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Abstract

Number theory is one of the oldest mathematical areas. This is perhaps one of
the reasons why there are many connections between number theory and other
areas inside mathematics. This thesis is devoted to some of those connections.

In the first part of this thesis I describe known connections between number
theory and twelve other areas, namely analysis, sequences, applied mathematics
(i.e., probability theory and numerical mathematics), topology, graph theory, lin-
ear algebra, geometry, algebra, differential geometry, complex analysis, physics
and computer science, and algebraic geometry. We will see that the concepts
will not only connect number theory with these areas but also yield connections
among themselves.

In the second part I present some new results in four topics connecting num-
ber theory with computer science, graph theory, algebra, and linear algebra and
analysis, respectively.

First I consider the minimal set of a set M ⊂ N, i.e., the smallest subset A ⊂ M
such that every number m ∈ M can be reduced to a number a ∈ A by strik-
ing away some digits. I will determine the minimal set for some arithmetically
interesting sets and develop an algorithm for congruence classes.

In the next topic I determine the neighbourhood of the neighourhood of ver-
tices in some special graphs. This problem can be formulated with generators
of subgroups in abelian groups and is a direct generalization of a corresponding
result for cyclic groups.

In the third chapter I determine the number of solutions of some linear equa-
tions over factor rings of principal ideal domains R. In the case R = Z this can be
used to bound sums appearing in the circle method.

vii



Lastly I investigate the puzzle “Lights Out” as well as variants of it. Of spe-
cial interest is the question of complete solvability, i.e., those cases in which all
starting boards are solvable. I will use various number theoretical tools to give
a criterion for complete solvability depending on the board size modulo 30 and
show how this puzzle relates to algebraic number theory.
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Zusammenfassung

Zahlentheorie ist eine der ältesten mathematischen Gebiete. Möglicherweise ist
dies der Grund dafür, warum es so viele Verbindungen zwischen Zahlentheorie
und anderen Gebieten innerhalb der Mathematik gibt. Diese Arbeit beschäftigt
sich mit einigen dieser Verbindungen.

Im ersten Teil dieser Arbeit werden bekannte Verbindungen zwischen Zah-
lentheorie und zwölf weiteren Gebieten, nämlich Analysis, Folgen, angewandte
Mathematik (d.h. Wahrscheinlichkeitstheorie und numerische Mathematik), To-
pologie, Graphentheorie, lineare Algebra, Geometrie, Algebra, Differentialgeo-
metrie, Funktionentheorie, Physik und Informatik, sowie algebraischer Geome-
trie, betrachtet. Wir werden sehen, dass die hier betrachteten Konzepte nicht nur
Zahlentheorie mit den obigen Gebieten verbinden, sondern auch Verbindungen
zwischen den Gebieten selbst liefern.

Im zweiten Teil stelle ich in vier Kapiteln eigene Resultate vor, die Zahlentheo-
rie mit Informatik, Graphentheorie, Algebra sowie linearer Algebra und Analysis
verbinden.

Zuerst betrachte ich die Streichungsmenge einer Menge M ⊂ N, d.h. die
kleinste Teilmenge A ⊂ M so dass jede Zahl m ∈ M durch Streichen von Ziffern
zu einer Zahl a ∈ A reduziert werden kann. Ich bestimme die Streichungsmenge
für einige zahlentheoretisch interessante Mengen und entwickle einen Algorith-
mus für Kongruenzklassen.

Im nächsten Kapitel bestimme ich die Nachbarschaft der Nachbarschaft von
Knoten in speziellen Graphen. Dieses Problem kann mit Hilfe von Erzeugern von
Untergruppen in abelschen Gruppen formuliert werden und ist eine direkte Ver-
allgemeinerung eines entsprechenden Ergebnisses für zyklische Gruppen.
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In dritten Kapitel bestimme ich die Lösungsanzahl von linearen Gleichungen
über Faktorringen von Hauptidealringen R. Für den Fall R = Z kann dies benutzt
werden um Summen, die bei der Kreismethode auftauchen, abzuschätzen.

Zuletzt untersuche ich das Puzzle “Lights Out” sowie Varianten davon. Ins-
besondere wird die Frage nach der vollständigen Lösbarkeit betrachtet, d.h. es
geht um die Fälle, in denen jede Startkonfiguration lösbar ist. Unter Benutzung
verschiedener zahlentheoretischer Hilfsmittel beweise ich ein Kriterium für die
vollständige Lösbarkeit, das von der Boardgröße modulo 30 abhängt, und zeige,
wie “Lights Out” mit algebraischer Zahlentheorie zuammenhängt.
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Introduction

Number theory is (one of) the oldest areas in mathematics.

This (or a similar) statement can be found in nearly every introductory text in
number theory. Although one could argue that most of the tools used in contem-
porary number theory are more recent, some classical questions arose centuries
ago. Maybe this is one of the reasons why there are so many connections be-
tween number theory and other mathematical topics. This thesis is devoted to
these connections.

In my time as Ph.D. student I wrote several articles, most of which are part of
this thesis. All of these articles have one thing in common: Aside from number
theory they are located in (or at least touch on) some other area, namely analysis,
linear algebra, algebra, graph theory and theoretical computer science. This fact
resulted in the idea of examining connections between number theory and other
mathematical areas more closely.

This thesis is divided into two main parts. In the first part I show some con-
nections between number theory and other mathematical areas. All definitions,
theorems, and concepts in that part are already known. These chapters serve as
a small presentation in a nutshell. The second part of the thesis presents my own
research. This consists of four topics that have been (or will be) published in five
articles.

For the first part of this thesis one has to decide which other mathematical
areas should be considered. Of course this raises the question

What is a mathematical area?

3



Introduction

This question cannot really be answered. The standard way of classifying
mathematical work is the MSC2010 classification, which has a total of more than
5000 entries with 63 first level entries, cf. [MSC]. One could define these 63 first
level entries as “areas”. But when looking at these one finds, for example, differ-
ent first level entries for “commutative algebra” (13) and “associative rings and
algebras” (16), two topics that could be considered as parts of the area “algebra”.
This means that, in my opinion, the MSC2010 classification is not suitable for
identifying areas, at least in the context of this thesis.

There is another reason why the MSC2010 classification, as well as other clas-
sifications, e.g., the one used for articles in the Arxiv, are not practical. We will
show this by means of two figures. These two figures show different “maps of
maths”, i.e., the connections between mathematical areas. The first map, shown
in Figure 0.0.1, shows the connection when considering papers uploaded on the
Arxiv between 1992 and 2014.

Figure 0.0.1: Connections between mathematical areas according to the Arxiv.
Source: [Loo]
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On this map, two areas are connected if a paper has been uploaded whose
Arxiv classification included these two areas. The more such papers exist, the
thicker the line is. In Figure 0.0.2, the same has been done with the MSC2010 clas-
sification and papers appearing at Zentralblatt Math and Mathematical Reviews.
For more information on these “maps” see [Loo].

Figure 0.0.2: Connections between mathematical areas according to Zentralblatt
Math and Mathematical Reviews. Source: [Loo]

These figures again show that these classifications allow too many areas. The
other reason why this classification is not suitable is the fact that it does not show
all existing connections. In Figure 0.0.1 there is, for example, no connection be-
tween “number theory” and “formal languages and automata theory”. But in
fact there is a really nice connection between these areas, as we will see in Chap-
ter I.11. Thus I did not use the MSC2010 classification to identify the areas.

Another great presentation of mathematical fields (and mathematics itself)
can be found in the Princeton Companion to Mathematics [GBGL08], which presents
26 mathematical branches. These branches are mostly too specialized to be suit-
able for our investigation. There are other introductory textbooks about the fields

5
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of mathematics (for example [HH12], which includes too few areas for our pur-
pose).

Thus, instead of using an existing apportionment of mathematics, I chose
twelve areas which, in my opinion, cover a big part of mathematics and for which
connections with number theory could be found (for example, it seems hard to
find conections between number theory and category theory although there are
papers like [FL05] and [Sch00]. We will also see a categorical construction in
Chapter I.4, but we do not use methods from category theory, thus this is more a
connection with topology than with category theory). The twelve areas that I will
show connections with are

• (real) analysis

• sequences

• applied mathematics (i.e., probability theory and numerical mathematics)

• topology

• graph theory

• linear algebra

• geometry

• algebra

• differential geometry

• complex analysis

• physics and computer science

• algebraic geometry

A (slightly ironic) comment on why I chose exactly twelve other areas can be
found in Appendix A.1.

In the twelve chapters of part 1, I will show one (or sometimes more) con-
nection(s) of the respective topic with number theory. The goal is to mention
concepts and theorems that either combine number theory with other areas or to
examine theorems in number theory that can be proven with concepts or tools
used in other areas. I will not present any proofs in that part (except in the case

6
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when these proofs are illuminating to show some connections). In most cases I try
to mention enough about the concepts so that they are understandable. There are,
however, some exceptions. These exceptions result in the fact that I do not un-
derstand the concepts enough (or even not at all) to explain them. This is the case
for étale cohomology, K-theory, arithmetic manifolds and all concepts in physics.
I decided to include these topics here nonetheless, because I think that these be-
long in a thesis devoted to connections with number theory. In fact, most of the
connecting concepts that I will present will appear in more than one chapter.

Although there are many research articles connecting number theory and other
areas, there appears to be not much work in the treatment of such combinations,
which justifies the first part of this thesis. There is one notable exception: The
proceedings of the DIMACS workshop on “Unusual Applications of Number
Theory” held in 2000, see [Nat04]. These proceedings contain some very nice
connections between number theory and various other areas. We will see some
of the concepts mentioned in these proceedings in the first part of this thesis.

In the second part of this thesis, I present my own research in four chapters.

In the first chapter I consider the problem of finding minimal sets for some
subsets of the natural numbers. Here the minimal set of a set M of natural num-
bers is the smallest subset A ⊂ M such that every number m ∈ M can be reduced
to a number a ∈ A by deleting some of the digits of m. This problem was first in-
troduced by Shallit in [Sha00a], but since then there has not been much progress.
Here I consider some subsets of the natural numbers defined by arithmetic condi-
tions (for example the set of natural numbers that can be written as a sum of two
squares or values of some arithmetic functions). Further, I develop an algorithm
that constructs the minimal set for congruence classes. In fact, this algorithm can
be applied to a more general class of sets.

I show that minimal sets do not permit much structure, i.e., set-theoretic rela-
tions between two sets will, in general, not be passed on to the respective minimal
sets. In addition to this, I show that measure-theoretic tools cannot help in deter-
mining the number of elements in minimal sets.

This topic can be viewed as a connection to theoretical computer science, since
the definition of minimal sets originates from the theory of formal languages,
as will become clearer later. These results have been published in the papers
[Kre15b] and [BKS17], where the second is joint work with J. Steuding and I.
Baoulina.

7
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The next topic is about adding generators in abelian groups. In general, one
does not expect much structure when adding generators. In 2013, J. W. Sander
and T. Sander investigated the sumset of two atoms in cyclic groups A, i.e., for
given a, b, c ∈ A they explicitely computed the set of u, v ∈ A such that u + v = c,
where u is a generator of the subgroup 〈a〉 and v a generator of the subgroup
〈b〉, as well as the number of representations. I show that their result generalizes
immediately to the case when A is an abelian group. Further I show that this
result cannot hold for non-abelian groups in general.

This topic has connections to graph theory: The results can be applied to de-
termine the neighbourhood of the neighbourhood of vertices in Cayley graphs.
The results are published in [Kre15a].

In the third chapter I examine the problem of finding the number of solutions
of linear congruences of the form Ax ≡ 0 mod m where A is an integer matrix and
m ∈ N. In fact this problem can be generalized, and I will determine the number
of solutions of linear equations over factor rings of principal ideal domains with
a certain finiteness condition by using the Smith normal form of the involved
matrix. An explicit formula, depending only on the Smith normal form, as well
as upper bounds are given.

This upper bound can be used in analytic number theory to bound the value
of certain sums appearing in circle methods. Since the generalized problem is
purely algebraic and we will use algebraic methods to determine the number of
solutions, this topic is a connection between number theory and algebra.

The results are published in [Kre16].

Lastly, I investigate the puzzle “Lights Out” as well as some variants of it (in
particular varying board size and number of colors). Here the player is given a
quadratic board with illuminated buttons. The goal is to turn all lights out by
pressing the correct combination of buttons. I discuss the complete solvability
of such games, i.e., I am interested in the cases such that all starting boards can
be solved. I will model the problem with basic linear algebra and develop a cri-
terion for the unsolvability depending on the board size modulo 30. Further, I
will discuss ways of handling the solvability that will rely on prime divisors of
Lucas numbers, analysis and Diophantine approximation, and algebraic num-
ber theory, respectively. Hence this topic is a connection between linear algebra,
analysis and number theory.

The results will be published in [Kre17].

At the end of each chapter of Part 2 I will present some open questions and
discuss potential future work in the respective topic.

8



Introduction

Before starting with the connections in Part 1 I will recall some basics. These
will serve as basics for both parts of the thesis. Here I will restrict to definitions
and theorems that we use later. I will further assume that the reader is acquainted
with basic mathematics and elementary number theory.

In the appendix after Part 2 I will present some additional material. I will
discuss interesting properties of the number 12 in Appendix A.1. In Appendix
A.2 I will give an example of a concept that I will mention in Chapter I.10. This
example will be shown because the only source in which I could find this example
is not publicly accessible. In the appendix I will also show some computations
and further examples for two articles from Part 2.

Most notation used in this thesis is standard. As usual in number theory, the
symbol N denotes the natural numbers with 0 /∈ N and N0 := N ∪ {0}. The set
of primes is denoted by P. The set Zp denotes the p-adic integers, while Z/pZ
denotes the integers modulo p (and more generally, Z/mZ denotes the integers
modulo m).

To avoid confusion we will denote the greatest common divisor of two inte-
gers m, n by gcd(m, n). In this thesis, the divisor function is denoted by τ(n). We
will denote the natural logarithm of a number x by log(x). Whenever the argu-
ment of log is a complex number, this denotes the principal value of the complex
logarithm, i.e., the branch with imaginary part in (−π, π]. If z is a complex num-
ber, <(z) and =(z) denote the real and imaginary part, respectively.

If M is a set, we denote its complement (in a given natural superset of M,
mostly R or N) by Mc and its cardinality with |M|. When we need to distinguish
between elements of M and Mn for some n (for example if M is a field, we want
to distinguish between scalars and vectors), elements in M are denoted by italic
letters, e.g., x ∈ M, while elements in Mn are denoted by boldface letters, e.g.,
x ∈ Mn.

A complete list of symbols can be found in the appendix. I have tried to avoid
using the same symbol for different concepts, but this was not always possible.
In each case, it will be clear from the context which meaning the symbols have.
Due to the structure of this thesis, the list of symbols is rather large. Thus the
list of symbols is (not only) sorted alphabetically. The sorting is explained at the
beginning of the list of symbols.

All results in Part 2 of this thesis are my own results except for those where I
explicitely mention another author. Apart from the two figures in the introduc-
tion, all other graphics are done by myself, mostly using TikZ.
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0
Basics

In the following sections we will state some basic facts and definitions that we
will need in the rest of the thesis. The emphasis here is in understanding the
concepts. We will not give any proofs of the results but instead give references
where they can be found. Several paragraphs will end with a combined example
of the most important definitions mentioned for the respective topic.

0.1 Topology and Geometry

We will start with some foundations in topology and geometry, in particular in
differential geometry. We will just need some basic understanding of the concepts
and will omit exact definitions if they require too much notation.

0.1.1 Topology

Definition 0.1.1 A topological space (M, τ) is a set M equipped with a topology
τ, i.e., a set of subsets τ ⊂P(M) satisfying

• ∅, M ∈ τ,

• if S1, S2 ∈ τ, then S1 ∩ S2 ∈ τ,

• if Si ∈ τ for i ∈ N, then
⋃

i∈N Si ∈ τ.

Sets in τ are called open. A subset K ⊂ M is called closed if M\K is open.

11



0. BASICS 0.1. Topology and Geometry

The (topological) closure of a set A in a topological space (M, τ) is the small-
est closed subset K ⊂ M that contains A. The closure of A is denoted by A. The
set A is called dense in M if A = M. For example, Q is dense in R in the usual
topology.

A topological space (M, τ) is called connected if there are no nonempty open
sets U1, U2 ∈ τ such that U1 ∩U2 = ∅ and U1 ∪U2 = M.

Let (M1, τ1) and (M2, τ2) be two topological spaces. Then a map f : M1 → M2

is called continuous if for all U ∈ τ2 we have f−1(U) ∈ τ1, i.e., the preimage of
any open set is open. Bijective continuous maps f such that the inverse of f is
again continuous are called homeomorphism.

In some cases algebraic structures can be equipped with a topological struc-
ture that is compatible with the operations.

A topological group is a group G such that composition and inversion are
both continuous (as maps from G× G to G or from G to G, respectively). A topo-
logical ring is a ring R such that addition and multiplication are both continuous
(as maps from R× R to R).

For a ring R, the units R∗ of R form a group. If R is a topological ring, R∗

does not need to be a topological group when equipped with the topology of R.
However, if we embed R∗ in R × R via x 7→ (x, x−1) and consider R∗ with the
topology of R× R (i.e., the open sets of R∗ are the sets U ∩ R∗ where U ⊂ R× R
is open), then this becomes a topological group. We call this topology the IC
topology (inversion continuous) on R.

A topological space (M, τ) is called Haussdorff space if for any two distinct
points p1, p2 ∈ M there are open sets U1, U2 ⊂ M such that p1 ∈ U1, p2 ∈ U2 and
U1 ∩U2 = ∅.

If (M, τ) is a topological space, an open covering is a collection of open sets
Ui ⊂ M, i ∈ N such that

⋃
i∈N Ui = M. An open covering C = {Ui} is called

locally finite if for any p ∈ M there is an open set U ⊂ M with p ∈ U and such
that the set {i : U ∩Ui 6= ∅} is finite, i.e., any p is only covered with finitely many
open sets from C.

If for any open covering {Ui} there is a locally finite refinement, i.e., a locally
finite covering {U′j} such that for any j ∈ N there is an i ∈ N with U′j ⊂ Ui, then
(M, τ) is called paracompact.

Let {Ui} be an open covering of a topological space (M, τ). A subcover of
{Ui} is a covering {U′j} such that for any j ∈ N there is an i ∈ N with U′j = Ui.
A set A in a topological space (M, τ) is called compact if any open covering of A

12
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has a finite subcover. (M, τ) is called locally compact if for any p ∈ M there is a
compact set K that includes an open set U ⊂ M with p ∈ U. For example, the real
numbers R with the usual topology are locally compact, while the set of rational
numbers Q is not.

If Mi are countably many topological spaces and for any i the set Ui ⊂ Mi

is open, we can define the restricted topological product of the spaces Mi with
respect to Ui to be the set of all m = (mi) ∈ ∏i Mi such that mi ∈ Ui for all but
finitely many i. We can define a topology on the restricted topological product
as follows: Each of the sets ∏i Ai (where Ai is open in Mi and Ai = Ui for all
but finitely many i) is open, and a subset B of the restricted topological product
is open if and only if it is a countable union of sets of the above form. If the
sets Mi and Ui carry additional structure, this is often passed on to the restricted
topolological product. For example, the restricted topological product is locally
compact if the spaces Mi are locally compact and the sets Ui are compact (see
[Cas67]). If Mi and Ui are topological rings, then the restricted topological prod-
uct is again a topological ring. We will see an example of this concept (where the
restricted topological product is both locally compact and a ring) in Chapter I.4.

0.1.2 Differential, Riemannian and hyperbolic manifolds

Paracompact Haussdorff spaces that behave locally like the Euclidean space Rm

are the main objects of study in differential geometry.

Definition 0.1.2 A topological manifold M of dimension m is a connected, para-
compact Haussdorff space that is locally Euclidean (i.e., for any p ∈ M there is
a U ⊂ M with p ∈ U, an open set Ω ⊂ Rm and a homeomorphism x : U → Ω).
Manifolds of dimension m are also called m-manifolds.

Note that we do not explicitely mention the topology of M, but we use it
implicitely when speaking about homeomorphisms. Any such homeomorphism
x : U → Ω is called chart. An atlas A of M is a set of charts such that any point
p ∈ M lies in the domain of a chart x ∈ A. An altas is called differentiable if for
any two charts x1 : U1 → Ω1, x2 : U2 → Ω2 with U1 ∩U2 6= ∅ the transition map
x2 ◦ x−1

1 : x1(U1 ∩U2) → x2(U1 ∩U2) is differentiable. Let A be a differentiable
atlas. A chart x : U → Ω is called compatible with A if A ∪ {x} is again a
differentiable atlas. A differentiable atlas A is called a differentiable structure if
all charts that are compatible to A belong to A.

Definition 0.1.3 A topological manifold equipped with a differentiable structure
is called a differentiable manifold.

13



0. BASICS 0.1. Topology and Geometry

We will mainly need a special kind of differentiable manifold:

Definition 0.1.4 A Riemannian manifold (M, g) is a differentiable manifold to-
gether with a Riemannian metric g on M.

We will not define what a Riemannian metric is (this would need the tangent
space first and, for proper understanding, tensor fields on manifolds). Instead we
will just mention how Riemannian metrics look like. We hope that this, together
with Example 0.1.6, will suffice to understand Riemannian metrics enough for
our purpose.

If M has dimension m, then a Riemannian metric g associates to each point
p ∈ M a positive definite symmetric bilinear form g(p) on some m-dimensional
vector space of differential operators, i.e., g is a differential form. Thus, for m = 2,
a Riemannian metric can be written as

g = g1,1 dx2
1 + g1,2 dx1 dx2 + g2,2 dx2

2

or, equivalently,

g(p) =

(
g1,1(p) 1

2 g1,2(p)
1
2 g1,2(p) g2,2(p)

)
.

If (M, g) is a Riemannian manifold, we can measure lengths and distances on
M. Let γ : [a, b] → M be a smooth curve (we call a curve γ smooth if for any
chart x : U → Ω with suitable U ⊂ M the curve x ◦ γ is smooth). Then the length
of γ is defined as

L(γ) :=
∫ b

a

√
g(γ(t))(γ̇(t), γ̇(t))dt,

where γ̇(t) = d
dt γ(t). The distance between two points p1, p2 on M is the infi-

mum over all lengths of curves from p1 to p2. If a curve γ locally minimizes the
distance (compare Example 0.1.6), then γ is called geodesic. Another definition
of geodesics can be found in [Jos08].

Finally we define hyperbolic manifolds. We will just state the definition for
special Riemannian manifolds of dimension 2.

Definition 0.1.5 Let (M, g) be a Riemannian manifold of dimension 2 with Rie-
mannian metric g = g1 dx2 + g2 dy2 (i.e., g1,2 = 0). The curvature K of (M, g) is
defined as

K =
−1√
g1g2

(
∂

∂x

(
1√
g1

∂

∂x
√

g2

)
+

∂

∂y

(
1√
g2

∂

∂y
√

g1

))
.

(M, g) is called hyperbolic if K = −1.
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The usual definition of curvature is not the above. In fact, there are different
curvatures (such as sectional curvature, Gauß curvature), cf. [Jos08]. The defini-
tion of these in general cases requires more notation. The general definition al-
lows one to define the curvature for arbitrary Riemannian metrics and this yields
a definition of hyperbolic manifolds for arbitrary dimensions. Since we will only
need the above formula this will suffice for us.

Example 0.1.6 Let us consider the sphere S 2 := {s ∈ R3 : s2
1 + s2

2 + s2
3 = 1}

together with the topology inherited from R3. Then S 2 is clearly connected and
the topology defines a Haussdorff space. We show that S 2 is a manifold. For
that, we need to show that S 2 is paracompact and locally Euclidean. We will
even show that S 2 is a differentiable manifold by defining a finite open covering
and a differentiable structure.

Let N := (0, 0, 1) and S := (0, 0,−1). Then the sets UN := S 2\{S} and
US := S 2\{N} define a finite open covering of S 2. Consider the stereographic
projections xN : UN → R2, xS : US → R2, given by

xN(s1, s2, s3) :=
1

1 + s3
(s1, s2), xS(s1, s2, s3) :=

1
1− s3

(s1, s2).

The stereographic projection xN is shown in Figure 0.1.1.

N

p

xN(p)

Figure 0.1.1: The stereographic projection xN.

The stereographic projections are charts from S 2 to R. By computing the
transition maps we see that {xN, xS} is a differentiable atlas, thus we get a differ-
entiable structure on S 2 by taking the differentiable structure that contains this
atlas.
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We define a Riemannian metric g on S2 by

g =
4

(1 + u2 + v2)2

(
du2 + dv2

)
, i.e., g(p) =

 4
(1+u2+v2)2 0

0 4
(1+u2+v2)2

 ,

where (u, v) = xN(p). We will measure the lengths of two curves and determine
the curvature K.

Let R := (0, 1, 0), F := (1, 0, 0) ∈ S 2. We consider two curves from R to F,
namely

γ1 :
[
0,

π

2

]
→ S 2, γ1(t) = (sin t, cos t, 0),

γ2 :
[

0,
3π

2

]
→ S 2, γ2(t) = (− sin t, cos t, 0).

Note that since these curves lie in the x − y−plane, the stereographic projec-
tions of these curves are the identity maps. We get

L(γ1) =
∫ π

2

0

√
4

(1 + (sin t)2 + (cos t)2)2 ((cos t)2 + (sin t)2)dt =
∫ π

2

0
1 dt =

π

2

and similarly L(γ2) =
3π
2 . These are exactly the values we expected since γ1 is a

quarter of the arc of a circle with radius 1 (analogous for γ2). The curves γ1 and
γ2 both locally minimize the length of curves connecting R and F (if we vary the
curves by a small amount, the lengths increase), thus γ1 and γ2 are geodesics.

For the curvature K we compute

∂

∂u

(
1√
g1

∂

∂u
√

g2

)
=

1
(1 + u2 + v2)2 (4u2 − 2(1 + u2 + v2)),

hence

K =
−(1 + u2 + v2)2

4
· 4
(1 + u2 + v2)2 · (u

2 + v2 − (1 + u2 + v2)) = 1.

The sphere S 2 will become important in another context. Consider the com-
plex plane C. We define the Riemann sphere to be Ĉ := C ∪ {∞}. Now the
stereographic projections define homeomorphisms from S 2 to Ĉ.

For more on manifolds see [Boo03, Jos08].
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0.1.3 Hyperbolic geometry

Hyperbolic manifolds are important examples of hyperbolic geometries. We will
see a detailed example in Paragraph 0.3.2. Hyperbolic geometry is a geometry
satisfying the following axioms (compare [CFKP97]):

1. Two distinct points can be joined by exactly one straight line segment.

2. Any straight line segment can be extended in both directions arbitrarily
long.

3. For any point P and any (positive) radius r there is exactly one circle with
radius r whose center is P.

4. All right angles are congruent.

5. For any line l and any point P not on l there are at least two lines through P
that do not intersect l.

Here a line is defined as the shortest curve between two points whereas a line
in the context of Riemannian manifolds is defined to be a segment of a geodesic.
The axiom that distinguishes hyperbolic geometry from Euclidean geometry is
the fifth. In Euclidean geometry, given a line l and a point P not on l there is
exactly one line through P that does not intersect l. This line is the parallel of l
through P. In this style we call any line l′ that does not intersect a given line l a
parallel to l. Note that in hyperbolic geometry parallel lines are not equidistant.

There are some models for hyperbolic geometry, i.e., sets equipped with a
metric that satisfies the hyperbolic axioms. Examples can be found in [RR94,
CFKP97]. We will see one of those models in Paragraph 0.3.2.

The hyperbolic axioms have interesting consequences. Triangles have angle
sum less than π and given three angles with sum less than π, there is (up to con-
gruence) exactly one hyperbolic triangle with these angles. Moreover, the area of
any triangle is bounded by π (compare Paragraph 0.3.2). More interesting prop-
erties and a comparison with other geometries can be found in [RR94, CFKP97].

0.1.4 Algebraic Curves

We conclude the basics about geometry with algebraic curves. Let us first recall
the notion of affine plane and projective plane. We will not mention the exact
definition of the affine plane but rather give some intuition.
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Let K be a field (for visualization, take K = R). Then we can view K2 as affine
plane A2(K) by considering elements of K2 as points.

When we examine distinct lines in A2(R) they either intersect or they are par-
allel. We wish to expand the affine plane so that we do not need to distinguish
between these two cases. This can be done by considering points at infinity. By
defining them appropriately, parallel lines do intersect at infinity. This is the idea
of the projective plane.

Definition 0.1.7 The projective plane P2(K) is the set of all lines in K3 through
the origin.

We denote elements in P2(K) by homogeneous coordinates (x0 : x1 : x2). By
definition the equality (x0 : x1 : x2) = (y0 : y1 : y2) holds if and only if there is
a λ ∈ K\{0} such that (x0, x1, x2) = λ(y0, y1, y2). The affine plane A2(K) can be
canonically embedded in P2(K) by

ι : A2(K)→ P2(K), ι(x1, x2) = (1 : x1 : x2).

Then the points at infinity are P2(K)\ι(A2(K)) = {(0 : x1 : x2) : x1, x2 ∈ K}.

We will consider curves defined on the affine or projective plane.

Definition 0.1.8 Let K be a field, A2(K) the affine plane over K and P2(K) the
projective plane over K.

• A set C ⊂ A(K2) is called an affine algebraic curve if there is a polynomial
f ∈ K[x1, x2] with deg( f ) ≥ 1 and

C = V( f ) := {(c1, c2) ∈ A2(K) : f (c1, c2) = 0}.

• A set C ⊂ P(K2) is called a projective algebraic curve if there is a homoge-
neous polynomial f ∈ K[x0, x1, x2] with deg( f ) ≥ 1 and

C = V( f ) := {(c0 : c1 : c2) ∈ P2(K) : f (c0, c1, c2) = 0}.

Since there is a 1-to-1 correspondence

{polynomials f ∈ K[x1, x2]} ↔ {homogeneous polynomials g ∈ K[x0, x1, x2]}

∑ aj,kxj
1xk

2 →∑ aj,kxdeg( f )−j−k
0 xj

1xk
2

∑ aj,k,lx
j
1xk

2 ←∑ aj,k,lxl
0xj

1xk
2
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we can restrict ourselves (at least when dealing with the defining polynomials)
to affine algebraic curves and view projective algebraic curves as affine algebraic
curves with some points at infinity.

If C = V( f ) is an affine algebraic curve and f = f v1
1 · · · f vr

r is the decomposi-
tion of f into irreducible factors, we call f̃ := f1 · · · fr the minimal polynomial
of C. Note that V( f̃ ) = V( f ) = C. Moreover, the minimal polynomial is unique
up to units. We can use the minimal polynomial to define certain invariants or
properties of algebraic curves.

Let C = V( f ) be an affine algebraic curve and f be a minimal polynomial
of C. Then the degree of C is defined as the degree of f . The curve C is called
smooth if (

∂ f
∂ x1

(c),
∂ f
∂ x2

(c)
)
6= (0, 0)

for all c ∈ C (for general fields we can take the formal derivative instead of the
analytic derivative of f ). If C is not smooth, then C is called singular.

More about algebraic curves can be found in [Fis94]

0.2 Complex Analysis

In this section we examine basic definitions and results in complex analysis, in
particular about holomorphic functions.

0.2.1 Exponential sums

Exponential sums are complex sums that arise in several (not only number theo-
retic) contexts.

Definition 0.2.1 Let f : N → R be a function. Then an exponential sum is of the
form

∑
a<n≤b

e2πi f (n)

for some a, b ∈ R∪ {∞}.
In some contexts we use the notations e(x) := e2πix and eq(x) := e

2πix
q , so that

the above sum becomes ∑a<n≤b e( f (n)). Whenever we use this notation we will
explicitely mention this. There is one notable case in which we do not use this
notation: In the theory of Fourier series it is not common to use this notation, and
we will stick to the usual notation.
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We do not use much about exponential sums in this thesis (and everything we
need will be done in the respective chapters). In many cases one needs to bound
exponential sums. There are some methods and results that apply in general
settings, cf. [GK91].

0.2.2 Holomorphic and meromorphic functions

Functions depending on one complex variable that are (almost everywhere) com-
plex differentiable play an important role in analytic number theory. Usually, we
denote the variable by s = σ + it where σ, t ∈ R.

All definitions and results in the remaining paragraphs of this section can be
found in [FB06]. In this section G always denotes a domain, i.e., an open con-
nected subset G ⊂ C.

Definition 0.2.2 Let f : G → C be a complex function and s0 ∈ G. Then f is called
complex differentiable at s0 if its derivative

f ′(s0) := lim
s→s0

f (s)− f (s0)

s− s0

exists. The function f is called holomorphic in G if f is complex differentiable for
all s ∈ G.

Complex differentiability is much stronger than real differentiability. Any
holomorphic funcion is automatically smooth (i.e., for any k ∈ N, f is k times
complex differentiable) and analytic (i.e., f can be expanded in a power series).
In fact these properties are equivalent. More equivalent formulations of holomor-
phic functions can be found in [FB06].

Many interesting complex functions arising from number theory are not ev-
erywhere complex differentiable, they are not even defined everywhere. Singu-
larities are points s0 where f is not defined. For example, the functions f (s) = 1

s
and g(s) = log(s) (where log denotes the principal value of the complex loga-
rithm) both have singularities at s0 = 0. We are especially interested in singulari-
ties that are discrete:

Definition 0.2.3 Let f : G → C holomorphic and s0 /∈ G. Then s0 is called isolated
singularity if there is an open set U containing s0 such that U\{s0} ⊂ G.

Thus, if s0 is an isolated singularity of f : G → C, there is a set V ⊂ G such
that V ∪ {s0} is open. We will call such a set a neighboorhoud of s0 in G. In
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the above examples, 0 is an isolated singularity of f (s) = 1
s whereas it is not an

isolated singularity of g(s) = log(s).

There are three possible types of isolated singularities. Let f : G → C be
holomorphic and s0 be an isolated singularity. Then s0 is called

• removable singularity if there is a holomorphic function g : G ∪ {s0} → C
such that the restriction of g to G is f ,

• pole if for any R > 0 there is a neighbourhood U of s0 in G with | f (s)| > R
for all s ∈ U,

• essential singularity if s0 is neither removable nor a pole.

A function f : G → C is called meromorphic on G if there is a discrete set
P( f ) ⊂ G such that f : G\P( f ) → C is holomorphic and any s ∈ P( f ) is a pole
or a removable singularity of f .

If f is a non-vanishing meromorphic function on G and s0 ∈ G, there is an
k ∈ Z and a holomorphic function g on G such that g(s0) 6= 0 and

f (s) = (s− s0)
kg(s)

for all s ∈ G\{s0}. The number ords0 f := k is called the order of f at s0. Hence
ords0 f is positive if f (s0) = 0, ords0 f = 0 if f has no pole at s0 and f (s0) 6= 0,
and ords0 f is negative if f has a pole at s0. If f has a pole at s0, the order of the
pole of f at s0 is defined as − ords0 f . If the order of the pole is 1, we call the pole
simple.

In many cases complex functions f are given by integrals or series. Most of
these integrals and series will exist, respectively converge, in a half plane σ > σ0

for some σ0 ∈ R. If this is the case, we wish to extend f to a bigger domain (if
possible, all of C). This is done with analytic continuation.

Definition 0.2.4 Let f : G → C, f̃ : G̃ → C be holomorphic functions with G ⊂ G̃
such that the restriction of f̃ on G is f . Then we call f̃ holomorphic continuation
or analytic continuation of f .

According to the identity theorem any two holomorphic functions f and g
that coincide on a nonempty open set U are identical, thus any two holomorphic
continuations to the same domain G̃ are identical.

In most cases our holomorphic functions do not have an analytic continuation
to C, but a continuation to C such that the continuation is a meromorphic func-
tion. Then it is common to call this an analytic continuation besides some poles
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at certain points. If we are not interested in the number and position of the poles,
we will simply refer to a meromorphic continuation.

Often an analytic continuation is given via a functional equation. These are
equations relating the value of a function at some point to the value at some other
point. We will see this in Paragraph 0.5.4.

0.2.3 Laurent series

As already mentioned, holomorphic functions are analytic, i.e., they can be ex-
panded in a power series. A similar statement holds for meromorphic functions.

Definition 0.2.5 A Laurent series is a symbol of the form

L (s) =
∞

∑
n=−∞

an (s− s0)
n :=

∞

∑
n=1

a−n

(s− s0)
n +

∞

∑
n=0

an (s− s0)
n ,

where ai, s0 ∈ C. We say that a Laurent series is convergent in G ⊂ C if both of
the sums ∑∞

n=1
a−n

(s−s0)
n and ∑∞

n=0 an (s− s0)
n are convergent in G.

If L is a Laurent series but no power series, then L either converges nowhere
or in an open annulus, i.e., in a set of the form {s ∈ C : r < |s− s0| < R} for
some r, R ∈ R with 0 ≤ r < R ≤ ∞.

If f : G → C is holomorphic and s0 /∈ G is an isolated singularity of f , then
we can expand f in a Laurent series f (s) = ∑∞

n=−∞ an (s− s0)
n around s0. The

precise form depends on the type of the singularity:

• s0 is removable if and only if the Laurent series is a power series,

• s0 is a pole if and only if there is an n0 < 0 such that an0 6= 0 and an = 0 if
n < n0 (in fact we have n0 = ords0 f ),

• s0 is essential if and only if a−n 6= 0 for infinitely many n ∈ N.

If we expand f in a Laurent series, there is one coefficient that is of particular
interest, especially if s0 is a pole:

Definition 0.2.6 If f : G → C is meromorphic and f (s) = ∑∞
n=−∞ an (s− s0)

n its
Laurent series, then the coefficient a−1 is called the residue of f at s0, denoted by
Res( f ; s0).

0.2.4 Integral formulae

An important tool in complex analysis is the line integral.
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Definition 0.2.7 Let f : G → C be continuous and γ : [a, b] → C be a smooth
curve. The integral ∫

γ
f (s)ds :=

∫ b

a
f (γ(τ))γ̇(τ)dτ

is called the line integral of f alongside γ.

There are a lot of important integral formulae. We will need the following
two:

Theorem 0.2.8 (Cauchy’s integral formula) Let f : G → C be holomorphic and let
s0 ∈ G. Then

f (s) =
1

2πi

∫
C(s0)

f (τ)
τ − s

dτ

holds for any counter-clockwise oriented circle C(s0) ⊂ G with center at s0 and for any s
in the interior of C(s0).

Theorem 0.2.9 (Residue theorem) Let γ : [a, b] → G be a simple closed curve (i.e.,
γ(a) = γ(b) and γ(r) 6= γ(s) for any other choices of r, s ∈ [a, b]). Let s1, . . . , sn

be distinct points in the bounded open subset of G whose boundary is the trace of γ. If
f : G → C is a meromorphic function such that f : G\{s1, . . . , sn} → C is holomorphic,
we have ∫

γ
f (s)ds = 2πi

n

∑
i=1

Res( f ; si).

0.2.5 Möbius transformations

Now we turn our attention to special holomorphic functions.

Definition 0.2.10 Let G1, G2 ⊂ C be domains. A function f : G1 → G2 is called
conformal if f is bijective and holomorphic.

There is an equivalent geometric notion of conformal functions. When view-
ing the function involved as a mapping f : R2 → R2, the conformal functions are
exactly the functions that preserve angles and orientation, cf. [FB06].

If f : G → G is conformal, we call f an automorphism. The group of automor-
phisms of G (with composition) is denoted by Aut(G). We dicuss some special
conformal mappings.

Definition 0.2.11 A fractional linear transformation f is a meromorphic function
of the form

f (s) =
as + b
cs + d

with a, b, c, d ∈ C and ad− bc 6= 0.
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0. BASICS 0.3. The upper half plane H

We wish to turn fractional linear transformations into holomorphic functions.
Therefore we need to allow ∞ as argument and value of such a function. We
do this by continuing a fractional linear transformation to the Riemann sphere
Ĉ (recall Example 0.1.6). Any fractional linear transformation f can be uniquely
extended to Ĉ via f (∞) = ∞ if c = 0, or f

(
− d

c

)
= ∞ and f (∞) = a

c if c 6= 0. We
call continuations of fractional linear transformations Möbius transformations.
This continuation is a holomorphic function when viewed as a function from Ĉ
to Ĉ (we will not treat holomorphic functions on Ĉ here).

In fact (when extending the notion of conformal mappings appropriately) the
group of Möbius transformations is exactly the group of automorphisms of the
Riemann sphere. We can describe Möbius transformations with matrices: The
map

φ : GL2 (C)→ Aut Ĉ,

(
a b
c d

)
7→ az + b

cz + d

is a homomorphism of groups, its kernel is {λI2 : λ ∈ C}.

0.3 The upper half plane H
The upper half plane

H := {s ∈ C : =(s) > 0}

will become important in Chapter I.9. We will consider H in two ways: First as
subset of C and second as a hyperbolic manifold.

0.3.1 ... as complex domain

Since H ⊂ C is a domain we can examine the group of automorphisms of H.

Theorem 0.3.1 The group of automorphisms of H is given by

Aut(H) =

{
az + b
cz + d

: a, b, c, d ∈ R, ad− bc > 0
}

.

In other words, the group of automorphisms of H is a subgroup of Aut(Ĉ),
when identifying fractional linear transformations with their corresponding Mö-
bius transformations. This is common, even without mentioning this identifica-
tion. To make this exact, we could consider H together with its boundary (see
Paragraph 0.3.2). These details are not important for us, therefore we will call
automorphisms of H Möbius transformations.
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When identifying these Möbius transformations with matrices again, we have
a homomorphism

φ : GL+
2 (R)→ Aut(H),

(
a b
c d

)
7→ az + b

cz + d
,

where GL+
2 (R) denotes all real 2 × 2 matrices with positive determinant. The

kernel of this map is {λI2 : λ ∈ R>0}.

0.3.2 ... as hyperbolic manifold

Since H is an open subset of C ∼= R2, it is a differentiable manifold. We introduce
a Riemannian metric g on H and investigate some properties of (H, g).

Let z = x + iy. Then we consider the Riemannian metric

g =
dx2 + dy2

y2 , i.e., g(x, y) =

 1
y2 0

0 1
y2

 .

First we compute the curvature K, cf. [Ser13]. Since

∂

∂x

(
1√
g1

∂

∂x
√

g2

)
= 0 and

∂

∂y

(
1√
g1

∂

∂y
√

g2

)
=

1
y2 ,

we get

K =
−1

1
y2

· 1
y2 = −1,

hence (H, g) is a hyperbolic manifold.

Now we determine the geodesics on H. There is a general equation that
geodesics have to satisfy, see [Hit]. We will just look at our special case. In this
case, for a curve γ(t) = x(t) + iy(t) where x(t) and y(t) are the real and imagi-
nary parts, respectively, the equations

d
dt

(
x′(t)
y(t)2

)
= 0 and

x′(t)2 + y′(t)2

y(t)2 = 1

need to hold. From the first equation we get x′(t) = cy(t)2 for some c ∈ R. Thus
we have two possibilities.
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Either c = 0, then x(t) is constant and γ is a vertical line. In the other case,
c 6= 0 and the two equations above give

dy
dx

=
dy
dt
dx
dt

=

√
y2 − c2y4

cy2 =

√
1− c2y2

cy
.

Then we get cy dy√
1−c2y2

= dx and integrating this with respect to t results in

−1
c

√
1− c2y2 = x− a

for some a ∈ R. Thus, γ satisfies the equation (x − a)2 + y2 = 1
c2 , i.e., it is a

semicircle with center on the real line.

This characterization immediately yields that for any two distinct points z1, z2

in the upper half plane H there is exactly one geodesic through z1 and z2 (in
contrast to the sphere in Example 0.1.6).

Thus, to get the distance between two points we only need to compute the
length of the geodesic segment between z1 and z2. There are a lot of (of course
equivalent) formulae for the hyperbolic distance dH, see [Hit, Ser13, Kat10]. One
of them is

dH(z1, z2) = 2 tanh−1
(∣∣∣∣z2 − z1

z2 − z1

∣∣∣∣) .

In particular we have dH(x + ai, x + bi) = log b
a for b > a > 0, x ∈ R (we

would also get this formula easily with the definition of the length, cf. Paragraph
0.1.2), i.e., the distance of two points on the same vertical line does not depend
on the real part and increases with decreasing imaginary part. The situation is
different for the distance of points on a horizontal line. Let z1 = x1 + ti and
z2 = x2 + ti. Then

dH(z1, z2) = 2 tanh−1

(
|x2 − x1|√

(x2 − x1)2 + 4t2

)
.

For constant x1, x2 and increasing t, this goes to 0.

Another direct consequence of the characterization of geodesics is that for any
given line l there are infinitely many parallels to l, cf. Figure 0.3.1. Thus we are
indeed dealing with a hyperbolic geometry.
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In the characterization of the geodesics we see that the points on the real line
play an important role. Note that for any given point z = x + iy ∈ H, the hyper-
bolic distance from z to the real line is

lim
t→0

dH(x + iy, x + tiy) = lim
t→0

log
1
t
= ∞.

Thus the real line can be seen as infinitely far away. As we have already seen,
the distance of two points z1 = x1 + ti, z2 = x2 + ti goes to 0 for increasing t, i.e.,
any sequence zn = xn + itn “diverges to the same point” when tn → ∞. Denote
this point by ∞H. Then we call ∂H = R ∪ ∞H the boundary at infinity of H.
Points of ∂H are called ideal points.

As already statet in Paragraph 0.1.3, the angles and the area of triangles satisfy
interesting properties. In our case we can verify these with the help of a formula
from differential geometry, the Gauß-Bonnet formula. We will not explain all
notation of this formula, for more information see [Lee97].

Theorem 0.3.2 (Gauß-Bonnet formula) Let (M, g) be a Riemannian surface and let
D ⊂ M be a connected subset with piecewise differentiable boundary ∂D. Let χ(D)

denote the Euler characteristic of D, K the curvature of M and κg the geodesic curvature
along ∂D. Then ∫

D
K dA +

∫
∂D

κg(s)ds = 2πχ(D).

Let D be a triangle in H. Then we have (compare [Ser13, Kat10]) K = −1 and
κg(s) = 0 at each point where ∂D is differentiable (since the boundary consists of
geodesic segments). If αi denote the interior angles on the corners of ∂D (i.e., the
points where ∂D is not differentiable), we have∫

∂D
κg(s)ds = ∑

i
(π − αi).

Since χ(D) = 1, we get ∫
D
−1 dA + ∑

i
(π − αi) = 2π

and hence
A =

∫
D

1 dA = π − α1 − α2 − α3.

An immediate consequence is that both the angle sum in and the area of an
hyperbolic triangle are less than π.
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Strictly speaking, we have not defined what an hyperbolic angle of two cross-
ing geodesics is. We will not do this here (see [Kat10] for a precise definition
involving the usual formula with scalar products). We just mention that this defi-
nition will result in the same angles as if we would compute the Euclidean angles
of the tangents of the geodesics, cf. [Kat10].

Example 0.3.3 Consider z1 = 1, z2 = 3+ 2i, z3 = 3+(2+
√

8)i (i.e., z2, z3 ∈ H and
z1 ∈ ∂H is an ideal point). The geodesic going through z1 and z2 is the semicircle
with center 3 and radius 2, the geodesic going through z1 and z3 is the semicircle
with center 5 +

√
8 and radius 4 +

√
8, and the geodesic going through z2 and z3

is the vertical line x = 3 (see Figure 0.3.1). The triangle D defined by these three
points has interior angles αz1 = 0, αz2 = π

2 and αz3 = π
4 , thus D has hyperbolic

area π
4 . We further have

dH(z2, z3) = tanh−1(
√

2− 1) =
1
2

log(
√

2 + 1) ≈ 0.4406868.

•

•

•

z2

z3

z10

Figure 0.3.1: A hyperbolic triangle and parallel lines.

Any of the red geodesics in Figure 0.3.1 is a parallel of any blue geodesic, and
in this style one can construct infinitely many lines through a given point parallel
to a given line.

An important concept in geometry are isometries:

Definition 0.3.4 A map f : H → H is called isometry if f is differentiable (as
function f : R2 → R2) and dH( f (z1), f (z2)) = dH(z1, z2) for any z1, z2 ∈ H.

We have already seen isometries of H: Every automorphism of H is also an
isometry of H. These are all isometries that preserve orientation. The group of all
isometries of H is genereated by Aut(H) and the reflection z 7→ z.
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Isometries are important because they preserve geometric objects and proper-
ties such as geodesics, lengths, angles, areas, triangles and much more. In Chap-
ter I.9, we will be concerned with functions on H that allow special transforma-
tions under actions of some subsets of the group of isometries.

A more detailed discussion about isometries of H can be found in [Kat10,
Ser13]. More about the hyperbolic plane and trigonometry on H can be found
in [Wal16, Ser13].

0.4 Linear Algebra and Graph Theory

Now we examine some basics about special subsets of Rn as well as some linear
algebra and graph theory.

0.4.1 Lattices and subsets of Rn

Definition 0.4.1 Let n ∈ N. A lattice Γ is a discrete subgroup of Rn, i.e., a sub-
group of the form

Γ = Zv1 + · · ·+Zvm

with m ≤ n and linearly independent vectors vi ∈ Rn. A lattice is called full if
m = n.

In this thesis all lattices are assumed to be full. If Γ is a lattice, we call any set
of the form γ + P, where γ ∈ Γ and P is the parallelotope generated by v1, . . . , vn,
a fundamental domain of Γ and we define the volume of Γ to be

vol(Γ) := vol(P) = |det(v1, . . . , vn)| .

Example 0.4.2 Figure 0.4.1 shows the lattice

Γ =

{
k1

(
2
0

)
+ k2

(
1
2

)
: k1, k2 ∈ Z

}

and two possible fundamental domains. The volume of Γ is

vol(Γ) =

∣∣∣∣∣det

((
2 1
0 2

))∣∣∣∣∣ = 4.
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F1

F2

Figure 0.4.1: A lattice Γ and two fundamental domains F1 and F2.

Fundamental domains arise in other mathematical contexts, too. The general
concept deals with group actions. Recall that a group action of a group (G, ◦)
with neutral element e on a set M is a map ∗ : G × M → M such that for all
g, h ∈ G and m ∈ M the following two conditions hold:

• e ∗m = m,

• (g ◦ h) ∗m = g ∗ (h ∗m).

Two elements m1, m2 ∈ M are called equivalent under G if there is a g ∈ G such
that g ∗m1 = m2.

Definition 0.4.3 Let X be a topological space and G a group acting on X. An
open subset F ⊂ X is called fundamental domain (under the action of G) if the
following two conditions hold:

• If x, y ∈ F are distinct, there is no g ∈ G with g(x) = y.

• For any x ∈ X there is a y ∈ F and a g ∈ G with g(x) = y.

Thus in this general setting a fundamental domain is a subset F ⊂ X such
that no distinct two elements in F are equivalent under G, but any element in X
is equivalent to some y in the closure of F. There is also a more precise definition
of fundamental domains where F is not required to be open and the element y
in the second condition does not only belong to F, but to F itself. In this case
it is harder to determine a fundamental domain, thus we will stick to the above
definition. Any fundamental domain of a lattice is a fundamental domain of the
group action defined via the translations by the vectors vi.
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In any setting, fundamental domains contain all the information that we need,
and in most interesting cases these fundamental domains are (at least partially)
bounded, thus it is much easier to work with them.

When working with lattices, we also need two special kinds of subsets of Rn.

Definition 0.4.4 Let S ⊂ Rn be a subset.

• S is called centrally symmetric if for any x ∈ S we have −x ∈ S.

• S is called convex if for any x, y ∈ S the line connecting x and y lies in S.

0.4.2 Polynomials and formal Laurent series

Definition 0.4.5 Let n ∈ N and R be a ring. We call a polynomial f ∈ R[x1, . . . , xn]

homogeneous of degree k if f (λx) = λk f (x) for any x ∈ Rn and λ ∈ R. Homo-
geneous polynomials are also called forms. If n = 2, the forms are called binary,
if n = 3, they are called ternary. Forms of degree 1 are called linear, those of
degree 2 are called quadratic.

There is a well developed theory about quadratic forms (in particular binary
and ternary), but we do not need any results here.

If f = xn + an−1xn−1 + · · ·+ a0 ∈ R[x] is a monic polynomial (i.e., a polyno-
mial with leading coefficient 1) in one variable with roots αi (where the roots lie
in a suitable extension of R and are counted with multiplicities), the discriminant
of f is defined as

∆ f = ∏
i<j

(αi − αj)
2 = (−1)

n(n−1)
2 ∏

i 6=j
(αi − αj).

A canonical generalization of polynomials are formal power series and formal
Laurent series.

Definition 0.4.6 Let R be a ring.

• A symbol of the form ∑∞
n=0 anxn with an ∈ R and an indeterminate x is

called formal power series. The set of formal power series is denoted by
R[[x]].

• A symbol of the form ∑∞
n=k anxn (for some k ∈ Z) with an ∈ R and an

indeterminate x is called formal Laurent series. The set of formal Laurent
series is denoted by R((x)).
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With the usual operations, R[[x]] is a ring and R((x)) is a field. If f ∈ R((x))
is any formal Laurent series, we can formally differentiate f with the usual rule
for powers, i.e., if f = ∑∞

n=k anxn, then its formal derivative f ′ is given by

f ′ =
∞

∑
n=k

nanxn−1.

If f = ∑∞
n=0 fnxn ∈ R[[x]] and g = ∑∞

n=0 gnxn ∈ R[[x]] are two power series,
their Hadamard product is defined to be

f � g = ∑
n=0

( fn · gn)xn.

0.4.3 Matrix operations

We will need some special matrix operations.

The Kronecker product of two matrices A and B is the matrix

A⊗ B =


a1,1B · · · a1,nB

... . . . ...
am,1B · · · am,nB

 .

If A is an m × n matrix and B is an r × s matrix, then A ⊗ B is an mr × ns
matrix. Note that in general A⊗ B 6= B⊗ A.

There is a relation between the Kronecker product and the matrix product. In
fact, we have

(A⊗ B)(C⊗ D) = AC⊗ BD

whenever the respective products are defined. In particular, if A and B commute,
then A⊗ B and B⊗ A commute since

(A⊗ B)(B⊗ A) = AB⊗ BA = BA⊗ AB = (B⊗ A)(A⊗ B).

If λj and µl are the eigenvalues of A, respectively B, (with multiplicities) with
eigenvectors vj, respectively wl, then the eigenvalues of A⊗ B are λjµl with eigen-
vectors vj ⊗ wl. The above results and more about the Kronecker product can be
found in [HJ08].

Related to the Kronecker product is the Kronecker sum. If A is an m × m
matrix and B is an n× n matrix, then the Kronecker sum of A and B is defined as
A⊕ B = A⊗ In + Im ⊗ B.
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As usual, one can define the Kronecker sum and the Kronecker product of
linear maps via the respective operation on representation matrices.

We will need one more result about the eigenvalues of sums of matrices. Sup-
pose A and B commute. Then A and B can be simultaneously diagonalized, i.e.,
there is a matrix S such that S−1AS = DA and S−1BS = DB are diagonal matrices.
Then S−1(A + B)S = S−1AS + S−1BS = DA + DB. Thus the eigenvalues νk of
A + B are of the form λj + µl, where λj and µl are eigenvalues of A respectively
B belonging to the same eigenvector.

0.4.4 The Smith normal form

Similarly to matrices over fields there are normal forms of matrices with entries
in a principal ideal domain. We will use the Smith normal form.

Definition 0.4.7 A matrix A (with entries in some principal ideal domain R) is
said to be in Smith normal form if there are ai ∈ R such that ai|ai+1 and

A =



a1
. . .

am

0
. . .

0


.

Note that A does not need to be a square matrix. Any matrix over a principal
ideal domain can be brought in Smith normal form, see [Mor05].

Theorem 0.4.8 Let R be a prinicipal ideal domain and A be a matrix with entries in R.
Then there are invertible matrices P, Q such that PAQ is in Smith normal form.

0.4.5 Graphs

Now we lay the foundation in graph theory. For more about graphs see [BM08].

Definition 0.4.9 An (undirected) graph G is an ordered pair G = (V, E) where V
is a finite set and E is a subset of (V

2) := {{v, w} : v, w ∈ V, v 6= w}. We call the
elements of V vertices and the elements of E edges.

Vertices v, w such that {v, w} ∈ E are called adjacent. Sometimes one allows a
vertex to be adjacent to itself. Edges from a vertex v to v are called loops. Unless
stated otherwise, all graphs are assumed to be loopless.
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One can also specify a direction of edges in a graph: A directed graph G is an
ordered pair G = (V, E) where V is a finite set and E is a subset of V ×V. Often
one writes D = (V, A) for directed graphs to distinguish between undirected and
directed graphs. In the case of directed graphs edges are also called arcs.

Graphs exist as abstract objects. To illustrate them we usually draw graphs in
the plane R2. Then vertices will be drawn as dots or small circles and edges as
lines or curves. If G is a directed graph, the direction of the arcs is indicated with
arrows. In general, we need to distinguish between a graph and its drawing (in
particular when we are concerned about the relationship of edges in the plane,
such as crossings). For our purposes this is not important, thus we will call (by
abuse of notation) drawings of a graph again a graph. Figure 0.4.2 shows an
(undirected) graph, the so called Petersen graph.

Figure 0.4.2: The Petersen graph PET.

In this thesis, when referring to a graph we will always mean an undirected
graph. Directed graphs are always denoted as such. Since we will mostly be
concerned with undirected graphs, we will define all relevant notations only for
this case. For most concepts there are obvious analogues for directed graphs, cf.
[BM08].

First we examine the relationships between vertices.

Definition 0.4.10 Let G = (V, E) be a graph.

• G is called complete if E = (V
2), i.e., if any two different vertices are adjacent.

• The complement of G is the graph Gc := (V, Ec) with Ec := (V
2)\E.

If G is a graph, we are also interested in certain concepts of reachability.
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Definition 0.4.11 Let G = (V, E) be a graph.

• A path in G is a sequence P = v0, . . . , vk of vertices such that vi 6= vj for
i 6= j, and {vi−1, vi} ∈ E for i = 1, . . . , k. The length of P is l(P) := k ∈ N0.

• G is called connected if for any v, w ∈ V there is a path connecting v and w.

• The distance between two vertices v, w ∈ V is

d(v, w) := min{l(P) : P is a path that connects v and w}.

• The diameter of a graph is defined as diam(G) := maxv,w∈V d(v, w).

• The k-neighbourhood of v is defined as Nk(v) := {w ∈ V : d(v, w) = k}.

Of special interest is the set of all vertices that are adjacent to a given vertex.
The neighbourhood of a vertex v is the set N(v) := {w ∈ V : {v, w} ∈ E}. Note
that N(v) = N1(v). The degree of a vertex v, denoted d(v), is defined as the
number of neighbours of v, i.e., d(v) := |N(v)|. A graph is called k-regular if all
of its vertices have degree k.

A graph has a lot of different characteristic numbers. We will mention three
of them: The clique number, the chromatic number and the vertex connectivity.

A clique is a subset W ⊂ V such that any two different vertices of W are
adjacent. A clique of size 3 is called triangle. The clique number ω(G) is the size
(i.e., the number of vertices) of a maximal clique in G.

An independent set is a subset W ⊂ V such that no two different vertices of
W are adjacent. A graph G = (V, E) is called k-partite if V is a disjoint union
V = V1 ∪ · · · ∪ Vk such that any Vi is an independent set. The smallest number k
such that G is k-partite is called the chromatic number χ(G).

A graph G is called k-connected (with k ≥ 1) if G has at least k + 1 vertices
and G remains connected whenever at most k− 1 vertices of G are removed. The
largest k such that G is k-connected is called vertex connectivity of G, denoted
κ(G).

We conclude this paragraph with some special graphs, automorphisms, and
an example for the concepts defined here.

Definition 0.4.12 Let (H, ◦) be a finite group with neutral element eH and S ⊂ H
a subset with eH /∈ S and S−1 := {s−1 : s ∈ S} = S. The Cayley graph X(H, S) is
the graph G = (V, E) with V = H and {v, w} ∈ E :⇔ v ◦ w−1 ∈ S.
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Like for many other objects, one can define homomorphisms of graphs. Let
G1 = (V1, E1) and G1 = (V2, E2) be graphs. A map ϕ : V1 → V2 is called iso-
morphism if ϕ is bijective and for all v, w ∈ V1 we have {v, w} ∈ E1 if and only
if {ϕ(v), ϕ(w)} ∈ E2, i.e., two vertices are adjacent if and only if their respective
images are adjacent. As usual one writes G1

∼= G2 if there is a isomorphism be-
tween G1 and G2. An isomorphism from G to G is called automorphism of G.
The set Aut(G) of all automorphisms together with composition form the group
of automorphisms of G. G is called transitive if Aut(G) acts transitively on V,
i.e., if for any v, w ∈ G there is a ϕ ∈ Aut(G) with ϕ(v) = w. It is easy to show
that Cayley graphs are transitive, see [GR01].

A graph G is called circulant if G ∼= X(Z/nZ, S) for some n ∈ N, S ⊂ Z/nZ.

Definition 0.4.13 Let G = (V, E) be a graph and V = {v1, . . . , vn}. Define a
matrix A = (ai,j) by

ai,j =

1, {vi, vj} ∈ E

0, {vi, vj} /∈ E
.

The matrix A is called adjacency matrix of G. Since A is real and symmetric its
eigenvalues are real. A graph is called integral if all eigenvalues of A are actually
integers.

If A1, A2 are two adjacency matrices corresponding to different numberings
of the vertices of a graph G, then there is a permutation matrix P such that
P−1A1P = A2. Hence the integrality of a graph does not depend on the num-
bering of its vertices.

Example 0.4.14 The Petersen graph is a connected, 3-regular graph, there are only
cliques of size 1 and 2, thus ω(PET) = 2 and PET has no triangles. The coloring
of the edges in Figure 0.4.3 define independent sets and thus a 3-partition of the
Petersen graph. It is easy to show that the Petersen graph is neither 1- nor 2-
partite, so χ(PET) = 3. The diameter is diam(PET) = 2, the red path in Figure
0.4.3 is the shortest path connecting v and w. The Petersen graph is 3-connected
but not 4-connected (since deleting the three neighbours of any vertex would
result in a graph that is not connected), hence κ(PET) = 3. It can be shown that
PET is not a Cayley graph, see [GR01].

From our drawing of the Petersen graph it is obvious that any automorphism
of the regular 5-gon induces an automorphism of PET, in particular Aut(PET)
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acts transitively on both the outer and the inner vertices. Moreover, the auto-
morphism depicted in Figure 0.4.4 maps inner vertices to outer vertices and vice
versa. Combining these automorphisms shows that PET is transitive.

v

w

Figure 0.4.3: Properties of the Pe-
tersen graph PET.

w

Figure 0.4.4: An automorphism of
the Petersen graph PET.

The adjacency matrix (for some numbering of the vertices) of PET is

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0



.

Its eigenvalues are −2 (with multiplicity 4), 1 (with multiplicity 5), and 3, thus
the Petersen graph is integral.

0.5 Number Theory

We will assume that the reader is familiar with most number theoretic objects.
Nevertheless we will recall some concepts and results here. While the concepts
and definitions will be used (more or less) in later chapters, we will not use most
of the results but instead see some possible proofs for these, using different tech-
niques.
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0.5.1 Miscellaneous

We will start to recall some basic notation and concepts.

If n ∈ N and p ∈ P, we denote by vp(n) the exponent of p in the prime
decomposition of n (here the v stands for valuation, cf. Paragraph 0.5.8), i.e., we
have n = ∏p∈P pvp(n). We will denote the Euler totient function with ϕ, i.e.,

ϕ(n) = ∑
1≤k≤n

gcd(k,n)=1

1 = ∏
p∈P
p|n

(p− 1)pvp(n)−1.

In this thesis the number of divisors of n will be denoted by τ(n), i.e.,

τ(n) = ∑
d|n

1 = ∏
p∈P
p|n

(vp(n) + 1).

The divisor sum of n is

σ(n) = ∑
d|n

d = ∏
p∈P
p|n

pvp(n)+1 − 1
p− 1

.

Recall that n is called perfect if σ(n) = 2n. The even perfect numbers are
perfectly understood, see [SF07]:

Theorem 0.5.1 An even number n is perfect if and only if it is of the form 2p−1(2p − 1)
such that both p and 2p − 1 are primes.

Numbers of the form 2n − 1 are called Mersenne numbers. They can only be
prime if n is prime, but this is not a sufficient condition, as 211 − 1 is not a prime.
It is not known whether or not there are infinitely many Mersenne primes. For a
list of known Mersenne primes see [MPS].

Until now, no odd perfect number is known, and it is believed that there are
none. For some conditions that these numbers would have to fulfill (there are
many more conditions derived in different articles), see [Bra43, Küh49, HM72].

Recall that for any b ∈ N≥2 there is a unique way to represent a natural num-
ber n in base b, i.e., the representation n = ∑∞

k=0 nkbk with 0 ≤ nk < b is unique.
We will denote the base b representation of n by 〈n〉b, i.e., 〈n〉b = . . . n2n1n0.
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For a, b ∈ Z, we denote by
( a

b
)

the Kronecker symbol, i.e.,

( a
1

)
= 1,

( a
0

)
=

1, a = ±1

0, a 6= ±1
,

(
a
−1

)
=

1, a ≥ 0

−1, a < 0
,

and if b = ε ∏k
i=1 pvp(b)

i with pi ∈ P and ε ∈ {±1} we have

( a
b

)
=
( a

ε

) k

∏
i=1

(
a
pi

)vp(b)

where
(

a
p

)
is the Legendre symbol if p is an odd prime and

( a
2

)
=


0, a ≡ 0 mod 2

1, a ≡ ±1 mod 8

−1, a ≡ ±3 mod 8

.

Since Euclid it is known that there are infinitely many primes. When consid-
ering primes in arithmetic progressions, it is clear that there can be at most one
prime p with p ≡ a mod m if gcd(a, m) > 1. In the other case we have Dirichlet’s
theorem on primes in arithmetic progressions, cf. [Apo76]:

Theorem 0.5.2 (Dirichlet’s theorem on primes in arithmetic progressions) If a and
m are coprime, there are infinitely many primes p ≡ a mod m.

Although some special cases can be proven in an elementary way (compare
[HW08]), known proofs of the general statement require the theory of Dirichlet
L-functions (compare Paragraph 0.5.4). In Appendix A.1 we will review the cases
in which an elementary proof of some kind is possible.

In some places we will need the Bernoulli numbers.

Definition 0.5.3 The Bernoulli numbers Bk are defined via the condition

t
et − 1

=
∞

∑
k=0

Bk
k!

tk.

More on Bernoulli numbers can be found in [Coh07b]. We call a prime p reg-
ular if p does not divide the numerators of the even Bernoulli numbers Bk with
k ≤ p − 3. The first irregular prime is 37. For more about regular primes see
[Was97]. We will mention an equivalent condition for regular primes in Para-
graph 0.5.6.
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There are two particular Diophantine equations, that we will try to solve. The
first of them is the Pythagorean equation x2 + y2 = z2. Solutions (a, b, c) of this
equation are called Pythagorean triples. A Pythagorean triple (a, b, c) is called
primitive if gcd(a, b, c) = 1. We can restrict our attention to the case that b is even
and a is odd. In this case we have:

Theorem 0.5.4 (characterization of Pythagorean triples) A triple (a, b, c) ∈ N3 is
a primitive Pythagorean triple if and only if there are m, n ∈ N with m > n and
gcd(m, n) = 1 such that

a = m2 − n2, b = 2mn, c = m2 + n2.

This can be proved in many different ways, cf. [SF07, Conf]. We will review
this equation in Chapters I.7, I.8, and I.12.

The second important equation is Mordell’s equation.

Definition 0.5.5 Let k ∈ Z. The equation y2 = x3 + k is called Mordell’s equation.

We are mostly interested in integer solutions of Mordell’s equation. For re-
sults about rational solutions see [Mor66]. There are a lot of methods to attack
this problem, some of which we will see later. In [Conb], Mordell’s equation is
examined with some basic methods and a method we will see later. See [Apo76]
for another basic result and [Coh07a] for advanced results.

Some values k for which Mordell’s equation is not solvable (taken from [Conb,
Apo76]) are

−73,−65,−57,−37,−24,−17,−6,−5, 6, 7, 11, 23, 35, 45, 46, 87.

We will later learn about two methods to examine this equation. One of them
will yield a full solution for Mordell’s equation for |k| ≤ 10 000 (with the help of
computer algebra systems).

We need one more lemma about equivalence classes. Since this is not stan-
dard, we will give a proof.

Lemma 0.5.6 Let α1, . . . , αn be representatives of the congruence classes 2, 4, . . . , 2n
modulo (2n + 2) and b ∈ Z with gcd(b, 2n + 2) = 1. Then bα1, . . . , bαn are repre-
sentatives of the congruence classes 2, 4, . . . , 2n modulo (2n + 2).

Proof. It is clear that bαi and bαj are incongruent modulo (2n + 2) for all i 6= j.
Since bαi is clearly even for all i, we only have to show that bαi 6≡ 0 mod (2n + 2)
for all i. But if bαi ≡ 0 mod (2n + 2) and b is coprime to 2n + 2, we also have
αi ≡ 0 mod (2n + 2), which is a contradiction. q.e.d.

40



0. BASICS 0.5. Number Theory

0.5.2 Continued Fractions

Next we consider continued fractions. See [SF07] for proofs and more about con-
tinued fractions.

Definition 0.5.7 A (finite) continued fraction is a symbol of the form

a0 +
1

a1 +
1

a2+
1

...+ 1
an

where a0 ∈ Z and ai ∈ N for i ≥ 1. We will denote continued fractions by
〈a0; a1, . . . , an〉. A continued fraction is called normalized if an 6= 1.

Continued fractions are yet another way to represent rational numbers. To any
given rational number α there are exactly two continued fractions whose value is
α, and exactly one of them is normalized.

Continued fractions can be obtained with the Euclidean Algorithm: If a and
b are nonzero integers, let

a = a0b + r1

b = a1r1 + r2

r1 = a2r2 + r3

...

rn−2 = an−1rn−1 + rn

rn−1 = anrn

be the Euclidean Algorithm for a and b. Then the normalized continued fraction
of a

b is 〈a0; a1, . . . , an〉.

Completely analogous (and thus omitted here) is the definition of infinite con-
tinued fractions. These fractions represent irrational numbers. We will write in-
finite continued fractions in the form 〈a0; a1, a2, . . .〉. In both the finite and the
infinite case the integers ai are called partial quotients.

It is easy to compute the continued fraction expansion (or at least a finite num-
ber of partial quotients) of an irrational number y by repeatedly writing

y = byc+ {y} = byc+ 1⌊
1
{y}
⌋
+
{

1
{y}
} = · · · .
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Here and in the following, bxc denotes the floor function, i.e., the largest integer
a ≤ x. We denote by {x} = x − bxc the fractional part of x. Since this notation
might become unclear when also dealing with sets, we will explicitely mention
this notation everytime we use it.

For example, the continued fraction of e is given by

〈1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, . . . , 1, 1, 2n, . . .〉.

See [Coh06] for a nice proof of this fact.

For the opposite direction, i.e., if one wants to get the real number that is rep-
resented by the continued fraction α = 〈a0; a1, a2, . . .〉, one can use the recurrence
formula

p−1 := 1, p0 := a0, pn := an pn−1 + pn−2, q−1 := 0, q0 := 1, qn := anqn−1 + qn−2.

Then for any n ∈ N we have 〈a0; a1, . . . , an〉 = pn
qn

and lim
n→∞

pn
qn

= α. The fraction pn
qn

is called the n-th convergent of α.

Similarly to the case of decimal fractions there is a nice characterization of
periodic continued fractions due to Euler and Lagrange:

Theorem 0.5.8 Let α be irrational. The continued fraction of α is periodic (i.e., of the
form 〈a0; a1, . . . , am, b1, . . . , bn〉) with n ≥ 1 if and only if α is algebraic of degree 2, i.e.,
α = r + q

√
d with r, q ∈ Q, d ∈ Z\{1} squarefree.

0.5.3 Additive Number Theory

Additive number theory is concerned with questions involving sumsets:

Definition 0.5.9 Let A, B be subsets of an additive structure (mostly N or Z/mZ
for some m). The sumset of A and B is

A + B := {a + b : a ∈ A, b ∈ B}.

There are two possible types of problems in this field: Determining sumsets
(or their properties) for given sets or deducing information about the sets A and
B when a sumset is given.

The classical problem of the first variant is the following: Given a set S ⊂ N0

and a natural number k, determine which natural numbers n can be written as
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a sum of k elements of S (and determine, if possible, the number of representa-
tions). Questions of these type are dealt with in [Nat96b]. For the inverse ques-
tion, i.e., deducing information about A and B when the sumset of A and B is
given, see [Nat96a]. We will see both kinds of problems. Here we just mention
some classical problems and results.

Three of the most classical results are the two-squares theorem, the three-
squares theorem, and the four-squares theorem. Proofs and more about these
results can be found in [Nat96b, SF07] and, for the case of the three-squares theo-
rem, in [For08]. Note that in all three cases the squares involved may be squares
of integers, i.e., the square 0 is allowed.

Theorem 0.5.10 (two-squares theorem) A natural number n ∈ N can be written as a
sum of two squares if and only if 2|vp(n) for every prime p ≡ 3 mod 4.

Theorem 0.5.11 (three-squares theorem) A natural number n ∈ N can be written as
a sum of three squares if and only if n can be written in the form n = 4am with 4 - m and
m 6≡ 7 mod 8.

Theorem 0.5.12 (four-squares theorem) Every natural number can be written as a
sum of four squares.

In general, for given k, Waring’s problem is concerned with the determination
of the smallest natural number g(k) such that any natural number can be written
as a sum of g(k) k-th powers, cf. [Nat96b, Vau97]

Problem 0.5.13 (Waring’s problem) Given a natural number k, what is the smallest
natural number g(k) such that any natural number can be written as a sum of g(k) k-th
powers?

The existence of g(k) has been shown by Hilbert [Hil09]. The value g(k) is
known for all k, cf. [Niv44]. The first ten values are

1, 4, 9, 19, 37, 73, 279, 548, 1079, 2132.

A variant of Waring’s problem asks for the smallest natural number G(k) such
that all sufficiently large natural numbers can be written as a sum of G(k) k-th
powers. This problem is unsolved for most k, until now only the values G(1) = 1,
G(2) = 4, and G(4) = 16 are known. For other values of k only bounds are
known, cf. [Vau97]. This variant of Waring’s problem can be attacked with a
method we will present in Chapter I.10.

Another problem is concerned with the sumset of primes. These are Gold-
bachs problems, cf. [Nat96b, Vau97].
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Problem 0.5.14 (ternary Goldbach problem) Can every odd number greater than 5 be
written as a sum of three primes?

Problem 0.5.15 (binary Goldbach problem) Can every even number greater than 2 be
written as a sum of two primes?

While the ternary Goldbach problem can be attacked with the method men-
tioned in Chapter I.10 (and is indeed, as it seems, solved, cf. [Hel13, Hel12]), the
binary Goldbach problem is still unsolved.

An example of a result about sumsets in finite fields is the Cauchy-Davenport
theorem, see [Nat96a]:

Theorem 0.5.16 (Cauchy-Davenport theorem) Let p ∈ P and A, B ⊂ Z/pZ be
nonempty. Then

|A + B| ≥ min{p, |A|+ |B| − 1}.

We will see generalizations and inverse results of the Cauchy-Davenport the-
orem in Chapter I.6.

0.5.4 The Riemann ζ-function and Dirichlet series

One of the most important functions in number theory is the Riemann ζ-function.
As usual we will denote the complex argument by s.

Definition 0.5.17 The Riemann ζ-function is defined via the series

ζ(s) =
∞

∑
n=1

n−s.

This series converges for <(s) > 1. We state some results about ζ(s) and recall
the Riemann hypothesis since both the results (as well as generalisations) and the
conjecture will recur later. For proofs see [Brü95].

Theorem 0.5.18 The Riemann ζ-function has the following properties:

• For <(s) > 1 the Riemann ζ-function admits an Euler product

ζ(s) = ∏
p∈P

1
1− p−s .

• The following functional equation holds:

π−
s
2 Γ
( s

2

)
ζ(s) = π−

1−s
2 Γ
(

1− s
2

)
ζ(1− s).
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Here Γ is the Γ-function

Γ(s) :=
∫ ∞

0
e−tts−1 dt.

The functional equation gives a meromorphic continuation of ζ(s) to C. More
precisely, ζ(s) is holomorphic in C\{1} and has a simple pole with residue 1 at
s = 1.

• The Riemann ζ-function has zeros at −2n for all n ∈ N. These are called trivial
zeros.

One of the most important open problems in mathematics is the Riemann
hypothesis:

Conjecture 0.5.19 (Riemann hypothesis) All nontrivial zeros of ζ(s) have real part 1
2 .

For an introduction to the Riemann hypothesis see [Bom06]. The Riemann
hypothesis is one of the Millennium problems, cf. [CJW06]. For some equivalent
formulations see [CF, Ban, BCRW08].

More about the Riemann ζ-function and the Riemann hypothesis in particular
can be found in [Tit86, BCRW08].

We take a brief look at a generalization of the Riemann ζ-function. Let (an)n∈N
be a complex sequence. The Dirichlet series associated to this sequence is the
series ∑∞

n=1
an
ns with s ∈ C. Properties of Dirichlet series (for example regarding

its convergence) can be found in [Brü95].

A special case are Dirichlet L-functions. Recall that a Dirichlet character mod-
ulo m is a function χ : Z→ C such that

• χ(n) = χ(m + n) for all n ∈ Z,

• χ(ab) = χ(a)χ(b) for all a, b ∈ Z,

• χ(n) = 0 if and only if gcd(m, n) > 1.

A Dirichlet L-function is a Dirichlet series associated to a Dirichlet character, i.e.,
a series of the form ∑∞

n=1
χ(n)

ns .

There is an analogue of the Riemann hypothesis for Dirichlet L-functions,
the generalized Riemann hypothesis. This asserts that for any complex s with
L(s, χ) = 0 and <(s) ∈ [0, 1] we have in fact <(s) = 1

2 .
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0.5.5 Transcendental Number Theory

We will need a few results of transcendental number theory. All proofs of the
results in this paragraph can be found in [Bak90].

One of the starting points of transcendental number theory is Liouville’s the-
orem about approximation of algebraic numbers.

Theorem 0.5.20 (Liouville’s theorem) Let α be an algebraic number of degree d > 1.
Then there is a number c > 0 depending on α such that

∣∣∣α− a
b

∣∣∣ > c
bd

holds for all rational numbers a
b with b > 0.

Liouville’s theorem can be used to show that the number ∑∞
k=1 10−k! is tran-

scendental. The lower bound in Liouville’s theorem means that an algebraic
number cannot be approximated too well. The converse is not true. For example,
Mahler [Mah53] showed that

∣∣∣π − a
b

∣∣∣ > b−42

for all a, b ∈ N. The exponent 42 has later been reduced, the best known bound
is approximately 7.60630852, see [Sal08]. However, it is possible to get lower
bounds for approximations of some transcendental numbers using results about
linear forms in logarithms. To state this, recall that the height of an algebraic
number α with minimal polynomial f = anxn + · · ·+ a0 is defined as the number
max{|ai| : 0 ≤ i ≤ n}.

Theorem 0.5.21 (Baker’s theorem on linear forms in logarithms) Let α1, . . . , αn be
nonzero algebraic numbers with degrees at most d and heights at most h. Let further
β0, . . . , βn be algebraic numbers with degrees at most d and heights at most H with
H ≥ 2. Define

L := β0 + β1 log(α1) + · · ·+ βn log(αn).

If L 6= 0 we have |L| > H−C where C is a constant depending on n, d, and h.

With Baker’s theorem one can get lower bounds on approximations of tran-
scendental numbers that can be written as the quotient of two logarithms. We
will see an example in Section II.4.4.
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Although the set of algebraic numbers is countable and the set of transcen-
dental numbers is uncountable, it is in general hard to give examples of transcen-
dental numbers. The Lindemann-Weierstraß theorem can be used to prove that
certain numbers are transcendental.

Theorem 0.5.22 (Lindemann-Weierstraß theorem) Let α1, . . . , αn be distinct alge-
braic numbers and let β1, . . . , βn be nonzero algebraic numbers. Then

β1eα1 + · · ·+ βneαn 6= 0.

With the Lindemann-Weierstraß theorem one can show that eα, sin(α), cos(α)
and tan(α) are transcendental for any algebraic α 6= 0, and that log(α) is transcen-
dental for any algebraic α ∈ C\R≤0, α 6= 1 (here log denotes the principal value
of the complex logarithm).

0.5.6 Number Fields

To conclude the basics in number theory we will recall some concepts and results
of algebraic number theory. For the understanding of this thesis we will just need
a few basic definitions and some results. Therefore we will just mention enough
to understand the results. All additional information will be mentioned with-
out explaining the concepts. Proofs of all results and more on algebraic number
theory can (unless stated otherwise) be found in [Neu92].

We will start with number fields here and will deal with Galois theory and
valuations in the next paragraphs.

Definition 0.5.23 A number field is a finite extension of Q.

We are interested in the ring of integers of a number field K.

Definition 0.5.24 Let S/R be a ring extension. An element s ∈ S is called integral
over R if there is a monic polynomial f ∈ R[x] such that f (s) = 0. The set
{s ∈ S : s is integral over R} is called integral closure of R in S. If Quot(R)
denotes the quotient field of R and the integral closure of R in Quot(R) is R itself,
then R is called integrally closed.

If K is a number field, the integral closure of Z in K, denoted by OK, is called
the ring of integers of K. An important property of rings of integers is the fol-
lowing: If α ∈ OK is rational, then in fact α ∈ Z.

The ringOK is equipped with a canonical norm function. For this we consider
the embeddings of K in C. There are exactly n = [K : Q] different embeddings,
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where [K : Q] denotes the degree of the field extension K/Q. We call an em-
bedding real if its image is contained in R. Otherwise the embedding is called
complex. Since embeddings correspond to roots of the minimal polynomial of a
primitive element of K, the complex embeddings come in pairs. We will denote
the number of real embeddings by r and the number of complex embeddings by
2s and call complex embeddings corresponding to conjugate roots conjugate. K
is called totally real if s = 0, i.e., if all embeddings are real. If σi, i = 1, . . . , n, are
the embeddings of K in C, the norm of an element β ∈ OK is

NK
Q(β) :=

n

∏
i=1

σi(β).

The ring of integersOK is in fact a free Z-module of rank n (i.e.,OK has a basis
and each basis of OK has exactly n elements). If {b1, . . . , bn} is such a basis, the
discriminant ∆K of K is defined to be

∆K = det


σ1(b1) · · · σ1(bn)

... . . . ...
σn(b1) · · · σn(bn)


2

.

Recall that a number ζ ∈ C is called n-th root of unity if ζn = 1. If n is the
smallest exponent with that property, ζ is called primitive n-th root of unity. For
all n, the number ζn = e

2πi
n is a primitive n-th root of unity.

Example 0.5.25 Let α = 3
√

2 and K = Q(α). Then [K : Q] = 3 and the minimal
polynomial of α is f (x) = x3 − 2. The roots of f are α, ζα, and ζ2α where ζ is a
primitive third root of unity, e.g., ζ = −1+

√
−3

2 . Hence the discriminant of f is

∆ f = ∏
i<j

(αζ i − αζ j)2 = −108.

The three embeddings of K in C are given by σ1(α) = α, σ2(α) = ζα and
σ3(α) = ζ2α. The embedding σ1 is real while σ2 and σ3 are complex, i.e., we have
r = s = 1. A basis of OK is given by {1, α, α2} and thus

∆K = det

1 α α2

1 ζα ζ2α2

1 ζ2α ζα2


2

= −108 = ∆ f .

If β ∈ K is of the form β = a + bα + cα2, then NK
Q(β) = a3 + 2b3 + 4c3 − 6abc.
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The equality of the discriminants in the above example was no coincidence. If
a basis of OK is given by {1, α, . . . , αn−1} and f is the minimal polynomial of α,
then we always have ∆K = ∆ f .

We are in particular interested in (the structure of) units and ideals of OK.
Further, if K has degree 2, we want to know what additional structure these rings
exhibit. We start with the investigation of the case [K : Q] = 2. The following
theorem gives the structure of OK and the discriminant ∆K. Recall that in this
case the number field K is given by K = Q(

√
d) = {x + y

√
d : x, y ∈ Q} for some

d ∈ Z\{0, 1} that is not a square. Since Q(
√

d) = Q(
√

d′) if d = d′ · r2 with r ∈ Z,
we can further assume that d is squarefree.

Theorem 0.5.26 Let K = Q(
√

d) with squarefree d and d 6= 0, 1.

• The ring of integers of K is

OK =

Z[ 1+
√

d
2 ] :=

{
a+b
√

d
2 : a, b,∈ Z, a ≡ b mod 2

}
, if d ≡ 1 mod 4

Z[
√

d] :=
{

a + b
√

d : a, b,∈ Z
}

, if d ≡ 2, 3 mod 4
.

• OK is Euclidean if and only if

d ∈ {−1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

• For negative d, OK is a unique factorization domain if and only if

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

• The ring OK contains

◦ exactly the sixth roots of unity if and only if d = −3,

◦ exactly the fourth roots of unity if and only if d = −1,

◦ exactly the second roots of unity if and only if d 6= −1,−3.

• The discriminant of K is

∆K =

d, if d ≡ 1 mod 1

4d, if d ≡ 2, 3 mod 4
.

For the first, fourth and fifth statement of the theorem see [Sch07a]. For the
second statement see [Leu96, Hal97] and the references mentioned there. The
third statement is proved in [Sta67].
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In the following, whenever we work with Q(
√

d) or Z[
√

d] we assume that
d 6= 0, 1 and d is not a square. Since we sometimes need to work with non-
squarefree d we will not exclude this case but due to the comments above, in
most results we will further assume that d is squarefree.

The ring of integers of a number field K has some further important proper-
ties.

Definition 0.5.27 Let R be an integral domain. R is called Dedekind domain if
the following three properties hold:

• R is Noetherian, i.e., every ideal of R is finitely generated.

• R is integrally closed.

• Every nonzero prime ideal is a maximal ideal.

There are many other characterizations and properties of Dedekind domains
(see [Ash03]), in particular a Dedekind domain is a principal ideal domain if and
only if it is a unique factorization domain. One can show that for any number
field K the ring of integers OK is a Dedekind domain.

Now we examine the structure of the unit group O∗K. First we note that an
element α ∈ OK is a unit if and only if NK

Q(α) = ±1. In the case OK = Z[
√

d] this
means that α = x+ y

√
d is a unit if and only if x2− dy2 = ±1. If d is negative, then

the units in Z[
√

d] are exactly the roots of unity mentioned in Theorem 0.5.26, see
[Sch07a]. For general number fields K the unit group can be infinite.

Definition 0.5.28 Let G be a finitely generated group. The rank of G is the cardi-
nality of the smallest subset S ⊂ G that generates G.

Theorem 0.5.29 (Dirichlet’s unit theorem) The unit group of OK is the direct product
of the roots of unity in K (this is a finite, cyclic group) and an abelian group of rank
r + s− 1.

Let us now take a look at the structure of the ideals. Here by structure we
mean that we want to know how far away the ring OK is from being a principal
ideal domain. For this, we first need to turn the set of ideals of OK into a group,
i.e., we need inverses of ideals.

Definition 0.5.30 A fractional ideal a ofOK is a finitely generatedOK-submodule
of K, i.e., a finitely generated subgroup of K such that ar ∈ a for all a ∈ a, r ∈ OK.
A fractional ideal is called principal if it is generated by a single element.
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Since ideals in OK are finitely generated, ideals are fractional ideals. Analo-
gously to usuual ideals, the product of two fractional ideals a and b is defined
as

a · b = {a1b1 + · · ·+ anbn : ai ∈ a, bi ∈ b, n ∈ N}.

The set of all nonzero fractional ideals forms a group (together with the above
multiplication), see [Ash03]. We denote this group by IK. Let PK be the subgroup
of principal ideals. The ideal class group C lK is defined as C lK := IK/PK. We are
interested in the cardinality of C lK. The number hK := |C lK| is called the class
number of K. If hK = 1, the ring OK is a principal ideal domain, and the smaller
hK is, the closer OK is to being a principal ideal domain. Regarding the finiteness
of hK we have the following result:

Theorem 0.5.31 (finiteness of the class number) For any number field K we have
hK < ∞.

Class numbers yield another characterization of regular primes: A prime p is
regular if and only if p does not divide hQ(ζp) (here ζp is a primitive p-th root of
unity), see [Edw77].

One of the biggest benefits of Dedekind domains is the existence of a prime
ideal decomposition. In the case of rings of integers we have:

Theorem 0.5.32 Let K be a number field and OK its ring of integers. Every nontrivial
ideal a 6= (0), (1) of OK has a unique decomposition (up to order)

a = pv1
1 · · · pvr

r

where pi are prime ideals of OK and vi ∈ N.

Let p ∈ Z be a prime and (p) the principal ideal in the ring of integers of
some number field K, i.e. (p) = {ap : a ∈ OK}. Let (p) = pv1

1 · · · pvr
r be the

decomposition of (p) in prime ideals ofOK as in Theorem 0.5.32. Then p is called

• inert if r = 1 and v1 = 1, i.e., (p) is a prime ideal in OK,

• split if r > 1 and vi = 1 for all i,

• ramified if vi > 1 for some i.

It is known that a prime p ramifies in OK if and only if p divides ∆K. For
quadratic number fields K, the splitting behaviour of a prime p in OK can be
determined with the Kronecker symbol, cf. [Sch07a].

51



0. BASICS 0.5. Number Theory

Theorem 0.5.33 Let d ∈ Z\{1} be squarefree, K = Q(
√

d) and p ∈ P. Then we have
the following:

• p is inert in OK if and only if
(

∆K
p

)
= −1.

• p is split in OK if and only if
(

∆K
p

)
= 1.

• p is ramified in OK if and only if
(

∆K
p

)
= 0.

For the ring Z[i] of Gauß integers, we thus get:

Theorem 0.5.34 Let p ∈ P be a prime.

• p is inert (i.e., a prime in Z[i]) if and only if p ≡ 3 mod 4.

• p is split if and only if p ≡ 1 mod 4, in this case p can be decomposed in two
non-associated primes.

• p is ramified if and only if p = 2 (more precisely we have 2 = (1− i)(1 + i) and
1− i, 1 + i are primes that are associated).

We conclude this paragraph with the definition of the Dedekind ζ-function,
a generalization of the Riemann ζ-function to number fields.

Definition 0.5.35 Let K be a number field. The Dedekind ζ-function of K is de-
fined as

ζK(s) = ∑
a/OK

1
N(a)s

where a runs over all ideals of OK and N(a) = |OK/a| denotes the norm of the
ideal a.

Note that ζQ(s) = ζ(s) is the Riemann ζ-function. The Dedekind ζ-function
has properties similar to the Riemann ζ-function such as meromorphic continua-
tion and functional equation, see [Neu92].

0.5.7 Galois theory

We need some results from Galois theory. Since we need this only in a special
case, we will skip the general theory and will just cover (special) number fields
here. For general results and proofs see [Bos05].

Definition 0.5.36 Let K be a number field. The extension K/Q is called Galois
extension if the minimal polynomials (over Q) of all elements α ∈ K factor into
linear factors in K.
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If K is a number field, a Q-automorphism of K is an automorphism σ : K → K
such that σ(Q) = Q. The group of Q-automorphisms of a Galois extension K, the
so-called Galois group, is denoted by Gal(K/Q).

Example 0.5.37 Let ζn = e
2πi
n be a primitive n-th root of unity and Kn = Q(ζn).

Then Kn/Q is a Galois extension and [Kn : Q] = ϕ(n). The Q-automorphisms σj

of Kn are given by

σj(ζn) = ζ
j
n, 1 ≤ j ≤ n, gcd(j, n) = 1,

i.e., Gal(K/Q) ∼= (Z/nZ)∗.

If K is a number field and G ⊂ Gal(K/Q), the field

KG := {α ∈ K : σ(α) = α for all σ ∈ G}

is called the fixed field of G in K. For Galois extensions there is an important
result about fixed fields:

Theorem 0.5.38 Let K/Q be a Galois extension. Then KGal(K/Q) = Q.

0.5.8 Valuations

In Chapter I.1 we will deal with p-adic numbers and p-adic valuations. These
are just special cases of valuations and absolute values which we will use again
in Chapter I.4. Here we mention the concepts and give some basic results, for
deeper results and proofs see [Neu92].

Definition 0.5.39 Let K be a field.

• An absolute value is a function |·| : K → R≥0 such that for x, y ∈ K the
following properties hold:

◦ |x| = 0⇔ x = 0

◦ |xy| = |x| |y|
◦ |x + y| ≤ |x|+ |y|

• A valuation is a function v : K → R∪∞ such that for x, y ∈ K the following
properties hold:

◦ v(x) = ∞⇔ x = 0

◦ v(xy) = v(x) + v(y)

◦ v(x + y) ≥ min{v(x), v(y)}
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An absolute value |·| is called trivial if |x| = 1 for all x ∈ K\{0}. A valuation v
is called trivial if v(a) = 0 for all x ∈ K\{0}. We will always assume that absolute
values and valuations are nontrivial.

An absolute value |·| on a field K is called non-Archimedean if for any x, y ∈ K
the strong triangle inequality |x + y| ≤ max{|x| , |y|} holds. If this is not the
case, the absolute value is called Archimedean.

There is a 1-to-1 correspondence between valuations and non-Archimedean
absolute values: If v(x) is a valuation and q > 1, then |x| = q−v(x) is a non-
Archimedean absolute value. Conversely, v(x) = − logq(|x|) is a valuation if |x|
is a non-Archimedean absolute value and q > 1.

Absolute values (and valuations) induce a metric d on K via d(x, y) = |x− y|.
Hence each absolute value induces a topology on K. We call two absolute values
|·|1 and |·|2 equivalent if they induce the same topology. This is equivalent to the
existence of a real number s > 0 with |x|1 = |x|s2 (respectively v1(x) = sv2(x) for
the corresponding valuations) for all x ∈ K.

Ostrowski’s theorem characterizes the equivalence classes of absolute values
on Q. This can be generalized to number fields, see [Cond]:

Theorem 0.5.40 (Ostrowski’s theorem) Let |·| be a nontrivial absolute value on a num-
ber field K. Then |·| is equivalent to exactly one of the following absolute values:

• An absolute value defined by a real embedding of K in C.

• An absolute value defined by a pair of complex embeddings of K in C.

• An absolute value defined by a prime ideal p of OK.

Here the absolute value of an embedding σ is defined by |x|σ := |σ(x)| where
|·| is the standard absolute value on R or C, respectively. The absolute values
defined through prime ideals are completely analogous to the p-adic absolute
value that we will see in Chapter I.1. Since we do not need to know how these
valuations exactly look like we omit a precise definition.

If |·| is an absolute value on K, then (K, |·|) (or simply K) is called a valued
field. We wish to obtain a field extension K|·| of K such that all Cauchy sequences
(with respect to |·|) converge to an element in K|·|. This process is completely
analogous to the construction of R. Moreover, we will see this construction again
in Chapter I.1. Since we do not need the basics about valuations in Chapter I.1
but in Chapter I.4 (and despite the fact that the chapters in Part 1 have inter-
connections, we want the basic concepts of each chapter to be understandable
without knowledge of previous chapters), we will explain the construction in its
generality here and in the special case again in Chapter I.1.
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Definition 0.5.41 Let (K, |·|) be a valued field.

• A Cauchy sequence in K is a sequence (an)n∈N such that for any ε > 0
there is a n0 ∈ N with |an − am| < ε for all n, m ≥ n0. We denote the
ring of Cauchy sequences by c|·|(K) and its maximal ideal of sequences that
converge to 0 with 0|·|(K).

• The completion K̂ of (K, |·|) is defined as the quotient c|·|(K)/0|·|(K). If
one emphasizes the completion with respect to a valuation v or an absolute
value |·|, this is denoted by Kv or K|·|.

• K is called complete if K̂ = K.

Lastly, we extend absolute values to specific extensions of K.

Definition 0.5.42 Let (K, |·|K) be a valued field and L/K a field extension. An
absolute value |·|L on L is called extension of |·|K if the restriction of |·|L to K is
exactly |·|K.

The absolute value |·| has a canonical extension on K̂ via |x| = lim
n→∞
|xn| if

xn → x. This extends uniquely to the algebraic closure of K̂ (we will denote the
algebraic closure of a field K by K). In general, the algebraic closure of K̂ will not
be a complete field. But the completion of the algebraic closure of K̂ is a complete,
algebraic closed field. For Archimedean valuations this follows by Ostrowski’s
theorem (Theorem 0.5.40), for the non-Archimedean case see [Cla10].

0.6 Applied Mathematics and Computer Science

In this section we will cover basics of probability theory and formal languages
and we will review the Netwon algorithm.

0.6.1 Measure spaces and Dynamical Systems

Let us recall some definitions from measure theory. For more information see
[Kle08].

Definition 0.6.1 Given a set M, a σ-algebra A of M is a subset A ⊂ P(M) such
that

• M ∈ A ,

• if A ∈ A , then M\A ∈ A ,

• if Ai ∈ A for i ∈ N, then
⋃

i∈N Ai ∈ A .

A pair (M, A ), where A is a σ-algebra of M, is called a measurable space and
elements of A are called measurable sets.
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Let (M1, A1) and (M2, A2) be two measurable spaces and f : M1 → M2 a
function. Then f is called measurable if for any A ∈ A2 we have f−1(A) ∈ A1,
i.e., preimages of measurable sets are measurable. For a topological space (M, τ)

there is a canonical σ-algebra B on M, the Borel σ-algebra. This is generated by
all open sets. In this setting, continuous functions are measurable.

Let (M, A ) be a measurable space. A function µ : A → R ∪ {∞} is called a
measure if

• for all A ∈ A we have µ(A) ≥ 0,

• µ(∅) = 0,

• µ (
⋃

i∈N Ai) = ∑∞
i=1 µ(Ai) for pairwise disjoint Ai ∈ A .

If µ is a measure on (M, A ), then (M, A , µ) is called a measure space. (M, A , µ)

is called a probability space if further µ(M) = 1.

Let B be the Borel σ-algebra on Rn and a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn.
Let (a, b) denote the set

{x = (x1, . . . , xn) ∈ Rn : xi ∈ (ai, bi) for all i} .

There is a unique measure λn on the measurable space (Rn, B) such that

λn((a, b)) =
n

∏
i=1

(bi − ai)

if ai < bi for all i. This measure is called the Lebesgue measure.

If (M, A , µ) is a measure space, a set N ∈ A with µ(N) = 0 is called null set.
If a property E is satisfied for all m ∈ M\N for some null set N, then we say that
E is satisfied almost everywhere or for almost all m.

We are interested in measurable functions between measure spaces that pre-
serve the measure.

Definition 0.6.2 Let (M, A , µ) be a measure space. Then a measurable function
T : M→ M is called measure preserving if µ(T−1(A)) = µ(A) for all A ∈ A . In
this case we call µ a T-invariant measure and (M, A , µ, T) a dynamical system.
If further (M, A , µ) is a probability space, we say that (M, A , µ, T) is a dynamical
system over a probability space.
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Example 0.6.3 Consider the set M = [3, 5] and let B be the Borel σ-algebra on M
(with respect to the usual topology). Let µ = 7λ where λ is the usual Lebesgue
measure, i.e., µ(M) = 14. Let T be the map

T : M→ M, T(x) :=

2x− 3, x ∈ [3, 4]

13− 2x, x ∈ [4, 5]

(this is a variant of the so-called tent map). Since T is continuous, it is measurable.
We show that ([3, 5], B, µ, T) is a dynamical system. Since closed (or open) inter-
vals generate the Borel σ-algebra on M, we have to show that µ(T−1(A)) = µ(A)

for any closed interval A ⊂ [3, 5].

The preimage of an interval [a, b] under T is

T−1([a, b]) =
[

a + 3
2

,
b + 3

2

]
∪
[

13− b
2

,
13− a

2

]
.

This union is (up to possibly one point) disjoint. Since countable sets are null sets,
we thus have

µ(T−1([a, b])) = µ

([
a + 3

2
,

b + 3
2

])
+ µ

([
13− b

2
,

13− a
2

])
+ µ(4)

= 7 · b− a
2

+ 7 · b− a
2

+ 0 = 7(b− a) = µ([a, b]),

hence ([3, 5], B, µ, T) is a dynamical system (not over a probability space).

This example also shows that in general µ(T(A)) = µ(A) does not need to
hold for a measure preserving function T. In our above example, we have

µ(T([3, 4])) = µ([3, 5]) = 14 6= 7 = µ([3, 4]).

Recall that we can associate an integral to any measure space (M, A , µ). We
will not write down the technical definition here (see [Kle08] for details). We set

L(M, A , µ) :=
{

f : M→ R∪ {±∞} : f is measurable and
∫

M
| f |dµ < ∞

}
.

0.6.2 Newton’s method

Newton’s method is a way for approximating solutions of equations of the form
f (x) = 0 for a differentiable function f : R → R. In fact the method can also be
adapted to systems of equations and functions f : Rn → Rn, but we do not need
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this here. Starting from an initial guess x0 satisfying f ′(x0) 6= 0, the sequence
(xn) is defined iteratively by

xn+1 := xn −
f (xn)

f ′(xn)
. (0.6.1)

If x0 is not too far from a zero x with f ′(x) 6= 0, this is well-defined and we
get (see [QSS01]):

Theorem 0.6.4 Let f : R → R be continuously differentiable and x ∈ R such that
f (x) = 0 and f ′(x) 6= 0. Then there is an ε > 0 such that the sequence (xn) defined by
the Newton method (0.6.1) converges to x for all x0 ∈ (x− ε, x + ε).

0.6.3 Formal Languages

Given a set of symbols, we consider subsets of the free monoid generated by these
symbols by means of computer science. We will do this with the notion of formal
languages and finite automata, cf. [HMU02].

An alphabet is a finite set of symbols, usually denoted by Σ. Let Σ∗ denote
the set of all finite strings with symbols from Σ.

Definition 0.6.5 A language over some alphabet Σ is a subset of Σ∗.

We can represent languages with automata.

Definition 0.6.6 A deterministic finite automaton (abbreviated DFA) is a quintu-
ple M = (Q, Σ, δ, q0, F) where

• Σ is an alphabet,

• Q is a finite set, the so called states,

• q0 ∈ Q is the start state,

• F ⊂ Q is a set of final states,

• δ is a function δ : Q× Σ→ Q, the transition function.

We can extend δ canonically to Q× Σ∗: Let w = a1 . . . ak ∈ Σ∗ with ai ∈ Σ. Then

δ(q, w) := δ(δ(· · · δ(δ(q, a1), a2) · · · , ak−1), ak).

Mostly, automata are depicted as diagrams, cf. Figure 0.6.1. The states are
shown as circles, all final states are depicted as two concentric circles. The transi-
tion function is illustrated via arrows between states q1 and q2, where the symbols
on the arrow show the elements s ∈ Σ such that δ(q1, s) = q2. There is an addi-
tional arrow without labelling incoming in the start state.
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If M is a DFA, the language accepted by M is defined as

L(M) := {w ∈ Σ∗ : δ(q0, w) ∈ F}.

In some cases, we need automata with output. A deterministic finite automa-
ton with output (abbreviated DFAO) is a sextuple M = (Q, Σ, δ, q0, ∆, η) where
Q, Σ, δ, q0 are defined as in a DFA and we further have a finite set of symbols ∆,
the output alphabet, and an output mapping η : Q → ∆. In an illustration, we
show the function η as dashed arrows and the respective values in boxes.

Note that we can turn every DFAO into a DFA by defining the set of final
states F as η−1(D) for some D ⊂ ∆.

Example 0.6.7 Let Σ = {0, 1, 2, 3, 4}. Then Σ∗ can be viewed as the natural num-
bers in base 5 representation. Thus, a language over Σ is a set of natural numbers
written in base 5. Consider the DFAO M given in Figure 0.6.1.

1, 4

1, 4

2

2

0, 30, 3

0, 3

2

1, 4

0

1

2

Figure 0.6.1: A deterministic finite automaton with output.

This DFAO “separates” the natural numbers in congruence classes modulo 3,
i.e., we have η(δ(q0, 〈n〉5)) ≡ n mod 3.

For example, η(δ(q0, 123324130)) = 1. Indeed, 123324130 represents the nat-
ural number 604915 and 604915 ≡ 1 mod 3. If we turn this DFAO into a DFA by
defining the final state qF as the state with η(qF) = 1, then L(M) is the set of all
natural numbers n written in base 5 such that n ≡ 1 mod 3.
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I.1
Analysis

There are of course a lot of connections between analysis and number theory, in
particular the use of complex analysis in analytic number theory. We will con-
sider this later in Chapter I.10, here we take into account the classical part of
analysis involving sequences, convergence, continuity and differentiability.

Some of the concepts presented here are in fact special cases of concepts men-
tioned in Paragraph 0.5.8. Since these concepts (as well as further applications
thereof) belong to an important connection between number theory and analysis,
and since we did not mention all details in Paragraph 0.5.8, we will develop the
necessary concepts in brief for this special case instead of making use of the basics
(compare the comments in Paragraph 0.5.8).

First recall one of the equivalent definitions of the real numbers R: Let c∞(Q)

be the ring of convergent rational sequences and 0∞(Q) the maximal ideal (in
c∞(Q)) of sequences that converge to 0. Then one can define R as the quotient
c∞(Q)/0∞(Q). Here we take as notion of convergence the topology induced by
the usual absolute value, which we will denote by |·|∞.

Moreover, for every prime p, there is another absolute value on Q, the p-adic
absolute value |·|p. Write x ∈ Q\{0} as x = a

b pr with a, b, r ∈ Z such that a, b and
p are pairwise coprime. Then the p-adic valuation of x is defined by vp(x) := r
and the p-adic absolute value is |x|p := p−r, |0|p := 0.

As above, we can now consider convergent rational sequences with respect to
the absolute value |·|p. We will denote this ring by cp(Q) and its maximal ideal

63



CONNECTIONS I.1. ANALYSIS

of sequences converging to 0 by 0p(Q). Then the quotient cp(Q)/0p(Q) is a field,
the field of p-adic numbers, denoted by Qp.

With the p-adic numbers we can highlight some connections between num-
ber theory and analysis. First, the construction of Qp is done in an analytic way
(by considering convergent sequences). On the other hand, since Qp is a field
equipped with a norm (the unique extension of |·|p), we can do analysis in Qp.
Before doing so, we mention some basic facts about the p-adic numbers. For more
properties see [Neu92].

Every p-adic number x can be written uniquely in the form

x =
∞

∑
k=n

ak pk

with ak ∈ {0, . . . , p− 1} and n ∈ Z. This is equivalent to the decimal expansion
of the real numbers and is called p-adic expansion. The analogue of the ring of
integers Z in Q are the p-adic integers Zp. These are the elements x ∈ Qp whose
p-adic expansion is of the form ∑∞

k=n ak pk with n ∈ N0.

There is one important property of the p-adic absolute value |·|p that makes
analysis in Qp somewhat different than analysis in R (compare Paragraph 0.5.8):

Lemma I.1.1 Let x, y ∈ Qp. Then |x + y|p ≤ max{|x|p , |y|p}.
This is the strong triangle inequality, i.e., the p-adic absolute value is non-

Archimedean. With the p-adic absolute value we can formulate the following
variant of the Chinese remainder theorem, the so-called weak approximation
theorem:

Theorem I.1.2 (weak approximation theorem) For n ∈ N and 1 ≤ i ≤ n, let pi ∈ P
be distinct primes and ai ∈ Q. Then for any ε > 0 there is an x ∈ Q with |x− ai|pi

< ε.

In the p-adic absolute value, small distances correspond to high divisibility
by p, i.e., the weak approximation theorem states that for any k ∈ N there is an
x ∈ Q with x ≡ ai mod pk

i .

The approximation theorem holds true in a slightly more general version, see
[Neu92]. In Chapter I.4 we will even see a generalization thereof, the strong ap-
proximation theorem.

After reviewing these basic facts we wish to solve polynomial equations in
Zp. This can be done with Hensel’s lemma. There are many versions of Hensel’s
lemma (see [Neu92, Conc]), its basic form is the following theorem.
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Theorem I.1.3 (Hensel’s lemma) Let f ∈ Z[x] and a ∈ Z with

f (a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p.

Then there is a unique α ∈ Zp with f (α) = 0 and α ≡ a mod p.

Hensel’s lemma itself is another use of analysis in number theory, since (one
of) its proof is essentially Newton’s method, cf. Chapter I.3.

Hensel’s lemma has a lot of applications. With its help, one can find squares
in Zp (see [Conc]), square roots in Qp (see [Rob99]) and roots of unity in Qp (see
[Conc, Rob99]). A stronger version of Hensel’s lemma can also be used to show
that, in contrast to the field R, the p-adic numbers Qp cannot be ordered. This can
be shown by representing 0 as a sum of nonzero squares using the four-squares
theorem (Theorem 0.5.12).

Breaking Hensel’s lemma down to its main statement we can (under certain
conditions on the polynomial f ) lift solutions of f (x) ≡ 0 mod p to roots of f in
Zp, i.e., f (x) = 0 is solvable in Zp if and only if f (x) ≡ 0 mod p is solvable.

Going one step further, we take a look at the Hasse principle, an important
local-global principle in number theory. The idea of the Hasse principle is the
following:

Given a polynomial f ∈ Z[x1, . . . , xn], we want f (x) = 0 to be solvable in Q if
and only if f (x) = 0 is solvable in R and in Qp for all primes p. We say that the
Hasse principle is true if this is possible.

The classical case where the Hasse principle is true is the Hasse-Minkowski
theorem about quadratic forms, see [Sch07a, Ser73] for a direct approach and
[O’M73] for a more sophisticated version (with the use of ideles, a tool that we
will introduce in Chapter I.4).

Theorem I.1.4 (Hasse-Minkowski theorem) Let f be a rational quadratic form. Then
f (x) = 0 is solvable in Q if and only if f (x) is solvable in R and in Qp for all p.

Unfortunately, the Hasse principle is not true for arbitrary polynomials f (not
even if f is homogeneous). The two standard counterexamples are Selmer’s cu-
bic f (x, y, z) = 3x3 + 4y3 + 5z3 (see [Sel51, Cong]) and the equation of Lind and
Reichardt f (x, y) = x4− 2y2− 17 (see [Sch07a]). These polynomials have roots in
R and in Qp for all p, but no rational roots. More counterexamples can be found
in [AL11].
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There are still many open questions related to the Hasse principle and the
cases in which it is true. It is also possible to attack the Hasse principle with
tools from analytic number theory, cf. Chapter I.10. For a list of other local-global
principles in mathematics see [qua].

Let’s turn our attention to analysis in the p-adic numbers. Since Qp is a field
equipped with a norm, we can define the notion of continuous and differentiable
functions in the usual way. Thus a function f (defined on a suitable subset U of
Qp) is differentiable at a ∈ U if the limit lim

x→a

∣∣∣ f (x)− f (a)
x−a

∣∣∣
p

exists. As usual we will

denote the derivative of f at a point a by f ′(a).

Some of the properties of differentiable functions are rather different to those
of real differentiable functions. For example, consider the function f : Zp → Zp

defined by

f (x) :=

p2n, if x ≡ pn mod p2n+1

0, otherwise
.

Then f is not locally constant at x = 0 (since f (pn) = p2n and pn → 0), but f is
differentiable with f ′(a) = 0 for all a ∈ Zp. Hence p-adic functions with deriva-
tive 0 need not be constant. This means that in p-adic analysis the usual notion of
differentiability is not useful. Instead, one requires strictly differentiable func-
tions, cf. [Rob99]. More examples of functions with counterintuitive behaviour
can be found in [Kat07].

We examine two special functions. As in the real numbers we can define the
exponential function exp(x) and the logarithm log(x) via its series

exp(x) :=
∞

∑
k=1

xk

k!
and log(x + 1) :=

∞

∑
k=1

(−1)k−1 xk

k
.

While the exponential series is everywhere convergent in the real numbers, this
is not true if we view it as a series in Qp. In fact we have (see [Rob99]):

Theorem I.1.5 Let exp(x) and log(x + 1) be defined by the series representations above.

• The series representation for exp(x) converges if and only if |x|p < p−
1

p−1 .

• The series representation for log(x + 1) converges if and only if |x|p < 1.

Hence, there are x ∈ Qp such that exp(x) is not defined. Other results about
the functions exp and log (partially similar to the real case) can be found in
[Rob99]. In particular, the same functional equations hold, as long as all series
involved converge.
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There is one thing we want to draw attention to: If the exponential function is
defined over the real numbers and extended to the complex numbers, there is a
nonzero element z ∈ C (namely 2πi) such that exp(z) = 1, which means, together
with the functional equation for the exponential function, that this function has
a period. We examine this for the p-adic exponential function. We consider exp
as a function on Cp, where Cp is the completion of the algebraic closure of Qp

(compare [Rob99]). Clearly the number π makes no sense in Cp, so we have to
search for another element z. But in fact there is no nonzero z ∈ Cp such that
exp(z) = 1. This is a consequence of Strassmann’s theorem, see [Rob99, Kat07]:

Theorem I.1.6 (Strassmann’s theorem) Let A ⊂ Cp and let f be a nonzero power
series with coefficients ak ∈ A. If |ak|p → 0, f (z) has only finitely many zeros in A.

When applied to f (z) = exp(pz)− 1, Strassmann’s theorem shows that there
are only finitely many zeros of f (z) in Cp, thus there is no nonzero z ∈ Cp with
exp(z) = 1 (otherwise the functional equation for exp(z) would yield infinitely
many zeros of f (z)). Hence, the p-adic exponential and logarithm do not share
all the nice properties of the respective complex functions.

But what if we want a formula of some kind like exp(2πi) = 1 to be true in
a p-adic sense? We have seen that this cannot hold in Qp, so we briefly consider
another setting. For a more detailed exposition see [BP15] or [Gos96].

Let q be a prime power and k = Fq(T) be the field of rational functions over
Fq in one variable. We consider the following absolute value |·|T on k (this is
completely analogous to the p-adic absolute value): Write f ∈ k in the form Te g

h
such that g, h and T are pairwise coprime. Then | f |T := q−e. (In the literature,
this absolute value is usually denoted by |·|∞. Since we used this notation already
for the usual absolute value on Q, we will write |·|T.) Let C∞ be the completion
of the algebraic closure of the completion of k with respect to |·|T. Although this
construction seems a bit confusing, this is in fact completely analogous to the
construction of C in the real case and Cp in the p-adic case, cf. Table I.1.1.

base field absolute
value completion algebraic closure

of the completion

completion of the
algebraic closure
of the completion

Q |·|∞ R C C
Q |·|p Qp Qp Cp

Fq(T) |·|T k∞ k∞ C∞

Table I.1.1: Comparison of C, Cp, and C∞.
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We can construct an exponential function eC : C∞ → C∞, the Carlitz exponen-

tial (compare [Gos96]), such that the smallest period of eC is π̃q = (T − Tq)
1

q−1 πq

with

πq :=
∞

∏
k=1

(
1− Tqk − T

Tqk+1 − T

)
.

We call πq Carlitz π. Thus, in C∞ we have an anlogue to π. The number πq shares
even more properties with the real number π, for example it occurs at special
values of the Carlitz zeta function, cf. [Car35]. One more similarity is that πq is
transcendental over Fq(T). This has first been shown in [Wad41]. We will see an
interesting way to prove this in Chapter I.11. It has also been shown that other
special values of the Carlitz zeta function are transcendental, see [DH91].

Another connection between analysis and number theory will be shown in
Chapter II.4. We will consider the solvability of a puzzle that can be modeled
with linear algebra. To examine the solvability one can use methods from (alge-
braic) number theory as well as methods from analysis, namely improper Rie-
mann integrals.
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I.2
Sequences

There are a lot of interesting sequences arising from number theoretic questions
(for example Beatty sequences) as well as many number theoretic questions con-
cerning sequences, in particular if the sequences are integer valued (for example
squares in the Fibonacci sequence, cf. [Coh64]). Here we take a look at the Farey
sequence.

Definition I.2.1 Let n ∈ N. The Farey sequence of order n ist the finite sequence
Fn consisting of all fractions a

b in increasing order with a ∈ N0, b ∈ N, a ≤ b ≤ n
and gcd(a, b) = 1.

In other words, the Farey sequence Fn consists of all reduced fractions α in
the intervall [0, 1] whose denominator is less or equal to n. An immediate conse-
quence is that the number of elements in Fn is 1 + ∑n

k=1 ϕ(k). For example, we
have

F6 =

(
0
1

,
1
6

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
5
6

,
1
1

)
.

The Farey sequence has a lot of interesting properties, most of which concern-
ing neighbour fractions, i.e., two fractions α, β ∈ Fn that are direct successors.
Let α = a1

b1
, β = a2

b2
, γ = a3

b3
be three succeeding fractions in Fn. Then we have the

following properties (compare [SF07, HW08]).
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• β is the mediant of α and γ, i.e., β = a1+a3
b1+b3

(this representation need not be
reduced).

• We have b1a2− a1b2 = 1. The opposite of this statement is also true: If a1
b1

and
a2
b2

are two reduced fractions, both less than 1, with b1a2− a1b2 = 1, then the
two fractions are neighbours in Fn for all n with max(b1, b2) ≤ n < b1 + b2.

• The inequality b1 + b2 > n holds.

Some neighbour fractions also have related continued fraction expansions.
Let 〈0; a1, . . . , am−1, 1〉 be the (not normalized) continued fraction expansion of
β = a

n . To avoid special cases, we suppose n ≥ 3. Let α, γ be the neighbours of
β in Fn. Since fractions with the same denominator k ≥ 2 cannot be neighbours
in any Farey sequence, α and γ have denominator smaller than n. Further, they
do not have the same denominator, since α and γ are neighbours in Fn−1. Let
α have larger denominator than γ. Then the continued fraction expansion of α

is 〈0; a1, . . . , am−1〉 and that of γ is 〈0; a1, . . . , am−2〉. Using the second point from
the above list, this follows from the recursion formula for the continued fraction
expansion. Note that these expansions do not hold if the initial fraction β has de-
nominator strictly less than n or if we consider neighbours in the Farey sequence
Fk with k 6= n.

Apart from having interesting properties on its own, Farey sequences serve as
a useful tool for number theoretic questions. One of the most prominent occur-
rences of Farey sequences is in the proof of Dirichlet’s approximation theorem
in its weak form:

Theorem I.2.2 (Dirichlet’s approximation theorem) Let α ∈ R, n ∈ N. Then there is
a fraction a

b with 0 < b ≤ n such that

∣∣∣α− a
b

∣∣∣ ≤ 1
b(n + 1)

.

For its proof (see [SF07]) one essentially uses the three facts from above.

Besides this (somehow direct) use of Farey fractions, the Farey sequence gives
an alternative formulation for the Riemann hypothesis. To get this, let F̃n be the
Farey sequence without the fraction 0

1 . Let further A be the number of positive re-
duced fractions with denominator less or equal to n (i.e., the number of elements
in F̃n) and let ρν (ν = 1, . . . , A) run through all values of F̃n in incresaing order.
Set ην = ρν − ν

A . Then we have the following theorem (see [Fra24, Lan24]).
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Theorem I.2.3 The Riemann hypothesis is equivalent to each of the following statements:

1. For all ε > 0, we have

A

∑
ν=1

η2
ν = O(n−1+ε).

2. For all ε > 0, we have

A

∑
ν=1
|ην| = O(n

1
2+ε).

The reason for this lies in the formula

M(n) =
n

∑
r=1

µ(r) =
A

∑
ν=1

e2πiρν

and in the formulation of the Riemann hypothesis involving the Mertens func-
tion M(n) (here µ(n) denotes the Möbius function). For a discussion and more
equivalent formulations of the Riemann hypothesis involving Farey sequences
see [KY96]. We will see one more number theoretic application of Farey se-
quences in Chapter I.10.

Farey sequences also have applications outside mathematics, in particular in
physics. Since Chapter I.11 about physics and computer science is devoted to
a completely different connection between physics and number theory, we will
briefly mention some application of Farey sequences in physics here.

In [Tom14], the author points out connections between Farey sequences and
resonance diagramms. A relationship between the Farey sequence and circuits
can be found in [Mar12], and in [DHPB15] the authors use Farey sequences for
digital image processing.

At the end of this chapter we take a quick look at geometric objects closely
related to the Farey sequence, the so called Ford circles:

Definition I.2.4 Let a, b ∈ N be coprime with a < b. The Ford circle C[a/b] is the
circle with center at

(
a
b , 1

2b2

)
and radius 1

2b2 .

One usually also denotes half of the circles C[0/1] and C[1/1] as Ford circles.
The Ford circles C[a/b] for b ≤ 6 can be found in Figure I.2.1.
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0
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1
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1
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3
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5
6

1
1

Figure I.2.1: The Ford circles C[a/b] for b ≤ 6.

Two Ford circles C[a1/b1] and C[a2/b2] are either disjoint or tangent, where
the second case occurs if and only if a1

b1
and a2

b2
are neighbours in a Farey sequence.

We will see a nice application of Ford circles in Chapter I.9.
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Applied Mathematics

In this chapter we discuss connections between number theory and probability
theory, respectively numerical analysis.

Concerning probability theory there are two main aspects: probabilistic num-
ber theory and the use of ergodic theory in number theory. In probabilistic num-
ber theory, we have, among others, the classical results of Erdős-Wintner, cf.
[EW39], and Erdős-Kac, cf. [EK40]. The latter is a consequence of the fact that
for a given number n and two primes p1, p2 the events “n is divisible by pi” are
independent, i.e., in some sense primes behave like independent random vari-
ables. For more about probabilistic number theory we refer to [Ten07].

Here we focus on the use of ergodic transformations in number theory.

Definition I.3.1 Let (M, A , µ, T) be a dynamical system over a probability space.
We call T ergodic (with respect to µ) if for all A ∈ A the equality T−1(A) = A
implies either µ(A) = 0 or µ(A) = 1.

In other words, T is called ergodic if all measurable sets A that are invariant
under T−1 have measure 0 or 1. There are more equivalent formulations of er-
godic transformations, see [EW11, Möl, Ste]. Note that T need not be ergodic if
µ(A) = 0 or µ(A) = 1 holds for every A with T(A) = A, cf. Example 0.6.3.

One of the most important theorems in ergodic theory is Birkhoff’s pointwise
ergodic theorem, see [Möl, Ste].
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Theorem I.3.2 (Birkhoff’s pointwise ergodic theorem) Let (M, A , µ, T) be a dynam-
ical system over a probability space and f ∈ L(M, A , µ). Then for almost all y ∈ M the
limit f ∗(y) := lim

n→∞
1
n ∑n

k=0 f (Tky) exists and we have

• f ∗ ∈ L(M, A , µ),

• f ∗(Ty) = f ∗(y),

•
∫

M f ∗ dµ =
∫

M f dµ.

If further T is ergodic, f ∗ is constant almost everywhere and

lim
n→∞

1
n

n

∑
k=0

f (Tky) = f ∗(y) =
∫

M
f dµ.

We can interpret lim
n→∞

1
n ∑n

k=0 f (Tky) as the time mean of f and
∫

M f dµ as the
space mean of f , varying over all of M. Birkhoff’s theorem tells us that these two
means coincide if T is ergodic. This fact is the one which is most important for
our purpose here.

Now we want to see some applications of Birkhoff’s theorem to ergodic trans-
formations that occur in number theory. To use this theorem appropriately, we
would have to show that the transformations we are considering are ergodic. This
is in most cases too technical, thus we will not do this here. For this proofs we
refer to [Möl, Ste].

Our main focus is on infinite continued fractions. Of course it suffices to study
continued fractions of real numbers x with 0 ≤ x < 1, since other numbers would
only change the first partial quotient.

Let T be the transformation

T : [0, 1)→ [0, 1), T(x) :=


1
x −

⌊
1
x

⌋
, x 6= 0

0, x = 0
.

Directly from the construction of continued fractions we get

T (〈0; a1, a2, . . .〉) = 〈a1; a2, a3, . . .〉 −
⌊
〈a1; a2, a3, . . .〉

⌋
= 〈0; a2, a3, . . .〉.
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To use Birkhoff’s theorem, we need a probability space ([0, 1), A , µ) such that
µ is T-invariant. In fact ([0, 1), B, µ, T) is a dynamical system over a probability
space, where

µ(A) :=
1

log 2

∫
A

1
1 + x

dx

and moreover, T is ergodic. These statements even remain true when replacing
B by the bigger σ-algebra of Lebesgue measurable sets, but we do not need this
here. Now one can prove the theorems of Khintchine and Lévy. Proofs of both
theorems can be found in [EW11, Möl, Ste].

Theorem I.3.3 (Khintchine’s theorem) For almost all x = 〈0; a1, a2, . . .〉 ∈ [0, 1) we
have:

1. The number k ∈ N appears in the continued fraction expansion with asymptotic
density

lim
n→∞

1
n
∣∣{1 ≤ j ≤ n : aj = k}

∣∣ = 1
log 2

log
(

1 +
1

k(k + 2)

)
.

2. The arithmetic mean of the partial quotients is

lim
n→∞

1
n

n

∑
k=1

ak = ∞.

3. The geometric mean of the partial quotients is

lim
n→∞

(
n

∏
k=1

ak

) 1
n

=
∞

∏
k=1

(
1 +

1
k(k + 2)

) log k
log 2
≈ 2.6854520010.

The first statement can be proved with the indicator function f = χ( 1
k+1 , 1

k ]
,

since an = k if and only if Tn−1(x) ∈ ( 1
k+1 , 1

k ]. Thus we get

lim
n→∞

1
n
∣∣{1 ≤ j ≤ n : aj = k}

∣∣ = lim
n→∞

1
n

n

∑
j=1

χ( 1
k+1 , 1

k ]
(T j−1x)

=
∫ 1

0
χ( 1

k+1 , 1
k ]

dµ

=
1

log 2

∫ 1
k

1
k+1

dx
1 + x

=
1

log 2

(
log
(

1 +
1
k

)
− log

(
1 +

1
k + 1

))
=

1
log 2

log
(

1 +
1

k(k + 2)

)
.
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For the second statement we can proceed analogously by using the step func-
tion f (x) = k if x ∈ ( 1

k+1 , 1
k ] and for the third statement we consider the step

function f (x) = log k if x ∈ ( 1
k+1 , 1

k ].

Theorem I.3.4 (Lévy’s theorem) For x ∈ [0, 1) let pn
qn

be the n-th convergent of x. Then
for almost all x = 〈0; a1, a2, . . .〉 ∈ [0, 1) we have:

1. lim
n→∞

1
n log(qn) =

π2

12 log 2 .

2. lim
n→∞

1
n log

∣∣∣x− pn
qn

∣∣∣ = − π2

6 log 2 .

It is clear that these theorems cannot hold for all x ∈ [0, 1). In particular,
all five statements are wrong for any rational x, since the statements can only
hold for infinite continued fractions. If x is of the form a + b

√
d with a, b ∈ Q

and d ∈ Z\{1} squarefree, then we know from Theorem 0.5.8 that the partial
quotients are bounded. This immediately yields that the first two statements
in Khintchine’s theorem cannot be true. Further, the geometric mean of such a
continued fraction equals the geometric mean of the period of this fraction. Thus,
the third statement can only be true if the Khintchine constant

K :=
∞

∏
k=1

(
1 +

1
k(k + 2)

) log k
log 2
≈ 2.6854520010

is algebraic. This is not known yet. In fact it is unkown if K is irrational.

If Φ denotes the golden ratio, i.e., Φ = 1+
√

5
2 , then pn and qn are consecutive

Fibonacci numbers, and using the explicit form of Fibonacci numbers it is easy
to show that lim

n→∞
1
n log(qn) = log(Φ), thus the first statement in Lévy’s theorem

does not hold for Φ. For numbers x with bounded partial quotients we have

lim
n→∞

1
n

log(qn) < lim
n→∞

1
n

log((B + 1)n) = B + 1 < ∞

if B is the biggest partial quotient of x, such that this part is not too far away from
the truth for suitable B (and can possibly be true for some x of this form). On the
other hand, if x is algebraic of degree 2, i.e., x = a+ b

√
d with a, b ∈ Q, d ∈ Z\{1}

squarefree, we get (analogously to the case x = Φ) lim
n→∞

1
n log(qn) = log(α) for

some algebraic α. Thus the first statement in Lévy’s theorem can only hold for

(some) algebraic x of degree 2 if e
π2

12 log(2) is algebraic. This is (as far as the author

knows) an open question, but there is no reason to believe that e
π2

12 log(2) is algebraic.
Hence the first statement in Lévy’s theorem is probably false for all algebraic x of
degree 2.
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Concerning the second statement in Lévy’s theorem, Liouville’s theorem (The-
orem 0.5.20) immediately yields

lim
n→∞

1
n

log
∣∣∣∣x− pn

qn

∣∣∣∣ = 0

for algebraic x (of arbitrary degree). Hence the second statement in Lévy’s theo-
rem cannot be true for algebraic numbers. We will see another counterexample
to the second statement in Lévy’s theorem in Chapter II.4.

Finally we consider a transcendental number whose continued fraction ex-
pansion is well known, namely e = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, . . .〉. We see that 1
occurs with asymptotic density 2

3 instead of log(4/3)
log(2) ≈ 0.415. This means that the

first statement in Khintchine’s theorem does not hold. The second statement does
hold, since the arithmetic mean is asymptotically 1

9 n. The third statement again

does not hold, since the geometric mean is asymptotically
( 2n

3e
) 1

3 .

These examples are somewhat typical: There are only very few numbers, for
which we know that (parts of) the statements in the theorems of Khintchine and
Lévy are true, despite the fact, that they are true for almost every number. For
numbers like π and the Khintchine constant K, it is believed that the statements
hold, but this is still unproven.

Theorem I.3.3 shows how ergodic theory can be used to get results about cer-
tain distributions, in our case about digits in continued fractions. We can also use
ergodic theory to get results about uniform distribution. Recall that a sequence
(xn) ⊂ [0, 1) is called uniformly distributed if

lim
n→∞

1
n
|{k : 1 ≤ k ≤ n, xk ∈ [a, b]}| = b− a

for all 0 ≤ a < b < 1.

To see how this relates to ergodic theory, and in particular Birkhoff’s ergodic
theorem, we mention a result of Weyl (see [Ste]):

Theorem I.3.5 A sequence (xn) ⊂ [0, 1) is uniformly distributed if and only if for any
Riemann-integrable function f : [0, 1]→ C we have

lim
n→∞

1
n

n

∑
k=1

f (xn) =
∫ 1

0
f (x)dx.

Here we have again some kind of comparison between space means and time
means.
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There is another criterion, also due to Weyl, for uniform distribution (see
[Ste]):

Theorem I.3.6 A sequence (xn) ⊂ [0, 1) is uniformly distributed if and only if

lim
n→∞

1
n

n

∑
k=1

e(mxn) = 0

for any integer m 6= 0. Here e(x) = e2πix.

This criterion can be used to show that the sequence ({nξ})n (here {x} de-
notes the fractional part of x) is uniformly distributed if and only if ξ is irrational.
We do not need any ergodic theory for this result, but it can be generalized:

Theorem I.3.7 Let f = anxn + · · ·+ a0 ∈ R[x] a polynomial such that at least one of
the coefficients ai is irrational. Then the sequence ({P(n)})n of the fractional parts is
uniformly distributed.

For a proof using ergodic theory see [Möl]. For even more applications of
ergodic theory to number theory (for example to the Riemann ζ-function) and
other mathematical topics see [Möl, Ste, Ste12].

We conclude this chapter with some brief remarks about connections between
number theory and numerical analysis.

One important topic in numerical analysis is the numerical evaluation of in-
tegrals. If f : [0, 1] → C is some Riemann-integrable function, we could choose
points xk ∈ [0, 1] and try to approximate the integral

∫ 1
0 f (x)dx with the sum

1
n ∑n

k=1 f (xk). The error in this estimation will, among others, depend on the
choice of the points xk. In this chapter we have already seen how we should
choose the points xk. Theorem I.3.5 about uniform distribution tells us that we
can numerically integrate a function f with relatively small error if the sample
points are well distributed (which is not surprising). One can also use methods
from elementary number theory to explicitely construct sets of points for which
the approximation is good (even for higher-dimensional integrals), see [Pil].

On the other hand, we already used a method from numerical analysis in
Chapter I.1: Hensel’s lemma can be proved using iteration methods like New-
ton’s method. Such iterative methods can also be used to compute inverses of an
element a modulo a prime power ps if the inverse of a modulo p is known, see
[KX10].
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I.4
Topology

Two of the most prominent uses of topology in number theory are étale coho-
mology and K-theory. Since these concepts require too much prior knowledge
to explain and understand, we will just mention the kind of problems that one
tries to solve with them and we will not explain all necessary notation. Instead
we will highlight another use of topology in number theory.

The main idea behind étale cohomology is that “Counting points over a finite
field is asking for points fixed by Frobenius, and Weil’s dream was to derive a
formula by some (at the time) unknown analogue of the Lefschetz fixed point
formula in algebraic topology. In a nutshell that is what first brought cohomology
into arithmetic, for a very specific purpose” (K. Conrad in [Conj]), see also [Oss].
For an introduction to étale cohomology we refer to [Mil13].

The main application of étale cohomology in number theory are the Weil con-
jectures (in fact these are proven and thus no conjectures anymore). We will
roughly state them without explaining all terminology.

The Weil conjectures came up in a paper of Weil in 1949 (see [Wei49]). Let q be
a prime power and X be a projective algebraic variety over Fq. Let Nm denote the
number of points of X over Fqm . Then we can attach a zeta function ζ(X, s) to X,
defined by

ζ(X, s) = exp

(
∞

∑
m=1

Nm

m
q−ms

)
.
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The Weil conjectures are four conjectures about the function ζ(X, s), motivated
by the Riemann ζ-function. The basic statements of the first three conjectures are:

1. ζ(X, s) is a rational function in q−s.

2. ζ(X, s) has a functional equation, i.e., we can relate ζ(X, s) with ζ(X, n− s)
(here n is the dimension of X).

3. The Riemann hypothesis holds for ζ(X, s). This can be formulated via a
condition on the zeros of the polynomials appearing in the representation
of ζ(X, s) as a rational function.

We will not mention the fourth conjecture here, since this would need to much
terminology, we refer to [Oss].

Dwork proved the first conjecture in 1960 (see [Dwo60]), the second and fourth
conjecture were proved by Grothendieck in 1965 (see [Gro65]). The proof of the
third conjecture was due to Deligne in 1974 (see [Del74]).

Étale cohomology can also be used to establish similarities of number theoretic
objects (primes) and topological objects (knots), see [LS12].

K-theory deals with groups Km(C) associated to a certain object C. There are
two main objects one considers, namely projective modules over rings (this is
called algebraic K-theory) and vector bundles over a topological space (this is
called topological K-theory). For the easiest cases, i.e., the group K0(C), one
turns the abelian monoid of projective modules, respectively the abelian monoid
of vector bundles, into a group via a certain equivalence relation on its cartesian
product (similar to the construction of Z from N). If the underlying topological
space (M, τ) of the vector bundles is compact and Hausdorff, the corresponding
group is isomorphic to the K-group associated to the ring of continuos functions
on (M, τ) with complex values, see [Fri07]. For higher m, the groups Km(C) are
defined via fundamental groups.

The groups Km(C) carry important structural information about the object C.
If K is a number field, then K0(OK) = Z⊕ C lK and K1(OK) = O∗K, see [Bes14].
Even for the easiest case C = Z, only the groups Km(Z) for m ≤ 4 are known. For
higher m only some structure is known, see [Gha99].

From a more conceptual viewpoint, K-theory is a functor between some cate-
gories and the category of abelian groups. The groups Km(C) can coincide with
groups obtained via different constructions such as (étale) cohomology or repre-
sentation theory, see [Kuk] and the sources mentioned there.
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An important application of K-theory in algebraic number theory is the Kum-
mer-Vandiver conjecture. This is in fact still an open problem.

Conjecture I.4.1 (Kummer-Vandiver conjecture) Let p be a prime, ζp a primitive p-th
root of unity and Q(ζp)R be the maximal totally real subfield of Q(ζp). Then p does not
divide the class number of Q(ζp)R.

For an introduction to the Kummer-Vandiver conjecture and the use of K-
theory in the attempts to prove it, see [Gha99]. For this conjecture one needs
the groups K2n−2(Z) (for some n). Under the assumption of some conjectures
more is known about these groups and the structure will depend on values of the
Riemann ζ-function, cf. [Sou08]. The Kummer-Vandiver conjecture can be used
for proving Fermat’s last theorem, cf. Theorem I.8.1.

Let us now consider a case where a topological definition yields a useful num-
ber theoretic object (for proofs see [Cas67]). Let K be a global field, i.e., a finite
seperable extension of Q or Fq(t) for some prime power q. For any valuation ρ

on K let Kρ be the completion of K with respect to ρ. If ρ is non-Archimedean, let
Oρ be the valuation ring of Kρ, i.e.,

Oρ = {x ∈ Kρ : ρ(x) ≥ 0}.

These rings are compact, see [Neu92]. The set of finite adeles is defined as the
restricted topological product (over all non-Archimedean ρ) of the fields Kρ with
respect to the ringsOρ. The adele ring VK of K is defined as the cartesian product
of the set of finite adeles with all completions Kρ such that ρ is Archimedean.

Elements of VK are called adeles. By defining multiplication and addition on
VK componentwise this gives a ring. With the topology defined in Paragraph
0.1.1 VK becomes a topological ring.

As already indicated, we will see a generalization of the variant of the Chinese
remainder theorem we have seen in Chapter I.1. This is the strong approximation
theorem, see [Cas67]:

Theorem I.4.2 (strong approximation theorem) Let K be a global field and ρ0 be any
valuation of K. Let Vρ0

K be the restricted topological product over all ρ 6= ρ0 of the fields
Kρ with respect to the rings Oρ. Then the image of the canonical embedding of K is dense
in Vρ0

K .

This is not true if we consider the complete ring of adeles. In fact, K is discrete
in VK.
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Now we take a look at invertible adeles, i.e., adeles x ∈ VK such that there
is an adele y ∈ VK with x · y = (1, 1, 1, . . .). Let JK be the subset of invertible
elements of VK equipped with the IC topology (thus JK is a topological group, cf.
Paragraph 0.1.1). JK is called idele group of K. Elements of JK are calles ideles.

Example I.4.3 Let K = Q(i). Then we have one Archimedean valuation v∞ on
K (induced by the usual absolute value |z| =

√
zz) and one non-Archimedean

valuation for any prime p ∈ Z[i] (compare Theorem 0.5.34 and Theorem 0.5.40).
Then x = ( i

π , 18, i, 11− i, 24i,
√

2,
√
−5,−5, 13i− 17, . . .) is an idele of Q(i) (where

for all but finitely many p we have in fact xp ∈ O∗p and we have xp 6= 0 for all p).

p ∞ 1 + i 3 2 + i 2− i 7 11 3 + 2i 3− 2i · · ·
xp ∈ Q(i)p i

π 18 i 11− i 24i
√

2
√
−5 −5 13i− 17 · · ·

Table I.4.1: An element of JQ(i).

The idele group and its topology can be used to deduce Dirichlet’s unit theo-
rem (Theorem 0.5.29) and the finiteness of the class number (Theorem 0.5.31), see
[Cas67].

If K is a number field, then a continuous homomorphism χ : JK → C∗ with
χ(K\{0}) = 1 is called a Hecke character (compare [RV99, Neu92]). There is
an equivalent ideal-theoretic formulation of Hecke characters (without the use of
ideles). Sometimes these concepts are being distinguished by calling the ideal-
theoretic Hecke characters Größencharakter, see [Neu92]. Similarly to the defi-
nition of Dirichlet L-functions we can attach an L-function to Hecke characters,
the so-called Hecke L-function L(s, χ) (for a full definition see [RV99]). If χ is
the trivial character χ0, then L(s, χ0) is simply the Dedekind ζ-function of the
number field K, i.e., the Riemann ζ-function if K = Q.

In his famous thesis, Tate [Tat67] showed that L(s, χ) has an analytic continu-
ation and admits a functional equation that relates L(s, χ) with L(1− s, χ), where
χ is the conjugate character of χ, i.e., χ(x) = χ(x).

We should note that these facts were already shown by Hecke in 1920 (com-
pare [Neu92]) without the notion of ideles.

We will see how these results for the Hecke L-function can be used for another
L-function in I.12.
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I.5
Graph Theory

There is a variety of graphs defined via arithmetic conditions. In this chapter we
take a look at some of these graphs and their properties. An important example
are unitary Cayley graphs:

Definition I.5.1 Let n ∈ N. The Cayley graph Xn := X(Z/nZ, (Z/nZ)∗) is called
unitary Cayley graph.

Here and in the rest of this chapter we regard Z/nZ as additive group. Never-
theless, (Z/nZ)∗ denotes the elements in Z/nZ that are multiplicatively invert-
ible. Thus a unitary Cayley graph has vertices {1, . . . , n} and two vertices a, b
are adjacent if and only if gcd(a − b, n) = 1, i.e., if a − b and n are coprime. In
particular, Xn is a complete graph if and only if n = 1 or n is prime. Figure I.5.1
shows the unitary Cayley graph X12.

0

1

2
3

4

5

6

7

8
9

10

11

Figure I.5.1: The unitary Cayley graph X12.
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Some properties of unitary Caley graphs can be found in [KS07, DG95, Ili09].
These and other properties often depend on arithmetic functions. Some basic
facts are

• Xn is regular of degree ϕ(n) and κ(Xn) = ϕ(n).

• Let p∗ denote the smallest prime dividing n. Then χ(Xn) = ω(Xn) = p∗.

• The diameter of Xn is

diam(Xn) =



1, if n is prime

2, if n is odd, but not a prime

2, if n = 2α with α > 1

3, if n is even, but not a power of 2

.

• The number T(n) of triangles in Xn is

T(n) =
n3

6 ∏
p|n

(
1− 1

p

)(
1− 2

p

)
.

Two of the most important properties of unitary Cayley graphs are the following:

Theorem I.5.2 Let Xn be a unitary Cayley graph. Then Xn is integral and circulant.

While the fact that Xn is circulant follows directly by construction, the inte-
grality is a consequence of the integrality of the Ramanujan sum

c(r, n) = ∑
1≤k≤n

gcd(k,n)=1

e
2πirk

n

and the fact that the numbers c(r, n)(r = 0, . . . , n− 1) are exactly the eigenvalues
of the adjacency matrix of Xn. More results about the eigenvalues of Xn can be
found in [KS07]. In fact the two properties of Theorem I.5.2 hold true for a more
general class of graphs, the gcd graphs. Let Dn denote the set of proper divisors
of n, i.e., Dn = {d : 1 ≤ d ≤ n− 1, d|n}.
Definition I.5.3 Let n ∈ N and D ⊂ Dn. For d ∈ D let

Gn(d) := {dk ∈ Z/nZ : k ∈ (Z/nZ)∗}

and S :=
⋃

d∈D Gn(d). Then the Cayley graph Xn(D) := X(Z/nZ, S) is called gcd
graph.
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Again the vertices are the numbers {1, . . . , n}. Here two vertices a, b are ad-
jacent if and only if gcd(a− b, n) ∈ D. Since n /∈ D we obtain a loopless graph.
Figure I.5.2 shows the gcd graph X12({3, 4}).
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Figure I.5.2: The gcd graph X12({3, 4}).

The graph Xn(D) is a complete graph if D = Dn and we have Xn = Xn({1}).
If D = {d1, . . . , dr}, then Xn(D) is connected if and only if gcd(n, d1, . . . , dr) = 1.
Note that (Xn(D))c = Xn(D\D), thus complements of gcd graphs are again gcd
graphs.

So [So06] showed that the two properties in Theorem I.5.2 are in fact charac-
teristic for gcd graphs:

Theorem I.5.4 A graph is integral and circulant if and only if it is a gcd graph.

While it is easy to determine some basic characteristics for unitary Cayley
graphs (see above), it seems much harder to determine these for general gcd
graphs. It is easy to show that Xn(D) is regular of degree ∑d∈D ϕ(n

d ), but the
determination of the diameter, clique number and chromatic number is (at least
in general) an open question. At present only special cases and bounds for these
values are known (see [SPB12] for the diameter, [BI09] for the clique number and
[IB10] for the chromatic number).

Since gcd graphs are defined arithmetically, one should assume that most
graph theoretic properties depend on some arithmetic structure. Apart from the
basic facts of unitary Cayley graphs that we already mentioned, one more exam-
ple is the determination of the set N2(v) for a given vertex v, i.e., the neighbour-
hood of the neighbourhood of v. This set can be determined through sumsets in
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the cyclic group (Z/nZ,+), see [SS13]. The characterization generalizes to Cay-
ley graphs of abelian groups. This will be shown in Chapter II.2.

There are of course more graphs defined via arithmetic conditions. One of
them is the coprime graph:

Definition I.5.5 Let n ∈ N. The (loopless) coprime graph LCGn has vertex set
V = {1, . . . , n} and two vertices a, b are adjacent if and only if gcd(a, b) = 1 and
(a, b) 6= (1, 1).

Some properties of coprime graphs can be found in [ES97, SS09].

In [SK04] the authors investigate an example of an arithmetically defined di-
rected graph Hn. Here there vertex set is {0, . . . , n − 1} and there is a directed
edge from a to b if a2 ≡ b mod n. Figure I.5.3 shows the coprime graph LCG6 and
the graph H12.
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Figure I.5.3: The coprime graph LCG6 (left) and the graph H12 defined in [SK04]
(right).
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I.6
Linear Algebra

Since linear maps, the main object of study in linear algebra, are in particular
additive functions, it seems natural to consider connections between linear alge-
bra and additive number theory. We examine three such connections, namely the
Cauchy-Davenport theorem, sums of squares, and the Hopf-Stiefel function.

We start with the Cauchy-Davenport theorem (Theorem 0.5.16) as well as gen-
eralizations and applications thereof. The classical proof of Cauchy uses the e-
transform of an ordered pair of sets (A, B), which is given by (A(e), B(e)) where
A(e) = A∪ (B + e) and B(e) = B∩ (A− e) (here G is an abelian group, A, B ⊂ G
and e ∈ G is an arbitrary element), see [Nat96a].

Apart from the classical proof, the Cauchy-Davenport theorem (as well as
generalizations, see, for example, [Pol74]) can be proved with linear algebra, see
[DdSH90, CDdS00, Dia04]. This is done with the use of the Kronecker sum:

Theorem I.6.1 Let V, W be finite dimensional vector spaces over Fp and let f : V → V
and g : W → W be linear maps. Let mϕ denote the minimal polynomial of a linear map
ϕ. Then

deg(m f⊕g) ≥ min
{

p, deg(m f ) + deg(mg)− 1
}

.

The original Cauchy-Davenport theorem follows from Theorem I.6.1 by con-
sidering diagonal maps, since in this case the degree of mϕ is equal to the num-
ber of distinct eigenvalues of ϕ. Further proofs and some generalizations can be
found in [ACGM10].
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On the other hand, results similar to the Cauchy-Davenport theorem can be
used to deduce results about eigenvalues of the Kronecker product A⊗ B and the
Kronecker sum A ⊕ B of two complex matrices A, B with distinct eigenvalues,
see [Spi82]. Another application of these results is in the theory of linear ordinary
differential equations, where one can bound the number of linearly independent
solutions of some special differential equations from above, see [Spi82].

Let us now take a look at sums of squares. One of the classical results is the
two-squares theorem (Theorem 0.5.10). There is a proof of this theorem based on
linear algebra, the famous “one sentence proof”, cf. [Zag90]:

Theorem I.6.2 (two-squares theorem for primes) Let p be a prime. If p ≡ 1 mod 4,
p is representable as a sum of two squares.

Proof. The involution on the finite set S = {(x, y, z) ∈ N3 : x2 + 4yz = p} defined
by

(x, y, z) 7→


(x + 2z, z, y− x− z), x < y− z

(2y− x, y, x− y + z), y− z < x < 2y

(x− 2y, x− y + z, y), x > 2y

has exactly one fixed point, so |S| is odd and the involution (x, y, z) 7→ (x, z, y)
also has a fixed point. q.e.d.

A variant of this proof can be found in [HB84]. This uses group actions on
the set S. For similar proofs regarding representability of primes as ax2 + by2 see
[Els10].

Now we consider sums of squares more conceptually. There are three classical
results about sums of squares, namely the two-squares theorem, the three-squares
theorem, and the four-squares theorem. Of these theorems, the three-squares
theorem has a different structure in its proof. The reason lies in a multiplication
formula: If x, y are sums of two, respectively four, squares, then the same holds
for their product xy. This is not true for three squares, as the example x = 3, y = 5
shows.

The question we could ask is: For which n does such a multiplication for-
mula exist? The answer to this question depends on which kind of multiplication
formula we are looking for.

Hurwitz [Hur98] (see also [Coni]) examined multiplication formulae, where
the right-hand side consists of bilinear functions, as in the formulae for two and
four squares:
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Theorem I.6.3 (Hurwitz’s theorem) Let K be a field with char(K) 6= 2 and xi, yi ∈ K
for 1 ≤ i ≤ n. If there are zi, 1 ≤ i ≤ n, such that every zi is a bilinear function in
(x1, . . . , xn) and (y1, . . . , yn) and the equation

(x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2

n) = z2
1 + · · ·+ z2

n

holds, then n ∈ {1, 2, 4, 8}.

Not surprisingly, these values are exactly the natural numbers n such that a
finite-dimensional real division algebra with dimension n exists, cf. [EHH+92].
In fact, the theorem of Hurwitz can be proved with the structure theorem on
division algebras, see [EHH+92].

The original proof of Hurwitz is based on linear transformations. First it is
shown with the use of determinants that n must be 1 or even. Further, for dimen-
sional reasons, n cannot be bigger than 8. The only remaining case, n = 6, can
be examined with the theory of eigenvectors and eigenspaces. For another proof
based on vector products see [Coni].

If one does not require the zi to be bilinear in (x1, . . . , xn) and (y1, . . . , yn),
there are in fact more values for n such that a multiplication formula exists, cf.
[Pfi65]:

Theorem I.6.4 Let K be a field, n = 2m and xi, yi ∈ K for 1 ≤ i ≤ n. Then there are
zi, 1 ≤ i ≤ n, such that the equation

(x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2

n) = z2
1 + · · ·+ z2

n

holds.

Here the zi can even include fractions. For a comparison with the result of
Hurwitz, as well as a converse statement and more, see [Cone]. A formula for the
case n = 16 can be found in [ZE66].

In general one is interested in so-called composition formulae:

Definition I.6.5 Let r, s, n ∈ N. A composition formula of type [r, s, n] is a formula

(x2
1 + · · ·+ x2

r )(y
2
1 + · · ·+ y2

s ) = z2
1 + · · ·+ z2

n

where xi, yi are variables (mostly over some field K) and zi are bilinear functions
in (x1, . . . , xr) and (y1, . . . , ys).

89



CONNECTIONS I.6. LINEAR ALGEBRA

For more about composition formulae and techniques used to characterize
them, see [Sha00b]. Some results can be found in [EHH+92].

We want to get to know a function that gives some results about composition
formulae, the Hopf-Stiefel function. This will also build a bridge back to the
Cauchy-Davenport theorem as well as show an application of additive number
theory in linear algebra.

For r, s ∈ N, the Hopf-Stiefel function ◦ is defined by r ◦ s := β2(r, s) where
for a prime p we let

βp(r, s) := min{n ∈ N : (x + y)n = 0 in Fp[x, y]/(xr, ys)}.

Since each summand of (x + y)r+s−1 is divisible by either xr or ys, the function
βp(r, s) is well-defined and we have βp(r, s) ≤ r + s− 1. For example, we have
2 ◦ 2 = 2, since (x + y)2 = 0 in F2[x, y]/(x2, y2). It is clear, that r ◦ s ≥ max{r, s},
but equality does not hold in every case. For example, we have (x + y)5 = xy4 in
F2[x, y]/(x3, y5), i.e., 3 ◦ 5 > 5. In fact, we have 3 ◦ 5 = 7.

Plagne [Pla03] derived a formula for βp(r, s):

Theorem I.6.6 For any prime p, we have

βp(r, s) = min
t∈N0

{(⌈
r
pt

⌉
+

⌈
s
pt

⌉
− 1
)

pt
}

.

Here dxe denotes the ceiling function dxe := min{k ∈ Z : x ≤ k}. Since the
minimum is being attained for some t with 0 ≤ t ≤

⌈
log(max{r,s})

log p

⌉
, this formula

is indeed useful. In our examples above, we only have to check t ∈ {0, 1} to get
2 ◦ 2 = 2 and t ∈ {0, 1, 2, 3} to get 3 ◦ 5 = 7.

This formula can be proved by using a result about sumsets in the groups
Z/nZ, which is a generalization of the Cauchy-Davenport theorem. Conversely,
when considering an additive problem on subsets of vector spaces V over Fp for
some prime p, the function βp(r, s) plays a role in some Cauchy-Davenport type
result (see [Yuz81] for the special case p = 2, i.e., the Hopf-Stiefel function, and
[EK98] for the general case):

Theorem I.6.7 Let V be a vector space over Fp for some prime p and A, B ⊂ V be
nonempty. If |A| = r and |B| = s, then |A + B| ≥ βp(r, s). Conversely, if V is a
vector space over Fp and r, s ∈ N with max{r, s} ≤ |V|, then there are A, B ⊂ V with
|A| = r, |B| = s and |A + B| = βp(r, s).
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For more information about the Hopf-Stiefel function see [Pla03, EK05] and
the references given there. The relation of the Hopf-Stiefel function with compo-
sition formulae gets clear with Pfister’s theorem (sometimes called Hopf’s theo-
rem), cf. [Pfi65]:

Theorem I.6.8 (Pfister’s theorem) Let r, s ∈ N and K = Q(x1, . . . , xr, y1, . . . , ys),
where the xi, yj are variables. Then the smallest n such that there is a composition formula
of type [r, s, n] in K is n = r ◦ s.

For more connections between the Hopf-Stiefel function and composition for-
mulae, see [Sha00b].

In Chapter II.4 we will see another, completely different, connection between
number theory and linear algebra. We will consider a puzzle that can be modeled
with linear algebra. To solve the puzzle we have to examine the determinants
of certain matrices. This can (at least partially) be done with (algebraic) number
theory, in particular we need the splitting behaviour of prime ideals in cyclotomic
fields.
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I.7
Geometry

A lot of number theoretic problems are motivated by geometric problems. Two
of the most prominent examples are Pythagorean triples (i.e., integer solutions
of the equation x2 + y2 = z2, cf. Theorem 0.5.4) and congruent numbers (i.e.,
natural numbers n such that the system n = 1

2 xy, x2 + y2 = z2 has a rational
solution, cf. Figure I.7.1). Although the parametrization of Pythagorean triples
given in Theorem 0.5.4 yields congruent numbers, it is in general hard to decide
whether a given number n is congruent. We will adress both problems in Chapter
I.12, for a first glimpse see [Conf, Conh].

12

5
13

A = 30

Figure I.7.1: The Pythagorean Triple (5, 12, 13) shows that 30 is a congruent num-
ber.

Instead of looking at geometric problems, we will take a look at applications
of geometry in number theory. This is called geometry of numbers or sometimes
Minkowski theory. Its starting point is Minkowski’s convex body theorem, see
[SF07].
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Theorem I.7.1 (Minkowski’s convex body theorem) Let Λ be a lattice in Rn and
S ⊂ Rn be a convex, centrally symmetric set. If vol(S) > 2n vol(Λ), then S contains a
nonzero lattice point of Λ.
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Figure I.7.2: Visualization of Minkowski’s convex body theorem.

In most sources the set S is required to be bounded. But since any convex,
centrally symmetric and unbounded set S with vol(S) > 0 has in fact volume ∞
and contains convex, centrally symmetric bounded subsets with arbitrarily large
volume, the theorem is also true in the unbounded case. Figure I.7.2 shows a
visualization of Minkowski’s convex body theorem.

There are quite remarkable applications of Minkowski’s convex body theo-
rem. We will just mention some important results and indicate how these can be
proved with Minkowski’s convex body theorem. A more detailled exposition, as
well as more examples, can be found in [Cla].

We start with theorems about sums of squares, cf. Paragraph 0.5.3.

Theorem I.7.2 (two-squares theorem for primes) Every prime p with p ≡ 1 mod 4
can be written in the form p = x2 + y2.

The two-squares theorem for primes can be proved by considering the circle
with center at the origin and radius

√
2p and the lattice

Λ =

{
k1

(
p
0

)
+ k2

(
u
1

)
: ki ∈ Z

}

where u ∈ {0, . . . , p− 1} is chosen such that u2 ≡ −1 mod p. See Figure I.7.3 for
p = 13.

Related to the two-squares theorem is the question about the representability
of primes in the form x2 + ny2. Partial results can be obtained with Minkowski’s
convex body theorem. We will discuss this topic further in Chapter I.8.
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Theorem I.7.3 Let n ∈ N and p be an odd prime. If
(
−n
p

)
= 1, there are x, y, k ∈ Z

with x2 + ny2 = kp and 1 ≤ k ≤
⌊

4
√

n
π

⌋
.

If n ∈ {1, 2}, the bound on k implies k = 1, so we get a representation of p
itself. Here we use almost the same setting as in the proof of the two-squares
theorem: We let u ∈ {0, . . . , p− 1} with u2 ≡ −n mod p and consider the ellipse
x2 + ny2 = 4

√
n

π p and the lattice

Λ =

{
k1

(
p
0

)
+ k2

(
u
1

)
: ki ∈ Z

}
.

Figure I.7.4 illustrates the proof for p = 17, n = 2.
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Figure I.7.3: The two-squares theo-
rem for p = 13 via Minkowski’s con-
vex body theorem.
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Figure I.7.4: 17 can be written as
x2 + 2y2.

With Minkowski theory, the four-squares theorem for primes can be proved
almost analogously to the two-squares theorem.

Theorem I.7.4 (four-squares theorem for primes) Every prime p can be written in
the form p = w2 + x2 + y2 + z2.

Here we let r, s ∈ {0, . . . , p − 1} with r2 + s2 ≡ −1 mod p and consider the
circle with center at the origin and radius

√
2p and the lattice

Λ =

k1


p
0
0
0

+ k2


0
p
0
0

+ k3


r
s
1
0

+ k4


s
−r
0
1

 : ki ∈ Z

 .

As already mentioned (and examined) in Chapter I.6, the structure of the
proof of the three-squares theorem is completely different. There are many ways
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to prove the three-squares theorem. One of them is to consider Legendre’s equa-
tion, see [SF07]. Again, this can be done with Minkowski’s convex body theorem:

Theorem I.7.5 (Legendre’s equation) Let a1, a2, a3 ∈ Z be pairwise coprime, square-
free, and such that not all ai have the same sign. Then the equation

a1x2
1 + a2x2

2 + a3x2
3 = 0

has a nontrivial integer solution if and only if −aiaj is a quadratic residue modulo ak for
each permutation (i, j, k) of (1, 2, 3).

To prove this, we consider the ellipsoid{
|a1| x2

1 + |a2| x2
2 + |a3| x2

3 ≤ 3

√
6
π
|a1a2a3|

}

and the lattice

Λ =

k1

1
∗
∗

+ k2

 0
a3

∗

+ k3

 0
0

a1a2




(here the asterisks denote integers that can be determined via the congruences
u2

k ≡ −aiaj mod ak, cf. [SF07] for details). Another approach to the three-squares
theorem with Minkowski’s convex body theorem can be found in [Cla].

For other proofs of the theorems about sums of squares using Minkowski’s
convex body theorem (i.e., proofs that use different lattices and sets) and partial
characterizations of the primes that can be written as x2 + 2y2 or x2 + 3y2 see
[SF07].

Minkowski’s convex body theorem can also be used for algebraic number the-
ory. Let K denote a number field of degree n. Let further σ1, . . . , σr be the r real
embeddings of K and σr+1, . . . , σr+s be s pairwise nonconjugate complex embed-
dings of K. Then we can embed K in Rr ×Cs ∼= Rn via x 7→ (σ1(x), . . . , σr+s(x)).
Note that the image of a nonzero ideal a /OK under this map is a lattice in Rn.

There are two main theorems that we can prove when interpreting ideals as
lattices: The finiteness of the class number of K (Theorem 0.5.31) and Dirichlet’s
unit theorem (Theorem 0.5.29). Here we will consider only the first, for the latter
see [Cla, Neu92].

The main part in proving the finiteness of the class number is to show that any
nonzero ideal contains an element with “small” norm, cf. [Cla, Neu92].
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Theorem I.7.6 Let a /OK be a nonzero ideal. Then there is a nonzero a ∈ a with

∣∣∣NK
Q(a)

∣∣∣ ≤ ( 4
π

)s n!
nn |d(K)|

1
2 N(a).

To prove this, we consider the set{
(x1, . . . , xr, z1, . . . , zs)∈ Rr×Cs :

r

∑
i=1
|xi|+ 2

s

∑
j=1

∣∣zj
∣∣≤ n

√
2n−rπ−sn!

√
d(K)N(a)

}
.

Then S is centrally symmetric and convex with volume 2r+s
√
|d(K)|N(a). Thus,

there is a nonzero element a ∈ a with

∣∣∣NK
Q(a)

∣∣∣ = r

∏
i=1
|σi(a)|

r+s

∏
j=r+1

∣∣σj(a)
∣∣2 ≤ ( 1

n

r

∑
i=1
|σi(a)|+ 2

n

r+s

∑
j=r+1

∣∣σj(a)
∣∣)n

≤
(

4
π

)s n!
nn |d(K)|

1
2 N(a).

Figure I.7.5 illustrates the proof for a = (4,
√

13) /Z[
√

13].
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Figure I.7.5: There is an element a ∈ (4,
√

13) /Z[
√

13] with norm less than 7.5953.

There are many more similar results and applications of Minkowski’s convex
body theorem in number theory, for example results about linear forms, quadratic
forms and generalizations to other rings, cf. [Cla].
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I.8
Algebra

Similar to analysis, there are a lot of connections between algebra and number
theory. We will consider one special aspect that is important for Diophantine
equations:

Given a polynomial Diophantine equation f (x1, . . . , xn) = 0, we wish to use
factorization methods, i.e., we want to factor both sides of the equation and com-
pare the factors. In most cases this is not possible over Z. As an example consider
the equation y2 = x3 − 2, a special case of Mordell’s equation. We write this as
x3 = y2 + 2. The left-hand side is already factorized, but the right-hand side
cannot be factorized over Z.

The general idea now is to consider ring extensions of Z and factor the equa-
tion over these extensions. In the example above, we can consider R = Z[

√
−2]

and write x3 = (y−
√
−2)(y +

√
−2). Since Z[

√
−2] is a unique factorization do-

main (see Theorem 0.5.26) we can look at irreducible factors of both sides. Doing
this (compare [IR92]), we see that the equation has only two solutions, namely
(3, 5) and (3,−5). In other words, 26 is the only integer such that its predecessor
is a square and its successor is a cube. We will examine the equation y2 = x3 + k
again in Chapter I.12.

Let us take a look at some important equations that can be attacked with this
(or a similar) method. More equations (solved with similar or different methods)
can be found in [Coh07a].
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First we consider another special case of Mordell’s equation, namely the equa-
tion y2 = x3 ± 1. This is related to Catalan’s conjecture, which implies that the
only nontrivial integer solutions of y2 = x3 + 1 are (2,±3), whereas y2 = x3 − 1
has no nontrivial integer solutions. More generally, Catalan’s conjecture states
that 8 and 9 are the only consecutive numbers in the sequence of the powers of
natural numbers, i.e., the only nontrivial solutions of the equation xn − ym = 1
are (x, y, m, n) = (±3, 2, 3, 2). This conjecture has been proved in 2003 by Mi-
hăilescu, cf. [Sch07b]. In his proof he uses the factorization method described
above (together with more sophisticated methods). In this case, the equation can
be factorized over cyclotomic fields, i.e., fields of the form Q(ζp) where ζp is a
p-th root of unity. For more on cyclotomic fields see [Was97].

A more classical (and maybe the easiest interesting) example is the search for
Pythagorean triples, i.e., integral solutions of the equation x2 + y2 = z2. The
characterization given in Theorem 0.5.4 can be proved in many ways (see [IR92,
Conf]), one of them is factorizing x2 + y2 = (x + iy)(x− iy) in Z[i].

Generalizing the Pythagorean equation we get to Fermat’s last theorem, i.e.,
the consideration of the equation xn + yn = zn with n ≥ 3. Fermat conjectured
that this equation has no nontrivial integer solution. For some special exponents
(for example n = 3), this can be proved with the factorization method described
above, see [HW08, IR92]. More special cases and general approaches can be
found in [Edw77, Rib99].

The general equation xp + yp = zp for an odd prime p is much harder. Similar
to Catalan’s conjecture, we use cyclotomic fields and factor xp + yp over Q(ζp).
There are two cases: Either gcd(xyz, p) = 1 or p divides one of x, y, z. The second
case is harder to handle but in either case we have the following special case of
Fermat’s last theroem, which is due to Kummer (see [Edw77]):

Theorem I.8.1 (Fermat’s last theorem for regular primes) If p is regular, then the
equation

xp + yp = zp

has no nontrivial integer solution.

One of the two key ingredients in the second case is the Kummer-Vandiver
conjecture (Conjecture I.4.1). If p is regular, then the Kummer-Vandiver conjec-
ture is true for this prime p and we can use this (together with another conse-
quence of p being regular) to show Fermat’s last theorem.
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Fermat’s last theorem has indeed been proved, but not with cyclotomic meth-
ods. The methods used in the proof are described in Chapter I.12.

Let us consider one more equation, namely

x2 ± ny2 = c. (I.8.1)

We will consider this equation for special values of c. If c = 1, this is Pell’s
equation. There are elementary methods to show that the equation x2 − dy2 = 1
with d ∈ Z has infinitely many integer solutions if and only if d is positive and
no square, cf. [SF07]. The solutions of Pell’s equation can be found with the
continued fraction expansion of

√
d.

Pell’s equation also has an algebraic interpretation: In the ring Z[
√

d], an ele-
ment x +

√
dy is a unit if and only if x2− dy2 = ±1. This is mostly interesting for

positive d. Dirichlet’s unit theorem (Theorem 0.5.29) tells us that the unit group
of the ring of integers of a number field K has rank r + s− 1 where r is the num-
ber of real embeddings of K in Q and 2s is the number of complex embeddings.
In the case K = Q(

√
d) where d is positive and not a square this rank is 1, thus

Pell’s equation has infinitely many solutions. For a direct proof using only the
unit theorem for Q(

√
d) see [Sch07a]. In fact this method also yields infinitely

many solutions of x2 − dy2 = ±1 if the ring of integers of Q(
√

d) is Z[ 1+
√

d
2 ].

Another variant of Equation (I.8.1) is the equation x2 + ny2 = p, where p is a
prime. For n = 1, this is the two-squares theorem for primes (compare Theorem
0.5.10). For general n we have already seen some partial results in Chapter I.7.
Again, this is simple for some values of n but there are a lot of (partially highly
complex) different algebraic methods to characterize such primes in general, cf.
[Cox13]. These characterizations always involve some congruence condition on
p and sometimes conditions about a certain polynomial. The general result is:

Theorem I.8.2 For n ∈ N, there is a polynomial fn ∈ Z[x] such that the following holds:

Let p be an odd prime that neither divides n nor ∆ fn . Then p = x2 + ny2 if and only if

•
(
−n
p

)
= 1 and

• fn(x) ≡ 0 mod p has an integer solution.

Here
(
−n
p

)
denotes the Legendre symbol. The polynomial fn can be specified,

see [Cox13]. The natural numbers n such that the primes of the form p = x2 + ny2

can be characterized with congruences only (i.e., without needing a polynomial
fn) are called idoneal (or convenient) numbers, cf. [Kan, Cox13]. There are 65
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idoneal numbers known today, and these are assumed to be all. Weinberger
[Wei73] showed that there can exist only one more idoneal number, and under
assumption of the generalized Riemann hypothesis no other exists. A list of the
characterizations of the primes p with p = x2 + ny2 for n ≤ 29 can be found in
[Jag].

For the cases n = 1, 2, 3, the characterization can be proved with the factoriza-
tion method described above. In these cases, we have

Theorem I.8.3 Let p be a prime.

• p is of the form p = x2 + y2 if and only if p = 2 or p ≡ 1 mod 4.

• p is of the form p = x2 + 2y2 if and only if p = 2 or p ≡ 1, 3 mod 8.

• p is of the form p = x2 + 3y2 if and only if p = 3 or p ≡ 1 mod 3.

Interestingly, I was not able to find a reference for such a proof by factorization
(unless of course for the case n = 1). Therefore, we will discuss the proof in
somewhat greater detail. We consider the case n = 3 (the other two cases are
easier). In fact, we show that for a prime p > 3 the following four conditions are
equivalent:

1. p ≡ 1 mod 3,

2.
(
−3
p

)
= 1,

3. p is reducible in Z[ω] (here ω = −1+
√
−3

2 is a primitive third root of unity),

4. p = x2 + 3y2 for suitable x, y ∈ Z.

The implications 1 ⇒ 2 and 4 ⇒ 1 are easy. If
(
−3
p

)
= 1, then p divides

(x −
√
−3)(x +

√
−3) in Z[ω] for some x ∈ Z. Since p does not divide one of

the factors and Z[ω] is a unique factorization domain (see Theorem 0.5.26), p is
reducible. If p is reducible, write p = αβ. Then by distinction of cases (depending
on the parity of a and b in α = a + bω) we find a unit η ∈ Z[ω]∗ such that
αη ∈ Z[

√
−3]. Using the norm in Z[ω] then explicitly gives x, y with x2 + 3y2 = p.

The key steps are the implications 2⇒ 3 and 3⇒ 4. These work for general n
only if (at least) one of the following holds:

• Z[
√−n] is a unique factorization domain.

• The ring of integers R of Q(
√−n) is a unique factorization domain and

whenever p = αβ in R, we can choose a unit η ∈ R∗ such that αη ∈ Z[
√−n].
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The second case cannot occur for n > 3 due to Theorem 0.5.26 and the fact
that all units in R are roots of unity. On the other hand, Z[

√−n] cannot be a
unique factorization domain if n ≥ 3: Since 2 divides −n =

√−n2 for even n and
1+ n = (1+

√−n)(1−√−n) for odd n, 2 is not a prime in Z[
√−n]. On the other

hand 2 is irreducible in Z[
√−n] since x2 + ny2 = 2 is not solvable if n ≥ 3, thus

there are no elements with norm 2 in Z[
√−n]. Hence, this method unfortunately

works only for n = 1, 2, 3.

To conclude this chapter, we note that many number theoretic problems in-
volving congruences can be generalized to problems in factor rings. These can
hopefully be solved with algebraic methods and the special case of congruences
often has applications in other parts of number theory. We will deal with an ex-
ample of this approach in Chapter II.3.
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I.9
Differential Geometry

In this chapter we discuss connections between number theory and hyperbolic
manifolds. In particular, we are interested in special hyperbolic manifolds of
dimensions 2 or 3. Since the concepts in dimension 3 require theory that we have
not developed, we will just briefly mention one result and then turn our attention
to dimension 2.

Of special interest is the volume of manifolds. It is known that there is a hy-
perbolic 3-manifold of minimal volume, but until today it is neither known which
manifold this is, nor what the minimal volume is. For a special class of hyperbolic
3-manifolds, the so-called arithmetic manifolds, this problem is solved (we will
not describe what an arithmetic manifold is, since this requires too much nota-
tion. For an introduction see [MR03]).

In [CFJR01], the authors show that the arithmetic hyperbolic 3-manifold with
smallest volume is the Weeks manifold (which we will not define here). If α is a
root of the polynomial x3 − x + 1 and K = Q(α), its volume is

3 · 3
√

232

4π4 ζK(2) ≈ 0.9427073627769.

It is conjectured that this is also the smallest volume among all hyperbolic 3-
manifolds. In [CFJR01], the authors also determine the next smallest arithmetic
hyperbolic 3-manifold. These are the only two having volume less than 1.
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Apart from having (presumably) the smallest possible volume among hyper-
bolic 3-manifolds, arithmetic manifolds are interesting in their own right since
their geometric structure is connected with arithmetic information (for example
with the Hilbert symbol). For a more detailed exposition, see [MR03].

In dimension 2, there is one special manifold we are interested in, namely one
of the standard models of hyperbolic geometry already described in Paragraph
0.3.2: The upper half plane H. We take a look at two concepts. First we describe a
tessellation of the upper half plane. After that, we will discuss special functions
that obey a certain transformation law under some isometries of H.

We begin with the Ford circles described in Chapter I.2. First, we extend them
periodically from [0, 1] to all of R. We also add the line y = 1, which we will
view as the Ford circle C[1/0]. Now given any two Ford circles that are tangent,
we construct the unique geodesic that intersects the touching boundary points
orthogonally. A partial result of this process (for the Ford circles C[a/b] up to
b = 4) is depicted in Figure I.9.1.

Figure I.9.1: A tessellation of H via Ford Circles.

Given three Ford circles that are pairwise tangent, these geodesics define a
(hyperbolic) triangle whose corners are ideal points. These triangles form a tes-
sellation of H, i.e., these triangles cover all of H and do not overlap. More-
over, this tessellation is invariant under the action of SL2(Z) (which is a special
subgroup of the group of isometries of H and will become important soon) on
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H. For more about this tessellation and connections to continued fractions see
[Ser15, Hat]. Another tessellation of H that uses Ford circles can be found in
[CF97].

We determine a fundamental domain ofH for the action of SL2(Z) with help of
the above tessellation. Consider the triangle4whose corners are the ideal points

0, 1, ∞. Note that there is a nontrivial element in SL2(Z), namely S =

(
0 1
−1 1

)
,

which maps 4 to itself, thus 4 cannot be a fundamental domain. Since S has
order 3, we need to divide 4 in (at least) three subsets to get a fundamental
domain (in fact three subsets will suffice, cf. [Ser15]). Since the fixed point of S is
1+
√
−3

2 , a fundamental domain is given by the set E shown in Figure I.9.2. Since
any of the boundary lines of E is a part of a geodesic, E is a quadrangle.

For most applications, this is not the fundamental domain we want to work
with. We would like to work with a triangular fundamental domain rather than

with a quadrangular. To achieve that, we note that T =

(
1 1
0 1

)
maps each ele-

ment z ∈ H to z + 1. Therefore, we can shift a part of E by some integer n to the
right or left. Shifting the right half of E by 1 to the left, we get the fundamental
domain F that is most often used, see Figure I.9.2.

−1 0 1 2

E

−1 0 1

F

Figure I.9.2: The fundamental domains E (left) and F (right).

Now we consider functions that are (almost) invariant under SL2(Z). Unless
stated otherwise, proofs of the results can be found in [KK07].

Definition I.9.1 Let f : H → C be a (not necessarily holomorphic) function and
M ∈ SL2(Z). For even k ∈ Z let f |k M : H→ C be the function with

( f |k M)(τ) :=
(

dMτ

dτ

) k
2

f (Mτ).
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We call f a weakly modular form of weight k if f is meromorphic on H and
f |k M = f for all M ∈ SL2(Z). In this context the group SL2(Z) is called modular
group.

For M =

(
a b
c d

)
∈ SL2(Z) we have dMτ

dτ = (cτ + d)−2, thus the condition

f |k M = f can also be written as

f (Mτ) = (cτ + d)k f (τ). (I.9.1)

This can be further simplified. Let J =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. Then the

modular group SL2(Z) is generated by J and T. Thus a meromorphic function
f : H→ C is a weakly modular form of weight k if and only if

f (τ + 1) = f (τ) and f
(
−1

τ

)
= τk f (τ). (I.9.2)

This can also be defined for odd k, but due to the transformation rule (I.9.1)
the only weakly modular form of odd weight is the zero function.

Due to (I.9.2) any weakly modular form f is periodic modulo 1, therefore we
can write f as a Fourier series

f (τ) = ∑
m∈Z

a f (m)e2πimτ.

We say that f is meromorphic at ∞ if there is an m0 ∈ Z with a f (m) = 0 for
all m ≤ m0. If we can choose m0 = 0, we call f holomorphic at ∞. A weakly
modular form which is holomorphic in H and at ∞ is called modular form. If f
is a modular form and f (∞) = 0 (i.e., α f (0) = 0), we call f a cusp form.

Modular forms (or, to be more precise, their transformation rule) can be mo-
tivated even more with differential geometry, cf. [Mil97]. For an ad hoc expla-
nation that this definition is “nice”, define f̃ (τ) := =(τ) k

2 | f (τ)|. Recall that the
hyperbolic metric scales with the inverse of the square of the imaginary part, thus
this definition connects the function f with hyperbolic information. By a simple
calculation we see that f̃ is invariant under SL2(Z). Further, we can introduce
a scalar product, the Petersen scalar product, on the space of cusp forms that is
invariant under SL2(Z).

In the theory of modular forms one often uses the fundamental domain F

that we constructed above. It occurs in many formulae (we will see one of them
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below) and some properties of modular forms (such as boundedness or zeros)
can be deduced for all of H if they are known for F.

Modular forms are an important object in many number theoretic topics. For
example, they can be used to deduce formulae for the number of representations
of a natural number n as the sum of k squares, see [LR11]. We mention some basic
examples and results. More information can be found in [KK07, Mil97].

The set Mk of all modular forms of weight k and the set Sk of all cusp forms of
weight k are C-vector spaces (with the canonical operations). Their dimensions
are given by the dimension formula

dim Mk =


⌊

k
12

⌋
, k ≡ 2 mod 12⌊

k
12 + 1

⌋
, k 6≡ 2 mod 12

, dim Sk = dim Mk − 1.

If f is a nonzero modular form of weight k, we have the weight formula

∑
w∈F

ordw( f )
ord w

=
k

12
.

Here F is the fundamental domain we constructed above and

ord w :=


2, w = i

3, w = 1
2 +

√
−3
2

1, w 6= i, 1
2 +

√
−3
2

.

There are many important examples of (weakly) modular forms, such as Eisen-
stein series or the discriminant ∆(τ). We will just briefly look at the j-invariant.
This is a weakly modular form of weight 0, which can be defined as a quotient of
an Eisenstein series and the discriminant. Its Fourier expansion is

j(τ) = e−2πiτ
∞

∑
m=0

jme2πimτ

where the jm have interesting arithmetic properties (see [KK07, Apo90] for a table
of values and some more facts). These values will become important in Chapter
I.11.

The j-invariant is not the only modular form whose Fourier coefficients are
important. In general, the behaviour of these coefficients, and in particular their
growth, has important applications. There are two basic results: For cusp forms
we have α f (m) = O(m k

2 ), for general modular forms we get α f (m) = O(mk−1).
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More bounds can be found in [Iwa97]. An example for better bounds for special
classes of modular forms, as well as an application to expressing natural numbers
as sums of three squarefull natural numbers can be found in [Blo04].

When taking subgroups U of SL2(Z), we can consider functions such that the
transformation rule (I.9.2) holds for elements of U but do not need to hold for
other elements of SL2(Z). An important example of such subgroups are congru-
ence subgroups. A special case of those is the following.

Definition I.9.2 Let N ∈ N. Then we define

Γ0(N) :=

{
M =

(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.

The special case N = 1, i.e., Γ0(1) = SL2(Z), is also denoted by Γ.

We call a function f : H → C a modular form of level N if all of the above
axioms for modular forms hold, but the transformation rule has only to be true
for M ∈ Γ0(N). Let Mk(N) be the space of modular forms of weight k and level
N and Sk(N) be the space of cusp forms of weight k and level N.

Cusp forms of weight 2 and level N will be important in Chapter I.12, together
with the so-called Hecke operators. These are linear operators on the space of
modular forms. We will just give the definition for primes.

Definition I.9.3 For a prime p and a modular form f of weight k (and level N ∈ N)
the Hecke operator Tp is defined by

(Tp f )(τ) := pk−1 f (pτ) +
1
p

p

∑
b=1

f
(

τ + b
p

)
.

If (for a fixed prime p) a modular form f satisfies Tp( f ) = λp( f ) · f for some
λp( f ) ∈ C, the modular form f is called eigenform of Tp with eigenvalue λp( f ).

For k ∈ {0, 4, 6, 8, 10, 14}, the dimension formula yields that the spaces Mk and
Sk+12 are one-dimensional. Since the Hecke operators are endomorphisms both
of Mk and Sk (see [KK07]), the modular forms in theses spaces are eigenforms.

Finally, we mention that we can associate an L-function to modular forms. If
f is a modular form with Fourier expansion ∑∞

m=0 am( f )e2πimτ, we define the L-
function attached to f by L( f , s) := ∑∞

m=1 am( f )m−s. Here bounds on the Fourier
coefficients are useful, since these determine the convergence of L( f , s). There
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are deep connections between the L-function L( f , s) and the Hecke operators Tp.
Properties of f with respect to Hecke operators (for example, being an eigen-
form) will result in properties of L( f , s) (for example, having an Euler product),
cf. [DS05, LR11]. This L-function will recur in Chapter I.12.

Conversely, Dirichlet series ∑∞
m=1 amm−s define (under certain assumptions) a

modular form f with Fourier expansion ∑∞
m=0 am( f )e2πimτ, see [Hus04].
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I.10
Complex Analysis

We have already seen (and will see again) one of the main uses of complex anal-
ysis in number theory, namely ζ- and L-functions. Since these appear in other
chapters too, we will just briefly adress this topic. Afterwards, we will turn our
attention to another connection.

The theory of ζ- and L-functions follows one general concept: Given an (al-
gebraic, geometric, or arithmetic) object X, we associate to this object a function
depending on one complex variable. In some cases, this is done by considering
a sequence (an)n∈N of (mostly) integers, that encodes information about the ob-
ject X, and define the ζ- or L-function to be the Dirichlet series ∑∞

n=1 ann−s. Table
I.10.1 shows the ζ- and L-functions that we have considered so far and also the
ones we will see in later chapters.

appearance object functionin Chapter
0, I.2, A.1 Q resp. the sequence an = 1 Riemann ζ-function ζ(s)

0, A.1 Dirichlet character χ Dirichlet L-function L(s, χ)
0, I.9 number field K Dedekind ζ-function ζK(s)

I.1, I.11 the field Fq(T) Carlitz ζ-function ζp(s)
I.4 projective algebraic variety X ζ(X, s)

I.4, I.12 Hecke character χ Hecke L-function L(s, χ)
I.9, I.12 modular form f L(s, f )

I.12 elliptic curve E Hasse-Weil L-function L(E, s)

Table I.10.1: List of ζ- and L-functions addressed in this thesis.
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For many more different ζ- and L-functions, see [Wat, LMF, Coh07b].

If a function is a Dirichlet series, i.e., it is of the form ∑∞
n=1 ann−s for some

complex sequence (an)n∈N, it will converge in some right half plane σ ≥ σ0 where
σ = <(s) and σ0 ∈ R. Further, it has an Euler product if (an)n∈N is multiplicative,
cf. [Brü95].

In most cases, one wishes for the ζ- or L-function to have some nice properties,
for example analytic or meromorphic continuation to all of C and a functional
equation, see also Chapter I.4.

ζ- and L-functions and their values have important applications in number
theory. One of the first is the use of the Riemann ζ-function in the prime number
theorem, see [Brü95]. For some applications of special values of ζ-functions, see
[Zag94].

One could ask in which cases we call the attached function a ζ-function and in
which cases we refer to an L-function. It seems that there is no particular reason
for the one or the other choice, see [Cor].

The topic which we will mainly adress here is the circle method, also called
Hardy-Littlewood method. This method can be used to get asymptotic formulae
for the number of solutions of Diophantine equations. Before describing some
of the problems that can be attacked, we present the main idea behind the circle
method, cf. [Vau97]. See Appendix A.2 for an introductory example.

The historically first version of the circle method is the following: Let A ⊂ N
(where A is assumed to be infinite) and denote by (am)m∈N the strictly increasing
sequence of all elements of A. We want to know in how many ways a natural
number n can be written as a sum of s elements of A (considering the order of
selection). Let Rs(n) denote this number.

To am, we associate the series

F(z) :=
∞

∑
m=1

zam

where |z| < 1. The s-th power of F(z) is exactly

F(z)s =
∞

∑
n=1

Rs(n)zn.

To compute Rs(n) (at least asymptotically and for big n), we use the Cauchy’s
integral formula (Theorem 0.2.8) to get
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Rs(n) =
1

2πi

∫
|z|=ρ

F(z)s

zn+1 dz

for any ρ ∈ (0, 1). This is the reason for the name circle method.

Nowadays, one often uses a refined version. To ease notation, we will write
e(α) = e2πiα in the rest of this chapter, as usual in analytic number theory. Now
we consider the Diophantine equation

D(x1, . . . , xk) = n, where D(x1, . . . , xk) = a1xm1
1 + · · ·+ akxmk

k . (I.10.1)

For simplicity we assume that ai ∈ N and 2|mi for all i. Then each summand in
D(x1, . . . , xk) is positive and thus xi is bounded for every i. This is not necessary
for the circle method to work, cf. Appendix A.2.

We are interested in the number RN(n) of solutions of the above equation with
|xi| ≤ N for all i (in most cases, the exponents mi in the polynomial D are all the

same. Then we choose N = n
1

mi ). Later, we consider the limit N → ∞ and define
R(n) = lim

N→∞
RN(n). Let fi(α) = ∑|li|≤N e(ail

mi
i α). If N is chosen large enough

(such that each xi has to be smaller than N to satisfy Equation (I.10.1)), we get

k

∏
i=1

fi(α) =
k

∑
i=1

∑
|li|≤N

e(α · D(x1, . . . , xm)) =
M

∑
m=1

e(αm)R(m)

for some M. With the orthogonality relation

∫ 1

0
e(αm)dα =

1, m = 0

0, m ∈ Z\{0}

we get

R(n) =
∫ 1

0

M

∑
m=1

R(m)e(αm)e(−αn)dα

=
∫ 1

0

M

∑
m=1

e(α(D(x1, . . . , xk)− n))dα

=
∫ 1

0

k

∏
i=1

fi(α)e(−αn)dα.

For other applications (such as sums of primes) the functions fi can be varied
accordingly. Now fi(α) is “big” if α is close to some member of a Farey sequence,
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i.e., if α is close to a
q for some “small” q (the optimal value of q, depending on N,

has to be determined in each individual use of the circle method). We split the
integral according to the choice of q into two parts: the major arcs, i.e., values α

close to some fraction a
q with small q and the minor arcs, i.e., all the other α.

If q is chosen well, then the minor arcs contribute (asymptotically) less than
the major arcs, so their contribution goes into some error term. On the major arcs
we can try to expand f asymptotically in a finite series.

For another version of the circle method see [HB96]. In each case, the aim is
to achieve a formula of the form

R(n) = S(n)J(n) +O(nt),

where S(n) is an infinite series involving exponential sums and J(n) is an inte-
gral. We call S(n) and J(n) the singular series and singular integral, respec-
tively. The singular series encodes the arithmetic properties of the equation, for
example S(n) = 0 if and only if the equation considered is not solvable. The
singular integral encodes the analytic properties of the equation, for example the
number of solutions if the equation is solvable.

The main part of the circle method is to show the following: The singular
series vanishes if and only if the equation considered is unsolvable. In the other
case, this series converges to a nonnegative value. Together with the singular
integral this gives an asymptotic formula if the order of J(n) is greater than t.

The singular integral is usually estimated with integral or summation formu-
lae such as the Euler-Maclaurin formula. The singular series consists of sum-
mands that, in some cases, are multiplicative. The techniques here involve gen-
eral techniques about exponential sums as described, for example, in [GK91].
Sometimes, one also associates a ζ-function to the summands of S(n), for which
we can use Perron’s formula and the residue theorem.

The most prominent applications of the circle method are Waring’s problem
(Problem 0.5.13, respectively the variant mentioned) and the ternary Goldbach
problem (Problem 0.5.14), see [Vau97]. But there are many other additive prob-
lems that can be handled with the various forms of the circle method, such as
representation numbers of quadratic forms (and with it, the Hasse-Minkowski
theorem (Theorem I.1.4)), see [HB96].

We conclude this chapter with a note about the Farey sequence. This sequence
has already been mentioned above, when we distinguished between major and

116



CONNECTIONS I.10. COMPLEX ANALYSIS

minor arcs. Of course, one does not need the Farey sequence itself for this distinc-
tion, so we could have worked without knowing what a Farey sequence is. But
there is indeed a use of Farey sequences in a variant of the circle method. To be
more precise, this uses not the Farey sequence, but the Ford circles we associated
to it. In fact, one can use a part of their boundaries as an integration contour for
results about the partition function, see [Rad43]. Later, this has been refined to
get exact formulae for Fourier coefficients of modular forms, see [Apo90].
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I.11
Physics and Computer Science

Now we show some connections between number theory and two fields close to
mathematics, namely physics and computer science.

In Chapter I.2 we have already seen some applications of number theory in
physics. There are some more connections, but since most of them would require
too much further understanding (in particular in physics), we will just mention
some concepts without explaining them.

One connection we want to mention is moonshine. For a comprehensive in-
troduction see [Gan06b]. Moonshine connects physics, representation theory and
modular forms. First, the connection between representation theory and modular
forms has been noticed by the fact that the Fourier coefficents of j(τ) (compare
Chapter I.9) are linear combinations of the dimensions of the irreducible repre-
sentations of the monster group (the biggest sporadic finite simple group with
order approximately 8 · 1053), see [CN79]. For existence and properties of the
Monster group see [Gri82]. It has later been shown that similar statements hold
for other simple groups, see [Gan06a].

Later, possible connections between these concepts and physics have been
discovered (see [DGO15] for a connection to quantum gravity and some open
problems, and [Gan06a] for a connection to conformal field theory). For more
references, see [Gan06a, DGO15].
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There are more connections between number theory and physics. See [HJM15]
for a reformulation of the Riemann hypothesis with string theory and [SH11] for
another connection between physics and the Riemann hypothesis. A collection of
different connections between number theory and physics can be found in [Mar].

Concerning the connections between number theory and computer science
we can be much more specific. It seems natural that there are connections, since
whenever we have a natural number n, we write this number in some base b
(mostly 10). In this base, a natural number is just a string, i.e., an element in Σ∗ for
Σ = {0, . . . , b− 1}. Hence we will always have alphabets that consist of integers.
In this case we refer to the integers in the alphabet as digits. We consider two
connections. One of the two connections will be shown here, another in Chapter
II.1. The presentation here follows [Sha04].

To begin, we need the notion of automatic sequences. Let b ≥ 2 be a natural
number, Σ = {0, . . . , b− 1} and M = (Q, Σ, δ, q0, ∆, η) some DFAO. For any n ∈ N
let 〈n〉b be the representation of n in base b and compute an = η(δ(q0, 〈n〉b)) ∈ ∆
(it is not important if we start with the first or the last digit of n, as long as we
proceed the same way for every n, see [Fog02]). This yields a sequence (an)n∈N.
Any sequence that can be constructed in this way is called b-automatic. If a se-
quence (an)n∈N is b-automatic and M is a DFAO that yields (an)n∈N, then we say
that M is a b-automaton for (an)n∈N.

One of the most important theorems connecting formal languages and num-
ber theory is Christol’s theorem, see [Chr79]:

Theorem I.11.1 (Christol’s theorem) Let q be a prime power and (un)n∈N be a sequence
over Fq. Then the formal power series ∑∞

n=1 unXn is algebraic over Fq[X] if and only if
(un)n∈N is q-automatic.

Example I.11.2 Let p be a prime and q = ps. Consider the DFAO

M = ({0, . . . , q− 1}, {0, . . . , q− 1}, δ, 0, {0, . . . , p− 1}, η)

with δ(s, σ) = σ and η(s) ≡ s mod p (see Figure I.11.1 for p = q = 3). If n has
base q representation 〈n〉q = bk . . . b0, we have

an = η(δ(0, 〈n〉q)) = η(δ(b1, b0)) = η(b0) ≡ b0 mod p,

i.e., (an)n∈N is a sequence with an ≡ n mod p. Thus for all q the power series

∑∞
n=0 nXn is algebraic over Fq[X].
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Figure I.11.1: A DFAO for the automatic sequence an ≡ n mod 3.

Before considering applications, we make a general note about algebraic power
series and Laurent series. Let k ∈ N and (an)n≥−k be a sequence in some field K.
Consider the four series

f1 =
∞

∑
n=0

anXn, f2 =
∞

∑
n=−k

anXn, f3 =
∞

∑
n=0

anX−n, f4 =
∞

∑
n=−k

anX−n,

i.e., f1 ∈ K[[X]], f2 ∈ K((X)), f3 ∈ K[[X−1]], f4 ∈ K((X−1)). Then if one of these
series is algebraic over K[X], any of the other three is algebraic, too. It is trivial
that f1 is algebraic if and only if f2 is algebraic, since these two series differ only
by a summand h ∈ K[X]. The same holds for f3 and f4. In fact, these equiva-
lences also follow from Christol’s theorem (at least for K = Fq), since a sequence
is b-automatic if it differs only on finitely many places from a b-automatic se-
quence (this can be seen by taking a DFAO for the sequence that is known to
be b-automatic, appending states for any of the changed places, and varying the
transition function accordingly). It is also trivial that f1 is algebraic if and only if
f3 is algebraic, since every polynomial p ∈ (K[X])[t] with p( f1) = 0 also satisfies
p( f3) = 0.

With this observation, we examine both power series and Laurent series, ei-
ther in X or X−1, with Christol’s theorem, and any statement that we make for
one of the respective cases also holds for the others.
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With Christol’s theorem we can deduce properties of derived power series.
Assume f and g are both algebraic over Fq[X]. Then their Hadamard product
f � g is also algebraic, see [Tha] (this is in general not true in characteristic 0). To
prove this, let

f =
∞

∑
n=0

fnXn, g =
∞

∑
n=0

gnXn

and
M f = (Q f , Σ, δ f , q0, f , ∆, η f ) and Mg = (Qg, Σ, δg, q0,g, ∆, ηg)

be the q-automata for ( fn)n∈N and (gn)n∈N, respectively. Consider the DFAO

M = (Q f ×Qg, Σ, δ, (q0, f , q0,g), ∆, η)

with

δ((q f , qg), σ) := (δ f (q f , σ), δg(qg, σ)) and η((q f , qg)) := η f (q f ) · ηg(qg).

Then M is a q-automaton for (an)n∈N := ( fn · gn)n∈N, thus f � g is algebraic over
Fq[X].

If f is algebraic over Fq[X], the same holds for its formal derivative, since for
f = ∑∞

n=0 fnXn we have

f ′ = X−1
∞

∑
n=0

n fnXn = X−1 f � g

with g = ∑∞
n=0 nXn. Since we have already shown above that g is algebraic,

and we know that the Hadamard product of two algebraic power series is again
algebraic, f ′ is algebraic.

Until now we have shown that certain power series are algebraic. Now we
show the transcendence of a power series f = ∑∞

n=0 fnXn. This is in general
harder, since we need to show that no polynomial p with p( f ) = 0 exists. Even
with Christol’s theorem this seems to remain true: To show that a power series is
algebraic, we need to construct a DFAO M that is a q-automaton for ( fn)n∈N. To
show that a power series is transcendental, we have to show that no such DFAO
can exist. In some cases this is not too hard, since k-automatic sequences have
some special properties.

For this, let Σ = {0, . . . , q− 1} and (an)n∈N ⊂ ∆ be q-automatic for some finite
set ∆. Then the subsequence (aqn−1)n∈N is eventually periodic. An elaboration of
this can be found in [Lot05]. We can also confirm this with a simple observation.
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If c(n) is any sequence such that the base q representation of c(n) is n times a
fixed digit d ∈ {0, . . . , q − 1}, then for any DFAO M = (Q, Σ, δ, q0, ∆, η) the se-
quence δ(q0, 〈c(n)〉q) is eventually periodic. This is true, since M has only finitely
many states, thus there are n1 < n2 such that δ(q0, 〈c(n1)〉q) = δ(q0, 〈c(n2)〉q).
From n2 on, the sequence δ(q0, 〈c(n)〉q) runs through the same cycle as before,
since it follows the same arrows. When representing qn − 1 in base q, this is the
string consisting of n times the digit q− 1, thus the above observation shows that
(aqn−1)n∈N is eventually periodic if (an)n∈N is q-automatic.

We use Christol’s theorem to show that Carlitz π, i.e.,

πq =
∞

∏
k=1

(
1− Xqk − X

Xqk+1 − X

)
,

(compare Chapter I.1) is transcendental. Our proof is due to Allouche [All93], see
also [Sha04]. Suppose that πq is algebraic. Since in this case π′q would also be
algebraic, the series

π′q
πq

=
∞

∑
k=1

 1

1− Xqk−X
Xqk+1−X


 Xqk+1 − Xqk(

Xqk+1 − Xqk
)2

 =

(
∞

∑
k=1

1
Xqk − X

)
− 1

Xq − X

would be algebraic. Thus, to prove that πq is transcendental we have to show
that the so called bracket series

∞

∑
k=1

1
Xqk − X

is transcendental. We write this as a power series in X−1. We have

∞

∑
k=1

1
Xqk − X

= X−1
∞

∑
k=1

1

Xqk−1
(

1−
(

1
X

)qk−1
) = X−1

∞

∑
k=1

1
Xqk−1

∞

∑
n=0

(
1
X

)n(qk−1)

= X−1
∞

∑
n,k=1

(
1
X

)n(qk−1)

= X−1
∞

∑
m=1

(
1
X

)m

∑
k,n≥1

n(qk−1)=m

1

= X−1
∞

∑
m=1

(
1
X

)m
c(m)

with
c(m) = ∑

k≥1
qk−1|m

1.
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We need to show that c(m) mod p is not q-automatic and do this by showing
that c(qn − 1) mod p is not eventually periodic. We have

c(qn − 1) = ∑
k≥1

qk−1|qn−1

1 = ∑
k≥1
k|n

1 = τ(n).

Suppose that (τ(n))n∈N is eventually periodic modulo p and let n0 denote the
length of the pre-periodic part and L the length of the period. Choose k0 such
that 1 + k0L ≥ n0 and 1 + k0L ∈ P. This is possible due to Dirichlet’s theorem on
primes in arithmetic progressions (Theorem 0.5.2). Then

τ ((1 + k0L) + k0(1 + k0L)L) ≡ τ(1 + k0L) mod p.

But 1 + k0L is a prime, say, ω and 1 + k0L + k0(1 + k0L)L = ω2, thus this would
imply

3 = τ(ω2) ≡ τ(ω) = 2 mod p,

and this contradiction shows that c(m) mod p is not q-automatic, i.e., πq is tran-
scendental.

There are more related ways to consider transcendence with methods from
automata theory, see [Tha, Chr79]. Chomsky and Schützenberger have shown yet
another result relating formal languages and algebraic power series, see [CS63].
More connections between languages, automata, and Laurent series can be found
in [Fir10]. For more about automatic sequences (partially with applications in
number theory) see [Lot05, AS03].

As we already noted we will deal with another connection between computer
science and number theory in Chapter II.1. There, we will consider the following
problem: Given a language L, find the smallest subset M ⊂ L such that any
word w ∈ L can be generated by some word w̃ ∈ M. Here a word w can be
generated by w̃ if we can obtain w̃ from w by deleting some of its symbols (i.e., in
our case, digits). In general it is hard to find such a set M for arbitrary languages
L. However, for some languages defined via arithmetic conditions this is possible,
and in some cases there is even an algorithm that yields M.

Other connections between number theory and computer science can be found
in [Sha04] and the references mentioned there.
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I.12
Algebraic Geometry

In view of what we have seen by now, this chapter can be seen as some kind
of roundup, since here we will see a lot of concepts and problems we already
discussed, cf. Figure I.C.1.

In Chapter I.7, we have seen that we can solve geometric problems (namely,
the search for Pythagorean triples or congruent numbers) with algebraic or arith-
metic methods. In this chapter, we take a look at the reverse:

Given a polynomial equation f (x1, . . . , xn) = 0 (where f ∈ Z[x1, . . . , xn]), we
are interested in rational or integer solutions. To find solutions, we associate to
this equation a geometric object and use means of algebraic geometry to solve the
equation or to find the number of solutions of this equation.

We do this by considering the algebraic curve defined by f . The maybe easiest
nontrivial example is the Pythagorean equation x2 + y2 = z2. As indicated in
Paragraph 0.5.1, there are many ways to prove the characterization of Pythago-
rean triples. The method in which we are interested here is the geometric method:
We normalize the equation and search for rational points on the curve x2 + y2 = 1.
This can be done by finding one rational point (x0, y0) and consider lines with
rational slopes through this point. The intersection of this line with the circle
x2 + y2 = 1 then is another rational point (x1, y1), cf. Figure I.12.1.

In fact, this method can be generalized to arbitrary curves of degree 2, pro-
vided that the curve has at least one rational point, see [ST94]. It can be checked
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x

y

•

•

(x0, y0)

(x1, y1)

Figure I.12.1: Finding Pythagorean triples.

with the Hasse-Minkowski theorem (Theorem I.1.4) and Hensel’s lemma (Theo-
rem I.1.3) whether a curve has a rational point to start with.

For curves C of degree m > 3, Falting’s theorem (see [Fal83]) states that C has
only finitely many rational points. Therefore we take a look at curves of degree
3. Unless stated otherwise, all proofs can be found in [Sil08].

Definition I.12.1 An elliptic curve is a smooth projective algebraic curve of de-
gree 3.

We can study elliptic curves for arbitrary fields K. We say that the elliptic
curve E is defined over K if all coefficients of the minimal polynomial of E belong
to K. If K does not have characteristic 2 or 3, any curve of degree 3 with a rational
point is defined by an equation of the form y2 = x3 + ax + b with a, b ∈ K (a
so-called Weierstraß equation) together with a point O at infinity. This equation
defines a smooth (and thus elliptic) curve if the discriminant ∆E = 4a3 + 27b2 is
nonzero (in the literature there are different definitions of ∆E, but they only differ
by a factor±k2). If K has characteristic 2 or 3, there are other simple equations for
elliptic curves, see [Sil08]. For our purpose, we will mostly have K = Q. Figure
I.12.2 shows some elliptic curves (these plots are not true to scale, they just serve
as an indicator of how elliptic curves can look like).

y2 = x3 + x + 1 y2 = x3 − 8x + 20 y2 = x3 − 8x + 1

Figure I.12.2: Some elliptic curves.
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Note that an elliptic curve does not look like an ellipse. The name has been
given because these curves arise in the computation of the arc length of an ellipse,
see [ST94, Exercise 1.16].

If E is an elliptic curve over Q, we can define an addition law on E so that the
rational points on E, denoted E(Q), form an abelian group (more generally, this
is true for any field K and we denote the corresponding group by E(K)). There is
an algebraic expression of the addition law which is rather complicated, a better
way to describe the addition is the geometric way, see Figure I.12.3.

•
P •

Q
•

P ∗Q

•
P + Q

O

Figure I.12.3: The addition law for an elliptic curve.

Elliptic curves have been the objects of intense recent studies. Before look-
ing at applications to problems we have described, we just mention two results
that are important for our interest (i.e., looking for solutions of equations), the
Mordell-Weil theorem and Siegel’s theorem:

Theorem I.12.2 (Mordell-Weil theorem) Let E be an elliptic curve defined over Q.
Then the group E(Q) is finitely generated, i.e., E(Q) has finite rank.

Theorem I.12.3 (Siegel’s theorem) Let E be an elliptic curve defined over Q. Then
there are only finitely many integer points on E.
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Unfortunately, the Mordell-Weil theorem does not tell us how to find the rank
of E. But there are results about rational points of finite order (the Nagell-Lutz
theorem), results on bounds of the coefficients of rational points, as well as results
about the torsion group (Mazur’s theorem) that can help to determine the rank,
cf. [LR11]. For more basic information about elliptic curves see [ST94, Sil08], for
advanced topics see [Sil99].

With elliptic curves we can handle a lot of problems concerning the search for
integer solutions of equations of degree 3. We emphasize three of the problems
which we have seen already in earlier chapters: The Mordell equation, congruent
numbers and Fermat’s last theorem.

The Mordell equation y2 = x3 + k with k ∈ Z defines an elliptic curve if k 6= 0.
In [GPZ98], the authors use this fact to determine the solutions of Mordell’s equa-
tion for |k| ≤ 10 000, see also [NTW]. Unfortunately, it seems that the number of
solutions has to be computed for each k individually, there is no formula that
gives the integer points on the elliptic curve y2 = x3 + k.

The problem of congruent numbers can also be investigated with the help of
elliptic curves, see [Conh, Kob93]. For a natural number n, consider the elliptic
curve y2 = x3 − n2x. We have the following correspondence:

Theorem I.12.4 Let n ∈ N. Then the maps

(a, b, c) 7→
(

nb
c− a

,
2n2

c− a

)
, (x, y) 7→

(
x2 − n2

y
,

2nx
y

,
x2 + n2

y

)
define a bijection between the sets{
(a, b, c) ∈ Q3 : a2 + b2 = c2,

1
2

ab = n
}

and
{
(x, y) ∈ Q2 : y2 = x3 − n2x, y 6= 0

}
.

This tells us that rational side lengths of rectangular triangles with area n cor-
respond to nontrivial rational points on the elliptic curve y2 = x3 − n2x. Exam-
ining this, Tunnel found necessary conditions for n to be congruent, see [Conh].
The question whether these conditions are also sufficient relates to an important
open conjecture, the Birch and Swinnerton-Dyer conjecture. To state this conjec-
ture, we associate an L-function to the elliptic curve E, the Hasse-Weil L-function
L(E, s) (for an exact definition and properties see [Sil99]). The weak form of the
Birch and Swinnerton-Dyer conjecture is:

Conjecture I.12.5 (Birch and Swinnerton-Dyer conjecture) Let E be an elliptic curve
defined over Q. Then L(E, 1) = 0 if and only if E has infinitely many rational points.
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There is also a strong form of this conjecture that relates the rank of E(Q) with
the Taylor expansion of L(E, 1). The Birch and Swinnerton-Dyer conjecture is one
of the Millennium Problems, cf. [CJW06]. For an introduction to the Birch and
Swinnerton-Dyer conjecture see [Zag91, Wil06, Hus04].

If the Birch and Swinnerton-Dyer conjecture is true, then the conditions of
Tunnel are also sufficient for n to be a congruent number, see [Kob93]. Further the
Birch and Swinnerton-Dyer conjecture implies that any natural number n with
n ≡ 5, 6, 7 mod 8 is congruent, see [LR11]. Further equivalences to the congruent
number problem can be found in [Kob93].

Under certain conditions there is a connection between the Hasse-Weil L-
function L(E, s) for an elliptic curve E defined over some field K and the Hecke
L-function L(s, χ) attached to a Hecke character of JK′ for some field extension K′

of K. This has been proved by Deuring [Deu53], see also [Sil99]. This connection
can be used to transfer the functional equation from L(s, χ) to L(E, s).

Finally, we mention what is possibly most prominent use of elliptic curves for
Diophantine equations, namely Fermat’s last theorem:

Theorem I.12.6 (Fermat’s last theorem) For n ≥ 3, the equation xn + yn = zn has no
nontrivial integer solutions.

The steps in the proof of Fermat’s last theorem are rather complicated and
not at all straight-forward, therefore we will just mention the results one needs
in order to prove Fermat’s last theorem. For some more information see [Fal95,
Hus04].

First we need the notion of modular curves. There are many equivalent defi-
nitions of modular curves. We will state two of them.

If E is an elliptic curve over Q whose Weierstraß equation has integer coeffi-
cients and p is a prime, we can define a curve Ẽ over Fp by reducing all coeffi-
cients of the Weierstraß equation of E modulo p. If Ẽ is not singular, it is again an
elliptic curve and we set ap = p+ 1−

∣∣∣Ẽ(Fp)
∣∣∣. An elliptic curve is called modular

if there is an eigenform f ∈ S2(N) (for some N ∈ N) such that for any p - N we
have Tp( f ) = ap f (compare Chapter I.10). In this case the integers ap are exactly
the Fourier coefficients of f .

Equivalently, an elliptic curve E is called modular if there is an f ∈ S2(N)

(for some N ∈ N) such that L(E, s) = L(s, f ). For other equivalent definitions of
modular curves see [DS05, Sil08, Rib90].
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Now the outline of the proof of Fermat’s last theorem is as follows: Let p
be an odd prime. If (a, b, c) ∈ Z3 is a nontrivial solution of Fermat’s equation
xp + yp = zp, we associate to this solution the Frey curve y2 = x(x− ap)(x + bp).
Ribet [Rib90] proved that this Frey curve is not modular. On the other hand, the
Taniyama-Shimura-Weil conjecture states that every elliptic curve defined over
Q is modular. As a consequence of this, the Taniyama-Shimura-Weil conjecture
implies Fermat’s last theorem.

Later, Wiles [Wil95] proved (with some flaws that were corrected in [TW95])
the Taniyama-Shimura-Weil conjecture, now known as the modularity theorem,
in a special case.

Theorem I.12.7 (modularity theorem) Every elliptic curve over Q is modular.

Together with the result of Ribet, this proves Fermat’s last theorem.
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I.C
Conclusion

We have seen several topics and methods connecting number theory with various
other mathematical areas. Of course, our treatment is to no extent complete: One
could identify other areas and consider connections to those, as well as find other
connections to the areas that we discussed. In this sense, the first part of this
thesis can be seen as an introduction to the possibilities and the variety of number
theory.

This presentation would be a nice basis for future work. One could pick an
area and show other connections (I think it is impossible to show all connections
to a given area, since the field of mathematics is too broad and its development
is too fast). For some mathematical areas it is possibly hard to find connections
to number theory (for example for category theory, as already mentioned in the
introduction), but in most mathematical areas there are nice ones. One could also
pick a certain topic (for example ζ-functions, modular forms, . . .) and investigate
the areas in which this topic is present.

Some more connections and topics that would be suitable for connections can
be found in the literature mentioned in the introduction.

It is noteworthy that there are connections between most of the introduced
concepts, i.e., these concepts are not only connections between number theory
and one other area, but rather between number theory and more other areas.
This is summarized in Figure I.C.1. Ironically, the only reason why this graph is
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not connected is graph theory. Of course this can easily be repaired: In the next
part of this thesis we will see a connection between graph theory and number
theory that involves sumsets.

Maybe the graph in Figure I.C.1 cannot be seen as a “map of math” (like Fig-
ures 0.0.1 and 0.0.2), since too many areas and connections between other areas
are missing. But we can view this as (part of) a “map of the neighbourhood of
number theory”.

In the following part of this thesis we will see some more connections between
number theory and some mathematical areas.

All of the following connections have already been mentioned in the respec-
tive chapters: In Chapter II.1 we deal with the concept of minimal sets mentioned
in Chapter I.11. In Chapter II.2 we use number theoretic methods to obtain prop-
erties of graphs mentioned in Chapter I.5. In Chapter II.3 we use algebraic meth-
ods to solve equations that are useful in number theory, as briefly described in
Chapter I.8. In Chapter II.4 we use number theoretic and analytic tools to solve a
puzzle that can be modeled with linear algebra, cf. Chapters I.1 and I.6.

All results in the subsequent part are new results and (unless indicated other-
wise) my own research results. These results have been published in the articles
mentioned in the respective chapters.
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PART II - ORIGINAL WORK





II.1
Minimal Sets

In this chapter we examine a connection between number theory and theoretical
computer science. More precisely, we consider a concept in the theory of formal
languages, namely the concept of minimal sets and comparable elements. We will
apply this to languages defined over the set of digits {0, . . . , 9}, thus computing
minimal sets of natural numbers written in decimal expansion.

The results have been published in [Kre15b] and [BKS17], where the second
article is joint work with Jörn Steuding and Ioulia Baoulina.

The part of this chapter published in [BKS17] is reprinted with permission.
Copyright 2017 Mathematical Association. All Rights Reserved.

II.1.1 Introduction

In 2001, Shallit [Sha00a] introduced a problem concerning decimal digits of some
sets of natural numbers. To state the problem, let us first fix some notation (par-
tially from [Sha00a]).

We consider the natural numbers with respect to their unique decimal expan-
sion, where each n ∈ N is given by n = ∑k

j=0 αj10j for some natural number k and
digit sequence 〈n〉10 = αkαk−1 . . . α0 with αk 6= 0. Since we will almost only deal
with the base 10 representation (the only exception is in Section II.1.7), we will,
with slight abuse of notation, use n instead of 〈n〉10. For other bases all concepts
can be defined analogously.
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II.1. MINIMAL SETS II.1.1. Introduction

If we refer to the decimal representation, we will sometimes call αkαk−1 · · · α1

a string. Let x and y be two strings. We say that x is a subsequence of y if x = y or
if we can obtain x by deleting some digits of y. Equivalently we will say that y can
be generated from x. If x is a subsequence of y, we will write x / y. Otherwise, we
write x 6/ y. For example, we have 134 / 918234 / 98188293894 but 123 6/ 43021. If
for two strings x, y either x / y or y / x, we call x and y comparable, and otherwise
incomparable. If M is a set such that any two strings in M are incomparable, we
call M not truncatable.

If x and y are two strings, let x ∗ y denote the concatenation of x and y, i.e.,
the string that has first the digits from x and then the digits from y. Sometimes
we will omit the asterisk. For two sets M, L ⊂ N we define

M ∗ L := {z ∈ N : z = x ∗ y, x ∈ M, y ∈ L}.

Again, we will omit the asterisk sometimes and write ML instead of M ∗ L. If M
contains only one element, i.e., M = {m} for some m, we even omit the braces
and write mL instead of {m}L.

For x, k ∈ N define inductively x∗k := x∗(k−1) ∗ x, x∗1 := x and let {x}∗ denote
the set

{x}∗ = {x∗k : k ∈ N0}.

Here x∗0 means that x does not occur (this can be made precise with the so-called
empty word, but we will not need this). For example,

2{13}∗4{5}∗ = {24, 2134, 245, 21345, 213134, 2455, 2131345, 213455, 21313455, . . .}.

If M ⊂ {0, 1, . . . , 9}, we set

M∗ := {x ∈ N0 : (d / x, d ∈ {0, . . . , 9})⇒ d ∈ M},

i.e., M∗ contains only the natural numbers all of whose digits are in M. For n ∈ N,
we let #n denote the number of digits of n. Let M ⊂ N0 and I ⊂ N. Then we
define the set M∗I by

M∗I := {x ∈ M∗ : #x ∈ I}.

For example we have 123{4}∗{5} = 12344444 and

{1, 5}∗{2n:n∈N} = {11, 15, 51, 55, 1111, 1115, 1151, 1511, 5111, 1155, 5511, 1551,

5115, 1515, 5151, 1555, 5155, 5515, 5551, 5555, 111111, . . .}.
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If L ⊂ N, we will call

〈L〉 := {x ∈ N : ∃y ∈ L such that y / x}

the generated set of L. It is clear that 〈{1, 2, 3, 4, 5, 6, 7, 8, 9}〉 = N.

The main problem for this chapter is as follows: Given a set M ⊂ N, find the
smallest possible set A ⊂ M such that for all m ∈ M there exists a ∈ A with a / m.
As a matter of fact, the set

S(M) := {m ∈ M : {n ∈ M : n < m, n / m} = ∅}

solves this problem: Clearly, every element of M contains some element of S(M)

as a subword. The set S(M) is said to be the minimal set of M and its elements
are called minimal.

Note that a subset of M consisting of pairwise incomparable elements is in
general not contained in S(M) (as the example M = N and the subset of all two
digit numbers shows). However if for any element x in a set A ⊂ M of pairwise
incomparable elements there is no y ∈ M, y 6= x with y / x, then A is indeed
contained in S(M). We shall use this idea quite often in the sequel.

Remarkably, S(M) is finite for every M ⊂ N. This follows from a celebrated
theorem from the theory of formal languages, the so-called lemma of Higman
[Hig52] (see also [SS83]).

In [Sha00a], Shallit computed the minimal set for the primes and the compos-
ite natural numbers, and made a conjecture about the powers of 2. He showed
that

S(P) = {2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 881, 991, 6469, 9001, 9049, 9649,

9949, 60649, 666649, 946669, 60000049, 66000049, 66600059}

and

S(C) = {4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70,

72, 75, 77, 111, 117, 171, 371, 711, 713, 731},

where C denotes the composite numbers, i.e., C = N\(P ∪ {1}). Moreover, he
conjectured that

S({2n : n ∈ N0}) = {1, 2, 4, 8, 65536}
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and he observed that this conjecture is true if every number 16m with m ≥ 4 has
at least one digit from {1, 2, 4, 8}. This type of problem seems to be difficult to
tackle. Since log10(2) is irrational, Theorem I.3.6 (and the comment afterwards)
yields that the sequence {n log10(2)} of the fractional parts of n log10(2) is uni-
formly distributed. Hence the powers of 2 are distributed according to Benford’s
law (which implies that the probability that a power of 2 has leading digit k is
exactly log10(1 + 1

k ), cf. [Ste] for details). Nevertheless, this just indicates - in an
appropriate probabilistic framework - that a power of 2 without any digit from
{1, 2, 4, 8}must be a very rare event.

This conjecture already shows that it may be hard to determine the minimal
set for a given infinite set.

In a more recent work, Bright, Devillers, and Shallit [BDS16] computed the
minimal set for the primes in base b representation for 2 ≤ b ≤ 30 (for some b
only partially), the case b = 10 being the above fact already handled in [Sha00a].

Gruber, Holzer, and Kutrib studied the problem from the viewpoint of (theo-
retical) computer science, concerning (effective) constructions and decidability of
problems that involve so-called Higman-Haines sets (see [GHK07, GHK09]).

Although we know that the minimal set is always finite, known proofs of this
fact are not constructive. As a consequence, it seems to be difficult to compute
S(M) for a given set M in general. An idea for an algorithm would be to strike
out all natural numbers in M that can be generated by a smaller element of M and
therefore do not belong to the minimal set. But since M is infinite, we cannot (in
finite time) check all elements from M without using special properties of the set
M. Actually, Gruber, Holzer, and Kutrib showed that the problem of determining
the minimal set for a given set M is in general unsolvable, see [GHK07].

In this chapter we will examine some more examples of minimal sets and
some conceptual approaches.

In Sections II.1.2 and II.1.3 we will first present some new results about sets
defined via arithmetic conditions, for example the set of natural numbers that can
be written as the sum of two squares and sets of natural numbers that are values
of arithmetic functions. Additionally we will get a result about repdigits that are
sums of squares.

In Section II.1.4 we consider a special class of sets, namely congruence classes.
We will compute the minimal sets for a few first examples and develop an algo-
rithm that gives the minimal set for “congruence class like” sets.
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In these cases the minimal sets can be determined easily. Whereas in the first
two sections the reason for this is that the examined sets contain many digits, in
Section II.1.4 we exploit the fact that the elements of the sets are in some sense
well-distributed.

In the next two sections we will examine conceptual results. In Section II.1.5
we consider basic set operations, and in Section II.1.6 we will deal with heuris-
tics and measures. In these sections we will see that conceptual approaches are
unlikely to be successful. We will end our treatment with some remarks about
perfect numbers in Section II.1.7.

II.1.2 Sums of squares and repdigits

In this section we look at some subsets of N for which the minimal sets can be
determined easily.

In all explicitly given lists here and later, one first has to check that all the
elements belong to the set M one considers, and that there are no x, y ∈ S(M)

with x 6= y, x / y (i.e., that S(M) is not truncatable). This is always easy (but can
get exhausting when S(M) has a lot of elements) and is mostly left to the reader.

Theorem II.1.1 Let

3 := {n ∈ N : n = x2 + y2 + z2 for some x, y, z ∈ N0}.

Then
S( 3 ) = {1, 2, 3, 4, 5, 6, 8, 9, 70, 77}.

Proof. Clearly 1, 2, 3, 4, 5, 6, 8, 9 belong to S( 3 ). Since 7 /∈ 3 , 70 and 77 also
belong to S( 3 ). If n ∈ 3 is different from 1, 2, 3, 4, 5, 6, 8, 9, 70, 77, then either
d / n for d ∈ {1, 2, 3, 4, 5, 6, 8, 9} hence n cannot belong to S( 3 ), or n consists
only of the digits 0 and 7. In the latter case either 70 / n or 77 / n, and thus
n /∈ S( 3 ). q.e.d.

The result for numbers that can be written as the sum of two squares is harder.
We will need (a part of) the following lemma:

Lemma II.1.2

1. Let x ∈ {7}∗. Then x cannot be written as the sum of two squares.

2. Let x ∈ {3}∗. Then x is the sum of two squares if and only if x = 333.
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Proof.

1. (partially from [Tro]) Let σ′k denote the number that contains exactly k times
the digit 7. Then

σ′k = 7 ·
k−1

∑
i=0

10i = 7 · 10k − 1
10− 1

=
7
9
(10k − 1).

Since 9 is a square, σ′k is the sum of two squares if and only if σk := 9σ′k is
the sum of two squares. We start with two claims.

• Claim 1: If σ′k is the sum of two squares, then k is even. Since 7|σ′k
and 7 ≡ 3 mod 4, 7 has to divide the number 11 . . . 11︸ ︷︷ ︸

k

. If testing for

divisibility by 7, we can split the number into blocks of 3 digits and
alternately add and subtract them. Any two full blocks will cancel
while non-full blocks will not give a multiple of 7 (one can easily check
this). It follows that 72|σ′k if and only if 6|k. In particular, k has to be
even.

• Claim 2: If k > 1 and σ2k can be written as the sum of 2 squares, then
σk can be written as the sum of two squares. We have

σ2k = 7(102k − 1) = 7(10k − 1)(10k + 1) = σk(10k + 1).

Since gcd(10k − 1, 10k + 1) = 1, we get gcd(σk, 10k + 1) ∈ {1, 7}. Since
σ2k can be written as the sum of two squares, we have 2|vp(σ2k) for
every p ≡ 3 mod 4. For p 6= 7 we have p - gcd(σk, 10k + 1), so 2|vp(σk).
For p = 7 either 2|v7(σk) (if gcd(σk, 10k + 1) = 1) or 2 - v7(σk) (if
gcd(σk, 10k + 1) = 7). So either σk or 7σk can be written as the sum of
two squares. But for k > 1 we have 7σk ≡ 3 mod 4, thus σk can be
written as the sum of two squares.

Now consider σk with k = 2ml such that 2 - l, m ∈ N0. If m = 0, σk is not the
sum of two squares, since k is odd. For l 6= 1, the second claim yields that σl

is the sum of two squares if σk is the sum of two squares. Since this is false,
σk is not the sum of two squares. Now let l = 1. Then, again due to the
second claim, if σk is the sum of two squares, so is σ2 = 9 · 77. Since 77 is not
the sum of two squares, σk is not the sum of two squares. This completes
the proof.
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2. Let δ′k denote the natural number that contains exactly k times the digit 3,
i.e., δ′k =

3
9(10k− 1). Since 3|δ′k and 3 ≡ 3 mod 4, 3 has to divide the number

11 . . . 11︸ ︷︷ ︸
k

. This is the case if and only if 3|k. We want to show that δ3k := 9δ′3k

cannot be the sum of two squares for k > 1. Suppose that δ3k is the sum of
two squares. We have

δ3k = 3(103k − 1) = 3(10k − 1)(102k + 10k + 1) = δk(102k + 10k + 1).

Since 102k + 10k + 1− (10k + 2)(10k− 1) = 3, the greatest common divisor of
10k − 1 and 102k + 10k + 1 is either 1 or 3. But 102k + 10k + 1 ≡ 0 mod 3 and
10k − 1 ≡ 0 mod 3, thus gcd(10k − 1, 102k + 10k + 1) = 3. More precisely,
we have 102k + 10k + 1 ≡ 3 mod 9, therefore gcd(δk, 102k + k + 1) = 3. Since
δ3k is the sum of two squares, we have 2|vp(δ3k) for all p with p ≡ 3 mod 4.
For p 6= 3 we have p - gcd(δk, 102k + 10k + 1), so 2|vp(δk). For p = 3 we get
2 - v3(δk). It follows that 3δk is the sum of two squares. But for k > 1 we
have 3δk ≡ 3 mod 4, so this is a contradiction.

q.e.d.

The result about the minimal set for the set of numbers that can be written as
a sum of two squares will also rely on the following conjecture:

Conjecture II.1.3 Let

A :=
{

n ∈ N : n ∈ 700{7}∗{66k+61,k∈N} and n = x2 + y2 for some x, y ∈ N0

}
.

Then A = ∅.
Theorem II.1.4 Let

2 := {n ∈ N : n = x2 + y2 for some x, y ∈ N0}.

If Conjecture II.1.3 is true, then

S( 2 ) = {1, 2, 4, 5, 8, 9, 36, 37, 73, 333, 666, 676, 677, 706, 776, 60633,

77077, 7000777}.

If Conjecture II.1.3 is not true and A is defined as in Conjecture II.1.3, then

S( 2 ) = {1, 2, 4, 5, 8, 9, 36, 37, 73, 333, 666, 676, 677, 706, 776, 60633,

77077, 7000777, min
a∈A

a}.
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Proof. We will use the fact that the set 2 is closed under multiplication. This
follows from the identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2.

Let x ∈ 2 with length at least 2. If x contains the digit 1, 2, 4, 5, 8, or 9, then
x /∈ S( 2 ). So let x ∈ {3, 6, 7}{0, 3, 6, 7}∗. If the last digit of x is 0, then x ∈ 2
is equivalent to x

10 ∈ 2 due to the two-squares theorem (Theorem 0.5.10). Since
x

10 / x, x cannot be in S( 2 ). Hence the last digit of x cannot be 0. We consider the
last two digits of x.

• If the last two digits are 37, 73, or 36, we are done, since these are in S( 2 ).

• If the last two digits are 63, 67, 03, or 07, x is congruent 3 modulo 4 and thus
not in 2 .

There remain the cases 33, 76, 06, 66, and 77.

33: Since 33 /∈ 2 , x has length at least three. If 7 / x, we are done, since 73 / x.
If there is another 3 in x, we are also done, since 333 / x. So suppose that
x ∈ 6{0, 6}∗33. Since x is divisible by 3, it also has to be divisible by 9 due
to the two-squares theorem. So 6 has to occur m times, with m ≡ 2 mod 3.
If m > 2, we are done since then 666 / x, so suppose m = 2. Since 6633 is not
the sum of two squares, there has to be a 0 in x. We have x ∈ 6{0}∗6{0}∗33.
If there is a 0 in the first place, we have 60633 / x, so let x ∈ 66{0}∗33. But
then 11|x and the alternating digit sum of x

11 ∈ 6{0}∗3 ist either 3 or 9,
which are both not divisible by 11. So we have 112 - x, thus x /∈ 2 .

76: Since 76 /∈ 2 , x has at least length three. If 3 / x, we have 37 / x. If not, x
contains another 6 or 7, and then 676 / x or 776 / x.

06: If x contains a 3, we are done. If x contains a 7, we have 706 / x. So assume
x ∈ 6{0, 6}∗6. But then 6 has to occur with multiplicity 3k, since otherwise
3|x and 32 - x. Thus 666 / x.

66: We have 66 /∈ 2 , and if x has at least three digits, then 666 / x or 36 / x or
x ∈ 7{0, 7}∗66. In the latter case, if x contains no 0, then x cannot be written
as the sum of two squares, since otherwise 1

2 x ∈ 3{8}∗3 could be written as
the sum of two squares. But 1

2 x ≡ 3 mod 4, thus x has to contain a 0 and we
get 706 / x.
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77: If x contains a 3 or 6, we are done, so let x ∈ 7{0, 7}∗77. If x does not
contain a 0, then x /∈ 2 due to Lemma II.1.2. If 77077 / x, we are done, so
let x ∈ 7{0}∗{7}∗77. Let k denote the number of zeros and m denote the
number of sevens in {0}∗{7}∗. We know that k ≥ 1. Since 7|x we need to
have 72|x. Note that

x
7
= 10m+k+2 +

1
9
(10m+2 − 1) ≡ 2 · 3m · 3k + 4 · 3m+2 − 4 mod 7.

Thus x
7 is divisible by 7 if and only if

3m+1(3k−1 − 1) ≡ 2 mod 7.

Modulo 7, there are 6 possibilities to write 2 as a product 2 = uv, these are
(u, v) = (±1,±2), (±2,±1), (±3,±3). Each of these cases gives a congru-
ence condition modulo 6 for k and m:

(1, 2)⇒ m ≡ 5 mod 6, k ≡ 2 mod 6,

(2, 1)⇒ m ≡ 1 mod 6, k ≡ 3 mod 6,

(−1,−2)⇒ m ≡ 2 mod 6, k ≡ 4 mod 6,

(−2,−1) is not possible,

(3, 3)⇒ m ≡ 0 mod 6, k ≡ 5 mod 6,

(−3,−3)⇒ m ≡ 3 mod 6, k ≡ 0 mod 6.

In the second case, the smallest possible x is 7000777 and this is the sum of
two squares. So we only need to consider the remaining cases if k < 3 or
m < 1, i.e., the first and the fifth case (note that k > 0). Further, in these
cases we only need to consider the numbers x with k = 2 (in the first case)
or m = 0 (in the fifth case).

If m = 0, we have x ∈ 7{0}∗77. Since 3|x but 32 - x we have x /∈ 2 . Let
x ∈ 700{7}∗77. Since m ≡ 5 mod 6 is odd, we know that 11|x and if we
write m = 6k + 5, we get

x
11

= 637 · 106k+6 +
3k+2

∑
i=0

7 · 102i.

The alternating digit sum of x
11 is 21k + 31. Hence x is divisible by 112 if and

only if k ≡ 9 mod 11, i.e., if m ≡ 59 mod 66. Thus the theorem follows.

q.e.d.

145



II.1. MINIMAL SETS II.1.3. Values of Arithmetic Functions

Recall that a repdigit is a natural number n all of whose digits (in decimal
representation) are the same. If this digit is d, we call n a d-repdigit. A 1-repdigit
is called repunit. Let us call a repdigit true if it has at least two digits. Then the
previous results give us also the following theorem:

Theorem II.1.5

1. All true d-repdigits with d ∈ {2, 3, 6, 7, 8} are the sum of three squares.

2. The only true 5-repdigit that is not the sum of three squares is 55. The only true
d-repdigits with d ∈ {1, 4, 9} that are sums of three squares are 11, 44, 99.

3. The only true repdigits that are the sum of two squares are 333 and 666.

4. No true repdigit is a square.

II.1.3 Values of Arithmetic Functions

Now we consider sets of the type M = { f (m) : m ∈ N} where f : N → N is an
arithmetic function.

In the proof of the subsequent result we frequently need to show that some
natural numbers m do not occur as values of the Euler totient function. This
can be done (at least for “small” m) easily by distinguishing cases on the prime
factorization of m and those of a potential n with ϕ(n) = m, together with using
the fact that ϕ(n) is even for n ≥ 3. Thus we will omit these arguments.

Theorem II.1.6 (due to I. Baoulina) Let ϕ(N) := {ϕ(m) : m ∈ N}. Then

S(ϕ(N)) = {1, 2, 4, 6, 8, 30, 70, 500, 900, 990, 5590, 9550, 555555555550}.

Proof. Observe that the numbers above are pairwise incomparable. Further, as

ϕ(1) = 1, ϕ(3) = 2, ϕ(5) = 4, ϕ(7) = 6,

ϕ(16) = 8, ϕ(31) = 30, ϕ(71) = 70, ϕ(625) = 500,

ϕ(1057) = 900, ϕ(991) = 990, ϕ(5591) = 5590, ϕ(9551) = 9550,

and
ϕ(555555555551) = 555555555550,

we see that

{1, 2, 4, 6, 8, 30, 70, 500, 900, 990, 5590, 9550, 555555555550} ⊂ ϕ(N).
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Note also that 3, 5, 7, 9 /∈ ϕ(N) since ϕ(n) is even for n ≥ 3. Now assume that
n ∈ ϕ(N) has at least two digits. If there exists d ∈ {1, 2, 4, 6, 8} such that d / n,
then n /∈ S(ϕ(N)). Suppose that n contains only the digits 0, 3, 5, 7, 9. Since ϕ(m)

is even for m > 2, the last digit is 0. It is easy to see that 50, 90 /∈ ϕ(N). Now
assume that n has at least three digits. If n contains the digits 3 or 7, then 30 / n
or 70 / n, respectively. Consequently, n /∈ S(ϕ(N)). Next assume that n contains
only the digits 0, 5, 9. It is easily verified that 550, 590, 950 /∈ ϕ(N). Suppose that
n has at least four digits. Then we have the following possibilities:

• n contains at least two zeros. Then either 500 / n or 900 / n.

• 99 / n. Then 990 / n.

• 559 / n. Then 5590 / n.

• 955 / n. Then 9550 / n.

• n = 5950. Then n /∈ ϕ(N).

• n = 55 . . . 5︸ ︷︷ ︸
`

0 with ` ≥ 3.

Therefore, it remains to show that if n = 55 . . . 5︸ ︷︷ ︸
`

0 with 3 ≤ ` ≤ 10, then n /∈ ϕ(N).

To show this, assume that ϕ(m) = n for some m ∈ N. Since 4 - n, we have 4 - m
and m has exactly one odd prime divisor, i.e., m = pk or m = 2pk with k ∈ N
and odd p ∈ P. In both cases we must have pk−1(p− 1) = n. Using a computer
algebra system, we find the prime factorization of each of the values of n under
consideration, namely,

5550 = 2 · 3 · 52 · 37, 55550 = 2 · 52 · 11 · 101,

555550 = 2 · 52 · 41 · 271, 5555550 = 2 · 3 · 52 · 7 · 11 · 13 · 37,

55555550 = 2 · 52 · 239 · 4649, 555555550 = 2 · 52 · 11 · 73 · 101 · 137,

5555555550 = 2 · 32 · 52 · 37 · 333667, 55555555550 = 2 · 52 · 11 · 41 · 271 · 9091.

Thus if pk−1 | n with k ≥ 3, then k = 3 and p = 3 or 5, and so pk−1(p− 1) 6= n.
Further, it is easy to check that there is no prime number p with p(p − 1) = n.
Hence k = 1 and n+ 1 is a prime. However, all the numbers 55 . . . 5︸ ︷︷ ︸

`

1, 3 ≤ ` ≤ 10,

are composite, and this gives the desired contradiction. q.e.d.
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It is not difficult to find minimal sets for some sets of shifted values of the
Euler totient function. For example, it can be proved that (this result is due to I.
Baoulina)

S(3 + ϕ(N)) = {4, 5, 7, 9, 11, 13, 21, 23, 31, 33, 61, 63, 81, 83},

where 3 + ϕ(N) := {3 + ϕ(n) : n ∈ N}. We leave this as an exercise for the
interested reader.

Related to Euler’s totient function but less well-known is the Dedekind ψ-
function, defined by

ψ(n) := ∏
p|n

(p + 1)pvp−1 if n = ∏
p|n

pvp , ψ(1) := 1.

Again ψ(n) is even for n ≥ 3. As in the proof of the corresponing theorem for
the Euler totient function, we need to prove that some natural numbers cannot
occur as values of the ψ-function. This can be done analogously and will thus be
omitted here. As we shall see in the proof of the following theorem, the determi-
nation of the corresponding minimal set is possible, although it requires a little
more effort than in the case of the Euler totient function.

Theorem II.1.7 Let ψ be the Dedekind ψ-function and ψ(N) := {ψ(m) : m ∈ N}.
Then

S(ψ(N)) = {1, 3, 4, 6, 8, 20, 72, 90, 222, 252, 500, 522, 552, 570, 592, 750, 770,

992, 7000, 55 . . . 5︸ ︷︷ ︸
69

0}.

Proof. First note, that the elements given above are pairwise incomparable and
we have

ψ(1) = 1, ψ(2) = 3, ψ(3) = 4, ψ(5) = 6,
ψ(7) = 8, ψ(19) = 20, ψ(71) = 72, ψ(89) = 90,

ψ(146) = 222, ψ(251) = 252, ψ(499) = 500, ψ(521) = 522,
ψ(411) = 552, ψ(569) = 570, ψ(511) = 592, ψ(625) = 750,
ψ(769) = 770, ψ(991) = 992, ψ(6631) = 7000,

and
ψ(55 . . . 5︸ ︷︷ ︸

68

49) = 55 . . . 5︸ ︷︷ ︸
69

0,
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since 55 . . . 5︸ ︷︷ ︸
68

49 is a prime, so all these numbers belong to ψ(N).

Let n ∈ ψ(N) be arbitrary with at least two digits. If d /n with d ∈ {1, 3, 4, 6, 8},
then n /∈ S(ψ(N)). So n only contains the digits 2, 5, 7, 9, 0. First we note that
22, 50, 52, 70, 92, 292, 502, 550, 700, 922, 952 /∈ ψ(N). For all other natural numbers
with exactly two or three digits that contain only the digits 2, 5, 7, 9, 0, we find by
distinguishing cases that they either belong to S(ψ(N)) or can be generated by
an element of S(ψ(N)). Now suppose n has at least four digits. Then one of the
following cases holds:

• n ends with a 2 and contains a 7. Then 72 / n.

• n ends with a 2 and contains a zero but no 7. Then 20 / n or 90 / n or 502 / n.

• n ends with a 2 and contains only the digits 2 and 5. Then 222 / n or 552 / n.

• n ends with a 2 and contains only the digits 2 and 9. Then 222 / n or 992 / n.

• n ends with a 2 and contains both the digits 5 and 9. Then 592 / n or 952 / n.

• n ends with a zero and contains a 2 or 9. Then 20 / n or 90 / n.

• n ends with a zero and contains a 7 and a 5. Then 570 / n or 750 / n.

• n ends with a zero and contains only the digits 7 and 0. Then 770 / n or
700 / n.

• n ends with a zero and contains only the digits 5 and 0. Then 550 / n or
500 / n.

Thus, there are only four cases in which possibly n ∈ S(ψ(N)), namely 502 / n,
550 / n, 700 / n, 952 / n. If 952 / n and n ends with a 2, we only need to consider
those n with 7 6/ n. Then n contains one of the following strings:

9952, 9592, 5952, 9552, 2952, 9252, 9522, 9052, 9502.

In each of these cases there is an x ∈ S(ψ(N)) with x < n, x / n, so n /∈ S(ψ(N)).
If 700 / n and n ends with a zero, we have one of the following cases:

• n contains a 2. Then 20 / n.

• n contains a 9. Then 90 / n.

• n contains another 7. Then 770 / n.
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• n contains a 5. Then 750 / n or 570 / n.

• n ∈ 7{0}∗. Then 7000 / n.

If 502 / n and n ends with a 2, again we only need to consider those n with 7 6/ n.
Then n contains one of the following strings:

5002, 2502, 5202, 5022, 5502, 5052, 9502, 5902, 5092.

In each of these cases there is an x ∈ S(ψ(N)) with x < n, x / n, so n /∈ S(ψ(N)).
If 550 / n, the only numbers n that need to be examined are of the form 55 . . . 50,
since otherwise 500 / n. It suffices to show that if n = 55 . . . 5︸ ︷︷ ︸

`

0 with 3 ≤ ` ≤ 68,

then there is no m ∈ N such that ψ(m) = n.

We note that if m has k distinct odd prime factors, then 2k | ψ(m). In our
case, n ≡ 2 mod 4, so if there is an m ∈ N with ψ(m) = n, then m = pk or
m = 2pk with p ∈ P odd. Hence either pk−1(p + 1) = n or 3pk−1(p + 1) = n
with k ∈ N and odd p ∈ P. Again a computer search shows that if pk−1 | n
with k ≥ 3, then (k, p) ∈ {(3, 3), (3, 5), (3, 7), (3, 11), (4, 3)}, which implies that
pk−1(p + 1) < 3pk−1(p + 1) ≤ 3 · 112 · 12 < 5550 ≤ n. Next, one can easily
verify that there is no prime p with n = p(p + 1) or n = 3p(p + 1), and so k 6= 2.
Finally, note that neither n− 1 nor (n/3)− 1 is a prime, which yields k 6= 1. This
concludes the proof. q.e.d.

II.1.4 Congruence classes

In this section we determine the minimal sets of some congruence classes. Since
the numbers in a given congruence class are “well-distributed” it is relatively
easy to determine the minimal sets, at least for m ≤ 6. In fact, one even gets an
algorithm for determining all minimal sets to a given modulus.

We begin with the modulus 2. This result is immediate.

Theorem II.1.8 We have

S([0]2) = {2, 4, 6, 8, 10, 30, 50, 70, 90},
S([1]2) = {1, 3, 5, 7, 9}.

The cases m = 3 and m = 4 require a little more work.
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Theorem II.1.9 We have

S([0]3) = {3, 6, 9, 12, 15, 18, 21, 24, 27, 42, 45, 48, 51, 54, 57, 72, 75, 78, 81, 84, 87,

111, 114, 117, 141, 144, 147, 171, 174, 177, 222, 225, 228, 252, 255, 258,

282, 285, 288, 411, 414, 417, 441, 444, 447, 471, 474, 477, 522, 525, 528,

552, 555, 558, 582, 585, 588, 711, 714, 717, 741, 744, 747, 771, 774, 777,

822, 825, 828, 852, 855, 858, 882, 885, 888},
S([1]3) = {1, 4, 7, 22, 25, 28, 52, 55, 58, 82, 85, 88},
S([2]3) = {2, 5, 8, 11, 14, 17, 41, 44, 47, 71, 74, 77}.

Proof.

• We begin with the minimal set of [1]3. Let x ∈ [1]3. If x contains a digit that
is congruent 1 modulo 3, we are done. If x contains a digit d that is congru-
ent 0 modulo 3, we can remove d from x. The resulting number y will be
congruent 1 modulo 3 and we have y / x. Hence no element of S([1]3) can
contain a digit that is congruent 0 modulo 3. It remains to consider num-
bers all of whose digits are congruent 2 modulo 3. But then x ∈ {2, 5, 8}∗.
Therefore the result follows.

• Determining the minimal set of [2]3 is completely analogous to that of [1]3.

• Now we determine the minimal set of [0]3. Let x ∈ [0]3. If 3 / x, 6 / x, or 9 / x,
we are done. If 0/ x, then the number y obtained by removing 0 is congruent
0 modulo 3 and we have y / x. Thus it remains to consider numbers all of
whose digits are not congruent 0 modulo 3. Suppose that x has exactly two
digits. Then one of these digits has to be congruent 1 modulo 3 and the other
one has to be congruent 2 modulo 3. All these numbers belong to S([0]3).
Now suppose that x has exactly 3 digits. Then either all of these digits are
congruent 1 modulo 3 or all digits are congruent 2 modulo 3. Again all
those numbers belong to S([0]3). Finally, let x have at least 4 digits. If x has
three digits that are congruent 1 modulo 3 or three digits that are congruent
2 modulo 3, these digits form a number y with y ∈ S([0]3) and y / x. If
this is not the case, x has at least one digit that is congruent 1 modulo 3 and
one digit that is congruent 2 modulo 3. Again these digits form a number y
with y ∈ S([0]3) and y / x. In either case x /∈ S([0]3) and this completes the
proof.

q.e.d.
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Theorem II.1.10 We have

S([0]4) = {4, 8, 12, 16, 20, 32, 36, 52, 56, 60, 72, 76, 92, 96, 100, 300, 500, 700, 900},
S([1]4) = {1, 5, 9, 33, 37, 73, 77},
S([2]4) = {2, 6, 10, 14, 18, 30, 34, 38, 50, 54, 58, 70, 74, 78, 90, 94, 98},
S([3]4) = {3, 7, 11, 15, 19, 51, 55, 59, 91, 95, 99}.

Proof. We will use a general observation about congruence classes modulo 4 in
this proof: If x ∈ [a]4 has at least three digits, then the number y that is obtained
from x by taking only the last two digits is also in [a]4. Thus if y 6= 0, we have
x /∈ S([a]4). Hence for a ∈ {1, 2, 3}, every element of S([a]4) has at most two
digits.

• Let x ∈ [1]4. If x has exactly one digit, then x ∈ {1, 5, 9}. If x has exactly two
digits, then both digits have to be congruent 3 modulo 4. Hence x ∈ {3, 7}∗
and we are done.

• Let x ∈ [2]4. If x has exactly one digit, then x ∈ {2, 6}. If x has exactly two
digits, then the first digit is congruent 1 or 3 modulo 4 and the second digit
is congruent 0 modulo 4.

• Determining the minimal set of [3]4 is completely analogous to that of [1]4.

• Determining the minimal set of [0]4 is nearly the same as for [2]4 with one
difference: If x has at least three digits, then the number obtained by taking
only the last two digits is congruent 0 modulo 4, but it is only contained in
S([0]4) if it is not 0. So we have to add to S([0]4) all the numbers that have
three digits, end with 00, and whose first digit is congruent 1 or 3 modulo 4.

q.e.d.

The minimal sets for m = 5 are as easy to determine as those for m = 2.

Theorem II.1.11 We have

S([0]5) = {5, 10, 20, 30, 40, 60, 70, 80, 90},
S([1]5) = {1, 6},
S([2]5) = {2, 7},
S([3]5) = {3, 8},
S([4]5) = {4, 9}.
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Let us now consider the case m = 6.

Theorem II.1.12 We have

S([0]6) = {6, 12, 18, 24, 30, 42, 48, 54, 72, 78, 84, 90, 114, 144, 150, 174, 210, 222,

228, 252, 258, 270, 282, 288, 414, 444, 450, 474, 510, 522, 528, 552, 558,

570, 582, 588, 714, 744, 750, 774, 810, 822, 828, 852, 858, 870, 882, 888,

1110, 1170, 1410, 1470, 1710, 1770, 2250, 2550, 2850, 4110, 4170, 4410,

4470, 4710, 4770, 5250, 5550, 5850, 7110, 7170, 7410, 7470, 7710, 7770,

8250, 8550, 8850},
S([1]6) = {1, 7, 25, 43, 49, 55, 85, 223, 229, 283, 289, 445, 523, 529, 583, 589, 823,

829, 883, 889},
S([2]6) = {2, 8, 14, 44, 50, 56, 74, 110, 116, 170, 176, 410, 416, 470, 476, 554, 710,

716, 770, 776},
S([3]6) = {3, 9, 15, 21, 27, 45, 51, 57, 75, 81, 87, 111, 117, 141, 147, 171, 177, 225,

255, 285, 411, 417, 441, 447, 471, 477, 525, 555, 585, 711, 717, 741, 747,

771, 777, 825, 855, 885},
S([4]6) = {4, 10, 16, 22, 28, 52, 58, 70, 76, 82, 88, 112, 118, 172, 178, 250, 256, 550,

556, 712, 718, 772, 778, 850, 856},
S([5]6) = {5, 11, 17, 23, 29, 41, 47, 71, 77, 83, 89, 143, 149, 221, 227, 281, 287, 443,

449, 743, 749, 821, 827, 881, 887}.

Proof. We will sketch the proof for the first case. The others follow similarly.

If x ∈ [0]6, its last digit can only be one of 0, 2, 4, 6, 8. If its last digit is 6, we
are done. If its last digit is 2 or 8, the number obtained by removing the last digit
is congruent 1 modulo 3. So we just have to check the list of S([1]3) in Theorem
II.1.9 and append to each of these numbers the digit 2 or 8. If the last digit of x is
4, the process is analogous, here we have to take the list of S([2]3). If the last digit
of x is 0, the number obtained by removing the last digit is congruent 0 modulo 3.
If it is also congruent 0 modulo 6, then there already is an z ∈ S([0]6) with z / x.
So we have to take all the elements of S([0]3) that are not congruent 0 modulo 6
and append the digit 0. q.e.d.

It is equally easy to determine the minimal set of M if M is a union of congru-
ence classes.
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Theorem II.1.13 Let

� mod 6 := {n ∈ N : n ≡ x2 mod 6 for some x ∈ N}.

Then
S(� mod 6) = {1, 3, 4, 6, 7, 9, 22, 25, 28, 52, 55, 58, 82, 85, 88}.

Proof. It is easy to check that n ∈ � mod 6 if and only if n ≡ 1, 3, 4, 6 mod 6. So
we have indeed {1, 3, 4, 6, 7, 9, 22, 25, 28, 52, 55, 58, 82, 85, 88} ⊂ � mod 6. More-
over, these elements are pairwise incomparable. Let now n ∈ � mod 6 be ar-
bitrary. If d / n with d ∈ {1, 3, 4, 6, 7, 9}, we are done. So suppose that n con-
tains none of these digits. Assume first that n contains exactly two digits. Then
22, 25, 28, 52, 55, 58, 82, 85, 88 ∈ � mod 6 and 20, 50, 80 /∈ � mod 6. If n has more
than two digits, then either two of its digits are nonzero and hence there is an
x ∈ S(� mod 6) with x < n and x / n, or n has only one nonzero digit. In the
latter case, since this digit is congruent 2 modulo 3, we have n ≡ 2 mod 6, and
therefore n /∈ � mod 6. q.e.d.

Theorem II.1.14 Let

� mod 7 := {n ∈ N : n ≡ x2 mod 7 for some x ∈ N}.

Then

S(� mod 7) = {1, 2, 4, 7, 8, 9, 30, 35, 36, 50, 53, 56, 60, 63, 65, 333, 555, 666}.

Proof. Since n ∈ � mod 7 if and only if n ≡ 1, 2, 4, 7 mod 7, we have

{1, 2, 4, 7, 8, 9, 30, 35, 36, 50, 53, 56, 60, 63, 65, 333, 555, 666} ⊂ � mod 7,

and again these elements are pairwise incomparable. Let n ∈ � mod 7. If d / n
with d ∈ {1, 2, 4, 7, 8, 9}, we are done. So suppose that n contains none of these
digits. If n has exactly two digits, then 30, 35, 36, 50, 53, 56, 60, 63, 65 ∈ � mod 7
and 33, 55, 66 /∈ � mod 7. If n has at least three digits and at least two of them are
distinct, we are done. It therefore remains to assume that n is a d-repdigit with
d ∈ {3, 5, 6}. Then either 333 / n or 555 / n or 666 / n. q.e.d.

In the above cases it was relatively easy to get the minimal sets (in fact we
did not always construct them but this is possible with the above ideas). If we
try the same approach for the congruence classes modulo 7, we see that it gets
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more complicated. Suppose that we want to get the minimal set of [0]7. If the last
digit of x ∈ [0]7 is 0, then the number obtained by striking away this digit will be
congruent 2 modulo 7. So we would have to look at the minimal set of [2]7, which
we do not know yet. Thus, in general, one cannot construct the minimal set of a
congruence class on its own. But it is possible to construct the minimal sets of all
m congruences classes modulo m simultaneously with Algorithm II.1.1.

Algorithm II.1.1 Minimal set algorithm for congruence classes

1: for all a ∈ {0, . . . , m− 1} do
2: Initialize S([a]m) as empty list
3: end for
4: for all a ∈ {0, . . . , m− 1} and each digit d ∈ {1, . . . , 9} do
5: Determine which digit d lies in which congruence class [a]m
6: Write these digits in S([a]m)
7: end for
8: for all a ∈ {0, . . . , m− 1}, b ∈ {0, . . . , 9} do
9: Determine all x ∈ Z/mZ (depending on a and b) with 10x + b ≡ a mod m

10: Let X(a, b) be the set of all such x
11: end for
12: for all a ∈ {0, . . . , m− 1}, b ∈ {0, . . . , 9}, x ∈ X(a, b) do
13: Take every y ∈ S([x]m) and test if there is a number z ∈ S([a]m) such that

z / y ∗ b
14: if there is no such z then
15: Add y ∗ b to S([a]m)
16: end if
17: end for
18: repeat
19: Lines 12 to 17
20: until no number gets added in any minimal set

Examples of minimal sets determined with this algorithm can be found in Ap-
pendix A.3.

Algorithm II.1.1 is just a special case of Algorithm II.1.2. This algorithm can
be applied to specific partitions of N.

Definition II.1.15 Let m ∈ N and A1, . . . , Am be a partition of N. The partition is
called truncating stable if it has the following property:

For any i ∈ {1, . . . , m} and any digit b ∈ {0, . . . , 9} there is a set Ji(b) ⊂ {1, . . . , m}
such that 10a + b ∈ Ai if and only if there is a j ∈ Ji(b) with a ∈ Aj.

This condition should be read as follows: Let n ∈ Ai. Then for any digit d
we can predict in which of the sets Al the number n ∗ d lies (note that for distinct
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i1, i2 the sets Ji1(b) and Ji2(b) are disjoint since Ai1 and Ai2 are disjoint). If this
condition is fulfilled, we can use Algorithm II.1.2 to determine the minimal sets
of the sets Ai simultaneously. The condition is, for example, fulfilled for (unions
of) congruence classes, but not fulfilled if we partition the natural numbers in
primes and composite numbers.

Algorithm II.1.2 Minimal set algorithm for truncating stable partitions

1: for all i ∈ {1, . . . , m} do
2: Initialize S(Ai) as empty list
3: end for
4: for all i ∈ {1, . . . , m} and each digit d ∈ {1, . . . , 9} do
5: Determine which digit d lies in which set Ai
6: Write these digits in S(Ai)
7: end for
8: for all i ∈ {1, . . . , m}, b ∈ {0, . . . , 9}, j ∈ Ji(b) do
9: Take every y ∈ S(Aj) and test if there is a number z ∈ S(Ai) such that

z / y ∗ b
10: if there is no such z then
11: Add y ∗ b to S(Ai)
12: end if
13: end for
14: repeat
15: Lines 8 to 13
16: until no number gets added in any minimal set

We will now prove the validity of Algorithm II.1.2.

Theorem II.1.16 Let m ∈ N and A1, . . . , Am be a truncating stable partition of N. Then
Algorithm II.1.2 terminates after finite time and gives the minimal sets of the sets Ai.

Proof. First we show that the algorithm terminates after finite time. Each of the
for loops needs only finite time (since all involved sets are finite), so we just
have to consider the repeat statement. The respective steps will only be repeated
finitely often, since we know that minimal sets are finite. Therefore the algorithm
will terminate after finite time.

Now we show that the algorithm indeed constructs the minimal sets for the
sets Ai. It is clear that the constructed sets are not truncatable and that each of
them is a subset of the respective set Ai. We have to show that any natural number
n ∈ Ai can be generated by some natural number ñ ∈ S(Ai). For that, we show
that each number n with l digits (l ∈ N) either lies in one of the constructed sets
or there is an ñ ∈ N that lies in the respective constructed set with ñ / n. Suppose
that the algorithm terminates after the for loop in line 8 has been gone through
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k times. In the first k − 1 steps all natural numbers n with at most k digits have
been considered and for each of them either n ∈ S(Ai) for some i or there is an
i and an ñ ∈ N with n, ñ ∈ Ai, ñ / n. So the claim holds for l ≤ k and we are left
to consider natural numbers with at least k + 1 digits. We show by induction on
l > k that none of them can belong to a minimal set.

When the for loop in line 8 is executed the k-th time, all natural numbers
with k + 1 digits have been considered and none of them belongs to a minimal
set (otherwise the algorithm would not have terminated). Now suppose that no
natural number with l digits (where l ≥ k + 1) is in a minimal set. We show that
the same holds for all natural numbers with l + 1 digits. Let x ∈ Ai ⊂ N with
#x = l + 1. Write x = y ∗ b with #y = l, b ∈ {0, . . . , 9}. Then we know that
y ∈ Aj for some j ∈ Ji(b) and from the induction hypothesis we know that there
is a z ∈ Aj with #z < l and z / y. Let w := z ∗ b. Then #w < l + 1 and w / x.
Since the sets Ji(b) are disjoint for distinct i, we also get w ∈ Ai. This proves the
theorem. q.e.d.

Remark II.1.17 Since congruence classes define a truncation stable partition of
N and Algorithm II.1.1 is just a special case of Algorithm II.1.2, we know that
Algorithm II.1.1 terminates after a finite number of steps and gives the minimal
sets of the congruence classes modulo m.

Although we know that Algorithm II.1.2 will terminate, we do not know
when, hence we cannot determine the run-time of the algorithm in general. How-
ever, for congruence classes we can say something about the maximal number of
digits in the minimal sets.

Theorem II.1.18 Let m = 2a5b.

1. The largest number in S([0]m) has exactly max(a, b) + 1 digits.

2. For all k 6≡ 0, the largest number in S([k]m) has at most max(a, b) digits.

3. There is a k 6≡ 0 such that the largest number in S([k]m) has exactly max(a, b)
digits.

Proof. Since m = 2a5b, the congruence class modulo m of n ∈ N depends only on
its last max(a, b) digits. If n has at least max(a, b) + 1 digits, the number formed
by its last max(a, b) digits is in the same congruence class. Hence n cannot be
in S([k]m) except for the case when the last max(a, b) digits are all 0. This can
only happen if n ≡ 0 mod m, i.e., if k = 0. If n ≡ 0 mod m and n has at least
max(a, b) + 2 digits, either one of the last max(a, b) digits is not zero (then n can-
not be in S([0]m) due to the arguments above) or the number formed by the first
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digit and the last max(a, b) digits is nonzero and congruent 0 modulo m (since all
digits except for the first are 0). In either case, n cannot be in the minimal set.

It remains to show that there is an element in S([0]m) with max(a, b) + 1 digits
and that there is a k 6= 0 such that there is an element in S([k]m) with max(a, b)
digits.

In the first case, we note that n = 10max(a,b) has exactly max(a, b) + 1 digits
and is congruent 0 modulo m. The only numbers x ∈ N with x / n and x 6= n
are the numbers x = 10y with y < max(a, b) and none of these is congruent to 0
modulo m.

For the second case, take k = m− 1 and n = 10max(a,b) − 1. Then n ∈ [k]m, n
has exactly max(a, b) digits, and all of its digits are 9. So there is an x ∈ S([k]m)
with x 6= n, x / n if and only if there is a y < max(a, b) with 10y− 1 ≡ −1 mod m.
But this is not possible. q.e.d.

Moreover, Table A.3.2 in Appendix A.3.2 gives rise to the following conjecture:

Conjecture II.1.19 Let m ∈ N with gcd(m, 10) = 1.

1. For any k 6= 0, the largest number in S([k]m) has at most m− 1 digits. If 10 is a
primitive root modulo m, then there is a natural number in S([k]m) with exactly
m− 1 digits.

2. The largest number in S([0]m) has at most m digits. If 10 is a primitive root
modulo m, then there is a natural number in S([0]m) with exactly m digits.

II.1.5 Basic set operations

The examples from the previous sections already indicate that minimal sets be-
have rather unexpectedly. It is easy to obtain some minimal sets in explicit form,
while for other sets the explicit form of the corresponding minimal set may only
be achieved conditionally (compare Section II.1.7). Already the size of minimal
sets seems to be almost unpredictable.

For k ∈ N define Ak := N ∩ [10k−1, 10k) (i.e., Ak is the set of natural numbers
with k digits in base 10). One easily verifies S(Ak) = Ak which shows that the
minimal set can be as large as we please even for finite sets. Moreover, Ak is min-
imal among all sets M with |S(M)| = 9 · 10k−1. In general it seems to be difficult
to prove an upper bound for the number of minimal elements in an arbitrary set.
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We show that almost no structural relationship between sets is carried over
to the respective minimal sets. In this section, let M, L ⊂ N be infinite sets and
F ⊂ N be a finite set. We will need some more notation.

For a, b ∈ N we set

{a ∗ b}| := {n ∈ N : n = a∗k ∗ b∗l for some k, l ∈ N0}.

For example,

{1 ∗ 37}| = {1, 37, 11, 137, 3737, 111, 1137, 13737, 373737, . . .}.

We begin to study subsets. Let L ⊂ M ⊂ N. For arbitrary subsets it seems
impossible to deduce properties (consider L = P and M = N). If F ∩ S(M) = ∅,
then it is obvious that S(M\F) = S(M). In the other case, one would expect
that S(M\F) has more elements than S(M): Removing minimal elements should
result in the necessity of larger minimal elements. Since larger minimal elements
can generate a smaller fraction of natural numbers, one would expect that one
needs more of them. This is not always true.

Theorem II.1.20 There are infinitely many M ⊂ N such that there is a set F ⊂ M with
|S(M\F)| < |S(M)|.

Proof. Let a, b ∈ {1, . . . , 9} and a 6= b. Let M̃ = {a ∗ b}| and F = {a, b}. Then
M̃ has infinitely many infinite subsets M with F ⊂ {a, b, a ∗ b} ⊂ M and such
that any x ∈ M with x 6= a, b has two distinct digits. For all these sets we have
S(M) = F = {a, b} and S(M\F) = {a ∗ b}. q.e.d.

Example II.1.21 Let M̃ = {1 ∗ 6}|, i.e., M̃ consists exactly of the natural numbers,
all of whose first digits are 1 and all of whose last digits are 6. Take F = {1, 6}
and let M be any subset of M̃ with {1, 6, 16} ∈ M and {11, 66, 111, 666, . . .} /∈ M.
Then S(M) = {1, 6} and S(M\F) = {16}.

For “generic” sets (i.e., sets that are not specifically constructed for this pur-
pose) the above phenomenon seems not to happen. This leads to the following
definition and conjecture.

Definition II.1.22 For a set M ⊂ N define a sequence δn(M) of sets recursively by

δ0(M) := M, δ(M) := δ1(M) := M\S(M), δn+1(M) := δ(δn(M))

and let ηn(M) := |S(δn(M))| and η(M) := η1(M).
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Example II.1.23 Let M := {1, 6, 16, 1166, 111666, 11116666, . . .}. Then

δ0(M) = M,

δ1(M) = {16, 1166, 111666, 11116666, . . .},
δ2(M) = {1166, 111666, 11116666, . . .},

...

and
η0(M) = 2, ηk(M) = 1 for all k ≥ 1.

As shown in Theorem II.1.20, there are infinitely many M with η(M) < η0(M).
We conjecture that the number of such sets is “small”.

Conjecture II.1.24 There are only countably many sets M ⊂ N with η(M) ≤ η0(M).
For all other sets we have ηn(M)→ ∞.

For some of the following results we need to know that for each k ∈ N there
is an infinite set M with |S(M)| = k.

Lemma II.1.25 Let k ∈ N. There are infinitely many sets M ⊂ N with |S(M)| = k. In
particular there is no bound for the cardinality of minimal sets.

Proof. Choose m such that there are at least k natural numbers that have exactly
m digits. Take k of these numbers and let M̃ be the finite set that contains these
k numbers. Let M̂ = 〈M̃〉. Then M̂ has infinitely many subsets M with M̃ ⊂ M,
i.e., S(M) = M̃. q.e.d.

The following theorem can be seen as a generalization of Theorem II.1.20.

Theorem II.1.26 Let c, k ∈ N. Then there are infinitely many M ⊂ N such that there is
an F ⊂ M with |S(M)| = k, |S(M\F)| = c.

Proof. Similar to the proof of Lemma II.1.25 we choose a set M̃ that has exactly k
elements with exactly m digits (for a suitable m) and no other elements.

• If c ≤ k, take a subset F̃ ⊂ M̃ such that
∣∣∣M̃\F̃∣∣∣ = c and take M such that

M̃ ⊂ M ⊂ 〈M̃\F̃〉 ∪ F̃.

Let F := F̃. Then S(M) = S(M̃) = M̃ and S(M\F) = M̃\F.

• Now let c > k. First we note that the number of elements x ∈ 〈M̃〉 with
#x = n is strictly increasing as n gets bigger. We choose n such that n > m
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and 〈M̃〉 has at least c elements with exactly n digits. Let F ⊂ 〈M̃〉 be
the subset that contains all the elements in 〈M̃〉 with less than n digits and
choose M ⊂ 〈M̃〉 such that F ⊂ M, M has exactly c elements with exactly
n digits, and all elements of M with more than n digits can be generated
by an element of M with exactly n digits. Then we have S(M) = M̃, hence
|S(M)| = k. Further S(M\F) contains exactly the c numbers of M that have
exactly n digits, thus |S(M\F)| = c.

q.e.d.

Example II.1.27 Let k = 17. Then we can take m = 2.

1. Let first c = 13. We take M̃ := {11, . . . , 27} and F̃ := {24, . . . , 27}. If we
now take M with

{11, . . . , 27} ⊂ M ⊂ 〈{11, . . . , 23}〉 ∪ {24, . . . , 27},

we get S(M) = {11, . . . , 27} and S(M\F) = {11, . . . , 23}.

2. Let now c = 27 and take again M̃ = {11, . . . , 27}. We choose n = 3 and let

F = {11, . . . , 27} and M = {11, . . . , 27} ∪ 〈{111, . . . , 137}〉.

Then we get S(M) = {11, . . . , 27} and S(M\F) = {111, . . . , 137}.

Let us now consider basic set operations. From the known formulae in set
theory we can relate some of these operations. Hence we will only consider inter-
section, union, and complement. Since the intersection of two sets is in particular
a subset of each of the sets, the previous theorem applies. Even more unfortunate,
the set S(M ∩ L) can be disjoint to S(M) and S(L):

Theorem II.1.28 There are infinitely many sets L, M ⊂ N such that

(S(M) ∪ S(L)) ∩ S(M ∩ L) = ∅.

Proof. Choose L and M such that S(M) ∩ L = ∅,S(L) ∩M = ∅, and M ∩ L 6= ∅
(for example, let L ⊂ 〈{1, . . . , 4}〉 and M ⊂ 〈{6, . . . , 9}〉). Then (S(M) ∪ S(L))
and S(M ∩ L) are disjoint. q.e.d.

The next theorem shows that for the union of two sets, there is at least a little
bit of structure.

Theorem II.1.29 We have S(M ∪ L) ⊂ S(M) ∪ S(L).
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Proof. Let x ∈ S(M ∪ L) and without loss of generality x ∈ M. Suppose that
x /∈ S(M). Then there is a z ∈ M with z 6= x, z / x. But since z lies also in M ∪ L
we have x /∈ S(M ∪ L), which is a contradiction. q.e.d.

The left-hand side of the equation in Theorem II.1.29 can be equal to the right-
hand side (if, for example, M = [2]10 and L = [3]10) and smaller (if, for example,
M = {2} ∪ {p ∈ P : p ≡ 1 mod 4} and L = {p ∈ P : p ≡ 3 mod 4}). In general,
equality cannot hold, since the set S(M) ∪ S(L) could be truncatable. If it is not
truncatable, we do indeed have equality:

Theorem II.1.30 We have S(M ∪ L) = S(M) ∪ S(L) if and only if S(M) ∪ S(L) is
not truncatable.

Proof. We know

S(M) ⊂ S(M ∪ L)⇔ ∀x ∈ S(M) : x ∈ S(M ∪ L)

⇔ ∀x ∈ S(M) : @y ∈ M ∪ L such that y / x, y 6= x

⇔ ∀x ∈ S(M) : @y ∈ L such that y / x, y 6= x

⇔ ∀x ∈ S(M) : @y ∈ S(L) such that y / x, y 6= x,

so equality holds if and only if

• ∀x ∈ S(M) : @y ∈ S(L) such that y / x, y 6= x and

• ∀x ∈ S(L) : @y ∈ S(M) such that y / x, y 6= x,

which is equivalent to saying that S(M) ∪ S(L) is not truncatable. q.e.d.

From Theorem II.1.29 we get that |S(M ∪ L)| ≤ |S(M)| + |S(L)|. The next
theorem shows that more cannot be said.

Theorem II.1.31 Let k, c1, c2 ∈ N with k ≤ c1 + c2.

1. If k = 1, there are sets M, L ⊂ N with |S(M ∪ L)| = 1, |S(M)| = 1, and
|S(L)| = c2.

2. If k > 1, there are sets M, L ⊂ N with |S(M ∪ L)| = k, |S(M)| = c1, and
|S(L)| = c2.

Proof.

1. Let z ∈ N. We will construct sets M and L with S(M ∪ L) = {z}. Choose
m such that m > #z and there are at least c2 natural numbers with exactly
m− #z digits. Let L be an infinite set with the following properties (it is easy
to see that such sets do exist).
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• z /∈ L,

• L ⊂ 〈{z}〉,

• L has exactly c2 elements with exactly m digits,

• L has no elements with less than m digits,

• all elements of L with more than m digits can be generated by an ele-
ment of L with exactly m digits,

• 〈{z}〉\L is infinite.

Let M = 〈{z}〉\L. Then S(M ∪ L) = S(M) = {z} and |S(L)| = c2.

2. Let k > 1 and z1, . . . , zk ∈ N such that there is a digit z0 such that z0, z1, . . . , zk

are pairwise incomparable. We will construct sets M, L with |S(M)| = c1,
|S(L)| = c2, and S(M ∪ L) = {z1, . . . , zk}.

First suppose that ci ≥ k for i = 1, 2. For j ∈ {1, . . . , k} and m ∈ N let

Xj,m := {x ∈ N : zj / x, #x = m}.

Choose m big enough such that there are sets M̃, L̃ with

M̃ ⊂{x ∈ X2,m : x 6= z2, zi 6/ x for i ∈ {1, 3, . . . , k}} and
∣∣∣M̃∣∣∣ = c1 − k + 1,

L̃ ⊂{x ∈ X1,m : x 6= z1, zi 6/ x for i ∈ {2, 3, . . . , k}} and
∣∣∣L̃∣∣∣ = c2 − k + 1.

(Such sets would not exist if there were no z0 such that z0, z1, . . . , zk are
pairwise incomparable.) Now let

M := {z1, z3, z4, . . . , zk} ∪ 〈M̃〉, L := {z2, z3, . . . , zk} ∪ 〈L̃〉.

Then we get

M ∪ L = {z1, . . . , zk} ∪ 〈M̃〉 ∪ 〈L̃〉,

S(M) = {z1, z3, z4, . . . , zk} ∪ M̃ ⇒|S(M)| = c1,

S(L) = {z2, z3, . . . , zk} ∪ L̃ ⇒|S(L)| = c2,

S(M ∪ L) = {z1, . . . , zk}

and this gives the result.
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Now let k > c1. Pick c1 + c2 − k (i.e., none if k = c1 + c2) elements αi from
〈{z1, . . . , zc1}〉\{z1, . . . , zc1} such that the set {α1, . . . , αc1+c2−k, zc1+1, . . . , zk}
is not truncatable (we can just pick the αi to have the same number of digits
and such that they do not contain any of the zi, i > c1, as a subsequence.
This is possible if we choose the number of digits large enough). Let

M := 〈{z1, . . . , zc1}〉\{α1, . . . , αc1+c2−k}

and
L := {α1, . . . , αc1+c2−k} ∪ 〈{zc1+1, . . . , zk}〉.

Then we get

M ∪ L = 〈{z1, . . . , zk}〉,
S(M ∪ L) = {z1, . . . , zk},
S(M) = {z1, . . . , zc1},
S(L) = {α1, . . . , αc1+c2−k, zc1+1, . . . , zk}.

Thus the theorem follows.

q.e.d.

Note that if |S(M ∪ L)| = 1, we necessarily have |S(M)| = 1 or |S(L)| = 1,
hence the first part of Theorem II.1.31 is best possible.

Example II.1.32 Let k = 7 and zi = i for i = 1, . . . , 7. These numbers fulfill the
condition mentioned in the proof since we can take z0 = 8 or z0 = 9.

1. Let c1 = c2 = 8, hence ci − k + 1 = 2. Choose m = 2 and let

M̃ = {28, 82}, L̃ = {18, 19}.

Then we get

S(M) = {1, 3, 4, 5, 6, 7, 28, 82}, S(L) = {2, 3, 4, 5, 6, 7, 18, 19},

and
S(M ∪ L) = {1, 2, 3, 4, 5, 6, 7}.

2. Let c1 = 3 and c2 = 5, hence c1 + c2 − k = 1. Take α1 = 11 and let

M = 〈{1, 2, 3}〉\{11}, L = {11} ∪ 〈{4, 5, 6, 7}〉.
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Then we get

S(M) = {1, 2, 3}, S(L) = {4, 5, 6, 7, 11},

and
S(M ∪ L) = {1, 2, 3, 4, 5, 6, 7}.

With respect to the complement there is also very little structure. It is clear
that S(Mc) contains (in addition to elements with more than one digit) exactly
the one-digit numbers that are not in S(M).

One question that arises is the following: Given a finite set M′ that is the
minimal set of an infinite set M, can one deduce information about the set S(Mc)?
Apart from the one-digit numbers, this is not the case:

Theorem II.1.33 Let M′ be a finite, not truncatable set that contains at least one digit
x ∈ {1, . . . , 9}. Then for any ε > 0 there are two infinite sets M1, M2 such that
S(M1) = S(M2) = M′ and ∣∣S(Mc

1) ∩ S(Mc
2)
∣∣∣∣S(Mc

1)
∣∣ < ε.

If further M′ contains all digits, M1 and M2 can be chosen such that S(Mc
1) and S(Mc

2)

are disjoint.

Proof. Without loss of generality let M′ = {1, . . . , d} ∪ M̃ with M̃ possibly empty
and M̃ ∩ {1, . . . , 9} = ∅. Let

M1 := {1, . . . , d}∗{1,...,k}∪{m+2n,n∈N0} ∪ M̃ ∪ {x ∈ {1, . . . , d, 0}∗ : 0 / x},

M2 := {1, . . . , d}∗{1,...,m}∪{m+2n,n∈N0} ∪ M̃ ∪ {x ∈ {1, . . . , d, 0}∗ : 0 / x}

with some m, k ∈ N such that m > k + 1. Since M′ is not truncatable, no number
from M̃ contains one of the digits 1, . . . , d, thus we have

S(M1) = S(M2) = {1, . . . , d} ∪ M̃ = M′.

We get

Mc
1 =

(
〈{d + 1, . . . , 9}〉 ∪ {1, . . . , d}∗{k+1,...,m−1}∪{m+2n+1,n∈N0}

)
\M̃,

Mc
2 =

(
〈{d + 1, . . . , 9}〉 ∪ {1, . . . , d}∗{m+2n+1,n∈N0}

)
\M̃,
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and since M̃ ∩ {1, . . . , 9} = ∅ and no element of M̃ contains one of the digits
1, . . . , d, we have

S(Mc
1) = {d + 1, . . . , 9} ∪ {1, . . . , d}∗{k+1},

S(Mc
2) = {d + 1, . . . , 9} ∪ {1, . . . , d}∗{m+1}.

Thus ∣∣S(Mc
1) ∩ S(Mc

2)
∣∣∣∣S(Mc

1)
∣∣ =

9− d
9− d + dk+1 −→k→∞

0

and this shows the first part of the theorem. If M′ contains all digits we have
d = 9, hence the second part follows. q.e.d.

Example II.1.34 Let M′ = {1, 2, 33, 44, 55, 66, 77, 88, 99}. Then we have d = 2 and
M̃ = {33, 44, 55, 66, 77, 88, 99}. We take k = 3 and m = 5. Then

M1 = {1, 2, 11, 12, 21, 22, 111, 112, 122, 121, 211, 212, 221, 222} ∪ X ∪ M̃ ∪Y,

where

• X consists of all natural numbers that contain only the digits 1 and 2, and
whose number of digits is of the form 5 + 2l, l ∈ N0,

• Y is the set that contains all natural numbers that contain only the digits 1, 2,
and 0, where the 0 has to occur,

i.e.,

X = {11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222,

12111, 12112, 12121, 12122, 12211, 12212, 12221, 12222,

21111, 21112, 21121, 21122, 21211, 21212, 21221, 21222,

22111, 22112, 22121, 22122, 22211, 22212, 22221, 22222, . . .},
Y = {10, 20, 101, 102, 201, 202, 110, 120, 210, 220, . . .}.

We have

M2 = {1, 2, 11, 12, 21, 22, 111, 112, 122, 121, 211, 212, 221, 222, . . .} ∪ X ∪ M̃ ∪Y,

where the maximal number of digits in the first set is 5. Then

S(M1) = {1, 2} ∪ M̃ = S(M2).
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Further,
Mc

1 = (〈{3, . . . , 9}〉 ∪ A ∪ B ∪ Z) \M̃,

where

• A consists of all numbers that contain only the digits 1 and 2, and that have
exactly 4 digits,

• B consists of all numbers that contain only the digits 1 and 2, and that have
exactly 6 digits,

• Z consists of all numbers that contain only the digits 1 and 2, and whose
number of digits is of the form 8 + 2l, l ∈ N0.

Similarly, we have
Mc

2 = (〈{3, . . . , 9}〉 ∪ B ∪ Z) \M̃.

So we get

S(Mc
1) = {3, . . . , 9} ∪ A, S(Mc

2) = {3, . . . , 9} ∪ B, S(Mc
1)∩S(Mc

2) = {3, . . . , 9},

and if we let k and m grow, the sets A and B get bigger.

Note that Theorem II.1.33 is false if M′ does not contain any digit, since then
S(Mc

1) = S(Mc
2) = {1, . . . , 9}.

II.1.6 Heuristics

Since it seems that there are no useful results when considering basic set oper-
ations, we could try to get heuristic results. For that, we note that if a minimal
set contains “many” natural numbers with a “small” number of digits, then the
number of elements in the minimal set is “small”, and vice versa. This leads to
the following definition

Definition II.1.35 We call a function µ : N→ R>0 a digit measure if the following
properties hold:

• Whenever #x < #y, we have µ(x) > µ(y).

• µ is constant on natural numbers with the same number of digits.

If further µ(x)→ 0 when #x → ∞, we call µ a zero digit measure.
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Every digit measure induces a function µ̃ : P(N) → R>0 := R>0 ∪ {∞} by
µ̃(A) := ∑a∈A µ(a). By abuse of notation, we will write µ̃ = µ and also call
this a digit measure. We call a digit measure finite if µ(N) < ∞, and infinite if
µ(N) = ∞.

Hence a digit measure “measures” a number x by looking only at the number
of digits of x.

Example II.1.36 Some seemingly natural digit measures are

µ1(n) = 10−#n, µ2(n) = 10−2#n, µ3(n) =
1

#n
10−#n, µ4(n) =

1
(#n)2 10−#n.

We normalize them in the following way:

µc :=
10
9

µ1, µg := 10µ2, µh :=
10
9

µ3, µz :=
20

3π2 µ4.

Then, if we let Ak denote the set of natural numbers with k digits, we have

µc(n) = 10
9 10−#n, µc(Ak) = 1, µc(N) = ∞,

µg(n) = 101−2#n, µg(Ak) = 9 · 10−k, µg(N) = 1,
µh(n) = 10

9
1

#n 10−#n, µh(Ak) =
1
k , µh(N) = ∞,

µz(n) = 20
3π2

1
(#n)2 10−#n, µz(Ak) =

6
π2

1
k2 , µz(N) = 1.

All these digit measures are zero digit measures.

We will try to use digit measures to obtain results about minimal sets. As we
will see what follows, this is nearly as impossible as it was to obtain set-theoretic
results.

It would be nice if there was a digit measure µ such that µ(S(M))
µ(M)

is constant
for all M ⊂ N. The next theorem says that even a weaker version is not possible.

Theorem II.1.37 There is no digit measure µ with the following property: There is a
function f : R→ R such that whenever µ(M) = x we have µ(S(M)) = f (x).

Proof. We consider the congruence classes modulo 3. Since any such congruence
class has the same number of natural numbers with k digits for every k, we have
µ([a]3) = µ([b]3) for every a, b ∈ N and for every digit measure. With Theorem
II.1.9 (compare also Table A.3.1 in Appendix A.3.2) we get

µ(S([0]3)) = 3µ(1) + 18µ(10) + 54µ(100) > 3µ(1) + 9µ(10) = µ(S([1]3)).

q.e.d.
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So even if we knew µ(M) for a set M (which can be near to impossible to
compute exactly for infinite sets), we cannot say anything sharp about µ(S(M)).
We could try to find bounds, i.e., real numbers k1, k2, c1, c2 such that

k1 ≤ µ(S(M)) ≤ k2, c1 ≤
µ(S(M))

µ(M)
≤ c2.

If µ is an arbitrary digit measure, then for the first problem we only have the
bounds 0 < µ(S(M)) < ∞, since for every c ∈ R>0 the function cµ also is a digit
measure. So since this question depends on the normalization of µ, we will focus
on the second question.

It is clear that 0 ≤ µ(S(M))
µ(M)

≤ 1 for every digit measure µ and every set M. We
show that there are (in general) no better bounds.

Lemma II.1.38 Let M′ ⊂ N be a finite, not truncatable set and µ an arbitrary zero digit
measure. Then for any ε ∈ (0, 1) there is an infinite set M such that M′ = S(M) and

µ(S(M))

µ(M)
> 1− ε.

Proof. Let m := µ(M′) and R < mε
1−ε . Let L ⊂ N with L ⊂ 〈M′〉 and L ∩M′ = ∅.

Construct a set T ⊂ L in the following way: Start with an empty set T and choose
x1 ∈ L such that µ(x1) < R − µ(T). Add x1 to T. Now choose x2 ∈ L\{x1}
such that µ(x2) < R − µ(T) and add x2 to T. Continuing this process (since
µ is a zero digit measure, there is always a suitable xk) yields an infinite set T
with µ(T) < R. Let M = M′ ∪ T. Then we get µ(S(M)) = µ(M′) = m and
µ(M) = µ(M′) + µ(T) < m

1−ε . Hence the lemma follows. q.e.d.

Now we turn our attention to a lower bound. It seems to be more difficult to
obtain results about lower bounds than to get those about upper bounds. If µ is
an infinite zero digit measure, it is clear that there are no better bounds other than
µ(S(M))

µ(M)
≥ 0. We investigate the problem for the two finite zero digit measures

mentioned in Example II.1.36, i.e., µg and µz. First it is clear that for given M′

(finite and not truncatable) and any set M with S(M) = M′ we have

µ(M′)
µ(M)

≥ µ(M′)
µ(〈M′〉) , (II.1.1)

so we restrict ourselves to this case. Given any finite not truncatable set M′, both
sides of the inequality in (II.1.1) are at least µ(M′)

µ(N) . Since µ(N) is finite, this gives

169



II.1. MINIMAL SETS II.1.6. Heuristics

a lower bound depending on M′. We show that for µg and µz there are no global
lower bounds.

At least for µg this is counterintuitive, since for any k we have

µg(S(〈Ak〉))
µg(〈Ak〉)

=
µg(Ak)

∑i≥k µg(Ai)
=

9 · 10−k

∑i≥k 9 · 10−i =
9

10
.

For µz this ratio becomes more complicated and depends on k:

µz(S(〈Ak〉))
µz(〈Ak〉)

=
6

π2
1
k2

∑i≥k
6

π2
1
i2

=
1
k2

∑i≥k
1
i2

=
1
k2

π2

6 −∑k−1
i=1

1
i2

.

Figure II.1.1 shows the ratio µz(S(〈Ak〉))
µz(〈Ak〉) for k ∈ {1, . . . , 10}.

k

µz(S(〈Ak〉))
µz(〈Ak〉)

1 2 3 4 5 6 7 8 9 10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

Figure II.1.1: Values for µz(S(〈Ak〉))
µz(〈Ak〉) .

Due to the values in Figure II.1.1 we can already guess that the ratio tends to zero.

Theorem II.1.39 We have
µz(Ak)

µz(〈Ak〉)
−→
k→∞

0.

Proof. This follows from

µz(Ak)

µz(〈Ak〉)
=

1
k2

∑i≥k
1
i2

<
1
k2

∑2k
i=k

1
i2

<
1
k2

∑2k
i=k

1
(2k)2

=
1
k2

1
4k2 (k + 1)

=
4

k + 1
.

q.e.d.
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Now we consider µg. Here we cannot take the sets Ak, since the ratio would
be constant as seen above.

Theorem II.1.40 Let Sk denote any set with Sk = {n} such that #n = k. Then

µg(Sk)

µg(〈Sk〉)
−→
k→∞

0.

Proof. First we need to examine µ(〈Sk〉). Unfortunately, we cannot determine this
value exactly, but we can give a bound which suffices for our purpose. Our aim is
to construct a subset of 〈Sk〉 by constructing elements that have exactly l + 1 digits
from those that have l digits. Choose an element x ∈ 〈Sk〉 with l digits. Then we
have l + 1 positions where we can insert a new digit to form a number with l + 1
digits. To make sure that the constructed numbers are all distinct, we choose the
new digit such that its two neighbours are different from the new digit. Thus we
have for any position at least 7 possibilites to do so. Note that we only use one
l-digit number in this process, since otherwise we could get the same l + 1-digit
number more than once. This construction gives a subset T of 〈Sk〉, where we are
missing some (in fact a lot of) elements: For i ∈ N, T has exactly 7(k + i) elements
that have exactly k + i digits. We get

µg(Sk)

µg(〈Sk〉)
<

µg(Sk)

µg(T)

=
101−2k

101−2k + ∑∞
i=1 7(k + i)101−2(k+i)

=
101−2k

101−2k + 7k · 101−2k ∑∞
i=1 100−i + 7 · 101−2k ·∑∞

i=1 i · 100−i

=
101−2k

101−2k + 7 · 101−2k ·
(

k
99 +

100
9801

)
→

k→∞
0.

q.e.d.

In fact the above proof works for a zero digit measure µ if and only if

∞

∑
i=1

(k + i)
µk+i

µk −→k→∞
∞, (II.1.2)

where µl denotes the value of µ at any natural number with l digits.
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Example II.1.41 Consider the zero digit measure µ(n) = 10−(#n)2
. Then

∞

∑
i=1

(k + i)
µk+i

µk =
∞

∑
i=1

(k + i)10−i2−2ki < k
∞

∑
i=1

(
10−2k

)i
+

∞

∑
i=1

i
(

10−2k
)i

= k
10−2k

1− 10−2k +
10−2k

(1− 10−2k)2

=
k · 10−2k · (1− 10−2k) + 10−2k

(1− 10−2k)2

→ 0,

hence µ does not satisfy the condition in (II.1.2). When considering the sets Ak,
we get µ(Ak) = 9 · 10−k2+k−1 and

µ(〈Ak〉) =
∞

∑
i=0

9 · 10k+i−1 · 10−(k+i)2
= 9 · 10−k2+k−1

∞

∑
i=0

10−i2+i−2ki

= µ(Ak)

(
1 +

∞

∑
i=1

10−i2+i−2ki

︸ ︷︷ ︸
→0

)
,

thus µ(Ak)
µ(〈Ak〉) −→k→∞

1. It would be interesting to know whether there are lower

bounds for this digit measure.

We conclude this section with the remark that there cannot be any results that
relate the minimal set of M to an asymptotic formula or the density of M. The rea-
son is that both an asymptotic formula and the densitiy of M would not change
if we changed a finite number of elements in M, whereas the minimal set could
change drastically through this.

II.1.7 An Odd End

Choosing a base other than 10 would not make things easier in general (see
[BDS16] for recent results in this direction). Of course, with the binary expansion
in place of the decimal expansion, a few minimal sets would look more simple,
for example S(P) = {〈10〉2, 〈11〉2}. However, there are still plenty of sets, inter-
esting from a number-theoretical point of view, where the corresponding minimal
set seems to be difficult to describe.

For instance, the set of perfect numbers is conjectured to contain no odd num-
bers, and every even perfect number can be written in the form 2p−1(2p − 1)
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(compare Theorem 0.5.1). Lucas [Luc90] showed that every even perfect number
different from 6 and 496 ends with decimal digits 16, 28, 36, 56, or 76. Hence, if
there is no odd perfect number, then the minimal set of the set of perfect num-
bers is given by {6, 28}. If there exists an odd perfect number, although much
can be said about its hypothetical multiplicative structure, we cannot exclude the
possibility that this odd number is a minimal element. In base 2, the minimal set
would be {〈110〉2} if there was no odd perfect number, and we leave the compu-
tation of the minimal set with respect to other bases (under the same assumption)
to the interested reader.

II.1.8 Future Work

Since this topic is not well known, there is some more possible work. Of course
one could try to determine the minimal sets for more (arithmetically interesting)
sets, in different bases.

• Determine the minimal set (in different bases) for further sets.

In particular it would be nice to see if Shallit’s conjecture about the minimal set
of the powers of 2 is correct.

• Determine the minimal set of {2n : n ∈ N0}.
In this chapter we formulated three more conjectures which one can give some
attention.

• Prove or disprove Conjectures II.1.3, II.1.19, and II.1.24.

Concerning bounds for µ(S(M))
µ(M)

we have only considered zero digits measures.
One could examine this problem for other digit measures (for example the one in
Example II.1.41):

• Let µ be a digit measure. If µ is not a zero digit measure, are there bounds
for µ(S(M))

µ(M)
?

• Find a lower bound for the digit measure in Example II.1.41.

Apart from these conjectures and the determination of some more minimal sets,
it would be great to know if Algorithm II.1.2 can be applied only to unions of
congruence classes or if this algorithm can give the minimal sets for other sets,
too.

• Characterize the truncating stable partitions Ai of N (compare Definition
II.1.15).
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II.2
Adding Generators in Abelian

Groups

In this chapter we examine a connection between graph theory and number the-
ory that is given by Cayley graphs. More precisely, we will determine the neigh-
bourhood of the neighbourhood of vertices in some Cayley graphs of abelian
groups. This can be done by examining the sumset of atoms in abelian groups.

The results of this chapter have been published in [Kre15a].

II.2.1 Introduction

In [SS13], Sander and Sander considered the problem of finding the neighbour-
hood of the neighbourhood of the vertex 0 in gcd graphs Xn(D), i.e., in Cayley
graphs X(G, S) for cyclic groups G and certain subsets S ⊂ G (compare Chapter
I.5). This problem reduces to the problem of adding generators in cyclic groups.
In this chapter, we generalize their result to the case of abelian groups and take
a short look at non-abelian groups. Throughout this chapter, all groups are finite
and additively written.

In their work, Sander and Sander treat the set

Sn;a,b(c) = {(u, v) ∈ atom(a)× atom(b) : u + v = c}
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for given a, b, c ∈ Z/nZ, where

atom(a) := {a′ ∈ Z/nZ : 〈a′〉 = 〈a〉} = a(Z/nZ)∗

= {au : 1 ≤ u ≤ n, gcd(u, n) = 1}.

They derive a representation of atom(a), namely

atom(a) = {ax : 1 ≤ x ≤ ord(a), gcd(x, ord(a)) = 1} =: (a)?n,

where each element b ∈ atom(a) is uniquely represented in (a)?n, i.e., for each
b ∈ atom(a) there is exactly one x with 1 ≤ x ≤ ord(a), gcd(x, ord(a)) = 1 such
that b = ax. Here (and in the rest of this chapter) ord(a) denotes the order of a in
(Z/mZ,+) for a given m ≥ 2, i.e., ord(a) = a

gcd(a,m)
.

It has been known before (see [KS12]), that the sum

atom(a) + atom(b) = {a′ + b′ : a′ ∈ atom(a), b′ ∈ atom(b)}

is the disjoint union of atoms, even in the case of abelian groups. In their paper,
Sander and Sander determine which atoms will appear in the union and they
establish a formula for Nn;a,b(c) := |Sn;a,b(c)|. More precisely, they show (among
others):

Theorem II.2.1 ([SS13]) Let n ∈ N with divisors a and b, let g := gcd(a, b), and let
c ∈ Z/nZ. We set n′ := n

g , a′ := a
g , and b′ := b

g . Let m = n′
a′b′ and m̃3 be the largest

divisor of m with gcd(m̃3, a′b′) = 1. If g|c, let further c′ = c
g .

1. If 2 - n′ or 2|a′b′, then

(a) Nn;a,b(c) > 0 if and only if g|c and gcd(c′, a′b′) = 1.

(b) We have
(a)?n + (b)?n =

⋃
d|m̃3

g(d)?n.

2. If 2|n′ and 2 - a′b′, then

(a) Nn;a,b(c) > 0 if and only if g|c, c′ is even, and gcd(c′, a′b′) = 1.

(b) We have
(a)?n + (b)?n =

⋃
d|m̃3,2|d

g(d)?n.
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In both cases, we have

Nn;a,b(c) = m ∏
p|m,p|a′b′

(
1− 1

p

)
∏

p|n′,p-a′b′,p|c′

(
1− 1

p

)
∏

p|n′,p-a′b′c′

(
1− 2

p

)

if g|c and gcd(c′, a′b′) = 1.

There has been some other work in this area of research. Alperin and Peterson
[AP12] studied atomic numbers, i.e., the number of atoms in some boolean alge-
bra for some groups. Sun and Yang [SY14] generalized the result of Sander and
Sander by examining sums of t atoms for arbitrary t ≥ 2, the case t = 2 being the
case covered in [SS13].

In this chapter, we will take a look at how the result of Sander and Sander
generalizes to abelian groups. We will show that the decomposition of abelian
groups in cyclic groups yields an immediate generalization of Theorem II.2.1 to
abelian groups.

II.2.2 Abelian groups

Let us first generalize the definitions and the problem to the new context. All the
definitions and notations here are completely analogous to those in [SS13].

Let A be an abelian group. We know that A can be decomposed into cyclic
groups, say

A ∼=
k×

i=1

Z/miZ.

There are ways to restrict the orders mi of the cyclic groups to make this decom-
position unique, but since we do not need this we will not pose any conditions on
the mi. We will use this decomposition to regard A not only as an abelian group
but also as a ring.

As for cyclic groups, the atom of a ∈ A is the set of generators of the subgroup
〈a〉, i.e.,

atom(a) := {a′ ∈ A : 〈a′〉 = 〈a〉} = aA∗.

For an a ∈ A, let a = (a1, . . . , ak) be the corresponding element in×k
i=1 Z/miZ.

Then we get

atom(a) ∼= {(a1u1, . . . , akuk) : 1 ≤ ui ≤ mi, gcd(ui, mi) = 1 for all i} .
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This is correct since

A∗ ∼=
k×

i=1

{ui ∈ Z/miZ : gcd(ui, mi) = 1}

= {(u1, . . . , uk) : 1 ≤ ui ≤ mi, gcd(ui, mi) = 1 for all i} .

As in the case of cyclic groups, there are elements in atom(a) which are repre-
sented more than once, so we wish to find a set that represents any of its elements
exactly once. Let

(a)?A := {(a1x1, . . . , akxk) : 1 ≤ xi ≤ ord(ai), gcd(xi, ord(ai)) = 1 for all i}
= {(v1, . . . , vk) : vi ∈ (ai)

?
mi
}.

Here ord(ai) denotes the order of ai in (Z/miZ,+), i.e., ord(ai) =
mi

gcd(ai,mi)
. Then

we have

atom(a) ∼= {(a1u1, . . . , akxk) : 1 ≤ ui ≤ mi, gcd(ui, mi) = 1 for all i}

=
k×

i=1

{aiui : 1 ≤ ui ≤ mi, gcd(ui, mi) = 1}

=
k×

i=1

{aixi : 1 ≤ xi ≤ ord(ai), gcd(xi, ord(ai)) = 1}

= {(a1x1, . . . , akxk) : 1 ≤ xi ≤ ord(ai), gcd(xi, ord(ai)) = 1 for all i}
= (a)?A

and by definition, we get

(a)?A + (b)?A = {(v1, . . . , vk) : vi ∈ (ai)
?
mi

+ (bi)
?
mi
}.

Together with Theorem II.2.1 this gives the sumset (a)?A +(b)?A for abelian groups,
see also Section II.2.3.

For c = (c1, . . . , ck) ∈ A we define

SA;a,b(c) = {(u, v) ∈ (a)?A × (b)?A : u + v = c}

= {(u, v) ∈ (a)?A × (b)?A : ui + vi = ci for all i}

and NA;a,b(c) := |SA;a,b(c)|. Then we have the following result.
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Theorem II.2.2 Let A be an abelian group with A ∼=×k
i=1 Z/miZ and a, b, c ∈ A. For

x ∈ A let (x1, . . . , xk) be the corresponding element in×k
i=1 Z/miZ. Then

SA;a,b(c) ∼=
k×

i=1

Smi;ai,bi(ci) and NA;a,b(c) =
k

∏
i=1

Nmi;ai,bi(ci).

Proof. This follows immediately from the corresponding result for cyclic groups
and the decomposition of A into cyclic groups:

SA;a,b(c) = {((a1x1, . . . , akxk), (b1y1, . . . , bkyk)) :

1 ≤ xi ≤ ord(ai), gcd (xi, ord(ai)) = 1,

1 ≤ yi ≤ ord(bi), gcd (yi, ord(bi)) = 1,

aixi + biyi ≡ ci mod mi for all i}
∼= {(a1x1, b1y1) :

1 ≤ x1 ≤ ord(a1), gcd (x1, ord(a1)) = 1,

1 ≤ y1 ≤ ord(b1), gcd (y1, ord(b1)) = 1,

a1x1 + b1y1 ≡ c1 mod m1}
× · · · × {(akxk, bkyk) :

1 ≤ xk ≤ ord(ak), gcd (xk, ord(ak)) = 1,

1 ≤ yk ≤ ord(bk), gcd (yk, ord(bk)) = 1,

akxk + bkyk ≡ ck mod mk}

=
k×

i=1

Smi;ai,bi(ci).

q.e.d.

II.2.3 Applications for Cayley graphs

As already mentioned, we can use the results about sumsets to deduce properties
of neighbourhoods in Cayley graphs. Recall that the Cayley graph X(H, S) for a
finite (additive) group H and a subset S ⊂ H with 0 /∈ S,−S = S is defined as
follows:

The vertices of X(H, S) are the elements of H, and two elements g, h ∈ H are
adjacent whenever g− h ∈ S.
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We are interested in the sets N1(v) and N2(v), i.e., in those vertices with dis-
tance 1 or 2 from v. Since Cayley graphs are transitive (compare Paragraph 0.4.5),
it suffices to consider v = 0. In this case we immediately get N1(v) = S and
N2(v) = (S + S)\{0} if X(H, S) has no triangles, so our result explicitly yields
the set N2(v). In our example, we will examine a set S which is the disjoint union
of atoms rather than being an atom itself.

Example II.2.3 Let H = Z/30Z×Z/12Z and S = atom(3, 2) ∪ atom(5, 3). Since

(3)?30 = {3, 9, 21, 27}, (5)?30 = {5, 25}, (2)?12 = {2, 10}, (3)?12 = {3, 9}

we have

N0(0, 0) ={(0, 0)},
N1(0, 0) ={(3, 2), (3, 10), (9, 2), (9, 10), (21, 2), (21, 10), (27, 2), (27, 10),

(5, 3), (5, 9), (25, 3), (25, 9)}.

To determine N2(0, 0) we compute the sums of the atoms. We get

(3)?30 + (3)?30 =
⋃

2|d,d|10

3(d)?30 = (6)?30 ∪ (0)?30,

(3)?30 + (5)?30 =
⋃

2|d,d|2
(d)?30 = (2)?30,

(5)?30 + (5)?30 =
⋃

2|d,d|6
5(d)?30 = (10)?30 ∪ (0)?30,

(2)?12 + (2)?12 =
⋃

2|d,d|6
2(d)?12 = (4)?12 ∪ (0)?12,

(2)?12 + (3)?12 =
⋃
d|1
(d)?12 = (1)?12,

(3)?12 + (3)?12 =
⋃

2|d,d|4
3(d)?12 = (6)?12 ∪ (0)?12,

and

(2)?30 = {2, 4, 8, 14, 16, 22, 26, 28}, (6)?30 = {6, 12, 18, 24}, (10)?30 = {10, 20},
(1)?12 = {1, 5, 7, 11}, (4)?12 = {4, 8}, (6)?12 = {6}.
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Thus the possible vertices with distance 2 are

Y ={(2, 1), (4, 1), (8, 1), (14, 1), (16, 1), (22, 1), (26, 1), (28, 1),

(2, 5), (4, 5), (8, 5), (14, 5), (16, 5), (22, 5), (26, 5), (28, 5),

(2, 7), (4, 7), (8, 7), (14, 7), (16, 7), (22, 7), (26, 7), (28, 7),

(2, 11), (4, 11), (8, 11), (14, 11), (16, 11), (22, 11), (26, 11), (28, 11),

(6, 4), (12, 4), (18, 4), (24, 4), (6, 8), (12, 8), (18, 8), (24, 8),

(6, 0), (12, 0), (18, 0), (24, 0), (0, 4), (0, 8),

(10, 6), (20, 6), (10, 0), (20, 0), (0, 6)}.

Since none of them is a neighbour of (0, 0), we indeed have N2(0, 0) = Y.

II.2.4 Non-abelian groups

As we have seen, the sum of a disjoint union of atoms is again a disjoint union
of atoms when H is abelian. If H is non-abelian, this is not true in general, as the
following example shows.

Example II.2.4 Let H = GL2(F7) and S = atom(X) ∪ atom(Y) where

X =

(
0 1
−1 0

)
, Y =

(
1 2
1 1

)
.

Then X has order 4 and Y has order 6, hence we have atom(X) = {X, X3} and
atom(Y) = {Y, Y5}. So we get

S = atom(X) ∪ atom(Y) =

{(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
1 2
1 1

)
,

(
−1 2
1 −1

)}
,

S · S = {X2, Y2, Y4, YX, Y5X, YX3, Y5X3, XY, XY5, X3Y, X3Y5}

=

{(
−1 0
0 −1

)
,

(
3 −3
2 3

)
,

(
3 3
−2 3

)
,

(
−2 1
−1 1

)
,

(
−2 −1
1 1

)
,

(
2 −1
1 −1

)
,

(
2 1
−1 −1

)
,

(
1 1
−1 −2

)
,

(
1 −1
1 −2

)
,

(
−1 −1
1 2

)
,

(
−1 1
−1 2

)}
.
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Let A :=

(
−2 1
−1 1

)
. A has order 16, hence

atom(A) = {A, A3, A5, A7, A9, A11, A13, A15}.

But A3 =

(
2 2
−2 1

)
, therefore we have A ∈ S · S and A3 /∈ S · S, thus S · S cannot

be the union of atoms.

In the context of Cayley graphs this means that the set N2(0) need not be a
disjoint union of atoms if S is a disjoint union of atoms.

II.2.5 Future Work

There are a few open questions which one could consider. When searching for an
example in the non-abelian case, one finds some situations in which the set S ◦ S
is a disjoint union of atoms if S is a disjoint union of atoms, for example when
examining symmetric groups. So one could ask:

• Is S ◦ S a disjoint union of atoms if S is a disjoint union of atoms and S is a
subset of some symmetric group?

In Example II.2.4, the set S was the disjoint union of two atoms. What happens if
we take S to be an atom itself?

• Is S ◦ S a disjoint union of atoms if S is an atom and S ⊂ H for a non-abelian
group H?

If the above questions will be answered in the negative, this could raise the ques-
tion of how a set S has to look like such that S ◦ S is a disjoint union of atoms.

• Given a non-abelian group H, characterize the subsets S ⊂ H such that S ◦ S
is a disjoint union of atoms whenever S is a disjoint union of atoms.

Regarding generalizations of our result, one could take a look at the paper of Sun
and Yang [SY14] who examined sums of t atoms in cyclic groups. This should
generalize to abelian groups.

• Does an analogous statement of Theorem II.2.2 hold if we consider sums of
t ≥ 2 atoms in abelian groups?
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II.3
On the Number of Solutions of

Linear Equations over Factor Rings of
Principal Ideal Domains

In this chapter we examine certain equations over principal ideal domains R. In
the case R = Z this can be applied in the circle method. We will determine the
number of solutions for two different equations, both defined over principal ideal
domains R with some finiteness conditions. We will use algebraic methods, thus
this chapter shows a connection between algebra and number theory. Some ex-
amples for the results of this chapter (in particular of Section II.3.5) can be found
in Appendix A.4.

The results of this chapter have been published in [Kre16].

II.3.1 Introduction

We determine the number of solutions of two different kinds of linear equations,
namely

{x ∈ (R/a)n : Ax ∈ a} and {x ∈ (R/a)n : 〈d, x〉 ∈ a}
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where R is a principal ideal domain, a / R is an ideal of R, A ∈ Mm,n(R) and
d∈Rn for some m, n ∈ N. Here 〈x, y〉 = x1y1 + · · ·+ xnyn if x = (x1, . . . , xn) ∈ Rn,
y = (y1, . . . , yn) ∈ Rn.

To avoid confusion, throughout this chapter let p denote a prime in N and π a
prime in R (since we are working over principal ideal domains this is equivalent
to saying that π is irreducible). If a ∈ Z, ∏p|a denotes, as usual, the product over
all primes (in N) dividing a, while if a ∈ R, the notation ∏π|a means the following:
Fix a prime decomposition of a in R. Then the prime π contributes to the product
if and only if it appears in this fixed decomposition. Whenever x ∈ Rm for some
m, the condition x ∈ a for an ideal a / R means that each of the components of x
lies in a. Analogously, x ≡ y mod a for x, y ∈ Rm means that xi ≡ yi mod a for
the components of x and y. We write a ∼ b for a, b ∈ R if there is a c ∈ R∗ such
that a = cb. If R = Z and the matrix A is a square matrix, we let ∆ = |det(A)|.

Since R is a principal ideal domain, we determine the following numbers:

|{x ∈ (R/(a))n : Ax ∈ (a)}| (II.3.1)

and

|{x ∈ (R/(a))n : 〈d, x〉 ∈ (a)}| (II.3.2)

for an a ∈ R.

In the case R = Z, the equations appearing in (II.3.1) and (II.3.2) are just linear
congruences, i.e., we determine

|{Ax ≡ 0 mod a}| (II.3.3)

and

|{〈d, x〉 ≡ 0 mod a}| . (II.3.4)

The equation in (II.3.2) is in fact just a special case of the one in (II.3.1). We
consider this as a problem in its own right since we will use a more direct ap-
proach to solve this (compare also the comments in Section II.3.6). In fact, we
shall impose another condition on the vector d in (II.3.2) and (II.3.4) that will be
motivated from the solution to the first problem.

To avoid trivial cases we will always assume that a is a nontrivial ideal, i.e.,
a 6= 0 and a /∈ R∗.
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Equations involving matrices have been widely studied. The equation AX=B
for given matrices A, B has (among others) been studied by Khatri and Mitra
[KM76], Horn, Sergeichuk, and Shaked-Monderer [HSSM05], Don [Don87] and
Hua [Dai90]. In their works, the main goal was to find a solution with given
properties (for example hermitian, nonnegative definite). Other equations that
have been studied include the equations AXC = B (Zhang [Zha04], Khatri and
Mitra [KM76], Hua [Dai90]) or systems of matrix equations (Tian [Tia02], Khatri
and Mitra [KM76]).

Camon, Levy, and Mann [CLM71] considered the equation Ax = 1 over a
commutative ring R. In this chapter we study a similar equation, the main goal
beeing not to give a criterion for solvability (since our equation will always be
solvable), but to find the number of solutions.

The result for the number (II.3.3) (in particular an upper bound) is useful for
applications in number theory.

To be more precise, let F be a nonsingular (i.e., the matrix associated to F has
nonzero determinant) quadratic form in n variables. To estimate representation
numbers of F, one can use a form of the circle method (compare Chapter I.10) and
consider the sum (compare [HB96])

Sq(c) =
∗
∑

a mod q
∑

b mod q
eq(aF(b) + 〈c, b〉).

Here q ∈ N, c ∈ Zn and eq(x) is defined as eq(x) = exp(2πix/q). The star in
the first sum indicates that we only sum over those a coprime to q. In the second
sum, every entry of b runs modulo q independently. An easy estimate using the
Cauchy-Schwarz inequality yields

∣∣Sq(c)
∣∣2 ≤ ϕ(q)

∗
∑

a mod q
∑

w mod q
eq(aF(w) + 〈c, w〉) ∑

v mod q
eq(〈av,∇F(w)〉),

where ϕ denotes the Euler totient function and∇F the gradient of the function F.

Here the last summation will only contribute if q|∇F(w). But∇F(w) = 2Mw
where M is the underlying matrix of the quadratic form F. To give an explicit
bound for Sq(c) we therefore need to determine the number of w ∈ (Z/qZ)n

such that 2Mw ≡ 0 mod q.
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II.3.2 The number |{x ∈ (R/(a))n : Ax ∈ (a)}|
Since we are working over a principal ideal domain, we can compute the Smith
normal form of A, cf. Theorem 0.4.8. Let B denote the Smith normal form of A.
Then there exist U ∈ GLm(R), V ∈ GLn(R) such that A = UBV. Since U and V
are invertible, we see at once that

|{x ∈ (R/(a))n : Ax ∈ (a)}| = |{x ∈ (R/(a))n : Bx ∈ (a)}| .

So it remains to examine the problem for matrices B in Smith normal form, i.e.,
we have

B =



d1

d2
. . .

dz

0
. . .

0


with di|di+1, i = 1, . . . , z− 1.

We will write this in short as B = diag(d1, . . . , dr) with r = min(m, n) by allowing
0|0. The elements di are determined up to units c ∈ R∗. Note that det(U) ∈ R∗

and det(V) ∈ R∗, thus for m = n we have

det(A) ∼ det(B) =
n

∏
i=1

di.

We have the following theorem:

Theorem II.3.1 Let R be a principal ideal domain such that |R/(π)| is finite for each
irreducible π ∈ R. Let a ∈ R and denote by vπ(h) the π-adic valuation of h ∈ R,
i.e., the biggest exponent of π that occurs in a prime decomposition of h. Let further
A ∈ Mm,n(R) with Smith normal form B = diag(d1, . . . , dr) where r = min(m, n).
Then

|{x ∈ (R/(a))n : Ax ∈ (a)}| = ∏
π|a

r

∏
i=1
|R/(π)|min(vπ(di),vπ(a)) .
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Proof. Let

a ∼
k

∏
i=1

π
ti
i

be a decomposition of a into primes in R. Then the Chinese remainder theorem
yields

R/(a) ∼=
k×

i=1

R/(πti
i ),

hence
Bx ∈ (a)⇔ Bx ∈ (πti

i ) for all i.

Since B is in Smith normal form, this condition means that dlxl ∈ (πt) for all
l = 1, . . . , m for each π (here we omit the index i to avoid too much nested indices
and exponents).

We consider each of the equations dlxl ∈ (πt) separately. Write dl = πvπ(dl)rl

with rl ∈ R, π - rl, i.e., dlxl ∈ (πvπ(dl)). We distinguish two cases:

• Suppose that vπ(dl) ≥ t. In this case, (πvπ(dl)) ⊂ (πt), so we can choose xl

arbitrarily in R/(πt).

• Suppose that vπ(dl) ≤ t. Cancelling πvπ(dl) in the equation dlxl ∈ (πvπ(dl))

yields rlxl ∈ (πt−vπ(dl)). Since π - rl, this means we can choose xl arbitrarily
in πt−vπ(dl)R/(πt) ∼= R/(πvπ(dl)).

The following lemma gives the cardinality of the respective factor rings and
this proves the theorem. q.e.d.

Lemma II.3.2 Let R be a principal ideal domain and a ∈ R. Then
∣∣R/(at)

∣∣ = |R/(a)|t.

Proof. Let k, l, t ∈ N, k ≤ l ≤ t and let M = (at), L = (al), K = (ak). Then
K, L, M are R-modules and M ⊂ L ⊂ K is a chain of submodules. Therefore, the
well-known formula |K/M| = |K/L| |L/M| gives

∣∣R/(at)
∣∣ = |R/(a)| ·

∣∣(a)/(at)
∣∣ = |R/(a)| ·

∣∣∣(a)/(a2)
∣∣∣ · ∣∣∣(a2)/(at)

∣∣∣
= . . . = |R/(a)| ·

∣∣∣(a)/(a2)
∣∣∣ · · · ∣∣∣(at−1)/(at)

∣∣∣
= |R/(a)|t .

q.e.d.
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II.3.2.1 Two special cases: rings of integers and polynomial rings

As we have seen above, we are left with counting the number of elements in
factor rings of the form R/(π), where R is a principal ideal domain and π ∈ R
is irreducible. Unfortunately, these rings can have infinitely many elements (for
example if R = K[X] for an infinite field K and π = X). Even if these rings
have finitely many elements, it may not be possible to determine the number of
elements. In this paragraph we will consider two special cases, namely R = F[X]

where F is a finite field and R = OK, i.e., R is the ring of integers of a number
field K. We get the following result.

Corollary II.3.3

1. Let F be a finite field with exactly ps elements and f ∈ F[X]. Let further m, n ∈ N,
A ∈ Mm,n(F[X]), and B = diag(d1, . . . , dr) the Smith normal form of A where
r = min(m, n). Then

|{x ∈ (F[X]/( f ))n : Ax ∈ ( f )}| = ∏
π| f

r

∏
i=1

ps deg(π)(min(vπ(di),vπ( f ))).

2. Let K be a number field whose ring of integers OK is a principal ideal domain
(compare Theorem 0.5.26) and let a ∈ OK. Let m, n ∈ N, A ∈ Mm,n(OK), and
B = diag(d1, . . . , dr) be the Smith normal form of A where r = min(m, n). Then

|{x ∈ (OK/(a))n : Ax ∈ (a)}| = ∏
π|a

r

∏
i=1

∣∣∣NK
Q(π)

∣∣∣min(vπ(di),vπ(a))
.

3. Let a ∈ Z and m, n ∈ N. Let further A ∈ Mm,n(Z) with Smith normal form
B = diag(d1, . . . , dr) where r = min(m, n). If m = n, let ∆ = |det(A)|. Then

|{x ∈ (Z/aZ)n : Ax ≡ 0 mod a}| = ∏
p|a

r

∏
i=1

pmin(vp(di),vp(a)),

and if m = n and ∆ 6= 0, we have the bound

|{x ∈ (Z/aZ)n : Ax ≡ 0 mod a}| ≤ gcd(∆, an) ≤ ∆.
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Proof.

1. First consider R = F[X] and let π ∈ R be an irreducible polynomial. Then
we have

|F[X]/(πw)| = ps deg(π)w.

So we get for f ∈ F[X]∣∣∣{xi ∈ F[X]/( f ) : dixi ∈ (πvπ( f ))}
∣∣∣ = ps deg(π)(min(vπ(di),vπ( f )))

and therefore∣∣∣{x ∈ (F[X]/( f ))n : Bx ∈ (πvπ( f ))}
∣∣∣ = r

∏
i=1

ps deg(π)(min(vπ(di),vπ( f ))).

Using the Chinese remainder theorem, this gives

|{x ∈ (F[X]/( f ))n : Bx ∈ ( f )}| = ∏
π| f

r

∏
i=1

ps deg(π)(min(vπ(di),vπ( f ))).

2. Let now R = OK for a number field K. Then

|OK/(πw)| = N((πw)) =
∣∣∣NK

Q(π
w)
∣∣∣ = ∣∣∣NK

Q(π)
∣∣∣w .

For a ∈ OK we obtain∣∣∣{xi ∈ OK/(a) : dixi ∈ (πvπ(a))}
∣∣∣ = ∣∣∣NK

Q(π)
∣∣∣min(vπ(di),vπ(a))

and therefore∣∣∣{x ∈ (OK/(a))n : Bx ∈ (πvπ(a))}
∣∣∣ = r

∏
i=1

∣∣∣NK
Q(π)

∣∣∣min(vπ(di),vπ(a))
.

Using the Chinese remainder theorem, this gives

|{x ∈ (OK/(a))n : Bx ∈ (a)}| = ∏
π|a

r

∏
i=1

∣∣∣NK
Q(π)

∣∣∣min(vπ(di),vπ(a))
.

3. In the case K = Q the above formula reads

|{x ∈ (Z/aZ)n : Bx ≡ 0 mod a}| = ∏
p|a

r

∏
i=1

pmin(vp(di),vp(a)).
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From this equation it is easy to get an upper bound for the number of solu-
tions. If m = n and ∆ 6= 0, we get, using vp(h1) + vp(h2) = vp(h1h2) for all
h1, h2 ∈ R,

∏
p|a

n

∏
i=1

pmin(vp(di),vp(a)) = ∏
p

p∑n
i=1 min(vp(di),vp(a))

≤∏
p

pmin(vp(∆),nvp(a))

= gcd(∆, an) ≤ ∆.

q.e.d.

Note that we did not use the condition di|di+1. We could use this to give a
better upper bound, depending on the index j for which we have vp(dj) < vp(a)
and vp(dj+1) ≥ vp(a) (if such a j exists).

Example II.3.4 Let A ∈ M4,4(Z) with det(A) = 19440 = 24 · 35 · 5. Then there
are 30 possibilities for the Smith normal form of A. These possibilities and the
corresponding number of solutions of the equation in (II.3.3) with a = 18 are
shown in Table II.3.1.

d1 d2 d3 d4
number of d1 d2 d3 d4

number of
solutions solutions

1 1 1 19440 18 1 1 2 9720 36
1 1 3 6480 54 1 1 4 4860 36
1 1 6 3240 108 1 1 9 2160 162
1 1 12 1620 108 1 1 18 1080 324
1 1 36 540 324 1 2 2 4860 72
1 2 6 1620 216 1 2 18 540 648
1 3 3 2160 162 1 3 6 1080 324
1 3 9 720 486 1 3 12 540 324
1 3 18 360 972 1 3 36 180 972
1 6 6 540 648 1 6 18 180 1944
2 2 2 2430 144 2 2 6 810 432
2 2 18 270 1296 2 6 6 270 1296
2 6 18 90 3888 3 3 3 720 486
3 3 6 360 972 3 3 12 180 972
3 6 6 180 1944 6 6 6 90 3888

Table II.3.1: Possible Smith normal forms of A when det(A) = 19440 and the
corresponding number of solutions in (II.3.3) with a = 18.

190



II.3. NUMBER OF SOLUTIONS OF LINEAR EQUATIONS II.3.3. |{x ∈ (R/(a))n : 〈d, x〉 ∈ (a)}|

Figure II.3.1 shows the distribution of the number of solutions, i.e., the num-
bers at the bars indicate how many different Smith normal forms yield this num-
ber of solutions.

1
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36

1
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1

72

2

108

1
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216

4

324

1

432

2
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2
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972

2
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2

1944

2

3888

Figure II.3.1: Distribution of the number of solutions of (II.3.3) for matrices with
determinant 19440 and a = 18.

Table II.3.1 and Figure II.3.1 show that different Smith normal forms can yield
the same number of solutions. It would be nice to be able to say something about
the distribution of solutions with respect to Smith normal forms (for a given de-
terminant), cf. Section II.3.6.

II.3.3 The number |{x ∈ (R/(a))n : 〈d, x〉 ∈ (a)}|
Now we determine the number

|{x ∈ (R/(a))n : 〈d, x〉 ∈ (a)}|

directly, i.e., whithout using the notion of Smith normal forms.

As said before, we will impose another condition to this equation. This will be
an equivalent of the condition we had in our first problem, i.e., we consider only
those d that satisfy di|di+1. Since for m = n each solution of the equation in (II.3.1)
is also a solution for the equation in (II.3.2), we see at once that the equation in
(II.3.2) has at least as many solutions as the equation in (II.3.1). Precisely, we have
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Theorem II.3.5 Let R be a principal ideal domain such that |R/(π)| is finite for each
irreducible π ∈ R. Let a ∈ R and d = (d1, . . . , dn) ∈ Rn with di|di+1. Then

|{x ∈ (R/(a))n : 〈d, x〉 ∈ (a)}| = ∏
π|a
|R/(π)|(n−1)vπ(a)+min(vπ(d1),vπ(a)) .

Proof. Let t = vπ(a). We will again use the Chinese remainder theorem and we
first consider the equation d1x1 + · · ·+ dnxn ∈ (πt). Choose x2, . . . , xn ∈ R/(πt).
This gives some residue

r :=
n

∑
i=2

dixi ∈ R/(πt).

Since vπ(di+1) ≥ vπ(di) we have

vπ(r) ≥ vπ(d2) ≥ vπ(d1).

Let r = πvπ(r) f and d1 = πvπ(d1)q with f , q ∈ (R/(π))∗. We get the equation

qπvπ(d1)x1 + πvπ(r) f ∈ (πt).

If t ≤ vπ(d1), then vπ(r) ≥ t and we can choose x1 arbitrary in R/(πt). In the
other case the equation is equivalent to

qx1 + πvπ(r)−vπ(d1) f ∈
(

πt−vπ(d1)
)

.

We want to multiply this by the inverse of q in R/
(

πt−vπ(d1)
)

. Since π - q we

know that q is not a zero divisor in R/(πt−vπ(d1)). From the well-known fact that
in finite rings an element a 6= 0 is either a unit or a zero divisor, we deduce that q
is a unit. Let q be the inverse of q in R/(πt−vπ(d1)). Then we have

x1 = − f qπvπ(r)−vπ(d1) +
(

πt−vπ(d1)
)

,

i.e., x1 is uniquely determined in R/(πt−vπ(d1)). That leaves us with

∣∣R/(πt)
∣∣∣∣R/

(
πt−vπ(d1)

)∣∣ = ∣∣∣R/
(

πvπ(d1)
)∣∣∣

possible values for x1. Together with the
∣∣R/

(
πt)∣∣ choices for each of x2, . . . , xn

this proves the theorem. q.e.d.
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II.3.3.1 Two special cases: rings of integers and polynomial rings

We compute the number (II.3.2) for the rings F[x] and OK.

Corollary II.3.6

1. Let F be a finite field with |F| = ps and f ∈ F[X]. Let further n ∈ N and
d = (d1, . . . , dn) ∈ (F[X])n with di|di+1 for all i = 1, . . . , n− 1. Then

|{x ∈ (F[X]/( f ))n : 〈d, x〉 ∈ ( f )}| = ∏
π| f

ps deg(π)((n−1)vπ( f )+min(vπ( f ),vπ(d1))).

2. Let K be a number field whose ring of integers OK is a principal ideal domain
(compare Theorem 0.5.26) and let a ∈ OK. Let n∈N and d=(d1, . . . , dn)∈ (OK)

n

with di|di+1 for all i = 1, . . . , n− 1. Then

|{x ∈ (OK/(a))n : 〈d, x〉 ∈ (a)}| = ∏
π|a

∣∣∣NK
Q(π)

∣∣∣vπ(a)(n−1)+min(vπ(a),vπ(d1))
.

3. Let a, n ∈ N and d = (d1, . . . , dn) ∈ Zn with di|di+1 for all i = 1, . . . , n − 1.
Then we have

|{x ∈ (Z/aZ)n : 〈d, x〉 ≡ 0 mod a}| = an−1 ∏
p|a

pmin(vp(a),vp(d1))

and we have the bound

|{x ∈ (Z/aZ)n : 〈d, x〉 ≡ 0 mod a}| ≤ min(an, an−1d1).

Proof. We have∣∣∣{x ∈ (F[X]/( f ))n : 〈d, x〉 ∈ (πvπ( f ))}
∣∣∣= ps deg(π)vπ( f )(n−1)ps deg(π)min(vπ( f ),vπ(d1))

and∣∣∣{x ∈ (OK/(a))n : 〈d, x〉 ∈ (πvπ(a))}
∣∣∣= ∣∣∣NK

Q(π)
∣∣∣vπ(a)(n−1) ∣∣∣NK

Q(π)
∣∣∣min(vπ(a),vπ(d1))

.

With the Chinese remainder theorem, this gives

|{x ∈ (F[X]/( f ))n : 〈d, x〉 ∈ ( f )}| = ∏
π| f

ps deg(π)((n−1)vπ( f )+min(vπ( f ),vπ(d1)))
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and

|{x ∈ (OK/(a))n : 〈d, x〉 ∈ (a)}| = ∏
π|a

∣∣∣NK
Q(π)

∣∣∣vπ(a)(n−1)+min(vπ(a),vπ(d1))
,

and in particular if K = Q, we get

|{x ∈ (Z/aZ)n : 〈d, x〉 ≡ 0 mod a}| = ∏
p|a

pvp(a)(n−1)+min(vp(a),vp(d1))

= an−1 ∏
p|a

pmin(vp(a),vp(d1)).

For the upper bound in the case R = Z, we note that

an−1 ∏
p|a

pmin(vp(a),vp(d1)) ≤ min(an, an−1d1).

q.e.d.

II.3.4 Remarks

A few remarks shall be made here. As already mentioned, the number (II.3.4) is
clearly greater than or equal to the number (II.3.3) if m = n. We get this also from
our theorems, since

|{x ∈ (Z/aZ)n : Ax ≡ 0 mod a}| = ∏
p|a

n

∏
i=1

pmin(vp(di),vp(a))

≤
∏

p|a

n

∏
i=2

pvp(a)

 ·
∏

p|a
pmin(vp(d1),vp(a))


= an−1 ∏

p|a
pmin(vp(d1),vp(a))

= |{x ∈ (Z/aZ)n : 〈d, x〉 ≡ 0 mod a}| .

It was clear from the beginning that the equation in (II.3.4) has at least an−1

solutions. We also see that in the case vp(d2) < vp(a) the equation in (II.3.3) has
less solutions then the one in (II.3.4). If we have vp(di) < vp(a) for many (or
even all) indices i ≥ 2, then the equation in (II.3.3) has much fewer solutions then
the one in (II.3.4). This is the reason why we cannot get a good upper bound for
(II.3.4).
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As a last remark we examine the condition di|di+1. While we did not use this
in the treatment of (II.3.1), we did so for (II.3.2) when dealing with the residue r.
In fact, our arguments would also work if we didn’t assume that di|di+1, but in
the definition of r we would have to distinguish which of the di has the smallest
π-valuation vπ(di), for each π|a separately. This would make the formula much
more complicated.

With the result for (II.3.3) we get the following estimate for the sum Sq(c)
mentioned in Section II.3.1:

∣∣Sq(c)
∣∣ ≤ (ϕ(q)

∗
∑

a mod q
∑

w mod q
eq(aF(w) + 〈c, w〉) ∑

v mod q
eq(〈av,∇F(w)〉)

) 1
2

≤
(

ϕ(q)
∗
∑

a mod q
qn |{v : (2M)v ≡ 0 mod q}|

) 1
2

≤
(

ϕ(q)
∗
∑

a mod q
qn gcd(2n det(M), q)

) 1
2

≤ (gcd(2n det(M), q))
1
2 q1+ n

2 .

II.3.5 Distribution of solutions

Now we examine the distribution of the solutions of the equation in (II.3.3) with
respect to the ideal (a). Let A be an n × n integer matrix, ∆ := |det(A)|, and
m ∈ N. We define

#y(A, m) :=
∣∣{a ∈ [1, m] :

∣∣{x ∈ (Z/aZ)n : Ax = 0 mod a}
∣∣ = y}

∣∣ .

We determine #y(A, m) in some special cases. First, #y(A, m) = 0 if y - ∆ (this
follows directly from the formula in Theorem II.3.1). The converse is not true, as
the examples in Appendix A.4 show. From now on, we suppose that y|∆. Note
that in the case a = 1 the equation trivially has exactly one solution.

Theorem II.3.7 Let A ∈ Mn,n(Z) and ∆ = |det(A)|. Let ∆ = ∏r
i=1 pvi

i be the prime
decomposition of ∆.
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1. For y = 1, we have

#1(A, m) = S∆
m := ∑

I⊂{1,...,r}
(−1)|I|

⌊
m

∏i∈I pi

⌋

and
S∆

m = m ∏
p|∆

(
1− 1

p

)
− R

with R ∈ (−2r−1, 2r−1) independently of m.

2. Let y > 1 with y|∆ and let y, ∆ both be square-free. Then we have

#y(A, m) = S∆
m(y) := ∑

I⊂{1,...,r}
(−1)|I|

⌊
m

y ·∏i∈I pi

⌋

and
S∆

m(y) =
m
y ∏

p|∆
p-y

(
1− 1

p

)
− Ry

with Ry ∈ (−2r−1, 2r−1) independently of m.

In particular we have #∆(A, m) = bm
∆ c if ∆ is squarefree.

Proof.

1. First we consider the case y = 1. We have

∣∣{x ∈ (Z/aZ)n : Ax = 0 mod a}
∣∣ = 1

if and only if for all p we have

vp(a) = 0 or vp(dl) = 0 for all l,

i.e., if we have p - ∆ or p - a for all p ∈ P. So we get

#1(A, m) = |{a ∈ [1, m] : (∀p ∈ P : p - ∆ or p - a)}|
= m− |{a ∈ [1, m] : (∃p ∈ P : p|∆ and p|a)}|
= m− |{a ∈ [1, m] : pi|a for some i ∈ {1, . . . , r}}|

= m− ∑
∅ 6=I⊂{1,...,r}

(−1)|I|+1
⌊

m
∏i∈I pi

⌋
= S∆

m.
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We estimate S∆
m. For all I ⊂ {1, . . . , r} let m

∏i∈I pi
=
⌊

m
∏i∈I pi

⌋
+ ε I . In particu-

lar 0 ≤ ε I < 1 for all I. Then

#1(A, m) = ∑
I⊂{1,...,r}

(−1)|I|
⌊

m
∏i∈I pi

⌋
= ∑

I⊂{1,...,r}
(−1)|I|

(
m

∏i∈I pi
+ ε I

)
= ∑

I⊂{1,...,r}
(−1)|I|

m
∏i∈I pi

+ ∑
I⊂{1,...,r}

(−1)|I|ε I︸ ︷︷ ︸
=:R

.

We want to bound R. There are (r
k) subsets I of {1, . . . , r} with exactly k

elements. Let εk ∈ [0, 1) be the arithmetic mean of all the ε I with |I| = k.
Then

R =
r

∑
k=0

(−1)k
(

r
k

)
εk.

Thus we get

R > −
b r−1

2 c
∑
l=0

(
r

2l + 1

)
= −1

2
(2r) > −2r−1

and

R <
b r

2 c
∑
l=1

(
r
2l

)
=

1
2
(2r) < 2r−1.

2. Let y = p f1
1 · · · p

fr
r with fi ∈ {0, 1} be the prime decomposition of y. Then

∣∣{x ∈ (Z/aZ)n : Ax = 0 mod a}
∣∣ = y

if and only if

• ∑r
l=1 vpi(dl) = 1 and vpi(a) ≥ 1 for all i with fi = 1, and

• vpi(dl) = 0 or vpi(a) = 0 for all i with fi = 0.

Since ∆ is squarefree, the condition ∑r
l=1 vp(dl) = 1 is equivalent to p|∆.

Thus we have ∣∣{x ∈ (Z/aZ)n : Ax = 0 mod a}
∣∣ = y

if and only if

(pi|∆ and pi|a if fi = 1) and (pi - ∆ or pi - a if fi = 0).
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In the same way as for y = 1 we now get

#y(A, m) = ∑
I⊂{1,...,r}

(−1)|I|
⌊

m
y ·∏i∈I pi

⌋
= S∆

m(y)

=
m
y ∏

p|∆
p-y

(
1− 1

p

)
−

r

∑
k=0

(−1)k
(

r
k

)
εk(y)︸ ︷︷ ︸

=:Ry

and we have Ry ∈ (−2r−1, 2r−1) independently of m. This proves the theo-
rem.

q.e.d.

If y 6= 1 is not squarefree, the number #y(A, m) will depend on the Smith
normal form of the matrix A (as can be seen from the examples in Appendix A.4).

II.3.6 Future Work

There are some more questions or generalizations which one could examine. We
determined the number of solutions of some linear equations for special rings,
this could be done for other special rings.

• Determine the number of solutions of the equations in (II.3.1) and (II.3.2) for
other special rings.

It would also be interesting to know if the same results hold if R is not a principal
ideal domain but a unique factorization domain.

• Compute the numbers (II.3.1) and (II.3.2) it R is a unique factorization do-
main.

This may (at least for (II.3.1)) get more complicated, since matrices over unique
factorization domains need not have a Smith normal form. In the determination
of (II.3.2) we did not need the Smith normal form, thus it could probably be possi-
ble to determine (II.3.2) for unique factorization domains. This again justifies the
separate treatment of (II.3.2) instead of just handling it as a special case of (II.3.1).

Of course, our approach would not work if we were dealing with nonlinear equa-
tions. But one could think about multilinear equations: If ψ : Rn → R is a mul-
tilinear form, one can consider the equation ψ(x) ∈ (a). This is a generalization
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of (II.3.2) where we are in fact dealing with a linear form ψ, i.e., a linear map
ψ : R → R. Any n-linear form can be represented by an n-tensor (this is a matrix
if n = 2). One could try to determine the corresponding number of solutions:

• Let ψ : Rn → R be a multilinear form. Determine the number

|{x ∈ (R/(a))n : ψ(x) ∈ (a)}| .

This seems to be much harder, already for the case n = 2 where we have to deal
with matrices. If the bilinear form is represented by the matrix A, we can again
try to use the Smith normal form to obtain

xT Ax = (UTx)T A(Vx).

Here we cannot substitute y = Vx to get yT Ay (this would be the equivalent to
what we did in the linear case). If we substitute to y(x)T Ay (i.e., y depends on x)
and write the dependence on x explicitly, this would destroy the nice form of A.
We could of course start with a matrix A in Smith normal form (in fact we did this
in (II.3.2)), but for n ≥ 2 we cannot use the same (but more technical) argument
for general A. Thus, one probably has to find another method.

One could also examine the distribution of solutions more closely. On one hand,
one could determine #y(A, m) for (more) general determinants ∆ and values y
(not only for the squarefree case). This would (at least in some cases) depend on
the Smith normal form of A.

• Determine #y(A, m) for (arbitrary) A and y.

On the other hand, one could try to be more exact in the formulae in Section II.3.5,
i.e., one could try to find better bounds for R and Ry.

• Find better bounds on R and Ry in Theorem II.3.7 (maybe depending not
only on the number of primes dividing ∆, but on A).

One could also examine the distribution of solutions with respect to different
matrices rather than different ideals (compare Figure II.3.1):

• Let m, n, ∆ ∈ N. Consider all n × n matrices with entries in Z/mZ and
determinant ∆. How is the number of solutions distributed?
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II.4
Lights Out

Here we examine the puzzle “Lights Out”. We will model this puzzle with linear
algebra and we will see that we only have to deal with determinants of certain
matrices. These will be handled with linear algebra, analysis, and various num-
ber theoretical tools, making this chapter a connection between those three areas.

The results will be published in [Kre17]. I would like to thank the editor and
the referees for their useful comments. I would also like to thank George Schaeffer
for the suggestion of Theorem II.4.13 as well as the idea of its proof, Tom Edgar for
the suggestion of the proof of Theorem II.4.10, and Carsten Elsner, who suggested
the proof for Lemma II.4.12.

This chapter is reprinted with permission. Copyright 2017 Mathematical As-
sociation of America. All Rights Reserved.

II.4.1 Introduction

We start with describing the rules for “Lights Out”:

• The player is given a 5× 5 square (which we call the board) with buttons
that can either be illuminated or not. By pressing a button, the button itself
as well as all of its (at most 4) neighbours will change their illumination
state.

• At the beginning of the game, some of the buttons are illuminated and some
are not. The goal is to get all the buttons turned off by pressing some com-
bination of the buttons.
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Example II.4.1 Suppose we begin with the board shown in Figure II.4.1 (here a
circle indicates that the button is illuminated). The steps shown in Figure II.4.1

lead to the desired goal, where
(a,b)−→ means that we press the button in row a and

column b.

• •
• • •

• •
•

• • •

(3,5)−→

• •
• •

• •
• • •

(1,3)−→

• • •
• • •

• •
• • •

(1,2)−→
• •

• •
• • •

(3,1)−→
•

• •
• • •
• • •

(3,3)−→ • • •
• •
• • •

(4,4)−→ • •
• • •
• •

(4,3)−→ •
• •
•

(4,1)−→

Figure II.4.1: Solving a given “Lights Out” starting board.

There are many variants of the original puzzle (some of which we will address
in Section II.4.6). In the main part of this chapter we will deal with a square game
board of size n × n, where each button can be lit with k different colors. Here
we also assign a color to unlit buttons (thus the original puzzle has exactly two
colors) and we always assume that there are at least two colors. When there are
more than two colors, the colors will change cyclicly (and for every button in the
same way). We will refer to this puzzle as BLO(n, k) (here the “B” stands for “bor-
der” in order to differentiate this puzzle from an unbounded variant considered
in Section II.4.6). For obvious reasons, we will always let n ≥ 2.

Example II.4.2 We consider the puzzle BLO(2, 3). We will denote the three colors
with 0, 1, and 2. We define the changing of colors as follows:

0→ 1→ 2→ 0

So a possible position is

202



II.4. LIGHTS OUT II.4.1. Introduction

2 1

0 1

and pressing the leftmost button in the first row will result in the board

0 2

1 1
.

We are interested in determining if the puzzle is solvable for all starting po-
sitions. In this case we call BLO(n, k) completely solvable. As we will see, not
every puzzle is completely solvable. Even in the original puzzle, i.e., BLO(5, 2),
there are starting positions in which the puzzle cannot be solved, see [AF98].

Example II.4.3 The puzzle BLO(2, 3) is not completely solvable (in fact the start-
ing board in Example II.4.2 cannot be solved). This can be shown very easily, but
since the argument is the same as in Proposition II.4.22, we will omit it here.

Further information about “Lights Out” and some variants can be found in
[Sin, 7.M.6] and [Schb]. In this chapter, we will only focus on the complete solv-
ability of BLO(n, k). We will neither discuss strategies of winning a game (when
the starting position is solvable) nor investigate which starting boards are not
solvable. Winning strategies will arise directly from the modeling of the problem.
More direct strategies (such as “Light Chasing”) are discussed in [Scha, Schb, Sol].
The unsolvable starting boards for the original “Lights Out” game BLO(5, 2) have
been characterized in [AF98]. A great overview of the games and variants, as well
as some first mathematical results can be found in [Schb].

We will model the problem with linear algebra (but will need some number
theory and analysis in later proofs). There are other ways to examine this problem
as well as variants of it. Fibonacci polynomials have been used in [GKT97, Klo] to
study the complete solvability of games on an m× n rectangular board (but with
only two colors). There are numerous papers that investigate light flipping games
on graphs, which are generalizations of the original “Lights Out”, see [BR96, CG,
DW01, EES01, GK97, Sut89]. Another generalization of “Lights Out” is known
as “Confused Electrician Games”. In [ES16], the authors investigate such games
using the Smith normal form. A similar game is “Berlekamp’s switching game”,
which has been studied in [FS89], with an error that was corrected in [CS04].

The outline of this chapter is as follows: In Section II.4.2 we will model the
problem with linear algebra. We will see that we only have to deal with determi-
nants of certain matrices afterwards. In Section II.4.3 we will determine the cases
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in which this determinant is 0 and thus determine the cases in which BLO(n, k)
(for given n) is not completely solvable for any k. In Section II.4.4 we show that
there is no n such that BLO(n, k) is completely solvable for all k. We use an-
other approach to examine the complete solvability, relying on algebraic number
theory, in Section II.4.5. Section II.4.6 contains a variant of the original puzzle.
We will see that this variant is easier to handle and we show the corresponding
results.

II.4.2 Modeling the problem

We will view the n× n board of the puzzle BLO(n, k) as an n× n matrix. Further,
we will enumerate the colors by 0, . . . , k − 1 according to the cyclic changing of
the colors, where 0 means that the light is out. Then, at any time, the board can
be viewed as a matrix A ∈ Mn,n(Z/kZ). Pressing a button (i, j) will result in
adding a certain matrix Bi,j to A. The added matrix Bi,j has a 1 at the place where
a color will be changed and a 0 otherwise, e.g., for the puzzle BLO(5, k) we have

B1,1 =


1 1
1

 , B1,4 =


1 1 1

1

 , B4,2 =

 1
1 1 1

1

 .

We will denote the zero matrix by 0. Then, given a starting board A, we need
to find ci,j ∈ Z/kZ such that

A +
n

∑
i,j=1

ci,jBi,j = 0,

i.e.,

n

∑
i,j=1

ci,jBi,j = −A. (II.4.1)

If we consider each entry of the matrices involved individually, we obtain a
system of n2 linear equations. The corresponding matrix (when going systemati-
cally from left to right and top to bottom) has the following form.
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BLn :=



Jn In 0 · · · 0

In
. . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . In

0 · · · 0 In Jn


where In is the n× n identity matrix and

Jn :=



1 1 0 · · · 0

1 . . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · 0 1 1


, i.e., (Jn)i,j =

1, |i− j| ∈ {0, 1}
0, otherwise

.

The matrix Jn is a Toeplitz tridiagonal matrix. These have been widely stud-
ied, see [NPR13, Yue05]. We will only need the eigenvalues for our special case.
These are

λj = 1 + 2 cos
(

jπ
n + 1

)
, where 1 ≤ j ≤ n. (II.4.2)

II.4.3 (Un)Solvability of Lights Out

Obviously, BLO(n, k) is completely solvable if and only if System (II.4.1) is solv-
able for all A. But this is equivalent to saying that BLn is invertible over Z/kZ.
Thus we obtain the following two results.

Proposition II.4.4 Let n and k be natural numbers and let n ≥ 2.

1. The game BLO(n, k) is completely solvable if and only if det(BLn) is invertible
modulo k, i.e., if and only if gcd(det(BLn), k) = 1.

2. Fix n. Then BLO(n, k) is completely solvable for no k if and only if det(BLn) = 0,
and BLO(n, k) is completely solvable for all k if and only if det(BLn) = ±1.

Lemma II.4.5 BLO(n, k) is completely solvable if and only if BLO(n, p) is completely
solvable for all p ∈ P with p|k.

Proof. This follows directly from the fact that BLO(n, k) is completely solvable if
and only if gcd(det(BLn), k) = 1. q.e.d.
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This lemma will not be needed for computing the determinant in the general
case. However, we will explicitly compute the deteterminant for some small n
and, in view of this lemma, we only need to know the prime factors of the deter-
minant.

Now we determine det(BLn). The arguments below follow [Pav] and [Jam].
First note that we can write

BLn = Jn ⊗ In + In ⊗ Jn − In2

where ⊗ denotes the Kronecker product. According to (II.4.2) and the properties
of the Kronecker product mentioned in Section 0.4, the eigenvalues of Jn ⊗ In

are 1 + 2 cos
(

jπ
n+1

)
, and the eigenvalues of In ⊗ Jn are 1 + 2 cos

(
lπ

n+1

)
. Since the

matrices Jn and In commute, the matrices Jn⊗ In and In⊗ Jn commute. Therefore,
the eigenvalues of BLn are

λj,l = 1 + 2
(

cos
(

jπ
n + 1

)
+ cos

(
lπ

n + 1

))
and we have

det(BLn) =
n

∏
j=1

n

∏
l=1

λj,l.

Tables II.4.1 and II.4.2 show the nonzero determinants of BLn for 2 ≤ n ≤ 30, re-
spectively, the prime decomposition of its absolute value (computed with Math-
ematica).

n det(BLn)
prime decomposition

of |det(BLn)|
2 −3 31

3 −7 71

6 2197 133

7 −34391 71 · 173

8 −4002939 36 · 172 · 191

10 276762749 235 · 431

12 −133968364171875 36 · 56 · 533 · 791

13 −239121867667810023 36 · 133 · 296 · 2511

15 105499562776343659717577 71 · 173 · 318 · 1272 · 2231

16 −3916466797684156666150912 216 · 675 · 1012 · 1032 · 4091

18 −684705401333128471131344184438251 3711 · 1134 · 1912 · 6471

Table II.4.1: The nonzero determinants det(BLn) for 2 ≤ n ≤ 19 and their prime
decompositions.
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n prime decomposition of |det(BLn)|
20 31 · 78 · 133 · 417 · 438 · 832 · 3791

21 235 · 439 · 896 · 1312 · 2632 · 14511

22 4710 · 1374 · 1394 · 2772 · 9192 · 17471

25 36 · 56 · 5315 · 791 · 1036 · 1574 · 7272 · 23391

26 323 · 172 · 191 · 5314 · 1078 · 1092 · 2691 · 3792 · 4311

27 36 · 718 · 135 · 296 · 1132 · 1676 · 2232 · 2511 · 2812 · 4492 · 6171 · 35272

28 172 · 5914 · 1736 · 2334 · 3474 · 4632 · 52792 · 69591 · 200111

30 240 · 512 · 6116 · 3112 · 3732 · 4331 · 6194 · 9292 · 64492 · 535071

Table II.4.2: The prime decomposition of the nonzero determinants |det(BLn)| for
20 ≤ n ≤ 30.

In view of Proposition II.4.4, we want to know for which values of n the corre-
sponding determinant will be 0 or ±1. The first case is equivalent to saying that
λj,l = 0 for some j, l.

We will use the following result.

Theorem II.4.6 [CJ76, Theorem 7] Suppose we have at most four distinct rational mul-
tiples of π lying strictly between 0 and π/2 for which some rational linear combination
of their cosines is rational but no proper subset has this property. Then the appropriate
linear combination is proportional to one from the following list:

cos
(π

3

)
=

1
2

,

− cos (ϕ) + cos
(π

3
− ϕ

)
+ cos

(π

3
+ ϕ

)
= 0

(
0 < ϕ <

π

6

)
,

cos
(π

5

)
− cos

(
2π

5

)
=

1
2

,

cos
(π

7

)
− cos

(
2π

7

)
+ cos

(
3π

7

)
=

1
2

,

cos
(π

5

)
− cos

(
2π

15

)
+ cos

(
4π

15

)
=

1
2

,

− cos
(

2π

5

)
+ cos

(
2π

15

)
− cos

(
7π

15

)
=

1
2

,

cos
(π

7

)
+ cos

(
3π

7

)
− cos

( π

21

)
+ cos

(
8π

21

)
=

1
2

,

cos
(π

7

)
− cos

(
2π

7

)
+ cos

(
2π

21

)
− cos

(
5π

21

)
=

1
2

,

− cos
(

2π

7

)
+ cos

(
3π

7

)
+ cos

(
4π

21

)
+ cos

(
10π

21

)
=

1
2

,

− cos
( π

15

)
+ cos

(
2π

15

)
+ cos

(
4π

15

)
− cos

(
7π

15

)
=

1
2

.
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Theorem II.4.7 BLn is not invertible if and only if n + 1 is a multiple of 5 or 6.

Proof. For n = 4 we have

λ2,4 = 1 + 2
(

cos
(

2π

5

)
+ cos

(
4π

5

))
= 1 + 2

(
1
4

(
−1 +

√
5
)
+

1
4

(
−1−

√
5
))

= 0,

and for n = 5 we have

λ3,4 = 1 + 2
(

cos
(π

2

)
+ cos

(
2π

3

))
= 0,

so we get det(BL4) = det(BL5) = 0. Now if n + 1 is a multiple of 5 or 6, we can
choose j, l such that the eigenvalues give the values above. Thus det(BLn) = 0 if
n + 1 is a multiple of 5 or 6.

We need to show that in the other cases 0 is not an eigenvalue. Suppose that

1 + 2
(

cos
(

jπ
n + 1

)
+ cos

(
lπ

n + 1

))
= 0

for some j, l, n. Then cos
(

jπ
n+1

)
+ cos

(
lπ

n+1

)
∈ Q. But then cos(απ) + cos(βπ)

is rational for some α, β ∈ Q, 0 ≤ α, β ≤ 1
2 . Using Theorem II.4.6 we either have

α = 1
3 , β ∈ [0, 1

2 ] or α = 1
5 , β = 2

5 , i.e., n + 1 has to be a multiple of 3 or 5. If n + 1
is a multiple of 3, then we need some β ∈ Q, β ∈ (0, 1) such that either

1 + 2
(

cos
(π

3

)
+ cos (βπ)

)
= 2 + 2 cos(βπ) = 0

or
1 + 2

(
cos

(
2π

3

)
+ cos (βπ)

)
= 2 cos(βπ) = 0.

(Here we can take β ∈ (0, 1) since we now allow all possible values β = l
n+1 , not

only those appearing in Theorem II.4.6.)

The first case is impossible, since this holds only for β ∈ 2Z+ 1. The second
case holds if and only if β = 2l+1

2 for some l ∈ Z. Thus, n + 1 has to be a multiple
of 2 and therefore a multiple of 6. This proves the theorem. q.e.d.

The statement of Theorem II.4.7 is equivalent to saying that the adjacency ma-
trix of the n× n grid has eigenvalue −1, see the OEIS entry A162698 [OEI]. Here
the n × n grid is the graph G = (V, E) with V = {(a, b) : 1 ≤ a, b ≤ n} and
{(a, b), (c, d)} ∈ E if and only if
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• a = c and |b− d| = 1 or

• b = d and |a− c| = 1,

see Figure II.4.2 for n = 4.

Figure II.4.2: The 4× 4 grid.

As corollary of Theorem II.4.7 we get

Corollary II.4.8 Let n + 1 be a multiple of 5 or 6 and k arbitrary. Then BLO(n, k) is not
completely solvable.

This follows immediately from the modeling of “Lights Out”. Corollary II.4.8
also gives a nice result for greatest common divisors of Fibonacci polynomials
fn(x), defined by the recurrence

fn+1(x) = x fn(x) + fn−1(x), f1(x) = 1, f2(x) = x.

Corollary II.4.9 Let n + 1 be a multiple of 5 or 6. Then fn+1(x) and fn+1(x + 1) have
a common factor over Z/2Z.

Proof. Note that from [GKT97, Theorem 3] we know that BLO(n, 2) is completely
solvable if and only if fn+1(x) and fn+1(x + 1) are coprime over Z/2Z. Thus the
claim follows from Corollary II.4.8. q.e.d.

II.4.4 On complete solvability for all k

In this section we will show that, for given n that is neither a multiple of 5 nor a
multiple of 6, BLO(n, k) cannot be solvable for all k. In fact, this has first been a
conjecture which I was unable to prove. There were quite a few ideas to prove
this, such as using lower bounds for determinants (see, for example, [KP01]),
formulae for determinants of block matrices (see, for example, [KSW99, Mol08,
Tis87]), or the Smith normal form to investigate elementary divisors. One could
also deal with the eigenvalues λj,l as elements in some ring (compare Section
II.4.5) and try to show that one of these eigenvalues is a non-unit.
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None of these methods worked, but the desired result can be proved with dif-
ferent number theoretic tools. In fact, the proofs of both theorems in this section
are (at least partially) due to others: The proof of Theorem II.4.10 is mostly due
to Tom Edgar, while the idea of the proof of Theorem II.4.13 is due to George
Schaeffer.

Theorem II.4.10 We have det(BLn) 6= ±1 for n ≥ 2.

Proof. Let

Λn =
n

∏
j=1

(
1 + 4 cos

(
jπ

n + 1

))
,

Vn =
n

∏
j,l=1
j 6=l

(
1 + 2 cos

(
jπ

n + 1

)
+ 2 cos

(
lπ

n + 1

))
.

Then det(BLn) = Λn ·Vn. We show that Λn, Vn ∈ Z. Since Λn is the determinant
of the integer matrix 

1 2 0 · · · · · · 0

2 1 2 . . . ...

0 2 1 . . . . . . ...
... . . . . . . . . . 2 0
... . . . 2 1 2
0 . . . · · · 0 2 1


(see [Yue05]), we immediately get Λn ∈ Z. Regarding Vn, note that Λn 6= 0 due
to Theorem II.4.6, thus Vn = det(BLn)

Λn
∈ Q. Let ζ2(n+1) be a primitive (2n + 2)-nd

root of unity. Then λj,l ∈ OK for K = Q(ζ2(n+1)) (compare Remark II.4.14), thus
we get Vn ∈ OK ∩Q = Z, as required.

Hence Λn is an integer dividing det(BLn), so it suffices to show that Λn 6= ±1.
Let (um) be the recursive sequence defined by

um = um−1 − 4um−2, u0 = 0, u1 = 1.

The sequence (um) is a Lucas sequence and we have Λn = un+1, see [Luc78,
Section IV]. Let a := 1+

√
−15

2 and b := 1−
√
−15

2 . Then we have

um =
am − bm

a− b
, a + b = 1, ab = 4,

a
b
= −7

8
+

√
15
8

i.
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Due to Theorem II.4.6, arccos
(
− 7

8

)
is not a rational multiple of π, hence a

b is not
a root of unity. Thus a result of Bilu, Hanrot, and Voutier [BHV01] shows that for
all m > 30 the integer um has a prime divisor p (with an additional property that
is not needed here). Hence Λn 6= ±1 for n ≥ 30 and thus we have det(BLn) 6= ±1
for n ≥ 30. Together with the values of det(BLn) in Tables II.4.1 and II.4.2 this
proves the theorem. q.e.d.

For the puzzle BLO(n, k) we obtain the following.

Corollary II.4.11 If n + 1 is neither a multiple of 5 nor a multiple of 6, there is a k1 such
that BLO(n, k1) is completely solvable and a k2 such that BLO(n, k2) is not completely
solvable.

There is a weaker version of Theorem II.4.10, namely Theorem II.4.13, that
states that det(BLn) 6= ±1 holds for all big enough n. Of course, this result
is obsolete due to Theorem II.4.10. We include this theorem nevertheless for a
particular reason: Its proof uses Diophantine approximation and convergence of
Riemann sums to improper integrals. Thus this proof is a connection between
number theory and analysis and hence exactly in the spirit of this thesis.

We begin with a lemma about Diophantine approximation.

Lemma II.4.12 (due to C. Elsner) Let ξ = 1
π arccos

(
− 1

4

)
. There is a constant δ such

that for any a, b ∈ N with a < b and b ≥ 2 we have∣∣∣ξ − a
b

∣∣∣ > 1
πbδ

.

Proof. Note that π = −i log(−1) and arccos(z) = −i log(z + i
√

1− z2) for z ∈ C.
(Here we take the principal value of the complex logarithm. For the latter identity
see entry 1.622 (2) in [GR15].) With α1 = −1+i

√
15

4 and α2 = −1 we thus get
ξ =

log(α1)
log(α2)

. For a, b ∈ N with a < b and b ≥ 2 let L be the linear form in
logarithms

L := b log(α1)− a log(α2).

Since α1 has minimal polynomial 2z2 + z + 2, it is algebraic of degree 2 and has
height 2. Further, α1 has degree and height 1, and a and b have degree 1. Since ξ

is irrational (this follows from Theorem II.4.6), we have L 6= 0 and hence Baker’s
theorem on linear forms in logarithms (Theorem 0.5.21) yields

|L| > b−η,
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where η depends only on n = 2, d = 2, and h = 2, i.e., η is a constant. Dividing
the above inequality by b |log(α2)| = bπ gives∣∣∣ξ − a

b

∣∣∣ > 1
πbδ

with δ = η + 1. q.e.d.

Theorem II.4.13 There is an N ∈ N such that det(BLn) 6= ±1 for all n ≥ N.

Proof. Define Λn and Vn as in the proof of Theorem II.4.10, i.e.,

Λn =
n

∏
j=1

(
1 + 4 cos

(
jπ

n + 1

))
,

Vn =
n

∏
j,l=1
j 6=l

(
1 + 2 cos

(
jπ

n + 1

)
+ 2 cos

(
lπ

n + 1

))
,

and let further An := |Λn|. We show that An > 1 for n ≥ N. Consider the sum

1
n + 1

n

∑
j=1

log
∣∣∣∣1 + 4 cos

(
jπ

n + 1

)∣∣∣∣ = log An

n + 1
.

Note that

Ωn+1 :=
1

n + 1

n+1

∑
j=1

log
∣∣∣∣1 + 4 cos

(
jπ

n + 1

)∣∣∣∣
is a right-handed Riemann sum for the improper integral

∫ 1
0 log |1 + 4 cos(πx)|dx

and

log An

n + 1
= Ωn+1 −

log 3
n + 1

→ Ωn+1 for n→ ∞.

We will show that Ωn converges to the value of
∫ 1

0 log |1 + 4 cos(πx)|dx and that
this value is positive.

For the value of the integral, we get

∫ 1

0
log |1 + 4 cos(πx)|dx = log 2.

This is entry 172 in [Zwi05], as correction of entry 4.224 (12) in [GR15] which is
erroneous.
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The integrand f (x) := log |1 + 4 cos(πx)| is defined for all x ∈ [0, 1] except
for ξ = 1

π arccos
(
− 1

4

)
≈ 0.580431. According to Theorem II.4.6, ξ is irrational,

so ξ will never be one of the points j
n . Choose jn such that jn

n < ξ < jn+1
n and let

RL(n) =
1
n

jn

∑
k=1

f
(

k
n

)
, RR(n) =

1
n

n

∑
k=jn+2

f
(

k
n

)
, RM(n) =

1
n

f
(

jn + 1
n

)
,

and

I1 =
∫ ξ

0
f (x)dx, I2 =

∫ 1

ξ
f (x)dx.

Since the value of the integral
∫ 1

0 f (x)dx is finite and f (x) is bounded from above,
the improper integrals I1 and I2 exist. Hence we have

∫ 1

0
f (x)dx = I1 + I2, Ωn = RL(n) + RM(n) + RR(n).

Figure II.4.3 shows the function f (x) and the sums RL(20), RM(20), and RR(20).

x

f (x)

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

1

−6

−5

−4

−3

−2

−1

1

2
ξ

• • • • • • • • •
•

•
•

•
• •

• • • • •

RL(20) RM(20) RR(20)

Figure II.4.3: The function f (x) = log |1 + 4 cos(πx)| and the sums RL(20),
RR(20), and RM(20).

We will show that RL(n)→ I1, RR(n)→ I2, and RM(n)→ 0 as n→ ∞.
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We begin with the convergence of RM(n). Let B := jn+1
n − ξ. The angle sum

identity for cosine and the identity sin(arccos(x)) =
√

1− x2 yield

RM(n) =
1
n

log
∣∣∣∣1 + 4 cos

(
(jn + 1)π

n

)∣∣∣∣
=

1
n

log |1 + 4 cos(ξπ + Bπ)|

=
1
n

log
∣∣∣1− cos(Bπ)−

√
15 sin(Bπ)

∣∣∣ .

Since B→ 0 for n→ ∞ and all involved functions are continuous, we can use the
asymptotic expansions cos(B) = 1 +O(B2) and sin(B) = B +O(B3) to get

RM(n) =
1
n

log
∣∣∣−√15Bπ +O(B2)

∣∣∣ = 1
n

(
log
(√

15Bπ
)
+ log (1 +O(B))

)
=

1
n

log(B) +O
(

1
n

)
.

Due to Lemma II.4.12 we have B > 1
πnδ for some constant δ, i.e.,

|RM(n)| <
∣∣∣∣ 1n log

(
1

πnδ

)
+O

(
1
n

)∣∣∣∣→ 0.

For the convergence of RL(n) we note that f (x) is monotone decreasing for
x ∈ [0, ξ), thus we have

1
n

f
(

k
n

)
≥
∫ k+1

n

k
n

f (x)dx ≥ 1
n

f
(

k + 1
n

)
.

Summing this for k = 0, . . . , jn − 1 yields

1
n

jn−1

∑
k=0

f
(

k
n

)
≥
∫ jn

n

0
f (x)dx ≥ 1

n

jn

∑
k=1

f
(

k
n

)
.

Hence we have

∫ jn
n

0
f (x)dx +

1
n

f (0) ≥ 1
n

jn

∑
k=0

f
(

k
n

)
≥
∫ jn

n

0
f (x)dx +

1
n

f
(

jn
n

)
.

Since I1 exists as improper Riemann integral, we have
∫ jn

n
0 f (x)dx → I1 as

n → ∞. Analogous to the convergence of RM(n) we get that 1
n f
(

jn
n

)
converges

to 0. Using 1
n f (0)→ 0 we get with the squeeze theorem
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lim
n→∞

RL(n) = lim
n→∞

1
n

jn

∑
k=0

f
(

k
n

)
= I1.

Since f (x) is monotone increasing for x ∈ (ξ, 1], the convergence of RR(n) to
I2 is analogous to that of RL(n) to I1.

In conclusion, Ωn (and thus log An
n+1 ) converges to

∫ 1
0 log |1 + 4 cos(πx)|dx. Since

∫ 1

0
log |1 + 4 cos(πx)|dx = log 2 > 0,

this means that there is an N ∈ N such that log An
n+1 > 0 for n ≥ N. Thus we have

An > 1 for these n and this proves the theorem. q.e.d.

Remark II.4.14 We shall make a few remarks about Lemma II.4.12 and Theorem
II.4.13.

• If the number ξ = 1
π arccos

(
− 1

4

)
is algebraic, Lioville’s theorem (Theorem

0.5.20) immediately gives an upper bound for
∣∣ξ − a

b

∣∣ and we would not
need Lemma II.4.12. Due to the Lindemann-Weierstraß theorem (Theorem
0.5.22), arccos

(
− 1

4

)
is transcendental, thus ξ could be algebraic (although

there is no reason whatsoever to believe that this is true).

• Lemma II.4.12 and the proof of Theorem II.4.13 show that ξ is a counterex-
ample to the second statement of Lévy’s theorem (Theorem I.3.4). When
looking at the continued fraction expansion of ξ, the first 26 partial quo-
tients are bounded by 5. This is evidence (although not a proof) for the fact
that ξ cannot be too well approximated. In fact, among the first 1000 par-
tial quotients there are exactly 35 partial quotients that are greater than 40,
which is exactly the expected value due to Khintchine’s theorem (Theorem
I.3.3).

• We can show directly (i.e., without using the integrality of det(BLn) and
Λn) that the number Vn defined in Theorem II.4.13 is rational, using Galois
theory: Note that

λj,l = 1 + 2 cos
(

jπ
n + 1

)
+ 2 cos

(
lπ

n + 1

)
= 1 + e

jπ
n+1 + e

−jπ
n+1 + e

lπ
n+1 + e

−lπ
n+1

= 1 + e
2jπi

2(n+1) + e
−2jπi

2(n+1) + e
2lπi

2(n+1) + e
−2lπi

2(n+1) ,
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i.e., λj,l ∈ Q(ζ2(n+1)) where ζ2(n+1) is a primitive (2n + 2)-nd root of unity.
The extensionQ(ζ2(n+1))/Q is a Galois extension and theQ-automorphisms
of Q(ζ2(n+1)) are given by σk(ζ2(n+1)) = ζk

2(n+1) where 1 ≤ k ≤ 2n + 2,
gcd(k, 2n + 2) = 1 (compare Example 0.5.37). Since the complex exponen-
tial function has period 2πi, we get with Lemma 0.5.6

σk(Vn) = ∏
j 6=l

σk(λj,l)

= ∏
j 6=l

(
1 + e

2jkπi
2(n+1) + e

−2jkπi
2(n+1) + e

2lkπi
2(n+1) + e

−2lkπi
2(n+1)

)
= ∏

j 6=l

(
1 + e

2jπi
2(n+1) + e

−2jπi
2(n+1) + e

2lπi
2(n+1) + e

−2lπi
2(n+1)

)
= Vn

for all Q-automorphisms σk of Q(ζ2(n+1)). Thus Vn lies in the fixed field of
Gal(Q(ζ2(n+1))/Q) in Q(ζ2(n+1)), i.e., Vn ∈ Q due to Theorem 0.5.38.

• It should be possible (although probably technical) to determine the number
N in Theorem II.4.13 explicitely. To get a best possible value for N, one has
to compare the rate of convergence of RL(n), RM(n), and RR(n) in the proof
of Theorem II.4.13. To do this, one needs explicit bounds on the number δ

in Lemma II.4.12. Some useful results can be found in [Lau08].

II.4.5 Solvability via prime(ideal) decomposition

The results of Section II.4.3 already yield a way to determine whether BLO(n, k)
is completely solvable:

1. Compute the determinant of BLn.

2. Check if k is coprime to the determinant.

With the Euclidean algorithm it is easy to decide whether two integers are
coprime, but in general it is hard to determine all integers that are coprime to a
given integer m, since that requires prime factorization. It seems that in our case
the prime decomposition of det(BLn) is somehow “nice” in the sense that “small”
prime factors occur with “greater” multiplicity (compare Tables II.4.1 and II.4.2).
If this turns out to be true for all n (compare Section II.4.7), this would imply that,
for given n, the integers k such that BLO(n, k) is completely solvable could be
determined relatively easily.

216



II.4. LIGHTS OUT II.4.5. Solvability via prime(ideal) decomposition

In this section we discuss another way of examining the complete solvabil-
ity of BLO(n, k). Regarding our last results, this new approach will be more of
theoretical interest than of pratical use.

We will discuss a slightly more general setting. Fix m ∈ N and let ζm = e
2πi
m ,

i.e., ζm is a primitive m-th root of unity. Let α := ζm + ζ−1
m = 2 cos

(2π
m
)
. From

the multiple angle formulae for cosine we know that 2 cos
(

2lπ
m

)
is a polynomial

in α for any l ∈ N. Therefore the eigenvalues, and hence the determinant of BLn,
lie in the ring Z[α] (which is the ring of integers of Q(α), see [Was97, Proposition
2.16]). If Z[α] is a unique factorization domain, this gives a first (not especially
useful) algorithm to check whether BLO(n, k) is completely solvable:

1. Compute the prime decomposition of k and of each eigenvalue λj,l in Z[α].

2. For each eigenvalue, check if the decomposition has (up to units) no prime
in common with the decomposition of k.

As already mentioned, this is (in most cases) not suitable for practical purposes,
since we would need to check whether Z[α] is a unique factorization domain and
we would need to know the units and primes in Z[α]. In general, it is hard to
check if Z[α] is a unique factorization domain. This is the case precisely when the
class number of the field Q(ζm + ζ−1

m ) is 1. But the class numbers of these fields
are not known for primes p ≥ 71, see [Sch03].

To avoid these obstructions, we will discuss another approach. Here we use
Lemma II.4.5 and we deal only with k = p, where p is a prime.

Let R be the ring of integers of Q(ζm) (then Z[α] ⊂ R). Suppose that p is
inert in R (compare Theorem 0.5.32). Then p is also inert in Z[α], which means
that it cannot be the product of two or more eigenvalues. So either one of the
eigenvalues is divisible (in Z) by p, or the determinant is coprime to p. For the
first case, we have the following lemma.

Lemma II.4.15 Let n ∈ N and λj,l be the eigenvalues of the matrix BLn. Suppose that
λj,l is rational for some j, l. Then there are r, s with λr,s = 0 and thus det(BLn) = 0.

Proof. If one of the eigenvalues is rational, Theorem II.4.6 says that n + 1 is a
multiple of 5 or 6 (this follows completely analogously to the proof of Theorem
II.4.7). But then we already know that there is an eigenvalue that is 0. q.e.d.

Therefore, if the determinant is nonzero and p is inert, then p does not divide
the determinant. We know (see [Was97, Theorem 2.13]) that p is inert in R if and
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only if p is a primitive root modulo n. Together we have proved the following
theorem.

Theorem II.4.16 Let n + 1 neither be a multiple of 5 nor a multiple of 6. If p is a
primitive root modulo 2n + 2 for every prime p dividing k, then BLO(n, k) is completely
solvable.

Of course, Theorem II.4.16 is not very useful in practice, since there are primi-
tive roots modulo m if and only if m ∈ {1, 2, 4, pk, 2pk} for some odd prime p and
k ∈ N.

It is noteworthy that it is not neccesary for p to be a primitive root modulo
m = 2n + 2 to get complete solvability for BLO(n, p). This is (among other rea-
sons, see below) due to the fact that p could be inert in Z[α] but split in R. For
example, let n = p = 3. Then m = 8 and there are no primitive roots modulo
8, hence no prime p is inert in R. Since ζ8 = 1+i√

2
, we get α =

√
2. To deter-

mine the decomposition type of 3 in Z[α], we can compute the Legendre symbol(
∆
3

)
, where ∆ = 8 is the discriminant of the field extension Q(α)/Q (compare

Theorems 0.5.26 und 0.5.33). Since
(8

3

)
= −1, the prime 3 is inert in Z[α]. Thus,

BLO(3, 3) is completely solvable despite the fact that 3 is not a primitive root
modulo 8. We get the complete solvability of BLO(3, 3) also from det(BL3) = −7,
cf. Table II.4.1. It would be nice to not only have a sufficient but also a neccesary
condition for complete solvability, but this seems to get very technical.

If there is a prime p dividing k that is not inert, nothing can be said (at least
not without more work). Possibly p can be a product of some of the eigenvalues.
In the simplest case, p is the product of only two eigenvalues, i.e., p = λj,lλr,s. Ex-
panding this product and using the product-to-sum identity for cosine, this gives
(in general) sums of twelve cosines, more than can be handled with Theorem
II.4.6.

II.4.6 Variants of Lights Out

As already mentioned, there are some variants of the original puzzle “Lights
Out”:

• Variations of the size of the board (for example, “Mini Lights Out” has a
4× 4 board, “Lights Out Deluxe” has a 6× 6 board). Of course, the board
size can be varied even more.
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• More colors (in “Lights Out 2000”, each button has three states: red, green,
or off).

• Different behaviour when pressing buttons. There are many ways to vary
“Lights Out” by just changing how buttons vary their states. For example,
the game “Mini Lights Out” identifies the left-hand side with the right-hand
side of the board as well as the top with the bottom (i.e., considers the game
to be without a border), so that every button has exactly four neighbours.
We call this variant unbounded.

In the last sections, we have discussed “Lights Out” with extensions of board
size and number of colors. In this section, we will briefly mention results about
the unbounded variant. We will denote by ULO(n, k) the “unbounded Lights
Out” on an n× n board with k colors.

Example II.4.17 We consider the puzzle ULO(3, 5). On the board, we will denote
the five colors by 0, 1, 2, 3, and 4. We define the changing of colors as follows:

0→ 1→ 2→ 3→ 4→ 0

When starting with the board

2 0 1

3 0 1

4 4 3

pressing the leftmost button in the top row yields

3 1 2

4 0 1

0 4 3

.

For obvious reasons we will always let n ≥ 3 in the “unbounded” case. In
general, we can proceed analogously to the puzzle BLO(n, k).

Let

ULn =



Kn In 0 · · · In

In
. . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . In

In · · · 0 In Kn
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where

Kn :=



1 1 0 · · · 1

1 . . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . 1
1 · · · 0 1 1


, i.e., (Kn)i,j =

1, |i− j| ∈ {0, 1, n− 1}
0, otherwise

.

The matrix ULn is the analogue of the matrix BLn in the bounded case:

Proposition II.4.18 Let n and k be natural numbers and let n ≥ 3.

1. The game ULO(n, k) is completely solvable if and only if det(ULn) is invertible
modulo k, i.e., if and only if gcd(det(ULn), k) = 1.

2. Fix n. Then ULO(n, k) is completely solvable for no k if and only if det(ULn) = 0,
and ULO(n, k) is completely solvable for all k if and only if det(ULn) = ±1.

Again we determine the eigenvalues of ULn to get the determinant of ULn.
The matrices Kn are circulant matrices, whose eigenvalues are (see [Gra])

µj = 1 + e
2π ji

n + e
2π ji(n−1)

n = 1 + 2 cos
(

2jπ
n

)
.

Here i denotes the imaginary unit. Since ULn = Kn ⊗ In + In ⊗ Kn − In2 , the
eigenvalues of ULn are

µj,l = 1 + 2
(

cos
(

2jπ
n

)
+ cos

(
2lπ

n

))
, where 1 ≤ j ≤ n.

and we have

det(ULn) =
n

∏
j=1

n

∏
l=1

µj,l.

Tables II.4.3 and II.4.4 show the nonzero determinants of ULn for 3 ≤ n ≤ 40, re-
spectively, the prime decomposition of its absolute value (computed with Math-
ematica).
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n det(BLn)
prime decomposition

of |det(BLn)|
3 80 24 · 51

4 −1215 35 · 51

7 142805 51 · 134

8 −7004233215 35 · 51 · 78

9 870763219280 24 · 51 · 174 · 194

11 87789257318405 51 · 234 · 894

13 45421053339522658203125 59 · 534 · 2334

14 −7059547871395329316834815 31 · 51 · 1316 · 294

16 −19913109703689000789427796194815 35 · 51 · 78 · 1712 · 474

17 42950557989828549673287680 216 · 51 · 674 · 15974

19 940419421873808776346210289268985127605 51 · 3712 · 1134 · 6474

Table II.4.3: The nonzero determinants det(ULn) for 3 ≤ n ≤ 20 and their prime
decompositions.

n prime decomposition of |det(BLn)|
21 24 · 51 · 134 · 418 · 438 · 3794 · 4214

22 31 · 51 · 2320 · 434 · 894 · 1994

23 51 · 4716 · 1378 · 286574

26 325 · 525 · 5312 · 794 · 2334 · 5214

27 24 · 51 · 174 · 194 · 5312 · 1078 · 10912 · 2694

28 329 · 51 · 1316 · 2928 · 2514 · 2814

29 51 · 5916 · 1738 · 200114 · 5142294

31 240 · 51 · 6116 · 4334 · 5574 · 9298 · 24174

32 35 · 51 · 78 · 1712 · 3132 · 474 · 1278 · 2234 · 22074

33 244 · 51 · 234 · 6716 · 894 · 1978 · 3978 · 34994 · 198014

34 264 · 31 · 51 · 6720 · 1018 · 1038 · 4094 · 15974 · 35714

37 51 · 318 · 7324 · 14912 · 4438 · 15538 · 22214 · 33314

38 31 · 51 · 3748 · 11320 · 1918 · 6474 · 93494

39 24 · 59 · 534 · 7916 · 1578 · 2334 · 3118 · 3898 · 4678 · 105314 · 1357214

Table II.4.4: The prime decomposition of the nonzero determinants |det(ULn)|
for 21 ≤ n ≤ 40.

We get the following results for ULn and ULO(n, k).

Theorem II.4.19 Let n be a natural number with n ≥ 3.

• The matrix ULn is not invertible if and only if n is a multiple of 5 or 6.

• We have det(ULn) 6= ±1.
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Corollary II.4.20 Let n and k be natural numbers with n ≥ 3.

• If n is a multiple of 5 or 6 and k is arbitrary, then ULO(n, k) is not completely
solvable.

• For each n that is neither a multiple of 5 nor a multiple of 6, there is a k1 such
that ULO(n, k1) is completely solvable, and a k2 such that ULO(n, k2) is not com-
pletely solvable.

• If n is neither a multiple of 5 nor a multiple of 6 and p is a primitive root modulo n
for every prime p dividing k, then ULO(n, k) is completely solvable.

These results can be proved completely analogously to the results in the bounded
case, with exception of the second part of Theorem II.4.19. This is an immediate
consequence of the following lemma:

Lemma II.4.21 [New78, Theorem 2]
Let A be an n × n (0, 1)-matrix with exactly k ones in each row and column. Then
det(A) is a multiple of k · gcd(n, k).

Finally, we also have the following result about specific “Lights Out” games.

Proposition II.4.22 Consider any “Lights Out” game where the number of buttons
whose illumination state is changed by pressing a button is the same for every button
and coincides with the number of light states (for example BLO(2, 3) or ULO(n, 5) for
any n). Then this game is not completely solvable.

Proof. Denote by k the number of different colors and assign to each color the
respective number in {0, . . . , k− 1} (where again 0 is assigned to unlit buttons).
We denote by ΣA the sum of all numbers on the board A modulo k. Now suppose
we start with a board A such that ΣA 6= 0 (such a board exists, take, for example,
a board where exactly one button is lit with color 1 and all other buttons are
unlit). Then pressing any button will increase exactly k of the assigned numbers
by exactly 1. Thus ΣB of the new board B is ΣA + k ≡ ΣA 6≡ 0 mod k. Hence Σ
remains unchanged for any button pressed. But since Σ0 of the all empty board
is 0, the chosen starting board cannot be transformed into the all empty board.

q.e.d.

This result also applies to certain variants of “Lights Out” not covered in this
chapter. For example, consider an n × n board with n colors where each but-
ton changes the illumination state of all buttons in the respective row (and none
other). Then this puzzle is not completely solvable due to Proposition II.4.22.
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II.4.7 Future Work

There are various questions concerning “Lights Out” and the matrices involved
that one could consider.

Tables II.4.1 to II.4.4 show some interesting patterns that one could examine.
These concern the primes that occur in the prime decomposition of det(BLn),
respectively det(ULn), as well as the respective exponents. The questions below
originate from some striking values in Tables II.4.1 to II.4.4. It would be nice to
know whether the observed patterns are random or whether there is a conceptual
reason. To abbreviate, let Ln denote both matrices BLn and ULn.

• Let p∗ be the largest prime divisor of det(Ln). Is there a small δ such that
p∗ = O(|det(Ln)|δ)?

• Do twin prime pairs occur in the prime decomposition of det(Ln) more of-
ten than expected? If yes, is there a reason for this fact? Does every twin
prime pair occur in the prime decomposition of det(Ln) for some n?

• Is there a reason why some exponents in the prime decomposition are rela-
tively large? Can anything be said about the maximal size of the exponents
that occur in the prime decomposition of det(Ln)?

• The exponent of the largest prime divisor p∗ of det(BLn) is often 1, while
the exponent of the biggest prime divisor p∗ of det(ULn) is often 4. Is there
a reason for this?

• The exponents in the prime decomposition of det(ULn) are often even or
actually powers of 2. Is there a reason for this?

It would also be nice to have a characterization of the starting boards that are
not solvable (analogous to the characterization given in [AF98] for the puzzle
BLO(5, 2)).

• Characterize the starting boards of BLO(n, k) (or ULO(n, k) or other vari-
ants) that are not solvable.

In Section II.4.5 we have seen a sufficient condition for complete solvability of
BLO(n, p) and we have seen that this condition is not necessary. It would be nice
to have a condition that is both sufficient and necessary.
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II.4. LIGHTS OUT II.4.7. Future Work

• Using decomposition over cyclotomic fields, find a necessary and sufficient
condition for complete solvability of BLO(n, p).

In Section II.4.6 we considered a variant of “Lights Out”, i.e., a different behaviour
when pressing buttons. There are much more variants of this kind.

• Examine the complete solvability for other variants of “Lights Out”.

More of theoretical interest than of practical use would be an explicit number for
which Theorem II.4.13 holds.

• Determine the number N in Theorem II.4.13 (compare Remark II.4.14).
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APPENDIX





A.1
The Number 12

Why are there exactly twelve other areas for which we have shown connections
to number theory? What is so special about 12? Is there even anything special
about it?

There is a nice “proof” that shows that any natural number n is interesting:
Let M be the set of all natural numbers that are not interesting and let n0 be
the minimal element in M. Then n0 is the smallest natural number that is not
interesting. Since this is an interesting property, n0 itself is interesting, thus we
have M = ∅.

Of course this relies heavily on when we call a natural number interesting.
But for every natural number n there is some property of n that someone would
find interesting. So what are interesting properties of 12?

Before stating three interesting properties, we exclude some trivialities. Since
12 = 22 · 3, 12 is the smallest natural number that can be written in the form
p2q for primes p, q. But this is not really interesting, since any natural number is
the smallest natural number with some constructed property. We exclude such
“constructed” properties.

The properties that we discuss are about sublime numbers, primes in arith-
metic progressions and the Riemann ζ-function.
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We start with sublime numbers. A natural number n is called sublime if both
the number of its divisors τ(n) and its divisor sum σ(n) are perfect numbers.
Since τ(12) = 6 and σ(12) = 28, the number 12 is sublime. Are there any more
sublime numbers? Yes, but only one more is known (and it is not known whether
there are more or even whether there are finitely many). We deduce some prop-
erties that sublime numbers need to have. The arguments below follow [Bro].

First suppose that both n and σ(n) are even and let v2(n) = k. We know (see
Theorem 0.5.1) that σ(n) is perfect if and only if σ(n) = (2s − 1)2s−1 such that

2s − 1 is prime. Since σ(n) = ∏p|n
pvp(n)+1−1

p−1 we have 2k+1− 1|σ(n), thus 2k+1− 1
has to be a prime and all the other factors of σ(n) need to multiply to 2k. Since

σ(pv) =
v

∑
j=0

pj ≡ v + 1 mod 2,

this can only happen if all exponents of the odd primes are odd. Suppose that
p > 2 and v > 1. In this case we have

σ(pv) = (1 + p)
v−1

2

∑
j=0

p2j.

The sum is even if and only if v−1
2 is odd and in this case we get

σ(pv) = (1 + p)(1 + p2)

v−3
4

∑
j=0

p4j.

But if 1 + p = 2r we have

1 + p2 = 1 + (2r − 1)2 = 2 + 22r − 2r+1 = 2(22r−1 − 2r + 1)

and this is only a power of 2 if r = p = 1, which is a contradiction since p is a
prime. Thus p = 2v− 1 needs to be a Mersenne prime and all the exponents of the
odd primes have to be 1. Note that we indeed have at least one Mersenne prime
in this setting, since otherwise σ(n) would be odd. If n has prime decomposition
2k ∏l

j=1 pj, then τ(n) = (k + 1) · 2l. This is perfect if and only if k + 1 = 2l+1 − 1
is a Mersenne prime.

Together, this gives the following theorem.
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Theorem A.1.1 ([Bro]) Let n ∈ N. If n and σ(n) are even, then n is sublime if and only
if n has prime decomposition n = 2k ∏l

j=1 pj where

• pj = 2vj − 1 are Mersenne primes,

• ∑l
j=1 vj = k,

• 2k+1 − 1 is a Mersenne prime,

• 2l+1 − 1 is a Mersenne prime,

• k + 1 = 2l+1 − 1.

Looking up a list of known Mersenne primes (for example [MPS]), we find
exactly four values of k such that both k + 1 and 2k+1 − 1 are Mersenne primes,
namely 2, 6, 30, 126. But 6 = 23 − 2 and 30 = 25 − 2 cannot be written as the sum
of 2(= 3− 1), respectively 4(= 5− 1), different exponents of Mersenne primes,
thus these values do not give sublime numbers. For k = 2 we have n = 22 · 3 = 12
and

• 3 = 22 − 1 is a Mersenne primes,

• ∑1
j=1 2 = 2,

• 23 − 1 = 7 is a Mersenne prime,

• 22 − 1 = 3 is a Mersenne prime,

• 2 + 1 = 21+1 − 1.

For k = 126 we have

n = 2126 · (261 − 1)(231 − 1)(219 − 1)(27 − 1)(25 − 1)(23 − 1)

= 6086555670238378989670371734243169622657830773351885970528324860512791691264

and

• 261 − 1, 231 − 1, 219 − 1, 27 − 1, 25 − 1, 23 − 1 are Mersenne primes,

• 61 + 31 + 19 + 7 + 5 + 3 = 126,

• 2127 − 1 is a Mersenne prime,

• 27 − 1 is a Mersenne prime,

• 127 = 27 − 1.
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To find more even sublime numbers with even divisor sum one would need
to check 22147483647 − 1 and higher Mersenne numbers for primality.

It is not clear if odd sublime numbers can exist. Suppose n is odd and σ(n)
is even and perfect. If n = ∏l

j=1 pj is squarefree, then τ(n) = 2l, which is not

perfect. Thus there is a prime q with vq(n) ≥ 2, i.e., n = qr ∏l
j=1 p

vj
j with r ≥ 2.

Then

σ(n) =
qr+1 − 1

q− 1

l

∏
j=1

pvj+1 − 1
p− 1

.

As shown above, the factor qr+1−1
q−1 cannot be a power of 2 since r ≥ 2. By the

same arguments as above, n therefore needs to be of the form n = qr ∏l
j=1 pj.

Now we can argue analogously to the case where n is even, but we further have
the condition that qr+1−1

q−1 is a Mersenne prime. Thus we conclude

Theorem A.1.2 ([Bro]) Let n ∈ N. If n is odd and σ(n) is even, then n is sublime if and
only if n has prime decomposition n = qr ∏l

j=1 pj where

• pj = 2vj − 1 are Mersenne primes,

• qr+1−1
q−1 = 2k+1 − 1 is a Mersenne prime,

• ∑l
j=1 vj = k,

• 2l+1 − 1 is a Mersenne prime,

• r + 1 = 2l+1 − 1.

As already mentioned, no such n is known. If there are no odd perfect num-
bers, then all sublime numbers are given by the characterizations in Theorems
A.1.1 and A.1.2. Hence 12 is one of only two known sublime numbers.

Let us turn our attention to primes in arithmetic progressions. From Dirich-
let’s theorem on primes in arithmetic progressions (Theorem 0.5.2) we know that
there are infinitely many primes p ≡ a mod m if gcd(a, m) = 1. This can be
proved with the use of Dirichlet L-functions, see [Brü95]. In some cases there are
elementary proofs similar to Euclid’s proof of the infinitude of the primes. One
could ask in which cases such a proof exists.

To deal with this problem, we first need to have a precise definition of such a
proof.

230



A.1. THE NUMBER 12

Definition A.1.3 Let a, m ∈ N with gcd(a, m) = 1. A polynomial f ∈ Z[x] is called
a Euclidean polynomial for a mod m if the following holds: For all but finitely
many n ∈ N0 the prime factors p of f (n) satisfy p ≡ 1 mod m or p ≡ a mod m,
where the latter case occurs infinitely often.

With such Euclidean polynomials Euclidean proofs of Dirichlet’s theorem are
possible. We want to know in which cases such a polynomial exists. There is a
nice characterization:

Theorem A.1.4 There is an Euclidean polynomial f ∈ Z[x] for a mod m if and only if
a2 ≡ 1 mod m.

It was shown by Schur [Sch12] that the condition a2 ≡ 1 mod m is sufficient,
the necessity was shown by M. R. Murty and Thain [MT06], cf. [Cona].

We are interested in those m such that an Euclidean proof exists for every
a mod m with gcd(a, m) = 1. In fact, these are only finitely many. Let m have
prime decomposition m = ∏ p

vj
j and suppose that a2 ≡ 1 mod m. By the Chi-

nese remainder theorem this is equivalent to a2 ≡ 1 mod p
vj
j for all j. We show

that no primes greater than 3 can occur in the prime decomposition (this is es-
sentially due to the fact that in this case 22 6≡ 1 mod p). Suppose that a prime
p ≥ 5 divides m. Choose an integer k such that gcd(kp + 2, m) = 1 (interest-
ingly we can use Dirichlet’s theorem on primes in arithmetic progressions to
guarantee the existence of such an integer k). Then (2 + kp)2 ≡ 4 6≡ 1 mod p,
thus we also have (2 + kp)2 6≡ 1 mod m. Hence we have m = 2a3b for some
a, b ∈ N0. If m > 25 we get 52 6≡ 1 mod m. Thus the only remaining cases
are m ∈ {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24}. But 52 ≡ 7 mod 9, 52 ≡ 9 mod 16, and
52 ≡ 7 mod 18, thus m cannot be 9, 16, or 18. As one can easily check, all other
values of m, i.e.,

m = 1, 2, 3, 4, 6, 8, 12, 24,

fulfill the condition a2 ≡ 1 mod m for all coprime a.

This is another interesting property of 12: It is the second biggest natural num-
ber m such that there exists an Euclidean proof for the infinitude of primes in the
arithmetic progression a + km for every a that is coprime to m. A complete Eu-
clidean proof for the infinitude of primes in every arithmetic progression a + 24k
with gcd(a, 24) = 1 (i.e., for the biggest natural number with this property) can
be found in [BL65].
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Now we discuss an interesting property of 12 related to the Riemann ζ-function.
This is perhaps (at least of the three properties mentioned here) the most famous
property of 12. In “fancy words”, this property is: 12 is the additive inverse of
the multiplicative inverse of ζ(−1). Or, to be more concise, ζ(−1) = − 1

12 . How
is this possible? Wouldn’t this mean that ∑∞

n=1 n = − 1
12 , i.e., the sum of all nat-

ural numbers equals − 1
12? Surprisingly, there is indeed a notion of the value of

infinite sums where this (almost) makes sense. Before considering this, recall that
the Riemann ζ-function is defined as a sum only if <(s) > 1, which is clearly not
true for s = −1. But we can use the functional equation in Theorem 0.5.18 for the
Riemann ζ-function for s = −1 to get

π
1
2 Γ
(
−1

2

)
ζ(−1) = π−1Γ(1)ζ(2),

i.e.,

ζ(−1) =
Γ(1)

Γ
(
− 1

2

)π−
3
2 ζ(2).

Directly from the definition we get Γ(1) = 1. To compute Γ
(
− 1

2

)
we just state

Euler’s reflection formula, see [FB06]:

Theorem A.1.5 (Euler’s reflection formula) Let s ∈ C\Z. Then

Γ(1− s)Γ(s) =
π

sin(πs)
.

Using this formula for s = 1
2 we get Γ

(
1
2

)
=
√

π. Since Γ satisfies the func-

tional equation Γ(s + 1) = sΓ(s) we have Γ
(
− 1

2

)
= −2

√
π. The evaluation of

ζ(2) is also known as the Basel problem. There are many different ways to show
that ζ(2) = π2

6 , see [Cha03] for some of them. Alltogether we get

ζ(−1) =
1

−2
√

π
π−

3
2

π2

6
= − 1

12
.

As already mentioned, this can also be obtained with a different summation
method. There are many different summation methods, cf. [Kno22]. Some of
them can assign values to infinite sums that diverge in the usual sense. There are
two things worth noting. First, although some of these summation methods may
work on a particular sum while others may not work, any applicable method
gives the same value to a fixed infinite sum. Second, even with these summation

232



A.1. THE NUMBER 12

methods we cannot assign a value to ∑∞
n=1 n directly. But we can do this indi-

rectly. We start with the definition of Abel summability, one of the most familiar
summation methods.

Definition A.1.6 Let ∑∞
n=0 an be an infinite sum. If the power series ∑∞

n=0 anxn has
radius of convergence at least 1 and the left limit lim

x↗1
∑∞

n=0 anxn is s ∈ R, then we

call ∑∞
n=0 an Abel summable with value s.

The series ∑∞
n=0 n is not Abel summable, but ∑∞

n=0(−1)n+1n is, and we have

∞

∑
n=0

(−1)n+1nxn = x
∞

∑
n=0

n(−x)n−1 = −x
d

dx

(
∞

∑
n=0

(−x)n

)

= −x
d

dx

(
1

1 + x

)
=

x
(1 + x)2

−→
x↗1

1
4

,

thus the value of ∑∞
n=0(−1)n+1n according to Abel summability is 1

4 . If we now
(just formally) subtract in the following way:

∞

∑
n=0

n = 1 + 2 + 3 + 4 + 5 + 6 + · · ·

− 4
∞

∑
n=0

n = − 4 − 8 − 12 − · · ·

= −3
∞

∑
n=0

n = 1 − 2 + 3 − 4 + 5 − 6 + · · ·

we find that ∑∞
n=0 n = − 1

3 ∑∞
n=0(−1)n+1n = − 1

12 . There are many more ways for
“showing” this with formal manipulation of infinite series.

Apart from the classical summation methods, there is the notion of Ramanu-
jan summation. With this method one can assign a value to ∑∞

n=1 n directly, cf.
[Del02]:

∞

∑
n=0

n =
∫ 0

0
f (t)dt− 1

2
f (0)−

∞

∑
k=1

B2k
(2k)!

f (2k−1)(0)

with f (n) = n. Here Bk are the Bernoulli numbers. Thus we get

∞

∑
n=0

n = −B2

2
= − 1

12
.
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We conclude our treatment with the remark that there are of course more in-
teresting properties of the number 12. One very interesting property connects
cusp forms, the abelianization of SL2(Z) and lattice polygons. Since this would
be to complicated to discuss here, we refer to [Wen] and [PRV00].
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A.2
The Number of Solutions of a Linear

Diophantine Equation with the
Circle Method

In Chapter I.10 we discussed the circle method, with which we can get asymptotic
formulae for the representation numbers of Diophantine equations. We show the
first step of this method applied to the easiest Diophantine equation, namely a
linear equation. A similar example can be found in [Els09]. Since this source is
not publicly available, we will show how the circle method works in this case.

Consider the Diophantine equation

36x + 48y + 24z = 60. (A.2.1)

We compute the number R5(60) of solutions (x, y, z) of Equation (A.2.1) such that
(x, y, z) ∈ [−5, 5]3. Using the circle method, we get the following: Let

f1(α) = ∑
|k1|≤5

e(36k1α), f2(α) = ∑
|k2|≤5

e(48k2α), f3(α) = ∑
|k3|≤5

e(24k3α)

with e(x) = e2πix. Then we have
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R5(60) = ∑
|k1|≤5

∑
|k2|≤5

∑
|k3|≤5

∫ 1

0
e(α(36k1 + 48k2 + 24k3 − 60))dα

=
∫ 1

0
f1(α) f2(α) f3(α)e(−αn)dα.

In this case, the integral can be evaluated relatively easily. Note that

sin(mπα) ∑
|k|≤L

e(αkm) = sin(mπα)

(
1 + 2

L

∑
k=1

cos(2mπkα)

)

= sin(mπα) + 2
L

∑
k=1

cos(2mπkα) sin(mπα)

= sin(mπα) +
L

∑
k=1

(sin((2k + 1)mπα)− sin((2k− 1)mπα))

= sin((2L + 1)mπα),

i.e.,

∑
|k|≤L

e(αkm) =
sin((2L + 1)mπα)

sin(mπα)
.

This is essentially Lagrange’s formula (compare [GR15, Formula 1.342]). With
this identity we get

R5(60) =
∫ 1

0

sin(396πα) sin(528πα) sin(264πα)

sin(36πα) sin(48πα) sin(24πα)
e(−60α)dα.

Since R5(60) is real, we even get

R5(60) =
∫ 1

0

sin(396πα) sin(528πα) sin(264πα)

sin(36πα) sin(48πα) sin(24πα)
cos(120πα)dα.

With a computer algebra system this can be easily computed and we get
R5(60) = 30.

We can get the number of solutions also directly, without the use of the circle
method. With standard methods, we find the general solution of the Diophantine
equation 36x + 48y + 24z = 60. This is given by
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x = −5+ 20s+ 2t− 8st, y = 5− 15s− 2t+ 6st, z = t, with t ∈ Z, s ∈ 1
5− 2t

Z.

If (x, y, z) ∈ [−5, 5]3, we get t ∈ [−5, 5] and s ∈ [−1, 3
2 ]. Thus, we find the

solutions

(1, 3,−5), (5, 0,−5), (−1, 4,−4), (3, 1,−4), (−3, 5,−3), (1, 2,−3), (5,−1,−3),

(−1, 3,−2), (3, 0,−2), (−3, 4,−1), (1, 1,−1), (5,−2,−1), (−5, 5, 0), (−1, 2, 0),

(3,−1, 0), (−3, 3, 1), (1, 0, 1), (5,−3, 1), (−5, 4, 2), (−1, 1, 2), (3,−2, 2), (−3, 2, 3),

(1,−1, 3), (5,−4, 3), (−5, 3, 4), (−1, 0, 4), (3,−3, 4), (−3, 1, 5), (1,−2, 5), (5,−5, 5)

and there are indeed 30 of them.

This shows how the integral formula in the circle method works. In the next
step, one would have to determine suitable major and minor arcs. Since this is
in general one of the hardest parts in the circle method (and we do not need it in
our example), we will not treat the next steps of the circle method here.
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A.3
Examples and Computations on

Minimal Sets

In this appendix we will show some more results about minimal sets, in partic-
ular those of congruence classes. In Appendix A.3.1 some more minimal sets of
congruence classes are shown. These have been computed with Algorithm II.1.1.
In Appendix A.3.2 we take a look at the number of elements in these minimal sets
with exactly k digits. These values will support Conjecture II.1.19. In Appendix
A.3.3 we show some values of digit measures for some minimal sets.

A.3.1 Minimal Sets of Congruence Classes

The following list shows the minimal sets for all congruences classes for the mod-
ulus m for 2 ≤ m ≤ 8. The minimal sets (for the congruence classes not treated in
Chapter II.1) have been computed with Algorithm II.1.1.

S([0]2) = {2, 4, 6, 8, 10, 30, 50, 70, 90}
S([1]2) = {1, 3, 5, 7, 9}
S([0]3) = {3, 6, 9, 12, 15, 18, 21, 24, 27, 42, 45, 48, 51, 54, 57, 72, 75, 78, 81, 84, 87,

111, 114, 117, 141, 144, 147, 171, 174, 177, 222, 225, 228, 252, 255, 258,

282, 285, 288, 411, 414, 417, 441, 444, 447, 471, 474, 477, 522, 525, 528,
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552, 555, 558, 582, 585, 588, 711, 714, 717, 741, 744, 747, 771, 774, 777,

822, 825, 828, 852, 855, 858, 882, 885, 888}
S([1]3) = {1, 4, 7, 22, 25, 28, 52, 55, 58, 82, 85, 88}
S([2]3) = {2, 5, 8, 11, 14, 17, 41, 44, 47, 71, 74, 77}
S([0]4) = {4, 8, 12, 16, 20, 32, 36, 52, 56, 60, 72, 76, 92, 96, 100, 300, 500, 700, 900}
S([1]4) = {1, 5, 9, 33, 37, 73, 77}
S([2]4) = {2, 6, 10, 14, 18, 30, 34, 38, 50, 54, 58, 70, 74, 78, 90, 94, 98}
S([3]4) = {3, 7, 11, 15, 19, 51, 55, 59, 91, 95, 99}
S([0]5) = {5, 10, 20, 30, 40, 60, 70, 80, 90}
S([1]5) = {1, 6}
S([2]5) = {2, 7}
S([3]5) = {3, 8}
S([4]5) = {4, 9}
S([0]6) = {6, 12, 18, 24, 30, 42, 48, 54, 72, 78, 84, 90, 114, 144, 150, 174, 210, 222,

228, 252, 258, 270, 282, 288, 414, 444, 450, 474, 510, 522, 528, 552, 558,

570, 582, 588, 714, 744, 750, 774, 810, 822, 828, 852, 858, 870, 882, 888,

1110, 1170, 1410, 1470, 1710, 1770, 2250, 2550, 2850, 4110, 4170, 4410,

4470, 4710, 4770, 5250, 5550, 5850, 7110, 7170, 7410, 7470, 7710, 7770,

8250, 8550, 8850},
S([1]6) = {1, 7, 25, 43, 49, 55, 85, 223, 229, 283, 289, 445, 523, 529, 583, 589, 823,

829, 883, 889}
S([2]6) = {2, 8, 14, 44, 50, 56, 74, 110, 116, 170, 176, 410, 416, 470, 476, 554, 710,

716, 770, 776}
S([3]6) = {3, 9, 15, 21, 27, 45, 51, 57, 75, 81, 87, 111, 117, 141, 147, 171, 177, 225,

255, 285, 411, 417, 441, 447, 471, 477, 525, 555, 585, 711, 717, 741, 747,

771, 777, 825, 855, 885}
S([4]6) = {4, 10, 16, 22, 28, 52, 58, 70, 76, 82, 88, 112, 118, 172, 178, 250, 256, 550,

556, 712, 718, 772, 778, 850, 856}
S([5]6) = {5, 11, 17, 23, 29, 41, 47, 71, 77, 83, 89, 143, 149, 221, 227, 281, 287, 443,

449, 743, 749, 821, 827, 881, 887}
S([0]7) = {7, 14, 21, 28, 35, 42, 49, 56, 63, 84, 91, 98, 105, 112, 119, 126, 133, 161,

168, 182, 189, 196, 203, 224, 245, 252, 259, 266, 294, 301, 308, 322, 329,
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336, 343, 364, 392, 399, 406, 413, 434, 441, 448, 455, 483, 504, 511, 518,

525, 532, 539, 553, 581, 588, 595, 602, 609, 616, 644, 651, 658, 665, 686,

805, 812, 819, 826, 833, 861, 868, 882, 889, 896, 903, 924, 945, 952, 959,

966, 994, 1001, 1008, 1022, 1029, 1036, 1092, 1099, 1106, 1113, 1155,

1183, 1225, 1232, 1239, 1253, 1295, 1302, 1309, 1316, 1386, 1652, 1659,

1666, 1806, 1813, 1855, 1883, 1925, 1932, 1939, 1953, 1995, 2002, 2009,

2044, 2065, 2205, 2226, 2233, 2296, 2436, 2443, 2464, 2534, 2555, 2604,

2625, 2695, 2905, 2926, 2933, 2996, 3003, 3024, 3066, 3094, 3206, 3234,

3304, 3612, 3619, 3626, 3661, 3668, 3682, 3689, 3696, 3906, 3934, 4004,

4011, 4018, 3311, 3318, 3332, 3339, 3381, 3388, 3416, 3444, 3486, 4053,

4081, 4088, 4116, 4151, 4158, 4165, 4186, 4333, 4361, 4368, 4403, 4445,

4466, 4501, 4508, 4543, 4816, 4851, 4858, 4865, 4886, 5005, 5012, 5019,

5033, 5082, 5089, 5103, 5152, 5159, 5222, 5229, 5243, 5292, 5299, 5313,

5334, 5341, 5348, 5383, 5502, 5509, 5544, 5551, 5558, 5803, 5852, 5859,

5922, 5929, 5943, 5992, 5999, 6006, 6041, 6048, 6055, 6111, 6118, 6125,

6181, 6188, 6195, 6405, 6461, 6468, 6524, 6545, 6552, 6559, 6594, 6601,

6608, 6622, 6629, 6664, 6692, 6699, 6811, 6818, 6825, 6881, 6888, 6895,

8001, 8008, 8022, 8029, 8036, 8092, 8099, 8106, 8113, 8155, 8183, 8225,

8232, 8239, 8253, 8295, 8302, 8309, 8316, 8386, 8652, 8659, 8666, 8806,

8813, 8855, 8883, 8925, 8932, 8939, 8953, 8995, 9002, 9009, 9044, 9065,

9205, 9226, 9233, 9296, 9436, 9443, 9464, 9534, 9555, 9604, 9625, 9695,

9905, 9926, 9933, 9996, 10003, 10066, 10311, 10318, 10381, 10388,

11011, 11018, 11081, 11088, 11116, 11151, 11158, 11165, 11186, 11501,

11508, 11816, 11851, 11858, 11865, 11886, 12222, 12229, 12292, 12299,

12922, 12929, 12992, 12999, 13006, 13111, 13118, 13181, 13188, 13811,

13818, 13881, 13888, 16555, 18011, 18018, 18081, 18088, 18116, 18151,

18158, 18165, 18186, 18501, 18508, 18816, 18851, 18858, 18865, 18886,

19222, 19229, 19292, 19299, 19922, 19929, 19992, 19999, 20006, 20055,

20622, 20629, 20692, 20699, 22022, 22029, 22092, 22099, 22225, 22232,

22239, 22253, 22295, 22302, 22309, 22925, 22932, 22939, 22953, 22995,

24444, 25333, 26005, 26222, 26229, 26292, 26299, 26922, 26929, 26992,

26999, 29022, 29029, 29092, 29099, 29225, 29232, 29239, 29253, 29295,
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29302, 29309, 29925, 29932, 29939, 29953, 29995, 30002, 30009, 30044,

30233, 30933, 32004, 32333, 33033, 33103, 33313, 33334, 33341, 33348,

33383, 33803, 34111, 34118, 34181, 34188, 34811, 34818, 34881, 34888,

36666, 39004, 39333, 40005, 40033, 40544, 41111, 41118, 41181, 41188,

41811, 41818, 41881, 41888, 43666, 44044, 44436, 44443, 44464, 44604,

45003, 45444, 48111, 48118, 48181, 48188, 48811, 48818, 48881, 48888,

50001, 50008, 50022, 50029, 50092, 50099, 50155, 50855, 51002, 51009,

51555, 52444, 53333, 55055, 55405, 55524, 55545, 55552, 55559, 55594,

58002, 58009, 58555, 59444, 60004, 60011, 60018, 60081, 60088, 60466,

61222, 61229, 61292, 61299, 61922, 61929, 61992, 61999, 64001, 64008,

64666, 65555, 66066, 66206, 66612, 66619, 66626, 66661, 66668, 66682,

66689, 66696, 66906, 68222, 68229, 68292, 68299, 68922, 68929, 68992,

68999, 80003, 80066, 80311, 80318, 80381, 80388, 81011, 81018, 81081,

81088, 81116, 81151, 81158, 81165, 81186, 81501, 81508, 81816, 81851,

81858, 81865, 81886, 82222, 82229, 82292, 82299, 82922, 82929, 82992,

82999, 83006, 83111, 83118, 83181, 83188, 83811, 83818, 83881, 83888,

86555, 88011, 88018, 88081, 88088, 88116, 88151, 88158, 88165, 88186,

88501, 88508, 88816, 88851, 88858, 88865, 88886, 89222, 89229, 89292,

89299, 89922, 89929, 89992, 89999, 90006, 90055, 90622, 90629, 90692,

90699, 92022, 92029, 92092, 92099, 92225, 92232, 92239, 92253, 92295,

92302, 92309, 92925, 92932, 92939, 92953, 92995, 94444, 95333, 96005,

96222, 96229, 96292, 96299, 96922, 96929, 96992, 96999, 99022, 99029,

99092, 99099, 99225, 99232, 99239, 99253, 99295, 99302, 99309, 99925,

99932, 99939, 99953, 99995, 100002, 100009, 111111, 111118, 111181,

111188, 111811, 111818, 111881, 111888, 115003, 118111, 118118,

118181, 118188, 118811, 118818, 118881, 118888, 181111, 181118,

181181, 181188, 181811, 181818, 181881, 181888, 185003, 188111,

188118, 188181, 188188, 188811, 188818, 188881, 188888, 200004,

222222, 222229, 222292, 222299, 222922, 222929, 222992, 222999,

223006, 229222, 229229, 229292, 229299, 229922, 229929, 229992,

229999, 292222, 292229, 292292, 292299, 292922, 292929, 292992,

292999, 293006, 299222, 299229, 299292, 299299, 299922, 299929,
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299992, 299999, 300006, 331002, 331009, 333333, 338002, 338009,

400001, 400008, 444444, 446005, 500003, 554001, 554008, 555555,

600005, 662004, 666666, 669004, 800002, 800009, 811111, 811118,

811181, 811188, 811811, 811818, 811881, 811888, 815003, 818111,

818118, 818181, 818188, 818811, 818818, 818881, 818888, 881111,

881118, 881181, 881188, 881811, 881818, 881881, 881888, 885003,

888111, 888118, 888181, 888188, 888811, 888818, 888881, 888888,

900004, 922222, 922229, 922292, 922299, 922922, 922929, 922992,

922999, 923006, 929222, 929229, 929292, 929299, 929922, 929929,

929992, 929999, 992222, 992229, 992292, 992299, 992922, 992929,

992992, 992999, 993006, 999222, 999229, 999292, 999299, 999922,

999929, 999992, 999999, 1000006, 2000005, 3000004, 4000003,

5000002, 5000009, 6000001, 6000008, 8000006, 9000005}
S([1]7) = {1, 8, 22, 29, 36, 43, 50, 57, 64, 92, 99, 204, 246, 253, 260, 267, 274, 302,

309, 323, 330, 337, 344, 372, 379, 393, 400, 407, 442, 449, 456, 470, 477,

526, 533, 554, 596, 603, 652, 659, 666, 673, 904, 946, 953, 960, 967, 974,

2003, 2066, 2073, 2444, 2556, 2633, 2703, 2766, 2773, 3004, 3053, 3074,

3200, 3207, 3270, 3277, 3333, 3354, 3452, 3459, 3704, 3753, 3774, 3900,

3907, 3970, 3977, 4026, 4054, 4096, 4404, 4446, 4460, 4467, 4474, 4544,

4726, 4754, 4796, 5244, 5342, 5349, 5552, 5559, 5566, 5944, 6000, 6007,

6056, 6070, 6077, 6553, 6602, 6609, 6623, 6630, 6637, 6672, 6679, 6693,

6700, 6707, 6756, 6770, 6777, 9003, 9066, 9073, 9444, 9556, 9633, 9703,

9766, 9773, 20000, 20007, 20056, 20070, 20077, 20700, 20707, 20756,

20770, 20777, 27000, 27007, 27056, 27070, 27077, 27700, 27707, 27756,

27770, 27777, 30003, 30073, 30703, 30773, 33342, 33349, 33552, 33559,

37003, 37073, 37703, 37773, 40244, 40552, 40559, 40944, 44066, 44444,

44766, 47244, 47552, 47559, 47944, 55553, 55623, 55693, 60026, 60096,

60726, 60796, 65556, 66200, 66207, 66270, 66277, 66333, 66900, 66907,

66970, 66977, 67026, 67096, 67726, 67796, 90000, 90007, 90056, 90070,

90077, 90700, 90707, 90756, 90770, 90777, 97000, 97007, 97056, 97070,

97077, 97700, 97707, 97756, 97770, 97777, 300000, 300007, 300070,

300077, 300700, 300707, 300770, 300777, 307000, 307007, 307070,
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307077, 307700, 307707, 307770, 307777, 335553, 370000, 370007,

370070, 370077, 370700, 370707, 370770, 370777, 377000, 377007,

377070, 377077, 377700, 377707, 377770, 377777, 555556},
S([2]7) = {2, 9, 16, 30, 37, 44, 51, 58, 65, 86, 100, 107, 114, 135, 170, 177, 184, 331,

338, 345, 366, 401, 408, 415, 436, 450, 457, 471, 478, 485, 506, 534, 555,

576, 604, 611, 618, 646, 660, 667, 674, 681, 688, 800, 807, 814, 835, 870,

877, 884, 1031, 1038, 1045, 1101, 1108, 1115, 1150, 1157, 1171, 1178,

1185, 1311, 1318, 1381, 1388, 1731, 1738, 1745, 1801, 1808, 1815, 1850,

1857, 1871, 1878, 1885, 3334, 3355, 3411, 3418, 3481, 3488, 3614, 3684,

4006, 4055, 4076, 4111, 4118, 4181, 4188, 4335, 4566, 4706, 4755, 4776,

4811, 4818, 4881, 4888, 5000, 5007, 5035, 5070, 5077, 5336, 5504, 5546,

5560, 5567, 5574, 5700, 5707, 5735, 5770, 5777, 6001, 6008, 6036, 6071,

6078, 6134, 6400, 6407, 6470, 6477, 6631, 6638, 6666, 6701, 6708, 6736,

6771, 6778, 6834, 8031, 8038, 8045, 8101, 8108, 8115, 8150, 8157, 8171,

8178, 8185, 8311, 8318, 8381, 8388, 8731, 8738, 8745, 8801, 8808, 8815,

8850, 8857, 8871, 8878, 8885, 10334, 10411, 10418, 10481, 10488, 11055,

11111, 11118, 11181, 11188, 11755, 11811, 11818, 11881, 11888, 17334,

17411, 17418, 17481, 17488, 18055, 18111, 18118, 18181, 18188, 18755,

18811, 18818, 18881, 18888, 33336, 33546, 40000, 40007, 40035, 40070,

40077, 40700, 40707, 40735, 40770, 40777, 47000, 47007, 47035, 47070,

47077, 47700, 47707, 47735, 47770, 47777, 50045, 50745, 53335, 55400,

55407, 55470, 55477, 55666, 57045, 57745, 60006, 60076, 60706, 60776,

66334, 66614, 66684, 67006, 67076, 67706, 67776, 80334, 80411, 80418,

80481, 80488, 81055, 81111, 81118, 81181, 81188, 81755, 81811, 81818,

81881, 81888, 87334, 87411, 87418, 87481, 87488, 88055, 88111, 88118,

88181, 88188, 88755, 88811, 88818, 88881, 88888, 333335, 600000,

600007, 600070, 600077, 600700, 600707, 600770, 600777, 607000,

607007, 607070, 607077, 607700, 607707, 607770, 607777, 663336,

670000, 670007, 670070, 670077, 670700, 670707, 670770, 670777,

677000, 677007, 677070, 677077, 677700, 677707, 677770, 677777}
S([3]7) = {3, 10, 17, 24, 45, 52, 59, 66, 80, 87, 94, 115, 122, 129, 164, 185, 192, 199,

206, 220, 227, 255, 262, 269, 276, 290, 297, 402, 409, 416, 444, 472, 479,
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486, 500, 507, 514, 556, 570, 577, 584, 605, 612, 619, 640, 647, 654, 675,

682, 689, 815, 822, 829, 864, 885, 892, 899, 906, 920, 927, 955, 962, 969,

976, 990, 997, 1116, 1144, 1186, 1256, 1655, 1816, 1844, 1886, 1956,

2005, 2012, 2019, 2075, 2082, 2089, 2215, 2222, 2229, 2285, 2292, 2299,

2516, 2586, 2600, 2607, 2670, 2677, 2705, 2712, 2719, 2775, 2782, 2789,

2915, 2922, 2929, 2985, 2992, 2999, 4000, 4007, 4014, 4070, 4077, 4084,

4112, 4119, 4182, 4189, 4406, 4420, 4427, 4462, 4469, 4476, 4490, 4497,

4700, 4707, 4714, 4770, 4777, 4784, 4812, 4819, 4882, 4889, 5015, 5064,

5085, 5155, 5505, 5540, 5547, 5554, 5575, 5715, 5764, 5785, 5855, 6002,

6009, 6044, 6072, 6079, 6114, 6184, 6422, 6429, 6492, 6499, 6555, 6702,

6709, 6744, 6772, 6779, 6814, 6884, 8116, 8144, 8186, 8256, 8655, 8816,

8844, 8886, 8956, 9005, 9012, 9019, 9075, 9082, 9089, 9215, 9222, 9229,

9285, 9292, 9299, 9516, 9586, 9600, 9607, 9670, 9677, 9705, 9712, 9719,

9775, 9782, 9789, 9915, 9922, 9929, 9985, 9992, 9999, 11112, 11119,

11182, 11189, 11462, 11469, 11812, 11819, 11882, 11889, 18112, 18119,

18182, 18189, 18462, 18469, 18812, 18819, 18882, 18889, 20002, 20009,

20072, 20079, 20702, 20709, 20772, 20779, 22116, 22186, 22256, 22816,

22886, 22956, 27002, 27009, 27072, 27079, 27702, 27709, 27772, 27779,

29116, 29186, 29256, 29816, 29886, 29956, 40064, 40764, 41114, 41184,

41814, 41884, 44222, 44229, 44292, 44299, 44600, 44607, 44670, 44677,

44922, 44929, 44992, 44999, 47064, 47764, 48114, 48184, 48814, 48884,

50116, 50186, 50655, 50816, 50886, 55044, 55555, 55744, 57116, 57186,

57655, 57816, 57886, 60000, 60007, 60014, 60070, 60077, 60084, 60700,

60707, 60714, 60770, 60777, 60784, 67000, 67007, 67014, 67070, 67077,

67084, 67700, 67707, 67714, 67770, 67777, 67784, 81112, 81119, 81182,

81189, 81462, 81469, 81812, 81819, 81882, 81889, 88112, 88119, 88182,

88189, 88462, 88469, 88812, 88819, 88882, 88889, 90002, 90009, 90072,

90079, 90702, 90709, 90772, 90779, 92116, 92186, 92256, 92816, 92886,

92956, 97002, 97009, 97072, 97079, 97702, 97709, 97772, 97779, 99116,

99186, 99256, 99816, 99886, 99956, 111114, 111184, 111814, 111884,

118114, 118184, 118814, 118884, 181114, 181184, 181814, 181884,

188114, 188184, 188814, 188884, 200000, 200007, 200070, 200077,
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200700, 200707, 200770, 200777, 207000, 207007, 207070, 207077,

207700, 207707, 207770, 207777, 221112, 221119, 221182, 221189,

221812, 221819, 221882, 221889, 228112, 228119, 228182, 228189,

228812, 228819, 228882, 228889, 270000, 270007, 270070, 270077,

270700, 270707, 270770, 270777, 277000, 277007, 277070, 277077,

277700, 277707, 277770, 277777, 291112, 291119, 291182, 291189,

291812, 291819, 291882, 291889, 298112, 298119, 298182, 298189,

298812, 298819, 298882, 298889, 811114, 811184, 811814, 811884,

818114, 818184, 818814, 818884, 881114, 881184, 881814, 881884,

888114, 888184, 888814, 888884, 900000, 900007, 900070, 900077,

900700, 900707, 900770, 900777, 907000, 907007, 907070, 907077,

907700, 907707, 907770, 907777, 921112, 921119, 921182, 921189,

921812, 921819, 921882, 921889, 928112, 928119, 928182, 928189,

928812, 928819, 928882, 928889, 970000, 970007, 970070, 970077,

970700, 970707, 970770, 970777, 977000, 977007, 977070, 977077,

977700, 977707, 977770, 977777, 991112, 991119, 991182, 991189,

991812, 991819, 991882, 991889, 998112, 998119, 998182, 998189,

998812, 998819, 998882, 998889},
S([4]7) = {4, 11, 18, 25, 32, 39, 53, 60, 67, 81, 88, 95, 102, 109, 123, 130, 137, 165,

172, 179, 193, 200, 207, 221, 228, 263, 270, 277, 291, 298, 305, 333, 361,

368, 375, 501, 508, 515, 522, 529, 550, 557, 571, 578, 585, 592, 599, 613,

655, 662, 669, 683, 802, 809, 823, 830, 837, 865, 872, 879, 893, 900, 907,

921, 928, 963, 970, 977, 991, 998, 1005, 1033, 1075, 1222, 1229, 1292,

1299, 1355, 1663, 1705, 1733, 1775, 1922, 1929, 1992, 1999, 2013, 2062,

2069, 2083, 2202, 2209, 2223, 2230, 2237, 2272, 2279, 2293, 2622, 2629,

2692, 2699, 2713, 2762, 2769, 2783, 2902, 2909, 2923, 2930, 2937, 2972,

2979, 2993, 3000, 3007, 3063, 3070, 3077, 3301, 3308, 3315, 3350, 3357,

3371, 3378, 3385, 3665, 3700, 3707, 3763, 3770, 3777, 5002, 5009, 5065,

5072, 5079, 5100, 5107, 5170, 5177, 5261, 5268, 5555, 5562, 5569, 5702,

5709, 5765, 5772, 5779, 5800, 5807, 5870, 5877, 5961, 5968, 6122, 6129,

6192, 6199, 6521, 6528, 6591, 6598, 6633, 6661, 6668, 6822, 6829, 6892,

6899, 8005, 8033, 8075, 8222, 8229, 8292, 8299, 8355, 8663, 8705, 8733,
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8775, 8922, 8929, 8992, 8999, 9013, 9062, 9069, 9083, 9202, 9209, 9223,

9230, 9237, 9272, 9279, 9293, 9622, 9629, 9692, 9699, 9713, 9762, 9769,

9783, 9902, 9909, 9923, 9930, 9937, 9972, 9979, 9993, 10000, 10007,

10063, 10070, 10077, 10700, 10707, 10763, 10770, 10777, 17000, 17007,

17063, 17070, 17077, 17700, 17707, 17763, 17770, 17777, 20122, 20129,

20192, 20199, 20661, 20668, 20822, 20829, 20892, 20899, 22033, 22222,

22229, 22292, 22299, 22733, 22922, 22929, 22992, 22999, 27122, 27129,

27192, 27199, 27661, 27668, 27822, 27829, 27892, 27899, 29033, 29222,

29229, 29292, 29299, 29733, 29922, 29929, 29992, 29999, 30013, 30083,

30713, 30783, 33100, 33107, 33170, 33177, 33555, 33800, 33807, 33870,

33877, 36663, 37013, 37083, 37713, 37783, 50005, 50075, 50705, 50775,

55521, 55528, 55591, 55598, 55661, 55668, 57005, 57075, 57705, 57775,

66315, 66385, 66665, 80000, 80007, 80063, 80070, 80077, 80700, 80707,

80763, 80770, 80777, 87000, 87007, 87063, 87070, 87077, 87700, 87707,

87763, 87770, 87777, 90122, 90129, 90192, 90199, 90661, 90668, 90822,

90829, 90892, 90899, 92033, 92222, 92229, 92292, 92299, 92733, 92922,

92929, 92992, 92999, 97122, 97129, 97192, 97199, 97661, 97668, 97822,

97829, 97892, 97899, 99033, 99222, 99229, 99292, 99299, 99733, 99922,

99929, 99992, 99999, 500000, 500007, 500070, 500077, 500700, 500707,

500770, 500777, 507000, 507007, 507070, 507077, 507700, 507707,

507770, 507777, 556665, 570000, 570007, 570070, 570077, 570700,

570707, 570770, 570777, 577000, 577007, 577070, 577077, 577700,

577707, 577770, 577777, 666663}
S([5]7) = {5, 12, 19, 26, 33, 40, 47, 61, 68, 82, 89, 96, 103, 110, 117, 131, 138, 166,

173, 180, 187, 201, 208, 222, 229, 243, 271, 278, 292, 299, 306, 320, 327,

341, 348, 362, 369, 376, 390, 397, 411, 418, 432, 439, 446, 481, 488, 600,

607, 642, 649, 663, 670, 677, 803, 810, 817, 831, 838, 866, 873, 880, 887,

901, 908, 922, 929, 943, 971, 978, 992, 999, 1006, 1041, 1048, 1076, 1111,

1118, 1146, 1181, 1188, 1300, 1307, 1370, 1377, 1643, 1706, 1741, 1748,

1776, 1811, 1818, 1846, 1881, 1888, 2000, 2007, 2042, 2049, 2070, 2077,

2203, 2210, 2217, 2231, 2238, 2273, 2280, 2287, 2441, 2448, 2700, 2707,

2742, 2749, 2770, 2777, 2903, 2910, 2917, 2931, 2938, 2973, 2980, 2987,
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3001, 3008, 3022, 3029, 3071, 3078, 3092, 3099, 3211, 3218, 3281, 3288,

3442, 3449, 3666, 3701, 3708, 3722, 3729, 3771, 3778, 3792, 3799, 3911,

3918, 3981, 3988, 4163, 4366, 4422, 4429, 4443, 4492, 4499, 4863, 6032,

6039, 6046, 6466, 6606, 6620, 6627, 6662, 6669, 6676, 6690, 6697, 6732,

6739, 6746, 8006, 8041, 8048, 8076, 8111, 8118, 8146, 8181, 8188, 8300,

8307, 8370, 8377, 8643, 8706, 8741, 8748, 8776, 8811, 8818, 8846, 8881,

8888, 9000, 9007, 9042, 9049, 9070, 9077, 9203, 9210, 9217, 9231, 9238,

9273, 9280, 9287, 9441, 9448, 9700, 9707, 9742, 9749, 9770, 9777, 9903,

9910, 9917, 9931, 9938, 9973, 9980, 9987, 10001, 10008, 10071, 10078,

10701, 10708, 10771, 10778, 11163, 11443, 11863, 17001, 17008, 17071,

17078, 17701, 17708, 17771, 17778, 18163, 18443, 18863, 20032, 20039,

20732, 20739, 22111, 22118, 22181, 22188, 22300, 22307, 22370, 22377,

22811, 22818, 22881, 22888, 24442, 24449, 27032, 27039, 27732, 27739,

29111, 29118, 29181, 29188, 29300, 29307, 29370, 29377, 29811, 29818,

29881, 29888, 30000, 30007, 30042, 30049, 30070, 30077, 30700, 30707,

30742, 30749, 30770, 30777, 37000, 37007, 37042, 37049, 37070, 37077,

37700, 37707, 37742, 37749, 37770, 37777, 44231, 44238, 44441, 44448,

44931, 44938, 60366, 60443, 66022, 66029, 66092, 66099, 66666, 66722,

66729, 66792, 66799, 67366, 67443, 80001, 80008, 80071, 80078, 80701,

80708, 80771, 80778, 81163, 81443, 81863, 87001, 87008, 87071, 87078,

87701, 87708, 87771, 87778, 88163, 88443, 88863, 90032, 90039, 90732,

90739, 92111, 92118, 92181, 92188, 92300, 92307, 92370, 92377, 92811,

92818, 92881, 92888, 94442, 94449, 97032, 97039, 97732, 97739, 99111,

99118, 99181, 99188, 99300, 99307, 99370, 99377, 99811, 99818, 99881,

99888, 100000, 100007, 100070, 100077, 100700, 100707, 100770,

100777, 107000, 107007, 107070, 107077, 107700, 107707, 107770,

107777, 114441, 114448, 170000, 170007, 170070, 170077, 170700,

170707, 170770, 170777, 177000, 177007, 177070, 177077, 177700,

177707, 177770, 177777, 184441, 184448, 444442, 444449, 800000,

800007, 800070, 800077, 800700, 800707, 800770, 800777, 807000,

807007, 807070, 807077, 807700, 807707, 807770, 807777, 814441,

814448, 870000, 870007, 870070, 870077, 870700, 870707, 870770,

248



A.3. EXAMPLES AND COMPUTATIONS ON MINIMAL SETS

870777, 877000, 877007, 877070, 877077, 877700, 877707, 877770,

877777, 884441, 884448},
S([6]7) = {6, 13, 20, 27, 34, 41, 48, 55, 83, 90, 97, 104, 111, 118, 125, 174, 181, 188,

195, 223, 244, 251, 258, 293, 300, 307, 321, 328, 335, 370, 377, 391, 398,

405, 433, 440, 447, 454, 475, 503, 510, 517, 524, 531, 538, 573, 580, 587,

594, 804, 811, 818, 825, 874, 881, 888, 895, 923, 944, 951, 958, 993, 1000,

1007, 1021, 1028, 1070, 1077, 1091, 1098, 1105, 1140, 1147, 1154, 1175,

1224, 1294, 1700, 1707, 1721, 1728, 1770, 1777, 1791, 1798, 1805, 1840,

1847, 1854, 1875, 1924, 1994, 2211, 2218, 2225, 2281, 2288, 2295, 2435,

2533, 2911, 2918, 2925, 2981, 2988, 2995, 3023, 3051, 3058, 3093, 3233,

3303, 3310, 3317, 3331, 3338, 3373, 3380, 3387, 3723, 3751, 3758, 3793,

3933, 4003, 4024, 4073, 4094, 4325, 4395, 4423, 4444, 4493, 4500, 4507,

4570, 4577, 4703, 4724, 4773, 4794, 5004, 5011, 5018, 5074, 5081, 5088,

5144, 5221, 5228, 5291, 5298, 5333, 5704, 5711, 5718, 5774, 5781, 5788,

5844, 5921, 5928, 5991, 5998, 8000, 8007, 8021, 8028, 8070, 8077, 8091,

8098, 8105, 8140, 8147, 8154, 8175, 8224, 8294, 8700, 8707, 8721, 8728,

8770, 8777, 8791, 8798, 8805, 8840, 8847, 8854, 8875, 8924, 8994, 9211,

9218, 9225, 9281, 9288, 9295, 9435, 9533, 9911, 9918, 9925, 9981, 9988,

9995, 10051, 10058, 10751, 10758, 11444, 11500, 11507, 11570, 11577,

12221, 12228, 12291, 12298, 12921, 12928, 12991, 12998, 17051, 17058,

17751, 17758, 18444, 18500, 18507, 18570, 18577, 19221, 19228, 19291,

19298, 19921, 19928, 19991, 19998, 22154, 22224, 22294, 22854, 22924,

22994, 29154, 29224, 29294, 29854, 29924, 29994, 30225, 30295, 30533,

30925, 30995, 33011, 33018, 33081, 33088, 33333, 33711, 33718, 33781,

33788, 37225, 37295, 37533, 37925, 37995, 40004, 40074, 40704, 40774,

44225, 44295, 44435, 44925, 44995, 47004, 47074, 47704, 47774, 50000,

50007, 50021, 50028, 50070, 50077, 50091, 50098, 50700, 50707, 50721,

50728, 50770, 50777, 50791, 50798, 57000, 57007, 57021, 57028, 57070,

57077, 57091, 57098, 57700, 57707, 57721, 57728, 57770, 57777, 57791,

57798, 80051, 80058, 80751, 80758, 81444, 81500, 81507, 81570, 81577,

82221, 82228, 82291, 82298, 82921, 82928, 82991, 82998, 87051, 87058,

87751, 87758, 88444, 88500, 88507, 88570, 88577, 89221, 89228, 89291,
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89298, 89921, 89928, 89991, 89998, 92154, 92224, 92294, 92854, 92924,

92994, 99154, 99224, 99294, 99854, 99924, 99994, 222221, 222228,

222291, 222298, 222921, 222928, 222991, 222998, 229221, 229228,

229291, 229298, 229921, 229928, 229991, 229998, 292221, 292228,

292291, 292298, 292921, 292928, 292991, 292998, 299221, 299228,

299291, 299298, 299921, 299928, 299991, 299998, 400000, 400007,

400070, 400077, 400700, 400707, 400770, 400777, 407000, 407007,

407070, 407077, 407700, 407707, 407770, 407777, 442224, 442294,

442924, 442994, 449224, 449294, 449924, 449994, 470000, 470007,

470070, 470077, 470700, 470707, 470770, 470777, 477000, 477007,

477070, 477077, 477700, 477707, 477770, 477777, 922221, 922228,

922291, 922298, 922921, 922928, 922991, 922998, 929221, 929228,

929291, 929298, 929921, 929928, 929991, 929998, 992221, 992228,

992291, 992298, 992921, 992928, 992991, 992998, 999221, 999228,

999291, 999298, 999921, 999928, 999991, 999998}
S([0]8) = {8, 16, 24, 32, 40, 56, 64, 72, 96, 104, 112, 120, 144, 152, 192, 200, 304, 336,

344, 360, 376, 504, 512, 520, 544, 552, 592, 600, 704, 736, 744, 760, 776,

904, 912, 920, 944, 952, 992, 1000, 3000, 5000, 7000, 9000}
S([1]8) = {1, 9, 25, 33, 57, 65, 73, 305, 345, 377, 385, 505, 545, 553, 585, 705, 745,

777, 785}
S([2]8) = {2, 10, 18, 34, 50, 58, 66, 74, 90, 98, 114, 146, 154, 194, 306, 330, 338, 370,

378, 386, 514, 546, 554, 594, 706, 730, 738, 770, 778, 786, 914, 946, 954,

994},
S([3]8) = {3, 11, 19, 27, 51, 59, 67, 75, 91, 99, 107, 147, 155, 187, 507, 547, 555, 587,

707, 747, 771, 779, 787, 907, 947, 955, 987}
S([4]8) = {4, 12, 20, 28, 36, 52, 60, 68, 76, 92, 100, 108, 116, 156, 180, 188, 196, 300,

308, 332, 372, 380, 388, 500, 508, 516, 556, 580, 588, 596, 700, 708, 732,

772, 780, 788, 900, 908, 916, 956, 980, 988, 996}
S([5]8) = {5, 13, 21, 29, 37, 61, 69, 77, 93, 101, 109, 117, 141, 149, 181, 189, 197, 301,

309, 333, 341, 349, 381, 389, 701, 709, 733, 741, 749, 781, 789, 901, 909,

917, 941, 949, 981, 989, 997}
S([6]8) = {6, 14, 22, 30, 38, 54, 70, 78, 94, 102, 110, 118, 150, 158, 182, 190, 198, 334,
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342, 374, 502, 510, 518, 550, 558, 582, 590, 598, 734, 742, 774, 902, 910,

918, 950, 958, 982, 990, 998}
S([7]8) = {7, 15, 23, 31, 39, 55, 63, 95, 103, 111, 119, 143, 183, 191, 199, 303, 335,

343, 383, 503, 511, 519, 543, 583, 591, 599, 903, 911, 919, 943, 983, 991,

999}

A.3.2 The Number of Elements in Minimal Sets of

Congruence Classes

Table A.3.1 shows the number of elements in S([a]m) that have exactly k digits
for 2 ≤ m ≤ 13 and some specific a. These numbers are known for more sets but
we omit the presentation here for lack of space. The values have been computed
with Algorithm II.1.1.

set 1 2 3 4 5 6 7 8 9 10 11 Σ

[0]2 4 5 − − − − − − − − − 9
[1]2 5 − − − − − − − − − − 5

[0]3 3 18 54 − − − − − − − − 75
[1]3 3 9 − − − − − − − − − 12
[2]3 3 9 − − − − − − − − − 12

[0]4 2 12 5 − − − − − − − − 19
[1]4 3 4 − − − − − − − − − 7
[2]4 2 15 − − − − − − − − − 17
[3]4 2 9 − − − − − − − − − 11

[0]5 1 8 − − − − − − − − − 9
[1]5 2 − − − − − − − − − − 2
[2]5 2 − − − − − − − − − − 2
[3]5 2 − − − − − − − − − − 2
[4]5 2 − − − − − − − − − − 2

[0]6 1 11 36 27 − − − − − − − 75
[1]6 2 5 13 − − − − − − − − 20
[2]6 2 5 13 − − − − − − − − 20
[3]6 2 9 27 − − − − − − − − 38
[4]6 1 10 14 − − − − − − − − 25
[5]6 1 10 14 − − − − − − − − 25

[0]7 1 11 68 218 340 160 10 − − − − 808
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set 1 2 3 4 5 6 7 8 9 10 11 Σ

[1]7 2 9 37 74 84 34 − − − − − 240
[2]7 2 8 40 111 103 34 − − − − − 298
[3]7 1 10 55 138 157 160 − − − − − 521
[4]7 1 11 58 147 155 34 − − − − − 406
[5]7 1 11 60 156 155 74 − − − − − 457
[6]7 1 10 151 146 156 104 − − − − − 568

[0]8 1 8 30 5 − − − − − − − 44
[1]8 2 5 12 − − − − − − − − 19
[2]8 1 9 24 − − − − − − − − 34
[3]8 1 9 17 − − − − − − − − 27
[4]8 1 9 33 − − − − − − − − 43
[5]8 1 8 30 − − − − − − − − 39
[6]8 1 8 30 − − − − − − − − 39
[7]8 1 7 25 − − − − − − − − 33

[0]9 1 8 56 288 690 336 168 48 6 − − 1601
[1]9 1 7 36 85 51 27 8 1 − − − 216
[2]9 1 7 36 85 51 27 8 1 − − − 216
[3]9 1 7 36 90 15 3 − − − − − 152
[4]9 1 7 36 85 51 27 8 1 − − − 216
[5]9 1 7 36 85 51 27 8 1 − − − 216
[6]9 1 7 36 90 15 3 − − − − − 152
[7]9 1 7 36 85 51 27 8 1 − − − 216
[8]9 1 7 36 85 51 27 8 1 − − − 216

[0]10 0 9 − − − − − − − − − 9
[1]10 1 − − − − − − − − − − 1

[0]11 0 9 64 350 510 46 − − − − − 979
[1]11 1 7 45 170 215 155 100 45 10 1 − 749
[2]11 1 7 45 166 200 148 88 31 10 1 − 697
[3]11 1 7 44 169 197 155 100 45 10 1 − 729

[0]12 0 8 35 87 27 − − − − − − 157
[4]12 1 5 18 21 − − − − − − − 45
[5]12 1 5 18 21 − − − − − − − 45

[0]13 0 7 58 347 1269 1698 901 303 34 − − 4617
[10]13 0 7 58 320 935 892 355 93 14 2 − 2676

Table A.3.1: The number of elements in S([a]m) that have exactly k digits for
2 ≤ m ≤ 13
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Table A.3.2 shows the maximal number of digits in minimal sets for some
m ≤ 100. The first value gives the maximal number of digits in S([a]m) for a 6= 0,
the second value those for a = 0.

modulus
maximal

modulus
maximal

modulus
maximal

number number number

2 1/2 12 4/5 25 2/3
3 2/3 13 9/10 30 3/4
4 2/3 14 7/8 32 5/6
5 1/2 15 3/4 40 3/4
6 3/4 16 4/5 50 2/3
7 6/7 17 16/17 60 4/5
8 3/4 18 9/10 70 7/8
9 8/9 19 18/19 80 4/5
10 1/2 20 2/3 90 9/10
11 10/6 21 11/11 100 2/3

Table A.3.2: The maximal number of digits in S([a]m) for some m ≤ 100

A.3.3 Digit Measures of some Minimal Sets

Table A.3.3 shows the rounded values of some digit measures for some minimal
sets.

Set M µc(S(M)) µg(S(M)) µh(S(M)) µz(S(M))

N 0, 1 0, 009 0, 05 0, 000477465
P 0, 050623559 0, 004050506 0, 024226514 0, 000213392

N\P 0, 068555556 0, 0042107 0, 030194444 0, 000217167
2 0, 070555556 0, 0060305 0, 034583333 0, 000319024

[0]2 0, 05 0, 00405 0, 024074074 0, 000213386
[1]2 0, 055555556 0, 005 0, 027777778 0, 000265258
[0]3 0, 059333333 0, 0031854 0, 024833333 0, 000163471
[1]3 0, 043333333 0, 00309 0, 02 0, 000161277
[2]3 0, 043333333 0, 00309 0, 02 0, 000161277
[0]4 0, 036111111 0, 0021205 0, 015694444 0, 000108939
[1]4 0, 037777778 0, 00304 0, 018148148 0, 000160098
[2]4 0, 038888889 0, 00215 0, 016666667 0, 00010964
[3]4 0, 032222222 0, 00209 0, 014444444 0, 000108225

253



A.3. EXAMPLES AND COMPUTATIONS ON MINIMAL SETS

Set M µc(S(M)) µg(S(M)) µh(S(M)) µz(S(M))

[0]5 0, 02 0, 00108 0, 008518519 5, 49379 · 10−5

[1]5 0, 022222222 0, 002 0, 011111111 0, 000106103
[2]5 0, 022222222 0, 002 0, 011111111 0, 000106103
[3]5 0, 022222222 0, 002 0, 011111111 0, 000106103
[4]5 0, 022222222 0, 002 0, 011111111 0, 000106103
[0]6 0, 027633333 0, 001113627 0, 01068963 5, 56933 · 10−5

[1]6 0, 029222222 0, 0020513 0, 013324074 0, 000107299
[2]6 0, 029222222 0, 0020513 0, 013324074 0, 000107299
[3]6 0, 035222222 0, 0020927 0, 015194444 0, 000108261
[4]6 0, 023777778 0, 0011014 0, 009648148 5, 54281 · 10−5

[5]6 0, 023777778 0, 0011014 0, 009648148 5, 54281 · 10−5

[0]7 0, 033706778 0, 001117021 0, 012068479 5, 57373 · 10−5

[1]7 0, 037252667 0, 002093775 0, 015652762 0, 000108275
[2]7 0, 036907111 0, 002084112 0, 015451466 0, 000108044
[3]7 0, 030058889 0, 00110564 0, 011125317 5, 54836 · 10−5

[4]7 0, 031587111 0, 001115949 0, 011596651 5, 57235 · 10−5

[5]7 0, 031913778 0, 001116158 0, 011672841 5, 57262 · 10−5

[6]7 0, 040807111 0, 001115248 0, 013808688 5, 5611 · 10−5

[0]8 0, 023388889 0, 001083005 0, 009362963 5, 49778 · 10−5

[1]8 0, 029111111 0, 0020512 0, 013296296 0, 000107298
[2]8 0, 023777778 0, 0010924 0, 009555556 5, 52055 · 10−5

[3]8 0, 023 0, 0010917 0, 009361111 5, 51963 · 10−5

[4]8 0, 024777778 0, 0010933 0, 009805556 5, 52175 · 10−5

[5]8 0, 023333333 0, 001083 0, 009351852 5, 49777 · 10−5

[6]8 0, 023333333 0, 001083 0, 009351852 5, 49777 · 10−5

[7]8 0, 021666667 0, 0010725 0, 008842593 5, 47353 · 10−5

[0]9 0, 030228143 0, 001085895 0, 010847425 5, 50147 · 10−5

[1]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[2]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[3]9 0, 023905889 0, 00107369 0, 009350974 5, 47507 · 10−5

[4]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[5]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[6]9 0, 023905889 0, 00107369 0, 009350974 5, 47507 · 10−5

[7]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[8]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

Table A.3.3: Values of some digit measures
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Examples on the Distribution of the

Number of Solutions of Linear
Equations

In this appendix we show some examples of the distribution of (II.3.3) with re-
spect to the modulus. We will see that the distribution will sometimes not only
depend on the determinant, but also on the Smith normal form of the involved
matrix A. We will also see the correct values for the error terms R and Ry in
Theorem II.3.7 for these examples.

Let

A := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 90) ∈ M14,14(Z),

B := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 12, 540) ∈ M14,14(Z),

C := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19 440) ∈ M14,14(Z),

D := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30 030) ∈ M14,14(Z),

E := diag(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) ∈ M14,14(Z),

F := diag(1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4) ∈ M14,14(Z),

G := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 16) ∈ M14,14(Z),

H := diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16 384) ∈ M14,14(Z)
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and m = 100 000. Let ∆M denote the determinant of M. Then we have

∆A = 19 440 = 35 · 24 · 5,

∆B = 19 440 = 35 · 24 · 5,

∆C = 19 440 = 35 · 24 · 5,

∆D = 30 030 = 2 · 3 · 5 · 7 · 11 · 13,

∆E = 16 384 = 214,

∆F = 16 384 = 214,

∆G = 16 384 = 214,

∆H = 16 384 = 214.

Figures A.4.1 to A.4.8 and Tables A.4.1 to A.4.3 show the distribution of solutions
for the above matrices. In the figures the points have coordinates (y, #y(M, m)).
Points with #y(M, m) = 0 are omitted.

0 5000 10000 15000

5000

10000

15000

20000

25000

30000

Figure A.4.1: The distribution of solutions for A.
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Figure A.4.2: The distribution of solutions for B.
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Figure A.4.3: The distribution of solutions for C.
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Figure A.4.4: The distribution of solutions for D.
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Figure A.4.5: The distribution of solutions for E.
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Figure A.4.6: The distribution of solutions for F.

0 5000 10000 15000

10000

20000

30000

40000

50000

60000

Figure A.4.7: The distribution of solutions for G.
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Figure A.4.8: The distribution of solutions for H.

Tables A.4.1 to A.4.3 show the exact values #y(M, m) for some y and the ma-
trices A to H. The values for R and Ry have been computed as the difference
between these exact values and the asymptotic given in Theorem II.3.7.

The values for R and Ry are rounded to one decimal digit.

y 1 2 3 5 35 24 ∆

#y(A,m) 26 666 0 0 6 667 4 445 26 667 1 111

R/Ry 0.7 26 666.7 13 333.3 −0.3 −4 280.4 −23 333.7 −1 105.9

#y(B,m) 26 666 0 0 6 667 1 482 13 333 185

R/Ry 0.7 26 666.7 13 333.3 −0.3 −1 317.4 −9 999.7 −179.9

#y(C,m) 26 666 13 334 8 889 6 667 165 3 333 5

R/Ry 0.7 13 332.7 4 444.3 −0.3 −0.4 0.3 0.1

Table A.4.1: Values for the distribution of (II.3.3) for the matrices A to C.

y 1 2 3 5 7 11 13 ∆

#y(D,m) 19 181 19 182 9 590 4 795 3 196 1 918 1 598 3

R/Ry −0.2 −1.2 0.4 0.2 0.8 0.1 0.4 0.3

Table A.4.2: Values for the distribution of (II.3.3) for the matrix D.
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y 1 2 22 27 29 210 212 ∆

#y(E,m) 50 000 0 0 0 0 0 0 50 000

R/Ry 0 50 000 25 000 781.3 195.3 97.7 24.4 −49 993.9

#y(F,m) 50 000 0 0 25 000 0 0 0 25 000

R/Ry 0 50 000 25 000 −24 218.7 195.3 97.7 24.4 −24 993.9

#y(G,m) 50 000 0 0 0 12 500 0 6 250 6 250

R/Ry 0 50 000 25 000 781.3 −12 304.7 97.7 −6 225.6 −6 243.9

#y(H,m) 50 000 25 000 12 500 391 98 49 12 6

R/Ry 0 25 000 12 500 390.3 97.3 48.7 12.4 0.1

Table A.4.3: Values for the distribution of (II.3.3) for the matrices E to H.

Note that these tables include values y for which Theorem II.3.7 is not appli-
cable. This amounts in large values of R and Ry. We also notice that the values
of R and Ry in the cases where Theorem II.3.7 holds are small compared to the
bound given in Theorem II.3.7. This means that better bounds could be possible
(compare Section II.3.6).
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List of Symbols

The list of symbols has the following sorting:

• The first block contains important sets of numbers such as the set of primes
P or the upper half plane H.

• The second block contains objects containing brackets (such as principal
ideals) and absolute values. For example, the principal ideal (a) is sorted in
this block, since the important symbol here is the bracket and not the “a”.
Tuples such as (M, τ) are not in this block, they are sorted according to the
first letter inside the brackets.

• The third block contains special symbols (without letters) and integrals.

• The fourth block contains general operators and derived sets such as clo-
sures, sumsets, derivatives, and polynomial rings. For example, the sumset
A + B is not sorted alphabetically under “A” because the important part is
the operator “+”.

• The next blocks contain symbols sorted alphabetically. These are symbols
that occur in Part 1 or in at least two chapters in Part 2. Greek letters
are sorted at the end of the block corresponding to the first letter of their
transliteration.

• The last four blocks contain operators and symbols used only a single chap-
ter of Part 2.

If a symbol is defined in this thesis, the italic number at the end of the description
indicates the page where the respective symbol is defined.
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List of Symbols

sets of numbers

N

The set of natural numbers N = {1, 2, 3, . . .}.

N0

The set of natural numbers with 0, N0 = N∪ {0}.

P

The set of primes P = {2, 3, 5, 7, . . .}.

Z

The set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Q

The set of rational numbers.

R

The set of real numbers.

RE

The set of real numbers that fulfills the condition E,
RE = {x ∈ R : the condition E holds for x}.

C

The set of complex numbers.

H

The upper half plane H = {s ∈ C : =(s) > 0} (p. 24).

Z/nZ

The quotient of the ring Z with respect to the ideal nZ, i.e., the set of all
residues modulo n (viewed as a group or a ring).

Fq

The finite field with exactly q elements.

Qp

The p-adic numbers (p. 63).
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List of Symbols

Zp

The p-adic integers (p. 64).

brackets

(a)

The principal ideal generated by a.( a
b
)

The Kronecker symbol of a over b (equivalently, the Legendre symbol if b is
prime) (p. 39).

(V
2)

The set of all subsets of V that contain exactly two elements,
(V

2) = {{v, w} : v, w,∈ V} (p. 33).

(x0 : x1 : x2)

Homogeneous coordinates in the projective plane (p. 18).

[L : K]

The degree of the field extension L/K.

〈n〉b
The unique representation of n in base b (p. 38).

〈a0; a1, a2, . . .〉
The continued fraction with partial quotiens ai (p. 41).

|A|
The cardinality of the set A, i.e., its number of elements if A is finite.

|·| or |·|∞
The usual absolute value.

|·|p
The p-adic absolute value (p. 63).

|·|T
The absolute value on Fq(T) with |Te|T = q−e (p. 67).
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List of Symbols

bxc
The floor function, bxc = max{k ∈ Z : k ≤ x} (p. 42).

dxe
The ceiling function, dxe = min{k ∈ Z : k ≥ x} (p. 90).

{x}
The fractional part of x, {x} = x− bxc (p. 42).

special symbols and integrals

∞H

The point at infinity of H (p. 27).∫
A f dµ

The Lebesgue integral of the function f on the set A with respect to the
measure µ.

general operators and derived sets

A

The (topological) closure of A in a topological space (M, τ) (p. 12).

K

A fixed algebraic closure of the field K.

K̂

The completion of K with respect to a given valuation or absolute value (p.
55).

Kv resp. K|·|

The completion of K with respect to the valuation v respectively the absolute
value |·| (p. 55).

Ẽ

The reduction of the elliptic curve E modulo a given prime p (p. 129).

z

The complex conjugate of the complex number z = x + iy, i.e., z = x− iy.
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List of Symbols

Mc

The complement of the set M in a given natural superset of M, mostly R or
N.

Ec

The complement of the edge set E of a graph G = (V, E), Ec = (V
2)\E (p.

34).

Gc

The complement of the graph G, Gc = (V, Ec) (p. 34).

KG

The fixed field of G in K, i.e., KG := {α ∈ K : σ(α) = α for all σ ∈ G} (p.
53).

A + B

The sumset of A and B, A + B = {a + b : a ∈ A, b ∈ B} (p. 42).

A⊕ B

The Kronecker sum of two matrices A and B (p. 32).

f � g

The Hadamard product of two power series f and g (p. 32).

r ◦ s

The Hopf-Stiefel function r ◦ s = β2(r, s) (p. 90).

f ′

The derivative of f . If f is a formal Laurent series, this is the formal deriva-
tive (p. 32).

f (n)

The n-th derivative of the function f .

d
dx f (x)

The derivative of a function f : R→ R.

∂
∂xi

f (x1, . . . , xn)

The partial derivative of a function f : Rn → Rm with respect to xi.

273



List of Symbols

γ̇(t)

The derivative of a curve γ, i.e., γ̇(t) = d
dt γ(t) (p. 14).

a / R

a is an ideal of the ring R.

f |k M

The transformed function ( f |k M)(τ) =
(

dMτ
dτ

) k
2 f (Mτ) (p. 107).

R[x1, . . . , xn]

The polynomial ring in n variables over a ring R.

R(x)

The field of formal rational functions in one variable over a ring R.

R[[x]]

The ring of formal power series in one variable over a ring R (p. 31).

R((x))

The field of formal Laurent series in one variable over a ring R (p. 31).

R∗

The unit group of the ring R.

Σ∗

The set of all finite strings with symbols of Σ (p. 58).

S−1

The set of inverses of S (here S is a subset of some group G):
S−1 = {s−1 : s ∈ S}.

0 – 9

0|·|(K)

The set of null sequences in the valued field (K, |·|) (p. 55).

0∞(Q)

The set of null sequences in Q with respect to the usual absolute value.
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List of Symbols

0p(Q)

The set of null sequences in Q with respect to the p-adic absolute value (p.
64).

A

A2(K)

The affine plane over some field K (p. 18).

a f (m)

The Fourier coefficients of the modular form f , f (τ) = ∑m∈Z a f (m)e2πimτ

(p. 108).

Aut(G)

The group of automorphisms of the domain G (i.e., conformal functions
G → G) for G ⊂ Ĉ (p. 23).

Aut(G)

The group of automorphisms of the graph G (p. 36).

B

B

The Borel σ-algebra (of a given topological space) (p. 56).

Bk

The k-th Bernoulli number defined via t
et−1 = ∑∞

k=0 Bk
tk

k! (p. 39).

βp(r, s)

The function βp(r, s) = min{n : (x + y)n = 0 in Fp[x, y]/(xr, ys)} (p. 90).

C

c|·|(K)

The ring of Cauchy sequences in the valued field (K, |·|) (p. 55).

c∞(Q)

The ring of Cauchy sequences in Q with respect to the usual absolute value.
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List of Symbols

cp(Q)

The ring of Cauchy sequences in Q with respect to the p-adic absolute value
(p. 63).

c(r, n)

The Ramanujan sum c(r, n) = ∑ 1≤k≤n
(k,n)=1

e
2πirk

n (p. 84).

C[a/b]

The Ford circle with center at
(

a
b , 1

2b2

)
and radius 1

2b2 (p. 71).

Ĉ

The Riemann sphere Ĉ = C∪ {∞} (p. 16).

Cp

The completion of the algebraic closure of Qp (p. 67).

C∞

The completion of the algebraic closure of the completion of Fq(t) (p. 67).

char(K)

The characteristic of the field K.

C lK

The ideal class group of OK, C lK = IK/PK (p. 51).

χ

A (Dirichlet or Hecke) character (p. 82).

χA

The indicator function of the set A.

χ(D)

The Euler charateristic of D ⊂ M for a Riemannian manifold (M, g).

χ(G)

The chromatic number of a graph G (p. 35).
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List of Symbols

D

d(v)

The degree of a vertex v in a graph, d(v) = |N(v)| (p. 35).

d(v, w)

The distance between two vertices v, w in a graph,
d(v, w) = min{l(P) : P is a path that connects v and w} (p. 35).

dH

The hyperbolic distance on the upper half plane H (p. 26).

Dn

The set of proper divisors of n, i.e., Dn = {d : 1 ≤ d ≤ n− 1, d|n} (p. 84).

deg( f )

The degree (i.e., the biggest exponent) of the polynomial f .

det(A)

The determinant of the matrix A.

diam(G)

The diameter of a graph G, diam(G) = maxv,w∈V d(v, w)} (p. 35).

4
The triangle in H with ideal points 0, 1, ∞ as corners (p. 107).

∆E

The discriminant of the elliptic curve y2 = x3 + ax + b, ∆E = 4a3 + 27b2 (p.
126).

∆ f

The discriminant of the polynomial f = xn + an−1 + · · ·+ a0, i.e.,
∆ f = ∏i<j(αi − αj)

2 = (−1)
n(n−1)

2 ∏i 6=j(αi − αj) (p. 31).

∆K

The discriminant of the number field K (p. 48).

∆(τ)

The modular discriminant.
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List of Symbols

∂ D

The boundary of the set D in a topological space (M, τ).

∂H

The boundary at infinity of H, ∂H = R∪∞H (p. 27).

E

E(K)

The points (x, y) ∈ K2 that lie on the elliptic curve E (p. 127).

e(x)

e(x) = e2πix (p. 19).

exp

The (real or p-adic) exponential function.

F

F

The fundamental domain for the action of SL2(Z) on H (p. 107).

Fn

The Farey sequence Fn (p. 69).

F̃n

The Farey sequence Fn without the fraction 0
1 (p. 70).

G

G = (V, E)

A graph with vertex set V and edge set E (p. 33).

Gn(d)

The set {dk ∈ Z/nZ : k ∈ (Z/nZ)∗} (p. 84).

Gal(K/Q)

The Galois group of the Galois extension K/Q (p. 53).

gcd(m, n)

The greatest common divisor of m and n.
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List of Symbols

GLn(R)

The general linear group, i.e., n × n matrices over R (for a ring R) with
nonzero determinant.

GL+
2 (R)

The positive general linear group, i.e., 2× 2 matrices over R with positive
determinant (p. 25).

Γ

The matrix group Γ = Γ0(1) = SL2(Z) (p. 110).

Γ0(N)

The subgroup of SL2(Z) consisting of matrices

(
a b
c d

)
with c ≡ 0 mod N

(p. 110).

Γ(s)

The Γ-function Γ(s) =
∫ ∞

0 e−tts−1 dt (p. 45).

H

hK

The class number of the field K, hK = |C lK| (p. 51).

I

=(s)
The imaginary part of the complex number s.

IK

The group of all fractional ideals of OK (p. 51).

J

JK

The idele group of K (p. 82).

J(n)

The singular integral in the circle method (p. 116).
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List of Symbols

j(τ)

The j-invariant (p. 109).

K

K

The curvature on a Riemannian manifold (p. 14).

K

The Khintchine constant K = ∏∞
k=1

(
1 + 1

k(k+2)

) log k
log 2 ≈ 2.6854520010 (p.

76).

Km(C)

The m-th K-group associated to the object C (p. 80).

κ(G)

The vertex connectivity of the graph G (p. 35).

κg(s)

The geodesic curvature at the point s on a Riemannian manifold (M, g).

L

L(E, s)

The Hasse-Weil L-function of the elliptic curve E (p. 128).

L( f , s)

The L-function L( f , s) = ∑∞
m=1 a f (m)m−s attached to the modular form

f (τ) = ∑∞
m=0 a f (m)e2πimτ (p. 110).

L(s, χ)

The Dirichlet L-function attached to the Dirichlet character χ.

L(s, χ)

The Hecke L-function attached to the Hecke character χ (p. 82).

L(M)

The language accepted by the DFA M (p. 59).
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List of Symbols

L(γ)

The length of a curve γ on a Riemannian manifold (M, g), i.e.,
L(γ) =

∫ b
a

√
g(γ(t))(γ̇(t), γ̇(t))dt (p. 14).

l(P)

The length of a path P in a graph, l(P) = k if P = v0, . . . , vk (p. 35).

L(M, A , µ)

The set of integrable functions over the measure space (M, A , µ) (p. 57).

LCGn

The coprime graph on {1, . . . , n} (p. 86).

log

For real arguments the logarithmus naturalis, i.e., the logarithm with base e.
For complex arguments the principal value of the complex logarithm with
base e. For p-adic arguments the p-adic logarithm.

loga

The (real) logarithm with base a.

λ(A)

The Lebesgue measure of the set A.

M

(M, A )

A measurable space (p. 55).

(M, A , µ)

A measure space (p. 56).

(M, A , µ, T)

A dynamical system (p. 56).

(M, g)

A Riemannian manifold, i.e., a differentiable manifold M together with a
Riemannian metric g (p. 14).
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(M, τ)

A topological space, i.e., a set M equipped with a topology τ (p. 11).

M(n)

Mertens function M(n) = ∑n
k=1 µ(k) (p. 71).

Mm,n(R)

The set of m× n matrices over R.

Mk

The vector space of modular forms of weight k (p. 109).

Mk(N)

The vector space of modular forms of weight k and level N (p. 110).

mϕ

The minimal polynomial of a linear map ϕ, i.e., the normalized integer poly-
nomial f with smallest degree such that that f (ϕ) = 0.

µ(A)

The measure of the set A (p. 56).

µ(n)

The Möbius function.

N

N(v)

The neighbourhood of a vertex v in a graph G = (V, E):
N(v) = {w ∈ V : {v, w} ∈ E} (p. 35).

Nk(v)

The k-neighbourhood of a vertex v in a graph G = (V, E):
Nk(v) := {w ∈ V : d(v, w) = k} (p. 35).

N(a)

The norm of the ideal a (p. 52).

NL
K(x)

The norm of x ∈ L with respect to the field extension L/K (p. 48).
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O

O
The point at infinity of an elliptic curve (p. 126).

OK

The ring of integers of the number field K (p. 47).

Ov

The valuation ring of the completion Kv of a number field K, i.e.,
Ov = {x ∈ Kv : v(x) ≥ 0} (p. 81).

O( f )

Landau O, i.e., g ∈ O( f ) if there is a C > 0 such that |g(x)| ≤ C | f (x)| for
small enough or big enough x (depending on the context).

ords0( f )

The order of the meromorphic function f at s0 (p. 21).

ω(G)

The clique number of a graph G (p. 35).

P

PK

The group of all principal ideals of OK (p. 51).

P2(K)

The projective plane over some field K (p. 18).

P(M)

The power set of the set M.

Φ

The golden ratio Φ = 1+
√

5
2 (p. 76).

ϕ(n)

The Euler totient function, ϕ(n) = ∑(n,k)=1 1 (p. 38).
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List of Symbols

πq

Carlitz pi, πq = ∏∞
k=1

(
1− Tqk−T

Tqk+1−T

)
∈ C∞ (p. 68).

Q

(Q, Σ, ∆, q0, F)

A DFA (p. 58).

(Q, Σ, ∆, q0, ∆, η)

A DFAO (p. 59).

Q(
√

d)

The quadratic number field Q(
√

d) = {a + b
√

d : a, b ∈ Q} (p. 49).

Q(ζp)R

The maximal totally real subfield of Q(ζp) (p. 81).

Quot(R)

The quotient field of the ring R.

R

<(s)
The real part of the complex number s.

R(n)

The number of solutions of the Diophantine equation D(x1, . . . , xk) = n, i.e.,
R(n) = lim

N→∞
RN(n) (p. 115).

RN(n)

The number of solutions of the Diophantine equation D(x1, . . . , xk) = n
with |xi| ≤ N for all i (p. 115).

Rs(n)

The number of possible ways of writing n as a sum of s elements of a given
set A (p. 114).

Res( f ; s0)

The residue of the meromorphic function f at s0 (p. 22).
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S

S 2

The sphere S 2 = {s ∈ R3 : s2
1 + s2

2 + s2
3 = 1} (p. 15).

Sk

The vector space of cusp forms of weight k (p. 109).

Sk(N)

The vector space of cusp forms of weight k and level N (p. 110).

S(n)

The singular series in the circle method (p. 116).

SL2(Z)

The special linear group, i.e., 2× 2 integer matrices with determinant 1.

σ(n)

The divisor sum σ(n) = ∑d|n d (p. 38).

T

Tp

The Hecke operator (Tp f )(τ) = pk−1 f (pτ) + 1
p ∑

p
b=1 f

(
τ+b

p

)
(p. 110).

τ(n)

The number of divisors of n, τ(n) = ∑k|n 1 (p. 38).

V

V( f )

The vanishing points of a polynomial f , i.e., all values c in affine plane or
projective plane such that f (c) = 0 (p. 18).

VK

The adele ring of K (p. 81).

vp(n)

The exponent of p in the prime decomposition of n ∈ N (p. 38).
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vol(Γ)

The volume of the lattice Γ. If Γ = Zv1 + · · ·+Zvm, then we have
vol(Γ) = |det(v1, . . . , vn)| (p. 29).

X

X(H, S)

The Cayley graph for the group H and its subset S (p. 35).

Xn

The unitary Cayley graph Xn = X(Z/nZ, (Z/nZ)∗) (p. 83).

Xn(D)

The gcd graph associated to the set D ⊂ Dn (p. 84).

xN resp. xS

The stereographic projections xN(s1, s2, s3) =
1

1+s3
(s1, s2) respectively

xS(s1, s2, s3) =
1

1−s3
(s1, s2) (p. 15).

Z

Z[
√

d]

The ring Z[
√

d] :=
{

a + b
√

d : a, b,∈ Z
}

(p. 49).

Z[ 1+
√

d
2 ]

The ring Z[ 1+
√

d
2 ] :=

{
a+b
√

d
2 : a, b,∈ Z, a ≡ b mod 2

}
(p. 49).

Zv

The set {kv : k ∈ Z} (here v ∈ Rn).

ζm

The primitive m-th root of unity ζm = e
2πi
m .

ζ(s)

The Riemann ζ-function ζ(s) = ∑∞
n=1 n−s (p. 44).

ζK(s)

The Dedekind ζ-function of the number field K, ζK(s) = ∑a/OK
1

N(a)

s
(p.

52).
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ζ(X, s)

The ζ function attached to the variety X, ζ(X, s) = exp
(

∑∞
m=1

Nm
m q−ms

)
(p.

79).

symbols for the chapter on minimal sets

[a]m

The set of all integers congruent to a modulo m,
[a]m = {b ∈ Z : b ≡ a mod m}.

〈L〉
The generated set of L, i.e., 〈L〉 = {x ∈ N : ∃y ∈ L such that y / x} (p. 139).

n

The set of all integers that can be written as a sum of n squares:
n = {a ∈ Z : a = x2

1 + · · ·+ x2
n for some xi ∈ Z}.

� mod m

� mod m = {n ∈ N : n ≡ x2 mod m for some x ∈ N} (p. 154).

#n

The number of digits of n (p. 138).

x / y

x is a subsequence of y (when viewing x, y ∈ N in their decimal expansion)
(p. 138).

x ∗ y

The concatenation of x and y, i.e., string that has first the digits from x and
then the digits from y (p. 138).

M ∗ L

For M, L ⊂ N the set M ∗ L := {z ∈ N : z = x ∗ y, x ∈ M, y ∈ L} (sometimes
the asterisk is omitted) (p. 138).

mL

For m ∈ N, L ⊂ N the set mL := {m}L (p. 138).

x∗k

The k-fold concatenation of x with itself: x∗k = x∗(k−1) ∗ x, x∗1 = x (p. 138).
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{z}∗

The set {z∗k : k ∈ N0} (p. 138).

M∗

For M ⊂ {0, 1, . . . , 9} this is the set
M∗ = {x ∈ N0 : (d / x, d ∈ {0, . . . , 9})⇒ d ∈ M} (p. 138).

M∗I

The set M∗I := {x ∈ M∗ : #x ∈ I} for M ⊂ {0, 1, . . . , 9} and I ⊂ N (p. 138).

{a ∗ b}|

The set {a ∗ b}| := {n ∈ N : n = a∗k ∗ b∗l for some k, l ∈ N0} (p. 159).

Ak

The set of natural numbers with k digits in base 10: Ak := N ∩ [10k−1, 10k)

(p. 158).

δn(M)

The sequence of sets defined via δ0(M) = M, δ(M) = δ1(M) := M\S(M),
δn+1(M) = δ(δn(M)) (p. 159).

ηn(M)

ηn(M) = |S(δn(M))| (p. 159).

η(M)

η(M) = η1(M) (p. 159).

µc(n)

The digit measure µc(n) = 10
9 · 10−#n (p. 168).

µg(n)

The digit measure µg(n) = 10 · 10−2#n (p. 168).

µh(n)

The digit measure µh(n) = 10
9 · 1

#n 10−#n (p. 168).

µz(n)

The digit measure µz(n) = 20
3π2 · 1

(#n)2 10−#n (p. 168).
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ψ(n)

The Dedekind ψ-function, ψ(n) = ∏p|n(p + 1)pvp(n)−1 (p. 148).

S(M)

The minimal set of M, i.e., S(M) = {m ∈ M : {n ∈ M : n < m, n / m} = ∅}
(p. 139).

symbols for the chapter on generators in abelian groups

〈a〉
For a group A and a ∈ A, 〈a〉 is the subgroup generated by a.

(a)?n

For a ∈ Z/nZ the set {ax : 1 ≤ x ≤ ord(a), (x, ord(a)) = 1} (p. 176).

(a)?A

For a ∈ A ∼=×k
i=1 Z/(miZ) the set

{(aixi) : 1 ≤ xi ≤ ord(ai), (xi, ord(ai)) = 1 for all i} (p. 178).

atom(a)

The generators of the subgroup 〈a〉: atom(a) = {a′ ∈ G : 〈a′〉 = 〈a〉} (p.
176, 177).

NA;a,b(c)

The number of elements in SA;a,b(c), NA;a,b(c) = |SA;a,b(c)| (p. 178).

Nn;a,b(c)

The number of elements in Sn;a,b(c), Nn;a,b(c) = |Sn;a,b(c)| (p. 176).

ord(a)

For given m the order of a in the group (Z/mZ,+), i.e., ord(a) = a
gcd(a,m)

(p. 176).

Sn;a,b(c)

The set {(u, v) ∈ atom(a)× atom(b) : u + v = c} for a, b, c ∈ Z/nZ (p.
175).

SA;a,b(c)

The set {(u, v) ∈ atom(a) × atom(b) : u + v = c} for a, b, c in an abelian
group A (p. 178).
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symbols for the chapter on solutions of linear equations

〈x, y〉
The inner product 〈x, y〉 = x1y1 + · · ·+ xnyn.

∇ f

The gradient of the function f .

∑∗a mod q

The summation ranges over all a coprime to q (p. 185).

∑a mod q

In the sum, every entry of a runs independently modulo q (p. 185).

∏π|a

For a in a unique factorization domain: The product over all π dividing a in
a fixed prime decomposition (p. 184).

x ∈ a

Each component of x ∈ Rn lies in the ideal a / R.

x ≡ y mod a

xi ≡ yi mod a for each component of x, y ∈ Rn.

a ∼ b

a and b are associates in the ring R, i.e., a|b and b|a.

#y(A, m)

The number
∣∣{a ∈ [1, m] :

∣∣{x ∈ (Z/aZ)n : Ax = 0 mod a}
∣∣ = y}

∣∣ (p. 195).

diag(d1, . . . , dr)

An m× n matrix with diagonal elements di (with r = min{m, n}) and zero
off-diagonal elements.

eq(x)

eq(x) = e( x
q ) (p. 19, 185).

Sq(c)

The sum ∑∗a mod q ∑b mod q eq(aF(b) + 〈c, b〉) for q ∈ N and c ∈ Zn (p. 185).

290



List of Symbols

S∆
m

The sum ∑I⊂{1,...,r}(−1)|I|
⌊

m
∏i∈I pi

⌋
for m ∈ N and ∆ = pv1

1 · · · pvr
r (p. 196).

S∆
m(y)

The sum ∑I⊂{1,...,r}(−1)|I|
⌊

m
y·∏i∈I pi

⌋
for m ∈ N, ∆ = p1 · · · pr and y|∆, y > 1

(p. 196).

vπ(a)

The exponent of π in a fixed prime decomposition of a ∈ R.

symbols for the chapter on “Lights Out”

(a,b)−→
Press the button in row a and column b on a “Lights Out” board (p. 202).

A⊗ B

The Kronecker product of two matrices A and B (p. 32).

An

The absolute value of Λn, An = |Λn| (p. 212).

BLn

The n2 × n2 matrix corresponding to BLO(n, k) (p. 205).

BLO(n, k)

The (bounded) “Lights Out” game on an n× n board with k colors (p. 202).

fn(x)

The n-th Fibonacci polynomial, recursively defined via
fn+1(x) = x fn(x) + fn−1(x), f1(x) = 1, f2(x) = x (p. 209).

Jn

The Toeplitz tridiagonal matrix with 1 on the sub-, super-, and maindiago-
nal (p. 205).

Kn

The circulant matrix with 1 on the sub-, super-, and maindiagonal and in
each corner (p. 220).
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Λn

The product Λn = ∏n
j=1

(
1 + 4 cos

(
jπ

n+1

))
(p. 210).

ULn

The n2 × n2 matrix corresponding to ULO(n, k) (p. 219).

ULO(n, k)

The unbounded “Lights Out” game on an n × n board with k colors (p.
219).

Vn

The product Vn = ∏n
j,l=1
j 6=l

(
1 + 2 cos

(
jπ

n+1

)
+ 2 cos

(
lπ

n+1

))
(p. 210).
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Abel summability, 233

absolute value, 53

Archimedean and non-
Archimedean, 54

equivalent, 54

extension, 55

p-adic, 63

trivial, 54

adele, 81

finite, 81

ring, 81

adjacent, 33

affine algebraic curve, 18

affine plane, 18

algebraic closure, 55

algebraic curve, 18

affine, 18

degree, 19

minimal polynomial, 19

projective, 18

singular, 19

smooth, 19

almost all, 56

almost everywhere, 56

alphabet, 58

analytic continuation, 21

analytic function, 20
annulus, 22
arc, 34
Archimedean, 54
arithmetic manifold, 105
atlas, 13
atom, 176

in abelian groups, 177
automatic sequence, 120

b-automaton, 120
automorphism

of a graph, 36
of complex domains, 23

Baker’s theorem on linear forms in
logarithms, 46

base b representation, 38
Basel problem, 232
Benford’s law, 140
Bernoulli number, 39
binary Goldbach problem, 44
Birch and Swinnerton-Dyer conjec-

ture, 128
Birkhoff’s pointwise ergodic theo-

rem, 74
Borel σ-algebra, 56
bounded Lights Out, see Lights Out
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bracket series, 123

Carlitz exponential, 68
Carlitz π, 68

transcendental, 123
Carlitz ζ-function, 68
Catalan’s conjecture, 100
Cauchy sequence, 55
Cauchy’s integral formula, 23
Cauchy-Davenport theorem, 44, 87
Cayley graph, 35

neighbourhood, 175
transitive, 36
unitary, 83

centrally symmetric, 31
chart, 13

compatible, 13
Chinese remainder theorem, 64
Christol’s theorem, 120
chromatic number, 35
circle method, 114, 185, 195

linear equation, 235
circulant matrix, 220
class number, 51

finiteness, 51, 82, 96
clique, 35
clique number, 35
closed, 11
closure

algebraic, 55
topological, 12

compact, 12
comparable, 138
complete field, 55
complete solvability of Lights Out,

203
completion of a field, 55
complex differentiable, 20

complex embedding, 48
composition formula, 89
concatenation, 138
conformal function, 23
congruence subgroup, 110
congruent number, 93

elliptic curves, 128
connected

graph, 35
set, 12

continued fraction, 41
arithemtic mean, 75
ergodic theory, 74
Farey sequence, 70
finite, 41
geometric mean, 75
infinite, 41
normalized, 41
of e, 42
partial quotient, 41

continuous function (between topo-
logical spaces), 12

convenient number, 101
convergent, 42
convex, 31
coprime graph, 86
curvature, 14
curve

algebraic, 18
smooth, 14

cusp form, 108

Dedekind domain, 50
Dedekind ζ-function, 52, 82
degree

of a vertex, 35
of an algebraic curve, 19

deleting digits, 138
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dense, 12

derivative, 20

deterministic finite automaton, see
DFA

deterministic finite automaton with
output, see DFAO

DFA, 58

language accepted by, 59

state, 58

transition function, 58

DFAO, 59

diameter of a graph, 35

differentiable manifold, 13

differentiable structure, 13

digit, 120

digit measure, 167

finite, 168

infinite, 168

Dirichlet character, 45

Dirichlet L-function, 45

Dirichlet series, 45

Dirichlet’s approximation theorem,
70

Dirichlet’s theorem on primes in
arithmetic progressions, 39

Euclidean proofs, 231

Dirichlet’s unit theorem, 50, 82, 96

discriminant

modular, 109

of a number field, 48

of a polynomial, 31

of an elliptic curve, 126

of quadratic number fields, 49

distance

hyperbolic, 26

in a graph, 35

on a Riemannian manifold, 14

division algebra, 89
divisor sum, 38
dynamical system, 56

over a probability space, 56

edge, 33
eigenform, 110, 129
eigenvalues of the adjacency matrix

of a grid, 208
Eisenstein series, 109
elliptic curve, 126

addition law, 127
discriminant, 126
modular, 129
reduction modulo p, 129

embedding
complex, 48
conjugate, 48
real, 48

empty word, 138
equation of Lind and Reichardt, 65
equivalent under a group action, 30
ergodic transformation, 73
essential singularity, 21
étale cohomology, 79
Euclidean algorithm, 41
Euclidean polynomial, 231
Euclidean proof, 231
Euler product, 44
Euler totient function, 38

minimal set, 146
Euler’s reflection formula, 232
exponential sum, 19

Falting’s theorem, 126
Farey sequence, 69

circle method, 115
continued fraction, 70
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neighbour fractions, 70
Riemann hypothesis, 71

Fermat’s last theorem, 100
elliptic curves, 129

Fibonacci polynomials, 209
common factor over Z/2Z, 209

finite adeles, 81
finite continued fraction, 41
finite digit measure, 168
fixed field, 53
floor function, 42
Ford circle, 71, 106

Hardy-Littlewood method, 116
form, 31
formal derivative, 32

algebraic, 122
formal Laurent series, 31
formal power series, 31

algebraic, 120
four-squares theorem, 43, 88, 95
fractional ideal, 50

principal, 50
fractional linear transformation, 23
fractional part, 42
Frey curve, 130
functional equation, 22
fundamental domain

for the action of SL2(Z) on H,
107

of a group action, 30
of a lattice, 29

Galois extension, 52
Galois group, 53

of cyclotomic extensions, 53
Gauß integers, 52

primes, 52
Gauß-Bonnet formula, 27

gcd graph, 84
generalized Riemann hypothesis,

45
generated set, 139
generated string, 138
geodesic, 14
geometry of numbers, 93
global field, 81
Goldbach problem

binary, 44
ternary, 44, 116

golden ratio, 76
Größencharacter, 82
graph, 33

adjacency matrix, 36
automorphism, 36
circulant, 36
complement, 34
complete, 34
connected, 35
diameter, 35
directed, 34
independent set, 35
integral, 36
isomorphism, 36
k-partite, 35
regular, 35
transitive, 36
triangle, 35
undirected, 33

grid, 208
group action, 30
group of automorphisms of a

graph, 36
Γ-function, 45

Euler’s reflection formula, 232

Hadamard product, 32
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algebraic, 122
Hardy-Littlewood method, 114
Hasse principle, 65
Hasse-Minkowski theorem, 65
Hasse-Weil L-function, 128
Hausdorff space, 12
Hecke character, 82
Hecke L-function, 82, 129
Hecke operator, 110
height of an algebraic number, 46
Hensel’s lemma, 65
holomorphic continuation, 21
holomorphic function, 20
homeomorphism of topological

spaces, 12
homogeneous coordinates, 18
homogeneous polynomial, 31
Hopf’s theorem, 91
Hopf-Stiefel function, 90
Hurwitz’s theorem, 89
hyperbolic distance, 26
hyperbolic geometry, 17
hyperbolic manifold, 14

IC topology, 12
ideal

as lattice, 96
decomposition, 51
fractional, 50

ideal class group, 51
idele, 82

group, 82
identity theorem, 21
idoneal number, 101
incomparable, 138
inert, 51

in quadratic number fields, 52
infinite continued fraction, 41

periodic, 42
recurrence formula, 42

infinite digit measure, 168
integral closure of a ring, 47
integrally closed, 47
interesting numbers, 227
invariant measure, 56
isolated singularity, 20
isometries, 28

of the upper half plane, 28
isomorphism of graphs, 36

j-invariant, 109
representation theory, 119

k-connected, 35
k-partite, 35
k-regular, 35
K-theory, 79

algebraic, 80
of number fields, 80
topological, 80

Khintchine constant, 76
Khintchine’s theorem, 75
Kronecker product, 32
Kronecker sum, 32
Kronecker symbol, 39
Kummer-Vandiver conjecture, 81,

100

L-function, 113
Hasse-Weil, 128
Hecke, 82
of a modular form, 110

Lévy’s theorem, 76
Lagrange’s formula, 236
language, 58

accepted by an DFA, 59
lattice, 29
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full, 29

fundamental domain, 29

volume, 29

Laurent series, 22

convergent, 22

formal, 31

Lebesgue integral, 57

Lebesgue measure, 56

Legendre symbol, 39

Legendre’s equation, 96

length

of a curve, 14

of a path, 35

Lights Out, 201

board, 201

characterization of completely
solvable puzzles, 211

characterization of not com-
pletely solvable puzzles,
209

complete solvability, 203

criterion for complete solvabil-
ity, 205

solvability via prime decompo-
sition, 217

solvability via primeideal de-
composition, 218

unbounded variant, see un-
bounded Lights Out

values of det(BLn), 206

Lindemann-Weierstraß theorem, 47

line, 17

parallel, 17

line integral, 23

linear equation

distribution of the number of
solutions, 195, 255

number of solutions, 186, 192

number of solutions in polyno-
mial rings, 188, 193

number of solutions in rings of
integers, 188, 193

linear form in logarithms, 46

Liouville’s theorem, 46

local-global principle, 65

locally compact, 13

locally Euclidean, 13

locally finite covering, 12

loop, 33

Lucas sequence, 210

m-manifold, 13

major arc, 116

manifold, 13

arithmetic, 105

differentiable, 13

hyperbolic, 14

Riemannian, 14

topological, 13

map of math, 4, 5, 133

Mazur’s theorem, 128

measurable function, 56

measurable set, 56

measurable space, 56

measure, 56

measure preserving function, 56

measure space, 56

meromorphic continuation, 22

meromorphic function, 21

Mersenne number, 38

Mersenne prime, 38

Mertens function, 71

Millennium problems, 45, 129

minimal element, 139
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minimal polynomial of an algebraic
curve, 19

minimal set, 139

algorithm for congruence
classes, 155

algorithm for truncating stable
partitions, 156

composite numbers, 139

congruence classes, 150, 239

Dedekind ψ-function, 148

digit measure, 168

digit measures for given sets,
253

Euler totient function, 146

finite, 139

intersection of sets, 161

maximal number of digits, 253

number of elements, 251

perfect numbers, 172

powers of 2, 139

primes, 139

primes in base 2, 172

quadratic residues, 154

size, 158

size for congruence classes, 157

subsets, 159

sums of three squares, 141

sums of two squares, 143

union of sets, 161

Minkowski theory, 93

Minkowski’s convex body theorem,
94

minor arc, 116

Möbius transformation, 24

modular curve, 129

modular form, 108

dimension formula, 109

Fourier coefficients, 110
Fourier series, 108
holomorphic at ∞, 108
L-function, 110
meromorphic at ∞, 108
moonshine, 119
of level N, 110
weakly, 108
weight formula, 109

modular group, 108
modularity theorem, 130
monic polynomial, 31
monster group, 119
moonshine, 119
Mordell’s equation, 40, 99

eliptic curves, 128
Mordell-Weil theorem, 127

Nagell-Lutz theorem, 128
neighbourhood

in a graph, 35
in Cayley graphs, 175
of complex numbers, 20

Newton’s method, 57
Noetherian ring, 50
non-Archimedean, 54, 64
norm

in number fields, 48
of an ideal, 52

not truncatable set, 138
null set, 56
number field, 47

discriminant, 48
structure of units, 50, 82, 96
totally real, 48

number of divisors, 38
number of solution of linear equa-

tions, 186, 192
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distribution, 195, 255
polynomial rings, 188, 193
rings of integers, 188, 193

numerical integration, 78

open, 11
open covering, 12
order of a meromorphic function,

21
orthogonality relation, 115
Ostrowski’s theorem, 54

p-adic
absolute value, 63
expansion, 64
exponential function, 66
integers, 64
logarithm, 66
numbers, 64
valuation, 63

paracompact, 12
partial quotient, 41
path, 35
Pell’s equation, 101
perfect numbers, 38, 228

minimal set, 172
Petersen graph, 34, 36
Pfister’s theorem, 91
points at infinity, 18
pole, 21

order, 21
simple, 21

polynomial
discriminant, 31
homogeneous, 31
monic, 31

primes
in arithmetic progressions, 39,

230

in the Gauß integers, 52
minimal set, 139
of the form x2 + ny2, 95, 101
regular, 39, 51

primitive root of unity, 48
probability space, 56
projective algebraic curve, 18
projective plane, 18
Pythagorean triples, 40, 93, 100, 125

primitive, 40

quadratic number fields, 49
discriminant, 49
Euclidean, 49
ring of integers, 49
roots of unity, 49
unique factorization domain, 49

Q-automorphism, 53

Ramanujan sum, 84
Ramanujan summation, 233
ramified, 51

in quadratic number fields, 52
rank of a group, 50
rational sums of cosines, 207
real embedding, 48
regular prime, 39

class number criterion, 51
removable singularity, 21
repdigit, 146

sum of squares, 146
representation in base b, 38
repunit, 146
residue of a meromorphic function,

22
Residue theorem, 23
restricted topolocial product, 13
Riemann hypothesis, 45
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Farey sequence, 71
string theory, 120

Riemann sphere, 16
Riemann ζ-function, 44

Euler product, 44
functional equation, 44
meromorphic continuation, 45
trivial zeros, 45

Riemannian manifold, 14
Riemannian metric, 14
ring of integers, 47

of quadratic number fields, 49
root of unity, 48

primitive, 48

Selmer’s cubic, 65
Siegel’s theorem, 127
simple pole, 21
singular algebraic curve, 19
singular integral, 116
singular series, 116, 185, 195
singularity, 20

essential, 21
isolated, 20
pole, 21
removable, 21

Smith normal form, 33
smooth

algebraic curve, 19
complex function, 20

sphere, 15
split, 51

in quadratic number fields, 52
stereographic projections, 15
Strassmann’s theorem, 67
strictly differentiable, 66
string, 138

subsequence, 138

strong approximation theorem, 81
strong triangle inequality, 54, 64
subcover, 12
sublime number, 228

characterization, 229
sum of all natural numbers, 232
sum of divisors, 38
summation methods, 232
sumset, 42

of generators in abelian groups,
179

of generators in cyclic groups,
176

of generators in non-abelian
groups, 181

σ-algebra, 55

Taniyama-Shimura-Weil conjec-
ture, 130

tent map, 57
ternary Goldbach problem, 44, 116
tessellation, 106

of H, 106
the number 12, 227
theorem

of Cauchy-Davenport, 44, 87
of Christol, 120
of Faltings, 126
of Hasse-Minkowski, 65
of Hopf, 91
of Hurwitz, 89
of Khintchine, 75
of Lévy, 76
of Lindemann and Weierstraß,

47
of Liouville, 46
of Mazur, 128
of Mordell-Weil, 127
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of Nagell-Lutz, 128
of Ostrowski, 54
of Pfister, 91
of Siegel, 127
of Strassmann, 67

three-squares theorem, 43, 88, 96
Toeplitz tridiagonal matrix, 205
topological closure, 12
topological group, 12
topological manifold, 13
topological ring, 12
topological space, 11
topology, 11
totally real number field, 48
totient function, 38

minimal set, 146
transitive graph, 36
triangle in a graph, 35
truncating stable partition, 155
two-squares theorem, 43, 88, 94

one sentence proof, 88

unbounded Lights Out, 219
characterization of (not) com-

pletely solvable puzzles,
222

criterion for complete solvabil-
ity, 220

values of det(ULn), 221
uniform distribution, 77
unitary Cayley graph, 83
upper half plane, 24

boundary, 27

curvature, 25
distance, 26
geodesics, 26
group of automorphisms, 24
ideal points, 27
isometries, 28
Riemannian metric, 25
tessellation, 106

valuation, 53
equivalent, 54
p-adic, 63
trivial, 54

valuation ring, 81
valued field, 54
vertex, 33
vertex connectivity, 35
volume of a lattice, 29

Waring’s problem, 43, 116
weak approximation theorem, 64
Weeks manifold, 105
Weierstraß equation, 126
Weil conjectures, 80
Weyl criterion, 77, 78

zero digit measure, 167
ζ-function, 113

Carlitz, 68
Dedekind, 52
of a variety, 79
Riemann, 44

ζ(−1), 232
ζ(2), 232
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