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1 

Abstract 

The regulated turnover of proteins is an essential aspect of every cell. Cells must be able 

to respond to environmental changes or undergo different developmental stages, while 

still maintaining a balanced protein homeostasis. The ubiquitin-proteasome system (UPS) 

is a major intracellular regulator of the protein homeostasis and is responsible for protein 

degradation and quality control. Dysfunctions of the UPS have been linked to various 

neurodegenerative diseases and opened up a new perspective on the disease-causing 

mechanism in these disorders.  

The E3-uniquitin ligase FBXO7 is part of the UPS and is expressed throughout the brain, 

predominantly in the cortex, hippocampus and substantia nigra, as well as in the white 

matter of the cerebellum and corpus callosum. Mutations of the Fbxo7 gene (PARK15) 

are known to cause an early-onset form of Parkinsonism with a broad spectrum of 

symptoms, which are collectively referred to as Parkinsonian-Pyramidal syndrome. So far, 

the role of FBXO7 in the nervous system is not fully understood and while recent studies 

focused on the function of FBXO7 in neurons, its importance in myelinating cells has not 

been investigated. Although myelinating cells are as equally important to the function of 

the nervous system as neurons, little is known about the relevance of the UPS in 

myelinating cells.  

In my project, I investigated the importance of FBXO7 for myelinating cells and its impact 

on the axon-myelin interaction. Therefore, we generated the Cnp1Cre/+;Fbxo7fl/fl mouse 

line, in which FBXO7 was deleted from myelinating cells. The phenotype of 

Cnp1Cre/+;Fbxo7fl/fl mice displayed severe motor deficit and premature death. Interestingly, 

I showed that deletion of Fbxo7 did not induce significant changes in myelination, 

however severely affected the integrity of axons. Moreover, deletion of Fbxo7 from 

Schwann cells affected the survival of axons in the PNS to a greater extent, than the 

integrity of CNS axons, when deleted from oligodendrocytes. In order to elucidate the 

post-developmental contribution of FBXO7 to the maintenance of the axon-glia 

interaction, I further generated the Tamoxifen–inducible Plp1CreERT2/+;Fbxo7fl/fl mouse line, 

in which FBXO7 was deleted from myelinating cells once myelination was completed. I 

found FBXO7 to be less crucial, however still relevant for the function of myelinating cells 

regarding axonal support, once myelination was completed. Concluding from my results, I 

demonstrate the vital importance of FBXO7 for myelinating cells, particularly during 

development. Furthermore, I showed that FBXO7 is essential for the maintenance of the 

axon-myelin interaction, especially in the PNS.  
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1. Introduction 

1.1 The nervous system  

The human nervous system is a remarkable structure, which has developed in the course 

of evolution to perform exceptional tasks. It computes information from inside and outside 

the body and generates an appropriate response, which enables us to interact with our 

environment, conduct higher cognitive activities and regulate almost all our body 

functions. In vertebrates, the two main parts of the nervous system are the central 

nervous system (CNS) and the peripheral nervous system (PNS). While the CNS consists 

of the brain and spinal cord, the PNS mainly comprises nerves, which connect the CNS to 

every part of the body. At a cellular level, the main constituents of the nervous system are 

neurons and glial cells. Neurons receive and process signals and relay this information to 

connected neurons of the network via electrical and chemical signals, known as action 

potentials (AP). Neurons that connect to each other form neuronal circuitries (Eric R. 

Kandel, 2000). Glial cells provide a functional scaffold for neurons and together these 

cells engage in a bi-directional dialogue that is essential for the functioning of neuronal 

networks. The detailed function of glial cells, however, has only just started to be 

unraveled.  

 

1.2 Glial cells  

Glial cells are typically subdivided into astrocytes, microglia and myelinating cells and are 

as abundant as neurons in the nervous system (Azevedo et al., 2009; Eric R. Kandel, 

2000). The main function of astrocytes is to support the neuronal network by transferring 

nutrients, recycling neurotransmitter from the synaptic cleft and participating in the 

inflammatory response - to name a few functions (Carson et al., 2006; Eric R. Kandel, 

2000; Helmut Kettenmann, 2013).  

Microglia are brain-specific inflammatory cells, which are activated during an inflammatory 

event. Further on, they support the clearance of debris from apoptotic cells and synapses 

(Allen and Barres, 2009).  

Myelinating cells insulate axons with a multilayered myelin sheath, by extending their cell 

membrane and wrapping it around long segments of axons (Nave, 2010a). Myelination 

increases the electrical resistance and lowers the capacitance of axons, which enables a 

fast and saltatory propagation of the action potential that is 50 to 100 fold faster compared 

to non-myelinated axons. In addition, myelinated axons consume less energy compared 
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to non-myelinated axons, since they not require as much energy to maintain ion gradients 

along insulated axons (Nave, 2010b). Evolutionarily, these characteristics of myelinated 

axons were beneficial for developing fast and complex brain function.  

 

1.2.1 Myelinating cells  

There are two types of myelin-producing cells specific for each part of the nervous 

system: oligodendrocytes in the CNS and Schwann cells in the PNS. While 

oligodendrocytes are capable of myelinating multiple segments of different axons at the 

same time, Schwann cells only myelinate one axonal segment (Helmut Kettenmann, 

2013; Jessen and Mirsky, 2005) (Figure 1.2.1). Another subclass of Schwann cells are 

the non-myelinating Remak cells that engulf small caliber C-fibers axons and form the so-

called Remak bundles (Feltri et al., 2016). In both CNS and PNS the axon-myelin 

interaction is comparable and accomplishes similar tasks, which are performed by 

overlapping, but not identical set of proteins (Nave, 2010a).  

 

Figure 1.2.1 Different types of myelinating cells in the CNS and PNS.  
Oligodendrocytes exclusively myelinate axons of the CNS, whereas axons of the PNS are myelinated by 

Schwann cells. While oligodendrocytes are able to myelinate multiple axonal segments, Schwann cells only 

wrap around one axonal segment. Both types of myelinating cells enable the saltatory propagation of action 

potentials. The figure was modified from: Poliak S, Peles E (2003) The local differentiation of myelinated 

axons at nodes of Ranvier. Nat Rev Neurosci 4:968-980, doi:10.1038/nrn1253. Reprinted by permission from 

Macmillan Publishers Ltd: Nat Rev Neurosci, copyright (2003). Nature publishing group license number 

4151391176819.  
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1.2.2 Myelin 

Myelin is a specialized plasma membrane that consists of 80% lipids and approximately 

20% of proteins (as per dry weight) (Norton and Autilio, 1965; Pfeiffer et al., 1993). This 

enrichment in lipids is the underlying reason for the insulating properties of myelin. Owing 

to the low density, the purifications of myelin via density gradient centrifugation is feasible 

(Norton and Poduslo, 1973a). The most abundant proteins within CNS myelin are 

proteolipid protein (PLP) and myelin basic protein (MBP), representing 17% and 8% of 

total myelin, respectively. In the PNS, myelin protein zero (MPZ or P0), periaxin and MBP 

constitute 21, 16 and 8% of total myelin, respectively. Further, myelin proteins that are 

expressed in both systems include 2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP), 

myelin-associated glycoprotein (MAG) and tetraspanin-29 (known as CD9) (Jahn et al., 

2009; Patzig et al., 2011). Myelin can be divided in two distinct domains: compact and 

non-compact myelin (Poliak and Peles, 2003). Compact myelin defines the tightly packed 

layers of myelin, which are devoid of cytoplasm and contain proteins including MBP, PLP 

and MPZ (Dupouey et al., 1979; Martini et al., 1995). The cytoplasmic rich non-compact 

region represents a specific axon-glial contact zone, in which the myelinating cell interacts 

with the axonal side and the nodes of Ranvier. This region contains proteins like CNP and 

MAG and further harbors organelles, secretory vesicles and a cytoskeleton (Nave, 2010b; 

Zuchero and Barres, 2011).  

The node of Ranvier describes the region between two segments of myelin. Here, the 

axon is not insulated by myelin and contains a high density of voltage-gated sodium 

channels as well as other channels, which enable the saltatory propagation of an AP from 

one node to the neighboring one (Bennett and Lambert, 1999; Eric R. Kandel, 2000). Next 

to the nodes of Ranvier is the non-compact paranodal region, which is adjacent to the 

juxtaparanodal region. Within these domains, myelin interacts with the axon, by means of 

adhesion proteins to maintain the axon-glial interface. The juxtaparanodal region further 

harbors potassium channels, which repolarize the axonal membrane during an AP (Eric R. 

Kandel, 2000; Poliak and Peles, 2003; Tait et al., 2000) (Figure 1.2.2). Myelin thickness is 

tightly regulated by axonal signals such as neuregulin 1 type III in the PNS (Michailov et 

al., 2004; Taveggia et al., 2005). A method to evaluate the thickness of myelin is to 

measure the g-ratio, which determines the ratio of inner axonal diameter divided by outer 

diameter of the myelinated axon (Rushton, 1951). The average g-ratio in the CNS is 

around 0.77 and in the PNS has an approximate value of 0.6 (Chomiak and Hu, 2009; 

Rushton, 1951). Variations in g-ratio indicate potential pathological changes in 

myelination.  
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Figure 1.2.2 Distribution of compact and non-compact myelin proteins at the axon-glia 

junction in the CNS.  
The illustration shows the distribution of myelin proteins at the axon-glia interface along different regions of 

myelin. The regions depicted include compact myelin, juxtaparanode, paranode and the node of Ranvier. The 

electron microscopic images show the ultrastructure of cross- and longitudinal-section of a myelinated axon 

from the CNS. Abbreviations: Caspr: contactin-associated protein; Cntn: contactin; Cx29: connexin 29 kDa; 

KCh: fast potassium channels; MAG: myelin-associated glycoprotein; MBP: myelin basic protein; MOBP: 

myelin oligodendrocyte basic protein; NaCh: voltage-gated sodium channels; NECL: nectin-like 

protein/synCAM; NF155/186: neurofascin 155 kDa/186 kDa; OSP: oligodendrocyte-specific protein; PLP: 

proteolipid protein. The figure was adapted from: Nave, K.A. (2010). Myelination and support of axonal 

integrity by glia. Nature 468, 244-252 10.1038/nature09614. Reprinted by permission from Macmillan 

Publishers Ltd: Nature, copyright (2010). Nature publishing group license number 4151350094282.  

 

1.2.3 Axon-glial interaction 

In addition to ensuring a fast and saltatory propagation of the AP, myelinating cells are 

crucial for the long-term integrity and survival of axons (Griffiths et al., 1998; Lappe-Siefke 

et al., 2003; Nave, 2010a; Yin et al., 1998). Previous studies showed that myelinating 

cells support the integrity of axons by providing neurotrophic factors, such as growth 

factors and cytokines (Nave, 2010a, b). Schwann cells secrete molecules like ciliary 

neurotrophic factor (CNTF) and erythropoietin to enhance axonal survival. Moreover, it 

has been shown that deletion of the gene encoding neuregulin1 receptor ErbB3 in 

Schwann cell induces severe neuropathy (Keswani et al., 2004; Riethmacher et al., 1997; 

Simon et al., 2010). Oligodendrocytes release factors including brain-derived neurotrophic 

factor (BDNF), neurotrophin3 (NT3), insulin-like growth factor 1 (IGF1) and glial cell-

derived neurotrophic factor (GDNF) to support axonal function (Dai et al., 2003; Du and 

Dreyfus, 2002; Wilkins et al., 2003). Additionally, myelinating cells supply axons with 
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metabolic factors, as myelinated and thus insulated axons are deprived of metabolic 

access from the extracellular space (Nave, 2010b). Especially axons that have larger 

calibers have a higher energy demand and are highly dependent on the metabolic support 

of glial cells. Myelinating cells express the glial glucose transporter GLUT1 and are able to 

take up glucose from the blood vessels. They have also been reported to perform more 

glycolytic metabolism than oxidative metabolism, resulting in pyruvate and lactate as 

products (Lee et al., 2012b; Morland et al., 2007). Further studies show that 

oligodendrocyte-derived lactate is shuttled through the monocarboxylate transporter 

MCT1 via the axonal-specific MCT2 transporter into axons, where lactate is metabolized 

(Funfschilling et al., 2012; Lee et al., 2012b; Saab et al., 2013; Simons and Nave, 2015). 

These additional contributions of myelinating cells to the maintenance of axons are 

independent from their myelinating function and persist throughout the lifetime of an axon-

glia symbiosis (Nave, 2010a). The axon-glia axis is not a one-way street, but is rather 

based on a bi-directional communication and mutual support (Taveggia et al., 2005). 

Hence, axonal signals also control the survival, proliferation, differentiation and 

myelination of myelinating cell. Neuregulin1 type III (NRG1), which is expressed by axons, 

has been shown to control myelination by Schwann cells, as well as the cells' proliferation 

and survival (Michailov et al., 2004; Nave and Salzer, 2006). In the CNS, growth factors 

and cytokines like BDNF, CNTF, platelet derived growth factor (PDGF) and leukemia 

inhibitory factor (LIF) control proliferation and differentiation of oligodendrocytes (Nave, 

2010a).  

 

1.2.4 Dysfunctions in myelinating cells induce axonal pathology 

Myelinating cells support and maintain axonal integrity, but when alterations occur within 

myelinating cells, this supportive function is disturbed. Abnormalities in myelinating cells 

can induce axonal degeneration and eventually cause different neurodegenerative 

diseases (Nave, 2010a). Studies, in which mouse models lack particular myelin proteins, 

demonstrated the relevance of a functional axon-glial interaction. Mutations of Mpz in 

Schwann cells or mutations of the Plp1 gene leading to a medium number of gene-copies 

in oligodendrocytes induce dysmyelination and eventually causes axonal loss (Clark et al., 

2013; Griffiths et al., 1998; Klugmann et al., 1997; Suter and Scherer, 2003). These 

pathological changes are seen in neurological disorders such as Charcot-Marie-Tooth 

(CMT), an inherited peripheral neuropathy, in which MPZ is mutated (De Jonghe et al., 

1999). Moreover, mutations in PLP1 are linked to Pelizaeus-Merzbacher disease, which is 

an inherited form of leukodystrophy (Garbern, 2007). Interestingly, myelinating cells can 
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also cause axonal degeneration, without major impairments in myelin synthesis. Mouse 

models, in which Cnp1 is deleted, develop without motor symptoms until four months of 

age and display a normal compaction of the myelin sheaths. However at around six 

months of age, these mice exhibit altered paranodes, axonal swellings, defective axonal 

transport and axonal death, which reflects in a prominent motor phenotype in young adult 

mice (Edgar et al., 2009; Lappe-Siefke et al., 2003). Furthermore, in Plp1-/- mice, which 

undergo normal motor development in the first year, the overall myelination appears to be 

intact, but long spinal tracts show progressive degeneration (Garbern et al., 2002; Griffiths 

et al., 1998; Klugmann et al., 1997). Myelin of Plp1-/- mice only show abnormalities at an 

ultrastructural level (Rosenbluth et al., 2006). Mutations of the Plp1 gene have a dose-

dependent effect depending on the number of copies of the transgene (Griffiths et al., 

1998). While high gene copies induce more severe symptoms, a prominent 

dysmyelination and early death, low gene copies or Plp1-/- mice only develop late onset 

neurodegenerations including axonal degeneration (Griffiths et al., 1998). Long-traveling 

axons appear to be most vulnerable to this lack of support by dysfunctional myelin cells, 

as it is seen in Plp1-/- and Mpz mouse models (Garbern, 2007; Griffiths et al., 1998). 

Investigations on myelin function always pose an interdisciplinary challenge, due to its 

close axonal interaction. In the recent decades interesting and essential new functions of 

myelinating cells have been identified, however further studies are required to better 

understand the axon-glia axis and thereby elucidate the pathological changes occurring in 

neurological disorders.  

 

1.3 The ubiquitin-proteasome system (UPS) 

The proper function of a cell is based on a well-orchestrated interplay of fundamental 

cellular mechanisms. Such mechanisms including metabolism, energy production, 

molecular transport, cell division, cell growth and structural arrangement are constantly 

regulated. The ubiquitin-proteasome system (UPS) is a major intracellular regulator that is 

responsible for protein degradation and quality control (Hershko and Ciechanover, 1998). 

It therefore participates in essentially all processes involved in the precise spatial and 

temporal regulation of protein homeostasis. Target proteins of the UPS are modified with 

ubiquitin (Ub), a small 8.5 kDa molecule that is covalently attached to lysine residues of 

the substrate (Hershko and Ciechanover, 1998; Schlesinger and Goldstein, 1975). 

Conjugation of ubiquitin to a substrate is accomplished via a three-step enzymatic 

cascade. Initially, Ub is activated in an ATP-depended manner by the ubiquitin-activating 

enzyme E1. It is then transferred to the ubiquitin-conjugating enzyme E2.  From there, 
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ubiquitin can either be directly coupled to a substrate that is specifically bound to an E3 

ubiquitin ligase, or Ub is transferred onto an E3 ubiquitin ligase and then conjugated to a 

substrate recruited by this particular E3 ligase (Ciechanover and Schwartz, 2002; Pickart 

and Eddins, 2004). The modification of proteins by ubiquitin determines their fate, which is 

why ubiquitination can be viewed as a code. A substrate can either be mono-

ubiquitinated, multimono-ubiquitinated or poly-ubiquitinated. Poly-ubiquitination occurs 

when additional Ub molecules are attached to one of the seven lysine (K) residues of the 

preceding ubiquitin. Linkages of K48 Ub-chains are commonly associated with 

proteasomal degradation; whereas K63 linked chains are mainly considered to induce a 

non-proteolytic, functional modification of the target protein (Komander and Rape, 2012; 

Pickart and Fushman, 2004). Furthermore, protein degradation is also regulated by 

deubiquitinating enzymes (DUBs), which can reverse ubiquitination of mono- or poly-

ubiquitinated proteins by removing Ub molecules. DUBs thereby are able to reverse the 

fate of modified proteins and additionally are able to recycle Ub molecules during protein 

degradation for further ubiquitination processes (Glickman and Ciechanover, 2002; 

Lilienbaum, 2013) (Figure 1.3.3). Proteins designated for degradation, are generally send 

to the 26S multi-catalytic proteasome. This complex consists of two compartments: the 

20S barrel-shaped core particle (CP) and the 19S regulatory particle (RP), which is 

attached to one or both ends of the CP. The core particle consists of two β-rings located 

at the center and two outer α-rings (Bochtler et al., 1999). One α-ring and one β-ring 

comprise seven α-subunits and seven β-subunits, respectively. The α-rings, provide 

structural stability to the proteasome holoenzyme, while the β-rings harbor catalytic 

activity. Prior to proteolysis, the RP recruits ubiquitinated proteins to the proteasome. The 

RP is bound to the α-rings and harbors an ubiquitin-recognition motif for binding 

ubiquitinated proteins. Moreover, the RP unfolds and prepares the ubiquitinated substrate 

for degradation in the core (Dikic, 2017) (Figure 1.3.4).      
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Figure 1.3.3 The cycle of protein ubiquitination.  
The Ubiquitin-proteasome system starts with the activation of ubiquitin (Ub) by the E1-activating enzyme. Ub 

is then transferred on to the E2-conjugating enzyme. Proteins designated for ubiquitin-modification or 

degradation, interact with the E3-ubiquitin ligase, which mediated the ubiquitination of the target substrate. E3-

ubiquitin ligases are classified in RING or HECT-E3 enzymes. Substrates that are poly-ubiquitinated by K48 

linkage of Ub generally bind to the 26S proteasome and are degraded. Finally, Ub molecules are recycled by 

deubiquitinating enzymes (DUBs). The figure was adapted from: van Tijn, P., Hol, E.M., van Leeuwen, F.W., 

and Fischer, D.F. (2008). The neuronal ubiquitin-proteasome system: murine models and their neurological 

phenotype. Prog Neurobiol 85, 176-193. Reprinted by permission from Elsevier Ltd: Progress in Neurobiology, 

copyright (2008). Elsevier license number 4151791383353.  
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Figure 1.3.4 The 26S/30S proteasome.  
Schematic of the 26S/ 30S proteasome, consisting of a 20S core particle (CP) and one or two 19S regulatory 

particles (RP). The CP is constituted of two α- and two β-rings, each made up of seven respective subunits. 

Proteins designated for degradation bind to the RP and are degraded by the CP.       

 

1.3.1 E3 ubiquitin ligases  

The degradation and post-translational modification of proteins by ubiquitination is a fine-

tuned process that relies highly on its specificity for substrate recognition. It is therefore 

not surprising that the human genome encodes for over 600 different E3 ligases, which 

recognize substrates via unique protein-protein interactions (Deshaies and Joazeiro, 

2009). In contrast, the human genome only encodes for two E1 enzymes and 

approximately 35 E2 enzymes, pinpointing E3 ligases as the main determinants in the 

specific process of ubiquitination (Kawabe and Brose, 2011; Scheffner et al., 1995). An E3 

ligase can have more than one interaction partner and in return substrates can be 

ubiquitinated by various E3 ligases. This adds another layer of complexity to the 

regulation of protein homeostasis and cellular function. Depending on the mode of 

ubiquitin transfer, E3 ligases can be classified as RING-type or HECT-type ligases. In 

‘really interesting new gene’ (RING) ligases, the E3 enzyme functions as a scaffold 

binding the E2 conjugating enzyme as well as the target protein and bringing both in close 

proximity for a direct ubiquitination. RING-ligases can exist as monomeric or multimeric 

complexes and are more abundant than HECT-ligases (Pickart and Eddins, 2004; Pickart 

and Fushman, 2004). ‘Homologous to E6AP C-terminus’ (HECT) ligases have intrinsic 

enzymatic activity: the E2 ligase is recruited to the E3 ligase and transfers the ubiquitin 
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molecule first onto the E3 enzyme before it is transferred onto the target substrate, which 

simultaneously binds to the E3 ligase (Komander and Rape, 2012) (Figure 1.3.3).    

 

1.3.2 UPS dysfunctions are associated with neurodegenerative 
diseases 

Like in any other cell type, the UPS plays a crucial role in neurons and glial cells. Dynamic 

changes or plasticity of the brain depend on the balance between synthesis and 

degeneration of proteins. Previous studies have shown that the UPS is essential for the 

functional and molecular reorganization of the postsynaptic density in rat hippocampal 

neurons in response to synaptic activity (Ehlers, 2003). Besides synaptic remodeling, 

axonal regeneration also relies on an efficient UPS. Interestingly, efficient UPS has been 

highlighted as part of the mechanism involved in new growth-cone formation after axonal 

injury (Verma et al., 2005). Glial cells are as essential to brain function as neurons and 

further contribute to its plasticity. When myelination hits its peak, myelinating cells produce 

myelin membrane at a daily rate that is equal to three times the weight of their soma 

(Jansen et al., 2014). Ensuring a stable homeostasis is therefore decisive for myelin 

integrity and involves the UPS. Studies from Goldbaum et al. show that inhibition of the 

proteasome by the inhibitor MG-132 induces apoptosis and mitochondrial dysfunction in 

cultured oligodendrocytes from rats (Goldbaum et al., 2006). In the PNS, the UPS was 

shown to participate in the response of Schwann cells to peripheral injuries. Inhibition of 

the UPS by MG-132 during the early phase of Wallerian degeneration of injured peripheral 

nerves induced a cell cycle arrest of Schwann cells and suppressed their dedifferentiation 

in vivo and in vitro (Lee et al., 2009). Further on, it has been reported for both rats and 

multiple myeloma patients, that treatment with the proteasome inhibitor Bortezomib 

caused a degeneration of Schwann cell myelin and peripheral neuropathy (Cavaletti et al., 

2007; Filosto et al., 2007).  

Proper protein turnover is not only vital during neurogenesis and gliogenesis, but the UPS 

provides also protection against age-associated changes in the adult brain. Disturbances 

in the UPS involving ubiquitination, deubiquitination or the proteasomal function are 

therefore associated with many different neurodegenerative diseases and forms of 

cancer. Hallmarks of major neurodegenerative diseases often include aggregates of 

protein within neurons and glial cells. Interestingly, these accumulations seen in 

tauopathies, synucleinopathies and polyglutamine diseases are thought to compromise 

the function of the overloaded UPS and contribute to the process of degradation (Bence 
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et al., 2001; Dantuma and Bott, 2014; Lindsten et al., 2002). At the same time, inclusion 

bodies often consist of ubiquitinated proteins, UPS components and proteasome subunits 

(Dantuma and Salomons, 2016). Further studies in affected neurons suggest that ubiquitin 

in inclusions may reflect an attempt by the cell to clear these aggregates via proteolytic 

systems (Yamamoto et al., 2000). However, it is currently unclear whether ubiquitinated 

proteins within inclusion bodies are the result of a dysfunctional UPS or whether it 

indicates a protective mechanism of the cell to manage the toxic aggregates. 

Neurofibrillary tangles, consisting of hyper-phosphorylated tau molecules are a hallmark of 

Alzheimer’s disease (AD) and are intensively ubiquitinated (Perry et al., 1987). In addition, 

amyloid β peptide, the major constituent of amyloid plaques, another hallmark of AD, can 

interact with the proteasome and inhibit degradation of proteins (Gregori et al., 1995). 

Lewy bodies are a hallmark of Parkinson’s disease (PD), which predominantly comprise 

α-synuclein. It has been shown that α-synuclein also binds to the proteasome and inhibits 

the UPS in vitro and in vivo (Chen et al., 2006; Snyder et al., 2003; Stefanis et al., 2001). 

In Huntington disease, ubiquitinated filamentous mutant huntingtin aggregates were found 

to selectively inhibit the peptidase activity of the 26S proteasome in vitro (Diaz-Hernandez 

et al., 2006).  

In diseases affecting the PNS, it was observed that proteasome impairment in Schwann 

cells induces misfolding and aggregations of proteins like SIMPLE (small integral 

membrane protein of lysosome/late endosome) and the myelin proteins PMP22 

(peripheral myelin protein 22) and MPZ (Lee et al., 2012a). These pathologies are 

associated with the peripheral neuropathy of demyelinating Charcot-Marie-Tooth disease, 

which is characterized by motor and sensory weakness as well as muscle wasting (Lee et 

al., 2012a). Glial cells are similarly affected as neurons, however the disparity in 

inclusions occurring in neurons as compared to glial cells implies that the UPS is more 

efficient in clearing out toxic aggregates within glial cells. While glial cells may cope better 

with these protein aggregates, they still are affected and contribute to the general 

outcome. In multiple system atrophy, α-synuclein aggregates have been shown to be 

present in oligodendrocytes (Asi et al., 2014; Dickson, 2012; Stefanova et al., 2009). 

Inhibition of the UPS in oligodendrocytes expressing α-synuclein aggregates, leads to a 

severe motor phenotype and effects neuronal function and integrity (Stefanova et al., 

2012).  

Astrocytes are able to take up aggregates of α-synuclein or amyloid β and secrete pro-

inflammatory markers, which activate microglia and subsequently help to clear out 

aggregates (Mandrekar et al., 2009; Mulder et al., 2014; Wyss-Coray et al., 2003). Pro-

inflammatory markers such as interferon γ induce the formation of immunoproteasomes in 
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glial cells that exhibit an exchange of β-subunits by immuno-subunits in the core particle 

of the proteasome. With this exchange, the catalytic activity in immunoproteasomes is 

increased and the cleavage pattern is altered, resulting in peptides that are subsequently 

presented to the MHC class-I molecule of the immune system (Basler et al., 2013; Sijts 

and Kloetzel, 2011). The inflammatory response of glial cells further leads to an up-

regulation of the NF-κB or JKN pathway, which are controlled by UPS components (Dalal 

et al., 2012; Stefanova et al., 2009). While it seems to be beneficial to up-regulate the 

inflammatory response and clear out toxic aggregates, it is unknown whether the induction 

of immunoproteasomes are beneficial or detrimental in neurodegenerative diseases in the 

long run, as chronic inflammation is known to contribute to the degeneration of neurons 

(Tansey et al., 2012).  

 

1.4  PARK genes  

Neurodegenerative diseases often have an unknown origin, also referred to as idiopathic 

origin. Parkinson’s disease (PD) for example, which is one of the most prevalent 

neurodegenerative conditions, is caused in 85-90% of the cases by a sporadic event, 

while approximately 10% are due to an environmental cause and 5-10% occur as a result 

of an inherited genetic mutation (de Lau and Breteler, 2006). Even though genetic 

mutations linked to PD only occur quite rarely, studying their cause will help to elucidate 

the mechanisms involved in sporadic PD cases. Cellular dysfunctions that had been 

identified in genetic forms of PD have also been found in idiopathic PD. For instance, the 

first gene that was associated with familial PD was SNCA, which encodes for α-synuclein 

(Polymeropoulos et al., 1997). Only later α-synuclein was identified as major constituent 

of Lewy bodies in sporadic PD patients (Spillantini et al., 1997). SNCA is also known as 

PARK1 or 4 and belongs to the 20 identified PARK genes, which are linked to familial PD. 

Among these PARK genes with their various functions, 3 loci are related to the UPS: 

parkin, UCH-L1 and FBXO7.   

Parkin (PARK2) encodes for an E3-ubiquitin ligase with multiple interaction partners. It is 

most prominently known to regulate mitochondrial function together with another PARK 

gene, PINK1 (PARK6). Upon mitochondrial damage, PINK1 accumulates at the outer 

membrane of the mitochondria and recruits parkin. Parkin then ubiquitinates outer 

membrane proteins and induces selective degradation of mitochondria (Pickrell and 

Youle, 2015). Mitochondrial impairment is shown in brains of sporadic PD patients in 

several studies before, however the critical pathway was previously unknown (Keeney et 
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al., 2006; Parker et al., 1989; Schapira et al., 1989). This newly identified pathway, shed 

light on mitochondrial contribution in PD and identified an underlying mechanism, which is 

also relevant in sporadic forms of PD (Wang, 2017).  

UCH-L1 (PARK5) or ubiquitin carboxy-terminal hydrolase 1 is a deubiquitinating enzyme 

and part of the UPS. Its function lies in the recycling of monomeric ubiquitin molecules for 

new protein degradation and modification (Pickart, 2000). UCH-L1 is highly expressed in 

neurons and is required for axonal maintenance and integrity. Mutations in UCH-L1 lead 

to reduced intracellular ubiquitin levels, which restrain proper protein clearance and lead 

to an imbalanced protein turnover (McNaught et al., 2002; Osaka et al., 2003). Further on, 

UCH-deficient mouse models have shown that lack of UCH-L1 will lead to inclusion 

bodies in axonal terminals as well as motor and sensory ataxia, hind limb paralysis and 

premature death (Bishop et al., 2016).    

Another PARK gene that encodes for a component of the UPS is FBXO7 (PARK15). 

Since FBXO7 is the subject of my study, I will explain the function of FBXO7 in more detail 

in the following section.  

Although the UPS provides a vital function in all different cell types, its role in myelinating 

cells is barely investigated. In oligodendrocytes it was reported that the SCF-E3 ubiquitin 

ligase FBXW7 limits the myelin-promoting activity of mTOR (Kearns et al., 2015). The 

mechanistic target of rapamycin (mTOR) serine/threonine kinase was previously shown to 

be a powerful driver of myelination, however factors that would regulate mTOR activity 

were only poorly elucidated (Guardiola-Diaz et al., 2012; Tyler et al., 2009; Wahl et al., 

2014). The study by Kearns et al. identified mTOR as direct target of FBXW7 and showed 

in a mutant zebrafish model, in which Fbxw7 was deleted from oligodendrocytes, that 

mTOR signaling activity was elevated, resulting in hypermyelination. Hence, under 

physiological conditions FBXW7 limits myelination, while inhibiting mTOR activity and 

therefore acting as regulator of myelination during development (Kearns et al., 2015). 

Moreover FBXW7 was reported to decrease Notch signaling, which blocks neurogenesis 

and promotes gliogenesis. This identified FBXW7 as limiting factor of OPC-formation 

(Snyder et al., 2012). Another E3 ubiquitin ligase that regulates Notch signaling is called 

mind bomb-1 (MIB1). MIB1 promotes the endocytosis of Notch ligands and therefore the 

formation of progenitors designates for gliogenesis and was shown to suppress glial 

differentiation, when MIB1 was depleted (Kang et al., 2013).  

In Schwann cells, mutations in the small integral membrane protein of lysosome/late 

endosome (SIMPLE) has been linked to CMT1C disease (Lee et al., 2012a). SIMPLE is 

involved in the UPS while interacting with the E3 ubiquitin ligase NEDD4 (Shirk et al., 
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2005). Although its function is not fully understood, it is speculated that dysfunction of 

SIMPLE may lead to incorrect turnover of myelin proteins like PMP22, which have been 

found to be misfolded and aggregated in similar forms of CMT diseases (Kazunori Sango, 

2014). Mutations in SIMPLE itself leads to aggregations and hence places a burden on 

the proteasome pathway (Kazunori Sango, 2014). Many mutations in PMP22 have been 

identified in mouse and human affected by CMT and have been shown to induce 

accumulations in the endoplasmic reticulum (ER) (D'Urso et al., 1990; Naef et al., 1997). 

A recent study showed that misfolded PMP22 at the site of ER is degraded by the E3-

ubiquitin ligase HRD1/SYVN1, which mediates ER-associated degradation (ERAD) (Hara 

et al., 2014).  

Peripheral nerve injury results in axonal degeneration and phenotypic changes in 

Schwann cells, which are critical for potential nerve regeneration or degeneration. These 

changes in Schwann cells require an efficient turnover and modification of proteins within 

Schwann cells.  The E3 ubiquitin ligase ZNRF1 has been reported to be deregulated in 

Schwann cells following a nerve injury, but its function remains to be further investigated 

(Araki et al., 2001). 

Taken together, these examples illustrate the importance of the UPS for the cellular 

function and show that dysfunction of the UPS induces neurodegenerative diseases. Its 

crucial role in myelinating cells however is only poorly understood and requires further 

investigation.   

 

1.5  FBXO7 

The FBXO7 gene is located on chromosome 22q12-q13 and consists of nine exons 

(Figure 1.5.5a). There are three coding isoforms of the FBXO7 mRNA transcript known, 

with isoform 1 being most abundantly expressed in all different types of tissue. Isoform 2 

and 3 are shorter and harbor alterations in the first couple of exons at the 5 prime-end 

(Nelson et al., 2013) (Figure 1.5.5b). When translated, FBXO7 comprises distinct 

functional domains, which enable FBXO7 to be involved in various cellular mechanisms. 

At its N-terminus, FBXO7 contains an ubiquitin-related (UbR) domain, which is known to 

mediate its interaction with proteasome-linked proteins such as PSMA2 (Burchell et al., 

2013; Cenciarelli et al., 1999; Kirk et al., 2008; Laman et al., 2005; Vingill et al., 2016). 

With its N-terminus, FBXO7 also interacts with parkin and together they regulate 

mitochondrial quality control (Burchell et al., 2013; Cenciarelli et al., 1999; Kirk et al., 

2008; Laman et al., 2005; Vingill et al., 2016). The interaction of FBXO7 with the 
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cyclinD/CDK6 complex via the cyclin-depended kinase 6 (CDK6) binding domain, 

mediates cell cycle regulation (Burchell et al., 2013; Cenciarelli et al., 1999; Kirk et al., 

2008; Laman et al., 2005; Vingill et al., 2016). The FBXO7/PI31 (FP) domain is another 

prominent domain of FBXO7 that facilitates the interaction with the proteasomal inhibitor 

31 (Burchell et al., 2013; Cenciarelli et al., 1999; Kirk et al., 2008; Laman et al., 2005; 

Vingill et al., 2016). The eponymous F-box domain, mediates the interaction to SKP1 and 

together with cullin1 and RBX1 forms the SCF-E3 ubiquitin ligase (Burchell et al., 2013; 

Cenciarelli et al., 1999; Kirk et al., 2008; Laman et al., 2005; Vingill et al., 2016). At its C-

terminus, FBXO7 harbors a proline-rich repeat (PRR), which has been shown to be 

another site of interaction with cell cycle regulating molecules (Huang et al., 2003) (Figure 

1.5.5c). All these specific domains facilitate the specific interaction of FBXO7 with its 

target substrates, as FBXO7 mainly acts as subunit of the cullin1-based SCF-E3 ubiquitin 

ligase (Cenciarelli et al., 1999; Winston et al., 1999; Zheng et al., 2002).  
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Figure 1.5.5 The Fbxo7 gene and protein structure. 
(a) Schematic of the human FBXO7 gene, which is located at chromosome 22q12-q13 and harbors 9 exons. 

(b) Illustration of the 3 protein coding mRNA transcripts of FBXO7 and the protein size of each isoform. (c) 
The protein construct of FBXO7 isoform 1 and its distinctive domains. Pathogenic mutations of FBXO7, which 

are linked to PPS are labeled in red, while SNPs are indicated in black. The pathways, in which FBXO7 is 

associated to, are sorted according to the domain, by which FBXO7 interacts with its substrates. UbR: 

ubiquitin-related domain; CDK6: cyclin-depended kinase 6 binding domain; FP: FBXO7/PI31 domain; PRR: 

prolin-rich-region. Modified from Nelson et al. (Nelson et al., 2013). 

 

1.5.1 SCF-E3 ubiquitin ligase 

Together with SKP1, cullin1 and RBX1, the adaptor molecule FBXO7 forms the multimeric 

SCF-complex. While CUL1, RBX1 and SKP1 constitute the core of the complex, FBXO7 

is the substrate-recruiting subunit.  As a result, FBXO7-SCF brings the E2 enzyme and 

substrate in close proximity for ubiquitin transfer. The SCF-E3 ubiquitin ligase is 

categorized as RING-type ligase. At a closer look, the subunit of the SCF-complex, cullin1 

(CUL1) acts as scaffold protein. It binds the RING-box protein 1 (RBX1), which recruits 

the E2 conjugating enzyme and also binds the small adaptor protein S-phase kinase-

associated protein 1 (SKP1). SKP1 in turn binds the respective F-box protein (FBP), like 

F-box only protein 7 (FBXO7) (Cardozo and Pagano, 2004) (Figure 1.5.6).. Based on the 

structural motifs, FBPs are categorized as: FBXLs, which contain leucin rich repeats, 

FBXWs that harbor a specific WD40 domain and FBXOs with no or other structural motifs 

(Jin et al., 2004). FBPs are the subunits responsible for the decisive step of interaction 

and recruitment of target substrates, which are designated for ubiquitination.  

 

 

Figure 1.5.6 The FBXO7 SCF-E3 ubiquitin 
ligase.  
Schematic representation of the SKP1-cullin1-

FBXO7 complex, which mediates the 

ubiquitination of a target substrate, while 

simultaneously binding the E2-conjugating 

enzyme and the substrate. The FBXO7 SCF- 

ligase belongs to the RING-type E3-

ubiquitinating ligases. Ub: ubiquitin; SKP1: S-

phase kinase-associated protein1; RBX1: RING-

box1.     
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1.5.2 Interaction partners of FBXO7 

FBXO7 has multiple interaction partners and is involved in various pathways. It was first 

identified in a yeast two-hybrid analysis together with other F-box proteins, while using 

SKP1 as bait (Cenciarelli et al., 1999; Winston et al., 1999). After establishing its 

participation in the SCF-E3 ubiquitin ligase, different studies searched for the interactors 

and ubiquitination substrates of FBXO7. Soon after, the first interaction partner of FBXO7 

and target of ubiquitination was found – HURP (Hsu et al., 2004). The hepatoma up-

regulated protein (HURP) is localized at the spindle poles during mitosis. Its abundance is 

tightly regulated during the cell cycle, with elevated levels of HURP during the G2/M phase 

(Chen et al., 2014b; Tsou et al., 2003). FBXO7 interacts with HURP via its C-terminal 

proline-rich repeat (PRR) and ubiquitinates HURP depending on its phosphorylation by 

the cyclin B/CDK1 complex (Huang et al., 2003).  

FBXO7 was further shown to be involved in cell cycle regulation, when the cyclin D/CDK6 

complex was identified as additional interaction partner of FBXO7 (Laman et al., 2005). 

Within the cyclinD/CDK6 complex, cyclin D activates the cyclin-dependent kinase 6 

(CDK6) and converts growth signals into signals for cell cycle progression (Morgan, 1995; 

Sherr, 1996). It is anticipated that FBXO7 interacts with the cyclinD/CDK6 complex in a 

ligase-independent manner and promotes a positive regulation of the complex, since 

knockdown of FBXO7 reduces the levels of cyclinD/CDK6 assembly in immortalized 

fibroblasts (Laman et al., 2005). FBXO7 interacts with CDK6 by its CDK6-binding domain. 

Since FBXO7 was found to be present in colon and lung carcinomas but absent in healthy 

colon and lung tissue, FBXO7 is suggested to be a potential oncogene (Laman, 2006; 

Laman et al., 2005). This positive influence of FBXO7 on the cell cycle regulation and 

proliferation is however only interesting for mitotic cells, rather than for the majority of 

post-mitotic cells found in the nervous system.  

In contrast, FBXO7 has an anti-proliferative function in hematopoietic precursor cells 

where it promotes the maturation of precursor cells (Meziane el et al., 2011). The 

reduction of FBXO7 in a hypomorphic mouse model resulted in anemia (Randle et al., 

2015).  

Other proteins that have been reported to be directly ubiquitinated by FBXO7 are the 

cellular inhibitor of apoptosis 1 (cIAP1) and TNF receptor associated factor 2 (TRAF2) 

(Chang et al., 2006; Kuiken et al., 2012). Both proteins are involved in the NF-κB pathway, 

which is responsible for promoting cell survival by inhibition of apoptosis and initiates an 
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immune response (Chen and Goeddel, 2002). By ubiquitinating cIAP1 and TRAF2, 

FBXO7 reduces their function as indirect NF-κB activators and therefore decreases the 

NF-κB signaling pathway (Kuiken et al., 2012). It is anticipated that the ubiquitination of 

TRAF2 by FBXO7 initiates protein degradation, however so far little is known about the 

consequences of ubiquitination by FBXO7 for cIAP1 and TRAF2 (Chen et al., 2014a). 

Recently, FBXO7 was also shown to be involved in mitochondrial quality control, while 

interacting with parkin and PINK1. FBXO7 mediates the recruitment of parkin to the 

depolarized mitochondrial membrane and acts as scaffold protein for the interaction of 

parkin and PINK1 (Burchell et al., 2013; Scarffe et al., 2014). Further studies show that 

mutant forms of FBXO7 aggregate in mitochondria and inhibit mitophagy, which 

eventually leads to increased generation of reactive oxygen species, depolarization of 

mitochondrial membrane and less ATP production (Delgado-Camprubi et al., 2017; Zhou 

et al., 2015). However, the exact role of FBXO7 in the mitochondrial maintenance and 

mitophagy still remains to be further elucidated.  

As an E3-ubiquitin ligase, FBXO7 is part of the UPS, but in the past years its interaction 

with the proteasome could not be thoroughly proven. FBXO7 was first speculated to 

interact with the proteasome, since it harbors an ubiquitin-related (UbR) domain at its N-

terminus, which is commonly shared in proteins that regulate proteasomal function 

(Hartmann-Petersen and Gordon, 2004). Then, PI31 was discovered as interaction 

partner of FBXO7 and was shown to share a dimerization domain with FBXO7 – the 

FBXO7-PI31 (FP) domain (Kirk et al., 2008). The proteasomal inhibitor 31 (PI31) 

regulates the formation of immunoproteasomes in vivo and inhibits the 20S proteasome in 

vitro (McCutchen-Maloney et al., 2000; Zaiss et al., 2002). However its detailed functional 

relevance and interaction with FBXO7 remained unknown. Recently, our group introduced 

a novel interaction partner of FBXO7, which is part of the proteasome. With a yeast two-

hybrid screen, my colleges identified the proteasomal subunit α2 (PSMA2) as direct 

interactor and ubiquitination substrate of FBXO7. PSMA2 is a subunit of the 26S core 

particle of the proteasome and like other α-subunits it is crucial for the structural stability 

and binding of the regulatory particle. In addition, it regulates the access to the proteolytic 

chamber of the proteasome (Finley, 2009). My colleagues showed that FBXO7 interacts 

with PSMA2 via its UbR domain and induces a K63-linked ubiquitination, which may lead 

to a functional modification of PSMA2. In vitro and in vivo experiments revealed that 

deletion of FBXO7 reduced proteasome activity. While searching for the cause of 

decreased activity, FBXO7 was reported to not interfere with the gating and proteolytic 

activity of the proteasome holoenzyme, but that loss of FBXO7 significantly increases the 

abundance of free core and regular particles in vivo and in vitro. Therefore our group 
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could demonstrate that FBXO7 is a proteasome-associated protein involved in 

proteasome assembly and activity (Vingill et al., 2016). 

In the same yeast two-hybrid screening, my colleague Dr. David Brockelt could also 

identify the light chain1 of the microtubule-associated protein 1B (MAP1B-LC1), MAP1A-

LC2 and MAP1S as novel and potential interactor of FBXO7. MAPs are part of the 

cytoskeleton arrangement and stabilize microtubules (Mandelkow and Mandelkow, 1995). 

MAP1A and MAP1B are predominately expressed in neurons and are important for 

axonal growth, while MAP1S is ubiquitously expressed in different tissues (Noiges et al., 

2002; Orban-Nemeth et al., 2005). Microtubules provide a structural network in neurons 

and form tracks for organelle transport, like mitochondrial transport (Jimenez-Mateos et 

al., 2006; Mandelkow and Mandelkow, 1995). In an additional mapping analysis Dr. 

Brockelt could demonstrate that the mitochondrial aggregation and genome destruction 

(MAGD) domain of MAPs is the specific region of interaction with FBXO7. While 

performing an ubiquitination assay, David showed that MAP1B-LC1 and MAP1A-LC2 are 

ubiquitinated by FBXO7 and hypothesized a potential K63 linage of ubiquitination. 

However further experiments in vitro and in vivo are required to elucidate the interaction of 

MAPs and FBXO7, as well as their function (Brockelt, 2015).     

  

1.5.3 Mutation in PARK15 

Autosomal-recessive mutations in the FBXO7 gene were identified in genome-wide 

linkage analysis of Parkinsonian-Pyramidal Syndrome (PPS) affected family members and 

soon after FBXO7 was established as a parkinsonism-associated gene (PARK15) (Di 

Fonzo et al., 2009; Shojaee et al., 2008). Mutations in FBXO7 cause an early-onset form 

of parkinsonism, referred to as Parkinsonian-Pyramidal syndrome. Patients affected by 

PPS display a broad spectrum of disorders, ranging from only Parkinsonism signs, to only 

Pyramidal tract sings and a mixed form of Parkinsonism and Pyramidal signs, as it is seen 

in majority of the cases (Di Fonzo et al., 2009; Lohmann et al., 2015; Shojaee et al., 

2008). Typical clinical symptoms of Parkinsonism include dyskinesia, rigidity, tremor and 

postural instability, while spasticity, impaired fine movement and Babinski sign 

characterize Pyramidal tract signs. Pyramidal tract lesions eventually affect the 

performance of muscles, which can react with stiffness but also show muscle weakness. 

PPS patients can have one or more of the listed symptoms and often show additional 

signs including dystonia, dysphagia, dysarthria, cortical atrophy and/or cognitive decline 

(Di Fonzo et al., 2009; Lohmann et al., 2015). PPS therefore represents a wide-ranged 
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disease with a heterogenic pattern of symptoms and signs, but with a disease causing 

mutation in the FBXO7 gene that is common to all PPS cases. Different mutations of 

FBXO7 have been identified, which include the homozygous missense mutation 

Arg378Gly, a homozygous nonsense mutation Arg498X and the compound heterozygous 

mutation of a missense mutation Thr22Met, together with a mutation at the internal splice 

site (IVS7+1G/T) (Di Fonzo et al., 2009; Shojaee et al., 2008). Recently, new single 

nucleotide polymorphism (SNP) variants of Fbxo7 have been found at the side of 

Tyr52Cys and Met115Ile (Chen et al., 2014a). Moreover, the additional homozygous 

missense mutation Leu34Arg has been found (Lohmann et al., 2015). However these new 

mutations remain to be validated, since the novel missense mutation was not further 

investigated and an association study of the two SNPs, regarding an increased risk of PD 

was not entirely conclusive (Figure 1.5.5c).  
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Aim of the study 

Studies on the role of the UPS in neurodegenerative diseases mainly focus on neurons, 

as these cell types appear to be affected the most. Lately however, an increasingly 

important role of glial cells is emerging in neurodegenerative disease. While some studies 

investigated UPS dysfunction in astrocytes and microglia, very little is known about its 

influence in myelinating cells. Alterations in the UPS may not only affect the protein 

homeostasis in myelinating cells, but also impact neuronal function, since both cell types 

engage in a close interaction, that provides mutual support. Thus, further investigations on 

the axon-glial interaction and influence of the UPS are crucial to understand the 

pathophysiological changes in neurodegenerative diseases.     

In this study, I investigated the role of the E3-ubiquitin ligase FBXO7 in myelinating cells 

and its influence on the axon-glia axis. To pursue this goal, we generated a conditional 

mouse line, in which FBXO7 was deleted from myelinating cells, as FBXO7 is highly 

expressed in the white matter of cerebellum and corpus callosum. The analyses included 

the examination of myelinating cells of the CNS and PNS, and associated axons. With this 

study, I aimed at elucidating the importance of the UPS in myelinating cells and its 

influence on axonal support. By setting the focus on myelinating cells, it will give a new 

perspective on neurodegenerative diseases like Parkinsonian-Pyramidal syndrome and 

contribute to a further understanding and potential therapies for related diseases.  
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2. Materials and methods 

2.1 Materials 

2.1.1 Lab equipment and consumables 

The following lab equipment was used during the experiments: plastic ware was 

purchased from Eppendorf (Hamburg, Germany), Sarstedt AG (Nürnbrecht, Germany), 

Thermo Fisher Scientific (Waltham, USA), Falcon BD (Le Pont de Claix, France), Gilson 

(Middleton, USA), Corning (New York, USA) and Greiner Bio-One (Frickenhausen, Germany). 

Pipettes were bought from Gilson, centrifuges from Eppendorf and Thermo Fischer 

Scientific, heating blocks from Grant Instruments (Shepreth, UK), horizontal platform 

shakers from Heidolph instruments (Schwabach, Germany) and thermocyclers from 

Biometra (Göttingen, Germany). The spectrophotometer was obtained from GE Healthcare 

(New Jersey, USA), the microplate reader from Tecan (Männedorf, Switzerland) and the 

thermoshaker from Biometra as well as the gel documentation and UV transilluminator 

system. Power supplies together with all equipment needed for gel electrophoresis were 

purchased from Biometra or Bio-Rad (Herkules, USA). Microscopes used in this study 

included the dissection microscope SMZ645 from Nikon (Tokyo, Japan), the light 

microscope Axiophot from Carl Zeiss (Oberkochen, Germany), the inverted light microscope 

Eclipse TS 100 from Nikon, the fluorescent microscope BX51 from Olympus (Tokyo, Japan) 

as well as the Eclipse TI from Nikon. Glassware was used from Schott Duran (Wertheim, 

Germany), syringes and needles were bought from B. Braun (Melsungen, Germany) and the 

peristaltic pump drive 5001 was purchased from Heidolph instruments. The rotarod was 

acquired from Ugo Basile (Monvalle, Italy), all other tools used for mouse behavior 

analyses were custom-made by the fine mechanical workshop of Max-Planck Institute of 

Experimental Medicine. The tissue processor HMP 110 was from Microm and the 

microtome HM 430 from Thermo Fischer Scientific. The cryostat CM3050 S that was 

used, was from Leica Biosystems (Wetzlar, Germany) and the histo bath HIR-3 was bought 

from Kunz instruments (Stockholm, Sweden). For cell culture experiments a biological 

safety cabinet from HERAsafe® by Kendro (Hanau, Germany) was used and the incubator 

Hera cell 150, was also purchased from Kendro. The water bath was obtained from 

Memmert (Schwabach, Germany). 
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2.1.2 Chemicals and reagents 

Unless mentioned otherwise, the chemicals used in this study were mainly obtained from 

Merck Millipore (Darmstadt, Germany), Macherey-Nagel (Dueren, Germany) Sigma-Aldrich 

(Munich, Germany), Roth (Karlsruhe, Germany), AppliChem (Darmstadt, Germany) Biomol 

(Hamburg, Germany), Serva Electrophoresis (Heidelberg, Germany), Invitrogen (Darmstadt, 

Germany), Becton Dickinson and Company (Heidelberg, Germany), Worthington (New Jersey, 

USA), DAKO (Carpinteria, USA), GE Healthcare, New England BioLabs (Frankfurt, Germany), 

Promega (Fitchburg, USA), Zytomed Systems (Berlin, Germany) or Th. Geyer (Erlangen, 

Germany). 

Cell culture reagents that were used included Dulbecco’s modified eagle’s medium 

(DMEM), Hank’s balanced salt solution (HBSS), basal medium eagle (BME), Opti-MEM 

reduced serum medium, GlutaMAX™, Pen-Strep-Glutamine (PSG), B27 supplement and 

0.5% Trypsin-EDTA, which were all purchased from Gibco by Life Technologies (Carlsbad, 

USA). Poly-L-Lysin (PLL) and goat serum (GS) were bought from Sigma-Aldrich, Trypsin 

from Worthington, fetal bovine serum (FBS) from Biochrom (Berlin, Germany), calf serum 

(CS) from Hyclone (Utah, USA), horse serum (HS) from PAA (Coelbe, Germany) and 

Lipofectamine® 2000 from Invitrogen. 

Further on DNA and protein ladders, as well as the ECL western blotting solutions were 

acquired from Thermo Fischer Scientific. Protein A-Sepharose beads were purchased 

from GE Healthcare, albumin fraction V from AppliChem and Bio-Rad Protein Assay was 

from Bio-Rad. Xylazine also known as Rompun was bought from CP Pharma (Burgdorf, 

Germany) and Ketamine was from Medistar Arzneimittelvertrieb GmbH (Ascheberg, 

Germany). 

 

2.1.3 Enzymes 

A detailed list of used enzymes in this study is shown in Table 2.1.1. 

Table 2.1.1 List of enzymes used in the study. 

Enzyme Application  Supplier 

Proteinase K Protein digestion AppliChem 

GoTag® DNA polymerase Polymerase chain reaction Promega 

Superscript III reverse transcriptase RT-PCR Invitrogen 
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2.1.4 Kits 

Commercial kits that were used for experiments are listed in Table 2.1.2. 

Table 2.1.2 List of commercially available kits used in this study. 

Kit Application Supplier 

Nucleobond® Xtra Midi EF Kit DNA isolation Macherey-Nagel 

SuperScript® III First strand 

synthesis kit 

cDNA synthesis Invitrogen 

SYBER® green RT-PCR Thermo Fischer Scientific 

Pierce™ Silver Stain Kit Silver staining Thermo Fischer Scientific 

LSAB2 Immunohistochemistry Dako 

DAB Zytomed kit Immunohistochemistry 

(Veitenhansl et al.)  

Zytomed Systems GmbH 

DeadEnd™ Fluorometric 

TUNEL system  

Immunohistochemical staining Promega 

Bio-Rad Protein assay Protein measurement (Bradford) Bio-Rad 

Bio-Rad DC Protein assay Protein measurement (Lowry) Bio-Rad 

Pierce™ ECL substrate  Western blotting Thermo Fischer Scientific 

 

2.1.5 Software 

In order to record and analyze the mouse behavioral open field and elevated plus maze 

test, the software Viewer from Biobserve (St. Augustin, Germany) was applied. Moreover 

immunohistochemical quantification was obtained using ImageJ and various plug-ins 

accordingly. Pictures were edited using Adobe Photoshop and Illustrator. For statistical 

analysis and plotting of acquired data, Microsoft Excel and GraphPad Prism were used in 

this study. 

 

2.1.6 Antibodies 

The following primary and secondary antibodies were used for experiments and are listed 

in Table 2.1.3 and Table 2.1.4. These were purchased from Biolegend (San Diego, USA), 

Merck Millipore (Darmstadt, Germany), Sigma-Aldrich (Munich, Germany), Santa Cruz 

Biotechnology (Dallas, USA), Leica Biosystems, Becton Dickinson and Company 

(Heidelberg, Germany), Wako Chemicals GmbH (Neuss, Germany), Cell Signaling 

Technology (Cambridge, UK) and Dianova (Hamburg, Germany). 
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Table 2.1.3 List of commercially available primary antibodies used in this study.  
IHC (Immunohistochemistry), WB (Western blot). 

 

Table 2.1.4 List of commercially available secondary antibodies used in this study.  
IHC (Immunohistochemistry), WB (Western blot). 

Secondary antibody Host species Conjugated 

substrate/dye 

Application Dilution Supplier 

α-mouse IgG goat HRP WB 1:10000 Dianova 

α-mouse IgG goat Cy2/Alexa 488 IHC 1:1000 Dianova 

α-mouse IgG goat Cy3/Alexa 555 IHC 1:1000 Dianova 

α-rabbit IgG goat HRP WB 1:10000 Dianova 

α-rabbit IgG goat Cy2/Alexa 488 IHC 1:1000 Dianova 

α-rabbit IgG goat Cy3/Alexa 555 IHC 1:1000 Dianova 

 

 

 

 

 

Primary antibody Host species Application Dilution Supplier 

α-APP 6E10 mouse monoclonal IHC 1:200 Biolegend 

α-CNPase mouse monoclonal WB 1:500 Sigma-Aldrich 

α-Cullin1 mouse monoclonal WB 1:50 Santa Cruz Biotechnology 

α-FBXO7 mouse monoclonal WB 1:50 Santa Cruz Biotechnology 

α-Flag mouse monoclonal WB 1:1000 Sigma-Aldrich 

α-GFAP mouse monoclonal IHC 1:200 Leica Biosystems 

WB 1:250 α-GSTπ1 mouse monoclonal 

IHC 1:200 

BD Biosciences 

α-Iba1 rabbit polyclonal IHC 1:1000 Wako Chemicals GmbH 

α-Mac3 mouse monoclonal IHC 1:200 BD Biosciences 

α-MBP rabbit monoclonal IHC 1:200 Cell Signaling Technology 

α-Myc mouse monoclonal WB 1:1000 Santa Cruz Biotechnology 

α-NG2 rat monoclonal WB 1:200 Dr. Hauke Werners lab 

α-PLP mouse monoclonal WB 1:50 Prof. Dr. Mikael Simons lab 

IHC 1:200  

α-PSMA2 

 

mouse monoclonal WB 1:1000 

 

Cell signaling 

α-γTubulin mouse monoclonal WB 1:1000 Sigma-Aldrich 
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2.1.7 Buffers and stock solutions 

Buffers and solutions that were used during the course of this study are listed below. 

• Buffer for MSC80 cells 
MSC80 medium: DMEM [+] 4.5g/l glucose [-] glutamine [-] pyruvate, 10% horse 
serum, 1% GlutaMAX™ 

• Buffers and media for HEK293T cells and transfection 
HEK293T medium: DMEM [+] 4.5g/l glucose [-] glutamine [-] pyruvate, 10% FBS, 1% 
GlutaMAX™ 

2xHBSS: 50mM HEPES, 10mM KCl 280mM NaCl, 15mM glucose, 1.5mM Na2HPO4 in 
sterile H2O, pH 7.11 

2.5M CaCl2 

Trypsin/EDTA: 10% HBSS(10x), 10% Trypsin/EDTA(10x) in sterile H2O, pH 7.0 

• Buffers and reagents necessary for biochemical techniques 
Triton®X-100 lysis buffer: 1% Triton®X-100, 150mM NaCl, 50mM Tris-HCl pH 7.5, 
1mM EDTA in distilled H2O (1:1600 aprotinin, 1:1000 pepstatin, leupeptin, 
Dithiothreitol)* 
 
Co-IP buffer: 1% Nonidet P40, 150mM NaCl, 20mM Tris-HCl pH 7.5, 1mM EDTA, 
10% glycerol in distilled H2O 
 
RIPA buffer: 0.1% SDS, 1% Nonidet P40, 0.5% sodium deoxycholate, 150mM NaCl, 
50mM Tris-HCl pH 8.0, 5mM EDTA in distilled H2O 
 
SDS sample buffer (4x): 300mM Tris-HCl pH 6.8, 50% glycerol, 50% Upper buffer, 
10% SDS, 25% β-Mercaptoethanol, 0.05% bromophenol blue in distilled H2O 
 

• Buffers used for SDS-PAGE 
Lower buffer: 1.5M Tris, 0.4% SDS in distilled H2O, pH 8.8 
 
Upper buffer: 0.5M Tris, 0.4% SDS in distilled H2O, pH 6.8 
 
Running buffer: 125mM Tris, 1.25M glycine, 0.5% SDS in distilled H2O 
 
Transfer buffer: 20mM Tris 153mM glycine 20% methanol in distilled H2O 
 
PBS: 137mM NaCl, 10mM KCl, 20mM Na2HPO4, 20mM KH2PO4 in distilled H2O, 
pH7.4 
 
PBST: 1xPBS, 0.1% Tween-20 
 
Blocking buffer: PBST, 4% milk powder 
 
Antibody solution: 3% BSA, 0.02% NaN3 in PBS 
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• Buffers used for genotyping 
Tail lysis buffer: 10mM Tris pH 8.0, 10mM EDTA, 0.5% SDS, 200mM NaCl*, 3µg/µl 
Proteinase K* 
 
2xTAE buffer: 80mM Tris-acetate, 2mM EDTA in distilled H2O, pH 8.5 
 

• Buffers and reagents used for the proteasome activity assay 
Proteasome lysis buffer: 50mM Tris-HCl pH 7.5, 250mM sucrose, 5mM MgCl2, 
0.5mM EDTA, 2mM ATP*, 1mM DTT*, 0.025% Digitonin* in distilled H2O 
 
Proteasome assay buffer: 50mM Tris-HCl pH 7.5, 40mM KCl, 5mM MgCl2, 0.5mM 
ATP*, 1mM DTT* in distilled H2O 
 

• Buffers used for myelin preparation 
TBS: 1370mM NaCl, 200mM Tris-HCl in distilled H2O, pH 7,4 
 

• Buffers and reagents used for immunohistochemistry 
Anesthetics 

Ketamine/Xylazine: 10% Ketamine, 5% Xylazine in sterile PBS 
 

Perfusion 

4% PFA for perfusion: 40% of 0.2M NaH2PO4, 10% of 0.2M Na2HPO4, 50% of 4% 
Paraformaldehyde in sterile H2O (6g PFA in 75ml H2O), pH 7.4 
 

Embedding of Tissue 

4% PFA for tissue: 4g Paraformaldehyde, 4g sucrose in 100ml PBS 
 
1% PFA for tissue: 3ml 4%PFA for tissue, 1ml PBS 
 

Gallyas silver impregnation on paraffin sections 

Incubating solution: 12.5mM NH4NO3, 5.9mM AgNO3, 3mM NaOH in distilled H2O 
 
Developing solution: 50% solution A + 35% solution B + 15% solution C 
Solution A: 472mM Na2CO3 in distilled H2O 
Solution B: 25mM NH4NO3, 11.8mM AgNO3, 3.5mM Silicotungstic acid in distilled H2O 
Solution C: 25mM NH4NO3, 11.8mM AgNO3, 3.5mM Silicotungstic acid, 1.89% 

formaldehyde in distilled H2O 
 

DAB staining on paraffin sections 

Citrate buffer: 1.8% solution D + 8.2% solution E in distilled H2O, pH 6.0 
Solution D: 0.1M citric acid in distilled H2O 
Solution E: 0.1M sodium citrate in distilled H2O 
 
Tris buffer: 15.5mM NaCl, 50mM Tris-HCl in distilled H2O, pH 7.6 
 
Tris buffer + Milk: 2% milk powder in Tris buffer 
 
Blocking buffer: 20% goat serum in BSA/PBS 
 
BSA/PBS: 1% BSA in PBS 
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Immunofluorescence staining of cryo-sections and free floating sections 

Solution to store free floating samples: 0.02% NaN3 in PBS 
 
Blocking solution: 10% goat serum, 2% BSA, 0.5% TX-100 in PBS 
 
Antibody solutions: 10% goat serum, 2% BSA in PBS 
 

Mounting media 

Mowiol mounting media: 6g glycerol (85%), 2.4g Mowiol 4-88, 6ml H2O, 12ml 0.2M 
Tris-HCl pH 8.5, 25mg/ml DABCO 
 
Eukitt: [commercially available from Kindler (Freiburg, Germany)] 
 
Aqua-poly/Mount: [commercially available from Polysciences (Eppelheim, Germany)] 
 

Electron microscopy stainings 
Karlsson and Schultz buffer: 0.36g NaH2PO4*H2O, 3.1g Na2HPO4*2H2O, 1g NaCl 
in 100ml distilled H2O, 25%(20ml) glutaraldehyde, 16%(50ml) formaldehyde, 30ml 
distilled H2O 
 
Epon: 21.4g glycidether, 14.4g Dodecenyl succinic anhydride (DDSA), 11.3g 
methylacid anhydride (MNA) and 0.84ml DMP-30 
 
Methylene blue: 1% sodium tetraborate and 1% methylene blue in H2O 
 
Azure II staining solution: 1% Azure II in H2O 
 

* = added freshly before use 

 

2.1.8 Mammalian cell lines 

In the course of this study different immortalized cell lines were used as listed in Table 

2.1.5.  

Table 2.1.5 Immortalized cell lines used for experiments.  

Cell name Tissue type Tissue Phenotype 

HEK-293T Human Kidney  Adherent 

MSC80 Mouse Schwann cell Adherent 
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2.1.9 Plasmid constructs and primers 

For biochemical experiments different plasmid constructs and primers were used as 

shown in Table 2.1.6. 

Table 2.1.6 Plasmid constructs and primers used in this study.  
Fwd (forward), rev (reverse) and bp (base pair). 

Plasmid constructs for transfection 
Vector plasmid Constructed by 

p3xFLAG-CMV10-Fbxo7 wt Siv Vingill 

p3xFLAG-CMV10-Fbxo7 Δfbox David Brockelt 

pCMV-myc-Skp1 Judith Stegmüller 

pcDNA3-BCLXL Azad Bonni 

pSUPER- FBXO7 shRNA 1 Siv Vingill 

pSUPER- FBXO7 shRNA 4 Siv Vingill 

pSUPER- PSMA2 shRNA 1 Siv Vingill 

pSUPER- PSMA2 shRNA 7 Siv Vingill 

 

Primers for genotyping 

Gene Sequence  Size Primer number 

floxed Fbxo7 (fwd) 5’-tcagcatgggtttgttaagcatctacta-3’ 23988 

floxed Fbxo7 (rev) 5’-ggtctagatatctcgacataacttcgtata-3’ 

 

600bp 22243 

wild type Fbxo7 (fwd) 5’-gggctgtatgaaggaagtgctatt-3’ 31214 

wild type Fbxo7 (rev) 5’-ccctgagagtgaagggtgctgttc-3’ 

 

800bp 31215 

Cre (fwd) 5’-cagggtgttataagcaatccc-3’ 04193 

Cre (rev) 5’-cctggaaaatgcttctgtccg-3’ 

 

250bp 04192 

 

Primers for RT-PCR 

Gene Sequence  Primer number 

IL-10 (fwd) 5’-atgcaggactttaagggttacttg-3’ 33860 

IL-10 (rev) 5’-tagacaccttggtcttggagctta-3’ 33861 

IL-1RA (fwd) 5’-cagttccaccctgggaaggt-3’ 33858 

IL-1RA (rev) 5’-gagcggatgaaggtaaagcg-3’ 33859 

IL-1β (fwd) 5’-cctgcagctggagagtgtgga-3’ 33157 

IL-1β (rev) 5’-cccatcagaggcaaggaggaa-3’ 33158 

IL-6 (fwd) 5’-cggagaggagacttcacagagga-3’ 22936 

IL-6 (rev) 5’-ggagagcattggaaattgggg-3’ 22937 

Tnf-α (fwd) 5’-gcggtgcctatgtctcagcc-3’ 22942 
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Tnf-α (rev) 5’-tgaggagcacgtagtcgggg-3’ 22943 

Ip-10 (fwd) 5’-ctgcctcatcctgctgggtctg-3’ 12127 

Ip-10 (rev) 5’-ataggctcgcagggatgatttcaagc-3’ 12128 

Mcp1 (fwd) 5’-ggtccctgtcatgcttctgggc-3’ 12125 

Mcp1 (rev) 5’-agcaggtgtcccaaagaagctgtagt-3’ 12126 

β-Actin (fwd) 5’-cgtgcgtgacatcaaagagaagctg -3’ 6956 

β-Actin (rev) 5’-ggatgccacaggattccatacccaag -3’ 6957 

Fbxo7 (fwd) 5’-tggaagtcaagtggtgtatac-3’ 31241 

Fbxo7 (rev) 5’-tactccagcagcaacgtagga-3’ 31242 

Gapdh (fwd) 5’-aggaacacggaaggccatg -3’ 4876 

Gapdh (rev) 5’-atggcccctctggaaagct -3’ 4877 

 

Target sequence of shRNA 

shRNA Functionality Sequence Target region (human) 

FBXO7 shRNA 1 functional 5’-gaagagaccttggcttcata-3’ 178-197 bp  

FBXO7 shRNA 4 non-functional 5’-gaaactacgcatcttccgac-3’ 1017-1037 bp 

PSMA2 shRNA 1 non-functional 5’-gctgactacattcagccc-3’ 27-45 bp 

PSMA2 shRNA 7 functional 5’-ggattacttggctgccatagc-3’ 680-700 bp 

 

 

2.2 Methods 

2.2.1 Cell culture 

All experiments regarding cell culture were performed in a sterile hood under sterile 

conditions. The cells were kept for growth in a 37°C incubator, supplemented with 5% 

CO2. 

 

2.2.1.1   Passage of immortalized cell lines 

Prior to splitting a respective cell line (HEK293T or MSC80), the according medium was 

pre-warmed at 37°C in a water bath. In addition sterile PBS and Trypsin/EDTA (TE) buffer 

were pre-warmed at 37°C. The old medium was aspirated off a 10cm cell culture dish and 

cells were washed with 10ml of sterile PBS. After aspirating off PBS, 2ml of TE was added 

and incubated for 2min at 37°C. 10ml of the respective medium (HEK293T medium or 

MSC80 medium) was added to the cells and were detached from the plate surface. The 
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cell suspension was then transferred into a 15ml tube and centrifuged at 800rpm for 5min 

at 4°C. After centrifugation the supernatant was aspirated off and the cell pellet was 

resuspended in 5ml of appropriate medium. For the maintenance of the cell line, a 1:10 

dilution of the cell suspension was plated into a new 10cm cell culture dish, containing 

fresh medium. For experiments the cells were further plated in 6-well or 12-well plates. 

The cells were maintained at 37°C and 5% CO2 until approximately 90% of confluency 

was reached. HEK293T cells had to be split every 3 days and MSC80 cells required 

splitting once a week. MSC80 cells were kindly provided by the group of PD Dr. Burkhard 

Gess.  

 

2.2.2 Transfection of cultured cells 

For the transfection of cultured cells with nucleic acids (DNA or RNA) two methods were 

used: HEK293T cells were transfected using the modified calcium phosphate method as 

previously described by Konishi et al. (Konishi et al., 2004), while MSC80 cells were 

transfected with the help of Lipofectamine® 2000. HEK293T cells were split 24 hours prior 

to the transfection, whereas MSC80 cells were split two days in advance. 

 

2.2.2.1   Calcium phosphate transfection 

In order to transfect HEK293T cells in a 6-well plate, 0.5-2µg of plasmid DNA and 0.1µg of 

farnesylated-GFP (= transfection marker) were diluted in 90µl sterile H2O and were mixed 

with 10µl of 2.5M CaCl2. 100µl of 2xHBSS was added and mixed while introducing air 

bubbles to the solution. The mixture was incubated for 5min at RT and 200µl of it was 

drop-wise added onto the cells. The transfected HEK293T cells were maintained for 3 

days at 37°C and 5% CO2 before lysis. The transfection efficiency was monitored, while 

detecting green fluorescent signals from the co-transfected GFP expression with a 

fluorescent microscope (Eclipse TS 100, Nikon). 

 

2.2.2.2   Lipofectamine® 2000 transfection 

For the transfection of MSC80 cells in a 10cm culture dish 6µg of plasmid DNA or shRNA 

together with 0.8µg of farnesylated-GFP (transfection marker and selection marker for 

FACS) and 0.6µg of the anti-apoptotic BclXL plasmid were co-transfected and diluted in 

1.5ml of Opti-MEM. In an additional tube 15µl of Lipofectamine® 2000 was added to 1.5ml 

Opti-MEM. The two solutions were incubated for 5min at RT prior to mixing. The mixture 

was incubated for 20min at RT and then added drop-wise to the cells. About 20h after 
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transfection the medium was changed twice with fresh 15ml of culture medium. The cells 

were kept at 37°C and 5% CO2 for 3 days before lysis or FACS sorting. Again, 

transfection efficiency was monitored while using the Eclipse TS 100 fluorescent 

microscope from Nikon. 

 

2.2.3 Biochemical techniques 

2.2.3.1   Lysis of tissue 

For further biochemical experiments mice were scarified at the desired age and tissue or 

organs were immediately obtained. The fresh, non-fixated tissue was placed in a reagent 

tube, snap frozen in liquid nitrogen and stored at -80°C. In order to lyse, the tissue was 

added to a 2ml dounce or homogenizer containing ice-cold Triton®X-100 lysis buffer + 

proteinase inhibitors (freshly added). By mechanical force the sample was homogenized 

and incubated for 30min on ice. Subsequently the lysate was centrifuged for 10min at 

11000rpm and 4°C. The supernatant was collected in a new tube and the protein 

concentration was measured. 

 

2.2.3.2   Lysis of cultured cells 

Cultured cells were lysed for further biochemical experiments. Therefore proteinase 

inhibitors (aprotinin, DTT, leupeptin and pepstatin) were freshly added to the Triton®X-

100 lysis buffer or Co-IP buffer if a co-immunoprecipitation was followed. Throughout the 

lysis, cells and lysate were kept on ice. The culture medium was aspirated off and cells 

were once washed with cold PBS. After aspirating off PBS, 150µl of the supplemented 

Triton®X-100 lysis buffer/Co-IP buffer was added to each well of a 6-well plate. Using a 

cell scraper attached cells were removed from the plate. The cell lysate was collected in a 

1.5ml tube and incubated for 30min on ice. Subsequently the lysate was centrifuged at 

11000rpm for 10min at 4°C. The supernatant was transferred into a new tube and the 

pellet discarded. For further experiments the samples were kept on ice. 

 

2.2.3.3   Measurement of protein concentration 

To measure the protein concentration either a Bradford assay or a Lowry assay was 

performed. 

For a Bradford assay (Bradford, 1976) the Bio-Rad Bradford reagent was used in a 

1:5 dilution with PBS. In order to obtain a standard curve 2, 4, 6, 8, and 10µg of bovine 
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serum albumin (Ip et al.) was diluted in 1ml of Bradford/PBS solution, including a blank. 

Further on 2µl of the desired sample (cell lysate or tissue lysate) was added to 1ml of 

Bradford/PBS solution. The protein concentration was measured with a 

spectrophotometer, detecting the shift in absorbance at 595nm wavelength. This reflected 

the binding of protein to Coomassie Brilliant Blue G-250. The BSA measurement resulted 

in a standard curve, which was used to calculate the protein concentration of the samples 

of interest. 

For a Lowry assay (Lowry et al., 1951) reagents from Bio-Rad were used. 0.5µl of 

protein assay reagent S were added to 24.5µl of reagent A. The 25µl of solution mix was 

pipetted into a 96-well plate, further adding 5µl of the lysate of interest and 200µl of 

reagent B. Additionally, a standard curve was generated using 0.2, 0.5, 0.8, 1.0 and 1.5µg 

of BSA as well as a blank. Afterwards the plate was inserted into the Tecan microplate 

reader, in which it was incubated for 15min at 26°C. Biuret and Folin-Ciocalteu reaction 

allowed for the measuring of absorption at 750nm wavelength. Using the resulting 

standard protein curve, the concentration of the lysate of interest was determined. Excel 

from Microsoft Office was used for calculations. 

 

2.2.3.4   Co-Immunoprecipitation (Co-IP)  

In order to investigate the interaction of two proteins a co-immunoprecipitation assay was 

performed. Cells were transfected with plasmids expressing tagged proteins. Two days 

after the transfection, the cells were lysed with Co-IP buffer supplemented with protease 

inhibitors. As a control of expression 100µg of input from the cell lysate was mixed with 

SDS sample buffer (4x) and heated at 95°C for 5min. The sample was shortly spun down 

and either directly pipetted onto the SDS-PAGE or stored at -20°C until usage. For the co-

immunoprecipitation 1mg of cell lysate was incubated for 2-3h with 0.6µg of either flag- or 

myc-antibody at 4°C on a rotator. In the meantime, protein A-sepharose beads, which 

bind to rabbit and mouse IgGs, were washed 3 times with Co-IP buffer and stored in equal 

amount of Co-IP buffer. Following, the sample was mixed with 15µl of protein A-

sepharose beads and incubated for 1h at 4°C on a rotator. The beads were then washed 

2-3 times with lysis buffer while incubating for 5min at 4°C and centrifuging in between for 

1min at 11000rpm. The beads were then subjected to a quick wash with 500µl of RIPA 

buffer and centrifuged again. In the final wash step PBS was added and after 

centrifugation a small volume of PBS was left and mixed with 10µl of SDS samples buffer 

(4x). The sample was boiled at 95°C for 5min, shortly spun down and ran on an SDS-

PAGE for subsequent western-blot analysis. 
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2.2.3.5   SDS-PAGE and western-blot 

To separate proteins according their size an SDS-PAGE method was used as descripted 

previously (Weber and Osborn, 1969). The polyacrylamide gel, consisting of an upper gel 

for stacking (3.9% of acrylamide) and a lower gel for separation (10% or 12% of 

acrylamide), were prepared in a gel casting system from Bio-Rad. The gel was prepared 

according to the following scheme: 

 
Table 2.2.1 Recipe for SDS-PAGE gels of different acrylamide percentage. 

 Stacking gel Separating gel 

% of acrylamide  3.9% 10% 12% 

Acrylamide/bis-acrylamide  0.65ml 2.5ml 3ml 

Upper buffer 1.25ml - - 

Lower buffer - 1.875ml 1.875ml 

H2O 3.05ml 3.125ml 2.625ml 

Ammonium persulfate (10%)  30µl 30µl 30µl 

Tetramethylethylenediamine  3µl 3µl 3µl 

 

The separating gel was cast first by pouring the gel mixture into the gel casting system. In 

addition a layer of isopropanol was added onto the separating gel. After polymerization 

the isopropanol was discarded and H2O was used for washing. Afterwards the stacking 

gel was loaded and a 10-well comb inserted. Once the complete polyacrylamide gel was 

polymerized the gel was inserted into the Trans-Blot® Cell (Bio-Rad) and running buffer 

was added. The previously boiled lysates as well as a protein ladder were loaded into the 

wells of the gel. Proteins were separated through electrophoresis at 35mA per gel for 1h. 

Subsequently the proteins were transferred onto a nitrocellulose membrane, again using 

the Trans-Blot® Cell which contained transfer buffer. For the transfer 220mA were applied 

for 2h at °4C. After transfer the nitrocellulose membrane was rinsed with PBST and then 

blocked in blocking buffer (4% milk in PBST) for 20min at RT on a shaker. The membrane 

was then rinsed with PSBT and incubated in antibody solution containing the desired 

dilution of primary antibody for 3h or over night at 4°C on a shaker. A 3 times washing 

step with PBST for 10min each on a shaker was followed. The secondary HRP-

conjugated antibody was diluted in blocking buffer and was incubated for 1h at RT on a 

shaker. Followed by washing thrice with PBST, the membrane was incubated in enhanced 

chemoluminescent (ECL), a horseradish peroxidase substrate by Thermo Fischer 

Scientific. Quickly after, the membrane was placed into a membrane developing system 

by Biometra, which recorded the luminescent signal and captured it as a digital picture. 

Western blot pictures were edited using Adobe Photoshop and Illustrator. 
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2.2.4 FACS and proteasome activity assay 

The proteasome activity assay was carried out according to a modified method by 

Kisselev and Goldberg et al. (Kisselev and Goldberg, 2005). The assay was performed 

with cell lysates of transfected MSC80 cells. MSC80 cells were transfected with shRNA 

and co-transfected with GFP. The cells were washed with PBS and detached from the 

10cm cell plate, while using a cell scraper. Afterwards the cells were centrifuged for 5min 

at 200rpm.  The cell pellet was resuspended in 1ml of cold PBS and sorted via FACS 

cytometer (FACS Calibur, BD). The sorted cells were lysed in proteasome lysis buffer, 

containing the mild detergent digitonin. 100µg BSA and 100µM of fluorogenic peptide 

substrate Suc-LLVY-AMC was pipetted in triplicates per sample into a 96-well plate 

containing proteasome assay buffer and was incubated for 10min at 37°C. Subsequently, 

12µg of cell lysate was added per well (total volume 200µl). The fluorescent signal was 

measured at 355nm excitation and 460nm emission every half an hour at 0, 30, 60, 90 

and 120min using the Tecan mircoplate reader. In-between measurements the 96-well 

plate was incubated at 37°C and protected from light. In order to verify the knockdown 

induced by shRNA, one part of the cell lysate was subjected to western-blot analysis. 

 

2.2.5 Myelin purification 

Myelin was purified from brain samples by density centrifugation using a sucrose gradient. 

According to Norton and Poduslo’s previously described method (Norton and Poduslo, 

1973a, b), (Larocca and Norton, 2007) the samples were first homogenized in 0.32M 

sucrose containing protease inhibitors and using the ultraturrax. At all times samples were 

kept on ice or at 4°C. 200µl of the homogenate was stored at -80°C for later experiments. 

The remaining homogenate was carefully added onto 0.85M sucrose containing protease 

inhibitors in an Ultra-Clear Tube (Beckman no. 344060). Afterwards the sucrose gradient 

was centrifuged for 30min at 75000xg in the Beckman XL-70 ultracentrifuge, using a 

swing out rotor (SW40Ti Beckman rotor, 24400rpm). The interphase was transferred into 

a new tube and washed by adding water. After centrifugation at 75000xg for 15min, an 

osmotic shock was induced by resuspending the pellet in H2O, incubated for 15min and 

centrifuged at 12000xg for 15min (SW40Ti Beckman rotor, 9700rpm). This osmotic shock 

was repeated once more. Subsequently the pellet was resuspended in 0.32M sucrose. 

Layering the resuspended pellet over 0.85M sucrose generated a second sucrose 

gradient. After centrifugation for 30min at 75000xg, the interphase was collected in a new 

tube, H2O was added and centrifuged at 75000xg for 15min. This final pellet consisted of 
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enriched myelin and was resuspended in 200µl of TBS containing protease inhibitors and 

was sored at -80°C. Myelin purification from brain tissue was performed by Ramona Jung 

(Group of PD, Dr. Hauke Werner, department of Prof. Dr. Klaus-Armin Nave, Max-Planck Institute 

of Experimental Medicine, Göttingen).  

 

For myelin purification from the sciatic nerve, samples were homogenized in 0.29M 

sucrose containing protease inhibitors using an ultraturrax. For further experiments 100µl 

of lysate were stored at -80°C. Similar to the sucrose gradient described before, the lysate 

was add onto 0.85M sucrose in an Ultra-Clear Tube (Beckman no. 344062). The samples 

were centrifuged as well for 30min at 75000xg (26900rpm) but in a TH660 Beckman rotor. 

Again the interphase was washed with water as described before and only one osmotic 

shock was induced. The pellet was resuspended in 100µl of TBS containing protease 

inhibitors and stored at -80°C. Myelin purification from sciatic nerves was conducted 

together with Katja Lüders (Group of PD, Dr. Hauke Werner, department of Prof. Dr. Klaus-

Armin Nave, Max-Planck Institute of Experimental Medicine, Göttingen). 

 

 

2.2.5.1   Silver staining of SDS-PAGE 

In order to detect robust changes in protein abundance of purified myelin within and 

between genotypes, samples were subjected to SDS-PAGE analyses. 12% gels were 

prepared as previously described and 0.5µg of purified CNS myelin or 5µg of PNS myelin 

was loaded onto the gels and ran for 1 hour at 200V. The gels were incubated in 40% 

ethanol + 10% acetic acid over night at 4°C. On the next day a silver impregnation was 

performed according to the Pierce® Silver staining kit. The gels were incubated twice 

5min in 10% ethanol and twice washed for 5min in water. Next, the gels were incubated in 

sensitizer solution for 1min, washed twice for 1min in H2O and then incubated for 30min in 

working solution. After two quick washes in water for 20sec, the developer solution was 

immediately added and incubated until bands appeared. The solution was replaced with 

stop solution (5% acetic acid), briefly washed, replaced with new stop solution and 

incubated for 10min. Finally the gels were washed with H2O and stored at 4°C. 

 

2.2.5.2   Quantitative Mass spectrometry 

The quantitative mass spectrometry was conducted by Dr. Olaf Jahn from the proteomics 

department of the Max-Planck institute for Experimental Medicine. Here 10µg of purified 

myelin was lysed and processed according to a filter-aided sample preparation (FASP) 

protocol ((Wisniewski et al., 2009) and further modified as described by Distler et al 
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(Distler et al., 2014; Distler et al., 2016). The samples were then subjected to LC-MS 

analysis, in which a nanoscale reversed-phase UPLC separation of tryptic peptides was 

performed. Therefore, a nanoAcquity UPLC system was used, equipped with a Symmetry 

C18 5µm, 180µm × 20mm trap column and a HSS T3 C18 1.8µm, 75µm × 250mm 

analytical column maintained at 45°C. Injected peptides were trapped for 4min at a flow 

rate of 8µl/min 0.1% trifluoroacetic acid and then separated over 120min at a flow rate of 

300nl/min. The LC-MS data were analyzed while using Waters ProteinLynx Global Server 

version (Li et al., 2009). To identify proteins, a custom database was used and additionally 

the false discovery rate (FDR) that was set to 1% threshold was determined. The freely 

available software ISOQuant (http://www.isoquant.net) was used for post-identification 

analysis and the stringency of identified protein was increased by considering only 

peptides with a minimum length of six amino acids, which were identified with scores 

above or equal to 5.5 in at least two runs (Distler et al., 2014; Distler et al., 2016; Kuharev 

et al., 2015). The final analysis was done using Microsoft Excel and diagrams were 

prepared with GraphPad Prism. 

 

2.2.6 Transgenic mouse line 

All mice used for this study were kept and bred in the mouse facility of the Max-Planck-

Institute for Experimental Medicine in Göttingen or the mouse facility of the RWTH 

university hospital in Aachen. Experiments were performed according to the guidelines for 

German animal welfare and were approved by the “Verbraucherschutz und 

Lebensmittelsicherheit” of Lower Saxony, Germany (33.11.42502-04-11/0632). Mice were 

scarified either by cervical dislocation or by perfusion under anesthesia. 

 

2.2.6.1   Generation of conditional FBXO7 mouse line 

Homozygous conditional Fbxo7fl/fl mice (Vingill et al., 2016), in which exon 4 was flanked 

by loxP sites, were either mated with heterozygous Cnp1Cre/+ mice (Lappe-Siefke et al., 

2003) or with heterozygous Tamoxifen-inducible Plp1CreERT2/+ mice (Leone et al., 2003). In 

these conditional knockout mice FBXO7 was deleted from myelinating cells. 

Cnp- and well as Plp-driver line were provided by Prof. Dr. Klaus-Armin Nave 

(Neurogenetics department, Max-Planck Institute of Experimental Medicine, Göttingen). 
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2.2.6.2   Tamoxifen induced knock down 

Plp1CreERT2/+ mice were bred with Fbxo7fl/fl mice to generate conditional 

Plp1CreERT2/+;Fbxo7fl/fl mice. In these inducible mice, Cre recombinase expression will only 

be activated upon Tamoxifen injection. Hence, 100µl of 20mg/ml Tamoxifen dissolved in 

corn oil was intraperitoneally injected in mice for 5 consecutive days. The total amount of 

injected Tamoxifen was 10mg. Injection of mice and thereby the induction of the 

conditional knock out of the Fbxo7 gene was performed at two months of age, when 

myelination was completed. Control mice lacking the Plp1-CreERT2 insertion were also 

injected with the same amount of Tamoxifen. 

 

2.2.6.3   Isolation of genomic DNA 

Tail biopsies from mice were used to isolate genomic DNA for subsequent genotyping 

analysis. The tissue was lysed in 200µl of tail lysis buffer with freshly added 3µg/ml 

Proteinase K and 0.2M NaCl for minimum 2h at 55°C. Once the tail was completely lysed, 

the sample was centrifuged for 10min at 14000rpm and RT. The supernatant was 

transferred into a new tube and mixed with 500µl of 100% ethanol and again centrifuged 

for 10min at 14000rpm and RT. The supernatant was discarded and the pellet of 

precipitated DNA was washed with 300µl of 70% ethanol. Again the sample was 

centrifuged for 3min at 14000rpm and RT. After aspirating off the ethanol, the precipitated 

DNA pellet was air-dried at RT for 15min and then dissolved in 200µl of sterile H2O. The 

isolated genomic DNA was then used for genotyping and stored at -20°C. 

  

2.2.6.4   Genotyping 

For each sample 3 PCR reactions were set up. The PCR reaction was performed 

according to Kary Mullis first described and over the years modified protocol (Saiki et al., 

1985). Using the Cre, wild type Fbxo7 as well as the floxed Fbxo7 primer pairs, the 

genotype of the conditional knockout mice was determined. For genotyping the GoTaq® 

DNA polymerase system was used and PCR samples were run on a 1% agarose gel (in 

2xTAE buffer) containing 1:100000 of GelRed for visualization. Pictures were obtained 

with the UV transilluminator system from Biometra and edited using ImageJ, as well as 

Adobe Illustrator. 

 

 

 



2   Materials and methods 
2.2 Methods 

40 

 

 

The PCR reaction was pipette the following: 

Table 2.2.2 Recipe for PCR reaction.  

PCR reaction 

17µl H2O 

5µl 5x GoTaq® buffer 

0.4µl dNTPs (2.5mM) 

1µl forward primer (10pmol/µl) 

1µl reverse primer (10pmol/µl) 

0.1µl GoTaq® DNA polymerase 

0.5µl genomic DNA  

 

The PCR reaction was run according to the following program: 

Table 2.2.3 Set up of PCR program for genotyping. 

Fbxo7 PCR genotyping program  

Denaturation 95°C  3min  

Denaturation 95°C 30sec 

Annealing 55°C / 53°C* 45sec / 30sec* 

Elongation 72°C 45sec 

 

30 / 28* cycles 

Final elongation 72°C 5min  

Final hold 16°C Pause  

* = specifically for the wild-type Fbxo7 primer pair 

 

2.2.6.5   RNA isolation 

Total RNA was isolated for further analysis of mRNA expression levels. Prior to RNA 

isolation, surface areas were thoroughly cleaned with ethanol and only filter pipette tips 

were used. Throughout isolation the samples were always kept on ice. 1mL of Trizol® 

Reagent was added to mouse tissue and homogenized in a 2ml glass dounce. 200µl (1/5 

of Trizol® Reagent volume) of chloroform was added and vortexed for 15sec. Next, the 

sample was incubated for 15min on ice and then centrifuged for 15min at 14000rpm and 

4°C. The topmost layer after centrifugation containing isolated RNA was transferred into a 

new tube and mixed with equal volume of isopropanol followed by vortexing. The sample 

was incubated over night at -80°C and on the consecutive day was centrifuged for 15min 

at 14000rpm and 4°C. The supernatant was discarded and the RNA pellet was washed 

with 100% ethanol, centrifuged and washed with 70% of ethanol. Next, ethanol was 

removed, the pellet air-dried and dissolved in 50µl of 10mM Tris/ 1mM EDTA, pH 7.5. The 

concentration of RNA was measured, while using a NanoQuant Tecan plate reader. 



2   Materials and methods 
2.2 Methods 

41 

 

 

2.2.6.6   cDNA synthesis 

The previously isolated RNA was further used for cDNA synthesis. Therefore the 

SuperScript® III First strand synthesis kit was used according to the following scheme: 

Table 2.2.4 Protocol for cDNA synthesis I. 

cDNA synthesis I 

3µg isolated RNA 

1µl 50µM Oligo dT 

1µl 10mM dNTP 

10µl ddH2O (fill up to final volume) 

 

The mixture was incubated for 5min at 65°C and 1min on ice. In a second step, the 

reverse transcriptase mixture was prepared: 

Table 2.2.5 Procedure for cDNA synthesis II. 

 

 

 

 

Both mixtures were combined and 

incubated for 50min at 50°C. The reaction was stopped at 85°C for 5min and followed by 

an incubation on ice and the addition of 1µl of RNAseH. The samples were incubated for 

20min at 37°C and stored at -20°C until usage for RT-PCR. 

 

2.2.6.7   Quantitative real-time (RT) PCR 

To amplify target sequences and quantify the amount of template at the same time, a real- 

time PCR was conducted. Therefore the Power SYBR Green system was used and 

prepared as described in table 2.2.6. The primers used are listed in table 2.1.6. The 

quantitative RT-PCR was monitored via a PCR thermo cycler. For analysis of the obtained 

data, Microsoft Excel was used applying the Livak - delta delta CT method for 

quantification. β-Actin was used as a reference gene and the average of all control 

samples was also used as a reference. 

 

 

cDNA synthesis II 

2µl 10x reverse transcriptase buffer 

4µl 25mM MgCl2 

2µl 0.1M DTT 

1µl RNAse OUT 

1µl SuperScript reverse transcriptase 

10µl ddH2O (fill up to final volume) 
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First the CT value of the target gene was normalized to the CT value of the reference gene: 

ΔCT(control sample)= CT (ctrl sample, target gene) - CT (ctrl sample, ref gene) 

ΔCT(test sample)= CT (test sample, target gene) - CT (test sample, ref gene) 

 

Then the ΔCT of the test sample was normalized to the ΔCT of the control sample: 

ΔΔCT= ΔCT(test sample) - ΔCT(control sample) 

 

Finally the fold difference in expression was calculated: 

normalized expression ration = 2-ΔΔC
T 

 

Further on GraphPad Prism was used for generating graphs and statistical analysis. 

 
Table 2.2.6 Protocol for RT-PCR. 

RT-PCR 

5µl 2x SYBR Green 

0.1µl 1pmol forward primer 

0.1µl 1pmol reverse primer 

0.14µl cDNA 

10µl ddH2O (fill up to final volume) 

 

 

2.2.6.8   Electrophysiological measurement 

In order to investigate the propagation of action potentials along nerve fibers on 

anesthetized animals, electrophysiological recordings were conducted. The analysis was 

performed by stimulation of the nervus ischiadicus and the nervus tibialis posterior at the 

proximal site of the foramen ischiadicum. At the distal area of the knee, a needle electrode 

was injected and the nerves were stimulated for 0.1ms. By doing so, the delay between 

initiating an action potential and the response of the muscles was measured. The nerve 

conductance velocity (NCV) was calculated, by measuring the time between proximal 

stimulation and distal recording of a given distance. Another measurement is the 

compound muscle action potential (CMAP), which was calculated from the amplitude of 

the highest and lowest value. Further on the distal motor latency (DML) was measured 

from the delay between initiating a stimulus and the evoked potential. Data retrieved were 

analyzed using Microsoft Excel and GraphPad Prism. This experiment was performed by 

Dr. Robert Fledrich (Group of Prof. Dr. Michael W. Sereda, Max-Planck Institute of Experimental 

Medicine, Göttingen). 
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2.2.7 Histological analysis 

2.2.7.1   Transcardial perfusion and fixation 

Mice were anesthetized by intraperitoneal injection of 10% Ketamine (CP Pharma) and 

5% Xylazine (Medistar Arzneimittelvertrieb GmbH), using 100µl per 10g of weight. 

Reflexes were tested at all four paws. Once all signs of reflexes were suppressed, the 

thorax was opened by a long insecure along the diaphragm and sternum, exposing the 

heart. A small G21 butterfly canula, which was connected to a peristaltic pump (rate set to 

12rpm), was inserted into the left ventricle of the heart and simultaneously the right atrium 

was cut. First 10ml sterile PBS was pumped into the vascular system to clear blood from 

body. Subsequently, the tissue was fixed with 10ml of 4% PFA for perfusion or with 

Karlsson and Schultz buffer, if the tissue was subjected to electron microscopic analysis. 

Organs were dissected and incubated in 4% PFA for tissue over night at 4°C and then 

further post-fixed, depending on the experimental procedure. 

 

2.2.7.2   Immunohistochemistry on cryo-sections 

The previously dissected and PFA-fixed sample was incubated in 30% sucrose/PBS over 

night at 4°C, embedded it OCT (Tissue Tek, Sakura, Torrance, USA) and stored at -80°C. 

For sectioning, the samples were cut into 10µm thin sagittal or coronal sections, as per 

experimental design, using a cryostat (CM3050 S, Leica). The sections were either 

mounted onto glass slides or stored in PBS+0.02% of NaN3 as free-floating sections at 

4°C.For fluorescent staining, cryo-sections were washed twice 5min with PBST on a 

shaker at RT, permeabilized with 0.5% Triton®X-100 in PBS for 30min and then blocked 

for 1h in blocking solution. After a 5min wash in PBST the samples were incubated over 

night at 4°C in antibody solution containing the respective dilution of primary antibody. 

Next, the samples were washed thrice for 10min in PBST and further incubated for 1h at 

RT in a secondary antibody conjugated to a fluorescent dye, diluted in antibody solution 

and nuclei staining dye DAPI (1:8000). The samples were washed three times for 5min in 

PBST at RT. In case of free-floating sections, the samples were mounted on a glass slide 

and shortly dried at 37°C for 15min. Cryo-sections were mounted using Mowiol mounting 

medium and stored at 4°C. Pictures were taken using the fluorescent microscope BX51 

from Olympus and for quantification ImageJ was used. In case of a double staining, non-

specific background staining was removed by using the SpectralUnmixing plugin 

generated by Joachim Walter. Pictures were further stitched by applying the plugin from 

Preibisch et al. (Preibisch et al., 2009) and quantified using a customized macro written by 

Dr. Miso Mitkovski. This customized macro quantified the area that is stained in pixel, as 
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well as the total area of the sample, in order to calculate the percentage of area stained. 

Statistical analysis and graphs were performed using GraphPad Prism. 

 

2.2.7.3   Immunohistochemistry on paraffin-sections 

Post-fixation of mice tissue that was destined for paraffin embedding, was incubated over 

night in 4% PFA for tissue at 4°C after perfusion. The samples were then embedded in 

paraffin using an automated embedding machine (HMP110, MICROM) and following the 

protocol was applied: 

Reagent Duration 

50% ethanol 1h 

70% ethanol 2x 2h 

96% ethanol 2x 1h 

100% ethanol 2x 1h 

isopropanol 1h 

xylene 2x 2h 

paraffin 2x 2h 

 

The tissue embedded in paraffin, was cut into 5µm sagittal sections using a microtome 

(HM 430, Thermo Fischer Scientific), mounted on glass slides and air-dried at RT. 

Paraffin-sections were stained using the LSAB2 detection system. Here, sections were de-

paraffinized by heating for 10min at 60°C, followed by 2x 10min incubation in xylene and 

10min in a xylene/isopropanol mixture (1:2). The samples were further incubated in 100%, 

90%, 70% and finally 50% of ethanol for 5min, respectively. Lastly, tissue was hydrated in 

ddH2O for 5min. For DAB staining, the sections were incubated in citrate buffer for 5min at 

RT and further boiled in citrate buffer for 10min in a microwave oven to un-mask the 

antigen and permeabilize the tissue. The samples were given 20min at RT to cool down, 

followed by incubation in Tris buffer + 2% milk for 5min. Afterwards the slides were placed 

into a Shandon cover plate by Thermo Fischer Scientific, allowing an even distribution of 

solution on the slide. Since the secondary antibody was conjugated with HRP 

(horseradish peroxidase), the slides were incubated for 5min with 3% H2O2 to inactivate 

endogenous peroxidase. The samples were rinsed with Tris-buffer + milk and then 

blocked in 100µl blocking buffer for 10min at RT. Subsequently, the samples were 

incubated in primary antibody diluted in BSA/PBS at 4°C over night. The next day, the 

slides were rinsed with Tris buffer + milk and incubated for 10min at RT in 100µl of a 

bridging, biotinylated antibody of the LSAB2 kit (Dako). Again, the slides were washed with 

Tris buffer + milk and then incubated in 100µl of horseradish peroxidase streptavidin 
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complex for 10min at RT (LSAB2 kit). The slides were washed with Tris buffer, 

disassembled from the Shandon cover plate and placed in Tris buffer. Diaminobenzidine 

(Veitenhansl et al.), the substrate of HRP, was applied onto the slides using a DAB kit and 

incubated for 5-10min. The sections were washed twice with H2O for each 5min and then 

counter-stained in hemalaun for 30seconds. The sections were washed with distilled H2O, 

shortly incubated in HCL/ethanol and again rinsed with H2O. After 5min incubation in 

Scott’s solution and a wash step in water, the sections were subjected to increasing 

ethanol dehydration in 50%, 70%, 90% and 100% ethanol for each 5min at RT. 

Subsequently, the sections were immersed in isopropanol/xylene for 10min and twice for 

10min in xylene. Finally, a coverslip was mounted onto the slides using Eukitt mounting 

medium. The light microscope Axiophot from Zeiss was used for imaging. The resulting 

pictures were then further analyzed with ImageJ. Graphs and statistical analyses were 

done using GraphPad Prism. 

 

2.2.7.4   Tunnel assays 

Staining of apoptotic cells was performed by using the DeadEnd™ Colorimetric TUNEL 

System kit. Once the paraffin-embedded 5µm tissue was deparaffinized as previously 

described, a TUNEL (TdT-mediated dUTP Nick-End Labeling) assay was performed 

according to the instruction from the kit. Terminal deoxynucleotidly transferase (TdT) 

mediates the binding of biotinylated nucleotids at the 3’-OH of fragmented DNA sites, 

which will be detected by streptavidin-HRP. Finally, the peroxidase substrate DAB binds 

to the complex and precipitates as brown staining. The sections were mounted with 

coverslips using Aqua-Poly/Mount mounting medium. Quantification and statistical 

analyses were conducted as described in ”immunohistochemistry on paraffin-sections”. 

 

2.2.7.5   Gallyas silver impregnation  

Myelin fibers were stained using the protocol developed by Gallyas (Gallyas, 1979), in 

which colloidal sliver particles bind to myelin. 5µm sections of tissue embedded in paraffin 

were de-paraffinized as described before and incubated in a 2:1 mixture of pyridine and 

acetic anhydride for 30min at RT, preventing staining of any other tissue but myelin. The 

samples were rinsed three times with water for 10min and then incubated in warm 

incubating solution for 10min at RT. Afterwards the slides were washed three times with 

0.5% acetic acid for 5min and incubated in developing solution for 3-15min until the 

desired intensity of staining was reached. The reaction was stopped by applying 1% 

acetic acid three times for 5min. The samples were washed twice for 3min with H2O and 

incubated in 2% sodium thiosulfate solution for 5min, stabilizing the silver staining. After 
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rinsing twice with water for 5min, the samples were dehydrated using an ethanol gradient 

(50%, 70%, 90% and 100% of ethanol for 5min each) and incubated for 10min in 

isopropanol/xylene (1:1) and twice in xylene. The slides were mounted using Eukitt 

mounting medium. Quantification and statistical analyses were conducted as described in 

”immunohistochemistry on paraffin-sections”. 

 

2.2.8 Electron microscopic analysis 

2.2.8.1   Tissue preparation and epon embedding 

Mouse tissues were dissected from animals, which were perfused with Karlsson and 

Schultz buffer and post-fixed in Karlsson-Schulz fixative. The tissue was rinsed once in 

0.1M PBS and embedded in epon according to a modified method described by Luft et al. 

(Luft, 1961). Using an automated embedding machine (EMTP, Leica), the following 

protocol was applied: 

Solution Duration Temperature 

phosphate buffer 3 x 10min 4°C 

2% OsO4 4h 4°C 

ddH2O 3 x 10min 4°C 

30% ethanol 20min 4°C 

50% ethanol 20min 4°C 

70% ethanol 20min 4°C 

90% ethanol 20min 4°C 

100% ethanol 4 x 10min 4°C 

propylenoxid 3x 10min RT 

propylenoxid/ epon (2:1) 2h RT 

propylenoxid/ epon (1:1) 2h RT 

propylenoxid/ epon (1:2) 4h RT 

epon 4h RT 

 

The tissue was embedded further in an epon-filled mold and kept over night at 60°C for 

polymerization. 
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2.2.8.2   Staining of semi-thin sections 

The embedded samples were sectioned using a microtome (Ultracut S, Leica), while 

cutting with a diamond knife (Diatome Ultra 45°) semi-thin section of 500nm thickness. 

The samples were placed onto a glass slide and dried on a 60°C hot plate. For staining of 

semi-thin sections, methylene blue and Azure II staining solution were freshly mixed 1:1 

and applied onto the sections (Richardson et al., 1960). The sections were incubated for 

1min on a 60°C hot plate, thoroughly rinsed with ddH2O, dried and mounted with Eukitt. 

Semi-thin sections were observed under a light microscope, in order to judge the position 

within a sample. 

 

2.2.8.3   Contrasting of ultra-thin sections  

Ultra-thin sections were cut similarly to semi-thin section, but of 50nm thickness. The 

samples were placed onto formvar-polyvinyl coated cupper grids (2mm-1mm, AGRA 

scientific) and dried at RT. For contrasting, the grids were placed upside-down onto drops 

of uranyl acetate for 30min at RT and covered from light. Then, the grids were washed 

three times with ddH2O for 1min, incubated for 6min onto drops of Reynolds lead citrate 

(Reynolds, 1963) and finally washed four times 1min with ddH2O. The grids were dried by 

placing them on filter paper. Electron micrographs of the ultra-thin sections were obtained 

by using the electron microscope EM900 from Zeiss combined with a wide-angle dual 

speed 2K-CCD camera from TRS. Afterwards, images were analyzed by measuring the g-

ratio and by assessing distinctive histological features. ImageJ, Microsoft Excel and 

GraphPad Prism were used for further analyses. 

For g-ratio measurement, 10 randomly chosen images of a section (3000x magnification) 

were taken. Of those, 100 axons per section were quantified. By this measurement the 

thickness of myelinated fibers was calculated. The outer circumference of the myelin 

sheath, as well as the inner circumference was calculated with ImageJ. The ratio of inner 

circumference divided by the circumference of the outer myelin sheath equals the g-ratio. 

A baseline g-ratio value is approximately 0.77 in the central nervous system and 0.6 in the 

peripheral nervous system. Values higher indicate a hypomyelination, whereas smaller 

values indicate hypermyelination. 

Cnp1Cre/+;Fbxo7fl/fl mice: embedding and sectioning of samples, as well as obtaining 

electron microscopic pictures were done with the help of Torben Ruhwedel and Boguscha 

Sadowski (EM facility, group of Dr. Wiebke Möbius, department of Prof. Dr. Klaus-Armin Nave, 

Max-Planck Institute of Experimental Medicine, Göttingen). Siv Vingill measured the g-ratio of 

optic nerve samples. 
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Plp1CreERT2/+; Fbxo7fl/fl mice: preparation of samples and acquisition of electron 

microscopic images were obtained with the support of Claudia Krude, Hannelore Mader 

and Dr. Istvan Katona (EM facility, department of Prof. Dr. Joachim Weis, RWTH University, 

Aachen). Quantifications of the g-ratio of sciatic nerve samples were done together with 

Yuhao Huang.  

 

2.2.9 Mouse behavioral analyses 

Transgenic mice underwent behavioral analyses at different time points to assess motor 

and sensory phenotypes. All tests were conducted under standardizes conditions, at fixed 

light intensity of 90 lux and protected from disturbance. Male mice were used throughout 

the study for behavior analyses. Prior to each session, mice were allowed to acclimate for 

30min in the test room. Afterwards the weight of the mice was determined and the 

behavioral tests were performed in a distinct order: first elevated plus maze for assessing 

anxiety, then open filed test for ambulation and exploratory behavior, followed by tail 

suspension test, inverted grid, pole test, wire hang, balance beam and Rotarod for motor 

endurance and coordination. For sensory assessment the hot plate test was performed. 

In-between each mouse to be tested, the equipment was cleaned with water and 70% 

ethanol. The animals were monitored using the software Viewer from Biobserve. Further 

on obtained data were analyzed using Microsoft Excel and GraphPad Prism. 

 

2.2.9.1   Elevated plus maze 

In order to evaluate the anxiety of mice, an elevated plus maze test was conducted 

according to published protocol (Pellow et al., 1985). The apparatus is comprised of 4 

arms, all measuring 5x30cm. Two arms are open, whereas a 15cm high wall encloses the 

other two arms. The maze is elevated 40cm from the ground. Mice were placed in the 

center of the plus maze, facing an open arm, and both activity and exploratory behavior 

were recorded for 5min with the Viewer software. The time spent in open and closed arms 

was analyzed, since intensive time spent in an open arm indicates reduced anxiety. 

 

2.2.9.2   Open field 

General locomotion and exploratory behavior was measured in an open filed test, as 

previously demonstrated (Hall, 1932). The round arena had a diameter of 60cm and was 

surrounded by a 20cm high wall. Further on the open field was subdivided into 3 zones, 

the central circle of 20cm in diameter, an intermediate zone of 40cm in diameter and the 
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peripheral zone of 60cm in diameter. The mice were placed in the center and movement 

was monitored for 7min with the Viewer animal tracking system. The travelled distance, 

velocity and time spent in different zones were analysed. 

 

2.2.9.3   Tail suspension test 

To assess signs of neurological deficits and neurodegenerative disease progression, a 

modified form of the tail suspension test described by Steru et al. (Steru et al., 1985) was 

performed. Mice were lifted by their tail and hold closely over their cage for 10 seconds. 

The position of the hind limbs were scored from 0-3, with 0 representing normal, splayed 

hind limbs and 3 indicating strong clasping of the hind paws. An average out of three 

repetitive measurements was considered as final score. In-between repeated 

measurements a 30sec pause was given. 

 

2.2.9.4   Kyphosis 

The determination of kyphosis was conducted as previously described (Guyenet et al., 

2010). Mice were observed while walking and the curvature of the spin was scored from 

0-3. A score of 0 implied no signs of kyphosis, were as 1 indicated an arched spin while 

sitting, but not while walking. A score of 2 was given when the back was curved while 

sitting and mildly during movement and a score of 3 marked a severe kyphosis during 

sitting and walking. 

 

2.2.9.5   Inverted grid 

Muscle strength was assessed by the inverted grid test. Therefore mice were placed onto 

the grid of their home cage and the gird was inverted, holding it above the cage. The time 

mice could hold on to the grid, while being upside down, was measured with a cut-off time 

at 60sec. Three repeated measurements were done with a break of 1min in-between and 

the average of all measurements were calculated (Kondziela, 1964). 

 

2.2.9.6   Pole test 

The pole test has been previously described as an assessment for basal ganglia related 

motor function (Matsuura et al., 1997), (Ogawa et al., 1985). Mice were placed onto a 

vertical 50cm long pole facing upwards and had to turn in order to walk down the pole. 

The pole was placed in the home cage of the mice and the time needed to reach the 

bottom of the pole was taken. The animals were trained 2 days before testing, where 
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three consecutive measurements were done, with an interval of 1min. Finally, the average 

of all measurements were calculated. 

 

2.2.9.7   Wire hang  

Another test for muscle strength is the wire hang test, as previously described (Aartsma-

Rus and van Putten, 2014). The wire apparatus consists of an 80cm long steel wire, which 

was affixed at 30cm to poles. The ground was covered with soft tissue and the mice were 

suspended in the middle of the wire with their front paws. Then the time was measured 

that the mice needed to reach one of the poles. Three repeats were performed with an 

interval of 1min and the average time was calculated. 

 

2.2.9.8   Balance beam 

For testing balance and coordination, a balance beam test was conducted as previously 

described (Luong et al., 2011). The apparatus consists of either a 6mm or a 12mm wide 

and 80cm long beam, which is attached to a black box (15x15x15cm). The beam is 

elevated 50cm from the ground, with a safety net placed underneath. Prior to testing the 

mice, the animals were acclimated for 1min inside the back box containing food pellets. 

Afterwards, the mice were placed on the opposite end of the beam and time, as well as 

numbers of slips were counted until the black box was reached. The training was 

performed on two consecutive days and on the third days the animals were tested. For 

each beam, three repetitions were done, with a 1min break in-between repetitions and 

10min resting time in-between the beams. The average of time required to cross the 

beam, as well as numbers of slips was calculated. 

 

2.2.9.9   Rota-Rod 

While subjecting the mice to the Rotarod test, the motor coordination and endurance was 

tested. The program of the Rotarod was set for an increase of acceleration every 5 

seconds starting with 4rpm and reaching 40rpm after 3min. The average time spent on the 

moving rod was measured and each mouse was tested three times, with a 10min break 

in-between. The cut-off time was set for 5min. Furthermore a learning curve was 

established by performing tests at 0h, 3h and 24h. 
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2.2.9.10   Hot plate 

To assess sensory deficits, especially pain, a hot plate test was conducted. (Eddy and 

Leimbach, 1953) Mice were placed in a 1000ml round glass beaker on a 55°C metal 

plate. The time was stopped when mice showed any sign of irritation due to the heat, 

indicated in paws licking or jumping. The animals were immediately removed from the 

plate once showing signs of irritation. Further on a cut-off time of 30sec was set. Three 

repeated measurements were taken with a 10min break in-between. The average time 

was calculated. 

Behavioral analyses of the Cnp1Cre/+;Fbxo7fl/fl mice was performed by Siv Vingill.   

 

2.2.10 Statistical analysis 

All data obtained were further analyzed using Microsoft Excel. For statistical analysis 

GraphPad Prism was used. Normally distributed data of two groups were compared using 

the student T-test. For the analysis of data from more than two groups a one-way ANOVA 

were used. In case of two different independent variables, the influence on the depended 

variable was calculated by using a two-way ANOVA. Statistical differences were 

considered as significant if P < 0.05 (*P < 0.05, **P < 0.01, ***P < 0.001). All data are 

displayed as standard error of the mean (s.e.m.), unless otherwise stated. 

Fluorescent images were analyzed, using a customized macro designed by Dr. Miso 

Mitkovski (Light microscopy facility, Max-Planck Institute of Experimental Medicine, Göttingen). 
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3. Results 

3.1 Systemic characterization of Cnp1Cre/+;Fbxo7fl/fl mice  

The proper functioning of the UPS is essential to CNS and PNS integrity. FBXO7, which is 

part of the UPS, was shown to have crucial functions within neurons, since analyses of 

mice with conditional deletions of Fbxo7 display severe motor deficits. While recent 

studies focused on the importance of FBXO7 in neurons, its impact on myelinating cells 

remains unknown. Owing to FBXO7’s strong expression in myelinating cells and the 

intimate interaction of myelinating cells and neurons, I investigated if FBXO7 is equally 

essential for myelinating cells and the axonal integrity in the Cnp1Cre/+;Fbxo7fl/fl mouse line. 

Investigating the role of the UPS in myelinating cells, will elucidate its importance for the 

axon-glia interaction and opens a new perspective on the underlying and contributing 

mechanisms in neurodegenerative diseases.   

 

3.1.1 Deletion of Fbxo7 in myelinating cells by generating a 
conventional Cnp1Cre/+;Fbxo7fl/fl mouse line 

FBXO7 is ubiquitously expressed in various tissues of mice and men (Ilyin et al., 2000; 

Winston et al., 1999). The widespread expression of FBXO7 in the murine brain was 

shown by my colleague Dr. David Brockelt, who performed a β-galactosidase staining of 

brain sections from conventional Fbxo7 knockout mice, in which the lacZ expression 

cassette was under the control of the endogenous Fbxo7 promoter (Brockelt, 2015). The 

staining revealed that FBXO7 is predominantly expressed in the cortex, hippocampus and 

substantia nigra, as well as in the white matter of the cerebellum and corpus callosum. 

While my colleagues investigated the importance of FBXO7 in neurons, I investigated its 

function in myelinating cells. In collaboration with the department of Prof. Dr. Klaus-Armin 

Nave, we generated the Cnp1Cre/+;Fbxo7fl/fl conditional knockout (cKO) mouse, by 

breeding the Fbxo7fl/fl line (Vingill et al., 2016) with the Cnp1Cre/+ driver line (Lappe-Siefke 

et al., 2003) (Figure 3.1.1a). Cnp1 encodes for CNPase (2’,3’-cyclic-nucleotide 3’-

phosphodiesterase), a myelin-associated enzyme, which is present in myelin of the 

central- (CNS) and peripheral nervous system (PNS) (Sprinkle et al., 1985). The Cnp1-

Cre mice were kept heterozygous, whereas the Fbxo7 floxed line was bred to 

homozygosity. Throughout this study Fbxo7fl/fl and Cnp1Cre/+ mice were used as controls 

for the Cnp1Cre/+;Fbxo7fl/fl knockout mice. The correct breeding was confirmed and 

monitored, while genotyping of the Cre, floxed Fbxo7 and wild type Fbxo7 allele (Figure 



3   Results 
3.1 Systemic characterization of Cnp1Cre/+;Fbxo7fl/fl mice 

53 

 

 

3.1.1b). Further on, the deletion of Fbxo7 from myelinating cells was validated at the 

mRNA level. Therefore, a RT-PCR was performed on cerebellum samples from 2-month-

old Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl mice. The Fbxo7 mRNA was reduced by about 73% in 

the cKO samples as compared to control confirming the knockout of Fbxo7 in myelinating 

cells (Figure 3.1.1c). These findings confirm the deletion of Fbxo7 from myelinating cells 

in the Cnp1Cre/+;Fbxo7fl/fl mouse line. 

 

Figure 3.1.1 Validation of Cnp1Cre/+;Fbxo7fl/fl knockout mouse line. 
(a) Schematic representation of Cnp1Cre/+;Fbxo7fl/fl breeding including schematic of floxed Fbxo7 gene. 

Modified from Erdmann et al. (Erdmann et al., 2008). Fbxo7fl/fl mice were generated by Nicola Schwedhelm-

Domeyer. (b) Genotyping PCR of Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice using primers for Cre, floxed 

allele and wild type Fbxo7. (c) RT-PCR of 2-month-old Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl mice from cerebellar 

cDNA. Primers for Fbxo7 and β-Actin (reference) were used. n = 4 for both groups (unpaired t-test, **P < 0.01, 

mean ± s.e.m.). 

 

3.1.2 Cnp1Cre/+;Fbxo7fl/fl mice display a distinct phenotype 

At 6 weeks of age, the phenotype of Cnp1Cre/+;Fbxo7fl/fll mice was clearly distinguishable 

from control mice. When examining Cnp1Cre/+;Fbxo7fl/fl and control mice at 3 months of 

age, I found cKO mice to be smaller in size and harboring a prominent kyphosis (Figure 

3.1.2a). Moreover, Cnp1Cre/+;Fbxo7fl/fl mice died very early, already around 4 months of 

age. Therefore analyses in this study were performed latest at 3 months of age. To 
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determine the cause of the premature death, I examined the mice for pathological 

changes. I found that the cKO mice displayed a severe muscle atrophy of the 

musculoskeletal system (Figure 3.1.2b), as well as atrophic lungs (Figure 3.1.2c). 

Further on the animals showed a severe paresis of the hind limbs and a loss of tail tip 

tone. These preliminary observations indicate that FBXO7 is essential in myelinating cells.  

 

Figure 3.1.2 Cnp1Cre/+;Fbxo7fl/fl mice display kyphosis, muscle and lung atrophy. 
(a)-(c) Representative images of a 3-month-old Cnp1Cre/+;Fbxo7fl/fl and an age-matched Cnp1Cre/+ mouse show 

(a) kyphosis, indicated by arrow, (b) atrophy of skeletal muscle and (c) atrophic lungs.  

 

3.1.3 Cnp1Cre/+;Fbxo7fl/fl mice show paresis of the hind limbs caused 
by muscle weakness  

To examine the motor performance of Cnp1Cre/+;Fbxo7fl/fl mice, my colleague Dr. Siv Vingill 

performed a battery of behavioral tests. 6 week-old Cnp1Cre/+;Fbxo7fl/fl mice were tested 

together with Cnp1Cre/+ and Fbxo7fl/fl mice as control. Dr. Siv Vingill has previously 

demonstrated that Fbxo7fl/fl mice show normal behavior up to 12 months of age (Vingill, 

2016). Further on, the study by Hagemeyer et al., showed that up to 24 months of age, 

Cnp1Cre/+ mice display normal motor activity, coordination and strength (Hagemeyer et al., 

2012). The behavioral analyses revealed a significantly reduced bodyweight of 

Cnp1Cre/+;Fbxo7fl/fl mice as compared to controls, likely due to the aforementioned muscle 

atrophy (Figure 3.1.3a). While analyzing hind limb clasping, Cnp1Cre/+;Fbxo7fl/fl mice 

scored significantly worse than control mice. However, cKO mice displayed rather a 

weakness of the hind limbs, than a clasping phenotype (Figure 3.1.3b). In addition, 

Cnp1Cre/+;Fbxo7fl/fl mice demonstrated muscle weakness, as their ability to hold on to the 

inverted grid was significantly reduced (Figure 3.1.3c). In order to assess motor 

coordination, mice performed the rotarod test. The procedure was repeated 3 and 24 
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hours after the initial examination. The endurance of cKO mice was decreased, as mice 

fell off the rotating rod much faster than control mice. Moreover, the performance of 

Cnp1Cre/+;Fbxo7fl/fl mice on the rotarod did not improve, since their learning curve did not 

increased over time (Figure 3.1.3d). To further examine motor coordination, a balance 

beam test was performed. While running across a 12mm and 6mm beam, the cKO mice 

required more time and showed a lower coordination score on the 6mm beam than control 

mice, due to more frequent slips (Figure 3.1.3e). Anxiety and locomotion was tested by 

performing an open field test. Cnp1Cre/+;Fbxo7fl/fl mice did not show any signs of anxiety, 

but the distance they travelled was significantly shorter than of controls (Figure 3.1.3f). 

Taken together, these results provide strong evidence that loss of Fbxo7 in myelinating 

cells leads to decreased mobility, paresis of the hind limbs, resulting from muscle 

weakness and an overall reduced motor performance.  

 

Figure 3.1.3 Cnp1Cre/+;Fbxo7fl/fl mice show reduced motor performance, due to paresis of 
hind limbs and muscle weakness. 
(a)-(f) 6 week-old Fbxo7fl/fl (n = 8), Cnp1Cre/+ (n = 9) and Cnp1Cre/+;Fbxo7fl/fl (n = 10) mice were subjected to the 

following tests: (a) body weight, (b) tail suspension test (0 = normal, 3 = strong hind limb clasping) and (c) 

time spent on inverted grid. Further on, a (d) rotarod test at 0, 3 and 24h was performed, as well as a (e) 
balance beam test with a beam of 6mm or 12mm width, respectively. Here, the time to cross the beam and a 
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coordination score were measured (0 = unable to cross beam, 7 = normal). Finally an (f) open field test was 

conducted and the track lengths as well as the time spent in a specific area were monitored. (One-way 

ANOVA or two-way ANOVA, including Bonferroni post-test, *P < 0.05, **P < 0.01, ***P < 0.001, mean ± 

s.e.m.). These analyses were performed by Dr. Siv Vingill. 

 

3.2 Cellular characterization of Cnp1Cre/+;Fbxo7fl/fl mice 

In our lab, we investigated the impact of Fbxo7 deletion on different cell types of the 

nervous system, dissecting its functions at the cellular level. Conditional knockout mice, in 

which Fbxo7 was deleted from the forebrain, did not exhibit neuronal loss in the cortex, 

however demonstrated astrogliosis and microgliosis (Vingill et al., 2016). In addition, 

deletion of Fbxo7 from dopaminergic neurons did not induce neuronal cell death in the 

substantial nigra, but led to an increase in astrogliosis in the midbrain. The conventional 

Fbxo7 knockout mice, which died prematurely at P21, also showed astrogliosis and only a 

minimal increase in apoptosis in the cortex (Brockelt, 2015; Vingill, 2016). In the following 

experiments, I analyzed the effect of Fbxo7 deletion on myelinating cells, the axon-glia 

interaction and their environment. 

 

3.2.1 Loss of Fbxo7 does not affect myelination but leads to a shift in 
axon caliber  

To characterize the presented phenotype at the neuropathological level, I carried out 

histological analyses and determined if deletion of Fbxo7 led to structural changes within 

myelinating cells. Therefore, I stained myelinated fiber tracts on sagittal brain sections of 

3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice according to the Gallya’s 

silver impregnation protocol, but found no obvious difference between genotypes. There 

was no sign of increased or decreased thickness of myelinated fiber tracts that would 

indicate abnormalities in myelinated axons (Figure 3.2.1a).  

Furthermore, I performed immunohistological stainings of spinal cord cross-sections of 3-

month-old Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice and used myelin proteolipid 

protein (PLP) as marker. Quantification of PLP+ area showed no difference in myelinated 

tracts of the CNS between cKO and control mice (Figure 3.2.1b).  

To investigate changes in myelination in the PNS, I stained longitudinal sections of sciatic 

nerve from 3-month-old Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl mice, with an antibody against 

myelin basic protein (MBP). Since PLP is of lower abundance in Schwann cells, but only 

of very low abundance in Schwann cell myelin, a staining with MBP was preferred 
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(Kamholz et al., 1992). The analysis of MBP+ area did not reveal any change in MBP 

levels in the PNS between cKO and control mice (Figure 3.2.1c). I analyzed and 

quantified fluorescent images, using a customized macro designed by Dr. Miso Mitkovski. 

Taken together, I did not detect any structural changes in myelination in the CNS or PNS. 
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Figure 3.2.1 Cnp1Cre/+;Fbxo7fl/fl mice present no histological changes in myelination. 
(a) Gallyas staining of 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl  sagittal brain sections. Cb = 

cerebellum, CC = corpus callosum, CR = corona radiata. Scale bar = 0.5mm. (b) Cryo-cross-sections of spinal 

cords from 3-month-old Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice were subjected to 

immunohistochemistry using PLP antibody. Sections were taken from lumbar segment 1-3 of the spinal cord. 

Three mice per genotype and two technical repeats per animal were included in the analyses. The percentage 

of area stained was quantified using a customized macro (unpaired t-test, mean ± s.e.m.). Scale bar = 50µm. 

(c) Representative images of longitudinal cryo-sections of sciatic nerves from 3-month-old Fbxo7fl/fl and 

Cnp1Cre/+;Fbxo7fl/fl mice that were subjected to immunohistochemistry with an MBP antibody. Three biological 

and two technical repeats per genotype were included in the analyses. The percentage of area stained was 

quantified using a customized macro (unpaired t-test, mean ± s.e.m.). Scale bar = 50µm. 

 

To investigate ultrastructural changes and the compaction of myelin layers, I decided to 

take advantage of electron microscopy. In collaboration with Dr. Wiebke Möbius, I 

subjected optic nerve and sciatic nerve samples of 3-month-old Cnp1Cre/+ and 

Cnp1Cre/+;Fbxo7fl/fl mice to electron microscopic analyses. Both, embedding of samples 

and acquisition of pictures were done with the support from Boguscha Sadowski and 

Torben Ruhweden. Cross-sections were quantified by calculating the g-ratio, which serves 

as benchmark for myelin thickness. The analysis of optic nerve was performed by Dr. Siv 

Vingill and showed an equal distribution of g-ratio values for cKO and control mice, 

indicating no change in myelination in the CNS of Cnp1Cre/+;Fbxo7fl/fl mice (Figure 3.2.2a). 

The average g-ratio for myelinated axons in the CNS is approximately 0.77 according to 
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literature, however the quantification of our measurements revealed an average value of 

0.7 for both cKO and control (Chomiak and Hu, 2009) (Figure 3.2.2b). To detect more 

subtle changes, which might only be appreciated within smaller subpopulations, I grouped 

the measured g-ratio values as following: Values from 0 – 0.64 represented 

hypermyelination, values between 0.65 – 0.75 reflected normal myelination and g-ratios 

from 0.76 – 0.90 identified hypomyelination.  The data showed that the majority of 

measured axons (76% in cKO, 65% in control mice) displayed a normal myelination. The 

percentage of axons that displayed hyper- or hypomyelination was negligibly small 

(hypermyelination: 7% in cKO, 10% in control mice; hypomyelination: 17% in cKO, 25% in 

control mice) and only represented the edges of a Gaussian distribution. Interestingly, 

axons of Cnp1Cre/+;Fbxo7fl/fl mice presented a significant shift towards large-caliber axons 

throughout all groups as compared to control (Figure 3.2.2c). With these results, I show 

that loss of Fbxo7 in oligodendrocytes does not severely influence myelination in the CNS. 

However deletion of Fbxo7 triggers a shift in axon caliber in the optic nerve of 

Cnp1Cre/+;Fbxo7fl/fl mice. 
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Figure 3.2.2 Cnp1Cre/+;Fbxo7fl/fl mice do not display any major alterations in CNS myelination, 

but a shift in axon caliber.  
(a) Cross-sections of optic nerve from 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were obtained by 

electron microscopy. G-ratio was measured from three mice per genotype and displayed as scatter plot. 600 

axons per genotype were quantified. Arrowheads indicate oligodendrocyte nuclei. Scale bar = 3µm. Analysis 

was performed by Dr. Siv Vingill. (b) Average g-ratio of all measured axons from Cnp1Cre/+ and 

Cnp1Cre/+;Fbxo7fl/fl mice (unpaired t-test, mean ± s.e.m.). (c) Data obtained in (a) were sorted into 3 groups. G-

ratio values 0 – 0.64 = hypermyelination, 0.65 – 0.75 = normal myelination and 0.76 – 0.90 = hypomyelination 

(unpaired t-test, *P < 0.05, **P < 0.01, ***P < 0.001, mean ± s.e.m.). The quantity of axons per group was 

analyzed and displayed as percentage (Chi-squared test , ***P < 0.001).  
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Analogously to the CNS, I examined myelination in the PNS. I measured the g-ratio of 

sciatic nerve cross-sections from Cnp1Cre/+;Fbxo7fl/fl and control mice, and found that the 

distribution of values of cKO and control mice was comparable. However, I observed that 

while the majority of data from both groups were similarly scattered, a small but noticeable 

fractions seemed to differ: a small population of axons in the cKO group indicated greater 

g-ratios (i) and in addition a second population of axons in the control group displayed 

larger diameter (ii) (Figure 3.2.3a). According to literature, the average g-ratio in the PNS 

equals approximately 0.6 (Rushton, 1951), however both our cKO and control mice 

revealed an average g-ratio of approximately 0.53 (Figure 3.2.3b). To flesh out the 

differences (i) in more detail, I subdivided the g-ratio measurements into classes. I chose 

values from 0 – 0.40 to represent hypermyelination, values from 0.41 – 0.62 should 

indicating normal myelination and g-ratios between 0.63 – 1 reflected hypomyelination. 

The results showed that majority of axons from cKO and control mice displayed a normal 

myelination (69% in cKO, 79% in control mice). Although the percentage of 

hypermyelinated and hypomyelinated axons in both genotypes were negligibly small 

(hypermyelination: 4% in cKO, 6% in control mice), cKO mice presented surprisingly more 

significant axons, which were hypomyelinated as compared to control (27% in cKO, 15% 

in control mice). However, this small population of hypermyelinated axons in cKO and 

control mice only displays a small percentage of measured axons in the PNS. Regarding 

axon caliber (ii), cKO mice displayed significantly smaller axons and a lack of large caliber 

axons as compared to control. (Figure 3.2.3c). With these results I show that Fbxo7 

deletion in Schwann cells did not cause major structural changes in myelin, however 12% 

more axons of cKO mice displayed increased hypomyelination than in control mice. 

Moreover the sciatic nerve of Cnp1Cre/+;Fbxo7fl/fl mice contained significantly smaller 

axons, indicating a change in axon caliber upon loss of Fbxo7 from Schwann cells. 
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Figure 3.2.3 Cnp1Cre/+;Fbxo7fl/fl mice show no severe changes in PNS myelination, but a shift 

in axon caliber.  
(a) Representative images of sciatic nerve cross-sections from 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl 

mice. Images were obtained by electron microscopy and g-ratio was measured from four mice per genotype. 

Scatter plot presents 400 axons per genotype. Arrowheads indicate Schwann cell nuclei of myelinated axons. 

Scale bar = 3µm. (b) Average g-ratio of all measured axons from Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice 

(unpaired t-test, mean ± s.e.m.). (c) Analysis of (a) was grouped into 3 classes: g-ratio of 0 – 0.40 = 

hypermyelination, 0.41 – 0.62 = normal myelination group and 0.63 – 1 = hypomyelination (unpaired t-test, 

***P < 0.001, mean ± s.e.m.). Percentage of axons per group was analyzed (N-1 Chi-squared test, *P < 0.05, 

***P < 0.001). 
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To examine if knockout of Fbxo7 might influence the abundance of myelinating cells, I 

counted oligodendrocyte and Schwann cell nuclei in optic and sciatic nerve, respectively. 

Nuclei were counted from the same electron microscopic images that were used for g-

ratio measurement. The results showed no significant change in the quantity of 

oligodendrocyte nuclei (Figure 3.2.4a) or Schwann cell nuclei. However a trend of slightly 

less Schwann cell nuclei was seen in Cnp1Cre/+;Fbxo7fl/fl mice as compared to control 

(Figure 3.2.4b). 

While evaluating morphological changes within the sciatic nerve, I primarily focused on 

myelinated axons. However, non-myelinated small diameter axons, so-called C fibers, are 

also found in the sciatic nerve. C fibers are grouped together and form so-called Remak 

bundles, in which Remak cells engulf the fibers and cluster them together. To analyze the 

effect of Fbxo7 deletion on Remak bundles, I counted the nuclei of Remak cells. As 

depicted in Figure 3.2.4c, the number of Remak cells was not altered. 

Moreover, I performed a TUNEL assay on 3-month-old sagittal brain sections from 

Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice, to determine cell death within white matter 

of the CNS. There were slightly more apoptotic cells present in the white matter of 

cerebellum of cKO mice than compared to controls, but this reached not significance. 

Further on, there was no significant increase in apoptotic cells in corpus callosum in cKO 

mice when compared to control mice (Figure 3.2.4d).  
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Figure 3.2.4 Cnp1Cre/+;Fbxo7fl/fl mice display a normal abundance of oligodendrocyte, 
Schwann cell and Remak cell nuclei.  
(a) Number of oligodendrocyte nuclei in optic nerve cross-section of 3-month-old Cnp1Cre/+ and 

Cnp1Cre/+;Fbxo7fl/fl mice. Nuclei were counted in the same images as described in 3.2.1.2a. (unpaired t-test, 

mean ± s.e.m.). (b) Analysis of Schwann cell nuclei in cross-sections of sciatic nerve from 3-month-old 

Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice (same images as described in 3.2.1.3a) (unpaired t-test, mean ± 

s.e.m.). (c) Electron microscopy images of sciatic never cross-sections from Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl 

mice were analyzed counting Remak bundle nuclei (unpaired t-test, mean ± s.e.m.).  Arrowheads indicate 

Remak bundle nuclei. Scale bar = 1.5µm. (d) TUNEL assay was performed on sagittal paraffin sections of 

brains from 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice. Three independent animals per 

group and two technical replicates were analyzed. TUNEL positive cells were counted in corpus callosum and 

white matter of cerebellum (One-way ANOVA, including Bonferroni post-test, mean ± s.e.m). Arrowheads 

indicate TUNEL+ cells. Scale bar = 100µm. 
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3.2.2 Cnp1Cre/+;Fbxo7fl/fl mice display prominent axonal degeneration 
in the periphery 

Although Fbxo7 was deleted from myelinating cells, my investigations showed no striking 

impact on myelination in the CNS or PNS. The interaction between myelinating cells and 

axons is essential for fast propagation of the action potential but also to ensure mutual 

support and stabilization. Owing to this strong cooperation and growing evidence that 

bolsters a critical trophic support for axons by myelinating cells (Corfas et al., 2004; Nave, 

2010a; Simons and Nave, 2015), I investigated the effects of Fbxo7 deletion on axonal 

integrity. I subjected sagittal brain sections of 3-months-old Fbxo7fl/fl and 

Cnp1Cre/+;Fbxo7fl/fl mice to immunohistochemistry using an antibody against amyloid 

precursor protein (APP). APP is anticipated to accumulate as a result of axonal damage 

(An et al., 1997). However, I did not observe any change in APP distribution in cKO as 

compared to control mice, indicating no difference in axonal integrity within corpus 

callosum and white matter of cerebellum (Figure 3.2.5a). While there was no APP 

accumulation present in the CNS, quantifications of APP staining on longitudinal sciatic 

nerve sections from 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice showed 

significant accumulation of APP in cKO tissue (Figure 3.2.5b). Collectively, my findings 

demonstrate that loss of Fbxo7 results in axonal damage in the sciatic but not optic nerve 

and thus suggests a greater vulnerability in Schwann cells.  
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Figure 3.2.5 Cnp1Cre/+;Fbxo7fl/fl mice show axonal damage in the PNS. 
(a) Representative images of sagittal paraffin brain sections of 3-month-old Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl 

mice, which were immunostained with an APP antibody. Images depict white matter of cerebellum and corpus 

callosum. Scale bar = 100µm. (b) Longitudinal cryo-section of sciatic nerves from 3-month-old Fbxo7fl/fl, 

Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were subjected to immunohistochemistry using an antibody against 

APP. Three independent mice per genotype and three sections from each animal were analyzed. (one-way 

ANOVA, including Bonferroni post-test, *P < 0.05, mean ± s.e.m). The images were analyzed by applying a 

customized macro designed by Dr. Miso Mitkovski and further the numbers of APP accumulations were 

counted. Scale bar = 40µm. 

 

Owing to the observed axonal damage, I decided to analyze any changes in axon 

morphology and abundance using electron microscopic images of 3-month-old Cnp1Cre/+ 

and Cnp1Cre/+;Fbxo7fl/fl mice. Similar to previous analyses, g-ratio measurements of optic 

nerve samples were grouped but this time according to axon diameter. The groups 

included axons of either < 1µm or > 1µm in diameter. The results showed that the majority 

of axons from control and cKO mice displayed a diameter of < 1µm (75% in control, 66% 

in cKO). Interestingly, the distribution of axon sizes further revealed that Cnp1Cre/+;Fbxo7fl/fl 

mice harbored significantly more axons with a diameter greater than 1µm as compared to 

control (25% in control, 34% in cKO). This indicates that loss of Fbxo7 in oligodendrocytes 
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leads to a mild shift towards large caliber axons in the optic nerve. Moreover, the analysis 

showed no difference in g-ratio between cKO and control mice, which matched my 

previous result (Figure 3.2.6a).  

For the quantification of PNS axon calibers, g-ratio values from sciatic nerve were 

grouped as follows: axon diameter from 0 – 1µm, 2 – 3µm and > 4µm. The results showed 

that the majority of axons of Cnp1Cre/+;Fbxo7fl/fl and Cnp1Cre/+ mice had a diameter in the 

range of 2 – 3µm (57% in cKO, 50% in control). Interestingly, Cnp1Cre/+;Fbxo7fl/fl mice 

revealed a shift in axon caliber within the sciatic nerve: while axons larger than 4µm were 

significantly less abundant in cKO mice (5% in cKO and 17% in control), the number of 

small caliber axons that were < 4µm in diameter were increased in Cnp1Cre/+;Fbxo7fl/fl mice 

as compared to controls (summarized from both groups: 95% in cKO, 83% in control). 

Additionally, the analysis confirmed my previous result and showed that sciatic nerve 

axons of cKO mice were rather hypomyelinated than axons of controls (Figure 3.2.6b). In 

conclusion, Fbxo7 deletion within oligodendrocytes leads to an increase in axon diameter, 

without significant changes in myelination, whereas in Schwann cells loss of Fbxo7 leads 

to a reduction in large caliber axons. Supporting my previous assumption, this analysis 

further indicated a moderate hypomyelination of PNS axons. 

 

Figure 3.2.6 Loss of FBXO7 induces an increase in axon caliber in the CNS and a shift 

towards small caliber axons in the PNS of Cnp1Cre/+;Fbxo7fl/fl mice.  
(a) G-ratio measurement from optic nerve cross-sections of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice 

were grouped according to axonal diameter (< 1µm, >1µm). Three independent mice per genotype were 

included and 600 axons per condition analyzed (unpaired t-test, mean ± s.e.m.). The percentage of axons per 

group was analyzed (N-1 Chi-squared test, ***P < 0.001). (b) Measured g-ratios from sciatic nerve cross-
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sections of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were classified according to the axonal 

diameter ( 0 – 1µm, 2 – 3µm, > 4µm). Four independent animals were analyzed per genotype and 400 axons 

per condition measured (unpaired t-test, ***P < 0.001, mean ± s.e.m.). The percentage of axons per group 

was analyzed (N-1 Chi-squared test , *P < 0.05, ***P < 0.001). 

 

Deletion of Fbxo7 induced a shift in axon diameter within the optic nerve and sciatic 

nerve. To investigate whether or not this shift in axon caliber correlates with changes in 

axon number, I counted myelinated axons. I analyzed axons on electron microscopic 

images from optic nerve sections of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice, 

but found no difference in the number of axons within the optic nerve of cKO and control 

mice (Figure 3.2.7a). In addition, I assessed the number of degenerated axons in the 

optic nerve. Here, Cnp1Cre/+;Fbxo7fl/fl mice displayed a slight but not significant increase in 

degenerated axons (Figure 3.2.7b).  

 

Figure 3.2.7 Cnp1Cre/+;Fbxo7fl/fl mice show no significant increase in the number of axons as 

well as degenerated axons in the optic nerve.  
(a) Average number of axons within optic nerve of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice. Three 

mice per condition and 10 images per mouse were analyzed (unpaired t-test, mean ± s.e.m.). Images depict 
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cross-sections of optic nerve. Scale bar = 3µm. (b) Representative image of degenerated axon from optic 

nerve of 3-month-old Cnp1Cre/+;Fbxo7fl/fl mouse. Images described in (a) were used to count the average 

number of degenerated axons from three mice per genotype and within 10 images per mouse (unpaired t-test, 

mean ± s.e.m.). Scale bar = 0.5µm. 

 

I further quantified the abundance of myelinated axons and axonal degeneration depicted 

on electron microscopic images from sciatic nerve sections of 3-month-old Cnp1Cre/+ and 

Cnp1Cre/+;Fbxo7fl/fl mice. The results showed a significant loss of myelinated axons in cKO 

mice as compared to control (Figure 3.2.8a). Moreover, Cnp1Cre/+;Fbxo7fl/fl mice revealed 

a significant increase in degenerated axons within the sciatic nerve (Figure 3.2.8b). 

Furthermore, I counted the number of Remak bundles in the sciatic nerve, but saw no 

difference between Cnp1Cre/+;Fbxo7fl/fl and control mice (Figure 3.2.8c). The number of 

degenerated Remak bundles was slightly but not significantly higher in cKO mice than in 

controls (Figure 3.2.8d). Overall, loss of Fbxo7 in myelinating cells leads to axonal 

degeneration in the optic and sciatic nerve. However, knockout of Fbxo7 appears to be 

more detrimental for large caliber axons in the PNS as compared to axons in the CNS, 

since the PNS shows a greater axonal loss. 
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Figure 3.2.8 Loss of Fbxo7 leads to increased axonal degeneration within the sciatic nerve 
of Cnp1Cre/+;Fbxo7fl/fl mice. 
(a)-(d) Sciatic nerve cross-sections of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were analyzed. Four 

independent animals per condition and 10 images per mouse were included in the analyses (unpaired t-test, 

***P < 0.001, mean ± s.e.m.). (a) Representative electron microscopic images of cross-sections from sciatic 

nerve. The average number of myelinated axons was counted. Scale bar = 3µm. (b) Further on, the average 

number of degenerated axons was counted. Electron microscopic image from sciatic nerve represents axonal 

degeneration. Scale bar = 1µm. (c) The number of Remak bundles was assessed. (d) Analysis of 

degenerated Remak bundles. Electron microscopic image represents degenerated Remak bundles in sciatic 

nerve of 3-month-old Cnp1Cre/+;Fbxo7fl/fl mouse. Scale bar = 1µm. 
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In order to further understand the underlying pathophysiology of Cnp1Cre/+;Fbxo7fl/fl mice, 

we performed electrophysiological recordings. The pathology of knockout mice was 

predominantly located in the periphery and Fbxo7 deletion led to a greater deterioration of 

PNS than of CNS axons. Thus, we decided to examine electrophysiological changes of 

the sciatic nerve. Electrophysiological recordings were performed by Dr. Robert Fledrich, 

who analyzed 2-month-old Cnp1Cre/+;Fbxo7fl/+ and Cnp1Cre/+;Fbxo7fl/fl mice. The key 

parameters for quantification of peripheral nerve function included the compound muscle 

action potential (CMAP), nerve conduction velocity (NCV) and distal motor latency (DML). 

The CMAP is an indicator for the quantity of functional axons. Analysis of 

Cnp1Cre/+;Fbxo7fl/fl mice showed significant decrease in CMAP at distal and proximal 

position, thus demonstrating loss of axons in the sciatic nerve (Figure 3.2.9a). In addition, 

Cnp1Cre/+;Fbxo7fl/fl mice exhibited a significant reduction in NCV, further indicating axonal 

loss. However, a significant decrease in NCV could also imply segmental demyelination 

(Somlai, 2016) (Figure 3.2.9b). These potential changes in myelination can further be 

elucidated by measuring the DML as demyelination would lead to a prolonged DML. The 

measurements of the DML did not show any difference between cKO and control mice, 

suggesting no significant alteration of myelination (Figure 3.2.9c). These analyses 

supported my previous results and showed that ablation of Fbxo7 from myelinating cells 

leads to severe axonal loss without significantly affecting myelination in the sciatic nerve. 

 

Figure 3.2.9 Severe axonal degeneration in the sciatic nerve of Cnp1Cre/+;Fbxo7fl/fl mice.  
(a)-(c) Electrophysiological recordings were measured from sciatic nerve of 2-month-old Cnp1Cre/+;Fbxo7fl/+ 

and Cnp1Cre/+;Fbxo7fl/fl mice. (a) Compound muscle action potential (CMAP). (b) Nerve conduction velocity 

(NCV). (c) Distal motor latency (DML). Analyses were performed on 6 independent mice per condition 

(unpaired t-test, **P < 0.01, ***P < 0.001, mean ± s.e.m.). Electrophysiological recordings were performed by 

Dr. Robert Fledrich. 
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3.2.3 Knockdown of Fbxo7 from myelinating cells leads to increased 
inflammation  

The degeneration of cells and overall damage of tissue often evokes an immune response 

and as seen in many neurodegenerative diseases can induce neuroinflammation (Damier 

et al., 1993; Wyss-Coray and Mucke, 2002). Since Cnp1Cre/+;Fbxo7fl/fl mice featured 

increased axonal loss in both CNS and PNS, I searched for inflammatory events that 

would accompany the degenerative event in corpus callosum and white matter of 

cerebellum. Hence, I subjected 3-month-old sagittal brain sections from Fbxo7fl/fl, Cnp1Cre/+ 

and Cnp1Cre/+;Fbxo7fl/fl mice to immunohistochemical analysis using an antibody against 

the ionized calcium-binding adapter molecule 1 (Iba1), which acts as an indicator for 

inflammation. The quantifications of Iba1-positive cells within the corpus callosum did not 

show a difference between groups. However, analysis of the white matter of cerebellum 

showed a significant increase in the occurrence of microglia in cKO mice as compared to 

control (Figure 3.2.10a). To further investigate inflammation, I stained the aforementioned 

brain sections with an antibody against macrophage antigen 3 (Mac3), marker for 

reactivated microglia. The number of activated microglia resulted in a slight increase in the 

corpus callosum and white matter of cerebellum of Cnp1Cre/+;Fbxo7fl/fl mice (Figure 

3.2.10b). In addition, I examined whether loss of Fbxo7 leads to an increase in 

astrogliosis, since astrocytes extensively interact with microglia during an inflammatory 

response. Therefore, I immunostained brain sections with an antibody against glial 

fibrillary acidic protein (GFAP), a marker for astrocytes. The analysis showed a significant 

increase in GFAP signal in the white matter of cerebellum of Cnp1Cre/+;Fbxo7fl/fl mice, but 

no difference in GFAP levels within the corpus callosum of all three groups (Figure 

3.2.10c). To examine the inflammatory response upon Fbxo7 deletion on long-traveling 

axons of the CNS, I further performed immunohistological staining on cross-sections of 

spinal cord from 3-months-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice. The 

analysis of Iba1 stainings revealed a significant increase in microglia levels in 

Cnp1Cre/+;Fbxo7fl/fl mice (Figure 3.2.10d). Moreover, GFAP stainings showed significantly 

more astrogliosis in cKO mice as compared to control (Figure 3.2.10e). Collectively, I 

found a significant increase in inflammation and astrogliosis predominantly in the white 

matter of the cerebellum of Cnp1Cre/+;Fbxo7fl/fl mice. Further on Cnp1Cre/+;Fbxo7fl/fl mice 

displayed significant inflammation and astrogliosis within the spinal cord. 
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Figure 3.2.10 Increased inflammation in the white matter of cerebellum and spinal cord of 

Cnp1Cre/+;Fbxo7fl/fl mice.  
(a)-(c) Sagittal paraffin brain sections from 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were 

immunostained with (a) Iba1 (b) Mac3 and (c) GFAP antibodies. Three independent biological repeats per 

group and two technical repeats per animal were analyzed. Quantifications were performed within corpus 

callosum and white matter of cerebellum (one-way ANOVA, including Bonferroni post-test, *P < 0.05, **P < 

0.01, mean ± s.e.m). Arrows indicate microglia, arrowheads show reactivated microglia and asterisk point at 

astrocytes. Scale bar = 50µm. (d) – (e) Representative images of spinal cord cross-sections from 3-month-old 

Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were immunostained with (d) Iba1 and (e) GFAP antibodies. 

Sections were taken from lumbar segment 1-3 of the spinal cord and three mice per condition, as well as three 

samples per mouse were analyzed (one-way ANOVA, including Bonferroni post-test, ***P < 0.001, mean ± 

s.e.m). The percentage of area stained by the respective antibody was analyzed, using a customized macro 

designed by Dr. Miso Mitkovski. Scale bar = 50µm. 
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Having determined that inflammation is significantly higher in cerebellar white matter of 

Cnp1Cre/+;Fbxo7fl/fl mice, I further investigated inflammatory events by RT-PCR analysis. 

cDNA was synthesized from cerebellar tissue from 2-month-old Fbxo7fl/fl and 

Cnp1Cre/+;Fbxo7fl/fl mice and mRNA levels of different anti- and pro-inflammatory markers 

were tested. The analyses of anti-inflammatory markers including interleukin 10 (IL-10), 

interleukin 1 receptor antagonist (IL-1ra) and Interleukin 6 (IL-6), showed no significant but 

a trend of increased expression in Cnp1Cre/+;Fbxo7fl/fl mice when compared to control mice 

(Figure 3.2.11a). Pro-inflammatory markers, such as tumor necrosis factor α (Tnfα), 

interleukin 1β (IL-1β), interferon γ-induced protein 10 (Ip-10) and monocyte 

chemoattractant protein 1 (Mcp-1) showed higher levels of expression in cKO mice, 

indicating an elevated inflammatory response in Cnp1Cre/+;Fbxo7fl/fl mice. However of 

those pro-inflammatory markers only Ip-10 was significantly increased (Figure 3.2.11b).  

 
Figure 3.2.11 Levels of inflammatory markers show a trend of elevation in the cerebellum of 

Cnp1Cre/+;Fbxo7fl/fl mice.  
(a)-(b) RT-PCR analysis of RNA isolated from cerebella of 2-month-old Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl mice. 

Primers were used for (a) anti-inflammatory markers including interleukin 10 (IL-10), interleukin 1 receptor 

antagonist (IL-1ra), Interleukin 6 (IL-6) and (b) pro-inflammatory markers including tumor necrosis factor α 

(Tnfα), interleukin 1β (IL-1β), interferon γ-induced protein 10 (Ip-10) and monocyte chemo attractant protein 1 

(Mcp-1). Four independent animals per genotype were analyzed and three replicates per animal were 

included (unpaired t-test, **P < 0.01, mean ± s.e.m). 
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To assess inflammation in the PNS of Cnp1Cre/+;Fbxo7fl/fl mice, I subjected longitudinal 

sections of sciatic nerve from 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice 

to immunohistochemical analysis using an antibody against Iba1 and GFAP. I found a 

significant increase in both Iba1-positive and GFAP-positive cells in cKO mice as 

compared to control (Figure 3.2.12a,b). Screening at a higher resolution for signs of 

inflammation, I analyzed electron microscopic images from sciatic nerve cross-sections of 

Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice. Interestingly, Cnp1Cre/+;Fbxo7fl/fl mice harbored a 

striking number of macrophages engulfing and digesting dead myelinated axons, whereas 

macrophages were absent in control samples. Macrophages can be characterized by their 

thin, long processes, so-called pseudopodia, which they extend to engulf cellular debris, 

designated for phagocytosis and degradation. Additionally, large cytoplasmic granules are 

a feature of macrophages. These typical signs of microphages I observed in great 

abundance in almost all of the 40 electron microscopic images of cKO mice, but not in the 

40 images of section of control sciatic nerve (Figure 3.2.12c). The data illustrate the 

increased infiltration of the sciatic nerve by macrophages and underscores a strong 

inflammatory response in Cnp1Cre/+;Fbxo7fl/fl mice upon Fbxo7 deletion in the PNS. 
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Figure 3.2.12 Increased inflammatory response in sciatic nerve of Cnp1Cre/+;Fbxo7fl/fl mice.  
(a)-(b) Longitudinal cryo-section from sciatic nerves of 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl 

mice were subjected to immunohistochemistry using an antibody against (a) Iba1 or (b) GFAP. Three 

independent mice per genotype and three samples per mouse were analyzed (one-way ANOVA, including 

Bonferroni post-test, **P < 0.01, ***P < 0.001, mean ± s.e.m). The images were analyzed using a customized 

macro designed by Dr. Miso Mitkovski. Scale bar = 100µm. (c) Representative images of electron microscopic 

cross-sections from sciatic nerve of 3-month-old Cnp1Cre/+;Fbxo7fl/fl mice. Images illustrate increased 

infiltration of sciatic nerve by macrophages engulfing dead, myelinated axons and migrating in from blood 

vessels. Mp = macrophage, Ax = axon, BV = blood vessel. Scale bar = 1µm. 
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3.3 Molecular characterization of Cnp1Cre/+;Fbxo7fl/fl mice 

Owing to its function as E3 ubiquitin ligase, FBXO7 interacts with different proteins and 

thus affects different molecular pathways. Previous studies have shown that FBXO7 

interacts with p27, cyclin D/CDK6 complex and HURP, proteins which all are linked to cell 

cycle regulation (Hsu et al., 2004; Laman et al., 2005). Further on, FBXO7 was shown to 

interact with parkin and PINK, which both are essential for the mitochondrial quality 

control (Burchell et al., 2013). In our lab, Dr. David Brockelt identified FBXO7 to be a 

proteasome-associated protein, that binds to and ubiquitinates the proteasome subunit 

PSMA2 – a novel interaction partner. My colleagues demonstrated the vital role of FBXO7 

in neurons and its regulatory function in proteasome assembly (Vingill et al., 2016). In the 

following experiments, I investigated the molecular changes in myelinating cells upon 

Fbxo7 deletion and examined the proteasomal activity in Fbxo7-depleted Schwann cells.  

 

3.3.1 Fbxo7 deletion leads to an up-regulation of stress sensors and 

down-regulation of cytoskeletal proteins in CNS myelin 

Myelinating cells not only insulate axons for fast and saltatory propagation of action 

potentials, they are also essential for the metabolic and trophic support of axons, ensuring 

their integrity and long term survival (Nave, 2010b). Hence, a balanced protein 

homeostasis within myelinating cells is crucial for the axon-glia interaction. To investigate 

how Fbxo7 deletion affects the protein homeostasis in myelinating cells and support of 

axons, we subjected purified myelin isolated from brains of 3-month-old Cnp1Cre/+ and 

Cnp1Cre/+;Fbxo7fl/fl mice to quantitative mass spectrometry analyses. Myelin purification 

from the CNS was performed by Ramona Jung and mass spectrometry analyses were 

done in collaboration with Dr. Olaf Jahn. The analysis identified 563 candidates, which 

were sorted according to a log2 ratio of Cnp1Cre/+;Fbxo7fl/fl values divided by Cnp1Cre/+ 

values. Among the proteins, those with 25% higher or lower expression levels as 

compared to control were grouped and selected candidates were analyzed. The up-

regulated proteins of CNS myelin included a range of proteins that were associated with 

the cellular response to endogenous stimuli, such as detoxification processes, regulation 

of apoptosis, cellular signaling cascades and CNS development processes (Figure 

3.3.1a). The majority of down-regulated proteins in CNS myelin were associated with 

cytoskeletal arrangement and mitochondrial function (Figure 3.3.1b). These results 

indicate that loss of Fbxo7 from oligodendrocytes triggers a cellular stress response and 
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induces endogenous processes such as detoxification. Moreover, Fbxo7 deletion affects 

the stability of the cytoskeleton and the mitochondrial function.     

 

 
Figure 3.3.1 Up- and down-regulated proteins in CNS myelin upon deletion of Fbxo7.  
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(a)-(b) Purified myelin from 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl brains was analyzed by quantitative 

mass spectrometry. The mean of five mice per genotype and two repeats per animal was analyzed using the 

log2 cKO/control ratio. Cnp1Cre/+;Fbxo7fl/fl values were normalized to control (unpaired t-test, *P < 0.05, **P < 

0.01, ***P < 0.001, mean ± s.e.m.). Shown are the 25% of (a) up-regulated proteins [AIFM1: Apoptosis-

inducing factor 1; ENO1: Enolase 1; GNB4: Guanine nucleotide-binding protein subunit beta 4; GSTP1: 

Glutathione S-transferase pi 1; SIRT2: NAD-dependent protein deacetylase sirtuin-2; IGSF8: Immunoglobulin 

superfamily member 8; DUSP15: Dual specificity protein phosphatase 15; PRRT2: Proline-rich 

transmembrane protein 2; CLIC4: Chloride intracellular channel protein 4; VAT1: Synaptic vesicle membrane 

protein VAT-1 homolog; GSTM2: Glutathione S-transferase mu; STXBP3: Syntaxin-binding protein 3; CNTN2: 

Contactin 2; ATP1A4: Sodium/potassium-transporting ATPase subunit alpha 4; ENPP6: Ectonucleotide; 

pyrophosphatase 6; CPM: Carboxypeptidase M] and (b) down-regulated proteins [NEFL: Neurofilament light; 

NEFM: Neurofilament medium; NEFH: Neurofilament heavy; INA: Alpha-internexin; DPYSL5: 

Dihydropyrimidinase-related protein 5; ATP5A1: ATP synthase subunit alpha; MSN: Moesin; SLC25A11: 

Mitochondrial 2-oxoglutarate/malate carrier protein; ATP5O: ATP synthase subunit O; MTCO2: Cytochrome c 

oxidase subunit 2; HSPD1: 60 kDa heat shock protein; CHCHD3: MICOS complex subunit Mic19; SEPTIN5: 

Septin 5; UQCRC2: Cytochrome b-c1 complex subunit 2; SPTAN1: Spectrin alpha chain; GPD2: Glycerol-3-

phosphate dehydrogenase; TOMM70: Mitochondrial import receptor subunit TOM70; CEND1: Cell cycle exit 

and neuronal differentiation protein 1; GDAP1: Ganglioside-induced differentiation-associated protein 1] of 

CNS myelin from Cnp1Cre/+;Fbxo7fl/fl brains as compared to control. Pie chart displays the biological function of 

selected candidates, which was gathered using the Toppgene database. Quantitative mass spectrometry was 

conducted by Dr. Olaf Jahn  

 

In order to validate the results from mass spectrometry, I performed immunohistochemical 

stainings on spinal cord sections of 3-month-old Cnp1Cre/+;Fbxo7fl/+ and Cnp1Cre/+;Fbxo7fl/fl 

mice. The quantitative mass spectrometry analyses identified a range of proteins involved 

in the detoxification pathway. I decided to focus on glutathione S-transferase π 1 

(GSTπ1), whose levels were increase. Importantly, GSTπ1 is specifically expressed in 

oligodendrocytes. I carried out immunohistochemical analyses on spinal cord sections of 

3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice and found a significant 

increase in GSTπ1 signal in Cnp1Cre/+;Fbxo7fl/fl mice as compared to control, verifying the 

up-regulated stress response in cKO mice (Figure 3.3.2a). Further on, I subjected brain 

lysates from Cnp1Cre/+;Fbxo7fl/+ and Cnp1Cre/+;Fbxo7fl/fl mice to immunoblotting using the 

GSTπ1 antibody. The lysates of developing cKO mouse brains indicated a stronger signal 

for GSTπ1 at all ages examined (Figure 3.3.2b). With these results I showed that loss of 

Fbxo7 from oligodendrocytes induces an up-regulation of the stress sensor GSTπ1.  
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Figure 3.3.2 Increased GSTπ1 levels in the CNS due to Fbxo7 deletion. 
(a) cross-sections of spinal cord from 3-month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were 

immunostained with a GSTπ1 antibody. Sections were taken from lumbar segment 1-3 of the spinal cord and 

three mice per condition, as well as three samples per mouse were analyzed (one-way ANOVA, **P < 0.01, 

***P < 0.001, mean ± s.e.m). The percentage of area stained by GSTπ1 antibody was analyzed using a 

customized macro designed by Dr. Miso Mitkovski. Scale bar = 1µm. (b) Brain lysates from postnatal day (P) 

7, P14, P21 and P30 of Cnp1Cre/+;Fbxo7fl/+ and Cnp1Cre/+;Fbxo7fl/fl  mice were immunoblotted with GSTπ1 and 

γ-tubulin antibodies, while γ-tubulin served as a loading control. (Sample was run on the same gradient gel as 

described in 3.3.4). 

 

3.3.2 Loss of Fbxo7 causes an immune response and down-
regulation of cytoskeleton proteins in PNS myelin  

To assess any changes in protein homeostasis in PNS myelin upon Fbxo7 deletion, 

myelin was purified from sciatic nerves. Purification of myelin from sciatic nerve isolated 

from 3-month-old Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice was performed with the 

help of Katja Lüders. Myelin was subjected to quantitative mass spectrometry analyses, 

performed by Dr. Olaf Jahn. 404 proteins were identified by quantitative mass 

spectrometry and further sorted by the log2 ratio of Cnp1Cre/+;Fbxo7fl/fl values divided by 

Cnp1Cre/+;Fbxo7fl/+ values. Among these candidates, the top 25% of up- and down-

regulated proteins were grouped together and selected candidates were analyzed. The 

analysis of up-regulated proteins in PNS myelin indicated a big cluster of proteins that was 

part of the immune response. Further on, a large group of proteins were associated to 

detoxification processes and the lipid metabolism (Figure 3.3.3a). Among the down-

regulated proteins, the majority of candidates were linked to the cytoskeleton. In addition, 

large clusters of mitochondrial proteins, proteins associated to ubiquitination and the 
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metabolism were also down regulated (Figure 3.3.3b). Taken together these results show 

that loss of Fbxo7 from Schwann cells induces an inflammatory response and increases 

detoxification processes. Additionally, deletion of Fbxo7 affects the stability of the 

cytoskeleton, mitochondrial integrity and the UPS.     
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Figure 3.3.3 Up- and down-regulated proteins in PNS myelin upon Fbxo7 deletion.  
(a)-(b) Purified myelin from sciatic nerves of 3-month-old Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice were 

analyzed by quantitative mass spectrometry. Nine pairs of sciatic nerve per genotype were pooled into 3 

groups, each measured twice and the total mean analyzed using the log2 cKO/control ratio. Values from 

Cnp1Cre/+;Fbxo7fl/fl  mice were normalized to control (unpaired t-test, *P < 0.05, **P < 0.01, ***P < 0.001,  mean 

± s.e.m.). From the identified proteins, the 25% of (a) up-regulated proteins [GCAB: Ig gamma 2A; IGH3: Ig 

gamma 2B; IGKC: Ig kappa; LGALS3: Galectin 3; HVM51: Ig heavy chain V; SLC44A1: Choline transporter-

like protein 1; ACO2: Aconitate hydratase; CES1D: Carboxylesterase 1D; ANXA1: Annexin A1; PGAM2: 

Phosphoglycerate mutase 2; SPTAN1: Spectrin alpha chain; C3: Complement C3; CAT: Catalase; APOA4: 

Apolipoprotein A4; PRDX1: Peroxiredoxin 1; GPX1: Glutathione peroxidase 1] and (b) down-regulated 

proteins [NEFL: Neurofilament light; AKR1B1: Aldose reductase; SCL25A4: ADP/ATP translocase 1; CFL1: 

Cofilin 1; CFL2: Cofilin 2; NEFM: Neurofilament medium; MAP6: Microtubule-associated protein 6; TPI1: 

Triosephosphate isomerase; RAN: GTP-binding nuclear protein Ran; NEFH: Neurofilament heavy; PARK7: 

Protein deglycase DJ-1; RUFY3: Protein RUFY3; FSCN1: Fascin; TUBB3: Tubulin beta 3; MTCO2: 

Cytochrome c oxidase subunit; TUBB4B: Tubulin beta 4B; TUBB4A: Tubulin beta 4A; UBE2V1: Ubiquitin-
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conjugating enzyme E2 variant 1; PDHB: Pyruvate dehydrogenase E1 component subunit beta; ACOT7: 

Cytosolic acyl coenzyme A thioester hydrolase; ATP5B: ATP synthase subunit beta; HSPD1: 60 kDa heat 

shock protein; ACLY: ATP-citrate synthase; OTUB1: Ubiquitin thioesterase OTUB1; STIP1: Stress-induced-

phosphoprotein; MAP1B: Microtubule-associated protein 1B; UBE2M: NEDD8-conjugating enzyme Ubc12; 

UBE2N: Ubiquitin-conjugating enzyme E2 N] in Cnp1Cre/+;Fbxo7fl/fl myelin as compared to control were 

selected. Pie chart displays the biological function of selected candidates, which was gathered while using the 

Toppgene database. Quantitative mass spectrometry was conducted by Dr. Olaf Jahn. 

 

Although the list of up-regulated myelin proteins from the PNS of Cnp1Cre/+;Fbxo7fl/fl mice 

did not include GSTπ1, as seen in CNS myelin, detoxification processes were still highly 

up-regulated. Therefore, I investigated if the stress marker GSTπ1 undergoes any 

changes and performed an immunohistochemical analysis on sciatic nerve sections of 3-

month-old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice using a GSTπ1 antibody. The 

result showed significant increase in GSTπ1 signals in sections of Cnp1Cre/+;Fbxo7fl/fl 

sciatic nerve as compared to control sciatic nerve (Figure 3.3.4).  

 

Figure 3.3.4 Increased GSTπ1 signal in sciatic nerve isolated from Cnp1Cre/+;Fbxo7fl/fl mice.  
Immunohistochemical analyses were performed on longitudinal cryo-section of sciatic nerves from 3-month-

old Fbxo7fl/fl, Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice using a GSTπ1 antibody. Three independent mice per 

genotype and three samples per mouse were analyzed (one-way ANOVA, Bonferroni post-test, ***P < 0.001, 

mean ± s.e.m).The images were analyzed using a customized macro designed by Dr. Miso Mitkovski. Scale 

bar = 100µm. 

 

3.3.3 Increased myelin maintenance in the CNS and signs of 
peripheral neuropathy in Cnp1Cre/+;Fbxo7fl/fl mice 

The quantitative mass spectrometry data were further analyzed with regard to changes in 

structural myelin proteins and candidates that are closely associated with myelination. 

Within purified myelin from the CNS, I found that proteins linked to myelin maintenance 

and stabilization were up-regulated in Cnp1Cre/+;Fbxo7fl/fl mice as compared to control. 

However, structural and myelin membrane specific proteins, including PLP, CNP, MBP 
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and MAG did not show any alterations upon Fbxo7 deletion (Figure 3.3.5a). Similar to 

myelin proteins of the CNS, the analysis of PNS myelin did not show any change in myelin 

membrane-specific proteins (CNP, PLP, MAG, PMP2, MPZ and MBP). Interestingly, the 

trophic factor CNTF, which is important for axonal support, as well as proteins associated 

with peripheral neuropathy and cytoskeleton motility were significantly reduced in PNS 

myelin of Cnp1Cre/+;Fbxo7fl/fl mice (Figure 3.3.5b). Concluding from these results, I 

showed that loss of Fbxo7 from myelinating cells does not affect structural myelin 

proteins, which further supports my previous results. However, deletion of Fbxo7 induces 

an increase in myelin maintenance in oligodendrocytes, whereas in Schwann cells loss of 

Fbxo7 decreases the supportive function of myelin and affects proteins, which are 

associated with peripheral neuropathy.    

 

Figure 3.3.5 Loss of Fbxo7 induces an increase in CNS myelin maintenance and affects 
proteins, which are associated with peripheral neuropathy in the PNS.  
(a) Purified myelin from brains of 3-month-old Cnp1Cre/+ and Cnp1Cre/+;Fbxo7fl/fl mice were subjected to 

quantitative mass spectrometry. The mean of five mice per genotype and two repeats per animal was 

analyzed using the log2 cKO/control ratio. Cnp1Cre/+;Fbxo7fl/fl values were normalized to control (unpaired t-

test, *P < 0.05, **P < 0.01, ***P < 0.001, mean ± s.e.m.) [PLLP: Plasmolipin; GSN: Gelsolin; CLDN11: Claudin 

11; RTN4: Reticulon 4; MOG: Myelin-oligodendrocyte glycoprotein; MOBP: Myelin-associated oligodendrocyte 

basic protein; PLP1: Proteolipid protein; NFASC: Neurofascin; CNP1: 2',3'-cyclic-nucleotide 3'-

phosphodiesterase; MBP: Myelin basic protein; CD82: CD82 antigen; MAG: Myelin-associated glycoprotein; 

TSPAN-2: Tetraspanin 2; CD9: CD9 antigen; CD47: Leukocyte surface antigen CD47; HEPACAM: 

Hepatocyte cell adhesion molecule; CD81: CD81 antigen; OMG: Oligodendrocyte-myelin glycoprotein; 

CDC42: Cell division control protein 42 homolog; TPPP: Tubulin polymerization-promoting protein; CRYAB: 

Alpha-crystallin B chain; OPALIN: Opalin]. (b) Purified myelin from sciatic nerves of 3-month-old 
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Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice were analyzed by mass spectrometry. Nine pairs of sciatic 

nerve per genotype were pooled into 3 groups, each measured twice and the total mean analyzed using the 

log2 cKO/control ratio (unpaired t-test, *P < 0.05, **P < 0.01, ***P < 0.001, mean ± s.e.m.) [CNP1: 2',3'-cyclic-

nucleotide 3'-phosphodiesterase; CADM4: Cell adhesion molecule 4; BSG: Basigin; NDRG1: Protein NDRG1; 

CD47: Leukocyte surface antigen CD47; GSN: Gelsolin; PLLP: Plasmolipin; JAM3: Junctional adhesion 

molecule C; PLP1: Proteolipid protein; MAG: Myelin-associated glycoprotein; PMP2: Myelin P2 protein; PRX: 

Periaxin; CD151: CD151 antigen; MPZ: Myelin protein P0; MBP: Myelin basic protein; CRYAB: Alpha-

crystallin B chain; CD9: CD9 antigen; FASN: Fatty acid synthase; CNTF: Ciliary neurotrophic factor; CD81: 

CD81 antigen; S100B: Protein S100 B]. Mass spectrometry was conducted by Dr. Olaf Jahn and analyses of 

data were supported by PD Dr. Hauke Werner. 

 

3.3.4 Cnp1Cre/+;Fbxo7fl/fl mice show unaltered development of 
oligodendrocytes regarding NG2 and CNP levels 

Fbxo7 is highly expressed in oligodendrocyte precursor cells (OPC’s) and newly forming 

oligodendrocytes (Zhang et al., 2014). Hence, we speculated that loss of Fbxo7 might 

impact myelination at an early state of development. To test this hypothesis, I subjected 

brain lysates from Cnp1Cre/+;Fbxo7fl/+  and Cnp1Cre/+;Fbxo7fl/fl mice of postnatal (P) day 7, 

14, 21 and 30 to immunoblotting analysis using an antibody against the oligodendrocyte 

precursor marker (NG2). Here, I observed no difference between Cnp1Cre/+;Fbxo7fl/fl mice 

and control. As expected, the levels of NG2 declined with age as OPCs differentiate into 

newly forming oligodendrocytes. Further on, I applied an antibody against 2’,3’-cyclic-

nucleotide 3’-phosphodiesterase (CNP), which is a marker for myelinating 

oligodendrocytes. As anticipated, both cKO and control samples showed that the levels 

increased with age. In addition the samples were analyzed with an antibody against 

FBXO7. FBXO7 levels showed an increase in control mice, but within the 

Cnp1Cre/+;Fbxo7fl/fl samples the intensity of FBXO7 was only elevated until P21 and 

showed an obvious reduction at P30. This verifies the proper function of our transgene in 

the cKO mouse line: the activity of the Cnp1 promoter is highly increased at P30, at the 

same time as the level of FBXO7 decreases. An immunoblot with γ-tubulin served as 

loading control (Figure 3.3.6). 
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Figure 3.3.6 Fbxo7 deletion does not influence the development of oligodendrocytes.  
Brain lysates from P7, P14, P21 and P30 of Cnp1Cre/+;Fbxo7fl/+ and Cnp1Cre/+;Fbxo7fl/fl mice were 

immunoblotted with NG2, FBXO7, CNP1 or γ-tubulin antibodies. The latter served as a loading control. 

Western-blot analyses were repeated three times.  

 

3.3.5 Knockdown of the E3-ubiquitin ligase FBXO7 decreases 
proteasome activity 

The E3-ubiquitin ligase FBXO7 belongs to the multi-subunit SKP1-cullin1-FBOX7 (SCF)-

complex and as such is part of the ubiquitin-proteasome-system (UPS). Ubiquitination of 

target substrates by FBXO7 can either lead to functional modifications or proteasomal 

degradation (Nelson et al., 2013). In a co-immunoprecipitation (Co-IP) assay I verified, 

that the F-box domain of FBXO7 is crucial for binding of SKP1, which binds to cullin1 and 

altogether form the SCF-complex (Cardozo and Pagano, 2004). For this Co-IP, I 

transfected HEK cells with an empty vector p3xFLAG-CMV10, a plasmid encoding for 

Flag-tagged full-length Fbxo7 (Fbxo7-wt) or a plasmid encoding for a deletion mutant of 

Fbxo7 lacking the F-box domain (Fbxo7-Δfbox) together with the myc-Skp1 plasmid. The 

lysates were subjected to immunoprecipitation using a myc antibody, which pulled down 

SKP1 and the attached complex. Afterwards, the precipitates were immunoblotted with a 

Flag antibody, visualizing the FBXO7 protein. Furthermore, I carried out an 

immunoprecipitation using the Flag antibody, followed by immunoblotting with a cullin1 

antibody. The results show that in absence of the F-box domain, FBXO7 does not interact 

with SKP1 or cullin1 and therefore will not form an SCF-complex (Figure 3.3.7).  
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Figure 3.3.7 The FBXO7 F-box domain is crucial for the SCF-complex formation.  
HEK293T cells were co-transfected with an empty vector, flag-tagged Fbxo7-wt or flag-tagged Fbxo7-ΔF-box 

and together with myc-tagged Skp1. The cell lysates were subjected to co-immunoprecipitation analysis using 

a myc antibody, followed by immunoblotting with a Flag antibody.  

 

In our lab, Dr. David Brockelt identified the proteasomal subunit PSMA2 as direct and 

novel interaction partner of FBXO7 and showed that the ubiquitination via K-63-linkage of 

PSMA2 by FBXO7 induces a functional modification. This modification of PSMA2 by 

FBXO7 was shown to be essential for a proper proteasomal assembly and function 

(Brockelt, 2015). Brain lysates from FBXO7 knockout mice revealed a significant reduction 

in proteasome activity as compared to control littermates. Hence, I investigated the 

importance of FBXO7 for the proteasome function in myelinating cells and performed a 

proteasome activity assay in MSC80 Schwann cells. The aneuploid MSC80 Schwann cell 

line used in this study was established from primary mouse Schwann cell cultures (Boutry 

et al., 1992). I transfected MSC80 with the functional FBXO7 shRNA 1, the non-functional 

FBXO7 shRNA 4 and empty vector as control. In addition, I used as positive control a 

functional PSMA2 shRNA 7, which targets the proteasomal subunit PSMA2 and as 

negative control the non-functional PSMA2 shRNA 1. In addition, the cells were co-

transfected with GFP to facilitate the sorting of the transfected cells by Fluorescence-

Activated Cell Sorting (FACS). This step was necessary, since the transfection efficiency 

in MSC80 cells only yielded approximately 40%. Lysates of the transfected and sorted 

MSC80 cells were subjected to a proteasome activity assay, which measures the 

chymotrypsin-like activity of the proteasome using a fluorogenic substrate. The 

proteasome activity was measured, while quantifying the fluorescent signal. The specific 

readout of this assay was previously tested using the proteasome inhibitor lactacystin 

(Vingill et al., 2016). The result revealed a 31% reduction in proteasome activity in 
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FBXO7-depleted cells. Control PSMA2 shRNA cells revealed a 39% reduction in activity 

(Figure 3.3.8a). To validate the knockdown of FBXO7 and PSMA2, I performed a 

western-blot analysis of lysates from transfected and sorted MSC80 cells and 

immunoblotted against FBXO7, PSMA2 and γ-tubulin as loading control. Indeed, the 

functional shRNAs effectively knocked down FBXO7 and PSMA2, whereas non-functional 

shRNAs did not alter the protein levels of FBXO7 and PSMA2 (Figure 3.3.8b). Hence, I 

demonstrated that knockdown of FBXO7 in Schwann cells induces an impairment of 

proteasome activity.  

 
Figure 3.3.8 Knockdown of FBXO7 in Schwann cells leads to decreased proteasome activity  
(a) MSC80 cells were transfected with a functional FBXO7 shRNA 1 and a functional PSMA2 shRNA 7. 

Transfections with a non-functional FBXO7 shRNA 4, non-functional PSMA2 shRNA 1 and empty vector 

served as control. Cell lysates were sorted and subjected to a proteasome activity assay (two-way ANOVA, *P 

< 0.05, **P < 0.01, ***P < 0.001, mean ± s.e.m).  (b) Validation of shRNAs. Transfected MSC80 cell were 

lysed and a western-blot analysis was performed, while using antibodies against FBXO7, PSMA2 and γ-

tubulin. The latter served as loading control.  
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3.4 The post-developmental contribution of FBXO7 to the 

maintenance of the axon-glia interaction 

With our Cnp1Cre/+;Fbxo7fl/fl mouse line we showed that FBXO7 severely affects the axon-

glia communication and that loss of Fbxo7 in myelinating cells has a stronger impact on 

axon survival than on myelin stability. Since a previous publication has shown that Fbxo7 

is highly expressed during early stages of oligodendrocyte development, we were 

wondering if the impact of FBXO7 on the axon-glia interaction is only developmental 

based or whether FBXO7 also has a post-developmental contribution (Zhang et al., 2014). 

Hence, we generated a Tamoxifen-inducible Plp1CreERT2/+; Fbxo7fl/fl mouse line (cKO-Tam), 

in which Fbxo7 was deleted from myelinating cells at a selected time point. 

 

3.4.1 Generation of the Plp1CreERT2/+;Fbxo7fl/fl mouse line 

In collaboration with the department of Prof. Dr. Klaus-Armin Nave, we generated an 

inducible mouse line, in which Fbxo7 was deleted from myelinating cells upon injection of 

Tamoxifen. Here, we bred the Fbxo7fl/fl line (Vingill et al.) with the Tamoxifen-inducible 

Plp1CreERT2/+ mice (Leone et al., 2003). Tamoxifen, an agonist of the modified estrogen 

receptor (ERT2), was injected at 2 month of age, when myelination was completed (Figure 

3.4.1a). Fbxo7fl/fl mice, injected with an equal amount of Tamoxifen, served as controls for 

Plp1CreERT2/+; Fbxo7fl/fl mice. Genotyping with primers for the Cre, floxed Fbxo7 and wild 

type Fbxo7 alleles ensured a correct breeding and were used to monitor the mouse line 

(Figure 3.4.1b).  
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Figure 3.4.1 Validation of Tamoxifen-inducible Plp1CreERT2/+; Fbxo7fl/fl mouse line.  
(a) Schematic of Plp1CreERT2/+; Fbxo7fl/fl breeding, including schedule of Tamoxifen injection and time points of 

behavioral and electron microscopic analyses. Modified from Erdmann et al. (Erdmann et al., 2008). (b) 
Genotyping PCR of Fbxo7fl/fl and Plp1CreERT2/+; Fbxo7fl/fl mice using primers for Cre, floxed allele and wild type 

Fbxo7. 
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3.4.2 Plp1CreERT2/+; Fbxo7fl/fl mice show a moderate reduction of motor 
endurance and progressive muscle weakness 

Plp1CreERT2/+; Fbxo7fl/fl mice did not display a strong phenotype and had a normal lifespan, 

comparable to those of control mice. To assess even mild changes in motor performance, 

I conducted an array of behavioral tests, in which I examined Fbxo7fl/fl and Plp1CreERT2/+; 

Fbxo7fl/fl mice three, five and seven months after Tamoxifen injection. The analyses 

showed a stagnating bodyweight in Plp1CreERT2/+; Fbxo7fl/fl mice, which was significantly 

reduced at five and seven months post-Tamoxifen injected as compared to control 

(Figure 3.4.2a). Moreover, cKO-Tam mice scored significantly worse while performing a 

tail suspension test seven months post injection, indicating a progressive hind limb 

weakness (Figure 3.4.2b). In order to test the muscle strength of mice, an inverted grid 

test was performed and showed a decreased performance in Plp1CreERT2/+; Fbxo7fl/fl mice, 

when tested three months after injection. However the performance on an inverted grid 

did not progress at later time points (Figure 3.4.2c). Furthermore, muscle weakness was 

assessed with a wire hang test. Here, cKO-Tam mice showed decreased muscle strength 

as compared to control, when tested seven months after injection (Figure 3.4.2d). With 

the rotarod test, their motor endurance was analyzed and revealed a significant reduction 

in knockout mice as compared to control at all time points (Figure 3.4.2e). A pole test was 

carried out to determine motor coordination, showing no difference between both groups 

(Figure 3.4.2f). Motor coordination was further tested with a balance beam test. Here, 

cKO-Tam mice showed no difference in performance on the 6mm or 12mm beam 

compared to control mice at any time (Figure 3.4.2g,h). Aside from these motor tests, I 

further analyzed the sensory performance of mice and conducted a hotplate test. 

Plp1CreERT2/+; Fbxo7fl/fl mice showed signs of irritation a bit later than control mice, but did 

not differ significantly from control animals (Figure 3.4.2i). Anxiety and locomotion was 

monitored by performing an elevated plus maze and open field test. In both tests 

Plp1CreERT2/+; Fbxo7fl/fl mice did not show any difference to control mice (Figure 3.4.2j,k). 

To summarize, I found that post-developmental loss of Fbxo7 from myelinating cells leads 

to a mild but progressive muscle weakness, as well as a moderate reduction of motor 

endurance. Nonetheless, Plp1CreERT2/+; Fbxo7fl/fl mice exhibit a predominantly normal motor 

and sensory behavior. 
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Figure 3.4.2 Plp1CreERT2/+; Fbxo7fl/fl mice show mild but progressive muscle weakness and 

reduced motor endurance. 
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(a)-(k) Behavioral analyses of Fbxo7fl/fl (n = 10) and Plp1CreERT2/+; Fbxo7fl/fl (n = 11) mice three, five and seven 

months after Tamoxifen injection. Measurements showing (a) body weight, (b) tail suspension test (3 = 

normal, 0 = strong hind limb clasping), (c) inverted grid, (d) wire hang, (e) pole test, (f) rotarod, (g)-(h) balance 

beam of 6mm and 12mm (0 = unable to cross beam, 7 = normal), (i) hotplate, (j) elevated plus maze and (k) 

open field test (unpaired t-test, *P < 0.05, **P < 0.01, mean ± s.e.m.). 

 

3.4.3 Post-developmental loss of Fbxo7 does not affect myelination, 

but induces a moderate axonal degeneration and immune  
response.  

The deletion of Fbxo7 from myelinating cells in Cnp1Cre/+;Fbxo7fl/fl mice induced a striking 

axonal degeneration and neuroinflammation in the sciatic nerve. To investigate whether 

post-developmental loss of Fbxo7 also affects the integrity of axons or myelination, I 

decided to take electron microscopic images of sciatic nerve samples from Plp1CreERT2/+; 

Fbxo7fl/fl and Fbxo7fl/fl mice 9 months after Tamoxifen injection. Electron microscopic 

images were taken in collaboration with Prof. Dr. Joachim Weis. Both, embedding of 

samples and acquisition of images were done with the support of Claudia Krude, 

Hannelore Mader and Dr. Istvan Katona. The cross-sections of sciatic nerves were 

analyzed by measuring of the g-ratio, as previously described. Together with my 

colleague Yuhao Huang, I analyzed the sciatic nerve and found an equal distribution of g-

ratio values for cKO-Tam and control mice, indicating no change in myelination in the PNS 

of Plp1CreERT2/+; Fbxo7fl/fl mice (Figure 3.4.3a). Furthermore, I measured the average g-

ratio of cKO-Tam and control axons and found that both indicated an equal average value 

of approximately 0.6 (Figure 3.4.3b). Additionally, I investigated the effect of post-

developmental Fbxo7 deletion in Schwann cells on axonal integrity and assessed the 

number of degenerated axons in the sciatic nerve. Here, Plp1CreERT2/+; Fbxo7fl/fl mice 

displayed a sight but not significant increase in degenerated axons (Figure 3.4.3c). Since 

Cnp1Cre/+;Fbxo7fl/fl mice revealed a prominent infiltration of macrophages in the sciatic 

nerve, I further observed the electron microscopic images for signs of inflammation. 

Interestingly, in the 15 images of cKO-Tam mice and 15 images of control mice, I found 

slightly more macrophages in the sciatic nerve of cKO-Tam mice than in control. However, 

this signs of inflammation in Plp1CreERT2/+; Fbxo7fl/fl sciatic nerve was certainly weaker than 

compared to Cnp1Cre/+;Fbxo7fl/fl mice. While Cnp1Cre/+;Fbxo7fl/fl mice displayed countless 

macrophages in cKO samples and non in control, Plp1CreERT2/+; Fbxo7fl/fl mice showed 

roughly 9 macrophages in cKO-Tam sciatic nerve sections and about 3 in control mice 

(Figure 3.4.3d). Concluding, from these results I showed that post-developmental deletion 
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of Fbxo7 from Schwann cells does not affect the integrity of myeliation, however 

moderately impacts the integrity of axons in the sciatic nerve and further induces a mild 

increase in inflammatory response. 

 

Figure 3.4.3 Plp1CreERT2/+; Fbxo7fl/fl mice display no alteration in PNS myelination and no 

significant but slight increase in axonal degeneration and inflammation.  
(a)-(c) Representative electron microscopic images of sciatic nerve cross-sections from Plp1CreERT2/+; Fbxo7fl/fl  

and of Fbxo7fl/fl mice 9 months after Tamoxifen injection. Four independent animals per condition and 15 

images per mouse were included in the analyses. (a) G-ratio was measured and displayed as scatter plot, 
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presenting 400 axons per genotype. Scale bar = 5 µm. G-ratio of sciatic nerve was measured with the help of 

Yuhao Hunag. (b) Average g-ratio of all measured axons from Fbxo7fl/fl and Plp1CreERT2/+; Fbxo7fl/fl mice 

(unpaired t-test, mean ± s.e.m.). (c) Further on, the average number of degenerated axons was counted. 

Electron microscopic image from sciatic nerve represents axonal degeneration. Scale bar = 2 µm. (d) Images 

illustrate increased infiltration of sciatic nerve by macrophages engulfing dead, myelinated axons and 

migrating in from blood vessel. Mp = macrophage, Ax = axon, BV = blood vessel. Scale bar = 2 µm. 
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4. Discussion 

In this study, I investigated the functions of Fbxo7 in myelinating cells and determined its 

impact on the integrity of myelination and the axon-myelin interaction using the newly 

generated Cnp1Cre/+;Fbxo7fl/fl mouse line. Additionally, I investigated the post-

developmental relevance of FBXO7 in myelinating cells with the Tamoxifen-inducible 

Plp1CreERT2/+; Fbxo7fl/fl mouse line.     

 

4.1 Deletion of Fbxo7 in myelinating cells results in a strong 

motor phenotype in CnpCre/+;Fbxo7fl/fl mice      

The CnpCre/+;Fbxo7fl/fl (cKO) mice are characterized by a severe denervation and atrophy 

of the musculoskeletal system. This severe muscle weakness manifested itself in 

decreased motor performance at 6 weeks of age and in paresis, of the hind limbs. 

Moreover, cKO mice displayed a loss of tail tip tone, which further underlines a strong 

impact of Fbxo7 deletion on the PNS. The overall condition of CnpCre/+;Fbxo7fl/fl mice 

rapidly declined within 4 months of age, which dictated the endpoint of the experimental 

analyses. The loss of Fbxo7 in myelinating cells therefore induced a rapid progression of 

severe symptoms. Generally, mutations in genes encoding for myelin proteins, or even 

deletions of such genes are not accompanied by embryonic lethality, as myelination only 

peaks postnatally in mammals. However such alterations can affect the development of 

myelin and induce progressive disorders (Nave, 2010a).  

The prominent expression of FBXO7 in myelinating cells was previously shown in brain 

sections of conventional Fbxo7 knockout mice. My colleague Dr. Brockelt showed that 

FBXO7 is present in the white matter of cerebellum and corpus callosum, by performing a 

β-galactosidase staining of brain sections, in which the lacZ expression cassette was 

under the control of the endogenous Fbxo7 promoter (Brockelt, 2015). Additionally, an 

RNA sequencing transcriptome database, generated by Zhang et al. in 2014, compared 

the expression of different RNA sequences of purified neurons, astrocytes, 

oligodendrocyte precursor cells (Melander et al.), newly formed oligodendrocytes, 

myelinating oligodendrocytes, microglia and endothelial cells from mouse cerebral cortex 

and showed that FBXO7 expression is the highest in OPC and newly formed 

oligodendrocytes (Zhang et al., 2014). The comparison of FBXO7 expression further 

showed that FBXO7 is more abundant in glial cells than in neurons (Zhang et al., 2014). 
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The mouse line we generated, harbors a Cnp1 promoter-driven deletion of Fbxo7 in 

myelinating cells. Cnp is expressed in oligodendrocyte precursor cells (OPC) already in 

early stages of embryonic development at around E (embryonic day) 12.5 (Peyron et al., 

1997; Yu et al., 1994). Cnp-/- mice develop comparably normal without any obvious signs 

of impairments until four months of age. However, these mice reveal progressive motor 

deficits and hind limb impairment at around 6 months of age. Further on, Cnp-/- mice 

display a similar phenotype as shown in CnpCre/+;Fbxo7fl/fl mice, since Cnp-/- mice  also 

indicate muscle weakness, weight loss, gait abnormalities and a notable kyphosis. 

Nonetheless, Cnp-/- mice live twice as long as cKO mice and die around 8-15 months of 

age (Lappe-Siefke et al., 2003). These similarities between Cnp-null and CnpCre/+;Fbxo7fl/fl 

mice, might raise the question whether the phenotype of the cKO mouse line might be 

due to the haplo-insufficiency of the Cnp gene. However, investigations of Cnp+/- mice 

revealed no abnormalities in behavior or phenotype until 24 months of age and showed a 

normal lifespan comparable to wild type mice, indicating that lower Cnp levels are either 

sufficient or can be fully compensated (Hagemeyer et al., 2012; Lappe-Siefke et al., 

2003). Cnp-Cre+/- mice were therefore a suitable driver line in our mouse model.  

Interestingly, loss of Fbxo7 induced a much stronger phenotype as seen in Cnp1-/- mice, 

although CNP is a well established myelin protein that comprises approximately 4% of 

CNS and 0.5% of PNS myelin (de Monasterio-Schrader et al., 2012). Therefore, this early 

and strong phenotype of Cnp1Cre/+;Fbxo7fl/fl mice demonstrates the vital role of FBXO7 and 

the crucial importance of a functional UPS in myelinating cells.  

 

4.2 Loss of Fbxo7 does not affect myelin integrity, but leads 

to degeneration of large-caliber axons in the PNS   

Loss of Fbxo7 revealed a strong impact on the axon-myelin interaction, with little or no 

impact on myelin integrity. While myelinated axons of cKO mice from the sciatic nerve 

showed mild, but not significant hypomyelination as compared to control mice, the number 

of axons in the sciatic nerve were significantly reduced, indicating axonal degeneration. 

Alterations upon loss of Fbxo7 in the PNS occurred without influencing the number of 

Schwann cells present in the sciatic nerve, but induced a remarkable shift of axon 

diameter. Measurements demonstrated a significant loss of large-caliber axons and a 

potential compensatory increase in small-caliber axons in the sciatic nerve of 

Cnp1Cre/+;Fbxo7fl/fl mice.  
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Why large-caliber axons are more susceptible to degeneration is not fully understood. It is 

speculated that larger axons have higher metabolic and trophic demands, which render 

them more vulnerable to dysfunctions (Blight, 1991; Blight and Decrescito, 1986). 

Moreover, the intimate interaction of myelinating cells and their ensheathed axons is 

known to regulate axon diameter. Signaling of the axonal ligand neuregulin type III and its 

receptor ErbB3 on Schwann cells have been shown to be vital for myelination and the 

integrity of axons (Michailov et al., 2004; Riethmacher et al., 1997; Simon et al., 2010; 

Taveggia et al., 2005). While axon diameter is regulated by myelinating cells during 

development (Hsieh et al., 1994; Sanchez et al., 1996), dysmyelinating disease models 

with alterations in crucial myelin proteins, have been shown to reduce axon caliber (Brady 

et al., 1999; de Waegh et al., 1992). Charcot-Marie-Tooth (CMT) disease, also referred to 

as CMT1A, is the most common inherited neuropathy and can be caused by a duplication 

of the Pmp22 gene. This alteration will lead to a slow-progressing demyelination, axonal 

degeneration and eventually distal pronounced muscle atrophy (Krajewski et al., 2000; 

Patel et al., 1992; Timmerman et al., 1992). The amount of secondary axonal death 

determines the disease severity (Berciano et al., 2000).  

In my results, I showed that Fbxo7 deletion induced a subtle change in myelination of 

peripheral axons and that myelin proteins of the PNS indicated a down-regulation of 

proteins associated with neuropathy and cytoskeleton mobility. Since structural proteins of 

myelin were not affected by deletion of Fbxo7, this further supports the assumption that 

FBXO7 acts as crucial UPS protein in the axon-myelin communication and helps to 

sustain the supportive function of myelinating cells for axonal integrity.       

The investigation of our Cnp1Cre/+;Fbxo7fl/fl mouse line indicated the important role of 

FBXO7 during development. Especially in the PNS, early deletion of Fbxo7 induced a 

strong impact on the axon-glia interaction and integrity of axons. The essential 

communication between Schwann cells and axons during development was previously 

shown, as disruption of the ErbB3 receptor leads to secondary axonal loss and severe 

neuropathy (Riethmacher et al., 1997). Genetic mutations that induce changes in 

myelinating cells, often affect PNS fibers innervating the most distal muscle groups first 

and cause a length-dependent axonal loss (Nave, 2010a; Suter and Scherer, 2003). This 

can be observed in the Plp1-/- mouse model, in which the break down of axonal transport 

leads to axonal swellings and subsequently to a degeneration of distal axons (Garbern 

and Hobson, 2002; Griffiths et al., 1998). Neurons with long axons present a logistic 

problem, as their diameter often only measures a few micrometers but their length can be 

hundreds of centimeters in large mammals (Griffin and Watson, 1988; Nave, 2010b). 

Moreover, dysfunctional myelinating cells and the resulting lack of support appears to be 
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most vulnerable for long-traveling axons, since these axons have a higher demand in 

energy supply that is generally provided by myelinating cells (Funfschilling et al., 2012; 

Nave, 2010b; Simons and Nave, 2015).  

The great influence of FBXO7 on the supportive function of myelinating cells towards 

axons and their integrity might lie in its remarkable function as being part of the ubiquitin 

proteasomal system (UPS). FBXO7 has multiple interaction partners and therefore many 

different sites of interaction within a myelinating cell that affects axonal survival. The vital 

role of the UPS for the stability of axons was demonstrated by other UPS-associated 

PARK genes - PARK5. PARK5 encodes for the deubiquitinase UCH-L1 and similarly as 

seen in CnpCre/+;Fbxo7fl/fl mice, conventional Uchl1 knockout mice display axonal death 

and denervation of muscles, progressive paralysis and premature death at around 7 

months of age (Bishop et al., 2016; Chen et al., 2010). Moreover Uchl1-deficient mice 

present early-onset sensory and motor ataxia at 3 months of age (Mukoyama et al., 

1989). These findings indicate an essential role of UCH-L1 for axonal health and stability 

and thus for neuronal survival (Bishop et al., 2016).   

 

4.3 Deletion of Fbxo7 causes a shift in axon diameter without 

affecting myelination in the CNS 

In the CNS, loss of Fbxo7 did not induce dramatic changes on the axon-myelin interaction 

as seen in the PNS. However, oligodendrocytes responded to the loss of Fbxo7 with a 

significant shift in axon caliber. cKO mice displayed significantly larger axons in the CNS 

as compared to control mice, while the number of healthy myelinated axons in the optic 

nerve of Cnp1Cre/+;Fbxo7fl/fl mice remained unchanged. The axons of cKO mice optic nerve 

presented no signs of axonal swelling, but indicated a mild trend of increased axonal 

death compared to control mice. Oligodendrocytes further showed a slight but not 

significant increase in nuclei abundance, without alteration in myelin thickness.  

Similar effects were observed in a study, in which the CNS-specific myelin-associated 

oligodendrocyte basic protein (MOBP) was deleted. The analysis of Mobp-/- mice revealed 

that axons of the optic nerve had larger diameter and more myelin lamellae as compared 

to controls (Sadahiro et al., 2000). Since axonal growth determines the rate of myelin 

formation, the number of myelin lamellae increase in proportion to the axon diameter 

(Fraher, 1976; Friede and Miyagishi, 1972; Hildebrand and Hahn, 1978). Hence, Sadahiro 

and authors concluded that MOBP regulates axon diameter, while the number of myelin 

lamellae is dependent on the size of the axon (Sadahiro et al., 2000). Another regulator of 

axon size is myelin basic protein (MBP). Mice expressing decreased levels of the Mbp 
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gene display larger myelinated axons than control mice (Shine et al., 1992). In the 

CnpCre/+;Fbxo7fl/fl mice, loss of Fbxo7 induced an increase in axon diameter in the optic 

nerve without significantly affecting myelination. Although I did not count the number of 

myelin lamellae of myelinated axons in the optic nerve, the g-ratio measurements 

indicated no significant change in myelin thickness. A potential secondary response of 

myelinating cells to an axonal shift, however might be the slight increase in 

oligodendrocyte abundance in CnpCre/+;Fbxo7fl/fl optic nerve. Similar as MOBP and MBP, 

FBXO7 might have a regulatory function in axon diameter and act as a mediator of the 

interaction between myelinating cells and axons. 

Interestingly, the function of FBXO7 appears to have a different impact on myelinating 

cells of the CNS as compared to the PNS. Why deletion of Fbxo7 lead to an increase in 

axonal diameter in the optic nerve, but led to more small-caliber axons in the sciatic nerve 

is unclear. So far, nothing is known about the expression level of FBXO7 in 

oligodendrocytes compared to Schwann cells. As loss of Fbxo7 affected the interaction of 

axons and Schwann cell more dramatically than the oligodendrocyte-axon 

communication, this might imply a higher expression or greater importance of FBXO7 in 

Schwann cells. Deletion of Fbxo7 potentially induces an increase in axon caliber in both 

nervous systems, however its possible greater impact on Schwann cells might lead to a 

more dramatic disturbance of myelin support of PNS axons. Hence, early loss of Fbxo7 in 

Schwann cells might contribute to a greater stress and vulnerability of long-traveling, 

peripheral axons, leading to increased axonal death in the PNS. To verify this hypothesis, 

further investigations are required that compare the expression levels of FBXO7 in both 

systems.   

    

4.4 FBXO7 remains relevant for the post-developmental 

maintenance of the axon-myelin interaction  

As FBXO7 was shown to be highly expressed in OPCs and newly forming 

oligodendrocytes, deletion of FBXO7 in the CnpCre/+;Fbxo7fl/fl mouse line revealed the 

developmental importance of FBXO7 (Zhang et al., 2014). I showed that Fbxo7 was 

deleted in CnpCre/+;Fbxo7fl/fl mice around postnatal day 30. Having established the strong 

developmental influence of FBXO7 on myelinating cells, the question arose as to how 

FBXO7 might affect the post-developmental axon-glia interface. I therefore generated and 

analyzed the Tamoxifen-inducible Plp1CreERT2/+; Fbxo7fl/fl mouse line, in which Fbxo7 was 
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deleted at 2 months of age when myelination was completed. The post-developmental 

effect of Fbxo7 deletion on myelinating cells was less severe, as cKO-Tam mice revealed 

a milder phenotype. Plp1CreERT2/+; Fbxo7fl/fl mice displayed progressive muscle weakness 

of hind limbs, resulting in a moderate reduction of motor endurance. Further more, cKO-

Tam mice indicated a stagnating body weight, but otherwise presented no distinct 

phenotype or signs of pain and had a normal lifespan. Similar to the Cnp1Cre/+;Fbxo7fl/fl 

mouse line, Plp1CreERT2/+; Fbxo7fl/fl mice showed no alterations in myelination of axons in 

the sciatic nerve. The number of degenerated axons in the sciatic nerve of cKO-Tam mice 

was slightly elevated as compared to control mice, but significantly lower as compared to 

Cnp1Cre/+;Fbxo7fl/fl mice. This demonstrates the vital importance of FBXO7 during 

development, but still shows that FBXO7 remains relevant for the post-developmental 

maintenance of the myelin-axon interplay and the supportive role of myelinating cells for 

axonal integrity.          

 

4.5 Lack of Fbxo7 elicits a strong inflammatory response and 
an increase in detoxification processes  

The significant increase in neuroinflammation was one very prominent event, which was 

induced by loss of Fbxo7 in both CNS and PNS as well as when post-developmentally 

deleted. Cnp1Cre/+;Fbxo7fl/fl mice presented strong astrogliosis and microgliosis in the 

myelin areas of the CNS and the PNS. Moreover, electron microscopic images of the 

sciatic nerve from Plp1CreERT2/+; Fbxo7fl/fl and Cnp1Cre/+;Fbxo7fl/fl mice showed a noticeable 

infiltration by macrophages.  

Inflammation is a common phenotype seen in many neurodegenerative diseases and 

often precedes the onset of cellular degeneration and neurological disorders (Carson et 

al., 2006; Halliday and Stevens, 2011; Wyss-Coray and Mucke, 2002). Microglia sense 

even the smallest pathological changes, but only when the damage is severe enough 

activated microglia will initiate phagocytosis and secrete cytokines that activate astrocyte 

that lead to astrogliosis (Jansen et al., 2014). These activated astrocytes in turn influence 

the function of microglia, by releasing cytokines and thereby create a feedback loop in 

which both cells regulate each other (Amor et al., 2014; Zhang et al., 2010). Initial 

activation of astrocytes forms a protective border around damaged areas and is meant to 

be protective for neurons (Pekny and Pekna, 2014). However, persisting activation of 

astrocytes are unable to support neurons and therefore contribute to neuronal dysfunction 

(Pickering et al., 2005).  
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Dysfunctional oligodendrocytes are known to trigger an inflammatory response, and 

contribute to axonal degeneration and to the severity of the disease, as inflammation 

poses an additional burden for axonal survival (Ip et al., 2006; Kassmann et al., 2007; 

Lappe-Siefke et al., 2003; Wieser et al., 2013). During the process of inflammation, 

activated microglia generate nitric oxide, which readily diffuses into axons and perturbs 

the mitochondrial ATP generation (Nave, 2010b; Smith and Lassmann, 2002; Trapp and 

Stys, 2009). Interestingly, I found in mass spectrometry analyses that loss of Fbxo7 

decreased mitochondrial proteins in purified myelin from CNS and PNS. This suggests 

that the strong inflammatory reaction induced by Fbxo7 deletion in the CNS and PNS of 

Cnp1Cre/+;Fbxo7fl/fl mice triggers the generation of NO species, which act as free radicals 

and induce oxidative stress in the cell. Indeed, I further demonstrated the increase of 

oxidative stress in myelinating cells, as levels of the endogenous stress sensor GSTπ1 

were elevated in both the CNS and PNS.  

The mass spectrometry analyses further showed a dramatic increase in proteins linked to 

inflammation in PNS myelin. Hence, it suggests that axons of the PNS are potentially 

exposed to more stress and toxic substances, such as nitric oxide generated by activated 

microglia, which would induce a stronger degeneration of axons. To validate this 

hypothesis, the levels of NO in PNS axons have to be measured. This would provide more 

evidence on whether the increase in inflammation is accountable for the stronger axonal 

degeneration in the PNS as compared to CNS, which I reported for Cnp1Cre/+;Fbxo7fl/fl 

mice. However, the question still remains as to why loss of Fbxo7 induces a stronger 

immune response in the PNS than in the CNS.     

The inflammatory response of glial cells further leads to an up-regulation of the NF-κB or 

JKN pathway, which is controlled by UPS components (Dalal et al., 2012; Stefanova et al., 

2012). The E3 ubiquitin ligase RING finger protein 11 (RNF11) is known to be one of the 

key negative regulators of the NF-κB pathway (Dalal et al., 2012). Furthermore, FBXO7 

indirectly decreases the NF-κB signaling pathway, by ubiquitinating proteins of the NF-κB 

cascade (Chang et al., 2006; Chen and Goeddel, 2002; Kuiken et al., 2012). Hence, the 

deletion of Fbxo7 might lead to an uncontrolled increase of the NF-κB signaling in 

Cnp1Cre/+;Fbxo7fl/fl mice, which results in a strong neuroinflammatory event as seen in both 

mouse models.   

The contribution of the UPS to the course of inflammation is further shown by the 

transformation of proteasomes in glia cells. During an inflammatory response, the 

secretion of cytokines such as interferon gamma induces the formation of 

immunoproteasomes in glia cells, which contributes to a more efficient clearance of 

disease-causing proteins and further activates the immune response (Basler et al., 2013; 



4   Discussion 
4.5 Lack of Fbxo7 elicits a strong inflammatory response and an increase in detoxification 

processes 

104 

 

 

Sijts and Kloetzel, 2011). However, it is unknown whether the long-term induction of 

immunoproteasomes are beneficial or detrimental in neurodegenerative diseases, as 

chronic inflammation is known to contribute to the degeneration of neurons (Tansey et al., 

2012).  

While Cnp1-/- mice show progressive inflammation in the CNS, Cnp1+/- mice do not exhibit 

any signs of inflammation until 12 months of age (Hagemeyer et al., 2012; Lappe-Siefke 

et al., 2003; Wieser et al., 2013). The prominent inflammatory events due to loss of Fbxo7 

in the Cnp1Cre/+;Fbxo7fl/fl mice, therefore must originate from a dysfunctional UPS in 

myelinating cells.  

 

As mentioned before, deletion of Fbxo7 caused an up-regulation of proteins involved in 

the detoxification process. In both CNS and PNS, the levels of GSTπ1 were increased in 

Cnp1Cre/+;Fbxo7fl/fl mice. While the mass spectrometry of purified CNS myelin showed 

significant increase in GSTπ1 levels, GSTπ1 was not among the list of highly up-

regulated proteins in PNS myelin. Nonetheless, GSTπ1 stainings of the sciatic nerve 

demonstrated increased levels of the enzyme. Furthermore, PNS myelin contained many 

other proteins linked to detoxification processes, which were up-regulated upon Fbxo7 

deletion.  

Glutathione S-transferase π 1 is a phase II detoxification enzyme that catalyzes the 

conjugation of xenobiotic and electrophilic components with reduced glutathione (GSH) 

(Sheehan et al., 2001; Udomsinprasert et al., 2005). There are three isoforms expressed 

in the nervous system (GSTα, GSTµ and GSTπ), out of which GSTπ is predominately 

expressed in myelinating cells (Castro-Caldas et al., 2009; Tamura et al., 2007). Upon low 

cellular stress, GSTπ1 prevents apoptosis while inhibiting C-jun phosphorylation by JNK 

(Adler et al., 1999; Laborde, 2010; Wang et al., 2001). However, increased cellular 

oxidative stress induces the oligomerization of GSTπ1, inhibiting its function and resulting 

in apoptosis (Townsend and Tew, 2003).  

A similar increase of proteins of the detoxification pathway was seen in glia cells of parkin 

knockout mice. Just like FBXO7, parkin functions as an E3-ubiquitin ligase is encoded by 

a PARK gene. Glia cells of parkin knockout mice showed increased levels of glutathione 

and glutathione S-transferase activity (Solano et al., 2008). An increased redox status is 

known to modulate the process of protein ubiquitination via reversible S-thiolation of E1 

and E2 enzymes, presumably by glutathione (Jahngen-Hodge et al., 1997).  

Oligodendrocytes seem to be particularly susceptible to oxidative stress and often appear 

as vulnerable as neurons to insults caused by oxidation or ischemia (Juurlink et al., 1998; 

Osterhout et al., 2002; Sypecka, 2003). This might be due to their high content of iron, 
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which is predominantly present in oligodendrocytes and myelin sheaths (Connor and 

Menzies, 1996; Todorich et al., 2009). Additionally, oligodendrocytes are low in 

glutathione and glutathione peroxidase, rendering them more sensitive to oxidative stress 

(Juurlink et al., 1998). The observed increase in GSTπ1 levels might thus reflect an 

attempt of myelinating cells to overcome their deficiency in scavenging reactive oxygen 

species.    

Another endogenous redox sensor that responds to oxidative stress is DJ-1 (Shadrach et 

al., 2013). DJ-1 is also known as PARK7 and further belongs to the 20 identified PARK 

genes. Interestingly, its level was significantly down-regulated in purified myelin from the 

PNS of Cnp1Cre/+;Fbxo7fl/fl mice. DJ-1 shows increased susceptibility to oxidative stress 

and regulates factors regarding stress-induced cell death (Chan and Chan, 2015; 

Shadrach et al., 2013). It has been suggested that DJ-1 functionally interacts with FBXO7 

and parkin, since all three PARK genes have been linked to mediate mitochondrial 

function, but the direct interaction has so far not been validated. Since my data show a 

down-regulation of DJ-1 upon Fbxo7 deletion, it indicates that both proteins influence 

each other in their expression levels. Whether this influence is achieved via a direct or 

indirect interaction, remains to be elucidated.  

These examples show that a dysfunctional UPS often lead to an up-regulation of 

detoxification processes, as the result of oxidative stress in the cells. Moreover, as 

mutations in FBXO7, Parkin and DJ-1 are known to induce different forms of 

parkinsonism, it demonstrates the importance of a functional UPS for cellular vitality and 

further shows that disruption of the UPS leads to severe changes in the cell, contributing 

to the onset of neurological diseases.   

 

4.6 Mutation in the FBXO7 gene cause Parkinsonian-

Pyramidal syndrome 

Mutations in the Fbxo7 (PARK15) gene cause a genetic form of parkinsonism, known as 

Parkinsonian-Pyramidal Syndrome (PPS) (Di Fonzo et al., 2009; Shojaee et al., 2008). 

Symptoms seen in these PARK15 patients are very heterogenic, with signs of 

parkinsonism and pyramidal tract features, but also additional atypical symptoms (Di 

Fonzo et al., 2009; Lohmann et al., 2015; Shojaee et al., 2008). So far, research groups 

that had the opportunity to diagnose and examine these rare cases of PPS, neither 

reported on peripheral neuropathies, nor on potential defects in myelin, mostly since there 

is no PARK15 patient material available.  
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However, as previously mentioned, Fbxo7 was found to be stronger expressed in glia 

cells than in neurons (Zhang et al., 2014). Therefore, glia cells that are affected by FBXO7 

dysfunction have to be considered as equally important in their contribution to the disease 

onset as affected neurons. Interestingly, a brain scan of one PPS patient revealed white 

matter lesions, indicating a potential influence of Fbxo7 mutations on myelin integrity 

(Lohmann et al., 2015). Nonetheless, this finding was only reported in one patient and has 

to be verified in more PARK15 patients, since not all reported cases were subjected to 

MRI scanning. Owing to the immense impact of glia cells on the nervous system, further 

investigation are relevant and help to elucidate the general role of the E3-ubiquitin ligase 

FBXO7 in the axon-glia interaction. Deleting Fbxo7 from myelinating cells in 

Cnp1Cre/+;Fbxo7fl/fl mice triggered loss of motor control and a severe impairment of gait, 

which is reminiscent of pyramidal symptoms seen in PPS patients (Conedera et al., 2016; 

Paisan-Ruiz et al., 2010; Yalcin-Cakmakli et al., 2014). One of the atypical symptoms that 

some patients carry is dysarthria, a motor speech disorder resulting from neurological 

injuries (Lohmann et al., 2015). Here, muscles that are involved in the creation of speech 

are affected and include those of respiration, resonance or phonation. Although I did not 

investigated how loss of Fbxo7 in myelinating cells affected the diaphragm or intercostal 

muscles of respiration, I did found a pronounced muscle atrophy of the same type of 

skeletal muscle throughout the body of the cKO mice. Furthermore, I showed a severe 

atrophy of cKO lungs, indicating substantial problems of the respiratory system due to 

potential denervation. 

 

4.7 Molecular changes induced by loss of Fbxo7  

Loss of Fbxo7 led to significant down-regulation of proteins associated with the 

cytoskeleton and mitochondrial functions in both CNS and PNS. While screening for new 

interaction partners of FBXO7, our lab identified the light chain 1 of the microtubule-

associated protein 1B (MAP1B-LC1), MAP1A-LC2 and MAP1S as novel substrates of 

FBXO7 (Brockelt, 2015). My colleague demonstrated the ubiquitination of MAP1B-LC1 

and MAP1A-LC2 by FBXO7 and hypothesized a potential K63 linage of ubiquitination 

(Brockelt, 2015). As K63-linked ubiquitination is often thought to induce a functional 

modification of the target protein, loss of Fbxo7 and the resulting dysfunction of the UPS 

might affect the stability of these novel interactors. Indeed, purified myelin from the PNS 

indicated a significant down-regulation of MAP1B in Cnp1Cre/+;Fbxo7fl/fl mice as compared 

to control. Hence, supporting the speculated interaction of FBXO7 and MAP1B in vivo and 

suggesting a possible stabilization of MAP1B by FBXO7 ubiquitination. In order to further 
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elucidate the interaction of both proteins and to understand the impact of FBXO7 on the 

cytoskeleton system, additional experiments are required.  

Interestingly, DJ-1 (PARK7) is known to bind MAP1B and inhibits MAP1B aggregates 

(Wang et al., 2011). Since DJ-1 as well was decreased upon Fbxo7 deletion, it potentially 

influences the cytoskeleton stability as well and illustrates the multi-layered interaction and 

complex influence that FBXO7 has within many different pathways of the cell.  

Changes in the cytoskeletal arrangement can influence the integrity of mitochondria. 

MAP1B is not only important for microtubule stabilization, it is also required of a proper 

anterograde transport of mitochondria. In addition, deregulation of MAP1B-LC1 has been 

shown to induce mitochondrial aggregation (Jimenez-Mateos et al., 2006; Yonashiro et 

al., 2012). Furthermore, FBXO7 was reported to participate in the mitochondrial quality 

control mechanism, while acting as scaffold protein for parkin and PINK1, which are 

recruited to the depolarized mitochondrial membrane (Burchell et al., 2013). The lack of 

FBXO7 therefore compromises mitochondrial integrity and as seen in the mass 

spectrometry of purified CNS and PNS myelin induces a significant decrease in 

mitochondrial proteins in Cnp1Cre/+;Fbxo7fl/fl mice.  

In our previous publication our lab identified the proteasome subunit α2 (PSMA2) as direct 

interactor and ubiquitination substrate of FBXO7 (Vingill et al., 2016). While my colleagues 

showed that lack of Fbxo7 reduced proteasome activity in neurons, I investigated the 

activity of proteasomes in Schwann cells and performed a proteasome activity assay by 

measuring the chymotrypsin-like activity of the proteasome, using a fluorogenic peptide 

substrate. The results showed a reduced proteasome activity in cultured Schwann cells 

upon FBXO7 knockdown.  

Changes in the function of the proteasome have been shown to cause similar pathological 

symptoms as seen in Cnp1Cre/+;Fbxo7fl/fl mice. Rats treated with the proteasome inhibitor 

bortezomib have demonstrated Schwann cell and myelin disturbances associated with 

mild axonal degenerations (Cavaletti et al., 2007). Moreover, patients treated with 

bortezomib were reported to develop a dose-dependent neuropathy, including sensory 

ataxia and axonal changes that slightly improved after the treatment was stopped for six 

months (Filosto et al., 2007). As high doses of bortezomib-related neuropathy induced 

myelin damage in the PNS, the authors hypothesized that inhibition of proteasomes in 

myelinating cells may be a target for the drug-induced injury (Filosto et al., 2007). 

Additionally, it was reported that cultured primary oligodendrocytes were highly 

susceptible to proteasome inhibition when treated with MG-132, which caused oxidative 

stress, mitochondrial dysfunction and apoptosis (Goldbaum et al., 2006).  
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The mass spectrometry of CNS and PNS myelin did not identify a prominent alteration of 

proteasome-associated proteins. This was not surprising, since ubiquitination of PSMA2 

by FBXO7 facilitates the assembly of the proteasome complex, however does not 

influence the stability of PSMA2. Consistent with my results, brain lysates of conventional 

Fbxo7-/- mice did also not show any difference in PSMA2 protein levels as compared to 

control (Vingill et al., 2016). While FBXO7 clearly is important for proteasome assembly 

and activity, lack of Fbxo7 does not affect levels of proteins that are part of the core or 

regulatory particles of the proteasome.      
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5. Conclusion and perspectives 

In this study, I showed that FBXO7 plays a crucial role in myelinating cells and their 

support of axonal integrity. Particularly in Schwann cells, FBXO7 promotes the proper 

axon-myelin interaction while providing a balanced protein homeostasis and the 

prerequisite for Schwann cells to ensure axonal stability. While loss of Fbxo7 induced 

severe axonal degeneration, myelination of axons in the optic and sciatic nerve was not 

affected by Fbxo7 deletion, indicating that FBXO7 has little or no effect on the process of 

myelination. On comparing the phenotype of Cnp1Cre/+;Fbxo7fl/fl mice with those observed 

in Plp1CreERT2/+; Fbxo7fl/fl mice, I concluded  that FBXO7 has a predominant importance for 

the axon-myelin axis during development and remains relevant for the post-

developmental maintenance of the axon-glia interaction, although to a far lesser extent. 

As part of the UPS, the E3 ubiquitin-ligase FBXO7 plays an essential role in protein 

homeostasis in the cell. Dysfunction of the UPS is often linked to neurodegenerative 

disease, but the precise disease-causing mechanisms have only started to be elucidated. 

In my project, I gathered the first results on FBXO7’s impact on myelinating cells and their 

immediate environment. Further investigations are required to enhance our understanding 

of the functions of FBXO7 on the axon-myelin interaction. As loss of Fbxo7 induced 

different effects in the CNS and PNS, the comparison of FBXO7’s expression levels in 

both systems will add to a better understanding of these differences. While the abundance 

of FBXO7 in each part of the nervous system might reflect its relevance, FBXO7 may also 

have different functions in Schwann cells as compared to oligodendrocytes. In order to 

dissect FBXO7’s impact on Schwann cells apart from its affect on oligodendrocytes, 

additional genetic approaches are required that use cell type-specific driver lines for the 

PNS or CNS. Moreover, while taking advantage of a different driver-line, the basic results 

should be reproducible and further underscore the role of FBXO7, independent of any 

potential ectopic activity of the driver line. FBXO7 is known to directly or indirectly affect 

and interact with several different pathways and compartments in the cell. The molecular 

changes in myelin upon Fbxo7 deletion support the notion that FBXO7 plays a complex 

role in the cell and provide further foundation for detailed investigations of different 

pathways affected in myelinating cells. Our lab previously established that proteasomal 

integrity and thus its activity depends on proper FBXO7 function. Hence, additional 

investigations are required of how FBXO7 regulates proteasome assembly and the impact 

that decreased proteasome activity has on e.g. mitochondrial function in myelinating cells. 

This will help to unravel the complexity of FBXO7’s function and the impact that the UPS 

has on myelinating cells and their axonal interaction, guiding us to a better understanding 

of the disease-causing mechanism of neurodegenerative disorders.  
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List of abbreviations 

(n)S  Sedimentation region 

Aa                          Amino acids  

ACLY ATP-citrate synthase 

ACO2 Aconitate hydratase 

ACOT7 Cytosolic acyl coenzyme A thioester hydrolase 

AD  Alzheimer’s disease 

AIFM1 Apoptosis-inducing factor 1 

AKR1B1 Aldose reductase 

ALS  Amyotrophic lateral sclerosis 

ANOVA  Analysis of variance 

ANXA1 Annexin A1 

AP  Action potential 

APOA4 Apolipoprotein A-IV 

APP  Amyloid precursor protein 

APS  Ammonium persulfate 

AR  Autosomal recessive 

ATP  Adenosine triphosphate 

ATP1A4 Sodium/potassium-transporting ATPase subunit alpha-4 

ATP5A1 ATP synthase subunit alpha 

ATP5B ATP synthase subunit beta 

ATP5O ATP synthase subunit O 

BclXL  B-cell lymphoma-extra large 

BDNF  Brain-derived neurotrophic factor 

BME  Basal medium eagle 

BSA  Bovine serum albumin 

BSG Basigin 

C-Terminus  Carboxyl-terminus (-COOH) 

C3 Complement C3 

CADM4 Cell adhesion molecule 4 

CAMP  Compound muscle action potential 

CAT Catalase 

CB  Cerebellum 

CD151 CD151 antigen 

CD47 Leukocyte surface antigen CD47 

CD81 CD81 antigen 
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CD82 CD82 antigen 

CD9  Tetraspanin-29 

CDC42 Cell division control protein 42 homolog 

CDK6  Cyclin-depended kinase 6 

cDNA  complementary DNA 

CEND1 Cell cycle exit and neuronal differentiation protein 1 

CES1D Carboxylesterase 1D 

CFL1 Cofilin-1 

CFL2 Cofilin-2 

CHCHD3 MICOS complex subunit Mic19 

cIAP1  Cellular inhibitor of apoptosis 1 

cKO  Conditional knockout (Cnp1Cre/+;Fbxo7fl/fl) 

cKO-Tam Tamoxifen-induced conditional knockout (Plp1CreERT2/+;Fbxo7fl/fl mice) 

CLDN11 Claudin 11 

CLIC4 Chloride intracellular channel protein 4 

CMT  Charcot-Marie-Tooth 

CNP  2’,3’-cyclic nucleotide 3’-phosphodiesterase 

CNS  Central nervous system 

CNTF  Ciliary neurotrophic factor 

CNTN2 Contactin-2 

Co-IP  Co-Immunoprecipitation 

CP  Core particle 

CPM Carboxypeptidase M 

CR  Corona radiata 

Cre  Cyclization recombinase 

CRYAB Alpha-crystallin B chain 

CS  Calf serum 

CT  Cycle threshold 

CTX  Cortex 

CUL1  Cullin 1 

Cy2/3  Cyanine 2/3 

DAB  3-3’-diaminobenzidine 

DAPI  4’6-diamidino-2-phenylindole 

ddH2O  Double distillated water  

DJ-1  Protein deglycase 1 

DMEM  Dulbecco’s modified eagle’s medium 

DML  Distal motor latency 
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DNA  Deoxyribonucleic acid 

dNTP  Deoxyribonucleotide triphosphate 

DPYSL5 Dihydropyrimidinase-related protein 5 

DTT  Dithiothreitol 

DUB  Deubiquitinating enzymes 

DUSP15 Dual specificity protein phosphatase 15 

E1  Ubiquitin-activating enzyme 

E2  Ubiquitin-conjugating enzyme 

E3  Ubiquitin ligase enzyme 

ECL  Enhanced chemiluminescence 

EDTA  Ethylenediaminetetraacetic acid 

ENO1 Enolase 1 

ENPP6 Ectonucleotide pyrophosphatase6 

ER  Endoplasmic reticulum 

ERAD  ER-associated degradation 

FACS  Fluorescence-Activated Cell Sorting 

FASN Fatty acid synthase 

FBP  F-box protein 

FBS  Fetal bovine serum 

FBXL  F-box protein with leucine-rich repeats 

FBXO  F-box protein with only / other domain motifs 

FBXW  F-box protein with WD40 domains 

FP  FBOX7-PI31 interaction domain 

FSCN1 Fascin 

Fwd  Forward 

G1-Phase  Gap-phase 

GCAB Ig gamma-2A chain C regio 

GDAP1 Ganglioside-induced differentiation-associated protein 1 

GDNF  Glial cell-derived neurotrophic factor 

GFAP  Glial fibrillary acidic protein 

GFP  Green fluorescent protein 

GLUT1  Glucose transporter 1 

GNB4 Guanine nucleotide-binding protein subunit beta-4 

GPD2 Glycerol-3-phosphate dehydrogenase 

GPX1 Glutathione peroxidase 1 

GS  Goat serum 

GSN Gelsolin 
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GSTM2 Glutathione S-transferase Mu 

GSTπ1  Glutathione S-transferase π 1 

HBSS  Hank’s balanced salt solution 

HECT  Homologous to E6-associated protein carboxy terminal 

HEK293T  Human Embryonic Kidney 293T cells 

HEPACAM Hepatocyte cell adhesion molecule 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP  Horseradish peroxidase 

HS  Horse serum 

HSPD1 60 kDa heat shock protein 

HURP  Hepatoma up-regulated protein 

HVM51 Ig heavy chain V region AC38 205.12 

IB  Immunoblot 

Iba1  Ionized calcium-binding adapter molecule 1 

IGF1  Insulin-like growth factor 1 

IgG  Immunoglobulin G 

IGH3 Ig gamma-2B chain C region 

IGKC Ig kappa chain C region 

IGSF8 Immunoglobulin superfamily member 8 

IHC  Immunohistochemistry 

IL  Interleukin 

IL-1RA  Interleukin 1 receptor antagonist 

INA Alpha-internexin 

IP  Immunoprecipitation 

IP-10  Interferon γ-induced protein 10 

JAM3 Junctional adhesion molecule C 

JKN  c-Jun N-terminale Kinasen 

LacZ  Lactose operon Z 

LC-MS  Liquid chromatography–mass spectrometry 

LGALS3 Galectin-3 

LIF  Leukemia inhibitory factor 

M-phase  Mitosis 

Mac3  Macrophage antigen 3 

MAG  Myelin-associated glycoprotein 

MAP (nx)  Microtubule-associated protein (nx) 

MAP1B Microtubule-associated protein 1B 

MAP1B LC1  Microtubule-associated protein 1B light chain 1 
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MAP6 Microtubule-associated protein 6 

MBP  Myelin basic protein 

MCP-1  Monocyte chemoattractant protein 1 

MCT (n)  Monocarboxylate transporter (n) 

MHC  Major histocompatibility complex 

MIB1  Mind bomb-1 

Mm  Mus musculus 

MOBP  Myelin-associated oligodendrocytic basic protein 

MOG Myelin-oligodendrocyte glycoprotein 

MPZ Myelin protein P0 

MRI  Magnet resonance imaging 

mRNA  Messenger RNA 

MSC80  Mouse Schwann cells 80 

MSN Moesin 

MTCO2 Cytochrome c oxidase subunit 2 

mTOR  The mechanistic target of rapamycin 

N-Terminus  Amino-terminus (-NH2) 

NCV  Nerve conductance velocity 

NDRG1 Protein NDRG1 

NEDD4  Neural precursor cell expressed developmentally down-regulated 

protein 4 

NEFH Neurofilament heavy 

NEFL Neurofilament light 

NEFM Neurofilament medium 

NF- κB  Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

NFASC Neurofascin 

NO  Nitric oxide 

No.  Number 

NRG1  Neuregulin1 type III 

NT3  Neurotrophin 3 

OCT  Optimal cutting temperature 

OMG Oligodendrocyte-myelin glycoprotein 

OPALIN Opalin 

OPC  Oligodendrocyte precursor cells 

OTUB1 Ubiquitin thioesterase OTUB1 

P (n)  Postnatal Day (n) 

PARK  PD-associated gene locus 
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PARK7 Protein deglycase DJ-1 

PBS  Phosphate-buffered saline 

PBST  Phosphate-buffered saline with Triton-X 

PCR  Polymerase chain reaction 

PD  Parkinson's disease 

PDGF  Platelet derived growth factor 

PDHB Pyruvate dehydrogenase E1 component subunit beta 

PFA  Paraformaldehyde 

PGAM2 Phosphoglycerate mutase 2 

PI31  Proteasomal inhibitor 31 

PINK1  PTEN Induced Putative Kinase 1 

PLL  Poly-L-Lysin 

PLLP Plasmolipin 

PLP  Proteolipid protein 

PMP2 Myelin P2 protein 

PMP22  Peripheral myelin protein 22 

PNS  Peripheral nervous system 

PPS  Parkinsonian-Pyramidal Syndrome 

PRDX1 Peroxiredoxin-1 

PRR  Proline-rich region 

PRRT2 Proline-rich transmembrane protein 2 

PRX Periaxin 

PSG  Penicillin/Streptomycin/GlutaMax 

PSMA2  Proteasomal subunit alpha 2 

PTEN  Phosphatase and tensin homolog 

RAN GTP-binding nuclear protein Ran 

RBX1  RING-box protein 1 

Rev  Reverse 

RING  Really Interesting New Gene 

RIPA  Radio-immunoprecipitation assay buffer 

RNA  Ribonucleic acid 

RP  Regulatory particle 

RT  Room temperature 

RT-PCR  Real time polymerase chain reaction 

RTN4 Reticulon 4 

RUFY3 Protein RUFY3 

s.e.m.  Standard error of the mean 
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S100B Protein S100 B 

SCF  SKP, Cullin, F-box-containing complex 

SCL25A4 ADP/ATP translocase 1 

SDS  Sodium dodecyl sulfate 

SDS-PAGE  SDS-Polyacrylamide gel electrophoresis 

SEPTIN5 Septin-5 

shRNA  Short hairpin RNA 

SIMPLE  Small integral membrane protein of lysosome/late endosome 

SIRT2 NAD-dependent protein deacetylase sirtuin-2 

SKP1  S-phase kinase-associated protein 1 

SLC25A11 Mitochondrial 2-oxoglutarate/malate carrier protein 

SLC44A1 Choline transporter-like protein 1 

SNCA  Synuclein, alpha 

SNP  Single nucleotide polymorphism 

SPTAN1 Spectrin alpha chain 

STIP1 Stress-induced-phosphoprotein 

STXBP3 Syntaxin-binding protein 3 

Suc-LLVY-AMC   N-Succinyl-Leu-Leu-Val-Tyr-AMC (7-amino-4-methylcoumarin) 

TAE  Tris base, acetic acid and EDTA 

TBS  Tris-buffered saline 

TE  Trypsin/EDTA 

TEMED  Tetramethylethylenediamine 

TNF  Tumor necrosis factor 

TOMM70 Mitochondrial import receptor subunit TOM70 

TPI1 Triosephosphate isomerase 

TPPP Tubulin polymerization-promoting protein 

TRAF2  TNF receptor-associated factor 2 

TSPAN-2 Tetraspanin 2 

TUBB3 Tubulin beta-3 chain 

TUBB4A Tubulin beta-4A chain 

TUBB4B Tubulin beta-4B chain 

TUNEL  TdT-mediated dUTP nick-end labeling 

Ub  Ubiquitin 

UBE2M NEDD8-conjugating enzyme Ubc12 

UBE2N Ubiquitin-conjugating enzyme E2 N 

UBE2V1 Ubiquitin-conjugating enzyme E2 variant 1 

UbR  Ubiquitin-related domain 
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UCH-L1  Ubiquitin carboxyl-terminal esterase L1 

UPLC  Ultra Performance Liquid Chromatography 

UPS  Ubiquitin-proteasome system 

UQCRC2 Cytochrome b-c1 complex subunit 2 

UV  Ultra violet 

VAT1 Synaptic vesicle membrane protein VAT-1 homolog 

WB  Western blot 

WT  Wild type 

ZNRF1  Zinc and ring finger 1 

α Anti 

β-Gal  β-Galactosidase 

 

 

Nucleotide Single-letter code 
Adenine A 

Cytosine C 

Guanine G 

Thymine T 

 

 

Amino acids 3-letter code  Single-letter code 
Arginine Arg R 

Cysteine  Cys C 

Glycine Gly G 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Proline Pro P 

Termination / X 

Threonine Thr T 

Tyrosine  Tyr Y 

Valine Val V 
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Units  

cm  Centimeter 

Mm  Millimeter 

µm  Micrometer 

nm  Nanometer 

  
L  Liter 

ml  Milliliter 

µl  Microliter 

  
Kg  Kilogram 

g  Gram 

mg  Milligram 

µg  Microgram 

ng  Nanogram 

  
M  Molar 

mM  Milimolar 

µM  Micromolar 

  
h  Hour 

min  Minute 

s/sec  Second 

ms  Milliseconds 

m/s Meter per seconds 

  
mA  Milliampere 

V  Volt 

mV  Millivolt 

  
°C  Degrees Celsius 

%  Percentage 

rpm  Revolutions per minute 

g  Gravity 

  
kDa  Kilodalton 

bp  Base pairs 

kb  Kilobase 
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Nomenclature 

According to the guidelines of the HUGO Gene Nomenclature Committee (HGNC) and the 

Mouse Genome Informatics (MGI), human as well as mouse gene and protein names 

were referred to in this study as following:  

Example: F-box only protein 7 

 

Species Gene symbol Protein symbol 

Human FBXO7 FBXO7 
Mouse Fbxo7 FBXO7 
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