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Abstract

In this thesis we consider invariant control systems and Hamilton-Poisson systems on the three-
dimensional semi-Euclidean group SE(1,1). We first classify the left-invariant control affine systems
(under detached feedback equivalence). We provide a complete list of normal forms, as well as clas-
sifying conditions. As a corollary to this classification, we derive controllability criteria for control
affine systems on SE(1,1). Secondly, we consider quadratic Hamilton-Poisson systems on the (minus)
Lie-Poisson space se(1,1)". These systems are classified up to an affine isomorphism. Six normal
forms are identified for the homogeneous case, whereas sixteen representatives (including several infi-
nite families) are obtained for the inhomogeneous systems. Thereafter we consider the stability and
integration of the normal forms obtained. For all homogeneous systems, and a subclass of inhomoge-
neous systems, we perform a complete stability analysis and derive explicit expressions for all integral
curves. (The extremal controls of a large class of optimal control problems on SE(1, 1) are linearly re-
lated to these integral curves.) Lastly, we discuss the Riemannian and sub-Riemannian problems. The
(left-invariant) Riemannian and sub-Riemannian structures on SE(1,1) are classified, up to isometric
group automorphisms and scaling. Explicit expressions for the geodesics of the normalised structures
are found.

Key words and phrases. semi-Euclidean group, (detached) feedback equivalence, left-invariant con-
trol affine system, Hamilton-Poisson system, Lyapunov stability, the energy-Casimir method, elliptic
function, sub-Riemannian structure, optimal control.
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Introduction

Invariant geometric control theory is the study of invariant control systems evolving on
Lie groups. In the language of differential geometry, a (left-)invariant control system on
a Lie group G consists of a family of left-invariant vector fields = = (Z,) on G, smoothly
parametrised by controls. A trajectory of such a system is an integral curve of the (nonau-
tonomous) vector field =y, where u(-) is a “admissible control.” The first major considera-
tion of control theory is the controllability of a system. That is, given any initial state of the
system, does there exist an admissible control transforming the system into any given end
state? Using the geometric tools of Lie theory, a number of power results have been developed
to answer the question of controllability for invariant control systems (see, e.g., [42]).

Assuming the control system under consideration is controllable, a natural question to
ask is whether there exists an admissible control that transforms the system to some end
state in an optimal manner. More formally, given a (left-invariant) control system, some
(practical) cost function and specified boundary conditions, can one determine a control and
trajectory that minimises the cost function, subject to the control system and boundary data?
Invariant optimal control theory is concerned with the study of such problems, as well as the
development of tools for solving them.

Recent efforts have been devoted to the study of invariant optimal control problems with
affine dynamics (i.e., where the underlying control system Z is affine), particularly on low-
dimensional Lie groups. Numerous important problems can be modeled in this fashion. Such
problems include the ball-plate problem [27], Euler’s elastic problem [41, 28], motion of a free
rigid body [11] and the sub-Riemannian length-minimisation problem [36, 21, 42]. More gen-
eral approaches (as opposed to the treatment of a specific problem) have also been considered.
For instance, the classification, under (detached) feedback equivalence, of control systems on
three-dimensional Lie groups [18, 13, 16, 19|, the classification of control systems on SE(2)
under state space equivalence [1] and the investigation of (detached feedback equivalence)
class representatives on SE(2) (2, 4]. The latter approach to control systems and optimal
control problems on Lie groups has been facilitated by the development of theoretical tools
in [14, 20, 15, 17].

The authors of [15, 17] note that the problem of determining the extremal controls for a
large class of (invariant) optimal control problems reduces to the study of the integral curves
of a quadratic Hamilton-Poisson system on the dual of the Lie algebra. (Here the Poisson
structure is the Lie-Poisson bracket.) A natural approach is again to classify the systems and
investigate the ensuant normal forms. In this vein, quadratic Hamilton-Poisson systems have
recently been considered on se(2)* (the dual of the Euclidean Lie algebra with the minus
Lie-Poisson bracket) [3] and the orthogonal Lie-Poisson space so(3)* [5].

Quadratic Hamilton-Poisson systems on Lie-Poisson spaces may be considered indepen-
dently of control theory. Indeed, these systems appear naturally in a variety of fields of
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2 INTRODUCTION

mathematical physics. The study of such systems has received increasing attention in recent
years. For instance, (spectral and Lyapunov) stability as well as (numerical and analytical)
integration for systems on se(1,1)*, se(2)* and so(3)* were treated in [9], [12] and [22],
respectively. The equivalence of Hamilton-Poisson systems was considered in [22, 43, 44].

In this thesis we consider invariant optimal control on the (three-dimensional) semi-
Euclidean group SE(1,1). We outline the topics covered. Chapter 1 is concerned with SE(1, 1)
itself. We show that SE(1, 1) is a connected and simply connected (matrix) Lie group (in fact,
the group of motions of the Minkowski plane) and determine its Lie algebra se(1,1). We
investigate various algebraic properties of the group, particularly as those properties pertain
to control theory. We also determine the group of Lie algebra automorphisms (which shall be
used for several classifications in later chapters) as well as the adjoint and coadjoint orbits (in
particular, the coadjoint orbits reflect the Lie-Poisson structure on the dual space se(1, 1)*).

In chapter 2 we treat the left-invariant control affine systems on SE(1, 1). The equivalence
of such systems under detached feedback equivalence is shown to reduce to the equivalence
of affine subspaces of se(1,1) under Lie algebra automorphisms. Accordingly, we classify
the affine subspaces of the semi-Euclidean Lie algebra. Class representatives, as well as
classification conditions, are provided. We then reinterpret these results as a classification of
control systems. As a corollary, we determine the controllable systems, thereby establishing
controllability criteria for systems on SE(1,1).

Chapter 3 is devoted to the equivalence of (quadratic) Hamilton-Poisson systems on the
Lie-Poisson space se(1,1)*. We consider equivalence of Hamilton-Poisson systems up to
affine isomorphisms, and prove several useful results for classification. Using this “affine
equivalence,” the homogeneous quadratic Hamilton-Poisson systems on se(1, 1)* are classified.
This classification is then used to obtain a classification of the inhomogeneous systems. In
both cases, normal forms are identified for each equivalence class.

Chapter 4 investigates (some of) the Hamilton-Poisson representatives obtained in chapter
3. (This constitutes the main part of this thesis.) In particular, we consider all homogeneous
systems and a subclass of the inhomogeneous systems. We perform a complete (Lyapunov)
stability analysis of all systems under consideration. We also consider integration of the
associated equations of motion for these systems. Explicit expressions for all integral curves
are found. These are typically in terms of elementary functions. However, for two of the
systems considered, Jacobi elliptic functions are required. A consequence of this integration
is that we have obtained, up to an affine isomorphism, the extremal controls for a class of
optimal control problems on SE(1, 1).

Finally, in chapter 5 we consider some optimal control problems on SE(1,1). In partic-
ular, we treat the Riemannian and sub-Riemannian length-minimisation problem. (That is,
we determine the Riemannian and sub-Riemannian geodesics on SE(1,1).) We begin this
investigation by introducing a natural equivalence relation between left-invariant Riemannian
and sub-Riemannian structures, viz. equivalence up to isometric group automorphisms and
scaling. The Riemannian and sub-Riemannian structures on SE(1, 1) are then classified under
this equivalence relation. (For the sub-Riemannian case, we identify a single representative
structure; a single-parameter family of structures is obtained in the Riemannian case.) We
then consider the Riemannian and sub-Riemannian problem associated to the class represen-
tatives and find explicit expressions for all geodesics.

Appendix A covers the necessary prerequisites for an understanding of the results obtained
in this thesis. We have also used MATHEMATICA 8 throughout to assist with calculations; the
code we have written may be found in appendix B.
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Original Contributions

To the best of our knowledge, the following contributions in this thesis are original:

Chapter 3. A characterisation of affine equivalence of homogeneous quadratic Hamilton-
Poisson (QHP) systems in terms of linear isomorphisms (proposition 3.1.6). A necessary
condition for affine equivalence of inhomogeneous QHP systems (proposition 3.1.7). A
complete classification of homogeneous QHP systems on se(1,1)* under affine equiv-
alence (theorem 3.2.1, corollary 3.2.2). A result permitting the normalisation of the
homogeneous part of an inhomogeneous QHP system on se(1, 1)* (proposition 3.3.1).
Calculation of the linear Poisson symmetries for the normalised homogeneous QHP sys-
tems on se¢(1, 1)* (proposition 3.3.2). A complete classification of inhomogeneous QHP
systems on se(1, 1)* under affine equivalence (theorems 3.3.4, 3.3.6, 3.3.8, 3.3.10, 3.3.12
and 3.3.14 and the accompanying lemmas).

Chapter 4. A sufficient condition to be an integral curve of a Hamilton-Poisson system on
se(1,1)* (proposition 4.1.2). A complete stability analysis of the normalised quadratic
Hamilton-Poisson systems H; through Hs, as well as all inhomogeneous systems as-
sociated to Hy, Hy, Hs and Hjs (propositions 4.2.1, 4.2.2, 4.2.3, 4.2.5, 4.2.9, 4.3.1,
4.3.2, 4.4.1, 4.4.2, 4.4.3, 4.5.1, 4.5.2, 4.5.3, 4.6.1 and 4.6.13). Calculation of the inte-
gral curves of the aforementioned Hamilton-Poisson systems (for Hs, proposition 4.2.4;
for Hy, propositions 4.2.7 and 4.2.8; for Hs, propositions 4.2.10, 4.2.11 and 4.2.12; for

Hé?oz? proposition 4.3.3; for Hélo{7 proposition 4.4.4; for H%)’ proposition 4.5.4; for H£3>7

propositions 4.6.4, 4.6.5, 4.6.6, 4.6.7, 4.6.8, 4.6.9, 4.6.10, 4.6.11 and 4.6.12; for H{"
propositions 4.6.15, 4.6.16, 4.6.17, 4.6.18, 4.6.19, 4.6.20, 4.6.21, 4.6.22 and 4.6.23). Lin-

ear Poisson symmetries of the Hamilton-Poisson systems /1, and . §3> reversing the sign
of the Casimir function (propositions 4.2.6 and 4.6.14).

Chapter 5. A complete classification of left-invariant sub-Riemannian structures on SE(1, 1)
under isometric group automorphisms (£-isometries) (theorem 5.3.1). Calculation of
the (reduced) extremal curves corresponding to (unit-speed) Riemannian geodesics on
SE(1,1) (proposition 5.2.3). Calculation of (explicit) expressions for the Riemannian
geodesics associated to all (left-invariant) Riemannian structures on SE(1,1) (proposi-
tions 5.2.4, 5.2.5 and 5.2.6).

Notation

We briefly outline the notational conventions we shall employ. Lie groups are denoted using
uppercase characters in a sans serif typeface (e.g., G). Lie algebras are denoted using lowercase
letters in a Fraktur typeface (e.g., g). We shall also employ the following notation:

1 identity element of a Lie group.

x semidirect product of Lie groups (normal subgroup on the left).
C*>(M) the set of (smooth) real-valued functions on a smooth manifold M.
Vec(M) the set of (smooth) vector fields on a smooth manifold M.

GL(V) group of invertible linear transformations of a vector space V.
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gl(V) Lie algebra of GL(V).
(S) linear span of a subset S C g or of elements By,..., By € g.

Lie(S) Lie algebra generated by S C g, i.e., the smallest Lie subalgebra containing S.
(-,-) natural pairing g* x g = R, (p, X) — p(X) between g* and g.
dF' linearisation of F' € C®°(M); the linearisation at x is denoted dF'(x).

T¢ tangent map (differential) of a smooth map ¢ between manifolds; the tangent map
at x is denoted T, ¢.

DX linearisation of X € Vec(M); the linearisation at x is denoted DX (x).
X|[F] directional derivative of F' € C*°(M) in the direction of X € Vec(M).



Chapter 1

The Semi-Euclidean Group SE(1,1)

This chapter introduces the three-dimensional semi-FEuclidean group SE(1, 1) and investigates
some of its properties. We begin by showing that SE(1, 1) is a Lie group and that it decomposes
as the semi-direct product R? x SO(1,1)y. We also discuss the relationship of SE(1,1) to
the Minkowski plane RY!. Specifically, we show that SE(1,1) is the group of (orientation-
preserving) motions of R,

Next we consider the topological properties of SE(1,1), showing that it is connected,
simply connected and non-compact. We then calculate the Lie algebra se(1,1) and consider
some algebraic properties. We show that the centres of SE(1,1) and se(1,1) are trivial.
Consequently, we have that SE(1, 1) is the only (connected) Lie group with Lie algebra se(1, 1),
up to Lie group isomorphisms. We also calculate the adjoint representations Ady, g € SE(1, 1)
and adx, X € se(1,1), and prove that SE(1, 1) is unimodular, completely solvable and not
nilpotent. Lastly, we calculate the exponential map exp : se(1,1) — SE(1, 1) (which turns out
to be a diffeomorphism) and find the group of Lie algebra automorphisms Aut(se(1,1)). (The
latter group is used in several places in this thesis for classification; e.g., for the classification
of control affine systems in chapter 2.)

Lastly, the adjoint and coadjoint orbits of SE(1, 1) are determined. The coadjoint orbits
are the symplectic leaves of the minus Lie-Poisson structure on se(1,1)* (see section A.1.4
and section A.3.3). Thus, calculating the coadjoint orbits gives insight into the structure of
the Lie-Poisson structure on se(1,1)*. (We consider Hamilton-Poisson systems on se(1,1)*
in chapter 3 and chapter 4.) In addition, having calculated the adjoint and coadjoint orbits,
we are able to prove that there does not exist an invariant and nondegenerate bilinear form
on se(1,1).

1.1 The Lie Group SE(1,1)

The semi-Euclidean group is defined as

1 0 0
SE(1,1) =< |x cosh@ sinhf| :x,y,6 eR
y sinh# coshé

(This definition is made in retrospect, after selecting the signature (—1, 1) for the Lorentzian
inner product, and determining the affine transformations that preserve this structure. See
section 1.1.1.)
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ProposITION. SE(1,1) is a matriz Lie group.
Proor. We show that SE(1,1) is a closed subgroup of GL(3,R). For brevity, let

1 0 0
m(x,y,0) = |x cosh@ sinhd
y sinh# coshé

Then m(a,y,0)~! = m(wsinh @ — v cosh 6, vsinh § — w cosh §, —0) and m(x, y, O)m(v, w, V) =
m(x + vecoshd + wsinh 0,y + weoshd + vsinh 6,0 + ¥). That is, SE(1,1) is an abstract
subgroup of GL(3,R). It remains to show that SE(1,1) is closed in GL(3,R). Let (gn)nen,
gn = M(Tn,Yn,0n) be a sequence in SE(1,1) such that lim, g, = g € GL(3,R). (If
g ¢ GL(3,R), then there is nothing to prove.) Suppose x, — x, ¥y, — y and 6, — 6 as
n — oco. We have z,y,0 € R, since R is closed. Consequently, g = m(x,y,0) € SE(1,1). That
is, every sequence in SE(1,1) that converges in GL(3,R) converges in SE(1,1). Therefore
SE(1, 1) is a matrix Lie group. [ |

The next three results concern two distinguished subgroups of the semi-Euclidean group
and show that SE(1,1) decomposes as a semi-direct product of those subgroups. (Section
A.1.1 discusses the semi-direct product of Lie groups.)

cosh@ sinh6

LEMMA. The pseudo-orthogonal group SO(1, 1)o = { Linh& cosh 0

phic to R.

} 10 e R} is diffeomor-

coshf sinh6

PROOF. Define the map ¢ : R — SO(1, 1)g, 6 — Linh& cosh 0

}. Since cosh(-) is injective,

we have

0=19.

$(0) — (1) {cosh@ sinh&} B {coshq? sinhﬂ}

sinh® cosh#| |sinh®¥ cosh

coshf sinh6
sinh® coshd
¢(0) = g. Therefore ¢ is bijective. Moreover, T, ¢ clearly has full rank for every x € R. It
follows from the inverse function theorem (see, e.g., [33]) that SO(1, 1) is diffeomorphic to
R. |

Hence, ¢ is well-defined and injective. If g = { } € SO(1,1)g, then # € R and

PROPOSITION. The subsets of SE(1,1)

1 00 1 0 0
z 1 0| :z,yeR and 0 coshf sinhf| :0e€R
y 0 1 0 sinhé coshd

are closed Lie subgroups of SE(1,1), isomorphic to (the Abelian group) R? and (the pseudo-
orthogonal group) SO(1, 1)o, respectively.

PRrROOF. Let
1 0 0

1 00
G= x 1 0|:0eR}, H= 0 coshf sinhf| :0eR
y 0 1 0 sinhé coshd
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It is clear that G = R? and H =2 SO(1,1)g, and that G and H are abstract subgroups of
SE(1,1). As R? is closed, it follows that G is a closed subgroup of SE(1,1). Therefore, by
Cartan’s theorem (theorem A.1.1), we have that G is a closed Lie subgroup of SE(1,1). By
lemma 1.1.2, we have that G = SO(1, 1)¢ is diffeomorphic to R, and so, again by Cartan’s
theorem, H is a closed Lie subgroup of SE(1, 1). [ |

PROPOSITION. SE(1,1) decomposes as the semi-direct product R? x SO(1,1)g.

PRrOOF. We have that R? is a normal subgroup of SE(1,1). Indeed,
1 0 0 1 00][t o0 o 17"
v coshd sinhd| |z 1 0| v coshd sinhd
w sinh® cosh¥| |y 0 1| |w sinh?¥ coshd

1 0 0
= |zcosh¥ + ysinh¢ 1 0| € R?,
rsinhy +ycoshd 0 1

and so R? is normal in SE(1,1). It is clear that SO(1,1)g NR? = {1}. Lastly, we have

1 0 0 1 0 of |1 0 0
x cosh?¥ sinhd| =[x 1 0| |0 coshf sinhé],
y sinh?¥  coshd y 0 1| |0 sinh# coshf

and so SE(1,1) = R2S0(1,1)g. (As R? and SO(1, 1)g are both subgroups of SE(1,1), we have
R2S0(1,1)y € SE(1,1).) Therefore SE(1,1) is the semi-direct product R? x SO(1, 1)g. [ |

—_

1.1.1 Group of motions of the Minkowski plane

In this section we show that SE(1,1) is the group of orientation-preserving motions of the
Minkowski plane. (In fact, SE(1,1) is the group of hyperbolic rotations and translations.)
We first recall some concepts from Lorentzian (i.e., Minkowski) geometry. The following
exposition draws from [40, 23].

The Minkowski plane RY! is the pair (R?, ®), where ® denotes the Lorentzian inner
product:

XOY = =211 + Tal2, x = (x1,22), ¥y = (y1,92) € R%

The Lorentzian norm of x = (1, 22) € R? is defined as

[XllLor = VX ©x = /—22 +23.

(Strictly speaking, the Lorentzian norm is not a norm, as || - [|Lor # 0. However, given the
obvious analogy between Minkowski and Euclidean space, similar terminology is typically
employed.) The norm ||x||Lor can be positive, zero, or positive imaginary. A vector x is called
spacelike if ||x||Lor > 0, lightlike if ||x|| .o = 0 and timelike if ||x]|| o is imaginary. A
timelike or lightlike vector x = (z1,22) is called positive (resp. negative) if x; > 0 (resp.
r1 < O).

A Lorentz transformation is a bijective map ¢ : R> — R? that preserves the Lorentzian
norm, i.e., ||[¢(X)|lLor = |X||Lor for every x € R2. Every Lorentz transformation is linear (cf.
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[40]). We shall call ¢ a Lorentz isometry if it is bijective and ||¢(x) — ¢(¥)||Lor = |IX — ¥ |ILor
for every x,y € R2. (As || - ||Lor is not a proper norm, Lorentz isometries are not distance-
preserving maps in the usual sense. The terminology is again inspired by the analogy with
Euclidean space.) A Lorentz transformation is a Lorentz isometry. The converse, however,
does not hold in general. Furthermore, it turns out that all Lorentz isometries are affine
maps.

PROPOSITION. Fvery Lorentz transformation is a Lorentz isomelry. FEvery Lorentz isomelry
fixing the origin is a Lorentz transformation.

PrROOF. Let ¢ be a Lorentz transformation. Since ¢ is linear, for every x,y € R? we have
[6(x) = ¢(¥)llLor = [[¢(x = ¥)llLor = IIx — ¥llLor- Hence ¢ is a Lorentz isometry. Let ¢ be
a Lorentz isometry such that 1(0) = 0. We have, for every x € R?, ||¢(x)||Lor = |[¥(x) —
Y(0)||Lor = ||Xx — Ol|Lor = [|X|Lor- Thus 7 is a Lorentz transformation. |

PROPOSITION. Fvery Lorentz isometry is affine.

PROOF. Let ¢ be a Lorentz isometry such that ¢(0) = b. Define ¥(x) = ¢(x) —b. Then
we have ¢(0) = ¢(0) —b = 0. Moreover, [[¢)(x) = (¥)llLor = [[#(x) =b = ¢(y) + bllLer =
lo(x) — &(y)||Lor = ||X — ¥l|Lor- That is, ¢ is a Lorentz isometry fixing the origin, and so by
proposition 1.1.5 it is linear. Therefore (x) = Ax for some A € GL(2,R). It follows that
d(x) = Ax + b, i.e., ¢ is affine. [

A Lorentz isometry ¢ : R? — R2?, x — Ax + b is said to be an orientation-preserving
motion of RV if det A = 1 and x — Ax transforms positive timelike vectors into positive
timelike vectors.

THEOREM. The semi-Euclidean group SE(1,1) is exactly the group of orientation-preserving
motions of the Minkowski plane.

PRrROOF. Let ¢ : x — Ax + b be an orientation-preserving motion of R, Since det A = 1
and x — Ax preserves positive timelike vectors, it follows that A € SO(1,1)g. (Indeed,
SO(1,1)g is typically defined to be the group of such maps; cf. [40].) Identifying elements
x = (21, 72) € R? with the column vector [1 X]T =1 = $2]T7 we can write ¢ in matrix

form as
1 0 0

¢ = H) SJ = |b1 cosh@ sinh6
by sinh# coshé

Thus ¢ € SE(1,1). Conversely, every element of SE(1, 1) is of this form. Therefore SE(1,1) is
the group of orientation-preserving motions of R, [ |

1.1.2 Topological properties of SE(1,1)

We show that SE(1, 1) is diffeomorphic to R?. It follows that SE(1,1) inherits the topological
properties of R?.

PROPOSITION. SE(1,1) is diffeomorphic to R®.

PrOOF. By lemma 1.1.2, SO(1, 1)¢ is diffeomorphic to R. Since SE(1,1) = R? x SO(1, 1),
we have that SE(1, 1) is diffeomorphic to R? x R = R3. [ |
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COROLLARY. SE(1,1) is connected, simply connected and non-compact.
PROOF. By proposition 1.1.8, SE(1, 1) is diffeomorphic to R3. Since the topological properties

of connectedness, simply connectedness and compactness are preserved by diffeomorphisms,
the result follows from the corresponding properties of R3. |

1.1.3 Algebraic properties of SE(1, 1)

THEOREM. The Lie algebra of SE(1,1) is
0 0 0
se(l,1)=<¢ |z 0 0| :2,y,0 R
y 6 0
PrOOF. For brevity, let
0 0 0 0
m(x,y,0 x cosh0 sinh 6 and M(x,y,0)= |z 0 0
sinh @ cosh 6 y 0 0

0 € R}. Consider a smooth curve g(-) : (—,2) — SE(1,1) defined
by g(t) = m(x(t),y(t),0(t)), where x(0) = y(0) = 6(0) = 0. We have g(0) = 1, and so
g(0) € T1SE(1,1) = se(1,1). However, §(0) = M(2(0),5(0),0(0)) € g. Thus se(1,1) C g.
For the converse, let X = M(x,y,0) € g. Then h(:) : t — m(at, yt,0t) is a smooth curve in
SE(1, 1) such that h(0) = 1 and A(0) = X. That is, X € se(1,1), and so g C se(1,1). Hence
se(1,1) = g. [ |

Let g = {M(z,y,0) : 2,y,
o(t

Define the standard (ordered) basis of se¢(1, 1) to be (E;)?_;, where
0 0 0
. Bs=10 0 1
010

(Fy and FE5 are the infinitesimal generators of translations and E3 the infinitesimal generator
of hyperbolic rotations.) The commutator relations (in terms of the matrix commutator
[X,Y] = XY — Y X) of the standard basis elements are given in table 1.1.

We denote by (Ef)?_; the dual basis for se(1,1)*. That is, each element E}, i = 1,2,3
is defined by (Ef, ;) = di5, 4,j = 1,2,3. We shall write elements of se(1, 1) in coordinates
as column vectors. On the other hand, elements of the dual space se(1,1)* will be written as
row vectors.

PROPOSITION. The centres Z(SE(1,1)) and Z(se(1,1)) are trivial.

ProoF. We first show that Z(SE(1,1)) is trivial. Let g € Z(SE(1,1)). Then ghg='h~! =1
for every h € SE(1,1). In particular,

1 0 0 100t o o 17'M o o]
2z cosh@® sinh6| |1 1 0| |2 cosh@ sinh6 1 1 0 =1.
y sinhé coshd| |0 0 1| |y sinhf coshé 0 0 1
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[ || B | Eo | Es

By 0 0 | —F,

By 0 0| -k

Es || By | By 0

Table 1.1: Commutator relations for the standard basis (F;)?_; of se(1,1).

That is,
1 00
coshd—1 1 0| =1
sinh 0 0 1
This implies that # = 0. Next, we must have
10 0]t o0 0 1o o' o o 17"
x 1 0| |0 cosh® sinhd| | 1 0 0 cosh¢ sinh® =1.
y 0 1] [0 sinh¥ coshd?| |y 0 1 0 sinh®¥ coshd

That is,
1 0 0
(1 —cosh¥)x —ysinhy 1 0| =1.
(1 —coshd)y —xsinhy 0 1

The only solution to this equation, for every value of ¥ € R, is x =y = 0. Thus g = 1, and
so Z(SE(1,1)) = {1}.

By proposition A.1.5 we have that Z(se(1,1)) is the Lie algebra of Z(SE(1,1)). Since the
latter subgroup is trivial, it follows that Z(se(1, 1)) is trivial, i.e., Z(se(1,1)) = {0}. [ |

1.1.12 THEOREM. The only connected Lie group (up to isomorphism) with Lie algebra se(1,1) is
SE(1,1).

PROOF. Let G be a connected Lie group with Lie algebra se(1,1). By theorem A.1.12, we have
that G is isomorphic (as a Lie group) to SE(1,1)/N, where N is a discrete normal subgroup of
SE(1,1). (As SE(1,1) is simply connected, the universal cover SAE(l, 1) is SE(1, 1) itself.) By
proposition A.1.11, N is a subgroup of the centre Z(SE(1,1)) = {1}, and so N is trivial. Thus
G is isomorphic to SE(1,1). [ |

1.1.13 PROPOSITION. In terms of the standard basis (E;)2_,, the adjoint representations of SE(1, 1)
and se(1,1) are

coshf sinh0 —y 0 0 —y
Ady = |sinhf cosh® —x and ady = |0 0 —x|,
0 0 1 00 O

respectively. Here

1 0 0
g= |z cosh® sinh@| € SE(1,1) and X =
y sinh# coshé

o

€ se(l,1).

@ 8 O
> O O
O D
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ProOF. In terms of the ordered basis (F;)?_,, the i*" column of the matrix Ad, is the image
of F; under Adg, written in coordinates. We have

0
Ady By = gElg_1 = [coshé
| sinh ¢

0
Ady By = gF>g~! = |sinh
| cosh 0

0 0
AdgEs =gl = |-y 0
—xr 1

= coshfF; + sinh 0 F,

= sinh 0171 + cosh 017y

= —yby —aly + Es.

oo OO0 0 oo o

Therefore the matrix Ad, takes the required form. Next, let

! 0 0
v(t) coshd(t) sinhd(t)
|lw(t) sinhd¥(t) coshv(t)

be a curve in SE(1, 1) such that g(0) = 1 and §(0) = X. Since ad is the linearisation of Ad,

g() : (—&,e) = SE(1, 1), i

we have )
d 0  90) —w(0) 00 —y
adx = T Adg(t) = | 9(0) 0 —0(0)| = |0 0 —=xf. u
=0 0 0 0 00 0

1.1.14 PROPOSITION. The semi-FEuclidean group SE(1,1) and its Lie algebra se(1,1) are
(i) not nilpotent;
) completely solvable;
) exponential;
(iv) solvable;
) not simple; and,
(vi) not semisimple.
Furthermore, SE(1,1) is unimodular.

Proor. It suffices to prove the first six properties for se(1, 1), since SE(1, 1) is connected
and simply connected (by corollary 1.1.9) and thus shares the same properties. (See section
A15)

The spectrum of adx, X = aFy + yFs + 0Fs € se(1,1) is (0, —6,60). Hence the spectrum
of adg, is nonzero, and so se(1, 1) is not nilpotent. On the other hand, since the eigenvalues
of adx are real for every X € se(1,1), we have that se(1,1) is completely solvable. This
implies (proposition A.1.15) that se(1,1) is exponential and solvable. By proposition 1.1.3
and proposition 1.1.4, R? is a normal closed Lie subgroup of SE(1,1). Consequently, 73R? =
(K1, Fs) is an ideal of se(1,1). Thus se(1,1) is not simple. Since se(1,1) is solvable, by
proposition A.1.17 it cannot be semisimple.

Finally, from proposition 1.1.13, we have tr(adx) = 0 for every X € se(1,1). Therefore
SE(1,1) is unimodular (see proposition A.1.16). |
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PROPOSITION. The exponential map exp : se(1,1) — SE(1, 1) is given by

1 0 0
expX = |5 [xsinh6 + y(coshf —1)] coshd sinh6

% [ysinh 0 + x(cosh® — 1)] sinh@ coshd

where X = xFEy +yFEs + 0Fs3 € se(1,1). (If 0 =0, then exp X may be obtained by taking the
limit 0 — 0.)

Proor. The result follows by using the series expansion of the matrix exponential, viz.

¥ —1 X Xx? x3
exXp = +i‘|‘?+¥+....
(We used MATHEMATICA to compute this series expansion. See section B.1 for the code.) If

f +£ 0, we get the expression given in the statement of the proposition. If § = 0, then

1 0 0
expX=1lz 1 0
y 01
This is exactly the limit § — 0 of the general expression for exp X. u
PROPOSITION. The exponential map exp : se(1,1) — SE(1, 1) is a diffeomorphism.
PRrROOF. From proposition 1.1.14, we have that se(1,1) is exponential, i.e., the exponential
map is a diffeomorphism. (See section A.1.5.) [
PROPOSITION. In terms of the standard basis (F;)3_,, the automorphism group of se(1,1) is
x oy v
Aut(se(1,1)) = sy sx wl| :v,w,ayeR, ¢ce {11}, 2* #y?
0 0 ¢

PrOOF. Let 1 € Aut(se(1,1)) and write ¢ in terms of (F;)2_; as

a1 a2 as
Y= b1 by b3
€1 C2 C3

Since 1 is an automorphism, we have ¢ - [I;, [)j]| = [¢ - 5, - 5] for every i,7 = 1,2,3. In
particular, we have

—ay — bsea + bacs
V- [Ba, B3] = [¢ - B, ¢ - B — —b1 —ascy + ages| =0.

This implies that ¢; = 0, a1 = bacs — bsco and by = ascs — asce. Next, using ¥ - [Fh, B3| =
[V - Eq,¢ - Fs], we get
ag(c2 — 1) — azeacs
bg(cg — 1) — 536263 =0.
ey
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Hence ¢y = 0 and ag(c2 — 1) = ba(c2 — 1) = 0. Since det ) = c2(b3 — a2), we cannot have both
as and by zero, and so cg = +1. That is,

:Ebg as d4s
’(/J = :|:a2 bg bg
0 0 =1

Setting v = as, w = bs, © = £bs, y = ao and ¢ = 1 yields

xr Yy v
Y=y sx wl|, (1-1-1)
0 0 ¢

where det ) = 22 — y? #£ 0. Conversely, every linear isomorphism of this form preserves the
Lie bracket. (See the supporting MATHEMATICA code in section B.1.1.) Hence, every element

of Aut(se(1, 1)) is of the form (1.1.1), as claimed. |
PROPOSITION. The elements E1 + Fa and Ey — Fy are eigenvectors of every automorphism
of the form

x Yy v

y v w|. (1.1.2)

0 0 1

Furthermore, (Eq, E2) is an invariant subspace and (Fy + Fa) U (Ey — Ea) is an invariant
subset of every automorphism.

ProOOF. Let
r y v
Y= |sy sx w| € Aut(se(l,1)).
0 0 g

We have ¢ - (Fy + Ey) = (x+y)(E1+sEy) and ¥ (E1— Fy) = (x—y)(E1 —cFs). Consequently,
(E1 + Es) U (Ey] — Fs) is an invariant subset and (F1, E») is an invariant subspace of ¥, and
hence of every automorphism. Furthermore, if ¥ is of the form (1.1.2), then ¢ = 1, and so
Fy + sy, E1 — Ey are eigenvectors of 1. |

1.2 Adjoint and Coadjoint Orbits

We (briefly) recall the necessary concepts of the adjoint and coadjoint representations. (For
further details, see section A.1.4.) Let G be a matrix Lie group with Lie algebra g. The
adjoint representation of G is the map Ad : G — GL(g), g — Ad,, where Ad, : g — g is
defined by Ad, X = gXg~!. The coadjoint representation of G is the map Ad* : G —
GL(g*), g — Adz,l where Adz,l is defined by the equation

<AdZ*1 p7X> - <p7 Adg*1 X>7 p € g, X <€ g.

(That is, Adj_. is the dual of Ady-1.) The adjoint orbit through an element X € g is the
set Otb(X) = {Ady X : g € G}. Similarly, the coadjoint orbit through p € g* is defined as
otb(p) = {Ad;-1p:g € G}.

The following two results determine the adjoint and coadjoint orbits of SE(1, 1). Section
B.1.2 and section B.1.3 list the supporting MATHEMATICA code. The adjoint and coadjoint
orbits are graphed in figure 1.1.
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Figure 1.1: Adjoint and coadjoint orbits of SE(1, 1)

1.2.1 Proposition. We have the following adjoint orbits of SE(1,1) through X = xE1+ yE2+

6E3 Gse(1,L):

(i) 1f X =0, then the orbit of X is trivial, i.e.,, Orb(X) = {0}.

(i) 1f6 =0, x2+y2-= 0 and x2 = y2then the orbit of X is the hyperbola Orb(X) =
{(xcosh$ + ysinh$)E1+ (xsinh$ + ycosh$)E2:$ GR}.

(i) 1f6 =0, x2+ y2= 0 and

(@) x —y =0, then the orbit of X isthe ray Orb(X) = {tsgn(x)(E1+ E2) : t> 0}.
(b) x+y=0, then the orbit of X isthe ray Orb(X) = {tsgn(x)(E1—E2) : t> 0}

(iv) 1f 6 = 0, then the orbit of X is the (affine) plane Orb(X) = 6E3+ (EL,E2).

Proof. If X = 0, then AdgX = 0 for every g G SE(1,1), and so Orb(X) = {0}. Suppose
6=0and x2+y2= 0. Let

1 0 0
v cosh$ sinh$ GSE(1,1).
w sinh$ cosh$

If X2 =y2, then
xcosh$ + ysinh $
Adg X xsinh$ + ycosh $
0

Thus the orbit of X is the hyperbola Orb(X) = {(xcosh$ + ysinh$)E1+ (xsinh$ +
ycosh$)E2:$ GR}. If x —y = 0, then

x(cosh $ + sinh $)
Adg X x(sinh $ + cosh $)
0
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The expression cosh ¢ +sinh ¥, ¥ € R takes any strictly positive real value. Consequently, the
orbit of X is the ray Otb(X) = {sgn(x)t(FEy + E3) : t > 0}. If x +y = 0, then

x(cosh ¥ — sinh )
Ady X = |z(sinh¥ — cosh?) | ,
0

and since cosh ¥ —sinh ¢, ¥ € R again takes any strictly positive real value, we have Otb(X) =
{sgn(x)t(E1 — F2) : t > 0}.
Suppose 6 #£ 0. Then

2 cosh @ + ysinh ¥ — wd
Ady X = |zsinh¥ + ycoshd —v0
0

Since 6 #£ 0, the expressions x cosh ¥+ sinh ¥ —wé and 2 sinh ¥y cosh ¥ —v0 (for v, w, ¥ € R)
take any value in R. Hence, the orbit through X is the (affine) plane Otb(X) = 0E3+(Fy, Fa).
Since the preceding calculations account for any possible value of X, the classification of
adjoint orbits is complete. |

PROPOSITION. We have the following coadjoint orbits of SE(1,1) through p = xE{ +yE3 +
OF% € se(1,1)*:

(i) If x =y =0, then the orbit of p is the point otb(p) = {0F%}.

(i) If 22 + 9> # 0 and 2% £ y?, then the orbit of p is the hyperbolic cylinder orb(p) =
xcosh¥ + ysinh®) BF 4 (xsinh ¢ + ycosh ) ES + LEY - 9,¢ € R}.
1 2 3

(iid) If 2% +y% # 0 and

(a) x —y = 0, then the orbit of p is the plane ovb(p) = {ssgn(z)(E] + E5) +tE5 1 s >
0, t € R}.

(b) x+y = 0, then the orbit of p is the plane otb(p) = {ssgn(x)(F} — F3) +tk£5 : s >
0, t € R}.

PrOOF. From proposition 1.1.13, we have

cosh?¥ sinhd —w 1 0 0
Ady-1 = |sinh¥ coshd —wv |, g~'=|v coshy sinh¥| e SE(1,1).
0 0 1 w sinh?d coshd

By definition (Ad}_, p, X) = (p, Adg—1 X) for any p € se(1,1)" and X € se(1,1)*. Thus we
have (in matrix form) Ad}_,p=p- Adg-1.

If x =y =0, then Adz,l p = OFE3 for every g € SE(1,1), and so orb(p) = {6F3}. Suppose
x? +y? #£0. If 22 £ 92, then

xcosh ¥ + ysinh ¢ T
Adj-1p = |sinh?d + ycoshd
0 — wx — vy
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Since 8§ —wx — vy, v, w € R takes any value in R, it follows that the orbit of p is the hyperbolic
cylinder otb(p) = {(x cosh ¥4y sinh ¥) {4 (z sinh 94y cosh ) 3+t ES - 9,1 € R}, Ifx—y = 0,
then
x(cosh ¥ + sinh ) T
Adj 1 p= |z(cosh? + sinh )
0 —wr —vx

The expression § — wx — vy (for v,w € R) takes any real value, and cosh¥ + sinh ¥, ¢ € R
takes any value strictly greater than zero. Consequently, the orbit through p is the plane
otb(p) = {ssgn(x)(Ff + F3) +tE5 : s > 0, t € R}. Similarly, if x +y = 0, then

x(cosh ¥ — sinh ) T
Adj-.p = |z(sinhv — cosh )
0 —wx +ovx

Here 0 — wa + v, v,w € R (resp. cosh® — sinh ¥, ¥ € R) takes any value in R (resp. any
strictly positive value in R), and so otb(p) = {ssgn(z)(E}] — E3) +tE : s > 0, t € R}.
These cases account for every possible value of p, and so the classification of coadjoint orbits
is complete. |

Recall that a nondegenerate invariant bilinear form on the Lie algebra g of a con-
nected Lie group G is a bilinear form B(-,-) : g X g — R such that B(X, ) = 0 implies X =0
and B([X,Y], Z)+B(X,|Y, Z]) = 0 forevery X, Y, Z € g. The existence of such a form implies
that the adjoint and coadjoint orbits of G are linearly related (proposition A.1.14). Having
calculated the adjoint and coadjoint orbits of SE(1, 1), we are able to show that se(1, 1) does
not admit any such bilinear form.

PROPOSITION. There does not exist a nondegenerate bilinear form on se(1,1).

Proor. Suppose otherwise. Then by proposition A.1.14 there exists a linear isomorphism
¥ se(l,1) — se(1,1)* such that ¥ - Otb(X) = orb(¢ - X) for every X € se(1,1). Let X =
xEy +yFy # 0, where 22 £ y?. By proposition 1.2.1, Otb(X) is the hyperbola {(xcosh ¥ +
ysinh #)Fq + (rsinhd + ycosh?)Fy : ¥ € R}, and so dim(Otb(X)) = 1. Since all coadjoint
orbits are even dimensional, we thus have dim(y-Otb( X)) # dim(orb(y- X)). This contradicts
the assumption that 1 is a linear isomorphism. Therefore no such ¥ exists, and so se(1, 1)
does not admit a nondegenerate invariant bilinear form. |



Chapter 2

Classification of Full-Rank Control
Systems

In this chapter we study the left-invariant control affine systems on SE(1,1). We do so by
employing a natural equivalence relation (detached feedback equivalence) between control sys-
tems, and classifying the systems under this equivalence relation. The problem of equivalence
of control systems on a (simply connected) Lie group under detached feedback equivalence
is shown to reduce to the problem of classifying affine subspaces of the associated Lie al-
gebra. Having obtained a classification of control systems, we are able to determine some
controllability criteria for systems on SE(1,1).

Detached feedback equivalence was introduced in [20] as a natural restriction of feedback
equivalence. (Feedback equivalence is the weakest equivalence relation that establishes a one-
to-one correspondence between trajectories of equivalent systems; cf. [14].) The full-rank
left-invariant control affine systems on all three-dimensional Lie groups have recently been
classified under detached feedback equivalence (see [18, 13, 16, 19]).

2.1 Preliminaries

We briefly recall some concepts from invariant control theory, as detailed in section A.2.
An f-input left-invariant control affine system Y. = (G,Z) on a (real, finite-dimensional)
connected matrix Lie group G is a control system of the form

G=9Z(1,u) = g(A+uB1 + ... +wBy), geG, u=_(uy,...,u) R (2.1.1)

(Here A, By,...,Bs € gand By, ..., By are linearly independent.) A trajectory-control pair
of > is a pair (g(-), u(-)), where u(-) is an admissible control and g(-) is a trajectory. The trace
of ¥ is the ¢-dimensional affine subspace I' = A + 1% = 4 + (B1,...,Bg). X is said to have
full rank if Lie(I') = g, i.e., I generates the entire Lie algebra. (The full-rank condition is
necessary for controllability of >..) Henceforth, we shall always assume that the systems under
consideration have full rank. For convenience, we write (2.1.1) as ¥ : A +u1 By + ... + ugBy.
Y is called homogeneous if A € I'’, and inhomogeneous, otherwise.

Let ¥ = (G,Z) and ¥ = (G,Z’') be two left-invariant control affine systems, with traces
I' and TV, respectively. . and Y/ are said to be detached feedback equivalent (or DF-
equivalent) if there exist diffeomorphisms ¢ : G — G and ¢ : R — R such that T,¢ -
E(g,u) = Z'(¢(g), o(u)) for every g € G and u € R

17
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PROPOSITION. DF'-equivalence is an equivalence relation.

PRrROOF. Let Y = (G, =), ¥ = (G,Z) and 3 = (G, Z") be left-invariant control affine systems.
Let ¢ = idg and ¢ = idge. Then Ty¢ = idr,c for every g € G. Hence Ty¢-Z(g,u) = Z(g,u) =
E(o(g), p(u)). That is, ¥ is DF-equivalent to itself, and so DF-equivalence has the reflexive
property.

Next, suppose ¥ is DF-equivalent to . Then there exist diffeomorphisms ¢ : G — G and
¢ : R® — R such that T,¢-Z(g,u) = =Z/(¢(g), p(u)) for every g € G and u € RE Consequen‘cly7
(T,6)~L - Z(8(g), (w) — (g u) for every g € G and u € RE. As (Tyd)~) — Tyq)¢, we

have Ty 6~ - Z/(d(9), p(u)) = E(67"(#(9)), ¢~ (0(u))) for every ¢(g) € G and p(u) € R".
That is, E’ is DF-equivalent to 3, and so DF-equivalence is symmetric.

Finally, suppose ¥ is DF-equivalent to ¥/ and ¥/ is DF-equivalent to ¥”. That is, there
exist diffeomorphisms ¢1, ¢ : G — G and ¢, ¢, : R® — R? such that

Typr-Z(g,u) = ='(d1(g9),1(w))  and  Tedo - E'(g,u) = Z'(¢2(g), p2(u))

for every g € G and u € R, Let ¢ = ¢p2 0 ¢ and ¢ = 3 0 1. We have, for every g € G and
u e R

Tg(p ’ E(gv u) - T¢1(g)¢2 ’ Tg(pl ’ E(gv U)
= Ty, (992 - Z(91(9), p1(u))
= =Z"(¢2(01(9)), p2(p1(w))) = Z"(6(9), (u)).

Thus X is DF-equivalent to ", and so DF-equivalence is transitive. |

The following two results demonstrate that detached feedback equivalence is natural, in
the sense that it preserves the trajectory-control pairs and the controllability of equivalent
systems.

PROPOSITION. If ¥ is DF-equivalent to Y., then the trajectory-control pairs of ¥ and Y are
in a one-lto-one correspondence.

PRrROOF. Let (g(-),u(-)) be a trajectory-control pair of 3. Since Y. and ¥ are DF-equivalent,
there exist diffeomorphisms ¢ : G — G and ¢ : R® — R such that Ty¢-Z(g,u) = Z'(¢(g), (1))
for every g € G and u € RY. We will show that (¢(g(+)), ¢(u(:))) is the unique trajectory-
control pair for 3/ corresponding to (g(+),u(-)). Indeed, for almost every t we have

Z09(0) = Ty 9(1)
= Ty Elg(0),ult) = = (6(g(1), plu(t).

That is, (¢(g(-)), p(u(-))) is a trajectory-control pair of 3. Suppose ¢(g1(-)) = ¢(g2(+)) and
(ur(4)) = @(ua(:)), where (g1(-),u1(-)) and (g2(:),u2(-)) are trajectory-control pairs of 3.
Applying ¢~! and ¢!, we have g1(-) = g2(-) and u1(-) = uz(-). Hence, trajectory-control
pairs are mapped injectively from . to Y. Next, let (¢'(:),w'(-)) be a trajectory-control pair
of ¥. Then (¢~1(¢'(), ¢~ 1(/(-))) is the trajectory-control pair of 3 that is mapped to
(¢'("), () by ¢ x . Thus, trajectory-control pairs are mapped surjectively. Therefore, the
trajectory-control pairs of 3 and ¥/ are in a one-to-one correspondence. |
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PROPOSITION. Suppose Y. and ' are DF-equivalent. Y is controllable if and only if ¥/ is
controllable.

Proor. Let A and A’ denote the attainable sets (from identity) of ¥ and Y/, respectively.
Suppose ] is controllable, i.e., A = G (see proposition A.2.2). Since ¥ is D F-equivalent to >/
(say, with respect to the diffeomorphisms ¢ : G — G and ¢ : R — R?), there is a one-to-one
correspondence between the trajectories of the two systems. In particular, g(-) is a trajectory
of ¥ if and only if ¢(g(+)) is a trajectory of /. Accordingly,

A" ={R(T): h(") : [0,T] — G is a trajectory of ¥, h(0) = 1}
={o(g(T)) : g(-) : [0,T] — G is a trajectory of 3, g(0) =1}

Therefore ¥ is controllable. Swapping roles of ¥ and Y, the same argument above shows
that if X' is controllable, then ¥ is controllable. [ |

As a final step, we show that for systems evolving on a simply connected Lie group,
detached feedback equivalence may be characterised at the level of the Lie algebra. For
brevity, introduce the following notation:

Eup = Z2(, u1), Bup oy, = [Euy EUQ...uk], k> 1.
(Here w1, ..., ur € RY.) We begin with a technical lemma.
LEMMA. The Lie algebra g is given by g = span{Zy,..u, (1) 1 uq,. .., ux € RY, k € N}.

PrOOF. We have I' = {Z,(1) : u € R*}. Consequently, using the characterisation of Lie(T")
in section A.1.1, we have

Lie(F) = span{Al, [Al, AQ], [Al, [AQ, Ag]], RN [Al, [AQ, RN [Ak—ly Ak] B H : Az < F, ke N}
— span{Zu, (1), . ., [Bur (1), [Bag (1), - - [Buy (1), B, (1)] -] s us € RY, & € N}
— span{=,..., (1) 1 u; € RY, k € N}.

Since ¥ has full rank (by assumption), we have g = Lie(I'), and the proof is complete. [ |

THEOREM. (CF. [20]) Suppose G is simply connected. ¥ and X' are DF-equivalent if and
only if there exists a Lie algebra automorphism v : G — G such that ¢ - T' =T,

PRrOOF. Suppose ¥ and X are DF-equivalent. Then there exist diffeomorphisms ¢ : G — G

and ¢ : R® — R such that ¢,=, = EZMW i.e., Ty - Z(g,u) = Z'(P(g), p(u)) for every g € G

and u € R®. We may assume that ¢(1) = 1. Indeed, suppose ¢(1) = a. Then (L, 10¢)(1) =1
and

Tg(chl © (p) : E(gv u) - T¢(9)La*1 : Tg(p : E(gv U)

- T¢(g)La*1 ’ EI((b(g)v p(u))
=Z(a™"¢(9), p(u)) = E'((La-1 0 $)(9), ().
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That is, 3 and ¥/ are also D F-equivalent with respect to L,-1 0 ¢ and ¢. Hence, by replacing
¢ with L,-1 0 ¢, we can alway arrange for ¢ to preserve identity.

We first show that Ty¢ - T' = IV. We have I' = {Z,(1) : u € R*}. Since Ty¢ - Z,(1) =
Efpm) (p(1)) = E;m)(l) e I, it follows that T3¢ -T' C I”. Moreover, as ¢ is a diffeomorphism,
T1¢ is a linear isomorphism, and so dim(7y¢ - ') = dim(I”). Thus Th¢ - T =T".

It remains to show that 71¢ is a Lie algebra automorphism. Since the pushforward by ¢
preserves the Lie bracket of vector fields, we have ¢y |2y, ups Svrovn] = [PxZus - up » PxZovr v |
for every uy, ..., U, v1, ..., Un € RY Furthermore, as the Lie bracket of two left-invariant vec-
tor fields is left-invariant (see section A.2), we have that Z,,...u, Zoyeevr, a0d [y s Sopeev |
are left-invariant, for every ui, ..., u, v1,...,Un € Rf and k,m € N. Consequently,

((b* [Em"ﬂkvEvr"vm])((b(l)) — Tl(p : [Em"'%v Evl"'vm](]‘)
—T1¢  [Euyny (1), Sy, (1)

In a similar fashion,

[PZur g GxZr0, ] (D(1)) = (03B O(L)), (@4Zy 0, ) (D(1)))]
=[T1¢ Zuyu, (1), T1d - Zopyvar,, (1)].
That is, we have T1¢ - [Ey, . (1), By ooy, ()] = [T160 - g (1), 110 - Eopy 0, (1)] fOr every
ULy oy Uk, V1, - -, U € RE Let A, B € g. By lemma 2.1.4, we can write A = 5, iy oy, (1)
and B =3, 6jEvl...vm],(1) for some «y, §; € R. Consequently,

Ti6- [A, B] = T | 0, (1), 25 BZrmam, (1)]
S B TL0 B, (1s Zogan (1)
= Y, 0iBi[T10  Zuyy, (1. 716 Sy, (1)]
- [T1¢~ (Zi aiEul...uki(l)) Ti¢- (Zj ﬁjEm...vmju))} — ¢ A Ti6- Bl

That is, Ty ¢ is a Lie algebra automorphism such that T3¢ - T' = I".

Conversely, suppose there exists a Lie algebra automorphism 4 : g — g such that - I' = T".
As G is simply connected, there exists a Lie group automorphism ¢ : G — G such that Ty¢ = ¢
(see theorem A.1.6). Since Z'(1,-) is injective, the corestriction Z/(1,-) : R* = T = im Z/(1, -)
has an inverse, say ¢ : I' — Rf TLet ¢ : R® — R’ be the diffeomorphism defined by
o(u) = (Ty¢g - Z(1,u)). Then T1¢ - Z(1,u) = ()" Hp(u)) = Z'(1, o(u)) for every u € R:
Lastly, we have ¢ = Lyg) 0 ¢ o Ly-1 for every g € G, and so

Ty¢ - =(9,u) = Ty(Lggy 0 ¢ 0 Lg1) - =(g, 1)
=T Ly - T1¢ TyLg— -2(g,u)
=T Ly - T1¢ - =(1,u)
=T1Ly) E(1,p(w) = E'(d(g), p(u)).
That is, ¥ is DF-equivalent to Y. [ |
Accordingly, the classification of systems (on a simply connected Lie group) under de-
tached feedback equivalence is reduced to the classification of affine subspaces I' of g under

Lie algebra automorphisms. Since SE(1,1) is simply connected (proposition 1.1.9), we shall
follow this approach to the classification.
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2.1.1 f£-equivalence of affine subspaces

Let g be an n-dimensional (real) Lie algebra and let I' = A + 19 = A + (By,..., By) be
an f-dimensional affine subspace of g, where By, ..., By are linearly independent. (We shall
employ similar terminology and notation for affine subspaces as we do for control affine
systems.) I'is said to have full rank if Lie(I') = g. I' is called homogeneous if A € I,
and inhomogeneous, otherwise. We shall also refer to I" as an (¢, 0)-affine subspace if it is
homogeneous, and as an (¢, 1)-affine subspace if it is inhomogeneous.

Let I and T be affine subspaces of g. We say that T' is £-equivalent to I" if there exists
a Lie algebra automorphism ¢ : g — g such that ¢ - T' = T".

PROPOSITION. £-equivalence is an equivalence relation.

Proor. Let I', IV and I'” be affine subspaces of g. We haveid-T" =T, i.e., " is £-equivalent to
itself. Thus £-equivalence is reflexive. Next, suppose I is £-equivalent to I'V. Then there exists
¥ € Aut(g) such that v - T' = I". Consequently, =1 -7 = T". Since ¥~! is an automorphism,
it follows that I'V is £-equivalent to I". Thus £-equivalence is symmetric. Finally, suppose T’
is L£-equivalent to I'" and I is £-equivalent to I'. That is, there exist automorphisms 1, 12
such that ¢y -T' = T" and ¢y - TV =T". Then ¢y - ¢py - T' = 4o - I =T, ie., T' and T are
L-equivalent. Hence £-equivalence is transitive. |

Two £-equivalent affine subspaces must have the same dimension and homogeneity. (This
is because automorphisms preserve both dimension and homogeneity of affine subspaces.)
Furthermore, the full-rank condition is invariant under £-equivalence. Indeed, we have the
following result.

PROPOSITION. Lelt i : g — g be a Lie algebra automorphism. U has full rank if and only if
- T has full rank.

PrOOF. Let ¥ € Aut(g). Using the characterisation of Lie(I') given in section A.1.1, we have

Lie(y) - T') = span {By,[B1, Ba|,...,[B1,[Ba,...,[Bx-1,Br| ---|]] : B; € ¢ - T, k € N}
=span{y- Ay, ..., [ - Ay, [ A, .. [0 Ap_1,0 - Ag] -] A €T, k e N}
=span{y - A1, ¢ [Ar, As], ..., |A1, [Agy .o [Ak_1, Akl - ]] - A €T, k € N}
=1 - Lie(I").
Therefore, if Lie(I') = g, then Lie(y - T') = g, and so ¢ - I" has full rank. Conversely, if ¢ - T’
has full rank, for ¢ € Aut(g), then I' = ¢~ . (¢ - T) has full rank. [ |

The following characterisations of the full-rank condition are used throughout the classi-
fication.

PRrOPOSITION. Two affine subspaces ' = A + 10 and I7 = A’ + I are L-equivalent if and
only if there exists an automorphism 1 such that ¥ - A €T and - T° = o,

PROOF. Suppose I' and I are £-equivalent. Thus there exists ) € Aut(g) such that ¢-T' = T".
Then - Aey-T =17, e, - A= A+ B for some B' € I'"°. Consequently, from ¢-T' = I",
we have - A4+ T% = A +17° je., A+ B+ -I'° = A+ I"°. This implies that ¢-I'° = "’
(since B e I'"°).

Conversely, suppose ¢ -T% =T and ¢- A € I'. Then ¢ - A = A’ + B’ for some B' € I"°.
Consequently, - T' = - A+ ¢ -T° = A+ B +1"° = A/ + 1" = I". Thus I and I" are
L-equivalent. |
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2.1.9 PROPOSITION. Let g be a three-dimensional Lie algebra.

(i) A (1,1)-affine subspace I' = A+ (B) of g has full rank if and only if A, B and |A, B|
are linearly independent.

(ii) A (2,0)-affine subspace I' = (B, Ba) of g has full rank if and only if By, Bs and [ By, Ba)
are linearly independent.

(iit) Any (2, 1)-affine subspace of g has full rank.

PROOF.

(i) We have that {A, B} is linearly independent. Suppose [A, B| € (A, B). Then Lie(I")
Lie({A, B}) = (A, B) # g, i.e., I' does not have full rank. Conversely, if {A, B, [A, B
is linearly independent, then we must have dim(Lie(I')) = dim(Lie({4, B, [A, B|}))
dim(g), since g is three-dimensional. That is, Lie(I") = g.

]

——

(i) The set { By, By} is linearly independent. If [By, Ba| € (B, B), then we have Lie(I") =
Lie({ By, B2}) = (By, B2) # g, i.e., I’ does not have full rank. For the converse, suppose
{Bi, Bz, |B1, Bz]} is linearly independent. Then dim(Lie(I")) = dim(g), and so Lie(I") =
g.

(#i) Let I' = A + (B, By) have full rank, where {4, By, B2} is linearly independent. Since
g is three-dimensional, we have dim(Lie(I")) = dim((I')) = dim(g), i.e., Lie(I') =g. N

The next result enables one to gain a “pre-classification” of homogeneous subspaces based
on the classification of the inhomogeneous affine subspaces of dimension one less (thereby
reducing the computations that need to be performed).

2.1.10 PrROPOSITION. Let I' be a full-rank (¢ + 1,0)-affine subspace of a Lie algebra g. Suppose
{I'; 1 i € I} is an exhaustive collection of £-equivalence class representatives for (£,1)-affine
subspaces of g. Then I is £-equivalent to at least one element of {{I';) :i € I}.

ProOOF. Let I' = (A, By,...,By). Then A+ (By,..., Bg) is a full-rank (¢, 1)-affine subspace,
and we have I' = (A + (By, ..., By)). Furthermore, A+ (B, ..., By) is £-equivalent to I'; for
some i € I. Hence, there exists ¥ € Aut(g) such that ¥-(A + (B1,..., Be)) = I';. Accordingly,

VD=9 (A+(B1,....By)) = (- (A+(B1,...,Be))) = (T4).

That is, I' is £-equivalent to (I';) for some i € [I. [ |

2.2 C(Classification Under Detached Feedback Equivalence

In this section we classify all full-rank affine subspaces of the semi-FEuclidean Lie algebra
se(1,1) under L-equivalence. We then reinterpret these results as a classification, under
detached feedback equivalence, of the full-rank control affine systems on SE(1,1). In addition,
we provide complete classifying conditions for the class representatives. Finally, we obtain
controllability criteria in terms of the detached feedback equivalence representatives. Table
2.1 provides a summary of the results obtained. Section B.2 lists supporting MATHEMATICA
code that verifies the calculations.
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We outline the approach followed in the classification. We first distinguish between the
dimension of the affine subspaces (since affine subspaces of different dimensions cannot be
L-equivalent). This separation of cases constitutes sections 2.2.1 and 2.2.2. For the latter
section, we further distinguish between the homogeneous (i.e., (2,0)) and the inhomogeneous
(i.e., (2,1)) affine subspaces. Note that there are no (0, 0)- or (1, 0)-affine subspaces of se(1, 1)
that have full rank. Furthermore, there is only one (3, 0)-affine subspace, namely se(1, 1) itself.
(Accordingly, we are only concerned with the (1, 1)-, (2, 0)- and (2, 1)-affine subspaces.) Lastly,
the classifying conditions separate the various cases within each proof, and consist of various
conditions on the linear part I'? of the affine subspace.

We recall the automorphism group of se(1,1). In terms of the standard basis (E;)2_;, any
automorphism ¢ € Aut(g) is of the form

x Yy v
Y=y sx w
0 0 g

(See proposition 1.1.17.) Here s € {—1,1} and 22 # y2. (If we refer to an arbitrary automor-
phism, we shall assume it is of this form.) Lastly, let (E})?_; denote the dual of the standard
basis. We shall consider the basis elements E, i = 1,2,3 as projections onto the ith axis.
(Indeed, for X = x1E1 + x2F> +x3Fs € se(1,1), we have Ef(X) = a5, 1 = 1,2,3.)

2.2.1 One-dimensional affine subspaces

PROPOSITION. Any (1,1)-affine subspace T = A + TV is £-equivalent to exactly one of the
following affine subspaces:

4 = Byt (Bs) B3(1) # {0}

ryy) = aBs + (By) E5(1°) — {0}.

Here o« > 0 parametrises o family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

ProOF. Suppose that F5(I') # {0}. Then I' is of the form I' = a1 F1 + a2 Fs+ (b1 K1+ ba Fa +
E3) and

1 0 —b
Y= (0 1 —=by
0 0 1

is an automorphism such that ¥, - I' = a1 Ey + agFs + (E3). We have a1 Fy + axFs, E3] =
a1|Ev, Es] + ag|Eq, F3] = —a1 Fy — asFy. By proposition 2.1.9, since I' has full rank, the set
{a1F1 + agFs, Fs, —as 1 — ap o} is linearly independent. That is,

a1l 0 —a
as 0 —ay|#0 — a%—a%#().
0 1 0

Consequently, we have an automorphism

B a1 _ a3
3_ 70 3_ 0
a1 —aj a]—aj

1/]2 - 2&2 2 2a1 2 0 (det 1/]2 - a% - a% 7A O)

ay—ag a7 —ay

0 0
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such that vy - I' = Ey + (E3). Thus I' is £-equivalent to Fgl’l).
Suppose E3(I'%) = {0}. Then we have I' = a1 By + a2Fs + asEs + (b1 By + b2 E2), where
ag # 0. (If as = 0, then I" does not have full rank.) Thus

1 0
Y= 10 1 -2
0 0 1
is an automorphism such that s - I' = asks + (b1 FE1 + boEy). We have [asFs, by Fq +
bQEQ] = agbl[Eg,El] -+ ang[EQ,Eg] = asb1 Ey — asbo B Accordingl)@ the set {agEg, hEr +
boEo, asbi By — agba F1} is linearly independent (again by proposition 2.1.9). Equivalently,

0 bl —a3b2

0 by —azby|#0 — az(b? —b3) £ 0.

as 0 0

Hence b3 £ b3, and so
wr  wm
_ sgn(a3)ba  sgn(as)by 32 32
1#4* TR 2 742 0 (detw*bl b27£0)
b7 —b3 b3 —b3
0 0 sgn(as)

is an automorphism such that ¥y - I' = sgn(as)asFs + (E1) = |as|Fs + (E1). Therefore I' is

(1,1)

L-equivalent to 'y, where o = |as| > 0.

We have that (F7, F») is an invariant subspace of every automorphism of se(1,1) (see

proposition 1.1.18). Accordingly, v - (F1) C (F4, E5) for every automorphism . Hence Fgl’l)

cannot be £-equivalent to ng).
Suppose Fg;j) is £-equivalent to Féli,)7 for some a,’ > 0. That is, there exists ¢ €

Aut(se(1,1)) such that v - ng) = ng). Then from proposition 2.1.8 we have ¢ - (aFjs) €
Féli) == O/Eg + <E‘1>7 i,€,7

avEy + awEy + saks € o/ B3 + (Ey).

This implies o = /. As o, > 0 and ¢ € {—1,1}, it follows that o = . [ |

2.2.2 Two-dimensional affine subspaces

We begin with the homogeneous case. The classification of (2,0)-affine subspaces follows
easily from the results for the one-dimensional case.

PROPOSITION. Any (2,0)-affine subspace is L-equivalent to I'0) = (E), Es).

PROOF. By proposition 2.1.10, we have that any (2, 0)-affine subspace I' is £-equivalent to
(T§MY) = (B, Bs) or (Ty)) = (als, B) = (B, B). m

3,
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2.2.3 PROPOSITION. Any (2,1)-affine subspace I' = A + TV is L-equivalent to exactly one of the
following affine subspaces:

IV = By + (B, B) B(I°) # {0}, By + B, By — By ¢ I°
LY = By + (By + By, Bs) B3(I°) # {0}, By £y e I°
I3V = aBs + (B, By) B5(I%) = {0}.

Here o« > 0 parametrises o family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

PRrROOF. Suppose that E}(T'Y) # {0}, By + Ey ¢ T and By — Ey ¢ T°. We have I' =
a1l +as ks + <blE1 + boFy, c1 B + co By + E3> with b% 75 b% Then

1 0 —c;
Y= 10 1 —c
00 1
is an automorphism such that vy - T' = a1 Fy + asEy + (b1 By + ba s, Fs). Next, we have an
automorphism
b1 ) 0
b2—b2 b2 b2
= |-k wlg O (det gy = b — b3 # 0)
1 2 1 2
0 0 1

such that ¥y - ¥y - T = d\Ey + abFEs + (Fy, E3) for some af,a, € R. Since ¢ - 91 - T
is inhomogeneous, it follows that a), # 0. Consequently, we have an automorphism 3 =
diag (2, 2, 1) such that t3 - ¢bg - by - I = Z—,;El + By + (i B1, E3) = Ea + (E1, E3). Thus T

ap’ ah’
is L£-equivalent to F<12’1>.
Suppose E;(FO) £ {O} and £ £ F» € I'%. Then I' = a1+ as ks + <E1 + Fy, b1 Fq +
by Fy + FE3), and we have an automorphism

1 0 -
Y= [0 1 —by
0 0 1
such that ¥y -I' = a1 Fy + agFs + (E1 + Ea, Es). Since ¥4 - I is inhomogeneous, a1 Fy + ax F»
is not a scalar multiple of £y & FE5. That is, “ jil‘ £ 0, or, equivalently, a1 F as # 0.
Therefore
gz Taea O
_ a a
| Fatg tatg O
0 0 +1

is an automorphism such that ¥ -4 -T' = Ey + <%(E1 + Es), j:E3> = B+ (E1+ B2, E3).

Thus I' is £-equivalent to F<22’1).

Suppose EX(I') = {0}. Then T’ = asFs+ (B4, E2) and s = diag(1,sgn(as), sgn(as)) is an

automorphism such that ¥ - I' = sgn(as)asFs + (E1,sgn(as)Fs) = |as|Fs + (E1, E2). Hence

I' is £-equivalent to Fg&lx where @ = |ag| > 0.
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From proposition 1.1.18, (F1, Fs) is an invariant subspace and (Fq + Fs) U (Fy — F») is
an invariant subset of any automorphism of se(1,1). Hence, no two of 1“<12’1>7 F<22’1> and ng)
can be L-equivalent.

(2,1)

Suppose that ng} , for some «, @ > 0. Thus, there exists an

is £-equivalent to F&},)

automorphism v such that ¢ - ng) = F%},). Hence, by proposition 2.1.8 we have 9 - (aF3) €
LY = o/ Bs + (Br, By), e,

avEy + awBy + saks € o Bz + (B, Ey).

This implies that o = ¢o/. As o,/ > 0 and ¢ € {—1, 1}, it follows that a = /. [ |

2.2.3 Classification of full-rank control systems

Having classified the full-rank affine subspaces of se(1,1) in sections 2.2.1 and 2.2.2, we can
now reinterpret those results as a classification, under detached feedback equivalence, of the
full-rank left-invariant control affine systems on SE(1,1). As a corollary, we determine the
controllable systems.

THEOREM. Let 3. be a full-rank left-invariant control affine system on SE(1,1) with trace
I =A+T1°

(i) If X is an inhomogeneous single-input control affine system, then it is DF -equivalent to
exactly one of the following systems:

VB uBs E4(T°) # {0}
Sl aBs +uk BT = {0}.

Here o« > 0 parametrises a family of class representatives, each different value corre-
sponding to a distinct (non-equivalent) representative.

(ii) If 32 is a homogeneous two-input control affine system, then it is DF -equivalent to the
system »(20) . wE1 + usKs.

(iit) If 3 is an inhomogeneous two-input control affine system, then it is DF-equivalent to
exactly one of the following systems:

232’1) By +ur B+ usEs E;(FO) 710}, By + Bo, By — Ea ¢ I
2PV By ua (B + B + upFs E3(I°) # {0}, By £ B € T°
Egj) ks +ui By 4 ugEy E3(r%) = {0}.

Here o« > 0 parametrises a family of class representatives, each different value corre-
sponding to a distinct (non-equivalent) representative.

(iv) If > is a homogeneous three-input control affine system, then it is DF -equivalent to the
system Y30 i By 4 usFy + usEs.
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Type | Conditions Representative (a > 0)

W Ei(I) £ {0} Y B+ uBs
EXT0) = {0} S s +uk

(2,0) 320y By + ug B
EX(T°) £ {0}, By + By, By — By ¢ TO | 23V 0 By 4wt By + upBs

(2,1) | EX(T°) £ {0}, By + By € T° 3V By ug (By+ Fo) + upEs
EXT0) = {0} 20U aBs +uiEy + ua By

(3,0) Y@ w4 usEo + ugEs

Table 2.1: Classification of full-rank left-invariant control affine systems on SE(1, 1)

Proor. We illustrate by proving item (i). (The proof of the other items is similar.) Let X
be a single-input inhomogeneous control affine system, with trace I' = A + IV, Since I is a
(1, 1)-affine subspace of se¢(1,1), by proposition 2.2.1 it is £-equivalent to exactly one of the

subspaces Fﬁl’” = F1 + (E3) or Fg;j) = als + (Fp). That is, there exists ¢ € Aut(se(1,1))

such that ¢-T = T{"" if E(I°) # {0} and ¢-T = T3V if B5(I%) = {0}. By theorem 2.1.5,
we thus have that

»iY i m5(r0) £ {0}
S0 g0y = {o}.

>l is DF-equivalent to {
2,

Inspection of the £-equivalence classifications of two-input systems in proposition 2.2.2 and

proposition 2.2.3 yields the results of items (4i) and (iii). Lastly, it is clear that any (3,0)-

affine subspace is £-equivalent to the subspace (F1, Fa, E3). It follows that any three-input

homogeneous control affine system is DF-equivalent to the system (39 |

COROLLARY. Any controllable left-invariant control affine system on SE(1,1) is DF -equiv-
alent to exactly one of the following systems:

2<2’O) ur i + usEs 232’1) cEs 4+ ui B +uskEs 2<3’O) cwu By 4 ugEs + usFs.

PROOF. Let 3 be a left-invariant control affine system on SE(1,1), with trace I' = A + I'".
By proposition A.2.3, ¥ is controllable if and only if Lie(I') = se¢(1,1). Furthermore, con-
trollability is preserved under detached feedback equivalence (proposition 2.1.3). Conse-
quently, no single-input system on SE(1,1) is controllable. Since [E3, E1] = FE», we have
Lie((Fy, E3)) = se(1,1). Thus %39 is controllable, and so any controllable homogeneous
two-input system on SE(1,1) is DF-equivalent to %(29. Next, we have [, E3] = 0 and
[El + EQ,E;),] — —Fs — Eq. Thus Lie(<E1, E2>) 75 56(1, 1) and Lie(<E1 + EQ,E3>) 75 56(1, 1).

(2,1) (2,1)

Hence, neither 3, nor X5, is controllable. It follows that any controllable inhomogeneous

two-input system is D F-equivalent to 232’1). Finally, any three-input system on SE(1,1) is

controllable, and is DF-equivalent to %(*9. [ |






Chapter 3

Classification of Quadratic
Hamilton-Poisson Systems

In chapter 2, we classified (under detached feedback equivalence) all full-rank left-invariant
control affine systems on SE(1,1). A natural next step is to consider the associated (left-
invariant) optimal control problems for some given cost and boundary conditions (see section
A.3). In particular in this thesis, we consider optimal control problems with fixed time and
quadratic cost:

§=g(A+wB1+...+uBe), g(-):[0,T] — SE(1,1), u(-): [0,T] — R (3.0.1)
g(0) =1, g(T) =g1, ¢ €SE(1,1), T > 0 fixed
T
T(ul)) — /O (u(t)) dt — min. (3.0.3)

Here the cost function y : R® = R, u — u' Qu is a positive definite quadratic form on R’
Using Pontryagin’s Maximum Principle (section A.3.4), the optimal control problem (3.0.1)-
(3.0.2)-(3.0.3) is lifted to a family of invariant Hamiltonian functions on the cotangent bundle
T*SE(1,1). This is then reduced to a single Hamiltonian function H € C*(se(1,1)*) on
the minus Lie-Poisson space se¢(1,1)*. The extremal controls for (3.0.1)-(3.0.2)-(3.0.3) are
linearly related to the integral curves of the Hamilton-Poisson system (se(1,1)*, H). (See,
in particular, theorem A.3.8.) Furthermore, by theorem A.3.8, H is of the form H = H4 o,
where

Hyo(p) = (p, A) + Qp). (3.0.4)

(Here A € se(1,1) and Q is a positive semidefinite quadratic form on se(1,1)*.) Thus the
problem of determining the extremal controls for an optimal control problem (3.0.1)-(3.0.2)-
(3.0.3) is reduced to the problem of finding the integral curves of the Hamilton-Poisson system
(3.0.4).

In this chapter we shall consider all (quadratic) Hamilton-Poisson systems of the form
(se(1,1)*, Ha,0), where Q is positive semidefinite. We classify such systems up to affine iso-
morphisms, beginning with the homogeneous systems (i.e., those for which A = 0). Based on
the classification of homogeneous systems, we then arrive at a classification of the inhomoge-
neous systems (where A £ 0). We obtain normalised class representatives for all equivalence
classes (see table 3.1). Chapter 4 is concerned with the stability analysis and integration of
(some of) the normal forms obtained.

29
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3.1 Preliminaries

We recall some notational conventions and some concepts relating to Lie-Poisson spaces. Let

g be an (real) n-dimensional Lie algebra with dual space g*. Denote the standard (ordered)

basis of g by (F;)7_; and the dual basis by (£;)? ;. In terms of these bases, we will write

elements of the Lie algebra as column vectors and elements of the dual space as row vectors.

(Consequently, the pairing (-, ) : g* x g — R is given by matrix multiplication: (p, X) = pX.)
The (minus) Lie-Poisson bracket {-,-} on g* is given by

[F.GHp) = = (adipg p, dG) )
=—(p,[dF(p),dG(p))),  F.GeC?(g").

(Here adle@) is the dual of the adjoint map adgp() = [dF(p), | and [, -] denotes the Lie
bracket on g. As dF(p) and dG(p) are linear functions on g*, they are elements of g** =~ g.)
The Lie-Poisson space (g*, {-,-}) is denoted by g*. A linear Poisson automorphism is a
linear isomorphism W : g* — g* such that {F,G}oW¥ = {FoW,GoW} for every F, G € C=(g*).
(Linear Poisson automorphisms are exactly the dual maps of Lie algebra automorphisms; see
proposition A.3.3.)

The Hamiltonian vector field H associated to a Hamiltonian function H € C*(g*) is
defined by H[F| = {F,H}. In coordinates, H(p) = adip,)p- A Casimir function is a

function C' € C*(g*) such that € = 0, i.e., Casimir functions Poisson-commute with every
element of C*(g*).

A quadratic Hamilton-Poisson system is a pair (g*, H4 o), where g* is a Lie-Poisson
space and H4 o € C®(g*) is a Hamiltonian function of the form Hy o(p) = La(p) + Q(p).
Here La(p) = (p,A), A € g and Q is a positive semidefinite quadratic form on g*. In
coordinates, H 4 o takes the form Hy4 o(p) = pA+ %prT. (Here @ € R™*™ is the symmetric
positive semidefinite matrix associated to Q.) If no ambiguity results, we shall identify a
Hamilton-Poisson system with its Hamiltonian function.

The system (g*, Ha o) is called homogeneous if A = 0, and inhomogeneous, other-
wise. We abbreviate a homogeneous Hamilton-Poisson system Hy o by Hg. Furthermore,
notice that to every inhomogeneous system H 4 ¢ is associated a homogeneous system Hg.
(This fact shall prove useful in relating the classification of inhomogeneous systems to that
of the homogeneous systems.)

It is useful to consider the Hamiltonian vector field corresponding to a quadratic Hamil-
tonian function H4 o. Indeed, let H4o(p) = La(p) + Ho(p) = (p, A) + Q(p). We have
ﬁg(p) = adleQ@) p and EA(p) = adzlLA@) p = ad¥ p. Therefore, since X — ad% p is a linear
map on g for every p € g*, we get

Hao(p) = add(r 4 mo)m) P

= adZerHQ(p) D

= adip +adiy, P = La) + Ho(p).

That is, ﬁAQ decomposes as the sum EA + ETQ.

Two quadratic Hamilton-Poisson systems H4 o and Hp® on a (minus) Lie-Poisson space
g" are said to be affinely equivalent (or A-equivalent) if there exists an affine isomorphism
U:g*— g* p— Yo(p) + ¢ such that \I/OJEIAQ = HBJQO\I/.
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PROPOSITION. Affine equivalence is an equivalence relation.

Proor. Let Hy 0, Hpr and He s be quadratic Hamilton-Poisson systems on a (minus) Lie-
Poisson space g* . We have idg: - Ha, 0 = Ha,g 0idg+, and so Hy g is A-equivalent to itself.
Thus A-equivalence is reflexive. Next, suppose that H4 o is A-equivalent to Hpr. Thus
there exists an affine isomorphism W : p — Wo(p) + ¢ such that Wy - FIAQ = ﬁng o W. Then
\1151 ~FIB7R = HA7Q oW¥~! and so Hp R is equivalent to H 4 0. Hence the symmetric property
is satisfled. Lastly, suppose that H4 ¢ is A-equivalent to Hpr and Hp r is A-equivalent to
H¢ s. Thus, there exist affine isomorphisms U : p — Wo(p) + ¢ and ¥ : p— U(p) + ¢’ such
that \I/(yﬁA’Q - ETB’RO\I/ and \I/6~Ef3773 - ﬁcygo\lﬂ. Then ¥ : p— (\116*1/0)(]7)4“\1/6((])4‘(]/
is an affine isomorphism such that (W{, - W) ~ﬁA79 = - FIBR ol = FIQS o (¥ o W), and so
H 4,0 is A-equivalent to Heos. Therefore A-equivalence satisfies the transitivity property. W

The next proposition demonstrates that A-equivalence is a natural equivalence relation (in
the sense that affine equivalence preserves the appropriate properties of equivalent systems,
specifically the integral curves and equilibrium points).

PROPOSITION. If Hy o is A-equivalent to Hpr, then the integral curves and equilibrium
points of Ha o and Hpwr are in a one-to-one correspondence.

PROOF. Let p(-) be an integral curve of Hao. That is, p(t) = Hao(p(t)). Since Ha o
and H Ipr are A-equivalent, there exists an affine isomorphism W : p — Wy(p) + ¢ such that
Wy - Ha o = HBR o W. We will show that W¥(p(-)) is the unique integral curve of HBR
corresponding to p(-). Indeed,

SW(p(1)) = Ty ¥ - (1)

— Wy Hypolp(t)) = Hpr(W(p(t))).

That is, (p(-)) is an integral curve of Hp . Suppose W(p1(-)) = W(py(-)), where pi(-) and
pa(*) are integral curves of Ha . Then pi(-) = W= (W(py () = ¥~ (¥(pa(-))) = pa(*), and
so integral curves are mapped injectively from Hy o to Hpr. Next, let p/(-) be an integral
curve of H B,R. We have

VW) = Tyt p )
= U5t Hpr(@' (1) = Hao(P~1 (0 (1),

and so U=1(p/(-)) is an integral curve of H A,0- Hence the integral curves are mapped surjec-
tively. Therefore the integral curves of H A,0 and H B,R are in a one-to-one correspondence.
Let pe be an equilibrium state of HA7Q7 i.e., FIAQ(pe) = 0. We have FIBR(\II(pe)) =
Py - FIAQ(pe) = 0. That is, ¥(p.) is an equilibrium point of FIBR. If p. and ¢. are equilibria
of ﬁAQ such that ¥(p.) = ¥(q.), then p. = U1 W(p,)) = ! (\I/(qe)) = @e. Lastly, let p, be
an equilibrium point of FIBR Then H 4 o (pl)) = wit -Hp R(pe) =0, ie, WTH(pl) is
an equilibrium point of H A,0- Therefore the equilibria of H A0 and H B,R are in a one-to-one
correspondence. [ |
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From the definition of affine equivalence, it is straightforward to arrive at the following
three sufficient conditions. For later reference, we shall denote these conditions by (&1), (&2)
and (€3).

3.1.3 PROPOSITION. ([15, 17]) Let Ha o be a quadratic Hamilton-Poisson system on g*. Then
H a0 is A-equivalent to

(€1) Ha ooV, for any linear Poisson automorphism W : g* — g*;
(€2) Ha o+ C, for any Casimir function C : g* — R;
(€3) Haro, for any r # 0.
Proor.
(¢1) Let F' € C*°(g*) and let G = Hy g o V. Then
(HagoW)|F| = Hao[F|oW = {F,Hag}oW
—{FoW,G}=G[F oW = (V-G)[F)

Since F' is arbitrary, it follows that W - G = FIAQ oW, i.e., Hyg is A-equivalent to
HA,Q oV,

(€2) Let G = Ha g + C. Then for every F' € C*(g*) we have
7Q
GIF| = {F,Hag+C} = {F,Hao} +{F,C}
= {F,Hy o} = HaolF).
That is, G — ﬁAQ? and so H 4 ¢ is A-equivalent to Hq g + C.

(€3) Let W be the linear isomorphism ¥ : p — %p. Then

(U Ha0)(p) — (Haroo U)(p) =

Hao(p)— Harollp)
La(p) + LHo(p) — La(ip) — Heo(tp).

A A e

Since L4 is linear, we have that EA(%p) — LT 4(p). Moreover, as dH,o(p) = rdHo(p) =

or

dHg(rp) and adj g 0 = radiy ) P, we get

3 =

Ho(p) — Hyo(2p) = Ladly oy p — ad’ Q@p)(%p)

1 1 _
= radan, P — radap,p) P =0
That is, ¥ - ﬁAQ = ETAJ-Q oW, and so H 4,0 is A-equivalent to H4 0. [

The classification of inhomogeneous quadratic Hamilton-Poisson systems shall draw upon
those linear Poisson automorphisms that leave a homogeneous system invariant (in a certain
sense). This motivates the following terminology. Let Hg be a homogeneous quadratic
Hamilton-Poisson system on g* . By a linear Poisson symmetry we mean a linear Poisson
automorphism ¥ : g* — g* such that Hg o ¥ = H,o + C, for some r > 0 and some
Casimir function C'. (In other words, a linear Poisson symmetry of Hg is a linear Poisson
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automorphism that leaves the Hamiltonian function Hg invariant up to dilations or the
addition of a Casimir function.)

The next proposition characterises A-equivalence for homogeneous Hamilton-Poisson sys-
tems in terms of linear isomorphisms. We shall require a couple of technical lemmas for the
proof.

LeMMA. Let Hg be a homogeneous quadratic Hamilton-Poisson system on g* and let Wy :
g — g* be a linear isomorphism. The maps p— dHg(p) and p — adleQ<\I,O<p)> q, q € g* are
linear.

PROOF. Let p1,p2 € g* and Aj, Ay € R. Write Hg in coordinates as Hg(p) = %prT7 where
() is a symmetric positive semidefinite matrix. Then

dHo(p) = 1(pQ+Qp") = 1p(Q@+ Q) = pQ.

(As @ is symmetric, we have Q = @QT.) This is clearly a linear map. Next, since the map
X — ad¥ ¢ is linear, we have

adleQ(‘I’o(Mer)\zpz)) q adleQ(Al\Ifo(Pl)Jr)\z\Ifo(pz)) q

= 8} dH o (Wo(p) 1 AsdHo (B (p2))

= Madapgwon) 1 A2 2dan g (won) ¢
Thus p — adleQ<\I,O<p)> q is linear. [ |
LeMMA. Let Hg be a homogeneous quadratic Hamilton-Poisson system on g* and let Wy :
g* — g* be a linear isomorphism. Then both To(Wy - HQ) and TO(ﬁQ o Wy) are the zero map.
PROOF. We have Ty(Wo- Hg) = Ty g Wo-DHg(0) and Ty(Hoo Vo) = DHo(Wo(0))- Ty =
DFHo(0) - TyWo. We show that DHg(0) = 0, from which the result follows. For brevity, let

— — I n
H = Hg. The linearised vector field DH(0) is given in coordinates as DH (0) = {%f; (O)} o
1=

where Hj is the it component of H , given by

Erz(p) :_<pv [EiadH(p)Dv i=1,...n

(See section A.3.2.) Write H in coordinates as H(p) = %prT7 where Q@ = [g;]7;_; I8
symmetric and positive semidefinite. Expressed in terms of a basis (£;)? ; of g, we have

n n
dH(p) = pQ = > prarr B+ + Y Prkn Fn.
k=1 k=1
Let the Lie bracket be specified by [E;, 5] = Y7, ¢f;F. Then

[Ei, dH(p)] =Y prtin [Bo, Br + -+ puen B, Bl

k=1 k=1
n n
¢ ¢
= Y pearch Bt Prlench, B
k=1 k=1

n
PrakecieEY + -+ Y prapecipEn,  i=1,. 0.
1 k=1

NE

k?

~
I
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Thus we have the following coordinate expression for H;:
H(p) = —(p, [B:, dH (p)]
n

1 7
== Z P1PklreCip — = — Z DPnDrlreCig
k=1 k=1

n
Z PmPrdkeCiy i=1,...,n.

k. lm=1
Therefore,
oH, "9
Z —— (PmPr) Qreciy
(’9p J km=1 Op;

n
Z djmPk +pm5]k)Qk£Cz£a ,7=1,...,n.
k,Lm=1

It is clear that %Z? (0) = 0 for each 4,j = 1,...,n. Consequently DH(0) = 0, and so
To(Wo - Ho) and Ty(Ho o W) are both the zero map. [ |
3.1.6 PROPOSITION. Let Hgo and Hr be homogeneous quadratic Hamilton-Poisson systems on g* .

Hg is A-equivalent to Hr if and only if there exists a linear isomorphism Wq : g* — g* such
that \Ifo . HQ = HR o \Ifo,

PROOF. Suppose there exists a linear isomorphism Wq : g* — g* such that ¥y ’FIQ = ﬁno\llo.
Since every linear isomorphism is affine, it follows that H o and Hg are A-equivalent.

Conversely, suppose there exists an affine isomorphism ¥ : g* — g*, p — Wo(p) + ¢ such
that Wy - Ho = Hg o U. From the bilinearity of the Lie bracket, we have that ad¥ is a linear
map on g*, for every X € g. Similarly, X — ad¥% p is a linear map on g for every p € g*.
Lastly, by lemma 3.1.4, the differential d Hg(p) is linear in p. Consequently,

Hy(Wo(p) +q) = ad g, (wo(p) 1) (Yo (P) + )
= adgp, (wo(p)+q) LoP) + adgp, (wo@)1+q) (@)
= adgp, (wop)) YoP) + adm, (wopry) ¢ + 2dam, () Yo) +adip, ) 4
= (Hr o Wo)(p) + adlr,, (wo(py) 1 + 8z1, () Po(p) + Hr(g)
~ (Hg o Wo)(p) + F(p) + G(p) + Hr(q)-
(Here F'(p) = adgp, (w4 and G(p) = adiy, ) Yo(p).) Using this, we can expand terms
in (Wo - Ho)(p) — (Hr o U)(p) = 0, to get
(Vo - Ho)(p) — (Hr © Wo)(p) — F(p) — G(p) — Hr(q) = 0. (3.1.1)

Take p = 0 in (3.1.1). We have Hg(0) = ad}_ ) 0 = 0, Hr(0) = 0, F(0) = ad} .. yo(0) ¢ =
0 and G(0) = adjy, o) Yo(0) = 0. Thus Hz(g) = 0. Interpret both sides of (3.1.1) as maps
from g* to g*, and linearise both sides at the origin:

To(Wo - Ho) — To(Hr o Wo) — ToF — TyG = 0. (3.1.2)
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From lemma 3.1.5 we have that Ty(Wo - Ho) = To(Hg o Wo) = 0. By lemma 3.1.4, F is a
linear map. Similarly, by the linearity of ad} Holq) and Wy we have that G is linear. For a
linear map L, we make the identification 1oL, «— L. The last two terms on the left-hand
side of (3.1.2) are then Ty F = F and ToG = G, from which it follows that F'+ G = 0. From

(3.1.1) we then get that Wy - Hog — Hg o g = 0. [ |

Lastly, we show that if two inhomogeneous Hamilton-Poisson systems are A-equivalent,
then their associated homogeneous systems must also be equivalent. In particular, we shall
make use of the contrapositive form of this result, viz. if the associated homogeneous systems
of two inhomogeneous Hamilton-Poisson systems are not equivalent, then the inhomogeneous
systems cannot be equivalent.

PROPOSITION. Let Ha o and Hpr be A-equivalent inhomogeneous quadratic Hamilton-Pois-
son systems on g* of the form Hao = La + Hg and Hpr = Lp + Hr. Then Hg is
A-equivalent to Hg.

PROOF. Suppose there exists an affine isomorphism W : p — Wy (p) + ¢ such that g ~ﬁA79 =
FIBR o W. We have

Hpr(Vo(p) + ) = Le(Wo(p) +9) + Hr(Wo(p) + g
= (Lp o Wo)(p) + Lp(q) + (Hr o Wo)(p) + Hr(q) + F(p) + G(p)

where F'(p) = adgy,. () ¢ 20d G(p) = adgy, () Yo(p). (See the proof of proposition 3.1.6.)

s

Using this we can expand terms in (W - ﬁAQ)(p) — (HproW¥)(p) =0, to get

)

(Wo - La)(p) + (Wo - Ho)(p) — (Lp o Wo)(p) — Lp(q) — (Hr o Wo)(p)
— Hr(q) — F(p) — G(p) = 0. (3.1.3)

Setting p = 0 yields Lg(q) + Hzr(g) = 0. We may interpret both sides of 3.1.3 as maps from
g* to g*, and so may linearise both sides at the origin:

To(Wo - La) + To(Vo - Ho) — To(Lg o Wo) — To(Hg o W) — TyF — TyG = 0.

By lemma 3.1.5 we have To(Wg - EA) = To(Vo - FIQ) = (. Furthermore, F' and ( are linear
maps. (This follows from lemma 3.1.4 and the linearity of ad} Ho(g) and Uy.) We make the
identification Ty F +— F and TyG <— G. Then (43) becomes (g - La)(p) — (L o Wo)(p) —
F(p) — G(p) =0, and so (3.1.3) reduces to (Vo - Ho)(p) — (Hg o ¥o)(p) = 0. That is, Hg is
A-equivalent to Hg. [ |

3.1.1 The (minus) Lie-Poisson structure on se(1,1)*

Let H € C®(se(1,1)*) be a Hamiltonian function. Recall that the equations of motion for
H are given componentwise by p; = —(p, [k;,dH(p)]) for i = 1,2,3. (See section A.3.2.)
Explicitly, we have the following equations of motion for H:

_on
P = 8p3p2
OH
gy = —— 3.1.4
P2 8p3p1 ( )
_oH ~ OH
Ps3 8p2p1 op P2
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PROPOSITION. In terms of the dual basis (E})3_,, the group of linear Poisson automorphisms
of se(1,1)* is
x Yy v
p=p |y se owlvwaeyeR, e {11}, a® £y
0 0 g

PROOF. By proposition 1.1.17, every Lie algebra automorphism v € Aut(se(1,1)) is of the
form

r oy v
Y=y x w
0 0 g

Since linear Poisson automorphisms of a (minus) Lie-Poisson space g* are exactly the dual
maps of the Lie algebra automorphisms of g (see proposition A.3.3), and using the convention
that elements of g* are written as row vectors, it follows that every linear Poisson automor-
phism of se(1,1)* takes the form

x Yy v
U:p—plsy sx w|. |
0 0 ¢

PROPOSITION. The function C(p) = p3 — p3 is the only functionally independent Casimir
function on se(1,1)*.

Proor. Let I = f(C), where f : R — R is arbitrary. For brevity, write F}, and C), for the
partial derivatives OF/0p; and 0C/0p;, respectively. Then F,, = f(C)C,, = 0 and

—p1Fpy — paFy, = —p1f(C)Chy — p2f(C)Cpy = 2f(C)(p1p2 — pap1) = 0.

Consequently, F= 0, and so F is a Casimir function. By the Cauchy-Kowalevski theorem for
the existence and uniqueness of solutions to partial differential equations, it follows that F' is
the only solution to this partial differential equation, i.e., the only Casimir function. Therefore
C(p) = p? — p3 is the only functionally independent Casimir function on se(1,1)*. |

Henceforth,, whenever we mention a Casimir function C' on se(1, 1)* | we shall be referring
to the specific Casimir function C(p) = p? — p3.

3.2 Homogeneous Systems

We now proceed to classify, under affine equivalence, the homogeneous quadratic Hamilton-
Poisson systems on se(1,1)* . By proposition 3.1.6, it suffices to consider equivalence of these
systems under linear isomorphisms. We shall make use of the sufficient conditions (&1), (€2)
and (&3) of proposition 3.1.3 to obtain a list of potential representatives. In the general
case, one would then employ linear isomorphisms in order to further simplify the potential
representatives. However, for homogeneous systems on se(1, 1)* it turns out that the use of
(¢1), (€2) and (¢3) is sufficient to arrive at a complete classification (a fact we capture in a
corollary to the following theorem). To complete the classification, we verify that none of the
potential representatives are equivalent to each other. Table 3.1 provides a summary of the
results obtained. Section B.3.1 lists the supporting MATHEMATICA code.
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3.2.1 THEOREM. Any homogeneous quadratic Hamilton-Poisson system Hg on se(1,1)* is A-
equivalent to exactly one of the following systems:

PrROOF. Let Ho(p) = %prT be an arbitrary homogeneous quadratic Hamilton-Poisson sys-

tem, where
a1 bl bg
Q= by ax b3 (a1, as,as > 0)
bg bg as

is positive semidefinite (PSD). Consider the case ag = 0. The 2 x 2 principal minors of @

are ajap — b?, —b3 and —b3. Since Q is PSD, the principal minors must be nonnegative,

and so by = b3 = 0. Furthermore, every PSD matrix @) = [¢;] satisfies the inequality

lgi5] < V@a@i; < 3(qi + qj5). In particular, |b1] < 3(a1 + a2), which implies that 467 <

(a1 +a2)?. This motivates the following three (sub)cases: a1 +as = 0, 462 # (a1 +az)? > 0 or

462 = (a1 +az2)? > 0. If a1 +az = 0, then a; = az = by = 0 (as a1, a2 > 0), hence Hg = Ho.
Suppose 4b3 £ (a1 + az)? > 0. If by # 0, then

Wy p e pi, Y =

S = 8
o8 =
_ o O

is an automorphism (for 22 # 1) such that

ag + 2b1x + ay2? b1+ (a1 + az)x + biw? 0
VY] = |bi + (a1 + az)x + bya? a1 + 2b1x + aga? 0
0 0 0

The discriminant of the quadratic by + (a1 + a2)x + b12? is A = (a1 + a2)? — 4b%. Since
46% < (ay + az)?, we have A > 0, and so the equation b; + (a1 + a2)x + bj2? = 0 has

a1tagt/ (a1+ag)2—4b%

two distinct real solutions for z, viz.,, x = — o7 . In particular, there is a

solution for 2 with 22 # 1. Consequently, we get Q' = Y1 Qv{ = diag(a},d),0), for some
ah,ay > 0. (If by = 0, then we have @ = diag(ai,a2,0), and so Q' = Q with o} = @
and a) = ag.) If a’1 = al, = 0, then Hg o W; = Hy. Otherwise, ¥y : p — pz/127 Yo =

diag (\/ - \/&1+ ; ,1) is an automorphlsm such that ¥pQ"y = diag (a Trap a&ﬁ,())
Therefore Hg o (V1 o Wy) + 2( >C’ Hy, and so Hg is A-equivalent to Hj.
Suppose 4b% = (a1 + az)? > 0, i.e., by = (a1 + ay) for some ¢ € {—1,1}. Then

Vs p— pis, Y3 = diag (\/ﬁl,a\/mﬂz ,0) is an automorphism such that

2a
T afos 210 !
GaQul = | 1 2o
0 0 0

Thus Hg o W3 — %C’ Ha, and so Hg is A-equivalent to Ha.
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On the other hand, consider the case az > 0. We have an automorphism

1o -2
Wy i p = piy, Y= [0 1 _2_2
0 0 1
such that
ay by 0
Q = aQuf = |V ay 0
0O 0 1

Since @ is PSD, we have that @' is also PSD. Moreover, the lower right component of Q' is
invariant under linear Poisson automorphisms:

ajx? + 2b1xy + axy? + v? sbi2? +s(ay +az)xy +shiy? +ovw v
VYT = |sbix? + s(ay + ag)xy + shiy? +vw apx? + 2bizy + ary? + w? cw
Sv Sw 1

Accordingly, we can use the same argument as for the case as = 0 in order to show that Ho
is A-equivalent to Hs, H, or Hs.

It remains to be verified that no two representatives are equivalent. As a typical case,
we show that Hp is not A—equivalen;c to Hs. HSuppose there exists a linear isomorphism
U p— ph, ¥ = [Wy5] such that (V- Hy)(p) = (Ha2 o V)(p). Then

Ya1p1p2 = 0
Yaap1p2 = 0
WYaap1p2 = (Y11 + ¥12)p1 + (a1 + az)pa + (Y31 + a2)pal?

for all pq, p2, ps € R. Comparing coefficients, it follows that 1s; = ¥ss = 0, ¥11 = —¥12 and
o = —w1. Consequently det ¢ = 0, a contradiction. Hence no such ¥ exists, and so H;
is not equivalent to Hs. Verifying that none of the other representatives are A-equivalent
follows a similar argument. (See section B.3.1 for the MATHEMATICA code that performs
these verifications.) [ |

COROLLARY. Let Hg be a homogeneous quadratic Hamilton-Poisson system on se(1,1)*.
There exists a linear Poisson automorphism ¥ and real numbers r > 0, k € R such that
H,o oV + kC = H; for exactly one i € {0,...,5}.

Proor. This follows from the proof of theorem 3.2.1. |

3.3 Inhomogeneous Systems

Having classified the homogeneous quadratic Hamilton-Poisson systems on se(1, 1)*, we now
move on to the inhomogeneous systems. (A summary of the results obtained is given in table
3.1.) This classification will make use of the results for the homogeneous case (in a sense that
will be made apparent below). The next result ensures we can always bring the homogeneous
part of an inhomogeneous system to one of the six normal forms found in theorem 3.2.1.

PROPOSITION. Let (se(1,1)*, Ha o) be an inhomogeneous quadratic Hamilton-Poisson sys-
tem. Then Hy o is A-equivalent to the system Lp+ H; for some B € se(1,1) and exactly one
ie€{0,...,5}.
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Proor. We have Hy o = La+ Hg. Since Hg is a homogeneous quadratic Hamilton-Poisson
system, by corollary 3.2.2 there exists a linear Poisson automorphism ¥ : p — py, r > 0,
k € R and exactly one i € {0,...,5} such that H,g o ¥ + kC = H,. (That is, Hg is
A-equivalent to H; using the sufficient conditions (€1), (€2) and (&3).) Consequently,

HAJ«QO\I/+I€C:LA0\I/+HTQOW+I€C:L¢.A+H¢:LB+HZ',

where B =1 - A. That is, H4,¢ is A-equivalent to Lg + H;. |

Using the previous result, we shall assume, without loss of generality, that any inhomo-
geneous quadratic Hamilton-Poisson system on se(1,1)* is of the form L4 + H;, for some
A € se(1,1) and exactly one i € {0,...,5}. Moreover, proposition 3.1.7 implies that an in-
homogeneous system of the form L4 + H; cannot be A-equivalent to a system of the form
Lp + Hj for i # j. Consequently, we classify the inhomogeneous systems of each different
form independently of each other.

We outline the approach followed for the classification of inhomogeneous systems. We
desire the homogeneous part of each inhomogeneous normal form to be as simple as possible,
i.e., to be one of the normal forms Hy, . .., Hs. Thus, for each family {La+H; : A € se(1,1)} of
inhomogeneous systems, we shall first find the linear Poisson symmetries of the homogeneous
system H;. Linear Poisson symmetries leave H; invariant up to dilations or addition of a
Casimir. Neither dilations nor the addition of the quadratic Casimir function C'(p) = p? — p3
affect the linear part of the inhomogeneous system. Accordingly, we can use those linear
Poisson symmetries to normalise the linear part L4 of the inhomogeneous representatives,
while leaving the homogeneous part invariant. (The problem of normalising L4 is reduced
to normalising elements of the Lie algebra se(1,1) under dual maps of the linear Poisson
symmetries.) We shall then employ general affine isomorphisms in order to further simplify
the representatives. To complete the classification, we verify that none of the representatives
obtained are equivalent. The calculations for these verifications can become quite lengthy
and tedious. As such, we do not include full details, but rather illustrate the approach for
some typical cases. The remaining cases are covered by the accompanying MATHEMATICA
code. Sections B.3.3 and B.3.4 list the MATHEMATICA code.

The next result determines the linear Poisson symmetries of the homogeneous normal
forms Ho, ..., Hs. We denote a symmetry by T if it is a symmetry of H;. The supporting
MATHEMATICA code may be found in section B.3.2.

PROPOSITION. The linear Poisson symmetries of H;, for each i = 0,...,5, are the linear
Poisson automorphisms of the form U™ : p — pp@ | where for each H;, ¥9 is of the form
given below:

(2 y v [z y O
Hy : ¢ = sy sa w Hy : p¥ = sy sz 0
|0 0 ¢ |0 0 ¢
[z 0 w 0 y v +1 0 0 0 £1 0
Hy ’(/J<1>: 0 sz w|, |[sy 0 w Hy ’(/J<4>: 0 £c 0|, |£s 0
0 0 <] [0 0 ¢ 0 0 ¢ [0 0 ¢
[z y v [z y 0
Hy VP =y ¢ w Hs PO =y 2 0] with (x+y)?=1
00 1 0 0 1
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ProOF. Clearly Hy is invariant under any linear Poisson automorphisms of se(1,1)* | and
hence any automorphism is a linear Poisson symmetry of Hy. Suppose ¥ : p — p is an
arbitrary automorphism. For H;, we have

2

¢ sxy 0
(HioW)(p) = 1p [szy y* O] p'.
0 0 0

We must have either y = 0 or x = 0 if H; is to be preserved. For y = 0 we get

22 0 0
(HioW)(p) =ip |0 0 0| p" =2*Hi(p).
0O 0 0

This is clearly a dilation of Hy by 2? > 0, so ¥ is a linear Poisson symmetry of the form
D> pz/1<1>. For x = 0, we have

0 0 0
(HioW)(p) = 4p |0 y* 0| p'
0 0 0
Then HioW + %C’ — y?Hy, a dilation of Hy by % > 0. Therefore V¥ is again a linear Poisson

symmetry of the form p — py\V). For Hs,

(@+y)? s@ty)? 0
(HzoW)(p) = gp [s(@+y)* (@ +y? 0]p'
0 0 0
We see that ¢ = 1, whence Hy o W = (2 + y)?Ha, a dilation of Hy by (x +y)? > 0. Therefore
W is a linear Poisson symmetry of the form p — pi)®). For Hs,

v2 vw v
.

(Hz o W)(p) = 5p [vw w® cw|p'.
v oqw 1
Hence v = w = 0 for Hs to be preserved, in which case ¥ is a linear Poisson symmetry of the
form p — py®. For Hy, we have

v 2? Sxy +vw Qv
(HyioW)(p) = ip [say +ovw  w? +y? cw pl.
) sw 1

This implies that v = w = 0 and either y =0 or £ = 0. If £ = 0 then

0 0 0
(HioW)(p)=1p |0 y* 0| p'.
0 0 1

We see that y = £1, whence Hyo ¥+ %C’ = Hy. Similarly, if y = 0 then # = £1. Therefore
W is a linear Poisson symmetry of the form p — piy™. Finally, for Hs,

vt (e +y)? s(@ty)? tow v
(Hs0W)(p) = 3p [s(x+y)? +ow  w?+(x+y)? sw|p'.
v Sw 1
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Then v =w =0 and ¢ = (x +y)? = 1, and so Hs o ¥ = Hs. Therefore ¥ is a linear Poisson
symmetry of the form p — pi)(5).

Conversely, if ¥ is an automorphism of the form p — py®, i € {0,...,5}, then it
preserves H; up to dilations and the addition of a Casimir function, and so is a linear Poisson
symmetry. |

The next six subsections perform the classification of inhomogeneous quadratic Hamilton-
Poisson systems of the form L4 + H;, for each ¢ = 0,...,5. We shall annotate an inhomo-
geneous system representative with a superscript (i) if it is associated to the homogeneous
normal form H;.

3.3.1 Inhomogeneous systems associated to H

LEMMA. Let A = Z?:1 a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form ’(/J<O) such that ’(/J<O) -Ae{E, Fy+ By, abs i a>0}.

PROOF. Suppose ag = 0. If a? # a3, then

a1 __a3 0

22 22

(O) 1 2 1 2
v = | = 7 7 0

1 ay—ag ay—ay
0 0 1

is an automorphism such that ’(/J<10> A =F. lfa =a# 0and ay = +a, then wgm =
diag (1,41 +1) yields ¢ - A = By + E,.
Suppose ag # 0. Then

1 0 —%
¥ = |0 sgn(as) —sen(as)2
0 0 sgn(as)
is an automorphism such that 1/153)0) - A = aFs, where a = |as| > 0. |

THEOREM. Any inhomogeneous quadratic Hamilton-Poisson system on se(1,1)* of the form
Hao=La+ Hy is A-equivalent to exactly one of the following systems:

HY(p) = Hé?i(p) = aps.

Here o« > 0 parametrises a family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

PrOOF. From lemma 3.3.3 there exists a linear Poisson symmetry U@ : p — pyp(® of Hy
such that L o W) = Ly .4 1s equal to one of Lg,, Lg,tE,, of Lap,, for some > 0. Since

HagoW® = L40W® + Hy it follows that H4 g is A-equivalent to one of the systems
Gi(p) = p1, Ga(p) = p1 + p2, G3.a(p) = aps.
We show that (1 is A-equivalent to Go. Indeed, we have a linear isomorphism

-1 -1 0
U:p—p| 0 1 0
0 0 1
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such that
071" -1 -1 0 07"
(U -Gyp) =1 0 0 1 0)=|0 = (Ga o W)(p).
—p2 0o 0 1 —p2

That is, ¥ - 631 = @2 oW, and so G1 and G are A-equivalent.

We show that G'1 is not A-equivalent to G3,. Indeed, suppose otherwise. Then there
exists an affine isomorphism W : p — Wo(p) + ¢, Wo(p) = p|¢)i;] such that Vg -Gy = G340 V.
That is,

T T
—31P2 a(rapr + aap2 + Y32p3 + q2)
—gop2 | = |a(¥nupr +Yaape: +¥sips +q1)|
—1)33P2 0

for all p1,p2,p3, q1, ¢2, 93 € R. Comparing coeflicients of ps, we have 131 = 35 = 0. Further-
more, from the last equation 133 = 0. Thus det|i;;] = 0, a contradiction. Therefore no such
W exists, and so (7q is not A-equivalent to Gz 4.

Lastly, we show that G'3 o is A-equivalent to G'3 o only if & = &/. Suppose there exists an
affine isomorphism W : p — Wo(p) + ¢, Vo(p) = p[t)i;] such that ¥y - @3704 = @370/ oW. Then

T T
a(21p1 + Y11p2) o (Y12p1 + Yoepe + Ysaps + q2)
a(oopr + Y12p2) | = [ (Wnp1 + Yaip2 + ¥sips + q1)
athaspr + Y13p2) 0

From the last equation, we see that w3 = 113 = 0. Comparing coefficients of p; in the first
equation, and py in the second, we see that aye = o/ and a1z = a/1Pay. If W91 # 0, then
2 = % = %/7 i.e., @ = (/)2 As a, @/ > 0, it follows that o = o. If 191 = 0, then 13 = 0
and det|1;;] = ¥11¢22133. Consequently, 11,122 # 0. Comparing coeflicients of p; in the
first equation and p; in the second, we have a1 = /192 and atfes = &/111. As before, this
implies that o = o.

Therefore H 4, ¢ is A-equivalent to exactly one of H- £O> = (Gor H ©)

3,

= (3,4, where v > 0.1

3.3.2 Inhomogeneous systems associated to H;

LEMMA. Let A = Z?:1 a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form ¥V such that vV - A € {E) + BFs,aFs : a >0, f > 0}.

PROOF. Suppose az = 0. If ay = 0, then a; # 0 (since A #£ 0), so 1/151) = diag (a_117 &—11, 1) is
an automorphism such that ’(/J<11> A =F, = Fy+ §F5, where 8 =0. If as # 0 and a1 = 0,
then the automorphism

0%0
1
W =& 00
0 0 1

gives @1) -A=Fy = F+ BF,, where § =0. If as # 0 and a1 # 0, then

{ O v w
a 1
#V — [sen (é) L9 0

Lo o sm(z)]
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is an automorphism such that wg” -A = FE + BEs, where 8 = Z—; > 0.
Suppose as # 0. Then
1 0 -4
M _ | son(as)@2
Yy = sgn(as) —sgn(as) g2
0 0 sgn(as)
is an automorphism such that 1/1511) - A = aFs, where a = |as| > 0. |

THEOREM. Any inhomogeneous quadratic Hamilton-Poisson system on se(1,1)* of the form
Hao=La+ Hy is A-equivalent to exactly one of the following systems:

1 1 1
HM (p) = p1 + 1p? HSY(p) = p1 + po + 1p3 H) (p) = aps + 2.

Here ov > 0 parametrises a family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

PrOOF. From lemma 3.3.5 there exists a linear Poisson symmetry ¥ : p — pypV) of H;
such that L4 o p) — Lw(l).A is equal to one of Lg, gk, or Lag,, for some 8 > 0 or a > 0.

Since Ha oo WM = L4oWW + Hy it follows that Ha o is A-equivalent to one of the systems

Gis(p) = p1 + Bp2 + 1p3, Gaa(p) = aps + ipi.

We show that G g is A-equivalent to G'1; when 8 > 0. Indeed, if 5 > 0, then ¥ : p —
p diag (1, %, %) is a linear isomorphism such that

I 0 Tt o o
(V-G p)(p) = 0 0 5 0
—Bp1—p2—pip2] [0 0 3
— O T
= 0 — (G110 W)(p).
| —P1 — P2 — P22

Therefore Gy g, > 0 is A-equivalent to G' ;.

We show that G is not A-equivalent to G1,1. Indeed, suppose otherwise. Then there
exists an affine isomorphism W : p — Wo(p) + ¢, Wo(p) = p|t)i;] such that W - @170 = 63171 oW,
That is,

0
0
—Y11p1 — Yaup2 — Y31ps — q1 — (Y12p1 + Yaapa + Yaaps + q2)
x(upr + Y2 + ¥sips +q1 + 1)

for every pi1, p2, P3, 41,92, 93 € R. From the first two equations, we see that 131 = 132 = 0.
Comparing coeflicients of p% and p§7 we have ©¥11912 = 0 and W12 = 0. Suppose ¥11 = 0;
then w2 = 0, otherwise det|w;;] = ¥s3(V111022 — Y219012) = 0. We are left with the equality

—31(1 + p1)p2 i
—32(1 + p1)p2
—33(1 + p1)p2

—33(1 + p1)p2 = —V21p1 — g2 — (V12p2 + @2) (Y2101 +q1 + 1).



3.3.7

44 3.3. INHOMOGENEOUS SYSTEMS

Comparing coefficients of p1, we have (1 + ¢1)¥12 = 0, which implies that 1 + ¢; = 0. This
leaves the equality (¥21¢12 —Ws3)p1p2 + (Y21 — W33 + qah21)p2 — 1 = 0, which is a contradiction
for p; = pa = 0. A similar contradiction is reached if 112 = 0. Hence, no such ¥ exists, i.e.,
(1,0 is not A-equivalent to G 5.

A similar argument shows that G o and (1 ; are not A-equivalent to G2 o. (See section
B.3.4 for the MATHEMATICA code that performs this verification.)

Lastly, we show that G, is A-equivalent to G o only if @ = &/. Suppose there exists an
affine isomorphism W : p — Wo(p) + ¢, Vo(p) = p[vi;] such that ¥y - @2704 = @270/ oW. Then

.
aa1p1 — Ya1p1p2 + aripe
a)ap1 — Yaap1p2 + hiap2
a)a3p1 — Yazp1p2 + ahi3p2

o (P1ap1 + Yaep2 + Vs2ps + q2)
= o (Y11p1 + Ya1p2 + Yaips + q1)
—(11p1 + Ya1p2 + Ya1ps 4 qu) (V12p1 + Yaap2 + Yaaps + q2)

We see that 31 = 130 = 0. Comparing coefficients of p; and ps in the first two equations,
we have

P = &'y anhrr = o
, and ,
athre = o'y Qthoy = a1y
If 991 # 0, then & — % = %’ Since a, « > 0, this implies that o = /. If 131 = 0, then
12 = 0, since o, > 0. Then det[wi;] = Yi1¥2ess # 0. Consequently, ¥11 # 0, and so

& = % = %/7 whence o = .
Therefore H 4 ¢ is A-equivalent to exactly one of Hil) =G0, Hfl) =Gy, or Hélo)é = Goa,

where o > 0. [

3.3.3 Inhomogeneous systems associated to H;

LEMMA. Let A = Z?:1 a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form ¥@ such that 2 - A e {E|,E, +0E3,6E3:8 £0, 0 = +1}.

PROOF. Suppose ag = 0. If a? # a3, then

a1 a2 0
&2—&2 &2—&2
<2> 1 2 1 2
1/1 - |~ 2&2 i 2a1 7 0
1 ay—as a1—ay
0 0 1

is an automorphism such that 1/152) -A=F;. If ag = a # 0 and as = +a, then the automor-
phism 1/19 = diag (é, %, 1) yields 1/J§2) - A= FEy+ oFsy, where 0 = £1.

Suppose ag # 0. The automorphism

gives ’(/Jé2> - A =06Fs, where § = az # 0. |
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3.3.8 THEOREM. Any inhomogeneous quadratic Hamilton-Poisson system on se(1, 1)* of the form
Hao=La+ Hy is A-equivalent to exactly one of the following systems:

2

Hi )(P) =p1+ %(pl + p2)?
2

HY () = p1+ p2 + 501+ p2)’?
2

H;)(,,g(p) = 0ps + 3(p1 + p2)*.

Here § #£ 0 parametrises a family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

PrOOF. From lemma 3.3.7 there exists a linear Poisson symmetry U : p — py(2) of H,
such that L4 o p(2) — Ld)(z),A is equal to one of Lg,, Lg 4or, or Lsg,, for some o € {—1,1}
or § #0. Since Hago ¥ = L40W® | Hy, it follows that H4 g is A-equivalent to one of
the systems

Gi(p) =1+ 5(p1 +12)%, Gao(p) =p1+0op2 + 2(p1 +p2)%, Gss(p) = dps + (1 + p2)*.

We show that G is A-equivalent to G2 _;. Indeed,

L 1
2 2

U:p—pl|0 1 0
0 0 1

is a linear isomorphism such that
0 Ll 0 i
(U-Gi)(p) = 0 0 1 0| = 0 = (Go,—10V)(p).
—p2 — (p1 + p2)? 0 0 1 —p2 — (p1 + p2)?

That is, ¥ - 631 = @17_1 oW, and so Gy is A-equivalent to G5 1.

We show that G is not A-equivalent to G 1. Indeed, suppose otherwise. Then there
exists an affine isomorphism W : p — Wo(p) + ¢, Yo(p) = plws;| such that Wg - Gy = @271 oW,
That is,

Yarlpa + (o1 +p2)?]] 8

Yaa[p2 + (p1 + p2)?]
Waslpo 1+ (01 + p2)?] 1+ (W11 +Y12)p1 + (Y21 + ¥22)p2 + (P31 + ¥32)ps + q1 + q2f
e b X [(11 + 12)p1 + (a1 4 a2)p2 + (P31 + ¥32)ps + a1 + qa)

for every p1, p2, p3, g1, g2, g3 € R. We see that 131 = 132 = 0. Comparing coefficients of p3 and

p3 on both sides, we get ¢33 = (111 + ¥12)* and sz = (Yar +¥21)?. I Y11 + 12 = Yoo + 9,
then we are left with the equality

g1+ g2+ (q1+q2)* (1 +2q1 +22) (a1 +1a2)p1 -+ (a1 +1aa —1bas +2(a1 +1be2)(q1 +q2))p2 = 0.

Consider the coefficient of py. Since 921 + 122 # 0 (otherwise det[t);;] = 0) we have 1+ 2¢q; +
2¢> = 0. This leaves the equality —% — a3p2 = 0, which is a contradiction for po = 0. A
similar contradiction is reached if 111 + 112 = —(¥2 + ¥21). Hence no such ¥ exists, i.e., Gy
is not A-equivalent to G5 1.
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A similar argument shows that neither Gi nor G5 are A-equivalent to G's 5. (See section
B.3.4 for the MATHEMATICA code that performs these verifications.)

Lastly, we show that G3s is A-equivalent to G35 only if § = §’. Suppose there exists an
affine isomorphism W : p — Wo(p) + ¢, Vo(p) = p[vi;] such that ¥y - @37(5 = 63375/ o W. Then

Stharpr + 0112 — Ws1(p1 + p2)? i

Sthaap1 + 6¥12p2 — a2 (p1 + p2)?
Sthaspr + 0Wapa — Was(p1 + p2)?

8" (12p1 + a2p2 + V2ps + q2)
= 8 (Yuip1 + Y21p2 + Yaips + q1)
—[(¥11 + 12p1 + (Y21 + Wo2)p2 + (V12 + ¥32)ps + q1 + g2

We see that w31 = 130 = 0. Comparing coefficients of p; and ps in the first two equations,

we have
0tha1 = 8't12 011 = 6'thaa
{ 512 = 0'tha and { Shap = 8'1h1y
If 191 # 0, then % = % = %/. (If 49y = 0, then ¥ = 0 and 11,995 # 0. A similar

argument to that below then shows that 6 = ¢’.) This implies that 12 = +21 and § = £4'.
If § = &', there is nothing to prove. If § = —¢', then we are left with

—5’(]1 =0.
—8"basp1 — 0" P13p2 — Yas(p1 + p2)? + (Y12 — ¥22)(p1 — p2) + @1 + ¢2)*
Thus ¢1 = ¢2 = 0 and 13 = Y93 = 0 (from the coefficients of p; and ps, respectively). We

are left with the equality (¥12 — ¥22)%(p1 —p2)? —¥33(p1 +p2)? = 0. Setting p1 = 1, p2 = —1,
this implies that 112 = 122, a contradiction since det[w;;] = wa3(¥3y — ¥3,). Thus we must

have § = ¢’
Therefore H 4 ¢ is A-equivalent to exactly one of H£2) =G, H§2) = G or H3<,25) = G,
where § # 0. [

3.3.4 Inhomogeneous systems associated to [

3.3.9 LEMMA. Let A = 327 | a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form 3 such that V3 - A € {Ey + fE3, E1 + Ey + vE3,als : o >0, >0, v € R}.

PROOF. Suppose az = 0. If a? # a3, then

2a1 2 - 2&2 5 0
a1 —a5 a]—aj

(3) _
L e S
[ 0 0 1J

is an automorphism such that ’(/J<13> -A=F = F; + Fs, where 8 =0. If a;y = a # 0 and
as = =a, then wég’) = diag (1, +1 £1) gives 1/153) A = Ey + FEy = By + FEy + vE3, where
v=0.
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Suppose az #£ 0. If a? £ a2, then

a1 a3

(3) @, e
Y37 = | —sgn(as) a2 —2a§ sgn(as) af —1&3
0 0 sgn(as)

yields 1/153)3) <A = Fy+ pEs, where § = |ag| > 0. If a3 = a # 0 and ay = =a, then
1/1513) = diag (%, j:%,ﬂ:l) is an automorphism such that 1/1513) A = FE| + Fy + vFEs3, where
v = +as # 0. Otherwise a; = a2 = 0, in which case we have an automorphism wg?’) =
diag(1,sgn(as), sgn(as)) such that wg?’) - A = aFs, where a = |as| > 0. [ |

THEOREM. Any inhomogeneous quadratic Hamilton-Poisson system on se(1,1)* of the form
Hao=La+ Hs is A-equivalent to exactly one of the following systems:

1P (p) = p1 + 4p3 HP (p) = p1 + pa + Lp? HP (p) = 1p2.

PROOF. From lemma 3.3.9 there exists a linear Poisson symmetry U®) : p — pp(® of Hs
such that L4 o &) = L. 4 is equal to one of Ly 1gms: LE,+Eys LEytEytyvEs OF Lag,, for
some @ > 0 or v € R. Since Hy 0o W) = L40W0®) 1 [y, it follows that H4 g is A-equivalent
to one of the systems

Gi(p) =1+ Bps + 203, Gay(D) =p1 +p2+ps + 303, Gsalp) = aps + ipi.

We show that Gy g is A-equivalent to G'1,0. Indeed, ¥ : p+— p + SE3 is an affine isomorphism
such that -

B p2(8 + p3) B

Gis(p) = |p1(B+ps)| = (GrooV)(p).

—P2
That is, 631”3 = 631700\117 and so (1 g is A-equivalent to G'y g. Similarly, the affine isomorphism
p — p+ L3 shows that G 4 is A-equivalent to Gz 0, and the affine isomorphism p — p+ a3
shows that ('3 is A-equivalent to G .
We show that Gy is not A-equivalent to Gso. Indeed, suppose otherwise. Then there

exists an affine isomorphism W : p — Wo(p) + ¢, Wo(p) = p|t)i;] such that ¥ - @170 = @270 oW,
That is,

.
—131p2 + Y21p1p3 + Y11p2ps3
—32p2 + Y2p1p3 + Y12D2p3
—1)33p2 + Y23p1p3 + Y13paps3

(Y12p1 + Wa2p2 + aaps + q2)(W13p1 + Ya3p2 + Y3aps + qa)
= | (Yup1 + vaup2 + ¥a1p3 + q1)(V13p1 + Yasp2 + Yasps + q3)
—(Y11 + 12)p1 — (W1 + a2)pa — (W31 + Wa2)ps — (g1 + ¢2)

for every pi,p2,ps3,q1,q2,qgs € R. From the coefficients of p2 in the first two equations,
we see that Y3133 = Ysss = 0. We have 133 # 0, whence 131 = ¥32 = 0. (Indeed,
suppose Y33 = 0. Considering the coeflicients of p1, ps and ps in the last equation, we have
Y31 = —32, P21 = —e and ;3 = —12. This implies that det|y;;] = 0, a contradiction.)
The coefficient of p% is —12%13 in the first equation, and —i11¢13 in the second. Since



3.3.11

3.3.12

48 3.3. INHOMOGENEOUS SYSTEMS

det|triz] = ¥33(¥11¢22 — Y219012) # 0, we have 3 = 0. Similarly, considering the coefficients
of p3, we have 193 = 0. This leave us with the equality

-

(21 — Y1233)p1p3 + (Y11 — Y22133)PaP3 — qaWasPs — q3Wi2P1 — ¢322D2 — 243

(22 — Y11¥33)p1p3 + (Y12 — Y21133)P2Ps — q1WasPs — q311P1 — @3¥21P2 — qigs| = 0.
(V11 + Y12)p1 + (Y21 + 22 — ¥33)p2 + g1 + ¢2

The coefficients of pips imply that o1 = ¥12933 and e = 11133, whence det|y;;| =
(11 —¥12) (P11 + ¥12)¥3,. But, considering the coefficient of p; in the last equation, we have
Y11 = —¢12. Hence det[i;;] = 0, a contradiction. Thus no such W exists, i.e., G is not
A-equivalent to Gag.

A similar argument shows that G is not A-equivalent to G39, and G is not A-
equivalent to Gs . (See section B.3.4 for the MATHEMATICA code that performs these verifi-
cations.)

Therefore Hy g is A-equivalent to exactly one of HiS) = G0, HéS) = Gag or H§3) =
Ggyo. [ |

3.3.5 Inhomogeneous systems associated to H,

LEMMA. Let A = Z?:1 a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form v such that Y - A € {BE) + aFas, YE1 + BEy + aFs:a >0, § >0, v € R}.

PrROOF. Suppose ag = 0. If az # 0 and a; = 0, then 1/154) = diag(1, sgn(az),sgn(az)) is an
automorphism such that ’(/JYD <A = aly = fF + aF,, where § = 0 and a = |ag| > 0. If
as # 0 and a; # 0, then the automorphism 1/154) = diag(sgn(a1),sgn(aias) sgnay), sgn(aiasz))
yields @4) - A = BE] + aFy, where 8 = |a1] > 0 and o = |az| > 0. If ag = 0, then a; # 0
(since A £ 0), and the automorphism

) 0 sgn(ay) 0
¢V = Jsen(a) 0 0
0 0 1

gives 1/J§4) <A =aF, = pE] + aly, where § =0 and a = |ay| > 0.

Suppose ag # 0. If ag = 0 and a; = 0, then 1/1514) = diag(1,sgn(as), sgn(as)) gives
1/1514> -A=akls; =~vE + Fy+yEs, where vy = 3 =0 and o = |ag| > 0. If ag = 0 and a; # 0,
then

0 sgn(ajas) 0
Yt = |sen(as)sen(aras) 0 0
0 0 sgn(as)

is an automorphism such that wé4> A =pFEy+aFEs =~vF + 8FEs + aFs, where vy =0, g =
lai| > 0 and a = |as| > 0. If az # 0, then 1/1514> = diag(sgn(azas), sgn(as) sgn(azas),sgn(as))
yields 1/1514>~A = vE1+8E2+aks, where v = sgn(agas)a; € R, 8 = |az| > 0and a = |az| > 0.1

THEOREM. Any inhomogeneous quadratic Hamilton-Poisson system on se(1,1)* of the form
Hao=La+ Hy is A-equivalent to exactly one of the following systems:

4 4
HY (p) = apr + 103 + p2) HYY (9) = capr + aapa + 302 4 p3).

)



CHAPTER 3. CLASSIFICATION OF (QUADRATIC HAMILTON-POISSON SYSTEMS 49

Here o > 0 and oy > aa > 0 parametrise o family of class representatives, each different
value corresponding to a distinct (non-equivalent) representative.

PrOOF. From lemma 3.3.11 there exists a linear Poisson symmetry ¥4 : p — pyp™ of H,
such that L4 o pd) — L¢<4>,A is equal to one of Lgg, yaE, OF Lyg, {8E, 1aE,, for some a > 0,
B>0o0ryeR. Since HygoWW = LyoW®W + Hy, it follows that Ha g is A-equivalent to
one of the systems

Gras(®) = Bp1+apa + 207 +03),  Gaap~(p) =01 + Bp2 + aps + 2(pT + p3).
We have that G, is A-equivalent to Gap . Indeed, ¥ : p — p+ aF3 is an affine

isomorphism such that

. p2(a+ ps) B
Gaa8+(P) = pic + ps) = (G085 0 V)(p)-
—yp3 — p1(B + p2)
That is, 627047577 = @2707577 oV, and so Ga48, is A-equivalent to Gag 5. Next, ¥ :p—
diag(—1,1,—1) is a linear isomorphism such that

o I Pap3 T -1 0 0
(¥ - Ga0,87)(p) = p1ps 0 1 0
| —vp2 — p1(B + p2) 0 0 —1
[ —P2ps3 .
- pips = (G20,8,— 0 ¥)(p).
P2 +p1(B +p2)

Thus G2~ is A-equivalent to G2s_~. Consequently, we may assume that v > 0, i.e.,
we have a potential family of representatives G s, 5,(p) = Sip1 + Bapz + 2(p3 + p3), with
B1,P2 > 0 and Bi1, B2 not both zero. If 2 > 0, then G935, 5, = G1,a,3, Where o = 32 > 0
and 8 = p; > 0. If 51 > 0, then

010
T:p—spl|l 00 (3.3.1)
00 1

is a linear isomorphism such that

- T
Paps

01 0
(V- Ga0,6,6)p) = P13 100
| —B1p2 — p1(B2 + p2) 00 1

T

pips .

= p2ps = (Gras o W)(p),

| —ap2 — p1(B + p2)

where a = 51 > 0 and § = 2 > 0. Hence G2 3, 3,, 51 > 0 is A-equivalent to G 4 3.

Introduce a new family of potential representatives Gs o(p) = ap; + %(pf +p2). The linear
isomorphism (3.3.1) then yields

, P2ps3 0 10 Pip3 |
(V- G1a0)(p) = P1P3 1 0 0| = Dap3 = (G300 U)(p).
—p1(a+ p2) 0 0 1 —p1(a+ p2)
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That is, G140 is A-equivalent to G3,. To summarize the results thus far, we have two
potential families of representatives, viz.

G1ar,00(p) = c1p1 + copa + 2(p? +p2), G3a(p) = ap1 + 2 (p} + p3).

(Here o, aq, g > 0.)
Once again using (3.3.1), we have

- 4T

o p2p3 010
(\Ij ' Gl,al,az)(p) - P1Ps 1 0 0
| —a1pe —pi{az +p2)| [0 0 1
- 4T
Pips .
= P23 = (G1as,01 © ¥)(p).
| —a1p2 — pr{az + p2) |

That is, G'1 a1 ,as 1S A-equivalent to Gy ay,0,- Consequently, we may assume that a; > ao.

We show that (1 4, a, is not A-equivalent to G3, for any o > 0, a; > ap > 0. Indeed,
suppose otherwise. Then there exists an affine isomorphism ¥ : p — Wo(p) +¢q, Vo(p) = p[ti;]
such that ¥g - @me = @3704 o W, That is,

.
Yo1p1P3 + Y11P2aps — Yaipip2 — cPzipe — aaaip
Yoop1P3 + Wi2p2p3 — WYaap1p2 — cPzaps — aatlaapi
Yo3p1P3 + V13Paps — Yazpip2 — cPzzpe — aatlaspi

(Y12p1 + Y2ap2 + P32p3 + q2)(Y13p1 + a3pa + Ya3ps + qa)
= (Y11p1 + va1p2 + ¥a1ps + qu)(W1ap1 + Ya3p2 + Ysaps + qa)
—(a+Y1p1 + Yap2 + Ysaps + q1)(Wiep1 + Yaap2 + Yaaps + q2)

for every p1,p2,ps,q1, 42,3 € R. Comparing coefficients of p?, p2 and p2 in the first and
second equations, we have

Y1a113 = 0 Y119013 = 0
Y2103 = 0 and Y211023 = 0
Y333 =0 P31133 =0

Suppose 13 # 0. Then 2 = 111 = 0. If 1ha3 # 0, then oy = 191 = 0, whence
det|t;] = 0, a contradiction. Hence 123 = 0. Similarly, if 133 # 0, then 135 = 1033 = 0, which
again implies det[i;;] = 0. Thus ¢33 = 0. The first two equations are now

(V31 + Ya2v013)p1pe — (Y21 — VYa2thia)paps + (Y13q2 + Ys1e)pr + (Y22qs + Ya1an)p2
+ 32q3ps + qaqs = 0
(V32 + Y219013)p1pe — (Y22 — Ya1¥aa)paps + (Y1sqr + Ysae)p1 + (Y2143 + Pa201)p2
+ ¥s1g3ps + qi1g3 = 0
From the coefficients of ps, we have gs = 0 (if 31 = ¥32 = 0, then det[t;;] = 0). The
coefficients of pa then imply that 3, =132 = 0 (since o1 > 0), a contradiction.

Suppose that 3 = 0 and a3 #£ 0. Then 9y = Y91 = 0 and from the coefficients of
p3, we have ¢33 = 0. (If ¥3; = 132 = 0, then det[th;;] = 0, a contradiction.) The first two
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equations are now

(Y31 + Y12w23)p1p2 — (Y11 — Yaohe3)papa + (23ge + Ya1c)pe + (Y12¢3 + Ya102)m
+ 32q3p3 + gagz = 0
(V32 + Y11923)p1p2 — (Y12 — Ya1ve3)papa + (Y23q1 + Ya2)pe + (Y11¢3 + Ya202)p1
+ ¥a1q3p3 + qurgs = 0.
Comparing the coefficients of ps, we see that g3 = 0 (otherwise 131 = 32 = 0, whence
det[yi;] = 0). The coefficients of p1 we then get 131 = 132 = 0 (since ax > 0), a contradiction.
Suppose that 113 = 0 and 23 = 0. Then ¢33 # 0, else det[y);;] = 0. From the coefficients
of p2, this implies that w2 = 131 = 0. The coefficients of p? and p3 in the third equation
gives
Y112 = 0
o122 = 0.

Moreover, we have det|v;;] = ¥sz3(¥11922 — ¥Y21¢12) # 0. Thus we must have either ¢, =
Pas = 0 or Y1 = W12 = 0. If the former case holds, then we have the equations

(W21 — Y1233)P103 — q2b33p3 — qa12p1 — q2g3 = 0
(V12 — Y21U33)p2aps — q133p3 — q3a1p2 — q1q3 = 0.
As W33, 01,12 # 0, we have ¢ = g2 = q¢3 = 0. The third equation is now

(V21¢12 — Y33)pip2 + (ad12 — Y3302)p1 — Yazanpe = 0.

This implies that 1133 = 0, a contradiction, since ay > 0 and 133 # 0. (The situation 9 =
Y12 = 0 leads to a similar contradiction.) Therefore, in all cases, we have a contradiction.
Thus G1,a,,a, cannot be A-equivalent to G3 .

A similar argument shows that G 4, «, is A-equivalent to Gl Only if oy = ol and
g = af and G3 4 is A-equivalent to G, only if & = o/. (See section B.3.4 for the MATHE-
MATICA code that performs these verifications.)

Therefore H4 o is A-equivalent to exactly one of H. @ _ Gs3n or H (4) = G201 09,

1, 2,001,000

where o« > 0 and a1 > a9 > 0. |

3.3.6 Inhomogeneous systems associated to H;

LEMMA. Let A = Z?:1 a;F; € se(1,1) (with A # 0). There exists an automorphism of the
form ¥® such that ¥ - A € {BE| + vEs,0FE) +aFy +vE3 >0, >0, y€R, § £0}.

PROOF. Suppose a? # a3. Then we have an automorphism

. sgn(ar +az) % —sgn(ar +az) %~ 0
1/15 - sgn(ar +az) -2~ sgn(ar +az2); %> O
0 0 1

such that 1/155) - A= [F +~vEs, where 8 = |ay + az| > 0 and v = a3 € R.

Suppose a1 = a # 0 and az = +a. Then wé‘r’) = diag(£sgn(a), £ sgn(a), 1) is an auto-
morphism such that w§5> - A = 0E] + aFy + yEs, where § = £]a| £ 0, a = |a] > 0 and
v=uas €R.

Lastly, suppose a; = a2 = 0. Then A = ~vFE3 = gF+~vEs3, where S =0and vy =a3 € R.E
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THEOREM. Any inhomogeneous Hamilton-Poisson system on se(1,1)* of the form Hao =
L+ Hs is A-equivalent to exactly one of the following systems:

HO () = apr + 3[(01 + p2)? + 2]
HY () =p1 —p2 + +[(p1 + p2)* + p3]
Héjr’a(p) = alpr +p2) + 3 [(p1 +p2)* +pi).

Here o« > 0 parametrises a family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

PROOF. From lemma 3.3.13 there exists a linear Poisson symmetry U®) : p— pip(® of Hs
such that Lq o ¥ = L. 4 18 equal to one of Lgpg, tyms, Lsg +akst+yEs, for some a > 0,
B>0,v€Rors #0. Since Hy goW®) = L40W® 4 Hj_ it follows that Ha g is A-equivalent
to one of the systems

G1p-(p) = Bp1 + w3 + §[(p1 + p2)® + p3),
Ga076(P) = 61 + ap2 +vps + 5[(p1 +p2)® + p3) .-

We have that Gy ., is A-equivalent to Gy go. Indeed, W : p = p+ I3 is an affine isomorphism
such that
g p2(y + pa3) )
G14(p) = p1(y +p3) = (G100 ¥)(p).
—fp2 — (p1 -+ pa)?

Thus G 5 is A-equivalent to G go. Consequently, we may assume that § = o > 0, since
the case 8 = 0 reduces to one of the homogeneous systems.

In a similar manner, the affine isomorphism ¥ : p — p + «vE3 may be used to show that
G20~,6 15 A-equivalent to G 0.5

Consider the family G 4,50. Suppose 52 £ a?. Then

$ o 0
[0+ |(5Jga|
. [07
VPP \wra e O
0 0 1
is a linear isomorphism such that
- 9T 4 a 0
. P2ps3 [0+ |(5Jga|
(V- Gaaso)0) = | Pip3 Tral  Bral
| —p1 — p2(0 + p2) — 1+ 2p2) | 0 0 1
= ST
ey (@p1 + 0p2)ps
= |5T3.4|(5p1 + ap2)ps = (G540 V) (p).
|—p7 —p2(8 + p2) — pr(e + 2p2) |

That is, G2 4.6,0 (6% # o?) is A-equivalent to G540l
Suppose 62 = a2. Introduce two new families of potential representatives:

Gs(p) =p1—p2+ 5[0 +p2)* + 03], Gaalp) = alpr +p2) + 2 [(p1 +p2)* + p3].
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(Here oo > 0.) If « = =6 > 0, then

1 1%
2 2
Wiopep |50 K20
0 0 1
is a linear isomorphism such that
_ T ~
. p2p3 % 172 0
(V- Gaa50)(p) = Pipa 18 18
P pi(8—2p2) —pa(B )| [0 0 1
4T

[ 2 [=(6 = 1)p1 + (6 + 1)p2] p3 .
= | 206 = 1)p1 — (6 — Dpalps = (G300 ¥)(p).
_—pf +p1(0 — 2p2) — p2(6 + p2) |

Hence G360 (0 = —0 > 0) is A-equivalent to G3. If &« =& > 0, then G 450 = G4

Thus we have the potential representatives G, G's and G4,. A straightforward calcu-
lation confirms that none of these representatives are equivalent and that G'1, and G4 are
unique representatives for unique values of the parameter o« > 0. However, the calculations
are extremely lengthy and tedious, and we shall not present them here. Nonetheless, section
B.3.4 lists the MATHEMATICA code that performs these verifications.

Therefore H4 ¢ is A-equivalent to exactly one of H@ = Gla, H§5) =G3zor H§5o)é = Ga,a,

where o > 0. [
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Homogeneous Systems Inhomogeneous Systems
0
Ho(p) = 0 HEOZ (p) =m
Hz,a(p) = aps
HV(p) = p1 + 193
Hi(p) = 39 H(p) = p1 + 2 + I}
Héli(p) =aps + 217%
HP(p) = 1+ 301 + p2)?
Hy(p) = %(pl + p2)? H§2)(p) =p1+p2+ %(pl +p2)
H§26> (p) = 0ps + 5(p1 + p2)?
H{P () = p1 + 3p3
Ha(p) = 37 H () = pr+ 2+ 38
H (p) = 13
Ha) — L0 1 12) H?%(p) = ap1+ 507 + ) —
Hj 4 0, (P) = cupr + aopz + 5(pt +p3)
H@(p) = ap1 + 3 [(p1 + p2)? + pi)
Hs(p) = 3 [ +92)* + 03] | HP(0) = p1 = po + 3[(01 + p2)* 1 1]
H)/(p) = apy +p2) + 1 [(p1 +p2)? + 93]
a>0,a1>2a,>0,0#£0

Table 3.1: Classification of quadratic Hamilton-Poisson systems on se(1,1)*




Chapter 4

Stability and Integration of
Hamilton-Poisson Systems

In chapter 3, we classified a class of quadratic Hamilton-Poisson systems on se(1,1)* under
affine equivalence. Table 3.1 lists class representatives for both the homogeneous systems
(of the form Hg(p) = 1pQp') and the inhomogeneous systems (of the form Hyg(p) =
pA+ %prT). The purpose of this chapter is to investigate a number of the normal forms we
have obtained. Specifically, we shall consider the (nontrivial) homogeneous representatives
Hy, ..., Hs as well as the first eleven inhomogeneous representatives (i.e., those associated to
the homogeneous systems Ho, Hi, Hz and Hs).

For each system, we begin by investigating the (Lyapunov) stability nature of the equi-
librium states. Stability is proved by means of the (extended) energy-Casimir method. In-
stability usually requires a direct approach, employing the definition of Lyapunov instability.
However, a number of cases may be shown to be unstable by showing spectral instability.
(See section A.5 for details on the methods we employ.)

Following the stability analysis, we turn to the problem of finding the integral curves of the
system. The systems whose integral curves are lines are easily integrated, so we simply state
the general form of each integral curve. Most of the remaining systems may be integrated in
terms of elementary functions. However, the systems Hy and H £3> require the use of Jacobi

elliptic functions. For the more involved systems (specifically, Hy, Hs, H §3> and Hé?’))7 the
integration is typically subdivided into several subsections, depending on the various different
configurations of the system.

The general approach to integration for the systems requiring Jacobi elliptic functions
(i.e., Hy and Hf’)) is as follows. For each different configuration of the system, we use
the two constants of motion (the Hamiltonian function and the Casimir function C(p) =
p? — p3) to transform the equations of motion into a single (separable) differential equation,
which (possibly after some reduction; see section A.6.2) may be integrated in terms of Jacobi
elliptic functions. This yields an expression for a single component of the candidate integral
curve. The constants of motion are then used again to find expressions for the remaining
two components. (For degenenerate configurations of the system, we can typically avoid
explicit integration by taking a suitable limit of the expressions obtained for nondegenerate
cases.) The intent is to find a prospective expression for a single integral curve. (As such, we
neglect any constants of integration.) Having found such an expression, we verify that it is an
integral curve, by showing that the equations of motion are satisfied. Lastly, we complete the

55
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analysis by proving a result concerning all integral curves of the system for that particular
configuration.

For the other systems, a more ad hoc approach is employed. For Hg and H§3)7 we are able
to transform the Hamiltonian equation into a (separable) differential equation in one variable,
which is easily solved. The remaining two components of the integral curves are then obtained
by means of the equations of motion and the Casimir function. For Hé?gﬂ H?Elo)é and H §25> , the
first two equations of motion are linear, which allows us to use the matrix exponenﬁal for
integration.

We also graph typical configurations of each system (sans those with lines for integral
curves). More precisely, we graph the level sets H~'(hg) and C~!(¢g) and their intersection.
(Here H is the Hamiltonian function, C(p) = p} — p3 is the Casimir function and hg, co
are typical values for H and C' along an integral curve, respectively.) The stable equilibrium
points (illustrated in blue) and unstable equilibrium points (illustrated in red) are also plotted

in each case.

4.1 Preliminaries

The stability analysis requires the use of a suitable norm on se(1,1)*. Since this space is
finite-dimensional, all norms are equivalent. For simplicity, we use the Euclidean norm ||p|| =
VPP 03+ pi . (Here p = pi B3} + pa 53 + ps 155 € se(1,1)*)

Suppose p(-) is an integral curve of a Hamiltonian vector field H on se(l,1)* such
that C'(p(t)) > 0 for every t. We have p1(t)? < p1(t)? — p2(t)? = C(p(t)), and so either
p1(t) < —+/C(p(t)) or pi(t) > /C(p(t)). The following proposition (the proof of which is
immediate) asserts that the value of p1(-) at ¢t = 0 is sufficient to determine which case holds.
(We employ this result implicitly throughout the integration.)

PROPOSITION. Suppose co = C(p(0)) > 0. Then
(i) p1(0) < —/@ if and only if pi(t) < — /25 for all t.
(1) p1(0) > \Jeg if and only if pi(t) > \J/co for all t.

Lastly, we prove a useful sufficient condition for a curve to be an integral curve of a
Hamilton-Poisson system.

PROPOSITION. Let H be a Hamilton-Poisson system on se(1,1)* and let p(-) : (—£,2) —

se(1,1)* be an absolutely continuous curve such that p; = pgg—pHS, C(p(t)) = constant and

H(p(t)) = constant. Then p(-) is an integral curve of H.

ProOOF. We show that p(-) satisfies the equations of motion of H (equation (3.1.4)). For

brevity, denote the partial derivative 0H/0p; by H,,. By assumption, the first equation of

motion holds true. Differentiating both sides of C(p(t)) = p1(t)? — p2(t)? = constant, we get
_pip2 _ p1

2p1Pp1 — 2p2pe = 0, and so po e = s p2Hy,, = p1H,,. Thus the second equation of motion

is satisfied. Lastly, differentiate both sides of H(p(t)) = constant, to get p1Hp, + paHp, +
pat,, = 0. Solving for ps, the result is
_ —p1Hp, — P2ty —p2Hy, Hy, — prHp, Hp,

— — —p1Hy, — paHy,.
HPS HPS Pt b2t

Therefore p(t) = H(p(t)), i.e., p(-) is an integral curve of H. |

D3
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4.2 Homogeneous Systems

We begin our analysis of the affine equivalence representatives of table 3.1 by considering
the homogeneous systems H; through Hs. The systems H; and Hs have lines for integral
curves, so we treat them here (the integration for these systems is immediate; as such, the
stability analysis is the main effort). The remaining homogeneous systems Hs, Hy and Hj are
treated in sections 4.2.1, 4.2.2 and 4.2.3, respectively. Of these three systems, Hs and Hs are
integrated in terms of elementary functions, whereas the integral curves of Iy are expressed
in terms of Jacobi elliptic functions. (See section A.6 for further details on the Jacobi elliptic
functions.)

Section B.4.1 and section B.4.2 list the supporting MATHEMATICA code for Hy and Ha,
respectively. The equations of motion of the system Hi(p) = %p% are

p1=0

P2 =0

P3 = —pip2.
These are immediately solved, to give the integral curve p(t) = (c1,c2,c3 — cieat), with
c1,¢2,¢3 € R. The equilibrium states of Hy are ] = (n,0,u) and eg* = (0,v, 1), where

n, i € Rand v # 0.

PROPOSITION. The equilibrium states e* and e5" are unstable.

Proor. Consider the states e, n # 0. Fix a bounded open neighbourhood U of e]*.
Consider the integral curve p(t) = (n,d, 1 — ndt), where § > 0. Since ||p(0) —e]*|| = 4, for
any open neighbourhood V C U of €| there exists § > 0 such that p(0) € V. Furthermore,
lims oo [P(D|1? = 62 + 7% + lim oo (i — 61)? = oo. Hence there exists 1 > 0 such that
p(t1) ¢ U. Tt follows that the states e, i # 0 are unstable.

Consider the states e(l)’“ . Let U be a bounded open neighbourhood of e(l)’“ . The curve p(t) =
(16, @5, 1 @5215) is an integral curve of Hy for any § > 0. Furthermore, ||p(0) —e(l)’“|| = 9.
Accordingly, for any neighbourhood V' C U containing e(l)’“ , there exists & > 0 such that
p(0) € V. However, limy_,oo [[p(t)||* = 62 + lims oo (it — @5215)2 = o0, and so there exists
t1 > 0 such that p(t1) ¢ U. Therefore the states e(l)’“ are unstable.

Consider the states e5”. Fix a bounded open neighbourhood U of e5*. We have that
p(t) = (8, v, u — dvt) is an integral curve of Hy for any § > 0. Thus, as |[p(0) — e5*| = 4,
for any open neighbourhood V' C U of e5* there exists § > 0 such that p(0) € V. But
limg oo [P(E)]|? = 62 + 12 + limy 0o (0 — dvt)? = o0, and so there exists £; > 0 such that
p(t1) ¢ U. Therefore the states e5” are unstable. [ |

The equations of motion of the system Ha(p) = (p1 + p2)? are

p1 =0
p2 =10
Ps = —(p1 +p2)*.

The integral curves are of the form p(t) = (c1,¢2,c3 — (c1 + 2)%t), for e1,c2,c3 € R. The
equilibrium states of Hy are e = (n, —n, p), where n, u € R.
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PROPOSITION. The equilibrium states el* are unstable.

PROOF. Fix a bounded open neighbourhood U of e]*". We have that p(t) = (6 4+ 1,6 —n, pt —
46%t) is an integral curve of Hy (for any § > 0) such that ||p(0)—e™"|| = v/2'8. Accordingly, for
any open neighbourhood V' C U of e]*, there exists § > 0 such that p(0) € V. Furthermore,
lims oo [P(O)1? = (6 —0)2 + (06 + )2 + limy_y00 (. — 46%1)? = 0o. Hence, there exists {; > 0
such that p(t1) ¢ U. It follows that the states e]* are unstable. [ |

4.2.1 The system H;

The equations of motion of the system Hs(p) = 1p2 are

P1 = p2ps3
P2 = P1P3
ps = 0.

The equilibrium states of Hjz are " = (1, 1,0) and €4 = (0,0,v), where n, u,v € R and
v # 0. See section B.4.5 for accompanying MATHEMATICA code.

PROPOSITION. The equilibrium states e* and €5 are unstable.

ProoOF. Consider the states e, n # —pu. Fix a bounded open neighbourhood U of e]*. We
have that p(t) = (ncosh(dt) + psinh(6t), nsinh(6t) + pcosh(dt), §) is an integral curve of Hs
for any & > 0. Indeed,

p1 = dnsinh(6t) + S cosh(8t) = paps
P2 = dusinh(dt) + oncosh(8t) = pips
p3 = 0.

Moreover, we have ||p(0) — e*|| = 6. Accordingly, for any open neighbourhood V' C U of
el there exists § > 0 such that p(0) € V. Furthermore,

, 22 2, 2 ~ _
Jim lp()||* = 0% + Jim [(n* + p*) cosh(26t) + 2npsinh(26t)] = oo.

Hence, there exists ¢; > 0 such that p(t;) ¢ U. Thus the states el", n #£ —p are unstable.

Consider the states e"™7 n # 0. Let U be a bounded open neighbourhood of €™, The
curve p(t) = (nedt, —net, —5) is an integral curve of Hs for any § > 0. Indeed, p; = dnedt =
paps, P2 = —0ne®® = pips and ps = 0. Since ||p(0) — el ™| = 4, for any open neighbourhood
V C U of e]™", there exists § > 0 such that p(0) € V. However, lim;_ |[p(t)||? = §% +
212 limy o0 2% = 00. Consequently, there exists t; > 0 such that p(t1) ¢ U. Thus the states
el ™", n# 0 are unstable.

Consider the state e’. Fix a bounded open neighbourhood U of ¢[. We have that
p(t) = (8%, 5e%,5) is an integral curve of Hs for any § > 0. Indeed, p; = 62e% = pops,
P2 = 6%e% = p1ps and p3 = 0. Moreover, ||p(0) — e(l)’0|| — /3'8. Therefore, for any open
neighbourhood V' C U of e(l)’o7 there exists § > 0 such that p(0) € V. Since lim;_, ||p(t)||* =
82 1imy_so0 (1 + 26%*) = oo, there exists ¢; > 0 such that p(t;) ¢ U. Thus the state e} is
unstable.
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Figure 4.1: Typical configurations of H3

Consider the states €2 The linearisation of the vector field H3 is

0 p3 p2
dH3(P  p3 0 pi
0 0 O
0, 23 =
positive real eigenvalue. Hence the states €2 are (spectrally) unstable. |

Lastly, we determine the integral curves of H3. Typical configurations of H3 are plotted
in figure 4.1. (In the figure, we have c0 = C(p(0)), where p(-) is an integral curve of H3)

Proposition. Ifp(-) : (—e,e) * se (1,1)* is an integral curve of H3 and p3(0) = Q, then

p = p2(0) cosh(Qt) + p2(0) sinh(Qt)
pEt) = p2(0) sinh(Qt) + p2(0) cosh(Qt)
t) = Q
Proof. Since p3 = 0, we have p3(t) = Qfor some Q e R. Let P (t) EIZ((?) . The differential
equation P(t) = Q Q P(t) has the solution

_ 0 Q cosh(Qt) sinh(Qt)
PO=POe® 4 g PO GinhQt)  cosh(Qt)

Thereforep2(t) = p2(0) cosh(Qt)+p2(0) sinh(Qt) and p2(t) = p2(0) sinh(Qt)+p2(0) cosh(Qt).»

4.2.2 The system H4
The equations of motion of the system H4(p) = 2(p2+ p2) are

p2p3
= pip3
= —pip2.

The equilibrium states of H4 are e4 = (*, e2=(0,v,0) and e3 = (0, 0, v), where », v e R,
v = 0. Section B.4.4 lists the supporting Mathematica code.
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Figure 4.2: Typical configurations of H4

4,25 Proposition. The equilibrium states e and €V are stable, whereas the states €V are unstable.

Proof. As d(2H4—2C)(e))
Consider the states e4, "
have

0 and d2(2H4—2C)(e0) = diag(1,1,2), the state €0 is stable.
0. Let Ha= AOH4+ A2C, where A0 = 1 and A2= —2. We

0
dHA(P)  p2 ,  d2HA(p) = diag(0,1,1).
p3
Thus dHA(™) = 0. Moreover, since W = kerdH4(e") n kerdC(e”") = span{E*,E*}, the
restriction d2HA(ei) [WxW = diag(1,1) is positive definite. Therefore the states e4,» = 0 are

stable.
Consider the states eV. Define the energy function Ha = AOH4 + A2C, where A0 = 1 and
A2= 0. Then
pi
dHA(p) 0 d2HA(p) = diag(l, 0,1).
p3

Furthermore, W = kerdH4(e”) n kerdC(e”") = span{E*,E*}. Accordingly, dH4(e\ = 0 and
the restriction of d2H4(e2) to W x W is positive definite. Hence the states eVare stable.
Consider the states e3. The linearisation of the vector field H 4 is

0 p3 p2
DH4(p) p3 0 pi
—p2 —pi 0
=0, A23=d

positive real eigenvalue. Hence the states e® are (spectrally) unstable.

We now proceed to find the integral curves of H4. Let p(-) be an integral curve of H 4 and
let cO = C(p(0)) and hO = H4(p(0)). Typical configurations of H4 are graphed in figure 4.2.
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We consider two cases depending on the sign of ¢g. In fact, by the following result, we may
assume cg > 0.

PROPOSITION. The map W : (p1,p2,p3) — (p2,01,03) s a linear Poisson symmetry of Hy
such that C oW = —(C,

PROOF. W is clearly a linear Poisson automorphism. Furthermore, (HyoW)(p) = (p3+p3) =
(2 +p) — s —pd) = (Hy — lC’)( ). Therefore ¥ is a linear Poisson symmetry of Hy.
Finally, we have (C o W)(p) = p3 — p? = —C(p). [ |

Accordingly, in order to find the integral curves of H, when ¢ < 0, we find the integral
curves when ¢g > 0 and apply the linear Poisson symmetry W. In particular, if ¢(-) is an
integral curve of Hy such that C(g(0)) < 0, then p(-) = W(g(-)) is an integral curve of Hy
such that C(p(0)) > 0. Thus we assume, without loss of generality, that ¢y > 0.

Lastly, notice that if hg = 0, then p(-) is constant. (Indeed, if p;(t)? +153( )2 = 2hg = 0,
then p1(t) = p3(t) = 0. Thus —pa(t)? = co, whence ¢g < 0 and pa(t) = +£y/—co. But
p(t) = (0,0, +/=cg ) is an equilibrium point of Hy.) Hence we always assume hg > 0.

4.2.2.1 Case I: ¢ £0

By proposition 4.2.6, we may assume cp > 0. Notice that cog = p1(t)? — pa(t)? < pr(t)? +
p3(t)? = 2hg. That is, cg < 2hg. If cg = 2hg, then p(-) is constant. (Indeed, we have
pi(t)® — p2(t)* = co = 2ho = pi1(t)* + ps(t)?, whence —pa(t)® = ps(t)*. This implies that
p(t) = (£/c0,0, ()) which is an equilibrium point of Hy.) Assume co < 2ho. From the first
equation of motion P = paps, we get

Bt = P3p5 = (2ho — P1)(P} — co).
Take the square root of both sides and separate variables. We get
dp
V/(2ho — pT)(pF — co)
for some o1 € {—1,1}. Since co = p1(t)? —p2(t)? < p1(t)? < pr(t)? +p3(t)? = 2ho, there exists
ta —

D1
oy € {—1,1} such that /ey’ < ogopi(t) < V2ho. Le Vv2ho and b = \/cg. Integrating
both sides, we have

:Oldt

@ dpy
= — e Jlt (421)
/Uzpl(t) \/(2h0 - p%)(p% — ¢o)

Use the integral formula (A.6.8) to integrate the left-hand side of (4.2.1). The result is

1 2ho —
dnt [ —2 gy, 2RO o S pil) — oeQdn(O k).
1/2h0 \/Qho 2h0

Here Q@ = /2hy and k = ,/Q}LQOT_OCO. As 0 < ¢ < 2hg, we have 0 < k£ < 1. Moreover,

since dn(-, k) is even, the oy can be eliminated. We now use the constant of motion 2hy =
p1(t)? + p3(t)? to find an expression for p3(-):

= 02v/2ho — p1(t)? = 03Qy/1 —dn?(Qt, k) = 03Qksn(Qt, k)
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where g3 € {—1,1}. (We have used the square relation (A.6.4).) In fact, since sn (Q¢ +
%,k;) = —sn(Qt, k), we assume o3 = 1. Finally, using the derivative formula (A.6.1),
integrate the equation

P2(t) = P1ps = 020/ 2hy — co dn(Qt, k) sn(Qt, k)

to get pa(t) = —o2v/2ho — co en(Qt, k). Rephrasing the constants in terms of 2 and k, we
have the following (prospective) integral curve:

p1(t) = 0200 dn(Qt, k)
p2(t) = —o2Qk en(Q, k)
pa(t) = Qksn(Qt, k).
We verify that p(-) is an integral curve of Hy. Indeed,

p1(t) = =022k en(Qt, k) sn(Qt, k) = pa(t)pa(t)
Pa(t) = 02k dn(Qt, k) sn(Qt, k) = pi(t)ps(t)
p3(t) = Q¥ ken(Qt, k) dn(Qt, k) = —p1(£)p2(t).

That is, p(t) = ﬁg(’( )) Furthermore, p(-) is clearly defined over R. Since c¢n(£, k) and
sn(Qt k) have period 42 py(-) and ps(-) have period 4. Similarly, since dn(¢, k) has period
Q , p1(-) has period 5}(. Finally, as sn(-, k) is odd and dn(-, k), cn(-, k) are even, we have
that p1(-) and p2(-) are even and p3(-) is odd.

We now make an explicit statement regarding all integral curves of H, for this case.

PROPOSITION. Let p(-) : (—¢,¢) — se(1,1)* be an integral curve of Hy such that Hy(p(0)) =
ho >0, C(p(0)) = co > 0 and cy < 2hy. There exist to € [—25,2K] and o € {~1,1} such
that p(t) = p(t + to) for every t € (—e,¢), where p(-) : R — se(1,1)* is defined by

)
p1(t) = oQdn(Qt, k)
pa(t) = —oQk en(Qt, k)
pa(t) = Qksn(Qt, k).

Here 4K is the period of sn( = 2hy and k = ,/%207_000 .

PRrROOF. Let o = sgn(p;(0)) € {—1,1}. (If p1(0) = 0, then ¢g = —p2(0)? < 0, a contradiction.)
Since p1(t)? > p1(t)? — pa(t)? = cg, we have p3(t)? = 2hg — p1(t)? < 2hg — o = Q?k2%. That
is, —Qk < ps3(t) < Qk. Similarly, —Qk < p3(t) < Qk. Moreover, p3 (—&) = —Qk and
p3 (B) = Qk. Therefore, since ps(-) is continuous, there exists t; € [—&, £] such that
]53(151) = pg(()). Then

P1(t1)? = 2ho — p3(t1)? = 2ho — p3(0)* = p1(0)*.
Since sgn(p1(t1)) = o = sgn(p1(0)), we have p1(t1) = p1(0). Lastly,

P2(t1)? = p1(t1)? — co = p1(0)* — o = p2(0)?,

and so Pa(t1) = £p2(0). As py(-) is even with period 2 Q , p2(+) is even with period % and

p3(-) is odd with period %7 we have 7 (—K —t1) = pi(t), P2 (— —11) = —p2(t1) and



4.2.8

CHAPTER 4. STABILITY AND INTEGRATION OF HAMILTON-POISSON SYSTEMS 63

P (25 —11) = ps(t1). Thus, there exists to € [—25, 2K] (i.e., to = 11 or tp = —t1) such that
p(to) = p(0). Therefore, as t — p(t + to) and t — p(t) are both integral curves of Hy passing
through the same point at £ = 0, they both solve the same Cauchy problem, and hence are
identical. [

4.2.2.2 Case Il: ¢ =0

If p1(t) = 0 for some ¢, then p(-) is constant. Indeed, suppose pi(t) = 0 for some t. Then
p2(t) = 0 (as cg = 0), whence p3(t)? = 2ho. That is, p(t) = (0,0,4+/2hg ), which is an
equilibrium point of Hy. Therefore we assume p1(t) # 0 for every t. Take the limit ¢g — 0 of
the integral curves obtained in case I, and allow for changes of sign. Since k — 1 as ¢ — 0,
we get the following (prospective) integral curve:

p1(t) = o sech(Q)
pa(t) = —ocQ sech(Qt)
p3(t) = < tanh(Qt).
(Here 0,5 € {—1,1} and Q = \/2hg.) We verify that this is an integral curve of H,. Indeed,
1(t) = —0Q% sech(Qt) tanh(Qt) = po(t)pa(t)
pa(t) = 062 sech(Qt) tanh(Qt) = p1 (£)pa(t)
Pa(t) = <% sech?(Qt) = —p1 (H)pa(t).

Thus p(t) = Hs(p(t)). Furthermore, p(-) is clearly defined over R.
We now make an explicit statement regarding all integral curves of H,4 for this case.

30

PROPOSITION. Let p(-) : (—&,2) — se¢(1,1)* be an integral curve of Hy such that Hy(p(0)) =
ho > 0, C(p(0)) = 0 and p1(0) # 0. There exist to € R and 0,5 € {—1,1} such that
p(t) = p(t +to) for every t € (—e,2), where p(-) : R — se(1,1)* is defined by

p1(t) = o sech(Qt)

pa(t) = —ocQ sech(Qt)

pa(t) = ¢Q tanh(Qt).
Here Q) = /2hg .
PrROOF. Let ¢ = sgn(pi1(0)) € {—1,1} and ¢ = —osgn(p2(0)) € {—1,1}. (As p1(0) #
0, we have pa(0) # 0.) Since 0 < pi(£)?, we have p3(1)? = 2hy — p1(£)? < 2ho = Q2.
That is, —Q < p3(t) < Q. Similarly, —Q < p3(t) < Q. Moreover, lim; . p3(t) = ¢ and

limy oo p3(t) = —c§. Therefore, since p3(-) is continuous, there exists tp € R such that
]53(150) = pg(()). Then

pi(to)® = 2ho — P3(to)”® = 2ho — p3(0)* = p1(0)*.
Since sgn(pi(to)) = o = sgn(p1(0)), we have p1(to) = p1(0). Finally,
Pa(to)? = P1(to)? — co = p1(0)? — o = p2(0).

But sgn(p2(to)) = —os = sgn(p2(0)), and so pa(to) = p2(0). Therefore, as t — p(t + to) and
t — p(t) are both integral curves of Hy passing through the same point at ¢ = 0, they solve
the same Cauchy problem, and hence are identical. |
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Figure 4.3: Typical configurations of H5

4.2.3 The system H5
The equations of motion of the system H5(p) = ? [(p? + p2)2+ p3] are

p2p3

pip3

-(pi + p2)2.

The equilibrium states of H5 are eM = AN 0) and €2 = (0,0,v), where ", v GR, v = 0.
The accompanying Mathematica code for H5 may be found in section B.4.5.

4.2.9 Proposition. The equilibrium states e® and e2 are unstable.

Proof. Consider the states e ~ = 0. Fix a bounded open neighbourhood U of e The
curve p(t) = (“e5t,- "e5t,-5) is an integral curve of H4 for any 5 > 0. Indeed, p? = 5”eb5t =
p2p3, p2= - 575 = p?p3 and p3 = 0. Furthermore, [|p(0) - eH = 5 Accordingly, for
any open neighbourhood V C U of eMthere exists 5 > 0 such that p(0) G V. However,
limtA A p(t) |2 = 52+ 27 2limtA ~ e25t = to. Thus, there exists t? > 0 such that p(t?) G V.
Therefore the states e, * = 0 are unstable.

Consider the state e0. Let U be any bounded open neighbourhood of €?. We have that
p(t) = (5e5% - 5e5% -5) with 5 > 0 is an integral curve of H3. Indeed, p? = 525 = p2p3,
p2 = 52e5 = p?p3 and p3 = 0. Moreover, ||p(0) - e0| = V35 Therefore, for any open
neighbourhood V C U of 0, there exists 5 > 0such that p(0) G V. However, limt*~ ||p(t) |2 =
52limt" " (1 + 2e25%) = to, and so there exists t? > 0 such that p(t?) GU. Thus the state €?
is unstable.

Consider the states €2 The linearisation of the vector field H5 is

0 p3 p2

d H5(p) = p3 0 p?

-2(p?+p2) -2(p?+p2) O
The linearisation at €2 has eigenvalues A? = 0, A23 = zv. Since v = 0, DH5(eV) has a
positive real eigenvalue. Hence the states e2 are (spectrally) unstable. ]

We now proceed to find the integral curves of H5. Let p(-) be an integral curve of H5 and
let c0 = C(p(0)) and h0 = H5(p(0)). We consider two cases depending on the sign of c0. The
corresponding level sets H5?(h0), C- 1(c0) and their intersection are plotted in figure 4.3.
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If hg = 0, then p(-) is constant. (Indeed, if (p1(t) + p2(t))? + p3(t)? = 2hy = 0, then
p1(t) + p2(t) = 0 and p3(t) = 0. From the equations of motion we then have p; = py = 0,
whence p(t) = (i, —p, 0) for some p € R. Then p(t) is an equilibrium point of Hs.) Thus we
always assume hg > 0.

4.2.3.1 Case I: ¢g £ 0

Substitute ps = —(p1 + p2)? into the equation 2hg = (p1(t) + p2(t))? + pa(t)2. The result is a
separable differential equation in ps, viz.
dps
——— =dL. 4.2.2

We have

p3(1)? < (p1(t) + pa()? + p3(t)? = 2hg, i.e., p3(t)? < 2hg. We use the integral
formula (A.6.1

.13) to integrate the left-hand side of (4.2.2). The result is

1 bl P3(1) _
V2o (m) g

Let © = v/2hg and solve for ps(t), to get ps(t) = —Qtanh(Qt). Differentiating this expression

with respect to { yields
p1(t) + p2(t) = o4/ —pa(t) = o sech(Qt)

for some o € {—1,1}. Since (p1(t) + p2(t))(p1(t) — p2(t)) = co, we have

Co gy

p1(t) — p2(t) = 0 —————— = —— cosh(Qt).
Pi(t) = pa(l) OQSQCh(Qt) q (e2)
Thus
I 1] ;)] |oSsech(§t)
L —1] |p2(t)]  |Zrcosh(Q)|”
Since E _11} is invertible, we get the following (prospective) integral curve:

p1(t) = % [(22 sech(Qt) + ¢ cosh(Qt)]
pa(t) = % [©2% sech(Q2t) — ¢ cosh(Q21)]
p3(t) = —Qtanh(Qt).

We verify that p(-) is an integral curve of Hs. Indeed,

Pit) — po(D)pa(t) = % [co sinh(Qt) — Q2 sech(Qt) tanh(Qf) ]
—% [0 cosh(02t) — Q2 sech(Q2t)] tanh(Qt) =0

Pat) — pr(£)ps(t) = —% [co sinh(Qt) + Q2 sech(Qt) tanh(0t)]
+% [co cosh(t) + Q2 sech(2t)] tanh(Qt) = 0
Pa(t) + (1 (1) + p2(1)? = (6% — 12 sech?(Qt) = 0.
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That is, p(t) = Hs(p(t)). Furthermore, p(-) is clearly defined over R.
We now make an explicit statement regarding all integral curves of Hy for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1,1)* be an integral curve of Hy such that Hs(p(0)) =

ho > 0 and C(p(0)) = co # 0. There exist to € R and o € {—1,1} such that p(t) = p(t + to
for every t € (—¢,2), where p(-) : R — se(1,1)* is defined by

pi(t) = % [©Q% sech(Q1) + co cosh(21)]

pa(t) = % [©Q? sech(Qt) — ¢ cosh(€2)]
ps(t) = —Qtanh(Qt).

Here Q) = /2hg .
ProOF. Let o = sgn(p1(0) + p2(0)) € {—1,1}. (If p1(0) + p2(0) = 0, then ¢y = 0, a contra-
diction.) We have ps(t)? < (p1(t) + p2(t))? + ps(t)* = 2k = Q2, and so —Q < p3(t) < €L

Similarly, —Q < p3(t) < Q. Moreover, limy_,o p3(t) = —Q and lim;_, _ p3(t) = Q. Therefore,
since ps(-) is continuous, there exists to € R such that ps(tg) = p3(0). Then

(p1(to) + Pa(to))? = 2ho — P3(to)® = 2ho — p3(0)® = (p1(0) +p2(0))2-

But sgn(p1(to) + p2(to)) = o = sgn(p1(0) + p2(0)), and so pi(to) + p2(to) = p1(0) + p2(0).
Further,

(p1(to) + p2(to)) (p1(to) — P2(to)) = co = (p1(0) + p2(0)) (p1(0) — p2(0)),

which implies that py(tg) — p2(to) = p1(0) — p2(0). Thus, we have

b AR - o)

1 1
Since L _J is invertible, we have p(tg) = p(0). Therefore, as t — p(t + to) and t — p(t)
are both integral curves of H; passing through the same point at { = 0, they both solve the
same Cauchy problem, and hence are identical. |

4.2.3.2 Case Il: ¢ =0

If p1(t) = 0 for some ¢, then p(-) is constant. Indeed, suppose pi(t) = 0 for some t. Then
pa(t) = 0 (as cg = 0), whence pa(t)? = 2hg. Thus p(t) = (0,0, £+/2hg ), which is an equilib-
rium point of Hs. Therefore we assume p1(t) # 0 for all ¢.

Since p1(t)? — pa(t)? = co = 0, we have p1(t) — pa(t) = 0 or pi(t) + p2(t) = 0. Suppose
P1(t) — p2(t) = 0. By taking the limit ¢y — 0 of the integral curves in proposition 4.2.10,
we arrive at the following result.

PROPOSITION. Let p(-) : (—e,2) — se(1,1)* be an integral curve of Hy such that Hs(p(0)) =
ho > 0, C(p(0)) = 0, p1(0) — p2(0) = 0 and p1(0) £ 0. There exist tp € R and o € {—1, 1}
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such that p(t) = p(t + to) for everyt € (—e,¢), where p(-) : R — se(1,1)* is defined by

0
pit) = "7 sech(Q1)

palt) — ? sech(Q1)
p3(t) = —Qtanh(Q1).
Here Q) = /2hg .

PROOF. Let o = sgn(p1(0)) € {—1,1}. From the constant of motion 2ho = p1 ()% +pa(t)?, we
have p3(t)? = 2hg — p1(£)? < 2hp = Q2. That is, —Q < p3(t) < Q. Similarly, —Q < p3(t) < Q.
Moreover, limy—,_ o p3(t) = Q and lim;_,o p3(t) = —€. Since ps(-) is continuous, there exists
to € R such that ps(to) = p3(0). Then

P1(to)? = 2ho — P3(to)? = 2ho — p3(0)? = p1(0)%.

t
t

Since sgn(p1(to)) = o = sgn(p1(0)), we have pi(to) = p1(0). Lastly, p2(to) = p1(to) = p1(0) =
p2(0). Therefore, as t — p(t+1to) and ¢ — p(t) are both integral curves of Hs passing through
the same point at ¢ = 0, they both solve the same Cauchy problem, and hence are identical.ll

Suppose Py (t) +P2(t) = 0. Let Q = \/2hg . Then p3(t)? = Q2, i.e., p3(t) = 019, for some
o1 € {—1,1}. The first equation of motion becomes p; = pops = —o1€2p;. This is immediately

solved, to get p1(t) = 02e™ 71 for some o2 € {—1,1}. Then we have pa(t) = —o2e~7**, and
hence the following (prospective) integral curve:

]51(15) — 096 a1t

pg(t) — —0g9e 10t

]53(15) =011}
It is straightforward to verify that p(t) = Hs@@). Indeed, p1(t) = —o109Qe 1% =
P2(t)ps(t), P2(t) = 0102027 = pi(t)pa(t) and ps = 0 = —(pa(t) + p2(t))*. Moreover,

p(+) is clearly defined over R.
We now make an explicit statement regarding all integral curves of Hs for this case.

PROPOSITION. Let p(-) : (—&,2) — se(1,1)* be an integral curve of Hs such that Hy(p(0)) =
ho >0, C(p(0)) =0, p1(0) + p2(0) = 0 and p1(0) # 0. There exist to € R and 0,5 € {—1,1}
such that p(t) = p(t + to) for everyt € (—e,¢), where p(-) : R — se(1,1)* is defined by

Here Q = \/2hg .

PrROOF. Let 0 = —sgn(p3(0)) € {—1,1} and ¢ = —sgn(p2(0)). (If p3(0) = 0, then hg = 0, a
contradiction. If p2(0) = 0, then p;(0) = 0, contradicting the assumption.) We have

lim pa(l) =

t——o0

el =9 0 o -

—coo ifo=-1 soo ifo=+1
0 if 0 =41, t—00
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Therefore, since py(-) is continuous, there exists tg € R such that p2(f9) = p2(0). Then
p1(to) = —p2(to) = —p2(0) = p1(0). Finally, since ps(-) and ps(-) are both constant and
sgn(ps(to)) = o = sgn(ps(0)), we have ps(ty) = p3(0). Therefore, as t — p(t + tp) and
t — p(t) are both integral curves of H; passing through the same point at { = 0, they both
solve the same Cauchy problem, and hence are identical. |

4.3 Inhomogeneous Systems Associated to [

There are two inhomogeneous systems associated to the (trivial) Hamilton-Poisson system

Ho(p) = 0, viz Hio) (p) = p1 and Hé?) (p) = aps. The first system has lines for integral

[e%
curves, and so we shall treat it here. The integral curves of Héoo)é are hyperbolae; this system is

considered in section 4.3.1. Section B.4.6 and section B.4.7 list the supporting MATHEMATICA
code for the stability analysis of H §O> and Hé?gﬂ respectively.

The equations of motion of the system H £O> (p) = p1 are

p1 =0
p2 =0
P3 = —pa.

The integral curves are p(t) = (c1,c2,c3 — cat), for c1,c2,c3 € R. The equilibrium states of
Fli()) are eM* = (n,0, u), where n, 1 € R.

PROPOSITION. The equilibrium states el* are unstable.

PrOOF. Fix a bounded open neighbourhood U of e]*. Consider the integral curve p(t) =
(n, 8, u—8t), for § > 0. We have ||p(0) —e7*|| = &. Accordingly, for any open neighbourhood
V C U of el", there exists § > 0 such that p(0) € V. Furthermore, lim;_o |[p(t)]|? =
82 +n? +limy_yeo (t — 0t)? = 00, and so there exists ¢; > 0 such that p(t1) ¢ U. Therefore the

states e*" are unstable. [ |

0)
N

4.3.1 The system Hé

The equations of motion of the system Héooz (p) = aps (o > 0) are

P1 = apa
P2 = api
p3 = 0.

The equilibrium states of 7o

2,

are ) = (0,0, 1), where p1 € R.
PROPOSITION. The equilibrium states e} are unstable.

Proor. The linearisation of the vector field ﬁéoo)é is

0 o O
(1
DAY p) = |a 0 0

0 0 0

The linearisation at €] has eigenvalues A\; = 0, A3 = a. Since o > 0, Dﬁéfg(e‘f) has a

positive real eigenvalue. Hence the states ef are (spectrally) unstable. u
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(@ o=0 (b) =0

Figure 4.4: Typical configurations of Hz(og

Lastly, we determine the integral curves. The typical configurations of the system are
graphed in figure 4.4. (In the figure we have c0 = C(£(0)), where £(m) is an integral curve of

H £Q))
Proposition. If£m) : (—e,e)  se(1,1)* is an integral curve of H® |, then

= £1(0) cosh(at) + £2(0) sinh(at)
(t) = £1(0) sinh(at) + £2(0) cosh(at)

(t) = £3(0).
Proof. Let P(t) g;gg The differential equation P(t) 2 % P(t) has the solution
_ a B cosh(at) sinh(at)
P(t) = P(0) exp ot =P sinh(at) cosh(at)

Therefore £1(t) = £1(0) cosh(at) + £2(0) sinh(at) and £2(t) = £1(0) sinh(at) + £2(0) cosh(at).
Finally, as £3 = 0, we have £3(t) = £3(0). ]

4.4 Inhomogeneous Systems Associated to H

Associated to the system H1(£ = 2£1 are the three systems H(1)(®) = £1+ 1£1, h 21)(£) =
£1+£2+ 2£2and (£ = a£3+ 1E£2. The first two of these systems have simple integral curves

(in fact, lines), so we shall consider them here. The system h 3% is slightly more involved,
and is treated in section 4.4.1. Sections B.4.8, B.4.9 and B.4.10 list the Mathematica code
supporting the stability analysis of H(1), h 21) and H ~, respectively.

The equations of motion of the system H(1)(£) = £1+ 2£2 are

rel =0

r £2=0

{£3 = —£2(1 + £1).
The integral curves are £(t) = (c1,c2,c3—c2(1 + ct), for c1,c2,c3 GR. The equilibrium
states of H(1) are eIM= (n, 0,”) and eVM= (—,v,”), where n,v,* GR, v = 0.
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PROPOSITION. The equilibrium states e* and e5" are unstable.

Proor. Consider the states e]*, n # —1. Let U be a bounded open neighbourhood of e}*.
The integral curve p(t) = (n, 8, u—8(1+n)t) (for § > 0) satisfies ||p(0) —e]*|| = §. Therefore,
for any open neighbourhood V' C U of e]*, there exists § > 0 such that p(0) € V. However,
limys oo [[P(E) |2 = 0% 4+ 12 + lims_soo (1t — 8(1 4+ n)t)? = 0o, and so there exists t; > 0 such that
p(t1) ¢ U. Hence the states e]* are unstable.

Consider the states e] . Let U be a bounded open neighbourhood of e '*. The curve
p(t) = (8§ — 1,8, u — §t) is an integral curve of FI;D for any & > 0, such that |[p(0) —e] || =
V2 6. Hence, for any open neighbourhood V' C U of el_l’“7 there exists & > 0 such that
p(0) € V. Since limy_soo |[p(£)]|2 = (6 — 1)? + 6% + limy_ oo (1t — 6%1)? = o0, there exists t; > 0
such that p(t1) ¢ U. Therefore the states el_l’“ are unstable.

Consider the states e5”. Fix a bounded open neighbourhood U of e5*. We have that
p(t) = (6—1,v, u—vét) is an integral curve of FI;D for any § > 0. Furthermore, |[p(0)—e*|| =
§. Accordingly, for any open neighbourhood V' C U of eg*, there exists § > 0 such that
p(0) € V. As limi oo |[p()]1? = (8§ — 1)? + 2 + limy oo (1t — v61)? = o0, there exists t; > 0
such that p(t1) ¢ U. Therefore the states e are unstable. [ |

The equations of motion of the system Hél) (p) = p1 + p2 + 3p? are

p1 =0
p2 =0
P3 = —(p1 +p2 + p1p2).
We solve these to get the integral curve p(t) = (c1, 2, cs—(c1+ca+cqe2)t), for some ¢4, o, c3 €

R. The equilibrium states of ﬁél) are el = (1), — T 1), where n, € R, n# —1.

PROPOSITION. The equilibrium states el* are unstable.

PROOF. Fix a bounded open neighbourhood U of e]*. We have that p(t) = (77, §— %, " —

5(1 + m)t) is an integral of ﬁé” for any & > 0. Since ||p(0) — e7*|| = 4, for any open
neighbourhood V- C U of €l there exists § > 0 such that p(0) € V. Furthermore,
limg oo [P()1? = 1% + (8 — 715)% + limyssoo(p — 5(1 + 1)t)* = co. Thus there exists ¢ > 0
such that p(t1) ¢ U. It follows that the states el are unstable. [ |

4.4.1 The system Héloz

The equations of motion of the system Héloz(p) = aps + 3p} (@ > 0) are

P1 = ap2
P2 = api
P3 = —Pp1p2.

0

The equilibrium states of ﬁéya are ) = (0,0, 1), where p1 € R.

PROPOSITION. The equilibrium states e} are unstable.
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) ®=0

Figure 4.5. Typical configurations of H »

P roof. The linearisation of the vector field H is

0 a 0
dH £ (p) a 0 O
—p2 -p1 O

i =0, ®23 *a Sincea > 0, DH”(e”) has a
positive real eigenvalue. Hence the states ef are (spectrally) unstable.

Lastly, we derive the integral curves of Hg”. Typical configurations of the system H
are graphed in figure 4.5 (corresponding to co = 0 and co = 0, where co = C(p(0)) and p(-) is
an integral curve of Hg").

Proposition. Ifp(-) : (—e,e)  se(1,1)* is an integral curve of H* | then

t) = p1(0) cosh(at) + p2(0) sinh(at)
2(t) = p1(0) sinh(at) + p2(0) cosh(at)

3(t) = 2(Pi(0)2- Pi(t)2) + P3(0).

Proof. Let P(t) IEIZ((?) The differential equation P(t) 2 % P(t) has the solution
_ a B cosh(at) sinh(at)
PO =P0)exp ot =P sinh(at) cosh(at)

Therefore pi(t) = pi(0) cosh(at) + p2(0) sinh(at) and p2(t) = pi(0) sinh(at) + p2(0) cosh(at).
Let ho= H(ia(p(0)). Then ho = ap3(t) + *pi(t)2, and so p3(t) = a (ho- 2pi(t)2). Since
p3(0) = a(ho—!pi(0)2), we have ho = i(pi(0)2 + 2ap3(0)). Substituting this into the
expression for p3(-) gives the result. ]

4.5 Inhomogeneous Systems Associated to H2

We consider those inhomogeneous representatives associated to H2(p) = 2(pi + p2)2, namely
the systems H(2)(p) = pi + 2(pi + P2)2, H22)(p) = pi + P2+ 2(Pi + P2)2 and " (p) =
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5p3+%(p1 +p2)%. The systems H £2> and H§2) are considered here, as they have lines for integral

curves. The system H §2(5> is considered in section 4.5.1. The supporting MATHEMATICA code

for H£2>7 H§2> and H§26> is listed in sections B.4.11, B.4.12 and B.4.13, respectively.
The equations of motion of the system H£2)( ) =1+ 3(p1 + p2)? are

1=
P2 =0
ps = —p2— (p1 + p2)*.
The integral curves are p(t) = (c1, ¢2, 3 — cot — (01 +¢2)?t), for ¢y, ¢a, c3 € R. The equilibrium

states of ﬁf) are el = (n, 2(—1—2n—/An + 1), p) and eJ* = (n, 3(—1—2n+/AIn + 1), 1)
where n,u e R, n > —i.

PROPOSITION. The equilibrium states e* and eJ" are unstable.

PROOF. Let e = (n,¢, 1), where ¢ = —3(1 + 2+ 0/In+ 1) and o € {—1,1}. (We shall
consider both e]* and e]* in the same argument.) Let U be a bounded open neighbourhood
of €. The curve p(t) = (n,¢ — ad, u — (¢ — )t — (n + ¢ — ¢8)*t) is an integral curve of ﬁf)
for any 60 > 0, with ||p(0) — e™#|| = 0. Accordingly, for any open neighbourhood V' C U of

e there exists & > 0 such that p(0) € V. Furthermore,
Jim [[p()]P = (¢ = 08)> + 17 + lim [(c =00+ (n+ ¢ —08)*)t + 4]

Substituting for €, we have ¢ — 0§ + (7 + € — 06)? = (0 + /T + 47) > 0. Consequently,
limy—yo0 [[p(t)||* = co. Thus, there exists t; > 0 such that p(t1) ¢ U. Hence the states e]*
and eJ" are unstable. [ |

The equations of motion of the system H§2) (p)=p1+p2+ %(pl + p2)? are

p1 =10

P2 =0
Pz = —(p1 +p2)(1 + p1 + p2).
The integral curves are p(t) = (c1,¢2,¢c3 — (c1 + c2)(1 + ¢1 + e2)t), for ¢1,c9,¢3 € R. The
) are e — (n, —1 =, 1) and e} — (

equilibrium states of FIQ are e/ N, —n, i), where n, i € R.
PROPOSITION. The equilibrium states e* and el" are unstable.

ProoF. Consider the states . Fix a bounded open neighbourhood U of e3*. We have
that p(t) = (n,—6 — 1 —n,;u — 6(0 + 1)t) is an integral curve of FI§2) for any § > 0. Since
lp(0) — e7*|| = 4, for any open neighbourhood V' C U of e]*, there exists § > 0 such that
p(0) € V. Furthermore, as limy_oo |[p(t)||? = 7% + (5 + 1+ 1)% + limy—yoo (1t — 8(5 + 1)1)? = o0,
there exists t1 > 0 such that p(t1) ¢ U. Therefore the states el are unstable.

Consider the states es”. Let U be a bounded open neighbourhood of eJ*. The integral
curve p(t) = (7,6 —n,u — 6(8 + 1)t), where § > 0, satisfies |p(0) —ed*|| = 4. Thus, for
any open neighbourhood V' C U of el*, there exists § > 0 such that p(0) € V. However,
limy oo [[P(O|1* = 72 + (8 —1)2 + limy_ oo (1t — 8(8 +1)t)? = o0, and so there exists ¢; > 0 such
that p(t1) ¢ U. Therefore the states eJ” are unstable. |
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Figure 4.6: Typical configurations of H:g%

451 The system h3

The equations of motion of the system "~ (p) = dp3+ 2(pl+ p2)2 (d = 0) are
pl= dp2
p2 = dpl
p3 = —{pl + p2)2.

The equilibrium states of H3j are ej = (0, 0, p), where p e R.

4.5.3 Proposition. The equilibrium states ej are unstable.
Proof. The linearisation of the vector field Hr@ is

0 d 0
d 0 0
—2(p1 + p2) —2(pl +p2) O
The linearisation at ej has eigenvalues Al= 0, A23= +d. Asd= 0, it follows that d H ( ej9
has a positive real eigenvalue. Hence the states ej are (spectrally) unstable. ]

The last step is to determine the integral curves of H&%. There are several different
configurations of the system (graphed in figure 4.6), depending on the initial conditions of
the integral curve. (In figure 4.6, we have co = C(p(0)), where p(-) is an integral curve of

H(2))
454 Proposition. Ifp(-) : (—e,e) * se(1,1)* is an integral curve of H32, then
p = p1(0) cosh(d1) + p2(0) sinh(d1)
PR = p1(0) sinh(d1) + p2(0) cosh(d)
D = 2 [(p1(0) + p2(0))2—(p1(D) + p2(1))2 + p3(0).
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0 o

PrOOF. Let P(t) = {p (t)} The differential equation P(t) = LS 0

o) } P(t) has the solution
0 9 cosh(dt) sinh(dt)
P(t) = P(0) exp ({5 O} t) =P Linh(ét) cosh(ét)} '

Therefore p;(t) = p1(0) cosh(dt)+p2(0) sinh(dt) and pa(t) = (O) s1nh(5t) +p2(0) cosh(dt). Let

ho — Hig(p(t)) = 0pa(t) + 5(p1(t) +pa(8))*. Then pa(t) = § [ho —(pa(t) + pa(t))7]. Since
p3(0) = % [ho — 2(p1(0) + p2(0))?], we have ho = 3 [(p1(0) -+ p2(0))? + 26p3(0)]. Substituting
this into the expression for ps(-) gives the result. [ |

4.6 Inhomogeneous Systems Associated to I3

The inhomogeneous systems associated to Hs(p) = %p% are Hf’)(p) = p1 + %p§7 H§3> (p) =
p1+p2 + %p% and Hég)(p) = %pg The latter system is exactly the homogeneous system Hs,
which we have dealt with in section 4.2.1; we shall not duplicate that effort here. The system
H £3> (considered in the following section) will turn out to be the most involved of the systems
we investigate, and requires the use of Jacobi elliptic functions for integration. (See section
A6 for more on the Jacobi elliptic functions, and, in particular, the reduction of integrals to
the standard form.) Furthermore, it turns out that the vector field H §3> is not complete (i.e.,
the domain of every integral curve cannot be extended to R). The integral curves of HéS)
may be integrated in terms of elementary functions; this system is treated in section 4.6.2.
Supporting MATHEMATICA code for the systems H §3> and HéS) may be found in section
B.4.14 and section B.4.15, respectively. (This code verifies the stability calculations, including
finding the equilibrium points of each vector field. Furthermore, code supporting the reduction

3)

to standard form for several cases of H;"’ is also provided in section B.4.14).

4.6.1 The system Hf’)

The equations of motion of the system H £3> (p)=pm + %p% are

P1 = P2ps3
P2 = P1P3
P3 = —Pa.

7(3)

The equilibrium states of H,” are e/ = (,0,0) and €5 = (0,0,v), where v, u € R, v #£ 0.

PROPOSITION. The equilibrium states e are stable if 1 > 0, and unstable, otherwise. The
equilibrium states ey are unstable.

ProoF. Consider the states e‘lﬂ w>0. Let Hy = )\OHi ) + A1C, where A\g = g and A\ = —1
We have
u—p1
dH}\(p) - P2 , d2H>\(p) - diag(_lv 1, ,U)'
Ups
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Thus dHy(el') = 0. Moreover, W = ker dH@(e‘f) NkerdC(ef) = span{F}, E3}. Conse-
quently, as g > 0, the restriction d®Hy(ef)|wxw = diag(1, ;1) is positive definite. Hence the
states e}, > 0 are stable.

Consider the state €J. Let U be an open bounded neighbourhood of €J. We have that

p(-) 1 (—00,0) = se(1, 1), t— (=2, %, 2) s anintegralcurveofﬁ<3>. Indeed, p1 = 4 = paps,
1 T

=T
2
P2 = — = pop3 and P3 = — % = —pa. We have limy,_o [[p(t) — €9 = limi——co 4<ttf2> = 0.

Accordingly, for every neighbourhood V' C U of €Y, there exists t; < 0 such that p(t;) € V.
Furthermore, lim;— ||p(t)|| = oo, and so there exists 2 < 0 such that p(t2) ¢ U. Therefore
the state € is unstable.

Consider the states ef, ¢ < 0. Fix a bounded open neighbourhood U of €}. The curve
p(-) defined componentwise as

pi(t) = p [1 4 2 csch®(v/=pit)]
palt) = —2pcoth(y/=jit) esch(y/ i)
pa(t) = 2v/—=p csch(v/—pit).

is an integral curve of H 53). Indeed,

P1 = —4uy/—f coth(yv/=pt) esch?(y/=(i't) = paps
P2 = 2/ esch(v/=ft) [coth?(v/='t) + esch®(v/=pt)] = pips
p3 = 2pcoth(y/—pt) esch(y/—it) = —po.

Furthermore,

. lim ||p(t) —e}||* = t_l}m Apesch? (/=g t) [pesch®(y/=@t) + peoth?(/=pt) — 1] = 0.
——00 -0

Thus, for every neighbourhood V' C U of Y, there exists t; < 0 such that p(t1) € V. However,
since

PH(I) Ip(t) — ek||* = %ir% Apresch?(/=pt) [pesch?®(V=t) + peoth?(V=pt) — 1] = oo
— —

there exists 2 < 0 such that p(t3) ¢ U. Hence the states e}, 11 < 0 are unstable.

Consider the states e5. The linearisation of the vector field H £3> is

L3) 0 ps p
DH; P=1ps 0 m
-1 -1 0

The linearisation at e has eigenvalues Ay = 0, Ay 3 = £v. Since v # 0, DFIiP’)(eg) has a
positive real eigenvalue. Hence the states €5 are (spectrally) unstable. u

We now proceed to find the integral curves of H 53). Let p(-) be an integral curve of i) £3>

and let co = C'(p(0)) and ho = Hi?’) (p(0)). We consider three main cases depending on the
sign of ¢y. For the cases ¢y > 0 and ¢p = 0 we have several further subcases. (Table 4.1 lists
the qualitative breakdown of cases; figure 4.7 plots typical configurations corresponding to
these cases.) Consider the case ¢y > 0. The level sets {p : HiS) (p) =ho} and {p: C(p) = co}
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are tangent when the gradients of H £3> and C are parallel, i.e.,

1 2Ap
VHED (p) = avC(p) = 0] = | —2X\ps
D3 0

(Here A € R.) If A = 0, then comparing the first components we have 1 = 0, a contradiction.
Thus A # 0 and so po = p3 = 0. Therefore h3 = p? = co, i.e., ho = /o or hg = —\/cp.
This motivates the (sub)cases ho > /cg, ho = \/co, —/c < ho < /', ho < —/co and
ho = —\/cqg . Setting ¢y = 0 yields the (sub)cases hg < 0, hg = 0 and hg > 0.

‘ Conditions ‘ Designation ‘

ho > \/co Case I-a

ho = /o Case I-b

co>0 | —\/cg < hp < /co | Case I-c
ho = —/co Case I-d

ho < —\/co Case I-e
ho >0 Case Il-a

co =10 ho =20 Case I11-b
ho <0 Case II-c

‘ co <0 ‘ Case I11

Table 4.1: Qualitative breakdown of cases for I £3>

4.6.1.1 Case I: ¢g >0

4.6.1.1.1 Case I-a: hy > \/co'. Using the equation of motion p; = pops and the constants
of motion ho = p1(t) + 3ps(t) and co = p1(t)? — Pa(t)?, we get

Pt = (p2p3)® = (pT — co)(2ho — 2p1). (4.6.1)

We shall reduce this equation to standard form before integrating. (Section A.6.2 discusses
the reduction to standard form.) Let X; = ﬁ% —cgp and Xo = 2hg —2p1. Then X7 — A X5 isa
perfect square for A\; = —(8 + ho) and Ag = & — ho, where § = \/hE —co. (As hg > Vo, we
have §, A1, A2 € R.) ACCOI"dingly7 X1 —MXe = (]51 + )\1)2 and X7 — M Xe — (]51 + )\2)2. Thus
we have

XX = [A(p1 + A2+ Bi(py + )\2)2] [Aa(p1 + A2+ Bo(py + )\2)2]

where Ay, Ay, By, By are given by

1 ho 1 ho 1 1
A1§<1_T>7 B1§<1+T>7 Ay = — By = ——.
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Take the square root of both sides in (4.6.1). After separating variables, we get the following

equati(m:
dp dp
P1 P1 ) It

V(P —co)(2ho —2p1) VX1 X

for some o1 € {—1,1}. By the preceding calculations, this is

dp:
VIAL(L 4 A%+ Bi(pr + M) [A2(p1 + A1) + Ba(p1 + A2)?]

- = oydt. (4.6.2)

We have (84 ho)(6 —ho) = 62 —h§ = —co < 0. As §, ho > 0, it follows that § -+ ho > 0, whence
0 —ho < 0. Thus A1Ay = %@ < 0. Make the change of variables u = %. Equation
(4.6.2) then becomes

du T = 01()\2 — )\1)\/ —A1A2t =01V ho —4dt. (4.6.3)
\/—(u2 + 51 (u? — 1)

Here % = gfzg < 0. Since pi(t)? > pi(t)? — p2(1)* = co, we have pi(t) < —\/cy or
p1(t) > /co'. (Each situation will give rise to different integral curves.)

Consider the case p1(t) < —/co. Let a = 1/—% ,b=1and z = %Eg:\\; Integrating
both sides of (4.6.3), we have

’ d
/b V(a? — u2§L(u2 b2y = o1v/ho = 3 dt. (4.6.4)

As hg+0>hy— 68 >0, we have a = ngg > 1 =10b. Apply the integral formula (A.6.7) to

the left-hand side of (4.6.4). We have, for b <z < q,

l _1 ﬁl(t) + Ay a? —1 B
and <p1(t)+)\27 p =o1vVho—6t

]51(t)+)\1 a?—1
= — <~ —nd ho —6t,— | .
P1(t) + Ao neavi a

(As nd(-, k) is even, we can eliminate the o1.) Let Q@ = avho—0 = 0+ ho and k =
vaiol 5B K = (/228 (Since § < ho we have 20 = § + 8 < & + ho, whence k < 1
thus 0 < k < 1.) Substituting for A1, Ay and solving for p;(t), we get

iy (8= ho)nd(Q, k) + (8+ho) (6 -+ ho) dn(Q2t, k) + (5 — ho)
pit) = 1 —nd(Qt, k) B dn(Qt, k) — 1 '

(We have rewritten the expression in terms of the basic Jacobi elliptic function dn(-, k).)
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Using the Casimir equation co = p1(t)? — p2(t)?, we find

) 8 + ho) dn(Qt, k) + (6 — ho) \ 2
Ba()? — (( )dn((Q : k))_ ( ))
(84 ho)?dn®(Qt, k) — 2co dn(Q, k) + (5 — ho)?
- (dn(Q, k) — 1)?
(8 + ho) dn?(Qt, k) + (8 — ho)
(dn(Qt, k) — 1)2
dn?(Qt, k) — (k)2
(dn(Q, k) — 1)
n?(Qt, k)
(dn(Qt, k) — 1)2
5 cn?(Qt, k)
(dn(Qt, k) — 1)

— o

=24

= 25(8 + ho)

— 28(8 + ho)k?

(We have used the square relation (A.6.6) in the penultimate step.) Taking the square root

of both sides yields
en(Q, k)

dn(Q2, k) —
for some o € {—1,1}. Lastly, we use the equation ho = p1(t) + 3ps(£)? to find an expression
for ps(-):

p2(t) = 0220

]53(15)2 = 2hy — 2P (t)
dn(Qt, k) +1 dn(Qt, k) —1
dn(Qt, k) — 1 dn(Qt, k) — 1
dn?(Qt, k) — 1
(dn(Qt, k) — 1)?

sn?(Qt, k)
(dn(Q2t, k) — 1)2°

= =20

—26

— 25Kk?

(We have used the square relation (A.6.4) in the last step.) Take the square root of both
sides. The result is

sn(, k)
fagrk—(gt =1

for some o3 € {—1, 1}. Therefore we have the following (prospective) integral curve:

(5 + ho) dn(Qt, k) + (5 — ho)

pit) = dn(OL k) — 1
pa(t) = 0225%
sn(Qt, k)
— Ugrkw

We show that p(-) is an integral curve of Hi ) if and only if o5 = 3. By proposition 4.1.2,

it suffices to show that p; = pops if and only if oy = o3 (since we know p(-) satisfies the
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equations for the constants of motion). Indeed,
. N 20k2Q02 en(Qt, k) sn(Qt, k) 02032V2 6V ken(Qt, k) sn(Qt, k
(dn(Qt, k) — 1) (dn(Q2t, k) — 1)

 20k(kQ2 — 0205V/28 ) en(Qt, k) sn(Q, k)
- (dn(Qt, k) — 1)2 '

Now kQ —0203vV20 = V26 (1 —0203), and so p1 = pops if and only if oo03 = 1, i.e., 09 = 03.
Thus (1) = Hi” (p(1)).

Finally, since dn(Qt, k) = 1 at the points %7 n € Z (where 4K denotes the period of
sn(-, k)) it follows that p(-) is only defined on the open intervals (%, 2<ngl>K)7 n € Z. (This

implies that the vector field H £3> is not complete.)

We now make an explicit statement regarding all integral curves of H £3> for this case.

4.6.2 PROPOSITION. Letp(-): (—¢&,) — se(1,1)* be an integral curve offli3> such that H£3> (p(0)) =
ho, C(p(0)) = co >0, hg > \/cg and p1(0) < —/cq'.

(i) There exist to € (0, %) and o € {—1,1} such that p(t) = p(t+to) for everyt € (—¢,¢),
where p(-) : (0,25) — se(1,1)* is defined by

(0 + ho)dn(Qt, k) + (6 — ho)

nit) = an(QL k) — 1
_ en(Q, k)

— 2 _—
P2) =020 e 1
) 1, k)

_ 2Q Sn( 9 )
Ps(t) = ok o Ty 1

Here AK is the period of sn(-, k), § = \/hE —co, Q@ = Vho +0 and k = h?ié .

(i) t— p(t+to) is the unique maximal integral curve starting at p(to).

ProoF. (i) Let 0 = —sgn(p3(0)) € {—1,1}. (If p3(0) = 0, then hy = p1(0) < —,/c0’ < 0,
a contradiction.) We have sgn(pa|o,x/0)(t)) = o and sgn(pz|(x/q2x/q)(t)) = —o. Moreover,
limy 0 p2(t) = —ooo and lim;_,op/q P2(t) = ogoo. Therefore, since pa(-) is continuous, there
exists to € (0,25) such that p(to) = p2(0). Then

P1(to)? = co + Palto)® = co + p2(0)? = p1(0)2.

But p1(to) < —y/co and p1(0) < —./cg, so sgn(p1(to)) = sgn(p1(0)); it follows that p1(tg) =
p1(0). Finally, we have

Pa(to)® = 2(ho — p1(to)) = 2(ho — p1(0)) = ps(0)*.

Since sgn(ps(to)) = —o = sgn(ps(0)), we then have p3(to) = p3(0). Therefore, as t — p(t +to)
and t — p(t) are both integral curves of ﬁf’) passing through the same point at { = 0, they
both solve the same Cauchy problem, and hence are identical.

(i) We show that the domain of p(-) is no larger than that of t — p(t+1p). Let s € (—¢, ).
By (i), p(s) = p(s + to), and so s + ty € (0,25). Consequently, s € (—to, 2 — 1), i.e.,
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(—e,2) C (—to, 2% —1o). Therefore the domain of p(-) is contained in that of ¢ — p(t + to).
Uniqueness now follows from the maximality of ¢ — p(t 4 to). [ |
Consider the case p1(t) > /co . Let a = — ,b=—1land z = Et;J”\l Integrating

both sides of (4.6.3), we get

¢ d
/m \/(0,2 — UQII)L(U2 _ b2) =01 \/m dt.

From the case p1(t) < —,/cy" we have that —b < —a. Furthermore,

[, 7o== /
—z /(a2 —u?)(u? V(a2 — u2 —b2)
o1V ho —

Hence, for —b < —x < —a, we can apply the formula (A.6.8) for the integral on the left-hand
side. This yields

2 _
Lot (l pit) tA - va 1)—01 ho — 0t

a “h(t) + Ao a
_ 5

= pfl(t)+Al =adn | —a ho—ét,—ia ! .
pi(t) + Ao a

(Using the evenness of dn(-, k), we can eliminate the ¢1.) Let Q = —avho —8 = vhg+9
and k = — Y=L — 1/h02i6 k= ZO =3 Solving for 7 (t), we get

a

o K\egdn(Qtk) K (ho +0) K dn(Qt,k) +1
pil) = dn(Qt, k) + k' A dn(Qt, k) + k'

Using the Casimir equation p1(t)? — p2(t)? = co, we have

p2(t)? = p1(t)* = co
K dn(Qt, k) + 1
AT (Qt, k) + K
cok?(1 — dn?(Qt, k))
T (dn(Qt k) + k)2
cok* sn?(Qt, k)
T (dn(Q k) + K2

(We have used the square relation (A.6.4) in the last step.) Therefore, taking the square root

of both sides, we get
9 sn(2t, k)
P2(t) = o2k /e dn(QL, k) + K

for some o9 € {—1, 1}. In fact, since sn (Qt+ 25(, k) = —sn(Q, k), we assume o5 = 1. Lastly,
differentiate the equation hg = p1(t) + 1ps(t)? on both sides, to get 0 = p1(t) + pa(t)ps(t).
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Hence,
_ n@) i)
t) = —= ==
Palt) ps(t)  p2(b)
(Ve k*Qen(Qt, k) sn(Qt, k) k' +dn(Qt, k)
B (dn(Qt, k) + k)2 k2\/cq sn(Qt, k)
en(Q, k)
K +dn(Qt, k)
Therefore, we have the following (prospective) integral curve:
_ K dn(Qt, k) +1
t p—
P = Ve on Ry T R

N 2 sn(Qt, k)
Pll) = KN o Ry 1

_ — cn(Q, k)
sy 2 —_— .
psll) = V20 e

We verify that p(t) = Flfg)(p(t)). By proposition 4.1.2, it suffices to show that ho = p1(¢) +
%pg(tﬂ (This is because we know C(p(t)) = constant, and p; = paps follows from the
calculations we have done to get an expression for p3(-).) Indeed,

= kV25

ho — pi(t) — gps(t)?
ok2en?(Qt, k) + (dn(Qt, k) + k') (/eo — hok! + (K \/ég — ho) dn(t, k))
T (dn(Qt, k) + k)2
o S(dn®(Q, k) — (K)?) -+ (dn(Qt, k) + KD (Veo — hok! + (K \/eg — ho) dn(Qt, k)
(dn(Qt, k) + k)2
 (ho— K'\Jeg —8)dn(Qt, k) — /oo + K (ho + 5)
dn(Qt, k) + K’

We have —\/cg + k'(ho +8) = ho — k' \/ecg — & = 0, and so ho = p1(l) + 2ps(1)?.

p(+) is an integral curve of ﬁf’). Moreover, since dn(2t, k) + k' > 0 for every ¢ € R we have

that p(-) is defined over R.

Lastly, since dn(Q, k) and en(€, k) are even and sn(Qt, k) is odd, it follows that p1(-),
p3(-) are even and pa(-) is odd.

We now make an explicit statement regarding all integral curves of H £3> for this case.

Therefore

4.6.3 PROPOSITION. Letp(-) : (—¢,2) = se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =
2K 2K

ho, C(p(0)) =co > 0, hg > /o and p1(0) > Jeg. There exists Lo € [—ﬁ, W} such that
p(t) = p(t +to) for every t € (—e,2), where p(-) : R — se(1,1)* is defined by

_ K dn(Qt, k) +1

Pl = Vo o 1 R

DN sn(Qt, k)

Pa(l) =Ko T

en(Q, k)
kF n(Q, k) + K

Here AK is the period of sn(-, =hE—co,Q=Vho+0,k= ‘/h—+6 and k' =
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PROOF. Let w = /2hg — 2./¢g . From the constant of motion ho = p1(t) -+ Sps(t)? we have
pa(t)? = 2ho — 2p1(t) < 2hp —2/c0 = w?, ie., —w < p3(t) < w. Similarly, —w < Pa(t) < w.

Moreover,
k26 20
p3(0) = = . = y/2ho —2\/e0 =w
P3(0) = T Vo =0 + vVho 10 0= 2ve
and ps (&) = —lir—‘/T,j = —w. Therefore, since ps(-) is continuous, there exists ¢; € [0, 2&]

such that ]53(151) = pg(()). Then ]51(151) = hy — %ﬁg(t1)2 = hy — %p3(0)2 = pl(()). Lastly,
P3(t1)? = pr(t1)® — co = p1(0)* — co = p2(0)?,

and so p2(t1) = £p2(0). Since p1(-) and ps(-) are even and pu(-) is odd, we have pi(—t1) =
]51(151)7 ]52(—151) = —]52(151) and ]53(151) = ]53(151). Hence, there exists g € [—%,%] (i,€,7
to = t1 or to = —t1) such that p(to) = p(0). Therefore, as t — p(t +to) and ¢ — p(t) are both
integral curves of H §3> passing through the same point at { = 0, they both solve the same

Cauchy problem, and hence are identical. |

4.6.1.1.2 Case I-b: hg = \/co. We have p1(t)? > pi1(t)? — p2(1)? = co, and so either
p1(t) < —/co or pi(t) > /co'. We claim that the latter situation leads to a constant integral
curve. Indeed, suppose p1(t) > \/eg = ho. Then p3(t)? = 2hg — 2p1(t) < 0, i.e., p3(t) = 0.
Then p1(t) = ho — 2ps(t)? = ho and pa(t) = £/p1(H)2 —co = £/h3 —co = 0. Hence
p(t) = (ho, 0,0), which is an equilibrium point of ﬁfg). Thus we suppose p1(t) < —\/co .

Consider the integral curve of proposition 4.6.2. Denote by ¢(-) the curve obtained by
limiting (from above) hg — /co’. Then

ql(t) ~ lim ((5 + ho) dn(Qt, k]) + ((5 — hO) — hy [1 _ esc? (\/%tﬂ

 ho—v/eo dn(Qt, k) — 1
. en(Q, k)
qQ(t) = hog{l}c_o‘ 020 W = —0'2h0 cot <\/Et> CSC <\/%t>
sn(Q, k)

gs(t) = lim ok?Q——~ 2 02% cse (\/Et).

ho— /20 dn(Qt, k) —1

(If one takes the limit hy — /cg of the integral curve in proposition 4.6.3, the result is the
constant integral curve p(t) = (ho, 0,0).) Let p(t) = q(t — ﬁ) Thus we have the following
(prospective) integral curve:

p1(t) = —hg [1 + 2tan? (\/%t)}
pa(t) = —a2hg sec (\/%t) tan (\/%t)
p3(t) = 20+/ho sec (\/Et).
We have that p(t) = HiS) (p(t)), i.e., p(-) is an integral curve of Flfg). Indeed,

Pi(t) = —4hov/ho tan (v/ho t) sec® (\/hot) = pa(t)ps(t)
pa(t) = —02ho\/fTO sec (\/hTﬂf) [sec2 (\/fTot) + tan? (\/hTﬂf)} = p1(t)ps(t)
Pa(t) = a2ho sech (V/ho t) tan (vV/ho t) = —pa(t).
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Lastly, since cos (v/ho t) = 0 at the points S (2n— 1) and F 2n+ 1), n € Z, it follows
that p(-) is only defined on the open intervals <\/fTo (2n— 1), L T (2n+3)),n e

7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

PROPOSITION. Let p(-) : (—&,e) — se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =
ho, C(p(0)) = co >0, ho = \/co' and p1(0) < —\/cq.
(i) There exist to € (—%, o) and 0 € {—1,1} such that p(t) = p(t + to) for every t €
(—e,2), where p(-) : (=%, &) — se(1,1)* is defined by
pi(t) = —Q* [1 + 2 tan® ()]
P2(t) = —02Q% sec(Qt) tan ()
p3(t) = 20Q sec(Q2t).

Here Q = hy .

(#) t— p(t+to) is the unique maximal integral curve starting at p(io).

PrOOF. (i) Let 0 = sgn(ps(0)) € {—1,1}. (If p3(0) = 0, then hy = p1(0) < —\/cg, a
contradiction.) We have sgn(pa|(_r/20),0)(t)) = o and sgn(pa|(o x/(20))(t)) = —o. Moreover,
lim;_, 7 /20) P2(t) = ooo and lim;_, /20 pg( ) = —ooo. Therefore, since po(-) is continuous,
there exists {9 € (=355, 5) such that pg(to) = p2(0). Then

P1(to)? = pa(to)® + co = p2(0)* + co = p1(0)?,
and since p1(to), p1(0) < — /¢ it follows that p1(to) = p1(0). Moreover,
p3(to)® = 2(ho — p1(to)) = 2(ho — p1(0) = p3(0)*.

Since sgn(ps(to)) = o = sgn(ps(0)), we have ps(to) = p3(0). Therefore, since t — p(t) and
t — p(t + to) are both integral curves of FI;S) passing through the same point at ¢ = 0, they
both solve the same Cauchy problem, and hence are identical.

(i) We show that the domain of p(-) is no larger than that of ¢t — ﬁ(t+to) Let s € (—¢,¢).

By (i), p(s) = p(s +to), and so s +to € (—55, 55)- Consequently, s € (=55 —t0, 55 —to), i.€
(—¢,€) € (=35 10, 35 —to). Therefore the domain of p(-) is contained in that of t = p(t+to).
Uniqueness now follows from the maximality of ¢ — p(t + to). [ |

4.6.1.1.3 Case I-c: —./co < hg < \/eg'. From p; = paps and the constants of motion
hg = ﬁl(t) -+ %ﬁg(t)2 and ¢y = ]51(15)2 — ]52(15)27 we have

Pt = (D2s)® = (D] — co)(2ho — 2p1)
= (1 + Ve ) (p1 — v/ea ) (2ho — 2p1). (4.6.5)

This must be reduced to standard form before we can solve it (see section A.6.2). Let
X1 =p — \/T) and Xo = (p1 + \/—)(Qho —2p1). Then X1 — AX5 is a perfect square

for )\1 = m and )\2 = W7 where § — \/2(00— \/aho) (AS —\/E <
ho < J/eo we have cog — \/eo ho = /o (/Co — ho) > 0; thus 4, A1, A2 € R.) Accordingly,
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—MXy = (]51 — 7’1)2 and X7 — X5 = (ﬁl — 7’2)27 where vy = \/a —d and ry = \/a + 9.
Hence
X1Xo = [A1(p1 — 1) + Bi(pr — r2)?] [A2(p1 — 71)* + Ba(p1 — 72)?]

where
P 1 1 1
T T ST VS 2T N
Take the square root of both sides in (4.6.5). After separating variables, we have
dpi ~dp
— — — — T = (Tldt
Vet ve) b= veg)2ho = 2p1) - VXX,
for some o1 € {—1,1}. By the preceding calculations, this is
b
P == (Tldt.

VIAL (1 = 11)% + Bi(pr — r2)?] [A2(p1 — r1)2 + Ba(p1 — 12)?]
Since hg—20—3 /G5 < /e —20—3./cg — —2(,/a 1) < 0, we have A; Ay — 20203V o

Make the change of variables u — gi L. The result is

d 1 1
u - = o1(ry —r2) —A1A2t:_01§ - dt.
VD ) Vo

Since 52 = j\\—f <0, leta=1,b= j\\—f <1land z = %. Now integrate both sides:
/C” du 1 1
P = =014+
e /(a2 —u?)(u? — b?) 2V A

We use the integral formula (A.6.8) for the left-hand side. Under the constraint b < x < a,
the result is

ot (220, m) Ny

pit) —r2 A2
) —rm ra—
R pi(t) —r2 ( L= )

(As dn(-, k) is even, we can eliminate the —o1.) Let Q = 2,/— /\2 = 1./6\/c0 —2ho + 48

andk:\/l—b2:21/m7 \/3\/_‘ Z§+;§ ASb<1WehaVeO<k<1)

Solving for pi(t), we get
~rodn(Q, k) —r1 (04 /eo ) dn(Qt, k) + (6 — /eo)

pit) = dn(Qt, k) —1 dn(Qt, k) —
Next, we use the Casimir equation co = p1(¢)? — p2(t)? to find pa(t):
p2(t)? = p1(t)* — co
0+ o) dn(Qt, k) + (6 — va)\?
- dn(Q, k) — 1 0

o (6 +2/co)dn®(Qt, k) + 262dn(Qt, k) + 5(5 — 2,/c0)
[dn(Q, k) — 1] '
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We have §(6 +2,/¢g) + 6(8 — 2\/g) = 262, and so
[6(6 + 2/20) dn(Qt, k) + 6(6 — 2/c0)] [dn(Qt, k) + 1]

_ 2
Pa(t)? = [dn(Qt, k) — 1]
() + G ldn(@t k) + 1]
=0(0+2/e0) [dn(Qt, k) — 1] |

We claim that géﬁ —k'. Indeed,

(6= 2/ )2(3 /a5 — ho + 26)
9@ (wa—ho—z\/m) <3¢a—ho+2\/m>
=2/ (ho + /i )?

Similarly,

(6 +2,/0)%(3/co — hg — 20)

=2./co <3\/a —ho +24/2(co — \/aho)> (3\/6 —ho —24/2(co - \/Eho)>

= 2/eq (ho + /eg)”.
2
Consequently, (g:j\/‘/g) = ;’\/\/2:2:7%132 = (K% As (0 —2/@)(6 +2/c0) = —2(co +
Ve hg) < 0 and 6 +2,/cg > 0, it follows that 6 — 2,/co’ < 0, whence g;;\/\/z:g = —K.

Therefore
[dn(Qt, k) — K] [dn(Qt, k) + 1] dn(Qt, k) + K/
[dn(Qt, k) — 1)? “dn(Qt k) + K
[dn?(Qt, k) — (K)2] [dn(Q, k) + 1]
[dn(Qt, k) + K] [dn(Qt, k) — 1]?
k2 cn?(Qt, k) [dn(Qt, k) + 1]
[dn(Q, k) + K/ [dn(Qt, k) — 12

pa(t)* = 8(8 +2/cq)

—5(5 +2ya@)

= 5(5 +2+/a0)

(We have used the square relation (A.6.6) in the last step.) Taking the square root of both
sides, we get

_ en(Qt, k) /dn(Qt, k) + 1
1) = o2k/6(6 +2/c
Pa(l) = oah [0 + 2V ) e k) — 1
for some o2 € {—1,1}. Lastly, we use the equation ho = p1(t) + 3ps(t)? to get an expression
for p3(-):
]53(15)2 = 2hy — 2]51(15)
2[(6 + /eo — ho) dn(Qt, k) + (6 — /a0 + ho)]

dn(Qt, k) — 1
d—./co t+h
dn(Qt, k) + H\/\/C:%}

=20+ Ve —ho) e - 1
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We claim that ngﬁJng k’. Indeed,

(5—\/a+ho) (3\/7 —ho+25)

= (\/eo — ho) (3\/6 —ho —24/2(co — \/Eho)> (3\/6 —ho+24/2(co — \/Eho)>

= (Veo — ho)(y/eo + ho)?

and

(6 + \/co — ho)*(3\/co — ho — 26)

(\/C——ho)<3\/c——ho+2\/2(60—@ho))(3\/C——h0—2\/2(60—\/ah0)>
= (Vo —ho)(v/eg + ho)®.

2
Thus (g;\/\/z:igﬂig) = (K')2. Since (§—/c0 +ho)(6+/cod —ho) = co—h3 > 0 and §+/cqg —ho >

o=y tho
0, we have ST —ho k’. Hence,

dn(Qt, k) + & dn(Qt, k) —
IR =T dn(o, k) =
[dn(Qt, k) + K] [dn(Qt, k) — 1

pa(t)? = —2(6 + /eo — ho)

—2(5 + \/a — ho)

[dn(Qt, k) — 1]
[dn(2, k) + K'1[1 — dn(Q, k)]
=2(0+ /cg — I .
0+ Vo = o) [dn(Qt, k) — 1)
Taking the square root of both sides yields
B ' /dn(Qt, k) + K /1 —dn(Qt, k)
b= o3 \/2(5 Ve = ho) dn(Q, k) — 1

for some o3 € {—1,1}. Thus we have the following (prospective) integral curve:

()~ VAR 1 (- )
Pty = dn(QL, k) — 1

(Q Q
D) — ook /—W &) en(Q, k) +/dn(Qt, k) +

dn(Q4, k) + K [dn(Qt, k) —1]

' /dn(Qt, k) + k' \/1—dn Qt, k)
= 2 — .
5(1) = 03/200 1 V& — ho) An(Q, k) —
We will show that p(-) is an integral curve of Flig’) if and only o2 = 03. By proposition 4.1.2,
it suffices to show that p; = pops if and only if oy = o3 (since we know p(-) satisfies the

equations of the constants of motion). Indeed,
. N 26Qk? en(Qt, k) sn(Qt, k)
t) — pall t) =
p1(t) — p2(1)ps(t) (k) — 1P
0203k \/20(6 +2.,/e0)(6 + \/eo — ho) en(Q, k)4/1 — dn?(Q, k)
B [dn(Qt, k) — 1)2
[0203\/5 0 +2./c) /206 + \Jeo —ho) — 25(2] en(Q, k) sn(Q, k:)
[dn(Q, k) — ]
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We have
02031/ 20(5 +2/@)(5 + \/& — ha) — 200
= 0203\ /4/G5 (/G — ho) (3y/@ — ho +28) — 6\/6/g — 2ho + 40
= 0205\ A4/E5 (V@ — ho) (3@ — ho +28) — \/(2¢0 — 2/ ho)(6/25 — 2ho 1 46)
= (0203 — D4/ (/& — ho)(3+/25 — ho +20)

and this is zero if and only if o903 = 1, i.e., 02 = 03. In this case, we have p(t) = Flig)(p(t)).
Finally, since dn(Qt, k) = 1 at the points %7 n € Z (where 4K denotes the period of

sn(-, k)), it follows that p(-) is only defined on the open intervals (%, W% n € Z.

7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

4.6.5 PROPOSITION. Letp(-) : (—¢,2) — se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =
ho, C(p(0)) = co >0 and —\/cg < ho < \/cqg .
(i) There exist to € (0, %) and o € {—1,1} such that p(t) = p(t+to) for everyt € (—¢,¢),
where p(-) : (0, %) — se(1,1)* is defined by

= OBV 46— )
i) = dn(Qt, k) —

7 okW en(Q, k) /dn(Qt, k) +

dn(2, k) + k' [dn(Q2t, k) —1]

- A, k) + K /T — dn(Q k)
t)fa\/2(5+\/a—h0) LT .

Here 4K is the period of sn(-, k) and

5 = \/2(eo — V/eg ho) Q=1,/6@ —2h + 45
4 3./co —hg—20

(#) t— p(t+to) is the unique maximal integral curve starting at p(io).

PrROOF. (i) Since pi(t)? > p1(t)? — p2(1)* = co, we have pi(t) < —./é or pi(t) > /e
If pi(t) > /co, then hg > ho — %pg(t)2 = p1(t) > /co, which is a contradiction. Thus

1) < —\/.

Let o = sgn(ps(0)) € {—1,1}. (If p3(0) = 0, then hy = p1(0) < —,/cg, a contradiction.)
We have sgn(pz |0,k /q)(t)) = o and sgn(pa|(x/0,2k/0)(t)) = —o. Moreover, limy o p2(t) = oo
and lim;_,px /o P2(t) = —ooo. Therefore, since pa(+) is continuous, there exists to € (O, %)

such that p2(to) = p2(0). Then

P1(to)? = co + palto)® = co + p2(0)? = p1(0)2.
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As p1(to), p1(0) < —\/co, we have pi(tg) = p1(0). Lastly,
Pa(to)® = 2(ho — p1(to)) = 2(ho — p1(0)) = ps(0)*.

Since sgn(ps(tp)) = o = sgn(ps(0)), it follows that p3(to) = ps(0). Therefore, as t — p(t + to)
and t — p(t) are both integral curves of ﬁf’) passing through the same point at £ = 0, they
both solve the same Cauchy problem, and hence are identical.

(i) We show that the domain of p(-) is no larger than that of t — p(t+1p). Let s € (—¢, ).
By (i), p(s) = ﬁ(s + 150)7 and so s+ 1ty € (O,%). Consequently, s € (— to, % — to)7 ie

(—e,8) C (- to, 28 —1y). Therefore the domain of p(-) is contained in that of ¢ — p(t + to).
Uniqueness now follows from the maximality of ¢ — p(t 4 to). [ |
4.6.1.1.4 Case I-d: hy — —,/cg. We have pi(t) = ho — ips(1)® < h — —Ja. I

p1(t) = —\/co = hg for some ¢, then p(-) is constant. (Indeed, we have p(t) = (—./cg,0,0),
which is an equilibrium point of ﬁf’).) Assume p(t) < —\/co

Consider the integral curve of proposition 4.6.5. Let p(-) be the curve obtained by limiting
(from above) hg — —/co. Then

O (V@I DEOLY 6 - @)
Pty = hoin@ dn(Qt, k) — 1

= ho [1 + 2 esch? ( —hg t)}

(Q Q
R P e i G N DR
ho—— /¢ VAdn(Qt, k) + E [do(Q, k) — 1]
= —g2hg coth ( —ho t) csch ( —ho t)
_ , ' /dn(Qt, k) + K /1 —dn(Qt, k)
ty= 1 2(6 —h
ps(t) hoinmg\/ 0+ veo —ho) dn(Qt, k) —

= 02+/—ho csch ( —ho t).

Now

ﬁl(t) = —4h0 AV —ho coth ( —ho t) CSC2 ( —ho t)

= p2(1)ps(t)

Pa(t) = 02ho\/—ho coth? (v —hot)esch (v/—hot) + o2ho\/—ho csch? (V—hot)
= p1(t)ps(t)

Pa(t) = 02hg coth (v/—ho t) esch (v/—ho t)
= —p2(1).

That is, p(t) = ﬁf?’)(p(t))7 and so p(-) is an integral curve of ﬁfg). Finally, notice that
sinh(§2¢) = 0 when ¢ = 0. Thus p(-) is only defined on the open intervals (—oo, 0) and (0, cc).

7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

4.6.6 PROPOSITION. Letp(-) : (—¢,2) = se(1,1)* be an integral curve ofﬁig’) such that HiS) (p(0)) =
ho, C(p(0)) = co >0 and hg = —/cq .
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(i) There existtyg € R\{0} and o, € {—1,1} such thal p(t) = p(t+to) for everyt € (—¢,¢),
where P () = Pl(—o0,0) ("), D+(-) = Pl(o,ec) () and

p1(t) = —Q2 [1 + 2esch?(Qt)]
p2(t) = 0202 coth(Qt) esch(Qt)
p3(t) = 02Q csch(Q).

Here Q = /—hg .

(i) t— p+(t +to) is the unique mazimal integral curve starting at p+(to).

Proor. (i) Let ¢ = sgn(p2(0)) € {—1,1} and ¢ = osgn(ps(0)) € {—1,1}. (If p2(0) = 0
or p3(0) = 0, then p(0) = (—+/c0’,0,0), which is an equilibrium point of ﬁf’).) We have
sgn(p_ 2(t)) = sgn(p4 2(t)) = 0. Moreover,
mpyo(t) = ooo, im pio(t) =0 and  lm p_»(t) =0, limp_s(t) = ooo.
Suppose sgn(ps(0)) = 1, so we have ¢ = ¢. Since p_2(-) and py 2(-) are continuous and
sgn(p2(0)) = sgn(p- (1)) = sgn(py2(t)), there exists

{ (—00,0) ifo=—1

to €
T 0,00 ifo=1t1

such that ps2(to) = p2(0). Then
pa,l(t0)2 = ﬁo,2(to)2 + o = p2(0)% + co = p1(0)2.

We have p1(0), Po,1(to) < —/co <0, and so P, 1(to) = p1(0). Moreover,
Poa(t0)? = 2ho — 2Ps1(to) = 2ho — 2p1(0) = pa(0)*.

As sgn(pes(to)) = 1 = sgn(ps(0)), we have ps3(to) = p3(0). That is, pc(to) = p(0). Therefore,
as t — p(t+1o) and t — p(t) are both integral curves of ﬁig’) passing through the same point
at £ = 0, they both solve the same Cauchy problem, and hence are identical.

Suppose sgn(ps3(0)) = —1, so ¢ = —o. Since p_2(-) and p, o(-) are continuous and

sgn(p2(0)) = sgn(p— 2(t)) = sgn(p+,2(t)), there exists

(—00,0) ifo=+1
to €
(0,00) ifo=-1

such that p_s2(to) = p2(0). From pgyl(to)Q = 15072(150)2 = p2(0)2 = p1(0)? we again get
P-o1(to) = p1(0). Similarly, as po,3(t0)* = 2ho — 2P0,1(to) = 2ho — 2p1(0) = p3(0)* and
sgn(p_s3(to)) = —1 = sgn(ps(0)), we have p_s3(to) = p3(0). That is, p(to) = p(0). There-
fore t — po(t + o) and t — p(t) both solve the same Cauchy problem, and so are identical.

(ii) We show that the domain of p(-) is no larger than that of ¢t — pL(t + o). Suppose
p(0) = p_(to). Let s € (—&,¢). By (i), p(s) = p_(s + to), and so s + tg € (—00,0).
Consequently, s € (—oo, —tg), i.e., (—g,) C (—o00,—1p). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + o). Uniqueness now follows from the maximality of ¢ —
p—(t +to).

Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + tp € (0,00), i.e.,
s € (—to,00). Thus (—¢,&) C (—to,o0), and so the domain of p(-) is no larger than that of
t — p4(t + to). The uniqueness of t — py(t + to) follows from its maximality. [ |
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4.6.1.1.5 Case I-e: hg < —./cg’. From the equation of motion p; = pops, the Hamil-
tonian equation ho = p1(t) + 3p3(t) and the Casimir equation co = p1(t)% — pa(t)?, we get

Pt = (p2p3)? = (p1 — co)(2ho — 2p1). (4.6.6)

Before integrating, we reduce this equation to standard form. (This process is detailed in
section A.6.2.) Let X; = pf — ¢ and Xo = 2hg —2p1. Then X7 — A X, is a perfect square for
A = —(6+ho) and Ay = §—hg, where § = \/h3 — ¢o . (Since hy < —/¢g , we have h2—co > 0,
and so 4, A1, A2 € R.) Accordingly, X1 — A\ Xo = (p1 + A1)? and X1 — Mo Xo = (P1 + Xo)2.
Thus

XX = [A1(p1 + A2+ Bi(py + )\2)2] [Aa(p1 + A2+ Bo(py + )\2)2]

where Ay, Ay, By, By are given by

1 ho 1 ho ! 1
Al = 2(1—;), By = 2<1+6> Ay = — By = ——.
Take the square root of both sides in (4.6.6) and separate variables. We get
dp __dp
V(0T —co)(2ho —2p1) VX1 Xz

for some o1 € {—1, 1}. By the preceding calculations, this is

= odt

_ I _ - (4.6.7)
VIALD1 + A2+ Bi(pr + A2)? [A2(p1 + Ai)? + Ba(pr + A2)?]
We have A1 Ay = . Since (§ + ho)(§ — ho) = 6% — h3 = —cy < 0 and § — hy > 0, we have
0+ ho <0. Consequen‘cly7 Ay As > 0. Make the change of variables u = gii; to get

d
\/( 5 Blu>< 5 1), :01()\2—)\1)\/A1A2dt:01\/5—hodt.
us + 7))

Here El gfzg <0. Leta=—-1,b=—4/ 28+§ , T = E ;i/\l and integrate both sides:

- du B _/”“" du
o V=A@ e -1
d—hot.

We have hg — 0 < ho +0 and ho < —/co < 0, and so ho” < 1. Thus —b < —a. Hence,
under the constraint —b < —a < —x, we can use the integral formula (A.6.9) to integrate the
left-hand side:

1 Lpi(t) + M )
~d — | = 0—hgt
a4 (am(HAz 7 °

pi(t) + A\t b
= T ade (Vo —hot, ).
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(The function de(-, k) is even, so we can eliminate the ao; = —01.) Let Q = /o —hy and
k = g = w/ZgJ_“g?k:’: 1/%. (Since § — hg > 0 and & + hg < 0, we have 0 < k < 1.) Now
solve for py(t):

(ho —0)de(, k) + (ho +8)  (ho +0) en(€2t, k) + (ho — 6) dn(€2, k)
1+ de(Q, k) B dn(Qt, k) + en(Q, k)

p(t) =
Use the constant of motion py(¢)? — p2(t)? = ¢o to find an expression for pa(-):

. ho + &) en(Qt, k) + (ho — 8) dn(Qt, k) \
Pa(t)” = <( )dn((Qt, k:)) +E:n((2t, I)c) ( )> —
(6= ho)? — co) dn®* (U, k) — 2(52 + co — h3) dn(Q, k) en(Q, k)
B [dn(Qt, k) + en(Qt, k)]
((6 4+ ho)? — co) en?(Q, k)
[dn(Qt, k) + en(Qt, k)2

We have (§ — ho)? — co + (8 + ho)? — co = —2(6% + cg — h3). Consequently,

((6 = ho) + /o' ) dn(Qt, k) + ((0 + ho) — /o' ) en (€2, k)]
[dn(Qt, k) + en(Qt, k)
y ((6 = ho) — Jeo ) dn(2t, k) + ((6 + ho) + y/co ) en (€2, k)
[dn(Qt, k) + en(Qt, k)]

dn(Qt, k) + &H0)=Ver n oy, k)

B B (0—ho)++/co
= ((6 = ho) + /o) [dn(Qt, k) + en(Qt, k)]

dn(Qt, k) + QYO o k)

P2(t)? =

(0—ho)—+/c0’
x ((6 — hg) — /¢
( o) = Vo) [dn(Qt, k) + en(Qt, k)]
We have
{(5+h0)—\/5rh0+5k2 o {(6+h0)+\/6rh0+6k2.
(0 — ho) + \/ca ho — & (0 — ho) — \/ca ho — &
Since 6 — hg > 0 and & + hg < 0, it follows that (Otho)= eo = —k andM k.

(0—ho)++/co' (0—ho)—+/co
Consequently,

p2()* = (8 — ho) + /e ) ((6 — ho) — \/e0)

dn?(Qt, k) — k2 en(Qt, k)

[dn(Qt, k) + en(Qt, k)]
(k)

[dn(Qt, k) +en(Qt, k))*

[dn(Qt, k) — ken(Q, k)] [dn(Qt, k) + ken(Q, k)]
[dn(Qt, k) + en(Qt, k)]

= ((6 — ho)* — co)

= ((6 — ho)* — o)

(We have used the square relation (A.6.6) in the last step.) Taking the square root of both
sides and using the fact that ((§ — ho)? — co) (k)2 = 4(h3 — c3) = 442, we get

24
dn(2, k) + en(Qt, k)

pa(t) = o2
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for some o3 € {—1,1}. Next, using ho = p1(t) + 1p3(t) yields

]53(15)2 = 2hy — 21 (t)
B 26dn(Qt, k) —en(Q, k) dn(Qt, k) + en(Q, k)
~ dAn(Qt, k) + en(Qt, k) dn(Qt, k) + en(Q, k)
dn?(Qt, k) — en?(, k)
— 2 .
[dn(€2, k) + cn(Qt, k)]
(k"2 sn?(Ot, k)
[dn(Qt, k) + en(Qt, k)]*

(We have used (A.6.4) and (A.6.5) in the final step.) Therefore

- V28 K sn(Qt, k)
p3(l) = o3
dn(2, k) + en(Qt, k)

for some o3 € {—1,1}. Thus we have the following (prospective) integral curve:

it — (ho +9) en(Qt, k) + (ho — 6) dn($2¢, k)
! dn(2, k) + en(Q, k)
_ 24
pa(l) = o2 dn(2, k) + en(Qt, k)
_ V26 K sn(Qt, k)
pg(t) — (ng .
n(Q, k) + en(Qt, k)
We show that p(-) is an integral curve of ﬁig’) if and only if 0o = —03. By proposition 4.1.2,
it suffices to show that p; = pPops if and only if oo = —o3 (since we know that p(-) satisfies
the equations of the constants of motion). We have

. 200 (k% cn?(Qt, k) — dn?(Qt, k)] sn(Qt, k) 000326k /28 sn(, k)
Pi(t) = P2(t)ps() = [An(QL, k) + en(Q1, k)2 T [dn(Q, k) 1 en(t, k)]
 20K(0203V26 + Q') sn(Q, k)

B [dn(Qt, k) + en(Qt, k)2

As kK'Q = /25, we have that p; = paps if and only if o903 = —1, i.e., 03 = —03. In this case
. (3)
p(t) = Hi” (p(1)).

Finally, since dn(Qt, k) + cn(Q2t, k) is zero at the points 2<2”;{1>K7 n € Z (where 41K

denotes the period of sn(-, k)), it follows that p(-) is only defined on the open intervals
(_2(2n+1)K 2(2n+1)K> ner
Q ) Q ) .

We now make an explicit statement regarding all integral curves of H £3> for this case.

4.6.7 PROPOSITION. Letp(-) : (—¢,2) — se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =
ho, C(p(0)) =co >0 and hg < —\/cqg .

i) There exist tg € (=25 25) and ¢ € {—1,1} such that p(t) = p(t + to) for every
Q’Q
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t € (—¢,2), where p(-) : (=2, 25) — se(1,1)* is defined by

n (t) _ (ho + 5) CD(Qt, k) + (hO - (5) dn(Qt, ]{])
Py dn(Qt, k) 1 en(Qt, k)
s 1) — 20
PR = T 00t k) + en(Q, k)
_ V20 k' sn(Qt, k)
pa(t) = —o :
dn(Qt, k) + cn(€2, k)
Here AK is the period of sn(-,k), § = Jh3—co, Q@ = /d—hg, k = ngg and
k= 20
—\V ho

(#) t— p(t+to) is the unique maximal integral curve starting ot p(io).

PrOOF. (i) Let ¢ = sgn(p2(0)) € {—1,1}. (If p2(0) = 0, then p1(0)? = ¢p. However, p1(0) =
ho — 4p3(0)? < hg < —/cg’, which is a contradiction.) We have sgn(ps|(—ar/0,0)(t)) = o and
sgn(Psl(0,2k/q) () = —o. Moreover, lim;_, s /o ps(t) = ooo and lim;_ox /0 ps(t) = —ooo.
Therefore, since ps(-) is continuous, there exists to € (—2&, 25) such that ps(to) = p3(0).
Then

Pi(to) = ho — 3p3(to)?* = ho — 3p3(0)* = p1(0).

Lastly,
Pa(to)? = P1(to)? — co = p1(0)? — o = p2(0).

As sgn(p2(to)) = o0 = sgn(p2(0)), we have pa(to) = p2(0). Therefore, as t — p(t + to) and
t — p(t) are both integral curves of FI;S) passing through the same point at ¢ = 0, they both
solve the same Cauchy problem, and hence are identical.

(7) We show that the domain of p(-) is no larger than that of ¢ — p(t+tp). Let s € (—¢, ).

By (i), p(s) = p(s + to), and so s + to € (—%%) Consequently, s € (—% —to, % — to)7
i.e., (—,¢) C (—% — to, % — to). Therefore the domain of p(-) is contained in that of
t — p(t + to). Uniqueness now follows from the maximality of ¢ — p(t + o). [ |

4.6.1.2 Case II: ¢ =0

4.6.1.2.1 Case II-a: hy > 0. As p1(t)? >0, we have p1(t) <0 or pi(t) > 0. If py(t) =0
for some ¢, then p(-) is constant. (Indeed, p(t) = (0,0, 4++/2hg ), which is an equilibrium point
of ﬁf’).) Thus we assume either pi(¢) < 0 or p1(t) > 0 for every ¢.

Consider the case p1(t) < 0. Let p(-) be the curve obtained by taking the limit c¢g — 0
of the integral curve in proposition 4.6.2. Then

p1(t) = —202 esch? ()
pa(t) = 0202 csch?(Qt)
p3(t) = 02Q coth(Qt).
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(Here Q = /%) We have

p1(t) = 493 csch?(Qt) coth(Qt) = pa(t)pa(t)
Pa(t) = —402 esch?(Qt) coth(Qt) = pa(t)pa(t)
pa(t) = —02Q% csch?(Qt) = —pa(t).

That is, p(t) = Flig’) (p(t)). Finally, notice that sinh(©¢) = 0 when ¢ = 0. Thus p(-) is only
defined on the open intervals (—o0, 0) and (0, co).
7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

4.6.8 PROPOSITION. Letp(-) : (—¢,2) = se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =

ho >0, C(p(0)) = 0 and p1(0) < 0.
(i) There existtog € R\{0} and o, € {—1,1} such thal p(t) = p(t+to) for everyt € (—¢,¢),
where P () = Pl(—o0,0)(-), P+(-) = Pl(o,ec) () and
p1(t) = —202 csch?(Qt)
P2(t) = 0202 csch?(Qt)
p3(t) = 02Q coth(Qt).

Here Q) = \/%,

(i) t— pxL(t +to) is the unique mazimal integral curve starting at p+(to).

Proor. (i) Let ¢ = sgn(p2(0)) € {—1,1} and ¢ = osgn(ps(0)) € {—1,1}. (If p2(0) = 0
or p3(0) = 0, then p;(0) = 0, a contradiction.) We have sgn(p_2(t)) = sgn(py2(t)) = o.
Moreover,

limpy 2(t) = ooo, lim pyo(t) =0 and lim p_o(t) =0, limp_»(t) = ooc.
t—0 t—r00 t—0

t——o0

Suppose sgn(ps(0)) = 1, so we have ¢ = ¢. Since p_2(-) and py 2(-) are continuous and
sgn(p2(0)) = sgn(p—2(t)) = sgn(py2(t)), there exists

(—00,0) ifo=-—1
to € .
(0,00) ifo=+1

such that ps2(to) = p2(0). Then
Do1(to)? = Poa(to)? + co = p2(0)* + co = p1(0)2.
We have p1(0), ps,1(to) < 0, and so ps.1(to) = p1(0). Moreover,
Poa(to)? = 2ho — 2,1 (to) = 2ho — 2p1(0) = p3(0)*.

As sgn(ps3(to)) = 1 = sgn(ps(0)), we have ps3(to) = p3(0). That is, pc(to) = p(0). Therefore,
as t — pc(t+to) and ¢t — p(t) are both integral curves of ﬁig’) passing through the same point
at £ = 0, they both solve the same Cauchy problem, and hence are identical.
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Suppose sgn(ps3(0)) = —1, so ¢ = —o. Since p_2(-) and p, 2(-) are continuous and
sgn(p2(0)) — sen(p—(1)) — sen(py 2(1)), there exists

(—00,0) ifo=+1
ty €
(0,00) ifo=-1

such that p_s2(to) = p2(0). From pr1(t0)? = Poa(to)? = p2(0)2 = p1(0)? we again get
P-o,1(to) = p1(0). Similarly, as Ps3(t0)? = 2ho — 2Pe1(to) = 2ho — 2p1(0) = p3(0)? and
sgn(p_s3(to)) = —1 = sgn(ps(0)), we have p_s3(to) = p3(0). That is, p(to) = p(0). There-
fore t — pc(t + to) and t — p(t) both solve the same Cauchy problem, and so are identical.

(ii) We show that the domain of p(-) is no larger than that of ¢t — pi(t + o). Suppose
p(0) = p_(to). Let s € (—&,¢). By (i), p(s) = p_(s + to), and so s + tng € (—00,0).
Consequently, s € (—oo, —tpy), i.e., (—g,) C (—o00,—1p). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + o). Uniqueness now follows from the maximality of ¢ —
p—(t +to).

Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + 1y € (0,00), i.e.,
s € (—to,00). Thus (—¢,£) C (—to,c0), and so the domain of p(-) is no larger than that of
t — p4(t + to). The uniqueness of t — py(t + to) follows from its maximality. [ |

Consider the case Py (t) > 0. Limiting ¢o — 0 in the integral curve of proposition 4.6.3
yields a constant integral curve. Thus we shall integrate the equations of motion.

We have p1(t)? = pa(t)?, and so pi(t) = o1p2(t) for some o1 € {—1,1}. Using hy —
P1(t) + 3ps(t)?, we get the differential equation

1= opips = a1 V21V ho — p1 -

Separating variables yields

dpy
P 5V/2dt
P1vho —p1 !

Make the change of variables v = /hg — p1 . Then dp; = —2udu and

2
2 duh = 01\/§dt.
— 10

As p1(t) > 0, we have ho > ho — p1(t) = u?. The integral formula (A.6.13) gives

2 U
tanh™* ( ) — V2t
Vho Vho !

Substituting for u and solving for p1(-), we get py(t) = hgsech?(Qt), where Q = %0 . Then

p2(t) = a1p1(t) = o1ho sech?®(Qt). Using the constant of motion ho = p1(t) + ps(t)?, we have
]53(15)2 = 2(h0 — D1 (t)) = 2hg tanhQ(Qt).

Thus ps(t) = 0229 tanh(Qt) for some o9 € {—1,1}. Hence we have the following (prospective)
integral curve:

p1(t) = 202 sech? ()

Da(t) = —012Q% sech? (Qt)

Pa(t) = 0220 tanh () .
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We verify that p(-) is an integral curve of ﬁig’) if and only if o1 = ¢2. Since we know p(-)
satisfies the equations of the constants of motion, it suffices to show that p; = pops if and

only if o1 = g2. (See proposition 4.1.2.) We have

P1(t) — pa(t)pa(t) = —4Q3 sech?(Qt) tanh(Qt) + 0102402 sech? () tanh(Qt)
— (0102 — 1)4Q° sech?(Qt) tanh(Qt).

Thus p1 = Pops if and only if 109 = 1, i.e., 01 = 2. In this case, we have p(t) = FIf’)(p(t)).

7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

PROPOSITION. Let p(+) : (—&,e) — se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =
ho > 0, C(p(0)) = 0 and p1(0) > 0. There exist tp € R and o € {—1,1} such that
p(t) = p(t +to) for every t € (—e,2), where p(-) : R — se(1,1)* is defined by

p1(t) = 202 sech? (Qt)
p2(t) = —0202 sech? (0t)
p3(t) = 02Q tanh (1) .

Here Q) = \/h—QO,

PrROOF. Let 0 = —sgn(p2(0)) € {—1,1}. (If p2(0) = 0, then p;(0) = 0, a contradiction.)
We have sgn(pal(,00)(t)) = —sgn(P3l(—c0,0)(t)) = . Moreover, lim; o p3(t) = ooo and
lim¢—y—oo P3(t) = —ooo. Therefore, since pa(-) is continuous, there exists to € R such that
pg(to) (O) Then

P1(to) = ho — 4ps(to)® = ho — $ps(0)* = p1(0).

Furthermore, Pa(tg)? = p1(to)? = p1(0)? = p2(0)2. Since sgn(pa(tp)) = —o = sgn(p2(0)), we
have pa(to) = p2(0). Therefore, as t — p(t + to) and t — p(t) are both integral curves of

H £3> passing through the same point at { = 0, they both solve the same Cauchy problem, and
hence are identical. [ ]

4.6.1.2.2 Case II-b: hg = 0. We have p1(t) = ho — +pa(t)2 < hg = 0. If p1(t) = 0 for
some t, then p(-) is constant. (Indeed, we have p(t) = (0, (), O)7 which is an equilibrium point
of ﬁf’).) Assume pq(t) < 0.

Let p(-) be the limit hg — 0 of the integral curve in proposition 4.6.8. Then

p(t) = _t%
pa(t) =0 t%
pa(t) = 0%
We have pi(t) = 75 = pa(1)pa(t), p2(t) = —oz = pr(t)pa(t) and ps(t) = —o & = —pa(t). That

is, p(t) = 453 (p(t)). Finally, notice that p(-) is only defined on the open intervals (—oo, 0)

and (0, co).
7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.
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4.6.10 PROPOSITION. Letp(:): (—¢,&) — se(1, 1)* be an integral curve ofﬁig’) such that HiS) (p(0)) =
C(p(0)) = 0 and p1(0) < 0.

(i) There existto € R\{0} and o, € {—1,1} such that p(t) = p(t+to) for everyt € (—¢,¢),
where P—(-) = Pl(—o0,0) ("), D+(-) = Pl(o,ec) () and

2
pi(t) = 2
B 2
pQ(t) = Ot_2
2
p3(t) = O'g.

(#) t— pxL(t +to) is the unique mazimal integral curve starting at p+(to).

Proor. (i) Let ¢ = sgn(p2(0)) € {—1,1} and ¢ = osgn(ps(0)) € {—1,1}. (If p2(0) = 0
or p3(0) = 0, then p;(0) = 0, a contradiction.) We have sgn(p_2(t)) = sgn(py2(t)) = o.
Moreover,

mpyo(t) = ooo, im pio(t) =0 and  lm p_»(t) =0, limp_s(t) = ooo.

Suppose sgn(ps(0)) = 1, so we have ¢ = ¢. Since p_ () and py 2(-) are continuous and
sgn(p2(0)) = sgn(p- 2(t)) = sgn(p4,2(1)), there exists

(—00,0) ifo=-1
to € .
(0,00) ifo=+1

such that ps2(to) = p2(0). Then pe1(to)? = Po2(to)? = p2(0)? = p1(0)2. We have pi(0) < 0
and pPe.1(to) < 0, hence py.1(to) = p1(0). Moreover,

Pos(to)? = 2ho — 2ps1(to) = 2ho — 2p1(0) = ps(0)>.

As sgn(ps3(to)) = 1 = sgn(ps(0)), we have ps3(to) = p3(0). That is, pc(to) = p(0). Therefore,
as t — pc(t+1to) and ¢t — p(t) are both integral curves of ﬁig’) passing through the same point
at £ = 0, they both solve the same Cauchy problem, and hence are identical.
Suppose sgn(ps3(0)) = —1, so ¢ = —o. Since p_2(-) and p; 2(-) are continuous and
sen(p2(0)) — sgn(p_(t)) — sen(pr (1)), there exists
o e { (—00,0) ifo=+1
(0,00) ifo=-1
such that p_s2(to) = p2(0). From pgyl(to)Q = 15072(150)2 = p2(0)2 = p1(0)? we again get
P—o1(to) = p1(0). Similarly, as pr3(to)? = 2ho — 2P1(to) = 2ho — 2p1(0) = p3(0)? and
sgn(p—qs3(to)) = —1 = sgn(ps(0)), we have p_s3(to) = p3(0). That is, pc(to) = p(0). There-
fore t — po(t + o) and t — p(t) both solve the same Cauchy problem, and so are identical.
(ii) We show that the domain of p(-) is no larger than that of ¢t — p4(t + o). Suppose
p(0) = p_(to). Let s € (—&,¢). By (i), p(s) = p_(s + to), and so s + tyg € (—00,0).
Consequently, s € (—oo, —tpy), i.e., (—g,2) C (—o00,—tp). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + o). Uniqueness now follows from the maximality of ¢ —
p—(t +to).
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Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + ty € (0,00), i.e.,
€ (—tp,00). Thus (—¢,¢) C (—tp, o0), and so the domain of p(-) is no larger than that of
t— py(t+tp). The uniqueness of t — py(t + to) follows from its maximality. [ |

4.6.1.2.3 Case [[-c: hg < 0. Consider the integral curve of proposition 4.6.7. Let p(-)
be the curve obtained by taking the limit cg — 0 of this integral curve. Then

p1(t) = =202 sec?(Qt)

Pa(t) = —0202 sec?(Qt)

pa(t) = 02Q tan(§2t).

(Here 2 = —h2—0 .} We have
p1(t) = —4Q3 sec?(Q1) tan(Qt) = pa(t)p3(1)
P2(t) = —04Q% sec? (Qt) tan(Qt) = 1 (t)p3(t)
P3(t) = 0202 sec?(Qt) = —pa(t).

That is, p(t) = ﬁig’) (p(t)). Finally, since cos(€2t) = 0 at the points Q(2n — 4y and Z(2n+ 1),
n € Z, it follows that p(-) is only defined on the open intervals (Z(2n—3), Z(2n+3 ))7 n € Z.

We now make an explicit statement regarding all integral curves of H 53

=

for this case.

4.6.11 PROPOSITION. Letp(-): (—¢,&) — se(1, 1)* be an integral curve ofFIiS) such that HiS) (p(0)) =

ho < 0 and C(p(0)) = 0.

(i) There exist ty € (—5q,

5 ) and o € {—1,1} such that p(t) = p(t + to) for every t €
(—¢,¢), where p(-) : (—

) 0
56 36) — se(1,1)* is defined by

p1(t) = —202 sec?(Qt)
Pa(t) = —020% sec? ()
ps(t) = 02Q tan(§2t).

Here Q) = \/—h—QO,

(i) t— p(t+to) is the unique maximal integral curve starting at p(io).

PrOOF. (i) Let ¢ = —sgn(p2(0)) € {—1,1}. (If p2(0) = 0, then p1(0) = 0, and so p3(0)? =
2ho < 0, a contradiction.) We have sgn(ps|(—x/(20),0)(t)) = —o and sgn(pa(o,x/20))(t)) = 0.
Furthermore, lim;_, _r /20y P3(t) = —ooo and limy_,r /20y Pa(t) = ooc. Therefore, since ps(-)
is continuous, there exists to € (—55, 55) such that pg(to) p3(0). Then

Pito) = ho — 3Ps(to)” = ho — 3P3(0)* = p1(0).

Lastly, we have Pa(t0)? = p1(to)? = p1(0)2 = p2(0)2. As sgn(pa(te)) = —o = sgn(p2(0)), it
follows that pa(to) = p2(0). Therefore, since t — p(t) and t — p(t + fp) are both integral
curves of FI;S) passing through the same point at ¢ = 0, they both solve the same Cauchy
problem, and hence are identical.

(71) We show that the domain of p(-) is no larger than that of ¢ — ﬁ(t+to) Let s € (—¢ )
By (i), p(s) = p(s+to), and so s +to € (=55, 55)- Consequently, s € (=55 —to0, 55 +10),
(—&,2) € (=35 —to, 35 +to). Therefore the domain of p(-) is contained in that of t — p(t+to)
Uniqueness now follows from the maximality of ¢ — p(t + to). [ |
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4.6.1.3 Case [I]: co <0
From the equation of motion p; = Pops and the constants of motion hy = py(t) + %ﬁg(t) and
co = p1(t)? — pa(t)?, we get

2 = (Baps)? = (5} — co)(2ho — 2P1). (4.6.8)

This equation must be reduced to standard form before we can integrate (see section A.6.2 for
a discussion of this process). To that end, let X; = pf—co and Xy = 2hg—2p1. Then X7 —AX>
is a perfect square for \; = —(d+ho) and Ay = § —ho, where § = \/h3 —co. (As cp <0 < h3,
we have 6, A1, A2 € R.) Accordingly, X1 — M X2 = (p1 + A\1)? and X1 — AoXo = (p1 + A2)2
Thus we have

X1Xo = [A1(p1 4+ A1)+ Bi(pr + A2)?] [Aa(p1 + A1)? + Ba(pr + A2)?]

where Ay, Ay, By and By are given by

1 ho 1 ho 71 B 1
A1 2(1_T>7 By = 2<1+6> AQ—— By = ——.

Taking the square root of both sides in (4.6.8) and separating variables, we have
dp __dp
V(0T = 0)(2ho —2p1) VX1 Xy

for some o1 € {—1,1}. By the calculations above, this is

= odt

dp
VIAL(DL + )%+ Bi(pr + M) [A2(Pr + \)2 + Ba(pr + A2)?]
We have (§ + ho)(d — ho) = —co > 0. We claim that § > hg. Suppose otherwise, i.e., & < ho.
(We cannot have hg = ¢ as ¢p < 0.) Then § + ho < 0, and hence 26 = (6 + ho) + (6 — hg) < 0,
a contradiction. Thus § > ho, and so A1 4> = ‘527% > 0. Make the change of variables

w = B2 in (4.6.9). The result is

P1t+A2
du , :(71()\2—)\1)\/A1A2dt:01\/5—hodt
\/ (u? + 5 (u? — 1)

where El ng“hO > 0. Let a = —1 andbfw/% =

du 513 — hodt.

V(U2 — a?)(u? + b2)

— oydt. (4.6.9)

§+Zo . Then we have
—0

Let x = —%Egiii and integrate both sides. We get
- d d
Y Y — 01 6 — ho L.
—a /(u? —a?)(u? +b2) \/ u? — a?)(u? + b2)

Using the integral formula (A.6.10) to integrate the left-hand side, we have (for —x > —a),
1 1 p1(t) + M b >
————nc - , =—01v0—hot
Va2 + 52 ( pr(t) +Xe’ Va2 1 b2 ' ’

pi(t) + M\ < 5 - - b >
———— = —nc a2+ b2\ —hot,— ) .
P1(t) + A2 v v U VE T
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(As nc( k) is even, we can eliminate the —o1.) Let Q = Va2 +b2/5 —hy = V20 and
\/&erbz — /%o k= /35he (As § > hg we have 0 < k < 1.) Solving for py (L), w
(ho = 0) ne(Qt, k) + (ho +6)  (ho + &) en(Qt, k) + (ho — )
ne(Qt, k) + 1 B en(Qt, k) + 1

From the Casimir equation py(t)? — pa(t)? = co, we have

get
pi(t) =

p2()* = p1(1)* — o
(ho + &) en(Qt, k) + (ho — 6)1?
en(Q, k) +1
(5 + ho) en(, k) + (6 — ho)
[en(Qt, k) + 1)
~ (2 2 k2 en?(Qt, k) + (K)?
[en(Qt, k) + 1)°
5y dn?(Qt, k)
len(Qt, k) + 1)

20

(We have used the square relation (A.6.6) in the last step.) Taking the square root of both
sides yields
dn(Q, k)

pa(l) = 0o ———— 2
Pall) = oot e+

for some o3 € {—1,1}. Lastly we employ the constant of motion hg = p1(t) + 1p3(t)? to find
an expression for ps(-):

]53(15)2 = 2ho — 2p1(t)
en(Q, k) —1 en(Q,k) +1
cn(Qt k)+1 en(Qt k) + 1

o en¥(Qt k) — 1
B [cn(Qt, k) + 1)
n?(0t, k)

len(Qt, k) + 1)
(We have used (A.6.5) for the final step.) Hence, taking the square root of both sides,

Qsn(Qt, k)

sl = o o 1 1

for some o3 € {—1,1}. Therefore we have the following (prospective) integral curve:

51 (1) — (ho +8) en(, k) + (ho — 9)
Pty = en(Q k) + 1
_ dn(Q, k)
o2 k)
P2(l) = o2 e
o Qsn(Qt k)
() =03 e T 1
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We will show that p(-) is an integral curve of H £3> if and only if o2 = —o3. By proposition

4.1.2, it suffices to show that p; = pops if and only if oy = —03 (since we know p(-) satisfies
the constants of motion). Indeed,
26Qdn(Qt, k) sn(Qt, k) 020303 dn(Qt, k) sn(Qt, k)
O en(Qtk) 12 [en(Qt, k) + 1)
Q20302 +26) dn(Q, k) sn(Qt, k)
len(Qt, k) + 1)° '

p1(t) — p2(t)ps(t) =

Since Q% = 2§, we have p; = pops if and only if o203 = —1, i.e., 03 = —o3. In this case,
- oyl 3 -
pt) = Hy (p(1)).

Finally, since cn(Q¢, k) + 1 = 0 at the points 225 n € Z (where 4K denotes the period of

sn(-, k)), it follows that p(-) is only defined on the open intervals (%, WL n € Z.

7(3)

We now make an explicit statement regarding all integral curves of H;™ for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁig’) such that HiS) (p(0)) =
ho and C(p(0)) = co < 0.
(i) There exist to € (0, %) and o € {—1,1} such that p(t) = p(t+to) for everyt € (—¢,¢),
where p(-) : (0, %) — se(1,1)* is defined by

() — (ho + &) en(Qt, k) + (hg — 9)
Pt = n(Qt k) + 1
_ dn(Qt, k)
—g(PP—
Pol) = o o 1
o Qsn(,k)
ps(t) = Ocn(Qt k:) 1
Here 4K is the period of sn( = Vh2—co, Q=25 and k= y/ ‘5;“(?0 .

(i) t— p(t+to) is the unique maximal integral curve starting at p(io).

ProOOF. (i) Let o = sgn(pz(0)) € {—1,1}. (If p2(0) = 0, then p1(0)2 = o < 0, a con-

tradiction.) We have sgn(ps|o,2k/0)(t)) = —o and sgn(ps|ik/0.4x/0)(t)) = 0. Moreover,
lim¢ 0 p3(t) = —ooo and lim;_,4x /0 Pa(t) = ooo. Therefore, since ps(-) is continuous, there
exists to € (0,2%) such that ps(to) = p3(0). Then

Pi(to) = ho — 3p3(to)* = ho — 3p3(0)* = p1(0).

Lastly, we have
Da(to)? = p1(t0)* — co = p1(0)? — o = pa2(0)2.

Since sgn(p2(tp)) = o = sgn(p2(0)), it follows that pa(to) = p2(0). Therefore, as t — p(t + to)
and t — p(t) are both integral curves of ﬁf’) passing through the same point at £ = 0, they
both solve the same Cauchy problem, and hence are identical.

(i) We show that the domain of p(-) is no larger than that of t — p(t+1o). Let s € (—¢, ).
By (4), p(s) = p(s + to), and so s + to € (0, %) Consequently, s € (—to,% —1o), t.e
(—&,€) C (—to, 2 — ty). Therefore the domain of p(-) is contained in that of ¢ — p(t + to).
Uniqueness now follows from the maximality of ¢ — p(t 4 to). [ |



4.6.13

4.6.14

CHAPTER 4. STABILITY AND INTEGRATION OF HAMILTON-POISSON SYSTEMS 103

4.6.2 The system H§3>

The equations of motion of the system HéS) (p) = p1 + p2 + 3p3 are

P1 = P2D3
P2 = P1P3
P3 = —(p1 +p2).

7% are el = (u, —u,0) and 5 = (0,0,v), where v, u € R, v £ 0.

The equilibrium states of H,

PROPOSITION. The equilibrium states €| and €4 are unstable.

ProoOF. Consider the states ', i # 0. Fix a bounded open neighbourhood U of ¢}'. The curve
p(t) = (ue‘%, —pedt, —5) is an integral curve of ﬁég’) for any & > 0. Indeed, p; = due® = paps,
Pa = —0pe® = pips and ps = 0 = —(p1 + p2). Furthermore, we have |p(0) — €| = 4.
Accordingly, for any open neighbourhood V' C U of e/, there exists § > 0 such that p(0) € V.
However, lim;_.oo ||p(t)]|? = 6% + 2u% limy_o0 (€% — 1) = oo. Hence, there exists t; > 0 such
that p(t1) € U. Thus the states €4, u # 0 are unstable.

Consider the state e). Let U be a bounded open neighbourhood of €} and let p(t) =
(6%, —5e% —5). We have p1 = 62¢% = pops, po = —62¢ = pips and p3 = 0 = —(p1 + pa),
and so p(-) is an integral curve of ﬁég’) for any § > 0. Furthermore, ||p(0) — || = V36.
Hence, for every open neighbourhood V' C U of €2, there exists § > 0 such that p(0) € V.
However, limy_.oo ||p(1)]|> = 6% + 262 limy_y00 2% = o0, and so there exists ¢; > 0 such that

p(t1) ¢ U. Therefore the state €} is unstable.

Consider the states e5. The linearisation of the vector field ﬁég’) is
(5 0 p3 p2
DHy"(p) = |ps 0 m
0 -1 0
The linearisation at e} has eigenvalues \j = 0, Ay 3 = fv. Since v # 0, Dﬁég) has a positive
real eigenvalue. Hence the states €5 are (spectrally) unstable. |

(3)

We shall now find the integral curves of FIQ . Let p(-) be an integral curve of ﬁég’) and

let c¢g = C(p(0)) and hy = HéS)(p(O)). We consider two main cases depending on whether ¢
is zero or not. In fact, the following proposition implies that we only need to consider the
cases ¢g > 0 and ¢y = 0.

PROPOSITION. The map ¥ : (p1,p2,p3) — (p2, p1,03) is a linear Poisson symmetry of HéS)

such that C oW = —(C.

ProoF. W is clearly a linear Poisson automorphism. Furthermore, (HéS) o W)(p) = p2 +

p1 + %p% = H<3> (p) Therefore ¥ is a linear Poisson symmetry of H§3>. Finally, we have
(CoW)(p) = pi — p2 = —Cp). .

Accordingly, in order to find the integral curves of ﬁég’) when ¢y < 0, we find the integral

curves when ¢g > 0 and apply the linear Poisson symmetry W. In particular, if ¢(-) is an
integral curve of ﬁég’) such that C'(g(0)) < 0, then p(-) = ¥(g(-)) is an integral curve of ﬁég’)
such that C(p(0)) > 0.
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3
Figure 4.8: Typical configurations of H2(3

For each case c0 > 0and c0 = 0, we have several further subcases. (Table 4.2 lists the qual-
itative breakdown of cases; figure 4.8 plots typical configurations of the system corresponding
to these cases. The configurations for cO < 0 are also plotted along with those for cO > 0.)

The level sets {p : C(p) = c0} (for(3§0 = 0orcO>0) and {p:H2)() = h0} will be tangent
to each other exactly when {p :H2)(p) = hO0} is tangent to the plane {p :p1l+ p2= 0}. This
occurs when the gradients of H?% and P(p) = pl+ p2are parallel, i.e.,

1 A
VH23)(p) = AVP (p) 1 = A
p3 0

(Here Ae R.) We see that A= 1and p3= 0. Consequently, h0 = pl+p2 0. This motivates
the (sub)cases h0> 0, h0= 0 and h0< 0.

46.21 Casel:c0=0

By proposition 4.6.14, we may assume c0 > 0.

46.2.1.1 Case l-a: h0> 0. Since p"t)2 > p~t)2—p2(t)2= c0, we have either pji(t) <
—Vco or pl(t) > Vco.
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‘ Conditions Designation

ho >0 | Case I-a
co#£0 | hg=0 | Case I-b
ho <0 | Case I-c
ho >0 | Case I1-a
co =01 hg=0| Case I1-b
ho <0 | Case Il-c

Table 4.2: Qualitative breakdown of cases for HéS)

Consider the case p1(t) < —./¢p'. From the equation of motion p3 = —(py + p2) and the
constant of motion hy = pi(t) +p2(t) + 3ps(t)?, we get the differential equation ps = 1p? —h.
That is,

dps 1
- = —di. 4.6.10
]5% —2hg 2 ( )

Now (p1(t) — p2(£))(p1(t) + p2(t)) = co > 0. Therefore we have
[P1(¢) — p2(t) > 0 and p1(t) +p2(t) > 0] or  [p1(t) — pa(t) <0 and pi(?) + p2(t) <0].

In the former case, p2(t) < p1(t) < 0, whence p1(t) + p2(t) < 0, a contradiction. Therefore
p1(t) — p2(t) < 0 and pi(t) + p2(t) < 0. Consequently,

p3(t)® = 2(ho — p1(t) — p2(t)) > 2(ho — 2p1(t)) > 2ho.

We use the formula (A.6.12) to integrate (4.6.10). The result is

1 —1 [ ps(t) ) 1
th™! -
V2he 0 <\/2ho 2

After rearranging, this gives ps(t) = —2Q coth(Qt), where Q@ = \/% . Next, differentiate ps(-)
to get p1(t) + p2(t) and use the Casimir equation co = (p1(t) — p2(t))(p1 + p2(t)) to solve for
p1(t) — p2(t). The result is the equation

{1 1 } {pl(t)} B {—2920sch2(9t)} .

L —1] [paft) — %8 sinh?(Qt)

1
As L —1
tive) integral curve:

} is invertible, we can solve for p1(-) and pa(+). Thus we have the following (prospec-

1

pi(t) = T [49* esch?(Qt) + ¢o sinh?(Qt)]
1

p2(t) = ~ I [49* esch?(Qt) — ¢o sinh?(Qt)]

p3(t) = —2Q coth(Q).
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We confirm that p(-) is an integral curve of ﬁég). Indeed,

pi(t) = _E sinh(2Q1) + 202 csch?(Qt) coth(Qt) = pa(t)pa(t)

pa(l) = E sinh(20t) + 292 esch?(Qt) coth(Qt) = p1(t)pa(t)

pa(t) = 202 esch®(Qt) = —(p1(1) + p2(t)).

Thus p(t) = ﬁég’) (p(t)). Finally, notice that sinh(Qt) = 0 when ¢t = 0. Thus p(:) is only

defined on the open intervals (—oo, 0) and (0, c0).

7(3)

We now make an explicit statement regarding all integral curves of Hy™ for this case.

4.6.15 PROPOSITION. Letp(-) : (—&,&) — se(1, 1)* be an integral curve ofFIéS) such that HéS) (p(0)) =

ho >0, C(p(0)) = co > 0 and p1(0) < —/co.
(i) There exist to € R\ {0} and s € {—1,1} such that p(t) = p(t+1o) for every t € (—¢,¢),
where P () = Pl(—o0,0) (), P4(-) = ﬁl(o,o@(’) and

pi(t) = 492 [4Q% esch?(Qt) + ¢ sinh?(Qt)]

pa(t) = 492 [42* csch?(Qt) — e sinh?(Q1)]
p3(t) = —2Q coth(Q).
Here Q = 70

(i) t— pxL(t +to) is the unique mazimal integral curve starting at pL(to).

PrOOF. (i) Let ¢ = —sgn(ps(0)) € {—1,1}. (If p3(0) = 0, then p1(0 )+p2(()) =hyo >0

£ ps
and p1(0) — p2(0) > 0, as ¢o > 0. Then pi(0) = 5 [(p1(0) + p2(0)) + (pa( (0))] >0, a
contradiction.) We have
lmpyo(f) = —oo, lim pya(t) =co  and  limp_s(t) = —oo, lim p_s(t) = co.

Since p_ 2(+) and py o(-) are continuous, there exists

(—00,0) if¢=—1
to € .
(0,00) ifgc=+41

such that p¢2(to) = p2(0). Then
Pe1(to)? = Pe2(to)” + co = p2(0)* + co = p1(0)>.
We have p¢ 1(to),p1(0) < —\/cg <0, and so pg,1(to) = p1(0). Finally,
Pea(to)® = 2(ho — Pe1(to) — Pe2(to)) = 2(ho — p1(0) — p2(0)) = p3(0)>.
As sgn(pes(to)) = —s = sgn(ps(0)), we have p¢3(to) = p3(0). That is, pc(to) = p(0). There-

fore, as t — pc(t+to) and t — p(t) are both integral curves of ﬁég’) passing through the same
point at £ = 0, they both solve the same Cauchy problem, and hence are identical.
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(ii) We show that the domain of p(-) is no larger than that of ¢t — p4(t + o). Suppose
p(0) = p_(to). Let s € (—=,2). By (i), p(s) = p_(s + to), and so s + ty € (—00,0).
Consequently, s € (—oo, —tg), i.e., (—&,2) C (—o0,—tp). Therefore the domain of p(-) is
contained in that of ¢ — p_(f + to). Uniqueness now follows from the maximality of ¢ —
p—(t +to).

Suppose p(0) = py(to). Similar to before, if s € (—£,¢), then s + tp € (0,00), i.e.,
s € (—tp,00). Thus (—¢,¢) C (—tg,o0), and so the domain of p(-) is no larger than that of
t— p4(t+ to). The uniqueness of t — py(t + to) follows from its maximality. [ |

Consider the case py(t) > /co. Again from ps = —(p1 + p2) and hg = p1(t) + pa(t) +
%]53 (t)? we get the differential equation

dps 1
- = —dt. 4.6.11
ps —2ho 2 ( )
Since ¢p > 0, we have

[P1(t) —p2(t) > 0 and pi(¢) +p2(t) > 0] or  [p1(t) — p2(t) <0 and pi(t) + pa(t) < 0.

In the second case 0 < Pi(t) < P2(t), and so pi(t) + p2(t) > 0, a contradiction. Thus
Pp1(t) — p2(t) > 0 and pi(t) + p2(t) > 0. As a result

p3(t)® = 2(ho — p1(t) — p2(t)) < 2(ho — 2p1(t)) < 2ho.

Use the integral formula (A.6.13) to integrate (4.6.11). We get

1 _1  p3(t) ) 1
tanh™! [ ==L ) = —¢,
v2hg < v2hg 2
i.e., p3(t) = —2Qtanh(Qt), where Q = \/% . By differentiating the expression for ps(t) to
get p1(t) + p2(t) and using co = P1(t)? — p2(t)? to solve for py(t) — p2(t), we get the following

equation:
1 1] [;m@®)]  [-29%csch?(Qt)
L —1] [p2(t)] |52 sinh?(Q) |
As E _1 J is invertible, this equation can be solved for pi(¢) and pa(t). Thus we have the

following (prospective) integral curve:

1
p1(t) = 10 [4Q% sech?(Qt) + cp cosh?(Qt)]
1
pa(t) = 102 [492* sech?(Qt) — ¢ cosh?(Qt)]
ps(t) = —2Qtanh(Qt).
We have
Pi(t) = :—g sinh(20¢t) — 20° sech?(Qf) tanh(Qt) = pa(t)ps(t)

Pa(t) = _:—g sinh(2Q) — 203 sech?(Qf) tanh(Q4) = 1 (£)p3 (1)

Ps(t) = =207 sech®(Qt) = —(p1(t) + p2(1))-
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Therefore p(t) = f[é?’>(p(1f))7 i.e., p(+) is an integral curve of ﬁég). Furthermore, p(-) is defined
over R.
We now make an explicit statement regarding all integral curves of HéS) for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁég’) such that HéS) (p(0)) =
ho >0, C(p(0)) = co > 0 and p1(0) > \/cq. There exists to € R such that p(t) = p(t + o) for
every t € (—&,2), where p(+) : R — se(1,1)* is defined by

1
p1(t) = TP [492* sech®(Qt) + ¢ cosh?(Qt)]
1
ToEi [492* sech?(Qt) — ¢ cosh?(Qt)]

ps(t) = —2Q tanh(Qt).

Here Q) = \/h—QO,

PRrOOF. We have p1(t) > \/co. Then from pi(t)? — p2(t)? = ¢o > 0, it follows that pa(t) <
p1(t). Thus pi(t) — p2(t) > 0, and so pi(t) + pa(t) > 0. Therefore pa(t)* = 2(ho — p1(t) —
p2(t)) < 2hg, and so —v2hg < ps3(t) < /2hg. Moreover, lim;_o p3(t) = —v2hg and
lim¢— oo P3(t) = v/2hg . Since ps(+) is continuous, there exists to € R such that ps(to) = ps(0).
Then

p1(to) + P2(to) = ho — §P3(t0)* = ho — §ps(0)* = p1(0) + pa(0),

and from py(to)? — Pa(to)® = co = p1(0)? — p2(0)?, we get

L] ] - )

Since E _11} is invertible, it follows that p(tg) = p(0). Therefore, as t — p(t + o) and
t — p(t) are both integral curves of ﬁéS) passing through the same point at ¢ = 0, they both
solve the same Cauchy problem, and hence are identical. |

4.6.2.1.2 Case I-b: hg = 0. Consider the integral curve of proposition 4.6.15. Taking
the limit kg — 0 yields

_ 4+ eot
t = —
i) 412
4—Cot4
1] t = ———
P2(t) 412
2
pa(t) = —=.
pa(l) .

We have p(t) = H{" (p(1)). Indeed, j1(t) = 4585 = pa()ps(t), Palt) = 585 = pr(0)pat)
and Ps(t) = % = —(p1(t) + p2(t)). Thus p(-) is an integral curve of Flg)’). Finally, notice that
p(+) is only defined on the open intervals (—oo, 0) and (0, 00).

We now make an explicit statement regarding all integral curves of ﬁég’) for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁég’) such that HéS) (p(0)) =
0 and C(p(0)) = co > 0.
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(i) There exist to € R\ {0} and s € {—1,1} such that p(t) = p(t+1o) for everyt € (—¢,¢),
where P () = Pl(—o0,0) ("), D+(-) = Pl(o,ec) () and

_ - 4 + eott

pt) = ==

_ 4—Cot4
t) = —

i 2

(i) t— pxL(t +to) is the unique mazimal integral curve starting at p+(to).

PROOF. (i) Since p1(1)% > p1(t)? — p2(t)? = co, we have pi(t) < —\/co or p1(t) > Jeg. If
p1(t) = \/eg, then pi(t) + pa(t) > 0, and so hg = p1(t) + pa(t) + 3ps(t)? > 0, a contradiction.
Thus p1(t) < —y/co. Similarly, p1(t) < —/co'.

Let ¢ = —sgn(p3(0)) € {—1,1}. (If p3(0) = 0, then p1(0) + p2(0) = ho = 0, whence ¢y = 0,
a contradiction.) We have

lim p — —o00, lim p = limp_o(t) = —oco, lim p_a(t) = oc.
limpyo(t) = —o0, lim pio(t) =oc  and  limp_s(t) = —oo, lim p_s(l) = oo

Since p_ 2(+) and py o() are continuous, there exists

(—00,0) if¢c=-1
to € .
(0,00) ifc=+1

such that p2(to) = p2(0). Then
Pe(to)® = Pe2(to)® 4 co = p2(0)* + co = p1(0)°.

We have p¢1(to),p1(0) < —/co <0, and so p¢1(to) = p1(0). Finally,
Pe3(to)? = 2(ho — Pea(to) — Pe2(to)) = 2(ho — p1(0) — p2(0)) = p3(0)*.

As sgn(pes(to)) = —s = sgn(ps(0)), we have pc3(to) = ps(0). That is, pe(to) = p(0). There-
fore, as t — pc(t+to) and t — p(t) are both integral curves of ﬁég’) passing through the same
point at £ = 0, they both solve the same Cauchy problem, and hence are identical.

(ii) We show that the domain of p(-) is no larger than that of ¢t — p4(t + o). Suppose
p(0) = p_(lp). Let s € (—g,&). By (i), p(s) = p_(s + o), and so s + {p € (—o0,0).
Consequently, s € (—oo, —tg), i.e., (—&,2) C (—o0,—tp). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + o). Uniqueness now follows from the maximality of ¢ —
p—(t +to).

Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + to € (0,00), i.e.,
s € (—tp,00). Thus (—¢,&) C (—tp,o0), and so the domain of p(-) is no larger than that of
t — p4(t + to). The uniqueness of ¢ — p1(t + o) follows from its maximality. [ |

4.6.2.1.3 Case [-c: hg < 0. Using the equations ps = —(p1 +p2) and hg = p1(t) +p2(t) +
%]53 ()2, we get the differential equation pz = %ﬁ% — ho. Separating variables yields

5 1
dps — dt

P2+ (V—2ho)2 2
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This may be integrated using the formula (A.6.11):

1 o ps(®) y 1
o, tan™! ( T2ho> = 215.

—%0 . Then p1(t) + pa(t) = —ps =

Solving for ps(t), we get p3(t) = 2Q tan(Qt), where Q =
202 sec?(0t). Next using the Casimir equation ¢y = (p1(t) + p2(t))(p1(t) — p2(t)), we get

pr(t) — pa(t) = 52 cos®(Qt). That is,

b Gato] - Bt

is invertible, this equation can be solved for pi(¢) and pa(t). Thus we have the

1

1 1
As { B J
following (prospective) integral curve:

p(t) = 4(122 [49* sec® () + o cos® ()]

pa(t) = 4(122 [49% sec () — o cos® ()]

p3(t) = 20 tan(Q).

We have
pit) = :—g Sin(201) — 20% sec?(Q) tan(Qt) = pa()ps()
Pa(t) = _:—g sin(201) — 203 sec?(Q1) tan(Q) = i (L)ps(1)

Pa(t) = 207 sec®(Qt) = —(pa (1) + pa(t)).

That is, p(t) = ﬁég’) (p(t)), and so p(-) is an integral curve of ﬁég). Finally, since cos(Q2t) =0
at the points &(2n — 3) and (2n + 1), n € Z, it follows that p(-) is only defined on the open

intervals (Z(2n — 3), Z(2n + 3), n €.
We now make an explicit statement regarding all integral curves of ﬁég’) for this case.

l\')»ﬂ

4.6.18 PROPOSITION. Letp(-) : (—&,&) — se(1, 1)* be an integral curve ofFIéS) such that Hé >(p(())) =
ho <0 and C(p(0)) = co > 0.

55 5) such that p(t) =
1)* is defined by

(i) There exists to € (—3 p(t + to) for every t € (—&,2), where
p() (=30, 3q) — se(l,
_ 1
pi(t) = I [49% sec®(t) + o cos ()]
_ 1
pa(t) = RTeR [49* sec® () — g cos ()]
ps(t) = 2Q tan(§2).

Here Q1 = —h—20,

(#) t— p(t+to) is the unique maximal integral curve starting ot p(to)
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Proor. (i) We have sgn(ps|(_x/20),0)(t)) = —1 and sgn(ps|»/20))(t)) = 1. Furthermore,
lim;_, 7 /20) Pa(t) = —oo and lim;_z/20) Pa(t) = oo. Therefore, since p3(-) is continuous,
there exists to € (—55, 55) such that p3(tg) = p3(0). Then

pr(to) + pa(to) = ho — 5P3(to)* = ho — 5p3(0)* = p1(0) + p2(0),

and from p1(t0)? — pa(t0)? = co = p1(0)? — p2(0)2, we get

{1 1 } {pl(to)} _ {pl(o)}
1 —1] |p2(to) p2(0)]
Since F L } is invertible, it follows that p(tg) = p(0). Therefore, as t — p(t + tp) and

1 -1
t — p(t) are both integral curves of ﬁéS) passing through the same point at ¢ = 0, they both

solve the same Cauchy problem, and hence are identical.
(71) We show that the domain of p(-) is no larger than that of ¢ — ﬁ(t+to) Let s € (—¢ )

By (i), p(s) = p(s+1to), and so s +to € (—5q, 55)- Consequently, s € (—55 —to, 55 + o),
(—¢,¢) € (=35 10, 35 +to). Therefore the domain of p(-) is contained in that of t — p(t+to)
Uniqueness now follows from the maximality of ¢ — p(t + to). [ |

4.6.2.2 Case Il: cg =0

4.6.2.2.1 Case II-a: hyp > 0. Aspi(t)? = p3(t), we have p1 (1) +p2(t) = 0 or p1(t)—pa(t) =
0. Similarly, since p2(t) > 0, we have p1(t) > 0 or pi(t) < 0. If p1(t) = 0 for some ¢, then p( )
is constant. (Indeed, we have p(t) = (0,0, £/2hg ), which is an equilibrium point of H )
Thus either p1(t) < 0 or p1(t) > 0.

Consider the case p1(t) — P2(t) = 0, p1(t) < 0. Take the limit ¢y — oo in the integral
curve of proposition 4.6.15. The result is

p1(t) = —Q% csch? ()
P2(t) = —Q% csch?(Q)
pa(t) = —2Q coth(Qt).

(Here Q = \/%0 .} We have

p1(t) = 202 esch?(Qt) coth(Qt) = pa(t)
P2(t) = 202 esch?(Qt) coth(Qt) = py
pa(t) = 260° esch®(Qt) = —(p1(t) + pa(1))-

Thus p(-) is an integral curve of FI§3>. Finally, as sinh(Qt) = 0 when ¢ = 0, we have that p(-)

is only defined on the open intervals (—oo, 0) and (0, co).

7(3)

We now make an explicit statement regarding all integral curves of Hy™ for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁég’) such that HéS) (p(0)) =
ho >0, C(p(0)) =0, p1(0) — p2(0) = 0 and p:(0) <O0.
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(i) There exist to € R\ {0} and s € {—1,1} such that p(t) = p(t+1o) for everyt € (—¢,¢),
where p— () = Pl(—00,0)()s P+(*) = Pl(0,00) () and
p1(t) = —Q% esch?(Qt)
P2(t) = —Q% esch?(Qt)
pa(t) = —2Q coth(0t).

Here Q) = 70
(i) t— pxL(t +to) is the unique mazimal integral curve starting at p+(to).

PROOF. (i) Let ¢ = —sgn(ps(0)) € {—1,1}. (If p3(0) = 0, then hy = p1(0)+p2(0) + 3p3(0)? =
0, a contradiction.) We have

limpa(t) = —oo, lim pio(t) =0 and  limp_»(t) = —co, lim p_»(t) =0.

Since p— 2(+) and p4 () are continuous, there exists

(—00,0) if¢=—1
ty € .
(0,00) ifgc=+41

such that pc2(to) = p2(0). (As p1(0) = p2(0), we have p2(0) < 0.) Then py (to) = Pac(to) =
pQ(O) - pl(()). Finally7

Pea(to)® = 2(ho — Pe(to) — Pe2(to)) = 2(ho — p1(0) — p2(0)) = p3(0)*.

As sgn(pes(to)) = —s = sgn(ps(0)), we have p¢3(to) = p3(0). That is, pc(to) = p(0). There-
fore, as t — pc(t+tp) and t — p(t) are both integral curves of ﬁég’) passing through the same
point at £ = 0, they both solve the same Cauchy problem, and hence are identical.

(ii) We show that the domain of p(-) is no larger than that of ¢t — pi(t + o). Suppose
p(0) = p_(to). Let s € (—&,¢). By (i), p(s) = p_(s + to), and so s + tn € (—00,0).
Consequently, s € (—oo, —to), i.e., (—g,2) C (—o00,—tp). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + o). Uniqueness now follows from the maximality of ¢ —
p-(t + to).

Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + tp € (0,00), i.e.,

€ (—tp,00). Thus (—¢,¢) C (—tp, o), and so the domain of p(-) is no larger than that of
t — p4(t + to). The uniqueness of t — py(t + to) follows from its maximality. [ |

Consider the case p1(t) — p2(t) = 0, p1(t) > 0. Take the limit ¢y — 0 in the integral
curve of proposition 4.6.16. We get

(Here Q = (/% ) We have p(t) = H (p(t)). Indeed,

p1(t) = =202 sech?(Qt) tanh(Qt) = pa
P2(t) = —202 sech?(0t) tanh(Qt) (
Pa(t) = —20% sech®(Qt) = —(pa(t) + p(1))-
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Therefore p(-) is an integral curve of ﬁég). Furthermore, p(-) is defined over R.

We now make an explicit statement regarding all integral curves of ﬁég’) for this case.

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofFIéS) such that HéS) (p(0)) =
ho > 0, C(p(0)) = 0, p1(0) — p2(0) = 0 and p1(0) > 0. There exists to € R such that
p(t) = p(t +to) for every t € (—e,2), where p(-) : R — se(1,1)* is defined by

p1(t) = Q% sech?(Q)

P2(t) = Q%sech?(Qt)

ps(t) = —2Qtanh(0Qt).
Here Q) = h—20 .
PRrOOF. Since pi(t) > 0 and pa(t) = pi(t), we have pi(t) + p2(t) > 0, and so pa(t)? =
2(h0 —pl(t) —pg(t)) < 2hg. Thus —v2hy < pg(t) < 2hg . Similarl)@ we have —/2hy <

p3(t) < v/2ho . Moreover, lim;_,o p3(t) = —v/2ho and lim;_,_ o p3(t) = V2ho . Since ps(-) is
continuous, there exists typ € R such that ps(tg) = p3(0). Then

Pi(to) + pa(to) = ho — 3P3(to)® = ho — $p3(0)* = p1(0) + p2(0),

and from py(to)? — pa(to)? = p1(0)* — p2(0)?, we get

Al s ]

11} is invertible, it follows that p(tg) = p(0). Therefore, as t — p(t + tp) and

. 1
Since { 1
t — p(t) are both integral curves of ﬁég’) passing through the same point at ¢ = 0, they both

solve the same Cauchy problem, and hence are identical. |

Consider the case p1(t) + P2(t) = 0. If p1(t) = —p2(t) = 0 for some ¢, then p(t) =
(0,0, £+/2hg ), which is an equilibrium point of ﬁég’) (and so p(+) is constant). Suppose p1(t)
and Pa(t) are not both zero for the same ¢. The equation 2hg = p3(t)? yields ps(t) = o1+v/2ho ,
for some o1 € {—1,1}. Then f; = —o1+/2hg fr, which has the solution 71 (t) = goe=o1V2hot,
for some o2 € {—1,1}. Thus we have the following (prospective) integral curve:

pi(t) = gae= V2ot

]52 (t) _ _0_26—01 V2hot
]53(15) = o1V 2ho .
We verify that p(-) is an integral curve. Indeed,
Pi(t) = —o102v/2ho e 7Vl = py()ps(t)

Pa(t) = 102y/2hg e~ 7Y2RI — 5y (1) pa(1)
pa(t) =0 = —(p1(t) + pa(1)),

and so p(t) = ﬁég’) (p(t)). Furthermore, p(-) is clearly defined on R.
We now make an explicit statement regarding all integral curves of ﬁég’) for this case.
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PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁég’) such that HéS) (p(0)) =
ho > 0, C(p(0)) = 0 and p1(0) + p2(0) = 0 (with p1(0) and p2(0) not both zero). There exist
to € R and 0,6 € {—1,1} such that p(t) = p(t + to) for everyt € (—¢, &), where

]71(15) _ ge—ax/2hot
]52(15) _ _ge—ax/2h0t

]53(15) = o/ 2hg.

PrROOF. Let 0 = sgn(p1(0)) € {—1,1} and ¢ = sgn(p3(0)) € {—1,1}. (If p1(0) = 0, then
p2(0) = 0, a contradiction. Similarly, if p3(0) = 0, then p1(0) + p2(0) = hy > 0, a contradic-
tion.) We have sgn(p1(t)) = o. Furthermore,

ooo if¢=-—1

N 0 if¢=—1 N
lim pi(t) = { and lim pi(t) = { 0 el

t——o00 oo if¢=+41 t—00
Since p1(-) is continuous, p1(0) # 0 and sgn(p1(0)) = o, there exists g € R such that
P1(to) = p1(0). Then pa(to) = p1(to) = —p1(0) = p2(0). Finally,

D3(to)? = 2(ho — P1(to) — P2(to)) = 2(ho — p1(0) — p2(0)) = p3(0)*.

But sgn(ps(to)) = s = sgn(ps(0)), and so p3(to) = p3(0). Therefore, as t — p(t + to) and
t — p(t) are both integral curves of ﬁéS) passing through the same point at ¢ = 0, they both
solve the same Cauchy problem, and hence are identical. |

4.6.2.2.2 Case [I-b: ho = 0. If pi(t) + p2(t) = 0 for some ¢, then we have p(t) =
(p1(0), —p1(0), £/2ho ) = (p1(0), —p1(0),0), which is an equilibrium point of ﬁég’) (and so
p(+) is constant). Assume p1(t) + pa2(t) # 0 and pi(t) # 0 for every t.

Furthermore, since p1(t)? > p1(t)? — p2(t)? = 0, we have p1(t) > 0 or p1(t) < 0. We claim
that the latter situation is impossible. Indeed, suppose p1(t) > 0. Since p1(t) — p2(t) = 0, we
have pa(t) > 0 and so ho = pi(t) + P2(t) + $p3(t)? > 0, a contradiction. Thus py(t) < 0 for
every t.

Taking the limit ¢y — 0 in the integral curve of proposition 4.6.17 yields

p1(t) = _tig
_ 1
pa(t) = 2
pa(t) = —%
We have p1(t) = & = pa(D)ps(t), p2(t) = & = pr(t)ps(t) and ps(t) = & = —(Pr(t) + Pa(1).

3
That is, p(t) = FI23) (p(t)), and so p(-) is an integral curve of ﬁf’). Furthermore, p(-) is only

defined on the open intervals (—o0, 0) and (0, co).
We now make an explicit statement regarding all integral curves of ﬁég’) for this case.

A~

PROPOSITION. Let p(-) : (—¢,2) — se(1, 1)* be an integral curve ofﬁég’) such that HéS) (p(0)) =
0, C(p(0)) =0, p1(0) + p2(0) # 0 and p1(0) < 0.
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(i) There exist to € R\ {0} and s € {—1,1} such that p(t) = p(t+1o) for everyt € (—¢,¢),
where P () = Pl(—o0,0) ("), D+(-) = Pl(o,ec) () and

pi(t) = _tig

1
p2(t) = 2
pa(t) = —%

(i) t— pxL(t +to) is the unique mazimal integral curve starting at p+(to).

ProoF. (i) Let ¢ = —sgn(p3(0)) € {—1,1}. (If p3(0) = 0, then p1(0) + p2(0) = hg = 0, a
contradiction.) We have

limpa(t) = —oo, lim pio(t) =0 and  limp_»(t) = —co, lim p_»(t) =0.

Since p_ 2(+) and py o() are continuous, there exists

(—00,0) if¢=—1
to € .
(0,00) ifc=+1

such that pca(to) = p2(0). We then have pc1(t0)? = pea(to)? = p2(0)? = p1(0)2. Since
Pe,1(to), p1(0) < 0, it follows that pg1(to) = p1(0). Finally, pea(to)* = —2(pe,1(to) +ps2(t0)) =
—2(p1(0) + p2(0)) = p3(0)*. As sgn(pes(to)) = — = sgn(ps(0)), we have pes(to) = p3(0).
That is, pc(to) = p(0). Therefore, as t — p.(t + to) and ¢ — p(t) are both integral curves of
ﬁég’) passing through the same point at { = 0, they both solve the same Cauchy problem, and
hence are identical.

(ii) We show that the domain of p(-) is no larger than that of ¢t — p4(t + o). Suppose
p(0) = p_(to). Let s € (—=,¢). By (i), p(s) = p_(s + tg), and so s + {p € (—00,0).
Consequently, s € (—oo, —tpy), i.e., (—g,) C (—o00,—tp). Therefore the domain of p(-) is
contained in that of ¢t — p_(t + to). Uniqueness now follows from the maximality of ¢ —
p—(t +to).

Suppose p(0) = py(to). Similar to before, if s € (—z,¢), then s + to € (0,00), i.e.,
s € (—tp,00). Thus (—¢,&) C (—tp,c0), and so the domain of p(-) is no larger than that of
t — p4(t + to). The uniqueness of t — py(t + to) follows from its maximality. [ |

4.6.2.2.3 Case Il-c: hg < 0. Limiting cp — 0 in the integral curve of proposition 4.6.18,

we get the following curve:
p1(t) = —0%sec? ()

p2(t) = —0%sec? ()
pa(t) = 2Q tan(§).
(Here Q = {/—10 ) We verify that p(t) = ﬁég’) (p(t)). Indeed,
p1(t) = —20% sec?(Qt) tan(Qt) )
Pa(t) = =207 sec?(Qt) tan(Qt) = p1()pa(t)
Pa(t) = 20%sec®(Qt) = —(P1(t) + pa(t))-
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Thus p(-) is an integral curve of ﬁég). Furthermore, p(-) is clearly defined over R.

We now make an explicit statement regarding all integral curves of ﬁég’) for this case.

4.6.23 PROPOSITION. Letp(:): (—&,&) — se(1, 1)* be an integral curve ofFIéS) such that HéS) (p(0)) =

ho <0 and C(p(0)) = 0.
(i) There exists to € (—5q,55) such that p(t) = p(t + to) for every t € (—¢,2), where
() 1 (=355, 35) — se(1,1)* is defined by
pi(t) =~ sec?(Q1)
p2(t) = —0%sec?(Q1)
pa(t) = 2Q tan(Q).

Here Q) = —h—20,

(i) t— p(t+to) is the unique maximal integral curve starting at p(to).

Proor. (i) We have sgn(pa|(—r/20),0)(t)) = —1 and sgn(ps|o,x/(20))(t)) = 1. Furthermore,
limy_, 7 /20) P3(t) = —oo and limy_,; /20y P3(t) = oc. Therefore, since ps(-) is continuous,
there exists tg € (—5q, 55) such that pa(tg) = p3(0). Then

p1(to) + p2(to) = ho — 3p3(to)® = ho — 3p3(0)> = p1(0) + p2(0),

and from py(t0)? — pa(t0)? = 0 = p1(0)? — p2(0)2, we get

{1 1 } {pl(to)} _ {pl(o)}
1 —1] |p2(to) p2(0)]
Since E _11} is invertible, it follows that p(tg) = p(0). Therefore, as t — p(t + o) and

t — p(t) are both integral curves of ﬁéS) passing through the same point at ¢ = 0, they both
solve the same Cauchy problem, and hence are identical.

(11) We show that the domain of p(-) is no larger than that of ¢ — ﬁ(t+to) Let s € (—¢ )
By (i), p(s) = p(s+10), and so s +1t0 € (—55, 55). Consequently, s € (—55 —10, 55 1+ t0), i
(—¢,€) € (=35 10, 35 +to). Therefore the domain of p(-) is contained in that of t — p(t+to)
Uniqueness now follows from the maximality of ¢ — p(t + to). [ |



Chapter 5

Optimal Control on SE(1,1)

In this chapter we investigate invariant Riemannian and sub-Riemannian structures on the
semi-Fuclidean group. As the first step, we introduce a natural equivalence relation between
such structures, viz. equivalence up to isometric group automorphisms. The left-invariant
Riemannian and sub-Riemannian structures on SE(1, 1) are then classified. This classification
is related to some extent with the classification of control systems (in fact, the classification
of subspaces) in chapter 2, and we shall draw upon some of those results. Up to equivalence,
we identify a single-parameter family of sub-Riemannian structures on SE(1,1). On the
other hand, a two-parameter family of Riemannian structures is obtained. By scaling, these
may be reduced to a single representative and a single-parameter family of representatives,
respectively.

Following the classification we determine the minimising geodesics for each Riemannian
and sub-Riemannian equivalence class representative. These are expressed in terms of Jacobi
elliptic functions, and typically involve several parameters. We outline the approach followed
during the integration. Geodesics are (local) length minimisers, and so the problem of finding
the geodesics is written as an optimal control problem on SE(1, 1). Next we identify a family
of Hamiltonian functions on the cotangent bundle 7*SE(1,1). By Pontryagin’s Maximum
Principle (see section A.3.4), this family of Hamiltonians reduces to a single homogeneous
Hamiltonian H evolving on the minus Lie-Poisson space se(1,1)*, i.e. a (homogeneous)
Hamilton-Poisson system (se(1,1)*, H). Such systems have been classified in chapter 3 (up to
affine equivalence), and the integral curves were calculated in chapter 4. We use the results of
chapter 4 to determine the extremal controls for the optimal control problem. (The extremal
controls are linearly related to the integral curves of H .) The final step is to integrate the
equations for the optimal trajectories on the group. This work is divided into several different
cases, depending on initial conditions. The resultant curves are the geodesics on SE(1, 1).

5.1 Preliminaries

We briefly recall some concepts from Riemannian and sub-Riemannian geometry, as detailed
in section A.4. A sub-Riemannian structure on a (real, finite-dimensional) connected
matrix Lie group G is a pair (D, g), where D is a distribution on G and g is a sub-Riemannian
metric on D. If D = TG, then we speak of a Riemannian structure g. We shall restrict
to structures that are left-invariant (i.e., Dy = ¢ D1 and gy(¢9X, gY) = g1(X,Y) for every
X,Y € D; and g € G) and bracket-generating (i.e., Lie(D1) = g). Horizontal curves

117
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are absolutely continuous curves g(-) : [0,7] — G such that §(t) € Dy for a.e. t € [0,7].
By theorem A.4.1 (the Chow-Rashevskii theorem), there exists a horizontal curve joining any
two points so long as D is bracket-generating. A (minimising) geodesic is a horizontal curve
g(-) : 10,7] — G such that £(g(:)) = d(g(0),g(T)). Geodesics are solutions to the following
problem:

g(t) € Dyry,  9():[0,7] =G
g(0) = go, 9(T) = g1, go,91 € G, T > 0 fixed

T
- / o0 (§(0),4(8)) dt — min.

Theorem A.4.2 guarantees the existence of geodesics between any two points sufficiently close
to each other. The above problem may be rewritten as the optimal control problem

G =guiEy + ... 4wk, g():[0,T] =G, u(-):0,7] - R*
9(0) = 4o, g(T) =g, 90,91 €G, T >0 fixed

T
() /O w2+ -+ up(t)? dt — min,

(The normal geodesics are projections of normal extremals, whereas abnormal geodesics
are projections of abnormal extremals.) We shall determine the geodesics for every sub-
Riemannian (and Riemannian) structure on SE(1,1). To that end, we introduce an equiva-
lence relation between sub-Riemannian structures. Let (D, g) and (D', g') be two left-invariant
sub-Riemannian structures on a Lie group G. We say that (D, g) is £-isometric to (D', g’)
if there exists a Lie group automorphism ¢ : G — G such that

Typ Dy =Dy,  and  go(X,Y) =gl (Tyd- X, Ty Y) (5.1.1)

for every X,Y € D, and g € G. (Notice that, in the Riemannian case, the first condition
is trivially satisfied, since D = D’ = T'G.) An automorphism ¢ : G — G that satisfies the
conditions of (5.1.1) is called an £-isometry.

PROPOSITION. FEquivalence under L£-isometries is an equivalence relation.

Proor. Let (D,g), (D', g') and (D", g") be left-invariant sub-Riemannian structures on a
matrix Lie group G. We have T, id Dy = Dy = Diq(g) and gg(X,Y) = giqe)(Tyid - X, Ty id -Y)
for every g € G. Hence (D, g) is £-isometric to itself, and so equivalence under £-isometries
has the reflexive property.

Next, suppose (D, g) is £-isometric to (D', g’). Then there exists a Lie group automor-
phism ¢ : G — G such that T,¢ - D, D 5(g) B and gq(X,Y) = ( Ty¢- X qu5 Y') for every
XY € D, and g € G. Consequently, (T,¢)~" Dy = D and gg(( T,0)~1 - U, (T,0)71

V) = gfﬂg)(U, V) for every U,V € D’ () and g € G Since ( gq5) = Ty )qb_ , we have
¢_1~D'< ) = Dg-1(4(¢)) and g(’ﬁ(g)(X Y) = 8o-1(a(g) (L)@ - X, Ty~ - Y) for every
U V € Dy and ¢(g) € G. That is, (7', g') is E—equwalent to (D, g), and so equivalence
under £- 1sometr1es has the symmetry property.
Finally, suppose that (D, g) is £-isometric to (D', g') and (D, g') is L-isometric to (D", g").
Then there exist ¢1, ¢2 € Aut(G) such that

Ty¢1 Dy =Dl and Ty go(X,Y) =gl (y(Tyd1 - X, Tyg1 - Y)
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for every g € G, X,Y € Dy, and
Tyt Dy =Dy,  and  Tydo - go(X,Y") =gy () (Tyda - X', Tyga - Y)

for every g € G, X', Y’ € D). Let ¢ = ¢2 0 ¢1. Then ¢ is an automorphism such that, for
every g € G,

Ty Dy = Ty, (902 Ty$1 - Dy = T ()92 Dy, () = Pihoionta)) = Pibia)-
Furthermore, for every g € G and X,Y € Dy,

Tyt - 8g(X,Y) = Ty ()02 - Tyo1 - 8(X,Y)
= 1oy (9)92- gfm(g) (Tg¢r - X, Tyr - Y)
= 8huorio)) Lon(0) 92 Tedr - X, Ty (02 - Tyer - Y)
= gg(g)(Tg¢ X, Ty Y).

Thus (D, g) is £-isometric to (D", g"), and so equivalence under £-isometries is transitive. l

The next result shows that equivalence under £-isometries is natural, in that it preserves
salient properties of the sub-Riemannian structure. Let d(-,-) and £(-) denote the Carnot-
Carathéodory metric and length functional, respectively, of (D, g) (as defined in section A.4).
Similarly, let d'(-,-) and #(-) denote the Carnot-Carathéodory metric and length functional
of (D', g).

5.1.2 PROPOSITION. Suppose (D,g) and (D', g') are L£-isometric with respect to an automorphism
$:G—G.

i) D is brackel-generating if and only if D' is bracket-generating.
9 9 Y 9 9
(i) The horizontal curves of (D, g) and (D', g') are in a one-to-one correspondence.

(iit) The Carnot-Carathéodory distance and the length of curves is preserved. That is, we

have d(-,-) = d'(¢(-), d(-)) and L(g(:)) = £ (P(g(-))) for every horizontal curve g(-) :
[0, 7] — G.

(iv) The geodesics of (D,g) and (D', g') are in a one-to-one correspondence.

PROOF.

(i) We have that D and D’ are bracket-generating if and only if the subspaces D; and
D} have full rank, i.e., Lie(D1) = Lie(D}) = g. Furthermore, as ¢ is a Lie group
automorphism, 77 ¢ is a Lie algebra automorphism (see theorem A.1.6). Since 71 ¢- D1 =
D} and automorphisms preserve full rank subspaces (proposition 2.1.7), it follows that
D is bracket-generating if and only if D’ is bracket-generating.

(ii) Let g(-) : [0,T] — G be a horizontal curve of (D, g). Then §(t) € Dy for a.e. t € [0,T].
Accordingly, for a.e. t € [0,7T], we have

d .
00) = Ty 9(t) € Toy® - Doty = Dog(ay)-
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That is, (¢og)(+) is a horizontal curve of (D', g'). Since (D, g) and (D', g’) are arbitrary,
we have that g(-) is a horizontal curve of (D, g) if and only if (¢ o ¢g)(-) is a horizontal
curve of (D', g'). That is, the horizontal curves of (D, g) and (D', g’) are in a one-to-one
correspondence.

(iii) Let g(-) : [0,7] — G be a horizontal curve. Then

Woon - [ \/g¢ (o). Syota(e) )

- /0 \/gfﬁ(g(,ﬁ)) (Tg(t)q5 : g(t)v Tg(t)q5 : g(t)>l dt

/()T\/mdt

Thus the length functional is preserved by ¢. Next, let a,b € G be arbitrary. Since D
is bracket-generating (by assumption), the Chow-Rashevskii theorem (theorem A.4.1)
ensures the existence of a horizontal curve g(:) : [0,7] — G such that g(0) = a and
g(T) = b. By item (ii), ¢ o g is a horizontal curve such that ¢(g(0)) = ¢(a) and

¢(g(T)) = ¢(b). Accordingly,

d'(¢(a), $(b))
= d'((¢09)( )7 (o g)(T))
= inf {E' :h 110, S] — G is horizontal, h(0) = (¢ o g)(0), h(S) = (¢ og)(T)}
= inf {£'( q5 f (-)) = f :10,5] — G is horizontal, f(0) = g(0), f(S) =g(T)}
=inf {£(f(-)) : f:]0,S] — G is horizontal, f(0) = g(0), f(S)=g(T)}

= d(g(0),g(T)) = d(a,b).

That is, the Carnot-Carathéodory distance is preserved by ¢.

(iv) Let g(-) : [0,T] — G be a geodesic of (D, g), i.e., d(g(0),g(T)) = £(g()). Then, using
item (i),

d'((¢ 0 9)(0), (¢ o g)(T)) = d(g(0),9(T)) = £(g()) = £'((¢ 0 9)("))-

Thus (¢ o g)(+) is a geodesic of (D', g'). Since (D, g) and (D', g’) are arbitrary, we have
that g(+) is a geodesic of (D, g) if and only if (¢ o g)(*) is a geodesic of (D', g’). That is,
the geodesics of (D, g) and (D', g') are in a one-to-one correspondence. [ |

Next, we show that for (left-invariant) sub-Riemannian structures on simply connected Lie
groups, equivalence under £-isometries may be characterised at the level of the Lie algebra.

5.1.3 THEOREM. Let (D,g) and (D', g') be sub-Riemannian structures on a simply connected Lie
group G. (D, g) is £-isometric to (D', g') if and only if there exists a Lie algebra automorphism
V:g— g such that v -Dy = D) and g1(X,Y) =g (¢ - X, ¢ Y) for every X,Y € Ds.

PRrROOF. Suppose that (D, g) and (D', g’) are L£-isometric with respect to an automorphism
$:G =G, ie, Typ Dy = Dfﬁ( ) and gq(X,Y) = gd) (Tyo - X, Ty¢ - Y) for every X,Y € D,
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and g € G. By theorem A.1.6 we have that T7¢ : g — g is a Lie algebra automorphism. Hence,
there exists a Lie algebra automorphism ¢ = Tj¢ such that ¢ - Dy = D} and g1(X,Y) =
gi(y- X, Y) for every X,Y € Dy.
Conversely, since G is a simply connected Lie group, there exists a Lie group automorphism
¢ : G — G such that Ty¢ = 1 (theorem A.1.6). We have ¢ = Ly 0 ¢ o L1 for every g € G.
Accordingly,
Ty¢ - Dy *T(Ld) o¢o Ly 1) Dy
=T Lgig) - T1¢ TyLy - Dy
=T1Ly) ¥ D1

Furthermore, for every X,Y € D, and g € G, we have

go(X,Y) =g1(Tylyg X, TyLyr-Y)
=g1(¥- X Tngfl.Y)
’1(T1<b TL 1 X, T Tylyr-Y)
:g;< ) (T1 L) qus TyLy1 - X, TiLygg) - T1¢p- TyLy 1 -Y)
= 8oy (To(Ly(gy 0 po Ly-1) - X, Ty(Lyigy 0 po Ly-1) - Y)
= 8y() (40 Xqu5 Y).
Therefore (D, g) and (D', g') are £-isometric. n

The isometric group automorphisms, i.e., £-isometries, preserve both the Lie group struc-
ture and the sub-Riemannian structure. It turns out that a dilation of the metric, while not
preserving the sub-Riemannian structure, does not affect it in an appreciable fashion. This
allows us to consider scaled sub-Riemannian structures as essentially the same. Let d(-, ) and
£(-) denote the Carnot-Carathéodory metric and length functional, respectively, of (D, g).
Similarly, let d'(-,-) and #(-) denote the Carnot-Carathéodory metric and length functional
of the dilated structure (D, r?g), where r > 0.

PROPOSITION. The following statements hold true regarding (D,g) and (D,rg), r > 0:
(i) The horizontal curves of (D,g) and (D,r?g) are in a one-to-one correspondence.
(i) d'(-,-) =rd(-,") and £'(-) = re(-).

(#i1) The geodesics of (D, g) and (D, r?g) are in a one-to-one correspondence.

PROOF.

(i) Distributions are invariant under dilations. Furthermore, the class of horizontal curves
depends only on the distribution and not on the sub-Riemannian metric. It follows that
the horizontal curves of (D, g) are exactly those of (D, r?g), and vice versa.

(i) Let g(+) : |0,7] — G be a horizontal curve. We have

T ]
~ | Jrrata.au) @ = retat),
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i.e., £'(-) = rL(-). Similarly, for every a,b € G, we have

d'(a,b) = inf {£'(g(-)) : g : [0, T] — G is horizontal, ¢(0) = a, g(T) = b}
=inf {rf(g(-)) : g : [0,T7] — G is horizontal, g(0) = a, g(T) = b}
= rd(a,b).

Thus d'(-,-) = rd(-, -).

(iit) Let g(-) : [0,T] — G be a geodesic of (D,g). Then d(g(0),g(T)) = £(g(-)). Using item
(ii), we have
d'(g(0), g(T)) = rd(g(0), 9(T))

That is, g(+) is a geodesic of (D, r?g). Conversely, if g(-) is a geodesic of (D, r2g), then it
is a geodesic of the scaled structure (D, Tiz(ﬂg)) = (D, g). Thus the geodesics of (D, g)

and (D, r?g) are in a one-to-one correspondence. [ |

5.2 The Riemannian Problem

We begin by classifying the left-invariant Riemannian structures on SE(1,1). We show that,
up to L-isometries, there is a two-parameter family of class representatives. This may be
further reduced to a single-parameter family by employing a suitable dilation. The results
of this classification (before scaling) coincide with those obtained by the authors of [25].
(However, note that SE(1,1) is denoted Sol in [25], and a different basis is employed for
se(1,1), viz. (E1 — Fo, E1 + Ea,—FE3).) Following the classification, we shall calculate the
Riemannian geodesics for each normalised Riemannian structure on SE(1, 1).

We briefly recall the automorphism group of se(1,1). Let ¢ € Aut(se(1,1)). Then ¢ is of
the form

x oy w
Y=y s w|, ce{-1,1}, 2® £y~
0O 0 ¢

(See proposition 1.1.17.) If we refer to an unspecified automorphism, we shall assume it is of
this form.

THEOREM. Fvery left-invariant Riemannian structure on SE(1,1) is L-isometric to exactly
one of the structures pug”, where g is specified in the basis (B3, by

1
gr(X,Y)=Xx" |0
0

o > O

0

0]Y, X,Y ese(l,1).

1

Here pp > 0 and 0 < A < 1 parametrise a family of class representatives, each different value
corresponding to a distinct (non-equivalent) representative.

PROOF. Let g be a left-invariant Riemannian structure on SE(1, 1), given in coordinates by

a1 bl bg
g1 = b1 ax b3 (a1, as,as > 0).
bg bg as
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(For brevity, we identify gy with its associated matrix, in terms of the basis (F;)?_;.) Define

the automorphism
1 O b1b3 —U,ng

a1a9 —bg1
_ b1ba—a1bs
'(/Jl 0 1 a1a9 —b1
0 0 1

(Since gy is positive definite, the 2 x 2 principal minor ajas — b? is strictly positive.) We have

a1 bl 0

Yigir = [bi ax O],
0 0 adaf

for some af > 0. Suppose by #£ 0, and let
1 _aitapt (262)11+&2)2—4b% 0
Py = a1tas+t /(a1 +ag)?—4b3 1 ol -
- 267
0 0 1]

Since ¥ g141 is positive definite, it follows that a; + ap > 2b;, whence (a1 + a)? — 463 > 0.
Consequently, 1, is an automorphism such that (¢192) T g1 (¥112) = diag(a), ab, ay) for some
al,al, > 0. (If by = 0, then v = diag(1,1,1) suffices, with @} = a1 and @), = ap.) Then the

automorphism 3 = diag («/%, Z—% , 1) yields (W1wats) T g1 (Wiwetps) = af diag(l,al, 1),
where alj > 0. For brevity, let g = (Y1¥213) g1 (W1tPatb3). If aj > 1, then

0 L
Py = = 0 0
0 0 1J

is an automorphism such that ] g} w4 = a} diag(1, ai,z,, 1). Thus either g’ = ug* where 1 = aj

and A\ = a <1 or¢/giy = ug where u = a and \ = aig < 1. Therefore, by theorem
5.1.3, g is £-isometric to the structure pg*, where > 0and 0 < A < 1.

We show that p g} is £-isometric to ¢/gy’ only if = ¢/ and A = X. Suppose there exists
an automorphism ¢ such that ¥ T g = %gi\/. In matrix form,

22+ 2 ay(l+ X)) vr+shwy ;1 0 0
ey(1+ ) 222\ vy twr | = Elo N o
v F A wy  vysA +we 1+ 2+ dw? Flo o 1

As A > 0, we have 2y = 0. Suppose x = 0; then v = w = 0, as y # 0, and %’ = 1. Hence
pw = g (since u, i’ > 0), and we are left with the equality diag(Ay?,9%,1) = diag(1, N, 1).
This implies that A\ = 1, and so A = X = 1. Suppose y = 0; then v = w = 0, p = g/, and
we have diag(z?, A\x2,1) = diag(1, X', 1). This implies that A = \. [ |

Considering the classification of theorem 5.2.1, and the fact that dilations of Riemannian
structures do not have an appreciable effect (proposition 5.1.4), we shall study the single-
parameter family of Riemannian structures g* on SE(1,1). In particular, we find explicit
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expressions for the Riemannian geodesics. The Riemannian problem for g* may be written
as

g(t) € Tg(t)SE(lv 1)7 g() : [OvT] - SE(lv 1)
g(0) =1, g(T) = g7, gr €SE(1,1), T > 0 fixed

T
B /0 g;l\(t) (9(t),4(t)) dt — min.

(Due to left invariance, we restrict to Riemannian geodesics starting at the identity, since this
can always be arranged.) In accordance with the discussion in section A.4, we may write the
Riemannian problem as an optimal control problem:

g=9=2(1,u) = glur E1 + u2Fo +usks), g(-): [0, 7] = SE(1,1), u(-) : [0,T] — R*

R) 9(0) =1, g(T) = gr, gr €SE(1,1), T > 0 fixed

T
T(ul)) / (D2 + Mia(t)? + us(t)? dt — min,
0

By theorem A.4.2, solutions to (R) are guaranteed to exist (at least, locally; i.e., for gr in
a sufficiently small neighbourhood of identity). The family (H. )UGRS of control- dependent
Hamiltonian functions is specified by

HY(p) = uipy + ugpz + usps + v(uf + Auj + uf).

Consider the abnormal geodesics. Set v = 0. The maximality condition (A.3.8) of PMP
implies
OHY
(’9ui

—0 =  p;=0, =123

Consequently, p(t) = 0 for all ¢, which contradicts the regularity condition (v, p(t)) # 0 of the
Maximum Principle. Hence, there are no abnormal extremals.

REMARK. The absence of abnormal geodesics for the structure g* is not unique to this struc-
ture. Indeed, there are no abnormal geodesics on Riemannian manifolds. (This fact is in-
dicative of the differences between Riemannian and sub-Riemannian geometry.) See, e.g.,
[37]. 0

Consider the normal geodesics. Theorem A.3.8 implies that the (normal) extremal controls
are given by

T

10 0]7'[1 00 10 0
u(t) = Q7 'BTy( 0 A0 01 0 p)T =10 %+ o] pit)".
0 0 1 0 0 1 0 0 1
That is, u1(t) = p1(t), = +p2(t) and us(t) = p3(t). Here p(-) is an integral curve of the
Hamilton-Poisson system ( e(1,1)*, HR), Where H® is the (reduced) Hamiltonian function

HPp) =1pBQ B p" =1 (p? + Lp3 1 p2).
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Let (g(t), p(t)) be an extremal trajectory of (R). We have
@030 =1 = w®’+ e’ +u®)?=1 = H@W) =

N[

Thus, we assume that H®(p(t)) = %, and so the resultant geodesics will have unit speed.

The geodesic equations take the form
p=H® (p) (vertical subsystem)
§g=9=(1,u) (horizontal subsystem).

The vertical subsystem is described by the (quadratic and homogeneous) Hamilton-Poisson
system (se(1,1)*, H®). This system is A-equivalent to the system (se(1,1)*, Hy), which we
have already investigated. (See theorem 3.2.1 and section 4.2.2.) Indeed,

U :p— ), 1/1diag< \//\H, ‘//\H’) (5.2.1)

is a linear isomorphism such that W - Hy = H® oW, (If p(-) is an integral curve of Hy, then
U(p()) is an integral curve of H (R ).) The following proposition determines the form of all
integral curves of H (R

5.2.3 PROPOSITION. Let p(-) : (—¢,e) — se(1,1)* be an integral curve of H® . Suppose that

H®(5(0)) = 1 and let co = C(p(0)) < 1.
(a) (i) If co = 1, then p(t) = (£1,0,0).

(it) If 0 < co < 1, then there exist to € R and o € {—1,1} such that p(t) = p(t + to)
for every t € (—¢,2), where

pi(t) = —o /55 dn(Q, k)

3

2(15) = ok\/5E% en(Qt, k)
= kQsn(Qt, k).

Here ) = / ’\J“CO and k = 4/ /\1+CCO

(b) (i) If co =0 and p1(0) = 0, then p(t) = (0,0,+1).
(it) If co = 0 and p1(0) # 0, then there exist to € R and 0,5 € {—1,1} such that
p(t) = p(t + to) for every t € (—¢,¢), where

p1(t) = —0 4/ /\+1 secht
pa(t) = ag\//\—Jrl secht

p3(t) = stanht.

(¢) If co <0, then there exist to € R and o0 € {—1,1} such that p(t) = p(t + to) for every
t € (—¢,2), where

pi(t) = ok /2552 en(Qt, k)

pa(t) = —o\/ 2452 dn(t, k)
pa(t) = kQsn(Qt, k).
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Here Q= /1 —¢g and k = ,\(/\1tccoo) .

PROOF. We have that ¥ - Hy = H® o &, where ¥ is given in equation (5.2.1). Let ¢(-) =
U~1(p()) and g(-) = ¥~1(p(")) be the integral curves of Hy corresponding to p(:) and p(-),
respectively. Let dy = C(g(0)) and hyo = H4(q(0)) > 0. We have

do = q1(0)? — q2(0)% = 2L (p1(0)% — p2(0)%) = 2LLey,

)% + tp2(0)? + ps(1)? = 1,
+ Lp2(t)? + pa(1)?, whence

and so sgn(do) = sgn(cg). Since cg = p1()? — pa(t)? (
) = 0, and so p1(t) = +1. Hence

<nm
we have cg < 1. If g = 1, then p1(£)? — p2(8)? = 1 = pi(t)
—pa(t)? = %pg(t)2 + p3(t)2. This implies that pa(t pa(t) =
p(t) = (£1,0,0).

Suppose 0 < ¢y < 1. By proposition 4.2.7, there exists ¢ € {—1,1} and ty € R such
that q(t) = q(t + to) for every t, where ¢(-) is given in the statement of that proposition.
Consequently, there exists ¢ € {—1,1} and #p € R such that p(t) = ¥(q(¢)) = V(q(t + to)) =
p(t + to) for every t € (—z,¢), where p(-) = W(g(+)) is given by

1(t) = —o\/2ho \/ 25 dn (V2ho' t, k)
p2(t) = k\/%‘/,\ﬂ cn \/%t k:)
pa(t) = \/Tosn(\/%t k:)

Here k = 2h§h 9o We have l = H®(p(0)) = ho — (,\+1)

Substituting for ho and dp in the expression for p(-) completes the result.

Suppose ¢g = 0. If p1(0) = 0, then p2(0) = 0 and p3(0) = £1. Since U~1((0,0,41)) =
(0,0,£1) is an equilibrium point of H, (see proposition 4.2.5), the point (0,0,+£1) is an
equilibrium point of H®. Hence p(t) = (0,0,%1) is constant. If p1(0) # 0, then from
proposition 4.2.8 there exists o, € {—1,1} and #y € R such that ¢(t) = ¢(t + o) for every
t. (The expression for g(-) may be found in the statement of proposition 4.2.8.) Thus, there
exists 0,6 € {—1,1} and ty € R such that p(t) = W(q(t)) = V(q(t + to)) = p(t + o) for every
t € (—¢,2), where

Adog+1l . AHep
200+1) T 2Xx ¢

and so hg =

ﬁl(t) = —04/2hg 4/ )\LH sech ( 2ho t)
p2(t) = 05/ 2ho ‘//\Lﬂ sech (\/2ho t)
P3(t) = /2ho tanh (\/2ho't).

We have § = H®(p(0)) = hg. Substituting this value into the above expression for p(:)
yields the result.

Suppose ¢y < 0. By lemma 4.2.6 and proposition 4.2.7, there exist ¢ € {—1,1} and tp € R
such that ¢(t) = q(t + to) for every t, where

q (t): k]\/2ho—do Cn<\/2ho—dot k])
q: t = —o+/2hg — do dn<\/2ho—dotk]>

33(t) = k/2ho — do sn (v/2ho —do t, k).
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Here k = 4/ 2h20h0 . Therefore, there exist ¢ € {—1,1} and ty € R such that p(t) = ¥(q(t)) =
W (qg(t +to)) = p(t + to), where p(-) is given by

Pit) = oky/2ho — do /537 en (V/2ho — do t, k)

]52(15) = —o+/2hg — do %H dn (\/ 2hg — dyp t, k])
= k]\/2ho —dy SH(\/2ho —dpt, k’)

From & = HR®(5(0)) = ho (1+/\) we get hg = ’\ngij\“)l = 2L Qubstituting for hg and do

in the expression for p(-) completes the result. [ |

The horizontal subsystem is given in coordinates by

0 0 0 1 0 0

# Osinh® 6Ocoshf| = |2 cosh@® sinh0 (u1E1 + ugFEa + usEs)

y Ocosh@ Osinho |y sinh® coshd]

1 0 0 ] 0 0 O
x cosh@ sinh@| | p1 0 ps
y sinh® coshd] %pg ps 0

0 0 0
= |pi1coshf + %pg sinhf pssinhé pszcoshd
| p1sinh 6 + %pg cosh@ pscoshf pssinhé

Equating components yields the following equations:
& = prcoshd + %pg sinh @
7 = p1sinh 6 + %pg cosh 6 (5.2.2)
0 = ps.
As ¢(0) = 1, we have the initial conditions x(0) = y(0) = 6(0) = 0. For brevity, we shall
make the identification

1 0 0
(z,y,0) € R? —> 2 coshé sinh6
y sinh# coshé

(Hence, we refer to (5.2.2) as the horizontal subsystem.)

We shall now integrate (5.2.2). Let (g(-),p(-)) be an extremal trajectory for the optimal
control problem (R), where p(-) is given in proposition 5.2.3. We write the geodesic g(-)
as the triple g(-) = (2(:),%(:),0(:)). From the geodesic equations, we have z(0) = p(0),
Ay(0) = p2(0) and 9( ) = p3(0). Consequently, we shall have a total of five different qualitative
cases, correspondlng to those of proposition 5.2.3. Table 5.1 enumerates the cases and their
designations.

For the purposes of integration, we make the change of variables v =+ and w = ¢ — .
The horizontal subsystem becomes

(T
[l [l
Sel—= >

]

I
3
b
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‘ Conditions ‘ Designation

2(0)% — A\25(0)2 = 1 | Case I-a

2(0)2 — \23(0)2 > 0 |— ,
(07 =X%(0) #(0)2 — \2(0)2 < 1 | Case I-b

. . £(0) =0 Case I1-

#(0)? — A0 —o0 |20 e Il
2(0) £0 Case I1-b

2(0)2 — 2\2(0)2 <0 Case I11

Table 5.1: Qualitative breakdown of cases for the optimal control problem (R)

Case I: 2(0)? — \?5(0)? > 0
Case I-a: 2(0)% — \2(0)2 = 1

We have co = p1(0)? — p2(0)2 = 2(0)? — A2¢(0)? = 1, and so by proposition 5.2.3 p(-) is
constant. Indeed, we have p(t) = (0,0, 0), for some o € {—1,1}. The horizontal subsystem is
thus

2 =ocoshf
y = osinh 0
0—0.

These are immediately solved, to give the geodesic g(t) = (ot,0,0). Evaluating §(0), we have
o = sgn(2(0)).
Case I-b: 2(0)? — \23(0)? < 1

We have 0 < ¢o = p1(0)% — p2(0)* = 2(0)* — A*j(0)* < 1. Hence, from proposition 5.2.3, case
(a), (i), the horizontal subsystem (in coordinates (v,w,#)) reads

b= —o /A [dn(Qt, k) — £ en(t, k)] 20

W = o/ 5L [dn(Qt, k) + £ en(Qt, k)] e 0O
0 = kQsn(Qt, k).

(Here 0 € {—1,1}, @ = /242 and k = ’\E\lJ:ccow .) Separate variables in the last equation,
and use equation (A.6.15) to integrate the right-hand side. We get 0(t) = kQ [sn(Qt, k) dt =
In [dn(Qt, k) — ken(Q, k)| + cg with ¢z € R. From 0(0) = 0, it follows that ¢ = —In(1 — k).

Thus 6(t) = In [dn(gt’k>1__ kkcnmt’k)}. The first equation of motion now becomes

. -
b= —o /3 [dn(@t, k) — & en(o, ky) SEHR) = Ken(@ k)

PN 11—k
— A [dn®(QL k) — k(1 + 3 dn(@t k) en( k) + & en?(1, b)|
o - N2
VR [ D@k K0 ban@ ek -

1I 7
_ _1ik \/(A+c§)(A+ ) [dn2(m,k) — kdn(Qt, k) en(Qt, k) — @f} .
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(We have used the square relation (A.6.6) in the penultimate step.) Integrating both sides,

we have
o(t) = - VAt Cim ) /t dn2(01, &) d

ok A+ co)(A+1)
1—k A

o(l+k) [A+co "
A A1 7
We can integrate the first expression using the integral formula (A.6.14):

1' t
o JOrewlt )/an(Qt,k;)dt— T /AL Bam(Qt, k), k).
1—k A , 1—k

/ dn(Ot, k) en(Qt, k) dt

Similarly, using the derivative formula (A.6.1), we have

ok /A +eco)(A+1) ok i
% 3 / dn(Qt, k) en(Qt, k) dt = Vo sn(Qt, k).
Consequently,
o o a1 ok [\ o(l+k) e
o(t) = TV E(am(Qt, k), k) + TRV sn(Qt, k) + 3 Vaogtt

o
i \//\TT [E(am(Qt,k’),k’) — ksn(Qt, k) — %Qt}

The last equation of motion is
. 1—k dn(Qt, k) + ken(, k)
=— dn(Qt, k) + Ot k .
0= —o /3 [dn(Qh k) + X en(QL, K)] dn(Q, k) — ken(Qf, k) dn(Q, k) + ken(Qt, k)
(1 — k) [dn(2, k) + ken(Qt, k)]
dn?(Qt, k) — k2 cn2(Qt, k)

= —o\/5F [dn(Qt, k) + 5 en(Qt, k)]

_A(10+ s A [N dn?(Q8, K) RO+ 1) dn(€, k) en(€,K) + K en®(, k)]
_1ikV“A+?XA+DTd (Qt, k) + kdn(Qt, k) en(Qt, k) — gg}

(We have used the square relation (A.6.6) in the penultimate step.) Separating variables and
integrate both sides. We get

w(t) = — 2 V(/\+CO)(/\+1) /tdn2(Qt,k’)dt

1+k
ok )\ + Co )\ + 1
T 3 /antk)cn(thJ)d
Y
A
- o2 ﬁ O'k >\+1 0(1 - k) Atcg
SRV E(am(Qt, k), k) — 1k sn(Qt, k) + h\ V3t

— g /[ A+1 (k')2
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Lastly, using Egﬂ - E —11}_1{

following expression for g(-):

~~

t)

t)}’ we can find z(-) and y(-). Therefore we have the

ST

~~

_ A1

z(t) = — 1_}{;2\/ 3 {E am(Qt, k), k) — k% sn(Qt, k) — 1+/\ }
- ok A+1

5O =~ T [Bam(@t k), k) - sn(t k) - 155 0]
0(t) — In {dn(Qt, k)1 _kkcn(Qt,k)} .

We now make an explicit statement regarding all Riemannian geodesics for this case.

PRrOPOSITION. Let g(-) = (x(-),y(:),0(-)) be a unit-speed geodesic on (SE(1,1),g") such that
g(0) = 1 and 0 < £(0)® — XN*9(0)> < 1. Then g(t) = g(po)~'g(t + po) for every t, where
g() = (@(),y(),0(-) is given by

B At
Z(t) = — k:2 \/T [E (am(Q, k), k) — K sn(Qt, k) — 1+,\ Qt}

- ok A+1
y(t) = T\ [E (am(Qt, k), k) —sn(Q, k) — 1+,\ }
0(t) — In dn(Qt, k) — ken(Q, k) .
1—-%
Here cg = #(0)% — N2§(0)2, Q = (/240 = /A=) 5 — —son(i(0)) and po satisfies the
equation dn(Qpg, k) = |2(0)] ,(\Jtclo

ProOF. The curve (g(-),p(:)) is an extremal trajectory for (R), for some integral curve p(-) of
H® | and corresponding to the optimal control u(-) = (p1(-), Ap2(-), p3(+)). Let co = C(p(0)).
We have ¢ = 2(0)? — A25(0)2, and so 0 < ¢g < 1. By proposition 5.2.3 there exist ¢ € {—1,1}
and ty € R such that p(t) = p(t -+ 1) for every ¢, where p(-) is given under item (a), (i) in the
statement of that proposition. Let py = to and a(-) = (p1(-), Ap2(+), ps(-)). Since (g(-), p(*)) is
an extremal trajectory, we have

9@) = g() E(L, u(t)) = g(1) 2(1, u(t + po))-

Similarly, if G(t) = g~ '(po)g(t + po), then

)
po)~'g(t + po) E(L, u(t + po)) = G(H) E(L, u(t + po))-

Furthermore, §(0) = G(po)~'g(po) = 1 = g(0). Since t — g(t) and t — §(t) = g(po) ' g{t+ po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have the following horizontal
subsystem for g(-):

2(t) = p1(t + po) cosh @ + /\pg(t + po) sinh 0

y(t) = p1(t + po) sinh @ + +pa(t + po) cosh
0(t) = ps(t + po).
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(Here x(0) = y(0) = 6(0) = 0.) Consequently, ©(0) = p1(po) = —a\/’\/\%ﬁ) dn(Qpo, k). It

Case I1: 7(0)* — X2y(0)2 =0
Case [1-a: 2(0) =0

We have ¢g = p1(0)% — p2(0)?2 = 2(0)? — X\?3(0)2 = 0 and p1(0) = 2(0) = 0. By proposition
5.2.3, p(+) is constant, given by p(t) = (0,0, o) for some o € {—1, 1}. The horizontal subsystem

is thus .
=0
y=0
=0

These are immediately solved, to give the geodesic g(t) = (0,0, ot). Evaluating g(0), we have
o = sgn(0(0)).

Case I1-b: 2(0) £ 0

For this case it proves easier to work with the original coordinates (2,9,0), rather than
(v,w,0). Let cg = C(p(0)) = p1(0)2 — p2(0)2. Then g = 2(0)2 — A25(0)2 = 0 and p(0) =
2(0) # 0. Hence, using the expression for () in proposition 5.2.3, case ( ), (ii), the horizontal
subsystem takes the form

& = —0\/ 547 secht(coshd —  sinh )
§j = —o\/ 537 sechit(sinh 0 — § cosh @)
0 = ¢ tanht.

(Here 0, € {—1,1}.) The last equation can be immediately integrated, to get 0(t) =
s [tanhtdt = <ln(cosht). (From 0(0) = 0, it follows that the constant of integration is
zero.) Next, using the fact that cosh(:) is even and sinh(-) is odd, we have

¥ =—04/ ﬁ sech t [cosh(In(cosh ¢)) — 1 sinh(In(cosh t))]

,\il echt (cosht +secht) — & L sinh¢tanh t]

:—%\/;ﬂ (1 ) sech? £ — (1= A)].

Integrating both sides, we get

T(t) = -2/ A2 /o secthdtJr%t

o(1-N\)
24/ A(1+N)

[t [1=2
=%/ {H/\t—tanht}

—2/2E tanht + t
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Lastly, we have

y = —0¢ /\LH sech ¢ [sinh(In(cosht)) — § cosh(In(cosh 1))]
= -% /\LH secht [sinh¢tanh¢ — §(cosh? + sech )]
=g >\‘>|\’1 [(1 +A) sech?t + (1— )\)]

Integrating both sides yields

= e A+1
g0 =5V %

Ug(l A) A "

A1

/ sech®t dt +
0

— 25 A tanhe 4 S0 J A
A+1
= g5\ /2L [1530 + tanhi]

Therefore we have the following expression for g(-):
2(t) = $/ 2 |45 — tanh]

5(t) = S/ 153t + tanh]

0(t) = ¢In(cosht).

We now make an explicit statement regarding all Riemannian geodesics for this case.

PROPOSITION. Let g(-) = (2(-),y(-),0(:)) be a unit-speed geodesic on (SE(1,1),g") such that
g(0) =1, 2(0)2 — A2(0)? = 0 and ©(0) £ 0. Then g(t) = g(po) = g(t + po) for every t, where

() = (@(-),5(-),0()) is given by
2(t) = 5/ 2[4t — tanhy]
yt) = /A [H/\tthanht}
0(t) = <In(cosht).

Here o = —sgn(#(0)), s = osgn(y(0)) and po satisfies the equation sech pg = |#(0)] /2L .

ProOF. The curve (g(-),p(:)) is an extremal trajectory for (R), for some integral curve p(-) of
H® | and corresponding to the optimal control u(-) = (p1(-), Ap2(-), p3(-)). Let ¢y = C(p(0)).
We have cg = 2(0)? — M29(0)? = 0. By proposition 5.2.3 there exist o,¢ € {—1,1} and tg € R
such that p(t) = p(t+to) for every t, where p(-) is given under item (b), (ii) in the statement of
that proposition. Let py = tg and u(-) = (p1(-), Ap2(-), p3(+)). Since (g(-),p(:)) is an extremal
trajectory, we have

g(t) = g(t) E(1,u(t)) = g(t) (1, u(t + po))-
Similarly, if §(t) = 5~ (po)g(t + po), then
(1) = g(po)~'g(t + po)
= g(po) gt + po) E(1, u(t + po)) = §(1) (1, alt + po))-
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Furthermore, §(0) = §(po)~'g(po) = 1 = g(0). Since t — g(t) and t — §(t) = g{po) " g(t+ po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have the following horizontal
subsystem for g(-):

@(t) = pi(t + po) cosh 0 + Lpa(t + po) sinh @

)
y(t) = p1(t + po) sinh & + %ﬁg(t + po) cosh 6
)

O(t) = ps(t + po).
(Here 2(0) = y(0) = 6(0) = 0.) Consequently, (0) = p1(py) = —0 ’\/\1010 sech pp and
7(0) = $p2(po) = %\/% sech po. Tt follows that ¢ = —sgn(#(0)), ¢ = osgn(y(0)) and
sech py = —o(0) AL = [#(0)] /241 n

Case I11: z(0)? — N*y(0)2 <0

Let cog = C(p(0)) = p1(0)* — p2(0)%. We have co = 2(0)* — A?(0)*> < 0. Accordingly, the
horizontal subsystem in coordinates (v, w, §) takes the form

{0

= o255 [ken(9t, k) — 4 dn(a, k)] €70

W = o/ 25559 [ken(Qt, k) + +dn(Qt, k)] e
0 = kQsn(Qt, k).
(Here 0 € {—1,1}, 2 = /1 —¢¢ and k = ,\(/\1tccoo) .} The last equation is separable, and

so we have 8(t) = kQ [sn(Qt, k) dt = In[dn(Qt, k) — ken(Qt, k)] + ¢ for some c; € R. (We
have used (A.6.15) to integrate the right-hand side.) The initial condition #(0) = 0 yields
cg = —In(1 — k). Consequently 0(t) = In [dn(Qt’ml__kkm(Qt’k)] Substituting this into the first
equation of the horizontal subsystem, we have

b= o/ 25250 [ken(Qt, k) — L dn(Qt, k)] dn(Si, k) — ken(Sh, k)

A1 —
g —Ci
= )\(1 — k) >\<>\1+10) [dn2(Qt, k) — k()\ + 1) dD(Qt, ]{j) Cn(Qt, k») + )\k,Q Cn2(Qt7 k)]
g e N
i (/\+1)/(\1 0) [dn2((2t, k) — kdn(Qt, k) en(Qt, k) — ,\/(\zi)l

(We have used square relation (A.6.6) in the last step.) Integrating both sides, we get

t
o(t) =~ 5 i - Oct1)(1=co) /0 A (O, k) dt
ok [OdD(—co) /t
T 1— k ﬁ | dn(Qt, k) en(Q, k) dt

+o(l+ k) /A1t

Using the integral formula (A.6.14), we have

t
— oy e /O An*(Q, k) dt = =7/ 242 Blam(Qt, k), k).
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Next, from the derivative formula (A.6.1), we get

ok [ (1=co) / ok [
T dn(Qt, k) en(Qt, k) dt = Tz V5 sn(Qt, k).

Substituting these expressions into that for v(-), we get

k
() = —ﬁ ML B(am(QL, k), k) + 10sz ML (91, k) +o(L k)2 2y
g N2
- [E(am(m,k),k) — ksn(Qt, k) — 280 Qt} .
Lastly, we have the equation
L A(1—cg) 1 1—k dn(Qt, k) + ken(Q, k)
=0y Sxgr Ren(QL k) + X dn(O B)] G o dn(0r k) ken(Ot k)
A(1—cg) (1 — k) [dn(Q2t, k) + ken(Qt, k)]

= o/ 5712 [ken(Qt k) + 3 dn(Qt, k)]

dn?(Qt, k) — k2 en2(Qt, k)
- a A1—cp) 2 2 2
SRR s [An®(Qt, k) 4 k(A + 1) dn(Qt, k) en(Qt, k) + Ak? en®(9t, k)]

__c (A1) (1—co)
1+k A

[dn2(m, k) + kdn(Qt, k) en(Qt, k) — AL

Thus, using the integral formula (A.6.14) and the derivative formula (A.6.1), we get

w(t) = 1ik\/<“1 J(1=co) /dn (Qt, k) dt
\/ (At1){1—co) /antk: Yen(Qt, k) di
1+k:

—o(l —k)Q /\+1
— T Bam(@n k), B T s k) — o(1— k)0
L+kV A T L+k xr !

g

Al A(E)?
- A [E(am(m, k), k) + ksn(Qt, k) — 280 Qt}

-1 r_
bl } {U(t)} , we have the
1 w

8l
—~

Finally, solving for () and j(-) using the equation {y(g} —

1 —
following expression for g(-):

2(t) = - i’“kQ Al [E(am(m, k), k) — sn(Qt, k) — 2042 >Qt}
(t) = 1_"k2 Al [E(am(m, k), k) — k2 sn(Q, k) — 2=k >Qt}
A1) — In {dn(Qt,k)l—_kkcn(Qt, k:)} .

We now make an explicit statement regarding all Riemannian geodesics for this case.
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5.2.6 PROPOSITION. Let g(-) = (x(-),y(-),0())) be a unit-speed geodesic on (SE(1,1),g*) such that
g(0) =1 and #(0)% — X2(0)2 < 0. Then g(t) = g(po) " g(t + po) for every t, where g(-) =
@(-),5(-),0(-)) is given by

B ok —k?
2(t) =~ AL | Blam(@, k), k) — sn(@t, k) - 25420

N g AL 2 A(1=k?)
p(t) =~ 2 | Bam(6at, k), k) — k* sn(0, k) — 247800
~ {dn(Qt, k) — ken(Qt, k:)}

0(t) = In &
Here co = 2(0)2 = N?5(0)%, Q = /T —co, k = ,\(/\1tccoo) , 0 = —sgn(y(0)) and py satisfies the

equation dn(Q2po, k) = |9(0)] ,\(/}J_rio) :

ProOF. The curve (g(-),p(-)) is an extremal trajectory for (R), for some integral curve p(-) of
H® and corresponding to the optimal control u(-) = (p1(-), Ap2(+), ps(-)). Let co = C(p(0)).
We have ¢g = £(0)? — A27(0)? < 0. By proposition 5.2.3 there exist ¢ € {—1,1} and t; € R
such that p(t) = p(t + to) for every ¢, where p(-) is given under item (c¢) in the statement of
that proposition. Let po = to and u(-) = (p1(-), Ap2(-), p3(-)). Since (g(-),p(:)) is an extremal
trajectory, we have

g(t) = g(t) 2(1,u(t)) = g(t) E(1, u(t + po)).-
Similarly, if G(t) = g~ '(po)g(t + po), then

3(t) = g(po) "4t + po)
= 3(po) ™' gt + po) E(1, ut + po)) = GO Z(L, u(t + po)).-

Furthermore, §(0) = g(po)~'g(po) = 1 = g(0). Since t — g(t) and ¢ — §(t) = g(po)~'g(t+po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have the following horizontal
subsystem for g(-):

@(t) = pi(t + po) cosh 0 + Lpa(t + po) sinh @
§(t) = p1(t + po) sinh 0 + +pa(t + po) cosh 0

0(t) = ps(t + po).
(Here 2(0) = y(0) = 6(0) = 0.) Consequently, 7(0) = p2(po) = —0c 4/ ’\g;lO) dn(Qpo, k). It
follows that o = —sgn((0)) and dn(Qpo, k) = —a(0) /\afio) = [9(0)|/ /\aflo) . |

5.3 The Sub-Riemannian Problem

In this section we classify the invariant sub-Riemannian structures on SE(1,1). We show that,
up to L-isometries, there is one single-parameter left-invariant sub-Riemannian structure
on SE(1,1). This family of representatives may be reduced to a single representative by
scaling. The results of this classification (up to £-isometries and scaling) are identical to
that obtained in [6]. However, the authors of [6] employ a weaker equivalence relation than
that considered here. Indeed, the classification in [6] is up to isometric diffeomorphisms and
scaling. We demonstrate that the class of isometries can be restricted to those that are also
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group automorphisms. (Note that the authors of [6] refer to SE(1, 1) as the “special hyperbolic
group,” and denote it SH(2).) Following the classification of sub-Riemannian structures, we
shall calculate the geodesics on SE(1,1). A similar calculation, with essentially identical
results, appears in the paper [21].

THEOREM. Fvery left-invariant sub-Riemannian structure on SE(1, 1) is £-isometric to the

1,1)
structure (D, Ag), where D and g are specified in the basis (K1, E3) by

10

D1:<E17E3>7 gl(va):XT 0 1

}Y, X,Y €Dy

Here X > 0 parametrises o family of class representatives, each different value corresponding
to a distinct (non-equivalent) representative.

Proor. Let (D', g') be a left-invariant sub-Riemannian structure on SE(1,1). By proposi-
tion 2.2.2 every bracket-generating subspace of dimension 2 (i.e., every full-rank (2, 0)-affine
subspace) of se(1, 1) is £-equivalent to (F1, F3). Consequently, there exists ¥ € Aut(se(1,1))
such that ¥ - D1 = D}. Every automorphism of se(1,1) is of the form

x Yy v
v=lsy sz w|, 2?#£y* ce{-1,1}
0 0 ¢

(See proposition 1.1.17.) Hence ¢ - (aF1 + bE3) = (bv + ax)Er + (bw + say)FEa + (sb) Fs.
Accordingly, v preserves the subspace D if and only if y = w = 0. Write elements aF; +bF3 €

Dy as column vectors Z} . In the basis (F1, E'3), the (restricted) Lie algebra automorphisms

x v
0 <
We have that g/ (X,Y) = g} (¥1 - X, - Y) is a (positive definite) inner product on Dj.

a1 b
b aJ. As

1 : Dy — Dy take the form ¢ = {

Identify gf with its associated matrix, in terms of the basis (F1, F3). Let g = {

g!l is positive definite, we have a1,az > 0 and ajaz — * > 0. Hence

[\/&1&2—1)2 _il
thy =

« al

0 1

is an automorphlsm such that g gl = diag(A, A, ), where A = w > 0. Therefore,
we have ¥oh - D1 = D} and gi(vothy - X, ety - Y) = Ag1(X,Y) for every X,Y € Dy.
Consequently, by theorem 5.1.3, (D', g') is £-isometric to (D, \g). [ |

By proposition 5.1.4, the factor of A in the sub-Riemannian structure (D, Ag) does not
have a considerable effect, and may be normalised. Hence we consider the sub-Riemannian
problem for the structure (D, g). That is, we are considering the problem

g(t) € Dyqry,  g() [0, T] — SE(1, 1)
9(0) =1, g(T) = gr, gr € SE(1,1), T > 0 fixed

T
- / 200 (9(0),4(8)) dt — min.
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(In view of the left-invariance of the problem, we restrict to geodesics starting at the identity.)

From section A.4, this problem may be interpreted as the optimal control problem

g - gE(lv U) - g(u1E1 + U2E3)7 g() : [Ov T] - SE(lv 1)7 U() : [OvT] - Rﬁ
9(0) =1, g(T) = gr, gr € SE(1,1), T > 0 fixed

T
T(u() = /0 wr (O 1 un(t)? dt — min,

Theorem A.4.2 guarantees solutions to (SR) (at least, locally; i.e., for gr in a sufficiently
small neighbourhood of identity). The family (H. )ueRz of control dependent Hamiltonian
functions is specified by

(SR)

HY(p) = uipy + ugps + v(ui +u3).

We first consider the abnormal geodesics. Setting ¥ = 0 and applying the maximality condi-
tion of PMP yields
OHY
(’9ui
Consequently, Ho(p) = 0 for every p. From the condition (A.3.7) of PMP, we get £(t) =

(g(t),p(t)) =0, i.e., g(-) and p(-) are constant. (From the boundary conditions, we thus have
g(t) = 1.) That is, the only abnormal geodesics are constant.

—0 =  p=0, i=13.

REMARK. The fact that there are no nontrivial (i.e., nonconstant) abnormal geodesics for
the structure (D, g) is a consequence of the contact structure implicit in this space. It can
be shown that there are no abnormal geodesics for contact sub-Riemannian manifolds. See,
e.g., |6, 37]. o

Consider the normal geodesics. From theorem A.3.8 we have that the (normal) extremal
controls are

u(t) = Q™' BTp(t) " = 00 1

Lo 0} ()7,

That is, u1(t) = pl(t) and ua(t) = p3(t). Here p(-) is an integral curve of the Hamilton-Poisson
system (se(1,1)*, HOR), where

HSR(p) = 1pBQ'BTp" = 1(p? 1 p2).

This is exactly the Hamilton-Poisson system H,4 obtained in theorem 3.2.1 and studied in
section 4.2.2. Let (g(t),p(t)) be an extremal trajectory of (SR). We have

[

8o (1), 9(1) =1 <= wm@)*+ux(t)’ =1 <= Hyp(t)) =

We assume that H(p(t)) = 3; the resultant geodesics will have unit speed. The geodesic
equations take the form

p=HS®(p) (vertical subsystem)
§g=9=(1,u) (horizontal subsystem).
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The vertical subsystem is exactly the equations of motion for the Hamilton-Poisson system
(sc(1,1)7, Hy):

P1 = D2ps3
P2 = P2p3 (5.3.1)
P3 = —Pip2-

We integrated this system in section 4.2.2, and will not reproduce that effort here. However,
for convenience we state a result collecting all the integral curves of H(R),

5.3.3 PROPOSITION. Let p(-) : (—¢,€) — se(1,1)* be an integral curve of HSR® . Suppose that
HER(5(0)) = 1 and let co = C(p(0)) < 1.
(a) (i) If co = 1, then p(t) = (£1,0,0).
(ii) If 0 < co < 1, then there exist to € R and o € {—1,1} such that p(t) = p(t + to)
for every t € (—¢,2), where
p1(t) = odn(t, k)
pa(t) = —cken(t, k)
ps(t) = ksn(t, k).
Here k= /1 —co.

(b) (i) If co =0 and p1(0) = 0, then p(t) = (0,0,+1).
(it) If co = 0 and p1(0) # 0, then there exist to € R and 0,5 € {—1,1} such that
p(t) = p(t + to) for every t € (—e,¢), where

p1(t) = osecht
p2(t) = —ogsecht
ps(t) = stanht.

(¢) If co < 0, then there exist to € R and o € {—1,1} such that p(t) = p(t + to) for every
t € (—¢,2), where
p1(t) = —ckQen(Qt, k)

p2(t) = oQdn(Qt, k)
pa(t) = kQsn(Qt, k).

Here Q = /1 —cy and k = 1_100 .
In coordinates, the horizontal subsystem is

0 0 0
# Osinh® Ocoshf| —
y Bcosh® @Osinho

0 0
cosh# sinh6 (U1E1 -+ U2E3)
sinh® cosh ]

0o 0 ][o o0 o

coshf sinh@| |pr 0 ps
sinh@ cosh@| |0 ps O

0 0 0
= |picosh® pzsinhf pzcoshd
| p1sinh@  pzcoshf pssinhd

[1
x
LY
[1
x
LY
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Comparing components on both sides, we have the following equations:

& = prcoshd
y = p1sinh ¢ (5.3.2)
éipg.

Since g(-) starts at identity, the initial conditions are 2(0) = y(0) = 6(0) = 0. For convenience,
we make the identification

1 0 0
(z,y,0) € R? —> 2 cosh@ sinh6
y sinh# coshé

Accordingly, we shall refer to (5.3.2) as the horizontal subsystem. Furthermore, we write
geodesics g(-) as g(-) = (x(), y(-),0()).

Before integrating (5.3.2), we first describe a qualitative breakdown of cases. We seek
conditions on §(0) = (£(0),5(0),0(0)) and §(0) = (&(0),4(0),H(0)) analogous to those of
proposition 5.3.3. Let ¢o = C(p(0)). We have

#(0) = p1(0) #(0) = p1(0)
9(0) =0 and $(0) = p2(0)
6(0) = pa(0) 6(0) = p3(0).

Consequently, using the equations of motion (5.3.1) of HSR) | we get 6(0) = —p;(0)p2(0) =
—4(0)p2(0). If £(0) #£ 0, then we can solve for p2(0). On the other hand, suppose #(0) = 0.
Since g(-) is unit speed we have #(0)2 + 0(0)2 = 1, and so #(0) # 0. Then #(0) — 4(0) =
P2(0)p3(0) — p1(0)p3(0) = p2(0)6(0). Hence, we can again solve for py(0). Let

6(0) o
| EHO=IO) i i00) 0
6(0) '

Then 7 = p(0), and so ¢y = #(0)2 — 72, Using #(0) = p1(0), 6(0) = ps(0) and 7 = p,(0),
we have a total of five different qualitative cases, corresponding to those of proposition 5.3.3.
Table 5.2 lists the different cases and their designations.

We shall now integrate the horizontal subsystem (5.3.2). Let (g(-),p(:)) be an extremal
trajectory for the optimal control problem (SR), where p(-) is given in proposition 5.3.3 and

g() = @(),5(),00)).
Case I: 2(0)2— 72> 0
Case [-a: 2(0)2 —72 =1

We have ¢g = 2(0)2 — 72 = 1. Accordingly, by proposition 5.3.3 p(-) is constant, given by
p(t) = (0,0,0) for some o € {—1,1}. The horizontal subsystem is thus



140 5.3. THE SUB-RIEMANNIAN PROBLEM

‘ Conditions ‘ Designation
H02 — 12 > 0 #(0)% — 72 Case I-a
#(0)2 =72 <1 | Case I-b
(0 — 72 — 0 :E(O) =0 Case I1-a
2(0) £ 0 Case I1-b
#(0)2 —72 <0 Case 111

Table 5.2: Qualitative breakdown of cases for the optimal control problem (SR)

These are immediately solved, to give the geodesic g(t) = (ot,0,0). Evaluating g(0), we have
o = sgn(z(0)).
Case I-b: 2(0)? — 72 < 1

We have ¢g = 2(0)? — 72, and so 0 < ¢y < 1. Using proposition 5.3.3, case (a), (i), the
horizontal subsystem reads

T = odn(t, k) cosh @
y = odn(t, k) sinh 0
0 = ksn(t, k).

(Here o € {—1,1} and k = /1 — ¢ .) Separate variables in the last equation and use (A.6.15)
to integrate the right-hand side. We get 0(t) = k [sn(t,k) dt = In[dn(t, k) — ken(t, k)] + g,
with ¢z € R. From 6(0) = 0, it follows that ¢; = —In(1 — k). Thus 0(t) = In ngnw
The first equation of motion now becomes

b () cosh <ln {dn(t, k)1_— kkcn(t, kz)D

ken(t, k) — dn(t, k)2 + (1 — k)2
2(1 = k) [ken(t, k) — dn(t, k)]
o ok o(l —k) dn(t, k)

21—k dn*(t, k) - 21—y bR enlt k) — = e AR

= —odn(t, k) [

Integrating both sides, we have

i i
(1) — % / dn2(t, k) dt—% / dn(t, k) en(t, k) dt

dt.

1_
/ k:cntk: dn(t k)

We can integrate the first term of this equation using formula (A.6.14), to get

ﬁ /O dn®(t, k) dt = ﬁE(am(tak)ak)
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For the second integral, we use the derivative formula (A.6.1):

i /O dnft, ) en(t, ) dt = —5 s snt. b
Lastly,
dn(t, k) B dn(t, k) ken(t, k) 4+ dn(t, k)
ken(t, k) —dn(t, k) ken(t, k) —dn(t, k) ken(t, k) + dn(t, k)
 kdn(t, k) en(t, k) + dn®(t, k)
C k2en2(t, k) — dn®(t, k)
k 1
— ~e 5 dn(t, k) en(t, k) — )2 dn?(t, k).

(We have used the square relation (A.6.6) in the final step.) Consequently,

1_
/ ken(t, k: dn(t k:)

7014:(1— N 0 o(1—k) [* n2

- /d (t, k) en(t, k) dt + I /Od (t,k)dt
ok(1—k) o(1 — k)

= g bR+ S Blam(t k), b

Collecting the results of these three integrals, we get Z(t) = %= [E(am(t, k), k) — k?sn(t, k)]
We are left with the final equation of motion:

y = odn(t, k) sinh <1n {dn(t, k)l—_kkcn(t, k)}>
[ken(t, k) —dn(t, k)]? — (1 — k)2
2(1 — k) [ken(t, k) — dn(t, k)]
0 ok o(l —k) dn(t, k)
T 201 —k) dn*(t, k) - 20 =) R entt k) = e — R

— —odn(t, k)

We can use the preceding arguments (i.e., those for z(-)) to integrate the right-hand side. We
get y(t) = % [E(am(t, k), k) —sn(t, k)]. Therefore we have the following expression for the
geodesic g(-):
Z(t) = 1%2 [E(am(t, k), k) — k*sn(t, k)]
~ ok
y(t) - 1——16’2 [E(am(tv k)v k) - Sn(tv k)]
dn(t, k) — ken(t, k)
1—k

We now make an explicit statement regarding all sub-Riemannian geodesics for this case.

0(t) = In

PROPOSITION. Let g(-) = (2(-),y(-),0(-)) be a unit-speed geodesic on (SE(1,1),D, g) such that
g(0) =1 and 0 < 2(0)% — 72 < 1, where 7 = —%, Then g(t) = g(po) = g(t + po) for everyt,
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where g(-) = (2(-), 5(-), 0(-)) is given by

Z(t) = 1%2 [E(am(t, k), k) — k?sn(t, k)]

3(t) = 1i—’“1€2 [E(am(t, k), k) — sn(t, k)]
dn(t, k) — ken(t, k)

0(t) = In &

Here k = /1 —2(0)2 + 72, 0 = sgn(#(0)) and po satisfies the equation dn(pg, k) = |£(0)].

ProOF. The curve (g(-),p(:)) is an extremal trajectory for (SR), for some integral curve p(-)
of HSR)and corresponding to the optimal control u(-) = (pi(-),ps(:)). Let co = C(p(0)).
We have ¢g = #(0)2 — 72, and so 0 < ¢y < 1. By proposition 5.3.3 there exist ¢ € {—1,1}
and to € R such that p(t) = p(t + to) for every t, where p(-) is given under item (a), (ii) in

the statement of that proposition. Let py = to and u(-) = (p1(-), ps(+)). Since (g(-),p(-)) is an
extremal trajectory, we have

g(t) = g(t) 2(1,u(t)) = g(t) E(1, u(t + po)).-
Similarly, if G(t) = g~ '(po)g(t + po), then

gty = g(po)~'g(t + po)

= g(po)~'g(t + po) E(L, u(t + po)) = §(t) E(L, u(t + po))-

Furthermore, §(0) = g(po)~'g(po) = 1 = ¢(0). Since t — g(t) and t — §(t) = g(po)~'g(t+ po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have the following horizontal
subsystem for g(-):

&(t) = p1(t + po) cosh @

y(t) = p1(t + po) sinh &

0(t) = ps(t + po).
(Here x(0) = y(0) = 6(0) = 0.) Consequently, £(0) = p1(po) = odn(po, k). It follows that
o = sgn(x(0)) and dn(po, k) = oi(0) = |2(0)]. [ |

Case II: z(0)>—72=0
Case [1-a: 2(0) =0

In this case, p(-) is constant, given by p(t) = (0,0,0), for some ¢ € {—1,1}. Indeed,
co = 2(0)> — 72 = 0 and p1(0) = 2(0) = 0, whence p(-) is constant by proposition 5.3.3.
Consequently, the horizontal subsystem takes the form

=0
y=0
-0

These are immediately solved, to give the geodesic g(t) = (0,0, ot). Evaluating g(0), we have

o = sgn(6(0)).
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Case I1-b: 2(0) £ 0

Let cog = C(p(0)) = p1(0)2 — p2(0)2. Then ¢y = 2(0)?2 — 72 = 0. Using proposition 5.3.3, case
(b), (ii), the horizontal subsystem reads

7 = o sechtcoshf

) = osechtsinh @

The final equation is immediately integrated, to give (t) = < [tanhtdt = sIn(cosht) + ca,
for some constant of integration ¢z € R. Since 6(0) = 0, it follows that c¢; = 0. Next, we have

. 1
& = osechtcosh|ln(cosht)] = o secht§(c0sht + secht) = %(1 + sech? t).
Integrating both sides, the result is 2(t) = Z(¢ + tanht). Lastly, we have
. 1
y = ossechtsinh [In (cosh t)] = o¢sech t§ sinhttanht = %g tanh?t

and so y(t) = 5 (t — tanht). Therefore we have the following geodesic:

Z(t) = %(t + tanh{)

j(t) = %g(t ~ tanh{)

0(t) = ¢ In(cosht).
We now make an explicit statement regarding all sub-Riemannian geodesics for this case.
PropOSITION. Let g(-) = (x(-),y(-),0(:)) be a unit-speed geodesic on (SE(1,1),D,g) such that
9(0) = 1, ©(0)* — 7% = 0 and £(0) # 0. Then g(t) = g(po)~'g(t + po) for every t, where
g() = (x(),5(:),0()) is given by

Z(t) = %(t + tanh{)

() = %g(t — tanht)

0(t) = ¢ In(cosht).
Here o0 = sgn(#(0)), ¢ = —osgn(7) and po satisfies the equation sech py = |£(0)].

ProOF. The curve (g(-),p(:)) is an extremal trajectory for (SR), for some integral curve p(-)
of HR) | and corresponding to the optimal control u(-) = (p1(-), ps(-)). Let co = C(p(0)). We
have cg = ©(0)2 —72 = 0 and p1(0) = £(0) # 0. By proposition 5.3.3 there exist o, € {—1, 1}
and to € R such that p(t) = p(t + to) for every t, where p(-) is given under item (b), (ii) in
the statement of that proposition. Let po = to and u(-) = (p1(-), p3(+)). Since (g(-),p(-)) is an
extremal trajectory, we have

g(t) = g(t) 2(1,u(t)) = g(t) E(1, u(t + po))-
Similarly, if §(t) = g~ '(po)g(t + po), then
)

~1g(t + po) Z(1,u(t + po)) = (t) Z(1,ult + po))-
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Furthermore, §(0) = §(po)~'g(po) = 1 = g(0). Since t — g(t) and t — §(t) = g{po) " g(t+ po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have the following horizontal
subsystem for g(-):

#(t) = p1(t + po) cosh 6
7(t) = p1(t + po) sinh @
O(t) = ps(t + po).

(Here 2(0) = y(0) = 6(0) = 0.) Consequently, #(0) = p1(po) = osechpg and 7 = p2(po) =
—ogsech po. It follows that ¢ = sgn(#(0)), ¢ = —o sgn(7) and sech pg = ¢#(0) = |£(0)|. MW

Case II1I: z(0)2 — 12 <0

We have ¢g = 2(0)? — 72 < 0. Accordingly, from proposition 5.3.3, the horizontal subsystem
takes the form

T = —okQen(Qt, k) cosh @
y = —okQcn(Qt, k) sinh 6
=y sn(Qt, k).

(Here o € {—1,1}, Q= /T—¢g and k = /L= .) We can separate variables in the last equa-

cp
tion and integrate both sides, to get (1) = kQ [sn(Qt, k) dt = In [dn(Qt, k) — ken(Q, k)] +c5
for some ¢z € R. (We have used (A.6.15) to integrate the right-hand side.) From the initial
condition 6(0) = 0 we have ¢; = — In(1—k). Hence 0(t) = In [dn(m k)= kkcnmt k)1 Substituting
the expression for 0(-) into the first equation of motion, we get

dn(Q2t, k) — ken(Q, k)
)
[dn(Qt, k) — ken(Qt, k)2 4 (1 — k)2

2(1 — k) [dn(Qt, k) — ken(Q, k)]
 okQ okQ (1 —k)en(Qt, k)
SR en(Qt, k) [dn(Qt, k) — ken(Qt, k)] — > (L E) — ken(QL k)
Y okQ okQ (1 —k)en(Qt, k)
T 21—k Ko en®(QL, k) — 201 =) O R (k) - == e T R en (k)

Integrating both sides, we have

¥ = —ckQen(Qt, k) cosh <1n {

= —ckQen(Qt, k)

0
Z(t /kz2cn (Qt, k) d "k /dn (U, k) en(Qt, k) dt

ak;Q 1— / (Qt k:) »
dn(Qt k:) ken(Q, k)

We can integrate the first term of this equation using the square relation (A.6.6) and the
integral formula (A.6.14):

ﬂ/tk%n?(m k) dt — /dn (Qt, k) — (K)2 dt
2(1—k’) 0 ’

oQ)(1 + k)

E(am(Qt, k), k) — 5

2(1 5 b
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For the second integral, we use the derivative formula (A.6.1):

okl
2

/ dn(Qt, k) en(Qt, k) dt = 20— sn

Lastly,

en(Qt, k) B en(Qt, k) dn(t, k) + ken(t, k)
dn(Qt, k) — ken(Qt, k) dn(Q, k) — ken(Qt, k) dn(t, k) + ken(t, k)
 ken?(Q, k) — dn(Qt, k) en(, k)
- dn?(t, k) — k2 cn2(t k)
koo o
= )2 en”(Qt, k) + (k:’)

(We have used the square relation (A.6.6) in the final step.) Consequently,

ok;Q 1- / en(Q, k) it
dn(2t k:) ken(Qt, k)

5 dn(Qt, k) en(QL, k).

7/ k2 en2(Qt k;)dt+ﬂ/dn (Qt, k) en(Qt, k) dt
21+ k
o oQ(1l —k) ok
— 7 B(am(Qt, k), k) — t O, k).
o Eem(t k), k) - T (o k)

Collecting the results of these three integrals, we get the following expression for Z(-):

ok

z(l) = e [E(am(Qt, k), k) — sn(Q, k) — (1 — k*)Qt] .

We are left with the final equation of motion:

1—k
[dn(Qt, k) — ken(Qt, k)2 — (1 — k)2

2(1 — k) [dn(Qt, k) — ken(Q, k)]
= T (‘1’ ’“_Qk) en(Q, k) [dn(Qe, k) — ken(Of k)] + "IZQ dn((é t_k';)fi(g(gi B
o0 okQ okQ (1 —k)en(Qt, k)
T k% en?(Qt, k) — = dn(Qt, k) en(2, k) + 2 (0L E) —Een(QL k)’

§ — —okQ en(Qt, k) sinh <ln {dn(mv k) — ken(€, k)} )

= —ckQen(Qt, k)

Integrating both sides (we can employ the preceding arguments in order to integrate each
term), and simplifying, we have

0
en?(Qt, k) d "k / dn(Qt, k) en(Qt, k) dt

n ak;Q 1 - / (Qt k:) it
dn(Q2t k:) ken(Qt, k)

- (B (am(Qt, k), k) — kK sn(Qt, k) — (1 — k*)01]
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Therefore we have the following expression for the geodesic g(-):

2(t) = 1"_—’22 [E(am(Qt, k), k) — sn(Qt, k) — (1 — k2)Q]

9(t) = 1_;'1@ [E(am(Qt, k), k) — k2 sn(Qt, k) — (1 — k2)Qt]

o(t) — In dn(Qt, k)l—_kkcn(Qt, k)

We now make an explicit statement regarding all sub-Riemannian geodesics for this case.

PropOSITION. Let g(-) = (x(-),y(-),0(:)) be a unit-speed geodesic on (SE(1,1),D,g) such that
g(0) =1 and £(0)? — 72 < 0, where

- % if #(0) £ 0
£(0) —g(0) ., .o
W if £(0) = 0.
Then g(t) = g(po)~'g(t + po) for every t, where g(-) = (2(-),(-),0(-)) is given by
(1) — 1"_—’;2 [E(am(Qt, k), k) — sn(Q, k) — (1 — k)]
g(1) = 1_;‘/@ [E(am(Qt, k), k) — k2 sn(Qt, k) — (1 — k2)Q]
_ dn(Qt, k) — ken(Q, k)
0(t) = In { & } .

Here Q = /1 —2(0)2+72, k = 1/W1)2+T2 , 0 = sgn(7) and po salisfies the equalion

dn(Qpo, k) = %l

ProoF. The curve (g(-), p(+)) is an extremal trajectory for (SR), for some integral curve p(-)
of HR | and corresponding to the optimal control u(-) = (p1(-), ps(-)). Let co = C(p(0)). We
have ¢y = 2(0)2 — 72 < 0. By proposition 5.3.3 there exist ¢ € {—1,1} and ¢y € R such that
p(t) = p(t + to) for every t, where p(-) is given under item (a), (ii) in the statement of that
proposition. Let py = to and u(-) = (p1(+), ps(+)). Since (g(-),p(:)) is an extremal trajectory,
we have

g(t) = g(t) 2(1,u(t)) = g(t) E(1, u(t + po)).-
Similarly, if §(t) = g~ '(po)g(t + po), then

gty = g(po) ' g(t + po)
= g(po)~ gt + po) (1, u(t + po)) = §(t) E(1, u(t + po)).

Furthermore, §(0) = g(po)~'g(po) = 1 = g(0). Since t — g(t) and t — §(t) = g(po)~'g(t+po)
satisfy the same differential equation, with the same initial conditions, they both solve the
same Cauchy problem, and hence are identical. Finally, we have that 7 = p2(0) = pa(po) =

oQdn(Qpo, k). It follows that o = sgn(r) and dn(Qpo, k) = & = %' [ |



Conclusion

In this thesis we considered a class of invariant optimal control problems on the (three-
dimensional) semi-Euclidean group. The approach was three-fold. We first considered the
left-invariant control affine systems on SE(1, 1) (this comprises the content of chapter 2). Next
we treated quadratic Hamilton-Poisson systems on the (minus) Lie-Poisson space se(1,1)*
(chapter 3 and chapter 4). Lastly, we used results from chapters 2, 3 and 4 to solve two
optimal control problems, wiz. those associated to the Riemannian and sub-Riemannian
length-minimisation problems on SE(1,1). We discuss each chapter in some detail.

Chapter 1 is concerned with the semi-Euclidean group itself, and, in particular, the study
of properties of SE(1, 1) germane to control theory. We note that the results of this chapter
are well-known. Nevertheless, a working knowledge of SE(1, 1) is crucial for an understanding
of the topics developed in later chapters.

The next chapter considers a large class of control systems evolving on SE(1,1). We
employ a natural equivalence relation (viz. detached feedback equivalence) and classify all
(full-rank) left-invariant control affine systems. As such, the study of such control systems on
SE(1, 1) is essentially reduced to the study of a finite list of class representatives (including two
single-parameter families of representatives; see theorem 2.2.4). Furthermore, by restricting
to those systems that are also controllable, this list of representatives is reduced to exactly
three normal forms (see corollary 2.2.5), namely the systems

2<2’O) cu B 4 usEs 232’1) cEs 4+ ur B +usEs 2<3’O) cwu By 4 ug By + usFs.

As stated in this chapter, the results of this classification have been obtained in [13, 19].
Having obtained this list of (controllable) representatives, the natural next step is to consider
optimal control problems associated to each of these three systems. The (homogeneous)
systems £(20) and $(*9 are treated in this fashion in chapter 5.

Chapter 3 considers a class of Hamilton-Poisson systems on se(1, 1)* , namely those of the
form Ha o(p) = (p, A) + Q(p), where A € se(1,1) and Q is a positive semidefinite quadratic
form on se(1, 1)*. This is exactly the class of Hamilton-Poisson systems arising from optimal
control problems with fixed time and quadratic cost (see section A.3.4). Specifically, the
extremal controls of an optimal control problem of the form

Gg=g(A+u B+ +uBy)
g(0) = go, 9(T) = g1, go,91 € SE(1,1), T > 0 fixed

T () = [T x(u(t)) dt — min

are linearly related to the integral curves of a Hamilton-Poisson system on the Lie-Poisson
space se(1, 1)* . Accordingly, the study of the extremal controls is reduced to the study of a
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Hamilton-Poisson system. (Hamilton-Poisson systems also find application outside of control
theory, e.g., in mathematical physics.) We follow a similar approach to that used in chapter 2.
We introduce an appropriate equivalence relation between Hamilton-Poisson systems, namely
affine equivalence. The quadratic Hamilton-Poisson systems on se(1, 1)* are then classified,
starting with the homogeneous systems (i.e., where A = 0); six representatives are identi-
fied. These six representatives are then used to organise the classification of inhomogeneous
systems, where we again obtain a list of representatives (including several infinite families).

Chapter 4 investigates several of the Hamilton-Poisson representatives obtained in chapter
3. Specifically, we treat all homogeneous normal forms, as well as a number of the inhomo-
geneous systems. (Space considerations in this thesis do not permit a treatment of all the
inhomogeneous systems. Nonetheless, a similar approach to that we employ here may be fol-
lowed.) For each normal form, we first consider stability. For all systems under consideration,
we have performed a complete analysis of the (Lyapunov) stability nature of equilibria. Next,
we find all integral curves of the associated Hamiltonian vector field. (For several systems, the
integral curves are lines, and are easily determined. For these systems, the stability analysis is
the main interest.) We obtain explicit expressions for all integral curves, in terms of elemen-
tary functions or Jacobi elliptic functions. Accordingly, we have essentially determined the
extremal controls (up to an affine isomorphism) for a large class of optimal control problems
on SE(1,1).

The last chapter considers the Riemannian and sub-Riemannian problems on SE(1,1). In
order to determine the geodesics for any Riemannian or sub-Riemannian structure, we again
follow the approach of chapter 2 and chapter 3. That is, we introduce a suitable equiva-
lence relation (equivalence up to isometric group automorphisms and scaling) and classify
all left-invariant Riemannian and sub-Riemannian structures on SE(1,1). We obtain a single
representative for the sub-Riemannian case; a single-parameter family of representatives is
identified for the Riemannian case. We then consider the Riemannian and sub-Riemannian
problems for these normalised structures. In particular, we write each of these problems as
an optimal control problem (with fixed time and quadratic cost). The results of chapter 4
are employed to determine the extremal controls. We are then able to integrate the geodesic
equations on the group. Accordingly, we obtain explicit expressions for all geodesics. The
integration of the sub-Riemannian geodesic equations replicates the results of [21] (although
we have followed a different approach). Thus far, the Riemannian geodesics on SE(1, 1) have
not been explicitly determined in the literature (hence our results in this regard are original).

Lastly, we note that the classification of chapter 5 may be interpreted as a classifica-
tion, under cost equivalence [15, 17], of all (controllable) drift-free left-invariant control affine
systems on SE(1,1) with homogeneous cost. (Indeed, this is the approach taken in [10].)
Accordingly, we have essentially determined the extremal trajectories for all such systems.



A.l.1

Appendix A

Review of Prerequisites

In this appendix we discuss the necessary prerequisites for the topics developed in this thesis.
We provide references for all definitions and results stated. As such, we shall not give any
justifications or proofs of the claims made herein (with the exception of proposition A.1.14, for
which no suitable reference could be found), as they may be found in the given references. Fa-
miliarity with basic notions of differential geometry (particularly smooth manifolds), general
topology and algebra is assumed.

A.1 Lie Theory

We review basic notions of Lie theory, in particular Lie groups, Lie algebras and the relation-
ship between the two. The main references for this section are [24, 30, 26, 42]. For section
A.1.4, we have also drawn upon [34] (particularly for the coajoint action and coadjoint orbits).

A.1.1 Lie groups and Lie algebras

A Lie group G is a smooth (i.e., C*°) manifold with a group structure, such that the multi-
plication and inversion maps 1t : GxG — G, (¢,h) = ghand ¢ : G — G, g+~ g~! are smooth.
In particular, a (real, finite-dimensional) matrix Lie group G is a closed subgroup of the
general linear group GL(n,R) of n x n invertible matrices. Henceforth, we always assume
we are working with a real and finite-dimensional matrix Lie group. Let H be an abstract
subgroup of G. We call H a Lie subgroup of G if it is an immersed submanifold of G. If H
is also an emdedded submanifold of G, then it is called a closed Lie subgroup of G. H is
said to be normal if it is normal as an abstract subgroup of G. We have the following result.

THEOREM. (CARTAN, [24]) Every closed subgroup of a real Lie group is a closed Lie sub-
group.

The centre Z(G) of G is a normal subgroup of G defined by Z(G) = {g € G : ghg™'h~! =
1 for every h € G}.

A Lie group homomorphism between Lie groups G and G’ is a smooth map ¢ : G — G
such that ¢(g192) = &(g1)P(g2) for every g1,92 € G. If ¢ is bijective with a smooth inverse,
then we call it a Lie group isomorphism. (Thus a Lie group isomorphism is a diffeomorphism
that preserves the group structure.) If ¢ is a Lie group isomorphism and G = G’, then we
call ¢ a Lie group automorphism. The group of all automorphisms of G is denoted by
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Aut(G). Two distinguished Lie group automorphisms are the left- and right-translation
maps Ly : G — G, h— gh and R, : G — G, h — hg, respectively.

The semi-direct product of Lie groups H and N is the Lie group G formed by taking the
Cartesian product N x H (with the smooth structure of the product manifold) together with
the group operation (ni, hi)(ng, ho) = (n1¢(h1)ne, hihs), where ¢ : H — Aut(N) is some Lie
group homomorphism. We write G = N xH. The subsets {(n,1) : n € N} and {(1,h) : h € H}
are subgroups of G, isomorphic to N and H, respectively. In particular, the subgroup N is
normal in G. (H is normal in G if and only if ¢ is trivial, in which case G is simply the direct
product N x H.) A Lie group G is said to decompose as the semi-direct product of Lie
subgroups N and H if

(i) Nis normal in G;
(ii) G = NH;
(i) NN H = {1}.

(In this case, ¢ is defined as ¢(h) € Aut(N), ¢(h) : n — hnh~! and the map N x H — G,
(n, h) — nh is a Lie group isomorphism.)

A (real, n-dimensional) Lie algebra g is an n-dimensional vector space over R equipped
with a bilinear, skew-symmetric map [-,-] : g X g — g (called the Lie bracket) that satisfies
the Jacobi identity: [X,[Y,Z]] 4+ [Y,[Z, X]] + [Z,[X,Y]] = 0 for every X,Y,Z € g. A Lie
subalgebra of g is a subset h C g that is a Lie algebra in its own right. An ideal of g is a
Lie subalgebra § such that for every X € h and Y € g we have [X,Y| € h. The centre Z(g)
of g is the ideal Z(g) = {X € g:[X,Y]| = 0 for every Y € g}.

Let I" be a subset of a Lie algebra g. The Lie algebra generated by I' is denoted Lie(T").
That is, Lie(I") is the smallest Lie subalgebra of g containing I'. Lie(I") may be characterised
as

Lle(F) — span {Al, [Al,AQ], [Al, [AQ,AgH ceey [Al, [AQ, N [Ak—lvAk] < ” : Az S F, ke N} .

A homomorphism of Lie algebras g and g’ is a linear map ¢ : g — g’ that preserves the
Lie bracket: ¢ - [ X, Y] = [+ X,¢ - Y] for every X,Y € g. If g = ¢’ and 1 is bijective, we call
¥ a Lie algebra automorphism. The group of all automorphisms of g is denoted by Aut(g).

A.1.2 The relationship between Lie groups and Lie algebras

Let G be a (real, n-dimensional) matrix Lie group. The tangent space T1G of G at identity is
given by 771G = {§(0) : g(-) is a smooth curve in G, g(0) = 1}. The tangent space at identity
is isomorphic (as a vector space) to T,G, for any g € G. Indeed, we have the correspondence

X €Th1G — TiLy- X =gX € T,G. (A.1.1)

We call T1 G, together with the matrix commutator [X,Y] = XY — Y X, the Lie algebra of
G, and denote it by g.

The Lie algebra of a Lie group may be characterised in terms of left-invariant vector fields.
A vector field X € Vec(G) is left-invariant if 73, L, - X (h) = X (gh) for every g, h € G. (Since
G is a matrix Lie group, we can write this condition in matrix form as ¢X(h) = X(gh).
Consequently, every left-invariant vector field is of the form X (g) = gA for some A € g.) The
Lie bracket of two left-invariant vector fields is left-invariant. Indeed, we have the following
result.
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PROPOSITION. (CF. [42]) Let X(g) = gA and Y(g) = gB be left-invariant vector fields on
G. Then [X,Y](g) = g|A, B| for every g € G.

The set of all left-invariant vector fields on G, together with the Lie bracket of vector fields
(defined for vector fields X and Y by [X,Y][f] = X[Y[f]] = Y[X|[f]], f € C*=(G)) forms a Lie
algebra isomorphic to g. Indeed, we have the correspondence

left-invariant vector field X(g) = gA — X(1)=A¢€qg.

We shall identify these two representations of the Lie algebra of a Lie group.
The Lie algebra g and the Lie group G are related by the exponential map exp : g — G,
defined (for matrix Lie groups) as the power series

(This series is everywhere convergent.) In general, the exponential map is not a diffeomor-
phism. However, we have the following result.

PROPOSITION. ([24]) The exponential map exp : g — G maps a certain neighbourhood of
zero in the tangent algebra g diffeomorphically onto a neighbourhood of the identity of G.

Lastly, we review the relationship between normal Lie subgroups and ideals, as well as
the link between Lie group homomorphisms and Lie algebra homomorphisms.

THEOREM. (CF. [24]) Let G be a Lie group with Lie algebra g.

(i) IfH is a Lie subgroup of G, then the Lie algebra of H is a subalgebra of g. Conversely,
every subalgebra of g is the Lie algebra of some (uniquely defined) connected Lie subgroup

of G.

(iii) Suppose G is connected. A connected Lie subgroup H of G is normal if and only if the
Lie algebra of H is an ideal of g.

PROPOSITION. (CF. [24]) The centre Z(G) of a connected Lie group G is a (normal) closed
Lie subgroup, whose tangent algebra coincides with the centre Z(g) of g.

THEOREM. (CF. [24]) Let G and G' be Lie groups, with Lie algebras g and g, respectively.

(i) If 9 : G — G is a Lie group homomorphism, then Ti¢ : g — ¢ is a Lie algebra
homomorphism.

(it) If G is simply connected, then for every Lie algebra homomorphism b : g — ¢ there
exists a (unique) Lie group homomorphism ¢ : G — G’ such that Ty ¢ = .

A.1.3 Topology of Lie groups

Let G be a Lie group. G is called compact if it is compact as a topological space. That is, for
every open cover {Ug }aes of G there exists a finite subcollection {Uq,, ..., Uq, } that covers
G. We say that G is connected if it is connected as a topological space, i.e., there do not
exist two nonempty open subsets U, V of G such that UNV = @ and G = U N V. For Lie
groups, connectedness coincides with path-connectedness.
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PROPOSITION. (CF. [24]) G is connected if and only if it is path-connected, i.e., for any two
points go,g1 € G, there exists a smooth curve g(-) : [0,1] — G such that g(0) = go and

g(1) = g1

G is called simply connected if it is connected and for every two smooth curves g(-) : [0, 1] —
G and h(-) : [0,1] = G with the same endpoints (i.e., g(0) = h(0) and g(1) = h(1)) there
exists a continuous function H : G x [0,1] — G such that H(-,0) = g(-) and H(:,1) = h(:).
(That is, the curve g(-) can be continuously deformed into h(:).) To every Lie algebra is
associated a (unique up to isomorphism) simply connected Lie group.

THEOREM. ([24]) A simply connected Lie group is determined up to an isomorphism by its
Lie algebra.

Let N be a normal closed Lie subgroup of G. The quotient G/N may be given a smooth
structure such that it is a Lie group. (However, in general G/N is not a matriz Lie group.)
Indeed, we have the following results.

THEOREM. ([24]) Let H be a closed Lie subgroup of a Lie group G. The set G/H of left cosets
of H in G possesses a unique differentiable structure for which the canonical map p : G — G/H,
g+— gH is a quotient map.

THEOREM. ([24]) Let N be a normal closed Lie subgroup of a Lie group G. Then the quotient
group G/N with the differentiable structure of theorem A.1.9 is a Lie group.

Let G and H be Lie groups with Lie algebras g and b, respectively. A covering homo-
morphism from G onto H is a Lie group homomorphism ¢ : G — H such that T3¢ : g — b
is a Lie algebra isomorphism. Equivalently, ¢ is a covering homomorphism if ker¢ = {g €
G : ¢(g9) = 1} is discrete. The following result implies that we may study the covering
homomorphisms of connected Lie groups by studying the discrete central subgroups.

PROPOSITION. ([24]) Ewvery discrete normal subgroup N of a connected Lie group G is con-
tained in its centre.

THEOREM. ([24]) Every connected Lie group G is isomorphic to a quotienzé/N, where G is a
stmply connected Lie group and N a discrete normal subgroup. The pair (G,N) is determined
by these conditions up to an isomorphism, i.e. if (G,N) and (G',N') are two such pairs, then
there exists an isomorphism G — G', taking N to N’.

The group G is called the universal covering Lie group of G. By the previous result
and theorem A.1.8, we can determine (up to isomorphism) every connected Lie group with
a specified Lie algebra by finding the associated simply connected Lie group, and classifying
the discrete central subgroups thereof.

A.1.4 Adjoint representations

Let G be a Lie group with Lie algebra g and let V be a vector space. A representation of G
is a Lie group homomorphism ¥ : G — GL(V), g — V¥,. (Here GL(V) is the group of invertible
linear isomorphisms from V to itself.) The orbit O(X) of ¥ through the point X € V is
O(X) ={V, - X :g e G}. The orbits of V form a partition of V.

A representation of g is a Lie algebra homomorphism v : g — gl(V), A — 4. (Here
gl(V) is the Lie algebra of GL(V).) We have the following relationship between representations
of G and g:
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PROPOSITION. (CF. [24]) If ¥ : G — GL(V) is a representation of G, then the linearisation
TV g — gl(V) is a representation of g.

In particular, the adjoint representations of G and g are defined as Ad : G — GL(g),
g+— Ad, and ad : g — gl(g), X — adx, respectively. Here

Adg:g—g, X gXg! and ady:g—g Yr—I[X)Y]

(The map ad can be shown to be the linearisation of Ad.) Let g* denote the dual space of g.
The coadjoint representations of G and g* are defined as Ad™: G — GL(g"), g — Ad} .
and ad* : g — gl(g*), X — ad” y, respectively. Here Adz,l :g* — g* and ad®  : g* — g¢g* are
the dual maps of Ad,—1 and ad_x, respectively. That is,

<Adz,1 P, X> = (p, Ady—1 X) and (ad* yp,Y) = (p,ad_x Y).

We denote the orbit through X € g of the adjoint representation Ad by Otb(X). Similarly,
the orbit through p € g* of the coadjoint representation Ad* is denoted orb(p).

A bilinear form on g is a bilinear map B(-,-) : gxg — R. B(-, ) is called nondegenerate
if B(X,-) =0 implies X =0, and is called invariant if

B(X, Y1, 2) + B(X,[Y, Z]) = 0 (A.12)
for every X,Y,Z € g. If G is connected, the condition (A.1.2) is equivalent to the condition
that B(Ad, X,Ad,Y) = B(X,Y) for every g € G and X,Y € g. The presence of a non-

degenerate bilinear form on g permits an identification of the adjoint and coadjoint orbits.
(However, the existence of such a bilinear form is not guaranteed.)

PROPOSITION. Suppose G is connected and g admits a nondegenerate invariant bilinear form.
Then there exists a linear isomorphism ¥ : g — g* such that v - Orb(X) = otb(yp - X) for
every X € g.

PROOF. Denote the invariant bilinear form by B(-,-) and let b : g — g* be defined by
Y- X = B(X,-). Since B(-,-) is nondegenerate, we have that v is injective. Furthermore,
since dim(g) = dim(g*), it follows that 1 is a linear isomorphism. Let g € G and X € g.
Then for every Y € g we have

(- Adg X,Y) = B(Ady X,Y) = B(X,Adg1Y) = (¢ - X, Adg1 V) = (Ad; -1 (¥ - X),Y).
Thus ¢ - Adg X = Ad)_1(¢ - X), and so ¢ - Orb(X) = orb(y) - X). [ |

A.1.5 Classes of Lie groups and Lie algebras

We review several different classes of (connected) Lie groups and Lie algebras. The following
definitions and the results that follow are drawn from [24, 30, 26, 42]. Suppose G is connected,
with Lie algebra g. We say that G and g are

(i) nilpotent if the sequence

g, loal, [g o9l [o g g 6l

terminates in {0} after finitely many steps. Equivalently, G and g are nilpotent if the
eigenvalues of adx are zero for every X € g.
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(ii) completely solvable if the eigenvalues of adx are real for every X € g.

(iii) solvable if the sequence
g, lo.0l, ool e 0ll, llo.al (g, 0ll[lg. gl [g o]l

terminates in {0} after finitely many steps.
(iv) simple if the only ideals of g are the trivial ideal {1} and g itself.
(v) semisimple if it has no nontrivial solvable ideals.

Furthermore, G is called exponential if the exponential map exp : g — G is a diffeomorphism.
The Lie algebra g is called exponential if the simply connected Lie group with Lie algebra g
is exponential. Lastly, G is called unimodular if the left Haar measure on G is also right-
invariant.

A.1.15 PROPOSITION. We have the following chain of implications:

g is nilpotent = g is complelely solvable = g is exponentiol = g is solvable.

A.1.16 PROPOSITION. A connected Lie group G is unimodular if and only if tradx = 0 for every
X eg.

A.1.17 PROPOSITION. If g is semisimple, then it is not solvable.

A.2 Invariant Control Systems

We review some basic notions of invariant control theory. In particular, we define the con-
trol systems considered in this thesis, as well as the admissible controls, trajectories and
controllability of these systems. The main references for this section are |7, 29, 42].

A left-invariant control system is a pair ¥ = (G, Z), where

(i) the state space G is a (real, finite-dimensional) connected matrix Lie group with Lie
algebra g.

(ii) the dynamics Z: G x R® — TG is a family of left-invariant vector fields, parametrised
by the controls u € R*:

E(g,u) =9Z(Lu), g€G uek"
(Since G is a matrix Lie group, the multiplication g Z(1, -) is exactly the left-translation

TiLg - =(1,-), where L, : G — G, h — gh.) The map Z(1,-) : R* — g is called the
parametrisation map.

In classical notation, we write a control system . as
g==(gw) =g=(Luw), geG uek"

In particular, an f-input left-invariant control affine system is a control system with
dynamics of the form Z(1,u) = A+ w1 By + ... +ugBy. Here A, By,..., By are elements of
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the Lie algebra g and By, ..., By are linearly independent. The trace of > is I' = im =(1, -),
i.e., the affine subspace I' = A +T% = A + (By,..., By). We say that ¥ is homogeneous
if A€ TIY and inhomogeneous, otherwise. 3 is said to have full rank if I" generates the
entire Lie algebra, i.e., the smallest Lie subalgebra Lie(I") of g containing I" coincides with g.

An admissible control is a piecewise continuous map u(:) : [0, 7] — R’ A trajectory
corresponding to an admissible control u(-) is an absolutely continuous curve g(-) : [0, 7] — G
such that ¢(t) = Z(g(t),u(t)) for almost every ¢t € [0,7]. By the Carathéodory existence
and uniqueness theorem for ordinary differential equations, trajectories must exist (at least,
locally). Furthermore, by the left-invariance of ¥, left translations of trajectories are also
trajectories.

Y] is called controllable if there exists a trajectory joining any two points of G. We have
the following necessary condition for controllability.

PROPOSITION. (CF. [42]) Suppose Y. is controllable. Then G is connected and 3. has full
rank.

The attainable set from gy € G, denoted Ay, is defined as
Age ={9(T) : g(-) : [0, T] = G is a trajectory, g(0) = go}-.

By left-invariance of ¥, we have Ay, = go.A1. We abbreviate Ay as A. Controllability of ¥
may be characterised in terms of A.

PROPOSITION. ([42]) X is controllable if and only if A = G.

Lastly, for the particular case of a completely solvable, connected and simply connected
Lie group G, we have the following characterisation of controllability.

PROPOSITION. ([42]) Suppose G is completely solvable, connected and simply connected. 3.
is controllable if and only if Lie(I°) = g.

A.3 Optimal Control on Lie Groups

Optimal control theory is the natural extension of the study of control systems. It provides
tools for investigating optimal solutions to a control system with specified boundary condi-
tions, while minimising (or maximising) some (practical) cost. For our purposes, we shall only
be concerned with the minimisation problem, with fixed time. The main references for this
section are |7, 29, 31|. For subsections A.3.1 and A.3.2, we have also drawn upon [34, 29, 32].

Let ¥ = (G,Z) be a left-invariant control affine system on a (real, finite-dimensional)
connected matrix Lie group G. (See section A.2.) An (invariant) optimal control problem
associated to ¥ is specified by (i) the control system >, (ii) a positive definite quadratic form
X : R® = R (the cost function) and (iii) boundary conditions, viz. an initial state gy € G,
a terminal state g1 € G and a fixed terminal time 7" > 0. We write such an optimal control
problem as

g=9=1u), g():[0,7] =G, u(-):[0,T) - R’ (A.3.1)
90, 9(T) =91, 90,01 € G, T"> 0 fixed (A.3.2)

T
T(ul) = /O () dt — min, (A.3.3)
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(In fact, we may assume go = 1, since this can always be arranged by using a suitable left
translation.) Explicitly, we wish to minimise the functional J(-) over trajectory-control pairs
(9(+),u(-)) subject to the specified boundary conditions. Note that, in general, a solution to
the optimal control problem is not guaranteed. (However, in special cases existence is assured;
e.g., for the length-minimisation problem in Riemannian or sub-Riemannian geometry. See
section A.4.)

A.3.1 Hamiltonian formalism on symplectic and Poisson manifolds

Let M be a smooth manifold. A symplectic structure on M is a (smooth) nondegenerate
bilinear two-form w on M. (By nondegenerate we mean that the bilinear form we : T¢eM x
T¢eM — R is nondenegerate for every £ € M. That is, if we(V, W) = 0 for every W € T¢M,
then V= 0.) The pair (M,w) is called a symplectic manifold.

A Poisson structure (or Poisson bracket) on M is a bilinear, skew-symmetric map
{-,-}: C®(M) x C®(M) — C*(M) satisfying, for every F,G, H € C*(M):

(i) the Jacobi identity: {F,{G,H}} +{G,{H, F}} +{H,{F,G}} = 0;
(@) {-,-} is a derivation in each factor: {FG,H} = F{G,H} + {F,H}G.

(Note that C*(M), together with the Poisson bracket {-,-}, forms a Lie algebra.) The pair
(M, {-,-}) is called a Poisson manifold.

Let H € C*°(M) be a Hamiltonian function and let w (resp. {-,-}) be a symplectic
form (resp. Poisson bracket) on M. We associate to H a (smooth) vector field H, called a
Hamiltonian vector field, as follows. For the symplectic case, H is defined by

we(HE),V)=dH(&)-V, ¢eM, VeTM. (A.3.4)
In the Poisson case, H is defined by its action on smooth functions:
H[F)={F,H}, FcC®M). (A.3.5)

A triple (M, {-,-}, H), where H € C*(M) is a Hamiltonian function, is called a Hamilton-
Poisson system. If the Poisson manifold (M, {-,-}) is fixed, we identify a Hamilton-Poisson
system with its Hamiltonian function.

Every symplectic manifold (M, w) is a Poisson manifold. Indeed, define the Poisson bracket

{F,G}(6) = we(F(€),G(€),  F,GeC®(M).

Then (M, {-,-}) is a Poisson manifold. The converse, however, does not hold. (Indeed,
for a Poisson manifold to be a symplectic manifold, we require that the Poisson bracket
is nondegenerate. See, e.g., [34].) In the remainder of this section, we assume that we are
working on a Poisson manifold (M, {-,-}).

Given a Hamiltonian vector field H on M, an integral curve of H is an absolutely
continuous curve &(-) that satisfies the equations of motion, i.e., £(t) = H(£(t)). By
the Carathéodory existence and uniqueness theorem for ordinary differential equations, there
exists a unique solution to the Cauchy problem

£ty = H(E®),  £(0) =& e M.
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(As such, integral curves always exist locally.) H is said to be complete if the domain of
every integral curve can be extended to R.

Casimir functions are functions that Poisson-commute with every other function. That
is, C € C*®(M) is a Casimir function if and only if {C, F'} = 0 for every F' € C®(M).
Equivalently, we write C = 0. If C is a Casimir function, then so is f(C) for any function
f : R — R. Casimir functions are constants of motion of the system. (However, nontrivial
Casimir functions are not guaranteed to exist; furthermore, they may not be defined globally.)

PROPOSITION. (CF. [34]) Let C be a Casimir function on M. Then C is constant along the
integral curves of every Hamiltonian vector field.

Another constant of motion is provided by the Hamiltonian function. This result is the
so-called conservation of energy.

PROPOSITION. (CF. [34]) Let p(-) be an integral curve of H. Then H(p(t)) is constant in t.

Suppose M admits a (global) Casimir function C' and let H be a Hamiltonian vector field.
Since C' is a constant of motion, every integral curve p(-) of H develops on the level set
C~(eg), where cg = C(p(0)). Similarly, H is a constant of motion (by the conservation of
energy), and so p(+) develops on H~1(hg), hg = H(p(0)). Thus p(-) evolves on the intersection
0_1(60) N H_l(ho).

A.3.2 Lie-Poisson structure

Let g be a (real, n-dimensional) Lie algebra, with dual space g*. The (minus) Lie-Poisson
structure (or (minus) Lie-Poisson bracket) on g* is defined as

{F,GYp) = = (adiypgy p AG() ) = —(p, [AF(p), AC(p)]).

Here [, -] denotes the Lie bracket on g. (As dF(p) and dG(p) are linear functions on g*, they
are elements of g** >~ g.) A Lie-Poisson space is a pair (g*, {-,-}), where {-, -} is the minus
Lie-Poisson bracket on g*; we denote g* = (g*, {-,-}).

A linear Poisson automorphism is a linear isomorphism ¥ : g* — g* that preserves
the Lie-Poisson bracket, i.e., {F,G} oW = {F o W, G o ¥} for every F,G € C>®(g*). The
following result relates linear Poisson automorphisms to Lie algebra automorphisms.

PROPOSITION. ([34]) Let g be a Lie algebra and let v : g — g be a linear map. The map
is a Lie algebra automorphism if and only if ils dual ¥ = ¥* : g* — g* is a linear Poisson
automorphism.

Let H € C*(g*) be a Hamiltonian function. By equation A.3.5, we associate to H a
Hamiltonian vector field H. In coordinates, H is given by H(p) = ad} H(p) P- Consequently,
we can write the equations of motion componentwise as p; = —(p, [F;, dH (p)]), i = 1,...,n.
where (F;)? ; is a basic for g.

A.3.3 Symplectic structure of the coadjoint orbits

Let g* be the dual of a (finite-dimensional) Lie algebra g. The coadjoint orbits of G form a
partition of g*. (See section A.1.4.) Furthermore, each orbit otb(p), p € g* admits a symplectic
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structure, i.e., a nondegenerate bilinear two-form. ([34] and [32] discuss this topic in detail.)
In particular, this implies that the coadjoint orbits of G are even dimensional. Furthermore,
the minus Lie-Poisson bracket, restricted to each coadjoint orbit otb(p), is exactly the Poisson
structure induced by the symplectic structure on otb(p). Indeed, we have the following result.

THEOREM. (COADJOINT ORBIT THEOREM, [34]|) Let G be a Lie group and let otb(py) be the
coadjoint orbit through po € g*. Then

wp(ady p, ady p) = —(p, [X, Y])
for all p € otb(po) and X,Y € g defines a symplectic form on orb(po).

Furthermore, integral curves of a Hamiltonian vector field and Casimir functions are
constant along the coadjoint orbits.

PROPOSITION. (CF. [34]) Let H € C®(g*) be a Hamiltonian function and C' € C*=(g*) a
Casimir function.

(i) If p(-) is an integral curve of H such that p(0) € otb(po) for some po € g, then p(t) €
otb(po) for all t.

(1) Clowo(p) is constant for each p € g*.

A.3.4 Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle provides necessary conditions for optimality of solutions to
an optimal control problem (A.3.1)-(A.3.2)-(A.3.3). We state the maximum principle in the
language of the Poisson (in fact, symplectic) structure on the cotangent bundle T*G of G. Let
g be the Lie algebra of G and let g* denote the dual space of g. We have the following result.

PROPOSITION. (CF. [7]) The cotangent bundle may be trivialised from the left as T*G =
G x g*. That is, there exists a diffeomorphism ® : G x g* — T*G such that
(i) the diagram

Gxg* S B—— A

N

commutes, i.e., mo ®(g,p) = g. (Here w: T*G — G is the canonical projection.)
(ii) the map ®(-,g) : g* — T, G is a linear isomorphism for every g € G.

Accordingly, we identify the cotangent bundle 7*G with G x g*. (The tangent bundle T'G
may be trivialised in a similar fashion. To wit, we have TG = G x g. However, we shall not
require this result.)

The cotangent bundle admits a canonical symplectic structure w. Indeed, let 7 : T*G — G
denote the canonical projection that sends every cotangent vector to its base point. The
tautological one-form 6 is the map T*G — T*(T*G) defined by

93£I—>0§ eTﬁ*(T*G)v <0£777> - <£,T§7T~77>7 £€T*G7 UeTﬁ(T*G)
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Using the trivialisation T*G = G x g*, we have £ = (g,p), where g € G and p € g*. Thus
Te(T*G) = T4G x g*. Furthermore, using the identification (A.1.1), we have n = (¢X,¢q),
where X € g and ¢ € g*. Accordingly,

(g, (9X,9)) = ((9,0), Tigpym - (9X,9))
={(g9,p), 9X) = (p, X).

Let w = —d#, where (the differential) df is defined by its action on vector fields X,Y €
Vec(T*G) as dO(X,Y) = X[(0,Y)] — Y[(0,X)] — (6,|X,Y]). Then w defines a (canonical)
symplectic form on T*G. (See, e.g., [34]. Note that we have followed the same sign convention
w = —d6 of [34].) As such, by equation (A.3.4) we associate to every function H € C*(T*G)
a Hamiltonian vector field H. Furthermore, w induces a Poisson structure on 7*G.

To the optimal control problem (A.3.1)-(A.3.2)-(A.3.3), we associate a family of control-
dependent Hamiltonian functions (H}),cpe, where HY : T*G — R is defined as

H (&) = (€, E(g, w) +vx(u)
=21, u) +rvx(w), &=I(gp) TG
Pontryagin’s Maximum Principle is stated in terms of these Hamiltonians.

PONTRYAGIN’S MAXIMUM PRINCIPLE. Suppose that the trajectory-control pair (g(-),u(-)),
defined over the interval (0,7, is a solution for the optimal control problem (A.3.1)-(A.3.2)-
(A.3.3). Then there exists a curve £(+) : |0,T) — T*G with £(t) € T .G, t € [0,T] and a real

g(t)
number v < 0 such that the following conditions hold for almost every t € [0, T:
(r,&(1)) # (0,0) (A.3.6)
Et) = I (6(0) (A3.7)
H}j(t) (&() = mz@ H! (£(t)) = constant. (A.3.8)
ue

An optimal trajectory g(-) : [0,7] — G is the projection of an integral curve &(-) of
the nonautonomous vector field H - A trajectory-control pair (g(-),u(-)) that satisfies the
conditions (A.3.6), (A.3.7) and (A.3.8) is called an abnormal extremal if v = 0, and a
normal extremal, otherwise. (In the latter case, ¥ < 0 may be taken to have any strictly
negative value. See, e.g., [42].)

For the optimal control problem (A.3.1)-(A.3.2)-(A.3.3), the maximality condition (A.3.8)
of the Maximum Principle eliminates the control parameter « from the family of Hamiltonians
(H)yere- The result is a single, G-invariant Hamiltonian function H defined on 7%G =~ Gx g*.
The invariance of H permits a reduction of the Poisson structure on 7*G (induced by the
canonical symplectic structure w) to a Poisson structure (the (minus) Lie-Poisson structure;
see section A.3.2) on the dual space g*. (For details of the reduction process, see [31].)
Accordingly, we obtain a Hamiltonian function H on g*. The extremal controls of (A.3.1)-
(A.3.2)-(A.3.3) are linearly related to the integral curves of H. As such, the investigation
of the extremal controls is essentially reduced to the study of the Hamilton-Poisson system
(¥, H).

Suppose the dynamics and cost function of the optimal control problem (A.3.1)-(A.3.2)-
(A.3.3) are specified by Z(1,u) = A + ui By + ... + ueBe and x(u) = u' Qu, respectively,
where @ € R*¢ is symmetric and positive definite. Form the matrix B € R™*¢ by taking the
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coordinate vector of B; (with respect to a specified basis for g) for its i*" column. We have
the following result.

THEOREM. ([15, 17]) Any normal extremal trajectory-control pair (g(-),u(-)) of (A.3.1)-
(A.3.2)-(A.3.3) is given by ¢(t) = Z(g(t),u(t)), u(t) = Q~'BTp(t)". Here p(-) is an integral
curve for the Hamilton-Poisson system on g* specified by

H(p) :pAJr%pBQ_lBT T (A.3.9)
where p is written as a row vector (in terms of the dual basis of g*).

The Hamiltonian function (A.3.9) on g* is called the reduced Hamiltonian. Furthermore,
since @ is positive definite and B does not have full rank in general, it follows that BQ™'BT
is positive semidefinite. Consequently, H is of the form

H(p) = Hao(p) = (p, A) + Q(p),

where A € g and Q is a positive semidefinite quadratic form on g* .
Lastly, from theorem A.3.8, the equations of motion for the (normal) extremal trajectory-
control pair (g(-),u(:)) on T*G take the form

g(t) = E(g(t), u(t)).
The first equation is called the vertical subsystem, whereas the second is the horizontal
subsystem.

{ p(t) = H(p(t))

A.4 Riemannian and Sub-Riemannian Geometry

Riemannian geometry is the study of manifolds admitting local notions (by means of a Rie-
mannian metric g on the tangent bundle) of distance, curve length, angle, area, volume, etc.
Sub-Riemannian geometry is a generalisation of Riemannian geometry, in that the metric
g is restricted to a class of “admissible velocities.” We collect here some basic concepts of
Riemannian and sub-Riemannian geometry. We draw from [37, 42].

Let G be a (real, finite-dimensional) connected matrix Lie group. A sub-Riemannian
structure on G is a pair (D, g), where

(i) the distribution D is a smooth map that assigns to every g € G a vector subspace Dy
of T,G.

(i) g is a sub-Riemannian metric, i.e., for every g € G, g, : Dy x Dy — R is a (positive
definite) inner product.

(We assume the dimension of D, does not depend on g, i.e., D has constant rank.) If
D, = 1T,G for every g € G, then (D, g) is called a Riemannian structure, and abbreviated
to g. (However, we shall continue to include Riemannian structures as a special case of
sub-Riemannian structures in the following discussion.)



A4l

APPENDIX A. REVIEW OF PREREQUISITES 161

A sub-Riemannian structure (D, g) is said to be left-invariant if it is invariant under
left-translations:

Tth . Dh — Dgh and ggh(Tth . X, Tth . Y) — gh(X, Y)

for every g,h € G and X,Y € Dj. (Here Ly : G — G denotes the left multiplication map
Ly(h) = gh.) For a left-invariant distribution D of rank ¢, there exist left-invariant vector fields
X1,...,X¢ such that Dy = (X1(g), ..., Xe(g)) for every g € G. Using the identification of
left-invariant vector fields with elements of the Lie algebra (section A.1.2), we may (uniquely)
specify a left-invariant sub-Riemannian structure (D, g) by selecting a subspace Dy of the Lie
algebra and defining an inner product gy on that subspace. (The structure is then extended
to every point in G by means of left translations: Dy = ¢gD; and gg(9X, gY) = g1(X,Y),
where X,Y € D;.) We shall assume all sub-Riemannian structures under consideration are
left-invariant.

An absolutely continuous curve g(-) : [0,7] — G is called horizontal if §(t) € Dy for
almost every t € [0,T]. We say that D is bracket-generating if Lie(D1) = g. We have the
following result concerning bracket-generating distributions.

THEOREM. (CHOW-RASHEVSKII, CF. [37]) Let D be a bracket-generating distribution on a
connected Lie group G. Then any two points of G can be joined by a horizontal curve.

The length £(g(-)) and energy J(g(-)) of a horizontal curve g(-) : [0,7] — G are defined

T T
() = / Jaw@O.g0) & and  T(g() = / 800 (§(0), 4 () dt,

respectively. The length of ¢(-) is invariant under reparametrisation; the energy is not. The
Carnot-Carathéodory distance d(gy, g2) between g1, g2 € G is the infimum of lengths of
all horizontal curves joining g1 to go. That is,

as

d(g1,92) = inf {£(g(-)) : g(-) : [0,T] — G is a horizontal curve, g(0) = g1, g(T) = g2} .

By the Chow-Rashevskii theorem (theorem A.4.1), d(-, -) is well-defined, continuous and finite
and induces on G the original topology. Furthermore, (G, d) is a metric space.

A minimising geodesic (or simply geodesic) of (D,g) is a horizontal curve g(-) :
|0,7] — G such that d(g(0),g9(T)) = £(g(-)). The sub-Riemannian problem involves
finding the geodesics of a given sub-Riemannian structure. (Similarly, the Riemannian
problem concerns the Riemannian geodesics.) The (sub-)Riemannian problem may be stated
as follows:

g(t) € Dgry,  9() 0,71 = G
g(0) = g0, g(T) = g1, go,q1 € G, T > 0 fixed

T
Ug()) = / g (9(1): (1)) dt — min.

Explicitly, we wish to determine those horizontal curves that minimise the length between
specified points gy and g1 in G in a fixed time T" > 0. Should it exist, such a minimising curve
is exactly the geodesic between gy and g;. The following theorem guarantees existence (at
least, locally) of minimising geodesics.
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THEOREM. ([37]) If G is connected and D is bracket-generating, then any point g € G is
contained in a neighbourhood U such that every h € U can be connected to g by a minimising
geodesic.

We may write the sub-Riemannian (and Riemannian) problem as an optimal control
problem on G. (Section A.3 discusses optimal control theory on Lie groups.). Indeed, suppose
(D, g) is a bracket-generating sub-Riemannian structure on G. Since D is left-invariant, the
condition §(t) € Dy may be written as

gt) = g@)(ur(t) B + ... + ue(t) Ep),

where u;(-) : [0,7] = R, i =1,...,{ are admissible controls and (£;)? ; is a basis for the Lie

algebra of G. Consequently, by the left-invariance of the sub-Riemannian metric g, we have
8y (9(1), 9(1)) = 8y (g()(ur (D) Er + - + we(t) Ep), g() (ur () By + -+ + ue(t) Ey))

1(U1(t)E1 + -+ Ug(t)Eg, Ul(t)El +--+ Uﬁ(t)Eg)

1(t)2 + ...+ Ug(t)2.

I
£ | M

Lastly, we have the following result.

PROPOSITION. (CF. [37]) If the final time T > 0 is fixed, a horizontal curve g(-) : [0,T] — G
is a minimiser of J(-) if and only if it is a minimiser of £(-) and has constant speed.

Hence, we may minimise the energy functional, rather than the length. (The energy is
a smooth function, which simplifies the analysis.) Consequently, we may write the sub-
Riemannian problem as the following optimal control problem:

g :g(u1E1 + ... +U£EE)7 g() : [OvT] — Gv U() : [OvT] — RE
g(0) = go, 9(T) = g1, 90,91 € G, T > 0 fixed

T
Tul) /O w(®? + ..+ us(t) dt — min.

In general, this optimal control problem admits two types of extremal trajectories, the ab-
normal trajectories and the normal trajectories (see section A.3.4). A geodesic g(-) is called
normal (resp. abnormal) if it is the projection of a normal (resp. abnormal) extremal of
the above optimal control problem. (There are no abnormal extremals for the Riemannian
problem, hence all geodesics are normal. See e.g., [37].)

A.5 Stability of Dynamical Systems

We review some concepts of (nonlinear) stability theory and spectral stability on Poisson
manifolds (see section A.3.1), and cite a result for proving the nonlinear stability of systems.
Our definitions in this section draw from [39, 34].

Let (M, {-,-}) be a (smooth) Poisson manifold and let X € Vec(M) be a smooth vector
field. An equilibrium point of X is a point z. € M such that X(z.) = 0. The unique
integral curve £(-) of X starting at the point z. is constant, i.e., £(t) = z. for all . The
stability analysis of equilibria concerns the behaviour of integral curves starting near the
equilibrium points. We say that an equilibrium point z, of X is
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(i) Lyapunov stable (or simply stable) if for every neighbourhood U of z. there exists a
neighbourhood V' C U of z. such that, for every integral curve £(-) of X with £(0) € V/,
we have £(t) € U for all ¢ > 0.

(ii) Lyapunov unstable (or simply unstable) if it is not Lyapunov stable. That is, there
exists a neighbourhood U of z¢ such that, for every neighbourhood V' C U of z., there
exists an integral curve £(+) of X with £(0) € V and &(t1) ¢ U for some t; > 0.

(iii) spectrally stable if all eigenvalues of the linearised dynamical system DX (z.) have
non-positive real parts.

(iv) spectrally unstable if it is not spectrally stable.

In this thesis, we shall not be concerned with spectral stability per se. However, the following
result permits us to prove Lyapunov instability by means of spectral instability.

PROPOSITION. (CF. [34]) If an equilibrium point is (Lyapunov) stable, then it is spectrally
stable.

Let H € C*°(M) be a Hamiltonian function. The energy-Casimir method (see, e.g.,
[34]) provides sufficient conditions for stability of an equilibrium point z. € M of H. To wit,
suppose there exists a constant of motion C' such that d(H +C)(z.) = 0 and d?(H +C)(z.) is
positive definite. Then z. is stable. (By a constant of motion we mean a function C' € C*(M)
such that {C, H} = 0.) The authors of [38] have extended the energy-Casimir method, to the
effect that we need only check the definiteness of d?(H + C')(z.) on a certain subspace. We
state the result here.

PROPOSITION. (CF. [38]) Let H be a Hamiltonian vector field on M corresponding to a
Hamiltonian function H € C*(M). Let ze be an equilibrium point of H and Cq,...,Cy €
C®(M) conserved quantities of H, i.e., {C;, H} =0 (i = 1,... k). Assume there exist con-
stants Ag, ..., Ar € R such that
d(MH + MC1+ -+ MCr)(ze) =0
and the quadratic form
d*(NoH + MCr+ -+ MCr)(ze) iy o

is positive definite with

W = kerdH (z.) NkerdCi(ze) N...NkerdCy(z.).

Then z. is (Lyapunov) stable.

A.6 Jacobi Elliptic Functions

The Jacobi elliptic functions are a class of elliptic functions obtained by inverting certain ellip-
tic integrals. These functions find application in numerous areas of mathematics, particularly
geometry and mechanics. The following exposition draws from [8, 35].
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A.6.1 Definition and basic properties

Let k € (0,1) and k' = V1 — k? (k is called the modulus, whereas k' is called the comple-
mentary modulus). The Jacobi elliptic functions sn(-, k), ¢n(-, k) and dn(-, k) are defined
to be the solutions to the following initial value problem:

T =yz sn(0,k) = x(0) =0
Y= —zx en(0,k) = y(0) =1
3= —k%xy dn(0, k) = z(0) = 1.
From the above system of differential equations, we get the following derivative formulae:
% sn(t, k) = en(t, k) dn(t, k) (A.6.1)
%cn(t, k) = —dn(t, k) sn(t, k) (A.6.2)
%dn(t, k) = —k?sn(t, k) en(t, k). (A.6.3)

Limiting k¥ — 0 or £k — 1, we recover the usual trigonometric and hyperbolic functions,
respectively. Indeed, as k — 0, we have sn(-, k) — sin(-), en(+, k) — cos(+) and dn(-, k) — 1.
As k — 1, sn(-, k) — tanh(-), en(-, k) — sech(:) and dn(-, k) — sech().

In addition to the three basic Jacobi elliptic functions sn(-, k), ¢n(-, k) and dn(-, k), we
define the following reciprocals and ratios (these are written in the so-called “Glaisher nota-
tion”):

1 1 !

ns(, k) = S S OB = e
wly = SCE gl el
wH-FEG e een- T

The Jacobi elliptic functions can also be defined in terms of the inverse of a particular
elliptic integral. The elliptic integral of the first kind is defined as

® dt
F(%k’)/ T
0 +/1—k2%sin“t

For a fixed modulus &, the complete elliptic integral of the first kind is the constant K =
F(%,k). Similarly, the elliptic integral of the second kind is

(2
E(gp,kz)/o V1 —k2sin?t dt

and the complete elliptic integral of the second kind is &/ = E(F, k). The Jacobi amplitude
function am(-, k) is defined to be the inverse of F(-,k), i.e., am(-, k) = F(-,k)~'. Then we
have

sn(-, k) = sinam(-, k) en(-, k) = cosam(-, k) dn(-, k) = \/1 — k2sin?am(-, k) .
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The basic elliptic functions sn(-, k), en(+, k) and dn(-, k) have the following periodicity and
parity properties: sn(-, k) and cn(-, k) have period 4K, whereas dn(-, k) has period 2K. On
the other hand, sn(-, k) is an odd function and en(-, k), dn(-, k) are even functions.

Lastly, we present several formulae for the Jacobi elliptic functions, as well as the elliptic
integral E(-, k). (See [8] for a more comprehensive collection of formulae; we state only those
used in this thesis.) Firstly, we have the following square relations:

k*sn(x, k) +dn?(z, k) = 1 (A.6.4)
sn?(z, k) +en?(x, k) =1 (A.6.5)
k*en?(x, k) —dn?(x, k) + (K)2 =0 (A.6.6)
Secondly, the integral formulae for elliptic integrals
v dt 1o q-1 (2 Va2=5”
- — —nd Z, xa b<zxr<a A6.7
/b V@ -2y —r) ° (b @ ) ( ) ( )
¢ dt 1 —1{x Va?-b2
/ Vi e s L =S (b<z<a) (A6.8)
- — Lget(z 2 b<a<w A6.9
/¢_a2 i = e (3.0) b<azy) (A6
_ 1 -1 {x b
/ NCE a2 i T e (w Tm) (a <) (A.6.10)
as well as the following (elementary) formulae for “degenerate” elliptic integrals:
dt 1y, o—1
/m =2 tan <£> (A611)
_da 1 coth™ (L) (t? > a?) (A.6.12)
2 a 6.
dt _
/m = étanh 1 <£> . (t2 < a2) (A613)

Finally, we have the following two integral formulae for dn?(-, k) and sn(-, k) (these are used
for finding expressions for the Riemannian and sub-Riemannian geodesics on SE(1,1); see
chapter 5):

/ dn?(t, k) dt = E(am(x, k), k) (A.6.14)
/ su(t, k) dt — L Infdn(t, k) — ken(t, k)] (A.6.15)

A.6.2 Reduction to standard form

In this thesis we use the Jacobi elliptic functions to solve differential equations of the form

i = X1 Xo = (a12? + 2012 + ¢1)(agx® + 2baw + c3),
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where a;, b;,¢; € R (i = 1,2). We assume that the roots of either quadratic do no interlace.
Separating variables, we have

de dx
VXiXy (@122 + b + e1)(a22? + b + ¢2)
We shall discuss how to rewrite the integral on the left-hand side in a form to which one of

the integral formulae given in section A.6.1 will apply. Consider the polynomial X; — A X5.
This will be a perfect square (in z) if and only if

(a1 — )\ag)(cl — )\CQ) = (bl — )\52)2. (A.G.l?)
Denote the roots of (A.6.17) by A1, A2. Then there exist r1, 72 € R such that
X1 — )\1X2 - (a1 — )\1&2)(% — 7’1)2 and X1 — )\2X2 - (a1 — )\2&2)(% — 7’2)2.

- — ddt. (A.6.16)

(The roots A1 and Ay are real and distinct, unless a1by = agby, whereupon X7 = aq(x—r1)?+ By
and X5 = az(@ — r2)? + Ba.) Solving for X7 and Xs, we can express

X1Xz = [Ai1(x — 11)? + Bi(w — r2)?] [Az(x — r1)? + Baz — 12)?].

Here
)\1(&1 — )\1&2) )\1(&1 — )\2&2) a1 — )\1&2 a1 — )\2&2
! Xo— M ! Xo— M SRR VPR 2 Ao — M
Thus we have the integral
d da (A.6.18)

\/X1X2l n \/[Al(LE — 7’1)2 + Bl(iE — 7’2)2] [AQ(LE — 7’1)2 + BQ(LE — 7’2)2]I .
Assume Aq, Ay # 0. Make the change of variables v = =L, We have x = 2= and

r—ro’ u—1
do — @2 gy, Accordingly, (A.6.18) becomes

r1—"r2
(r1 —ro) du
(u— 1>2¢ (AL = )2 BUTES = 12 | As(P250 = ) o+ Ba(P2 — o)

B (r1 —ro)du

(u— 1)2\/%:?)214 (A1u? + B1)(Au? + Ba)
B du

(7’1 — 7’2) \/(A1U2 + Bl)(A2u2 + BQ)I

du

(= r) VoA o (1 + 22 ) (2 + )

7.
1

(Here o = sgn(A142).) Consequently, the separable equation (A.6.16) may be written as

du - = £(r1 —r2) Vo A1, dt.
oo B) (1 )

The left-hand side of this equation is now in a suitable form for the use of the integral
formulae (A.6.7), (A.6.8), (A.6.9), (A.6.10) or similar. ([8] provides a more comprehensive
list of integral formulae that may be employed.)
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Mathematica Code

In this chapter we list the MATHEMATICA
code that was developed for many of the cal-
culations performed in this thesis.

Text in bold is the actual MATHEMAT-
ICA code. The non-bold text in a smaller
size is output from the preceding block of
code. (However, in several places we have sup-
pressed the output. In particular, we do not
display any of the graphical output.)

B.1 Semi-Euclidean Group

MF :=MatrixForm;
FS:=FS;
Plot the Casimir function C(p) = p? — p3, as well as
the intersection of the Casimir level set with a speci-
fied level set of the given Hamiltonian function
Calc_h]:=
ParametricPlot3D|
Which|
Abs[d < 107°,{
{0, 0’ z}’
{0, _0, Z}
h
e>0,{
{ V/ECosh[6], v/ESinh[d], 2},
{_ \/ECOSh[O]’ - \/ESinh[O], z}
h
e<0,{
{v/—¢8inh[f], v/—cCoshlf], 2},
{— v/—cSinh[f], — /—cCosh[d], 2}
3,
{6,-3,3},{z,—3,3},Mesh — 4];

Int[c_,h_ hfn_]:=Module[{Int1, Int2},
Int1l = Which|
Abs[d < 1075,
{6,0,2}/.Solve[hfn[8,0, 2] == h, {z}],

c>0,
{ V/€Coshlf], \/cSinh[f], 2}
/ .Solve[hfn [ \/cCosh[f], v/¢Sinh[d], 2]
==h,{z}],
c <0,
{ v/=¢sinh[f], \/=cCosh[f], 2}
/ .Solve[hfn[ \/—c Sinh[f], v/—c Coshl[d], 2]
L = {=}]

Int2 = Which|
Abs[d < 107°,
{6,—6, 2}/ .Solve[htn[?, -0, 2] == h, {z}],
c> 0,
{_ \/ECOSh[O]a - \/E'Sinh[O], z}
/ .Solve|hfn [— /¢ Cosh[f], — /¢ Sinh|[d], 2]
==h, {Z}],
c<0,
{— v/=csinh[6], — \/=cCosh[d], 2}
/ .Solve[hfn[—+/—¢ 8inh[f], —/—c Cosh[f], 2]
| ==h, {z}]

ParametricPlot3D[{Int1, Int2}, {¢, 3,3},
PlotStyle — Directive[Thick, Black]]
I;

Opts = {Axes — True,BoxRatios — {1,1,1},
PlotRange — {{_3’ 3}’ {_3’ 3}, {_3’ 3}},
Boxed — False, ImageSize — Small,
AxesLabel — {nE; n’ nEz* n’ nE; n}’

LabelStyle — Directive[Medium],

AxesEdge — {{1’ _1}’ {1’ _1}’ {la _1}}’
FaceGrids — {{-1,0,0}, {0,-1,0},{0,0,—1}},
TicksStyle — Directive[Medium,
ViewVertical — {0,0,1},

ViewPoint — {m, 5, 5 }};

lie[X_ Y]:=Simplify[X.Y — Y.X];
soph[X_, Y]:=Simplify@Minv@lie[MeeX, MeeY];

167
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1 0 0
m[x_y_,0]:=|z Cosh[f] Sinh[f]];

vy Sinh[f] Cosh[f]

0 0 0
Mlz_y_,0]:=|z 0 6];

y 60 0

minv[MM_] :={MM[[2’1]] > MM(13,1]], ArcSinh[MM[[g’g,]]] };
Basis = M@@IdentityMatrix|3]4 &/0Range[3];
{E1,E2,E3} = Basis;

TBase = Table [E;, {i,3}];
CRs = Partition[TBase.Minv@lie[
BaSis[[#[[l]]]]’
Ba51$[[#[[2]]]]]
/@Tuples[Range(3], 2], 3];
TableForm[CRs, TableHeadings — {TBase, TBase}|
| E1 Es Es

E; | 0 0 —Es

Es | O 0 —E

E; | E2 E; O
exp = MatrixExp[M][z,y, d]);
exp //FS//MF

Limit[exp, 8 — 0]//Simplify//MF
1

0 0
y{=tdCoshO) +osth6]  ogplg]  sink[g]
2(= 1400 D) 4yshlo] ool Goanfl

(= Lo (b)) +ysimnlo]
1 0 0
T 1 0
<y 0 1>
ad[x.,y-,0]:=
With[{X = M[z,y,6]},
(Minv@lie[X, #]&/0{E1,E2,E3}) " //Simplify];
Adfx_,y-,0]:=
With[{g = m[z,y,6]},
(Minv[g.#.Inverse[g]|&/@{E1,E2,E3}) "
//Simplity];

ad[z, y, 6]//MF
ad[z, y, 6/ /¥F

0 9 —y
6 0 —x
0 0 0

Cosh[f]  Simh[6] —y
Sinh[f] Cosh[f] —=z
0 0 1
Eigenvalues[ad|z,y,d]]
{0, 0,0}
B.1.1 Automorphisms
\Ij[x—’ y-, V-, W, k—] =
T Yy v
sy st wl|;
0 0 ¢

X = Minv[x1E1 + x2E2 + x3E3];

Y = Minv[y1E1 + y2E2 + y3E3];

Y = Y[z, y,v,w,q];

1.soph[X, Y] — soph[¥. X, .Y
//8implify [#,¢* == 1] &//MF

(£)

MF/@Simplify@Eigenvectors[¥[z,y, v, w,1]]
MF/@Simplify@Eigenvectors[V[z,y, v, w, —1]|

v—vatwy
T 2eta2_y2 -1 1
_wowatvy 1 1
172:E+1a:27y2 "\ o/ \o
2ovemwy N (o 2\ et [22P
wtwetvy y y
“1te2—y2 |’ 1 ? 1
1 0 0

B.1.2 Adjoint orbits

AdjOpts = {Axes — True,BoxRatios — {1,1,1},
PlotRange — {{_ﬂ-a 77}’ {—7[', ﬂ'}’ {—7[', ﬂ'}}’
Boxed — False, ImageSize — Small,
LabelStyle — Directive[Medium]|,

AxesEdge — {{1’ _1}’ {1’ _1}’ {la _1}}’
FaceGrids — {{-1,0,0}, {0,-1,0},{0,0,—1}},
TicksStyle — Directive[Medium]|,

AxesLabel — {nEln’ ||E2n’ ||E3n} ,
ViewVertical — {0,0,1},

ViewPoint — {7r y Ty 120(?(;50?;)1 }} ;

B.1.21 X =0

g =m[v,w,¥);
X = M[0,0,0];

0
0
0
AdjTypel = Show[ListPointPlot3D[{{0,0,0}},

PlotStyle — Directive[Black,
PointSize[Mediun]]], AdjOpts]

B.1.2.2 0 =0, 2% £y

g = mlv,w,9);
X = Mlz,y,0];
zCosh[?¥] + ySinh[9]
yCosh[¥] + zSinh[9] >
0
AdjType2 = Show|
Map[v — With [{z = v,y = v},
ParametricPlot3D[{zCosh[¥] + ySinh[d)],
yCosh[¥] + xSinh[d], 0}, {¥, -5, 5},
PlotStyle — Directive[Thick,Black][],
{{-2.5,-1},{-1.5,—-0.5}, {—1,—2.5},
{—0.5,—1.5}, {0.5,1.5}, {1, 2.5}, {1.5,0.5},
{2.5,1}}],Ad;j0pts]

B-1.2.3 9:O,$—y:() (SO m2:y2)

g =mlv,w,¥);
X = Mz, =,0];

z(Cosh[¥] 4 Sinh[¥9])
z(Cosh[¥] 4 Sinh[¥9])
0

AdjType3a = Show[ Map[z >
ParametricPlot3D[{zt, xt, 0}, {¢,0.1, 3},
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PlotStyle — Directive[Thick,Black]],
{_3a 3}]a AdjOptS]

B.1.2.4 0:0, $+y:0 (SO $2 :y2>

g=mfy,w,¥];

X= M[ﬂ!, -z, 0];
z(Cosh[¥] — Sinh[¥])

< z(—Cosh[?] + Sinh[?d])
0

AdjType3b = Show[ Map[z —
ParametricPlot3D[{zt, —xt, 0}, {¢,0.1, 3},
PlotStyle — Directive[Thick,Black]],
{_3a 3}]a AdjOptS]

B.1.2.5 640

g = mfv,w,V];
X = M[z,y,0];

—w6 + xCosh[¥] + ySinh[V]
—v8 + yCosh[¥] + zSinh[¥]
2

AdjType4 = Show[ Map[@ —
ParametricPlot3D[{t,s, 8}, {s,—m, 7},
{t,—m, 7w}, Mesh — 5,

PlotStyle — Directive[Nest[Darker,
RGBColor[154, 209, 255], —0 — 1],

{_3a _2a _1}]’ Adjopts]

B.1.2.6 Plot all adjoint orbits together

Show[AdjTypel, AdjType2, AdjType3a, AdjType3b,
AdjType4, AdjOpts]

B.1.3 Coadjoint orbits

CoadjOpts = {Axes — True,BoxRatios — {1,1,1},
PlotRange — {{_ﬂ"ﬂ-}’ {_ﬂ"ﬂ-}’ {_7'-’7'-}}’
Boxed — False, ImageSize — Small,
LabelStyle — Directive[Medium)|,

AxesEdge — {{1’ _1}’ {1’ _l}a {1’ _1}}a
FaceGrids — {{-1,0,0}, {0,-1,0},{0,0,—1}},
TicksStyle — Directive[Medium)|,

AxesLabel — {"E1","Ex","FE3"},
ViewVertical — {0,0,1},

ViewPoint — {m,, 10083111 .

B.1.31 xz=y=0
Cosh[¥] Sinh[d] —w
{0,0,0}. | Sinh[¥] Cosh[¢] —v | //MF
0 0 1

0
0
(£)
CoadjTypel = Show|

ListPointPlot3D[{{0, 0, -3}, {0,0,—2},
{Oa 0’ _1}’ {0, 0’ 0}’ {0’ 0’ 1}’ {0’ 0’ 2}’ {0’ 0) 3}}’

PlotStyle — Directive[Black,
PointSize[Medium]|], CoadjOpts]

B.1.3.2 2% £y?

Cosh[¥] Sinh[¥] -—w
{z,y,6}.| Sinh[d] Cosh[¥] —v | //MF
0 0 1

yCosh[¥] + zSinh[9]
—wz — vy + 6

CoadjType2 = Show|

Maplu - With [{z = (), ¥ = uip }

ParametricPlot3D[{zCosh[¥] + ySinh[d)],
yCOSh[Iﬂ] + xSinh[ﬂ], t}’ {19’ _3’ 3}, {t’ -, 7l'},
Mesh — 6]],

{{-2.5,-1},{-1.5,-0.5},{—1,—2.5},

{—0.5,—1.5}, {0.5,1.5}, {1, 2.5}, {1.5,0.5},

{2.5,1}}], Coadjopts]

< zCosh[9¥] + ySinh[9] >

B.1.3.3 z—y =0 (so 22 = 3?)

Cosh[¥] Sinh[d] -—w
{z,z,0}. | Sinh[¥] Cosh[d] —v | //MF
0 0 1

z(Cosh[¥] 4 Sinh[¥9])
—vx — wzx + 6

< «(Cosh[®] + Sinh[9]) >
CoadjType3a = Show[ Map[z —

ParametricPlot3D[{zt,zt, s}, {t,0.1,3},
{8, —m, 7w}, Mesh — 5],{—3, 3}], CoadjOpts]

B.1.3.4 2 +y=0 (soz? =12

Cosh[¢] Sinh[¥] —w
{z,—z,0}. | Sinh[¢] Cosh[d] —v | //MF
0 0 1

]
z(—Cosh[?] + Sinh[d])
v —wz + 6

< z(Cosh[9¥] — Sinh[9]) >

CoadjType3b = Showu[ Map[z —
ParametricPlot3D[{zt, —xt, s}, {t,0.1,3},
{8, —m, 7}, Mesh — 5],{—3,3}],CoadjOpts]

B.1.3.5 Plot all coadjoint orbits to-
gether

Show[CoadjTypel, CoadjType2, CoadjType3a,
CoadjType3b, CoadjOpts]

B.2 f£-Equivalence

B.2.1 (1,1)-affine subspaces
B.2.1.1 Ei(D) £ {0}

al bl
a2 b2 3,
0 1

With r'=
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1 0 -bt 1 0 -b1
0 1 —b2|.TI'//¥F 0 1 —b2|.T//Simplify [#,06° ==1]&
0 0 00 1

/m]

l a1 a2 ) al 0

a1Z—a22 a12—a22 : _

(—;f_’—az; - o) .I‘//Simplify//MF] il il
0 0 1

1 0 alza;lggn - a?:;a22 0
< 8 ? > Ta1?—a2Z a1Z —a2? 0].r
0 0 o
B.2.1.2 FEi(I') = {0} //8implify [#,0” ==1] &//MF]
al bl 1 0 al—a2o
With =] a2 b2 , o o 65122:5%,22
a3 0 0 o« 0"
10 —;3—1 a1 1 0
0 1 -3 |.I'//¥F With [{'=1a2 0 O ,
0 0 1 0 0 1
0 b1 > 0 0
0 b2 1 . N
a3 o0 ( = 0] .I'//Simplify//MF
1

= o O
~— O

b1 b2 0
"s‘?é["%“]m s"’é“[;"]ﬁf
1 a. 14
T 122 b1Z b2 0 .
0

0 Sign[a3]

' ) al bl ci
//Slmpllfy//MF] With [ (a2 b2 c2) } )

B.2.2.2 E}() £ {0}, By + By, By —Ey €10

0 1 { 1
<a351§n[a3] 8) (1 0 —ci) ]
0 1 —c2|.I'//vF
(1) . . 00 1
B.2.1.3 I,, " is not £L-equivalent to al bl 0O
ot (3% 0)
2,0
al b1 O
0 1 0 1 With [{'=]a2 b2 0 ,
With |[<I'1 = 0 0 |,I'2= 0 0 , o 0 1
a 0 ap 0 b12b—1b22 b12b—2b22 0
r vy v i e 0T
MF/@ sy sx w|.I't,T'2 3 //Simplify M() " ™ ()b2 1
0 0 ¢
«ag yOC ’ ap 0
allbl:laélﬁ 1 0
B.2.2 (2,1)-affine subspaces ("120"22 ; 2)
B.2.2.1 FEiT) £ {0}, By + By ¢ TY and

E,—FE,¢TI° B.2.2.3 E;

( {
() (s )}
with [{T"=[a2 b2 o], with [{T"'=[0 0 1]},
0 1 0 a3 0 0
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0
(0 Slgn[a3] 0

Sign[a3]

.I'//¥F

0
0 Slg;n [23]
aBSlg;n[ 3] 0 0

B.2.2.4 Fg&l) is not £-equivalent to

2.1
Fé,a’)
01 0 0 1 0
with [{T1=[0 o0 1),T2=[0 0 1)},
a 0 0 ap 0 O
T Yy v
MF/@ sy sx w)|.I'1,I'2 3 //Simplify
0 0 ¢
v T Yy 0 1 0
wa s z< |, 0 0 1
(EE Rl

B.3 Classification of QHP
Systems
B.3.1 Homogeneous systems
al bl b2
Q=[v1 a2 b3]|;
b2 b3 a3
1 0 0
K=|0 -1 o};
0 0 0

pp = {p1,p2,p3};

B.3.1.1

Since az = 0 we have by = by = 0 (principal minors
must be nonnegative, since @ is PSD).
Block[{al = 0,a2 = 0,a3 =0,
b1l = 0,b2 = 0,b3 = 0},
Q//¥F]

o 0 0
o 0 0
o 0 0

Hence equivalent to Ho.

az—=0and a1 +a, =0

B.3.1.2 a3 =0 and 4b, £ (a; + a3)?

Since a3 = 0 we have by = by = 0 (principal minors
must be nonnegative, since @ is PSD).
Block[{a3 = 0,b2 = 0,b3 = 0},

r 1 0
With[¢y = [1 = 0] 3,

0 0 1

$.Q.4" //MF]|

a2 + blz + z(bl + alz) bl +alz+ z(a2+blz) O
bl + a2z + z(al + blz) al+blzx+ z(bl +a2z) O
0 0 0

The solution of the off-diagonal equation is given be-
low:

Solve[bl + a2z + z(al + bix) ==

—a1—a2— 4/(a14a2)2 —4p12
= 261 ,
{ —al—a24 /(alta2)2 —4p12 } }
T —

2b1

0, {z}]

Let @) and a} denote the elements on the diagonal. If
aj = 0 and a% = 0, then equivalent to Hy. Otherwise,
equivalent to Hi.
Block[{al = alp,a2 = a2p,a3 =0

b1=0,b2 = 0,63 =0},
vy 0 0

1 0

With |9 = AR
0

b

0

0
{2¢ QYT + (aq, +a,P) K //8implify//MF,
§PP-"/)-Q-"/)T-PP +3 (E?ﬁ) pp-K.pp

//Simplify}]
{0
0 o o,
0o 0 o
B.3.1.3 4512 = (a1 = ag) 2 and a1 +as >0

Block [{a3 = 0,b1 = 1o(al + a2),b2 = 0,b3 = 0},
/ 2
al+ta2 0 0
With [ = 2
1 1/) 0 g alfaz 0 ?

0 0 o
{fvev" -1 (22) K
//8implify [#,0% == 1] &//MF,
3PP¥.Q¥ " pp— } (:i;:ﬁ) pp-K.pp

//8inplity [#,0% == 1] &}”

0
{< 0>7%(p1+p2)2}
0

Hence equivalent to Hs.

O
O

B.3.1.4 a3>0
b2
1 0 -3
With [y =0 1 -2 ,
0 0 1
¢.Q.¢'T//Simplify//MF]
al — % bl — bg%{i 0
bl — P28 4y B3 0
0 0 a3
Denote )
af b 0 zaul—bi3 bl—w 0
by ay 0= [pg— b2be 2—% 0
0 0 « 0 0 a3

Now notice that « is left unchanged by transforma-
tions of the form ¥Qu ' :
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Block [{al = alp,a2 = a2p,bl = bip,b2 = 0,b3 = 0,

a3 =a},
x Yy v
With |¥=[sy <z w ,
0 0 ¢

(.Q4 " 3,27/ /Simplify [#,* == 1] &
//MFH

@

Hg,is equivalent to Ha
Block[{al = 0,a2 = 0,a3 = a},
b1 =0,b2=0,b3=0,,
5-pp.Q.pp//Simplify//MF]

‘u? (S

2
Hg, is equivalent to HQé,WhereQ'Q = diag (%,0,1),
which is in turn equivalent to Hy.

Block|{a1=1,a2=0,a3 =1,

b1=0,b2=0,b3=0,},

JE 0 0
with |[¢=[ 0 @ o] },
0 0 1
zp.Q.sz//smpnfy//Mp] ]
1 0 0
0 0 o
<0 0 1>
s 5 0
Hg, is equivalent to He, where Q=< 1 of,
0 0 1

which is in turn equivalent to Hj.
Block[{ai =1la2=1a3=1,
bl =21,b2=0,b3=
Vo o
P = 0 N
0 0

0},

0
With 0
1

$.Q.¢" //8inplify//MF

1 1 0
1 1 0
o 0 1

Verification that representatives are distinct
Module[{CheckEquiv, GetEqns, Hvec},
GetEqns[e_]:=
Thread[DeleteCases[Flatten]|
CoefficientList[e, {p1,p2,p3}],0] == 0]];
CheckEquiv[Hvec_, Gvec]:=With[{
Y11 P12 P13
Y21 22 ¥23| %,
¥31 ¥32 33
Reduce[Append|[GetEqns[¢).Hvec — (Gvec
/ .Thread[{p1,p2,p3} — {p1,p2,p3}.¢9])],
Det[y] # 0], Flatten[y]]];

Hvec = {

¢:

{0’ 0’ _P1P2}’

{0’ 0’ _(P1 + P2)2}’
{r2p3,p1p3,0},
{r2p3,p1p3, —pip2},
{p2p3,p1p3, —(p1 + p2)*}

¥
If [Checquuiv [Hvec[[#[m]]],Hvec[[#[[2]]]]] ,
False,
Print[H#[[lu, ‘‘ not A-equivalent to ’’,
Hya),
Print[Hyg , , ¢ A-equivalent to *°’,
H#uzn]] &

/@Subsets[{1,2,3,4,5}, {2}];]
Hj not A-equivalent to Hp
Hj not A-equivalent to Hg
Hj not A-equivalent to Hy
Hj not A-equivalent to Hy
Hs not A-equivalent to Hg
Ho not A-equivalent to Hy
Hy not A-equivalent to Hy
H3 not A-equivalent to Hy
H3 not A-equivalent to Hy

H,4 not A-equivalent to Hy

B.3.2 Linear Poisson symmetries
Ho = 0;

100
Hi=(0 0 0];
0 0 0
1 1
i zzg).
2=12 2 Y-
0 0 0
0 0 0
Hs=(0 0 0];
00 %
100
Hi=(0 0 0];
0 0 1
i 1
H_zzg).
5 2 32 Y]
0 0 %
1 0 0
K=|(0 -1 o0o};
0 0 0

B.3.2.1 Hy(p) =0

Clearly, any automorphism preserves Hy up to dila-
tions and addition of the Casimir.

B.3.2.2 Hi(p) = ipi?

With[{y = ¥[z,y,v,w,q]},
2¢.Hy 4" //Sinplify[#,s® == 1]&//MF]
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=2 szy 0
<<zy y? 0>
0 o 0
Therefore we must have either £ = 0 or y = 0.
Suppose y = 0.
with[{y = 0},
WIth[{’l/) = ‘Ij[x’ y,v,w, Q]},
L. Hyap' //Sinplify//¥F]]

1

3 0 0
0 0o 0
0 0o 0

Suppose x = 0.
with[{z = 0},
With[{y = ¥[z,y,v,w,4]},
3 (z/;.Hl.z/;T T 9,;1{)
//sinplify [#,s* == 1] &//¥F|]

0o 0
0o 0
0o 0

z 0 w
Therefore ¢ is of the form w(l) = (0 ST w) or

0 vy w
w(l): SY w .
0 S

B.3.2.3  Hy(p) — L (p1 +pa)?

With[{¢ - \Ij[x’ y,v,w, Q]},
2. Hap " //Simplity [#,¢ == 1] &//MF|

O onl=

o o

(e+v)? s@+y? o
sz+y? (@+y? 0O
0 0 0
Therefore we must have ¢ = 1.
With[{c =1},

WIth[{’l/) = ‘Il[x’ y,v,w, Q]},
mz/).Hz.lﬁT//Simplify//MF] ]

0
0
0

Therefore 1 is of the form ¥* = (

O

TN
[«INENVE

=8
~—

ow 8
o 8w

B.3.2.4 Hs(p) = ips?

With[{y = ¥[z,y,v,w,4]},
2.Hy.4p " //Simplity [#,¢* == 1] &//MF|

v2 vw v
vw w2 cw
Sv Sw 1

Therefore we must have v = w = 0.
With[{v = 0,w = 0},
With[{¢ = ¥[z,y,v, w,d]},
¥.Hs.9p' //Simplity [#,¢* == 1] &//MF|]

)

z vy 0
Therefore ¢ is of the form w(g) = (gy ST O) .
0 0 <

TN
o oo
o oo
N leNe]

B.3.2.5 Hy(p) = L (12 + ps?)

With[{y) = ¥[z,y,v,w,d]},
2. Hy.p " //Sinplify [#,5% == 1] &//¥F]
v2 + z2 vw 4 STy v
<vw + szy w? 4 % <w>
Sv Sw 1
Therefore we must have v = w = 0 and either x = 0
ory=0.
Suppose y = 0.
With[{v=0,w =0,y =0},
with[{y = ¥[z,y,v,w,4]},
Y.Hyap' //Simplity [#,¢% == 1&&s® == 1] &
//¥F]]

0 o
0 o

1
0 3

Therefore « must satisty =2 = 1.

o o=

Suppose x = 0.
With[{v =0,w =0,z = 0},
with[{y) = ¥z, y,v,w,4]},
Y.Hyp' + 31K
//8implify [#,¢% == 1&&y* == 1] &//MF]|

(6

Therefore y must satisfy 3> = 1.

0
0
0

o o=
[SEX=Ne]

+1 0 0
Therefore v is of the form ¢(4) =10 =+ 0] or

0 0 IS
0 41 0
YP =[x 0 0
0 0 S

B.3.2.6 Hs(p) =1 ((p1 +p2)? + ps?)

With[{y = ¥[z,y,v,w,4]},
2¢.Hs.4p" //Sinplify [#,¢% == 1] &//MF]

P4 @+y)?  vwtelety)? v
vw+s(z+y)?  wrt(et+y)?  sw
1

SV Sw
Therefore we must have v = w = 0, ¢ = 1 and
(z+y)?*=1.

With[{v=0,w =0, =1},
With[{y = ¥[z,y,v,w,]},
. Hsp'
//8implify [#,¢% == 1&&(z +y)* == 1] &
//¥F]]

0
0
1
2

Therefore 1 is of

) , where(z +y)? = 1.

TN
O ol
[=]ISIENES

the form ¢(5) =

o8 @
_= o O

TN
ow 8
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B.3.3 Reduction of elements
se(l, 1)
r y v

Sy sx w];
0

\IIO[X_, Y-V, W, §_] =

N
(=}

<
/a: 0 w
Uiz 0,v_,w_,¢]:=|0 <z w];
0 0 g)
(0 y v
T1[0,y, v, w,c]:i=|sy 0 w];
0 o0 g)
T Yy v
2z y,vou,l:=|y =z w];
0 0 1
r y O
U3[x.,y-,0,0,¢]:=| sy sz 0O]);
0 0 ¢
z 0 O
U4[x,,0,0,0,c]:=| 0 <z 0]; (*x z€ {-1,1} %)
0 0 ¢
(0 y O
v4[0,y.,0,0,]:=|sy 0 O);(* ye{-1,1} ®
0 0 ¢
zr y O
Us[x,y.,0,0,1]:= |y = 0);(* (z+y)’=14%
0 0 1

A ={al1,a2,a3};

B.3.3.1 Reduction under V)

az =0 and a1? # az?
Assumps = {a3 == 0,a1% # a2’ };
P ="0 ;2%7,—3212_&7,0,0’1 }
MatrixForm/@{.A, v}

// Simplify[#, Assumps]&

1 ??? m ©
0
0 i TP +a22 a12 —a2? 0
0 1
a3z — 0 and a2 (s0 a1 = a, az = ta, a # 0)

Assumps = {a3 ==0,al == g,a2 == ga,0° == 1,
a# 0}

’¢' =Wo [%’O’Oa 0’0] )

MatrixForm/@{.A, v}
//Simplify[#, Assunps]|&

{OREI )

1. (b g o

0 0 0 o

as # 0

Assumps = {a3 7é 0},

MatrixForm/ Q{I/).A, 1/)}
//Simplify[#, Assunps]|&

0 1 0 7_3%
0 |0 signls 22l
a35ign[a3] 0 0 Sign[a3)]

:a22

in B.3.3.2 Reduction under (!

az=0and as =0 (= a1 #0)
Assumps = {a3 == 0,a2 == 0,a1 # 0};
¥ ="1[1,0,0,0,1];
MatrixForm/ 0{1/) A}

//Simplify[#, Assumps]&

{0 )

a3 =0,as #0and a1 =0
Assumps — {a3 ==0,a1 == 0,a2 # 0};
¥ ="1[0,4,0,0,1];
MatrixForm/@{.A, ¢}

//8implify[#, Assumps]&

{6 )

a3 =0, a2 #0and a; # 0

Assumps = {a3 == 0,22 # 0,a1 # 0};

¥ =1"1[0,,0,0,8ign [5]];

MatrixForm/@{.A, v}
//8implify[#, Assumps]&

1 0 L 0
atSignla Signfat]
saoel || @St 0O
6 o o o

as # 0
Assumps = {a3 7é 0};
¥ = U1 [1 0,—21 _Simada Sign[as]] :

MatrixForm/@{.A, ¢}
//Simplify[#, Assumps]&

0 1 0 —a
< 0 > ;|0 signlas) —22enlsl
a38ign[ag] 0 0 Sign|a3]

B.3.3.3 Reduction under ?

as = 0 and a2 #* as?
Assumps = {a3 ==0,a12 #£ a22} ;

Y =92 | 52, - 555557,0,0,1|
MatrixForm/@{.A, ¢}
//8implify[#, Assumps]|&

a1 a2 0
1 a12 —a22 “a12 fa22
o), a2 at 0
0 —a124a22 a12 —a22
0 0 1

as — 0 and a1 = a2? (so a1 = a, az = +a, a #0)
Assumps = {a3==0,a1 ==gq,a2 == 0a,0> == 1} ;
1/): W2 [%,0,0,0,1] 3
MatrixForm/@{.A, ¢}

//Simplify[#, Assumps]&

1
AN
at 0l 0 5 O
0/ \o 0 1

(13#0
Assumps = {a3 7é 0};
Y =02[1,0,-2,-21];

MatrixForm/@{.A, ¢}
//8implify[#, Assumps]&

{62 D)
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Assumps = {al ==q,a2 ==oca,0° ==1,a # 0} ;
¥ = U5[oSign[a],0,0,0,1];
MatrixForm/@{y.A,v¥}//

Simplify[#, Assumps|&

a2Sign(al] oSignlal] 0 0
{ <alsig;n[a1]> R < 0 oSign[al] 0> }
a3 0 0 1

al] —as — 0

Assumps = {a1 == 0,a2 == 0};
¥ = Ubfz,y,0,0,1];
MatrixForm/@{y.A,y}//
Simplify[#, Assumps|&

()¢ &)

Minv[MP_, A_]:=Module[{ss, z1, 22, 23},
ss = Solve[A ==
z1MP({1,0, 0}]+
z2MP({0,1, 0}]+
z3MP[{0,0,1}], {1,22, 23}];
{z1,22,23}/ .85

Inhomogeneous systems

l;

Hvec|MP_, Hnax_] : =Hvec[MP, Hnax, pp]
Hvec|MP_,Hmax_,v_|:=
Module[{DHmax, Base,Del,De2,De3,ht},
Dhmax = D [Hnax, {{p1,p2,ps}}];
Base = {
MP([{1,0,0}],
¥P({0,1,0}],
¥P[{0,0,1}]

Del = FS[Minv[MP,

—lie[Base[[I]] , DHma.x.Base]]. {pl ,D2,D3 }],
De2 = FS[Minv[MP,

—lie[Base[[2]] , DHma.x.Base]]. {p1 ,D2,D3 }],
De3 = FS[Minv[MP,

—lie[Base([3), DHmax.Base]]. {p1, p2, pa}];
ht = {De1,De2,De3}

/ .Thread [{p1,p2,ps} — {p1,p2,p3}];

ht/.Thread[{p1,p2,p3} — 7]

l;

P11 P12 P13
=921 22 y23);
¥31 32 933
pP = {P1,P2,P3};
qq = {q1,92,43};

GetEqualities[expr ]:=
Thread[DeleteCases[Flatten@
CoefficientList[expr,pp|,0] == 0];
CheckEquiv[HH_, GG, Assumps._, pp—, ¥, -,
MP_, Solv_,Reduc.]:=
Module[{A, Vars,Eqns},
A = GetEqualities/@(1.Hvec[MP, HH, pp|—
Hvec[MP, GG, .pp +q]);

Vars = Flatten[{v,q}];
Eqns = Flatten[{ A, Det[¢] # 0}];
Which[
Solv&&Reduc,
{Solve[Eqns, Vars],
Simplify[Reduce[Eqns, Vars], Assumps]},
Solv,
Solve|Eqns, Vars],
Reduc,
Simplify[Reduce[Eqns, Vars], Assumps]]];

CheckEquiv[HH_, GG_, Assumps_, Solv_,Reduc_]:=
CheckEquiv[HH, GG, Assunps, pp, ¥, qq, M60,
Solv,Reduc];
CheckEquiv[HH_, GG_, Assumps_]| : =
CheckEquiv[HH, GG, Assunps, pp, ¥, qq, M60,
True, True;
CheckEquiv[HH_, GG_]:=
Checquuiv[HH, GG, {}’ PP, Y, qq, M60, True, Tme];

B.3.4.1 Hag(p) = pA+ Ho(p)

o Gi(p) =m
e Ga(p) =p1+p
e G3.(p) = aps (o> 0)

(4 is equivalent to Ga

With[{
H= D,
G =p1 +p2},

CheckEquiv[H, G]]

(1 is not equivalent to Gs .

With[{
H= D,
G = aps,

Assumps = {a > 0}},
CheckEquiv[H, G, Assumps, False, True]|

(3 o is unique for unique values of o > 0

With[{
H = odps,
G= 0‘2?3,

Assumps = {al > 0,02 > 0,1 # a2}},
CheckEquiv[H, G, Assumps, False, True]|

B.3.4.2 Hag(p) = pA+ Hi(p)

e Gis(p) =p1+Bps+3spm° (B> 0)
o Gaalp)=aps+ 3p1° (o> 0)
o (1 is equivalent to G1,1 when 8> 0

with[{
H=pi+Bp2+3m°,
G=p1+p+ %plz,
Assumps = {3 > 0}},

CheckEquiv|[H, G, Assumps]]
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(1,0 is not equivalent to Gy 1
with[{

H=pi + 3p?,

G=pi+p:+3p?

Assumps = {}},
CheckEquiv[H, G, Assumps, False, True]]
G ,x is not equivalent to Gg o (where A € {0,1})
wWith[{

H =p1+p2 + 3p1°,

G =ops+ ip:?,

Assumps = {a > 0}},
CheckEquiv[H, G, Assumps, False, True]]
(3, is unique for unique values of o > 0
With[{

H = aips + ipi?,

G = o2ps + ipi?,

Assumps = {al > 0,02 > 0,1 # o2}},
CheckEquiv[H, G, Assumps, False, True]]

B.3.4.3 Hag(p) = pA+ Ha(p)

e Gi(p)=p1+%(p1+p2)?
o Gao(p)=pitop2+3(pr+p)? (0 €{-11})
o Gas(p) =dps+ 5 (p1+p2)® (8 #£0)

(1 is equivalent to G2, _1
With[{
H=pi+ 3P +p2)?
G=p1—p2+3 (P +p2)?},
CheckEquiv[H, G]]
G is not equivalent to Ga 1
wWith[{
H=pi+ 3 +p2)?
G=pi+p2+3(1+p2)?},
CheckEquiv[H, G, {},False, True]|
G35 is unique for unique values of 6 # 0
with[{
H=381ps+ L (p1+p2)?,
G =623+ 1(p1+p)?,
Assumps = {81 # 0,62 # 0,81 # §2}},
CheckEquiv[H, G, Assumps, False, True]]

B.3.4.4 Hag(p) = pA + Hs(p)

e Gi3(p) =p1+Bps+3ps” (B>0)
o Gay(p)=pi+p2typst+ips® (vER)
o Gs.a(p) =aps+ ips° (o > 0)

G g is equivalent to G

with[{
H=p+8p3+ %p32,
G =p1 + 3ps°,

Assumps = {8 > 0}},
CheckEquiv[H, G, Assumps]]

G2, is equivalent to Ga o

With({
H =p1+p2+vps+ 3ps’,
G=p1+p+ %p?.z,
Assumps — {y # 0}},
CheckEquiv[H, G, Assumps, True, False]|

(3 o is equivalent to G390 = H3

With[{
H = aps + 3ps°,
G= %p?»z’

Assumps = {a > 0}},
CheckEquiv|[H, G, Assumps]]

(3 o is equivalent to Ga1

With[{
H = ops + 3p3°,
G =ps+ 3p3°,

Assumps = {a > 0}},
CheckEquiv|H, G, Assumps]]

(1,0 is not equivalent to Ga o
With[{

H =p1+ps?,

G =p1+p2+ 3ps’},
CheckEquiv[H, G, {},False, True]|
(1,0 is not equivalent to G3 1
With[{

H =p1 + ips®,

G =ps + 3ps°},
CheckEquiv[H, G, {},False, True]|
G2 0 is not equivalent to G3 1
With[{

H=p1+p2+3p3°,

G =ps + ips®},
CheckEquiv[H, G, {},False, True]|

B.3.4.5 Hag(p) = pA+ Hy(p)

e Giap(p)=Bpr+apa+3 (p° +ps°) (a>0,
g 20

o Goap(p) =vp1 + Bp2 + aps + 1 (m1* + ps”)
(@>0,>0,v€R)

G2,a,8, 18 equivalent to Gz2,0,8,~
With[{
H=p1+Bp2+aps+ 1 (p? +ps?),
G =p1+Bp2+ 3 (n1® +ps°),
Assumps = {a > 0,8 > 0,7 € R}},
CheckEquiv|[H, G, Assumps, True, False||
Ga,0,8,~ is equivalent to Gz 0,5, —~
With[{
H =vp1+ Bp2 + 5 (p1* +p5%),
G=—p1+Bp2 + 5 (1° +p5°),
Assumps = {8 > 0,7 € R}},
CheckEquiv[H, G, Assumps, True, False]|
G2,0,8,,8, (1 > 0) is equivalent to G ,q,5, where o =
B1>0and B=p2>0



178 B.3.

CLASSIFICATION OF QHP SYsSTEMS

With[{

H = Bips + B2p2 + 1 (p1® +ps?),

G = B2p1 + Bipz + 3 (p1® + ps?) ,

Assumps = {81 > 0, 52 > 0}},
CheckEquiv[H, G, Assumps, True, Falsel]]
G1,a,0 I8 equivalent to Gs o(p) = ap1 + % (p12 +p32)
With[{

H=ap:+ % (pl2 +p32) ,

G=api+3 (m*+ps®),

Assumps = {a > 0}},

CheckEquiv[H, G, Assumps, True, False||
G0, ,a, 18 equivalent to G oy 0,
With[{

H = atpi + a2p2 + 5 (m” +pa®)

G =a2p1 +aip: + 5 (m* +ps°),

Assumps = {a1 > 0,02 > 0}},
CheckEquiv[H, G, Assumps, False, True]]
Gs.a(p) = ap1 + % (p12 + pgz) is a unique representa-
tive for unique values of o > 0
with[{

H=o1pi + % (m? +ps?),

G =o2p1 + 1 (1% +ps?),

Assumps = {al > 0,02 > 0,1 # o2}},
CheckEquiv[H, G, Assumps, False, True]]
G1,a,,a, is a unique representative for unique values
of vy > s >0
With[{

H =odps + o2p2 + 1 (p1® + ps?),

G = o3p1 + odpa + % (1% + ps?),

Assumps = {al > a2 > 0,03 > o4 > 0,

ol # a3||a2 # a4}l
CheckEquiv[H, G, Assumps, False, True]]
G0, ,a5 18 DOt equivalent to Gs o
With[{

H = aip; + o2p2 + 3 (p1” +ps?),

G=oap1+ 3} (p® +ps?),

Assumps = {al > a2 > 0, > 0}},
CheckEquiv[H, G, Assumps, False, True]]

B.3.4.6 Hag(p) = pA+ Hs(p)

o Gian~(p) = ap1 + yps + 2 ((p1 + p2)° + p3)
(a>0,v€R)

o Gaas(p) = 0pitaps+yps+i((pr+p2)+p3)
(> 0,6 #£0,7v € R)

G1,a,~ is equivalent to G «,0
With[{
H =oap1 +vps+ 3 ((p1 +p2) % +ps?),
G=op1+3 ((pl +p2)? +p32) ,
Assumps = {a > 0,7 € R}},
CheckEquiv[H, G, Assumps, True, Falsel]]
G2 .a,5, is equivalent to G2,q,5,0
wWith[{
H =6p1+aps+vps+ % ((pr +p2)® +p3°),

G =30p1+apa+ 1 ((pr+p2) % +ps?),
Assumps = {& > 0,8 # 0,7 € R}},
CheckEquiv[H, G, Assumps, True, False]|
G2,0,5,0 (oz2 #* 62) is equivalent to Gy 51|
With[{
H=épr+op2+ 3 ((m +p2)? +p32) ,
G=o0(6+a)p1 + 3 ((pr +p2)* +p3?),
Assumps = {& > 0,4 # 0, + « # 0}},
CheckEquiv|[H, G, Assumps, True, True]]
G2,0,6,0 (oz2 + 62) is equivalent to G s/ (p) = §'p1 +
% ((pl + p2) 2 +p32), where &' = a+ 8 #£ 0.
With[{
H=épr+op2+3((m +p2)? +p32) ,
G =dpp1 + 3 ((p1 +p2)* +p5°),
Assumps = {a > 0,6 # 0,6p == a + §,6p # 0}},
CheckEquiv|[H, G, Assumps, False, True||
Gss(p) =6p1+ 5 ((p1 +p2) >+ ps”) (6 # 0) is equiv-
alent to G1,n, where o = |§] > 0. NB: if § > 0 then
Ga,5 = G1,o (Where o = 6 > 0), hence we only need to
show that Ga s = Go,_5 = G o (where a = —6 > 0)
With[{
H=ép+ 3 ((m +p2)? +p32) ,
G=-%p1+31(m +p2)? +p32) ,
Assumps = {§ # 0}},
CheckEquiv[H, G, Assumps, False, True]|
Gss(p) =6p1+ 5 ((p1 +p2) >+ ps”) (6 # 0) is equiv-
alent to G35 (and so G3,o = G1,a)
With[{
H=ép +3 ((n +p2)? +p32) ,
G=-%p1+31(m +p2)? +p32) ,
Assumps = {§ # 0}},
CheckEquiv[H, G, Assumps, False, True]|
Go a0 (0 = —9) is equivalent to G4(p) = p1 — p2 +
%((pl +p2)2 +p§)~
With[{
H=¢6p1+op2+ 5 ((pr +p2)% +ps?),
G=p1—p2+3 ((pl +p2)2+p32),
Assumps = {a > 0,0 # 0, == —6}},
CheckEquiv[H, G, Assumps, False, True]|
Goaso (¢ = &) is equivalent to Gso(p) =
o(pr + p2)+% ((p1 + p2) 24 pgz) (no calculations nec-
essary, since o = §)

G1,q is not equivalent to Gu(p) = p1 — p2 + %((pl +
p2)” 4+ p3)
With[{
H=opi+1((p+p2)?+ps?),
G=p1—p2+ % ((pl +p2)2+p32),
Assumps = {a > 0}},
CheckEquiv[H, G, Assumps, False, True]|
G1,o is not euivalent to Gsa(p) = a(pt +p2) +
2 ((pr +p2) >+ ps®) (@ > 0)
With[{
H=oa1p: + 1 ((pr +p2)* + ps*),
G=02(p1+p2) + 3 ((p1 +p2)* +p57),



APPENDIX B. MATHEMATICA CODE

179

Assumps = {a1 > 0,02 > 0}},
CheckEquiv[H, G, Assumps, False, True]]

Ga(p) = p1—p2 + % ((p1 +p2) 2 +p32) is not equiv-
alent to Gs o(p) = o (p1+ p2) + % ((pr + p2) > + p3?)
(a > 0)
With[{
H=p1—p2+3((m +p2)? +p32),
G=oa(p1+p)+3 ((pr+p2)®+ps%),
Assumps = {a1 > 0,02 > 0,01 # a2}},
CheckEquiv[H, G, Assumps, False, True]]
(1, is unique for unique values of o > 0
With[{
H = olp: + % ((pl +p2)? +P32) )
G =o2p1+ 5 ((p1+p2) > +pa°),
Assumps = {al > 0,02 > 0,1 # o2}},
CheckEquiv[H, G, Assumps, False, True]]
Gs.a(p) = a(p1 +p2) +% ((p1 +p2) 24 pgz) is unique
for unique values of o > 0
With[{
H=al(p1+p2)+ 3% (01 +p2)% +p57),
G =a2(p1+p2) + 1 ((pr +p2) 2 +ps?),
Assumps = {al > 0,02 > 0,1 # o2}},
CheckEquiv[H, G, Assumps, False, True]]

B.4 Stability and Integration
of Hamilton-Poisson Sys-
tems

B.4.1 The system H,

The equilibrium states are:

Reduce[—p1p2 == 0, {p1,p2, p3},Reals]
pl==0[p2==0

The states e]** = (1,0, ), n # 0, are unstable:

plt]:={n,d, p — dnt};

Norn[p[0] — {n,0, u})?//FS[#,6 > 0&&
{t,n} € Reals|&
Norn[p[t]]?//FS[#, 6 > 0&&{t,n, u} € Reals]&
Limit[%,t — oo,
Assumptions — {8 > 0,1 # 0,7 € Reals}]
62
82 +n? 4 (—tén + w)?

The states )" = (0,0, ;1) are unstable:
=f15 V3 vE 5241 .
plt]:= {55, 56, p— 6 t} ;

Norn[p[0] — {0,0, u}]?//FS[#,8 > 0&&t € Reals]&
Norn[p[t]]//FS[#, 5 > 0&&{t, u} € Reals|&
Linit[%,t — oo, Assumptions — {§ > 0}]

52

52+ (—1vaes? + )

The states e5’* = (0, v, u) are unstable:

p[t_] :={6’ v, p— Jl/t};

Norm[p[0] — {0, v, u}|?//FS[#,8 > 0&&t € Reals]&
Norm[p[t]]2//FS[#,8 > 0&&{t,v, u} € Reals]&
Limit[%,t — oo,
Assumptions — {6 > 0,v # 0,v € Reals}]
62
82 +1? 4 (p—tow)?

[ee]

B.4.2 The system H,

The equilibrium states are:
Reduce [—(p1 +p2)® == 0, {p1,p2,p3},Reals]
p2 == —pl
Hence we have the equilibrium states e7* = (1, —n, 1),
where 1, u € R.

The states " are unstable:
plt]:={6+n,6 — n,u—46%t};

Norm[p[0] — {n, —n, p}]//FS[#, 6 > 0&&t € Reals|&
Norm[p[t]]2//FS[#,8 > 0&8{t,n, u} € Reals]|&
Limit[%,t — oo, Assumptions — {§ > 0}]

V28

@=m?+ @ +m?+ (—18® + 4)’

o]

B.4.3 The system H;
B.4.3.1 Stability

The equilibrium states are:
Reduce[p2p3 == 0&&p1p3 == 0, {p1,p2,p3},Reals]

(pl == 0&&p2 == 0)|p3 == 0

The states e]* = (1, 1,0), 7 # —u are unstable
plt]:=

{nCosh[5t] + pSinh[dt], nSinh[st] + pCosh[dt],d};
# [t — Pltlganpltl sy //Simpl ity
P [8lien — pltlqanplt] sy //8inplitfy
P'[tlsy//8inplify

Norm[p[0] — {n, p,0})*//FS[#,6 > 0]&
Norm[p[t]]?//FS[#,8 > 0&&{t, u,n} € Reals|&
Limit[%,t — 0o, Assumptions — {§ > 0}]
//FS[#, (n+ p)? > 0]&

0

0

0

62

52+ (172 + ;ﬁ) Cosh[2t8] + 2nuSinh[2¢5]

The states e]*" "7 = (n,—n,0), n # 0 are unstable
plt]:={nExp[8t], —nExp[ét], —6};

Norm[p[0] — {n, —n, 0}]*//FS[#,6 > 0]&
Norn[p[t]|>//FS[#,5 > 0&&{t,n} € Reals|&
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Limit[%,t — oo,
Assumptions — {8 > 0,1 # 0,7 € Reals}]
52
52 + 2€2t6772
The states ¢"° = (0,0, 0) is unstable
plt]:={dExp|dt], 6Exp[6¢], 6};

Norn[p[0] — {0,0,0}]//FS[#,5 > 0&&t € Reals|&
Norn[p[t]]2//FS[#,6 > 0&4&t € Reals]|&
Linit[%,t — oo, Assumptions — {§ > 0}]

V38

(1 + 2€2t5) 52
The states e5 = (0,0,v) are (spectrally) unstable
D[{p2p3,p1p3, 0}, {{r1,p2,p3}}]

/.{p1 — 0,p2 — 0,p3 — v}//Eigenvalues
{0, —v,v}

B.4.3.2 Visualisation

Ha[c_,h]:=ContourPlot3D [%z2 ==h,
{x’ _3’ 3}’ {y’ _3’ 3}’ {za _3, 3}’Me3h - 4];
Int[c_,h]:=Int [c,h, {p1,p2,p3} —~ %p32] ;

Manipulate[{
Show[Calc, h], Ca|—c, h],Ha|e, h], Int[e, A],
Int [_c, h]a OptS],
Show[
ParametricPlot3D[{0,0,v}, {v,—3,3},
PlotStyle — Directive[Thick,Red]],
ParametricPlot3D[{n, u,0}, {n,—3,3},
{1, —3,3},PlotStyle — Directive[Red],
Mesh — 4],
Int[ca h] » Int[_ca h] » OptS]},
{{C, 1}’ _3’ 3}’ {{h’ 1}’ 0’ 3}]

B.4.4 The system H,
B.4.4.1 Stability

The equilibrium states are:
Reduce[p2p3 == 0&&p1p3 == 0&& — p1p2 == 0]
(p2 == 0&&pl == 0)||(p8 == 0&&pl == 0)[|(p3 == 0&&p2 ==
0)
Ha = 1 (p1? +p3?);

Ca = p12 - p22;
The state ¢f = (0,0, 0) is stable:
MF/@{

D [2H4 — 3Ca, {{p1,p2,p3}}],

D [D [2H4 — %ca, {{p1,p2,p3}}], {{P1,p2,p3}}]
}/.{p1 — 0,p2 — 0,p3 — 0}

{GRGEN)

The states e = (1,0,0), pp # 0 are stable:
MF/@{
D [A0H4 + A1Ca, {{Pi’ P2aP3}}] )

D [D [A0H4 + Alca’ {{Piap2’ Ps}}] > {{Pi’ P2aP3}}]
Y .{p1 = p,p2 — 0,p3 — 0}
/o= =20}/ a— -3}

kerH4 = D[H4, {{p1,p2,p3}}]
/.{p1 — pu,p2 — 0,p3 — 0};
kerCa = DI[Ca, {{p1,p2,p3}}]
/.{p1 — p,p2 — 0,p3 — 0};
Reduce[kerH4.{z,y, 2} == 0&&kerCa.{z,y, 2} == 0]
//8implifyl#, p # 0]&
{ORER)
o),{o0 1 o
o/ "\o o 1
z==20
The states e5 = (0,7, 0) are stable:
MF/0{
D [XoH4 + XiCa, {{p1,p2,p3}}],

D [D [A0H4 + A1Ca, {{Piap2’ Ps}}] ) {{Pi’ P2aP3}}]
}/ . {p1—=0,p2 = v,p3 — 0}/. {}o = 1,11 — 0}

kerH4 = D[H4, {{p1,p2,p3}}]
/. {p1 = 0,p2 = v,p3 = 0};
kerCa = DI[Ca, {{p1,p2,p3}}]
/.{p1 = 0,p2 = v,p3 — 0};
Reduce[kerH4.{z,y, 2} == 0&&kerCa.{z,y, 2} == 0]
//8implityl#, v # 0|&
{OREE K
o),{0 o o
o/ "\o o 1
y==0
The states e = (0,0,v) are (spectrally) unstable:

D[{p2p3,p1p3, —pip2}, {{p1,p2,p3}}]
/.{p1 —= 0,p2 — 0,p3 — v}//Eigenvalues

{0, —v,v}

B.4.4.2 Integration: case ¢y > 0
Q= v/2ho;

k= 41—,

pi[t]:=0QJacobiDN [Qt, k7]
p2[t]:= — cQkJacobiCN [Qt, k%] ;
p3[t_]:=QkJacobisN [Q¢, k?] ;

p1’[t] — p2[tlp3[t]//FS [#,0% == 1] &
p2'[t] — p1[lp3[t]//FS [#,0% == 1] &
p3'[t] + pi[tlp2[t]//FS [#,0% ==1] &

B.4.4.3 Integration: case ¢y =0
Q= v/2ho;

pi[t]:=0QSech [Q2¢]
p2[t]:= — coQSech [Q2];
p3[t]:=cQTanh [Q¢] ;

p1'[t] — p2[tlp3[t]//FS [#,0° == 1&&¢* ==1] &
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p2'[t] — p1[tlp3[t]//FS [#,0° == 1&&* ==1] &
p3'[t] + p1[tlp2[t]/ /FS [#,0° == 1&&<* == 1] &
0
0
0

B.4.4.4 Visualisation
Hac_h]:=

ParametricPlot3D[{ v2h Cos[d],y, V2h Sin[6]},

{y’ _3’ 3}, {0’ _3’ 3}a Mesh — 4];
Int[c_,h]:=
Int [¢,h, {p1,p2,p3}] (p1? +p3?)] ;

Manipulate[{
Show[Calc, h], Ha|c, h], Int|c, k], Opts],
Show|
ParametricPlot3D[{0,0,v}, {v,—3,3},
PlotStyle — Directive[Thick,Red]],
ParametricPlot3D[{yu,0, 0}, {¢, —3,3},
PlotStyle — Directive[Thick,Blue]],
ParametricPlot3D[{0, i, 0}, {1, —3, 3},
PlotStyle — Directive[Thick,Blue]],
ListPointP1lot3D[{{0,0,0}},
PlotStyle — Directive[Blue,
PointSize[Large]]],
Int[e, k], Opts]},
{{C, 1}’ _3’ 3}’ {{h’ 2}’ 0’ 3}]

B.4.5 The system Hj
B.4.5.1 Stability

The equilibrium states are:
Reduce[p2p3 == 0&&p1p3 == 0&&
—(p1+p2)* ==
(p2 == 0&&pl == 0)||(p3 == 0&&pl == —p2)
The state ¢f = (0,0, 0) is unstable:
p[t]:={6Expl[ét], —6Exp[6t], —6};

Norn[p[0] — {0,0,0}]//FS[#,6 > 0]&
Norn[p[t]]*//FS[#, 6 > 0&&t € Reals]|&
Linit[%,t — oo, Assumptions — {§ > 0}]

V34

(1 + 2€2t5) 52
The states e}’ = (u, —p, 0), p # 0 are unstable:
p[t_] :={/J'EXP[6t]’ _/-"Exp[ét], _6};

Norm[p[O] — {u, —p, 0}]//FS[#,8 > 0&&p € Reals|&
Norm[p[t]]2//FS[#,6 > 08&&t € Reals&&zy € Reals|&

Limit[%, t — oo,
Assumptions — {§ > 0, p # 0, € Reals}]
5
62 + 252t6ﬂ'2

The states e5 = (0,v,0) are (spectrally) unstable:

D [{p2p3,p1p3, —(p1 +p2)*}, {{pr1,p2,p3}}]
/.{p1 = 0,p2 — 0,p3 — v}//Eigenvalues
{0, —v,v}

B.4.5.2 Integration: case ¢y > 0
Q= v/2n0;

pi[t]:=055 (2*Sech[Q] + cOCosh[]) ;
p2[t]:=0 55 (2Sech[Q] — cOCosh[]) ;
p3[t]:=— QTanh[Qt];

p1'[t] — p2[t]p3[t]//FS [#,0° == 1] &
p2'[t] — p1[tp3[t]//FS [#,0° == 1] &
p3'[t] + (p1[t] + p2[t])*//FS [#,0% ==1] &

B.4.5.3 Integration: case ¢g = 0, p1 —
p2 =0
Q= v/2ho;

q1[t]:=22Sech[];
q2[t]:=28ech[2];
q3[t]:= — QTanh[Q4];

q1'[t] — q2[t]q3[t]//Fs [#,0% ==1] &
q2'[t] — q1[lq3[t]/ /78 [#,0% ==1] &
q3'[t] + (q1[t] + q2[t])?//Fs [#,0% ==1] &

B.4.5.4 Integration: case c¢g = 0, py +
p2=20
Q= v2ho;

s1[t]:=cExp[o2t];
82[t]:= — cExp[o2t];
s3[t]:=— o

s1'[t] — s2[t]s3[t]//FS [#,0% == 1&&* ==1] &
s2'[t] — s1[t]s3[t]//FS [#,07 == 1&&* ==1] &
s3'[t] + (s1[t] + s2[¢])?

//FS [#,0% == 1&&s* == 1] &
0
0
0

B.4.5.5 Visualisation

Ha[c_,h |:=ParametricPlot3D|

{%( \/2_h'Cos[0] + 2),
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3( V2R Cos[f] — 2),
V2h'sin[d]}, {0, —3,3}, {z,—10,10},Mesh — 4];
Int[c_,h]:=
Int [e,h, {p1,p2,p3} = 3 ((p1 +p2)° +p3%)] ;

Manipulate[{
Show[Calc, h], Ca|—c, h],Ha|e, h], Int[e, A],
Int[_c’ h] » OptS],
Show|
ParametricPlot3D[{0,0,v}, {v,—3,3},
PlotStyle — Directive[Thick,Red]],
ParametricPlot3D[{y, —pu, 0}, {¢, —3,3},
PlotStyle — Directive[Thick,Red]],
Int[ca h] » Int[_ca h] » OptS]},
{{C, 1}’ _3’ 3}’ {{h’ 2}’ 0’ 3}]

B.4.6 The system Hf())

The equilibrium states are:
Reduce [-p2 == 0]
p2==20
The states e]** = (5,0, 1) are unstable:
p[t_] :={77’ 6’ B®= Jt};

Norn[p[0] — {n, 0, u}]

//FS[#,{n, 1} € Reals&&d > 0|&
Norn[p[t]]?//FS[#, {n, 1, t} € Reals&&s > 0|&
Limit[%,t — oo,

Assumptions — {{n, u} € Reals,§ > 0}]

s
82+ 2 4 (—t5 + )2

[ee]

B.4.7 The system Hé?o)é
B.4.7.1 Stability

The equilibrium states are:
Reduce [op2 == 0&&apl == 0]
pl == 0&&p2 == 0
The states e = (0,0, i) are (spectrally) unstable:
D[{ep1,ap2,0}, {{p1,p2,p3}}]
/.-{p1 — 0,p2 — 0,p3 — pu}//Eigenvalues
{0, a,a}

B.4.7.2 Visualisation

Ha[c_h_ a]:=

ContourPlot3D[az == h, {z, 3,3}, {y,—3,3},
{z,—3,3},Mesh — 4];

Int[c_,h_, a_7NumberQ]:=Int[c, h, {p1,p2,p3} — ap3];

Manipulate[{
Show[Calc, h], Ca|—c, h],Ha|e, h, o,
Int[c, h, o], Int[—c, h, o], Opts],
Show|
ParametricPlot3D[{0,0, 1}, {i, —3, 3},

PlotStyle — Directive[Thick,Red]],
Int[c’ h’ a]’ Int[_C, h’ a] » OPtS]},

{{C’ 1}, _3’ 3}’ {{h’ 0}’ 0, 3}’ {{a’ 1}, 0’ 3}]

B.4.8 The system Hi”

The equilibrium states are:
Reduce[—p2(1 +p1) == 0]
pl == —1lp2==0
The states e]"* = (n,0, ), 7 # —1 are unstable:
p[t_] :={"]a 6’ B°— 6(1 + n)t};

Norm[p[0] — {n, 0, p}]

//FS[#, {n, p} € Reals&&d > 0]&
Norm[p[t]]2//FS[#, {n, 1, t} € Reals&&ds > 0)&
Linit[%,t — oo,

Assumptions — {{n, u} € Reals,d > 0,1 # —1}]

)
62 40P (8 (1 ) + )2

o]

The states e; ™" = (=1, 0, u1) are unstable:
plt]:={6 —1,6,u — &°t};

Norm[p[0] — {—1, 0, u}]//FS[#, 1 € Reals&&d > 0]&
Norm[p[t]]>//FS[#, {1, t} € Reals&&s > 0]&
Limit[%,t — oo,
Assumptions — {§1 € Reals,§ > 0}]
V2§
(—1+8)% 462 4 (—t62 + p)?

[ee]

The states ey’ = (—1,v, u) are unstable:
plt]:={6 —1,v,p — vét};

Nom[p[o] - {_1’ v, /,L}]//FS[#, {V’ I"’} € Reals&&
§>0)&
Norm[p[t])2//FS[#, {v, u,t} € Reals&&d > 0]&
Limit[%,t — oo,
Assumptions — {{v,u} € Reals,d > 0, # 0}]
B
(—14+86)2 + 02 4 (p — to)?

[ee]

1
B.4.9 The system Hé )
The equilibrium states are:
Reduce[pl + p2 + p1p2 == 0]//Simplify
1+ pl # 0&&pl +p2 +plp2==0

The states e]* = (77, —77—1—1,/1) are unstable:
pledi={n,6 = g, m— 6(1 +m)t};

Norm [p[0] — {n, ~ 1%, n}] //Fsl#, 6 > 0t

n#-1]&
Norm[p[t]]2//FS[#, {n, 1, t} € Reals&&s > 0&&
n# —1]&
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Limit[%,t — oo,

Assumptions — {{n, u} € Reals,§ > 0,7 # —1}]

8
2 1 )2 2
0?4 (14 )T+ () 4 )

o]

B.4.10 The system Hélo)é
B.4.10.1

The equilibrium states are:
Reduce[ap2 == 0&&apl == 0&& — p1p2 == 0
&&a > 0]//8implify[#, o > 0)&
pl == 0&&p2 == 0

Stability

The states e = (0,0, i) are (spectrally) unstable:
D[{ap2, apl, _P1P2}’ {{Pi’ P2, p3}}]
/.-{p1 — 0,p2 — 0,p3 — pu}//Eigenvalues
{0, —a, o}

B.4.10.2 Visualisation

Ha[c_h_ a]:=
ContourPlot3D[az + %x2 == h, {z,-5,5},
{y’ _5’ 5}, {z’ _5a 5}’MeSh - 4];
Int[c_,h_, a_7Numberq)]:=
Int [¢,h, {p1,p2,p3} > ap3 + 3p1°];

Manipulate[{
Show[Calc, h], Ca|—c, h],Ha|e, h, o,
Int[c, h, o], Int[—c, h, o], Opts],
Show[
ParametricPlot3D[{0,0, 1}, {i, —3, 3},
PlotStyle — Directive[Thick,Red]],
Int[ca h, a] » Int[_c’ h’ a], OPtS] }’

{{C, 1}’ _3’ 3}’ {{h’ 2}’ 0’ 3}a {{a, 1}’ 0’ 3}]

B.4.11 The system H£2>

The equilibrium states are:
Reduce [—p2 — (p1 + p2)* == 0]
(pl == —lggpr == 7i)H <p1 > -1
&&(p2 == §(-1—2p1) — 5 VT F 4p7
Ip2== (-1 —2p1) + W))

The states e7* = (n, €, u) are unstable:
plti={n,c — 05,1 — (c— 08}t — (n+e— 08)*t}

Norm[p[0] — {n, €, u}]
//FS[#,n > —1&&6 > 0&&Abs[o] ==1]&
Norm[p[t]]|*//FS[#,n > —1&&5 > 0&&
{t, 1, €} € Reals|&
Linit[%,t — oo,
Assumptions — {n > —1&&6 > 0&&
{p,0} € Reals}]
/{e = —3(1 +2n+ 0 T+ 4j)}//Expand
/IFS[#,0° == 1&&6 > 0&&n > —11&

)
2
724 (e = 6% 4 (p— tet n — 80)2 4 H(—e + 50))

[ee]

B.4.12 The system H§2>

The equilibrium states are:

Reduce[(p1 + p2)(1 + p1 + p2) == 0]//Simplity
1+pl+p2==0[pt+p2==0

The states e{* = (,—1 — 1, 1) are unstable:

ple]:={n, -6 —1—n,n—5(6+1)t};

Norm[p[0] — {n, -1 —n, pu}]

//FS[#, {n, p} € Reals&&d > 0]&
Norm[p[t]]2//FS[#, {n, 1, t} € Reals&&ds > 0)&
Linit[%,t — oo,

Assumptions — {{n, u} € Reals,d > 0}]

5
72+ L+ 8+ m2 + (—t5(1 + 6) + )2

The states ed* = (n7, —n, ) are unstable:
ple]:={n,6 —n,p— (5 +1)t};

Norn[p[0] — {n, —n, p}|//FS[#, {n, u} € Reals&&
§>0)&
Norm[p[t]]2//FS[#, {n, 1, t} € Reals&&ds > 0)&
Linit[%,t — oo,
Assumptions — {{n, u} € Reals,d > 0}]
s
B —m2+n? + (—t8(1 4+ 8) + )2

[ee]

B.4.13 The system Héig
B.4.13.1 Stability

The equilibrium states are:

Reduce[dp2 == 0&&dp1 == 0
&& — (p1 +p2)? == 0&&35 # 0]
//Simplify[#,d # 0]&

pl == 0&&p2 == 10

The states e}’ = (0,0, ) are (spectrally) unstable:

D [{ép2,ép1,—(pt +p2)’}, {{p1,p2,p3}}]
/.{p1 — 0,p2 — 0,p3 — u}//Eigenvalues

{0,—6,8}

B.4.13.2 Visualisation

Ha[c_,h_,d]:=
ContourPlot3D [Jz + %(x +y)? ==h, {z,-5,5},
{y’ _5’ 5}’ {za _5, 5}’Me5h - 4];
Int[c_ h_, §_?NumberQ]:=
Int [c,h, {p1,p2,p3}ép3 + 3 (p1 +p2)°] ;

Manipulate[{
Show[Ca[c, k], Ca]—c, h],Ha[c, h, §],
Int[e, h,d], Int[—c, h, 8], Opts],

183
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Show|
ParametricPlot3D[{0,0, 1}, {i, —3, 3},
PlotStyle — Directive[Thick,Red]],
Int[e, h, 8], Int[—c, h, 8], Opts],
Show[Calc, h], Ca|—c, h],Ha|e, h, —4],
Int[c, h, —4], Int[—c, h, —4d], Opts],
Show|
ParametricPlot3D[{0,0, 1}, {i, —3, 3},
PlotStyle — Directive[Thick,Red]],
Int[ca h, _5] » Int[_c’ h’ _6] » Opts] }’
{{C, 1}’ _3’ 3}’ {{h’ 0}’ 0’ 3}a {{6’ 1}’ 0-1’ 3}]

B.4.14 The system Hig’)
B.4.14.1 Stability

The equilibrium states are:
Reduce[p2p3 == 0&&p1p3 == 0&& — p2 == 0]
(p2 == 0&&p1l == 0)||(p8 == 0&&p2 == 0)
The states e}’ = (1,0,0), u > 0 are stable:
H=p1+ 3p3%;
Ca = p12 - p22;
MF/e{
D[AoH31 + AiCa, {{p1,p2,p3}}],
D [D [A0H31 + A1Ca, {{Pi’P2’ p3}}] y {{Pi’ P2,P3}}]
}/ . {p1 — p,p2 — 0,p3 — 0}
/. {}\0 - —2[1)\1}/‘ {)\1 - —%}

kerH = D[H, {{p1,p2,p3}}]
/‘{Pi — p,p2 = 0,p3 = 0};
kerCa = DI[Ca, {{p1,p2,p3}}]
/. {p1 — p,p2 — 0,p3 = 0};
Reduce[kerH{z,y, 2} == 0&&kerCa.{z,y, 2} == 0]
//8implify[#, p # 01&
{OREI)
oj,lo 1 o
0 0 0 u
z==20
The state @(1) = (0,0,0) is unstable:
_ 2 2 27.
p[t-]=- —@ @Sl
P [t — Ple enpltl =y //SinpLity
P [t — plt]ypltl iy //SinpLity
P'[t]an + P[]/ /8inplity

Limit [Norm[p[t]]?,t = —o0, Assumptions — {p < 0}]
Limit [Norm[p[t]]?,t — 0, Assumptions — {u < 0}]

o o ©O ©

The states e} = (,0,0), p < 0 are unstable:
o[t :={p (1 4 2Cscht ,/Tyf) ,
—2uCoth [t /—p|Csch [t /=],
2/—pCsch[t /—p] };
? [ty — pltliyplt] e //Sinplify
P'[tljn — Pl anpltlan//Simplify

' [tz + pltl 2/ /Sinplity

Linit [Norn[p[t] — {g,0,0}]%,t = —oo,
Assumptions — {p < 0}]

o o o ©

[ee]

The states e5 = (0,0,v) are (spectrally) unstable:

D({p2p3,p1p3, —p2}, {{r1,p2,p3} }|
/.{p1 = 0,p2 — 0,p3 — v}//Eigenvalues

{0, —v,v}

B.4.14.2 Integration: case ¢y > 0, hy >
Vo, hi(t) £ =/

al=1;b1 =0;¢c1 = —c0;

a2 = 0;b2 = —1; ¢2 = 2h0;

X1 = a1z’® + 2biz + ci;
X2 = a2z’ + 2b2z + ¢2;

Solve [(al — Xa2)(cl — Ac2) — (b1 — Ab2)? == 0, }]

//Simplify;
Al = —ho— vhO% — ¢c0;

A2 =—h0+ vhoZ—c0;

(a1 — Ma2)(c1 — Ac2) — (b1 — A1b2)2//Simplify
(a1 — A2a2)(c1 — A2¢2) — (b1 — A2b2)2//Simplify
0
0

Solve [% == 0,9:] //Sinplify;
Solve [%Z == 0,9:] //Sinplify;
rli=—\1;

r2 = —\2;

Ay = 22D gl ity;

A2 = 2N //Sinplify;

B1 = M- //Simplify;

B2 = 472%2//Sinplify;

Az —r1)? + Bi(x — r2)?//Simplify
A2(x — r1)? + B2(x — r2)%//Simplify

{A1,B1,A2,B2}//Simplify

—c0 + =2
2(h0 — x)
1 w1y m
2 94/—cotno?’ 2 r/—cotno? '’
1 _ 1
2 /—c04h02 " 2 4/—co+ho?
5= vhoZI—co;
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— ho:t& .
a ho—6
b:1

\/hO-I—s

_ s .
k= \/525;
_  [no—s'.
kP - :g? 1
pift]: _(8+ho)JnobiDN[ﬂt k2]+(5-h0) .

JacobiDN[Qt,k2]—1 i
Jacoblcll[ﬂt k2

Jacolelll Qt, k2 | -1 i

p2[t]:=026

JacobiSN|Qt,k
p3[t]:=o V25k Jacobxml|:£t k2|11 ?
B.4.14.3 Integration: case ¢y > 0, hy >

Ve, pi(t) = y/eo
al =1;b1 =0;¢cl1 = —cO0;
a2 = 0;b2 = —1; ¢2 = 2h0;

X1 = a1z + 2biz + ci;

X2 = a2z + 2b2z + ¢2;

Solve [(a1l — Aa2)(cl — Ac2) —
A]//8implity;

Al = —h0 — v—cO +ho%;

A2 = —h0 + v/—cO + ho?;

(a1 — Ma2)(cl — A1c2) —
(a1 — A2a2)(cl — A2¢2) —

(b1 — Ab2)? == 0,

(b1 — A1b2)2//8implify
(b1 — A2b2)2//Simplify

al—Ala2

0
Solve [ng =20 9:] //8implify;

Solve [% =20 9:] //8implify;
rli=—M\1;
r2 = —\2;

A1 = 2SR / /Sinplity;

A2 = 2=Me2//8inplify;

B1 = AI-22a2) ;;—;gﬂ //8implify;
B2 =

M )‘2 al-A%a2 //Simplify;

a1(z — r1)? + Bi(x — r2)2//Simplify
A2(z — r1)? + B2(z — r2)%//Simplify

{A1,B1,A2,B2}//Simplify

—c0 + z2
2(h0 — x)

__m 1y w
2 \/—cotno? 2 v/ —co+no? J’

D=

1 1

2 y/—c0+ho2 'y v/ —co+ho2
5= vho? — c0;
_ hO+4 .
a=—1/bo—5"
b=—
hO +

_ [ 25,
k= h0+3 ?

_ [/no—5.
kP - ho+46 ?
p 1[1: ] o \/E)' kaacobiDll[ﬂt,k2]+1 .

kp+Jacobim||nt,k2| ?
2 JacobisN[Qt,k7]
p2[t]:=k* v/cO ;

kp+JacobiDn[Qt,k2] !
Jacobich[Qt,k?]

p3[t]:=k V2§ kp-+JacobiDN[2¢, k7]’

B.4.14.4 Integration: case ¢y > 0, hg =

V@

ho ;

= +/h0 3;

\/2__5‘.

(8+00)JacobiDN|[Q2t,k2] +(5—h0)
JacobiDN[Q2,k2] —1

> D>
I
H
(s}
o,

Lim't[ ,h0 = /<0,
Assumptions — {hO > 4/c0,c0 > 0}];
JacobicN[Q2t,k2]

Limit [025 Tecabi[QL] T ,h0 = /c0,

Assumptions — {hO > 4/c0,c0 > 0}];

isN[Qt, k2
Linit [a VagkZemsankt] s

JacobiDH[02¢,k2] —1°
Assumptions — {hO > 4/c0,c0 > 0}];

Q= +vho;

pift]:=—ho (1 + 2Tan [\/lf)'t]2) ;
p2[t]:= — 02h0Sec [ \/Et] Tan [\/Et] ;
p3[t.]:=20 vhO Sec [ vho't];

p1'[t] — p2[tlp3[t]//Simplify[#,h0 > 0&&cO > 0&&
ho == 1/c0 &&o? == 1]&
p2'[t] — p1[tlp3[t]//Simplify[#,h0 > 0&&cO > 0&&
h0 == /c0 &&o? == 1]&
p3'[t] + p2[t]//Simplify[#,h0 > 0&8&c0 > 0&&
h0 == /c0 &&o? == 1]&

B.4.14.5 Integration: case ¢

— @ < ho < /&
6= 4/2(c0— VcOho);

a1—0b1—2,c1— Vc0;
a2 = —2;b2 =h0— /c0;¢c2=2+/cOhO0;

> 0,

X1 = a1z’ + 2biz + ci;
X2 = a2z? + 2b2z + ¢2;

Solve [(al — )\a2)(c1 —Ac2) —
Al =

(b1 — Xb2)? == 0,A];

—6 \/_'+2h0+46 ;
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A2 = m; Direction — —I—l]
VO —s — 1/4 +/—ho
(a1 — AMa2)(cl — Alc2) — (bl — A1b2)2//Simplify /- { €0 — —h0,c07" = /—h0 }
(a1 — A2a2)(c1 — A2¢2) — (b1 — A2b2)2//Simplify /.{ \/-h0 = w} //FS[#,h0 < 0]&
0 //FS[#,w > 0&&t € Reals|&
0 Limit[ 2(6+ v/cO —ho I
Solve [%2 =0 9:] //8implify; \/ )
a 2 \/Jacoblbll[ﬂt k2] +ip \/1 JacobiDN[2t, k2]
Solve [% ==0, 9:] //8implify; (JacobiDN[2t,k2] —1)
h0 — — /c0, Assumptions — {c0 > 0},
rl = vVc0 —4; Direction — —I—l]
r2 = 4/c0 +4;
/. { VO — —ho, coV/4 — ,/—ho'}
A2(al—Ala2 . P
A= fo_Tz//smthYf /.{1/~h0 = w} //FS[#,h0 < 0]&
A2 = 72582 //Sinplify; //FS[#,w > 0&&t € Reals]|&
B1 = M@= //gimplify; O + 20Csch[tw]?
B2 = a;‘;_kiaf //Simplify, —2h0o Coth[tw]Csch(tw)]
20 wCsch(tw)
{A1,B1,42,B2}//Simplify Q= +/-h0;
Az —r1)? + Bi(z — r2)2//Simplify \
a2(z — r1)? + B2(x — r2)%//Sinplify pi[t]:=ho (1 + 2Csch[Qt]?) ;
A1 —8/a0n0-28 _ —3+/0 410428 2[t_] : =0202Coth[Qt]Cs ch[Q];
{45 P48 23 , % } P 5
Y p3[t]:=02QCsch[Qt];
2(h0 — z) (V0 + ) , 2
b \/E p1’[t] — p2[tlp3[t]//Simplify [#,0° == 1] &
a1 AL? p2'[t] — p1[tlp3[t]//Simplity [#,0° == 1] &
’ p3'[t] + p2[t]//Sinplify [#,0° ==1] &
Q=116vc0 —2n0+45; 0
k=25, ’
- 3 v/c0 —h0+25 * 0
p 1[t ] _ (6+ \/_')Jacoblml[ﬂt k2]+(6 \/_‘)
- JacobiDN[Q2¢,k2] -1 B.4.14.7 Integration: case ¢y > 0, hy <
p2[t]:=0k 4/ (6 + 2 V/c0) — /¢
acobiCN|[Qt, k2 acobiDN|Qt,k2
J bCll[t ],/J. b1Dll[t ]+1 : P h02—c0;
\/JacobiDN[Qt,k2]+kp (3acobiDN[t,k2]—1)
p3[t]:=o \/2 (6+ Veco — ho)' al =1;b1 =0;c1 = —c0;
\/Jacobibu[m,k2]+kp' \/1—Jacobiml[m,k2]' ) a2 = 0;b2 = —1; ¢c2 = 2h0;

(JacobiDN[Q2t, k2] —1) ’

X1 = a1z’ + 2biz + ci;
. X2 = a2¢? + 2b2z + ¢2;
B.4.14.6 Integration: case ¢y > 0, hg = + te2

—V/Co Solve [(al — Aa2)(cl — Ac2) — (bl — Ab2)? == 0, )]

//8inplify;
L. (6+ \/_')Jacoblbll[ﬂt k2]+(6 \/_‘) ! ) !
lelt[ JacobilN[Q2t,k2] —1 ;1 =—h0— g’
h0 — — v/c0, Assumptions — {c0 > 0}, 2=—ho+o;
Direction — +1 (a1 — Ma2)(c1 — AMc2) — (b1 — A1b2)?//Simplify
/. { V<0 — —h0, c0¥4 — ,/—ho'} 0
0
/.{+/-h0 — w}//FS[#,h0 < 0]& Solve [(m X)) __ 9:] //Sinplify;
//FS[#,w > 0&&t € Reals|& xi i;::
Limit [ak /5 (5+ 2 v/c0 )' Solve [g—zm—)‘zaz - 0,9:] //8implify;
JacobicN[Q2t,k2] |/JacobiDN[02t,k2]+1 rl= —\i;
{/3acobiDN[Q¢ k2] +ip (JacobibN[t,k2] —1) 2= —\2;

hO — — v/c0, Assumptions — {c0 > 0},
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AL = 2&MD) yyginp1 By, B.4.14.10 Integration: case ¢; = 0,
42 = 2N/ /sinp) sy, ho <0
B1 = M@ //ginplify; a- =
B2 = £-2%2//Sinplify; - 2

a1(z — r1)? + Bi(x — r2)2//Simplify
42(z — r1)? + B2(x — r2)2//Simplify

{A1,B1,A2,B2}//Simplify

—ho? + 22 4 52

2(h0 — x)

{—ho+6 W48 1 ,L}

25 0 26 23’ 28

b= — ho4d .

- ho—4§ ?
a=-1;
Q= 4/6—ho;
k= ho44 .

- ho—4 ?

_ (80+8)JacobiCN[Q2t, k2] +(h0—8) Jacobibi|[Qt,k2]

pi[t_] : Jacobiml[m,k2 +Jacobicu[nt,k2] ’

- 25 .
JacobiDN[Q2,k2] +JacobicH[Q2t,k2] *
/28 kpJacobisN[ Q¢ k2] .
-c JacobiDN[(2¢,k2]+ JacobiCH[t, k2] *

B.4.14.8 Integration: case ¢o = 0, ho >

0
Q= ,/%;
pi[t]:= — 20%Csch[O4]?;
p2[t]:=020%Csch[Q1]?;
p3[t]:=02QCoth[Q];

p1'[t] — p2[t]p3[t]//Simplity [#,0% == 1] &
p2'[t] — p1[t]p3[t]//Sinplify [#,0% ==1] &
p3[t] +p2[t]//Simplify [#,0° == 1] &

0

0

0

B.4.14.9 Integration: case ¢y =0, hy =

0

pift]:=— 5
p2[t]:=05%;
p3[t]:=02;

p1'[t] — p2[t]p3[t]//Sinplify [#,0% ==1] &
p2'[t] — p1[tlp3[t]//Simplify [#,0° ==1] &
p3[t] +p2[t]//Simplify [#,0° == 1] &

0

0

0

pi[t]:= — 20%8ec[]?;
p2[t]:= — 020%8ec[]?;
p3[t]:=02QTan[Q];

p1'[t] — p2[tlp3[t]//Simplify [#,0° ==1] &
p2'[t] — pi[tlp3[t]//Simplify [#,0° ==1] &
p3'[t] + p2[t]//Simplify [#,02 == 1] &

0

0

0

B.4.14.11 Integration: case ¢y <0
5= vhoZ—c0;

al=1;b1 =0;¢c1 = —c0;
a2 = 0;b2 = —1; ¢2 = 2h0;

X1 = a1z’ + 2biz + ci;
X2 = a2z’ + 2b2z + ¢2;

Solve [(al — Xa2)(cl — Ac2) — (b1 — Ab2)? == 0, }]

//Simplify;
Al = —h0—§;
A2 = —h0 + §;

(a1 — Ma2)(c1 — Ac2) — (b1 — A1b2)2//Simplify
(a1 — A2a2)(c1 — A2¢2) — (b1 — A2b2)2//Simplify
0

0

Solve [% ==0,z| //Sinplify;
Solve [% == 0,9:] //Sinplify;
rli=—\1;
r2 = —\2;

A1 = 223D //Simplity;

A2 = M2 ginp) i fy;

B1 = 2Gi=2%3) //simplity;

B2 = 47222/ /Simplify;

Az —r1)? + Bi(x — r2)%//Simplify;
A2(x — r1)? + B2(x — r2)%//Simplify;

{A1,B1,A2,B2}//Simplify
—c0 + z2
2(h0 — x)
{—h0+6 ho+46 1 ,L}
28 28 258 28
a=—1;

b= 84ho
- 8—ho




188 B.4. STABILITY AND INTEGRATION OF HAMILTON-POISSON SYSTEMS

k= % ; The states e5 = (0,0,v) are (spectrally) unstable:

D[{p2p3,p1p3, —(p1 +p2)}, {{P1,p2,p3}}]

X 2 _
— (0+8)Jacobick[t 1] + (0-3) /.{p1 = 0,p2 = 0,p3 — v}//Eigenvalues

pift]:= JacobiCN[Q, k2] +1 ’
Q2 JacobibN[Qt k2] | {0, —v, v}

p2[t_] =0 Jacobi(!lll m,k2|+1 ?

QJacobisN[Qt,k?]

p3[t]:=— UW, B.4.15.2 Integration: case c¢o > 0, hg >
0
B.4.14.12 Visualisation Q- \/h;o';
Ha[c_,h]:=
ParametricPlot3D [{h — 12%,4,2}, {y,—m,7}, pi[t]:=— L7 (49*Csch[Q]® + c0Sinh[0f]?);
{z,—m, 7}, Mesh — 4]; p2[t]:= — ;17 (4Q*Csch[Q]® — cOSinh[0¢]?) ;
Int[c_,h]:= p3[t]:=— 2QCoth[Q4];

Int[c, h, {p1,p2,p3}p1 + 3p3°];
p1'[t] — p2[tlp3[t]//Simplify[#,h0 > 0]&

Manipulate[{ p2'[t] — p1[tlp3[t]//Simplify[#,h0 > 0]&
Show[Calc, h], Ha[c, k], Int[c, h], Opts], p3'[t] + p1[t] + p2[t]//Simplify[#,h0 > 0]&
Show[Int[e, A], o

ListPointP1lot3D[{{0,0,0}},
PlotStyle — Directive|[Red,
PointSize[Large]]],

ParametricPlot3D[{0,0,v}, {v,—5,5},
PlotStyle — Directive[Thick,Red]],

ParametricPlot3D[{y,0, 0}, {¢, 5,0}, 93[t]:=
PlotStyle — Directive|Thick,Red]

ParametchPlot3D[{/,z, 0, 0}[, {1, 0,,5}, Il qij[t] - q2[t]q3[t]//s:i.mpl:i.fy
PlotStyle — Directive[Thick, Blue]], q2[t] - q1[f]q3{t]//Simpl ify
Opts) a3'[t] + q1[t] + q2[t]//Simplity

},{{C,—l},—3, 3}’{{}"’2}’_3’3}] 0

0

0
0

qi[t]:=25r (42*Sech[Qt]* + cOCosh[]?) ;

q2[t]: =557 (4Q2*Sech[]* — cOCosh[]?) ;

— 2QTanh[];

0

B.4.15 The system H§3>

B.4.15.1 Stability B.4.15.3 Integration: case ¢y > 0, hy =
The equilibrium states are: 0
Reduce[p2p3 == 0&&p1p3 == 0&&(p1 + p2) == 0]

(b2 == 0&&pl == 0)(p8 == 0&&pl == —p2) Q= \/h;o';

The state €} = (0,0, 0) is unstable:

plt]:={Exp|5t], —8Exp[8t], —6}: Linit [{— 5z (49"Csch[]? + coSinh[Q]?)

—&x (49*Csch[Q]? — c0Sinh[Q¢]?),

Norm[p[0] — {0,0,0}]//FS[#, > 0]& —2(1Coth[(]},
Norm[p[t]|2//FS[#, 8 > 0&&t € Reals]& h0 — 0, Assumptions — {c0 > 0}]
Limit [%,t — 00, Assumptions — {§ > 0}] treort  reort 3
Vs {2}
S+262t6)52 sl[t_]:=— 44;“4;
—cott .
The states e} = (u, —p, 0), p # 0 are unstable: s2[t]:=— :4t05t ’
plt]:={pExp|st], —pExp[5t], —6}; s3[t]:=— 3
Norm[p[0] — {p, —p, 0}]//FS[#,6 > 0]& sij[t] — s2[t]s3t]//Simplity
Norn[pt]]*//FS[#,8 > 0&&{t, nu} € Reals]& s2[t] — s1[t]s3[¢]//Sinplify
Limit[%,t — oo, s3'[t] + s1[t] + s2[t]//Sinplify
Assumptions — {8 > 0, p # 0, € Reals}] 0
s 0

52 + 252t6ﬂ'2 0
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B.4.15.4 Integration: case ¢y >0, hg < o

O 0
- ,/=ho
Q= 2 B.4.15.6 Integration: case ¢y = 0, hg =
pift]:= — ;55 (49"Sec[Q]* + cOCos[Q]?) ; 0
p2[t]:=— 5 (492*sec[2]? — c0Cos[2]?) ; pift]i=— %
p3[t]:=2QTan[]; p2[t]:=— &;
' . . P3[t—] == %;
p1'[t] — p2[t]p3[t]//Simplify[#,h0 < 0]&
p2'[t] — p1[t]p3[¢]//Simplify[#,ho0 < 0]& 11 — e
) — p1'[t] — p2[t]p3[t]//Simplify
0 p3'[t] + p1[t] + p2[t]//Sinplity
0
: ;
0
B.4.15.5 Integration: case ¢y =0, hg >
0 B.4.15.7 Integration: case ¢y = 0, hp <
Q= \/h_7°l; 0
Q= /-2,
pi[t]:=— Q%Csch[(4]?; 2
p2[t]:= — Q’Csch[0]%; pift]:= — 2Sec[]?;
p3[t]:= — 2QCoth[(2]; p2[t]:= — 02Sec[]%;

p1'[t] — p2[t]p3[t]//Simplify[#,h0 > 0]& p3[t]:=20TanlC2];

p2'[t] — p1[t]p3[¢]//Simplify[#,ho > 0]& e o
) A p1'[t] — p2[t]p3[t]//Simplify
0 p3'[t] + p1[t] + p2[t]//Simplify

0
0

0

0
qi[t]:=02Sech[Q]?; o

q2[t]:=0%Sech[Qt]?;
q3[t]:= — 2QTanh[Q]; . e
B.4.15.8 Visualisation

qt'[t] — q2[t]q3[¢]//Sinplify Ha[c_,h |:=ParametricPlot3D|
q2'[t] — q1[t]q3[t]//Sinplify {2 (z+h—-132%),% (h-32%-2),2},
q3'[t] + q1ft] + q2[t]//simplify {z,—3,3}, {z,—10,10}, Mesh — 4];
0 Int[c_h]:=
2 Int [¢, b, {p1,p2,p3}pL + P2+ 3p3°];
wi[t]:=oExp [~s v2h01] ; Opts = Join [{ViewPoint — {2831 L1781 11768133
w2[t]:= — oExp [—< v/2h0 ] ; Opts];
w3[t]:=¢c v2hO;
Manipulate[{
w1'[t] — w2[t]w3[t] Show[Ca|c, h], Ha|e, h], Int[c, k], Opts],
//8implify[#,h0 > 0&&o> == 1&&c* == 1]& Show[Int[e, h],
w2'[t] — wi[t]w3][t] ParametricPlot3D[{0,0,v}, {v,—3,3},
//8inplify[#,h0 > 0&&0? == 1&&c? == 1]& PlotStyle — Directive[Thick,Red]],
w3'[t] + wi[t] + w2[f] ParametricPlot3D[{u, —pu, 0}, {1, —3,3},
//8implify[#,h0 > 0&&o” == 1&&¢* == 1]& PlotStyle — Directive[Thick, Red]],
Opts]

0 },{{C,l},—3,3},{{h,l},—3,3}]
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