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Abstract

Automating machine learning by providing techniques that autonomously find the best algo-
rithm, hyperparameter configuration and preprocessing is helpful for both researchers and practi-
tioners. Therefore, it is not surprising that automated machine learning has become a very interesting
field of research.

Bayesian optimization has proven to be a very successful tool for automated machine learning. In
the first part of the thesis we present different approaches to improve Bayesian optimization by means
of transfer learning. We present three different ways of considering meta-knowledge in Bayesian
optimization, i.e. search space pruning, initialization and transfer surrogate models. Finally, we
present a general framework for Bayesian optimization combined with meta-learning and conduct a
comparison among existing work on two different meta-data sets. A conclusion is that in particular
the meta-target driven approaches provide better results. Choosing algorithm configurations based
on the improvement on the meta-knowledge combined with the expected improvement yields best
results.

The second part of this thesis is more application-oriented. Bayesian optimization is applied
to large data sets and used as a tool to participate in machine learning challenges. We compare its
autonomous performance and its performance in combination with a human expert. At two ECML-
PKDD Discovery Challenges, we are able to show that automated machine learning outperforms
human machine learning experts.

Finally, we present an approach that automates the process of creating an ensemble of several
layers, different algorithms and hyperparameter configurations. These kinds of ensembles are jok-
ingly called Frankenstein ensembles and proved their benefit on versatile data sets in many machine
learning challenges. We compare our approach Automatic Frankensteining with the current state of
the art for automated machine learning on  different data sets and can show that it outperforms
them on the majority using the same training time. Furthermore, we compare Automatic Franken-
steining on a large-scale data set to more than , machine learning expert teams and are able to
outperform more than , of them within  CPU hours.
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Zusammenfassung

Die Automatisierung des Maschinellen Lernens erlaubt es ohne menschliche Mitwirkung den
besten Algorithmus, die dazugehörige beste Konfiguration und die optimale Vorverarbeitung des
Datensatzes zu bestimmen und ist daher hilfreich für Anwender mit und ohne fachlichen Hinter-
grund. Aus diesem Grund ist es wenig überraschend, dass die Automatisierung des Maschinellen
Lernens zu einem populären Forschungsgebiet aufgestiegen ist.

Bayessche Optimierung hat sich als eins der erfolgreicheren Werkzeuge für das automatisierte
Maschinelle Lernen hervorgetan. Im ersten Teil dieser Arbeit werden verschiedene Methoden vorge-
stellt, die Bayessche Optimierung mittels Lerntransfer auch über Probleme hinweg verbessern kann.
Es werden drei Möglichkeiten vorgestellt, um Wissen von zuvor adressierten Problemen auf neue zu
Übertragen: Suchraumreduzierung, Initialisierung und transferierende Ersatzmodelle. Schließlich
wird ein allgemeines Framework für Bayessche Optimierung beschrieben, welches existierende Meta-
lernansätze berücksichtigt und mit schon existierenden Arbeiten auf zwei Meta-Datensätzen ver-
glichen. Die beschriebenen Ansätze, die direkt die Meta-Zielfunktion optimieren, liefern tendenziell
bessere Ergebnisse. Die Wahl der Algorithmuskonfiguration basierend auf Meta-Wissen kombiniert
mit der zu erwartenen Verbesserung erweist sich als beste Methode.

Der zweite Teil der Arbeit ist anwendungsorientierter. Bayessche Optimierung wird im Rahmen
von Wettbewerben auf großen Datensätzen angewandt, um Algorithmen des Maschinellen Lernens
zu optimieren. Es wird sowohl die eigenständige Leistung der automatisierten Methode als auch
die Leistung in Kombination mit einem menschlichen Experten bewertet. Durch die Teilnahme
an zwei ECML-PKDD Wettbewerben wird gezeigt, dass das automatisierte Verfahren menschliche
Konkurrenten übertreffen kann.

Abschließend wird eine Methode vorgestellt, die automatisch ein mehrschichtiges Ensemble er-
stellt, welches aus verschiedenen Algorithmen und entsprechenden Konfigurationen besteht . In der
Vergangenheit hat sich gezeigt, dass diese Art von Ensemble die besten Vorhersagen liefern kann.
Die beschriebende Methode zur automatisierten Erstellung dieser Ensemble wird mit Hilfe von
 Datensätzen mit existierenden Konkurrenzansätzen verglichen und erreicht innerhalb derselben
Zeit auf der Mehrzahl der Datensätze bessere Ergebnisse. Diese Methode wird zusätzlich mit .
Teams von Experten des Maschinellen Lernens auf einem größeren Datensatz verglichen. Es zeigt
sich, dass die automatisierte Methodik schon innerhalb von  CPU Stunden bessere Ergebnisse
liefert als . der menschlichen Teilnehmer des Wettbewerbs.
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Introduction and Basics







1
Introduction

Algorithm selection and hyperparameter optimization are omnipresent problems for researchers and
practitioners. The selection of an algorithm for a specific problem and furthermore the respective
hyperparameter configuration has a crucial impact on the quality of the final predictions. Algorithm
selection is a well-studied problem that is not limited to machine learning but also finds application
in artificial intelligence and operations research. The most conventional method for selecting the
algorithm is usually based on the practitioner’s past experience. The hyperparameters are then usually
tuned using a combination of manual search and grid or random search. This has two drawbacks.
First, inexperienced researchers will have difficulties in choosing the right combination of algorithm
and hyperparameter configuration. Second, finding the best hyperparameter configuration by using
a grid search will be a time-consuming task. For larger data sets and more advanced algorithms, only
few hyperparameter evaluations are feasible with respect to the whole search space.

Recent research proposes automatic algorithm selection and hyperparameter optimization as a
solution for these problems. There are methods that need less computational time than manual
or grid search and additionally find better hyperparameter configurations than human domain ex-
perts,. Recently, a program for combined algorithm selection and hyperparameter optimization
was published for the well-known data mining tool Weka. The current direction of research
tries to mimic the optimization behavior of human experts. The information of past optimization
processes is transferred to current optimization processes. This is done either by initializing the opti-
mization process with configurations that performed well on previous experiments, or by using
specific machine learning models that predict the performance of an algorithm and hyperparameter





configuration on the current problem based on previous results,,,.

. Overview

This thesis focuses on improving the current state of the art in algorithm selection and hyperparam-
eter optimization. The problem is formally defined in Chapter  and the current state of the art
is discussed. Chapter  is used to explain how we created the meta-data sets and the experimental
setup. In the chapters  to  we present different approaches that accelerate the search by means
of meta-knowledge. In the final chapters  and  we compare the state of the art against human
machine learning experts. We discuss our results in the ECML-PKDD  challenges and how to
create complex ensemble methods autonomously.

. Main Contributions

In this thesis we present different techniques that simulate the human behavior of hyperparameter
optimization. In the following, we give an overview of these techniques.

.. Hyperparameter Search Space Pruning

Pruning techniques are a typical way of accelerating searches in general. However, pruning has not
been applied to hyperparameter optimization yet. In Chapter  we propose to discard regions of
the search space that are unlikely to contain better hyperparameter configurations. We do so by
transferring knowledge from past experiments on other data sets as well as taking into account the
evaluations already done on the current data set.

.. Two-Stage Transfer Surrogate Model

Bayesian optimization is a global optimization method that has been proposed for automated ma-
chine learning. One of the typical ideas of using knowledge about various problems in Bayesian
optimization is the use of transfer surrogate models. Surrogate models are able to predict the loss for
each configuration and are employed to select interesting configurations for evaluation. We propose
a specific transfer surrogate model in Chapter . This surrogate consists of two stages. On the first
stage, several Gaussian processes are created that reconstruct the response function for each data set.
On the second stage, this meta-knowledge is combined based on the similarity between each data set
to the new data set. We compare it to the state of the art and show that it provides very competitive
results and easily scales to large meta-data sets.





.. Meta-Target Driven Optimization

Traditional machine learning methods such as regression or classification have natural evaluation
measures such as the squared error or the classification error. A machine learning model is typically
trained by minimizing a loss function which is directly derived from the given evaluation measure.
The Bayesian optimization methods for hyperparameter optimization as proposed so far do not
follow this principled way of minimizing the loss of interest. During my studies I developed different
ways of finding this principled way.

In Chapter  we present the very first idea of optimizing directly for the evaluation measure.
We propose to choose hyperparameter configurations based on a cost function that depends on the
performance of the respective configuration on other problems. The evaluations on the new data
set are only taken into account to predict the similarity between the current and former problems.
This simple idea is the first step into the right direction but provides some disadvantages. Its biggest
disadvantage is that the configuration candidates are limited to those used in the meta-data.

We get rid of this restriction in Chapter . We formalize a meta-loss for hyperparameter optimiza-
tion. This loss is used to compute a meta-initialization for hyperparameter optimization methods
which determines which configurations are tried first.

Our final contribution in this direction is presented in Chapter . The meta-loss defined in
Chapter  is used directly within the hyperparameter configuration acquisition procedure. Thus,
we achieve an effect that can be considered as a soft meta-initialization. But in comparison to a
meta-initialization, the meta-knowledge about previous data sets and the new data set is considered
for each hyperparameter configuration choice. The impact of the meta-knowledge about previous
data sets vanishes over time since this knowledge has been exploited and only the knowledge from
the new data set is used. This is an intended result that all transfer surrogates fail to achieve because
they consider meta-knowledge equally, independent on the progress of the optimization process.

.. Applications

In most of our results we restrict ourselves to lab experiments. However, in Chapter  and  we
conduct experiments on large data sets and compare to human expert performance.

We first explain a very elegant way of using Bayesian optimization in distributed systems with
remote method invocation (RMI) in Chapter . Our implemented system is finally evaluated in
the participation in two ECML-PKDD Discovery Challenges (European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery). In the Bank Card Usage Prediction
Challenge, we combined Bayesian optimization with human interaction and achieved the first place.
In the Network Traffic Classification Challenge, we participated without human interaction, letting





Bayesian optimization do the job for us and placed third, outperforming many human competitors.
In Chapter  we describe a way of creating complex ensembles autonomously by using Bayesian

optimization as the core optimization method. We compare our performance to the state of the
art in automated machine learning on  UCI data sets and compare to more than , human
machine learning experts by participating in one Kaggle challenge. In an extensive evaluation we
can show that we outperform the state of the art in automated machine learning and most human
machine learning experts.

. Published Works

The different chapters are mostly based on published peer-reviewed work,,,,,,.

Chapter  Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (). Sequential model-free hy-
perparameter tuning. In  IEEE International Conference on Data Mining, ICDM , Atlantic
City, NJ, USA, November -,  (pp. -).

Chapter  Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (). Hyperparameter search
space pruning - A new component for sequential model-based hyperparameter optimization. In
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML-PKDD ,
Porto, Portugal, September -, , Proceedings, Part II (pp. -).

Chapter  Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (). Learning hyperparameter
optimization initializations. In  IEEE International Conference on Data Science and Advanced
Analytics, DSAA , Campus des Cordeliers, Paris, France, October -,  (pp. -).

Chapter  Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (). Two-stage transfer surro-
gate model for automatic hyperparameter optimization. InMachine Learning and Knowledge Discov-
ery in Databases - European Conference, ECML-PKDD , Riva del Garda, Italy, September -,
, Proceedings, Part I (pp. -).

Chapter  Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (). Hyperparameter opti-
mization machines. In  IEEE International Conference on Data Science and Advanced Analytics,
DSAA , Montreal, QC, Canada, October -,  (pp. -).
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Conference on Data Mining, SDM , Houston, Texas, USA, April -, .









2
Problem Definition & Related Work

In this chapter, we formally define the problem addressed in this thesis and the notation used. We
review how configurations of algorithms are typically optimized in machine learning and recent
progresses achieved with Bayesian optimization.

. Problem Definition

When tackling a machine learning problem, let us say classification, a machine learning expert has
to make many decisions. One aspect of her decision process is the selection of the algorithm and its
parameters. Unfortunately, most algorithms have many parameters that need to be defined by the
machine learning expert before training the classifier. To distinguish them from model parameters,
which are estimated during the learning procedure, we call them hyperparameters. Most hyperpa-
rameters define the model complexity (e.g. number of nodes in a neural network, depth of a tree,
regularization parameters) or have influence on the learning procedure (e.g. learning rate, momen-
tum, number of iterations). These specific parameters have high impact on how good an algorithm
performs. Hence, the algorithm and its hyperparameter need to be chosen in combination. This
thesis will present methods that can autonomously find the right combination of algorithm and its
configuration.

In the following, we formally define the problem of configuration optimization and the notation
used throughout the thesis. For notational convenience we assume that there is only one possible
learning task applicable for a data set. We denote the space of all data sets as D and the space of all





models asM. X is the space of all configurations. Then, we define a general learning algorithm A
as a mapping

A : D ×X →M . (.)

The configuration x ∈ X encodes the configuration, i.e. it defines which machine learning algo-
rithm and the hyperparameter configuration is selected. Further properties that might be included
in X are preprocessing, feature selection or feature engineering.

Given a data set D ∈ D, which is partitioned into Dtrain and Dvalid, and a configuration x ∈
X , the general learning algorithm A estimates a prediction model M ∈ M (x). This model is
estimated by minimizing a loss function L (e.g. residual sum of squares) which is penalized with a
regularization term R (e.g. Tikhonov regularization) with respect to the training data Dtrain. That
is,

A (D, x) = arg min
M∈M(x)

L (M,Dtrain) +R (M) . (.)

The task in this thesis is to find the configuration x∗ that leads to a prediction model which minimizes
the loss on the validation partition Dvalid. Formally,

x∗ = arg min
x∈X

L (A (Dtrain, x) ,Dvalid) = arg min
x∈X

fD (x) . (.)

The function fD : X → R with

fD (x) = L (A (Dtrain, x) ,Dvalid) (.)

is the response function of data set D. In many applications, the configuration spaceX equals the hy-
perparameter space of a single algorithm and hence, we call this task also hyperparameter optimization
and the configurations hyperparameter configurations.

For the sake of demonstration, we consider the problem of optimizing the hyperparameters of
classifiers in this thesis. Thus, the response function fD maps a configuration to the classification
error. This is no limitation, but shall help the reader to understand the concepts.

. Standard Techniques for Configuration Optimization

Evaluating the response function fD at a single point involves training a machine learning model
which is a time-consuming task. Hence, the minimization of fD cannot be achieved with standard
optimization techniques. A very common technique is grid search. Given the configuration space,

X = X × . . .×XP , (.)
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Figure 2.1: Random search works better than grid search for problemswith low effective configuration dimensionality.

a set of ki values is chosen for each dimension.

Gi = {x, . . . , xki} , x, . . . , xki ∈ Xi (.)

Then, all configurations in
G = G × . . .× GP (.)

are evaluated and the best performing is selected.

An alternative to grid search is random search. Similarly to grid search, the upper and lower
bounds per dimension need to be defined. Then, configurations x are sampled uniformly at random
according to

xi ∼ U
(
bmin
i , bmax

i
)

, (.)

where bmin
i and bmax

i are the lower and upper bound in the i-th dimension, respectively. This method
works well, in particular if the algorithm has a low effective configuration dimensionality. The reason
for this is that in many problems some dimensions are insensitive to changes.

It try to explain this at the example given in Figure .. It shows a two-dimensional response
function where only one dimension is sensitive to changes. Thus, the effective dimensionality is just
one. Applying a grid search will lead to many redundant function evaluations. In fact, only four
different values of the sensitive parameter are tested. Otherwise, random search efficiently uses every
evaluation and tests sixteen different values of the sensitive parameter.





. Bayesian Optimization

Both, grid and random search, are stateless optimization techniques which do not take previous
evaluations of f into account. Bayesian optimization can be used to overcome this disadvantage.
Considering the choice of algorithm configurations as a black-box global optimization problem

as defined in Equation ., Bayesian optimization can be used for finding optimal configurations
automatically.

Bayesian optimization consists of two components, a surrogate model and an acquisition func-
tion. We collect all evaluations of f in the observation history

H = {(x, f (x)) , (x, f (x)) , . . .} . (.)

A surrogate model provides a distribution p (f∗|x∗,H) over response function values f∗ ∈ R given
a configuration x∗ ∈ X and for a given observation history H ∈ X × R. We assume that the
predictive posterior distribution of a surrogate model is Gaussian distributed with mean mf |H and
covariance Σf |H.

p (f∗|x∗,H) = N
(
f∗|mf |H (x∗) ,Σf |H (x∗, x∗)

)
(.)

The acquisition function a evaluates configurations based on their expected utility. Given a utility
function uf, the acquisition is determined by

a (x∗, p (f∗|x∗,H)) = E
[
uf (x∗) |x∗,H

]
(.)

=

∫
uf (x∗) p (f∗|x∗,H) df∗ . (.)

The configuration with highest expected utility

x = arg max
x∗∈X

a (x∗, p (f∗|x∗,H)) (.)

is evaluated next. While the acquisition function introduces a further optimization problem, the
evaluation of a is much faster than the evaluation of f.

Algorithm  outlines Bayesian optimization for minimizing the function f and Figure . visu-
alizes the optimization process. In each iteration, f is approximated by the surrogate model using
the observation history H. The acquisition function a finds a trade-off between exploitation and
exploration and determines the next configuration x∗. This configuration x∗ is evaluated and the
new observation is added to the observation history H. After a convergence criterion is met, the
best performing configuration is returned. Possible convergence criteria are a time budget or that
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Figure 2.2: In this example, we demonstrate Bayesian optimization byminimizing the function f(x)=sin(x)+sin(x). At the

bottom the acquisition function is plotted and the cross (×) indicates its global maximum. The predictive posterior distribu-

tion is visualized by plotting themean and standard deviation. Starting with three observations (◦), the response function is

approximated. The value with highest expected utility (in this case expected improvement) is selected for the next evalua-

tion. This process is continued and as we see, we find values close to the optimum quickly.

the highest score of the acquisition function is below a threshold ε, i.e.

max
x∗∈X

a (x∗, p (f∗|x∗,H)) < ε . (.)

Different acquisition functions and surrogate models have been proposed. We will review them
in the next sections. We recommend the recent review by Shahriari et al. as an alternative source
for information about Bayesian optimization.

. Meta-Learning

A large part of this thesis is focused on accelerating Bayesian optimization by means of meta-learning.
Meta-learning dates back to the s and can be considered as an alternative to Bayesian opti-
mization because a considerable amount of work on meta-learning focuses on recommending config-
urations for algorithms. No consensus on the definition of meta-learning has been reached. Vilalta
and Drissi define meta-learning as follows:

“Meta-learning studies how learning systems can increase in efficiency through expe-
rience; the goal is to understand how learning itself can become flexible according to
the domain or task under study.”





Algorithm  Bayesian Optimization
Input: Configuration space X , observation historyH, acquisition function a.
Output: Best configuration found.

: while not converged do
: Update the surrogate model p (f∗|x∗,H).
: x∗ ← arg maxx∗∈X a (x∗, p (f∗|x∗,H))
: f∗ ← f (x∗)
: H ← H∪ {(x∗, f∗)}
: if f∗ < f min then
: xmin, f min ← x∗, f∗
: end if
: end while

: return xmin

A similar definition is given by Brazdil et al.:

“Meta-learning is the study of principled methods that exploit meta-knowledge to
obtain efficient models and solutions by adapting machine learning and data mining
processes.”

The idea of meta-learning for configuration recommendation is based on a simple assumption.
Algorithms show similar performance for the same configuration for similar problems.

In this thesis we will combine the ideas of meta-learning with Bayesian optimization. This accel-
erates the search for good configurations. One way of doing this is by using a meta-initialization.
For example, consider configurations that have been good on similar problems will be evaluated
first. We discuss this idea in Chapter . Another idea is the use of transfer surrogate models. These
surrogate models do not only learn from observations of the response function of the current prob-
lem but learn across problems. This idea is explained in detail in Section .. Further ways of using
meta-learning are presented in the upcoming chapters.

In this thesis the term meta-knowledge is used frequently. We define it as the common knowl-
edge about response functions and data sets. This includes meta-features and response function
evaluations for different data sets. Meta-features are data set descriptors. One example is the num-
ber of instances in a data set, further examples are given in Section .. Typically, a data scientist
has applied the same algorithm for different data sets. Assuming, she gathered observations from M
many data sets, she collected the meta-knowledge

H = {(x, fD (x)) , . . . , (x, fD (xN)) , . . . , (x, fDM (x)) , . . . , (x, fDM (xNM))} . (.)





In the following, we use the prefix meta to distinguish between the different levels of machine
learning problems. The traditional machine learning problem is to learn some parameters θ on
a given data set containing instances with predictors. For the configuration optimization prob-
lem, we create meta-data sets consisting of meta-instances with meta-predictors. A meta-data set
contains meta-instances (xi, fD (xi)) where fD (xi) is the target and xi are the predictors. These
meta-predictors can be enriched by meta-features.

. Acquisition Functions

As discussed earlier, finding optimal configurations for machine learning algorithms can be consid-
ered a global optimization of a function f where f is an expensive black-box function. Given a
set of observations H, a surrogate model can be computed that provides a distribution over f. The
important question is now, how to decide which point of the function to evaluate next. This is done
by the acquisition function a that scores for every point how desirable its evaluation for our mini-
mization problem is. Hence, another optimization problem, the maximization of a, is introduced.
Fortunately, the function a is much cheaper to evaluate than f.

Many different acquisition functions have been proposed to evaluate the expected value of f for a
specific argument. Acquisition functions can be categorized into three different classes. Improvement-
based policies such as probability of improvement and expected improvement consider the cur-
rently best observation in their decision. Information-based policies aim at reducing the entropy of
the posterior distribution around the optimal value

xmin = arg min
x∈X

f (x) . (.)

Examples are Thompson sampling and entropy search,,. The idea of optimistic policies is to
minimize the regret during Bayesian optimization. There are various representatives for these poli-
cies,,. Furthermore, a combination of different acquisition functions have been proposed.
We will review some of the more prominent acquisition functions in the following.

.. Probability of Improvement

Given a function f to minimize and the observation historyH = (X, f), the best value of f observed
so far is

f min = min f . (.)

The acquisition function called probability of improvement estimates the probability that the
value of f for the configuration x∗ is better than currently best value f min. Hence, it is based on a
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Figure 2.3: Different acquisition functions with different settings are compared on our previous example. All acquisition
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utility function that is  if the value of f for the configuration x∗ is better than currently best value
f min and  otherwise. Formally,

uf (x∗) =

 f (x∗) < f min

 otherwise .
(.)

As one can see, the utility function of the probability of improvement does not depend on how much
f (x∗) improves over f min. This leads to a greedy behavior which can be seen in Figure ., where we
compare this approach to other acquisition functions. Following the definition in Equation .,
probability of improvement can be derived as follows

aPI (x∗, p (f∗|x∗,H)) := E
[
uf (x∗) |x∗,H

]
(.)

=

∫
uf (x∗) p (f∗|x∗,H) df∗ (.)

=

∫ f min

−∞
N
(
f∗|mf |H (x∗) ,Σf |H (x∗, x∗)

)
df∗ (.)

= Φ
(
f min|mf |H (x∗) ,Σf |H (x∗, x∗)

)
(.)

where N (·|m, σ) and Φ(·|m, σ) denote the general normal distribution and cumulative distribu-
tion function with mean m and standard deviation σ, respectively. The predictive posterior distri-





bution of the surrogate model p (f∗|x∗,H) is defined as

p (f∗|x∗,H) = N
(
f∗|mf |H (x∗) ,Σf |H (x∗, x∗)

)
. (.)

.. Expected Improvement

The expected improvement is the most prominent choice for hyperparameter optimization. Snoek
et al. provided experiments that showed that is performing best for our task of configuration
optimization. For these two reasons we used this acquisition function in all our experiments.

The difference to the probability of improvement is small but important. Expected improvement
considers how much a configuration likely improves over the currently best solution. Formally, the
utility for a configuration x∗ ∈ X is defined as

uf (x∗) = max
{
f min − f (x∗) , 

}
. (.)

Given this utility, the expected improvement for a configuration x∗ is defined as

aEI (x∗, p (f∗|x∗,H)) := E
[
uf (x∗) |x∗,H

]
(.)

=

∫
uf (x∗) p (f∗|x∗,H) df∗ (.)

=

∫ f min

−∞

(
f min − f∗

)
N
(
f∗|mf |H (x∗) ,Σf |H (x∗, x∗)

)
df∗ (.)

=
(
f min − mf |H (x∗)

)
Φ
(
f min|mf |H (x∗) ,Σf |H (x∗, x∗)

)
+
√
Σf |H (x∗, x∗)N

(
f min|mf |H (x∗) ,Σf |H (x∗, x∗)

)
. (.)

Proof. In the following, we will prove the step from Equation (.) to Equation (.). For nota-
tional convenience, we will use µ = mf |H (x∗) and σ = Σf |H (x∗, x∗).

∫ f min

−∞

(
f min − f∗

)
N
(
f∗|µ, σ) df∗ (.)

=

∫ f min

−∞
f minN

(
f∗|µ, σ) df∗ −

∫ f min

−∞
f∗N

(
f∗|µ, σ) df∗ (.)

= f minΦ
(
f min|µ, σ)− ∫ f min

−∞
f∗

√
πσ

exp

(
−(f∗ − µ)

σ

)
df∗ . (.)





We can rewrite ∫ f min

−∞
f∗

√
πσ

exp

(
−(f∗ − µ)

σ

)
df∗ (.)

=

∫ f min

−∞
(f∗ − µ)

√
πσ

exp

(
−(f∗ − µ)

σ

)
df∗

+

∫ f min

−∞
µ

√
πσ

exp

(
−(f∗ − µ)

σ

)
df∗ (.)

=

∫ f min

−∞

(f∗ − µ)
σ

√
π

exp

(
−(f∗ − µ)

σ

)
df∗ + µΦ

(
f min|µ, σ) . (.)

Then, by substituting t = f∗−µ
σ , we derive

∫ f min

−∞

(f∗ − µ)
σ

√
π

exp

(
−(f∗ − µ)

σ

)
df∗ (.)

=
√
π

∫ f min−µ
σ

−∞
t · exp

(
− t



)
dt (.)

=


 ·
√

π

∫ f min−µ
σ

−∞
t · exp

(
− t



)
dt . (.)

Defining g (t) = e−t/ and h (t) = t, we get



√

π

∫ f min−µ
σ

−∞

(
d
dt
h (t)

)
g (h (t)) dt . (.)

Integrating by substitution, we obtain



√

π

∫ ∞(
f min−µ

σ

) g (u) du =



√

π

∫ ∞(
f min−µ

σ

) e
−u/ du (.)

=



√

π

[
−e−u/

]∞(
f min−µ

σ

) (.)

=
σ√
πσ

exp

(
−
(
f min − µ

)
σ

)
(.)

= σN
(
f min|µ, σ) . (.)





Finally, we can conclude

∫ f min

−∞

(
f min − f∗

)
N
(
f∗|µ, σ) df∗ (.)

= f minΦ
(
f min|µ, σ)− (σN (f min|µ, σ)+ µΦ

(
f min|µ, σ)) (.)

=
(
f min − µ

)
Φ
(
f min|µ, σ)− σN

(
f min|µ, σ) . (.)

The utility function in Equation (.) is called improvement and in a similar way applied by
other approaches in meta-learning. Leite et al. make use of relative landmarks which estimate the
improvement of one configuration over another based on observations on previous problems. We
employ this related improvement also in chapters  and .

.. Entropy Search

The information-based acquisition functions are inspired by techniques proposed in active learn-
ing. The idea is to maximize the information about the location at the current optimal configu-
ration

xmin = arg min
x∈X

f (x) . (.)

The utility of a configuration is measured in terms of the change of entropy for the posterior distri-
bution p

(
xmin|H

)
. Thus, the utility function is defined as

uf (x∗) = h
[
xmin|H

]
− h

[
xmin|H ∪ {(x∗, f (x∗))}

]
, (.)

where h [x] is the continuous entropy

h [x] = −
∫

p (x) ln p (x) dx . (.)

The higher the information gain after adding the observation for configuration x∗, the higher the
values of the utility function. The acquisition function is then the expected information gain when
choosing a configuration x∗:

aES (x∗) := h
[
xmin|H

]
−
∫

h
[
xmin|H ∪ {(x∗, f∗)}

]
p (f∗|x∗,H) df∗ . (.)

Computing the expected value of the continuous entropy and computing the continuous entropies
itself are intractable in practice. Hence, different approximations have been proposed,,.





.. Lower/Upper Confidence Bounds

The GP-UCB acquisition function, is based on the seminal work by Lai and Robbins on the
multi-armed bandit problem. The idea is to be very optimistic about the outcome, always ex-
pecting the best case scenario. The acquisition function was introduced for function maximization,
hence, upper confidence bounds are used

aGP-UCB (x∗, p (f∗|x∗,H)) := mf |H (x∗) + βt

√
Σf |H (x∗, x∗) , (.)

where βt is used to balance exploitation and exploration at step t. In case of function minimization,
the acquisition function can be redefined by using lower confidence bounds:

aGP-LCB (x∗, p (f∗|x∗,H)) := −mf |H (x∗) + βt

√
Σf |H (x∗, x∗) . (.)

In contrast to the previous acquisition functions, the GP-UCB/LCB acquisition function requires
the optimization of the hyperparameter βt. It has been proven that with high probability GP-UCB
has no regret for specific βt .

. Gaussian Processes

Gaussian processes are the most dominant surrogate model for Bayesian optimization and hence we
recapture its definition. For more information, we refer the interested reader to the excellent book
by Rasmussen and Williams, entitled Gaussian Processes for Machine Learning.

The regression problem is to model relationships between one dependent variable fi and multiple
independent variables xi. This relationship is assumed to be described by a latent function

f : X → R . (.)

The function f is unknown but noisy observations (xi, fi) of this functions are available. The rela-
tionship to f can be explained by decomposing it into a signal and a noise part

fi = f (xi) + e (xi) , (.)

where e is the stochastic error. In the context of machine learning, the set of pairs of observations is





also called training data.

X = (x, . . . , xN) (.)

f = (f, . . . , fN) (.)

Gaussian process models assume a Gaussian prior on f. Every observation fi is considered to be a
random variable and the joint distribution of all fi is assumed to be multivariate Gaussian distributed:

p (f |X,θ) = N (f|m (X) , k (X,X)) . (.)

A Gaussian process is completely specified by its mean function m and its covariance function k and
possibly depends on some parameters θ. In order to predict the labels f∗ for some test instances x∗,
the Gaussian process assumption is that f and f∗ are jointly Gaussian

p (f, f∗|X,X∗,θ) = N

((
f

f∗

)∣∣∣∣∣
(

m (X)

m (X∗)

)
,

(
Kn K∗

KT
∗ K∗∗

))
, (.)

where

Kn = K+ σ
nI (.)

K∗ = k (X,X∗) (.)

K∗∗ = k (X∗,X∗) (.)

for brevity. In this notation, σ
n is a noise hyperparameter added to the diagonal of the kernel matrix

K = k (X,X). The predictive posterior distribution can be obtained from the joint distribution.

p (f∗|X, f,X∗,θ) = N
(
f∗|m (X∗) + KT

∗K
− (f− m (X)) ,K∗∗ − KTK−K∗

)
(.)

From now on we assume m (x) =  to simplify the notation.

A typical covariance function used is the squared exponential kernel with automatic relevance
determination

k
(
xi, xj

)
= exp

− 


dimX∑
p=

(
xi,p − xj,p

)
σ
p

 . (.)

Kernel hyperparameters θ can be estimated and optimized by maximizing the log marginal likeli-





hood on the training data which is given by

log p (f|X,θ) = − 

fTK−

n f− 


log |Kn| −
N


log (π) . (.)

Bayesian optimization requires frequent updates of the Gaussian process. Retraining it completely
is computationally expensive and dominated by the inversion of the kernel matrix which is cubic
in the number of training instances. Using a little trick, the update can be reduced to squared run
time complexity. The kernel matrix is decomposed using the Cholesky decomposition Kn = LLT.
Then, the predicted probability distribution for a single instance x∗ is

p (f∗|x∗,X, f,θ) = N
(
f∗|kT∗α, k∗∗ − lTl

)
, (.)

with

α = LT \ (L \ f) (.)

l = L \ k∗ , (.)

where \ is the operator for solving an equation system. Since L is a triangular matrix, the equation
system can be solved in quadratic time. If now a new instance needs to be added, the triangular
matrix L can be updated by

Lnew =

(
L 
lT l∗

)
, (.)

where
l∗ =

√
k (x∗, x∗)− ∥l∥ + σ

y . (.)

Now α and l can be recomputed as described in Equation (.) and (.).

. Surrogate Models

In this section, we review the most important surrogate models for Bayesian optimization for con-
figuration optimization in machine learning. We distinguish between plain and transfer surrogate
models which we define as follows. Let Dnew be the data set for which we search for the optimal
configurations. Then, a plain surrogate model is one that considers only observations and informa-
tion of fDnew and Dnew. Otherwise, we define transfer surrogate models as those surrogate models
that use information of additional data sets besides Dnew.





.. Plain Surrogate Models

Spearmint

Snoek et al. are the first to propose the use of Bayesian optimization for hyperparameter opti-
mization in machine learning. They use a Gaussian process as a surrogate model. In their work they
investigate different aspects of Bayesian optimization with respect to hyperparameter optimization.
They compare different acquisition functions, propose a run-time-aware acquisition function and
describe how to run the optimization in parallel.

Sequential Model-based Algorithm Configuration

Hutter et al. propose the use of random forests as a surrogate model. While the original work fo-
cuses on the algorithm configuration problem for solvers of hard computational problems (Boolean
satisfiability problem (SAT) and mixed integer programming (MIP)), it is currently used in libraries
for autonomous machine learning such as auto-sklearn and Auto-WEKA.

.. Transfer Surrogate Models

Transfer surrogate models use meta-knowledge of various data sets. In practice, this usually means
nothing else but extending the observation history by adding observations from other data sets.
Assuming we have observations from M many data sets, we start Bayesian optimization with the
non-empty observation history

H = {(x, fD (x)) , . . . , (x, fD (xN)) , (x, . . . , fDM (x)) , . . . , (x, fDM (xN))} . (.)

Furthermore, various techniques of using meta-features might be considered but often they are
simply added to the meta-predictors x.

Surrogate Collaborative Tuning

Bardenet et al. are the first to propose a transfer surrogate. They show how to learn a single surrogate
model over observations from many data sets. Since the same algorithm applied to different data
sets leads to loss values that can differ significantly in scale, they recommend tackling this problem
using a ranking model instead of a regression model. They finally propose to use SVMRANK with
an RBF kernel to learn a ranking of hyperparameter configurations per data set. The ranker itself
does not provide the needed uncertainty estimations. Thus, they finally fit a Gaussian process to the
output of the ranker.





Gaussian Process with Multi-Kernel Learning

Yogatama and Mann propose to train a Gaussian process directly on the meta-data. To overcome
the problem of different scales on different data sets, they propose to standardize the loss per data set
by removing the mean and scaling to unit variance. Furthermore, they propose a linear combination
of a squared exponential kernel with automatic relevance determination (SE-ARD) for points in the
same data set and a nearest neighbor kernel for modeling similarities between data sets. They define
the kernel as

kMKL
(
(xi,Dk) ,

(
xj,Dl

))
= αI (Dk = Dl) kSE-ARD

(
xi, xj

)
+ (− α) I (Dl ∈ N (D)) kNN

(
xi, xj

)
(.)

where the SE-ARD kernel is defined as

kSE-ARD
(
xi, xj

)
= exp

− 


∑
p

(
xi,p − xj,p

)
σ
p

 (.)

and the data set similarity kernel as

kNN
(
xi, xj

)
= − 

B
∥∥xi − xj

∥∥ , (.)

where B must be chosen such that kNN is always non-negative andN (D) denotes the set of neigh-
bored data sets with respect to a distance function. The distance between two data sets is defined
as the Euclidean distance between its meta-features. Meta-features are used only to determine the
distance between data sets. They are not used within the kernels. Hence, meta-features are only
used to estimate the values of kNN.

Factorized Multilayer Perceptron

Schilling et al. propose to use a modified multilayer perceptron as a surrogate model. Meta-
instances are extended by meta-features and data set indicators. Data set indicators are nothing else
but M+  additional binary predictors, one for each data set. The indicator is  if the meta-instance
belongs to the corresponding data set,  otherwise. The modified multilayer perceptron uses a
different activation function in the first layer than the standard multilayer perceptron. Instead of
using the typical sigmoid activation function, they propose

logistic

w +
P∑
i=

wixi +
P∑
i=

P∑
j=i+

vTi vjxixj

 (.)





where logistic is the logistic function,

logistic (x) =
(
 + e−x)−

, (.)

and V ∈ RP×K are latent variables. This model is based on factorization machines which are a
prediction model for recommender systems. The underlying idea is to learn a latent representation
for each data set to model similarities between data sets. Simultaneously, Snoek et al. proposed
the use of neural networks as a plain surrogate model.

. Further Related Work

We want to briefly mention further work directly related to Bayesian optimization and other related
work for automatic hyperparameter optimization.

There are several strategies to find a set of initial configurations for hyperparameter optimization
methods. Reif et al. propose to initialize a hyperparameter search based on genetic algorithms
with the best hyperparameters on other data sets, where the similarity of data sets is defined through
meta-features. Feurer et al. propose the same idea for Bayesian optimization which was later
extended,. The drawback of these approaches are that they do not consider whether the initial
hyperparameter configurations are very close to each other and therefore may waste computation
time by choosing too similar hyperparameters initially. Thus, we propose to learn a set of initial
hyperparameter configurations by optimizing a meta-loss that maximizes the overall improvement
on the meta-data in Chapter .

The idea of using meta-knowledge in Bayesian optimization is to find better performing predic-
tion models within a smaller fraction of time. Another idea applicable to models that are learned in
an iterative fashion is to predict the learning curve, i.e. the performance of the resulting model after
a number of epochs. Domhan et al. predict the performance of the hyperparameter configuration
based on the partially observed learning curve after a few iterations. If the final performance is likely
worse than the current best configuration, the process is stopped, the configuration discarded and
they continue with another configuration. Swersky et al. propose a similar approach but they
never discard a configuration. Instead, they learn the models for various hyperparameter configu-
rations at the same time and switch from one learning process to another if it turns out to be more
promising.

There exists a plethora of methods for hyperparameter optimization designed for a specific algo-
rithm. Resulting from its popularity, there are several methods that optimize SVM hyperparameters
directly for the particular choice of a least squares SVM,,. These methods are based on genetic
algorithms,, whereas some are deterministic. There are various other approaches for different





algorithms or specific problem settings, such as for general regression and time-series models, for
Bayesian topical trend analysis, for log-linear models and for regression when the sample size
is small. Moreover, hyperparameter learning is used for probabilistic-prototype-based models,
large scale hierarchical kernel methods and graph-based semi-supervised classification models.
The major limitation of all of these methods is that they are specifically tailored to one particular
model and only work well in certain scenarios, this is a drawback that Bayesian optimization-based
methods alleviate.

Meta-features are descriptive characteristics of a data set and thus an essential component of all
traditional meta-learning methods that are learning across problems. In this work, we often use
pairwise comparisons of the performance of two hyperparameter configurations on one data set
compared to another. This is a very special instance of landmarkers, sometimes called relative
landmarkers. Landmark features are created by applying very fast machine learning algorithms (e.g.
decision stumps, linear regression) to the data. Their performance is added as a meta-feature. In
contrast to our approach, we only use the performance of algorithms and hyperparameter configu-
rations which we have evaluated during our optimization process. Hence, no additional time was
spend for estimating these landmarkers. This idea has been already employed by some others,.
In contrast to their work, we propose a way of using these meta-features also in cases with contin-
uous hyperparameters. For continuous hyperparameters it is very unlikely that we have seen the
same hyperparameter configurations for all data sets. Hence, the approach of pairwise comparisons
proposed by the literature works only if we either only want to find the best algorithm and ignore the
hyperparameters or discretize the hyperparameters. We overcome this problem by predicting
the performance of a hyperparameter configuration if it is not part of our meta-data set.

Average ranking ranks all configurations based on their average performance in former experi-
ments and provides a static sequence for new data sets. Active testing is using relative landmark-
ers in order to adapt to the new data set. The configuration which is chosen next for evaluation
depends on how much the loss was decreased over the current best configuration on other data sets
weighted by the data set similarity. In contrast to average ranking and active testing, A-SMFO and
NN-SMFO presented in Chapter  optimize directly for a given meta-loss and consider all evalu-
ated configurations. Average ranking does not consider them at all, active testing only considers the
current best configuration. Average ranking and active testing are reviewed and extended recently
by Abdulrahman et al..





3
Meta-Data Sets & Experimental Setup

We will use this chapter to explain how we created our meta-data set and give detailed insights into
the meta-data. Furthermore, we describe the experimental setup, define our evaluation metrics and
motivate why these are good metrics to judge an optimization method.

. Meta-Data Sets

In the following section, we will describe the meta-data sets which we created to evaluate the different
optimization techniques. We will describe how we created them and which data sets we used.
Furthermore, we conduct an in-depth analysis of the meta-data and the hyperparameter sensitivity
of different algorithms. Finally, we provide some examples of response functions.

.. AdaBoost Meta-Data Set

The AdaBoost was created using  classification data sets chosen at random from the UCI repos-
itory. Existing train/test splits were merged, shuffled and split into  train and  test. The
AdaBoost meta-data set is our smallest meta-data set. It was created using Adaboost with decision
products as weak learners. This algorithm has two hyperparameters, the number of iterations
I and the number of product terms M. The classification error was precomputed on the grid I ∈{
, , , , , ,  · ,  · , ,  · ,  · , } andM ∈ {, , , , , , , , }.
Figure . presents some information about the AdaBoost meta-data set. Each of the  hyper-

parameter configurations is represented by a colored square. The left plot visualizes on how many of
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Figure 3.1: Left: The number of times each hyperparameter configuration has been the best configuration on the 50 data

sets. There is no configuration that has not been best on any data set at least once. Right: The average rank by configuration

over all data sets. Unsurprisingly, the higher the number of iterations, the better the configuration on average.

the  data set each hyperparameter configuration has been the best configuration among the 
tested. The right plot presents the average rank for each configuration over all  data sets. The
rank of a hyperparameter configuration for one data set is computed by ordering all configurations
by loss. The lower the loss, the lower the rank. If the loss is equal, the average rank is used. The
estimated ranks per data set are averaged over all data sets. Hence, hyperparameter configurations
with a small average rank are on average good configurations. We can observe that configurations
with more iterations and less product terms tend to be better. This behavior can be explained easily.
With an increasing number of iterations, more and more weak learners are added to the boosted
ensemble. Typically, this leads to a boost in performance. Increasing the number of product terms
leads to an increase of complexity for each weak learner. Depending on the data set, this can lead
to overfitting. Thus, the combination of many weak learners with moderate complexity is often
the best choice. Figure . presents the first  response functions of our data sets. The before
mentioned behavior can be observed on many data sets (e.g. AA and australian). However, there
are also some data sets that show a completely different behavior (e.g. coil or diabetes). The
increase in iterations seems to lead to overfitting and a decrease in performance can be observed.
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Figure 3.2: The classification error of the AdaBoost classifier onmultiple data sets. Onmany data sets we can observe that

the performance increases with a growing number of iterations. The visualization of all 50 data sets is available at

http://www.hylap.org/meta_data/adaboost/.
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Figure 3.3: In this plot we visualize which specific configuration has been best on howmany of the 50 data sets. There are

clear regions of good algorithm configurations.
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Figure 3.4: In this plot we plot the average rank each configuration has achieved over all 50 data sets. The smaller the

better. Unsurprisingly, we see parallels to Figure 3.3.

.. SVM Meta-Data Set

We created the SVM meta-data set using the same  classification data sets used for the creation
of the AdaBoost meta-data set. We trained an SVM with a linear, polynomial and Gaussian
kernel. We optimized the trade-off parameter C, the degree of the polynomial kernel d and the
width γ of the Gaussian kernel. If a hyperparameter was not involved, its value was set to . We
precomputed the classification error on the grid C ∈

{
−, . . . , }, d ∈ {, . . . , } and γ ∈{

−, −, −, ., ., ., , , , , , , , }. To represent the choice of the kernel,
we used one hot encoding. This means, we added three indicator variables, one for each kernel. Their
values are  if the kernel is used and  otherwise. Concluding, we computed  meta-instances
per data set in about  CPU hours.

As for the AdaBoost meta-data set, we provide similar statistics for the SVM meta-data set. Figures
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Figure 3.5: The classification error of the SVM classifier onmultiple data sets. The visualization of all 50 data sets is avail-

able at http://www.hylap.org/meta_data/svm/.

. and . represent each hyperparameter configurations with a colored square, broken down by
kernel. The linear kernel has only a single hyperparameter, hence only the diagonal is of importance.
Figure . shows on how many data set each hyperparameter configuration has been the best one.
Figure . visualizes the average rank of each hyperparameter configuration over all  data sets. The
average rank is computed as explained in the previous section for Figure .. It seems that there is
a valley of good hyperparameter configurations for the polynomial and RBF kernel. Having a look
into the example response functions in Figure ., ., . and ., one can indeed find a valley
shaped response function. There is always some valley with sharp edges where the response function
changes to a constant function. These valleys differ in their position and their shape. However, this
is an interesting property which we did not investigate. It allows the use of a surrogate model that
is designed to model this special function behavior. In combination with active learning, one might
be able to estimate the shape and position of the valley accurately and quickly.
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Figure 3.6: The classification error of the SVM classifier onmultiple data sets. The visualization of all 50 data sets is avail-

able at http://www.hylap.org/meta_data/svm/.
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Figure 3.7: The classification error of the SVM classifier onmultiple data sets. The visualization of all 50 data sets is avail-

able at http://www.hylap.org/meta_data/svm/.
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Figure 3.8: The classification error of the SVM classifier onmultiple data sets. The visualization of all 50 data sets is avail-

able at http://www.hylap.org/meta_data/svm/.
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Figure 3.9: This plot presents the number of times each algorithm had a hyperparameter configuration that yield the best

classification performance. Support VectorMachines and Random Forests are among the best classifiers.

.. Weka Meta-Data Set

In our endeavor to evaluate different hyperparameter optimization strategies for the task of com-
bined algorithm selection and hyperparameter configuration optimization, we created a meta-data
set containing multiple different algorithms. We used  different Weka classifiers to precompute
the classification error on a grid which resulted into , hyperparameter configurations per data
set. The exact grid is given in Table . to Table .. We selected  smaller classification data sets
which we preprocessed in the same way as done for the AdaBoost and SVM meta-data set. In more
than  CPU hours we created the Weka meta-data set which contains ,, meta-instances.

An in-depth analysis for the Weka meta-data set as provided for the AdaBoost and SVM meta-data
set is difficult due to the high dimensionality of the meta-data set. Hence, we only provide statistics
by algorithm. Figure . presents how frequently we found a configuration for an algorithm that
provided the best classification performance. Unsurprisingly, more complex classifiers such as SVM
and Random Forest outperform simpler classifiers such as decision stumps or One R. However,
Figure . shows that choosing a more complex classifier does not automatically lead to better
results. In this plot we see the average rank over all data sets for the worst (Maximum Average Rank)
and the best (Minimum Average Rank) hyperparameter configuration on average. This value is equal
for algorithms without hyperparameters (decision stump and Zero R). However, most algorithms
have a big difference between the best and worst configuration, once again showing how important
the configuration optimization problem is. Furthermore, in most cases the worst configuration of
one algorithm rarely outperforms the best configuration of another. The logistic regression is strictly
outperforming the decision stump but this is expected. The decision stump’s model assumption is
too simple and will not provide good results for most data sets. Methods that are using meta-
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Figure 3.10: Average difference between the best andworst hyperparameter configuration per algorithm. Obviously,

optimizing the hyperparameters make a huge difference. In many cases a well-tuned algorithm can outperform any other

algorithmwith random configurations.

knowledge should be able to identify these relationships and use this knowledge while guiding the
optimization process.

.. Meta-Features

We enriched the meta-data sets with the  meta-features listed in Table . if not otherwise stated.
Meta-features are extracted from the data set itself. In the following, we describe the meta-features
of a given classification data set D with predictors X ∈ Rn×m and targets y ∈ {, . . . , c}n in detail.
The class probability for a class i is defined as the number of instances belonging to this class divided
by all instances.

p (C = i|D) = 
n

n∑
j=

I (yi = i) (.)

Then, minimum, maximum, mean and standard deviation class probability can be estimated directly
from these probabilities.

The skewness and kurtosis are the third and fourth standardized moment, respectively. They are
estimated for each of the m predictors. The k-th standardized moment is defined as


n

∑j
i=
(
xi,j −mj

)k
σk
j

, (.)

where mj and σj are the mean and standard deviation of the j-th predictor, respectively. Then,
similarly to the class probability, the min, max, mean and standard deviation kurtosis and skewness





Table 3.1: The grid used to create theWekameta-data set (Part 1).

Bayes-Net

estimator SimpleEstimator
searchAlgorithm HillClimber, K, LAGDHillClimber, TabuSearch, TAN
scoreType BAYES, BDeu, MDL, AIC

Naive Bayes

No hyperparameters
Logistic

maxIts , , , , , 
ridge , E-, E-, E-, E-, E-, E-, E-, ., ., , , 

MultiLayerPerceptron

hiddenLayers 
learningRate ., ., ., ., .
momentum ., ., ., ., .
trainingTime , , , , , 
validationSetSize , , , , , 
validationThreshold , , , , 

SMO

c ., ., ., ., ., , , , , , 
kernel PolyKernel, RBFKernel, Puk
gamma ., ., ., ., .
omega ., ., ., ., ., ., , , , , , , , 
sigma ., ., ., ., ., ., , , , , , , , 
degree , , , , , , , , , 
useLowerOrder True, False

SimpleLogistic

weightTrimBeta , ., ., .
heuristicStop , , , , , , , , , , 
maxBoostingIterations , , , , , , , , , 
useAIC True, False
useCrossValidation True, False





Table 3.2: The grid used to create theWekameta-data set (Part 2).

IBk

KNN , , , , , , , , , , , , , 
distanceWeighting No distance weighting, Weight by /distance,

Weight by -distance
KStar

globalBlend , , , , , , , , , , , , , , , , ,
, , , 

entropicAutoBlend True, False
DecisionTable

search BestFirst, GreedyStepwise
conservativeForward True, False
direction Forward, Backward
searchTermination , , , , , , , , , 

JRip

folds , , , , , , , , , 
minNo , , , , , , , , , 
optimizations , , , , , , , , , 
usePruning True, False

OneR

minBucketSize , , ..., 
PART

confidenceFactor ., ., ., ., ., ., .
minNumObj , , , , , , , , , 
numFolds , , , , , , , , 
Pruning ReducedErrorPruning, Pruning, Unpruned

ZeroR

No hyperparameters
DecisionStump

No hyperparameters





Table 3.3: The grid used to create theWekameta-data set (Part 3).

J

confidenceFactor ., ., ., ., ., ., .
minNumObj , , , , , , , , , 
numFolds , , , , , , , , 
Pruning ReducedErrorPruning, Pruning, Unpruned
subtreeRaising True, False
useLaplace True, False

LMT

convertNominal True, False
minNumInstances , , , , , , , , , , 
splitOnResiduals True, False
useAIC True, False
weightTrimBeta , ., ., .

RepTree

minNum , , , , , , , , , 
minVarianceProb , E-, E-, E-, E-, E-, E-, E-, ., ., 
numFolds , , , , , , , , 
noPruning True, False

RandomForest

maxDepth , , , , , , , , , , 
numFeatures , , , , , , , , , , 
numTrees , , , , , , , , , , , 

RandomTree

maxDepth , , , , , , , , , , 
minNum ., , ., , , , , , , , , 
numFold , , , , 





Table 3.4: The list of all meta-features used by us.

Meta-Features

Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Standard Deviation
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

are estimated. The data set dimensionality is defined by n/m and the class cross entropy by

H [C|D] = −
c∑

i=

p (C = i|D) log p (C = i|D) . (.)

. Experimental Details

In this section we will discuss the experimental setup used throughout the thesis. Furthermore, we
formally define our evaluation metrics and motivate their use.

.. Evaluation Metrics

Throughout this thesis we compare different optimization methods with respect to up to three dif-
ferent evaluation metrics. We will present them in the upcoming sections and argue why these
metrics represent the quality of an optimization method.

Average Rank

The average rank among different hyperparameter optimization strategies or for short simply average
rank is a relative metric between different optimization strategies. In order to estimate the average
rank, the optimization strategies are ranked by the best hyperparameter configuration that they have
found so far for each data set. Ties are solved by granting them the average rank. Assuming we have
four different optimization strategies which have found hyperparameter configurations on a specific





data set that achieve a classification error of ., ., . and ., respectively. Then the ranking
is , ., ., . The average over all data sets of these ranks yield the average rank.

The average rank is used in every related work we compare to and hence, is automatically a metric
we consider. While the average rank gives an impression which methods tend to be better, it does
not show how big the difference actually is.

Average Distance to the Global Minimum

Compared to the average rank metric, the average distance to the global minimum is not a metric
that is relative to different optimization strategies. In our experiments, we study the hyperparameter
optimization of classification models and thus the average distance to the global minimum reflects
the average classification error across data sets. To overcome the different error scales among data
sets, the classification error is scaled between  and  only for evaluation purposes. This scaling is
not applied during the experiments because the knowledge of maximum and minimum errors is
unknown and is part of the problem. Using the notation from Chapter , the average distance to
the global minimum is defined as

ADTM (D,XT) =

|D|

∑
D∈D

minx∈XT fD (x)− f min
D

f max
D − f min

D
, (.)

where f max
D and f min

D are the worst and best possible value of the response function, respectively.
We approximate these values by using the smallest and largest value that was found during the grid
search when creating the meta-data set.

In contrast to the average rank, this metric gives information about two other aspects. Firstly, it
gives insight how big the difference is on average between data sets with respect to the normalized
loss. Secondly, it enables to see how close the methods are to the global optimum.

Fraction of Unsolved Data Sets

The fraction of unsolved data sets is the fraction of data sets where the method has not achieved a
DTM of . This is of interest because a method can only improve on a data set if it does not achieve
a DTM of . Thus, a method that has a small fraction of unsolved data sets has less data sets where
it can improve on. Furthermore, it is a direct indication how far the methods have converged.





.. Experimental Setup

We created our meta-data sets by precomputing the response function values on a grid. We defined
the grid

G = X × · · · × XP (.)

by selecting ni many arguments for dimensionality i. All methods based on Bayesian optimization
have the possibility to recommend configurations which they have never seen before. To simulate
this behavior, each optimization method has only access to a subset of the grid. For each continuous
or ordinal hyperparameter, the methods only use one third of the precomputed values. Examples
for these kind of hyperparameters are the ridge parameter of a logistic regression or the depth of a
decision tree. For the other hyperparameter dimensions, we use the entire set. The reason for this is
that these hyperparameters usually define the choice of an algorithm or kernel. If our optimization
methods do not see any example for them, learning across problems becomes difficult. Assuming
we have a hyperparameter dimensionality defined by

Xi = {xi,, . . . , xi,ni} . (.)

Then, we define the subset for training as

Xtrain
i =

{
xi,, xi,, xi,, . . .

}
. (.)

Then, only the configurations in

Gtrain = Xtrain
 × · · · × Xtrain

P (.)

are used for training. The evaluation of each optimization method is conducted on the entire grid
G.

.. Competitor Methods & Meta-Hyperparameters

In the previous chapter we introduced the main competitor methods we are comparing to through-
out the thesis. We want to avoid mentioning and explaining these methods in every chapter again.
However, we also want to avoid that the reader needs to go back in case he forgot the abbreviations
or which method was doing what. Therefore, we add a summary table of all methods with their
corresponding abbreviation in each chapter. Table . is an example for such a summary table. It
contains the name of the method and the abbreviation used in the text and the plots. Furthermore,
it shows which surrogate model the method utilizes, whether it employs meta-knowledge and where





Table 3.5: An example for the brief overview of competitor methods.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Meta-Initialization XYZ (init) Depends on XYZ 3 Chap. 
Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

Factorized
Multilayer
Perceptron

FMLP Neural Network 3 Sec. ..

more information about the method can be found in this thesis. The meta-initialization can be used
with various methods, hence we used the placeholder XYZ. We typically combine it with I-GP and
I-RF. The resulting abbreviations are I-GP (init) and I-RF (init).

The meta-hyperparameters of the different methods are optimized as follows. Meta-hyperparameters
of Gaussian processes are estimated by maximizing the marginal likelihood (see Equation (.)).
Other meta-hyperparameters are estimated using a grid search on the meta-data using leave-one-
data-set-out cross-validation. We searched the trade-off parameter C of SVMRank on a logarithmic
scale from − to . We achieved best results for many data sets for C = − on the AdaBoost
and SVM meta-data set.

For MKL-GP we set α = . as recommended by the authors. We first manually identified
a useful region for the size of the neighborhood k. Then, we estimated the optimal k for values
smaller or equal than  using leave-one-data-set-out cross-validation. Best results were usually
achieved with  ≤ k ≤  on the AdaBoost and SVM meta-data set.

We used the provided implementation of FMLP. Since the authors conducted their results on our
meta-data sets, we simply used their recommended meta-hyperparameters.

With a grid search using leave-one-data-set-out cross-validation we estimated the optimal number
of trees and the maximum proportion of the training set in the leaf node for I-RF. Best results are
observed with  trees and at most  of meta-training instances in the leaf nodes.





Meta-hyperparameters of our own methods are estimated in the very same way. Their values are
reported in the corresponding chapters.
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4
Surrogate Model-Free Hyperparameter

Optimization

In the Chapter , different approaches for optimizing hyperparameters have been introduced. They
all have in common that they use surrogate models in combination with an acquisition function.
The surrogate models are learned by minimizing a regression loss and do not directly optimize for the
hyperparameter optimization. Only in combination with a heuristic, i.e. the acquisition function,
a useful search is possible.

There are two problems that we approach in this chapter: i) the choice of the hyperparameter
configuration depends on a model optimized for the squared error combined with a simple heuristic
and ii) the similarity between data sets depends on meta-features. Item i) is a problem because it
does not find the best hyperparameter configuration directly and item ii) is a problem because meta-
features do not guarantee that they are descriptive for the data set and are problem-dependent. We
want to overcome these problems by proposing a model- and meta-feature-free hyperparameter
optimization strategy that is optimized for a hyperparameter optimization loss. Its benefit is shown
empirically in comparison to state of the art model-based optimization strategies that optimize its
models for regression losses combined with heuristics. Since a hyperparameter optimization loss
was never introduced before, we propose a cost measure for hyperparameter optimization. We use
it to optimize our method for but it also enables a better comparison of optimization strategies
across papers compared to strategies such as average rank. Because we do not want to rely on meta-





features, a distance measure between data sets that does not depend on meta-features is proposed.
We empirically show that this new distance measure is able to improve existing hyperparameter
optimization strategies. That is, we apply and evaluate our distance measure on existing model-based
optimization strategies and compare it to the currently used meta-feature-based distance functions.

Our final contribution is interesting for practitioners that want to tune their hyperparameters
easily and efficiently. So far, a random hyperparameter search is the easiest hyperparameter op-
timization strategy if a grid search is not possible. We demonstrate empirically that a static hy-
perparameter optimization strategy can outperform the random search substantially and that it is
also very competitive in comparison to more complex state of the art hyperparameter optimization
strategies. Just as random search, it is fully parallelizable. Because authors that are using random
search for hyperparameter optimization often only report the distribution from which the hyper-
parameter combinations are sampled, reproducibility is only possible to some degree. Contrary,
our static strategy is  reproducible just as it is the case with a grid search. In Appendix A, we
provide look-up tables for two classifiers: Support Vector Machine (with linear, polynomial and
RBF-kernel) and AdaBoost.

. Contributions

. We propose surrogate model-free optimization (SMFO), a variant of Bayesian optimization that
uses one policy which is optimized for the task of hyperparameter optimization instead of a surrogate
model combined with an acquisition function. This policy generalizes over previous experiments
but neither uses a model nor uses meta-features. Nevertheless, it outperforms the state of the art.

. Furthermore, we propose a similarity measure for data sets that yields more comprehensible
results than those using meta-features. We show how this similarity measure can be applied to
surrogate models in Bayesian optimization and empirically show that this change leads to better
hyperparameter configurations in less trials.

. We show that a static ranking of hyperparameter configurations yields competitive results and
substantially outperforms a random hyperparameter search. Thus, it is a fast and easy alternative to
complex hyperparameter optimization strategies and allows practitioners to tune their hyperparam-
eters by simply using a look-up table. We made look-up tables for two classifiers publicly available:
SVM and AdaBoost.

. A New Evaluation Metric

It is very common to compare different optimization strategies either by an average rank between the
methods over different data sets or by the performance of the found configurations on the data sets





directly,. Both comparisons make absolutely sense but come with some disadvantages. First of
all, for both evaluation strategies you can either compare the plots depending on the number of tries
done so far or you fix the number of tries to T and report the average rank after T tries. Additionally,
the average rank between optimization strategies changes if you add or remove strategies. Hence,
the values cannot be reused in further publications. Furthermore, if one optimization strategy has
a better average rank than another, it does not necessarily mean that it is also the better strategy in
general. Lets assume there are three data sets where the best hyperparameter configuration needs
to be found. Optimization strategy A finds better hyperparameter configuration than strategy B
for two of them but does not find any useful configuration for the third data set at all. Strategy B
reliably finds very good configurations for all three data sets. By average rank, strategy A has a rank
of . compared to strategy B with rank .. This pairwise ranking does not take into account that
strategy B provides reliably good configurations. While strategy A might have found configurations
on two data sets that yield small improvement over the configurations found by strategy B, strategy
B clearly outperforms strategy A on the third data set. Hence, the average rank does not tell you
anything how big the differences with respect to the loss are. However, this is important as explained
in the previous example.

We want to overcome both disadvantages. The evaluation measure should be a number that
rewards fast convergence to the best hyperparameter configuration and it should be invariant to the
performance of other methods in comparison. Thus, it can be easily compared to new methods, if
they are applied on the same meta-data set. At this point, one could think about a ranking measure
such as normalized discounted cumulative gain (NDCG). But we are not interested in finding the
perfect ranking of hyperparameter configurations (this means first trying the best hyperparameter
configuration, then the second best and so on) but on finding a decent hyperparameter configuration
as soon as possible. Additionally, after finding the best hyperparameter configuration, the choice of
further hyperparameter configurations should not affect the metric.

We propose the area under the average distance to the global minimum curve (AUC-ADTM) as
a new metric which we define as

AUC-ADTM (D,XT) =

|D|

∑
D∈D

T∑
t=

minx∈Xt fD (x)− f min
D

f max
D − f min

D
, (.)

where D is the set of data sets, XT = (x, . . . , xT) is the ordered sequence of evaluated hyperpa-
rameter configurations at time T, Xt the ordered subsequence of XT until time t < T, fD (x) is the
error of the hyperparameter configuration x on the validation partition of data set D and f max

D and
f min
D are the maximum and minimum value of fD, respectively. Figure . visualizes the definition
of this metric. This metric can only be applied if the hyperparameter optimization is limited to a





0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Number of Trials

Lo
ss

Loss
Method 1

Method 2

AUC−ADTM
Method 1

Method 2
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finite subset of all possible hyperparameter configurations. In real applications, the number of hy-
perparameter configurations is often infinite but for the evaluation of hyperparameter optimization
strategies it is common that the meta-data is generated by applying a grid search using a finite set of
hyperparameter configurations that is used on all data sets.

AUC-ADTM is lower bounded by  and attains this value only if in the first try on every data
set the best hyperparameter configuration was chosen. The value of fD (x) is scaled between  and 
per data set in Equation (.) to overcome different scales between data sets.

. Surrogate Model-free Optimization

This section introduces one of the core contribution of this chapter. With A-SMFO we propose a
fast and parallelizable hyperparameter optimization strategy that can be applied easily. This will be
extended to NN-SMFO which uses information about the similarity between past seen data sets.
Both methods directly optimize for AUC-ADTM, the evaluation metric discussed in the previous
section. To this end, we propose a new distance function to measure the similarity.

.. Average SMFO

Our idea is to combine the surrogate model with the acquisition function. Additionally, we want a
method that is independent of any meta-features. Given a new, unknown data set, the best config-
uration recommendation is the hyperparameter configuration that has proven to be best on average
in past experiments. This intuition is extended to arbitrary many tries. Formally, at time step t, we
choose the hyperparameter configuration x that improves the utility on the meta-training set the





Algorithm  AUC-ADTM Optimizing Sequence
Input: Set of feasible hyperparameter configurations X , set of data sets from previous ex-

periments Dtrain, observation historyH, number of maximal tries T.
Output: Sequence of hyperparameter configurations to evaluate.

: function OptimalSequence(X ,T,Dtrain)
: X ← ()
: for t =  to T do
: xt ← arg minx∈X c (x,Xt−,Dtrain)
: Xt ← (Xt−, xt)
: if 

|Dtrain|
∑

D∈Dtrain minx∈Xt rD (x,X ) =  then
: return Xt

: end if
: end for

: return XT

: end function

most. Let Xt be the set of evaluated hyperparameter configurations at step t. Then, we define the
cost of a hyperparameter configuration x at t as

c
(
x,Xt−,Dtrain) = ∑

D∈Dtrain

L (x,Xt−,D) . (.)

Since we are facing a ranking problem, an obvious choice is a loss function based on the normalized
discounted cumulative gain (NDCG). The NDCG is defined as the discounted cumulative gain

DCG@k =

k∑
i=

rel(i) − 
log (i+ )

(.)

normalized by the maximum possible DCG, the ideal DCG (IDCG), where rel (i) is the relevance
score of the item which was predicted to be the i most relevant item. Then, we can set the loss
function to

L (x,Xt−,D) = − 
IDCG@k

k∑
i=

rel(i,D) − 
log (i+ )

. (.)

To evaluate the NDCG, a predicted ranking is needed. For a data set D, we predict that the hy-
perparameter configurations {x} ∪ Xt− are most relevant, ordered increasingly by their f value.
These f values are given in our meta-data set and do not need to be estimated. All hyperparameter
configurations that are not in this set are predicted to be least relevant in arbitrary order. We argue
that we are only interested in the best hyperparameter configurations and thus use the NDCG@





by setting k = . Our loss function simplifies to

Algorithm  Average SMFO
Input: Set of feasible hyperparameter configurations X , set of data sets from previous ex-

periments Dtrain, observation historyH, number of maximal tries T.
Output: Sequence of hyperparameter configurations to evaluate.

: X̂ ← ()
: while T >  do
: X ′ ←OptimalSequence

(
X \ X̂ ,T,Dtrain

)
: T← T− |X ′|
: X̂ ←

(
X̂ ,X ′

)
: end while
: return X̂

L (x,Xt−,D) = − rel(,D) − 
IDCG@

. (.)

Replacing relevances by ranks and ignoring constants, we derive our final cost function

c
(
x,Xt−,Dtrain) = ∑

D∈Dtrain

min
x′∈Xt−∪{x}

{
rD
(
x′,X

)}
, (.)

where rD (x,X ) is the rank of x on data set D over all hyperparameter configuration in X . Again,
X is the finite set of feasible hyperparameter configurations as defined above that were evaluated on
D ∈ Dtrain in previous experiments. The ranking for a new data set is obviously unknown. Then,
at each time step t, f

(
arg minx∈X c

(
x,Xt−,Dtrain)) is evaluated. Algorithm  will find the best

hyperparameter configurations for the meta-training set by sequentially selecting the hyperparameter
configurations that minimize Equation (.) givenX . The stopping criterion in Line  is fulfilled as
soon asXt contains all hyperparameter configurations that were best on the data setsD ∈ Dtrain. The
resulting sequence XT is optimal for the meta-training set but not necessarily for the meta-testing
set. Actually, it is likely that more trials are needed on meta-test than on meta-train which means
that the resulting sequence returned by Algorithm  is too short. To overcome this problem, the
final optimization strategy is given in Algorithm . The idea is to minimize the cost on meta-train
in the first iteration. In the next iterations, the cost are minimized by not considering previously
chosen hyperparameter configurations in the evaluation and in the pool of feasible candidates X .
This is equivalent to optimizing for NDCG@t in iteration t instead of optimizing for NDCG@.
The assumption is that there is a relationship between hyperparameters across data sets, meaning





that a good hyperparameter configuration on one data set is also a potentially good candidate for
another data set and the best might be located in its neighborhood. This assumption is also made in
Bayesian optimization using meta-learning where this relationship is attempted to be learned using
surrogate models such as Gaussian processes.

Algorithm  Nearest Neighbor AUC-ADTM Optimal Sequence

Input: Set of feasible hyperparameter configurations X , set of data sets Dtrain, meta-test
data set Dnew, number of maximal tries T, number of nearest neighbors k.

Output: Sequence of hyperparameter configurations to evaluate.
: X ← ()
: for t =  to T do
: Compute the subset D′ ⊆ Dtrain of the k most similar data sets to Dnew.
: x← arg minx∈X c (x,Xt−,D′)
: Xt ← (Xt−, x)
: if 

|Dtrain|
∑

D∈Dtrain minx∈Xt rD (x,X ) =  then
: return Xt

: end if
: end for

: return XT

.. Nearest Neighbor SMFO

Average SMFO acquires hyperparameter configurations only using the data sets from previous ex-
periments D ∈ Dtrain. This means, there is a fixed sequence of hyperparameter configurations to
evaluate and hence this method can be parallelized and implemented easily. Prediction can be done
in constant time, memory consumption is linear in the number of feasible hyperparameter config-
urations and this static sequence of hyperparameter configurations can be shared among researchers
and practitioners. Nevertheless, Average SMFO has one big disadvantage. It does not consider
the informative evaluations on the current data set Dnew. Therefore, Average SMFO is extended
to Nearest Neighbor SMFO (NN-SMFO) to overcome this problem. NN-SMFO is not consid-
ering every data set when predicting the best hyperparameter configuration but the k most similar
to Dnew. The distance function between Dnew and any other data set D ∈ Dtrain is inspired by the
Kendall tau rank correlation coefficient. Assuming that the ranking of hyperparameter configura-
tions contains solely concordant or discordant pairs and ignoring the constants, the resulting KTRC
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Figure 4.2: Metric multidimensional scaling of a distancemetric using Euclidean distance on themeta-features (left) and

Equation (.) using only the first four hyperparameter configurations recommended by Average SMFO (right). The shown

response functions are that from an AdaBoost classifier. Themeta-features used are described in Section 4.5.

distance function is

KTRC (D,D,Xt) =


∑

x∈Xt

∑
x∈Xt s(x,D,x,D)

(|Xt|−)|Xt| |Xt| ≥ 

 otherwise
(.)

Xt = X (D)
t ∩ X (D)

t (.)

s (x,D, x,D) = I ((fD (x) > fD (x))⊕ (fD (x) > fD (x))) , (.)

where ⊕ is the symbol for an exclusive or and X (D)
t is the set of hyperparameter configurations

x ∈ X where the response function fD (x) has already been evaluated for data set D ∈ Dtrain.
To implement this method, Line  in Algorithm  needs to be changed such that it calls Algorithm

 instead of Algorithm . We cannot compute a useful KTRC for less than two observations on the
new data set Dnew. In that case, we consider all data set as most similar to Dnew.

. On a Distance Measure Between Data Sets

The current state of the art models estimate the similarity between data sets either by learning it
implicitly using meta-features, or modelling them explicitly using the Euclidean distance on the
meta-features,. What is meant with similar data sets is that they behave similarly with respect
to the hyperparameter configurations. This means, that two similar data sets have a similar ranking
of hyperparameter configurations. Measuring this ranking using a rank correlation metric such as
proposed in Equation (.) is actually a natural choice. Otherwise, the similarity cannot be estimated





if no evaluations are observed. We claim that few evaluations are enough to approximate the true
rank correlation such that this distance measure is nevertheless more expressive than alternatives
such as distance functions based on meta-features. Figure . supports this claim.

In the left plot, it shows the multidimensional scaling (MDS) of the distance matrix using the
Euclidean distance on the meta-features. The data set names indicate the position in the space, the
near-by little plots the (hidden) response function. The response function in this case maps two
hyperparameters (x and z-axis) of f, in this case the classification accuracy. One can see that this
similarity measure works in some cases. But the data sets usps and coil provide an example that
demonstrate that there are also cases where it does not work. These data sets are very close to each
other with respect to the similarity metric but the hyperparameter configurations are almost ranked
contrary.

In the right plot the KTRC distance function defined in Equation (.) is used. The distance
is computed using only four hyperparameter configurations, i.e. the best four recommended by
Average SMFO. Clearly, coil is identified as completely different to any other data set and the
reader may see for herself that the distances are more intuitive just from visual inspection. The
conclusion is that only little information about the ranking can already provide a good clustering.

.. Rank Correlation-based Gaussian Process

After discussing the quality of different distance functions used for data set similarities, we want to
show how to apply the new distance function to Bayesian optimization.

Yogatama and Mann introduced the multiple kernel framework to Bayesian optimization for
machine learning. They proposed a linear combination of a squared exponential kernel with au-
tomatic relevance determination (SE-ARD) for points in the same data set and a nearest neighbor
kernel for modeling similarities between data sets. They defined the kernel as

k
(
(x,D) ,

(
x′,D′)) = αI

(
D = D′) kSE-ARD

(
x, x′

)
+(− α) I

(
D′ ∈ N (D)

)
kNN

(
x, x′

)
, (.)

where the SE-ARD kernel is defined as

kSE-ARD
(
x, x′

)
= exp

− 


∑
p

(
xp − x′p

)

σ
p

 (.)





and the data set similarity kernel as

kNN
(
x, x′

)
= − 

B
∥∥x− x′

∥∥ , (.)

where B must be chosen such that kNN is always non-negative. N (D) denotes the set of neighbored
data sets with respect to a distance function. The distance between two data sets is defined as the
Euclidean distance between its meta-features.

Since we want to measure the impact of a different data set distance measure, we use exactly the
same setup but use the distance function defined in Equation (.) to determine the neighborhood.
We call this surrogate model Rank Correlation-based Gaussian Process.

. Experimental Evaluation

The optimization strategies proposed in Section . are arguably simple and still amazingly competi-
tive. We are comparing them to state of the art hyperparameter optimization strategies (competitors
are published on top conferences, e.g. NIPS , ICML , AISTATS ). Empirically, we
show that they can outperform those strategies and have the capability to scale to big meta-data.

.. Experimental Setup

This is the only section where we do not follow the setup as described in Section ... This has
various reasons. First, we are using all meta-instances for the training phase. The reason for this
is that SMFO cannot recommend configurations it has never seen before. With the increase of
meta-instances, the size of the training data set increased exponentially. Thus, we were not able
to conduct the experiments for SCoT and MKL-GP. Thus, we selected  of our  data sets at
random to conduct our experiments. Finally, we added only the meta-features to our meta-data
that were also used by the authors of SCoT and MKL-GP,. First, we are extracting the number
of training instances n, the number of classes c and the number of predictors p. The final meta-
features are c, log (p) and log (n/p) scaled to [, ]. These are the same meta-features as originally
used by Yogatama and allows us to redo exactly their setup. Otherwise, nothing else changed
compared to Section ...





Table 4.1: Brief overview of the competitor methods. An explanation of this table is given in Section 3.2.3.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

.. Configuration Optimization Strategies

The optimization strategies introduced in Section . and .. are compared to state of the art
optimization strategies. We summarized our competitor methods in Table .. We compare the
competitor methods to the methods proposed in this chapter:

Rank Correlation-based Gaussian Process (RC-GP) This is the variation of MKL-GP pro-
posed in Section ... It is exactly the same as MKL-GP but uses the distance function from
Equation (.).

Average SMFO (A-SMFO) This is the optimization strategy introduced in Section .. It chooses
the hyperparameter configurations in the particular order learned from previous experiments with-
out the use of a surrogate model. The feedback on the current experiment is not taken into account.
It is trivially parallizable and is the only strategy in our experimental evaluation that has this property
apart from random search.

Nearest Neighbor SMFO (NN-SMFO) NN-SMFO is very similar to Average SMFO but it
takes into account the feedback on the current experiment. The first two iterations are always the
same as in Average SMFO. Afterwards, the ranking of the hyperparameter configurations on the
current experiment is used to estimate the nearest neighbored data sets and the Average SMFO is
then estimated on this subset of data sets. We estimated the best size of the neighborhood with a
leave-one-data-set-out cross-validation. This procedure identified  as the optimal size.





●

●

●

●
●

●
●

3

4

5

6

7

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k
AdaBoost

●

●

●

●
●

●
●

2

3

4

5

6

7

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

SVM

● Random    
I−GP    

I−RF    
SCoT    

MKL−GP    
A−SMFO    

NN−SMFO    
RC−GP    

Figure 4.3: Development of the average rank among different hyperparameter tuning strategies with increasing number of

trials. NN-SMFO shows strong performance especially on the SVMmeta-data set.

The results reported are the average of at least ten repetitions. For the strategies with random
initialization (Random, I-GP and I-RF), the mean of , repetitions is reported.

.. Results

Our hypotheses are:

. The strategies proposed in Section . are better because they are optimized directly for AUC-
ADTM.

. The KTRC distance measure proposed in Equation (.) provides better information about
the distance between data sets than a distance function based on the meta-features.

To confirm the first hypothesis, consider Figure .. It shows the development of the average
rank among different hyperparameter optimization strategies. On the AdaBoost meta-data set all
optimization strategies but Random and I-RF are close together. Nevertheless, NN-SMFO is one of
the best. Especially in the beginning, a larger gap to the other approaches is recognizable. Starting
at iteration , RC-GP is taking over the lead. The good performance of NN-SMFO becomes
substantial on the SVM meta-data set. Here it takes about  trials until any other optimization
strategy gets even close to the performance of NN-SMFO. A-SMFO performs worse with respect
to the average rank than NN-SMFO but still performs amazingly well considering that it is a static
sequence and does not use any information about the data set that is currently being investigated.
We want to remark that the performance of the optimization strategies will always converge to the
same value since at some point they have tried all feasible hyperparameter configurations.
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Figure 4.4: Development of the average distance to the global minimumwith increasing number of trials. RC-GP quickly

finds the best configuration on the AdaBoost meta-data set. NN-SMFO provides good results on the AdaBoost meta-data

set and the best results on the SVMmeta-data set.

Having a look at the development of the average distance to the global minimum in Figure .
gives the reader the impression how fast the optimization strategies actually converge to the best
hyperparameter configuration on average. One can see that both, A-SMFO and NN-SMFO, are
converging considerably faster than the other strategies. Only  trials are needed to cross the 
average distance to the global minimum threshold. Again, this marked difference is more substantial
on the SVM meta-data set. Our assumption is that the SVM meta-data set is more difficult because
it contains more than twice that many feasible hyperparameter configurations and the SVM has
more hyperparameters to tune.

Finally, also the results of the third metric presented in Table . lead to the same conclusions.

To validate the second hypothesis, we have a closer look at the optimization strategies MKL-
GP (yellow diamond) and RC-GP (pink star) in the previously discussed figures because the only
difference between those two is the distance function.

Again, we first compare them with respect to the average rank. On the AdaBoost meta-data set,
RC-GP is having a small advantage over MKL-GP. On the SVM data set, MKL-GP is looking weak
in the beginning but finally outperforms RC-GP.

Comparing RC-GP and MKL-GP with respect to the average rank does not lead to an unam-
biguous conclusion. RC-GP performs better on the AdaBoost meta-data set and MKL-GP is better
on the SVM meta-data set. Unfortunately, similar results are observed with respect to the other two
evaluation metrics.





Table 4.2: Summary of the AUC-ADTMof the optimization strategies on bothmeta-data sets. Number in brackets indicate

the ranking across the strategies. The strategies introduced in this chapter are bold.

Random I-GP I-RF SCoT

AdaBoost . () . () . () . ()
SVM . () . () . () . ()

MKL-GP RC-GP A-SMFO NN-SMFO

AdaBoost . () . () . () . ()
SVM . () . () . () . ()

.. Remarks on the Proposed Evaluation Measure

Now, we want to continue the discussion about the usefulness of the average rank between the
optimization strategies as an evaluation measure. We argue in Section . that the average rank may
lead to wrong conclusions with respect to the speed of convergence. In our experiments, SCoT
may be the most drastic example. While it shows good performance with respect to the average
rank for the AdaBoost meta data-set, the average convergence, i.e. the average distance to the global
minimum, is clearly the worst (see Figure . (left)). Then again, random search shows mediocre
performance with respect to average distance to the global minimum but is clearly the worst with
respect to average rank. The reason is simple: the performance of random search is independent of
the investigated data set. In expectation, it is always the same. Hence, random search is a very stable
strategy. Otherwise, SCoT can be very good on some data sets finding the best hyperparameter
within the first few iterations while it does not find any useful hyperparameter at all on all other
data sets.

Our conclusion to this discussion is that the AUC-ADTM provides the reader more concrete
insight. In the end, what matters is how fast the strategies converge on average and how reliable
they are. We want to stress the point that the choice of the evaluation criterion does not affect the
verity of our hypotheses.

.. Running Time

The idea of the hyperparameter optimization strategies is to speed up the optimization process.
Therefore, the overhead for carefully selecting hyperparameter configurations has to be small. In
Figure . we report the overhead of one hyperparameter selection process in milliseconds for the
AdaBoost meta-data set. Our implementation is not optimized for speed which needs to be consid-
ered especially for MKL-GP and RC-GP. Both strategies use a Gaussian process with a very sparse
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Figure 4.5: Running time of the various optimization strategies for the AdaBoost meta-data set in milliseconds on a loga-

rithmic scale.

kernel as a surrogate model. The speed for updating the surrogate model can be significantly de-
creased if the sparseness is exploited. Yogatama and Mann have shown that MKL-GP is actually
faster than SCoT.

Even though some methods are faster than others, the running time overhead is a matter of
seconds. Otherwise, testing a single hyperparameter configurations can be a matter of hours or
days. Creating the AdaBoost meta-data set took us  CPU days while the total overhead for the
same number of hyperparameter decisions is . CPU days for the slowest optimization strategy.
Thus, our conclusion is that all methods are feasible and their running times are negligible if the
data set of interest and the applied model’s complexity is just large enough. If this is not the case,
usually a grid search is the best solution, anyway.

. Conclusion

We introduced three new hyperparameter optimization strategies and demonstrated that hyperpa-
rameter optimization is also possible without surrogate models. A-SMFO has very nice properties.
It is parallelizable which is only possible for grid search and random search while all other optimiza-
tion strategies are not trivially parallelizable. Additionally, it only depends on the training meta-data
and not on the currently evaluated data set. Therefore, we made the best predicted ranking for the
models SVM and AdaBoost accessible to the community. This offers practitioners a static hyper-
parameter optimization strategy that has proven to be very competitive compared to state of the
art and easy to apply for future experiments. Another nice property is that it makes results repro-





ducible. Reproducing random search is not exactly possible because often only the distribution
over the hyperparameters is made public and not which hyperparameter configurations are finally
chosen.

NN-SMFO is an improvement over A-SMFO and can be used to further improve the results. It
was compared to important state of the art competitor strategies and has empirically shown to be
effective.

Furthermore, a new distance measure between data sets was discussed. It was applied to a state
of the art Bayesian optimization strategy and its improvement was empirically shown.

Finally, some discussions about a good quality measure for hyperparameter optimization strategies
was conducted and an interesting new one was introduced.





5
Hyperparameter Search Space Pruning

Bayesian optimization is the current state of the art for automatic hyperparameter optimization.
Currently, it consists of three components: a surrogate model, an acquisition function and an ini-
tialization technique. We propose to add a fourth component, a way of pruning the hyperparameter
search space which is a common way of accelerating the search in many domains but yet has not
been applied to hyperparameter optimization. We propose to discard regions of the search space
that are unlikely to contain better hyperparameter configurations by transferring knowledge from
past experiments on other data sets as well as taking into account the evaluations already done on
the current data set.

Pruning as a new component for Bayesian optimization is an orthogonal contribution but never-
theless we compare it to surrogate models that learn across data sets and extensively investigate the
impact of pruning with and without initialization for various state of the art surrogate models. The
experiments are conducted on our SVM and Weka meta-data sets.

. Introduction

Bayesian optimization currently has at most three components. First, the surrogate model that
predicts the performance for each possible hyperparameter configuration. Secondly, the acquisition
function which uses the surrogate model to propose the next hyperparameter configuration to evalu-
ate. These are the two mandatory components. The third optional component is some initialization
technique which usually starts with a hyperparameter configuration that has proven to be good on





other data sets,. We propose to add a fourth component which is orthogonal to all the others.
Our idea is to reduce the hyperparameter search space by using knowledge from past experiments to
discard regions that are very likely not interesting. This avoids that the acquisition function chooses
hyperparameter configurations in these regions because of high uncertainty and therefore avoids
unnecessary function evaluations.

Pruning is a well known technique to accelerate the search in several domains. For example,
various pruning techniques are applied to the minimax algorithm such as the killer heuristic or null
move pruning. Branch-and-Bound is a pruning technique that is applied in the domain of
operations research for discrete and combinatorial optimization problems and is very common for
NP-hard optimization problems. Nevertheless, we are not aware of any published work that is
trying to prune the search space in Bayesian optimization for hyperparameter optimization.

Since pruning as proposed by us is some way of transferring knowledge from past experiments
to a new experiment, other techniques that try exactly the same are the closest related work but, as
we will see, orthogonal to our contribution. One common and easy way to use experience in the
hyperparameter optimization domain is to define an initialization, a sequence of hyperparameter
configurations that are chosen first. These are usually those hyperparameter configurations that
performed best on average across other data sets,. The second and last method to do so is
by using the surrogate model. Instead of learning the surrogate model only on the new data set,
the surrogate model is learned across all data sets,,. We want to highlight that all these three
possibilities are not mutually exclusive and can be combined so that these ideas are orthogonal to
each other.

Leite et al. propose a similar distance function between data sets but they propose a hyperpa-
rameter selection strategy that is limited to the hyperparameter configurations that have been seen
on the meta-training data.

Furthermore, there also exist strategies to optimize hyperparameters that are based on optimiza-
tion techniques from artificial intelligence such as tabu search, particle swarm optimization and
evolutionary algorithms as well as gradient-based optimization techniques designed for support
vector machines.

. Pruning the Search Space

The idea of pruning is to consider only a subset of the hyperparameter configuration space X to
avoid unnecessary function evaluations in regions where we do not expect any improvements. If
regions can be identified in advance, that are not of interested then this would obviously accelerate
the hyperparameter optimization process. We propose to predict the utility of regions by transferring





knowledge from past experiments. The key idea is that similar data sets to the new data set have
similar or even the same regions that are not interesting and therefore not worth to be investigated.

.. Formal Description

We define a region R (x, δ) by its center x ∈ X and radius δ ∈ RP, δ > . The utility of this region
after t trials on the new data set Dnew is defined by

u (R (x, δ) ,Xt) =
∑

D′∈N (Dnew)

min
x′∈Xt

f̃D′
(
x′
)
− f̃D′ (x) , (.)

where Xt is the set of already evaluated hyperparameter configurations on Dnew and N (Dnew) is
the set of data sets that are closest to the new data set. f̃D is the normalized version of the response
function fD of data set D. fD is scaled to the interval [, ] such that each data set has the same
influence on the utility. Thus, the utility is the predicted improvement when choosing x over the
hyperparameter configurations already evaluated. Since fD is not fully observed forD ∈ D, whereD
is the meta-training set, we approximate f̃D with a plug-in estimator ŷD. We use a Gaussian process

that is trained on all normalized meta-instances of a data set such that we get for each training data
set a plug-in estimator

f̃D (x) ≈ ŷD (x) ∼ GP (mD (X) , kD (X,X)) , (.)

where we define mD as the mean function and kD as the covariance function of f̃D. As a covariance
function we are using the squared exponential kernel

k
(
x, x′

)
= exp

(
−
∥x− x′∥

σ

)
. (.)

This allows to estimate f̃D for arbitrary hyperparameter configurations. Then, we replace the defini-
tion from Equation (.) with

u (R (x, δ) ,Xt) =
∑

D′∈N (Dnew)

min
x′∈Xt

ŷD′
(
x′
)
− ŷD′ (x) . (.)

To estimate the nearest neighbors of the new data set Dnew, we have to define a distance function
between data sets. A common choice for this is the Euclidean distance with respect to the meta-
features,. Since we experienced better results with the KTRC distance function proposed in the





previous chapter (Equation (.)), we use a modified version of it:

KTRC (D,D,Xt) =
∑

x,x∈Xt I(̂yD (x)>ŷD (x)⊕ŷD (x)>ŷD (x))
(|Xt|−)|Xt| . (.)

The difference is that we use the plug-in estimators ŷ which allow a comparison between partially
unobserved pairs.

Algorithm  Prune
Input: Hyperparameter space X , observation history H, region radius δ, fraction of the

pruned space ν.
Output: Pruned hyperparameter space X pruned ⊆ X .

: function Prune
: Estimate the most similar data sets of the new data set using Equation (.).
: Estimate the setX ′ containing the ν · |G| hyperparameter configurations x′ ∈ G ⊂
X with little utility using Equation (.).

: X pruned := {x ∈ X | dist (x, x′) > δ, x′ ∈ X ′}.
: return X pruned ∪ {x ∈ X | dist (x, x′) ≤ δ, x′ ∈ Xt}
: end function

Algorithm  summarizes the pruning function. In the first line the k most similar data sets are
estimated which we know from past experiments using the KTRC distance function defined in Equa-
tion (.). In Line , the utility of hyperparameter configurations are computed using the plug-in
estimators (Equation (.)) on a fine grid G ⊂ X . The ν · |G| hyperparameter configurations with
little utility define regions where no improvement is predicted. Hence, the pruned hyperparameter
space is defined as the set of hyperparameter configurations that are not within a δ-region of these
low-utility hyperparameter configurations (Line ). Additionally, the hyperparameter configura-
tions that are within a δ-region of already evaluated hyperparameter configurations are added (Line
). The intuition here is that since we have already observed an evaluation in this region, the acqui-
sition function will not choose a hyperparameter combination close to these points for exploration
but only for exploitation. Hence, no evaluations will be done by Bayesian optimization without a
very likely improvement. As a distance function between hyperparameter configurations we chose
one that considers indicator variables. Indicator variables indicate, for example, which algorithm
was chosen. Therefore, it is obvious that the change in the loss is likely not smooth. Therefore, we
define the distance function used by Algorithm  as

dist
(
x, x′

)
=

∞ if x and x′ differ in an indicator variable

∥x− x′∥ otherwise
. (.)





The extended Bayesian optimization with pruning is described in Algorithm .

Algorithm  Bayesian Optimization with Pruning
Input: Configuration space X , observation historyH, acquisition function a, initial set of

configurations X init.
Output: Best configuration found.

: for x ∈ X init do
: f∗ = f (x∗)
: H ← H∪ {(x∗, f∗)}
: end for
: while not converged do
: Update the surrogate model p (f∗|x∗,H).
: X pruned ← Prune (X )
: x∗ = arg maxx∗∈X pruned a (x∗, p (f∗|x∗,H))
: f∗ = f (x∗)

: H ← H∪ {(x∗, f∗)}
: if f∗ < f min then
: xmin, f min ← x∗, f∗
: end if
: end while
: return xmin

. Experimental Evaluation

In this section we will compare our proposed pruning strategy to the competitor strategies summa-
rized in Table . on the SVM and Weka meta-data set. We compare the different optimization
strategies with respect to two metrics. We report the mean of at least ten repetitions. For the strate-
gies with random initialization (Random, I-GP, I-RF), we report the mean of , repetitions.
Details about the meta-data sets and the evaluation metrics can be found in Chapter .

.. Hyperparameter Optimization for SVMs

As described in Section .., we do not use all  hyperparameter configurations for training but
only  per data set. The evaluation is nevertheless done on all  of the new data set. We choose
G to contain these  configurations and fixed |N (Dnew)| = , ν =  − |G|− and δ such that
the two closest neighbored hyperparameter configurations of the test region are within δ-distance.

We conduct two different experiments. First, we compare a surrogate model with pruning to
current state of the art optimization strategies. Once again, we stress that pruning in Bayesian





Table 5.1: Brief overview of the competitor methods. An explanation of this table is given in Section 3.2.3.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

optimization is an orthogonal contribution. Hence, these results are actually of minor interest.
Second, we compare different surrogate models with and without pruning or initialization. Pruning
is a useful contribution as long as it does not worsen the optimization speed in general and accelerates
it in some cases.

Figure . shows the results of the comparison of pruning to the current state of the art method.
We decided to choose the Gaussian process that is not learned across data sets as a surrogate model
because it is the most common surrogate model. Surprisingly, the pruning alone with the Gaussian
process is able to outperform all the competitor strategies with respect to all three evaluation metrics.

Figure . to . show the results of different surrogate models. We distinguish four different
cases: i) only the surrogate model, ii) the surrogate model with pruning, iii) the surrogate model
with three steps of initialization and iv) the surrogate model with three steps of initialization and
pruning. Figure . and . show the results for the plain surrogate models and the remaining three
Figures show the results for the transfer surrogate models. Our expectation before the experiments
were that the lift is higher i) for the experiments without initialization and ii) for the experiments
with plain surrogate models that do not learn across data sets. The reason for this is simple. An
initialization is a fixed policy that proposes hyperparameter configurations that have been good on
average, while pruning discards regions that were not useful. Thus, pruning will also have an effect
of initialization. The difference between initialization and pruning is that an initialization proposes
a specific hyperparameter configuration while pruning reduces the full hyperparameter space to a
set of good hyperparameter configurations. Furthermore, pruning is applied at each iteration and





●

●

●
● ● ● ●

2

3

4

5

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●

●

●

●
●

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e 
to

 th
e 

M
in

im
um

● Random    
I−GP    

I−RF    
SCoT    

MKL−GP    
I−GP (pruned)    

Figure 5.1: Pruning is an orthogonal contribution to Bayesian optimization. Nevertheless, we compare a pruned indepen-

dent Gaussian process tomany current state of the art optimization strategies without pruning.

not just for the initial iterations. Pruning is a way to transfer knowledge between data sets such that
those strategies that do not use this knowledge at all benefit more and are prevented from conducting
unnecessary exploration queries.

This is exactly what the results of the experiments show. The Bayesian optimization experiments
with pruning have comparable good starting points like those with initialization. Compare the
results of the independent Gaussian process (Figure .) for the setting that only uses initialization
with the one that only uses pruning. We clearly see the unnecessary exploration queries after a good
start. The setting with both initialization and pruning does not suffer from this problem and thus is
clearly the best strategy. This effect is weaker for the transfer surrogate models in Figure .. Only
for SCoT (Figure .) pruning does not accelerate the hyperparameter optimization on this meta-
data set but it also does not worsen it. Table . shows the results for all evaluation metrics and
surrogate models.

First, the results in the plot always converge to the same value across different optimization strate-
gies if you allow only enough trials. Second, even a very small improvement of the performance just
by choosing a better hyperparameter configurations is already a success, especially since this opti-
mization is usually limited in time. This little improvement may result in significantly better results
for a new model compared to the competitors or decides whether you win a research challenge or
not.
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Figure 5.2: Average rank and average distance to theminimum for I-GP on the SVMmeta-data set.
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●

●

●

●

●

●
●

2.0

2.5

3.0

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●
●

● ●

●

10−1.8

10−1.6

10−1.4

10−1.2

10−1

10−0.8

10−0.6

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e 
to

 th
e 

M
in

im
um

● SCoT    SCoT (pruned)    SCoT (init)    SCoT (init + pruned)    
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Figure 5.5: Average rank and average distance to theminimum forMKL-GP on the SVMmeta-data set.

Table 5.2: Average rank and average distance to theminimum after 30 trials on the SVMmeta-data set. Best results are

bold.

I-GP no pruning/init pruned init init + pruned

Average Rank@ . . . .
ADTM@ . . . .

I-RF no pruning/init pruned init init + pruned

Average Rank@ . . . .
ADTM@ . . . .

SCoT no pruning/init pruned init init + pruned

Average Rank@ . . . .
ADTM@ . . . .

MKL-GP no pruning/init pruned init init + pruned

Average Rank@ . . . .
ADTM@ . . . .
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Figure 5.6: Average rank and average distance to theminimum for I-RF and I-GP on theWekameta-data set.

.. Hyperparameter Optimization for Weka

In the last chapter, we have seen little improvement in cases where an initialization is combined with
surrogate models that are learning across data sets. We expect pruning to be useful in two scenarios:
if i) the dimensionality of the hyperparameter space is very high and ii) the meta-data set is too large
such that surrogate models that are learning across data sets are no longer a cost-efficient alternative
to evaluating the true function. Since most surrogate models are based on Gaussian processes, a
further problem is storing the kernel matrix. In our next meta-data set we are using more than a
million meta-instances which result into a kernel matrix of dimensions ×  which needs  TB
of memory for storing it.

For the Weka meta-data set we conducted a similar experiment as for the SVM meta-data set.
Due to the size of the data set, we restricted ourselves to the optimization strategies that do not learn
across data sets. Previously, we have seen that an optimization strategy without both, initialization
and pruning, is outperformed by a large margin by the same strategy only using pruning. Hence,
we show here only the comparison between the strategy i) only using an initialization step and ii)
using both initialization and pruning. Figure . concludes our experiments. As we have seen on the
SVM meta-data set, the results indicate that pruning is a useful addition to Bayesian optimization
by further accelerating the hyperparameter optimization.

. Conclusion

We propose pruning as an orthogonal contribution to Bayesian optimization and show in elaborated
experiments on two different meta-data sets that it accelerates the hyperparameter optimization in





most cases and in the worst case does not worsen it. It can be especially considered for optimization
strategies that do not use information from the past for the surrogate model.









6
Hyperparameter Optimization

Initialization

A typical way of accelerating a search is by means of a good initialization. We propose to transfer
knowledge by using an initialization strategy for hyperparameter optimization. In contrast to the
current state of the art initialization strategies, our strategy is neither limited to hyperparameter
configurations that have been evaluated on previous experiments nor does it need meta-features. The
initial hyperparameter configurations are derived by optimizing for a meta-loss which we formally
define in this chapter. This loss depends on the hyperparameter response function of the data sets that
were investigated in previous experiments. Since this function is unknown and only few observations
are given, the meta-loss is not differentiable. We propose to approximate the response function by a
differentiable plug-in estimator. Then, we are able to learn the initial hyperparameter configuration
sequence by applying gradient-based optimization techniques.

Extensive experiments are conducted on two meta-data sets. Our initialization strategy is com-
pared to the state of the art for initialization strategies and further methods that are able to transfer
knowledge between data sets. We give empirical evidence that our work provides an improvement
over the state of the art.





. Introduction

As discussed in the previous chapters, hyperparameter optimization is an omnipresent and vital prob-
lem in machine learning. Among the existing strategies to find near-optimal hyperparameter con-
figurations, Bayesian optimization is the current state of the art for hyperparameter optimization.
Recent work tries to transfer knowledge about the hyperparameter space from past experiments to a
new data set. This is either done by using surrogate models that consider past experiments,,,

or by using the information on past experiments to initialize the new search,,,. The moti-
vation behind this approach is that subsets of the hyperparameter space that are good on few data
sets are likely good candidates for others. While the first approach is limited to the application in
Bayesian optimization, the second can be used for any hyperparameter optimization strategies.

In this chapter, we mathematically formalize the problem of hyperparameter optimization and
derive a meta-loss for hyperparameter optimization. Since this meta-loss is yet not differentiable,
we propose to use a differentiable plug-in estimator. Given this estimator, initial hyperparameter
configurations can be learned by gradient-based optimization techniques that minimize the meta-
loss. In contrast to existing initialization strategies, our strategy is neither limited to hyperparameter
configurations that have been evaluated on previous data sets nor does it depend on meta-features.
Additionally, we can show that a direct optimization for the right loss leads to better initializations
and ultimately to an accelerated hyperparameter optimization.

. Learning Initializations

In this section, the task of initializing hyperparameter optimization strategies is generalized and a
novel approach to choose initial hyperparameter configurations is proposed. Instead of choosing
from hyperparameter configurations that have been best on previous data sets,, we directly learn
hyperparameter configurations and thus are not limited to hyperparameter configurations that have
been evaluated on previous data sets. The idea is to initialize the initial sequence of hyperparam-
eter configurations with promising configurations and further improve them by minimizing the
proposed hyperparameter loss. Since this loss is differentiable, the initial sequence of hyperparam-
eter configurations can be learned with gradient-based optimization techniques such as stochastic
gradient descent. This loss is derived by formally expressing a useful evaluation measure for hyper-
parameter optimization in general.





.. A Loss for Initializing the Hyperparameter Optimization

In Section .., the evaluation measure for hyperparameter optimization in general is formalized.
A good initialization should support a faster convergence of the hyperparameter search such that
the evaluation measure is minimal after T steps. Although, this cannot necessarily be achieved by
minimizing the same measure within the I initialization iterations, we use this loss as a proxy and
optimize the initial sequence of hyperparameter configurations for the same evaluation measure.
Thus, we optimize directly for ADTM (Equation (.)) by minimizing the meta-loss in Equation
(.).

L (XI,D) =

|D|

∑
D∈D

min
x∈XI

fD (x) (.)

.. Differentiable Meta-Loss

The goal in this work is to learn a set of I initial hyperparameter configurations that are not limited to
the candidates evaluated on previous data sets. This sequence is learned by minimizing the meta-loss
defined in Equation (.).

Obviously, this loss is not differentiable. The minimum function is a non-differentiable function
and the function fD is only partially observed. The minimum function can be approximated by
the differentiable softmin function σ : Rm → Rm as defined in Equation (.). We choose β =

− as proposed by Grabocka et al. such that
∑m

i= xiσ (x)i is very close to the true minimum
min {x, . . . , xm}.

σ
(
(x, . . . , xm)

T
)
i
=

eβxi∑m
j= e

βxj
(.)

The function fD is approximated by a differentiable plug-in estimator or surrogate model f̂D. This
can be any differentiable regression model that is able to learn from few observations on D and
generalize to unseen meta-instances. Thus, the final, differentiable meta-loss is given in Equation
(.).

L (XI,D) =

|D|

∑
D∈D

I∑
i=

σD,îfD (xi) (.)

where for notational convenience, the following notation is used in the remainder of the chapter,

σD,i =
eβ f̂D(xi)∑I
j= e

β f̂D(xj)
. (.)





.. Gradients for the Meta-Loss

In order to apply a gradient-based learning algorithm that minimizes the meta-loss, the gradients
for this loss with respect to the initial hyperparameter configurations need to be estimated.

∂

∂xl,j
L (XI,D) =

∂

∂xl,j


|D|

∑
D∈D

I∑
i=

σD,îfD (xi) (.)

=

|D|

∑
D∈D

σD,l

(
∂

∂xl,j
f̂D (xl)

)
·
(
β
(
− σD,l

)
f̂D (xl) + 

)
Hyperparameter response functions are highly non-linear functions. Hence, our plug-in estimator
needs to be able to model this property. Gaussian processes have proven to be a good surrogate model
for the meta-testing data, hence we decided to also use it as a surrogate model for each training data
set D. Hence, using the notation from Section ., the derivative for this specific prediction model
is

∂

∂xl,j
L (XI,D) =


|D|

∑
D∈D

σD,l

(
αT

D
∂

∂xl,j
kD,∗

)
·
(
β
(
− σD,l

)
kTD,∗αD + 

)
. (.)

.. Learning Algorithm

After deriving the gradients, the final learning algorithm is presented in Algorithm . First, a sur-
rogate model for each training data set is computed. Then, some initial values for x, . . . , xI are
chosen. Instead of using a more sophisticated initialization step such as k-means, a relatively simple
strategy is used. A subset containing I of all |D| training data sets are chosen at random and the best
hyperparameter configurations for these data sets are used as initial values. Afterwards, the initial
solution is iteratively improved by updating the hyperparameter configurations into the negative di-
rection of the gradient weighted by the learning rate η. For our experiments we identified η = −

and E =  epochs as useful values for our problem.

.. Adaptive Data Set Weights

So far, the influence of each training data set for finding the optimal initial hyperparameter con-
figurations is equal. Naturally, it is expected that one data set may contain more information than
others, hence, we propose to weight the influence of each data set with a similarity function that
depends on one training data setD and the new data setDnew for which the optimal hyperparameter





Algorithm  Learning Hyperparameter Optimization Initialization
Input: Meta-training set D, number of initial hyperparameter configurations I, number

of epochs E, meta-learn rate η.
Output: Optimal set of hyperparameter configurations for initialization.

: for D ∈ D do
: Compute f̂D (x∗) = kTD,∗αD on observed meta-instances (xi, fD (xi)).
: end for
: Initialize XI = {x, . . . , xI} with the best hyperparameter configurations of I data sets

D ∈ D chosen at random.
: for e =  to E do
: Precompute f̂D (xi) and σD for all i =  . . . I and D ∈ D.
: for i =  to I do
: for j =  to P (in parallel) do
: xi,j ← xi,j − η ∂

∂xi,j
L (XI,D)

: end for
: end for
: end for
: return XI

configuration is sought.

L (XI,D) =

|D|

∑
D∈D

sim (D,Dnew)

I∑
i=

σD,îfD (xi) (.)

The similarity function sim should be  if D is similar to Dnew and close to  if they are completely
different. This similarity function may depend on meta-features, but we propose to iteratively
reupdate and recompute the initial hyperparameter configurations depending on the outcome of
already performed evaluations fDnew (x) , . . . , fDnew (xt), t < I. The assumption is that the I initial
hyperparameter configurations are not evaluated in parallel but sequentially. Then, at time step t+,
it is sufficient to minimize the loss in Equation (.) by keeping the already evaluated hyperparameter
configurations Xt = {x, . . . , xt} fixed and find xt+ that minimizes the loss. The weighting of the
data sets is updated using the approximated Kendall Tau Rank Correlation Coefficient as defined in
Equation (.).

.. Comparison to State of the Art

The state of the art strategy for initializing hyperparameter optimization, can be understood as
a special case of our general loss function in Equation (.). They optimize for the same loss but use





Table 6.1: Brief overview of the competitor methods. An explanation of this table is given in Section 3.2.3.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

a different similarity function. While we are using a constant similarity function in Section ..
or an adaptive function in Section .., they propose to consider only the data sets that are nearest
regarding a distance function δ over the meta-features of the data set. Formally, they use

sim (D,Dnew) =

 if D is among the I nearest data sets regarding δ to Dnew

 otherwise
. (.)

To optimize the loss function with respect to this similarity function, no difficult optimization tech-
nique is needed. Simply taking the best hyperparameter configurations of the I nearest data sets to
Dnew is sufficient.

This choice of initial hyperparameter configurations is limited to the hyperparameter configura-
tions that have been investigated on the training data sets. We will show that better initial hyperpa-
rameter configurations can be found if this constraint is not given.

. Experimental Evaluation

In this section we will analyze the impact of our proposed initialization strategy on state of the art
hyperparameter optimization methods as summarized in Table .. We compare our initialization
strategy to competitor initialization methods and to transfer surrogate models. In our results we
report the mean of at least ten repetitions of a leave-one-data-set-out cross-validation. Details about
the meta-data sets and the evaluation metrics can be found in Chapter .





.. Initialization Strategies

Following initialization strategies will be considered in our experiments.

No Initialization (No Init) No initialization is used. This is equivalent to a random initializa-
tion for all surrogate models that do not transfer knowledge from previous experiments. Thus, these
results were repeated , times instead of only  times and averaged.

Random Best Initialization (RBI) This initialization is a very simple initialization. I train-
ing data sets from the set of all training data sets D are chosen uniformly at random. Then, the
best hyperparameter configurations on these data sets are used for the initialization. Hence, this
corresponds to the initialization used for Algorithm .

Nearest Best Initialization (NBI) This is the initialization strategy proposed by Reif et al. and
Feurer et al.,. Instead of choosing I training data sets uniformly at random, they are chosen with
respect to the similarity between the meta-features listed in Table .. Then, like for RBI, the best
hyperparameter configurations on these data sets are chosen for initialization.

Learning Initializations (LI) Learning Initializations is the strategy introduced in Section .
and summarized in Algorithm . Its advantage is that it is directly optimized for the loss and the
selected hyperparameter configurations are not limited to hyperparameter configurations that were
previously observed in past experiments. For our experiment, we precomputed the values of the
response function on a grid. Since the initial hyperparameter configurations found by Learning
Initialization will likely not be on this grid. However, to avoid the time-consuming evaluation for
the exact hyperparameter configurations, the hyperparameter configurations were chosen that are
closest to the one proposed by Learning Initializations.

Adaptive Learning Initializations (aLI) Adaptive Learning Initializations is presented in Sec-
tion ... It is an extension to Learning Initializations (LI) that tries to incorporate the knowledge
about the new data set that is sequentially gathered by re-weighting the influence of each training
data set.

.. Experiments

Two different experiments are conducted. First, state of the art initialization strategies are compared
with respect to the ADTM after I initial hyperparameter configurations. Second, the long term
effect on the hyperparameter optimization is compared. Even though the initial hyperparameter
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Figure 6.1: Development of the ADTM for increasing number of initial hyperparameter configurations on bothmeta-data

sets. Our proposed strategies LI and aLI are outperforming the state of the art initialization strategies (RBI/NBI) and state

of the art surrogatemodels that transfer knowledge from previous experiments (SCoT andMKL-GP).

configurations lead to good results after I steps, the ultimate aim is to find near-optimal hyperpa-
rameter configurations after T iterations.

Comparison to other Initialization Strategies

The ADTM on the two meta-data set for I =  . . .  for different initialization strategies is shown
in Figure .. This experiment analyzes i) the performance of initialization strategies versus transfer
surrogate models that are transferring knowledge from previous experiments (SCoT and MKL-GP),
ii) the legitimacy of the use of meta-features as a measure for similarity between data sets and iii)
compares our proposed initialization strategies to the current state of the art. One may argue, that
in the case that a surrogate model is used to transfer knowledge from previous experiments, no
further initialization strategy is needed. The experiments do not indicate that this is true. While
we acknowledge that at least SCoT provides a moderate initialization sequence, it is still not able to
beat the best initialization strategy. A direct comparison between RBI and NBI indicates that meta-
features can be used to estimate the similarity between data sets. The use of meta-features in NBI
leads to an improved initialization compared to RBI. Finally, our proposed initialization strategy LI
provides a very good initialization for I =  and is consistently the best initialization. Its variation
aLI does not seem to provide better results.





Comparison with Respect to the Long Term Effect

The aim of an initialization strategy is to accelerate the hyperparameter search and convergence to
a close-to-optimal hyperparameter configuration. Thus, not the performance at the end of the ini-
tialization is essential but the further convergence. Therefore, a further experiment was conducted.
Bayesian optimization was initialized with five hyperparameter configurations using the respective
initialization strategy and then was continued using Bayesian optimization. All initialization strate-
gies are also compared to the case where no initialization was used. The experiments are conducted
for all surrogate models presented in Table ..

We expect that transferring knowledge from previous experiments has more impact if this is not
done by the surrogate model. This can be seen in Figure .. Comparing Figure . with Figure .
on the SVM meta-data set, one can see that all initialization strategies provide better results for the
first initial value than the I-GP without initialization does after six iterations of Bayesian optimiza-
tion. The results in Figure . and . are of special interest because the effect of the knowledge
transfer is not distorted by a surrogate model that also transfers knowledge. Our proposed strategy
LI outperforms any other initialization strategy on both meta-data sets and for both surrogate mod-
els. Again, aLI does not provide better results than LI. It is interesting to notice that RBI provides
similar results to NBI.

The results in Figure . and . demonstrate the impact of an initialization strategy on a surrogate
model that transfers already knowledge from previous experiments. Obviously, the gap between no
initialization and some specific initialization shrinks. SCoT without initialization achieves similar
results as SCoT with RBI or NBI but SCoT with LI consistently achieves the best results. Account
should be taken of the fact that the result lines will compulsory get closer with growing number of
Bayesian optimization iterations and will meet after just enough iterations. For the MKL-GP the
results are similar, but here NBI is able to outperform LI on the SVM meta-data set.

So far we argued carefully that, even though surrogate models that are transferring knowledge
across data sets exist, there is still need for an initialization strategy. Moreover, one can question:
are these surrogate models necessary if a good initialization strategy is used? Surrogate models that
learn across data sets have three big disadvantages:

. The run-time for updating the surrogate model after each Bayesian optimization iteration is
by a factor of O

(
|D|

)
higher than a surrogate model that is only trained on the current

data set (assuming the surrogate model is based on a Gaussian process which is the case for
SCoT and MKL-GP).

. A specific surrogate model is needed and no out of the box machine learning model such
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Figure 6.2: Impact of an initialization with five hyperparameter configurations on the long term optimization for I-GP (a

surrogatemodel that does not use information from previous experiments on other data sets). Our proposed strategies LI

and aLI are outperforming alternative initialization strategies on bothmeta-data sets.
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Figure 6.3: Impact of an initialization with five hyperparameter configurations on the long term optimization for I-RF (a

surrogatemodel that does not use information from previous experiments on other data sets). Our proposed initialization

strategy LI is outperforming the state of the art on bothmeta-data sets.
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Figure 6.4: Impact of an initialization with five hyperparameter configurations on the long term optimization for SCoT (a

surrogatemodel that transfers knowledge from previous experiments to the new data set). Our proposed initialization

strategy LI is outperforming the state of the art on bothmeta-data sets.
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Figure 6.5: Impact of an initialization with five hyperparameter configurations on the long term optimization forMKL-GP

(a surrogatemodel that transfers knowledge from previous experiments to the new data set). Our proposed initialization

strategy LI is outperforming the state of the art on AdaBoost meta-data sets. We acknowledge that NBI provides better

results for the SVMmeta-data set.
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Figure 6.6: Comparison of the performance development of four different surrogatemodels that are all initialized with

five LI hyperparameter configurations. RF is a surrogatemodel that does not transfer knowledge between data sets but

yet performs best only due to the LI initialization strategy. Hence, current state of the art surrogatemodels that transfer

knowledge between data sets do not seem to achieve better results if one uses a initialization strategy instead.

as a Gaussian process or random forest can be used. Additionally, hand-crafted, problem-
dependent meta-features need to be used.

. These surrogate models are specific for Bayesian optimization and cannot be used for other
optimization frameworks such as the initialization strategy. Furthermore, an initialization
strategy can be estimated by a single researcher and then shared with other researchers and
practitioners while the specific surrogate model always also includes sharing the meta-data.

These disadvantages may be tolerable if there is an improvement in terms of hyperparameter
optimization acceleration. Figure . compares both surrogate models that do not use meta-features
and do not transfer knowledge (I-GP and I-RF) to those that do (SCoT and MKL-GP). All four
strategies are initialized with five hyperparameter configurations by LI since this provided better
results for all strategies. As the reader can see, the surrogate models that learn across data sets do not
provide better results.

.. Experimental Conclusion

Concluding this section, our proposed initialization strategy LI is able to provide better initial hy-
perparameter configurations than the state of the art. Furthermore, it demonstrates better results
with respect to the long term effect. Initialization strategies for optimization strategies that do not
transfer knowledge from other experiments gain most from the initialization. But also for surrogate
models that already transfer the knowledge an improvement is recognizable. Furthermore, the cur-





rent state of the art surrogate models do not seem to be necessary if a good initialization strategy is
chosen. The proposed adaptive re-weighting of the data set weights (aLI) has some potential but the
re-weighting as proposed by us does not show better results than a constant weighting.

. Conclusion

A meta-loss for hyperparameter optimization was derived that depends on the hyperparameter re-
sponse function of previously seen data sets. Since the response function is unknown and only few
observations are given, the meta-loss is not differentiable. By approximating the response function
with a differentiable plug-in estimator, the meta-loss becomes differentiable. That in turn enabled
us to learn initial hyperparameter configurations that minimize the meta-loss. These learned initial
hyperparameter configurations are not limited to configurations that have been seen before.

Our initialization learning algorithm was compared to state of the art initialization strategies and
provided better initial values and furthermore has better long term effects on the hyperparameter
optimization. Finally, a generalized meta-loss was presented that allows to (dynamically) weight the
influence of each data set and we have shown that the current state of the art initialization strategies
are optimized for a special case of this general meta-loss.









7
Two-Stage Transfer Surrogate Model

In Section ., we presented different surrogate models based on Gaussian processes. They have the
tempting property that they are hyperparameter-free and naturally provide certainties about their
predictions. However, with growing meta-information Gaussian processes are no longer feasible as
they involve the inversion of a kernel matrix of the size of the training data, which naturally limits
their applicability.

Consequently, instead of learning a joint surrogate model on all of the meta-data, we propose a
scalable two-stage transfer surrogate model framework. In this framework, we propose to first learn
individual surrogate models on the observations of each data set and then combine all surrogates to
a joint one using ensembling techniques. The final surrogate is a weighted sum of all data set specific
surrogate models plus an additional surrogate that is solely learned on observations of the new data
set. We present two different strategies on finding ensembling weights. The first one is based on a
probabilistic product of experts approach, the second one is based on kernel regression.

In an empirical evaluation including comparisons to the current state of the art on our meta-data
sets, we are able to demonstrate that our proposed approach does not only scale to large meta-data
but also finds the stronger prediction models.

. Scalable Two-Stage Transfer Surrogate Framework

In Section . we have discussed how to learn Gaussian processes, where the computationally most
expensive step lies in the inversion of the kernel matrix K, which is of size n if we are facing n many





training instances. Given the scenario that we are in possession of large scale meta-knowledge,
learning a Gaussian process becomes infeasible as inverting K can only be done in O(n). How-
ever, Gaussian processes are a decent choice as surrogate models for Bayesian optimization, as they
naturally predict uncertainties and are basically hyperparameter free.

Besides the computational challenges, learning a Gaussian process on all training instances makes
the strong assumption that each training instance and data set are equally important. This issue is
usually addressed by adding meta-features which leads to a nontransparent and implicit represen-
tation of similarity between data sets and their influence. We want to propose a framework that
tackles both issues by making Gaussian processes scalable and making the influence of each data set
within the meta-data explicit.

Therefore, in order to still learn Gaussian processes, we propose to subdivide the meta-data into
M many individual parts and learn a single Gaussian process independently on each of the parts
plus a single Gaussian process for all the new observations that we will see during the Bayesian
optimization trials. Formally, we divide our meta-data

X = (X(), ...,X(M)) f = (f(), ..., f(M)) , (.)

in a way where all X(i) are pairwise disjoint. However, instead of taking an arbitrary subdivision of
our meta-data, we simply divide it by the data sets we have already observed. This means, for each
data set Di, we create a subset X(i), f(i) which contains all meta-instances of data set Di. As a result,
we have M Gaussian processes learned, one for each data set, such that for every i = , . . . ,M

p
(
f∗ | x∗,X(i), f(i),θ(i)

)
= N

(
f∗ |mi(x∗), σ

i (x∗)
)

. (.)

As mentioned earlier, we also learn a Gaussian process for the new observations, which will be
updated after every Bayesian optimization trial. We will simply use the indexM+ for this Gaussian
process.

We derive our scalable two-stage transfer surrogate framework (TST) by combining all M +

 Gaussian processes into a weighted, normalized sum as sketched in Figure .. We define the
following mean and precision

m (x∗) =

∑M+
i= wi (x∗)mi (x∗)∑M+

i= wi (x∗)
(.)

σ−(x∗) =

M+∑
i=

viσ−
i (x∗) . (.)





Figure 7.1: The proposed framework for our scalable transfer surrogate based on Gaussian processes. A Gaussian process

is learned per data set and they are finally combined in a weighted sum.

The final framework is summarized in Algorithm . It consists of two different parts, at first the
training of the individual processes, secondly how to combine them for prediction. As mentioned
before, training involves dividing the meta-instances in M subsets, one subset for each data set on
which we observed evaluations. Thus, every Gaussian process becomes the expert of the respec-
tive data set. The prediction uses these experts plus one additional expert that is estimated on the
observed performances on the new data set. Based on Equations (.) and (.), the mean and un-
certainty is estimated. In the following subsections, we will discuss how to derive possible options
for choosing w and v which we introduced in Equations (.) and (.). Each version is a possible
surrogate model that can be used in Bayesian optimization.

.. Product of Experts

The work by Schilling et al. is a special case of our framework (Algorithm ). In contrast to us,
they are focusing more on the scalability aspect and less on the meta-learning aspect while we achieve
both aspects with our approach. They propose the use of product of experts and formally derive
values for the parameters w and v as defined in our scalable two-stage transfer surrogate framework.
Following the work of Hinton et al., when applying the independence assumption, we can write
the joint likelihood in Equation (.) as a product of individual likelihoods

p (f∗ | x∗,X, f) =
M+∏
i=

p
(
f∗ | x∗,X(i), f(i),θ(i)

)
, (.)

which is also called a product of experts model and has been introduced by Hinton. Additionally,
weighting coefficients βi have been proposed to use in the product of experts model to derive the





Algorithm  Scalable Gaussian Process Transfer Surrogate Framework
: function train(X, f)
: Split meta-data by data set:

X = (X(), ...,X(M)) f = (f(), ..., f(M)) Equation (.)
: for i =  to M do
: Estimate p

(
f(i) |X(i),θ(i)

)
= N

(
f(i) |mi(X(i)),Σi(X(i),X(i))

)
.

Equation (.)
: end for
: end function

: function predict(x, p
(
f(M+) |X(M+),θ(M+)

)
)

: m =
∑M+

i= wi(x∗)mi(xm)∑M+
i= wi(x∗)

Equation (.)

: σ =

√(∑M+
i= viσ−

i (x∗)
)−

Equation (.)

: return (m, σ)
: end function

generalized product of experts

p (f∗ | x∗,X, f) =
M+∏
i=

pβi
(
f∗ | x∗,X(i), f(i),θ(i)

)
, (.)

where the initial formulation is obtained by setting all βi = . Usually, the coefficients βi in the
generalized product of experts are chosen to sum up to one.

Computing the product of all these Gaussian densities, we obtain a Gaussian distribution with
the following mean and precision:

m (x∗) = σ (x∗)
M+∑
i=

βiσ
−
i (x∗)mi(x∗) (.)

σ− (x∗) =
M+∑
i=

βiσ
−
i (x∗) . (.)

Substituting the precision into the formula for the mean, the predicted mean resolves to

m (x∗) =
∑M+

i= βiσ
−
i (x∗)mi(x∗)∑M+

i= βiσ
−
i (x∗)

, (.)





which is a sum of means, weighted by the product of βi and the individual precisions. For our
experiments, we set

βi =


M+ 
∀i = , . . . ,M+  , (.)

which does not influence the predicted mean as the terms cancel out. However, this effectively
increases the uncertainty which the general model of experts usually tends to underestimate. To
sum up, generalized products of experts are an instance of scalable transfer surrogates when setting

wi (x∗) = βiσ
−
i (x∗) (.)

vi = βi (.)

as weight parameters in Algorithm .

.. Kernel Regression

In the previous section, we derived parameters w and v for Algorithm  under the assumption every
data set has equal importance for the task of finding optimal hyperparameter configurations for
our new data set DM+. But in order to find good hyperparameter configurations on a new data
set DM+, it is very intuitive to rely stronger on the meta-knowledge of data sets that have a similar
hyperparameter response surface. Hence, settingwi to larger values for these experts to increase their
influence makes a lot of sense. Assuming that we know the similarity k

(
χi, χj

)
between two data

sets Di and Dj, where χi and χj are the data set descriptors of Di and Dj, respectively, we proposed
to set the value of wi to the similarity between the data set Di and the new data set DM+

:

wi = k (χi, χM+) . (.)

The concrete kernel that we apply is the Epanechnikov quadratic kernel

kρ
(
χi, χj

)
= δ

(∥∥χi − χj
∥∥


ρ

)
, (.)

where the δ function is given by

δ (t) =



(
− t

)
if t ≤ 

 otherwise
(.)





and ρ >  is the bandwidth. Setting w like this, our scalable Gaussian process transfer surrogate
framework is now equivalent to kernel regression with the Nadaraya Watson kernel-weighted average
for the mean prediction. Furthermore, we propose to rely on the uncertainty of the surrogate model
for the new data set only:

vi =

 i = M+ 

 otherwise .
(.)

We would like to use the true similarity between the new data set and all other data sets but since
this is not available, we will evaluate two different common techniques to approximate it. One
is based on meta-features, simple, statistical or information theoretic properties that are extracted
from the data set which are considered to describe a data set,,. We use the meta-features listed
in Table . and explained in Section ...

However, using these meta-features has one drawback. They are constant which means that the
knowledge of the target data set enters the model only via the target Gaussian process which is
updated after every trial. Therefore, we propose an alternative using a pairwise hyperparameter
performance comparison,. The idea is to select pairs

(
xi, xj

)
of evaluated hyperparameter con-

figurations on the new data set DM+ and count how often DM+ and another data set Dk agree on
the ranking of these configurations. After evaluating t many hyperparameter configurations during
Bayesian optimization on the new data set, we estimate the data set descriptors for each data set Dk

as

(χk)j+(i−)t =

 
t(t−) if mk (xi) > mk

(
xj
)

 otherwise
. (.)

While the value of f (·,DM+) is known for these t hyperparameter configurations, this is not nec-
essarily true for the data sets D, . . . ,DM. Hence, we use the prediction of each individual expert
instead.

Computing the Euclidean distance of two meta-feature vectors then yields the number of discor-
dant pairs normalized by dividing by the number of all pairs. This is basically a distance function
based on the Kendall rank correlation coefficient. In this way, during the Bayesian optimization
process the coefficients are adapted after each iteration, where the data sets that agree on more hy-
perparameter pairs with the target data set are weighted higher. This has been shown to improve the
performance drastically.





Table 7.1: Brief overview of the competitor methods. An explanation of this table is given in Section 3.2.3.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Independent
Gaussian Process
with
Meta-Initialization

I-GP (init) Gaussian Process 3 Chap. 

Independent
Random Forest
with
Meta-Initialization

I-RF (init) Random Forest 3 Chap. 

Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

Factorized
Multilayer
Perceptron

FMLP Neural Network 3 Sec. ..

. Experimental Evaluation

.. Optimization Strategies

We summarize all optimization strategies considered in the experiments. Our competitor methods
are summarized in Table .. We compare them to three different variations of the scalable two-
stage transfer surrogate framework. TST-M is using the meta-feature representation for the data sets,
TST-R is using the pairwise ranking representation. The third version provides another baseline

and uses product of experts which we call TST-PoE. We introduced it as an instance of TST in
Section ...

The results reported are estimated using a leave-one-data-set-out cross-validation and are the av-
erage of ten repetitions. For strategies with random initialization (Random, I-GP, I-RF), we report
the average over thousand repetitions due to the higher variance. Details about the meta-data sets
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Figure 7.2: Our proposed transfer surrogatemodel TST-R provides the best performance with respect to both evaluation

measures for the task of hyperparameter optimization. For bothmetrics, the smaller the better.

and the evaluation metrics can be found in Chapter .

.. Experiments

We compare the different hyperparameter optimization methods in two different scenarios: i) hy-
perparameter optimization and ii) combined algorithm selection and hyperparameter optimization.
For the task of hyperparameter optimization, we optimize the hyperparameters of a support vector
machine. The results are summarized in Figure .. What we can see is that TST-R is outperform-
ing the competitor methods with respect to both evaluation metrics by a large margin. TST-M has
a similar good start as TST-R but its performance degenerates after few trials. Because the only
difference between TST-R and TST-M is the way the data sets are described, one might argue that
meta-features are less descriptive in describing a data set than the approach of pairwise rankings.
We do not think that one can infer this from these results. The true reason for this behavior is that
the distances for TST-R are updated after each trials and the distance to the data sets from previous
experiments is increasing over time. Thus, the influence of the meta-data set vanishes and TST-R is
focusing only on the knowledge about the new data set at some point of time. Contrariwise, TST-M
is using a constant distance between data set based on the meta-features. While the meta-knowledge
is useful especially in the beginning, TST-M keeps relying on this such that the information of the
new data set is not optimally taken into account. One simple way of fixing this problem is to de-
cay the influence of the meta-knowledge which would introduce at least one meta-hyperparameter.
Because TST-R is performing well without an additional meta-hyperparameter for the decay, we do
not follow this idea here.
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Figure 7.3: Our approach TST-R also outperforms the competitor methods for the task of combined algorithm selection and

hyperparameter optimization. Surrogatemodels that use Gaussian processes that train over the wholemeta-data are not

feasible for this data set 79 . Therefore, we consider I-GP and I-RFwithmeta-learning initialization.

We investigate the performance of the optimization methods also for the problem of combined
algorithm selection and hyperparameter optimization on our Weka meta-data set. For this experi-
ment, we remove some methods for different reasons. We remove some weaker methods to improve
the readability. Furthermore, we do not compare to methods, which are using one Gaussian pro-
cess, that is trained on the complete meta-data (SCoT and MKL-GP). The reason for this is that
Gaussian processes do not scale to these large meta-data sets (time and memory-wise). Our ap-
proach is learning one Gaussian process for each data set such that each model only needs to be
learned on a fraction of the data and thus remains feasible. Nevertheless, we compare to FMLP, the
strongest competitor from the previous experiment as well as I-GP, I-RF and TST-PoE. Furthermore,
we also compare to I-GP and I-RF with five initialization steps using a strong meta-initialization
technique. The results summarized in Figure . are very similar to those reported in our previ-
ous experiment. TST-R again is best for both evaluation metrics but FMLP shows to be a strong
competitor.

.. Scalability Experiment

As discussed in Section ., Gaussian processes are computationally expensive. Training time is cubic
in the number of training instances and still quadratic when updating it. Our proposed surrogate
model TST makes use of Gaussian processes in a scalable way. For d data sets, where on each
of these n observations of different hyperparameter configurations have been made, a traditional
Gaussian process that is trained on all instances, as done by SCoT and MKL-GP, has a training time
of O

(
dn) which is a typical way of using meta-knowledge for Bayesian optimization,. We
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Figure 7.4: TST is clearly outperforming the state of the art that is training a single Gaussian process on the full meta-data

with respect to scalability. FMLP, which is based on a neural network, has a training time that is linear in the number of data

sets, similar to TST.

propose to learn for each data set an independent Gaussian process which reduces the training time
to O

(
dn) and is no longer cubic in the number of data sets. In an empirical evaluation we show

the impact of an ever-growing meta-data set.

We created an artificial meta-data set with n =  meta-instances per data set and  hyperpa-
rameters. We estimated the training time for a Gaussian process on the full data and TST with the
number of data sets varying between  and . The results are visualized in Figure .. At a point
where the Full GP needs almost  hours of training, TST needs less than  minutes.

As discussed earlier, the cubic training time makes Gaussian processes unattractive for large meta-
data sets. Hence, our main goal was to achieve training times for Gaussian processes that are compet-
itive to other models such as neural networks as used by FMLP. Figure . shows that our approach
needs time very similar to FMLP. We have to acknowledge that FMLP also scales linearly with an
increasing number of meta-instances per data set while the training time of TST is still cubic in this
dimension. To overcome this problem one can apply the idea proposed by Hinton which we in-
troduced in Section ... Multiple Gaussian processes can be learned per data set. To achieve this,
the subsets X(i), f (i) defined in Equation (.) have to be divided further. One could for example
learn an individual Gaussian process for each of the three SVM kernels. If there is no natural way
of dividing the data it is no problem to distribute the meta-instances in an arbitrary way. Then, we
can apply the method of Section ...





. Conclusion

In this chapter, we propose a two-stage transfer surrogate for using meta-knowledge to accelerate
Bayesian optimization for machine learning configurations. We propose to approximate the hyper-
parameter response function of each data set with an individual model. These individual models
are finally combined at the second stage to estimate the score of a hyperparameter configuration.
In extensive experiments on two meta-data sets, we compare our method to numerous competitor
methods published recently on established machine learning conferences. We show empirically that
our two-stage transfer surrogate model is able to outperform all considered competitor methods for
the task of hyperparameter optimization as well as the task of combined algorithm selection and
hyperparameter optimization.









8
Hyperparameter Optimization Machines

Bayesian optimization is one of the most popular methods for finding optimal hyperparameter con-
figurations. Originally designed for black-box optimization, researchers have contributed different
meta-learning approaches to speed up the optimization process. In this final chapter on meta-
learning for Bayesian optimization, we propose Hyperparameter Optimization Machines, a Bayesian
optimization framework that covers recent meta-learning additions. This framework gives access to
adaptive hyperparameter transfer learning with plain surrogates (AHT), a new class of hyperparam-
eter optimization strategies. The idea of AHT is as follows. A plain surrogate model, i.e. one that
does not use meta-knowledge, is used for Bayesian optimization. Meta-knowledge is used within a
transfer function which is combined with the acquisition function. Hence, the choice of the next
hyperparameter configuration is stronger controlled by this function and decoupled by the surro-
gate model. The advantages are that the time- and space-consuming transfer surrogate models are
replaced with plain surrogates and that we can directly optimize for a meta-loss which has not been
possible with surrogate models so far. We conclude our work on meta-learning for Bayesian op-
timization by comparing our proposed methods and several competitor methods on two different
meta-data sets. In this final comparison, we can show that AHT outperforms various instances
of Bayesian optimization in the scenarios of hyperparameter optimization and algorithm selection.
Finally, we discuss lessons learned and insights gained.





. Hyperparameter Optimization Machines

Bayesian optimization, has been proposed for black-box optimization. It was designed for finding
an optimum of a function f which is expensive to evaluate. A surrogate model is used that tries to
approximate f but has the advantage of being less time-consuming to evaluate. This surrogate model
is combined with an acquisition function a to tackle the exploitation-exploration dilemma. Bayesian
optimization has been applied to the problem of hyperparameter optimization by minimizing the
function fD defined in Equation (.) and has proven to be very effective. Since then, researchers
have adapted and specialized Bayesian optimization for the hyperparameter optimization problem.

A specific property of hyperparameter optimization beyond mere black-box optimization is that
the hyperparameter response function of a specific algorithm behaves similar on similar data sets.
Furthermore, some hyperparameter configurations provide decent results on average which are usu-
ally proposed as default hyperparameter configurations. Hence, information about the data sets
and information about previous experiments can be used by practitioners to find good initial hy-
perparameter configurations. This important difference between arbitrary black-box optimization
and hyperparameter optimization and the fact that meta-knowledge already helped for other hy-
perparameter optimization techniques, gave rise to various meta-learning approaches based on
initialization,, transfer surrogate models,,, and pruning and has empirically proven its
usefulness. Finally, the sequential hyperparameter evaluation was adapted to be capable of searching
in parallel to exploit the hardware available in our days.

This is our concluding chapter on meta-learning for Bayesian optimization. Therefore, we want to
propose hyperparameter optimization machines as a generalization of Bayesian optimization which
covers the recent contributions in the context of configuration optimization for machine learning
applications. Algorithm  outlines our aforementioned generalization. Like most Bayesian opti-
mization approaches, it consists of a surrogate model and an acquisition function a. Iteratively,
the surrogate model is updated using the observation history H and the next hyperparameter con-
figuration is selected (Line  and ). In contrast to the state of the art, this is done by using a
linear combination of the acquisition function a and a new component, the transfer function T.
We consider the negative value of the acquisition function a because a higher value means better
values and we want to minimize the combined term. As will be detailed in the following, this covers
Bayesian optimization with initialization as well as our proposed optimization strategy proposed in
Section .. The parameter α is a meta-hyperparameter that controls the influence of transferred
meta-knowledge and the knowledge gathered about the new data set so far. A reasonable α is one
that is close to  for small t ∈ N and then increases over time to . Thus, meta-knowledge plays
a major role for the selection of the first hyperparameter configurations and becomes irrelevant as





soon as enough knowledge is gathered about the new data set. After selecting the most promising
hyperparameter configuration, it is evaluated and the result is added to H. This is repeated until
convergence.

Algorithm  Hyperparameter Optimization Machines
Input: Configuration space X , observation history H, acquisition function a, transfer

function T, acquisition function a, trade-off parameter α.
Output: Best configuration found.

: X ← ∅, f min ←∞
: while not converged do
: Update surrogate model (Update)
: x∗ ← arg minx∗∈X (−αt)T (x∗,Xt−)−αt a (x∗, p (f∗|x∗,H)) (Predict)
: Xt ← Xt− ∪ {x∗}
: f∗ ← f (x∗)
: H ← H∪ {(x∗, f∗)}
: if f∗ < f min then
: xmin, f min ← x∗, f∗

: end if
: end while
: return xmin

.. Relationship between HOM and Bayesian Optimization

In the last section we introduced hyperparameter optimization machines (HOM) with the goal to
generalize across the contributions that have been done to Bayesian optimization for configuration
optimization for machine learning. Hence, we will now map most relevant hyperparameter opti-
mization methods related to Bayesian optimization, as defined in Algorithm , to HOM.

Bayesian optimization itself is obviously a specialization of HOM in the case thatα =  such that
the transfer function T will not be considered or for arbitrary α if T is a constant function. In the
following, we will ignore that T can be a constant function and assume that it somehow reflects the
meta-knowledge, meaning that T (Xt) is lower if Xt ⊂ X contains hyperparameter configurations
that performed well in previous experiments and vice versa. It is important to notice, that HOM
is not an instance of Bayesian optimization with a specific acquisition function. The expression
in Line  of Algorithm  and an acquisition function have in common that they acquire the next
hyperparameter configuration but the acquisition function of Bayesian optimization depends only
on the hyperparameter configuration and its predicted performance but is independent of the time
and previously selected hyperparameter configurations.





The work that is proposing a specific surrogate model for Bayesian optimization,,,,, is
hence also an instance of HOM. Choosing an appropriate transfer function, Bayesian optimization
with I initialization steps, is a special case of HOM where αt =  if t ≤ I and  otherwise.

Finally, even random search and grid search can be considered as an instance of HOM with a
very specific acquisition function and with no need for a surrogate model.

. Adaptive Hyperparameter Transfer Learning with Plain Surrogates

So far two different ways of exploiting meta-knowledge by Bayesian optimization are common.
One option is to use an initialization, and combine it with plain surrogate models, models that
are learned only on observations of the current data set. The advantage in this case is that it does not
need any additional run time during the optimization process. Otherwise, the initialization sequence
is static and does not consider the gained knowledge about the response function fDnew . In contrast,
transfer surrogate models ,,, (machine learning models that are learned on the observations on
the current data and on observations of past experiments on other data sets) adaptively consider the
meta-knowledge but they are costly in terms of space and time. Finally, applying meta-knowledge
by initialization or transfer surrogate models achieves similar performances.

In this section we propose a new instance of hyperparameter optimization machines which we
call Adaptive Hyperparameter Transfer Learning with Plain Surrogates (AHT). The idea is to make use
of the newly introduced transfer function T and combine it with plain surrogates while letting α

adopt arbitrary values between  and . This will lead to a new hyperparameter optimization strategy
that tries to combine the advantages of both, initialization and transfer surrogate models, and reduce
their drawbacks. In this scenario, α is a meta-hyperparameter that is chosen using cross-validation
on the meta-training data set. In the following sections, we will derive a transfer functionT that tries
to minimize a meta-loss and theoretically investigate the asymptotic space and time requirements
compared to plain and transfer surrogates, respectively.

AHT is also our final proposition of meta-target driven optimization methods and hence we
will discuss and compare it to our previous methods that have a similar motivation. In Chapter
 we present with SMFO our first meta-target driven optimization method. It solely chooses the
next hyperparameter configuration based on the meta-knowledge. Hence, it can be considered as
an instance of hyperparameter optimization machines that is only using the transfer function. It
provides very good results but has some important disadvantages. It requires that the same hyperpa-
rameter configurations have been evaluated on all data sets. Furthermore, it is not able to propose
the evaluation of hyperparameter configuration which do not appear in the meta-data set.

In Chapter  we solved some of these issues. Learning surrogate models for each data set relaxes





the constraint of evaluating the same hyperparameter configurations on all data sets and that only
hyperparameter configurations appearing in the meta-data set can be proposed. But the method
presented in Chapter  is only an initialization strategy and hence does not support the full opti-
mization process.

AHT overcomes all aforementioned problems. Furthermore, it combines the feedback on the
new data set and can be applied during the full optimization process. It marks the end of our
developing process that resulted into several intermediate solutions and finally leads to a convincing
solution.

.. Evaluating Hyperparameter Configurations based on Meta-Knowledge

So far the evaluation of a hyperparameter configuration is based on an acquisition function that
takes the predicted value and uncertainty into account. During this selection, meta-information
can be used indirectly with transfer surrogate models. HOMs allow to introduce our new approach
AHT that uses plain surrogates and still accelerates the optimization process as well as decreases the
needed memory. The use of meta-knowledge is solely based on the transfer function T. Then Line
 of Algorithm  combines the knowledge about the current data set and the knowledge about past
experiments. Yet, it is unclear what properties are required for a good transfer function. We define
two requirements. First, hyperparameter configurations that performed well on previous data set
should be rated higher than others. Second, with increasing information about the new data set, the
influence of the meta-information should vanish. The second requirement can also be achieved by
choosing α accordingly but this would inflate the number of meta-hyperparameters for the HOM
which we want to avoid.

Since our ultimate goal is to minimize the DTM on the new data set, we use the ADTM on the
previous data sets as a proxy for rating the hyperparameter configurations. Thus, we set the transfer
function to be the meta-loss defined in Equation (.):

T (x,Xt−) =

|D|

∑
D∈D

min
x′∈Xt−∪{x}

fD
(
x′
)

, (.)

where Xt− is the set of evaluated hyperparameter configurations after t−  trials. The hyperparam-
eter configuration x that minimizes Equation (.) is the one that has reduced the misclassification
rate the most on previous data sets if the hyperparameter configurations in Xt− have been tried
already.

One problem remains. The functions fD are only partially observed, hence Equation (.) cannot
be computed for arbitrary hyperparameter configurations x. To achieve this, we replace fD with plug-
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Figure 8.1: First row: Hyperparameter response functions of the current data set where wewant to find the best hyper-

parameter configurations and of three data sets which have been investigated before (meta-knowledge). Second row:

Sequential process of AHT. One can clearly see the positive impact of the transfer function on the hyperparameter configu-

ration selection in unexplored areas. In all plots: the lower the better.

in estimators f̂D that are trained on the available observations of data set D and approximate the true
fD. These observations are part of the meta-data set and hence do not involve any further evaluations
of fD.

The effect of the transfer function for  < αt <  will be twofold. First, it will serve as some
kind of soft initialization where likely good hyperparameters are preferred by taking into account
the little knowledge that has been gathered on the new data set. Second, it fulfills the criterion that
the influence of the meta-knowledge is no longer used as soon as enough trials on the new data
set have been performed. This will be achieved by the minimization term in Equation (.) that
will ensure that the transfer function loses ground over time on the hyperparameter configuration
selection decision. The resulting side effect is that we will choose the same value for all αt.

We will explain and illustrate the impact of our proposed combination of the acquisition function
with the transfer function in Figure .. In the first row of Figure . the misclassification rate of a
classifier with a one-dimensional hyperparameter space for four different data sets are shown. The
task is now to estimate the hyperparameter configuration for the test data (upper left plot) with
smallest error using the information gathered on the other three data sets.

For illustration purposes we start at t =  that means after already evaluating one hyperparameter
configuration. We are using a Gaussian process as a surrogate model and expected improvement





as acquisition function. As transfer function we use the function that we derived in Equation (.).
The surrogate model got updated using the single observation (Figure .; “Surrogate Model (t=)”)
and the values of the acquisition function and the transfer function can be estimated (Figure .;
“Hyperparameter Acquisition (t=)”). The standard Bayesian optimization is depending only on
the acquisition function (dashed orange line) for selecting the next hyperparameter configuration
and not directly on the meta-knowledge. Hence, it would choose a hyperparameter configuration
at the left border of the hyperparameter search space. Computing the transfer function (solid blue

line), we can see that the transfer function has lower values in areas where we can expect lower (that
means better) function values. Even though data sets  and  indicate that the right region of the
hyperparameter space is good for some data, the transfer function has high values here. The reason
for this is that we already evaluated a hyperparameter configuration in that region such that the
expected improvement in these regions is small.

Finally, the addition of the transfer function to the Hyperparameter Optimization Machine
framework allows us not only to find a balance between exploration and exploitation on the cur-
rent data set but also on the usage of meta-knowledge by adding some weight on regions that have
been good on other data sets (dotted green line). Based on the smallest value of the combination
of acquisition and transfer function, the next hyperparameter configuration is chosen. Again the
surrogate model is updated and the next hyperparameter configuration can be estimated. In this
simple example with low-dimensional hyperparameter configurations and little meta-knowledge,
one can see already now that the transfer function loses influence over time. As explained before,
this is a desired effect because at some point the knowledge on the current data set is sufficient.

This simple example motivates the improvement of AHT over Bayesian optimization without
meta-knowledge. If meta-knowledge is used, there are so far two options. One is to use initializa-
tions. Compared to AHT this will lead to a fixed number of initial trials no matter if we already
know that this is a bad hyperparameter region or not. AHT will not make this mistake since it is
using the information of previous trials. The advantage of AHT over transfer surrogates cannot be
shown in a simple one-dimensional example but we will try to explain it here and prove it empirically
in the course of the chapter. As we have seen in the example, AHT is using the meta-knowledge
in a way that the meta-knowledge is losing its influence over time. Transfer surrogates can handle
this only to a certain degree. This will be an important issue for transfer surrogates if they are ap-
plied to a data set where hyperparameters behave completely different to the majority of data sets
in the meta-data set. At any point of time the transfer surrogate is more biased to hyperparameter
configurations that have been good on the meta-data set while AHT will at some point ignore the
meta-data completely and rely on the data collected of the new data set only.





Table 8.1: Comparison of time and space requirements. Thememory requirements of Gaussian processes (GP) with trans-

fer function is only linear in the number of data sets d and the update time is independent of the size of themeta-data set

assuming that in each previous experimentn observations are gathered and on the new data set t are gathered so far.

Plain GP,, Transfer GP,, AHT
Training (offline) - O (dn) O (dn)
Update (online) O (t) O (t + dn + dnt) O (t)

Prediction (online) O (t) O (t+ dn) O (t+ dn)
Space (online) O (t) O (t + dn + dnt) O (t + dn)

.. Space and Time Requirements

In the following we discuss the time and space complexity of the three different approaches of using
meta-knowledge in HOM: ) initialization combined with a plain surrogate, ) transfer surrogate
model and ) adaptive hyperparameter transfer learning with plain surrogates (AHT; Section .).
This discussion is led for the case that the surrogate model is based on a Gaussian process (GP), the
most widespread approach,,.

Assuming the meta-knowledge of d data sets is available and for each of these data sets, for sim-
plicity, n observations are available while t is the number of observations of the new, unknown data
set. We distinguish between the three most time-consuming operations in the HOM. One is the
training operation, this includes all operations that can be done before the actual optimization pro-
cess starts. For transfer surrogate models this includes estimating the parameters of the surrogate
model on the meta-data, for initialization techniques estimating the initial hyperparameter sequence
and our approach will estimate the plug-in estimators during this step. In comparison to the other
operations, this can be done offline and hence the time needed for this operation is of less interest
for us. The second operation is update (see Algorithm ). This operation has to be done once for
each evaluation of a hyperparameter configuration. It updates the surrogate model such that the
newly gathered information is considered. The last operation is prediction. This is the operation that
evaluates the quality of a single hyperparameter configuration. Table . summarizes the space and
time complexity for the different operations. The transfer surrogate models,, need more time
for offline and online computations than the combination of a Gaussian process with transfer func-
tion, respectively. Gaussian processes need to store the kernel matrix. Hence, the space complexity
of transfer surrogates is quadratic in the number of meta-data sets instead of only linear. Obviously,
the plain Gaussian process is beneficial in terms of space and time complexity. No offline training
is needed in cases without initialization but investing time to use the meta-knowledge pays off in
general,. AHT provides the same complexity as our scalable approach TST proposed in Chap-
ter  because both approaches use a Gaussian process per data set. The big difference is how these





Gaussian processes are used to employ meta-knowledge. TST is a typical transfer surrogate model
while AHT uses the Gaussian processes only to approximate the response surfaces to query arbitrary
values.

. Experimental Evaluation

In our concluding evaluation, we compare all approaches covered in this thesis on two different
meta-data sets. First, we compare the methods in the scenario of hyperparameter optimization
only. This is carried out on a meta-data set generated on  different data sets with the LIBSVM
library. This smaller meta-data set allows to include transfer surrogate models that are based on
Gaussian processes into our comparison. Finally, we apply our method in the scenario of combined
algorithm selection and hyperparameter optimization on a meta-data set generated by using 
different classifiers of Weka on  different data sets.

.. Optimization Strategies

In our final empirical evaluation, we will compare representatives of the following five types of
hyperparameter optimization machines. Those that do not use a surrogate model at all, those that
use a plain surrogate model and no meta-knowledge, those that use an initialization to employ meta-
knowledge combined with plain surrogates, and finally our proposed method that makes use of the
transfer function. These methods are summarized in Table ..

Our proposed method adaptive hyperparameter transfer learning with plain surrogates (AHT) is
an instance of hyperparameter optimization machines proposed in this chapter. In the experiments,
we will consider AHT with two different plain surrogates: a Gaussian process (AHT-GP) and a
random forest (AHT-RF). We estimated the meta-hyperparameter α with leave-one-data-set-out
cross-validation on the grid ., . . . , .. For the SVM meta-data set the best value for AHT-GP is
α = ., for the Weka meta-data set it is α = .. The the optimal value on the Weka meta-data
for AHT-RF is α = .. Details about the meta-data sets and the evaluation metrics can be found
in Chapter .

.. Hyperparameter Configuration Optimization

The task of hyperparameter optimization is to find the best hyperparameter configuration for a given
algorithm. This is the typical scenario for researchers tuning baselines, their own new algorithm or
for practitioners that have already decided which algorithm is best for their problem. This problem
is putatively easier because the search space is smaller. Nevertheless, it is an important problem in
practice.





Table 8.2: Brief overview of the competitor methods. An explanation of this table is given in Section 3.2.3.

Name Abbrev. Surrogate Model Meta-Knowledge Details

Random Search Random None 7 Sec. .
Independent
Gaussian Process I-GP Gaussian Process 7 Sec. ..

Independent
Random Forest I-RF Random Forest 7 Sec. ..

Independent
Gaussian Process
with
Meta-Initialization

I-GP (init) Gaussian Process 3 Chap. 

Independent
Random Forest
with
Meta-Initialization

I-RF (init) Random Forest 3 Chap. 

Surrogate
Collaborative
Tuning

SCoT SVMRank +
Gaussian Process 3 Sec. ..

Gaussian Process
with Multi-Kernel
Learning

MKL-GP Gaussian Process 3 Sec. ..

Factorized
Multilayer
Perceptron

FMLP Neural Network 3 Sec. ..

Two-Stage Transfer
Surrogate TST Gaussian Process 3 Chap. 





Table 8.3: AUC-ADTMof the optimization strategies on the SVMmeta-data set. Number in brackets indicate the ranking

across the strategies.

Random I-GP I-RF SCoT MKL-GP

. () . () . () . () . ()

FMLP I-GP (init) TST AHT

. () . () . () . ()
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Figure 8.2: Our proposedmethod AHT outperforms seven competitor methods with respect to all three evaluationmetrics.

MKL-GP tends to provide good results on most of the data sets and is able to find the best hyper-
parameter configuration in few trials (see Figure . right) but fails to find any good hyperparameter
configuration on few data sets which leads to a comparable bad ADTM which is inferior to I-GP
with initialization (see Figure . middle). Remarkable are also the good results of I-GP using an
initialization, being very competitive considering the simplicity. TST and AHT outperform the
competitor methods with respect to all three evaluation metrics on the SVM meta-data set. The
improvement over other methods within the first ten trials is small but increases later on. The rea-
son for this is that AHT is based mainly on the meta-knowledge as the competitor methods. At the
point where the meta-knowledge can no longer be exploited for guiding the search, AHT’s special
mechanism is used to expand its leading position. TST has a mechanism that works very similar but
is not that principled. The influence of the meta-knowledge is dependent on the number of config-
uration pair disagreements. Since this is naturally growing with the number of trials, the impact of
the meta-knowledge vanishes over time. In practice, this seems to lead to comparable performance.

Furthermore, we compare all optimizers with respect to the AUC-ADTM metric as defined in
Equation (.) in Table .. These results confirm the previous discussion and nicely summarize





Table 8.4: AUC-ADTMof the optimization strategies on theWekameta-data set. Number in brackets indicate the ranking

across the strategies.

I-GP I-RF FMLP I-GP (init)

. () . () . () . ()

I-RF (init) TST AHT-GP AHT-RF

. () . () . () . ()
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Figure 8.3: AHTwith two different surrogatemodels achieves the best ADTMon theWekameta-data set but the combina-

tion with a Gaussian process leads to finding optimal hyperparameter configurations in more cases.

Figure ..

.. Combined Algorithm Selection and Hyperparameter Optimization

In this section we want to empirically investigate the performance of the different hyperparameter
optimization strategies in the scenario of combined algorithm selection and hyperparameter opti-
mization. This problem leads to larger meta-data sets (about . million meta-instances) which did
not allow us to commit these experiments for the transfer surrogates that are based on Gaussian pro-
cesses. Nevertheless, we still compare to the transfer surrogate models FMLP and TST for which we
have shown in the previous chapter that they are outperforming the omitted competitor methods.

In the previous experiments we always combined AHT with a Gaussian process. Since it was
previously reported that the random forest as a surrogate model provides better results for problems
with high-dimensional and discrete hyperparameter spaces which is the case on the Weka meta-
data set (more than  are indicator variables), we also provide results for AHT combined with a
random forest. For us, the most promising advantage of a random forest is the shorter training time
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Figure 8.4: Strategies based on transfer surrogates are the slowest among all investigatedmethods. AHT provides the best

performance for a reasonable time overhead.

compared to a Gaussian process. We also committed these experiments on the SVM meta-data set
but the results were worse than the combination with a Gaussian process and thus we omitted them
to avoid overcrowded figures.

Figure . summarizes the results. Surprisingly, initialization (I-GP (init), I-RF (init)) did not
provide good results for this meta-data set. This is another indication that stresses that the soft
and adaptive initialization effect of AHT is better than a hard initialization. Hence, the transfer
surrogate models provide better results than an initialization. While TST had comparable results to
AHT on the SVM meta-data set, this is not the case for the Weka meta-data set. It provides very
good results in the beginning but then is not able to improve further such that FMLP surpasses
it. AHT provides the best results. The combination of AHT with a Gaussian process (AHT-GP)
achieves similar results with respect to the ADTM compared to AHT-RF but finds the optimum on
many data sets faster than AHT-RF.

The results with respect to AUC-ADTM in Table . confirm our visual interpretation of Figure
fig:DSAA-result-weka. The two AHT variants perform best, followed by TST. FMLP is pro-
viding better results than I-GP and I-RF with initialization in contrast to the results on the SVM
meta-data set.

.. Run Time

Finally, we provided different methods for reducing the time overhead introduced by the different
optimization strategies in this thesis. With TST and AHT we propose two strong methods for con-
figuration optimization which are able to scale to large meta-data sets. Figure . summarizes our
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Figure 8.5: Distribution over all hyperparameter configurations for different algorithms of the data set banana.
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run time results. Unsurprisingly, strategies relying on plain surrogate models (I-GP, I-RF) are the
fastest. We have seen that combining plain surrogates with an initialization (that does not result in
an time overhead during the optimization) achieved good results for hyperparameter optimization
but they showed less convincing results in the setting of combined algorithm selection and hyperpa-
rameter optimization. Transfer surrogates (FMLP) are by orders of magnitudes the slowest approach
but have found good hyperparameter configurations in both scenarios. Finally, we achieved our goal
of combining the advantages of both approaches. AHT provides the best results in both scenarios
but has less time overhead than transfer surrogates for finding good hyperparameter configurations
on average. TST achieves the same run time as AHT-GP but provides worse configurations in our
experiments.

.. Case Study

For an in-depth understanding of how the different configuration optimization strategies work,
we select one data set for a deeper analysis. We select the banana data set because none of the
optimization strategies was able to find the optimal hyperparameter configurations within  trials.
Figure . shows the hyperparameter performance distribution for the different algorithms giving
first insight why this data set is actually that difficult to optimize for. There are many different
algorithms achieving small misclassification rates and hence it is difficult to narrow down the search





to just few algorithms. Figure . gives insight with what frequency each optimization strategy has
selected a specific algorithm for evaluating a hyperparameter configuration. Our Weka meta-data
set is limited to hyperparameter configurations that we have evaluated beforehand to make this
experiment possible. Because the different algorithms have a different number of hyperparameters,
the number of test meta-instances varies between the different algorithms. The uniform distribution
shows the fraction of test meta-instances per algorithm and hence can be used as an indication
whether an optimization strategy prefers an algorithm or not. If the value of the uniform distribution
is higher than the value of the optimization strategy, the optimization strategy does not believe
that the optimum can be here and vice versa. Thus, it can be seen that the optimization strategies
are capable of identifying that a multilayer perceptron does not achieve good performance on this
specific data set while k-nearest neighbors (IBK) does.

. Conclusion

In this final chapter on meta-learning for Bayesian optimization, we propose hyperparameter opti-
mization machines as a generalization of several Bayesian optimization approaches which includes
current meta-learning extensions for the use in the hyperparameter optimization context. This gen-
eralization allows us to focus on the new hyperparameter optimization strategy AHT which uses
meta-knowledge in an adaptive fashion and combines it with time- and space-efficient plain sur-
rogate models. In experiments on two different meta-data sets for the problem of hyperparameter
optimization as well as combined algorithm selection and hyperparameter optimization, the advan-
tage of AHT compared to various other hyperparameter optimization strategies is shown empiri-
cally. We are able to show that AHT produces less time-overhead for the optimization than most
other transfer surrogates by outperforming all competitor methods. However, we acknowledge that
plain surrogates using an initialization are still the method with least overhead but this approach
does not achieve good results in the scenario of combined algorithm selection and hyperparameter
optimization.
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Conclusion

We want to finish this part of the thesis on transfer-learning for Bayesian optimization for machine
learning configurations by summarizing our findings and works. We gained three key insights about
meta-knowledge in Bayesian optimization.

. Meta-knowledge provides useful information that can be used in the context of Bayesian
optimization for machine learning.

. There is an unknown time at which information gained on the new data set is provides more
information than meta-knowledge.

. Optimizing for the correct meta-loss is beneficial.

Insight  have been the motivation for all our proposed methods and it usefulness can be con-
firmed in Chapter  to . The pruning approach proposed in Chapter  profits additionally from
insight . In the beginning all configurations are discarded that are considered bad with respect
to the improvement on the meta-knowledge. Similarly, the initialization technique presented in
Chapter  employs insight  by directly optimizing for a meta-loss. One may argue that it also
employs insight  because it does not use meta-knowledge after the initialization. But insight  only
tells us that meta-knowledge becomes less important than the information gained over the new data
set and not that it becomes irrelevant. Furthermore, the point at which meta-knowledge becomes
less important changes from data set to data set such that a fixed initialization length is non-optimal
and does not fully exploit insight .





Typical transfer surrogate models, such as SCoT and FMLP, use insight  but only partially insight
. The meta-knowledge is never really explicitly discarded but it is tried to reduce its influence by
adding new meta-instances from the new data set. TST, our surrogate model proposed in Chapter
, introduces a heuristic to partially use insight . The influence of the meta-knowledge and the new
data set is combined with a decaying weight for the meta-knowledge influence. Thus, it will reach
a time where no meta-knowledge is used any more. Similarly to the aforementioned initialization
strategy, it tries to fully use insight  but does not do it in a principled way.

Finally, in this chapter we presented AHT. AHT is our final proposition that makes use of all three
insights. Configurations are chosen with respect to the improvement on the meta-knowledge and
the expected improvement on the new data set. The impact of the meta-knowledge is determined
on how much improvement is still left. In the beginning, we fully rely on it but later its impact is
marginally and in the extreme case no longer existing. Our experiments have shown that this is the
best methods and hence confirms our insights.

I consider TST and AHT the most promising approaches for future work in the field of Bayesian
optimization. For this reason, we proposed a novel method, not presented in this thesis, which
combines the ideas of AHT and TST. The meta-knowledge is combined as in TST but it is
considered in the acquisition function and not the surrogate model as by AHT.

Furthermore, the idea of learning initializations presented in Chapter  is an elegant method
which allows to transfer knowledge from previous experiments to new ones which is not limited to
Bayesian optimization. This makes it a more general approach and widely applicable.





Part III

Applied Bayesian Optimization
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Distributed Hyperparameter Optimization

& Applications

The goal of this thesis is to improve techniques that support machine learners by automating ma-
chine learning. While we focus in the previous chapters mainly on lab experiments, we focus stronger
on comparison to human experts in this and the next chapter. In this chapter we will discuss an
implementation for distributed hyperparameter optimization developed by me in the past years. It
proposes a server/client architecture where the server is gathering the results of the hyperparameter
optimization and controls which client is evaluating which configuration. The clients are respon-
sible for the computational expensive part, i.e. the training of machine learning models for given
configurations. I applied this tool to two different ECML-PKDD challenges. In one of them I used
it to support me, in the other it was working fully autonomously. The results were astonishing, al-
lowing me to place first and third in prestigious challenges on one of the most important European
machine learning conferences.

. easyOpt

We will discuss in this section how easyOpt, my distributed machine learning configuration opti-
mization tool works. It is based on a server that is managing the whole optimization process and
clients, that are evaluating different configurations. The communication between servers and clients
is realized with Java Remote Method Invocation.





RMI 
Client 

RMI 
Registry 

RMI 
Server 

bind 

lookup 

communicate 

Figure 10.1: The server first registers at the RMI registry. Clients are then able to access references to the remote objects.

This allows to finally invoke the remotemethods.

.. Java Remote Method Invocation

The Java Remote Method Invocation (RMI) system allows a Java object to invoke methods of remote
Java objects running on a remote Java virtual machine. An RMI application consists of a server
and a client program. The server makes references of objects publicly accessible. This is done by
providing stubs. A stub acts as a proxy for the remote project and implements the same set of remote
interfaces that the remote object implements. It is obtained by the clients and used to invoke remote
methods. RMI provides mechanisms for transparent communications between server and clients in
this distributed object application. It enables to locate remote objects via the RMI registry, conducts
the communication between remote objects and is loading class definitions for remote objects.

.. Detailed Description of easyOpt

We kept the interface to the optimization tool as simple as possible to ease its use. Figure .
presents the interface in a class diagram. It contains two main classes. The class EasyOpt provides
abstract methods to start a new optimization process as well as joining one by communicating with
the RMI registry. The interface HyperparameterOptimization provides functions for communica-
tions between server and client. The only communications needed is to ask for the next configuration
to evaluate and report the results to the server.

Figure . presents a scenario for a typical collaborative optimization process. The server pro-
gram will call one of the start* methods to bind the remote object’s stub in the RMI registry and
hence, allow clients to join the process. Clients can now call the method joinOptimization to lookup
the stub in the RMI registry. Then, they have access to the methods of a HyperparameterOptimiza-
tion instance which allows to participate in the optimization process. They ask for a configuration





Figure 10.2: The library contains twomain classes. The abstract class EasyOptmanages the communication with the RMI

registry, the class implementing HyperparameterOptimizationmanages the communication between server and client.

to evaluate, run the program with the received configuration and finally report the result. Using
Bayesian optimization, whenever the server receives a result, the surrogate model is updated. Is the
end of the optimization reached, the server informs asking clients such that they can finish their
processes. As soon as the last answers are received, the server finally unbinds and exits.

The tool provides three different optimization techniques, i.e. grid search, random search and
Bayesian optimization. The reader may wonder why it is useful to run grid or random search in
a centralized fashion. One reason is that all results are gathered at a central position and can thus
be used to e.g. rerun the experiment on the full data with the best configuration. Another reason
is that data sets are not loaded more than necessary. Typically, compute jobs are created for each
configuration. They are enqueued in a compute cluster and as soon as they are scheduled, they load
the data and evaluate their configuration. Finally, they free the memory, report the result and finish.
A job processing the next configuration is started then. The centralized approach saves here time
because it is not needed to reload the data again. This is especially useful for large data sets.

.. Code Example

As explained before, the aim of easyOpt is too keep it as simple as possible. To show that its usage
is indeed very simple, we provide a short example that demonstrates how to optimize the hyperpa-
rameters of a logistic regression with Bayesian optimization.

The server needs to start the optimization by providing a unique experiment name, in this case





Figure 10.3: The server first binds the remote object’s stub to the RMI registry. Now, clients can lookup the stub and join

the optimization. Each client is now sequentially asking for a configuration, evaluates it and reports the result. As soon as

the optimization is finished, the server waits until all results are gathered. Then it unbinds the stub from the RMI registry

and finishes the process.





“mnist”. Depending on the hyperparameters, the boundaries need to be set. In our case, the learning
rate, regularization constant and the number of stochastic gradient descent epochs are the hyper-
parameters. The types of the hyperparameter needs to be set. We distinguish between floats and
integers. Finally, it is important whether we are interested in the maximum or minimum. The
clients need to be aware of how hyperparameters are encoded on the server’s side.

The implementation of the client looks a little bit more complex. Based on the unique experi-
ment name, the client can lookup the stub given the host name. In a while loop hyperparameter
configurations are evaluated until the server signals that the optimization is done.





// Server.java

import org.easyopt.EasyOpt;

import org.easyopt.HyperparameterOptimizationServer;

public class Server

{

public static void main(String[] args) throws InterruptedException

{

int numTrials = 100;

String experimentName = "mnist";

double[] min = { -5, 0, 50 };

double[] max = { 0, 1, 500 };

int[] hyperparameterType = { 1, 1, 0 };

HyperparameterOptimizationServer server =

EasyOpt.startRandomSearch(experimentName, EasyOpt.MINIMIZE, min,

max, hyperparameterType);

// The server waits until all results are gathered. Clients are already

freeing resources.

while(server.getNumResults() < numTrials))

{

Thread.sleep(1000);

}

double[] bestConfiguration = server.getBestConfiguration();

server.stop();

}

}





// Client.java

import org.easyopt.EasyOpt;

import org.easyopt.HyperparameterOptimization;

import org.easyopt.classification.LogisticRegression;

import org.easyopt.util.Instances;

public class Client

{

public static void main(String[] args)

{

String experimentName = "mnist";

String host = "127.0.0.1";

// Load the data

Instances train = new Instances(new File("data/mnist.scale"));

Instances valid = new Instances(new File("data/mnist.scale.t"));

// Join the optimization

HyperparameterOptimization optimizer =

EasyOpt.joinOptimization(experimentName, host);

double[] nextConfiguration;

while((nextConfiguration = optimizer.getNextConfiguration()) != null)

{

// Parse the next hyperparameter configuration to evaluate

double learnRate = Math.pow(10, nextConfiguration[0]);

double regularization = nextConfiguration[1];

int numEpochs = nextConfiguration[2];

// Evaluate the hyperparameter configuration

LogisticRegression lr = new LogisticRegression(learnRate,

regularization, numEpochs);

lr.train(train);





optimizer.setEvaluationResult(nextConfiguration, lr.getError(valid));

}

}

}

. Experimental Evaluation

We compared our optimization library to human machine learning experts by participating in two
different ECML-PKDD Discovery Challenges in . For the challenge on Bank Card Usage
Analysis, we used the library to support the machine learning experts. For the challenge on Network
Traffic Classification, we fully relied on the library. In the first challenge we placed first, in the second
third.

.. ECML-PKDD Discovery Challenge  on Bank Card Usage Analysis

The goal of one the ECML-PKDD Discovery Challenge on Bank Card Usage Analysis was to predict
the behaviour of customers of the Hungarian bank otpbank. The task was to predict for every
bank branch the number of visits for a set of customers. For this task, anonymized customer and
bank information as well as customer activities were provided. Table . summarizes the features
available for each customer, Table . summarizes the information available about the customer
activities. The only information about the bank branches is their location (Table .).

A labeled data set for  was made available which can be used for supervised machine learning
to predict the targets for a disjoint set of customers for . Activity data for the test customers
is provided only for the first six months in . Bank branch visit activities are not provided. In
total the data set contains , customers for  and , for . ,, customer
activities are provided for , ,, for the first half of , excluding branch visit activities.
The total number of bank branches is .

The evaluation measure for this challenge was defined as the average of cosine@ and cosine@
for every customer c, where

cosine@k =

∑k
i= yc,iŷc,i√∑b

i= y

c,i

√∑k
i= ŷ


c,i

(.)

with yc,i being the number of times the customer c has visited bank branch i and ŷc,i the prediction,
respectively. There are b different branches in total.





Table 10.1: Customer data available for train and test customers.

Features Description

USER_ID Unique user id
AGE_CAT Age category in . a = -, b = -, c = +
LOC_CAT Location category of the user. a = capital, b = city, c = village
INC_CAT Income category. possible values are a = low, b = medium, c = high, d =

no income
GEN Gender.  = male,  = female
LOC_GEO Geo info of user address is rounded to m
C*- Binary columns for each month. If True, the user has at least one credit

card.
W*- Binary columns for each month. If True, the user is categorized as

“wealthy” in the system of the bank.

Table 10.2: Activity time series. The label can be extracted by counting the number of times CHANNEL is “b”. No activities

with CHANNEL “b” are given for the test data.

Features Description

USER_ID Unique user ID
POI_ID Unique shop ID
CHANNEL Type of activity. p = pos, n = webshop, b = branch
DATE Date of activity
TIME_CAT Time rounded to a = -h, b = -h, c =  -h
LOC_CAT Event location category. a = capital, b = city, c = village
MC_CAT Anonymized market category groups. Types are indexed from a ... j
CARD_CAT Credit vs. debit card. c = credit card, d = debit card
AMT_CAT Amount of money spent in three categories. a=low, b=medium, c=high
GEO Geolocation information of the event

Table 10.3: Only the geolocation about the bank branches is provided.

Features Description

POI_ID Unique id
GEO Geolocation information





Problem Identification

We make the assumption that there is no relation between the number of visits of a customer among
branches. This enables us to tackle b different regression tasks for each of the b branches. Indepen-
dently, we train a regression model for each branch that predicts for each customer how often she
will visit the branch based on past information for the branch. This is a classical example for count
data and hence, we tackled this task as a Poisson regression problem. As part of the evaluation, we
need to select five bank branches for which we want to make predictions. We simply choose the five
bank branches with highest predicted number of visits which is the best way to achieve a good score
in case the predictor performs reasonable. We use gradient boosted decision trees as the prediction
model.

Data Preprocessing

For the feature and hyperparameter selection we split the labeled data set into a training data setDtrain

and a validation data setDvalid such that the performance onDvalid will reflect the performance on the
hidden test data. The task is to infer from some customers and their activities in  the behaviour
of a disjoint set of customers in . Only customer information as well as the customer’s activities
of the first half of  (excluding branch visits) is given for the test customers. Thus, we decide
to split the given labeled data set by customers, selecting  for Dtrain and the remaining 
for Dvalid uniformly at random. Only the first six months of activities of the validation customers
(excluding branch visits) is provided for validation purposes. The only problem here is that we are
actually predicting from data from  for customers in  but there is no way to overcome this
problem.

Very basic information of the customers is available including age, location, income and gender.
While gender is by nature binary, the other features are already binned into three categories. We
employ this information as features after transforming them via one-hot encoding. Furthermore,
the internal classification of a bank whether the customer is considered as wealthy or not is given
for each month. We distinguish customers of following five categories: customers that have been
classified as ) wealthy in all observed months, ) not wealthy in all observed months, ) first wealthy
and then changed to not wealthy, ) first not wealthy and then changed to wealthy, ) those who
changed their classification more than once. Applying one-hot encoding, we add this information
as features. Finally, the information in what month the customer possesses a credit card of the bank
is provided. Analogously to the five categories of the wealthy classification, we create categories for
the credit card time-series information.

Besides using basic customer features, we want to use the information of the customer’s activities.
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Figure 10.4: Intermediate feature backward selection results. Location-aware features provide huge improvements.

The only feature we use is the number of activities per channel committed by the customer.

Location information about activities, bank branches and customers provide one of the most
impactful features. One feature we use is the distance between the residence of the customer and a
bank branch which is a quite obvious choice. Digging into the data, we see that there are many cus-
tomers using bank branches very far away from their residence. We try to cover this by also adding
the maximum, minimum, mean and median distance between a bank branch and the customer’s
activities. Finally, we add k-nearest-neighbors predictions for k = , , . . . ,  using the Eu-
clidean distance between the residence of customers as the distance function. These features follow
the simple assumption that customers that live nearby visit the same bank branches. Figure .
provides insight into our intermediate feature selection experiments and clearly shows the impor-
tance of the location-aware features. Based on this experiment, we use all features but the credit card
information. Figure . shows the relative frequency of a specific feature being taken as a splitting
variable. Again, this shows the importance of location-aware features.

Hyperparameter Optimization

We used easyOpt to find the hyperparameter configurations of our predictor. Figure . presents
the progress of the optimization process that was conducted in parallel on  cores for our own
train/validation split as well as results on the public leaderboard.
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Figure 10.5: This plot visualizes the relative relevance of all features used. The higher the score, themore often the feature

was used for building a tree. Location-aware features prove to be highly predictive.

One of our best single models achieved a cosine@ score of . and a cosine@ score of .
leading to an overall score of . on our validation split. The performance on the test set is with
. much smaller. A possible reason might be temporal effects because the predictions for the test
customers are for  but we learn on data from .

The results on the public and private leaderboard of the top five performing teams is provided in
Table .. We achieved the best position on both boards.

Table 10.4: The performance of the top five teams for both tasks on the public and private leaderboard.

Public Leaderboard Private Leaderboard
Team Score Team Score

. Wistuba . . Wistuba .
. Ya . . Ya .
. Cosine Vinny . . Cosine Vinny .
. Outliers . . Outliers .
. seed . . HoliGeOe .
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Figure 10.6: Searching for a good hyperparameter configuration with 100 cores in parallel. The public leaderboard score is

shown for some of the best hyperparameter configurations on our validation set.





Table 10.5: Details on how the data sets have been created.

Dataset Train Validation Test

Interval  –   –   – 
Start Time -- :: -- :: -- ::
End Time -- :: -- :: -- ::
Instances   

.. ECML-PKDD Discovery Challenge  on Network Traffic Classifica-
tion

For the ECML-PKDD Discovery Challenge  on Network Traffic Classification a data set was
generated by using a probe to monitor and measure network activities. The type of measurements
are listed in Table . and .. The task of the challenge was then to predict the type of application
based on a transmission in the network.

The data has been collected for an entire day and split chronologically. The available labeled
data (train and validation) has been recorded in the night, morning and noon. The test data has
been recorded in the afternoon and evening. Data between the splits has been removed to avoid
direct temporal dependencies between instances. Details about the splits are provided in Table ..
Applications have been separated into  different categories. This includes the category “Unknown
Application” which contains applications with very few instances. This category is not considered
for evaluation.

For this challenge we fully relied on easyOpt, we did not even preprocess the data manually.
We selected gradient boosted decision trees as the classification model and defined the range of
the hyperparameters. Then, easyOpt was used for about eight days on  cores to find the best
configuration using the predefined train and validation split. The best configuration was used to
retrain the model on train and validation and predict for test. Among  participants we placed
third right behind the teams of the University of Trento and IBM Research. The detailed results are
provided in Table ., results of the hyperparameter search are presented in Figure ..
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Figure 10.7: Searching for a good hyperparameter configuration with 100 cores in parallel for the Network Traffic Classifi-

cation Challenge.





Table 10.6: Results of all participating teamswith respect toMicro/Macro Precision/Recall/F1. TheMacro-F1measure was

used to determine the winner.

Team name Mic.-P. Mic.-R. Mic.-F Mac.-P. Mac.-R. Mac.-F

. UNITN-CogNet . . . . . .
. IBM-CogNet . . . . . .
. Wistuba . . . . . .
. FIIT_STU . . . . . .
. colastrong . . . . . .
. WekaOne . . . . . .
. TREELOGIC . . . . . .
. Tubthumpers . . . . . .
. UPMC_Team . . . . . .
. unocanda . . . . . .
. Zarmeen . . . . . .
. Ranger in R . . . . . .
. sonam . . . . . .
. TelematicUDC . . . . . .
. DeepDiggers . . . . . .
. DRL-UNITN-
Cognet

. . . . . .

. BaCuDan . . . . . .
. RushGW . . . . . .
. netoniq . . . . . .
. CybElt . . . . . .
. MaiNTM . . . . . .
. LSI-UFU . . . . . .
. ETSISI_UPM . . . . . .
. RocketScience . . . . . .
. ICT_UNIFESP . . . . . .





Table 10.7: List of all features including a description as provided by the challenge organizers (Part 1).

Features Description

cli_pl_header HTTP client response header size
cli_pl_body HTTP client response payload size
cli_cont_len HTTP client declared content length (in the header field)
srv_pl_header HTTP server response header size
srv_pl_body HTTP server response payload size
srv_cont_len HTTP server declared content length (in the header field)
aggregated_sessions number of requests aggregated into one entry
bytes Number of bytes transmitted from the client and server comprising the

TCP stack header
net_samples — used internally
tcp_frag Number of fragmented packets
tcp_pkts Number of server transmitted packets
tcp_retr Number of retransmitted packets
tcp_ooo Number of out of order packets
cli_tcp_pkts Number of server transmitted packets (Client)
cli_tcp_ooo Number of out of order packets (Client)
cli_tcp_retr Number of retransmitted packets (Client)
cli_tcp_frag Number of fragmented packets (Client)
cli_tcp_empty How many empty TCP packets have been transmitted (Client)
cli_win_change How many times the client receive window has been changed
cli_win_zero How many times the client receive window has been closed
cli_tcp_full How many packets with full payload have been transmitted (Client)
cli_tcp_tot_bytes Client TCP total bytes
cli_pl_tot Client total payload
cli_pl_change How many times the payload has been changed (Client)





Table 10.8: List of all features including a description as provided by the challenge organizers (Part 2).

Features Description

srv_tcp_pkts Number of server transmitted packets (Server)
srv_tcp_ooo Number of out of order packets (Server)
srv_tcp_retr Number of retransmitted packets (Server)
srv_tcp_frag Number of fragmented packets (Server)
srv_tcp_empty How many empty TCP packets have been transmitted (Server)
srv_win_change How many times the server receive window has been changed
srv_win_zero How many times the server receive window has been closed
srv_tcp_full How many packets with full payload have been transmitted (Server)
srv_tcp_tot_bytes Server TCP total bytes
srv_pl_tot Server total payload
srv_pl_change How many times the payload has been changed (Server)
srv_tcp_win Last server TCP receive window size
srv_tx_time Server data transmission time
cli_tcp_win Last client TCP receive window size
client_latency Estimated packet delay between client and probe
application_latency Calculated application response time
cli_tx_time Client data transmission time
load_time Roundtrip time since the client request starts up to all server response data

are received from client: = application_latency+cli_tx_time+srv_tx_time
server_latency Estimated packet delay between server and probe
proxy Flag to identify if it has been used a proxy
sp_healthscore The healthscore specifies a value between  and , where  represents

a low load and a high ability to process requests and  represents a
high load and that the server is throttling requests to maintain adequate
throughput

sp_req_duration Time elapsed to elaborate the response by the server
sp_is_lat IS latency
sp_error If the protocol server rejects the request because the current processing

load on the server exceeds its capacity, the protocol server includes a
SharePointError header set to  in the response. If the protocol server
renders an error page to the client for any other reason, the protocol
server includes a SharePointError header set to zero in the response

throughput Bytes/load_time
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Automatic Frankensteining

Automating machine learning by providing techniques that autonomously find the best algorithm,
hyperparameter configuration and preprocessing is helpful for both researchers and practitioners.
Therefore, it is not surprising that automated machine learning has become a very interesting field
of research. While current research is mainly focusing on finding good pairs of algorithms and
hyperparameter configurations, we will present an approach that automates the process of creating
a top performing ensemble of several layers, different algorithms and hyperparameter configura-
tions. These kinds of ensembles are called jokingly Frankenstein ensembles and proved their benefit
on versatile data sets in many machine learning challenges. We compare our approach Automatic
Frankensteining with the current state of the art for automated machine learning on  different
data sets and can show that it outperforms them on the majority using the same training time.
Furthermore, we compare Automatic Frankensteining on a large scale data set to more than ,
machine learning expert teams and are able to outperform more than , of them within  CPU
hours.

. Introduction

Algorithm selection and hyperparameter optimization is an omnipresent problem for data science
practitioners and researchers. Nevertheless, they are usually not concerned about which algorithm
or which hyperparameter configuration is selected but they want to have an accurate prediction
model. Hence, it is not surprising that many main machine learning players such as Amazon, IBM,





Google and SAS offer commercial tools that at least partially automate this process.

Automating machine learning also attracted a lot of attention of machine learning researchers in
the past years. Various studies were able to show that automatic hyperparameter optimization is able
to outperform human experts,. Furthermore, the concept was extended to select preprocessing,
algorithm and hyperparameter configurations altogether. The two most famous publicly available
tools that offer these features are Auto-WEKA and auto-sklearn. Often, the tools for automating
machine learning are extended by methods from meta-learning to transfer knowledge from observed
data sets to new ones to initialize the search.

The current research focuses strongly on the question which algorithm/hyperparameter configu-
ration combination is best. But in fact the true task that needs to be tackled is to find the strongest
prediction model which of course does not need to be estimated from a single algorithm but might
be an ensemble of many of them.

While detailed machine learning solutions for real problems created by companies are often con-
fidential, the many competitions hosted by platforms such as Kaggle, DrivenData and CodaLab give
great insight how high performance systems for company data can be created. The top performing
solutions are often based on ensembles with many layers and various types of preprocessing, hyperpa-
rameter configurations and algorithms. These solutions are often very complex and hence this kind
of ensembling is jokingly called Frankensteining named after the novel by Mary Shelly in which
the scientist Frankenstein creates an ugly artificial life form of many different components. Inspired
by these solutions, we try to improve the current state of the art for automated machine learning by
proposing a way that will find solutions like these Frankenstein ensembles that make intensive use
of diverse algorithms and multi-layer ensembling. Hence, we propose Automatic Frankensteining,
an automatic approach to generate deep stacked ensembles. While some research already identified
that an average ensemble improves the performance,,, no one has looked into the direction of
deep ensembles that consist of several layers. Thus, we are the first to propose a machine learning
approach that autonomously identifies a good set of hybrid base learners for a stacked ensemble as
well as the right combiner for all base learners. We compare our approach on  different classi-
fication data sets from the UCI repository to the current state of the art approaches Auto-WEKA
and auto-sklearn and show that Automatic Frankensteining is outperforming its competitors on the
large majority of data sets using the same CPU time. Finally, we compare our approach to the
performance of more than , human machine learning expert teams on a large scale business
data set. Therefore, to the best of our knowledge, we are the first to compare automated machine
learning to this very large amount of human experts. Additionally, the solution found by Auto-
matic Frankensteining is outperforming more than , of the human experts on this task within
 hours CPU time while each human expert team had  days.





. Related Work

Automating machine learning has become a hot topic in the past years. Snoek et al. were among
the first to show that Bayesian optimization can be used to automate hyperparameter optimization.
Soon afterwards, this idea was extended to the problem of selecting algorithms and preprocessing
techniques. Various approaches to make use of meta-knowledge either through initialization or
transfer surrogate models have been proposed to accelerate the search for good models. Lately, first
tries to make use of ensembling techniques have been proposed. Feurer et al. identified that the
many prediction models estimated during Bayesian optimization can be used afterwards to create
a weighted ensemble. Lacoste et al. proposes a Bayesian approach. They combine those models
that perform best on a randomly selected subset of the validation data. Finally, Levesque proposes
to use Bayesian optimization directly to estimate which prediction model is the best candidate to be
added to the ensemble. Thornton et al. do not focus on the problem of creating strong ensembles
but they make use of more advanced ensembling techniques by considering the structure of the
ensemble as further hyperparameters.

In contrast to the state of the art, we propose two innovations. First, we learn strong prediction
models per algorithm instead of an overall strong model to obtain strong base learners for the en-
semble. Second, we create deep ensembles instead of flat ensembles automatically. Therefore, we
use Bayesian optimization to directly estimate strong base learners for ensembling techniques such as
stacking instead of finding models that are good in general and create an ensemble as a by-product.

. Background

In the next section we will formalize the problem and describe the basics of automating machine
learning and ensembles.

.. Problem Definition

In supervised machine learning one tries to learn a strong prediction model based on a labeled data
setD with n instances andm predictors X ∈ Rn×m with corresponding labels y ∈ Rn that minimizes
a given loss function L for future data instances. This raises the questions which is the best machine
learning algorithm of a set of possible algorithms A, . . . ,Ak for a problem where a machine learning
algorithm A uses the labeled training data to estimate a prediction model ŷ. Most machine learning
algorithms also have parameters that are not learned during the training phase but need to be set
upfront. A typical example is the trade-off parameter C of a linear support vector machine. These
parameters are usually called hyperparameters. Since the resulting model is usually sensitive to the





chosen hyperparameter configuration, we actually want to know which algorithm combined with
what hyperparameter configuration leads to the model that achieves the smallest loss.

Let us formalize the different parts of machine learning to ease talking about them. A machine
learning algorithm A is a function A : Rn×m × Yn × Λ → M where Λ is the hyperparameter
space, Y the target space andM the space of all prediction models. The result of this function is
a prediction model ŷ : Rm → Y that allows to make predictions for new instances. The target
space Y depends on the problem. For regression problems Y = Rn and for classification problems
Y = Rn×c for a set of classes C = {, . . . , c}. For the groundtruth Y ∈ Y of a classification problem
usually yields that yi,j =  if instance i belongs to class j and yi,j =  otherwise.

We will focus on classification problems as a specific problem instance in this chapter. Typical
classification losses are the classification error

L
(
Y, Ŷ

)
=


n

n∑
i=

I

(
arg max

j∈C
yi,j ̸= arg max

j∈C
ŷi,j

)
(.)

and the logistic loss

L
(
Y, Ŷ

)
= − 

n

n∑
i=

c∑
j=

yi,j log
(
ŷi,j
)

, (.)

where Y is the groundtruth and Ŷ the prediction.

The hyperparameter space Λ depends on the algorithm A. In the aforementioned case of a linear
support vector machine with the only hyperparameter being the trade-off C, the hyperparameter
space would equal R+, however, hyperparameter spaces are often multi-dimensional.

.. Ensembling Techniques

An ensemble of classifiers is a combination of classifiers h, . . . , he. The simplest way of combining
them is by voting i.e. that each classifier has an equal vote and the majority decides which class is
predicted. If the probability score is predicted, one can combine the prediction by averaging the
score over all classifiers.

ŷ (x) =

e

e∑
i=

hi (x) (.)

Instead of using an unweighted voting/averaging, one can also assign weights to the classifiers. This
can be done manually or also learned on a hold-out data set. Important for an ensemble is that
its members are accurate by itself (better than random) and diverse which means they are stronger
than the other members on specific parts of the data. A more advanced technique to combine
classifiers is stacking. In the case of stacking, the data set needs to be split into disjoint sets D and





D. The ensemble members will be trained on D and predictions are estimated for all (x, y) ∈ D

and vice versa. After obtaining the meta-instances((
h (x) · · · he (x)

)T
, y
)

, (.)

a combiner algorithm is learned on these meta-instances which can be any classifier or even another
ensemble.

. Automatic Frankensteining

In the Automatic Frankensteining framework we distinguish between two different components.
The model selection component is responsible for training models and finding near-optimal hyperpa-
rameter configurations. The ensembling component combines the models trained in the preceding
model selection component to further boost the prediction performance and reduce the input space
for the subsequent model selection component.

.. Model Selection Component

The task of the model selection component is to create useful meta-features or to provide the final
predictions based on some given input. On an abstract level, the model selection component can be
considered as a function g : X → Y∗ that converts a data set representation X to an intermediate
representation g (X). Therefore, it needs to be trained previously on a data set D with predictors
X and corresponding labels y. This conversion is done by training machine learning algorithms
A, . . . ,Ak on D that create models ŷ : X → Y . Using these models to create predictions
(̂y (X) , . . . , ŷl (X))

T we obtain a new representation.

Example ... Assume that only one model is used to generate a new representation for some predictors
X. Then one can e.g. use a decision tree A with a chosen hyperparameter configuration λ and train it
on the data set D. A prediction model ŷ is obtained which can be used to make predictions for X, i.e.
ŷ (X). These predictions are used as the new representation for X.

As previously explained in Section .., good meta-features are created by a diverse set of ma-
chine learning algorithms. Here, diversity rather than prediction performance is important. Nev-
ertheless, very weak or useless prediction models will also lead to bad meta-features. Hence, it is
vital to select appropriate hyperparameter configurations for the machine learning algorithms. The
model selection component will solve both issues. Having access to k machine learning algorithms
A, . . . ,Ak, it will automatically search for good hyperparameter configurations for each of them.





Algorithm  Training the Model Selection Component
Input: Hyperparameter spaces Λ,...,k, observation histories H,...,k, surrogate models

Ψ,...,k, acquisition function a, time limit t, train and validation data sets Dtrain =
(Xtrain, ytrain) ,Dvalid = (Xvalid, yvalid).

Output: Meta-features Ŷ for Dvalid, loss L for column-wise predictions on Dvalid.
: L← () , Ŷ← ()
: while time limit t is not reached do
: Choose j ∈ {, . . . k} proportional to

∣∣Λj
∣∣ at random.

: Fit Ψj toHj

: λ← arg maxλ∈Λj a
(
λ, Ψj, fmin

j

)
: if predicted run-time for Aj (Xtrain, ytrain,λ) does not exceed the remaining run-

time then
: ŷ← Aj (Xtrain, ytrain,λ)
: fj (λ)← L (yvalid, ŷ (Xvalid))
: Hj ← Hj ∪

{(
λ, fj (λ)

)}
: Ŷ←

(
Ŷ ŷ (Xvalid)

)
: L←

(
L fj (λ)

)
: if fj (λ) < f min

j then
: f min

j ← fj (λ)
: end if
: end if
: end while
: return Ŷ, L





In contrast to the state of the art for automatic model selection and hyperparameter optimization,
which is interested in finding the best model with the best hyperparameter configuration, we are
interested in finding predictive meta-features. Thus, we need to find for each algorithm a hyper-
parameter configuration that leads to a good prediction model itself. Hence, the hyperparameter
search differs from the current state of the art approaches. While the state of the art is applying a
global hyperparameter optimization over the whole algorithm and hyperparameter space, we apply
a hyperparameter optimization per algorithm. Because the hyperparameter dimensionality between
algorithms might differ a lot, as a logistic regression has only one to two hyperparameters while a
neural network might have a dozen, each of the k individual hyperparameter searches is continued
with probability proportional to the number of hyperparameters. For the automatic hyperparameter
search, we make use of Bayesian optimization explained in Section ..

Algorithm  summarizes the training procedure of the model selection component. Given a
set of k learning algorithms A, . . . ,Ak, a training and validation data set Dtrain and Dvalid, k-many
hyperparameter searches are executed in parallel for a given time limit t. Whenever a CPU fin-
ished its task, a new task for it is estimated as follows. An algorithm Aj is selected proportional to
the dimensionality of the hyperparameter search. Following Bayesian optimization, the surrogate
model Ψj is updated and the hyperparameter configuration for the chosen algorithm Aj is selected
that maximizes the acquisition function. If the predicted run-time of evaluating Aj with the selected
hyperparameter configuration λ exceeds the remaining run-time, we continue with another algo-
rithm. For predicting the run-time we use the approach proposed by Hutter et al.. We run our
k algorithms on different data sets of different sizes. Then, we use the number of instances, the
number of predictors and the hyperparameter configuration to predict the run-time using a random
forest. This will ensure that training the model selection component will finish within the specified
time frame. In the case that no further algorithm can finish in the remaining time, we stop training
the model selection component early.

After training the model selection component, it will provide predictions for Dvalid for each
model learned and its corresponding loss. This output will be used for training the following en-
sembling component. Furthermore, the model selection component now represents a function
g : Rn×p → Rn×q that can map some predictors X ∈ Rn×p to the meta-feature space. Therefore,
the q prediction models trained during the training phase of the model selection component are
used to make predictions

Ŷ =
(

ŷ (X) · · · ŷq (X)
)

(.)

which act as our meta-features.





.. Ensembling Component

Before using the output of the model selection component as final predictions or meta-features, the
dimensionality needs to be reduced. One option is to use the validation performance to select only
the predictions of the best model or the best model of each algorithm. This has the advantage of
using strong prediction models from diverse algorithms but the disadvantage that many estimated
models are not considered at all. Another option is to average the predictions or average them by
algorithm. This usually leads to a lift in the prediction but will not work in our case. Here, we face
the problem that we learned some models with bad hyperparameter configurations that led to very
bad or even constant models that will deteriorate the overall prediction. Therefore, we propose to

Algorithm  Bagged Ensemble
Input: Number of bags b, fraction of models in a bag r, number of combined models in a

bag s, groundtruth yvalid, predictions Ŷ ∈ Rn×q.
Output: Prediction of the ensemble.

: for i←  to b do
: Q ⊂ {, . . . , q} s.t. |Q| = rq
: ŷi ←  ∈ Rn

: for j←  to s do
: mbest ← , lbest ←∞
: for m ∈ Q do
: l← L

(
yvalid, 

j

(
ŷi + Ŷ·,m

))
: if l < lbest then
: mbest ← j, lbest ← l

: end if
: end for
: ŷi ← ŷi + Ŷ·,mbest

: end for
: end for
: return 

b·s
∑b

i= ŷi

use a weighted ensemble to combine different models, i.e. the columns of Ŷ. We employ the bagged
ensembling technique with replacement by Caruana et al. to create b bags. Each bag chooses at
random with probability r whether to consider a model or not. Then, s models are greedily selected
and combined. The final prediction is the average prediction of all bags. This bagged approach will
avoid overfitting on the meta-level. This way of ensembling might look complicated but in fact it
is nothing but a weighted average of all models. The weight of the model is given by how often it
was chosen. Algorithm  summarizes the component. During the training phase the weights are
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Figure 11.1: The final framework consists of twomain layers. The first layer learns models on the original data. The esti-

matedmodels are then ensembled by algorithm family. The resulting predictions lead to ourmeta-features that are used

in the secondmain layer. Again, models are trained, this time on themeta-features. Finally, all models are ensembled to a

single prediction vector.

estimated on some validation set. For prediction, these weights are used to combine the predictions
of the model selection component. Since most weights are zero, many models can be discarded after
the training procedure of the ensembling component has finished. This saves memory and reduces
the prediction time.

.. Final Framework

In this section we will describe how the components described in the previous sections are com-
bined to the final framework. Furthermore, we will describe on what part of the data the specific
components have been trained and evaluated.

Figure . sketches our framework. While it looks complicated, it is the most simple version of
our proposed method of Automatic Frankensteining. In fact, it is very similar to a stacked ensemble.

First, the given training data is split into two disjoint partsDtrain andDblend whereDblend contains
 of the data. Dtrain is used in the first model selection component. The component is evaluating
algorithm/hyperparameter configurations in a three-fold cross-validation. Thus, we are learning for
each algorithm/hyperparameter configuration tuple three models, one for each fold. The following
ensembling component also evaluates the weighted ensembles with a three-fold cross-validation with
b = , s =  and r = . At this point, we can generate meta-features forDtrain by using out-of-fold-
predictions such that label information is not leaked. Furthermore, we can generate meta-features
for arbitrary data by averaging the predictions of each of the three prediction models learned on a
fold. We avoid retraining a model on the complete data to save time. Now, the training for the first
two components is completed and they will not be updated any more.

Then, the last two components are trained. Using the first two components, we generate the
meta-features for Dblend that is used as the training data for the last two components. Dtrain will be





used at this point for evaluating the performance of the models. Actually, we trained the second
model selection component twice. Once, only on the meta-features and once on the meta-features
plus the original features. This allows to use possible interactions between features and meta-features.
All models are finally combined with a big weighted ensemble with b = , s =  and r = ..

Now, the automatically created ensemble can be used to predict for a new test data set Dtest. The
first model selection component computes the meta-features that are then processed by the ensemble
component. These meta-features now are used for the second model selection component as features
and their output is combined again by another ensembling component to the final prediction vector.
For this step only predictions are done or combined.

We restrict us to following classifiers: naive Bayes (Gaussian and Bernoulli), logistic regression,
support vector machine with radial basis kernel, k-nearest neighbors, extra randomized trees, gradi-
ent boosting classifier and gradient boosting machine.

The first half of the available training time is used to train the first two components, the second
half for the last two components.

. Experimental Section

Our experimental section is divided into two parts. In the first part we focus on comparing our
approach to the current state of the art for automatic machine learning. In the second part we focus
on comparing against human machine learning experts.

.. Comparison to Other Approaches

We will compare our approach against Auto-WEKA and auto-sklearn using the authors’ imple-
mentation and recommended settings.

Auto-WEKA is an addition to WEKA which makes use of the different preprocessing tech-
niques and algorithms offered by WEKA. Since stacking and other ensembles are also algorithms
in WEKA, Auto-WEKA can make use of ensembles as well. In contrast to our approach, it is not
steered to create an ensemble and thus it can happen that the final solution found by Auto-WEKA
is not an ensemble. At its core, Auto-WEKA’s search is controlled by Bayesian optimization.

auto-sklearn uses Bayesian optimization to find good algorithms, hyperparameter configura-
tions and preprocessing techniques provided by scikit-learn. After finishing the search, auto-
sklearn uses a weighted ensemble to combine estimated prediction models. It has also the feature
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Figure 11.2: Our approach Automatic Frankensteining is only beaten on 11 data sets by Auto-WEKA and only 3 by auto-

sklearn and hence provides the better solution for themajority of data sets.

to use meta-knowledge to initialize the search i.e. that it first evaluates those algorithm/hyperpa-
rameter configuration pairs that have been good on many other data sets. We disabled this feature
to avoid a distortion of the results for two reasons. First, Auto-WEKA does not contain this fea-
ture and second, we perform our evaluation on UCI data sets which are likely used to estimate the
initialization sequence and thus auto-sklearn would make use of test information.

We chose  different classification data sets from the UCI repository. If these data sets already
provided a train/test split, we merged them. We shuffled the instances and split them into 
training data and  test data that is used for evaluation purposes only. Our evaluation measure is
the classification error for which all methods are optimized directly. Each method got  minutes
time to create the best predictions.

Figure . shows the classification error on the test split where each point represents one data
set. The classification error for each approach can be read from the axis. Points on the diagonal in-
dicate ties, points on the one or the other side indicate wins for the named method. Our approach
Automatic Frankensteining finds in  out of  cases a better prediction model than Auto-WEKA
and has  ties. In comparison to auto-sklearn the difference is even stronger. Automatic Franken-
steining finds for  data sets a stronger model and only in  cases auto-sklearn provides the better
solution. The average rank of Automatic Frankensteining is ., for Auto-WEKA . and for
auto-sklearn .. Comparing Auto-WEKA and auto-sklearn head to head, Auto-WEKA finds
on average the better prediction models. It finds in  cases the better solution, only in  cases
auto-sklearn is the better option
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Figure 11.3: Automatic Frankensteining (bottom) achieves within hours already a very small loss on the private leader-

board, outperforming the automatedmachine learning baselinesWEKA (top) and auto-sklearn (middle) as well as the

majority of human participants. The dotted lines indicate the performane of the Random Forest Benchmark, the top 25%

and top 10% of the participants.

.. Comparison to Human Experts

To compare our approach against a wide range of machine learning experts, we applied Automatic
Frankensteining on the Otto Group Product Classification Challenge*, one of the most popular
Kaggle challenges. In this challenge, the Otto Group, one of the world’s biggest e-commerce com-
panies, asked participants to decide to which of their main categories a product described by 
features belongs. The challenge data contains business data from more than  countries of the
Otto Group for more than , products. The performance was measured based on the multi-
class logistic loss as defined in Equation (.). More than , teams participated in this challenge
and tried for  days to be among the top three to claim their share of the , price money.
The organizers provided a Random Forest Benchmark baseline which was able to achieve a score of
. on the private leaderboard, the best solution achieved a score of ..

The labels for the leaderboards were never made publicly available but it is still possible to sub-
mit your predictions and let Kaggle evaluate it for you. This means the following for our exper-
iments. First, we are limited by the number of submissions and evalutions because they involve
time-consuming interactions with the Kaggle interface. Hence, we were restricted to just few eval-
uations. Second, since the label is still hidden, it is impossible that our results are distorted by any
means because the split and evaluation are maintained by a third party. This also guarantees a high
degree of reproducability.

The main focus in this experiment is the comparison of Automatic Frankensteining to human

*https://www.kaggle.com/c/otto-group-product-classification-challenge





experts. Nevertheless, it is also interesting to see how the current state of the art for automated
machine learning performs. Unfortunately, Auto-WEKA only allows to optimize for the classifi-
cation error and not for arbitrary metrics. We still report the results of Auto-WEKA but this is
the reason why we see rather bad and strange results by Auto-WEKA. Automatic Frankensteining
and auto-sklearn directly optimize for the right loss. We decided to give each approach , , ,
...,  hours and submit the predictions after this time to the Kaggle platform. Since we saw a
dramatic improvement by auto-sklearn after  hours, we also investigated whether auto-sklearn
can improve even more if more time is provided. Figure . presents the results with respect to
the multi-class log-loss and the rank on the private leaderboard for the predictions estimated after
the given CPU time. As explained before, Auto-WEKA shows some strange behaviour. But since
the log-loss correlates with the classification error, Auto-WEKA is able to beat at least the baseline
provided by the challenge organizers. Automatic Frankensteining achieves already after  hours a
very good result and can improve if more computational run-time is provided. After running for
 days on the data set, Automatic Frankensteining has converged and does not show any further
improvement. It is not able to reach the top  of the participants and reached a score just un-
der rank . Yet, this is quite an impressive result considering that the better performing human
experts likely had to spend much more time to achieve the same result. Furthermore, Automatic
Frankensteining is able to demonstrate for a further data set that it delivers the better predictions
than auto-sklearn.

We also investigated the performance of the individual components. Each single model created by
Automatic Frankensteining provided worse predictions than the final ensemble. So we can confirm
the results found by the human experts during this challenge, that only a Frankenstein ensemble
can provide the most powerful predictions.

. Conclusions

We proposed Automatic Frankensteining, an automatic way of learning ensembles with many dif-
ferent algorithms with several layers. In a comparison on  different data sets, Automatic Franken-
steining was able to outperform the current state of the art for automatic machine learning for the
large majority of the data sets. Furthermore, in an additional experiment we compared Automatic
Frankensteining on a large scale business data set with more than , human machine learning
expert teams and were able to achieve a better score than more than , teams within just  hours
CPU time. In the future we will further improve our method to finally reach the level of very strong
experts. Therefore, we have to focus strongly on components such as automatic feature engineering
which currently give human experts a not negligible advantage over our approach.









Coming up with features is difficult, time-consuming, re-
quires expert knowledge. “Applied machine learning” is
basically feature engineering.

Andrew Ng

12
Conclusion

Here we will only conclude the third part of the thesis, for a conclusion on the second part please
see Chapter .

In this part of the thesis we evaluated Bayesian optimization in comparison to human experts on
larger data sets. We investigated how good fully automated machine learning performs compared
to human experts. We saw very good results but it still does not achieve the level of top machine
learning experts. Nevertheless, it is already now a very useful tool for machine learning experts to
ease their daily life for optimizing hyperparameters or get a quick prototype.

Part III of this thesis only focuses on selecting algorithms and hyperparameter configurations
based on observations on a single data set. This is in strong contrast to Part II which focuses on
transferring knowledge observations from other data sets to a new one. Obviously, it would be very
interesting to apply the methods of Part II in particular to the automatic ensemble creation presented
in Chapter .

I did not apply transfer learning in Chapter  because I strongly focused on the challenge and
no meta-knowledge for the used prediction model was available. It did not seem beneficial to spend
resources in creating required meta-knowledge and instead I spend all resources directly on the target
data set.

In Chapter  our main focus was on proposing a novel method for automatic ensemble creation.
However, applying transfer learning is straight forward for the first model selection component. I
am convinced that this will lead to similar results in less time as it was demonstrated multiple times
in Part II of this thesis. An interesting research question is whether full ensemble architectures can





be transferred from one problem to the other. However, this is a more complicated question and
out-of-scope.

Interest in automating machine learning is growing and I am sure we will see major breakthroughs
in the coming years. There are a couple of things that are currently very difficult to accomplish auto-
matically. Feature engineering is one of these things. Feature engineering lacks a formal definition
but is essential for applied machine learning. I define feature engineering as the task of creating or
extending the instance representation by using creativity, common knowledge or domain expertise.
Related to this task are preprocessing and representation learning which can be both automated.
Preprocessing involves techniques such as scaling or extracting e.g. TF-IDF score from text data.
Representation learning is the automatic transformation of features from the raw data. One can dis-
tinguish two categories, supervised and unsupervised representation learning. Typical examples for
supervised representation learning are neural networks, examples for unsupervised representation
learning are clustering, matrix factorization or auto-encoders.

To give an example for feature engineering, let us remind the features we engineered in Chapter
 for the ECML-PKDD Discovery Challenge  on Bank Card Usage Analysis. We said that
customers living close to each other will likely visit the same bank branches and thus, added the
nearest-neighbor predictions with respect to residence distance as additional features. This is an
excellent example that shows that coming up with this feature is not really difficult for a human
being. Otherwise, this is almost an impossible task for the machine and a time-consuming task
for the human being. Even though this feature can be described and implemented in hindsight
easily, more work, code and time is needed to proof that a feature is actually useful for the problem.
Furthermore, it may even happen that adding features, which are useful at its own, do not enrich
the representation in combination with other features because their information is already captured
by the other features. Few work exists that try to engineer features automatically but the big
breakthrough is not achieved yet.

I consider automatic feature engineering as one of the remaining big challenges of automated
machine learning. Additionally, I think it is also the topic that is most helpful in improving the
solutions provided by fully automated machine learning.

Another interesting aspect is the automated creation of neural network architectures. Due to the
high interest in Deep Learning, this is likely to become a hot topic in the upcoming years.





A
Look-Up Tables for SMFO

Look-up tables for hyperparameter optimization generated by Average Surrogate Model-free Opti-
mization as described in Chapter . Table A. to A. contain the look-up table for Adaboost, Table
A. to A. contain the look-up table for libSVM.





Table A.1: Best ranking of hyperparameters for multiboost according to A-SMFO introduced in Chapter 4 (Part 1).

Rank Number of Iterations Number of Product Terms

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  





Table A.2: Best ranking of hyperparameters for multiboost according to A-SMFO introduced in Chapter 4 (Part 2).

Rank Number of Iterations Number of Product Terms

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  





Table A.3: Best ranking of hyperparameters for multiboost according to A-SMFO introduced in Chapter 4 (Part 3).

Rank Number of Iterations Number of Product Terms

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  





Table A.4: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 1).

Rank Kernel C Degree Gamma

 RBF  - .
 RBF  - 
 RBF  - .
 RBF  - .
 Linear  - -
 RBF  - 
 Polynomial   -
 RBF  - 
 Polynomial   -
 RBF  - 
 Polynomial   -
 RBF  - .
 Polynomial   -
 RBF  - 
 RBF . - .
 RBF  - .
 RBF  - 
 Linear . - -
 RBF  - .
 RBF  - .
 Linear  - -
 Polynomial   -
 RBF  - 
 Polynomial   -
 Polynomial   -
 RBF . - 
 RBF  - 
 RBF  - 
 Polynomial   -
 RBF  - .
 RBF  - 
 RBF  - .
 RBF  - .
 Linear . - -
 RBF  - .





Table A.5: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 2).

Rank Kernel C Degree Gamma

 RBF  - 
 RBF  - .
 RBF  - 
 RBF . - .
 Polynomial   -
 Polynomial   -
 RBF  - 
 Polynomial   -
 RBF  - 
 Polynomial   -
 Linear  - -
 Polynomial   -
 RBF  - 
 RBF  - 
 Linear  - -
 Polynomial   -
 Polynomial   -
 RBF  - .
 RBF  - 
 Polynomial   -
 RBF  - .
 RBF . - .
 RBF . - 
 Linear  - -
 RBF  - .
 RBF . - .
 RBF  - 
 Polynomial   -
 RBF  - .
 RBF  - 
 Linear . - -
 RBF  - .
 RBF  - 
 RBF  - .
 RBF . - .





Table A.6: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 3).

Rank Kernel C Degree Gamma

 RBF  - .
 RBF  - 
 RBF  - 
 RBF  - .
 RBF  - 
 RBF  - 
 Linear  - -
 Polynomial   -
 Polynomial   -
 RBF  - .
 RBF . - 
 RBF  - .
 Polynomial   -
 RBF  - 
 RBF  - 
 RBF  - .
 Polynomial   -
 RBF . - .
 RBF  - 
 RBF  - 
 Polynomial   -
 RBF . - 
 RBF  - 
 RBF  - 
 RBF  - .
 Polynomial   -
 RBF  - .
 RBF  - 
 Linear . - -
 RBF  - 
 RBF  - 
 RBF . - 
 Polynomial   -
 RBF  - 
 RBF  - 





Table A.7: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 4).

Rank Kernel C Degree Gamma

 Polynomial   -
 RBF  - .
 RBF  - .
 Polynomial   -
 Polynomial   -
 RBF . - .
 RBF  - .
 RBF  - .
 RBF  - 
 RBF  - 
 RBF  - 
 Polynomial   -
 Linear . - -
 Polynomial   -
 Polynomial   -
 Polynomial   -
 RBF  - 
 RBF . - 
 RBF  - 
 RBF  - 
 Polynomial   -
 Linear  - -
 RBF  - 
 Polynomial   -
 Polynomial   -
 Polynomial   -
 Polynomial   -
 Polynomial   -
 RBF  - .
 RBF . - 
 Polynomial   -
 Polynomial   -
 Polynomial   -
 RBF  - .
 RBF . - .





Table A.8: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 5).

Rank Kernel C Degree Gamma

 RBF . - 
 RBF  - 
 RBF . - 
 RBF . - 
 Polynomial   -
 RBF  - 
 Polynomial   -
 RBF  - .
 Polynomial   -
 Polynomial   -
 RBF . - 
 RBF  - 
 RBF  - 
 Polynomial   -
 Polynomial   -
 Polynomial   -
 RBF  - .
 Polynomial   -
 Polynomial   -
 RBF  - 
 RBF  - .
 Polynomial   -
 RBF  - .
 Polynomial   -
 RBF . - 
 RBF . - 
 RBF  - 
 Polynomial   -
 RBF  - 
 RBF  - .
 Polynomial   -
 Polynomial   -
 RBF . - 
 Polynomial   -
 RBF . - 





Table A.9: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 6).

Rank Kernel C Degree Gamma

 RBF  - 
 Polynomial   -
 Polynomial   -
 RBF . - 
 RBF  - .
 RBF . - 
 RBF . - 
 Polynomial .  -
 Polynomial   -
 Polynomial   -
 Polynomial   -
 RBF . - 
 RBF  - .
 RBF . - 
 RBF . - 
 Polynomial   -
 RBF . - .
 RBF  - .
 RBF  - 
 RBF . - 
 RBF . - .
 RBF  - .
 RBF . - 
 Polynomial   -
 RBF  - 
 Polynomial   -
 RBF . - 
 RBF . - 
 RBF  - 
 Polynomial .  -
 RBF . - .
 RBF  - 
 RBF  - 
 RBF . - .
 RBF . - 





Table A.10: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 7).

Rank Kernel C Degree Gamma

 RBF  - 
 RBF . - 
 RBF . - .
 RBF . - 
 RBF . - .
 RBF . - 
 RBF . - 
 RBF  - .
 RBF . - 
 RBF . - 
 RBF . - 
 RBF . - .
 Polynomial .  -
 RBF . - 
 RBF . - .
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - 
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - .
 RBF . - .
 RBF . - .
 RBF . - 
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 RBF . - 
 RBF . - 
 RBF . - 
 Polynomial .  -





Table A.11: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 8).

Rank Kernel C Degree Gamma

 RBF . - .
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 RBF . - 
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF  - .
 RBF . - .
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 Polynomial .  -
 Polynomial .  -





Table A.12: Best ranking of hyperparameters for libSVM according to A-SMFO introduced in Chapter 4 (Part 9).

Rank Kernel C Degree Gamma

 Polynomial .  -
 RBF . - .
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 RBF . - .
 Polynomial .  -
 Polynomial .  -
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