seen, that the memory requirement is much higher for all OC cases. It is more than 30
GB, compared to around 16 GB from before, see purple dashed lines.

There is an additional increase in the CPU usage between the non-OC and OC scenar-
ios in Figures 8.4 and 8.5. It can be seen during the first processing step (RAWtoESD,
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0 s to around 6500 s and 7500 s) and it raises the CPU usage from 30-60% to 60-100%.
It originates from the fact that, while some processes are waiting for input, others can
be computed. The high latency to BNL guarantees that there is a significant percentage
of CPU inactivity. The additional processes can make use of these inactive times in
addition to the CPU inactivity resulting from the serialisation. Overall, the wall time
increased by 20% for double the workload, making OC a worthwhile optimisation tech-
nique for this case. This example showcases that OC is useful as a latency hiding method.

In conclusion, it can be seen that OC increases the memory requirements and CPU
usage. This is the trade-off that has to be considered before implementing OC. In the
above examples, the overall wall time increased in both OC cases. What has been
shown, is that the increase in wall time is in relation to the proportion of CPU inactivity
during the not overcommitted scenario. In principle a scenario in which the wall time
does not increase, such as a very low CPU activity in the no-OC case, or increases by
exactly the added work, such as 100% CPU usage in the no-OC case, can be possible.

These profiles open up several questions that have been investigated in Section 8.3.
o Which workflows and scenarios can OC be useful for?

e Does the RAM configuration of the existing machines allow for OC, or how much
RAM is required?

e How many processes should be overcommitted?
e Should the processes be doubled, as in the above example?

A cost/benefit analysis is performed in Subsection 8.4.2.

8.3 Measurements

8.3.1 AthenaMP combinations

With AthenaMP, OC is easily done on an individual VM. It was already found, that
running only one AthenaMP instance in OC mode does not yield any benefits in the
case of local data. This is because it does not influence the overall profile, see Subsec-
tion 8.2.1. Running multiple instances in parallel, for example, two as in Subsection
8.2.2, gives the expected improvement in CPU efficiency. How many instances and what
combination gives the best result, remains to be answered. Possible scenarios are plen-
tiful, e.g. running as many instances as possible as parallel processes. On a 4-core VM,
adding one additional process could look like: 4+1; 3+2; 3+1+4+1; 2+2+1; 24+14+1+1
and 1414141+1 The numbers indicate how many parallel processes are run in one
AthenaMP instance. Different instances are separated by a plus sign.
In addition to that, there can be more than five parallel processes on a 4-core VM.
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Some scenarios can already be excluded beforehand. If there are too many parallel
processes, the RAM requirement becomes too high, whereas the CPU efficiency does not
benefit.

For the many AthenaMP instance scenario, the memory footprint is larger than for
the scenario with fewer instances. This is due to the fact that the processes share part
of their memory to reduce redundancies. AthenaMP increases the sharing, by having
the processes share additional data, such as the detector geometry. This additional
AthenMP sharing is only taking place for processes within the same instance.

After excluding some scenarios, what remains is to measure and compare. The results
of the initial measurements are shown in Figure 8.6.
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Figure 8.6: Runtimes of different AthenaMP OC configurations. The standard eight
processes on the 8-core configuration is marked in blue. Note: for better
readability, the wall time does not start at zero.

At first glance, this looks surprising as all possible scenarios seem to take less time
than the standard configuration. Even the ones that are not overcommitted, such
as 741, for example, took less time. The explanation can be found in the way the
jobs are executed and in the resulting files. First of all, a fair comparison has to
be ensured, the interpretation of the results is done afterwards. Evoking AthenaMP
once with eight parallel processes, delivers the results in a single merged file. In
the case of the 741 invocations, the results will be split among two files, one con-
taining % of the results, the other %. These two files would have to be merged in addition.

If further merging steps are considered for the multiple AthenaMP instance scenarios,
the durations change accordingly. This means that the wall time of, for example, the
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7+1 scenario has to be increased by the time it takes to merge the two resulting output
files. This additional merging time, that has to be added to all scenarios with multiple
output files, is extrapolated from the standard scenario'. In Figure 8.7, the wall time

corrections of the additional merging have been applied.
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Figure 8.7: Runtimes of different AthenaMP OC configurations after applying merg-
ing corrections. The standard eight processes on the 8-core configuration is
marked in blue. Note: for better readability, the wall time does not start at
Z€ero.

What can be seen, is that the order of the combinations change, as some would have
to undergo more merging than others. More importantly, the difference between the
standard eight process scenario and the others shrinks significantly. Some scenarios are
even taking longer than the standard one.

In order to avoid differences with the merging, a workaround has been found. Instead
of comparing single jobs with each other, a set of jobs was compared. This was done
in the following way: in the usual scenario, four jobs run successively and produce
four output files. Therefore, the output will be the same for the 2424242 scenario
that is processing four times the workload of a usual job. In both cases four output
files, containing roughly 3000 physics events each, are produced. These are not merged
further. Figure 8.8 compares the runtime, divided by four, of these scenarios.

Without the need to apply merging corrections, the difference in the runtime is sig-

"nitially it was attempted to compute and measure the additional merging steps manually. Due to
configuration errors, they could however not be executed correctly and the results were inconsistent
with the original 8 core AthenMP job. After consulting experts, it was decided that extrapolating
would be the better alternative.
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Figure 8.8: Runtimes of different AthenaMP configurations after applying the
workaround. Not all scenarios are overcommitted. Note: for better read-
ability, the wall time does not start at zero.

nificant. This goes even for cases, in which technically no OC is performed (242+42+2
and 4+4). The speed-up in the non-OC cases can be explained by the additional flexi-
bility and by the fact that multiple cores are active during the merging. This becomes
apparent when looking at the profile of the 24+2+2-+2 scenario, shown in Figure 8.9.
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Figure 8.9: Profile for the 2424242 scenario. Note: no logarithmic scale is used for the
network and disk activity.
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8 Overcommitting

Especially towards the end, after 18000 s, and in between the RAWtoESD and ES-
DtoAOD steps, between 16000 s and 17000 s, the CPU usage stays high. In the usual
scenario, the CPU usage would drop down to 12.5% during these serial merging steps.
This can be seen, for example, after 9000 s in Figure 8.4.

What has to be highlighted at this point, is that the single core merging step does
not reach the disk read/write limit?. This is why multiple CPU cores can execute
different single core merging processes at the same time without being stuck in 1/0
wait.? Finally, this explains the ordering of the processes in Figure 8.9. The higher
the number of AthenaMP instances, the better the CPU utilisation during the merging
period, and the shorter the overall wall time. This is limited by the memory footprint
that increases with each additional instance.

In conclusion, what has been shown in this section is that there are many possibilities
to overcommit. Due to the particulars of the merging, the comparison between all sce-
narios is not trivial. The combinations that provide the highest event throughput, are
the ones that exploit the serialisation part the most. Instead of testing all possible com-
binations, a better way to use the CPU cycles fully during the serialisation is described
in Subsection 8.3.3.

8.3.2 Overcommitting for latency hiding

After looking at the profiles of overcommitted VMs, it became apparent that OC can be
used to compensate negative effects from higher latencies. There are multiple scenarios
in which remote access is beneficial, like in partial reads, or is already used, like in CMS.
This has been investigated in more detail. The results can be found in Table 8.1.

Number RAM Input Overall node Overcommit Improvement
of [GB] data throughput improvement to standard
processes location [s/event] [%] config [%]
8 32 BNL 4,19 £+ 0,05 -32
2x8 32 BNL 2,55 + 0,01 39 19
8 16 BNL 4,31 + 0,08 -36
2x8 16 BNL 3,51 £ 0,08 19 -11
8 32 local 3,07 £ 0,04 3
2x8 32 local 2,24 + 0,01 27 29
8 16 local 3,17 £ 0,09 0
2%8 16 local 3,33 + 0,01 -5 -5

Table 8.1: Overcommittment results summary [117].

Adjacent rows with a similar background colour depict the same infrastructure config-

2The VM on which the profiling was done, used a hard disk. The disk limit was not reached.
3ATLAS is currently working on removing the limitation of writing from a single core to a single file,
see Subsection 8.5.
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urations. The difference is that the upper rows within a pair show the situation without
OC, while the lower rows are overcommitted by a factor of two, including double the
workload. This factor is chosen in order to circumvent the merging issue, that was
already discussed in Subsection 8.3.1.

Adjacent pairs of rows with the same colour, differ with regards to the available RAM.
The pairs of rows alternate between 16 GB, which is the standard Grid configuration
for an 8-core machine and 32 GB. In this case, 32 GB was the maximum that the VM
had available. It was chosen in order to make sure the jobs do not run into any memory
limitation, meaning to avoid heavy swapping.

In addition, in the top four rows, the input data were located at BNL. The data were
read from there event-by-event during the workflow execution. This is compared to the
bottom four rows, depicting the standard scenario of local input data. Local in this case
means on the VM’s disk. The download duration from a local storage, such as EOS
or DPM, to the VM’s disk is very small, with regard to the job duration, so it is neglected.

The results from Table 8.1 show that the best event throughput is not achieved by
the standard Grid configuration. Instead, the OC scenarios with additional memory are
19% faster, with input data at BNL, and 29% faster, with local input data.

It can be also highlighted that OC works as a latency hiding mechanism. An improve-
ment through OC can be observed in both remote data measurements. This effect was
almost twice as high with more RAM, 39% compared to 19%.

In the standard RAM configuration, OC was not enough to completely compensate the
remote data slow down. Even with OC it was still 11% slower than with local input data.

In the standard Grid configuration, OC has a negative impact on the performance
(=5%). When additional memory is available however, a significant performance gain
(+27%) can be observed.

In conclusion, OC brings advantages to the remote data reading scenario. Since the
benefits for OC depend on the available memory, the ideal RAM-to-core ratio has to
be found. One possible approach to find the correct ratio, was already shown in the
RAM investigation undertaken in Section 5.3.2. In addition, the question of how many
processes to overcommit remains. These would have to be tested against every RAM
configuration, as the number of processes influences the RAM requirement.

An alternative is to use the WIM, see Section 8.4. It can correlate the RAM with the
number of processes and even include the Cloud cost.

8.3.3 Scheduling

By now it should be clear, that the merging step is the major contributor to the CPU
inefficiencies. Instead of using trial and error, like in Subsection 8.3.1, the merging
can be targeted specifically for improvement through OC. The result is a scenario that
avoids the large CPU inefficiencies of merging, while at the same time making the
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processing beforehand more efficient.

Instead of doing the merging consecutively, it can be done in parallel. A second
reconstruction job would start its processing as soon as the first job goes into merging,
and so on. In principle, this can be achieved through intelligent scheduling.

Alternatively, reconstruction jobs could be run consecutively, without any merging.
In addition, merging jobs would be run in parallel to that. The first merging job could
only start after the first reconstruction finishes.

In both scenarios, there is an overhead at the beginning of the exercise, when there is
no unmerged data on the VM, in which no OC would take place. In the Grid scenario,
an additional boundary is the lifetime of the pilot job. When the pilot job expires, this
OC processing chain is stopped, and the last jobs are killed. The maximum lifetime of
a pilot job is three days.

A reconstruction job duration of 9711 s, a job duration without merging of 5871 s and a
job duration with the OC merge in parallel of 6334 s highlights that a good improvement
can be achieved. In a 72 hour job slot, 38 jobs with an OC merging in parallel could
be executed, whereas in the usual scenario it would only be around 27. This is around
40% more workload that can be performed on the same CPUs. One caveat is that the
available memory for this measurement was 32 GB, instead of 16 GB.

8.4 Model predictions

In this section, the WIM is combined with the OC, which can then be combined with
the flexible hardware configuration of the Cloud computing.

8.4.1 Overcommitting in the model

In Subsection 8.3.2 it was mentioned, that the WIM can be used to make predictions for
the OC. In order for the model to make a meaningful prediction for OC, some tweaks
had to be incorporated. The specific OC input values that are introduced below, can
simply be set to zero in the usual (non-OC) case.

Overcommit improvement time

The overcommit improvement time (OC _improve_time) describes the gain achieved by
the OC. In simple terms, it can be described as the wall time difference between the
non-OC and the OC scenario. This can be visualised easily on a single-core machine.
For example, if running two processes consecutively takes 100 s, but running them in
parallel would take 85 s, then the OC_improve_time = (100 — 85) s = 15 s.

A more complex scenario was shown in Figure 8.2. There, the OC _improve_time =
(40 — 34) s = 6 s. The 34 s represent the wall time. The 40 s represent the wall time it
would take, if there was no OC benefit, as can be seen from Figure 8.1.

132



8.4 Model predictions

The OCF gives the percentage of the OC workflows that were computed using the
unused cycles of the non-OC scenario. Using the OCF, the OC_improve_time can be
calculated as follows:

OC _Zimprove_time = OCF x (nr_processes — Nr_Cores)x
(CPU _consumption_time + I0_Wait_Time + Idle_Time+
Overhead Time)/Nr_Cores (8.3)

where the nr_processes is the total number of processes and Nr_cores is the number
of available CPU cores. The term in brackets in the second line represents the non-OC
wall time.

In the example shown in Figure 8.2, the OC _improve_time = 0.75 x % %328 =06s,
which agrees with the earlier result.

This gain has to be accounted in the workflow duration.

Overall workflow duration

The overall duration of the workflow (Overall W F _Time) is now calculated by addi-
tionally applying OC, see Equation 8.3, to the standard workflow time, see Equation
6.10:

Overall WF Time = (WF Time—UC _Idle_Time—OC -improve_time) /Nr_Cores
(8.4)

where UC_Idle_Time is the undercommittment idle time, see Subsection 4.6.5. In the
end, either the OC or the UC time has to be zero. For workflows configured like on the
Grid, both are zero.

8.4.2 Result

With these additional implementations, the WIM is able to make predictions for OC. One
use case that was already mentioned in Subsection 8.3.2, is to find the best memory/OC
combinations. Furthermore, all other WIM functionalities can be used.

A concrete example would be, to combine OC with the flexibility of a Cloud provider.
In this example, a flat budget of 1000 CHF is available to procure Cloud resources that
will run ATLAS raw data reconstruction. The detailed input parameters can be found
in the Appendix, see Subsection A.4.1. Instead of immediately purchasing VMs that
have the standard configuration of eight CPU cores with 16 GB of RAM, the WIM is
used to determine the best configuration. Taking the Cloud prices of CloudSigma and
the reconstruction workflow parameters as Model input, the following graph is created,
see Figure 8.10.

According to the specifications, the graph is in 3D, with the number of parallel pro-
cesses and the available RAM as parameters.
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Figure 8.10: Graphical display of the Model output. The maximum is highlighted by
the blue dot [117].

The shape can be explained by the boundary conditions. It can be seen that when
decreasing the RAM, a sharp edge where the graph drops off is reached. This is the
cut-off that happens due to heavy swapping, if there is not enough memory available. It
is also logical that unused CPU cores lead to a less-than-optimal yield, which explains
why a higher undercommitting has a downward trend. The reason why a rising number
of processes can have a negative impact on the event throughput is that the memory
requirement rises with the processes. There is a flat budget, so additional RAM lowers
the budget for the other components, in this case the CPUs. More RAM translates
directly to fewer CPUs.

The position of the maximum value on the x-y-plane provides the best RAM /processes
configuration, that maximises the number of produced events while minimising the time
and the cost. For 1000 CHF in 10000 s the model predicts that 23740 4 30 events can
be reconstructed. The result of ~ 2.374 & 0.003 events/second/CHF lies at 14 GB of
RAM, indicating that the current 2-to-1 ratio of RAM [GB] to CPU [cores| is not the
best configuration. With this improved configuration, a 12% higher event throughput
is achieved, compared to the standard scenario. This result is valid for the chosen
reconstruction workflow and under an OC of nine processes per VM.

The same graph can be created for several Cloud providers to get a comparison between
their offers. The highlighted maximum value would then be compared between the
different providers. The comparison would then automatically compare the optimal
configurations for each provider. Since the pricing models are quite different between
the providers, the optimal configuration can be different between the providers. This
way a fairer comparison is achieved than just comparing one exact configuration between
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all providers.

8.5 Conclusion

This chapter showed the possibilities of overcommittment. The focus was on OC at the
job level, on top of the OC done at the infrastructure level. It has been found, that
OC works well as a latency hiding method. Given enough RAM, additional scenarios
can benefit from OC, like workflows that heavily use the disk. Therefore, OC is espe-
cially attractive for Cloud computing, where the infrastructure is flexible, especially the
memory per CPU core, and the infrastructure can be adapted to the workflow.

Furthermore, the computing capacity of serialised periods in the workflows can be
exploited. This is achieved by executing a heavier load, or by adapting the workload to
the workflow profile, for example, scheduling a merge in parallel to a processing.

What has also been demonstrated is that there is a large potential for improvement,
regarding the single core merging step within the ATLAS reconstruction. ATLAS chose
a different path than OC to improve the workflows for now. Instead of directly using
OC to lose the merging inefficiencies, the workflow was reworked. The merging will
be avoided by having the parallel AthenaMP processes write their outputs directly to
a single file. This approach is called the “SharedWriter”. At the time of writing, this
has not gone into production yet. It may turn out, that this new workflow would also
benefit from OC, due to its I/O activity.

With some modifications to the WIM it provided a good way to compare overcommit-
ted scenarios with each other, even taking into account different Cloud providers. The
Model then indicated the best configuration to run a workflow within a given Cloud, by
maximising the ETC, or the event throughput.
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CHAPTER 9

Cloud viability evaluation

The WIM, that was introduced in detail in the previous chapters, can be used to evaluate
whether Cloud computing is a viable alternative to Grid computing. Grid computing in
that context means the purchasing and operating of hardware in the many computing
centres, including the personnel. Cloud computing means renting computing resources
from a commercial provider.

In Subsection 4.2.2 the Cloud pricing development was described, highlighting the
downward trend. It is however difficult to understand how workflows would perform
within a Cloud. Looking only at the price of a Cloud site is therefore not sufficient to
evaluate whether moving to the Cloud is beneficial. For that reason the WIM was intro-
duced, which combines the pricing information with workflow performance estimations.

One of the big advantages when using the WIM is the possibility to compare many
different Cloud configurations with each other, as was shown in Chapter 8. As was
also shown before, not all workflows have the same infrastructure requirements, e.g.
CPU core to RAM ratio. In contrast to the Grid, where the resources are static,
the Cloud can be provisioned flexibly. The model in the end provides a result that
includes the best Cloud configuration for the given workflows, thus making sure
that the comparison is as fair as possible. A Cloud provider that gives the best price
per event ratio for one workflow is not necessarily the best choice for a different workflow.

In this section, not every possible combination of all the Cloud providers and all Grid
centres is evaluated. The inputs will change on a case by case basis, which can change the
results and conclusions. Some of the reasons highlighting the importance of investigating
the viability of Cloud computing individually, are given in the following.

First of all, the Cloud prices change over time, which can make the given results
outdated within a short time. More importantly, the Cloud prices depend heavily on
the negotiation skill of each procurer, discounts, as well as the type of services included
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and the duration of the procurement.

Similar considerations can be made for the Grid sites, which are located around the
Globe and for which the total cost of ownership are very different. The different cost
factors are amongst others, the cost for electricity, the power and cooling efficiency of
the Grid centre, the personnel cost and the negotiated prices for the hardware, which is
cheaper if bought in bulk.

Grid prices

In order to understand the differences between the Grid and the Cloud, a Grid site has
to be chosen, that acts as a reference. The CERN computing centre is chosen as a
representative example, as it is at centre of the WLCG, hosting computing capacity for
all major LHC experiments.

The total cost of ownership of a server is taken from the recent paper ” Cloud comput-
ing, markets and costs” by Bernd Panzer-Steindel, the CERN IT CTO. As of the time
of writing, it has not yet been published. The total yearly cost of a 40 core compute
server is given in that paper as 1570 €. (Consisting of: Physical server = 900 €; Rack
= 10 €; Power distribution unit = 20 €; Network infrastructure = 30 €; Floor space
= 70 €; Electricity = 135 €; Personnel cost = 405 €) In order to account for memory
differences, the estimation in the paper increases to 0.006 € per core hour (rounded up,
no VAT included). For an eight core VM this leads to 0.048 € per VM hour.

Cloud prices

There is a plethora of choices on the side of the Cloud providers, each with their own
specifications. Amagzon is the market leader and provides the most attractive prices on
its spot market (0.014 € per core hour). Unfortunately, no benchmark data could be
collected for Amazon. In the following, the results of papers doing a cost comparison
between a Grid centre and the Cloud (Amazon AWS) are summarised.

ATLAS is using and considering Cloud resources for several years. In a paper from
2010 [136], which compares the Grid centre cost in Germany with the Amazon cost, the
Grid centre is more cost effective. In a paper from 2014 [137], the conclusion is that
the Amazon spot prices are competitive compared to the cost of the RHIC and ATLAS
computing facility at BNL.

There are results from CMS, which used the Amazon AWS infrastructure to run
some of their workflows. The cost of AWS was compared to the cost of the resources
at Vanderbilt University in this paper from 2012 [138]. The result shows that if the
University resources are utilised above 14.5% per year, they are more cost effective.

In a more recent paper from 2017 [139], the cost of a CPU core hour for CMS at
Fermilab is given as 0.009 + —25%. The power of a CPU in Amazon is at the level of
97% compared to the ones at Fermilab, according to the benchmark in this paper [67].
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The paper [67] concludes, that the hardware at Fermilab is more cost effective than the
AWS offer.

It has to be kept in mind, that the spot market is volatile and it is not guaranteed
that resources are available for the stated price when needed.

For the WIM, the providers that were investigated in detail, were the three providers
described within the HNSciCloud context in Chapter 7. The prices were obtained from
their web pages. Event generation uses the single core setup, whereas the other workflows
are estimated via the 8 core VMs.

Currently the price for an IBM B1.8x16x100 instance with 8 CPU cores, 16 GB of
RAM and 100 GB of storage is 0.31 € per hour'. The single core VM setup is called
B1.1x2x25 has 1 CPU core, 2 GB of RAM and 25 GB of storage space and costs 0.039 €
per hour.

The T-Systems instance called CO II-4 comes with the same configuration, namely 8
CPU cores, 16 GB of RAM and 100 GB of storage. The price is 0.406 € per hour?. The
single core VM setup is called CO II-1 with 2 GB of RAM and 25 GB of storage and
costs 0.023 € per hour.

For Exoscale, a slightly different configuration has to be considered, as it is not as
flexible as the other providers. The “huge” instance consists of 8 CPU cores, 32 GB
of RAM and 100 GB of storage and costs 0.332 € per hour®. The only possible VM
configuration that has 2 GB of RAM comes with 2 CPU cores. The price of 0.026 €
per hour of the 2 core configuration called “small” is used to calculate the single core
workflows. It has 50 GB of storage space.

9.0.1 Model results

In Table 9.1, the WIM comparison between the different Cloud providers and CERN is
shown. The result is given as Events/Euro. It gives the maximum number of events that
can be processed per Euro. In this case, the ‘Time’ from ETC does not add any benefit,
as the WIM was exercised as a Cloud procurement with a fixed contractual time limit.
What can be seen immediately, is that the Grid solution “CERN” is much more cost
effective than the Cloud offers. This shows, that the performance differences between
the sites are outweighed by the cost. Possible performance benefits are on a scale that
is too small to compensate for the much lower cost of the Grid hardware at CERN.
The errors that are estimated from the model are excluded, as they are too low, in
the order of a few percent. A better estimation can be gained from looking at the
comparison between the model results and the large scale measurements. In the end,
even if the largest deviations are considered for the results, they cannot possibly change

'The IBM prices were taken from their web interface. (02.04.18) https://www.softlayer.com/
cloud-computing/bluemix/Store/orderComputingInstance

2The T-Systems prices were taken from their web interface. (02.04.18) https://cloud.telekom.de/
en/infrastructure/open-telekom-cloud/price-calculator/

3The Exoscale prices were taken from their web interface. (02.04.18) https://wuw.exoscale.com/
pricing/#/compute/huge
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Model result CERN Exoscale IBM T-Systems
[Events/Euro] Grid Cloud Cloud Cloud
EvGen 132881 50785 23358 37560
MC Sim 2315 782 383 255
Reco 1 18458 4058 2769

Reco 2 16904 4810 2942 1521
Reco 3 38958 10306 5407 4130
Reco 4 34716 9431 5540 3872
Reco 5 54708 13947 8189 5763
Reco 6 39413 10262 6113 4041
Reco 7 36591 7844 5390 2845
Digi Reco 1 6775 1915 914 746
Digi Reco 2 10246 2559 1154 646

Table 9.1: Model results according to the price schema from the webpage and the VM
performance from the benchmarks performed during the HNSciCloud proto-
typing phase.

the conclusion. This is due to the fact that the pricing differences outweigh performance
variations, even if they are at the order of 30%.

9.1 Conclusion

According to the prices that the Cloud providers publish, they are not yet competitive,
compared to purchasing and operating computing hardware within the WLCG.

The WIM results are in line with the findings of the previously summarised Cloud
viability studies. The difference is that the WIM findings show a larger gap between the
Grid and the Cloud resource cost. This is a result of the lower total cost of ownership of
the hardware at CERN compared to e.g. Fermilab and the higher cost of the investigated
Cloud offers compared to the Amazon spot market.

The fact, that the difference in cost between the Cloud and Grid resources varies,
highlights the fact that these studies have to be performed individually. This is because
the costs vary for every site. The WIM is easily adaptable to include the use cases of
different Grid sites and Cloud offers.

What can also be seen, is that the Cloud prices became more competitive over the
last 8 years. This development has however stalled.
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cHAPTER 10

Summary and Outlook

During the course of this thesis, a model (WIM) was created, which predicts the
performance of a given set of workflows on an arbitrary infrastructure. The goal was
to understand the behaviour of data intensive workflows within the Cloud in order to
assess its feasibility. The WIM includes the possibility to correlate the performance
prediction with cost considerations, so a comparison between different Cloud offers and
the Grid is possible.

In order to create the WIM, the general workflow behaviour had to be understood.
This is important when choosing a minimal set of model input parameters which needs
to be able to describe the workflows with a high accuracy. Furthermore, this lead to the
discovery of optimisations to the workflows as well as the infrastructure configuration.

In the early stages, the model was already used to correctly predict that the 10 Gb/s
bandwidth link between a 4000 CPU core strong Cloud site and CERN would be suf-
ficient to support running ATLAS reconstruction workflows efficiently. This shows the
versatility of the WIM, in which even typical input parameters can become the result.

At a later stage, the WIM was improved to be able to vary and correlate different
input parameters. This gave the possibility to find optimisations. The modelling and
comparison of different infrastructure workflow combinations can help to avoid many
time consuming measurements.

One of the optimisation techniques that was found and investigated alongside the
WIM development is the overcommittment (OC). OC means to run additional workload
on a machine, in order to fill unused CPU cycles. Through the profiling of the work-
flows, it became clear that raw data reconstruction could benefit from OC during its
serial merging phase. The trade-off is an increased memory footprint. Intensive tests
and modelling were performed in order to quantify the usefulness of OC within the Grid
and the Cloud. The best result was achieved when using OC in conjunction with re-
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construction workflows that retrieve the input data from a storage that was located far
away. The improvements in this scenario ranged up to an increased event throughput of
39%.

From there on, the model was used to make predictions within the Cloud. The flexibil-
ity of the infrastructure, when using Cloud computing can be better exploited through
the usage of the model. One benefit is that the WIM provides the optimal site con-
figuration along with the maximal achievable event throughput. This makes a better
comparison between different Cloud offers possible, as only the best event per cost values
are compared. This configuration should then also be procured and used.

The WIM was intensively validated on several different infrastructures and running
a broad spectrum of ATLAS workflows. It was demonstrated that the predictions are
accurate within a 20% margin, but also sensitive to heterogeneous infrastructures and
to differences between the benchmark and the workflows.

In the big picture, the WIM was used to evaluate the viability of Cloud computing,
compared to the classical approach of purchasing and operating hardware. At this point
in time, Cloud computing is less cost effective than operating a classical WLCG Grid
centre.

Looking towards the future, it is good to see, that ATLAS already picked up on the
inefficiencies that were found during this thesis. An improvement to all AthenaMP
workflows is under development, which is called the “shared writer”. It is supposed to
avoid the serial merging steps, that happen during the raw data reconstruction. The
shared writer is only one possibility to optimise the workflows and it remains to be seen
if OC can improve on even these workflows. It is possible, that the shared writer leads
to an increase in the CPU idle and I/O wait time footprint, which can be optimised by
OC.

Furthermore, OC improves workflows with remote data input, which will become
more relevant with increasing data sizes.

While investigating how to best set up a Cloud site, it became clear that the data
storage is a personpower intensive task. The native Cloud storage is object storage,
which is not directly compatible with the storage solutions of the WLCG. Even within
the WLCG, the storage is very maintenance intensive. One vision of the future is that
the storage that is distributed over many sites, will be consolidated into fewer dedicated
storage sites. The remaining sites would then only operate data caches.

According to the recent price development of the Cloud market, it does not look as if
Cloud computing will become more cost effective than operating Grid centres over the
next few years. How the situation will have changed for the HL-LHC is not realistically
foreseeable, due to the inconsistent development of the Cloud prices. Considering the
stagnating prices, Cloud computing will most likely not be the solution that can bridge
the estimated HL-LHC computing resource discrepancy. Cloud resources may, however,
be used as burst capacity to bring relieve during short termed peaks in demand.
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A.1 Job specifications

A.1 Job specifications

A.1.1 Workflows: Event generation

Fluctuations
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Figure Al: The wall time average over an incrementing number of same event generation

jobs (starting at one), at Gottingen. The black error bars show the standard
error. Note: in order to improve readability, the y-axis does not start at zero.
The input data has been rearranged.
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Figure A2: The wall time average over an incrementing number of same event generation
jobs (starting at one), at Gottingen. The black error bars show the standard
error. Note: in order to improve readability, the y-axis does not start at zero.
The input data has been rearranged.
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A.1 Job specifications
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Figure A3: The wall time average over an incrementing number of same event generation
jobs (starting at one), at Gottingen. The black error bars show the standard
error. Note: in order to improve readability, the y-axis does not start at zero.
The input data has been rearranged.
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Figure A4: The wall time average over an incrementing number of similar event gener-
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ation jobs, starting at one, at the VM at CERN. The black error bars show
the standard error. Note: in order to improve readability, the y-axis does
not start at zero.



A.1 Job specifications

Similar MC Sim wall time average over 1,2 ... n jobs
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Figure A5: The wall time average over an incrementing number of similar Monte-Carlo
simulation jobs, starting at one, at the VM at CERN. The black error bars
show the standard error. Note: in order to improve readability, the y-axis
does not start at zero.
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Figure A6: The wall time average over an incrementing number of similar raw data
reconstruction jobs, starting at one, at the VM at CERN. The black error
bars show the standard error. Note: in order to improve readability, the
y-axis does not start at zero.
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A.1.2 Workflows: Raw data reconstruction
Memory limitations

The job that was executed multiple times with restricted memory was invoked with this
command.

'/cvmfs/atlas.cern.ch/repo/sw/software/x86_64-slc6-gcc49-opt/20.7.6/Atl

< asProduction/20.7.6.7/

InstallArea/share/bin/Reco_tf.py'
'-—inputBSFile=datal6_13TeV.00303832.physics_Main.daq.RAW._1b0059._SFO
— —6._0001.data’'

'-—athenaopts=--pmon=sdmon'

'-—athenaMPStrategy' 'SharedQueue' '--maxEvents' '-1' '--postExec'
'e2d:from AthenaCommon.AppMgr import ServiceMgr;import

< MuonRPC_Cabling.MuonRPC_CablingConfig;

ServiceMgr.MuonRPC_CablingSvc.RPCMapfromCool=False;

ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_ver016.co

- rr";

ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_ver016.da

- ta";'

'——preExec'
'all:jobproperties.Beam.bunchSpacing.set_Value_and_Lock(25) ;'
'r2e:from InDetPrepRawDataToxAOD.SCTxAODJobProperties import
— SCTxAODFlags;
SCTxAODFlags.Prescale.set_Value_and_Lock(50) ;'

'-—autoConfiguration' 'everything' '--conditionsTag'

— 'all:CONDBR2-BLKPA-2016-15"

'-—geometryVersion'

'all:ATLAS-R2-2015-04-00-00"' '--runNumber' '303832' '--AMITag' '£f718'

'——outputDAOD_IDTIDEFile=DAOD_IDTIDE.09066867._002142.pool.root.1"'
'-—outputDESDM_CALJETFile=DESDM_CALJET.09066867._002142.pool.root.1"
'-—outputDESDM_EGAMMAFile=DESDM_EGAMMA.09066867._002142.pool.root.1"
'——outputDESDM_EXOTHIPFile=DESDM_EXOTHIP.09066867._002142.pool.root.1"'
'-—outputDESDM_MCPFile=DESDM_MCP.09066867._002142.pool.root.1"'
'——outputDESDM_PHOJETFile=DESDM_PHOJET.09066867._002142.pool.root.1"
'-—outputDESDM_SGLELFile=DESDM_SGLEL.09066867._002142.pool.root.1"
'-—outputDESDM_SLTTMUFile=DESDM_SLTTMU.09066867._002142.pool.root.1"'
'——outputDESDM_TILEMUFile=DESDM_TILEMU.09066867._002142.pool.root.1"
'——outputDRAW_EGZFile=DRAW_EGZ.09066867._002142.pool.root.1'
'——outputDRAW_RPVLLFile=DRAW_RPVLL.09066867._002142.pool.root.1"'
'——outputDRAW_TAUMUHFile=DRAW_TAUMUH.09066867._002142.pool.root.1"'

' ——outputDRAW_ZMUMUFile=DRAW_ZMUMU.09066867._002142.pool.root.1"'
'-—outputAODFile=A0D.09066867._002142.pool.root.1"'
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'——outputHISTFile=HIST.09066867._002142.pool.root.1"'
'false'

'1603"
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Figure A7: This plot depicts the page swap statistics for the job that had 5 GB of memory
available and a wall time close to the scenario without memory limitations.
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Figure A8: This plot depicts the page swap statistics for the job that had 3.75 GB of
memory available and an increased wall time.
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Figure A9: Normal reconstruction workflow profile (for comparison). 8 parallel
AthenaMP processes on an 8 core VM.
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Figure A10: Reconstruction profile, showing the execution of 8 parallel AthenaMP pro-
cesses on the same 8 core VM. The input data was read through the network
from a remote storage at CERN.
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Figure A11: Overcommitted profile, showing the execution of two times 8 (16) parallel
AthenaMP processes on the same 8 core VM. In addition the input data
was not on the local disk. It was read through the network from a remote
storage at CERN.
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and the memory, leading to a low CPU utilisation.
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A.3 Model implementation

The model is computed by executing “workflow_infrastructure_model.py”.

There are three separate json input files, that have to be adjusted to the use cases.
The first file (input_infrastructure.json) is for the infrastructure input parameters, the
second file (input_workflow.json) for the workflow input parameters and the third file
(input_plot_parameters.json) for the plot parameters.

input_infrastructure.json

The infrastructure input parameters are:

{
"Nr_Cores": 4.0,
"cpu_power": 10.0,
"io_power": 10.0,
"idle_factor": 10.0,
"bandwidth": 104200000,
"RAM_machine": 8.0,
"Storage_machine": 100.0,
"ram_to_cpu_factor": 0.358974359,
"bandwidth_workflow_in": 104200000,
"bandwidth_workflow_out": 104200000,
"disk_throughput_read": O,
"disk_throughput_write": O,
"cost_1machine_1sec": 0.0,
"budget": 0.0,
"infrastructure_duration": O,
"nr_machine_override": 1

input_workflow.json

The workflow input parameters are:

{
"RAM_per_thread": 1.99,
"Nr_Evts": 2478,
"outbound_traffic_month": 0.0,
"transformations": {

"Reco_General": {
"CPU_Idle_Time": 3.912333333,
"CPU_Idle_Time_stdev": 1000,
"Merge_Time": O,
"Validation_Time": O,
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"Cleanup_Time": O,
"CPU_Time": 153.2647296,
"CPU_Time_stdev": 1000,
"IO_Time": 10.0,
"IO_Time_stdev": 1000,
"Size_Evt_In": O,
"Size_Evt_QOut": O,
"is_single_core": O,
"position": 1,
"OC_efficiency_gain": O

input_plot_parameters.json

The plot input parameters are:

{

"ram_lower_limit": 8,
"ram_upper_limit": 9,
"ram_nr_points": 2,
"thread_min": 4,
"thread_max": 5,
"thread_stepsize": 1,
"Z_variable": 3

They determine the x- and y-axis ranges (x-axis: from ram_lower limit to
ram_upper_limit; y-axis: from thread min to thread max) as well as their granularity
(x-axis: ram_nr_points, the amount of points in the interval; y-axis: thread_stepsize,
stepsize of points in the interval). The z_variable value corresponds to an output metric.
The chosen metric will be plotted. It can be either 0: ETC; 1: EventCost; 2: EventTime;
3: Time or 4: Bandwidth.

The input variables need to keep their type (either int or float (also within lists)).

A.3.1 Model usage

After obtaining the input values and introducing them into the Model by modifying
the input_infrastructure.json and the input_workflow.json file, the Model only has to
be adjusted to provide the desired output metric, which is achieved by modifying the
input_plot_parameters.json file. All three of these files can be found in the dedicated
“input” folder.

Afterwards the Model is run by executing the ./workflow_ infrastructure_model.py
script.
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A.3.2 Model code

The WIM is organised in the following way: the base directory contains
“Workflow_Infrastructure_Model /input

Workflow_Infrastructure_Model /modules
Workflow_Infrastructure_Model /unittest
Workflow_Infrastructure_Model/.git

Workflow_Infrastructure_Model/ README.md

Workflow Infrastructure_Model /unittest.sh

Workflow _Infrastructure_Model /workflow_infrastructure_model.py
Workflow_Infrastructure_Model/.gitignore”

workflow_infrastructure_model.py

“workflow_infrastructure_model.py” is the core executable, the contents are:

#!/usr/bin/python

import numpy as np

import json

from modules.plot import PLOT

from modules.combined_time_calc import combined_times
from modules.result_calc import result_calc

if __name__ == "__main__":

#get input

with open('input/input_infrastructure.json') as infra_input:
infrastructure_input = json.load(infra_input)

with open('input/input_workflow.json') as workfl_input:
workflow_input = json.load(workfl_input)

#read inputs

transformation_types = []

for value in workflow_input['transformations']:
transformation_types.append(value)

input_variables = {"ram_to_cpu_factor":

— infrastructure_input['ram_to_cpu_factor'], "cpu_power":

< infrastructure_input['cpu_power'],
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"RAM_machine":
— infrastructure_input['RAM_machine'],
— "Storage_machine":
< infrastructure_input['Storage_machine'],
"outbound_traffic_month":
— workflow_input['outbound_traffic_month'],
— "RAM_per_thread":
— workflow_input['RAM_per_thread'],
"Nr_Cores": infrastructure_input['Nr_Cores'],
— "cost_lmachine_lsec":
<~ infrastructure_input['cost_imachine_1sec'],
"budget": infrastructure_input['budget'],
< "io_power": infrastructure_input['io_power']
-~ , "idle_factor":
< infrastructure_input['idle_factor']}
input_variables_int = { "Nr_Evts": workflow_input['Nr_Evts'],
— "bandwidth_workflow_in":
— infrastructure_input['bandwidth_workflow_in'],
"bandwidth":
— infrastructure_input['bandwidth'],
«— "bandwidth_workflow_out": infrastructur
— e_input['bandwidth_workflow_out'],
"disk_throughput_read": infrastructure_inpu,
— t['disk_throughput_read'],
"disk_throughput_write": infrastructure_inp,
— ut['disk_throughput_write'],
"infrastructure_duration": infrastructure_i
< nput['infrastructure_duration'],
"nr_machine_override": infrastructure_input
< ['nr_machine_override']}

#variable to remember if there should be multiple plots - default
— one plot

multiplot = ["Nr_Cores", infrastructure_input['Nr_Cores'],

<~ 'cpu_power', infrastructure_input['cpu_power']]

for input_var, value in input_variables.iteritems():
#check if input makes sense: floats
if not isinstance(value, (float, unicode)):
#check for lists to create multiple plots
if isinstance(value, (list, unicode)):



A.3 Model implementation

if multiplot == ["Nr_Cores",
< infrastructure_input['Nr_Cores'], 'cpu_power',
— infrastructure_input['cpu_power']]:
multiplot = []
multiplot.append(input_var)
multiplot.append(value)
else:
raise ValueError('Make sure all float-inputs are
— actually floats', input_variables)

for input_var2, value2 in input_variables_int.iteritems():
#check ©f input makes sense: integers or long
if not isinstance(value2, (int, unicode)) and not
— isinstance(value2, (long, unicode)):
#check for lists to create multiple plots
if isinstance(value2, (list, unicode)):
if multiplot == ["Nr_Cores",
< infrastructure_input['Nr_Cores'], 'cpu_power',
< infrastructure_input['cpu_power']]:
multiplot = []
multiplot.append(input_var2)
multiplot.append(value2)
else:
raise ValueError('Make sure all int-inputs are actually
— ints (or longs)', input_variables_int)

#combine inputs into inpui_variables
input_variables.update(input_variables_int)

#catch case where there is no input list (only single entries)
iterator = (multiplot[1],) if not isinstance(multiplot[1], (tuple,
< list)) else multiplot[1]
if len(multiplot) == 2:
multiplot.append('cpu_power')
multiplot.append(infrastructure_input['cpu_power'])
iterator2 = (multiplot[3],) if not isinstance(multiplot[3], (tuple,
< list)) else multiplot[3]
#loop over inmput list
for variable_vary in iterator:
#loop over second input list
for variable_vary2 in iterator2:

input_variables[multiplot[0]] = variable_vary
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input_variables[multiplot[2]] = variable_vary2
#parse results to plot

#all z wvalues to plot

FINAL_RESULT = []

#maximum z point x/y/z coordinates
max_result_ram = 0.0

max_result_threads = 0.0

max_result_z = 0.0

#standard (8 threads 16 GB RAM) point z/y/z coordinates
standard_z = 0.0

standard_RAM = 0.0

standard_threads = 0.0

#plot ranges, stepsize

with open('input/input_plot_parameters.json') as plot_data:
data = json.load(plot_data)
ram_lower_limit = datal['ram_lower_limit']
ram_upper_limit = datal['ram_upper_limit']
ram_nr_points = datal'ram_nr_points']
#create multiple plots with varying nr threads:
thread_min = datal['thread_min']
thread_max = datal'thread_max']
thread_stepsize = datal['thread_stepsize']
#what to plot: [name, unit, function]
Z_variable_index = datal['Z_variable']

#loop over y-azis (threads)
for counter, nr_threads in enumerate(np.arange(thread_min,
< thread_max, thread_stepsize)):
resultll = np.linspace(ram_lower_limit,ram_upper_limit,
< ram_nr_points)
#loop over z-axzis (ram)
for counterl, amount_RAM in
— enumerate(np.linspace(ram_lower_limit,
< ram_upper_limit, ram_nr_points)):
processing_time_1 = []
downloadtime_1 = 0
inputsize_1 = 0O
CPU_Time_1 = O
#loop over transformations within a workflow
for transformation in transformation_types:
#calculate durations
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combined_time = combined_times(nr_threads,

— transformation, amount_RAM,
processing_time_t = workflow_in,
— put["transformations"] [tran,
> sformation] ["CPU_Time"],
Merge_Time_t = workflow_input["
— transformations"] [transform
— ation] ["Merge_Time"],
cpu_idle_t = workflow_input["tr
— ansformations"] [transformat
< ion] ["CPU_Idle_Time"],
validation_t = workflow_input["
— transformations"] [transform
— ation]["Validation_Time"],
cleanup_t = workflow_input["tra,
— nsformations"] [transformati
— on]["Cleanup_Time"],
Size_Evt_Out = workflow_input["
— transformations"] [transform
< ation] ["Size_Evt_0ut"],
Size_Evt_In = workflow_input["t
- ransformations"] [transforma
< tion] ["Size_Evt_In"],
singlecore_t = workflow_input["
— transformations"] [transform
— ation] ["is_single_core"],
Nr_Cores = input_variables['Nr_
— Cores'], cpu_power =
— input_variables['cpu_power'
- 1,

RAM_per_thread = input_variable
— s['RAM_per_thread'],

— Nr_Evts =

< input_variables['Nr_Evts'],
bandwidth_workflow_out =

< input_variables['bandwidth_
— workflow_out'],
bandwidth_workflow_in =

— input_variables['bandwidth_
« workflow_in'],
disk_throughput_read =

— 1input_variables['disk_throu
— ghput_read'],
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disk_throughput_write =
— input_variables['disk_throu
< ghput_write'],
position_t = workflow_input["tr
— ansformations"] [transformat
< ion]["position"],
0C_efficiency_gain_t =
— workflow_input["transformat
— ions"] [transformation] ['0C_
— efficiency_gain'],
io_power =
< input_variables['io_power'],
idle_factor = input_variables['
< idle_factor'],
I0_time_t = workflow_input["tra
— mnsformations"] [transformati
— on] ["I0_Time"])
processing_time_l.append(combined_time.total_pr
— ocessing_time(Nr_Cores =
< input_variables['Nr_Cores'],
Nr_Evts = input_variab
< les['Nr_Evts']))
downloadtime_1 = downloadtime_1 +
— combined_time.stagein
inputsize_1 = inputsize_1 +
— combined_time.inputsize
CPU_Time_1 = CPU_Time_1 +
— combined_time.CPU_Time_total
total_processing_time = sum(processing_time_1)
#final result
result = result_calc(total_processing_time=total_pr
— ocessing_time, nr_threads=nr_threads,
— transformation=transformation,
RAM_j=amount_RAM,
<~ Nr_Cores=input_variables['Nr_Cores'],
RAM_machine=input_variables['RAM_machine']
— H
< ram_to_cpu_factor=input_variables['ram
— _to_cpu_factor'],
input_size = workflow_input["transformatio
— ns"] [transformation] ["Size_Evt_In"],
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budget=input_variables['budget'],
— cost_1lmachine_lsec=input_variables['co
— st_lmachine_1sec'],
infrastructure_duration=input_variables['i
« nfrastructure_duration'],
— nr_machine_override=input_variables['n
s r_machine_override'],
CPU_Idle_Time_stdev =
— workflow_input["transformations"] [tran,
«» sformation] ["CPU_Idle_Time_stdev"],
CPU_Time_stdev =
— workflow_input ["transformations"] [tran
«» sformation] ["CPU_Time_stdev"],
I0_Time_stdev =
— workflow_input["transformations"] [tran
— sformation] ["I0_Time_stdev"],
Nr_Evts = input_variables['Nr_Evts'])
#list of possible results chosen by index
Z_variable = [["ETC", "Events/second/CHF",
s result.ETC_calc, result.ETC_calc_unc],
["EventCost", "Event/CHF",
— result.EventCost_calc,
— result.EventCost_calc_unc],
["EventTime", "Events/second",
— result.EventTime_calc,
«» result.EventTime_calc_unc],
["Time", "seconds", result.Time_calc,
«» result.Time_all_calc_unc],
["Bandwidth", "Gb/second",
— result.Bandwidth_calc,
«» result.Bandwidth_calc_unc],
["CostEvent", "CHF/Event",
— result.CostEvent_calc,
— result.CostEvent_calc_unc],
["Events", "Events",
— result.Events_calc,
«» result.Events_calc_unc],
["Downloadspeed", "Bytes/second",
— result.Input_bytes_second_calc, re
— sult.Input_bytes_second_calc_unc],
["InputSize", "Bytes",
— result.Input_bytes_calc,
— result.Input_bytes_calc_unc],
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["DownloadTime", "seconds",

— result.DownloadTime_calc,

< result.DownloadTime_calc_unc],
["CPUTime", "seconds",

— result.CPUTime_calc,

< result.CPUTime_calc_unc]]

if (Z_variable_index == 7) or (Z_variable_index ==
< 8) or (Z_variable_index == 9):
chosen_result = Z_variable[Z_variable_index] [2]
< (downloadtime_1,
< inputsize_1)
Total_Uncertainty =
— Z_variable[Z_variable_index] [3] ()

elif (Z_variable_index == 10):
chosen_result =
< Z_variable[Z_variable_index] [2] (CPU_Time_1,
— Nr_Evts = input_variables['Nr_Evts'])
Total_Uncertainty =
< Z_variable[Z_variable_index] [3] ()

else:
#duration of one full workflow (sum of all
<~ transformations)
chosen_result = Z_variable[Z_variable_index] [2]
< (total_processing_time)
Total_Uncertainty =
— Z_variable[Z_variable_index] [3] ()

if result.nr_machines != O:

#make sure input bandwidthes agree with each

— other: factor of 8 to account for downloads

— mnot in parallel

if (input_variables['bandwidth'] /

— result.nr_machines * 8) <

— (input_variables['bandwidth_workflow_in']):
raise ValueError('Input disagreement:
— bandwidth not possible with
— bandwidth_workflow_in')
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if (input_variables['bandwidth'] /
< result.nr_machines * 8) <
— (input_variables['bandwidth_workflow_out']):
raise ValueError('Input disagreement:
— bandwidth not possible with
< bandwidth_workflow_out"')
else:
continue
#find maxzimum
if chosen_result > max_result_z:
max_result_z = chosen_result
max_result_ram = amount_RAM
max_result_threads = nr_threads
max_Total_Uncertainty = Total_Uncertainty
#find standard point
if abs(nr_threads-input_variables['Nr_Cores']) <=
— abs(standard_threads-input_variables['Nr_Cores'

— ])
if abs(amount_RAM-input_variables['Nr_Cores']*2
— )<=
< abs(standard_RAM-input_variables['Nr_Cores'

standard_z = chosen_result
standard_threads = nr_threads
standard_RAM = amount_RAM
standard_Total_Uncertainty =
— Total_Uncertainty
#putl result in plottable format
resultll[counterl] = chosen_result
FINAL_RESULT.append(resultl1)
#create + save plot
PLOT(ram_lower_limit, ram_upper_limit, ram_nr_points,
— thread_min, thread_max, thread_stepsize,
— max_result_ram, max_result_threads,
max_result_z, standard_RAM, standard_threads,
— standard_z, FINAL_RESULT, multiplot,
— variable_vary, Z_variable[Z_variable_index],
variable_vary2, max_Total_Uncertainty,
<~ standard_Total_Uncertainty)

Workflow_Infrastructure_Model /input

The subdirectory ‘input’ contains the files:
“input_infrastructure.json input_plot_parameters.json input_workflow.json”
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The contents of these files have been shown in the Appendix, see subsection A.3.

Workflow_Infrastructure_Model /modules

The subdirectory ‘modules’ contains the files:

“combined_time_calc.py efficiency_calculation.py plot.py transformation_time_calc.py
cost_calculation.py __init__.py result_calc.py uncertainty_estimation.py” These modules
form the core logic of the model. They combine the different input parameters to inter-
mediate and final results.

combined_time_calc.py

from math import sqrt
from transformation_time_calc import transformation_time
from efficiency_calculation import overcommit_efficiency

class combined_times(transformation_time, overcommit_efficiency):
"combining the times"
def __init__(self, nr_threads, transformation, RAM_j,
— processing_time_t, Merge_Time_t, Size_Evt_In, Size_Evt_0Out,
cpu_idle_t, validation_t, cleanup_t, singlecore_t,
— Nr_Cores, cpu_power, RAM_per_thread, Nr_Evts,
— 0C_efficiency_gain_t,
bandwidth_workflow_in, bandwidth_workflow_out,
— position_t, disk_throughput_read,
— disk_throughput_write, io_power, idle_factor,
— I0_time_t):
transformation_time.__init__(self, nr_threads, transformation,
— RAM_j, processing_time_t, Merge_Time_t,
bandwidth_workflow_in, cpu_idle_t,
— validation_t, cleanup_t,
— bandwidth_workflow_out,
— singlecore_t,
Nr_Cores, cpu_power,
— RAM_per_thread, Size_Evt_In,
— Size_Evt_0Out, Nr_Evts,
— position_t,
disk_throughput_read,
— disk_throughput_write,
— lo_power, idle_factor,
— IO0_time_t)
overcommit_efficiency.__init__(self, nr_threads, Nr_Cores,
— 0C_efficiency_gain_t)
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self .workflow_time = self.workflow_time_calculate(Nr_Evts)
self.idle_time = self.idle_time_uc_calculate(Nr_Cores)
self.cpu_impact, self.idle_impact, self.IO_impact =

< self.component_impact_workflow(Nr_Evts)
self.total_error = self.fixed_error(Nr_Evts)

workflow_time_calculate(self, Nr_Evts):
"calculate workflow duration (sum all cores)"
workflow_time = (self.CPU_Time_total * Nr_Evts +
<~ (self.I0_Time_total + self.Swap_Time_total +
< self.Merge_Time_total) * gelf.nr_threads +
self.Const_overhead_Time_total +
— self.Singlecore_Idle_total * Nr_Evts)
return workflow_time

component_impact_workflow(self, Nr_Evts):

"calculate the impact of cpu time, idle time and IO time on the
— overall wall time in percent"

cpu_impact = self.CPU_Time_total * Nr_Evts /

— self.workflow_time * 100

idle_impact = (self.Const_overhead Time_total +

— self.Singlecore_Idle_total * Nr_Evts) / self.workflow_time
— * 100

I0_impact = (self.I0_Time_total + self.Swap_Time_total +

— self .Merge_Time_total) * self.nr_threads /

— self.workflow_time * 100

return cpu_impact, idle_impact, IO_impact

fixed_error(self, Nr_Evts):

"the error is estimated by the maximum deviation found from
— many measurements of 'similar jobs' reconstruction. Then
— error propagation is applied."

error_cpu = self.CPU_Time_total * Nr_Evts * 0.05

error_idle = (self.Const_overhead_Time_total +

— self.Singlecore_Idle_total * Nr_Evts) * 0.13

if (self.I0_Time_total + self.Swap_Time_total +
— self .Merge_Time_total) * self.nr_threads /
— self .workflow_time < 0.05:
error_io = (self.I0_Time_total + self.Swap_Time_total +
— self.Merge_Time_total) * self.nr_threads * 0.66
else:
error_io = 1000
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error_total = sqrt(error_cpu * error_cpu + error_idle *
< error_idle + error_io * error_io)
return error_total

def idle_time_uc_calculate(self, Nr_Cores):
"calculate idle time when under-committing - basically the job
— duration multiplied by number of idle cores"
if Nr_Cores > self.nr_threads:
idle_time = self.workflow_time / self.nr_threads *
— (Nr_Cores - self.nr_threads)
else:
idle_time = O
return idle_time

def overhead_calculate(self, Nr_Cores, Nr_Evts):

"calculate overhead that can be subtracted"

overhead_time = self.0CF * (self.nr_threads - Nr_Cores) /

< self.nr_threads * (self.CPU_Time_total * Nr_Evts +
self.I0_Time_total + self.Swap_Time_total +
— self .Merge_Time_total +
s self.Const_overhead_Time_total)

return overhead_time

def total_processing_time(self, Nr_Cores, Nr_Evts):
"calculate processing duration"
processing_duration = self.workflow_time -
«» self.overhead_calculate(Nr_Cores, Nr_Evts) + self.idle_time
return processing_duration

efficiency_calculation.py

class overcommit_efficiency:
"workflow specific factor"
def __init__(self, nr_threads, Nr_Cores, 0OC_efficiency_gain):
self.overcommit_factor = nr_threads / Nr_Cores
self.OCF =
< self.calculate_overcommit_efficiency(0OC_efficiency_gain)

def calculate_overcommit_efficiency(self, OC_efficiency_gain):
"micgleulate overcommit efficiency (only if unset meaning
— zero)... meaning the percentage of overcommitted time that
— doesn't influence the job duration,
because it uses (previous) CPU idle time"""
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plot.py

A.3 Model implementation

if OC_efficiency_gain ==
if self.overcommit_factor > 1:
if self.overcommit_factor > 2:
self .OCF = 0.7 / (2**(self.overcommit_factor-2))
else:
self .0CF = 0.05 * self.overcommit_factor + 0.6
else:
self .0CF = 0
return self.0OCF

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from math import loglO, floor
class PLOTQ):
"plot results"

def

—

—

__init__(self, ram_lower_limit, ram_upper_limit, ram_nr_points,
thread_min, thread_max, thread_stepsize, max_result_ram,
max_result_threads,

max_result_z, standard_RAM, standard_threads,

— standard_z, FINAL_RESULT, multiplot,

— variable_vary, Z_variable, variable_vary2,

max_Total_Uncertainty, standard_Total_Uncertainty):
X = np.linspace(ram_lower_limit,ram_upper_limit,ram_nr_points)
fig = plt.figure()
ax = fig.gca(projection="'3d")
ax.set_xlabel ('RAM [GB]', color='b', fontsize=20)
ax.set_zlabel(Z_variable[0] + ' ' + Z_variable[1], color='b',
< fontsize=20)
ax.set_ylabel ('Number of processes', color='b', fontsize=20)

ax.set_xlim([ram_lower_limit-3,ram_upper_limit+3])
ax.set_ylim([thread_min-3,thread_max+1])
if Z_variable[0] == 'Time':
ax.set_zlim([0,30000])
ax.xaxis.labelpad = 12
ax.yaxis.labelpad = 10
ax.zaxis.labelpad 10

thread_list = np.arange(thread_min, thread_max, thread_stepsize)
X,Y = np.meshgrid(x,thread_list)
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Z = FINAL_RESULT
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.9,
— cmap=plt.cm. jet, linewidth=0)

ax.scatter([max_result_ram], [max_result_threads],

« [max_result_z], 'ok', s = 150)

ax.text (max_result_ram, max_result_threads,

« max_result_z+0.0001, self.round_to_1(max_result_z), size =

o 20)
ax.scatter([standard_RAM], [standard_threads], [standard_z],
- 'ok')

cset = ax.contour(X, Y, Z, zdir='z', offset=-1,
< cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=+3,
< cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=+3,
< cmap=cm.coolwarm)

print 'Maximum: RAM: ', max_result_ram, 'Threads: ',
—» max_result_threads, Z_variable[0] + ': ', max_result_z,
< '+-', max_Total_Uncertainty,\
" ['+ Z_variable[1] + ']', ', Error [%] = "',
< (max_Total_Uncertainty / max_result_z * 100)
print 'Standard: RAM: ', standard_RAM, 'Threads: ',
< standard_threads, Z_variable[0] + ': ', standard_z, '+-',
< standard_Total_Uncertainty, \
" ['+ Z_variable[1] + ']' , ', Error [%] ="',

< (standard_Total_Uncertainty / standard_z * 100)

ax.legend ()
ax.azim=45
ax.elev=08.
fig.savefig(multiplot[0] +'_' + str(variable_vary) + '_' +
— multiplot[2] +'_'+ str(variable_vary2) + '_'
+ str(Z_variable[0]) + '.jpg', bbox_inches='tight')
plt.show()
plt.close()
def round_to_1(self, x):

if x == 0.0:

return x
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A.3 Model implementation

elif not isinstance(x, (int, unicode)) and not isinstance(x,
< (long, unicode)):

return round(x, -int(floor(loglO(abs(x)))-1))
else:

return int(round(x))

transformation_time_calc.py

class transformation_time:
"calculate all relevant durations: swap, processing and constant
< time"
def __init__(self, nr_threads, transformation, RAM_j,
< processing_time_t, Merge_Time_t,
bandwidth_workflow_in, cpu_idle_t, validation_t,
— cleanup_t, bandwidth_workflow_out, singlecore_t,
— Nr_Cores, cpu_power,
RAM_per_thread, Size_Evt_In, Size_Evt_0Out, Nr_Evts,
— position_t, disk_throughput_read,
— disk_throughput_write, io_power, idle_factor,
— IO0_time_t):
self .nr_threads = nr_threads
self .Nr_Cores = Nr_Cores
self.transformation = transformation
self .RAM_j = RAM_j
self.overcommit_factor = self.nr_threads / Nr_Cores
self .processing_time = processing_time_t
self.idle_cpu_time = cpu_idle_t
self.validation = validation_t
self.cleanup = cleanup_t
self.singlecore = singlecore_t
self .position = position_t
self.stagein, self.inputsize =
< self.Network_Read_Time(bandwidth_workflow_in, Size_Evt_In,
« Nr_Evts)
self.stageout = self.Network_Write_Time(bandwidth_workflow_out,
< Size_Evt_0ut, Nr_Evts)
self .CPU_Time_total = self.CPU_Time(cpu_power, Nr_Evts)
self.I0_Time_total = self.I0_Time(disk_throughput_read,
— disk_throughput_write, Size_Evt_In, Size_Evt_0ut, Nr_Evts,
< io_power, IO_time_t)
self.Idle_Time_total = self.Idle_Time(idle_factor, Nr_Evts)
self.Swap_Time_total = self.Swap_Time (RAM_per_thread)
self.Const_overhead_Time_total =
— self.Const_overhead_Time(cpu_power, Nr_Evts)
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def

def

def

def

self .Merge_Time_total = self.Merge_Time(Merge_Time_t)
self.Singlecore_Idle_total = self.CPU_Singlecore_Idle_Time()

Network_Read_Time(self, bandwidth_workflow_in, Size_Evt_In,
Nr_Evts):

"return the stage-in duration(network) and disk read duration"
if self.position ==

stagein_t = Size_Evt_In * Nr_Evts / bandwidth_workflow_in
inputsize = Size_Evt_In * Nr_Evts
else:
stagein_t = 0
inputsize = 0

return stagein_t, inputsize

Network_Write_Time(self, bandwidth_workflow_out, Size_Evt_Out,
Nr_Evts):
"return the stage-out duration(network)"
if self.position == 2:

stageout_t = Size_Evt_Out * Nr_Evts / bandwidth_workflow_out
else:

stageout_t = 0
return stageout_t

CPU_Time(self, cpu_power, Nr_Evts):
"return total CPU Time"
#single core means idle cores that do nothing
if self.singlecore:
CPU_Timel = self.processing_time / cpu_power
else:
CPU_Timel self .processing_time / cpu_power x*
— self.nr_threads / self.Nr_Cores
return CPU_Timel

I0_Time(self, disk_throughput_read, disk_throughput_write,
Size_Evt_In, Size_Evt_0Out, Nr_Evts, io_power, IO_time_t):
"return I/0 time"

I0_Time_total = I0_time_t / io_power / self.Nr_Cores * Nr_Evts
return I0_Time_total

Idle_Time(self, idle_factor, Nr_Evts):

"return Idle time"

Idle_time_res = self.idle_cpu_time / idle_factor * 10 * Nr_Evts
return Idle_time_res



def

def

def

def

def

A.3 Model implementation

swap_penalty(self):
"calculate the swap overhead time given a RAM value...
— simplification: penalised heavily by constant"
#only for transfomrations that actually swap
if "RAWtoESD" in self.transformation:
swap_overhead = 100000000000000
else:
swap_overhead=0
return swap_overhead

Swap_Time(self, RAM_per_thread):
"calculate swap time through penalty function (applied after
— RAM per Core ratio becomes too low)"
penalty_lim = RAM_per_thread * self.nr_threads #after this
< swapping-penalty (runtime):
if self.RAM_j < penalty_lim:
if self.swap_penalty() > O:
Swap_Time_1 = self.swap_penalty()
else:
Swap_Time_1 = 0
else:
Swap_Time_1 = 0
return Swap_Time_1

Merge_Time(self, Merge_Time_t):
return Merge_Time_t*self.nr_threads

CPU_Singlecore_Idle_Time(self):
"if (serial step) merging happens, add idle time"
CPU_idle_singlecore = 0
if self.singlecore:
CPU_idle_singlecore = self.CPU_Time_total *
< (self.nr_threads - 1)
else:
CPU_idle_singlecore = 0O
return CPU_idle_singlecore

Const_overhead_Time(self, cpu_power, Nr_Evts):

"sum over all the constant times: startup, setup etc..."
self.Const_overhead Time_total = (self.stagein +

— self.Idle_Time_total + self.validation + self.cleanup +
— self.stageout) * self.nr_threads
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return self.Const_overhead_Time_total

cost_calculation.py

class cost_calculation:
"calculate cost of infrastrucutre"
def __init__(self, RAM_i, Nr_Cores, RAM_machine, ram_to_cpu_factor,
— budget, cost_lmachine_1lsec, infrastructure_duration,
<> nr_machine_override):
"create an instance for every RAM amount"
self .RAM_i = RAM_i
self .Nr_Cores = Nr_Cores
self .RAM_machine = RAM_machine
self.ram_to_cpu_factor = ram_to_cpu_factor
self.cost_lmachine_lsec = cost_1lmachine_1sec
self.infrastructure_duration = infrastructure_duration
self .machines = self.budget_machines(budget,
<> nr_machine_override)
self .nr_machines = self.total_machines(budget,
<> nr_machine_override)
self.total_cost_machines = budget

def budget_machines(self, budget, nr_machine_override):
"amount of standard machines the budget allows for"
if nr_machine_override ==
if (budget / self.cost_lmachine_lsec *
— self.infrastructure_duration) >= 1:
return int(budget / (self.cost_lmachine_lsec *
— self.infrastructure_duration))
else:
raise ValueError('Input disagreement: budget cannot
— afford machines')

def total_machines(self, budget, nr_machine_override):

"return number of machines, considering RAM variation.
— nr_machine_override if non-zero overrides all budget, ram
< and core considerations"
if nr_machine_override != O:

return nr_machine_override
else:

if self.Nr_Cores <= 0:

nr_machines_1 = 0
else:
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nr_machines_1 = (self.Nr_Cores - (self.RAM_i -
— self .RAM_machine) * self.ram_to_cpu_factor) x*
— self.machines / self.Nr_Cores
if nr_machines_1 >= O:
return nr_machines_1
else:
return O

result_calc.py

from cost_calculation import cost_calculation
from uncertainty_estimation import estimate_uncertainty

class result_calc(cost_calculation, estimate_uncertainty):
"calculate the chosen result"
def __init__(self, total_processing_time, nr_threads,
— transformation, RAM_j, Nr_Cores, RAM_machine,
— ram_to_cpu_factor, input_size, budget,
cost_1machine_1sec, infrastructure_duration,
— nr_machine_override, CPU_Idle_Time_stdev,
— CPU_Time_stdev, I0_Time_stdev, Nr_Evts):
cost_calculation.__init__(self, RAM_i=RAM_j, Nr_Cores=Nr_Cores,
— RAM_machine=RAM_machine,
— ram_to_cpu_factor=ram_to_cpu_factor,
budget=budget, cost_lmachine_lsec=cos
< t_1lmachine_1lsec,
— infrastructure_duration=infrastru
— cture_duration,
nr_machine_override=nr_machine_overri
— de)
estimate_uncertainty.__init__(self, Nr_Evts)
self.total_processing_time = total_processing_time
self.overcommit_factor = nr_threads / Nr_Cores
self .Nr_Cores = Nr_Cores
self.input_size = input_size
self .CPU_Idle_Time_stdev = CPU_Idle_Time_stdev
self .CPU_Time_stdev = CPU_Time_stdev
self.I0_Time_stdev = I0_Time_stdev
self .num_workflows = self.num_workflows_calc()
self.sum_walltimes self.sum_walltimes_calc()
self.Total_Events = self.total_events_calc(Nr_Evts)

def total_events_calc(self, Nr_Evts):
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"total number of events produced"
if self.sum_walltimes ==

raise ValueError('wall time is zero')
Total_Events = Nr_Evts * self.overcommit_factor *
— self.num_workflows
return Total_Events

def sum_walltimes_calc(self):
"sum of all walltimes"
if self.Nr_Cores ==
raise ValueError('Nr_Cores input is zero')
sum_walltimes = self.total_processing_time * self.num_workflows
— / self .Nr_Cores
return sum_walltimes

def num_workflows_calc(self):
"how many workflows are run in total"
if self.Nr_Cores ==
raise ValueError('Nr_Cores input is zero')
num_workflows = self.infrastructure_duration * self.nr_machines
< / (self.total_processing time / self.Nr_Cores)
return num_workflows

def ETC_calc(self, Nr_Evts):
"events/second/chf"
if self.total_cost_machines ==
raise ValueError('budget input is zero')
if self.sum_walltimes ==
raise ValueError('wall time is zero')
ETC_res = self.Total_Events / self.sum_walltimes /
— self.total_cost_machines
return ETC_res

def EventCost_calc(self, Nr_Evts):
"events/chf"
if self.total_cost_machines ==
raise ValueError('budget input is zero')
EC_res = self.Total_Events / self.total_cost_machines
return EC_res

def EventTime_calc(self, Nr_Evts):

"events/second"
if self.sum_walltimes ==
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raise ValueError('wall time is zero')
ET_res = self.Total_Events / self.sum_walltimes
return ET_res

def Time_calc(self, Nr_Evts):
"total time"
T_res = self.sum_walltimes
return T_res

def Bandwidth_calc(self, Nr_Evts):
"bandwidth"
Bandwidth_res = self.input_size * self.Total_Events /
< self.sum_walltimes / 1000000000 * 8
return Bandwidth_res

def CostEvent_calc(self, Nr_Evts):
"chf/event"
if self.Total_Events ==
raise ValueError('total events are zero')
CE_res = self.total_cost_machines / self.Total_Events
return CE_res

def Events_calc(self, Nr_Evts):
"events"
Events_res = self.Total_Events
return Events_res

def Input_bytes_second_calc(self, downloadtime_1, inputsize_1,
— Nr_Evts):
"input size per downloadtime [bytes/second]"
if downloadtime_1 ==
raise ValueError('downloadtime input is zero')
if inputsize_1l ==
raise ValueError('inputsize input is zero')
Input_bytes_second_res = inputsize_l / downloadtime_1
return Input_bytes_second_res

def Input_bytes_calc(self, downloadtime_1, inputsize_1l, Nr_Evts):
"input size [bytes]"
if inputsize_l ==
raise ValueError('inputsize input is zero')
Input_bytes_res = inputsize_l * self.Total_Events / Nr_Evts
return Input_bytes_res
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def DownloadTime_calc(self, downloadtime_l, inputsize_1l, Nr_Evts):
"downloadtime [second]"
if downloadtime_1 ==
raise ValueError('downloadtime input is zero')
downloadtime = downloadtime_l / Nr_Evts * self.Total_Events
return downloadtime

def CPUTime_calc(self, CPUTime_1, Nr_Evts):
"CPU Time [seconds]"
CPUTime = CPUTime_1 * self.Total_Events
return CPUTime

uncertainty_estimation.py

from math import sqrt

class estimate_uncertainty:
"uncertainty estimations"
def __init__(self, Nr_Evts):
self .Nr_Evts = Nr_Evts

def Time_calc_unc(self):
"calculate the wall time uncertainty. error combination: idle
— and cpu time dependent, io time independent"
time_Uncertainty =
— sqrt((self.CPU_Idle_Time_stdev/self.Nr_Cores)**2 +
— (self.CPU_Time_stdev/self.Nr_Cores)**2 +
— (self.I0_Time_stdev/self.Nr_Cores)**2)
return time_Uncertainty

def num_workflows_unc(self):
"calculate the sum workflows"
num_workflow_Uncertainty = (self.infrastructure_duration *
— self.nr_machines * self.Nr_Cores /
< (self.total_processing_time)**2 *
self.Time_calc_unc())
return num_workflow_Uncertainty

def total_events_unc(self):
"calculate the total_events uncertainty"
total_events = self.Nr_Evts * self.overcommit_factor =*
< self.num_workflows_unc()
return total_events
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def sum_walltime_unc(self):
"calculate the sum wall time uncertainty"
sum_walltime = O

return sum_walltime

def ETC_calc_unc(self):
"calculate the ETC uncertainty"
ETC_Uncertainty = (self.Time_calc_unc() * self.Nr_Cores /
<~ (self.total_processing_time)**2 /
self.total_cost_machines * self.Nr_Evts *
— self.overcommit_factor)
return ETC_Uncertainty

def EventCost_calc_unc(self):
"calculate the EC uncertainty"
EC_Uncertainty = self.total_events_unc() /
— self.total_cost_machines
return EC_Uncertainty

def EventTime_calc_unc(self):
"calculate the ET uncertainty"
ET_Uncertainty = (self.total_events_unc() / self.sum_walltimes)
return ET_Uncertainty

def Time_all_calc_unc(self):
"uncertainty on duration of excercise"
time_all_Uncertainty = O
return time_all_Uncertainty

def Bandwidth_calc_unc(self):
"calculate the bandwidth uncertainty"
Bandwidth_Uncertainty = (self.input_size *
— self.total_events_unc() / self.sum_walltimes / 1000000000 =*
o 8)
return Bandwidth_Uncertainty

def CostEvent_calc_unc(self):
"calculate the cost/event uncertainty"
cost_event_Uncertainty = self.total_cost_machines /
<~ (self.Total_Events)**2 * self.total_events_unc()
return cost_event_Uncertainty
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Events_calc_unc(self):
"calculate the #event uncertainty"

event_Uncertainty = self.total_events_unc()

return event_Uncertainty

Input_bytes_second_calc_unc(self):
"calculate the input speed uncertainty"
input_speed_Uncertainty = 0
return input_speed_Uncertainty

Input_bytes_calc_unc(self):
"calculate the input size uncertainty"
input_size_Uncertainty = inputsize_l * self.total_events_unc()

< / Nr_Evts

return input_size_Uncertainty

DownloadTime_calc_unc(self):
"calculate the download duration uncertainty"
download_time_Uncertainty = downloadtime_1 / Nr_Evts *
— self.total_events_unc()

return download_time_Uncertainty

CPUTime_calc_unc(self):
"calculate the CPU time uncertainty"
CPU_time_Uncertainty = CPUTime_l1 * self.total_events_unc()
return CPU_time_Uncertainty

A.4 Overcommitting

Processes | Wall [s] | Wall STDEV [%] | CPU [s] | Idle [s] | I/O Wait [s]
4 11306 0.46 37388 52554 152
5 9836 0.12 38259 40029 156
6 8898 0.24 38688 32010 194
7 8665 1.16 40309 28214 416
8 8427 0.28 42044 24016 1140
9 8839 0.12 43940 24838 1644
10 9328 0.17 45817 25962 2470
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A.5 Additional source code and scripts

A.4.1 Model input parameters

Budget = 1000

CPU power = 10
Bandwidth = 1250000000
Ram-to-CPU-ratio = 0.358

A.5 Additional source code and scripts

#include <unistd .h>
#include <string.h>
#include <stdlib .h>
#include <sys/mman.h>

; int main(int argc, char argv) {

size_.t s = (unsigned long long int) atol(argv[1l]);
char c=(char)malloc(s);

mlock(c, s);

memset (¢,0,s);

sleep (86400) ;

return 0;

s}

Listing 1: Code to allocate and lock the amount of RAM that is specified upon execution
of the program for 86400 seconds.

Listing 2: “lscpu” result on the 4 core VM at CERN.

[root@datacloud02 ~|# Ilscpu

Architecture: x86_64

CPU op—mode(s): 32—Dbit , 64—bit

Byte Order: Little Endian

CPU(s): 4

On—line CPU(s) list: 0-3

Thread (s) per core: 1

Core(s) per socket: 1

Socket (s): 4

NUMA node(s): 1

Vendor ID: Genuinelntel

CPU family: 6

Model: 44

Model name: Intel (R) Xeon(R) CPU L5640 @
2.27GHz

Stepping: 2

CPU MHz: 2266.746

BogoMIPS : 4533.49

193



18 Hypervisor vendor: KWW

19 Virtualization type: full
20 L1d cache: 32K
21 L1i cache: 32K
22 L2 cache: 256K
23 L3 cache: 12288K
24 NUMA node0O CPU(s): 0-3

Listing 3: Monitoring with the ’sar’ commands of the sysstat package.

1 sar —P ALL 5 20000 > sar_.P_ALL_CPU.txt &
2 sar —u ALL 5 20000 > sar_u.txt &
3 sar —n DEV 5 20000 > sar_n_DEV_network.txt &
4 sar —b 5 20000 > sar_b_I0.txt &
5 sar —r 5 20000 > sar_r_memory.txt &
6 sar —S 5 20000 > sar_S_swap.txt &
7 sar —B 5 20000 > sar_B_paging_statistics.txt &
8 sar -W 5 20000 > sar_W _page_swap_statisitcs.txt &
9 sar —p —d 5 20000 > sar_d_individual_block_device.txt &
10 sar —w 5 20000 > sar_w_context_switch.txt &
11 sar —q 5 20000 > sar_q_load_average.txt &
Listing 4: Monitoring with the /proc pseudo-file system.
1 cat /proc/stat > proc_stat_beginning.txt
2 cat /proc/uptime > proc_uptime_start.txt
3 cat /proc/uptime > proc_uptime.txt
4 while kill —0 $pid2 2> /dev/null
5 do
6 cat /proc/$pid2/stat > proc_pid_stat.txt
7 cat /proc/$pid2/io > proc_pid_io.txt
8 cat /proc/$pid2/status > proc_pid_status.txt
9 cat /proc/stat > proc_stat_end.txt
10 cat /proc/uptime > proc_uptime_end.txt
11 function getcpid () {
12 cpids="pgrep —P $1|xargs"
13 for cpid in $cpids;
14 do
15 cat /proc/$cpid/stat > proc_pid_stat_$cpid. txt
16 cat /proc/$cpid/io > proc_pid_io_$cpid.txt
17 cat /proc/$cpid/status > proc_pid_status_$cpid.txt
18 getcpid $cpid
19 done
20 }
21 getcpid $pid2

194



22
23

N

© 00 J O Ut i~ W

10

A.6 Different workflows

sleep 5s
done

Listing 5: Monitoring with the /sys pseudo-file system.

echo “date’ >> disk_stat.txt
echo ”7third _value. 512 is bytes read, 7th value

512 bytes written” >> disk_stat.txt
echo "vda3,_./swap” >> disk_stat.txt
tail /sys/block/vda/vda3/stat >> disk_stat.txt
echo "vda,._alles” >> disk_stat.txt
tail /sys/block/vda/stat >> disk_stat.txt
echo "vda4,_/test.” >> disk_stat.txt
tail /sys/block/vda/vdad/stat >> disk_stat.txt
echo ”"vdb./storage” >> disk_stat.txt
tail /sys/block/vdb/stat >> disk_stat.txt

A.6 Different workflows

A.6.1 Event Generation

Athena  version: asetup  —cmtconfig=x86_64-slc6-gccd7-opt  AtlasProduc-
tion,19.2.3.6,notest
The command line input was:

Generate_tf.py ——-AMITag=e3735 --ecmEnergy=13000

< -—evgenJobOpts=/test/evgen/MC15Job0pts-00-00-33_v2.tar.gz
—--jobConfig=/test/evgen/MC15.424100.Pythia8B_A14_CTEQ6L1_Jpsimu,
4mu4 .py --maxEvents=1000
-—outputEVNTFile=EVNT.11321089._026174.pool.root.1
--randomSeed=70575..70600 —--runNumber=424100 --skipEvents=0 &>
output.txt &

e

The file ‘MC15.424100.Pythia8B_A14_CTEQG6L1_Jpsimudmu4.py’ contains:

# ______________________________________________________________

# JO fragment for pp->J/psi(mu4mu4)X, Pythia 8B

# ______________________________________________________________
evgenConfig.description = "Inclusive pp->J/psi(mudmud) production with
— Photos"

evgenConfig.keywords = ["charmonium","2muon","inclusive"]

evgenConfig.minevents = 500

include ('MC15Job0ptions/nonStandard/Pythia8B_A14_CTEQR6L1_Common.py')
include('MC15Job0Options/nonStandard/Pythia8B_Photospp.py')
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include ("MC15JobOptions/Pythia8B_Charmonium_Common.py")

genSeq.
genSeq.
genSeq.
genSeq.

genSeq.
genSeq.
genSeq.
genSeq.

Pythia8B.Commands += ['PhaseSpace:pTHatMin = 4.']
Pythia8B.Commands += ['443:onMode = off']
Pythia8B.Commands += ['443:2:onMode = on']
Pythia8B.SignalPDGCodes = [443,-13,13]

Pythia8B.TriggerPDGCode = 13

Pythia8B.TriggerStatePtCut = [4.0]
Pythia8B.TriggerStateEtaCut = 2.7
Pythia8B.MinimumCountPerCut [2]

A.6.2 Monte-Carlo simulation

Input files are the outputs from the event generation in Subsection A.6.1. Athena version:

asetup —

cmtconfig=x86_64-slc6-gccd9-opt AtlasOffline,21.0.15,notest, here

The command line input was:

Sim_tf.py --inputEVNTFile=/test/evgen/"counter"_1000evts/EVNT.11321

—

e

089._026174.pool.root.1 --maxEvents=100 --postInclude
default:RecJobTransforms/UseFrontier.py
-—athenaMPMergeTargetSize=ALL:0.0 --preExec 'EVNTtoHITS:simFlag
s.SimBarcodeOffset.set_Value_and_Lock(200000) "'
'EVNTtoHITS:simFlags.TRTRangeCut=30.0;
simFlags.TightMuonStepping=True' --prelnclude
EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,Simu
lationJobOptions/prelInclude.FrozenShowersFCalOnly.py
--skipEvents=0 --firstEvent=0
-—outputHITSFile=HITS.11363361._041300.pool.root.1
—-physicsList=FTFP_BERT_ATL_VALIDATION --randomSeed=13056
--DBRelease=all:current --conditionsTag
default:0FLCOND-MC16-SDR-14
--geometryVersion=default:ATLAS-R2-2016-01-00-01_VALIDATION
—--runNumber=361100 --AMITag=s3126 --DataRunNumber=284500
--simulator=FullG4 --truthStrategy=MC15aPlus &> output.txt &

A.6.3 Reconstruction 1

Uses the same input file for all iterations. Athena version: asetup —cmtconfig=x86_64-
slc6-geed9-opt AtlasProduction,20.7.7.6

The command line input was:
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A.6 Different workflows

Reco_tf.py '--inputBSFile=/test/reco/datal6_13TeV.00304008.physics_
< Main.daq.RAW._1b0167._SF0-4._0002.data'’

'--postExec' 'ESDtoDPD:from
AthenaCommon.AppMgr import ServiceMgr;import
MuonRPC_Cabling.MuonRPC_CablingConfig;ServiceMgr.MuonRPC_Cablin
gSvc.RPCMapfromCool=False;ServiceMgr.MuonRPC_CablingSvc.CorrFil
eName="LVL1confAtlasRUN2_ver016.corr";ServiceMgr.MuonRPC_Cablin
gSvc.ConfFileName="LVL1confAtlasRUN2_verOl6.data";' '--preExec'
'all:DQMonFlags.enableLumiAccess=False;"'

'--maxEvents=default:-1'

'-—autoConfiguration=everything' '--beamType=collisions'
'--conditionsTag' 'default:CONDBR2-BLKPA-2016-16"
'-—geometryVersion=default:ATLAS-R2-2015-04-00-00"
'-—runNumber=304008"' '--AMITag=r8519'
'——outputAODFile=A0D.09455490._003112.pool.root.1"
'-—outputHISTFile=HIST.09455490._003112.pool.root.1"'
'——jobNumber=3106"' '--ignoreErrors=True'
'--ignorePatterns=ToolSvc.InDetSCTRodDecoder.+ERROR.+Unknown.+o
fflineld.+for.+0Onlineld' &> output.txt

&

e

A.6.4 Reconstruction 2

Same input file for all iterations.
Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt Athena,21.0.30
The command line input was:

Reco_tf.py —-inputBSFile=/test/reco/17data_1/datal7_13TeV.00329964.
— physics_Main.daq.RAW._1b0366._SF0-8._0003.data --maxEvents -1

— —-postExec 'e2d:from AthenaCommon.AppMgr import ServicelMgr;
import MuonRPC_Cabling.MuonRPC_CablingConfig;

ServiceMgr .MuonRPC_CablingSvc.RPCMapfromCool=False;

ServiceMgr .MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_verlO
— 4.corr";
ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_ver10
— 4.data";

' 'e2a:if "TileJetMonTool/TileJetMonTool" in ToolSvc.getSequence():
— ToolSvc.TileJetMonTool.do_1dim_histos=True;

" —-preExec 'all:from InDetRecExample.InDetJobProperties import

— InDetFlags;
InDetFlags.useDynamicAlignFolders.set_Value_and_Lock(True);

from InDetPrepRawDataToxAOD.SCTxAODJobProperties import

— SCTxAODFlags;

SCTxAODFlags .Prescale.set_Value_and_Lock(50);

TriggerFlags.AODEDMSet="A0ODFULL";
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from TrigHLTMonitoring.HLTMonFlags import HLTMonFlags;
HLTMonFlags.doGeneral=False;

HLTMonFlags.doJet=False' --autoConfiguration everything

— —-conditionsTag all:CONDBR2-BLKPA-2017-10 --geometryVersion
all:ATLAS-R2-2016-01-00-01 —--runNumber 329964 --AMITag £844 --o
utputDESDM_CALJETFile=DESDM_CALJET.11776717._004044 .pool.root.1
——outputDESDM_EXOTHIPFile=DESDM_EXOTHIP.11776717._004044.pool.r
oot.1
—--outputDESDM_MCPFile=DESDM_MCP.11776717._004044.pool.root.1
——outputDESDM_PHOJETFile=DESDM_PHOJET. 11776717 ._004044.pool.roo0
t.1
——outputDESDM_SGLELFile=DESDM_SGLEL.11776717._004044.pool.root. |
1
——outputDESDM_TILEMUFile=DESDM_TILEMU.11776717._004044.pool.roo0
t.1 --outputDRAW_EGZFile=DRAW_EGZ.11776717._004044.pool.root.1
——outputDRAW_RPVLLFile=DRAW_RPVLL.11776717._004044.pool.root.1
-—outputDRAW_TAUMUHFile=DRAW_TAUMUH.11776717._004044.pool.root. |
1

——outputDRAW_ZMUMUFile=DRAW_ZMUMU. 11776717 ._004044.pool.root.1
—-—outputAODFile=A0D.11776717._004044.pool.root.1
-—outputHISTFile=HIST.11776717._004044.pool.root.1 --jobNumber
3941 --ignoreErrors false &> output.txt &

L

A.6.5 Reconstruction 3

Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt  Athena,21.0.30 Dif-
ferent input file for each job inside a VM (same input file across VMs),
e.g.: datal7_13TeV.00325030.physics_Main.daq.RAW._1b0685._SFO-7._.0001.data,
datal7_13TeV.00325030.physics_ Main.daq.RAW._1b0685._SFO-5._0001.data, ...

The command line input was:

Reco_tf.py --inputBSFile=/test/reco/counter --maxEvents -1

— —-postExec 'e2d:from AthenaCommon.AppMgr import Servicelgr;
import MuonRPC_Cabling.MuonRPC_CablingConfig;

ServiceMgr .MuonRPC_CablingSvc.RPCMapfromCool=False;
ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_ver10
— 4.corr";
ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_verl0
— 4.data";

" 'e2a:if "TileJetMonTool/TileJetMonTool" in ToolSvc.getSequence():
— ToolSvc.TileJetMonTool.do_1dim_histos=True;

' —-preExec 'all:from InDetRecExample.InDetJobProperties import

— InDetFlags;
InDetFlags.useDynamicAlignFolders.set_Value_and_Lock(True);
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from InDetPrepRawDataToxAOD.SCTxAODJobProperties import

— SCTxAODFlags;

SCTxAODFlags.Prescale.set_Value_and_Lock(50);
TriggerFlags.AODEDMSet="A0DFULL";

from TrigHLTMonitoring.HLTMonFlags import HLTMonFlags;
HLTMonFlags.doGeneral=False;

HLTMonFlags.doJet=False' --autoConfiguration everything

— --conditionsTag all:CONDBR2-BLKPA-2017-10 --geometryVersion
all:ATLAS-R2-2016-01-00-01 --runNumber 329964 --AMITag £844 --o
utputDESDM_CALJETFile=DESDM_CALJET.11776717._004044 .pool.root.1
—-—outputDESDM_EXOTHIPFile=DESDM_EXOTHIP.11776717._004044.pool.r
oot.1
—--outputDESDM_MCPFile=DESDM_MCP.11776717._004044.pool.root.1
-—outputDESDM_PHOJETFile=DESDM_PHOJET. 11776717 ._004044.pool.roo0
t.1
——outputDESDM_SGLELFile=DESDM_SGLEL.11776717._004044.pool.root. |
1
——outputDESDM_TILEMUFile=DESDM_TILEMU.11776717._004044.pool.roo0
t.1 --outputDRAW_EGZFile=DRAW_EGZ.11776717._004044 .pool.root.1
—--outputDRAW_RPVLLFile=DRAW_RPVLL.11776717._004044.pool.root.1
——outputDRAW_TAUMUHFile=DRAW_TAUMUH.11776717._004044.pool.root. |
1

—-—outputDRAW_ZMUMUFile=DRAW_ZMUMU.11776717._004044.pool.root.1
--outputAODFile=A0D.11776717._004044.pool.root.1
-—outputHISTFile=HIST.11776717._004044.pool.root.1 —--jobNumber
3941 --ignoreErrors false &> output.txt &

R

A.6.6 Reconstruction 4

Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt  Athena,21.0.30 Dif-
ferent input file for each job inside a VM (same input file across VMs)
e.g.: datal7_13TeV.00325030.physics_Main.daq.RAW._1b0684._SFO-3._0001.data,
datal7_-13TeV.00325030.physics_Main.daq.RAW._1b0660._SFO-8._0001.data, ...

The command line input was:

Reco_tf.py --inputBSFile=/test/reco/counter --maxEvents -1

— —-postExec 'e2d:from AthenaCommon.AppMgr import ServicelMgr;
import MuonRPC_Cabling.MuonRPC_CablingConfig;
ServiceMgr.MuonRPC_CablingSvc.RPCMapfromCool=False;
ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_verlO
— 4.corr";
ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_ver10
— 4.data";
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" 'e2a:if "TileJetMonTool/TileJetMonTool" in ToolSvc.getSequence():
— ToolSvc.TileJetMonTool.do_1dim_histos=True;

' —-preExec 'all:from InDetRecExample.InDetJobProperties import

— InDetFlags;
InDetFlags.useDynamicAlignFolders.set_Value_and_Lock(True);

from InDetPrepRawDataToxAOD.SCTxAODJobProperties import

— SCTxAODFlags;

SCTxAODFlags.Prescale.set_Value_and_Lock(50);

TriggerFlags.AODEDMSet="AODFULL";

from TrigHLTMonitoring.HLTMonFlags import HLTMonFlags;

HLTMonFlags.doGeneral=False;

HLTMonFlags.doJet=False' --autoConfiguration everything

— ~—-conditionsTag all:CONDBR2-BLKPA-2017-10 --geometryVersion
all:ATLAS-R2-2016-01-00-01 --runNumber 329964 --AMITag 844 --o

utputDESDM_CALJETFile=DESDM_CALJET.11776717._004044.pool.root.1
——outputDESDM_EXOTHIPFile=DESDM_EXOTHIP.11776717._004044.pool.r
oot.1
—-—outputDESDM_MCPFile=DESDM_MCP.11776717._004044.pool.root.1
-—outputDESDM_PHOJETFile=DESDM_PHOJET. 11776717 ._004044.pool.roo0
t.1
——outputDESDM_SGLELFile=DESDM_SGLEL.11776717._004044.pool.root. |
1
——outputDESDM_TILEMUFile=DESDM_TILEMU.11776717._004044.pool.roo0
t.1 --outputDRAW_EGZFile=DRAW_EGZ.11776717._004044.pool.root.1
——outputDRAW_RPVLLFile=DRAW_RPVLL.11776717._004044.pool.root.1

1
——outputDRAW_ZMUMUFile=DRAW_ZMUMU. 11776717 ._004044.pool.root.1
—-—outputAODFile=A0D.11776717._004044.pool.root.1
-—outputHISTFile=HIST.11776717._004044.pool.root.1 --jobNumber
3941 --ignoreErrors false &> output.txt &

e

A.6.7 Reconstruction 5

Different input file for each job inside a VM (same input file across VMs),

e.g.: datal7_13TeV.00325030.physics_Main.daq.RAW._1b0684._SFO-3._.0001.data,

datal7_-13TeV.00325030.physics_Main.daq.RAW._1b0660._SFO-8._0001.data, ...
Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt Athena,21.0.37,notest
The command line input was:
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Reco_tf.py --inputBSFile=/test/reco/counter --maxEvents=default:-1
«— ——postExec 'all:from AthenaCommon.ApplMgr import ServiceMgr as
— svcMgr;

svcMgr. AthenaPoolCnvSvc.MaxFileSizes=["15000000000"] ;

——outputDRAW_TAUMUHFile=DRAW_TAUMUH.11776717._004044.pool.root. |



A.6 Different workflows

from IOVDbSvc.CondDB import conddb;
conddb.add0Override (" /MUONALIGN/CSC/ILINES",

— "MuonAlignCscIlines-UPD1-03");

'ESDtoDPD:from AthenaCommon.AppMgr import ServiceMgr;
import MuonRPC_Cabling.MuonRPC_CablingConfig;
ServiceMgr.MuonRPC_CablingSvc.RPCMapfromCool=False;
ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1lconfAtlasRUN2_verlO
- 4.corr";
ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_verlO
< 4.data";
" ——preExec 'all:from InDetRecExample.InDetJobProperties import

— InDetFlags;
InDetFlags.useDynamicAlignFolders.set_Value_and_Lock(True);

from PrimaryDPDMaker.PrimaryDESDMFlags_PerfMS import

— PrimaryDESDMFlags_PerfMSStream;
jobproperties.PrimaryDESDMFlags_PerfMSStream.doAlignmentFormat.set
< _Value_and_Lock(True);
' ——-skipEvents=0 --conditionsTag all:CONDBR2-BLKPA-2017-12
--geometryVersion=all:ATLAS-R2-2016-01-00-01 --runNumber=325030
--AMITag=r9962 --outputDESDM_ALLCELLSFile=DESDM_MCP.12214515._0
25888.pool.root.1 --jobNumber=20791 &> output.txt
&

Ll

A.6.8 Reconstruction 6

Software version and input data from the beginning of 2015. Differ-
ent input file for each job inside a VM (same input file across VMs),
e.g. datal5_-13TeV.00270588.physics_Main.daq.RAW._1b0233._SFO-2._.0001.data,

datalb_13TeV.00270588.physics_Main.daq.RAW._1b0238._SFO-1._.0001.data, ... Athena
version: asetup —cmtconfig=x86_64-slc6-gccd8-opt 20.1.5.5, AtlasProduction,here,notest
The command line input was:

Reco_tf.py --inputBSFile=/test/reco_beg_run/datal5_13TeV.00270588.physi
— c¢s_Main.daq.RAW._1b0233._SF0-2._0001.data --maxEvents=default:-1

— —-postExec 'ESDtoDPD:from AthenaCommon.AppMgr import Servicellgr;
import MuonRPC_Cabling.MuonRPC_CablingConfig;
ServiceMgr.MuonRPC_CablingSvc.RPCMapfromCool=False;
ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_ver016.co
— rr";
ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_ver016.da
- ta";

'RAWtoESD:from AthenaCommon.AppMgr import ServiceMgr as svcMgr;
svcMgr. AthenaPoolCnvSvc.MaxFileSizes=["15000000000"] ;
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' '"ESDtoAOD:CILMergeAOD.removeItem("xAOD: :CaloClusterAuxContainer#CaloC
alTopoClustersAux.LATERAL.LONGITUDINAL.SECOND_R.SECOND_LAMBDA.CENTE
R_MAG.CENTER_LAMBDA.FIRST_ENG_DENS.ENG_FRAC_MAX.ISOLATION.ENG_BAD_C
ELLS.N_BAD_CELLS.BADLARQ_FRAC.ENG_BAD_HV_CELLS.N_BAD_HV_CELLS.ENG_P
0S.SIGNIFICANCE.CELL_SIGNIFICANCE.CELL_SIG_SAMPLING.AVG_LAR_Q.AVG_T,
— ILE_Q.EM_PROBABILITY.PTD.BadChannelList");
CILMergeAOD.add("xAOD: :CaloClusterAuxContainer#CaloCalTopoClustersAux.N
— _BAD_CELLS.ENG_BAD_CELLS.BADLARQ_FRAC.AVG_TILE_Q.AVG_LAR_Q.CENTER_M,
— AG.ENG_POS.CENTER_LAMBDA.SECOND_LAMBDA.SECOND_R.ISOLATION.EM_PROBAB
— ILITY");
StreamAQOD.ItemList=CILMergeAOD() ;

' ——preExec

«— 'DQMonFlags.enableLumiAccess=False;D(MonFlags.doCTPMon=False;from

— MuonRecExample.MuonRecFlags import muonRecFlags;muonRecFlags.useLoo
— seErrorTuning.set_Value_and_Lock(True);
DQMonFlags.enableLumiAccess=False;
from InDetRecExample.InDetJobProperties import InDetFlags;
from BTagging.BTaggingFlags import BTaggingFlags;
BTaggingFlags.btaggingAODList=["xAOD: :BTaggingContainer#BTagging_AntiKt
— 4EMTopo","xAOD: :BTaggingAuxContainer#BTagging AntiKt4EMTopoAux.","x
AQOD: :BTagVertexContainer#BTagging AntiKt4EMTopoJFVtx","xAOD: :BTagVe
rtexAuxContainer#BTagging_ AntiKt4EMTopoJFVtxAux.","xAOD: :VertexCont
ainer#BTagging_AntiKt4EMTopoSecVtx","xAOD: :VertexAuxContainer#BTagg
ing_AntiKt4EMTopoSecVtxAux.-vxTrackAtVertex"];

' 'RAWtoESD:from InDetRecExample.InDetJobProperties import InDetFlags;
InDetFlags.cutLevel.set_Value_and_Lock(14);

from JetRec import JetRecUtils;
f=lambda s:["xAOD::JetContainer#AntiKt4\/sJets"\%(s,),"xA0OD: :JetAuxCont
ainer#AntiKt4\/sJetsAux."\%(s,),"xAOD: :EventShape#Kt4\/sEventShape"
\%(s,),"xAOD: :EventShapeAuxInfo#Kt4\/sEventShapeAux."\%(s,),"xAOD::
EventShape#Kt4\/sOriginEventShape"\%(s,),"xA0D: :EventShapeAuxInfo#K
t4\/s0riginEventShapeAux."\%(s,)];

el

il

bl
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JetRecUtils.retrieveAODList = lambda :

— f("EMPFlow")+f ("LCTopo")+f ("EMTopo")+["xAOD: :EventShape#NeutralPar
ticleFlowIsoCentralEventShape","xAOD: :EventShapeAuxInfo#NeutralPar
ticleFlowIsoCentralEventShapeAux.","xAOD: :EventShape#NeutralPartic
leFlowIsoForwardEventShape", "xAOD: :EventShapeAuxInfo#NeutralPartic
leFlowIsoForwardEventShapeAux.","xAOD: :EventShape#ParticleFlowIsoC
entralEventShape","xAOD: :EventShapeAuxInfo#ParticleFlowIsoCentralE
ventShapeAux.","xAOD: :EventShape#ParticleFlowIsoForwardEventShape"
,"xAOD: :EventShapeAuxInfo#ParticleFlowIsoForwardEventShapeAux.","x
AQOD: :EventShape#TopoClusterIsoCentralEventShape", "xAOD: :EventShape |
AuxInfo#TopoClusterIsoCentralEventShapeAux.","xAOD: :EventShape#Top |
oClusterIsoForwardEventShape","xAOD: :EventShapeAuxInfo#TopoCluster
IsoForwardEventShapeAux.","xAOD: :CaloClusterContainer#EMOriginTopo
Clusters","xAOD: :ShallowAuxContainer#EMOriginTopoClustersAux.","xA
0D: :CaloClusterContainer#LCOriginTopoClusters","xAQOD: :ShallowAuxCo

— ntainer#LCOriginTopoClustersAux."];
from eflowRec.eflowRecFlags import jobproperties;
jobproperties.eflowRecFlags.useAODReductionClusterMomentList.set_Value

« _and_Lock(True);

from TriggerJobOpts.TriggerFlags import TriggerFlags;
TriggerFlags. AODEDMSet.set_Value_and_Lock("AODFULL") ;
from LArConditionsCommon.LArCondFlags import larCondFlags;
larCondFlags.0FCShapeFolder.set_Value_and_Lock("4sampleslphase");

' 'ESDtoAOD:from ParticleBuilderOptions.AODFlags import AODFlags;
AODFlags.ThinNegativeEnergyCaloClusters.set_Value_and_Lock(True);
AODFlags.ThinNegativeEnergyNeutralPFOs.set_Value_and_Lock(True);

from JetRec import JetRecUtils;

aodlist = JetRecUtils.retrieveAODList();

JetRecUtils.retrieveAODList = lambda : [item for item in aodlist if

< mnot "OriginTopoClusters" in item];

A

' ——autoConfiguration=everything --beamType=collisions --conditionsTag
default:CONDBR2-BLKPA-2015-05
--geometryVersion=ATLAS-R2-2015-03-01-00 --runNumber=270588
--AMITag=£594
——outputDESDM_EGAMMAFile=DESDM_EGAMMA.11258128._000821.pool.root.1
——outputDRAW_EGZFile=DRAW_EGZ.11258128._000821.pool.root.1
——outputDRAW_EMUFile=DRAW_EMU.11258128._000821.pool.root.1
——outputDRAW_TAUMUHFile=DRAW_TAUMUH.11258128._000821.pool.root.1
——outputDRAW_ZMUMUFile=DRAW_ZMUMU.11258128._000821.pool.root.1
—-—outputAODFile=A0D.11258128._000821.pool.root.1
--outputHISTFile=HIST.11258128._000821.pool.root.1 --jobNumber=821
&> output.txt &

e
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A.6.9 Reconstruction 7

Different input file for each job inside a VM and also different input files across VMs

Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt Athena,21.0.39,notest

The command line input was:

204

Reco_tf.py --inputBSFile=/test/reco_diffdiff/+.data --postExec

«— 'all:from AthenaCommon.AppMgr import ServiceMgr as svcMgr;
svcMgr. AthenaPoolCnvSvc.MaxFileSizes=["15000000000"] ;

' ——preExec 'all:from InDetRecExample.InDetJobProperties import

— InDetFlags;
InDetFlags.useDynamicAlignFolders.set_Value_and_Lock(True);

' 'ESDtoDPD:from AthenaCommon.AppMgr import ServiceMgr;

import MuonRPC_Cabling.MuonRPC_CablingConfig;

ServiceMgr.MuonRPC_CablingSvc.RPCMapfromCool=False;

ServiceMgr.MuonRPC_CablingSvc.CorrFileName="LVL1confAtlasRUN2_verlO
— 4.corr";

ServiceMgr.MuonRPC_CablingSvc.ConfFileName="LVL1confAtlasRUN2_verlO
— 4.data";



A.6 Different workflows

' -—conditionsTag all:CONDBR2-BLKPA-2017-13
--geometryVersion=all:ATLAS-R2-2016-01-00-01 --runNumber=331085
--AMITag=r10053 --outputDAOD_IDTIDEFile=DAOD_IDTIDE. 12444252._0
16806 .pool.root.1
——outputDESDM_CALJETFile=DESDM_CALJET.12444252._016806.pool.roo

t.1
—-—outputDESDM_EGAMMAFile=DESDM_EGAMMA.12444252._016806.pool.ro0
t.1
—-—outputDESDM_EXOTHIPFile=DESDM_EXOTHIP.12444252._016806.pool.r
oot.1

—-outputDESDM_MCPFile=DESDM_MCP.12444252._016806.pool.root.1
——outputDESDM_PHOJETFile=DESDM_PHOJET.12444252._016806.pool.roo0
t.1
——outputDESDM_SGLELFile=DESDM_SGLEL.12444252._016806.pool.root. |
1
——outputDESDM_SLTTMUFile=DESDM_SLTTMU.12444252._016806.pool.roo
t.1 --outputDRAW_EGZFile=DRAW_EGZ.12444252._016806.pool.root.1
—-—outputDRAW_EMUFile=DRAW_EMU.12444252._016806.pool.root.1
—-—outputDRAW_RPVLLFile=DRAW_RPVLL.12444252._016806.pool.root.1
——outputDRAW_TAUMUHFile=DRAW_TAUMUH. 12444252._016806.pool.root. |
1
——outputDRAW_TOPSLMUFile=DRAW_TOPSLMU.12444252._016806.pool.roo
t.1
—-outputDRAW_ZMUMUFile=DRAW_ZMUMU.12444252._016806.pool.root.1
—-—outputAODFile=A0D.12444252._016806.pool.root.1
-—outputHISTFile=HIST.12444252._016806.pool.root.1
——jobNumber=10016 &> output.txt &

s

A.6.10 Digitisation and reconstruction 1

Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt AtlasOffine,21.0.20

The command line input was:
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Reco_tf.py --inputHITSFile=/test/digireco/HITS.12118682._003334.poo0

—

T

l.root.1,/test/digireco/HITS.12118682._003335.pool.root.1
--maxEvents=200 --postExec
"all:CfgMgr.MessageSvc () .setError+=[\"HepMcParticleLink\"]"
"RDOtoRDOTrigger:conddb.add0Override (\"/CALO/0f1/Noise/PileUpNoi
seLumi\",\"CALOOf1NoisePileUpNoiseLumi-mc15-mu30-dt25ns\")"
—--postInclude "default:PyJobTransforms/UseFrontier.py"

—--preExec "all:rec.Commissioning.set_Value_and_Lock(True) ;from
AthenaCommon.BeamFlags import jobproperties;jobproperties.Beam.
number0fCollisions.set_Value_and_Lock(20.0) ;from
LArROD.LArRODFlags import larRODFlags;larRODFlags.NumberOfColli
sions.set_Value_and_Lock(20);larRODFlags.nSamples.set_Value_and
_Lock(4) ;1arRODFlags.do0FCPileupOptimization.set_Value_and_Lock
(True) ;1larRODFlags.firstSample.set_Value_and_Lock(0) ;larRODFlag
s.useHighestGainAutoCorr.set_Value_and_Lock(True)" "all:from
TriggerJobOpts.TriggerFlags import TriggerFlags as
TF;TF.run2Config="'2016"'" --prelnclude
"HITtoRDO:Digitization/ForceUse0fPileUpTools.py,SimulationJobOp
tions/prelnclude.PileUpBunchTrainsMC15_2015_25ns_Configl.py,Run
DependentSimData/configlumi_run284500_mc16a.py" --skipEvents=0
--autoConfiguration=everything --conditionsTag
"default:0FLCOND-MC16-SDR-16"
--geometryVersion="default:ATLAS-R2-2016-01-00-01"
-—runNumber=363868 --digiSeed0ffsetl1=1664
--digiSeed0ffset2=1664
--digiSteeringConf='StandardSignalOnlyTruth' --AMITag=r9364
--steering="doRDO_TRIG"
-—inputHighPtMinbiasHitsFile=/test/digireco/HITS.10701335._0040
03.pool.root.1,/test/digireco/HITS.10701335._004004.pool.root.1
--inputLowPtMinbiasHitsFile=/test/digireco/HITS.10701323._00861
0.pool.root.1,/test/digireco/HITS.10701323._008611.pool.root.1,
/test/digireco/HITS.10701323._008612.pool.root.1,/test/digireco
/HITS.10701323._008613.pool.root.1,/test/digireco/HITS. 10701323
._008614 .pool.root.1,/test/digireco/HITS.10701323._008615.pool. |
root.1l,/test/digireco/HITS.10701323._008616.pool.root.1
--number0fCavernBkg=0 --number0OfHighPtMinBias=0.116075313
--numberO0fLowPtMinBias=44.3839246425 --pileupFinalBunch=6
--outputRDO_TRIGFile=RD0Trigger.12118684._001664.pool.root.1
--jobNumber=1664 --triggerConfig="RDOtoRDOTrigger=MCRECO:DBF:TR
IGGERDBMC:2136,35,160" &> output.txt

&
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A.6.11 Digitisation and reconstruction 2

Athena version: asetup —cmtconfig=x86_64-slc6-gcc62-opt AtlasOffline,21.0.20

The command line input was:

Reco_tf.py
— ——inputHITSFile=/test/digireco_new/HITS.12425264._000086.pool.r
oot.1,/test/digireco_new/HITS.12425264._000087.pool.root.1

— —-—maxEvents=2000 --postExec

— 'all:CfgMgr.MessageSvc() .setError+=["HepMcParticleLink"]"
— 'ESDtoAOD:fixedAttrib=[s if "CONTAINER_SPLITLEVEL =

e trrmggrernttt not in s else "" for s in

— svcMgr.AthenaPoolCnvSvc.PoolAttributes];

svcMgr.AthenaPoolCnvSvc.PoolAttributes=fixedAttrib'
— 'RDOtoRDOTrigger:conddb.add0Override("/CALO/0f1/Noise/PileUpNois
eLumi","CALOOf1NoisePileUpNoiseLumi-mc15-mu30-dt25ns") "'
'"ESDtoAOD: CILMergeAOD . removeIltem("xAOD: :CaloClusterAuxContainer
#CaloCalTopoClustersAux.LATERAL.LONGITUDINAL.SECOND_R.SECOND_LA
MBDA.CENTER_MAG.CENTER_LAMBDA .FIRST_ENG_DENS.ENG_FRAC_MAX.ISOLA
TION.ENG_BAD_CELLS.N_BAD_CELLS.BADLARQ_FRAC.ENG_BAD_HV_CELLS.N_
BAD_HV_CELLS.ENG_P0S.SIGNIFICANCE.CELL_SIGNIFICANCE.CELL_SIG_SA
< MPLING.AVG_LAR_Q.AVG_TILE_Q.EM_PROBABILITY.PTD.BadChannellList");
CILMergeAOD.add ("xAOD: :CaloClusterAuxContainer#CaloCalTopoClustersA
< ux.N_BAD_CELLS.ENG_BAD_CELLS.BADLARQ_FRAC.AVG_TILE_Q.AVG_LAR_Q.
— CENTER_MAG.ENG_POS.CENTER_LAMBDA.SECOND_LAMBDA.SECOND_R.ISOLATI
— ON.EM_PROBABILITY");
StreamAQOD.ItemList=CILMergeAOD() ' --postInclude
— default:PyJobTransforms/UseFrontier.py --preExec
— ‘'all:rec.Commissioning.set_Value_and_Lock(True);
from AthenaCommon.BeamFlags import jobproperties;
jobproperties.Beam.number0fCollisions.set_Value_and_Lock(20.0);
from LArROD.LArRODFlags import larRODFlags;
larRODFlags.NumberOfCollisions.set_Value_and_Lock(20);
larRODFlags.nSamples.set_Value_and_Lock(4);
larRODFlags.do0FCPileupOptimization.set_Value_and_Lock(True);
larRODFlags.firstSample.set_Value_and_Lock(0);
larRODFlags.useHighestGainAutoCorr.set_Value_and_Lock(True)'
— 'all:from TriggerJobOpts.TriggerFlags import TriggerFlags as TF;
TF.run2Config="""'""'2016"'""'""'"'" 'RAWtoESD:from
— InDetRecExample.InDetJobProperties import InDetFlags;
InDetFlags.cutLevel.set_Value_and_Lock(14);
from JetRec import JetRecUtils;

A
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f=lambda s:["xAOD::JetContainer#AntiKt4\%sJets"\%(s,),"xAOD: :JetAux

—
—
—

—

Container#AntiKt4\/sJetsAux."\%(s,),"xAOD: :EventShape#Kt4\/sEve
ntShape"\%(s,),"xAOD: :EventShapeAuxInfo#Kt4\/sEventShapeAux."\%
(s,),"xAOD: :EventShape#Kt4\/sOriginEventShape"\’%(s,),"xAQOD: :Eve
ntShapeAuxInfo#Kt4\/sOriginEventShapeAux."\%(s,)];

JetRecUtils.retrieveAODList = lambda :

—

e

—

f ("EMPFlow")+f ("LCTopo")+f ("EMTopo")+["xAOD: : EventShape#Neutra
1ParticleFlowIsoCentralEventShape", "xAOD: :EventShapeAuxInfo#Ne
utralParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#NeutralParticleFlowIsoForwardEventShape", "xA
0D: :EventShapeAuxInfo#NeutralParticleFlowIsoForwardEventShapeA
ux.",

"xAOD: :EventShape#ParticleFlowIsoCentralEventShape","xAOD: :Eve
ntShapeAuxInfo#ParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#ParticleFlowIsoForwardEventShape","xAOD: :Eve
ntShapeAuxInfo#ParticleFlowIsoForwardEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoCentralEventShape","xAOD: :Even
tShapeAuxInfo#TopoClusterIsoCentralEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoForwardEventShape","xAOD: :Even
tShapeAuxInfo#TopoClusterIsoForwardEventShapeAux.","xAOD: :Calo
ClusterContainer#EMOriginTopoClusters","xAOD: :ShallowAuxContai |
ner#EMOriginTopoClustersAux.","xAQOD: :CaloClusterContainer#LCOr
iginTopoClusters","xAOD: :ShallowAuxContainer#LCOriginTopoClust
ersAux."];

from eflowRec.eflowRecFlags import jobproperties;
jobproperties.eflowRecFlags.useAODReductionClusterMomentList.set_V,

—

alue_and_Lock(True);

from TriggerJobOpts.TriggerFlags import TriggerFlags;
TriggerFlags. AODEDMSet .set_Value_and_Lock("AODSLIM");

" 'all:from BTagging.BTaggingFlags import BTaggingFlags;
BTaggingFlags.btaggingAODList=["xAOD: :BTaggingContainer#BTagging_ An

—

g

tiKt4EMTopo", "xAOD: :BTaggingAuxContainer#BTagging_AntiKt4EMTopo |
Aux.","xAOD: :BTagVertexContainer#BTagging_ AntiKt4EMTopoJFVtx","
xAOD: :BTagVertexAuxContainer#BTagging AntiKt4EMTopoJFVtxAux.","
xAQOD: :VertexContainer#BTagging AntiKt4EMTopoSecVtx","xAOD: :Vert
exAuxContainer#BTagging AntiKt4EMTopoSecVtxAux.-vxTrackAtVertex
"1;

' 'ESDtoAO0D:from ParticleBuilderOptions.AODFlags import AODFlags;
AODFlags.ThinGeantTruth.set_Value_and_Lock(True) ;
AODFlags.ThinNegativeEnergyCaloClusters.set_Value_and_Lock(True) ;
AODFlags.ThinNegativeEnergyNeutralPFOs.set_Value_and_Lock(True);
from JetRec import JetRecUtils;

aodlist = JetRecUtils.retrieveAODList();
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JetRecUtils.retrieveAODList = lambda : [item for item in aodlist

—

e

A.6.12

if not "OriginTopoClusters" in item];

—-preInclude HITtoRDO:Digitization/ForceUse0fPileUpTools.py,Simul

ationJobOptions/preInclude.PileUpBunchTrainsMC15_2015_25ns_Conf
igl.py,RunDependentSimData/configlumi_run284500_mcl6a.py
--skipEvents=0 --autoConfiguration=everything --conditionsTag
default:0FLCOND-MC16-SDR-16
--geometryVersion=default:ATLAS-R2-2016-01-00-01
——runNumber=300307 --digiSeed0ffsetl1=23 --digiSeed0ffset2=23
--digiSteeringConf=StandardSignalOnlyTruth --AMITag=r9364
--steering=doRDO_TRIG --inputHighPtMinbiasHitsFile=/test/digire,
co_new/HITS.10701335._000080.pool.root.1,/test/digireco_new/HIT
5.10701335._000081.pool.root.1
—-—inputLowPtMinbiasHitsFile=/test/digireco_new/HITS.10701323._0
01011.pool.root.1,/test/digireco_new/HITS.10701323._001012.pool
.root.1,/test/digireco_new/HITS.10701323._001013.pool.root.1,/t
est/digireco_new/HITS.10701323._001014.pool.root.1,/test/digire
co_new/HITS.10701323._001015.pool.root.1,/test/digireco_new/HIT
S5.10701323._001016.pool.root.1 --number0fCavernBkg=0
-—number0fHighPtMinBias=0.116075313
--numberOfLowPtMinBias=44.3839246425 --pileupFinalBunch=6
--outputAODFile=A0D. 12425266._000023.pool.root.1 —--jobNumber=23
--triggerConfig=RD0toRDO0Trigger=MCRECO:DBF:TRIGGERDBMC:2136,35, |
160 &> output.txt

&

Digitisation and reconstruction 3

Fetching the remote input data from EOS. Only single core. Athena version: asetup
—cmtconfig=x86_64-slc6-gcc62-opt AtlasOffline,21.0.20

The command line input was:

export ATHENA_PROC_NUMBER=0
Reco_tf.py --inputHITSFile=root://eosatlas.cern.ch:1094//eos/atlas/

—

A

atlasscratchdisk/rucio/mc16_13TeV/37/41/HITS. 12425264 ._000086.p
ool.root.1,root://eosatlas.cern.ch:1094//eos/atlas/atlasscratch
disk/rucio/mc16_13TeV/a3/85/HITS.12425264._000087.pool.root.1
--maxEvents=200 --postExec
'all:CfgMgr.MessageSvc () .setError+=["HepMcParticleLink"]"
'"ESDtoAQ0D:fixedAttrib=[s if "CONTAINER_SPLITLEVEL =
rrrmrggrerntt not in s else "" for s in

svcMgr . AthenaPoolCnvSvc.PoolAttributes] ;
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svcMgr.AthenaPoolCnvSvc.PoolAttributes=fixedAttrib'
— 'RDOtoRDOTrigger:conddb.addOverride("/CALO/0f1/Noise/PileUpNois
eLumi","CALOOf1NoisePileUpNoiseLumi-mc15-mu30-dt25ns") "
'"ESDtoAO0D:CILMergeAOD.removeItem("xAOD: :CaloClusterAuxContainer
#CaloCalTopoClustersAux.LATERAL.LONGITUDINAL.SECOND_R.SECOND_LA
MBDA.CENTER_MAG.CENTER_LAMBDA.FIRST_ENG_DENS.ENG_FRAC_MAX.ISOLA,
TION.ENG_BAD_CELLS.N_BAD_CELLS.BADLARQ_FRAC.ENG_BAD_HV_CELLS.N_
BAD_HV_CELLS.ENG_POS.SIGNIFICANCE.CELL_SIGNIFICANCE.CELL_SIG_SA
< MPLING.AVG_LAR_Q.AVG_TILE_Q.EM_PROBABILITY.PTD.BadChannelList");
CILMergeAOD.add ("xAOD: :CaloClusterAuxContainer#CaloCalTopoClustersA
— ux.N_BAD_CELLS.ENG_BAD_CELLS.BADLARQ_FRAC.AVG_TILE_Q.AVG_LAR_Q.
< CENTER_MAG.ENG_POS.CENTER_LAMBDA .SECOND_LAMBDA.SECOND_R.ISOLATT
< ON.EM_PROBABILITY");
StreamAOD. ItemList=CILMergeAOD() ' --postInclude
— default:PyJobTransforms/UseFrontier.py --preExec
< 'all:rec.Commissioning.set_Value_and_Lock(True);
from AthenaCommon.BeamFlags import jobproperties;
jobproperties.Beam.number0fCollisions.set_Value_and_Lock(20.0);
from LArROD.LArRODFlags import larRODFlags;
larRODFlags . NumberOfCollisions.set_Value_and_Lock(20);
larRODFlags.nSamples.set_Value_and_Lock(4);
larRODFlags.doOFCPileupOptimization.set_Value_and_Lock(True) ;
larRODFlags.firstSample.set_Value_and_Lock(0);
larRODFlags.useHighestGainAutoCorr.set_Value_and_Lock(True)'
— ‘'all:from TriggerJobOpts.TriggerFlags import TriggerFlags as TF;
TF.run2Config="'""'"'2016"'""'"""'" 'RAWtoESD:from
— InDetRecExample.InDetJobProperties import InDetFlags;
InDetFlags.cutLevel.set_Value_and_Lock(14);
from JetRec import JetRecUtils;
f=lambda s:["xAOD::JetContainer#AntiKt4\/%sJets"\%(s,),"xAOD: :JetAux
Container#AntiKt4\/sJetsAux."\%(s,),"xAOD: :EventShape#Kt4\/,sEve
ntShape"\%(s,),"xAOD: :EventShapeAuxInfo#Kt4\/sEventShapeAux."\%
(s,),"xAOD: :EventShape#Kt4\/sOriginEventShape"\’%(s,),"xA0D: :Eve
ntShapeAuxInfo#Kt4\),sOriginEventShapeAux."\%(s,)];

R
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—
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JetRecUtils.retrieveAODList = lambda :

—

N

—

f ("EMPFlow")+f ("LCTopo")+f ("EMTopo")+["xAQOD: : EventShape#Neutra
1ParticleFlowIsoCentralEventShape", "xAOD: :EventShapeAuxInfo#Ne
utralParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#NeutralParticleFlowIsoForwardEventShape", "xA
0D: :EventShapeAuxInfo#NeutralParticleFlowIsoForwardEventShapeA
ux.",

"xAQOD: :EventShape#ParticleFlowIsoCentralEventShape","xAOD: :Eve
ntShapeAuxInfo#ParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#ParticleFlowIsoForwardEventShape","xAOD: :Eve |
ntShapeAuxInfo#ParticleFlowIsoForwardEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoCentralEventShape","xAOD: :Even |
tShapeAuxInfo#TopoClusterIsoCentralEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoForwardEventShape","xAOD: :Even |
tShapeAuxInfo#TopoClusterIsoForwardEventShapeAux.","xAOD: :Calo
ClusterContainer#EMOriginTopoClusters","xAOD: : ShallowAuxContai |
ner#EMOriginTopoClustersAux.","xAQOD: :CaloClusterContainer#LCOr
iginTopoClusters","xAOD: :ShallowAuxContainer#LCOriginTopoClust |
ersAux."];

from eflowRec.eflowRecFlags import jobproperties;
jobproperties.eflowRecFlags.useAODReductionClusterMomentList.set_V

—

alue_and_Lock(True);

from TriggerJobOpts.TriggerFlags import TriggerFlags;
TriggerFlags.ADDEDMSet.set_Value_and_Lock(“ADDSLIM“);

'all:from BTagging.BTaggingFlags import BTaggingFlags;

BTaggingFlags.btaggingAODList=["xAOD: :BTaggingContainer#BTagging_An

—

A

tiKt4EMTopo", "xAOD: :BTaggingAuxContainer#BTagging_AntiKt4EMTopo
Aux.","xAO0D: :BTagVertexContainer#BTagging AntiKt4EMTopoJFVtx","
xAQOD: :BTagVertexAuxContainer#BTagging_ AntiKt4EMTopoJFVtxAux.","
xAQOD: :VertexContainer#BTagging AntiKt4EMTopoSecVtx","xAOD: :Vert
exAuxContainer#BTagging AntiKt4EMTopoSecVtxAux.-vxTrackAtVertex

"1;

' 'ESDtoAO0D:from ParticleBuilderOptions.AODFlags import AODFlags;
AODFlags.ThinGeantTruth.set_Value_and_Lock(True);
AODFlags.ThinNegativeEnergyCaloClusters.set_Value_and_Lock(True);
AODFlags.ThinNegativeEnergyNeutralPFOs.set_Value_and_Lock(True);
from JetRec import JetRecUtils;

aodlist = JetRecUtils.retrieveAODList();
JetRecUtils.retrieveAODList = lambda : [item for item in aodlist

—

if not "OriginTopoClusters" in item];
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' —-preInclude HITtoRDO:Digitization/ForceUse0fPileUpTools.py,Simul
ationJobOptions/preInclude.PileUpBunchTrainsMC15_2015_25ns_Conf
igl.py,RunDependentSimData/configlumi_run284500_mc16a.py
--skipEvents=0 --autoConfiguration=everything --conditionsTag
default:0FLCOND-MC16-SDR-16
--geometryVersion=default:ATLAS-R2-2016-01-00-01
—-—runNumber=300307 --digiSeed0ffset1=23 --digiSeed0ffset2=23
--digiSteeringConf=StandardSignalOnlyTruth --AMITag=r9364
--steering=doRDO_TRIG --inputHighPtMinbiasHitsFile=root://eosat
las.cern.ch:1094//eos/atlas/atlasscratchdisk/rucio/mc16_13TeV/0
9/44/HITS.10701335._000080.pool.root.1,root://eosatlas.cern.ch:
1094//eos/atlas/atlasscratchdisk/rucio/mc16_13TeV/1a/79/HITS.10
701335._000081.pool.root.1
-—inputLowPtMinbiasHitsFile=root://eosatlas.cern.ch:1094//eos/a
tlas/atlasscratchdisk/rucio/mc16_13TeV/6b/c7/HITS.10701323._001
011.pool.root.1,root://eosatlas.cern.ch:1094//eos/atlas/atlassc
ratchdisk/rucio/mc16_13TeV/cf/e6/HITS.10701323._001012.pool.ro0
t.1,root://eosatlas.cern.ch:1094//eos/atlas/atlasscratchdisk/ru
cio/mc16_13TeV/a7/01/HITS.10701323._001013.pool.root.1,root://e
osatlas.cern.ch:1094//eos/atlas/atlasscratchdisk/rucio/mc16_13T
eV/be/1c/HITS.10701323._001014.pool.root.1,root://eosatlas.cern
.ch:1094//eos/atlas/atlasscratchdisk/rucio/mc16_13TeV/ac/b4/HIT
S.10701323._001015.pool.root.1,root://eosatlas.cern.ch:1094//eo
s/atlas/atlasscratchdisk/rucio/mc16_13TeV/7d/35/HITS.10701323. _
001016.pool.root.1 --number0OfCavernBkg=0
--number0fHighPtMinBias=0.116075313
--numberOfLowPtMinBias=44.3839246425 --pileupFinalBunch=6
--outputAODFile=A0D.12425266._000023.pool.root.1 --jobNumber=23
-—triggerConfig=RDOtoRD0Trigger=MCRECO:DBF: TRIGGERDBMC:2136,35, |
160 &> output.txt

&

L s

A.6.13 Digitisation and reconstruction 4

Fetching the remote input data from T-Systems. Only single core. Athena version:
asetup —cmtconfig=x86_64-slc6-gcc62-opt AtlasOffline,21.0.20

The command line input was:

export ATHENA_PROC_NUMBER=0
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Reco_tf.py --inputHITSFile=https://obs.eu-de.otc.t-systems.com/tsy-
— bucketl/HITS.12425264._000086.pool.root.1,https://obs.eu-de.otc
.t-systems.com/tsy-bucketl/HITS. 12425264 ._000087.pool.root.1
--maxEvents=200 --postExec
'all:CfgMgr.MessageSvc () .setError+=["HepMcParticleLink"]"
'"ESDtoAOD:fixedAttrib=[s if "CONTAINER_SPLITLEVEL =
trrmrggrerntt pnot in s else "" for s in

< svcMgr.AthenaPoolCnvSvc.PoolAttributes];
svcMgr.AthenaPoolCnvSvc.PoolAttributes=fixedAttrib'

— 'RDOtoRDOTrigger:conddb.addOverride("/CALO/0f1/Noise/PileUpNois
eLumi","CALOOf1NoisePileUpNoiseLumi-mc15-mu30-dt25ns") "'
'"ESDtoAOD:CILMergeAOD.removeItem("xAOD: :CaloClusterAuxContainer
#CaloCalTopoClustersAux.LATERAL.LONGITUDINAL.SECOND_R.SECOND_LA
MBDA .CENTER_MAG.CENTER_LAMBDA.FIRST_ENG_DENS.ENG_FRAC_MAX.ISOLA
TION.ENG_BAD_CELLS.N_BAD_CELLS.BADLARQ_FRAC.ENG_BAD_HV_CELLS.N_
BAD_HV_CELLS.ENG_POS.SIGNIFICANCE.CELL_SIGNIFICANCE.CELL_SIG_SA
< MPLING.AVG_LAR_Q.AVG_TILE_Q.EM_PROBABILITY.PTD.BadChannelList");
CILMergeAOD.add("xAOD: :CaloClusterAuxContainer#CaloCalTopoClustersA
< ux.N_BAD_CELLS.ENG_BAD_CELLS.BADLARQ_FRAC.AVG_TILE_Q.AVG_LAR_Q.
— CENTER_MAG.ENG_POS.CENTER_LAMBDA.SECOND_LAMBDA.SECOND_R.ISOLATI
< ON.EM_PROBABILITY");
StreamAOD.ItemList=CILMergeAOD() ' --postInclude

— default:PyJobTransforms/UseFrontier.py --preExec

— ‘'all:rec.Commissioning.set_Value_and_Lock(True);
from AthenaCommon.BeamFlags import jobproperties;
jobproperties.Beam.numberOfCollisions.set_Value_and_Lock(20.0);
from LArROD.LArRODFlags import larRODFlags;
larRODFlags . NumberOfCollisions.set_Value_and_Lock(20);
larRODFlags.nSamples.set_Value_and_Lock(4);
larRODFlags.do0FCPileupOptimization.set_Value_and_Lock(True);
larRODFlags.firstSample.set_Value_and_Lock(0);
larRODFlags.useHighestGainAutoCorr.set_Value_and_Lock(True)'

— ‘'all:from TriggerJobOpts.TriggerFlags import TriggerFlags as TF;
TF.run2Config="'""'""'2016"'""'""" 'RAWtoESD:from

— InDetRecExample.InDetJobProperties import InDetFlags;
InDetFlags.cutLevel.set_Value_and_Lock(14);

from JetRec import JetRecUtils;
f=lambda s:["xAO0D::JetContainer#AntiKt4/sJets"%(s,),"xAOD: :JetAuxCo
ntainer#AntiKt4/,sJetsAux."%(s,),"xAOD: :EventShape#Kt4/sEventSha
pe"%(s,),"xAOD: :EventShapeAuxInfo#Kt4/sEventShapeAux. "% (s,),"xA
0D: :EventShape#Kt4/,sOriginEventShape"’(s,),"xAOD: :EventShapeAux
Info#Kt4/,sOriginEventShapeAux."%(s,)];

L

A A

Ll
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JetRecUtils.retrieveAODList = lambda :

—

N

—

f ("EMPFlow")+f ("LCTopo")+f ("EMTopo")+["xAOD: : EventShape#Neutra
1ParticleFlowIsoCentralEventShape", "xAOD: :EventShapeAuxInfo#Ne
utralParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#NeutralParticleFlowIsoForwardEventShape", "xA
0D: :EventShapeAuxInfo#NeutralParticleFlowIsoForwardEventShapeA
ux.",

"xAOD: :EventShape#ParticleFlowIsoCentralEventShape","xAOD: :Eve
ntShapeAuxInfo#ParticleFlowIsoCentralEventShapeAux.",

"xAOD: :EventShape#ParticleFlowIsoForwardEventShape","xAOD: :Eve |
ntShapeAuxInfo#ParticleFlowIsoForwardEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoCentralEventShape","xAOD: :Even |
tShapeAuxInfo#TopoClusterIsoCentralEventShapeAux.",

"xAOD: :EventShape#TopoClusterIsoForwardEventShape","xAOD: :Even |
tShapeAuxInfo#TopoClusterIsoForwardEventShapeAux.","xAOD: :Calo
ClusterContainer#EMOriginTopoClusters","xAOD: : ShallowAuxContai |
ner#EMOriginTopoClustersAux.","xAQOD: :CaloClusterContainer#LCOr
iginTopoClusters","xAOD: :ShallowAuxContainer#LCOriginTopoClust |
ersAux."];

from eflowRec.eflowRecFlags import jobproperties;
jobproperties.eflowRecFlags.useAODReductionClusterMomentList.set_V,

—

alue_and_Lock(True);

from TriggerJobOpts.TriggerFlags import TriggerFlags;
TriggerFlags.AODEDMSet.set_Value_and_Lock(“ADDSLIM");

'all:from BTagging.BTaggingFlags import BTaggingFlags;
BTaggingFlags.btaggingAODList=["xAOD: :BTaggingContainer#BTagging_An

—

A

tiKt4EMTopo", "xAOD: :BTaggingAuxContainer#BTagging_AntiKt4EMTopo |
Aux.","xAOD: :BTagVertexContainer#BTagging AntiKt4EMTopoJFVtx","
xAOD: :BTagVertexAuxContainer#BTagging_ AntiKt4EMTopoJFVtxAux.","
xAQOD: :VertexContainer#BTagging AntiKt4EMTopoSecVtx","xAOD: :Vert
exAuxContainer#BTagging AntiKt4EMTopoSecVtxAux.-vxTrackAtVertex
"1;

'ESDtoAO0D:from ParticleBuilderOptions.AODFlags import AODFlags;
AODFlags.ThinGeantTruth.set_Value_and_Lock(True);
AODFlags.ThinNegativeEnergyCaloClusters.set_Value_and_Lock(True);
AODFlags.ThinNegativeEnergyNeutralPFOs.set_Value_and_Lock(True);
from JetRec import JetRecUtils;
aodlist = JetRecUtils.retrieveAODList();
JetRecUtils.retrieveAODList = lambda : [item for item in aodlist

—

if not "OriginTopoClusters" in item];
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' —-preInclude HITtoRDO:Digitization/ForceUse0fPileUpTools.py,Simul

s

A.6.14

ationJobOptions/preInclude.PileUpBunchTrainsMC15_2015_25ns_Conf
igl.py,RunDependentSimData/configlumi_run284500_mc16a.py
--skipEvents=0 --autoConfiguration=everything --conditionsTag
default:0FLCOND-MC16-SDR-16
--geometryVersion=default:ATLAS-R2-2016-01-00-01
——runNumber=300307 --digiSeedOffset1=23 --digiSeed0ffset2=23
--digiSteeringConf=StandardSignalOnlyTruth --AMITag=r9364
--steering=doRDO_TRIG --inputHighPtMinbiasHitsFile=https://obs.
eu-de.otc.t-systems.com/tsy-bucket1/HITS.10701335._000080.pool.
root.1l,https://obs.eu-de.otc.t-systems.com/tsy-bucketl/HITS.107
01335._000081.pool.root.1
—--inputLowPtMinbiasHitsFile=https://obs.eu-de.otc.t-systems.com
/tsy-bucket1/HITS.10701323._001011.pool.root.1,https://obs.eu-qd
e.otc.t-systems.com/tsy-bucket1/HITS.10701323._001012.pool.root
.1,https://obs.eu-de.otc.t-systems.com/tsy-bucket1/HITS.1070132
3._001013.pool.root.1,https://obs.eu-de.otc.t-systems.com/tsy-b
ucket1/HITS.10701323._001014.pool.root.1,https://obs.eu-de.otc. |
t-systems.com/tsy-bucket1/HITS.10701323._001015.pool.root.1,htt
ps://obs.eu-de.otc.t-systems.com/tsy-bucket1l/HITS.10701323._001
016.pool.root.1 ——-number0fCavernBkg=0
--number0fHighPtMinBias=0.116075313
--number0OfLowPtMinBias=44.3839246425 --pileupFinalBunch=6
—-—outputAODFile=A0D. 12425266._000023.pool.root.1 —--jobNumber=23
--triggerConfig=RD0toRD0Trigger=MCRECO:DBF:TRIGGERDBMC:2136,35, |
160 &> output.txt

&

Digitisation and reconstruction 5

Repeat of Subsection A.6.13.

A.7 Hardware

More details on the hardware specifications of the utilised VMs is given below.

A.7.1 Gottingen

One VM from Gottingen was used.

PCATLAS46

The VM was on an hypervisor, to which no other user had access. It was a completely
controlled environment. Therefore, the tests that were performed on PCATLAS46 could
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not have been influenced by neighbouring VMs.

Listing 6: “lscpu” result on PCATLAS46 at Gottingen.

[root@pcatlasd6 ~]# lscpu

Architecture:
CPU op—mode(s):
Byte Order:
CPU(s):
On—line CPU(s) list:
Thread (s) per core:
Core(s) per socket:
Socket (s):
NUMA node(s):
Vendor ID:
CPU family:
Model:
Model name:

2.66GHz
Stepping:
CPU MHz:
BogoMIPS:
Virtualization:
L1ld cache:
L1i cache:
L2 cache:
NUMA node0 CPU(s):

A.7.2 CERN

x86_64
32—bit , 64—Dbit
Little Endian
8

7

0—
1
4
2
1

Genuinelntel

6

15

Intel (R) Xeon(R) CPU

11
1999.998
5333.37
VI—x

32K

32K
4096K
0-7

The details of the CERN VMs follow in this subsection.

DataCloud14

The VM was on an hypervisor, to which no other user had access. It was a completely
controlled environment. Therefore, the tests that were performed on DataCloud14 could

not have been influenced by neighbouring VMs.

The hypervisor was within the CERN OpenStack cluster.

Clouddata02

This 4-core VM was on a shared hypervisor within the OpenStack cluster. Some ini-
tial profiling was performed on this VM, before the dedicated infrastructures became
available. The profiling results are therefore only accurate to a certain degree, but have
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A.7 Hardware

been repeated multiple times and verified on the dedicated machines, in order to exclude
interference from neighbouring VMs.

Listing 7: “Iscpu” result on Clouddata02 at CERN.

[root@datacloud02 ~]# lscpu

Architecture:
CPU op—mode(s) :
Byte Order:
CPU(s):
On—line CPU(s) list:
Thread(s) per core:
Core(s) per socket:
Socket (s):
NUMA node(s):
Vendor ID:
CPU family:
Model:
Model name:

2.27GHz
Stepping:
CPU MHz:
BogoMIPS:
Hypervisor vendor:
Virtualization type:
L1ld cache:
L1li cache:
L2 cache:
L3 cache:
NUMA nodeO CPU(s):

A.7.3 Exoscale

x86_64
32—bit , 64—Dbit
Little Endian
4

3

0—
1
1
4
1

Genuinelntel

6

44

Intel (R) Xeon(R) CPU

2
2266.746
4533.49
KVM

full

32K

32K

256K
12288K
0-3

L5640 @

The Exoscale VMs were of the type ‘Huge’, with eight CPU cores and 32 GB of RAM.
In order to have a better performance comparison with the other providers, the available
RAM was limited to 16 GB before each test. How it was done, can be found in Listing

1 in the appendix.

Listing 8: “lscpu” result on an Exoscale VM.

Architecture:

CPU op—mode(s):

Byte Order:

CPU(s):

On—line CPU(s) list:
Thread(s) per core:

x86_64
32—bit , 64—Dbit
Little Endian
8

0-7

1
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Core(s) per socket:
Socket (s):

NUMA node(s):
Vendor ID:

CPU family:

Model :

Model name:
Stepping:

CPU MHz:

BogoMIPS:
Virtualization :
Hypervisor vendor:
Virtualization type:
L1d cache:

L1i cache:

L2 cache:

NUMA node0 CPU(s):
Flags:

4

2

1

Genuinelntel

6

42

Intel Xeon E312xx (Sandy Bridge)
1

2399.998

4799.99

VI—x

KVWM

full

32K

32K

4096K

0-7

fpu vme de pse tsc msr pae mce cx8 apic

sep mtrr pge mca cmov pat psed6 clflush mmx fxsr sse sse2 ht
syscall nx rdtscp Im constant_tsc rep_good nopl eagerfpu pni
pclmulqdq vmx sssed cx16 ssed_1 ssed4d_2 x2apic popcnt
tsc_deadline_timer aes xsave avx hypervisor lahf_lm arat
tpr_shadow vnmi flexpriority ept vpid xsaveopt

A.7.4 IBM

The IBM VMs had eight CPU cores and 16 GB of memory.

Listing 9: “Iscpu” result on an IBM VM.

Architecture:
CPU op—mode(s):
Byte Order:
CPU(s):
On—line CPU(s) list:
Thread(s) per core:
Core(s) per socket:
Socket (s):
NUMA node(s):
Vendor ID:
CPU family:
Model:
Model name:

2.10GHz
Stepping:
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x86_64
32—bit , 64—Dbit
Little Endian
8

7

0—
1
8
1
1
Genuinelntel

6

79

Intel (R) Xeon(R) CPU E5-2683 v4 @

1
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CPU MHz:

BogoMIPS:

Hypervisor vendor:
Virtualization type:
L1d cache:

L1i cache:

L2 cache:

L3 cache:

NUMA node0 CPU(s):

A.7.5 T-systems

A.7 Hardware

2100.013
4200.08
Xen

full

32K

32K

256K
40960K
0-7

The T-Systems VMs were of the type ‘Computing I, c2.2xlarge, 8 vCPUs, 16 GB’. The
attached disks were of the size 150 GB.

Listing 10: “Iscpu” result a T-Systems VM.

Architecture:
CPU op—mode(s):
Byte Order:
CPU(s):
On—line CPU(s) list:
Thread (s) per core:
Core(s) per socket:
Socket (s):
NUMA node(s):
Vendor ID:
CPU family:
Model:
Model name:

2.20GHz
Stepping:
CPU MHz:
BogoMIPS :
Hypervisor vendor:
Virtualization type:
L1d cache:
L1i cache:
L2 cache:
L3 cache:
NUMA node0 CPU(s):
Flags:

x86_64

32—bit , 64—Dbit
Little Endian
8

7

0—
1
8
1
1
Genuinelntel
6

63
Intel (R) Xeon(R) CPU E5—-2658A v3 @

2
2194.941
4389.93
Xen

full

32K

32K

256K
30720K
0-7

fpu vme de pse tsc msr pae mce cx8 apic

sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht
syscall nx rdtscp lm constant_tsc rep_good nopl eagerfpu pni
pclmulqdq ssse3 fma c¢x16 pcid ssed_1 ssed_2 x2apic movbe
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popcnt tsc_deadline_timer aes xsave avx fl6c rdrand
hypervisor lahf_Im fsgsbase bmil avx2 smep bmi2 erms invpcid
xsaveopt

A.8 Additional Tables

Exoscale IBM T-Systems

Wall Time [s] | Wall Time [s] | Wall Time [s]
EvGen 2915 + 137 3927 + 118 4089 + 126
MC Sim 1279 £ 61 2321 + 353 4808 + 1298
Reco 1 5737 + 440 8193 £+ 571 +
Reco 2 5700 + 190 8165 + 598 15430 + 2612
Reco 3 4547 + 478 7061 + 629 8681 + 1827
Reco 4 4528 + 398 7009 + 604 10785 £+ 1534
Reco 5 3147 + 88 4756 + 680 7099 + 1203
Reco 6 3529 + 451 4919 + 468 7986 + 1810
Reco 7 5550 + 943 7630 + 760 15348 + 2886
Digi Reco 1 | 1210 + 123 2019 + 172 2789 + 524
Digi Reco 2 | 8381 £ 681 15116 £ 2395 25821 + 6151

Table A2: Comparing the Clouds.

Exoscale IBM T-Systems

Wall Time [s] [%] | Wall Time [s] [%] | Wall Time [s] [%)]
EvGen 2915 + 137 4.70 3927 + 118 3.02 4089 + 126 3.07
MC Sim 1279 £ 61 4.77 2321 + 353 15.19 | 4808 + 1298 27.00
Reco 1 5737 + 440 7.68 8193 + 571 6.97 +
Reco 2 5700 + 190 3.34 8165 + 598 7.32 | 15430 + 2612 16.93
Reco 3 4547 £ 478 10.50 | 7061 £ 629 8.90 8681 + 1827 21.05
Reco 4 4528 + 398 8.78 7009 + 604 8.62 | 10785 + 1534 14.22
Reco 5 3147 + 88 2.79 4756 + 680 14.31 | 7099 + 1203 16.95
Reco 6 3529 + 451 1277 | 4919 + 468 9.52 7986 + 1810 22.66
Reco 7 5550 + 943 16.99 | 7630 £ 760 9.95 | 15348 + 2886 18.80
Digi Reco 1 | 1210 + 123 10.21 2019 + 172 8.52 2789 4+ 524 18.77
Digi Reco 2 | 8381 £ 681 8.12 15116 £ 2395 15.85 | 25821 £ 6151 23.82

Table A3: Comparing the Clouds. Displayed are the Wall time together with the stan-
dard deviation. Behind that, the standard deviation in percent is shown.
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Model Error:
IBM

TSY

EXO 1

EXO 2

EXO 3

Model difference

EvGen [%]
0.62

1.88

-6.48

3.09

3.84

Table A4: Model error on the large scale.

MC Sim [%]
-22.93

-60.30

-0.41

0.68

5.14

Wall Time [%]

EvGen 0.49
MC Sim 2.68
Reconstruction -0.28

Reco 1 [%]
-7.40

-33.89

-3.19

-1.44

2.88

A.8 Additional Tables

Reco 2 [%]
-1.84

-38.00

0.88

-0.51

0.69

Reco 3 [%]
-14.19
-28.87

-5.17
7.32

Table A5: Deviation of the model prediction from the measurement, using the VMs at
CERN and at Gottingen.
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