
 
 

Enhancement Strategies in NMR 

Spectroscopy 

 

 

Dissertation 

for the award of the degree 

“Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 

 

within the doctoral program “chemistry” 

of the Georg-August University School of Science (GAUSS) 

 

 

submitted by 

Eibe Behrend Dücker 

 

 

from Twistringen 

 

 

 

Göttingen 2018 

 



 
ii 

Thesis Committee 

Prof. Dr. Christian Griesinger 

NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 

 

Prof. Dr. Franc Meyer 

Institute of Inorganic Chemistry, University of Göttingen 

 

Members of the Examination Board 

Reviewer: 

Prof. Dr. Christian Griesinger 

NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 

 

Second Reviewer: 

Prof. Dr. Franc Meyer 

Institute of Inorganic Chemistry, University of Göttingen 

 

Further Members of the Examination Board 

Prof. Dr. Marina Bennati 

Institute of Organic and Biomolecular Chemistry, University of Göttingen 

Dr. Stefan Glöggler 

Max Planck Institute for Biophysical Chemistry, Göttingen 

Dr. Tim Schäfer 

Institute of Physical Chemistry, University of Göttingen 

Dr. Florian Ehlers 

Institute of Physical Chemistry, University of Göttingen 

 

Date of the oral examination: 7th of May 2018 

  



 

iii 

Affidavit 

 

I hereby declare that I wrote this thesis Enhancement Strategies in NMR Spectroscopy on my 

own and without the use of any other then the cited sources and tools. 

 

 

Göttingen, 11th of April 2018 
……………………………………………………….. 

 

………………………………….. 
Place, Date  Signature 



 
iv 

  



 

v 

Summary 
 

Hyperpolarization methods have become a powerful assistance technique to NMR 

spectroscopy in order to improve its sensitivity and consequently reduce the required 

measurement time to achieve a satisfactory signal-to-noise ratio. In the SABRE (Signal 

Amplification by Reversible Exchange) polarization technique, an advancement of 

parahydrogen-induced polarization (PHIP), hyperpolarization is transferred from 

parahydrogen molecules to heterocyclic small molecules via a metal template without 

inducing a chemical change to the substrate. Therein, the efficiency of this polarization 

transfer depends on several factors, such as substrate exchange rate and, most importantly, 

the magnitude of the magnetic field, at which the hyperpolarization experiment is 

performed. 

In the course of this work, the SABRE technique was applied to a variety of N-heterocyclic 

compounds in order to assess the effect of changes in the substitution pattern and the 

basicity of the substrate molecule to the attainable proton enhancement. The 

hyperpolarization experiments were further performed using three different polarization 

transfer catalysts to validate if the effects caused by these changes are uniform for diverse 

catalyst systems. 

It was experimentally determined that the magnetic fields, at which the polarization transfer 

is most efficient is primarily determined by the employed polarization transfer catalyst and is 

comparable for a wide variety of substrates. Differences in the substitution pattern of the 

N-heterocyclic substrates cause a change in the relative enhancement levels of individual 

substrate protons. This is due to the mechanism of polarization transfer, in which the 

substrate protons adjacent to the coordination site experience direct transfer of 

magnetization from the parahydrogen nuclei, while the remaining substrate protons obtain 

magnetization by an intramolecular redistribution process depending on the scalar couplings 

within the molecule. A change in the substitution pattern changes this system of coupling, 

which therefore affects the dynamics of the redistribution process. Furthermore, the effect 

of a substituent-induced change in basicity on the attainable enhancement was examined. 

While a strong influence of the employed substituent was observable, the effect was not 

uniform for the examined catalyst systems and a clear dependence of the enhancement on 

the basicity of the substrate molecule could not be derived. 

Lastly, the synthesis of a solid-phase bound N-heterocyclic carbene ligand to be employed in 

a SABRE catalyst system for heterogeneous transfer of polarization was approached. Due to 

synthetical difficulties, the target molecule had to be repeatedly reassessed. In the final 

stage of this work, however, preliminary hyperpolarization experiments with polymer-bound 

iridium complexes were successfully conducted. 
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1 Introduction 
Nuclear magnetic resonance (NMR) spectroscopy poses a powerful and versatile tool that is 

being widely employed in various branches of the natural sciences. In chemistry labs all over 

the world, NMR spectrometers are used on a daily basis in order to characterize the 

products of synthetic reactions and to gain insight into stereochemistry and relative 

conformations of small molecules. In the field of structural biology, high field NMR magnets 

aid in the structure determination of large biological polymers, for which the vast number of 

resonances is made distinguishably by spreading over two-, three- and even higher-

dimensional high-resolution NMR spectra. Using advanced computational methods, this 

approach can be extended to exceed rigid DNA, RNA and protein structures and to give 

access to motion studies of individual domains inside these massive macromolecules. 

Furthermore, magnetic resonance imaging (MRI), which relies on the same principles as 

NMR, is nowadays a readily available method of examination in the medical sciences and can 

be used in order to obtain high resolution, three-dimensional scans of the human brain and 

body. Since patients are not exposed to ionizing radiation, MRI is considered a very mild, yet 

effective, non-invasive probing technique.  

The inherent sensitivity issue of NMR spectroscopy owed to the small population difference 

of nuclear states at thermal equilibrium has, however, since the beginning limited the 

examination of low concentration samples, originating from either limited solubility, limited 

availability or limited abundance of the target nuclei. A great deal of work is being invested 

up to this date in order to overcome this impediment using various different techniques and 

approaches. Superior superconductors are being developed to create stronger magnetic 

fields for employment in NMR spectrometers, yet the acquirement and maintenance of such 

instruments is costly and more often than not new premises have to be constructed in order 

to house these devices not only because of their mere size but also their magnetic stray 

field. To increase the sensitivity of existing equipment, time-tested methods are 

incorporated on a regular basis. For more insensitive heteronuclei, e.g. 13C and 15N, these 

include the application of specific pulse sequences like INEPT (Insensitive Nuclei Enhanced by 

Polarization Transfer) [1, 2], which facilitate transfer of polarization from the more readily 

excited hydrogen nuclei or the employment of isotope labelling to increase their inherently 

low natural abundance [3]. 

1.1 Hyperpolarization methods 

Further efforts have gone into the creation of so-called non-Boltzmann population 

distributions, also referred to as hyperpolarization, in which the population differences 

between the nuclear spin states by far exceed those at thermal equilibrium. 

Hyperpolarization techniques include Spin-Exchange Optical Pumping (SEOP) of noble 

gases [4], Dynamic Nuclear Polarization (DNP) using transfer of electron polarization [5, 6] 

and Parahydrogen-Induced Polarization (PHIP) [7]. For SEOP, electronic states of the alkali 

metals rubidium or cesium in the gas state are selectively excited using circularly polarized 



Introduction 1.1 Hyperpolarization methods 
 

 
2 

photons from a laser source. In the following step, this electronic polarization is converted 

into polarization of 129Xe or 3He nuclei via a collision pathway. In an alternative approach 

termed Metastability Exchange Optical Pumping (MEOP), 3He gas is polarized without the 

need for alkali metals, by initial excitation of the atomic gas into a metastable electronic 

state using an RF pulse, thereby enabling a subsequent direct interaction with the laser 

photons [8]. Hyperpolarized noble gases created using these methods can subsequently, 

among other uses, be employed in the examination of the respiratory tract by MRI, in the 

investigation of material surfaces or in the transfer of polarization to other nuclei, for 

example via the spin Overhauser effect. Insight into these methods, as well as further 

applications and the theoretical background were summarized by Goodson [9]. 

Electronic excitation is also the source of hyperpolarization in the DNP technique. In 

Overhauser-DNP, the Larmor frequency of a radical electron is selectively irradiated and the 

corresponding electronic transition thereby saturated. Hyperpolarization of the targeted 

nuclei is then achieved via a cross-relaxation mechanism of electron and nucleus. In order to 

maximize the signal enhancement, the polarization step in DNP is often performed at 

reduced magnetic fields, where the relaxation-based transfer is more efficient. The 

magnitude of the preserved magnetization is further strongly dependent on the nuclear 

relaxation rates, which are significantly increased due to the presence of the employed 

radical molecules, necessitating a rapid sample transfer from the intermediate to the high 

magnetic field of the NMR magnet. Accordingly, special equipment has been developed to 

efficiently facilitate the rapid sample relocation, coining the term shuttle-DNP [10, 11]. As 

relaxation rates of heteronuclei are commonly much lower than for protons, isotopically 

labelled molecules that were hyperpolarized using DNP can be employed to study the 

substrate distribution and metabolization in time-intensive in vivo MRI experiments [12]. A 

plethora of further applications have been reported on, reviews of which are given, among 

others, by Günther [13] and Maly et al. [14]. 

For parahydrogen-induced polarization, the nuclear singlet spin state of hydrogen 

molecules, in which the two nuclear spins are aligned in an antiparallel fashion, is exploited 

in order to generate high levels of hyperpolarization. Such H2 molecules, which are referred 

to as parahydrogen (pH2), exhibit a total nuclear spin of I = 0, which renders them 

unsusceptible to radio frequency manipulation and thus NMR silent unless the chemical 

equivalency of the two hydrogen atoms is lifted. In classic PHIP experiments, a pairwise 

hydrogen transfer reaction to an unsaturated molecule is performed using para-enriched 

hydrogen gas. If the two nuclei remain coupled and the symmetry between them is broken 

due to a transfer to non-equivalent positions inside a molecule or a coordination complex, 

their polarization evolves and can subsequently be examined using NMR. In the recorded 

spectra, the resonances of the former pH2 nuclei exhibit strongly increased intensities owed 

to their non-Boltzmann magnetization. The appearance of these and selected other signals 

in the spectra is dependent on the experimental procedure, as two different protocols have 

been established, namely ALTADENA (Adiabatic Longitudinal Transfer After Dissociation 
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Engenders Nuclear Alignment) and PASADENA (Parahydrogen And Synthesis Allow 

Dramatically Enhanced Nuclear Alignment), in which the hydrogenation reaction is 

performed at low-field outside the spectrometer or directly inside the NMR magnet, 

respectively [15]. Determined by the selected procedure, different nuclear spin terms 

contribute to the observable magnetization and depending on the prevalent magnetic field, 

a transfer of polarization to other nuclei in the substrate is possible. A thorough description 

of these effects and of the underlying theoretical aspects is given by Natterer and Bargon 

[15]. PHIP is routinely applied to the studies of metal complexes and catalytic reactions, as 

the immense signal enhancement allows for the observation of trace amounts of 

intermediate products or coordination compounds. It is further used in mechanistical studies 

to verify the pairwise transfer of hydrogen nuclei, which is, in most [16] cases, a requirement 

for the occurrence of PHIP. In a series of reviews, the group of Duckett has described in 

detail the fields of application for this polarization technique [17-20]. 

 

Scheme 1: Differences between PHIP and SABRE. In reactions A and B, the parahydrogen nuclei are transferred 
into coupled, yet unequal positions in the product compounds indicated by the distinguishable substituents R 
and R’ as well as the ligands L and L’. Consequentially, the polarization on the nuclei becomes observable and 
enhanced resonances of the highlighted proton spins can be recorded by NMR spectroscopy. In reaction C, the 
substrate and the pH2 nuclei are only temporarily associated via a metal template, resulting in a transfer of 
polarization to the spins of the unmodified substrate, observable by NMR. [M] indicates a non-specified metal 
coordination complex. 

1.2 Signal Amplification By Reversible Exchange 

In PHIP spectra, the molecule exhibiting the signal enhancement is not the substrate that 

was placed in the sample tube or reaction container, but the product compound formed in 

the hydrogenation reaction. Consequently, in order to study a specific target molecule using 

the PHIP effect, it must first be created by the addition of a pH2 molecule to an unsaturated 

precursor compound, which is often not readily available. Furthermore, the substrate 

molecules are used up in the course of the hydrogenation reaction, thereby limiting the 

number of experiments that can be conducted using a single prepared sample before the 

employed compound has been completely hydrogenated. Discoveries reported on by the 

group of Duckett at the University of York in 2009 overcame both of these limitations. In 

their initial studies, they found that certain iridium complexes exhibit the ability to reversible 

bind hydride ligands stemming from parahydrogen molecules as well as pyridine and similar 

compounds that were employed as substrates. The recorded NMR spectra showed increased 

signal intensities for the resonances of the unaltered substrate, indicating a 
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hyperpolarization pathway from pH2 to the molecule of interest without the occurrence of a 

chemical modification. As the substrate is consequentially not used up, replenishing the pH2 

in the sample solution allows for the conduct of additional experiments using the same 

sample. This effect was termed Signal Amplification By Reversible Exchange (SABRE). A 

simplified schematic of the PHIP and SABRE reactions is given in Scheme 1. 

In their first publication on the topic of SABRE, Atkinson et al. observed the reversible 

binding effect for the iridium complexes [Ir(PR3)2(py)2(H)2]BF4 and [Ir(PR3)(py)3(H)2]BF4 

(where py = pyridine, R = phenyl, p-tolyl or p-methoxyphenyl), which were prepared from 

the precursor complexes [Ir(COD)(PR3)2]BF4 (where COD = cyclooctadiene) by addition of 

pyridine and hydrogen gas [21]. Upon application of pH2 to the solution at high-field, the 

hydride resonances of the complexes exhibited PHIP enhancement and a transfer of this 

polarization to 15N nuclei in isotopically labelled pyridine was achieved using an INEPT based 

protocol. The nitrogen resonance of free, unmodified pyridine molecules subsequently 

experienced a signal enhancement by a factor of 120. 

In a report published shortly after, Adams et al. describe signal enhancement obtained for 
1H, 13C and 15N nuclei in free pyridine and nicotinamide molecules [22] using the iridium 

complex [Ir(H)2(PCy3)(substrate)3]BF4 (where Cy = cyclohexyl and substrate = pyridine, 

nicotinamide), which was obtained from [Ir(COD)(PCy3)(MeCN)]BF4 upon treatment with pH2 

and an excess of the substrate. The corresponding experiments were performed under 

ALTADENA conditions, meaning that the polarization step, in which the pH2 is dissolved in 

the solution, is executed at reduced magnetic fields outside of the spectrometer and the 

sample subsequently inserted into the NMR magnet to acquire the desired spectrum. 

Resonances within a single substrate showed varying levels of polarization and both 

absorptive and emissive signals were detected. Further hyperpolarized substrates included 

3-fluoropyridine, nicotine, pyridazine, quinoline, quinazoline, quinoxaline and 

dibenzothiophene and hyperpolarization of 19F and 31P nuclei was also reported. Moreover, 

applicability to MRI was demonstrated, significantly increasing the signal-to-noise ratio (SNR) 

while reducing the required acquisition time. 

The third publication in short succession reported on the pH2-derived hyperpolarization 

achieved using [Ir(H)2(PCy3)(py)3]BF4, which was derived from the BF4-paired version of 

Crabtree’s catalyst [23, 24], [Ir(COD)(PCy3)(py)]BF4. It was found that a polarization step at 

low magnetic field was necessary in order to facilitate the spontaneous polarization transfer, 

i.e., without nuclear spin manipulation using radio frequency (RF) pulses, from the 

pH2-derived hydride ligands to the 1H, 13C and 15N nuclei in the analyte. Exposure of the 

sample to parahydrogen at high-fields inside the NMR magnet yielded no enhancement of 

the corresponding resonances [25]. Interestingly, it was also found that the relative sign and 

the level of hyperpolarization of the individual resonances depended on the exact 

magnitude of the polarization field, as spectra of samples polarized at earth’s field (0.5 Gs) 

exhibited a different signal pattern compared to those polarized within the stray field of the 

NMR magnet (5 to 100 Gs). This effect was observed for 1H as well as 13C nuclei. The authors 
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furthermore examined the catalyst loading dependence on the obtained enhancement by 

varying the catalyst-to-substrate ratio from 1:5 to 1:1000 and found that within these limits, 

higher percentage catalyst loading resulted in higher achieved enhancement. Additionally, 

the achievable signal enhancements for pyridine were compared when several further 

iridium complexes containing different versions of the phosphine ligand were employed as 

polarization transfer catalysts. Highest levels of enhancements were found for 

dicyclohexylphenylphosphine, followed by tricyclohexylphosphine and triisopropylamine. 

Shortly after, Adams et al. gave a theoretical description of the phenomenon, based on a 

4-spin model complex consisting of the two former parahydrogen nuclei and two substrate 

spins [26]. Therein, the transfer of polarization is attributed to the presence of a scalar 

coupling between the pH2 nuclei and those of the substrate molecules. It was further 

postulated that the efficiency of the transfer depends on the size of these couplings and the 

chemical shifts. From this it was concluded that the effect is time- and field dependent, 

meaning that the level of achieved polarization depends on the lifetime of the active 

polarization transfer catalyst as well as on the magnetic field strength, at which the 

polarization transfer takes place. An exhaustive analysis of field dependences for various 

spin terms generated in the polarization transfer step was presented, yet no correlation to 

experimental data was produced. 

1.2.1 The Fundamentals of SABRE 

For SABRE experiments, the sample is prepared by dissolving a suitable iridium-based 

precatalyst and an excess of the substrate of interest in an appropriate solvent. Routinely, 

methanol-d4 is employed, although other solvent systems have also been tested [27-33]. The 

sample is then transferred into a suitable container, where it is exposed to parahydrogen-

enriched hydrogen gas to generate the active polarization transfer catalyst. An exemplary 

schematic of this reaction for the three precatalysts utilized in this work is depicted in 

Scheme 2 [21, 22, 25, 34]. 

 

Scheme 2: Preparation of the active polarization transfer catalyst starting from the precatalysts 
[Ir(COD)(PCy3)(py)]+ and [Ir(COD)(NHC)Cl] (NHC = IMes, SIMes). Here, pyridine is used as an exemplary 
substrate compound. 

SABRE hyperpolarization experiments are usually performed in one of the two following 

ways: 

For the so-called shaking method [21, 22, 25, 35], the sample solution is placed and activated 

inside a pressure-resistant NMR tube, to which then an overpressure of parahydrogen is 



Introduction 1.2 Signal Amplification By Reversible Exchange 
 

 
6 

applied. In order to dissolve the hydrogen gas in the sample solution, the sample tube is 

vigorously shaken for several seconds at a low-field position within the stray field of the 

NMR magnet, for which the strength of the prevalent magnetic field is known. Subsequently, 

the sample tube is quickly inserted into the NMR magnet and the desired NMR experiments 

are performed. 

For the bubbling method, the sample solution is placed inside a reaction container, into 

which a flow of pH2 gas can be passed via an immersion tube and for which the prevalent 

magnetic field strength in the low-field range can be adjusted either by variation of the 

distance to the NMR magnet or by field modulation using an electromagnetic coil. When the 

desired magnetic field is set, parahydrogen is bubbled through the solution in order to 

dissolve the gas molecules in the sample solution. After the bubbling procedure, the sample 

is mechanically [36, 37] or pneumatically [29] transferred to the center of the NMR magnet 

in order to perform the NMR experiments. 

 

Scheme 3: Simplified schematic of the catalytic cycle of the SABRE polarization transfer. The highlighted 
molecules are in a non-equilibrium nuclear spin state and are therefore considered hyperpolarized. Pyridine is 
depicted as an exemplary substrate. 

The experimental procedures that serve to dissolve the pH2 in the sample solution are 

referred to as the polarization step, as here the analyte and the parahydrogen nuclei are 

brought into contact with each other by temporary association via the active polarization 

transfer complex. During the lifetime of the complex, the nuclear polarization of the pH2 

spins is transferred to the substrate nuclei (Scheme 3) via the extended J-coupling network. 

After dissociation, the substrate molecule remains in the hyperpolarized state and can be 

examined in NMR experiments. Depending on the employed catalyst and the magnetic field 

strength at which the polarization step was performed (commonly referred to as the 

polarization field), the substrate resonances exhibit strongly enhanced absorptive or 

emissive resonances. Owed to these two parameters, the corresponding signal intensities 

and patterns are highly variable, both relative to each other and in absolute terms. For 

unmodified SABRE protocols, the polarization field usually exhibits a strength of below 250 

Gs. 



1.2 Signal Amplification By Reversible Exchange Introduction 
 

 
7 

In contrast to classic PHIP experiments, the pH2 nuclei are not incorporated into the 

substrate molecules as the hydrogenation reaction is energetically unfavorable due to the 

aromatic nature of the commonly employed analytes. Therefore, the substrate remains 

chemically unchanged in the polarization process and can be repolarized numerous times. 

Furthermore, the pH2-derived polarization is not made accessible by breaking the symmetry 

between the former parahydrogen nuclei but is spontaneously transferred to the substrate 

spins at low-field via the scalar coupling network of the active polarization transfer catalyst 

without additional spin manipulation using the NMR radio frequency coils. Lastly, the 

hyperpolarization is generated mainly in the form of longitudinal magnetization, which is 

detectable using standard one-scan 90° hard-pulse experiments and which can therefore by 

employed in a variety of unmodified NMR pulse sequences. An extensive theoretical 

description of SABRE is presented in Section 2. 

1.2.2 Advancements and Applications in SABRE 

Since the initial publications, a great deal of work has been invested in the application, 

improvement and analysis of the SABRE technique with contributions from numerous 

different research groups [38]: 

Dücker et al. set out to experimentally investigate the polarization field dependence of the 

SABRE enhancement [35]. To that end, the authors conducted polarization transfer 

experiments for pyridine and a number of pyrazole derivatives at various magnetic field 

strengths in the stray field of the NMR magnet, using Crabtree’s catalyst 

[Ir(COD)(PCy3)(py)]BF4 as the precatalyst. It was found that chemical differences in the 

substrates had only very limited influence on the profile of the determined polarization field 

dependences and that the results obtained for each pyrazole derivative exhibited maximum 

enhancement at fields of 30-40 and 140 Gs, between which a transition from absorptive to 

emissive signals was observed. The results for pyridine showed a similar appearance, yet the 

curves were displaced on the y-axis for individual protons, so that ortho and para protons 

primarily gained polarization with a negative phase, while the meta resonances almost 

exclusively exhibited positive intensities. These experimentally determined field 

dependences were contradictory to those previously predicted by Adams et al. [26]. It was 

further reported that a dilution of the analyte pyridine by its deuterated analog resulted in 

increased levels of enhancement observed for the analyte resonances. Additionally, 

polarization transfer to the solvent hydroxy resonance was reported, presumably caused by 

H/D exchange between the solvent and substrates exhibiting an acidic NH proton. 

In a computational study, Pravdivtsev et al. identified the presence of Level Anti-Crossings 

(LAC) at low magnetic fields of <250 Gs as the key factor of the polarization field dependence 

in SABRE [37]. In the case of Crabtree’s catalyst, the employed phosphine ligand exhibits a 

significant scalar coupling between its phosphorus atom and the hydride ligands, creating 

additional LACs which are the cause for the observed bimodal field dependence curves [35]. 

Numerical calculations for an eight-spin system consisting of the hydride ligands in the initial 

singlet state, the 31P spin of the phosphine ligand and the five proton spins of pyridine as the 
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analyte produced an excellent agreement with experimentally obtained field dependences. 

For catalyst systems that exhibit no 31P-1H coupling, only a single field range of highest 

polarization transfer efficiency is reported. 

In order to be able to conduct SABRE experiments simply and reproducibly, Mewis et al. 

reported on the development of the automatic Parahydrogen Polariser unit, designed and 

manufactured by Bruker BioSpin UK [29] (Figure 1). The Polariser is connected to a flow 

injection probe and can transfer samples from a low-field to the high-field position using a 

pneumatic flow system. At the low-field position, the device is equipped with a mixing 

chamber, in which pH2 can be applied to the sample solution. Surrounding the mixing 

chamber is a copper solenoid, using which the magnetic field strength at the low-field 

position can be modulated. The functionality of the equipment was demonstrated by 

examining the effects of the polarization field, the pH2 pressure, the pH2 exposure time and 

the catalyst concentration on the level of achieved enhancement for the analyte 

nicotinamide. Furthermore, the effect of the catalyst concentration on the effective analyte 

T1 time constants was examined, showing increased relaxation rates at higher complex 

concentrations. Additionally, higher order spin terms created in the process of 

hyperpolarization and their behavior under variant experimental parameters were analyzed 

with the OPSY (Only Para-hydrogen SpectroscopY) sequence [39], using which individual 

longitudinal higher order terms can be selectively observed. Polarization of nicotinamide in 

ethanol-d6 and a 1:1 ethanol-d6/D2O mixture was also performed with reduced efficiency 

owed to divergent reaction kinetics for the ligand exchange in these solvents. Direct 

hyperpolarization of 13C nuclei in nicotinamide was found to be most efficient at 0 Gs. 

 

Figure 1: Setup of the Bruker Parahydrogen Polariser. Using the syringe, the sample solution can be transferred 
into the polarization chamber, where the polarization field can be adjusted by the surrounding solenoid. To 
achieve dissolution of pH2, a flow of the gas can be applied to the mixing chamber and subsequently the 
solution can be transferred into an attached flow probe for NMR examination. 

1.2.2.1  SABRE Ligand Systems 

The SABRE activity of the polarization transfer catalysts depends strongly on the types of 

ligands in the coordination sphere of the complex. Especially the non-exchanging, axially 

bound, sterically demanding phosphine and N-heterocyclic carbene ligands play an essential 

role and several types of these ligands have been studied: 

As the first NHC-carrying precatalyst, the iridium complex [Ir(COD)(IMes)Cl] (IMes = 1,3-

bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (1, Figure 2)) was examined by Cowley et al. 
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and was reported to exhibit superior catalytic polarization transfer activity compared to the 

previously employed phosphine complexes [34]. Upon its treatment with pyridine and H2, 

the dihydride complex [Ir(H)2(IMes)(py)3] is formed, which was assessed to be the active 

catalyst species. In this complex, two pyridine ligands and the two hydrides are located in 

the equatorial plane and were found to exchange with free pyridine and H2 in solution. The 

third pyridine ligand is bound in the axial position opposite of the IMes ligand and does not 

undergo exchange. An increase in temperature decreased the level of attained enhancement 

for this complex, while for Crabtree’s catalyst higher enhancements were achieved at 

elevated temperatures. This suggests an optimal window of ligand exchange rates for 

efficient transfer of polarization. Also, higher pH2 pressures yielded higher levels of 

enhancement and the same is true for higher percentage catalyst loading. Reducing the size 

of the proton spin system by employing 3,4,5-trideuteropyridine as the analyte resulted in 

higher enhancement factors for the remaining protons, presumably as the finite amount of 

polarization was shared among fewer nuclei. A polarization field dependence evaluation was 

performed using the new catalyst and pyridine as a substrate, giving 60 Gs as the most 

effective field strength for the hyperpolarization of pyridine para protons. 

 

Figure 2: Assorted ligands utilized in SABRE related studies including IMes (1), SIMes (2), PCy3 (5) and PPh3 (6). 

Van Weerdenburg et al. analyzed eleven NHC ligands in order to determine their effect on 

SABRE when employed in [Ir(H)2(NHC)(substrate)3]-type polarization transfer catalysts [40]. 

To that end, they compared an analogue of the Tolman Electronic Parameter (TEP) [41] and 

the buried volume (%Vbur) [42] exhibited by the different NHCs, which describe the 

electronic donor ability and the steric demand of a ligand, respectively. It was found that 

even though the ligands show a strongly deviating polarization transfer potential among 

them, the range of exhibited TEP values, which describe the change in the carbonyl 

stretching frequency of a CO ligand imposed by coordination of a ligand of interest, is 

extremely narrow (< 3 cm-1) and significantly smaller than for phosphine-type ligands (~20 

cm-1). It was therefore concluded that the electronic effects have only a secondary influence 

on the attained enhancements. The ligand exchange rate (koff) for pyridine showed, 

however, a correlation to the buried volume of the NHC ligand. NHCs containing a saturated 

backbone, e.g. SIMes (2), exhibited a higher level of flexibility, which increases their steric 

bulk and results in higher exchange rates. Experimental results suggest that optimal rates of 
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ligand exchange are close to the value of 10.4 s-1 that was found for the unsaturated IMes 

ligand, which achieved highest levels of signal enhancement and for which an increase as 

well as a decrease in the exchange rates resulted in lower levels of observed polarization. 

Additionally, the chemical shifts exhibited by complex bound analytes do not correlate with 

the electronic parameters of the NHC but are rather caused by the presence or absence of 

aromaticity in the substituents of the NHC ligands, which was postulated to have a large 

influence on the polarization transfer efficiency. These findings were later extended by 

producing a satisfactory correlation between the observed substrate exchange rate and the 

π-accepting ability parameter (PAAP) [43] of the NHC ligands, which describes their 

electronic parameters detached from their 𝜎-donating ability [44]. Deviations were observed 

for NHCs exhibiting exceptionally large steric bulk (3) or a strictly aliphatic constitution (4). A 

more thorough discussion will be presented in chapter 2.5. 

Similar studies on NHC ligands were performed by Lloyd et al., who also found that larger 

NHC ligand size correlates with a weaker binding of substrates and vice versa, which 

modulates the ligand exchange rate [45]. They further found that changes in the ligand 15N 

chemical shift due to metal coordination do not correlate with the binding affinity between 

complex and ligand. Low temperature examination of ligand exchange pathways suggests 

the exchange of the hydride ligands taking place via the temporary 16-electron complex 

[Ir(H)2(NHC)(substrate)2]+ resulting from the dissociation of one of the substrate ligands. The 

vacant coordination site is then occupied by H2, giving the intermediate 

[Ir(H)2(H2)(NHC)(substrate)2]+ complex. H2 exchange is therefore limited by the dissociation 

of the substrate. Subsequently, increased rates of hydride exchange resulted in an increase 

of observed enhancement. The intermediate 16-electron complex is further able to 

coordinate solvent molecules, resulting in the formation of an unsymmetrical complex that 

exhibits PHIP enhanced hydride resonances. For all examined NHC ligands, a change in 

temperature caused a change in the observable polarization levels, as the substrate 

exchange rate depends on the energy of the system. Each NHC catalyst exhibits highest 

signal enhancements at a different temperature, where the ligand exchange rate is in the 

optimal range depending on the ligand properties. The substrate T1 time constants are 

furthermore effectively reduced by coordination to the polarization transfer catalyst, 

necessitating a compromise between longer coordination times for highest efficiency of 

polarization transfer and shorter coordination times in order to reduce the level of 

relaxation. The optimal rates of pyridine loss stated here are between 0.5 and 0.08 s-1 per 

mole of complex (0.25 s-1 for the most efficient IMes ligand), corresponding to optimal 

catalyst lifetimes of around 0.25 s. Furthermore, complexes of different NHCs exhibited 

deviating field dependences when employed as polarization transfer catalysts. 

Fekete et al. examined the iridium complexes [Ir(H)2(IMes)(PPh3)(NCMe)2]+ and 

[Ir(H)2(IMes)(PCy3)(NCMe)2]+ for their applicability as SABRE polarization transfer catalysts, 

which simultaneously incorporate the two ligand types utilized in well-studied SABRE 

catalysts, i.e., phosphines and N-heterocyclic carbenes [27]. In solutions containing equal 
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amounts of acetonitrile and pyridine, the thermodynamically favored mixed complex 

[Ir(H)2(IMes)(PR3)(NCMe)(py)]+ (R = Cy 5, Ph 6) was formed instead of the (NCMe)2 or (py)2 

analogs. For the PPh3 complex, ligand exchange was found to be initiated by dissociation of 

acetonitrile, while for the PCy3 species, pyridine exchange was dominant. When employed as 

SABRE catalysts, both complexes efficiently facilitated transfer of polarization from pH2 to 

pyridine and exhibited enhancement maxima at comparable magnetic field strengths. The 

enhancement levels obtained for the PCy3 versions were comparable to those determined 

for the thoroughly investigated [Ir(H)2(IMes)(substrate)3]+ catalyst. Furthermore, the 

complex-bound ligands as well as acetonitrile molecules gained signal intensity from pH2. 

Employment of pyridine-d5 as the analyte changed the observed enhancements on the 

ligands, increasing the signal intensities for acetonitrile and the IMes ligand while decreasing 

the polarization detected on the phosphine protons. Polarization transfer to the latter was 

therefore presumed to not be from the hydride ligands directly, but from previously 

enhanced pyridine ligands. Using a 45° excitation pulse, strong PHIP derived signals with 

antiphase character were observed on the hydride ligands of the mixed complex, while no 

hydride resonances originating from symmetrical species were detected. Employing a 

mixture of pyridine-d5 and pyridine-h5 in the absence of acetonitrile also induced asymmetry 

in the formed complexes, which consequently also exhibited PHIP enhanced hydride 

resonances. It was not mentioned if a signal enhancement via the SABRE pathway was 

observed on the hydride resonances. 

 

Figure 3: Assorted modified phosphine and NHC ligands. Ligands 7a-c, 8 and 9a,b were synthesized to create 
polarization transfer catalysts with a higher polarity to be used in water-based solvent systems, while ligand 10 
served the purpose of creating a neutral catalytic complex for application of SABRE in non-polar solvents. 

To improve the SABRE results in aqueous solution, the same authors strived to synthesize a 

more water soluble polarization transfer catalyst [32]. The first series of tested complexes 

consisted of three catalysts of the type [Ir(H)2(NCMe)(py)(IMes)(L)], where L represents 

mono-, di- and trisulfonated variants of the PPh3 ligand (7a-c, Figure 3). In methanol-d4, the 

catalysts exhibiting the sulfonated phosphine ligand achieved lower levels of enhancement 

compared to the complex of the unmodified PPh3, with highest enhancements obtained by 

the monosulfonated version with a factor of ~400. Compared to MeOD as a solvent, Catalyst 

activity was found to be 5 times lower in ethanol-d6, while in water and a water-ethanol 

mixture, the activity was poor, exhibiting no SABRE enhancement. Furthermore, high levels 
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of H/D exchange were observed in D2O and ethanol-d6 for the hydride ligands and pyridine. 

Consequently, a second series of catalysts was synthesized which employed modified IMes 

(8) and SIMes (9a,b) ligands, into which peripheral triazole rings were incorporated in order 

to increase the polarity of the resulting complex. Again, good SABRE activity was observed in 

methanol-d4 and – to a lower extent – in ethanol. When a mixture of 67% D2O, 3% DMSO 

and 30% ethanol was employed as solvent, the polarization transfer decreased or stopped 

altogether. This effect was attributed to the presence of DMSO, which was added to improve 

hydrogen solubility, yet which might also coordinate irreversibly to the complexes. 

Employing D2O or 3:7 ethanol/D2O as the solvent resulted in strongly reduced 

enhancements, rendering direct hyperpolarization in these solvents impractical. 

An experimental modification for the application of the SABRE protocol to aqueous solutions 

was described by Zeng et al. [30], in which 3-amino-1,2,4-triazin and [Ir(COD)(IMes)Cl] were 

dissolved in methanol and the active catalyst species was subsequently generated by 

application of pH2. Following this, water was added, and the methanol fraction reduced to 

10% by heating to 40 °C. The sample was then exposed to pH2 at a field of 65 Gs at a 

temperature of 54.4 °C, yielding a signal enhancement of 170 in a mostly aqueous solution. 

Application of this protocol to the analytes pyridine, isoniazid and pyrazinamide proved, 

however, unsuccessful. 

In order to extend the applicability of SABRE to non-polar solvents, Ruddlesden et al. 

synthesized an IMes derived NHC ligand, in which one of the 2,4,6-trimethylphenyl 

substituents was replaced by a 2-methylene-4-nitrophenolate moiety (10) and using which a 

neutral polarization transfer catalyst was generated [33]. Activation of the complex to form 

the operative catalyst species using an excess of analyte and H2 proved to take significantly 

longer in the aprotic solvents benzene-d6, tetrahydrofuran-d8 and dichloromethane-d2 as 

well as protic ethanol-d6, as satisfactory levels of polarization transfer were detected after 

48 h, yet a 3 to 5-fold improvement on these values was observed after 24 days. Over this 

time period, no signs of degrading or H/D exchange were detectable. In methanol, however, 

deuteration takes place over this elongated time span, resulting in significantly reduced 

enhancement factors observed after 24 days compared to after 48 h. Benzene proved to be 

an excellent solvent for the conduct of non-polar SABRE experiments. 

Holmes et al. tested an iridium PNP pincer complex employing the 2,6-bis(di-tert-

butylphosphinomethyl)-pyridine ligand (11) for its applicability to the SABRE protocol [46]. 

While the active polarization transfer catalyst [(C5H3N(CH2P(tBu)2)2)Ir(H)2(py)]+ was formed 

after treatment with pyridine and H2, this complex coordinates only one analyte molecule at 

a time in contrast to other SABRE catalysts, which usually bind two to three substrate 

molecules. In combination with the exhibited low ligand exchange rates, this resulted in 

comparatively low levels of hyperpolarization for the employed analyte pyridine as against 

previously examined polarization transfer catalysts. An increase in temperature resulted in 

higher ligand exchange rates, which lead to slightly higher enhancement levels attained after 

polarization at 65 Gs, yet surprisingly also to lower levels of enhancement when the 
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polarization step was performed at 0.5 Gs. Furthermore, deuteration of the pyridyl ring and 

the methylene groups resulted in an increase in signal intensity for the examined analytes. 

1.2.2.2  Substrate Examination Studies 

The requirement for substrate molecules to be susceptible to the SABRE technique is the 

presence of a donor atom in their molecular structure, with which the compound can 

reversibly bind to the catalytic complex. Despite the structural similarity of the analytes 

imposed by this necessity, the achieved levels of hyperpolarization vary greatly among the 

examined substrates. Several studies therefore placed their focus on the employed analytes 

themselves, often with the intent of maximizing the attained enhancement levels for the 

selected compound of interest: 

 

Figure 4: Molecular structures of chemical compounds referred to in this section. 

Quinoline (Figure 4) was examined using the [Ir(COD)(IMes)Cl] precatalyst in a study by Lloyd 

et al., probing the applicability of SABRE to the acquisition of two-dimensional spectra [47]. 

All proton resonances in the analyte exhibited SABRE and enhanced 1D NOE transfer was 

achieved between two protons attached to the annular ring systems. Using the 1H 

OPSY-COSY sequence [39], a 1H-1H correlation spectrum of a 2 µmol quinoline sample was 

obtained within 16 minutes. Using ultrafast COSY [48], a two-dimensional spectrum of 

6 µmol analyst was recorded using only one hyperpolarization step, allowing assignment of 

the entire substrate proton network. Using a 60 µmol sample, 13C spectra were recorded in 

single scans, either by direct 13C observation after hyperpolarization at fields close to 0 Gs in 

a magnetic shielding chamber in order to minimize the large difference in Larmor 

frequencies between proton and carbon nuclei or via an INEPT sequence from 1H to 13C after 

hyperpolarization at 50 Gs. 

The clinically used drugs isoniazid and pyrazinamide were probed by Zeng et al. using SABRE 

with [Ir(COD)(IMes)Cl] as precatalyst in order to determine the parameters for their optimal 

hyperpolarization [49]. To that end, the duration of pH2 application, the polarization field 

and the temperature were varied for a catalyst-to-substrate ratio of 1:10 in methanol-d4 and 

methanol-h4 as well as the clinically more appropriate solvents ethanol and DMSO. The 

exposure time was found to be solvent specific and dependent on the viscosity and the 

solubility of H2. For pyrazinamide, optimal enhancement in methanol-d4 and methanol-h4 

was achieved at temperatures of 46.1 °C (~1400-fold and ~800-fold, respectively), while for 

ethanol and DMSO the optimal temperature was 37.5 °C. For all solvents, highest levels of 
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enhancement were achieved at a polarization field of 65 Gs. Compared to methanol-d4, 

enhancement values for methanol-h4 were reduced to approx. 50%, for ethanol to 25% and 

for DMSO to 3%. For isoniazid, the optimal polarization field was identical and highest levels 

of polarization were for all solvents achieved at 46.1 °C. Compared to methanol-d4, the level 

of enhancement was reduced to 60%, 50% and 15% for methanol-h4, ethanol and DMSO, 

respectively. With optimized parameters, the ratio of enhancement between pyrazinamide 

and isoniazid was 1400:230 in methanol-d4. 

A further step towards clinical application of SABRE was taken by Mewis et al., who studied 

the deactivation of the active catalyst species after performing the hyperpolarization step 

[50]. To do so, the authors performed SABRE for the analyte nicotinamide using 

[Ir(COD)(IMes)Cl] as the precatalyst and subsequently added 2,2’-bipyridine to the sample 

solution. Examination using NMR revealed SABRE enhancement for the initial experiment, 

yet a repolarization of the substrate was not possible. 1H NMR spectra showed a newly 

formed dominant hydride resonance, corresponding to the complex 

[Ir(H)2(IMes)(bipy)(nico)]+ (bipy = 2,2’-bipyridine, nico = nicotinamide), in which the 

bipyridine ligand occupies the positions trans to the hydrides. Consequentially, hydride 

exchange in this complex is effectively inhibited, as the exchange pathway includes 

dissociation of an equatorial ligand, which does not occur for the chelating bipyridine 

molecule, resulting in deactivation of the polarization transfer complex. The deactivation 

further causes an elongation of the observed substrate T1 times, which are shortened in the 

presence of the active complex and are restored to their free form values after addition of 

the chelating ligand. This allows for examination of the hyperpolarized samples over a 

significantly expanded time frame compared to unmodified SABRE experiments, permitting 

more time-consuming experimental procedures, such as in vivo experiments, for which the 

sample must first be injected into the organism of interest. This procedure was successfully 

transferred to the substrate pyridine and the chelate ligand 1,10-phenanthroline. 

Reactivation of the deactivated complex using UV-irradiation proved unsuccessful. 

Another in-depth study on individual substrates was conducted by Appleby et al., who 

investigated pyridazine and phthalazine, both of which exhibit two adjacent nitrogen atoms 

in their aromatic ring structures [31]. The analytes were found to undergo intramolecular 

haptotropic shift, i.e. change of the coordination motif from one to the other donor atom, 

when coordinated to a metal ion. In solution, the complexes [Ir(COD)(IMes)(L)]+ (L = 

pyridazine, phthalazine) were formed, which were transformed into [Ir(H)2(COD)(IMes)(L)]+ 

after application of H2 at 240 K. PHIP activity was observed for the hydrides in these 

complexes. Upon warming to room temperature, the complexes reacted swiftly under 

release of cyclooctane to form the active SABRE catalyst species [Ir(H)2(IMes)(L)3]+. In-depth 

analyses of all observed Ir-L complexes, including ligand and hydride exchange are given by 

the authors. Both analytes exhibited high susceptibility to the SABRE protocol and achieved 

higher levels of enhancement at higher temperatures. MRI under analytical conditions using 
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these substrates was highly feasible and preliminary results indicated excellent rates of 

polarization transfer in ethanol-d6 solutions. 

The behavior of SABRE for highly diluted samples was investigated by Eshuis et al. [51]. The 

authors examined enhancement of pyridine using [Ir(H)2(IMes)(py)3]+ as the polarization 

transfer catalyst at a fixed catalyst-to-substrate ratio of 1:12.5 for substrate concentrations 

ranging from 10 mM to 25 µM. For analyte concentrations of below 2.5 mM, a rapid 

decrease in SABRE activity was observed, owing to dissociation of the active polarization 

transfer catalyst. Due to the low substrate concentration, dissociated analyte molecules are 

not effectively replaced by free substrates from the sample solution, but vacant coordination 

sites are presumably occupied by solvent molecules. Therefore, at sub-mM concentrations, 

the major percentage of pyridine is free in solution and formation of the active catalyst 

species is inhibited, resulting in a loss of polarization transfer activity. To counter this effect, 

the authors employed 1-methyl-1,2,3-triazole as a co-substrate in order to increase the total 

substrate concentration and to facilitate the formation of active polarization transfer 

catalysts. Using this method, micromolar concentrations of pyridine were detectable and the 

detection limit was estimated to be <1 µM. In this concentration regime, the SNR was found 

to be linearly dependent on the concentration of the analyte, provided that the 

concentration of the co-substrate was constant and exceeded that of the analyte by a wide 

margin. 

The same research group employed this method by examining a substrate mixture 

containing 8.8 µM nicotinamide as the analyte as well as 15 additional compounds as co-

substrates with a combined substrate concentration of 6 mM [52]. The analyte 

concentration was then stepwise increased over a number of SABRE experiments. The initial 

concentration could subsequently be determined within experimental error by plotting the 

observed signal intensity against the added analyte amount and extrapolating the abscissa 

intercept. The concentrations of pyrazine, isoxazole and quinazoline were examined in the 

same manner. 

In a similar approach, this research group examined the complexes formed from an initial 

iridium compound when exposed to a mixture of 13 SABRE active compounds by analyzing 

the PHIP-derived enhancement of the hydride resonances in the complexes. The researchers 

exploited the fact that due to the variety of substrates virtually only asymmetric iridium 

complexes of the form [Ir(H)2(IMes)(substrate)(substrate’)(substrate’’)]+ are generated, 

which give rise to strongly enhanced hydride resonances when exposed to pH2 [53]. The 

substrates were employed at concentrations ranging from 250 nM to 2 µM at a metal 

complex concentration of 2 mM and a co-substrate concentration of 30 mM. Experiments 

were performed under PASADENA conditions (pH2 exposure and signal detection at high-

field) and polarization transfer from the hydrides to analyte ortho protons via long range 

scalar coupling was achieved using a shaped pulse based 1H-1H 2D pulse sequence. The 

resulting spectrum was acquired in 23 min and the achieved signal separation allowed clear 

assignment of all substrate molecules. Also, for this approach, the signal intensity is linearly 
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dependent on the analyte concentration, allowing for a titration in order to determine the 

initial analyte concentration using the 2D resonance integrals. 

In a very recent 2016 study, Hermkens et al. examined a coffee extract solution using a 

modified version of the afore described high-field co-substrate protocol [54]. The 

modification consisted of application of a slightly different 2D pulse sequence, in which the 

polarization was not only transferred from the hydride nuclei to the substrate protons but 

was also transferred back and detected on the hydride resonances. This served the purpose 

of reducing the number of undesired resonances in the spectra, as no signal of free analyte 

molecules or symmetrical complexes was recorded. Using the titration method, the 

concentrations of several heterocyclic compounds in the coffee extract were quantitatively 

determined in satisfactory agreement with tabulated values. 

Daniele et al. reported on a minor modification of the co-substrate approach, in which the 

authors employed pyridine-d5 in order to analyze a mixture of five substrates at 

sub-millimolar concentrations [55]. The deuterated co-substrate was used in order to 

prevent a signal overlap with resonances of interest and proved to increase the 

enhancements observed on the targeted substrates. In a one-scan ultrafast 2D COSY 

experiment using 0.13 mM [Ir(COD)(IMes)Cl], 10 mM pyridine-d5 and 500 µM of the 

individual analytes, a good quality spectrum was recorded after SABRE at 70 Gs and 4 bar 

pH2 (51%), which allowed assignment of all substrates except for the SABRE-unsuitable 

2-ethylpyridine. 

Hyperpolarization of non-heterocyclic substrates was investigated by Mewis et al., who 

examined acetonitrile and other aromatic and nonaromatic nitrile-containing substrates 

[56]. Notably, experiments performed after the initial activation step of [Ir(COD)(IMes)Cl] 

using parahydrogen produced lower enhancement levels than the initial experiment, 

indicating a poor polarization transfer activity of the typical [Ir(H)2(IMes)(NCMe)3]+ complex 

for the analyte acetonitrile. Addition of small amounts of pyridine in a ratio of 20:3 resulted 

in the formation of the more active and thermodynamically favored complex 

[Ir(H)2(IMes)(NCMe)(py)2]+, which showed and maintained a higher level of polarization 

transfer to the target substrate, resulting in an enhancement factor of 20 at a polarization 

field of 80 Gs. Employment of pyridine-d5 further increased the enhancement to 60-fold, 

while addition of PCy3 to form a phosphine- and NHC-containing catalyst decreased the 

observed signal intensity considerably. Hyperpolarization transfer to 13C nuclei in acetonitrile 

was also achieved and the underlying mechanics were discussed thoroughly. 

In an effort to maximize the detectable hyperpolarization on the solvent resonance, Moreno 

et al. examined various substrates under mildly acidic conditions in order to generate labile 

protons at the analyte donor atoms [57]. The authors employed two NHC carrying 

complexes in order to facilitate the polarization transfer from the parahydrogen nuclei. 

Under neutral conditions, a slight dependence of the solvent signal was observed in the 

NMR spectra when pyridine was employed as the analyte, yet the signal integrals remained 
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lower than in the thermal references. When the sample was acidified using hydrochloric 

acid, however, significant enhancement of the solvent resonance was observed. It was 

postulated that this polarization stems from analyte molecules that are intermediately 

protonated after obtaining hyperpolarization at the polarization transfer catalyst. During this 

time, the temporary NH proton obtains magnetization due to an intramolecular 

redistribution mechanism across the scalar coupling network and is subsequently transferred 

onto a solvent molecule, where it is detected in a hyperpolarized state. A significant 

decrease in solvent hyperpolarization by employment of pyridine-d5 backed this proposed 

mechanism. 

1.2.2.3  Polarization Transfer to Heteronuclei 

As a result of their inherently low natural abundance and sensitivity, hyperpolarization of 

heteronuclei like 13C, 15N and – to a lower extent – 31P is highly desirable in order to shorten 

experimental run times. However, SABRE polarization transfer to these nuclei is not as 

readily achieved as for proton spins and special precautions have to be taken to facilitate the 

hyperpolarization. This includes the utilization of so called µ-metal cylinders, which are made 

from an alloy containing nickel, iron, copper and various other metals. This material exhibits 

the property of efficiently shielding the inside of the container from prevalent magnetic 

fields, so that the effective field can be reduced to levels well below the earth’s field. The 

following studies of SABRE polarization transfer to heteronuclei have been reported: 

Zhivonitko et al. examined the hyperpolarization of 31P nuclei by analyzing the enhancement 

of PPh3 using the iridium complex [Ir(H)2(PPh3)3Cl] [58]. The catalyst was created in situ from 

a 6 mM [Ir(COD)Cl]2 solution by addition of PPh3 in a ratio of 1:5 and subsequent activation 

using pH2. Polarization was achieved by application of parahydrogen at a field of ~10 mGs 

inside a µ-metal box. At room temperature, no observable enhancement was detected. At 

60 and 80 °C, however, the signal intensity of the free phosphine resonance was increased 

by factors of about 120 and 260, respectively. The complex-coordinated phosphines were 

also polarized. Application to MRI after polarization at 80 °C allowed well-resolved image 

acquisition in a single 31P scan. Further reported findings are the increase of ligand exchange 

rates at higher temperatures and highest efficiency of polarization transfer to 31P at lowest 

magnetic field strengths. Proton enhancement of free and trans-bound PPh3 was also 

observed and concluded to originate directly from the former pH2 nuclei rather than from 

magnetization redistribution after polarization of the 31P nuclei. 
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Figure 5: Chemical structures of pyridine derivatives, into which phosphorus functionalities were introduced to 
be examined in ref. [59]. 

In a different approach to the examination of 31P spins using SABRE, Burns et al. synthesized 

several pyridine derivatives substituted with phosphorus functionalities and probed their 

interaction with parahydrogen via the [Ir(H)2(IMes)(substrate)3]+ polarization transfer 

catalyst [59]. The initial group of analytes consisted of four 4-substituted pyridines bearing a 

phosphine (12a, Figure 5), phosphine oxide (12b), phosphine sulfide (12c) or phosphonate 

ester (12d) functionality. Using a 5 mM substrate solution, a catalyst loading of 17% and a 

polarization field of 0.5 Gs, the phosphorus resonance of phosphine sulfide was only weakly 

enhanced by a factor of 6. For the phosphine, the phosphine oxide and the phosphonate 

ester, however, the corresponding resonances were reported to be enhanced by factors of 

57, 32 and 545, respectively. Examination of the matching analytes PPh3, OPPh3, PPh(OEt)2 

showed no enhancement at 298 K, proving the importance of the pyridyl moiety for the 

polarization transfer. Since the phosphonate ester showed highest susceptibility, further 

diethyl pyridylphosphonate esters (12e-k) were synthesized, of which the 3-substituted (12f) 

and the 3,5-disubstituted (12g) versions exhibited highest levels of polarization with 31P 

enhancement factors of 336 and 860, respectively. Deuteration of the phosphonate ethoxy 

functions resulted in further increased levels of 31P enhancement up to a factor of 3588 for 

the disubstituted version. Incorporation of various spacer groups between the heterocycle 

and the phosphorus (12h-k) resulted in significantly reduced levels of 31P polarization. The 

observed 31P resonances exhibited a high antiphase character, which was also evident for 

the 1H resonance of the neighboring ring protons and which was caused by formation of 

proton-phosphorus two spin order terms. An increase in the polarization transfer field to 

45 Gs increased the relative in-phase contribution, as the relative proportions are shifted 

from two spin to single spin components, while maintaining the level of achieved 

enhancements. Increasing the polarization field strength even more resulted in a reduction 

of observable signal intensity, yet even greater in-phase contributions were detected. 

Performing the polarization step in a µ-metal box yielded strictly in-phase 31P resonances at 

the cost of signal intensity reduction by one order of magnitude. Additionally, one-shot 31P 

MRI was accomplished using the synthesized pyridylphosphonate esters. 

In order to achieve hyperpolarization of 15N nuclei, Theis et al. performed the SABRE 

polarization step inside a magnetic field-cancelling µ-metal box at an effective field on the 
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order of <10 mGs [60]. The SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to 

Heteronuclei) termed protocol achieved highly efficient spontaneous polarization transfer to 
15N-labelled pyridine, giving signal enhancement factors on the order of 30000 for a 4 mM 

sample compared to the thermal reference at 94 kGs, corresponding to a level of 

polarization of ~10%. In contrast to spectra recorded using 1H optimized experimental 

parameters, i.e., polarization field in the range of 10 to 250 Gs, the resonances were 

observed as in-phase, emissive signals. Increasing the overall concentration yielded higher 

signal intensities, yet lower enhancement factors, which is attributed to the finite amount of 

pH2 derived polarization, a change in the ligand exchange rates and increased relaxation 

rates due to a higher spin density. Signal enhancement of the catalyst-bound analytes was 

also recorded. Application to nicotinamide yielded 15N enhancement levels of 20000 for a 

48 mM solution. 

This polarization protocol was later utilized to facilitate the hyperpolarization of solvent-free 

analyte samples [61]. When neat natural abundance pyridine was examined using a 90 mM 

catalyst concentration, enhancements on the order of -2900 were observed for the 15N 

resonance, while 1H enhancement of the same sample after polarization at 60 Gs was only 

by a factor 4. 15N-labelled pyridine experienced enhancement only by a factor of 33, 

attributed to insufficient pH2 availability, as the influx on fresh parahydrogen, which was 

applied to the solution via a small diameter tube, proved to be a limiting factor. This was 

further elucidated as the signal intensity depended linearly on the applied pH2 flow rate and 

the absolute pressure had no discernable effect, indicating that the para-to-ortho conversion 

was rapid compared to the replenishing of pH2. Due to the highly superior enhancement of 

the natural abundance pyridine, the authors further postulated that coordination of a 
14N-pyridine molecule to the catalyst complex does not deplete the polarization stored in the 

hydride nuclei, presumably because fast quadrupolar relaxation of theses nuclei effectively 

decouples them from the former parahydrogen spins. Employment of pyridine-d5 as the 

analyte resulted in lower observed 15N enhancement, as the quadrupolar 2H nuclei 

significantly reduced the 15N T1 times at fields <10 mGs. Furthermore, polarization transfer 

to these nuclei is also achieved at near-zero fields, reducing the amount of available 

polarization for the 15N nuclei. This protocol was further employed to successfully enhance 

pure picolines and lutidines and it was found that 2-methylsubstituted pyridine derivatives 

are not susceptible to SABRE. 

Just very recently, Shchepin et al. reported on the SABRE-targeted synthesis of nicotinamide 

with a selective 15N-labelling in the heterocycle position using a modified Zincke reaction 

[62]. In combination with SABRE-SHEATH, excellent levels of hyperpolarization were 

detected on the incorporated 15N nucleus, corresponding to enhancement of up to 

11000-fold using 50% para-enriched H2 in natural abundance methanol. The mechanism is 

described as direct transfer via J-coupling from the polarized H2 to the 15N. In combination 

with the low toxicity of the analyte and clinically applicable solvents, the application of this 

substrate as an MRI contrast agent appears feasible. 
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A further study on the transfer of SABRE derived polarization to 15N nuclei was conducted by 

Pravdivtsev et al., who compared the results achieved using three different experimental 

procedures and two different polarization transfer catalysts using 70 mM 15N-labelled 

pyridine and 2 mM catalyst concentrations [63]. The first protocol corresponds to 

SABRE-SHEATH, in which polarization is transferred directly from the pH2 derived hydrides to 

the 15N nuclei via strong scalar coupling. The 15N signals were observed as emissive in-phase 

multiplets that can be collapsed by selective or broadband 1H decoupling. Coordinated 

analytes also exhibited enhancement, which was one order of magnitude smaller for the 

axially coordinated pyridines (~200) compared to the free (~2500) and equatorially bound 

(~2250) molecules. Using pyridine-d5, multiple 15N resonances of free pyridine were 

observed, corresponding to different partial protonation patterns. In the second protocol, 

the polarization step was performed at close to earth’s field, where the strong coupling 

prerequisite is no longer given between 1H and 15N spins. Under these conditions, no net 

polarization is transferred, but individual lines in antiphase multiplets are enhanced by a 

significant margin (~1600) for free pyridine. Application of proton decoupling results in 

cancellation of the lines with different phases, collapsing the signal. For the third protocol, 

the authors applied a previously published experimental design [64] to SABRE that was 

developed for the transfer of PHIP derived hyperpolarization to heteronuclei at high-field. In 

order to achieve this, the hydrogenation reaction (PHIP) or the replenishing of solvated pH2 

(SABRE) is performed inside the NMR magnet and the pH2-derived polarization is 

subsequently transferred to the desired nucleus by application of two RF fields, RFH and 

RFhet. RFH was adjusted to be resonant to the former pH2 nuclei at a constant amplitude, 

while RFhet was set to varied frequencies in the resonance range of the targeted 

heteronucleus and its amplitude linearly reduced to zero. By doing so, the spin system 

passed through the Hartmann-Hahn condition [65] and consequentially through a Level Anti-

Crossing (LAC), resulting in a strong coupling between the 15N and 1H nuclei, facilitating 

direct polarization transfer between the individual spins. The FID was recorded after a 90° 

excitation pulse on the heteronucleus channel. Using this sequence for SABRE, enhancement 

factors of 800 and 12000 were determined for free and equatorially coordinated pyridine, 

respectively, compared to thermal signals at 94 kGs. By varying the RFhet frequency, the 

polarization phase can be modulated. In addition, continuous hyperpolarization experiments 

were conducted using the third setup, in which the delay between individual experiments 

was varied. It was found that highest levels of enhancement were achieved when employing 

shorter delays, presumably due to more residual pH2 in the solution and different amounts 

of delivered pH2 due to more pronounced capillary effects for longer delays. It was further 

noticed that for this protocol, longer complex life times are beneficial, as the complex has to 

stay intact over the course of the pulse sequence to facilitate an efficient transfer of 

polarization. 

1.2.2.4  SABRE Polarization Transfer at High Field 

The sample transfer from the low-field to the high-field position inside the NMR magnet 

poses an undesired complication of the experimental procedure in SABRE experiments. 
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However, at the high-field regime inside the NMR magnet, the requirements for a 

spontaneous polarization transfer via the scalar coupling network are no longer given, 

rendering the polarization step at low-field a necessity in the unmodified SABRE protocol. To 

overcome this, special experimental protocols have been developed, in which the low-field 

regimen is emulated by application of radio frequency irradiation: 

Already prior to the publication of ref. [63], Pravdivtsev et al. as well as Theis et al. had 

reported on polarization transfer from pH2-hydride ligands to analyte nuclei achieved at the 

high-field regimen inside the NMR magnet. In the Pravdivtsev publications [66, 67], 

individual 1H resonances were selectively enhanced by application of continuous wave (CW) 

RF irradiation. After exposure of the sample to parahydrogen, an RF field carefully adjusted 

to the center frequency between the hydride and the target resonances modulated by a 

small offset is applied on the 1H channel to fulfill the Hartmann-Hahn condition and to create 

a Level Anti-Crossing. Thereby, the nuclear spin state populations of these nuclei are mixed, 

facilitating a transfer of polarization to the substrate nuclei in the form of x-magnetization. 

An in-depth theoretical description of the occurring spin operators is given in ref. [67]. Signal 

acquisition is performed directly after the CW irradiation is stopped without a further 

application of pulses. By shifting the irradiation frequency, different target resonances can 

be selected and by varying the offset from the center frequency, the target signals can be 

modulated to either appear in absorptive or emissive phase. Polarization of the hydride 

ligands as well as of free H2 is observed, which exhibits the opposite phase relative to the 

substrate resonance. Enhancement by two orders of magnitude was achieved using this 

experimental protocol.  

The publication by Theis et al. reports on a very similar protocol, but focuses on the transfer 

of polarization to 15N spins [68]. The authors employed a pulse sequence consisting of CW 

irradiation for selective excitation of catalyst-bound 15N resonances, although transfer to 

other nuclei is also feasible. The prerequisites for efficient transfer are the symmetry of the 

metal complex in respect to the hydride ligands and the amplitude of the CW irradiation 

matching the sum of the hydride-hydride and 15N-15N scalar couplings, for which 

JHH + JNN = 12 Hz was estimated. By application of the CW irradiation, polarization is 

transferred to the 15N nuclei during the lifetime of the complex in the form of 

x-magnetization. To avoid dephasing of this magnetization after dissociation of the complex, 

a selective 90° pulse is applied to the nitrogen resonance of the coordinated 15N nuclei, 

which creates z-magnetization on the ligand spins. By repetition, high levels of 15N 

polarization can be accumulated on free analyte molecules, which can then be observed by a 

90° 15N hard pulse. A full theoretical exposition is provided in the original publication. This 

modified high-field SABRE protocol was termed Low Irradiation Generation of High Tesla 

Signal Amplification By Reversible Exchange (LIGHT-SABRE). 

1.2.2.5  SABRE Detection at Low Field 

In low-field NMR (B0 ~ <250 Gs), the thermal magnetization due to the Boltzmann 

population difference of the Zeeman energy levels is by orders of magnitude lower than for 
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high-field spectrometers and often additional means of sample polarization, e.g. SABRE, are 

required in order to observe sufficiently intense signals. Owed to the reduced precession 

frequencies in combination with the natural line width, the signal resolution is commonly 

rather poor, yet acquisition and operation of such low-field spectrometers is highly cost-

effective and low in maintenance. Application of low-field NMR is therefore highly 

convenient in cases where only the presence or absence of a single compound is expected 

and spectral resolution is of minor importance. 

Gong et al. were the first to apply the SABRE technique in low-field NMR experiments 

(B0 = 39 Gs) and compared the attained signal intensities to those recorded using either 

SPINOE or thermal prepolarization in a 20 kGs Halbach magnet as a means of generating 

observable magnetization [69]. SABRE proved to be highly effective for detection of trace 

amounts of substrate and the authors estimated a level-of-detection limit of only 12 nmol in 

0.4 mL sample volume. The level of enhancement was further determined to be proportional 

to the applied pressure of pH2, as the amount of dissolved hydrogen poses a limitation to the 

number of molecules to be enhanced. For substrate concentrations below the concentration 

of dissolved pH2, the signal intensity was found to be linearly dependent on the substrate 

concentration, until [substrate] = [pH2]. After that point, the signal intensity remained 

constant for a range of substrate concentrations, as the amount of dissolved pH2 limited the 

total amount of polarization to be transferred. For highly concentrated solutions, the SNR 

decreased because of an increase in viscosity and spin density in solution, leading to higher 

relaxation rates. 

Also working in the low-field regime, Glöggler et al. examined amino acids and di- and 

tripeptides for their susceptibility to SABRE using Crabtree’s catalyst [Ir(COD)(PCy3)(py)]PF6 

and a spectrometer with an adjustable B0 field of either 39 Gs or 2.5 Gs [70]. The examined 

substrate amounts were in the nM range and thereby well under the detection limit at 

thermal polarization, yet successful detection using parahydrogen was reported for all 

proteinogenic amino acids despite their low solubility in the solvent methanol-d4. 

Furthermore, hyperpolarization of two short peptides was observed, indicating a possible 

applicability of SABRE to proteins. As individual resonances were not resolved due to the 

natural line width and the low precession frequencies in low-field NMR spectrometer, the 

origin of the detected signal cannot be unequivocally attributed to the examined amino 

acids, but it can only be said that a resonance was detected. Possible other sources are the 

solvent, hydrogen gas or the isotope-mixed hydrogen gas HD, which was created by 

HD-exchange between solvent and hydride ligands and observed to be hyperpolarized in the 

process, presumably by hyperpolarization of the solvent-2H and subsequent recombination 

to give polarized HD. Reference spectra were recorded in high-field spectrometers to ensure 

that no modification of the substrates had occurred.  

Contrary to this publication, however, Trantzschel et al. reported that no signal 

enhancement was observable for the analytes lysine, glycine or 𝛾-aminobutyric acid in their 

efforts to detect hyperpolarized amino acids using SABRE in combination with high-field 
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spectrometers [71]. They thus failed to reproduce the experimental results of Glöggler et al. 

[70]. 

Staying on the topic of low-field NMR, Borowiak et al. developed a cost-effective and easy to 

build do-it-yourself low-field spectrometer, designed to especially fulfill the requirements for 

SABRE and PASADENA experiments [72]. A highly homogenous magnetic field was generated 

by an adjustable, 2-layered solenoid coil with a third layer of compensation windings at the 

outer ends. Power to the electrical parts was supplied by a battery-driven current controller 

in an approach to reduce the electrical noise of the signal. In order to demonstrate the 

functionality of the device, a 303 mM pyridine solution was polarized using [Ir(COD)(IMes)Cl] 

at 56 Gs with the SABRE procedure and exhibited a SNR on the order of 104, while no signal 

was observable at thermal equilibrium. 

This setup was later employed by Hövener et al. to examine the applicability of SABRE to the 

more clinically appropriate solvents ethanol and 9:1 H2O-ethanol in order to avoid the 

toxicity of the regularly employed methanol [28]. Results for methanol obtained in situ at an 

identical polarization and detection field of 54 Gs showed an estimated signal enhancement 

for methanol in the range of 320 x 103, corresponding to a polarization level of approx. 0.6%. 

For pure ethanol and the H2O/ethanol mixture, respectable, yet lower polarization levels of 

0.2 and 0.02% were achieved, respectively, corresponding to an enhancement on the order 

of 104 to 105. As individual resonances were not resolved in the low-field setup, control 

experiments were conducted at high-field (7 T) to exclude signal cancellation caused by 

phase variations. Here, a maximum enhancement for pyridine using the [Ir(COD)(IMes)Cl] 

precatalyst was discovered at polarization fields between 40 and 70 Gs, where the three 

pyridine resonances are in phase and therefore do not cancel each other out. To further 

exclude an effect of the sample transfer from low to high-field on the signal intensities, the 

experiments were repeated using a field cycling setup, in which the sample was polarized at 

low-fields between 5 and 227.5 Gs, and the resulting magnetization was detected at earth’s 

field. Highest signal intensities for the solvents methanol and ethanol were found at 

polarization field comparable to those determined in the high-field experiments. 

Furthermore, single scan MRIs of 3,4,5-trideuteriopyridine (1H) and carbonyl-13C-labelled 

nicotinamide (13C) were reported under analytical conditions (methanol, substrate, catalyst 

in an analytical tube). 

The same low-field setup was further used in order to achieve continuous polarization of 

pyridine using SABRE in a low-field NMR setting and to subsequently apply the continuous 

hyperpolarization setup to low-field MRI, for which the polarization step was performed at a 

field of 65 Gs, while signal acquisition was performed at Earth field [73]. Constant levels of 

hyperpolarization were achieved over several hundred seconds, with the level of 

enhancement depending on the recovery time in between experiments. In the course of the 

study, hyperpolarization experiments in human blood were also successfully conducted. 
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Further studies in the low-field regime were conducted by Barskiy et al., who examined the 

hyperpolarization of pyridine in in situ and ex situ experiments [74]. In situ experiments, in 

which polarization and detection were performed at 475 Gs, yielded enhanced resonances 

for both pyridine and the hydride ligands, while the ex situ protocol, in which the 

polarization was performed at 57.5 Gs, facilitated signal enhancements only on the analyte 

resonances. Due to the large chemical shift difference of 31.5 ppm, the resonances of 

hydrides and ligand were separated, which is uncommon for low-field NMR. Additionally, in 

situ experiments were conducted at 57.5 Gs, which allowed for continuous hyperpolarization 

and time-resolved monitoring of the polarization level using small tip angles. Similarly, in situ 

and ex situ MRI experiments were performed. Using the in situ protocol, real time snapshots 

of the sample were acquired, which allows conclusions to be drawn about spatial reaction 

dynamics. 

Reducing the field strength even more, Theis et al. reported on the implementation of the 

SABRE technique to their zero-field NMR spectrometer, which employs an all-optical 

rubidium magnetometer for detection [75]. The sample was shielded from the earth’s 

magnetic field using a µ-metal shield and a DC magnetic field pulse was used to unlock the 

J-coupling information stored in heteronuclear scalar spin order. The observed 15N spectra 

show no chemical shifts, as no magnetic field is present at the sample location but give 

information on the scalar coupling constants present in the analyte. Using SABRE, 15N 

labelled pyridine at a concentration of 40 mM in 250 µL sample volume was detectable in a 

single scan and the intensities of the recorded spectra were increased by four orders of 

magnitude compared to samples thermally prepolarized at 16 kGs. In-phase magnetization 

was enhanced. 

1.2.2.6  Heterogeneous SABRE Catalysts 

In clinical applications, where a hyperpolarized substrate may be employed as a contrast 

agent in vivo, separation of the solution from the possibly toxic catalyst is indicated. A 

feasible approach is given by attaching the catalyst complex to solid particles, which can be 

readily separated from the solution by means of filtration. The following efforts to achieve 

this goal have been reported: 

Shi et al. reported on the first observation of heterogeneous SABRE (HET-SABRE) [76]. In 

order to generate the solid-phase bound catalyst, the complex [Ir(COD)(IMes)Cl] was treated 

with AgPF6 in THF under inert gas in order to remove the chloride ligand from the complex 

and to subsequently facilitate the coordination of a polymer-bound 

4-dimethylaminopyridine moiety. 200 µL of a 150 mM pyridine solution were examined 

using approx. 1.5 µmol of the solid-phase bound catalyst at a pH2 (64%) pressure of 3.2 bar 

and a polarization field of ~100 Gs. Emissive signals for the pyridine 1H resonances verified 

the SABRE activity of the complex, achieving an estimated signal enhancement of 5.2, 4.1 

and 2.7 for the ortho, meta and para resonances, respectively. Furthermore, no signals for 

coordinated substrate molecules were observable, as the polymer beads quickly precipitated 

on the bottom of the tube and therefore were outside of the NMR active sample volume. 
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Separation of the solid particles and subsequent control experiments using only the 

supernatant showed no evidence for SABRE activity, proving that the SABRE active 

compound is attached to the solid particles. 

In order to increase the surface-to-volume ratio of the HET-SABRE catalyst, the same group 

reported on the synthesis of two additional heterogeneous catalysts with a similar design 

[77]. The first of these catalysts consists of TiO2 nanoparticles, that were coated with 

poly(methacrylic acid) (PMAA) and functionalized using aminopyridine. Formation of the 

precatalyst species was achieved by preactivation using AgPF6 and coordination of the 

pyridine moiety to the iridium ion. In the second catalyst species, the solid-bound pyridine 

moiety was supplied by polyvinylpyridine (PVP) and formation of the precatalyst species was 

achieved in an identical fashion. Using these catalysts, enhancement levels of 7 (PVP) and 40 

(TiO2/PMAA) were achieved for pyridine, surpassing the results for the first-generation 

catalyst. Again, the catalysts showed no signs of leaching. No high-field SABRE effects were 

observable using the heterogeneous catalysts. Recycling of the catalysts by separation from 

the liquid, drying and re-employment in a new solution was found to be feasible. 

1.2.2.7  Theoretical Descriptions and Computational Analyses 

In order to understand the underlying mechanics of the SABRE technique, various recent 

studies have focused on illuminating the theoretical aspects on which the spontaneous 

transfer of the parahydrogen-derived hyperpolarization is based: 

In addition to the discovery of Level Anti-Crossings as the primary cause of efficient 

polarization transfer at low-field [37], which also plays an important role in other 

hyperpolarization methods [78], Pravdivtsev et al. studied the effect of field cycling on non-

equilibrium spin polarizations [79] and gave an in-depth description of the SABRE field 

dependence [80]. In the latter publication, the authors also described the effect of different 

polarization fields on the resonance of observed orthohydrogen and touched on the field of 

high-field SABRE. The same group furthermore developed an analytical model for the SABRE 

process that combines a number of experimental parameters and their effect on the signal 

enhancement into a single equation [81], which serves to assess the parameters in need for 

optimization in order to achieve highest levels of polarization. In collaboration with further 

researchers, the group also provided a thorough quantitative analysis of the SABRE effect 

[82], taking into account the nuclear spin interactions and their field dependence as well as 

chemical exchange mechanisms. 

To increase the accuracy of theoretical calculations of the SABRE effect, Eshuis et al. 

determined the long range 4J and 5J scalar coupling constants between the hydride ligands 

and the substrate protons in active polarization transfer complexes [83]. To do so, the 

authors exploited the observable PHIP enhancement of the hydride ligands in unsymmetrical 

iridium complexes obtained from the exposure of [Ir(NHC)(COD)Cl] (NHC = IMes, SIMes, IPr) 

to a combination of substrate molecules and pH2. The parahydrogen-derived magnetization 

was transferred back and forth between the hydrides and the substrate ligands using a 
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Selective Excitation of Polarization using PASADENA (SEPP) based pulse sequence. Fitting of 

the time-dependent signal intensity allowed for the extraction of the long-range coupling 

constants. For ortho protons in six-membered heterocycles, the 4J couplings were found to 

be in the range of 1.1 to 1.2 Hz, while 5J couplings to meta protons of such substrates were 

only in the range of 0.4 Hz. Interestingly, 4J scalar coupling constant between hydride ligands 

and proton spins in five-membered heterocycles were of considerably smaller magnitude 

compared to six-membered rings, giving values of ~0.6 Hz. 

In order to quantify the efficiency of their continuous low-field hyperpolarization setup [73], 

Hövener et al. presented a computational analysis, which included LACs, polarization field 

dependence and lifetime of the active polarization transfer catalyst [84]. While certain key 

points of the theoretical predictions were reflected in the experimental outcome, the 

employed model system required substantial modification in order to generate a more 

realistic depiction of the obtained experimental results.  

Lastly, van Weerdenburg et al. determined a variety of complexes that are formed in the 

course of their low-concentration co-substrate method [51-53] using density functional 

theory (DFT) calculations and determined their contribution to the SABRE effect [85]. The 

computational results were compared to NMR spectra of SABRE samples and Extended X-ray 

Absorption Fine Structure (EXAFS) of frozen samples in order to validate the presence of the 

predicted complexes. 

1.3 Employed Catalyst Systems 

Two classes of iridium-based polarization transfer catalysts were utilized in this work to 

achieve the transfer of hyperpolarization from parahydrogen gas to the substrate molecules 

of interest. SABRE was first observed and described for a variety of phosphine-based 

complexes [21, 22, 25] and consequently Crabtree’s catalyst [Ir(COD)(PCy3)(py)]+ was used in 

various studies of the effect itself and of susceptible substrates [35, 69-71]. The efficiency of 

the polarization transfer catalyst was attributed to the electron-donating character of the 

phosphine ligand and its relative bulkiness due to the sterically demanding cyclohexyl 

substituents [25]. As N-heterocyclic carbene ligands exhibit an even greater 

electron-donating character, applicability of corresponding NHC-carrying iridium complexes 

to SABRE was probed [34, 40, 44, 45]. Owing to the reported superior polarization transfer 

efficiency achieved especially by Ir-IMes complexes, NHC derived catalyst systems were 

utilized in the majority of studies up to this date. 

1.3.1 Crabtree’s Catalyst 

Crabtree’s catalyst is the name given to the highly effective hydrogenation precatalyst 

complex [Ir(COD)(PCy3)(py)]PF6 (Figure 6) that was developed by Robert H. Crabtree et al. in 

the late 1970s and reported on in studies on iridium complexes employing tertiary 

phosphines [23, 24]. The complexes were designed as analogs to previously studied rhodium 

complexes [86] that exhibited high hydrogenation efficiency in polar, coordinating substrates 

such as ethanol or tetrahydrofuran, where iridium compounds proved to be disadvantaged 
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[87]. In non-coordinating solvents, e.g., dichloromethane, however, the iridium complexes 

exhibited the highest hydrogenation potential observed up until that point and were able to 

transfer H2 into mono-, di-, tri- and tetra-substituted olefins. 

 

Figure 6: Chemical structure of Crabtree’s catalyst [Ir(COD)(PCy3)(py)]PF6. 

When exposed to hydrogen gas, the tetragonal Ir(I) complex reductively adds an H2 molecule 

is transformed into the active hexagonal Ir(III) hydrogenation catalyst 

[IrH2(PCy3)(substrate)2(py)]+, which is stabilized by the presence of the substrate. Upon 

consumption of the substrate, the complex was found to irreversible deactivate by di- and 

trimerization. This issue was later addressed by ligand modification [88] and lately chirally 

modified versions of the original complex have been employed in highly efficient asymmetric 

hydrogenation reactions [89]. 

The catalyst is, however, not powerful enough to reduce the 𝜋-bond system of aromatic 

substrates, so that such molecules containing a donor atom will only reversibly coordinate to 

the iridium complex and remain chemically unaltered. This is exploited in the SABRE 

protocol.  

1.3.2 N-Heterocyclic Carbenes 

This section is based on a review by Hopkinson et al. [90]. 

 

Figure 7: Chemical structure of 1,3-di(adamantyl)imidazole-2-ylidene.  

Even though N-heterocyclic carbenes had been present in chemical science beforehand, 

research interest increased immensely [90-94] after the synthesis of 1,3-

di(adamantyl)imidazole-2-ylidene (Figure 7), the first isolable carbene in a stabilizing 

heterocyclic environment, was reported by Arduengo et al. in 1991 [95]. In this substance 

class, the divalent carbene carbon is flanked by heteroatoms in a small – usually five-

membered – ring structure and exhibits only six valence electrons. The two electrons not 

located in a 𝜎-bond exist as a lone pair in a formal sp2-hybridized orbital and induce the 

characteristic 𝜎-nucleophilic reactivity, while the remaining p-orbital remains unpopulated. 

Several factors contribute in order to stabilize this highly reactive species: 
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The adjacent heteroatoms, i.e., most often nitrogen, yet oxygen and sulfur have also been 

reported, withdraw 𝜎-electron-density from the carbon atom, leading to a reduced 

nucleophilicity of the carbene, while their 𝜋-donating character stabilizes the vacant 

p-orbital by mesomeric effects. An unsaturation in the backbone of the heterocycle further 

increases this stabilization by a partial aromatic effect. In addition, the five-membered ring 

structure forces the carbene carbon into a geometry which favors the described 

hybridization and the usually sterically demanding nitrogen substituents kinetically 

exacerbate a dimerization reaction. However, as can be seen from Figure 8, not all of these 

factors need to be fulfilled, as a variety of different carbene classes have been reported that 

differ in certain aspects from the given description. 

 

Figure 8: Different classes of familiar NHCs exhibiting structural and electronic differences. 

NHCs have been shown to interact with a variety of reaction partners. Via the nucleophilic 

lone pair, the carbene can form donative bonds to p-block elements such as boron, 

phosphorus or silicon, giving rise to activated small molecules to be used as reagents in 

chemical synthesis [96-98]. In combination with sterically demanding boranes, frustrated 

Lewis pairs are formed, which have the potential to activate molecular hydrogen [99]. In 

addition, NHCs have been found to stabilize highly reactive species like radicals or p-block 

elements in their zero oxidation state by adduct formation [100-103]. Furthermore, NHCs 

can act as organocatalysts for reactions involving aldehydes, esters and Michael acceptors to 

facilitate, among others, umpolung [104, 105], transesterification or polymerization [106]. 

The main focus in NHC studies has, however, been put on their employment as ligands in 

classic coordination chemistry and consequently on the catalytic activity of the derived 

metal complexes: 

NHC complexes have been reported for all transition metals [107] and furthermore adducts 

for alkali, alkali earth [108] and f-block elements [109] were observed. Owed to their strong 

𝜎-donating character and an additional 𝜋 backbonding capacity, carbene-metal bonds are 

relatively short and strong, unless excessive steric bulk arises from the nitrogen substituents 

[110], which renders the bond between metal atom and NHC ligand highly temperature and 

oxidatively stable [111]. Consequently, NHCs were found to tightly bind to metal surfaces, 

where they can be further functionalized [112] or serve to stabilize metal nanoparticles 

[113]. In metal complexes, the high level of 𝜎-donation leads to an electron-rich metal 

center that is highly activated for oxidative addition. Hydrogenation reactions can be 
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catalyzed by appropriate Ir- and Ru-based complexes [114] while 𝜋-bond activation is often 

achieved by employment of corresponding gold complexes [115]. Highest levels of research 

attention is paid to the catalysis of cross-coupling [116-118] and olefin metathesis reactions 

[119, 120], which are commonly mediated by NHC-complexes containing Pd and Ru, 

respectively, as the center ion. 

1.4 Objective of this Work 

The objective of this work is separated into two sections. In the first segment, the behavior 

of different substrates under examination using SABRE is assessed. In previous studies of 

individual substrate compounds, the focus has often been on optimizing certain aspects of 

the SABRE procedure, e.g., polarization field strength or temperature, in order to attain 

optimal results for the particular molecule of interest [31, 47, 49, 56]. Here, the attention is 

turned onto the differences in behavior observed when certain chemical aspects of the 

substrate molecules are altered. This can be achieved by modification of the molecular 

structure by, for example, changing the size of a ring system or by changing substitution 

patterns or substituents of existing substrate molecules. Furthermore, it is of interest to 

evaluate if such described modifications influence the observed behavior in the same way, 

when different polarization transfer catalyst systems are employed. 

The second objective of this work lies in the synthesis of a solid-phase bound N-heterocyclic 

carbene to be employed as a ligand in SABRE polarization transfer experiments. The purpose 

of this synthesis lies in the creation of a potent polarization transfer catalyst that can feasibly 

be separated from the remaining components of the sample solution by means of filtration. 

By doing so, metal-free substrate solutions can be prepared which consequentially exhibit a 

greatly reduced toxicity towards live organisms. These solutions can then be injected into 

said organisms with the dissolved hyperpolarized analyte molecules acting as a powerful 

contrast agent, thereby paving the way for in situ application of the SABRE technique in MRI.  
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2 Theory 

2.1 Parahydrogen 

The term parahydrogen is used to describe the nuclear spin isomer 𝛼𝛽 − 𝛽𝛼 of the 

hydrogen molecule H2, in which the nuclear spins exhibit an antiparallel orientation toward 

one another. Its existence is owed to the Pauli Exclusion Principle, which requires the overall 

wavefunction 

 Ψ = Ψ𝑡Ψ𝑣Ψ𝑟Ψ𝑒Ψ𝑛 (1) 

of spin-½ particles (fermions) to be antisymmetric in the exchange of the nuclei. Since the 

translational contribution Ψ𝑡   does not affect the overall symmetry aspect and only the even 

ground states of Ψ𝑣 and Ψ𝑒 are populated at room temperature, the product of the 

rotational and the nuclear spin contribution Ψ𝑟Ψ𝑛 is required to be antisymmetric. As a 

consequence, H2 molecules in the antisymmetric nuclear spin state, i.e., parahydrogen, must 

inevitably populate even rotational quantum states with j = 0, 2, 4 etc., while orthohydrogen 

molecules in the nuclear triplet states 𝛼𝛼, 𝛽𝛽 or 𝛼𝛽 + 𝛽𝛼 are necessarily in odd rotational 

states. This correlation is exploited in the preparation of pH2, which is achieved by cooling 

hydrogen gas to low temperatures where mainly the rotational ground state is populated, 

thereby forcing the gas molecules to adopt the nuclear 𝛼𝛽 − 𝛽𝛼 state. The temperature 

dependent ortho-to-para ratio is given by 

 𝑁𝑜(𝑇)

𝑁𝑝(𝑇)
=
3∑ (2𝑗 + 1)𝑒−𝑗(𝑗+1)𝜃𝑟/𝑇𝑗=0,2,…

∑ (2𝑗 + 1)𝑒−𝑗(𝑗+1)𝜃𝑟/𝑇𝑗=1,3,…
 (2) 

with j being the rotational quantum number and 𝜃𝑟 being the rotational temperature (𝜃𝑟 =
ℎ𝑐𝐵

𝑘
 , where B is the rotational constant of H2 and h is the Planck constant) [15]. The 

equilibrium parahydrogen fraction of H2 gas in dependence of the temperature is displayed 

in Figure 9, which shows the high and low temperature limits of 25 and 100%, respectively. 

 

Figure 9: Thermal equilibrium parahydrogen fraction in H2 gas in dependence of the temperature. 

As the ortho-to-para transition is spin forbidden, a paramagnetic catalyst is required in order 

to kinetically facilitate the conversion. In the absence of a suitable catalyst the rate of 

conversion is low, and the lifetime of non-equilibrium ortho/para mixtures is on the order of 

days to weeks. 
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2.2 Chemical and Phenomenological Description of SABRE 

The employed precatalyst complexes [Ir(COD)(PCy3)(py)]+ and [Ir(COD)(NHC)Cl] (NHC = IMes, 

SIMes) exhibit a square planar molecular geometry, which is typical for Ir(I) complexes due 

to their electronic d8 configuration. Upon treatment with min. three equivalents of substrate 

in methanol and exposure to an excess of parahydrogen at room temperature, the 

octahedral Ir(III) complexes [Ir(H)2(PCy3)(substrate)2(py)]+ and [Ir(H)2(NHC)(substrate)3] (C, 

Scheme 4) are readily formed under hydrogenation of the cyclooctadiene ligand [25, 34]. 

 

Scheme 4: Preparation of the active polarization transfer catalyst starting from the precatalysts 
[Ir(COD)(NHC)Cl] (NHC = IMes, SIMes) and [Ir(COD)(PCy3)(py)]+. Here, pyridine is used as an exemplary 
substrate compound. 

In these complexes, the hydride ligands and two of the substrate molecules occupy the 

equatorial binding sites. The third substrate ligand is bound in an axial position and trans to 

the PCy3 or NHC ligand. In 1H NMR spectra, the formation of the dihydride complexes is 

indicated by the observation of hydride resonances with a strong high field shift in the range 

between -20 and -24 ppm (Figure 10). The exact chemical shift values depend on the 

employed ligand [45] and the analyte bound in trans position to the respective hydride [53]. 

 
Figure 10: 1H NMR spectrum of an activated polarization transfer catalyst C (Scheme 4). Resonances between 1 
and 2 ppm arise from the employed phosphine ligand tricyclohexyl phosphine while the peaks in the aromatic 
region originate from the substrate pyridine, either in its free form or as a ligand in the iridium complex. The 
resonance at -23.5 ppm stems from the hydride ligands. Remaining signals arise from water, hydrogen gas or 
the solvent MeOD. 

Examination of ligand exchange pathways using DFT calculations and EXSY data revealed a 

dissociative ligand exchange mechanism for the equatorially bound substrate molecules, 

while axially bound ligands do not undergo an exchange [25, 34]. At sufficiently high analyte 
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concentrations, a vacant equatorial coordination site is quickly repopulated [51]. Similarly, 

exchange of the hydride ligands was found to also occur via dissociation of a substrate 

ligand, followed by coordination of a H2 molecule to form the intermediate complex 

[Ir(H)2(H2)(L)(substrate)2]+ (L = PCy3, IMes, SIMes) (C‡, Scheme 5) [31]. As dissociation of the 

analyte from the complex is the rate-limiting step in the substrate exchange, its rate 

constant is independent of the analyte concentration [34]. Increased substrate 

concentrations do, however, cause an adverse effect on the exchange rate of the hydrides, 

as the H2 molecules compete with substrate molecules for the coordination of the free 

complex binding site after the substrate dissociation step. An increase in hydrogen pressure 

increases the H2 concentration and therefore causes the opposite effect, increasing the 

hydride exchange rate [31]. A thorough description of the reaction kinetics is given in section 

2.3. 

 

Scheme 5: Substrate and Hydride exchange pathways in the active SABRE polarization transfer catalyst. Here, 
pyridine is employed as an exemplary substrate. L = PCy3, IMes, SIMes.  

In order to form the active polarization transfer catalyst, two equatorial as well as one axial 

position in the complex must be occupied using suitable substrate molecules, necessitating a 

substrate-to-Ir ratio of not less than 3:1  [25, 34, 51]. In order to attain signal enhancement 

of free substrate resonances, an excess of analyte is required, to allow for hyperpolarized 

molecules to accumulate in solution while the complex remains active. If the excess, 

however, exceeds the amount of substrate that can reversibly bind to the complex over the 

experimental run time, the efficiency of hyperpolarization is reduced. Optimal substrate-to-

catalyst ratios have been determined to be 5:1 for Crabtree’s catalyst [25] and between 9:1 

[51] and 10:1 [34] for [Ir(COD)(IMes)Cl]+. Increasing the parahydrogen pressure results in an 

increase of the achievable enhancement as larger amounts of polarization are available in 

the form of solvated pH2 molecules [29]. Reducing the total number of spins that can receive 

polarization from the pH2 nuclei, e.g., by deuteration, has a similar effect, as the total 

amount of available polarization is distributed among fewer nuclei [35, 59]. Lowering the 

absolute substrate concentration towards sub-mM levels causes a loss of SABRE activity, as 

vacant coordination sites in the iridium complex are not efficiently re-coordinated by 

substrate molecules, resulting in the formation of inactive, solvent-coordinating complexes 

[51].  

2.3 Kinetic Description of SABRE Processes 

This section is based on ref. [81]. 
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As the substrate exchange was found to be a dissociative process [25, 34], the substrate 

exchange rate 𝑊𝑆 depends solely on the catalyst concentration [𝐶]: 

 𝑊𝑆 = 𝑘𝑆
𝑑[𝐶] (3) 

Here, 𝑘𝑆
𝑑represents the substrate dissociation rate constant. 

On the other hand, the exchange rate of hydrogen 𝑊𝐻2  depends on the concentration of the 

short-lived (H2)(H)2 complex 𝐶‡ (Scheme 5) 

 𝑊𝐻2 = 𝑘𝐻2
𝑑 [𝐶‡] (4) 

(𝑘𝐻2
𝑑  being the dissociation rate constant of molecular hydrogen) for which quasi-stationary 

conditions apply: 

 
[𝐶‡] =

𝑘𝐻2
𝑎

2𝑘𝐻2
𝑑
[𝐻2][𝐶

†] (5) 

Here, 𝑘𝐻2
𝑎  is the association rate constant of molecular hydrogen. 

As substrate S and complex C are in chemical exchange, concentration of 𝐶† is determined 

by: 

 
[𝐶†] =

𝑘𝑆
𝑑[𝐶]

𝑘𝑆
𝑎[𝑆]

= 𝐾𝑆
[𝐶]

[𝑆]
 (6) 

The hydrogen exchange rate via the active catalyst species can therefore be formulated as: 

 
𝑊𝐻2 =

𝑘𝐻2
𝑎

2
(
𝑘𝑆
𝑑[𝐶]

𝑘𝑆
𝑎[𝑆]

) [𝐻2] =
𝑘𝐻2
[𝑆]
[𝐶][𝐻2] = 𝑘′𝐻2[𝐶][𝐻2] (7) 

Furthermore, [𝐻2
∗] describes the nuclear spin state imbalances of the hydrogen gas 

molecules, which is given as the difference in numbers between molecules in their singlet 

and triplet state: 

 
[𝐻2
∗] = [𝐻2(|𝑆⟩)] −

1

3
∑ [𝐻2(|𝑇𝑖⟩)]

𝑖=1,0,−1

= (𝑥𝑝 −
𝑥𝑜
3
) [𝐻2] =

4𝑥𝑝 − 1

3
[𝐻2] (8) 

Here, 𝑥𝑝 and 𝑥𝑜 denote the para- and orthohydrogen fractions, respectively. Upon 

association with the SABRE catalyst complex, the spin state imbalance is transferred to the 

hydrides in the complex: 

 [𝐶∗] = [𝐶|𝑆⟩] −
1

3
∑ [𝐶|𝑇𝑖⟩]

𝑖=1,0,−1

 
(9) 

Similarly, by nuclear spin state conversion, the imbalance is transferred onto the substrate 

nuclei: 

 
[𝑆∗] = [𝑆|𝛽⟩] − [𝑆|𝛼⟩] = (𝑥𝑝 +

𝑥𝑜
3
−
2𝑥𝑜
3
) [𝑆] =

4𝑥𝑝 − 1

3
[𝑆] (10) 
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Now, five reactions can be postulated that affect the spin state imbalances [𝐻2
∗], [𝐶∗] and 

[𝑆∗] of the species 𝐻2, 𝐶 and 𝑆, which represent the hydrogen gas, the active polarization 

transfer complex and the substrate molecule, respectively: 

a) 𝐶 + 𝐻2
∗  
𝑘𝐻2
′

→  𝐶∗ + 𝐻2  

b) 𝐶∗
𝑅𝐶
→ 0 

c) 𝐶∗
𝜆𝑘𝑆
𝑑

→  𝐶1 + 𝑆
∗ 

d) 𝐶1 + 𝑆
∗
𝜆′𝑘𝑆

𝑎

→  𝐶∗ 

e) 𝑆∗
𝑅𝑆
→  0 

Here, a) describes the association of the active polarization transfer catalyst 𝐶 with 

parahydrogen and c) constitutes the release of hyperpolarized substrate from the resulting 

complex 𝐶∗. Reaction d) describes the opposite event, i.e., the re-association of 𝑆∗ with the 

nuclear equilibrium catalyst complex, which poses as an additional relaxation pathway for 

the hyperpolarized substrate. By inclusion of factors 𝜆 and 𝜆′, the nuclear polarization 

transfer efficiency in c) and d) is taken into account. Reaction equations b) and e) indicate 

time-dependent relaxation of the hyperpolarized species governed by the corresponding 

relaxation rate constants 𝑅𝐶  and 𝑅𝑆. 

The time-dependent kinetic equations for [𝐶∗] and [𝑆∗] can therefore be derived to be: 

 𝑑[𝐶∗]

𝑑𝑡
= 𝑘𝐻2

′ [𝐻2
∗][𝐶] − (𝑅𝐶 + 𝜆𝑘𝑆

𝑑)[𝐶∗] + 𝜆′𝑘𝑆
𝑎[𝐶†][𝑆∗] (11) 

 𝑑[𝑆∗]

𝑑𝑡
= 𝜆𝑘𝑆

𝑑[𝐶∗ ] − (𝑅𝑆 + 𝜆
′𝑘𝑆
𝑎[𝐶†])[𝑆∗] (12) 

Due to the usually employed high pH2 flow rate, [𝐻2
∗] is assumed to immediately reach the 

steady state condition and is considered as constant. 

When, after time T of parahydrogen exposure, the steady state of the system is reached, i.e., 

𝑑[𝐶∗]

𝑑𝑡
= 0; 

𝑑[𝑆∗]

𝑑𝑡
= 0 

the concentrations of 𝐶∗ and 𝑆∗ amount to 

 
[𝐶∗] = 𝑘𝐻2

′ [𝐻2
∗][𝐶]

𝑅𝑆 + 𝜆
′𝑘𝑆
𝑎[𝐶†]

𝑅𝐶𝑅𝑆 + 𝑅𝐶𝜆′𝑘𝑆
𝑎[𝐶†] + 𝜆𝑘𝑆

𝑑𝑅𝑆

=
𝑘𝐻2
′ [𝐻2

∗][𝐶] (𝑅𝑆 + 𝜆
′𝑘𝑆
𝑑 [𝐶]
[𝑆]
)

𝑅𝑆(𝑅𝐶 + 𝜆𝑘𝑆
𝑑) + 𝑅𝐶𝜆′𝑘𝑆

𝑑 [𝐶]
[𝑆]

 

(13) 

and   
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[𝑆∗] = 𝑘𝐻2

′ [𝐻2
∗][𝐶]

𝜆𝑘𝑆
𝑑

𝑅𝐶𝑅𝑆 + 𝑅𝐶𝜆′𝑘𝑆
𝑎[𝐶†] + 𝜆𝑘𝑆

𝑑𝑅𝑆

= 𝑘𝐻2
′ [𝐻2

∗][𝐶]
𝜆𝑘𝑆

𝑑

𝑅𝑆(𝑅𝐶 + 𝜆𝑘𝑆
𝑑) + 𝑅𝐶𝜆′𝑘𝑆

𝑑 [𝐶]
[𝑆]

 
(14) 

Finally, using the expression 

 
𝑘𝐻2
′ =

𝑘𝐻2
[𝑆]

 (15) 

the enhancement |𝜀|, which can be described as the ratio of hyperpolarized substrate 𝑆∗ to 

the total amount of substrate S, can be given as: 

 
 |𝜀| = 𝜂|𝑃| = 𝜂

[𝑆∗]

[𝑆]
= 𝜂

4𝑥𝑝 − 1

3

[𝐻2][𝐶]

[𝑆]2
𝜆𝑘𝑆

𝑑𝑘𝐻2

𝑅𝑆(𝑅𝐶 + 𝜆𝑘𝑆
𝑑) + 𝑅𝐶𝜆′𝑘𝑆

𝑑 [𝐶]
[𝑆]

 
(16) 

Herein, 𝜂 denotes the theoretical maximum enhancement factor of 50% (see Section 2.5). 

2.4 Strong Coupling and Level Anti-Crossings 

When given states of two distinguishable systems depend on the modulation of a parameter 

in different ways, the trajectories of these states can intersect at certain values without 

influencing each other (Level Crossing, LC) (Figure 11a). 

 

Figure 11: Oscillation frequencies of systems A and B depending on the spring constant of system B with spring 
constants 𝑘𝐴 = 𝑘0 and 𝑘𝐵 =  𝑘0 + ∆𝑘. In (a), no coupling is present between the oscillators and the oscillation 
frequencies are independent of each other. In (b), a coupling of 𝜅 = 0.08𝑘0 was introduced between the 
oscillators. Under these conditions, a crossing of the oscillation frequencies is avoided and their trajectories 

exhibit a characteristic frequency splitting of Γ = √𝜅/𝑚𝐴√𝜅/𝑚𝐵

√𝜔𝐴𝜔𝐵
. This figure was adapted from [121]. 

If a coupling between the two systems is introduced, the systems are no longer independent 

of each other and a change made to one of them will also have an effect on the other, the 

extent of which is determined by the relative size of the coupling. For coupling constants 

that are small compared to the observed quantity, the systems can for the most part be 

considered individually with only minor perturbations imposed by the coupling. If, however, 

the magnitude of the coupling is comparable to the difference in the affected quantity, the 

two systems cannot be regarded detached from one another and have to be considered as a 



Theory 2.4 Strong Coupling and Level Anti-Crossings 
 

 
36 

combined system. This is commonly referred to as strong coupling. In this case, the 

trajectories of the modulated states can no longer cross when approaching each other, but 

instead repel each other and interchange their trajectories beyond the intended point of 

crossing (Figure 11b) [121]. This is referred to as a Level Anti-Crossing (LAC). 

2.4.1 Strong Coupling in NMR 

When considering atomic nuclei, the energy levels of individual nuclear quantum states 

depend on the magnetic field experienced by the nuclear spins (Zeeman Effect). This general 

dependence is given by 

 𝐸 = −𝛾𝑚ℏ𝐵0 (17) 

where 𝛾 = gyromagnetic ratio of the considered nucleus, 𝑚 = magnetic quantum number, 

ℏ = reduced Planck constant and 𝐵0 = external magnetic field. For a nucleus with a nuclear 

spin of I = ½, 𝑚 can take the values +½ and -½ and the transition energy between these two 

nuclear states is given by:  

 ∆𝐸 = |𝐸−½ − 𝐸+½| = 𝛾ℏ𝐵0 (18) 

This energy difference can be converted into the corresponding photon frequency 𝜈 using 

 
𝜈 =

∆𝐸

ℎ
 (19) 

Inside an NMR magnet with a field strength of 𝐵0 = 141 kGs, these frequencies are on the 

order of 600 MHz, which is equivalent to the precession frequency of the rotating reference 

frame. Various effects, e.g., electron density, lead to a shielding of the atomic nucleus from 

the external magnetic field, which changes the effective magnetic field 𝐵𝑒𝑓𝑓 experienced by 

the individual nuclei. This correlation is given by 

 𝐵𝑒𝑓𝑓 = (1 − 𝜎)𝐵0 (20) 

with 𝜎 being the shielding constant. Substituting equations 18 and 20 into equation 19 

highlights the modulation of the nuclear precession frequency by this shielding effect: 

 
𝜈 =

𝛾(1 − 𝜎)𝐵0
2𝜋

 (21) 

The difference in the precession frequencies of two nuclei ∆𝜈 = 𝜈2 − 𝜈1is therefore given by 

 
∆𝜈 =

𝛾(1 − 𝜎2)𝐵0
2𝜋

−
𝛾(1 − 𝜎1)𝐵0

2𝜋
= (𝜎1 − 𝜎2)

𝛾𝐵0
2𝜋

 (22) 

and for homonuclei inside the NMR magnet usually on the order of several kHz over the 

applicable frequency range. The presence of 𝐵0 on the right-hand side of equation 22, 

however, indicates the dependence of ∆𝜈 on the magnitude of the prevalent magnetic field, 

which allows for the modulation of precession frequency differences by adjustment of the 

magnetic field strength. In contrast to the precession frequency, the size of the J-coupling, 

which is the effect a nuclear spin state of a given nucleus exerts on the energy levels of 

another nucleus, is independent of the prevalent magnetic field.  
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In NMR spectroscopy, the strong coupling condition is met when the difference between the 

nuclear transition energies of two coupled nuclear spins I and J, which can be expressed as 

the nuclear precession frequency difference ∆𝜈𝐼,𝐽, is comparable to the scalar coupling 𝐽𝐼,𝐽 

between them, ∆𝜈𝐼,𝐽 ~ 𝐽𝐼,𝐽. Chemically equivalent spins have identical nuclear transition 

energies (∆𝜈 = 0) and are therefore, if a scalar coupling is present (J ≠ 0), strongly coupled 

independent of the experienced magnetic field. In order to observe strong coupling in an 

unequal proton pair inside the high field of the NMR magnet, the chemical shift difference 

must be minimal, as 1H-1H J-couplings rarely exceed values of 15 Hz while the observed 

frequencies span a significantly wider range. Due to the field dependence of the Zeeman 

splitting, however, strong coupling of such pairs with even a considerable chemical shift 

difference can be readily achieved by transferring the spins to lower magnetic fields. This can 

be illustrated by solving equation 22 for 𝐵0, 

 
𝐵0 =

2𝜋

𝛾

∆𝜈

(𝜎2 − 𝜎1)
 (23) 

and inserting the applicable values for a system of interest. 

 

Figure 12: Chemical structure and NMR data of trans-2-butene. 

In trans-2-butene for instance (Figure 12), two proton resonances can be observed in the 

corresponding 1D NMR spectrum, originating from the vinylic and the methyl protons. The 

vicinal 1H-1H coupling between these two types of nuclei is 3JH,H = 6.54 Hz, while the chemical 

shift difference is ∆𝛿 = (𝜎2 − 𝜎1) = 4 ppm. Inside a 600 MHz spectrometer, this 

corresponds to a precession frequency difference of 2400 Hz, which clearly exceeds the 

coupling constant by more than two orders of magnitude. From equation 23 with 
𝛾𝐻
2𝜋
 = 42.576 𝑀𝐻𝑧𝑇−1 and ∆𝜈 = 3JH,H = 6.54 Hz, the magnetic field at which the precession 

frequency is identical to the scalar coupling constant can be calculated to be 𝐵0 = 384 Gs, in 

which case the strong coupling condition is met. 

For heteronuclear spin pairs, however, the difference in precession frequencies is on the 

order of MHz and consequently several orders of magnitude higher than the corresponding 

scalar couplings. In this case, strong coupling is inaccessible inside the NMR magnet and 

considerable magnetic shielding of the NMR sample is necessary in order to minimize the 

magnetic field and to fulfill the strong coupling requirements. Magnetic field values on the 

order of <10 mGs were determined to achieve the strong coupling effect for a 1H-15N spin 

pair, which is significantly below the earth’s magnetic field of ~0.5 Gs [60]. 

2.4.2 Nuclear Level Anti-Crossings in SABRE model complexes 

Theoretical descriptions of the SABRE polarization transfer mechanism have been presented 

in a number of recent publications [37, 66, 78, 80-82]. This section is based thereupon. 
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The requirements for the occurrence of level anti-crossings between nuclear spin states are 

an energy matching of these states and a scalar coupling of the corresponding nuclei [78]. 

For a system of two spin ½ nuclei, due to the Zeeman splitting, the energy levels of the 𝛼𝛽 

and the 𝛽𝛼 states always approach each other at magnetic fields 𝐵0 → 0. Owed to their 

scalar coupling J, however, the levels do not intersect, but remain split by a value of 𝑉 = 𝐽. 

For larger spin systems, additional LACs are observed at non-zero fields, which have to be 

determined by quantum mechanical considerations. 

For the quantum mechanical description, the Hamiltonian of the spin system is separated 

into two components: 

 𝐻̂ = 𝐻̂0(𝐵) + 𝐻̂1 (24) 

Here, the zero-order element 𝐻̂0(𝐵) depends on the magnetic field strength and describes 

the energy levels 𝐸𝒦  and 𝐸ℒ  of eigenstates |𝒦⟩ and |ℒ⟩, so that level crossings (LC) of spin 

states can be determined for a field 𝐵𝐿𝐶. 𝐻̂1, however, describes a perturbation of the 

system, e.g., by an additional scalar coupling, due to which the eigenstates of the system are 

no longer adequately described by |𝒦⟩ and |ℒ⟩ alone, but by mixed states of the two. This 

results in an interconversion of the corresponding populations and an avoided crossing that 

exhibits a splitting of 

 𝑉 = 2⟨𝒦|𝐻̂1(𝐵𝐿𝐶)|ℒ⟩ (25) 

between the two states at the location of the intended level crossing. For the two-spin 

system mentioned above, this results in the separation value 𝑉 = 𝐽 at 𝐵𝐿𝐴𝐶 = 0. 

In the theoretical descriptions mentioned above, model complexes based on the equatorial 

plane of the octahedral polarization transfer catalyst (C, Scheme 5) were used in order to 

derive the underlying theoretical aspects of SABRE. These model systems contain the nuclear 

spin pair A and A’, which represents the hydride ligands in chemically equivalent positions of 

the mirror-symmetric iridium complex. The hydrides exhibit a scalar coupling between them 

(JA,A’ ≠ 0) and are consequently strongly coupled independent of the magnitude of the 

prevalent magnetic field, so that it is permissible to described them with either the singlet 

states S or one of the triplet states T+, T0 or T- of a two-spin system. Depending on the 

complexity of the examined model, selected further spins representing substrate or ligand 

nuclei were incorporated. 

 
Figure 13: Three-spin model complex for the discussion of the SABRE polarization transfer mechanism based on 
the equatorial arrangement of the active polarization transfer catalyst. A and A’ denote the hydride spins 
originating from a parahydrogen molecule whereas M represents a spin in the substrate molecule. The iridium 
nucleus is NMR inactive and serves as a connecting piece. 
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2.4.2.1 AA’M three-spin system 

The simplest model system for SABRE consists of the hydride spins A and A’, as well as spin 

M, which corresponds to a single spin ½ nucleus in the substrate molecule (Figure 13). In this 

model, the chemical shifts of A and A’ are identical and different from that of the substrate 

(𝛿𝐴 = 𝛿𝐴′ ≠ 𝛿𝑀). Furthermore, coupling JA,A’ is considerably larger than couplings JA,M and 

JA’,M to the substrate nucleus, which are non-identical (JA,M ≠ JA’,M). At sufficiently low 

magnetic fields, the spin system is transferred into the strong coupling regime, so that eight 

mixed spin terms of the type |𝑆, 𝐾⟩ and |𝑇𝑘, 𝐿⟩ are formed. Therein, 𝑆 and 𝑇𝑘 represent the 

four singlet and triplet states mentioned above and 𝐾 and 𝐿 are either the 𝛼 or the 𝛽 state 

of the substrate nucleus. When it is assumed that (𝛿𝐴 − 𝛿𝑀) < 0 and JA,A’ < 0,  the energies 

of spin states |𝑆𝛼⟩ and |𝑇+𝛽⟩ are, disregarding couplings JA,M and JA’,M, given as: 

 𝐸𝑆𝛼 = −
𝜈𝑀

2
−
3𝐽𝐴,𝐴′

4
 and 𝐸𝑇+𝛽 = −𝜈𝐴 +

𝜈𝑀

2
+
𝐽𝐴,𝐴′

4
 (26) 

These energies are identical when the condition 

 𝜈𝐴 − 𝜈𝑀 = 𝐽𝐴,𝐴′ (27) 

is met, thereby defining the location of a level crossing. The perturbation of the system by 

𝐻̂1 is given by the additional couplings JA,M and JA’,M, which cause a level splitting by 

 
𝑉 =

(𝐽𝐴,𝑀 − 𝐽𝐴′,𝑀)

√2
 (28) 

and which transforms the LC into an LAC. From equation 28, it can be seen that the 

asymmetry of the scalar couplings from the hydrides to the substrate nucleus (JA,M ≠ JA’,M) is 

crucial for the splitting of the states and it is this magnetic inequivalence of the chemically 

equivalent hydride spins that perturbs the Hamiltonian of the spin system and allows for the 

mixing of the two considered spin states at the level anti-crossing. 

 

Figure 14: Four-spin model complex consisting of the hydride spin pair AA’ and the substrate spin pair MM’. In 
this model, JA,A’ is considerably larger than the remaining scalar couplings and the individual hydride spins 
exhibit inequivalent couplings to the two substrate spins (JA,M ≠ JA,M’). Furthermore, JA,M = JA’,M’ and JA’,M = JA,M’. 
The iridium nucleus is NMR inactive and therefore disregarded. 

2.4.2.2 AA’MM’ four-spin system 

By inclusion of an additional substrate spin M’, the model is transformed into a four-spin 

system (Figure 14), in which spins M and M’ are also chemically equivalent (𝛿𝐴 = 𝛿𝐴′ ≠

𝛿𝑀 = 𝛿𝑀′). Consequently, the substrate spins in this model can also be described using the 

singlet-triplet-basis (S, T+, T0 or T-) and mixed terms of the type |𝐾𝐿⟩  are formed between 

the two strongly coupled spin pairs in the low field regime, in which K and L describe the spin 

states of the AA’ and the MM’ pair, respectively. Furthermore, the model complex is 
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assumed to be symmetric in that JA,M = JA’,M’ and JA,M’ = JA‘,M, yet JA,M ≠ JA’,M still holds true. The 

Zeeman splitting of the four nuclei and the scalar couplings within the AA’ and MM’ pairs are 

included in the zero-order Hamiltonian 𝐻̂0, while the four couplings between hydride and 

substrate spins are combined into 𝐻̂1 as perturbations. For spin states involving the singlet 

state of the hydride spins, the following level crossing conditions can be determined: 

|𝑆𝑇±⟩ ↔ |𝑇±𝑆⟩: ±(𝜈𝐴 − 𝜈𝑀) = 𝐽𝐴,𝐴′ − 𝐽𝑀,𝑀′ (29) 

|𝑆𝑆⟩ ↔ |𝑇±𝑇±⟩: ±(𝜈𝐴 − 𝜈𝑀) = 𝐽𝐴,𝐴′ + 𝐽𝑀,𝑀′ −
1

2
(𝐽𝐴𝑀 + 𝐽𝐴𝑀′) (30) 

Due to spin level mixing by 𝐻̂1, these level crossings are turned into level anti-crossings. The 

locations of the LACs are mainly determined by the difference in the chemical shifts of the 

hydride and substrate spins as well as the size of the hydride-hydride coupling JA,A’. The 

additional J-couplings in equations 29 and 30 are usually significantly smaller than JA,A’ and 

are therefore considered secondary contributions. 

Both the three-spin and the four-spin system are suitable to describe active SABRE 

polarization transfer catalyst systems which incorporate NHC ligands and in which no axially 

bound ligand nucleus is coupled to the hydride and substrate spins. Calculated field 

dependences for both model systems are given in Figure 15 together with the applied NMR 

data. The results for both models show a strong similarity, as only a single extremum is 

present, which is owed to the relative proximity of the two LACs derived for the AA’MM’ 

model. It must, however, be noted that this proximity is owed to the NMR parameters used 

in the calculations, which were derived from NMR data of active polarization transfer 

complexes using pyridine as the analyte. If, by modification of the active complex, the 

contributions of the secondary scalar coupling become more pronounced, a separation of 

the LAC locations is possible. However, the results obtained in these calculations are in good 

agreement with experimental field dependence data recorded using NHC-containing SABRE 

catalysts [34, 45]. 

 

Figure 15: Calculated field dependences of SABRE attained for the three- and four-spin model systems AA’M 
and AA’MM’ using the NMR parameters given on the right-hand side. (A) depicts the results for the AA’M 
three-spin system, for which only a single LAC was determined, and which gives rise to a single emissive 
maximum. The results for the AA’MM’ four-spin system are given in (B). Here, two locations of LACs were 
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identified, which, however are not separated and form a single emissive maximum. This figure was reproduced 
from the supplementary data of ref. [37]. 

 

Figure 16: Structure of the five-spin model complex AA’MM’P and calculated field dependence of SABRE 
obtained using the NMR parameters on the right-hand side. As a result of coupling of the 31P nucleus in the 
phosphine ligand to the hydride spins, the number of LACs is doubled compared to the AA’MM’ four-spin 
model. Due to their relative proximity, pairs of two LACs overlap and give a combined maximum, resulting in 
only one absorptive and one emissive maximum from four level anti-crossings. This figure was reproduced from 
ref. [37]. 

2.4.2.3 AA’MM’P five-spin system 

In phosphine containing polarization transfer catalysts like Crabtree’s catalyst, additional 

heteronuclear couplings are present due to the 31P spin in axial position, which was added 

into this version of the model complex as spin P (Figure 16). For this system, it was assumed 

that JA,P = JA’,P >> JM,P = JM’,P, while the remaining interactions within the AA’MM’ system keep 

their validity. Similar to the previous model, mixed terms of the kind |𝐾𝐿𝑀⟩ are formed, in 

which K and L once more refer to the singlet and triplet states of the pairs AA’ and MM’, 

while M denotes either the 𝛼 or the 𝛽 state of the phosphorus spin. Due to the large 

precession frequency difference between the phosphorus and the proton spins, the 31P 

nucleus is not strongly coupled to the remaining nuclei at low field, yet owed to the 

significantly sized scalar coupling, the precession frequencies of the AA’ and the MM’ spin 

pairs are modulated according to 

 𝜈𝐴 → 𝜈𝐴 − 𝐽𝐴,𝑃𝐼𝑧
𝑃 and 𝜈𝑀 → 𝜈𝑀 − 𝐽𝑀,𝑃𝐼𝑧

𝑃 (31) 

where 𝐼𝑧
𝑃 = ±

1

2
  is the z-projection of the 31P nucleus and 𝐽𝐴,𝑃 and 𝐽𝑀,𝑃 are the scalar 

coupling constants between the phosphorus spin and the hydride or substrate spins, 

respectively. As a result of the signal splitting, the total number of level anti-crossings is 

doubled and their conditions for states including the hydride singlet term are given as: 

|𝑆𝑇±𝛽⟩ ↔ |𝑇±𝑆𝛽⟩: ±(𝜈𝐴 − 𝜈𝑀) = 𝐽𝐴,𝐴′ − 𝐽𝑀,𝑀′ ± (𝐽𝐴,𝑃 − 𝐽𝐴𝑀)𝐼𝑧
𝑃 (32) 



Theory 2.5 Mechanism of the Polarization Transfer 
 

 
42 

|𝑆𝑆𝛽⟩ ↔ |𝑇±𝑇±𝛽⟩: ±(𝜈𝐴 − 𝜈𝑀) = 𝐽𝐴,𝐴′ + 𝐽𝑀,𝑀′ −
1

2
(𝐽𝐴𝑀 + 𝐽𝐴𝑀′)

± (𝐽𝐴,𝑃 − 𝐽𝐴𝑀)𝐼𝑧
𝑃 

(33) 

Consequently, four LACs of interest for SABRE can be determined of which, once more, pairs 

of two overlap in corresponding field dependence calculations as a result of the only minor 

contributions of JM,M’, JA,M and JA,M’, as depicted in Figure 16. These calculated results are, 

especially regarding the bimodal dependence pattern, in very good agreement with 

experimentally obtained results using Crabtree’s catalyst [35]. 

2.5 Mechanism of the Polarization Transfer 

For simplicity reasons, the discussion of the underlying SABRE mechanism, which is based on 

the theoretical derivation in the supplementary information of ref. [81], are described for 

the AA’M three-spin system. 

For an assumed pH2 fraction of 1, all newly formed polarization transfer complexes in 

solution are in the singlet state in respect to the hydride spins A and A’. The substrate spin 

M, however, is only thermally polarized and in almost equal parts in the 𝛼 and 𝛽 state, so 

that the three-spin model complex exhibits the mixed spin states |𝑆𝛼⟩ and |𝑆𝛽⟩. At the 

determined LAC, the |𝑆𝛽⟩ state remains unaffected because its energy level remains 

isolated. The |𝑆𝛼⟩ state, however, interchanges with the |𝑇+𝛽⟩ state, leading to a 

depopulation of the substrate 𝛼 state and consequentially to an enrichment of the substrate 

𝛽 state. The polarization P of the substrate spin M can be given as: 

 
𝑃 =

𝑀𝛼 −𝑀𝛽

𝑀𝑡𝑜𝑡𝑎𝑙
 (34) 

As described above, the location of a level crossing can be derived using the zero-order 

Hamiltonian 𝐻̂0, which describes the energy levels of the spin system. The splitting between 

the energy levels that occurs in the event of a level anti-crossings is caused by the 

perturbation 

 
𝐻̂1 =

(𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵)

2
+ 𝐽𝐴,𝐵[(𝐼𝐴𝑥, 𝐼𝐵𝑥) + (𝐼𝐴𝑦, 𝐼𝐵𝑦)] + 𝐽𝐴′,𝐵[(𝐼𝐴′𝑥, 𝐼𝐵𝑥) + (𝐼𝐴′𝑦, 𝐼𝐵𝑦)] (35) 

which only contributes in the case of crossing energy levels. The size of the splitting is 

determined by application to the approaching states 

 
⟨𝑇+𝛽|𝐻̂1|𝑆𝛼⟩ = −

(𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵)

2√2
 (36) 

and results in the following energy difference: 

 
𝜈𝐿𝐴𝐶 =

𝜔𝐿𝐴𝐶
2𝜋

= 2
(𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵)

2√2
=
(𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵)

√2
 (37) 

The frequency 𝜈𝐿𝐴𝐶  describes the rate at which the system oscillates between the two spin 

states during the lifetime of the active polarization transfer catalyst (Figure 17). Upon 

dissociation of the substrate, the oscillation process stops, and the substrate spin remains in 
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its nuclear state when relaxation is disregarded. As the dissociation reaction is distributed in 

time, the overall substrate polarization averages to a value of 𝑃 = −50%, around which the 

polarization oscillates: 

 𝑃 = (𝑐𝑜𝑠2𝜋𝜈𝐿𝐴𝐶𝑡 − 1) ∙ 50% (38) 

 
Figure 17: Polarization of the substrate spin M as a result of the interconversion between |𝑆𝛼⟩ and |𝑇+𝛽⟩ as a 

function of the complex lifetime. For a larger scalar coupling difference (𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵), the rate of oscillation is 

increased. 

As 𝜈𝐿𝐴𝐶  depends on the size of the coupling 𝐽𝐴,𝐵 (equation 37), the interconversion is more 

rapid within complexes, in which the substrate exhibits a larger coupling to the hydrides. 

Likewise, for complexes exhibiting a low ∆𝐽 = (𝐽𝐴,𝐵 − 𝐽𝐴′,𝐵), achieving maximum 

enhancement is not feasible when the average complex lifetime is shorter than half an 

oscillation period. 

In-depth theoretical analyses of SABRE relaxation mechanisms as well as exploitation of LACs 

for high-field SABRE and further theoretical background can be found in refs. [37, 66, 78, 80-

82]. 
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3 Results and Discussion 

3.1 SABRE Hyperpolarization Experiments 

The experimental results obtained using the SABRE hyperpolarization method are 

summarized in this section. 

3.1.1 Experimental Setup 1 

The following substrates were examined using the shaking table setup and Crabtree’s 

catalyst as the precatalyst: 

3.1.1.1 Pyrazole and its Derivatives 

Initial experiments using the shaking table setup served to verify the successful setup 

relocation using previously published results [35, 122]. As the Boltzmann polarization 

depends linearly on the magnetic field strength, it is of twice the size for a 600 MHz 

spectrometer compared to the previously utilized 300 MHz spectrometer. The amount of 

hyperpolarization transferred from the pH2 nuclei is, however, independent from the 

magnetic field inside the magnet, so that a decrease in enhancement by a factor of two was 

expected upon transition to the upgraded experimental setup. 

 

Figure 18: Polarization field dependence of signal enhancement for the protons in pyrazole without pyridine-d5 
as a secondary substrate. The molecular structure of the substrate molecule is given on the right. 

The results obtained for pyrazole with the improved setup (Figure 18) adequately supported 

this presumption and replicated the previously determined field dependence patterns of the 

signal enhancement with maximum signal intensities in the regions around 40 and 150 Gs 

(compare [35, 122]).  

Previously published findings [35] showed an increase in relative signal enhancement when 

the substrate pyridine was diluted using pyridine-d5 as a secondary substrate. Py-d5 also 

coordinates to the active polarization transfer complex but remains NMR silent due to the 

absence of observable protons. To test the transferability to other substrates, a 9:1 mixture 

of pyridine-d5 as the silent co-substrate and pyrazole as the substrate of interest was 

examined. As the results (Figure 19) showed a substantial increase in signal enhancement 

compared to non-diluted pyrazole (Figure 18), this sample composition was selected as 

default for further investigations using this setup. 
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Figure 19: Polarization field dependence of signal enhancement for the protons in pyrazole with pyridine-d5 as 
a secondary substrate. The molecular structure of the substrate molecule is given on the right. 

3,5-Dimethylpyrazole 

When examined using the preceding setup, 3,5-dimethylpyrazole had exhibited little [35] to 

no [122] interaction with the active catalyst. Using the upgraded setup, the combination of 

improved signal resolution on account of the superior spectrometer and the employment of 

the dilution method, the substrate showed unambiguous hyperpolarization for all protons in 

the pattern expected for pyrazole derivatives (Figure 20). The relatively low signal 

enhancement is attributed to the steric demand of the methyl substituents in positions 3 

and 5, which limits the ability of the molecule to approach a binding site with its donor 

atoms. This results in a weaker binding and a higher exchange rate [40], which can limit the 

efficiency of the polarization transfer [81]. This is further illustrated by the failed attempts to 

hyperpolarize the more sterically demanding substrates 3,5-diphenylpyrazole and 3-(1,3-

benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole, which exhibit even bulkier substituents in 

these positions that prevent coordination to the catalytic complex. 

 

Figure 20: Polarization field dependence of signal enhancement for the protons in 3,5-dimethylpyrazole. The 
molecular structure of the substrate molecule is given on the right. 

4-Methylpyrazole 

The experimental results for 4-methylpyrazole (Figure 21) once more display the expected 

enhancement pattern for a pyrazole derivative, showing largest signal gain at approx. 40 and 

150 Gs and a zero-transition around the 100 Gs mark. The spectra furthermore offer the 

opportunity to highlight the signal enhancement of the resonances stemming from substrate 

molecules coordinated to the polarization transfer catalyst, which behaves in the same way 

as for the free substrates. 
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Figure 21: Polarization field dependence of signal enhancement for the protons in 4-methylpyrazole in the free 
state and when coordinated to the polarization transfer catalyst. The molecular structure of the substrate 
molecule is given on the right. 

3-Aminopyrazole 

Another substrate behaving in an identical fashion is 3-aminopyrazole (Figure 22), which 

exhibits a relatively strong enhancement for the proton in position 5. Strikingly, it shows no 

deviation from the established pattern despite the additional nitrogen atom in the amino 

group. This could possibly act as a further donor atom with a deviating binding motif and 

corresponding scalar couplings in the active complex, the size of which dictates the efficiency 

of the polarization transfer [81]. 

 

Figure 22: Polarization field dependence of signal enhancement for the protons in positions 4 and 5 of 
3-aminopyrazole. The molecular structure of the substrate molecule is given on the right. 

3-(4-Aminophenyl)pyrazole 

The same is true for 3-(4-aminophenyl)pyrazole, which features no anomaly regarding the 

hyperpolarization of its pyrazole protons (Figure 23). The phenyl protons showed a strong 

overlap with residual pyridine resonances and could not be individually examined due to 

severe line shape distortions. These originated from fluctuations in the magnetic field caused 

by the passing of the sample through the magnetic field in the spectrometer. While a 

polarization of the phenyl protons is probable and implied in the spectra, its extent could not 

be reliably determined. The described distortion of the line shape in coincidence with 

significant line broadening posed a permanent impediment to the evaluation of the 

recorded spectra and constituted a main reason for the decommissioning of this setup. 
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Figure 23: Polarization field dependence for the pyrazole protons in 3-(4-aminophenyl)pyrazole. The molecular 
structure of the substrate molecule is given on the right. 

3,4-Dimethylpyrazole 

The level of hyperpolarization transferred to the protons of 3,4-dimethylpyrazole was 

unexpectedly low (Figure 24) when compared to other pyrazole derivatives, as no 

substituent in position 5 obstructed the efficient coordination of the nitrogen nucleus to the 

catalyst iridium ion. An increased electron density in the pyrazole ring, mediated by the two 

methyl substituents, may have increased the molecules binding affinity, which in turn 

reduced the efficient exchange rate at the catalyst, thereby reducing the number of 

polarized molecules. The enhancement profile, however, once more behaves as expected for 

a pyrazole derivative. 

 

Figure 24: Polarization field dependence of signal enhancement for the protons in 3,4-dimethylpyrazole. The 
molecular structure of the substrate molecule is given at the top right. 

4-Ethoxy-3-methylpyrazole 

In contrast to the previous case, 4-ethoxy-3-methylpyrazole exhibits an ethoxy group in 

position 4, which reduces the electron density in the pyrazole ring and thereby counteracts 

the electron-releasing effect of the methyl group in position 3. The magnitude of the signal 

enhancement achieved for the ring proton in position 5 as well as the methyl protons in 

position 3 indicates this to be a beneficial combination (Figure 25). This measurement series 

further illustrates an interesting phenomenon, as the pattern of hyperpolarization 

transferred to the protons in the ethoxy group is inverted compared to the anticipated 

behavior. While the maximum enhancement for these protons is also achieved at magnetic 

fields of 40 and 150 Gs, the sign for the signal intensities changes from negative to positive 
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with an increasing polarization field strength. The enhancement pattern for proton 5 and the 

methyl protons, however, remains unchanged. 

 

Figure 25: Polarization field dependence of signal enhancement for the protons in 4-ethoxy-3-methylpyrazole. 
The molecular structure of the substrate molecule is given on the right. 

Indazole 

Examination of indazole, which is an annular molecule composed from a pyrazole and a 

benzene ring structure, once more revealed the expected pyrazole derivative enhancement 

pattern for all its protons (Figure 26). It further visualizes the feasibility of hyperpolarizing 

protons in ring structures that do not carry the donor atom themselves but are merely 

connected to it via an extended scalar coupling network. The amount of polarization 

detected on these protons is, however, considerably smaller than for the protons in the 

actual heterocycle. 

 

Figure 26: Polarization field dependence of signal enhancement for the protons in indazole. The molecular 
structure of the substrate molecule is given at the top right. 

1,2,3- and 1,2,4-triazole 

1,2,3-Triazole and 1,2,4-triazole are not strictly derivatives of pyrazole, yet show a strong 

structural resemblance. The determined field dependence curves depict strong similarities 

between both substrates (Figure 27), as the attained patterns for both molecules seem 
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unstructured in the same way. The sign of the proton resonances changes multiple times for 

both substrates and the enhancement plots appear to be highly disordered.  

 

Figure 27: Polarization field dependence of signal enhancement for the protons in 1,2,3-triazole and 1,2,4-
triazole. The molecular structures of the substrate molecules are given on the right. 

Three nitrogen atoms are present in both compounds, giving rise to two different 

coordination motifs for each structure, which is depicted for 1,2,4-triazole in Figure 28. 

Pravdivtsev et al. postulated that in the polarization step, one proton species is directly 

hyperpolarized via its scalar coupling to the parahydrogen nuclei, while the remaining 

protons obtain their polarization via a redistribution effect within the scalar coupling 

network of the substrate [80]. It is therefore probable that for motif 1 (Figure 28), in which 

the protons are identical, polarization is transferred to both protons in an equal fashion. In 

motifs 2a and 2b, however, the two protons are distinguishable while the substrate is 

coordinated to the complex and only the proton next to the donor atom is directly polarized, 

as it exhibits a stronger coupling to the hydride ligands. Polarization is then transferred from 

the first to the second proton via the aforementioned scalar coupling redistribution. The 

experimental results for 4-ethoxy-3-methylpyrazole (vide supra), in which a change in sign 

occurred for a polarization transfer via a heteroatom in the substrate as well as previously 

published data on pyridine [35, 122] imply a difference in the resulting enhancement 

patterns of Ha and Hb. As the two protons become indistinguishable again upon dissociation 

of the complex, these patterns as well as the one originating from binding motif 1 are 

superimposed, presumably resulting in the determined enhancement patterns of 1,2,3- and 

1,2,4-triazole. 

 

Figure 28: Binding motifs of 1,2,4-triazole to the iridium center in the active polarization transfer complex. 
Further ligands in the iridium complex are omitted. 
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3.1.1.2 Pyridine Derivatives 

In a previous work on this polarization technique [122], the three proton resonances of 

pyridine each showed a very distinct pattern in their field dependence curves. While the 

ortho resonance almost exclusively experienced a negative signal enhancement over the 

range of applied polarization field strengths with a well-defined maximum at 130 Gs, the 

opposite was true for the meta resonance, which mainly obtained positive enhancement 

with a very broad maximum for fields of below 100 Gs. The para resonance showed a 

resemblance to the ortho signal, but also received a notable gain in positive signal intensity 

at lower polarization fields of around 40 Gs. 

Computational efforts by Pravdivtsev et al. [80] later supported these findings in a 

theoretical analysis. In their work, the authors state that the initial transfer of 

hyperpolarization only occurs to the ortho protons of the bound pyridine, which were 

calculated to have a scalar coupling to the hydride ligands of the active complex in the range 

of 1-3 Hz. Polarization of the remaining protons subsequently occurs via a redistribution 

effect caused by the scalar couplings within the pyridine spin system. It was therefore 

expected that a change in the scalar coupling system of a substrate by replacement of one of 

the protons should result in a deviation from the previously determined enhancement 

patterns.  

Nicotinamide 

 

Figure 29: Polarization field dependence of signal enhancement for the protons in nicotinamide. The molecular 
structure of the substrate molecule is given on the right. 

Examination of nicotinamide (pyridine-3-carboxamide) replicated the enhancement pattern 

observed in pyridine for proton 5, which is the meta proton to the coordinating nitrogen 

atom. Over the complete polarization field range, the corresponding signal maintains a 

positive intensity and exhibits a very broad range of maximum enhancement, which spans 

the field from 30 to 80 Gs (Figure 29). Protons 2 and 6, which are ortho protons, gain their 

highest signal intensities at higher fields of around 140 Gs with a negative sign, as is the case 

for the respective protons in pyridine. For lower fields, however, the protons gain positive 

signal enhancement of significant size, showing a deviation from unsubstituted pyridine. This 
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also extents to proton 4, the para proton in respect to the coordinating nitrogen, which 

exhibits positive and negative enhancement of nearly the same magnitude at its maxima at 

40 and 140 Gs, respectively. 

3,4,5-Trideuteropyridine 

A rigorous decimation of the spin system by replacement of the meta and para protons 

using deuterons lead to a further deviation from the enhancement pattern observed for 

pyridine. The results for 3,4,5-trideuteropyridine (Figure 30) show an extremely efficient 

polarization transfer to H2 and H6, well exceeding a thousandfold gain in signal intensity. 

This is mostly attributed to the fact that the predominant part of the polarization remains on 

the ortho protons and is not redistributed to other nuclei. A transfer to the incorporated 

deuterons, which were not examined, is unlikely, as the strong coupling condition between 
1H and 2H nuclei was not fulfilled at the reduced magnetic fields. Furthermore, the 

hyperpolarization exhibits a very symmetrical pattern, as the absolute value of the 

enhancement is of the same order of magnitude for the positive maximum at around 40 Gs 

as well as for the negative maximum at 140 Gs. 

 

Figure 30: Polarization field dependence of signal enhancement for protons in 3,4,5-trideuteropyridine. The 
molecular structure of the substrate molecule is given on the right. 

2,6-Dideuteropyridine 

As a complementary experiment, 2,6-dideuteropyridine was examined, which shows the 

inverted substitution pattern compared to the previously examined substrate. In this 

molecule, no ortho protons are available for direct hyperpolarization and subsequent 

distribution of polarization to the remaining protons. Therefore, it was of interest to test if 

an efficient polarization transfer was possible under these circumstances. 

The experimental results showed a satisfactory polarization transfer to both the meta and 

the para protons (Figure 31) albeit of a distinctly smaller magnitude. The meta resonance in 

this case displays a notably narrower maximum at 40 Gs and also changes to a negative 

intensity at higher polarization fields. Additionally, the para resonance experiences an 

unexpected sign flip between 50 and 60 Gs. 
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Figure 31: Polarization field dependence of signal enhancement for the meta and para protons of 
2,6-dideuteropyridine. The molecular structure of the substrate molecule is given on the right. 

It must, however, be noted that owed to the employment of pyridine-d5 as a co-substrate, a 

substantial signal was observed at the chemical shift of the pyridine ortho resonance due to 

incomplete deuteration. In a later examination without dilution by pyridine-d5 and using the 

Bruker Para-Hydrogen Polariser (See Section 3.1.2.1), the abundance of pyridine ortho 

signals in the initial reference spectrum was below the detection level. In the first 

hyperpolarization experiment, however, the enhanced ortho proton resonance was readily 

observable even at this concentration. In the final reference spectrum, the ortho protons 

were detectable even without hyperpolarization, indicating a catalyst-mediated H/D 

exchange increasing the abundance of protons in the pyridine ortho site. Similar behavior 

has been reported for both PCy3 and NHC containing catalysts [123, 124]. It can therefore 

not be excluded that a substantial amount of polarization observed on the meta and para 

protons stems from initial polarization of ortho protons, as the suggested polarization 

transfer mechanism indicates [80]. 

Pyridazine 

 

Figure 32: Polarization field dependence of signal enhancement for the protons in pyridazine. The molecular 
structure of the substrate molecule is given on the right. 

Average levels of hyperpolarization were achieved for the protons in pyridazine (Figure 32), 

a molecule which is similar to pyridine, but possesses two adjacent nitrogen atoms in the 

ring structure. For this substrate, protons 3 and 6, which are closest to the coordination site, 

show behavior similar to ortho protons in pyridine. Protons 4 & 5, which are opposite the 

nitrogen atoms exhibit an indistinct maximum at lower polarization field, indicating a 

behavior similar to meta protons in pyridine. 

3.1.1.3 Discussion of Experimental Setup 1 

With the implementation of the shaking table at the 600 MHz Avance III spectrometer, the 

hyperpolarization setup used in previous publications was successfully transferred to this 

department and preceding result were reproduced. The improvements to the setup included 
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the utilization of a superior spectrometer in order to reduce the limitations imposed by the 

enormous line broadening of the previous setup. Furthermore, the variance in the 

polarization field caused by the manual polarization step was tackled by the construction of 

the shaking table and the design of the associated rider, using which the polarization step 

was performed at fixed distances from the spectrometer. Lastly, the implementation of a 

light sensor served to minimize and equalize the sample resting time between insertion into 

the magnet and execution of the NMR experiment. 

Several drawbacks of the previous setup were, however, not resolved by the revised setup. 

While the line broadening effect was substantially reduced owed to an up to date shimming 

system and a probe matching the utilized sample tubes, line shape distortion and line 

broadening remained the predominant impediment in the examination of the recorded 

spectra (Figure 33). Both of these effects were caused by the insertion of the sample into the 

magnet, as the movement through the strong magnetic field induced small-scale magnetic 

variances, leading to a field inhomogeneity. Additionally, the settling of the sample tube 

caused vibrations in the probe, which added to the effects. 

 

Figure 33: Exemplary spectrum overlay of the aromatic region of nicotinamide. For the hyperpolarized 
spectrum, the polarization step was performed at a field of 40 Gs. The reference spectrum is enlarged by a 
factor of 16. Unlabeled resonances either originate from pyridine (8.55 ppm) or from complex-coordinated 
substrates (8.95 ppm).  

In SABRE experiments, the active catalyst usually binds several substrate molecules at a 

time, which occupy two distinguishable positions in the complex, leading to up to two 

additional proton resonances for each substrate proton resonance. These complex-bound 

substrates experience hyperpolarization in the same way as molecules that were already 

released from the complex, also gaining significant signal intensities. Additionally, residual 

pyridine resonances were present in the spectra, originating from incompletely deuterated 

pyridine molecules, either stemming from the precatalyst or their employment as a co-

substrate. Each of these resonances exhibited line shape distortion in the form of a 

downfield sloping effect that could span more than tenfold their line width at baseline level 

in the reference spectra, severely impeding signal separation. Furthermore, substrates only 

experiencing weak signal enhancement were at times overpowered by the prevalent 

pyridine resonances. 
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Despite the mechanical polarization step being executed using the specifically designed 

sample mounting and the capability of fixing the distance from the NMR magnet, the 

magnitude of the magnetic field, at which the polarization step was performed, remained 

ambiguous. The intensity of the stray field was determined at the center of the sample 

mounting, yet owed to the steep field gradient, small variations of the distance to the 

magnet due to the length of the sample tube combined with the amplitude of the 

reciprocating motion of the mounting resulted in a substantial field gradient over the sample 

path (Figure 34). As the outer limits exhibited a greater distance from the spectrometer, the 

average polarization field was of lower magnitude than the determined field at the center of 

the retainer. This is consistent with the attained results, as the recorded field dependence 

curves display a slight shift to higher polarization fields when compared to previous results 

[35, 122]. 

 

Figure 34: Deviations from the magnetic field determined at the center of the sample. The asymmetry is owed 
to the presence of the gas valve at the top end of the sample tube. 

Additionally, as the polarization field strength in this setup was adjusted by changing the 

distance from the NMR magnet, the increments between the individual field strengths could 

not be kept equal. While at lower fields, the field gradient is flat and the distances between 

measurement points 10 Gs apart were on the scale of several cm, the gradient became 

exceedingly steeper for higher polarization fields. To reliably discern between the scale 

markings closer to the spectrometer, the step size of the polarization field had to be 

increased first to 20, later to 50 Gs. 

A further factor in the polarization field uncertainty stems from the possibility of still ongoing 

polarization transfer reactions after the shaking motion had stopped. This could be due to 

residual pH2 in the solution that had not yet been converted into oH2 or due to perturbations 

during the manual transfer, which caused a solvation of unused pH2 from the headspace 

over the solution. This is illustrated by observations made during experiments conducted at 

several higher polarization field strengths, for which the sample had to be moved around an 

obstacle in order to be inserted into the NMR magnet. Depending on the chosen sample 

path – passing in front of the object or behind it – the recorded spectra exhibited slightly 

divergent enhancement patterns. 

While the implementation of the light sensor proved helpful in reducing some of the time 

variances occurring in the experiments, a main part of the experimental procedure was still 

executed manually. The removal of the sample from the mounting after the polarization step 
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and the subsequent insertion into the spectrometer was not automatized and prone to 

timing variations. Furthermore, samples that were polarized at lower field were, due to the 

setup design, polarized at a greater distance from the spectrometer and therefor had to 

cover a greater distance to be inserted. This presumably resulted in higher losses of 

polarization during the transfer.  

In addition to the drawbacks that changed the outcome of the experiments, the shaking 

table setup also exhibited shortcomings that hindered the conduct of the experiments itself. 

To achieve a proper mixing of the pH2 gas and the sample solution, the sample tube had to 

be shaken with certain vigor, taxing the entire equipment on the rider. The highly 

pressurized NMR tubes often burst due to the induced mechanical stress and even the metal 

parts of the crank yielded to the strain imposed on them. Lastly, even the electromotor had 

to be replaced due to the physical pressure. 

Furthermore, determination of a complete field dependence proved a laborious and time-

consuming activity, as, on average, 45 polarizations experiments had to be performed 

manually, totaling several hours of physically straining, but highly repetitive tasks for each 

substrate. 

In summary, the setup served to more accurately determine polarization field dependences 

for new and previously examined substrates. It further allowed examination of few 

substrates, for which the previous setup was insufficient. Still, performing the 

hyperpolarization experiments using this setup revealed several substantial flaws that had to 

be addressed and improved on for the following experimental design. 

3.1.2 Experimental Setup 2 

The Bruker Para-Hydrogen Polariser and the associated flow injection probe were 

successfully taken into operation and produced spectra of hyperpolarized compounds. After 

only a short time, however, sample transfers became increasingly unreliable and the default 

rate impeded satisfactory conduct of the hyperpolarization experiments. Efforts were 

undertaken to adjust the transfer parameters, exposing a strong discrepancy between the 

parameters necessary to fill the dummy flow cell and those for the actual probe. As a result, 

the transfer parameters for the probe had to be optimized solely relying on line shape 

comparison with a reference spectrum and without visual control of the liquid level. As the 

adjustments using this method were made with exceedingly greater care, the transfer times, 

once stable transfers had been achieved, significantly exceeded the optimal values. Over 

time, the transfer parameters were adjusted on a number of occasions without reaching an 

ultimately satisfying set, which combined fast, reliable and reproducible transfers. 

Subsequently, hyperpolarization experiments were conducted using a number of different 

transfer speeds and times. With longer transfer times, however, the amount of 

hyperpolarization preserved for read-out in the spectrometer is reduced, leading to strongly 

varying enhancement factors attained for different sets of transfer parameters. The 
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experimental results presented here, which were recorded over an extended period of time, 

are therefore not fully comparable with respect to the achieved enhancement factors. 

Furthermore, owed to the significantly increased sample volume, the absolute catalyst and 

sample concentration was halved compared to the shaking table setup in order to reduce 

consumption of the catalyst. As a result, a reduction in signal enhancement was expected. 

Also, the co-substrate approach to sample preparation was abandoned, as this simplified the 

preparation process and examination of relative enhancements was of a higher priority 

compared to absolute magnitude of the enhancement. 

3.1.2.1 Substrates examined using the Ir(COD)(Py-d5)(PCy-d33) precatalyst 

Initial experiments using the newly installed setup were conducted on already examined 

substrates in order to cross-validate the Polariser and the previously recorded data for 

comparability. 

3-Methylpyrazole, pyridine and 3-phenylpyrazole 

The results for 3-methylpyrazole (Figure 35) and pyridine (Figure 36) showed a good 

agreement with preceding experiments when plotted with the effective fields derived from 

linear regression. The maximum enhancements are again in the regions around 40 and 140 

Gs for all protons except for the pyridine meta protons, which, as usual, exhibit a wider span 

of highest enhancement in the lower half of the examined field range.  

Results for 3-phenylpyrazole (Figure 37) also show a good agreement with previous data for 

the protons in positions 4 and 5. In addition, it was possible to observe and analyze 

enhancement for the phenyl ring protons which had previously been prevented by the 

inferior resolution provided by the two prior setups. Owed to the distance from the donor 

atom, the amount of polarization transferred to these nuclei is expectedly low with a 

maximum enhancement of just above a factor of 5 for the ortho protons. Interestingly, these 

protons show an inverted field dependence profile compared to the pyrazole ring protons, 

similar to ethoxy protons in 4-ethoxy-3-methylpyrazole (Figure 25). The meta and para 

protons exhibit a further anomaly, exhibiting only positive maxima at both 40 and 140 Gs.  

As the mixing chamber is positioned at a magnetic field of between 100 and 130 Gs, the 

effective field can be modulated to give negative values when an induced negative field 

overcompensates the residual field. This effectively inverts the direction of the magnetic 

field, yet without consequences for the polarization transfer process. As the amount of 

transferred polarization is only dependent on the magnitude, but not the direction of the 

field, a symmetrical distribution is expected around the averaged “zero field”, which is 

clearly visible in the field dependence graphs. Close examination reveals the line of 

symmetry not being identical with the plotted 0 Gs line but shifted by approx. 5 Gs into the 

negative range. This is owed to polarization transfer occurring not only at a single distinct 

polarization field strength, but due to a field gradient over the sample volume, a spread of 

field strengths contributes to the average polarization field, which renders the accurate 
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determination of the magnetic field difficult. This effect is further discussed in section 

3.1.2.4.  

 

Figure 35: Polarization field dependence of signal enhancement for the protons in 3-methylpyrazole. The 

molecular structure of the substrate molecule is given at the top right. 

It must further be noted that due to the earth’s magnetic field and the above-mentioned 

stray field gradient, the effective polarization field achieved by application of the 

corresponding modulation field value is not truly 0 Gs but corresponds to the lowest 

achievable spread of field strengths attainable for this setup, which is approximately 

centered around the zero point. 

 

Figure 36: Polarization field dependence of signal enhancement for the protons pyridine. The molecular 
structure of the substrate molecule is given at the top right. 

Overall, the smoothness of the data in Figure 37, especially of the pyrazole ring protons, 

formidably illustrates the level of consistency achievable with the Para-Hydrogen Polariser 

setup when the sample is reliably transferred into the flow injection probe. 
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Figure 37: Polarization field dependence of signal enhancement for the protons in 3-phenylpyrazole. The 
molecular structure of the substrate molecule is given at the top right. 

1,2,4-Triazole 

The results determined for 1,2,4-triazole using the Polariser unit for the first and only time 

showed a considerable deviation from the manually determined enhancement patterns 

(Figure 38). While the previously obtained results showed a relatively confuse enhancement 

profile presumably caused by superposition of divergent enhancement profiles 

(comp. 3.1.1.1) and a characteristic sudden sign change at a field of 50 Gs, this denoting 

feature was not observable with the Polariser setup.  

 

Figure 38: Polarization field dependence of signal enhancement for the protons in 1,2,4-triazole. The molecular 
structure of the substrate molecule is given on the right. 

An attempt of an explanation can be made by regarding the differences in field deviations 

for the two setups. For the shaking table, the field variations were owed to the length of the 

shaking path, as its ends had a greater distance from the NMR magnet compared to the 

center and therefore experienced a lower magnetic field. These deviations were, as was 

shown above, in the range of 15 to 19% for most fields, depending on the steepness of the 

field gradient at the sample position (Figure 34). At the distance of the 50 Gs marking, the 

field at which the sign change was observed, the deviation was determined to be on the 

lower side of the spectrum with 15%, corresponding to 7.5 Gs. As the scale marking denotes 

the highest magnetic field in the shaking path, the effective field range for this polarization 

step was between 42.5 and 50 Gs, neglecting possible hyperpolarization during the sample 

transfer through the stray field. 
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For the Polariser setup, the field gradient across the sample volume is significantly steeper, 

as the length of the mixing chamber runs directly along the z-axis of the NMR stray field. 

Without employment of the solenoid coil, a field variance of 23 Gs was determined for three 

distinct points inside the cavity which holds the mixing chamber. Additionally, due to a 

noticeable deviation from the field homogeneity, the modulation at the top part of the coil 

cavity shows a reduced efficiency, which on the one hand decreases the variance for higher 

fields, but on the other hand increases it for lower field strengths (comp. 4.1.4.3). For an 

effective field of 50 Gs at a depth of 7 cm, the field variance across the three characteristic 

points amounts to 27 Gs, corresponding to a percentage deviation of 54%. Excluded from 

this value is the sample volume below the 7 cm marking, which further adds to the 

deviation. 

In the manually recorded spectra, the field range at which the characteristic sign change 

occurred was extremely narrow, displaying a change from 80 fold enhancement at 40 Gs, the 

largest positive signal gain, to a value of -175 at 50 Gs, representing the highest 

enhancement overall for this substrate, within only one field increment of 10 Gs (comp. 

3.1.1.1, Figure 27). Within another field increment, the enhancement decreases to -28 at 60 

Gs before returning to positive enhancement values. 

During the 50 Gs polarization step in the Polariser setup, the sample is at the least 

distributed over effective fields ranging from 50 to 77 Gs, all of which contribute to the 

average effective polarization field. Additionally, further, lower field strengths also 

contribute in the polarization step, resulting in a complex average polarization field, 

amounting to no net enhancement at a Polariser setting of 50 Gs. 

Indazole 

The annular pyrazole derivative indazole had also been examined using the shaking table 

setup and exhibited very distinct maximum enhancements at 40 and 140 Gs (Figure 39). For 

the remaining polarization fields, the graphs exhibited a flat characteristic as opposed to a 

fluent transition between the two maxima as often observed for different pyrazole and 

pyridine derivatives. The newer results verify the previous data and additionally show 

smaller, secondary maxima at fields above 200 Gs, which were previously not resolved due 

to the increment size at higher fields. The relatively low signal enhancements compared to 

those attained with the shaking table setup, using which a 100-fold signal gain was achieved 

for proton 3 at 40 Gs, is attributed to slow sample transfer speeds that were employed at 

this stage. 
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Figure 39: Polarization field dependence of signal enhancement for the protons in indazole. The molecular 
structure of the substrate molecule is given at the top right. 

4-Ethoxy-3-methylpyrazole 

Results obtained for 4-ethoxy-3-methylpyrazole are depicted in Figure 40, validating the 

previously observed inversion of the enhancement pattern for the protons in the ethoxy 

group (Figure 25), presumably owed to scalar coupling constants between nuclei, using 

which the polarization is redistributed within the substrate molecules. 

 

Figure 40: Polarization field dependence of signal enhancement for the protons in 4-ethoxy-3-methylpyrazole. 
The molecular structure of the substrate molecule is given on the right. 

2,6-Dideuteropyridine and nicotinamide 

Results for 2,6-dideuteropyridine (Figure 41) and nicotinamide (Figure 42) also correspond to 

the previously determined field dependences. Contrary to the results for 1,2,4-triazole 

(Figure 38), the similar abrupt sign change at around 50 Gs is resolved for the former 

substrate, presumably owed to the broader field range at which the effect occurs and the 

continued negative enhancement for the subsequent higher fields. 
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Figure 41: Polarization field dependence of signal enhancement for the protons in 2,6-dideuteropyridine. The 
molecular structure of the substrate molecule is given on the right. 

 

Figure 42: Polarization field dependence of signal enhancement for the protons in nicotinamide. The molecular 
structure of the substrate molecule is given on the right. 

Quinoline 

In Figure 43, the signal enhancement curves exhibit a new pattern unlike what was expected 

for a molecule with a pyridine substructure. Basically, two different patterns are 

distinguishable: Protons 4, 5 and 8 gain enhanced positive signal intensities with a rather 

broad maximum at fields of just below 100 Gs. For protons 3, 6 and 7, the enhancement has 

a negative sign and the distinct maximum is at a field of 50 Gs. Proton 2, for which highest 

enhancements were expected, as it is closest to the donor atom, exhibits what resembles a 

superposition of these two patterns, resulting in signal intensities lower than the Boltzmann 

magnetization for all polarization fields. 
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Figure 43: Polarization field dependence of signal enhancement for the protons in quinoline. The molecular 
structure of the substrate molecule is given at the top left. 

3.1.2.2 Substrates examined as a comparison of PCy3-, IMes- and SIMes-

containing catalysts 

In 2011, Cowley et al. reported a more efficient transfer of polarization using an 

iridium-based catalyst containing the IMes ligand [34]. In order to evaluate differences in the 

field dependence of SABRE to the at that point employed PCy3-containing catalyst, the 

respective precatalyst [Ir(COD)(IMes)Cl] as well as its SIMes-containing analog 

[Ir(COD)(SIMes)Cl] were synthesized. The following substrates were examined using these 

three different catalysts. The experimental series for each substrate were conducted 

sufficiently close in time and using identical transfer parameters to ensure comparability. 

4-Methylpyrazole 

In Figure 44, a difference in the field dependence for the different catalyst is readily 

observable. Using the PCy3-containing catalyst, the expected and previously reported 

behavior with maxima around 30 and 140 Gs is reproduced for both the ring protons and the 

methyl group. With the IMes and SIMes ligands, only one very distinct maximum is 

observable at a field of 50 to 60 Gs and only negligible polarization is achieved for fields 

greater than 100 Gs. This finding is in excellent agreement with the predicted field 

dependences by Pravdivtsev et al. [37]. 

Furthermore, the IMes complex facilitates a considerably more efficient polarization 

transfer, generating four times as much signal intensity compared to the SIMes complex and 

surpasses Crabtree’s catalyst by a factor of two. 
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Figure 44: Polarization field dependence of signal enhancement for the protons in 4-methylpyrazole 
determined with various catalysts. The molecular structure of the substrate molecule is given on the right. 

3,5-Dimethylpyrazole 

Figure 45 displays the results obtained for 3,5-dimethylpyrazole, which indicate a lower 

tolerance for bulky substrates when employing the [Ir(COD)(IMes)Cl] precatalyst. While the 

PCy3 complex facilitates polarization transfer at a low efficiency but resulting in a familiar 

pattern, the IMes-containing catalyst fails at the transfer of polarization to the disubstituted 

pyrazole. Polarization of the even bulkier 3,5-diphenylpyrazole was, as for Crabtree’s 

catalyst, also not achieved using the IMes catalyst. 

 

Figure 45: Polarization field dependence of signal enhancement for the protons in 3,5-dimethylpyrazole 
determined with two different catalysts. The molecular structure of the substrate molecule is given on the 
right. 

3-Methylpyridine 

Figure 46 again depicts the superiority of the IMes catalyst over its competitors in the 

hyperpolarization of 3-methylpyridine. Across all resonances, it tops the SIMes catalyst by a 

factor of 4 and surpasses the PCy3 complex for protons 2, 4 and 6 by a factor of 2. Only for 

proton 2 and the methyl protons, Crabtree’s catalyst can almost match the enhancement 

achieved with the IMes catalyst. Maximum enhancements for the NHC catalysts are 

achieved at similar fields of approx. 60 Gs with a slight shift to stronger fields for the SIMes 

ligand. The exhibited maxima are considerably broader than for the previously examined 

pyrazole substrate with substantial signal enhancements achieved over the entire range of 

polarization fields. For low fields of below 30 Gs and high fields over 160 Gs, proton 5 and – 

to a lesser extent – the methyl protons even experience signal enhancement with a positive 

phase. Results obtained with Crabtree’s catalyst correspond to the previously examined 

enhancement patterns for the 3-substituted pyridine derivative nicotinamide. 
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Figure 46: Polarization field dependence of signal enhancement for the protons in 3-methylpyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given at the top right. 

3-Methoxypyridine 

3-Methoxypyridine, the analog of the previous substrate with an oxygen inserted into the 

C-C bond between heterocycle and methyl group, exhibits similar enhancement profiles for 

the ring protons (Figure 47). The IMes containing complex again facilitates the highest level 

of polarization transfer, slightly surpassing the enhancements for 3-methylpyridine. 

Enhancements achieved with the SIMes ligand also increased, yet the catalyst still falls short 

of the IMes ligand by factors of 2 to 3. For PCy3, the results are of comparable magnitude. 

The field dependence profiles for all three catalysts in regard to maxima location are 

comparable to those of the previous substrate for the ring protons.  

 

Figure 47: Polarization field dependence of signal enhancement for the protons in 3-methoxypyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given at the top right. 

For the methoxy protons, the enhancement is significantly reduced compared to the methyl 

protons in 3-methylpyridine; in the case of the IMes ligand, which gains the highest 
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enhancement in both cases, by a factor of almost 4. The largest gain in signal intensity was in 

this case achieved at 70 Gs, which marks a slight shift to higher fields compared to the ring 

protons, which gain their highest intensities at fields around 60 Gs. 

Most notable is the fact that the methoxy protons experience almost exclusively positive 

enhancements using all three catalysts, which marks a complete inversion for the NHC 

catalysts compared to the results for 3-methylpyridine. Similar behavior was previously 

observed for the protons of the ethoxy group in 4-ethoxy-3-methylpyrazole when examined 

with the PCy3 catalyst. Hyperpolarization of the methoxy group using the latter catalyst was 

achieved with rather mediocre results with regard to signal intensity. The obtained 

polarization field dependence exhibits, however, a slightly deviant profile, which is not 

simply inverted, like was the case for the mentioned ethoxy protons, but displays two 

positive maxima. Additionally, the first maximum appears at an uncommonly low field of 

only 15 Gs. 

Reversible binding to the polarization transfer catalyst is a key element in SABRE 

hyperpolarization. Too tight of a binding reduces the turnover rate, limiting the number of 

molecules that can be polarized in a given time interval. On the other hand, too little binding 

affinity can prevent a sufficient interaction between the pH2 nuclei and the substrate 

molecules, preventing efficient polarization transfer [40, 81]. It is therefore of great 

importance that molecules of interest remain on the middle ground between these two 

extremes. Despite their difference in nucleophilicity owed to the +I and –I effects of the 

methyl and methoxy groups, respectively, and the associated expected difference in binding 

affinity, the magnitude of enhancement was of surprisingly similar magnitude for both 

substrates. It was therefore of interest to examine if a modulation of the electron density 

within the heterocycle and consequently on the donor atom via variation of the substituents 

would directly translate into a modulation of the achieved enhancement levels. Therefore, 

five additional 3-substituted pyridines were examined. 

3-Hydroxypyridine 

The results for 3-hydroxypyridine displayed in Figure 48 show the most substantial deviation 

from the previous results, as that the SIMes containing catalyst, which was previously clearly 

outperformed by the IMes catalyst, is able to match up to and even surpass the 

enhancement levels achieved using the latter complex for selected resonances. For 

Crabtree’s catalyst, the enhancement is relatively low, achieving polarization of roughly half 

the intensity compared to the previous two substrates. Interestingly, the results for the IMes 

catalyst seem to be unaffected. Such a substantial change in results compared to 

3-methoxypyridine was not expected for the SIMes and PCy3 catalysts, as the basicity of the 

two substrates is of comparable strength (Table 1). 3-Hydroxypyridine is, however, capable 

of tautomerism, rapidly changing between a neutral and a zwitterionic form, in which the 

hydroxy proton is transferred onto the nitrogen and which therefore exhibits no basicity at 

the nitrogen site. The N-site of the neutral form therefore exhibits a considerably larger 

basicity, as indicated by the larger pKa value of 5.20 [125] compared to that determined for 
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the mixture of the neutral and the dipolar form present in aqueous solution, which is 

between 4.80 and 4.86 [126]. The conversion between the two forms is swift compared on 

the NMR timescale, so that the individual tautomers are not resolved [127]. The polarization 

field strengths at which the most efficient transfer of polarization is achieved are not 

affected by this effect. 

 

Figure 48: Polarization field dependence of signal enhancement for the protons in 3-hydroxypyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given on the right. 

3-Fluoropyridine 

 

Figure 49: Polarization field dependence of signal enhancement for the protons in 3-fluoropyridine determined 
with various catalysts. The molecular structure of the substrate molecule is given on the right. 

In 3-fluoropyrdine, the electron density in the heterocycle is reduced due to the strong 

electronegativity exhibited by the fluorine. Using the PCy3 catalyst, enhancement factors of 

over 130 were achieved for protons 2, 4 and 6 (Figure 49), surpassing the results for the 

previous three substrates. The IMes catalyst once more excels over the competitors, 

showing superior enhancement on par with the results for 3-methoxypyridine. For the SIMes 
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catalyst, however, the employment of the halogen substituent proves detrimental, as only 

very limited hyperpolarization is achieved, falling short of all previous results for pyridine 

derivatives. 

3-Chloropyridine 

 

Figure 50: Polarization field dependence of signal enhancement for the protons in 3-chloropyridine determined 
with various catalysts. The molecular structure of the substrate molecule is given on the right. 

Results for 3-chloropyridine are similar for the SIMes ligand (Figure 50), showing low 

enhancements which are comparable to the previous substrate. The IMes and PCy3 catalyst 

both experience a drop in enhancements for this substrate to about 50 to 60% of the values 

achieved for the previous compound. 

 

Figure 51: Maximum enhancements of the protons in 3-chloropyridine achieved using the [Ir(IMes)(COD)Cl] 
precatalyst in dependence of the level of dilution. 

A quick dilution experiment using the IMes catalyst and 3-chloropyridine as a substrate 

indicated an exponentially decaying dependence on the overall concentration (Figure 51). 

This was to be expected for a catalyst-mediated interaction between two species [51]. 

3-Bromopyridine 

Results for 3-bromopyridine show a slight increase in signal intensity achieved by the SIMes 

ligand, yet the absolute enhancement remains low (Figure 52). For the IMes complex, results 

also increased compared to the previous substrate, but remain below those of the initial 

four pyridines. Furthermore, the field range for maximum enhancement appears to be 

slightly broadened for this compound yet remaining in the accustomed region. Crabtree’s 
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catalyst is able to increase the achieved level of hyperpolarization and experiences the 

highest enhancement factors of this experimental series for 3-bromopyridine. For protons 2, 

4 and 6 it almost matches up the IMes complex and even surpasses it for proton 5. 

 

Figure 52: Polarization field dependence of signal enhancement for the protons in 3-bromopyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given on the right. 

3-Iodopyridine 

For 3-iodopyridine, the NHC catalysts both remain approximately at the enhancement level 

achieved for the bromo-substituted analog (Figure 53). Crabtree’s catalyst forfeits part of its 

enhancement, only achieving half of the level of polarization for protons 2, 4 and 6 

compared to its IMes counterpart. Once more, the maxima in the field dependences remain 

in their accustomed ranges. 

 

Figure 53: Polarization field dependence of signal enhancement for the protons in 3-iodopyridine determined 
with various catalysts. The molecular structure of the substrate molecule is given on the right. 
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3,5-Dichloropyridine 

Further reduction of the basicity by attaching two chloro substituents to the pyridine 

molecule had across-the-board highly adverse effect on the level of achieved 

hyperpolarization (Figure 54). While the IMes catalyst still facilitated a decent level of 

polarization transfer, surpassing that attained by the other catalysts for various previous 

substrates, the results for 3,5-dichloropyridine denote the lowest levels accomplished for 

any substrate examined in this comparison series. The polarization fields at which the 

highest enhancements were achieved is not significantly altered. For Crabtree’s catalyst, 

however, the maximum at higher fields is considerably broadened, remaining on a lightly 

decreasing level across the entire higher field range.  

 

Figure 54: Polarization field dependence of signal enhancement for the protons in 3,5-dichloropyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given on the right. 

Comparison of enhancements for substrates exhibiting different pKa values 

The results for the comparative examination of the 3-substituted pyridines given in Table 1 

together with the applicable pKa values [126]. As can be seen, no clear correlation between 

the basicity and the achieved level of enhancement is discernable. 

Crabtree’s catalyst attained highest enhancements for the bromo derivative with a pKa of 

2.80 to 2.85, followed by the fluoro analog with a reported pKa of 2.79 to 3.10. 

3-Chloropyridine, with an almost identical pKa value, experienced, however, only about 50% 

of their enhancement levels. A slight increase of the pKa to the level of 3-iodopyridine also 

resulted in a reduction of enhancement, while a larger increase from there resulted again in 

higher levels of polarization for 3-methyl- and 3-methoxypyridine. Also, 3-hydroxypyridine 

with a pKa similar to 3-methoxypyridine, was only weakly enhanced, yet possibly owed to 

further effects caused by the tautomeric interconversion.  

In the case of the IMes ligand, highest levels of polarization were achieved for 3-methoxy- 

and 3-fluoropyridine, which exhibit strongly deviating basicity. The remaining halogen 

substituted pyridines (excluding 3,5-dichloropyridine) experience level of polarization 

reduced by approx. 35%, yet of similar magnitude among them. Likewise, the methyl and 

hydroxy analogs experience only a slight reduction of enhancement, but also of comparable 

size. 

For the SIMes ligand, reduction of the pyridine basicity by substitution with halogens proves 

detrimental to the achievable polarization. The further results slightly indicate an optimal 
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range of electron density in the pyridine heterocycle of above that of the halogen derivatives 

and below the one for the examined methyl substituted compound, as highest enhancement 

was achieved for 3-hydroxypyridine, followed by 3-methoxypyridine, both of which possess 

pKa values in this range. Due to the low number of examined substrates in this pKa range, 

however, the basis for this postulation is extremely shaky. 

Table 1: Maximum absolute enhancements achieved for various 3-substituted pyridines using different 
catalysts. 1) Experimentally determined values referenced in [126], except for 2), which was retrieved from 
[128]. 3) indicates the pKa for addition of a proton specifically to the nitrogen in the neutral form of 
3-methoxypyridine [125] as compared to the compound value for the neutral and the zwitterionic form. 

substituent pKa
1)

H2 H4 H5 H6  H2  H4  H5  H6  H2  H4  H5  H6 

methyl 5.67 - 5.75 109 102 86 110 211 213 96 192 63 66 32 61

methoxy 4.78 - 4.90 118 81 89 111 275 229 149 233 103 85 60 91

hydroxy 4.80 - 4.86 / 5.23) 46 17 27 37 273 159 130 193 274 157 170 188

flouro 2.79 - 3.10 141 134 80 131 265 261 158 231 15 14 9 13

chloro 2.81 - 2.98 78 73 51 62 160 155 74 134 15 14 7 12

bromo 2.80 - 2.85 151 143 93 141 181 172 84 149 23 22 10 18

iodo 3.25 82 78 58 69 173 171 70 147 25 23 10 21

dichloro 0.76
2)

15 13 - 15 90 101 - 90 6 5 - 5

ImesPCy3 SIMes

 

Several more pyridine derivatives were examined in the same fashion as those above. In the 

meantime, however, the sample transfer parameters were optimized, which led to reduced 

transfer times and consequently to higher observed levels of polarization. Therefore, these 

substrates cannot be directly included in the basicity study, but are presented in the 

following:  

4-Iodopyridine 

 

Figure 55: Polarization field dependence of signal enhancement for the protons in 4-iodopyridine determined 
with various catalysts. The molecular structure of the substrate molecule is given on the right. 

Figure 55 displays the results for 4-iodopyridine, in which the IMes catalyst is surpassed by 

the SIMes ligand for highest enhancement of all substrate protons. With a pKa of 4.06 [129], 

the basicity of the substrate is in the range which is hinted to be suitable for an efficient 

hyperpolarization using the latter catalyst. The IMes complex still surpasses the PCy3 catalyst 

by about a factor of 2 for H2 and H6, while the enhancement for the remaining protons is of 

comparable magnitude. 
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3,5-Dibromopyridine 

 

Figure 56: Polarization field dependence of signal enhancement for the protons in 3,5-dibromopyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given on the right. 

3,5-Dibromopyridine exhibits properties similar to those reported above for 

3,5-dichloropyridine. With a pKa value of 0.83, the basicity is comparably low, and the 

binding affinity is accordingly presumed to be severely reduced, resulting in poor 

enhancement rates (Figure 56). The enhancement maximum at higher polarization fields is 

broadened for the PCy3 catalyst, similar to that reported for the dichloro analog. 

Furthermore, the maximum for the IMes ligand appears broadened and is displaced to 

higher fields. 

3,5-Dimethylpyridine 

In 3,5-dimethylpyridine, the electron density is raised by incorporation of two electron 

releasing substituents. Accordingly, the basicity is even higher than of the previously 

examined 3-methylpyridine, with a pKa of 6.14 [130]. This proves beneficial for Crabtree’s 

catalyst, which surpasses the enhancements achieved by the IMes catalyst for all substrate 

protons (Figure 57). For this analyte, the maximum enhancement for the ring protons 

achieved by the SIMes complex is shifted to higher field. Interestingly, the maximum for the 

methyl protons remains unchanged. 

 

Figure 57: Polarization field dependence of signal enhancement for the protons in 3,5-dimethylpyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given at the top right. 
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3,4-Dimethylpyridine 

The difficulty in correlating the pKa values and the attained enhancement is further 

illustrated by the results for 3,4-dimethylpyridine (Figure 58). This substrate exhibits a pKa 

value of 6.48 [130], close to the one reported for the former substrate. However, the 

polarization levels achieved by Crabtree’s catalyst are significantly reduced compared to 

3,5-dimethylpyridine and show clearly inferior enhancement values compared to the IMes 

complex. Both NHC catalysts achieve enhancements of a larger magnitude compared to the 

former substrate, with even the SIMes ligand surpassing the PCy3 complex for all substrate 

protons by a wide margin.  

 

Figure 58: Polarization field dependence of signal enhancement for the protons in 3,4-dimethylpyridine 
determined with various catalysts. The molecular structure of the substrate molecule is given at the top right. 

3.1.2.3 Discussion of catalyst performances 

In summary, it can be concluded that a direct correlation between the substrate basicity, 

indicated by their pKa values, and the achieved level of enhancement cannot be postulated 

from the obtained results and further factors that have an influence on the ligand exchange 

rate and J-couplings within the active complex might have to be considered. 

For a range of various substrates, the IMes ligand proved to be the superior transfer agent 

for pH2-derived hyperpolarization, as was initially reported [34]. For selected substrates, 

however, the competing PCy3- and SIMes complexes proved to be equivalent or even 

superior. Furthermore, the polarization field strength at which the highest levels of 

enhancement were generated differed between Crabtree’s catalyst and the NHC complexes, 

indicating the use of the former in cases of inevitable elevated field strengths. Additionally, 

the NHC catalysts almost exclusively generate emissive signal patterns, while the PCy3 

complex for most substrates produces both, emissive and absorptive lines depending on the 

selected polarization field, both of which was described by Pravdivtsev et al. in theoretical 

studies [37, 80]. Lastly, using the PCy3 catalyst, different protons within a substrate can 

experience signal enhancement of strongly deviating magnitude at identical polarization 

fields. This is best illustrated by considering the results for various pyridine derivatives, e.g., 
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3-methylpyrazole in Figure 46. For this substrate, H2, H4 and H6 all experience a zero 

transition in their enhancement factors in the region between 50 and 60 Gs, while H5 in this 

range exhibits almost its highest level of polarization. Conversely, for H5, almost no 

enhancement can be detected for fields of 135 to 150 Gs, at which the remaining ring 

protons clearly exhibit emissive maxima. Within limits, it is therefore possible through 

deliberate polarization field selection to exclude certain signals while highly enhancing 

others using the PCy3 catalyst. In short, the IMes catalyst exhibits the highest potential for 

tremendous signal enhancement, while Crabtree’s catalyst offers a certain potential for 

precision tuning. 

3.1.2.4 Discussion of Experimental Setup 2 

The new setup was successfully taken into operation and produced highly enhanced spectra 

for a variety of substrates and catalysts. Owed to the superior resolution, which, for the 

hyperpolarization spectra, was on par with the finely adjusted reference spectra, unimpeded 

signal examination was possible. Full automation of the experimental procedure served to 

eliminate all timing variances between individual hyperpolarization experiments, 

contributing to an increased comparability of measurements at different fields. 

Furthermore, the time necessary to conduct an entire measurement series was significantly 

reduced while considerably alleviating the physical stress on both equipment and personnel. 

Despite these significant improvements to the experimental procedure, a number of 

substantial flaws are apparent for this setup: 

The determination of the perfectly timed transfer parameters, which is crucial for 

conducting the hyperpolarization experiments, proved to be tedious. When parameters 

were determined for the dummy flow cell, they were not directly applicable to the actual 

flow injection probe and had to be painstakingly adjusted, which often resulted in 

unnecessarily elongated transfer times. Furthermore, when a set of transfer parameters 

gave satisfactory results, the reproducibility of the transfers left a great deal to be desired. 

Using the dummy flow cell, it was readily observable that the achieved liquid levels at the 

end of the transfer process fluctuated even for experiments executed in direct succession. 

Visual observation often revealed a default rate of up to 50% when examining the transfer 

efficiency. In order to account for these severe fluctuations, the transfer parameters had to 

be adjusted to rigorously overfill the flow cell to ensure a minimum of flawed or 

unsuccessful experiments. This, again, resulted in extended transfer times, leading to a 

decrease in observable hyperpolarization. 

However, when the risk of overfilling the cavity and losing some of the sample volume in 

each transfer was accepted, and the transfer parameters were adjusted to rapidly and 

reliably fill the flow probe at the highest speed possible, this experimental setup was 

suitable to achieve outstanding levels of hyperpolarization, as the exemplary spectrum in 

Figure 59 illustrates. Therein, H4 experienced a more than thousandfold enhancement at a 

field of 52 Gs, with H2 and H6 closely behind. With a setting like this, however, the loss of 
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sample volume increased significantly, so that measurement series spanning the modulation 

field range from -145 to 145 Gs in 5 Gs increments could not be completed successfully. 

 

Figure 59: Exemplary spectrum overlay of the aromatic region of 3-chloropyridine. The hyperpolarized 
spectrum was recorded at a polarizer setting of -50 Gs, resulting in an effective polarization field of 52 Gs. The 
reference spectrum is enhanced by a factor of 128. Additional resonances in the hyperpolarized spectra 
originate from hyperpolarized substrate molecules coordinated to the polarization transfer catalyst. 

The aforementioned loss of sample volume also constitutes a drawback of this setup and 

occurs in three different fashions. During the polarization step, for which the H2 gas enriched 

in its para isomer is bubbled through the sample solution, parts of the liquid are propelled to 

the top of the mixing chamber due to vigorous foaming. From there, droplets can be forced 

through an exhaust tubing, leading to a loss of solvent and of the therein dissolved 

molecules. In a similar manner, small fractions of the sample are lost when it is incompletely 

returned from the flow injection probe and remains as small droplets in the tubing system. 

This is especially the case when the probe cavity is overfilled, which was done in order to 

account for the transfer fluctuations and was accepted for the sake of reliability. As all 

sample components are expelled together, this results only in the reduction of sample 

volume. 

 

Figure 60: Signal intensities of the protons in 3-chloropyridine in dependence of the number of executed 
sample transfers. Due to the limited time in the spectrometer, the Boltzmann polarization is not reached, 
resulting in relative signal intensities <1. Differences in the signal intensities between individual protons stem 
from the individual relaxation times. 

Evaporation of the deuterated solvent denotes the third way of sample volume loss. Due to 

the foaming during the polarization step and the perturbance during the return transfer, the 
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liquid phase exhibits a large surface area to the gas phase, mediating a high level of 

saturation with the gaseous solvent. The gas phase is exchanged between the individual 

experiments, resulting in a slow but constant loss of solvent, leaving behind the substrate 

molecules and the metal complexes. This leads to an effective concentration of the sample, 

observable in Figure 60. 

 

Figure 61: Level of enhancement achieved for the protons in 3-chloropyridine at a field of 5 Gs in dependence 
of the number of experiments performed. The IMes polarization transfer catalyst was used to facilitate the 
hyperpolarization. 

In addition to the increased concentration, the change in sample volume has an additional 

effect on the spectra. Due to the field gradient along the length of the mixing chamber, the 

field strengths contributing to the observed level of hyperpolarization is directly dependent 

on the fill level over which the sample is distributed. With lower sample volumes, the spread 

decreases, resulting in a narrower distribution of magnetic fields and consequentially in a 

change of the observed enhancement. This is illustrated in Figure 61, which displays the 

achieved enhancements for 3-chloropyridine using the IMes polarization transfer catalyst at 

an effective field of 5 Gs (measured at a depth of 7 cm into the coil cavity) in dependence of 

the number of performed experiments. Not only does the enhancement level for protons 2, 

4 and 6 increase in a seemingly exponential fashion, which was expected due to the change 

in concentration, but the H5 resonance also experiences a change from absorptive to 

emissive signal after a number of transfers, which can only be explained by a change in the 

contributing magnetic fields, at which the polarization transfer was achieved. 

Figure 62 further illustrates this effect. Therein, the enhancements achieved for H2 in 

3-chloropyridine are given in dependence of the direction in which the polarization field was 

modulated. In the left profile, the experimental series was initiated from the low field side 

and the effective field strength was consecutively increased in steps of 5 Gs. For the right 

profile, the initial experiment was performed at the highest field and the polarization field 

stepwise decreased. The two polarization field patterns exhibit polarization fields at which 

maximum enhancement was achieved, which differ by approx. 10 Gs, owed, presumably, to 

the difference in sample volume as a result of the total number of experiments performed 

with the loaded sample. 
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Figure 62: Polarization field dependence for H2 in 3-chloropyridine using the IMes polarization transfer 
catalyst. Both field dependence profiles were recorded in direct succession using identical sample compositions 
and parameters with the exception of the direction in which the polarization field was modulated. 

The control software of the Polariser was later updated by the manufacturer to account for 

the sample loss via a so called “top up” option. In order to utilize it, the amount of sample 

loss per transfer was determined by comparison of the liquid level before and after the 

experiments and subsequent division of the lost volume by the number of conducted 

experiments. The determined sample loss volume was then added from the connected 

sample vial into the mixing chamber after each experiment.  The liquid level could be held 

relatively constant over the course of an experimental series, yet the sample concentration 

gradually increased, owed to the evaporation of solvent as a contributor to the sample loss. 

 

Figure 63: Signal intensity for the protons in 3-chloropyridine in dependence of the number of performed 
sample transfers. The observed transfer of hyperpolarization is achieved by residual catalysts within the tubing 
system that withstood an extended washing operation. 

A minor flaw of the Bruker Para-Hydrogen Polariser setup can be seen in the difficulty of 

cleaning the entire flow path, including syringe, mixing chamber and flow injection probe, 

connected via the small diameter tubing. All of these parts possess joints and crevices, in 

which molecules can deposit and from which they can only slowly be cleared. Even after 

several hours of constant flushing using pure ethanol, a sample of 3-chloropyridine in CD3OD 

still showed emissive signals after application of pH2 (Figure 63), indicating the presence of 

residual catalytic complexes in the flow path. The extent of polarization achieved is, 

fortunately, relatively small and can be considered negligible compared to that achieved by 

the actual employed catalyst. 

The main flaw this experimental setup exhibited was constituted, however, by the relatively 

large field gradient over the sample volume and the associated uncertainty about the 



3.1 SABRE Hyperpolarization Experiments Results and Discussion 
 

 
77 

effective polarization field the sample experienced. As described above, the field divergence 

over three characteristic points along the height of the mixing chamber is in the range of 27 

Gs. For highest polarization fields, this spread is reduced to 14 Gs, corresponding to a 

satisfactory percentage variation of approx. 6%. For the other end of the polarization field 

spectrum, however, the difference between highest and lowest field at these points 

amounts to 34.5 Gs, oftentimes surpassing the targeted field strength by a multiple (Figure 

64). 

Unfortunately, the low field range exhibits a higher information density considering the 

maxima location of the NHC catalysts. With such a broad range of fields contributing to the 

polarization transfer, smaller variances cannot be resolved, and the entire profile is 

smoothened. Furthermore, the intensities at the enhancement maxima are reduced, as 

these fields cannot be individually examined, but experience a contribution of fields at which 

the polarization transfer is less efficient. 

 

Figure 64: Deviations from the selected polarization field over the effective sample volume in the mixing 
chamber. Percentage deviations are referenced to the appointed field at the lowest of three characteristic 
points of the sample volume. Absolute field deviations are given as the difference between highest and lowest 
field at these three locations. 

In order to reduce the size of the field gradient over the sample volume, the mixing chamber 

has to be moved further away from the spectrometer, to where the stray field profile 

exhibits a shallower slope. As the mixing chamber has to be positioned directly below the 

NMR magnet, this can only be achieved by moving the chamber to a lower position. For this 

setup, the chamber was unfortunately already positioned at the lowest possible setting, 

forfeiting the possibility of an adjustment. Moving to a spectrometer with a weaker B0 field 

and consequently a weaker stray field poses a feasible, yet expensive alternative, as the 

employed flow injection probe is incompatible with smaller sized NMR magnets and an 

additional probe would have to be acquired. 

As a technical solution, employment of a shimming system may be feasible, that would 

homogenize the field in the polarization chamber. Unfortunately, development of the Para-
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Hydrogen Polariser has been discontinued by the manufacturer, such that this extensive 

modification of the technical device would have to be done by additional experts in house.  
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3.2 Chemical Synthesis 

A prerequisite for the hyperpolarization of a substrate using the SABRE technique is the 

presence of a donor atom in the molecular structure. The molecule has to be able to 

reversibly bind to the polarization transfer catalyst using its free electron pair and must do 

so at a considerable turnover rate in order to allow for the polarization of a large number of 

individual molecules. Pyridine, pyrazole and their derivatives, which were studied 

extensively in this work, exhibit this property and were therefore, as was shown, highly 

susceptible to the polarization technique. Their chemical structure can often be found as a 

substructure in biologically active compounds, creating the opportunity for in vivo studies of 

distribution and metabolization using the SABRE approach. 

The employment of heavy metal containing catalysts that facilitate the polarization transfer 

from the parahydrogen nuclei to the substrate of interest constitutes an obstacle to the 

unmodified application to living organisms. To prevent a possible toxic effect [131] to the 

studied subject, it must be ensured that the sample solution can be separated from the 

catalyst before its transfer into the organism. This can be achieved by modification of the 

critical ligand molecule in a way that allows for permanent binding to macroscopic particles, 

e.g., polystyrene beads, which in turn can be easily removed from the liquid phase by means 

of filtration. 

3.2.1 Synthesis of a solid-phase bound SABRE catalyst 

 

 

Figure 65: Structure of [IrCl(COD)(IMes)] containing the IMes ligand. The complex reacts with suitable 
substrates and pH2 to generate an active polarization transfer catalyst. 

1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) is the critical ligand in 

[Ir(COD)(IMes)Cl] (Figure 65), which is the precursor of the SABRE catalyst showing the 

highest potency to date [45]. The para methyl substituents at the phenyl rings were 

considered promising connection points for a modification of the ligand without altering the 

steric effects and the electronic parameters in the imidazole-2-ylidene heterocycle. 
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3.2.1.1 Definition of initial target molecule 

 

Figure 66: Compound 1 was appointed as the initial target molecule for the synthesis of a solid-phase bound 
ligand to be used in SABRE hyperpolarization experiments. 

Compound 1 (Figure 66) was selected as the target molecule for the synthesis. The electronic 

composition of the original molecule is largely conserved and with the carboxyl function, a 

connection site for attachment to a solid phase is introduced. To create a donor atom, the 

methine proton between the two nitrogen atoms is abstracted, transforming the molecule 

into a carbene. 

The developed synthesis strategy for compound 1 is shown in Scheme 6. 

 

Scheme 6: Synthesis strategy developed for compound 1. 
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3.2.1.2 Synthesis of imidazolium chloride 1 

Starting from aniline 2, methyl ester 5 was successfully synthesized in 3 steps (Scheme 7). 

 

Scheme 7: The reaction steps of aniline protection, boronic acid formation and Pd-catalyzed coupling reaction 
to synthetize compound 5 in three steps, starting from 4-bromo-2,6-dimethylaniline. 

The amine function in aniline 2 was protected by treatment with N,N-diisopropylethylamine 

and benzyl bromide and the resulting tertiary amine 3 was obtained in quantitative yield. 

Subsequently, the aromatic bromine of 3 was replaced by a boronic acid group, which was 

achieved by treatment with n-butyllithium and trimethyl borate, followed by hydrolysis 

using aqueous hydrochloric acid. Boronic acid 4 was received in good yield of 70%. In the 

next step, a palladium catalyzed cross-coupling between 4 and methyl 4-bromobenzoate 

was successfully performed to give benzhydryl 5 in satisfactory 75% yield.  

 

Scheme 8: Cleavage of the protections groups and coupling reaction with 2,4,6-trimethylaniline to give 
formamidine 7 in two steps. 

In two further steps, formamidine 7 was obtained (Scheme 8). First, the benzyl protection 

groups in 5 were successfully cleaved using hydrogen gas and palladium on carbon as a 

catalyst, giving primary amine 6 in quantitative yield. In the following step, the received 

amine was coupled to 2,4,6-trimethylaniline via an acid-catalyzed reaction with triethyl 

orthoformate. The resulting formamidine 7 was isolated in a yield of 60%. 

In the next step, diisopropylamine and chloroacetaldehyde were used to facilitate a ring-

closing reaction to create a hydroxy-substituted imidazoline heterocycle. As formamidine 7 

exists in two tautomeric structures, the hydroxy function can be located at both of the newly 
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introduced carbons. This reaction was planned to be immediately followed by an elimination 

reaction using acetic anhydride and hydrochloric acid in order to form the C-C double bond 

in the imidazole moiety of 1. Formation of imidazolinium chloride 8 was verified by reaction 

control via mass spectrometry, yet dehydration to form 1 in the subsequent reaction step 

was not observed under the given conditions. The two-step reaction was repeated several 

times in order to facilitate the elimination reaction to produce imidazole 1. In addition to 

modifications of reactant concentrations and reaction conditions, a second elimination 

protocol using orthophosphoric acid was tested, yet compound 1 was not isolated (Scheme 

9). 

 

Scheme 9: The ring-closing reaction giving imidazolinium chloride 8 and the subsequent unsuccessful 
elimination reaction to reach target molecule 1. 

3.2.1.3 Change of synthesis target  

Due to the failed attempt in producing imidazolium chloride 1, compounds 9 and 10 (Figure 

67) were appointed as new target molecules to be attached to a solid phase consisting of 

silica gel via their triethoxysilyl functions. The target molecules show a deviation from the 

IMes ligand, as they feature an imidazoline instead of an imidazole hetero cycle. This is 

accompanied by a change in the electronic composition, which has a strong impact on the 

functionality of catalysts formed using this ligand. The SIMes ligand, which also relies on the 

imidazoline ring, has, however, been shown to be an operational polarization transfer 

catalyst earlier in this work. 

 

Figure 67: Compounds 9 and 10 were appointed as new synthesis targets. 

Originated from different starting molecules, compounds 11 and 12 (Figure 68) were 

synthesized and isolated according to published synthesis protocols [132] in 2 and 7 steps, 

respectively. These molecules are the direct precursors of the target compounds 9 and 10 
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and were treated in a two-step reaction first with trichlorosilane and a palladium-based 

catalyst, then with ethanol and triethylamine to achieve the conversions into the 

triethoxysilanes.  

Due to the products’ susceptibility to hydrolysis and the absence of a dry box, the target 

molecules could not be isolated, as the column chromatography necessary for purification 

could not be performed under sufficiently water-free conditions. 

 

Figure 68: Compounds 11 and 12 are the respective isolated precursors of target molecules 9 and 10. 

3.2.1.4 Modified polymer beads 

Consequentially, the synthesis target and route were once more adjusted as depicted in 

Scheme 10. In the updated approach, an NHC ligand precursor was to be created directly at 

solid-phase particles by modification of functionalized polystyrene beads. Subsequently, the 

carbene was to be generated in situ and attached to the Ir center via a silver alkoxide.  

 

Scheme 10: Intended reaction route for the generation of an NHC ligand by modification of functionalized 
polymer beads and the subsequent creation of a solid-phase bound SABRE precatalyst complex. The polymer 
beads represented by the grey spheres consist of cross-linked polystyrene. 

Treatment of functionalized polymer 13 with phosphorus tribromide yielded the benzyl 

bromide variant 14. Polymer 14 was then treated with mesitylimidazole 15, which had been 

prepared according to ref. [133], to give solid-phase bound imidazolinium bromide 16 as 

identified by the characteristic aromatic methyl resonances of the mesityl group in 1H NMR 

(Figure 69). For the following synthesis step, however, the synthesis for the silver alkoxide 

reagent AgOC(CF3)3 could not be reproduced according to the reported synthesis protocol 

[134], as no chemical modification of the precursor molecule was observed in 13C and 19F 

NMR spectra. An attempt at the preparation of complex 17 was nonetheless undertaken, yet 

the obtained product showed no activity in SABRE polarization transfer experiments. 



Results and Discussion 3.2 Chemical Synthesis 
 

 
84 

 

Figure 69: 1H NMR spectra section of solid-phase bound benzyl bromide 14 (red) and imidazolinium bromide 16 
(blue). Formation of 16 is clearly indicated by emergence of the indicated methyl resonances between 2.5 and 
2.0 ppm and the methine resonance at 4.8 ppm, while the intensity of the methine resonance at 4.5 ppm is 
significantly reduced. 

3.2.1.5 Outlook 

Towards the very end of this study, compounds 18 (attached to cross-linked polystyrene 

beads with poly (ethylene glycol) functionalities, TentaGel®) and 19 (attached to poly 

(ethylene glycol) beads, ChemMatrix®) were provided by a fellow researcher and were used 

to form Iridium complexes 20 and 21 according to Scheme 11.  

 

Scheme 11: Polymer-bound ligands 18 and 19 and their corresponding iridium complexes 20 and 21. 
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Both complexes showed catalytical activity to facilitate the hydrogenation of a double bond 

to give a single bond under a hydrogen atmosphere, as shown Figure 70. Furthermore, 

SABRE experiments were conducted with a modified Polariser setup, in which the 

functionalized polymer beads were manually introduced into the polarization chamber. 

Furthermore, a syringe filter was added into the tubing system between the polarization 

chamber and the flow probe to separate the solution from the catalyst and to prevent the 

solid particles from reaching the flow cell within the probe head. Both catalysts showed 

polarization transfer activity in these experiments, as exemplified in Figure 71, where 

pyridine was used as the analyte in combination with complex 20 and a seven-fold 

enhancement was accomplished. While, however, both catalysts showed signs of leaching in 

these experiments, these results mark a promising starting point for future research into 

SABRE experiments with solid-phase bound polarization transfer catalysts. 

As the results in this outlook section are preliminary, they have not been thoroughly 

quantified and do not appear in the experimental section. 

 

Figure 70: Hydrogenation of the double bond in 4-allyl-2,6-dimethylaniline to a single bond to give 2,6-
dimethyl-4-propylaniline. 
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Figure 71: Spectra recorded in SABRE experiments using solid-phase bound catalyst 20 and pyridine as the 
analyte. The red spectrum displays the thermal equilibrium reference, while the blue spectrum was recorded 
after exposure of the sample solution and the insoluble catalyst particles to a flow of parahydrogen gas for 30 
seconds. 
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4 Materials and Methods 

4.1 Hyperpolarization Experiments 

4.1.1 Materials 

All NMR solvents for the hyperpolarization experiments were purchased from Deutero 

GmbH with a degree of deuteration of at least 99.8%. The employed precatalysts were 

synthesized according to literature reported procedures. All examined substrates were 

purchased from Sigma Aldrich and used without further purification. Pressurized hydrogen 

and nitrogen gas was purchased from Westfalen AG in 5.0 purity. 

4.1.2 Preparation of Parahydrogen 

The parahydrogen required for conducting the hyperpolarization experiments was prepared 

using the commercially available Bruker Para Hydrogen Generator BPHG 90. The device is 

equipped with a cryo-cooler unit that was used to cool high purity H2 gas to temperatures of 

36 K. The refrigerated gas was then passed through a conversion chamber filled with a 

suitable paramagnetic catalyst to facilitate the necessary spin conversion of the H2 molecules 

from ortho to para. In this way, the hydrogen gas was enriched in pH2 to a level of 

approximately 92%. The generator requires an H2 5.0 supply of 6 to 10 bar and can be used 

to fill attached containers with target pressures of up to 6 bar in the “batch delivery more”. 

In “continuous flow mode”, the generator can maintain a flow rate of up to 0.2 NL/min to be 

fed into an attached consuming device. 

4.1.3 Setup 1: The Shaking Table 

The previously employed setup for conducting the hyperpolarization experiments [35, 122] 

exposed several severe drawbacks, e.g., polarization field inconsistencies due to the 

manually executed polarization step and variations in the sample resting time. In order to 

overcome these, a revised setup was planned and realized in cooperation with the in-house 

fine mechanics workshop. 

4.1.3.1 Experimental Setup 

A non-magnetic, tablelike construction was built from aluminum parts in order to support a 

beam 180 cm in length running parallel to the ground at a height of approx. 120 cm. In 

addition, a moveable platform was constructed that could be shifted along the length of the 

top beam and fixed in position using a positioning screw (Figure 72). The platform was 

equipped with a mounting for a 5 mm Wilmad-LabGlass Quick Pressure Valve NMR tube, 

which in turn was mounted on a metal rail. Thereon, it could be moved from side to side, 

resulting in a motion perpendicular to the length of the top beam. In order to propel this 

motion, an electromotor was positioned on the platform and connected to the mounting via 

a crank. An adjustable power supply was used to power the motor in order to control the 

speed of the reciprocating motion. 
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Figure 72: Movable platform holding a sample mounting and the electromotor used to propel the reciprocating 
motion. 

The table construction was placed at a Bruker 600 MHz Avance III spectrometer operating at 

a 1H base frequency of 600.250 MHz in such a fashion that one end of the top beam was in 

close contact with the outer shell of the magnet (Figure 73). The length of the beam ran 

perpendicular to the outer shell, so that the opposing end of the beam was at the furthest 

possible distance from the center of the magnet. This ensured the accessibility of the highest 

and lowest possible field strengths in the stray field of the spectrometer. 

 

Figure 73: Position of the table construction at the 600 MHz spectrometer. The platform on top of the table 
was movable along the length of the top beam, allowing for the positioning of the sample at various field 
strengths within the stray field of the NMR magnet. 

A Brockhaus 455 DSP gauss meter was used to determine a series of positions along the 

length of the top beam, at which the center of the sample tube mounting was located at a 

certain magnetic field strength (Figure 74). These markings were used to set the magnetic 

field at which the hyperpolarization experiments were conducted. 
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Figure 74: Strength of the magnetic stray field generated by the Bruker Avance III 600 MHz magnet in 
dependence of the distance from the spectrometer hull. 

A non-magnetic step ladder was positioned next to the NMR magnet and the aluminum 

table to allow for a quick access to the rider holding the sample as well as to the sample inlet 

at the top of the magnet. A light sensor was attached to the top handle of the ladder and 

connected to the IPSO board of the NMR console. Covering the sensor resulted in a trigger 

signal being sent to the spectrometer, aiding in the execution of the pulse sequence. This 

modification served the purpose of shortening and equalizing the sample resting time inside 

the spectrometer between its arrival in the magnet and the beginning of the measurement. 

4.1.3.2 Sample Preparation 

Typical samples consisted of 600 µL of methanol-d4 (CD3OD), 1.05 mg of the deuterated 

precatalyst [Ir(COD)(PCy3-d33)(py-d5)]BF4 (2.23 mM) as well as a 9:1 mixture of pyridine-d5 

and the substrate compound with a total concentration of 22.3 mM. This mixture was used 

as preliminary experiments indicated an increase of observable signal enhancement for the 

examined substrate when diluted with a secondary, NMR-silent substrate while maintaining 

the total substrate concentration. 

To prepare the sample, the precatalyst was dissolved in 400 µL of CD3OD, followed by 

addition of 200 µL of a 67 mM substrate mixture stock solution in the same solvent via 

micropipette. The sample solution was transferred into a 5 mm Wilmad-LabGlass Quick 

Pressure Valve NMR tube and cooled to -78 °C using an acetone / dry ice bath. The tube was 

then evacuated, pressurized with 4.55 bar of pH2 enriched hydrogen gas, sealed and thawed. 

Hydrogen gas from the head space over the solution was solvated in the liquid by vigorous 

shaking of the sample tube, facilitating the reaction between H2 molecules and the iridium 

precatalyst, resulting in the formation of the active catalyst species 

[Ir(H)2(PCy3-d33)(substrate)3][BF4] under emission of cyclooctane.  

4.1.3.3 Experimental Procedure 

The sample heater and the related gas flow were turned off during the measurement series 

in order to avoid the occurrence of a temperature gradient due to a delayed response of the 

sample heater and the relatively short time between sample insertion and signal acquisition. 

The NMR experiments were therefore recorded at ambient temperature of approx. 295 K. 



Materials and Methods 4.1 Hyperpolarization Experiments 
 

 
90 

Tuning and matching, automatic adjustment of the NMR shim coils and determination of the 

90° 1H hard pulse was performed before each series of measurements. Typically, three 

reference spectra were recorded, one each at the beginning, in the course, and at the end of 

a measurement series. 

For each magnetic field strength, the sample was cooled to -78 °C, evacuated and 

pressurized with 4.55 bar of pH2 enriched H2 gas. The sample was then thawed, fitted into a 

plastic spinner and placed in the sample mounting on the rider, which had previously been 

positioned at the marker for the desired magnetic field and locked in position using the 

positioning screw. 

The zg.ebdu_trigin pulse program was executed before the start of each individual 

measurement so that the critical components of the spectrometer were given the necessary 

time to initialize. The program then automatically stopped before execution of the pulse 

sequence, requiring a trigger input in order to proceed. 

Activation of the power supply caused the electromotor to perform the previously described 

shaking motion, causing a mixing process and a subsequent solvation of the H2 gas in the 

liquid phase. After deactivation of the power supply, the sample was removed from the clasp 

and, following a quick adjustment of the spinner position, rapidly inserted into the magnet. 

When the sample had audibly set inside the magnet, the light sensor was covered so that the 

pulse sequence was executed. Thereby, the spectrum was immediately recorded using a 90° 

proton hard pulse, followed by signal acquisition. 

The hyperpolarization experiment was performed three times at each magnetic field 

strength.  After each set of measurements an automatic shimming procedure was executed. 

4.1.3.4 Evaluation 

Signal intensities were determined by two-point integration of the respective resonances 

using Bruker TopSpin 3.2. The enhancement factors were determined by 

 
𝐸 =

𝐼𝑝̅𝑜𝑙

𝐼𝑟̅𝑒𝑓
 (39) 

where 𝐼𝑟̅𝑒𝑓 and 𝐼𝑝̅𝑜𝑙 are the dimensionless mean values of the absolute integrals in reference 

and hyperpolarized spectra, respectively. Experimental errors were determined by 

calculation of the standard deviation of the enhancement over the number of conducted 

experiments. 
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4.1.4 Setup 2: The Bruker Para-Hydrogen Polariser 

Due to a number of severe drawbacks of the shaking table setup, e.g., inconsistent transfer 

times and severe line broadening, this experimental setup was decommissioned and 

replaced by a more sophisticated one. A prototype of the newly developed Bruker Para-

Hydrogen Polariser in combination with a flow injection probe was made available for use on 

this project and implemented as the new hyperpolarization setup. 

4.1.4.1 Experimental Setup 

The Para-Hydrogen Polariser mainly consists of two parts: the controlling unit and the mixing 

chamber positioned inside an electromagnetic coil. Both of these parts are attached to a 

small, non-magnetic table (Figure 75). The controller unit constitutes the main part of the 

polarizer and houses the valves and gauges necessary to automatically control the various 

gas flows and pressures during the experiments. It is further equipped with a mechanically 

operated syringe that is used to load samples from attached sample containers into the 

mixing chamber and to expel them again. To be operational, the controller must be 

connected to a nitrogen gas source of between 3 and 6 bar as well as a source of 

para-enriched hydrogen gas at a pressure between 3 and 6.5 bar. Furthermore, it can be 

connected to the IPSO board of the NMR console to enable control via the Bruker TopSpin 

software and therein executed pulse programs. 

 

Figure 75: Simplified sketch of experimental setup 2 using the Bruker Para-Hydrogen Polariser and a Bruker 
Avance III 600 MHz spectrometer. 

The mixing chamber constitutes the part of the setup at which the pH2-induced polarization 

transfer takes place (Figure 76). When loaded with a suitable sample, a flow of para enriched 

H2 gas can be applied to the chamber through an immersion tube against a lower back 

pressure above the solution. The pressure difference causes the formation of bubbles from a 

porous ceramic membrane attached to the lower end of the tube, which rise through the 

sample solution, solvating pH2 for the polarization transfer.  
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The mixing chamber is positioned inside the inner cavity of a solenoid coil, to which 

adjustable currents can be applied. A magnetic field directly proportional to the current 

intensity is generated in and around the coil, which either adds to or subtracts from the 

residual magnetic field present at the location of the coil, depending on the relative 

alignment of the two magnetic fields. This allows for the polarization step to be performed 

at varying magnetic fields without the need to physically move the setup to different 

positions. The position of coil and mixing chamber can, however, be adjusted vertically to 

allow for the coverage of different ranges of magnetic fields, depending on the prevalent 

stray field at the chosen height. 

 

Figure 76: The mixing chamber of the Para-Hydrogen Polariser with all attached tubing connections. The height 
marks denote the distance from the upper rim auf the electromagnetic coil inside which the mixing chamber is 
placed. BZ denotes the z-component of the magnetic field generated by the NMR magnet as well as by the 
solenoid coil surrounding the mixing chamber. 

The individual components that come into contact with the sample solution are connected 

using capillary tubing with an inner diameter of 0.8 mm. Two different methods for 

transportation of fluids through the tubing system are used in this setup: 

The aforementioned syringe is used for loading and emptying the mixing chamber with 

either sample solutions or washing solvents at ambient pressure. A selection valve allows for 

switching between several attached containers. To load a liquid into the syringe, the plunger 

is retracted using a step motor, creating a suction effect in the applicable vial, transferring 

the fluid into the syringe. The attached containers are open to the environment to allow for 

pressure equilibration. To transfer a liquid out of the syringe, the plunger is reinserted into 
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the syringe barrel, pushing the fluid through the selection valve and into the desired 

container, e.g., the mixing chamber. 

In order to move a sample from inside the mixing chamber to the flow injection probe, the 

entire tubing system is pressurized using the connected N2 supply. The sample is then 

transferred by differences between the gas pressures in three successive steps, each of 

which is defined by a set of meticulously determined transfer parameters, i.e., transfer time, 

transfer pressure and back pressure. The transfer back into the mixing chamber is achieved 

in a similar fashion, yet without the critical timing of the transfer parameters. 

The Para-Hydrogen Polariser was positioned at a Bruker 600 MHz Avance III spectrometer 

operating at a 1H base frequency of 600.250 MHz equipped with a 4 mm FISEI600SB 

1H-13C/D flow probe. 

4.1.4.2 Determination of Transfer Parameters 

To determine the transfer parameters, the tubing system was connected to a so-called 

dummy flow cell instead of the flow injection probe (Figure 77). Its specifications, i.e., cell 

volume and tubing length, were supposedly identical to those of the flow probe, with the 

distinct advantage of being positioned outside of the NMR magnet, allowing for the direct 

observation of the achieved filling levels. 

As mentioned above, the sample transfer is segmented into three distinct transfer phases. 

Each of these phases is governed by its transfer parameters, which determine for how long 

and at which pace the sample solution is propelled through the tubing system. The transfer 

speed in the individual transfer steps is regulated by the difference between the transfer 

pressure, which pushes the sample forward, and the back pressure, against which the 

sample has to be pushed. The transfer time simply denotes for how long the applied 

pressures are kept up.  

 

Figure 77: Sketch of the dummy flow cell used to determine the transfer parameters. The arrow markings 
indicate the optimal liquid level at the end of the respective transfer phase. 

In the first phase, the sample is rapidly accelerated towards the flow cell. This phase serves 

the purpose of covering the relatively long distance between the mixing chamber and the 
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sample cavity in the probe. As this path consists solely of the aforementioned 0.8 mm 

tubing, the liquid can be pushed with the highest possible pressure difference in order to 

minimize the transfer time and the loss of hyperpolarization without running the risk of 

bubble formation in the narrow path. When the liquid level reaches a position few cm short 

of the sample cavity (Figure 77), the transfer time for the first phase has been adequately 

determined. 

For the second transfer phase, the sample solution must be slowed down significantly. Upon 

transition to the flow cavity, the fluid path widens and with too high of a transfer speed, the 

liquid squirts into the cavity in a narrow jet. This can cause an inclusion of gas bubbles in the 

lower part of the cavity, leading to an inhomogeneously filled flow cell and ultimately 

resulting in distorted NMR signals. To avoid this, the pressure difference is reduced by 

raising the back pressure, causing a deceleration of the liquid and facilitating a slower, but 

homogenous filling of the cavity from the bottom end. The transfer time is set so that the 

liquid level at the end of the second phase is at half height of the flow cell (Figure 77). 

At this point, the risk of bubble formation is averted, and the sample can be accelerated 

again to fill the cavity as quickly as possible in order to minimize the loss of 

hyperpolarization. This is achieved by increasing the transfer pressure while maintaining the 

previously set back pressure. Lowering the back pressure while maintaining the transfer 

pressure would cause the same effect on the transfer speed but is avoided in order to 

prevent effervescence of the solvated H2 gas. The transfer time is adjusted so that the cavity 

is overfilled, and the final liquid level reaches the opposing side of the flow path (Figure 77) 

to account for possible fluctuations in the sample transfer. 

When the transfer parameters are determined, and the transfers are consistent for the 

dummy flow cell, the tubing is connected to the flow injection probe. The sample is 

transferred into the probe and a proton spectrum is recorded using the zg pulse program. 

The line shape and line width are compared to a previously recorded proton reference 

spectrum, for which the flow probe had been carefully filled via a manually operated syringe. 

If the signal quality between the spectra differs wildly, the transfer parameters are adjusted 

in small increments until the signal quality is satisfactory. Under optimal conditions, the 

sample can be injected into the flow injection probe in less than 2 s. 

4.1.4.3 Determination of Polarization Field 

The induced magnetic field inside the cavity of the electromagnetic coil is highly 

homogenous and runs exclusively along the z-axis of the NMR magnet. Accordingly, only the 

z-component of the residual NMR stray field can be modulated. Therefore, the coil is 

positioned directly below the center of the NMR magnet where the x- and y-components of 

the stray field are minimal and the strength of the effective magnetic field can be 

satisfactorily assessed by determination of the z-component alone. 

The strength of the electric current fed into the electromagnetic coil is not directly 

adjustable by selecting the amperage but is instead converted from the approximate 
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magnetic field strength to be induced. The selectable values ranged from -145 to 145 Gs. As 

mentioned above, the selected field value did not correspond to the effective magnetic field 

inside the mixing chamber, but to the magnetic field strength that was added to or 

subtracted from the prevalent field at the position of the chamber. Previously published 

results [35, 122] determined the field strengths of interest for this hyperpolarization 

technique to span from 0 to 250 Gs, indicating an optimal residual field at the coil position of 

between 105 and 145 Gs to ensure coverage of this field range. 

The height of the coil was set to the lowest possible position on the vertical beam owing to 

the relatively strong stray field emitted by the 141 kGs NMR magnet. With this setting, a 

field strength of 113 Gs was present at half height of the coil.  

The effective field under application of various currents to the electromagnetic coil was 

determined at three distinct depths inside of the coil cavity using a Brockhaus 455 DSP gauss 

meter with an axial probe. These depths were chosen based on occurring liquid levels during 

a series of experiments: When a typical sample volume is loaded into the mixing chamber, 

the fill level is at a depth of 4 cm from the upper rim of the coil, with the center of the 

sample volume being at a depth of around 7 cm (Figure 77). During the polarization step, 

when the sample is interspersed with gas bubbles, the effective sample volume increases 

significantly to a fill level of only 2 cm into the cavity from the top end. Due to the steep 

stray field gradient, the effective fields at these three positions diverge significantly (Figure 

78). Additionally, the applied field at a depth of 2 cm from the upper rim of the coil appears 

to not run homogenously along the z-axis anymore, but to exhibit also strong x- and y-

components, thereby limiting the effectiveness of the field modulation. This is indicated by 

the divergent slope of the line through the data points at this depth compared to positions 

deeper into the cavity. 

 

Figure 78: Effective polarization field at different positions inside the mixing chamber in dependence of the 
magnetic field induced by the electromagnetic coil. 

Over the course of an experiment series, the sample volume decreased, and the liquid level 

no longer reached the 4 cm marking. As the sample did, however, constantly cover the 

marking at a depth of 7 cm, the field strengths determined at this position were selected as 

the reference points. The individual effective field strengths were calculated using the line 

equation obtained from a linear regression 
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𝐵𝑒𝑓𝑓 = −0.9531 × 𝐵𝑚𝑜𝑑  +  100.1 

with Beff being the effective field strength and Bmod being the modulation field generated by 

the electromagnetic coil. 

4.1.4.4 Sample Preparation 

Typical samples consisted of 3.6 mL of methanol-d4 (CD3OD), 4.04 µmol of a suitable 

precatalyst (1.12 mM) and 40.4 µmol of the substrate compound (11.2 mM). The precatalyst 

was weighed into a 4 mL glass vial and solvated in 2 mL of CD3OD. The substrate was 

weighed into an Eppendorf cup and dissolved in 800 µL of the solvent. The substrate solution 

was then added into the sample vial and the Eppendorf cup was rinsed with additional 

800 µL of solvent, which were also transferred into the sample container. The vial was sealed 

with a screw-on septum cap and vortexed until the metal complex was dissolved. 

The sample vial was attached to the Bruker Para-Hydrogen Polariser via the sample loading 

capillary and 3.1 mL of the sample solution were transferred into the mixing chamber via the 

implemented syringe. Parahydrogen was applied to the mixing chamber for several seconds 

to facilitate the reaction between H2 molecules and the iridium precatalyst, resulting in the 

formation of the active catalyst under emission of cyclooctane. 

4.1.4.5 Experimental Procedure 

After preparation of the active catalyst species, the sample solution was shuttled several 

times between the flow probe and the mixing chamber. This was done to ensured consistent 

transfers in the forthcoming experiments, as, after the return transfer, some droplets of the 

sample solution are not cleared from the tubing system, slightly changing the transfer 

characteristics. After several transfers, this effect equilibrated. 

The sample was then transferred into the flow injection probe to perform the tuning and 

matching procedure as well as the adjustment of the shim coils. The length of the 90° proton 

hard pulse was determined before each set of measurements. The temperature unit was set 

to the approximate ambient temperature of 295 K. 

Hyperpolarization experiments were executed using the ph_zg_noload_noempty pulse 

program. Using the connection of the Para-Hydrogen Polariser to the IPSO board, this pulse 

program is able to control the entire experiment including the polarization step, sample 

transfer, acquisition and return transfer using various user defined delays and parameters. 

Before the start of the field dependence measurements, a set of bubbling time experiments 

was performed. Therein, the application time of the para enriched H2 gas was varied from 2 

to 24 s in 2 s increments to assess an optimal exposure time. This also served the purpose of 

validating transfer consistency. 

Typically, three reference spectra were recorded, one each before the bubble time 

experiments, before the field dependence experiments and after the measurement series 

had ended. To do so, the sample was transferred into the probe and allowed to rest for at 
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least 60 s to ensure the decay of any possible hyperpolarization. The reference spectra were 

recorded using the zg pulse program. 

The measurement series was started using the multizg_ph_b0_new macro. When executed, 

the program prompts for input of the initial applied field strength, the field increment and 

the number of experiments in order to cover the desired field range in the experimental 

series. Typical values resulted in coverage of the modulation field range from -145 to 145 Gs 

in 5 Gs increments, equivalent to effective fields ranging from -38.2 to 138 Gs. 

The experimental procedure for an individual experiment went as follows: Parahydrogen gas 

was applied to the immersion tube at a pressure of 3.0 bar against a back pressure of 2.4 bar 

for the previously determined exposure time. After a delay to allow for the gas bubbles to 

clear the solution, the sample was transferred into the flow injection probe in the described 

pneumatic three-step transfer. After a further short delay to reduce sample perturbation, 

the proton spectrum was recorded using a 90° 1H hard pulse, followed by acquisition of the 

FID. The sample was then transferred back into the mixing chamber for execution of the next 

hyperpolarization experiment. 

Following a series of experiment, the sample was removed from the mixing chamber and 

transferred into a waste container. Subsequently, a repetitive wash operation was executed 

to flush the tubing system including mixing chamber and flow probe for 10 min using pure 

methanol. Afterwards, a drying program was run for 30 min, expelling and evaporating all 

residual liquid inside the tubing system using a flow of N2. 

4.1.4.6 Evaluation 

Signal intensities were determined by two-point integration of the respective resonances 

using Bruker TopSpin 3.2. The enhancement factors were determined by 

 
𝐸 = 

𝐼𝑝𝑜𝑙

𝐼𝑟̅𝑒𝑓
 (40) 

where 𝐼𝑝𝑜𝑙 is the dimensionless absolute integral of the polarized resonance and 𝐼𝑟̅𝑒𝑓 is the 

dimensionless mean value of the absolute integrals in the reference spectra. 

4.1.5 NMR Data of Examined Substrates 

4.1.5.1 Pyrazole and its related compounds 

pyrazole 

 

Figure 79: Molecular structure and numbering of the substrate molecule pyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.63 ppm (sbr, 2H, H3/H5), 6.35 (t, 1H, H4) ppm. 
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3-methylpyrazole 

 

Figure 80: Molecular structure and numbering of the substrate molecule 3-methylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.47 ppm (sbr, 1H, H5), 6.08 (sbr, 1H, H4), 2.30 (s, 3H, CH3) 

ppm. 

4-methylpyrazole 

 

Figure 81: Molecular structure and numbering of the substrate molecule 4-methylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.37 ppm (sbr, 2H, H3/H5), 2.09 (s, 3H, CH3) ppm. 

3,4-dimethylpyrazole 

 

Figure 82: Molecular structure and numbering of the substrate molecule 3,4-dimethylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.28 ppm (s, 1H, H5), 2.20 (s, 3H, 3-Me), 2.01 (s, 3H, 4-Me) 

ppm. 

3,5-dimethylpyrazole 

 

Figure 83: Molecular structure and numbering of the substrate molecule 3,5-dimethylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 5.83 ppm (s, 1H, H4), 2.22 (s, 6H, CH3) ppm. 

3-phenylpyrazole 

 

Figure 84: Molecular structure and numbering of the substrate molecule 3-phenylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.78 ppm (sbr, 2H, o-Ph), 7.68 (sbr, 1H, H5), 7.43 (t, 2H, 

m-Ph), 7.34 (t, 1H, p-Ph), 6.68 (dbr, 1H, H4) ppm. 
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3-(4-aminophenyl)pyrazole 

 

Figure 85: Molecular structure and numbering of the substrate molecule 3-(4-aminophenyl)pyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.57 ppm (sbr, 1H, H5), 7.49 (dbr, 2H, 2’/6’), 6.77 (d, 2H, 

3’/5’), 6.49 (sbr, 1H, H4) ppm. 

3,5-diphenylpyrazole 

 

Figure 86: Molecular structure and numbering of the substrate molecule 3,5-diphenylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.81 ppm (sbr, 4H, o-H), 7.46 (sbr, 4H, m-H), 7.37 (sbr, 2H, 

p-H), 7.01 (s, 1H, H4) ppm. 

3,5-ditertbutylpyrazole 

 

Figure 87: Molecular structure and numbering of the substrate molecule 3,5-ditertbutylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 5.94 (s, 1H, H4), 1.31 (s, 18H, CH3) ppm. 

3-aminopyrazole 

 

Figure 88: Molecular structure and numbering of the substrate molecule 3-aminopyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.34 ppm (d, 1H, H5), 5.64 (d, 1H, H4) ppm. 

4-ethoxy-3-methylpyrazole 

 

Figure 89: Molecular structure and numbering of the substrate molecule 4-ethoxy-3-methylpyrazole. 

1H NMR: (600 MHz, CD3OD): δ = 5.49 ppm (s, 1H, H5), 4.09 (q, 2H, OCH2CH3), 2.22 (s, 3H, 

3-Me), 1.35 (t, 3H, OCH2CH3) ppm. 
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indazole 

 

Figure 90: Molecular structure and numbering of the substrate molecule indazole. 

1H NMR: (600 MHz, CD3OD): δ = 8.05 ppm (s, 1H, H3), 7.79 (dt, 1H, H4), 7.55 (dd, 1H, H7), 

7.40 (ddd, 1H, H6), 7.16 (ddd, 1H, H5) ppm. 

1,2,3-triazole 

 

Figure 91: Molecular structure and numbering of the substrate molecule 1,2,3-triazole. 

1H NMR: (600 MHz, CD3OD): δ = 7.85 ppm (sbr, 2H, H4/H5) ppm. 

1,2,4-triazole 

 

Figure 92: Molecular structure and numbering of the substrate molecule 1,2,4-triazole. 

1H NMR: (600 MHz, CD3OD): δ = 8.35 ppm (sbr, 2H, H3/H5) ppm. 

4.1.5.2 Pyridine and its related compounds 

pyridine 

 

Figure 93: Molecular structure and numbering of the substrate molecule pyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.55 (m, 2H, o-H), 7.88 (tt, 1H, p-H), 7.46 (m, 2H, m-H) ppm. 

2,6-dideuteropyridine 

 

Figure 94: Molecular structure and numbering of the substrate molecule 2,6-dideuteropyridine. 

1H NMR: (600 MHz, CD3OD): δ = 7.88 (t, 1H, H4), 7.46 (d, 2H, H3/H5) ppm. 
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3,4,5-trideuteropyridine 

 

Figure 95: Molecular structure and numbering of the substrate molecule 3,4,5-trideuteropyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.53 (s, 2H, H2/H6) ppm. 

nicotinamide 

 

Figure 96: Molecular structure and numbering of the substrate molecule nicotinamide. 

1H NMR: (600 MHz, CD3OD): δ = 9.04 (dd, 1H, H2), 8.71 (dd, 1H, H6), 8.31 (ddd, 1H, H4), 7.57 

(ddd, 1H, H5) ppm. 

3-fluoropyridine 

 

Figure 97: Molecular structure and numbering of the substrate molecule 3-fluoropyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.50 (d, 1H, H2), 8.43 (m, 1H, H6), 7.68 (ddd, 1H, H4), 7.52 

(ddd, 1H, H5) ppm. 

3-chloropyridine 

 

Figure 98: Molecular structure and numbering of the substrate molecule 3-chloropyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.59 (d, 1H, H2), 8.50 (dd, 1H, H6), 7.92 (ddd, 1H, H4), 7.46 

(ddd, 1H, H5) ppm. 
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3-bromopyridine 

 

Figure 99: Molecular structure and numbering of the substrate molecule 3-bromopyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.69 (d, 1H, H2), 8.54 (ddd, 1H, H6), 8.06 (ddd, 1H, H4), 7.41 

(ddd, 1H, H5) ppm. 

3-iodopyridine 

 

Figure 100: Molecular structure and numbering of the substrate molecule 3-iodopyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.82 (dd, 1H, H2), 8.55 (dd, 1H, H6), 8.23 (ddd, 1H, H4), 7.28 

(ddd, 1H, H5) ppm. 

3-methylpyridine 

 

Figure 101: Molecular structure and numbering of the substrate molecule 3-methylpyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.40 (m, 1H, H2), 8.35 (m, 1H, H6), 7.71 (m, 1H, H4), 7.35 

(m, 1H, H5), 2.39 (s, 3H, CH3) ppm. 

3-methoxypyridine 

 

Figure 102: Molecular structure and numbering of the substrate molecule 3-methoxypyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.25 (d, 1H, H2), 8.14 (dd, 1H, H6), 7.46 (ddd, 1H, H4), 7.40 

(ddd, 1H, H5), 3.90 (s, 3H, CH3) ppm. 

3-hydroxypyridine 

 

Figure 103: Molecular structure and numbering of the substrate molecule 3-hydroxypyridine. 
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1H NMR: (600 MHz, CD3OD): δ = 8.10 (dd, 1H, H2), 8.02 (dd, 1H, H6), 7.29 (ddd, 1H, H4), 7.26 

(ddd, 1H, H5) ppm. 

3,5-dichloropyridine 

 

Figure 104: Molecular structure and numbering of the substrate molecule 3,5-dichloropyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.54 (s, 2H, H2/H6), 8.05 (s, 1H, H4) ppm. 

3,5-dibromopyridine 

 

Figure 105: Molecular structure and numbering of the substrate molecule 3,5-dibromopyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.66 (d, 2H, H2/H6), 8.32 (t, 1H, H4) ppm. 

3,5-dimethylpyridine 

 

Figure 106: Molecular structure and numbering of the substrate molecule 3,5-dimethylpyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.19 (m, 2H, H2/H6), 7.54 (m, 1H, H4), 2.34 (d, 6H, CH3) 

ppm. 

3,4-dimethylpyridine 

 

Figure 107: Molecular structure and numbering of the substrate molecule 3,4-dimethylpyridine. 

1H NMR: (600 MHz, CD3OD): δ = 8.26 (s, 1H, H2), 8.22 (d, 1H, H6), 2.35 (d, 3H, 3-CH3), 2.31 (s, 

3H, 4-CH3) ppm. 
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pyridazine 

 

Figure 108: Molecular structure and numbering of the substrate molecule pyridazine. 

1H NMR: (600 MHz, CD3OD): δ = 9.22 (t, 2H, H3/H6), 7.77 (t, 2H, H4/H5) ppm. 

quinoline 

 

Figure 109: Molecular structure and numbering of the substrate molecule quinoline. 

1H NMR: (600 MHz, CD3OD): δ = 8.88 (dd, 1H, H2), 8.41 (d, 1H, H8), 8.06 (d, 1H, H4), 7.99 (d, 

1H, H5), 7.82 (ddd, 1H, H7), 7.66 (ddd, 1H, H6), 7.58 (dd, 1H, H3) ppm. 

4-bromo-2,8-di(trifluoromethyl)quinoline 

 

Figure 110: Molecular structure and numbering of the substrate molecule 4-bromo-2,8-di(trifluoromethyl)-
quinoline. 

1H NMR: (600 MHz, CD3OD): δ = 8.64 (d, 1H, H5), 8.40 (s, 1H, H3), 8.38 (d, 1H, H7), 8.00 (t, 

1H, H6) ppm. 

dibenzothiophene 

 

Figure 111: Molecular structure and numbering of the substrate molecule dibenzothiophene. 

1H NMR: (600 MHz, CD3OD): δ = 8.26 (m, 2H, H1/H9), 7.90 (m, 2H, H4/H6), 7.49 (m, 4H, 

H2/H3/H7/H8) ppm.  
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4.2 Chemical Synthesis 

4.2.1 Materials 

All solvents were purchased from Merck, Fluka and Acros in pro analysis quality. Chemicals 

were obtained from Sigma Aldrich, Merck, TCI, Alfa Aesar and Acros and used without 

further purification. Selected reactions were performed under an argon atmosphere to 

protect sensitive compounds from exposure to oxygen or moisture. 

4.2.2 Chromatography 

Liquid phase column chromatography was performed for purification using Merck silica gel 

60 with particle sizes of either 15-40 or 63-100 µm. Crude products were applied as 

concentrated solutions to the columns holding a 50 to 100-fold excess of silica. Thin layer 

chromatography for reaction control was performed using Alugram® SIL G/UV 254 plates 

from Macherey-Nagel with iodine or phosphomolybdic solution in ethanol (10%) as optional 

dyes. 

4.2.3 NMR Spectroscopy 

Synthesized compounds were analyzed using a Bruker Avance I Ultrashielded spectrometer 

(400 MHz) at 298 K. NMR solvents were purchased from Deutero GmbH with degrees of 

deuteration of at least 99.8% and are indicated in the synthesis protocols. Chemical shifts δ 

are referenced to residual solvent signals of chloroform (δ = 7.26 ppm for 1H, δ = 77.0 ppm 

for 13C) or dimethyl sulfoxide (δ = 2.50 ppm for 1H, δ = 39.5 for 13C) and given in parts per 

million (ppm). Multiplicities are denoted as s = singlet, d = doublet, t = triplet, m = multiplet 

and br = broadened. Scalar coupling constants J are given in Hz and intensities as the relative 

number of nuclei. 

4.2.4 Mass Spectrometry 

Mass analysis was performed on highly diluted solutions in acetonitrile using a Waters 

Micromass ZQ electron spray ionization mass spectrometer with a quadrupole detector or 

Thermo DSQII/Focus GC. Results are given in mass per charge (m/z).  
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4.2.5 Experimental Details 

Only those reactions that were performed by the author, generated positive results and are 

not mere reproductions of previously published results are presented in this section. 

4.2.5.1 [(1-2-η:5-6-η)-cycloocta-1,5-diene]di(pyridine-d5)-iridium(I) 

tetrafluoroborate 

 

To a solution of bis(1,5-cyclooctadiene)diiridium(I) dichloride (1.00 g, 1.49 mmol, 1.00 eq) 25 

in ethanol (200 mL) were added pyridine-d5 (2.40 mL, 29.60 mmol, 20.00 eq) and a 1 M 

aqueous solution of sodium tetrafluoroborate (50 mL, 50 mmol, 33.56 eq) under an argon 

atmosphere. 

The organic solvent was removed under reduced pressure and the precipitate filtered off. 

The solid was washed with a saturated aqueous solution of sodium tetrafluoroborate and 

dried under reduced pressure to afford product 26 (1.49 g, 2.68 mmol, 90%) as a bright 

yellow solid. 

1H NMR: (400 MHz, CDCl3): δ = 3.87 – 3.80 (m, 4H, COD-CH), 2.54 – 2.41 (m, 4H, COD-CH2), 

1.88 – 1.77 (m, 4H, COD-CH2) ppm. 
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4.2.5.2 Tris(cyclohexyl-d11)phosphane[(1-2-η:5-6-η)-cycloocta-1,5-

diene](pyridine-d5)-iridium(I) tetrafluoroborate 

 

A solution of Tri(cyclohexyl-d11)-phosphane 24 (200.70 mg, 0.64 mmol, 1.40 eq) and [(1-2-

η:5-6-η)-cycloocta-1,5-diene]di(pyridine-d5)-iridium(I) tetrafluoroborate 26 (250 mg, 

0.45 mmol, 1.00 eq) in tetrahydrofuran (3 mL) was stirred at room temperature for 0.5 h. 

The precipitate was filtered off and dissolved in dichloromethane (5 mL). Diethyl ether (6 

mL) was added and the solvent slowly evaporated under an argon stream. The precipitate 

was filtered off and dried under reduced pressure to afford product 22 (283 mg, 0.36 mmol, 

81%) as an orange solid. 

1H NMR: (400 MHz, CDCl3): δ = 4.08 – 3.99 (m, 4H, COD-CH), 2.45 – 2.22 (m, 4H, COD-CH2), 

1.78 – 1.65 (m, 4H, COD-CH2) ppm. 
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4.2.5.3 N,N-dibenzyl-(4-bromo-2,6-dimethylanilin) 

 

Benzyl bromide (1.80 mL, 15.0 mmol, 3.00 eq) and ethyldiisopropylamine (2.61 mL, 15.0 

mmol, 3.00 eq) were added to a solution of 4-bromo-2,6-dimethylanilin (1.01 g, 5 mmol, 

1.00 eq) in DMF (8 mL). The reaction mixture was heated to reflux for 4 h. 

The solvent was removed under reduced pressure and the residue was taken up in H2O 

(10 mL). The aqueous solution was extracted with ethyl acetate and the organic phase dried 

over Na2SO4. The crude product was purified by chromatography on silica using 

dichloromethane to yield product 3 (1.88 g, 4.94 mmol, 99%) as a colorless oil. 

1H NMR: (400 MHz, CDCl3): δ = 7.31-7.23 (m, 6H, Ph), 7.22-7.17 (m, 4H, Ph), 7.19 (s, 2H, Ph), 

4.07 (s, 4H, CH2), 2.11 (s, 6H, CH3) ppm. 

ESI-MS m/z: (acetonitrile, positive mode): calc. for C22H23BrN [M+H]+: 380.10; found 380.07, 

382.07. 

  



4.2 Chemical Synthesis Materials and Methods 
 

 
109 

4.2.5.4 4-(N,N-dibenzylamino)-3,5-dimethylphenylboronic acid 

 

A 2.5 M n-butyllithium solution in hexane (1.41 mL, 3.53 mmol, 1.13 eq) was added dropwise 

to a solution of N,N-dibenzyl-(4-bromo-2,6-dimethylanilin) 3 (1.19 g, 3.13 mmol, 1.00 eq) in 

dry tetrahydrofuran  (6 mL) under an argon atmosphere at -78 °C. The solution was stirred 

for 2 h and trimethyl borate (1.04 mL, 9.25 mmol, 2.96 eq) was added. The reaction mixture 

was allowed to warm to room temperature overnight and the reaction was quenched by 

addition of 1 N hydrochloric acid (15 mL). 

The solution was extracted using diethyl ether and dried over sodium sulfate. The solvent 

was evaporated under reduced pressure and the crude product washed with petroleum 

ether to give product 4 (754 mg, 2.18 mmol, 70%) as a blunt, white solid. 

1H NMR: (400 MHz, DMSO): δ = 7.81 (s, 2H, OH), 7.38-7.15 (m, 12H, Ph), 4.07 (s, 4H CH2), 

2.12 (s, 6H, CH3) ppm. 
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4.2.5.5 Methyl 4-(4’-(N,N-dibenzylamino)-3’,5’-dimethylphenylmethyl)benzoate 

 

To a solution of 4-(N,N-dibenzylamino)-3,5-dimethylphenylboronic acid 4 (3.53 g, 10.2 mmol, 

1 eq) in tetrahydrofuran (60 mL) were added methyl 4-bromomethylbenzoate (2.23 g, 

9.74 mmol, 0.95 eq), 1.2 M aqueous sodium carbonate solution (15.8 mL, 19.0 mmol, 

1.86 eq) and Tetrakis(triphenylphosphane)palladium(0) (106 mg, 0.09 mmol, 0.90 mol%) 

under an argon atmosphere. The reaction was heated to reflux for 3 h and stirred at 0 °C for 

0.5 h. 

The organic phase was separated and filtered through Celite. The solvent was removed 

under reduced pressure and the crude product purified by chromatography on silica using 

hexane/ethyl acetate (95:5) to afford product 5 (3.30 g, 7.34 mmol, 75%) as a colorless oil. 

1H NMR: (400 MHz, CDCl3): δ = 7.98 (dt, 2H, Ph-COOMe), 7.33-7.12 (m, 12H, Ph), 6.78 (s, 2H, 

Me2-Ph), 4.09 (s, 4H, N-CH2), 3.92 (s, 2H, Ph-CH2-Ph), 3.91 (s, 3H, COOMe), 2.13 (s, 6H, Ph-

Me) ppm. 

ESI-MS m/z: (acetonitrile, positive mode): calc. for C31H32BrN [M+H]+: 450.24; found 450.30. 
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4.2.5.6 Methyl 4-(4’-amino-3’,5’-dimethylphenylmethyl)benzoate 

 

Methyl 4-(4’-(N,N-dibenzylamino)-3’,5’-dimethylphenylmethyl)benzoate 5 (3.30 g, 

7.34 mmol, 1 eq) and 10 wt.% palladium supported on carbon (500 mg, 0.47 mmol, 6.40 

mol%) were suspended in methanol/ethyl acetate (1:1) (150 mL) under an argon 

atmosphere. Hydrogen gas was passed into the solution for 4 h under stirring. 

The reaction mixture was filtered through Celite and the solvent removed under reduced 

pressure to afford product 6 (1.96 g, 7.26 mmol, 99%) as an off-white solid. 

1H NMR: (400 MHz, CDCl3): δ = 7.97 (d, J = 8.0 Hz, 2H, Ph-COOMe), 7.27 (d, J = 8.0 Hz, 2H, Ph-

CH2-Ph), 6.78 (s, 2H, Ph), 3.91 (s, 3H, COOMe), 3.90 (s, 2H, CH2), 3.41 (sbr, 2H, NH2), 2.16 (s, 

6H, Ph-Me) ppm. 

ESI-MS m/z: (acetonitrile, positive mode): calc. for C17H20NO2 [M+H]+: 270.15; found 270.20. 
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4.2.5.7 N-(2,4,6-trimethylphenyl)-N’-(4-(4-(methylcarboxy)phenylmethyl)-2,6-

dimethylphenyl)formamidine 

 

A mixture of methyl 4-(4’-amino-3’,5’-dimethylphenylmethyl)benzoate 6 (1.30 g, 4.86 mmol, 

1.00 eq), triethyl orthoformate (0.68 mL, 4.68 mmol, 1.00 eq) and acetic acid (15.0 µL, 

0.26 mmol, 0.05 eq) was heated to 140 °C for 2 h. 2,4,6-Trimethylanilin  (0.72 g, 4.86 mmol, 

1.00 eq) was added and the reaction mixture stirred at 140 °C overnight. 

The solidified mixture was triturated using hexane and filtered. The crude product was 

purified by chromatography on silica using hexane/dichloromethane/triethylamine (8:1:1) to 

afford product 7 (1.20 g, 2.90 mmol, 60%) as a white solid. 

1H NMR: (400 MHz, DMSO): δ = 8.06 (sbr, 1H, NH), 7.87 (d, 2H, Ph-H), 7.36 (dbr, 2H, Ph-H), 

6.99-6.64 (m, 4H, Ph-H), 3.87 (sbr, 2H, Ph-CH2-Ph), 3.80 (s, 3H, COOMe), 2.40-1.80 (m, 15H, 

CH3) ppm. 

ESI-MS m/z: (acetonitrile, positive mode): calc. for C27H31N2O2 [M+H]+: 415.24; found 415.30. 
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4.2.5.8 1-(2,4,6-trimethylphenyl)-3-(4-(4-(methylcarboxy)phenylmethyl)-2,6-

dimethylphenyl)-4-hydroxy-4,5-dihydroimidazolium chloride 

 

To a solution of N-(2,4,6-trimethylphenyl)-N’-(4-(4-(methylcarboxy)phenylmethyl)-2,6-

dimethylphenyl)formamidine 7 (100 mg, 0.24 mmol, 1.00 eq) were added 

chloroacetaldehyde (160 µL, 0.96 mmol, 4.00 eq) and ethyldiisopropylamine (95.0 µL, 

0.56 mmol, 2.33 eq) and the resulting mixture was stirred at 120 °C for 0.5 h. 

The solvent was removed under reduced pressure and the crude product purified by 

chromatography on silica using dichloromethane/methanol (20:1) to afford product 8 

(65.1 mg, 0.13 mmol, 55%) as a white solid. 

1H NMR: (400 MHz, MeOD): δ = 8.55 (s, 1H, N-CH=N), 7.92 (m, 2H, Ph-H), 7.40-6.74 (m, 6H, 

Ph-H), 5.49 (2H, Ph-CH2-Ph), 4.58 (dbr, 1H, N-CH2), 4.34 (m, 1H, CH-OH), 4.03 (dbr, 1H. N-CH2), 

3.88 (m, 3H, COOMe), 2.49-1.93 (m, 15H, Ph-Me) ppm. 

ESI-MS m/z: (acetonitrile, positive mode): calc. for C29H33N2O3 [M]+: 457.25; found 457.30. 
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4.2.5.9 [4-(Bromomethyl)phenoxymethyl]polystyrene 

 

To a suspension of [4-(Hydroxymethyl)phenoxymethyl]polystyrene 13 (1.00 g, 0.5 – 1.2 

mmol OH functionality, 1.00 eq) in tetrahydrofuran (40 mL) at -20 °C phosphorus tribromide 

(0.15 mL, 1.60 mmol, 1.33 - 3.20 eq) was added and the reaction mixture was shaken for 

12 h. 

The solid particles were filtered, washed with aq. NaHCO3 and continuously extracted with 

diethyl ether for 48 h. The polymer beads were dried under removed pressure to afford 

functionalized polymer 14 as an off-yellow solid. 

1H NMR*: (400 MHz, CD2Cl2): δ = 4.56 (sbr, 2H, CH2Br) ppm. 

*Note: Due to the polymeric nature of the carrier compound, all resonances appear severely 

broadened and some are buried under the polymer resonance, so that not all resonances 

could be deconvoluted and assigned. 
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4.2.5.10 [4-(((2,4,6-trimethylphenyl)imidazoline)methyl)phenoxymethyl]-

polystyrene bromide 

 

[4-(Bromomethyl)phenoxymethyl]polystyrene 14 (1.00 g, 0.50 – 1.20 mmol Br functionality, 

1.00 eq) and 1-mesityl-1H-imidazole (280 mg, 1.5 mmol, 1.25 – 3.00 eq) were placed in a 

round-bottom flask under an argon atmosphere. Dry dimethylformamide (30 mL) was added 

and the reaction mixture shaken at 80 °C for 16 h. 

The solid particles were filtered, washed with diethyl ether and continuously extracted with 

methanol for 48 h. The polymer beads were dried under removed pressure to afford 

functionalized polymer 16 as a brownish solid. 

1H NMR*: (400 MHz, CD2Cl2): δ = 7.42-6.78 (mbr, 6H, Ph-H) 2.37 (sbr, 3H, p-mesityl-Me), 2.09 

(sbr, 6H, o-mesityl-Me) ppm. 

*Note: Due to the polymeric nature of the carrier compound, all resonances appear severely 

broadened and some are buried under the polymer backbone resonance, so that not all 

resonances could be deconvoluted and assigned. 
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Ac   Acetyl 

ALTADENA  Adiabatic longitudinal transfer after dissociation engenders nuclear 

alignment 

bipy   2,2’-Bipyridine 

Bu   Butyl 

Bz   Benzyl 

cat   catalytic 

COD   Cyclooctadiene 
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CW   Continuous wave 

Cy   Cyclohexyl 

DC   Direct current 

DIPEA   Diisopropylethylamine 

DFT   Density functional theory 
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NHC   N-heterocyclic carbene 
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NMR   Nuclear magnetic resonance 

OPSY   Only para-hydrogen spectroscopy 

PAAP   π-accepting ability parameter 

PASADENA  Parahydrogen and synthesis allow dramatically enhanced nuclear 

alignment 
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PHIP   Parahydrogen-induced polarization 

PMAA   Poly(methacrylic acid) 

Pr   Propyl 
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transfer to heteronuclei 

SEOP   Spin-exchange optical pumping 

SIMes   1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene 

SNR   Signal-to-noise ratio 
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9 Pulse Programs 

9.1 zg.ebdu_trigin 

 

;zgpr.eth                

 

; 1D sequence with presaturation 

; modified  gsw0203 

 

;d1    : relaxation delay and water suppression 

;pl1   : power for 1H 

;p21   : 1 ms (Gradient before acquisition) 

;gpz1  : 50 % 

;pl9   : power level for presaturation 

;p1    : 90 degree hard pulse 1H 

 

#include <Avance_dl.incl> 

 

 

1 ze 

2 10u pl9:f1 

; 10u LOCKH_OFF 

  d1 cw:f1 

  10u do:f1 

  10u pl1:f1 

; 10u LOCKH_ON 

; p21:gp1 

; 10m 

  trigpl1 

  d7  

  (p1 ph1):f1 

  go=2 ph0 

  wr #0 

; 10u LOCKH_OFF 

exit 

 

ph1=0 1 2 3 

ph0=0 1 2 3 

 

ph20=0 

ph21=1 

ph22=2 

ph23=3 

 

;##/($P[1],$PL[1])=&SetPulse(f1,HP,90); 
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9.2 ph_zg_noload_noempty 

 
;ph_zg_v3_Noload_noempty 

;zg for use with parahydrogen polariser version v3 

; JMT 12 august 2011 

 

#include <Avance.incl> 

#include <Polariser.incl> 

 

define delay Time_IJP 

"Time_IJP=d40" 

define delay Time_BH2 

"Time_BH2=d41" 

define delay Time_EJP 

"Time_EJP=d42" 

define delay Time_IJS 

"Time_IJS=d43" 

define delay Time_EJS 

"Time_EJS=d44" 

define delay RD_time 

"RD_time=d45-(d1+d40+d41+d42+d43+d44+aq)" 

 

1 ze 

  ;1u 

  ;subr IPSO_CMD()  ;set to ipso mode 

  ;1u 

  ;subr INJECT_POLARISER()  ;transfer sample from vials to polariser. 

  ;Time_IJP   ;delay for the loading sample from Vials 

 

  subr IPSO_CMD()  ;force to ipso mode 

  F__IN_MIX_CHAMBER   ;Sample is in the polariser  

 

2 1u 

  RD_time    ;recovery time 

  subr BUBBLE_H2()   ;bubble H2 para in the sample. 

  Time_BH2    ;duration of the bubble 

  subr STOP_EVEN()  ;stop of bubble 

 

subr INJECT_PROBE() ;transfer sample from polariser to probe. 

  Time_IJP    ;delay for loading sample from polariser. 

 

3 d1 

  p0 ph1 

  go=3 ph31 

  30m wr #0 

   

  subr EJECT_PROBE()   ;transfer sample from probe to polariser. 

  Time_EJP    ;delay for the return sample from probe. 
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      lo to 2 times l0 

 ; 1u 

 ; subr EJECT_POLARISER() ;transfer sample from polariser to vials. 

 ; Time_EJP ;delay for eject the sample from 

polariser to vials. 

 ; subr MANUAL_CMD()  ;set to manual mode 

 

exit 

 

ph1=0 2 2 0 1 3 3 1 

ph31=0 2 2 0 1 3 3 1 

  

 

;d1 : relaxation delay; set to very short for hyperpolarisation 

experiments  

;ns : number of scans: set to = 1 for hyperpolarisation experiments 

;d40: delay for the loading sample from Vials 

;d41: duration of the bubble 

;d42 :delay for loading sample from polariser. 

;d43 :delay for the return sample from probe. 

;d44: delay for eject the sample from polariser to vials. 

;l0 : accumulate L0 scans; re-polarising between scans 
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