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Abstract

In this thesis we consider invariant optimal control problems and invariant sub-Riemannian 
structures on Lie groups. Primarily, we are concerned with the equivalence and classification 
of problems (resp. structures). In the first chapter, both the class of invariant optimal control 
problems and the class of invariant sub-Riemannian structures are organised as categories. 
The latter category is shown to be functorially equivalent to a subcategory of the former 
category. Via the Pontryagin Maximum Principle, we associate to each invariant optimal control 
problem (resp. invariant sub-Riemannian structure) a quadratic Hamilton-Poisson system on 
the associated Lie-Poisson space. These Hamiltonian systems are also organised as a category 
and hence the Pontryagin lift is realised as a contravariant functor. Basic properties of these 
categories are investigated.

The rest of this thesis is concerned with the classification (and investigation) of certain sub
classes of structures and systems. In the second chapter, the homogeneous positive semidefinite 
quadratic Hamilton-Poisson systems on three-dimensional Lie-Poisson spaces are classified up 
to compatibility with a linear isomorphism; a list of 23 normal forms is exhibited. In the third 
chapter, we classify the invariant sub-Riemannian structures in three dimensions and calculate 
the isometry group for each normal form. By comparing our results with known results, we 
show that most isometries (in three dimensions) are in fact the composition of a left translation 
and a Lie group isomorphism. In the fourth and last chapter of this thesis, we classify the 
sub-Riemannian and Riemannian structures on the (2n +  1)-dimensional Heisenberg groups. 
Furthermore, we find the isometry group and geodesics of each normal form.

Key words and phrases: invariant control system, sub-Riemannian geometry, Lie groups, feedback 
equivalence, isometry, quadratic Hamilton-Poisson systems.
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Introduction

Geometric control theory began in the late 1960s with the study of (nonlinear) control systems 
by using concepts and methods from differential geometry (cf. [70, 114]). A (smooth) control 
system may roughly be described a family of vector fields on a manifold, smoothly parametrized 
by a set of controls; an integral curve corresponding to some admissible control curve is called a 
trajectory of the system. The first basic question one asks of a control system is whether or not 
any two points can be connected by a trajectory: this is known as the controllability problem. 
Once one has established that two points can be connected by a trajectory, one may wish to 
find a trajectory that minimizes some (practical) cost function: this is known as the optimality 
problem. A key result in optimal control theory is the Pontryagin Maximum Principle which 
provides necessary conditions for optimal trajectories (see, e.g., [14]).

A significant class of control systems rich in symmetry are those evolving on Lie groups and 
invariant under left translations; for such systems, the left translation of any trajectory is a 
trajectory. This class of systems was first considered in 1972 by Brockett [45] and by Jurdjevic 
and Sussmann [73]; it forms a natural geometric framework for various (variational) problems 
in mathematical physics, mechanics, elasticity, and dynamical systems (cf. [14, 42,70, 71]). 
In the last few decades substantial work on applied nonlinear control has drawn attention to 
left-invariant control affine systems evolving on matrix Lie groups of low dimension (see, e.g., 
[72, 103,108,109] and the references therein). We give two motivating examples of (optimal 
control) problems; such problems initially stimulated the growth of this research area.

The plate-ball problem ( [69]) . The plate-ball problem consists of the following kine
matic situation: a ball rolls without slipping between two horizontal plates; the lower plate is 
fixed and the ball is rolled through the horizontal movement of the upper plate. The problem 
is to transfer the ball from a given initial position and orientation to a prescribed final position 
and orientation along a path which minimizes J0T ||v(t)||dt. Here v(t) denotes the velocity of 
the moving plate and T is the time of transfer.

This problem can be regarded as invariant optimal control problem on the five-dimensional 
Lie group

R2 x SO (3)
ex1 0 0
0 ex2 0
0 0 R

: x i ,x 2 £ R, R £ SO (3)

1



2 Introduction

specified by the dynamical law

g

/ 1 0 0 0 0 0 0 0 0 0 \
0 0 0 0 0 0 1 0 0 0

Ui 0 0 0 0 -1 +  U2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1

V 0 0 1 0 0 0 0 0 1 0 /

boundary conditions g(0 ) =  g0, g(T ) =  gi, and cost functional JQT u2 +  u2 dt ^  min.

Control o f  Serret-Frenet systems ( [70, p. 25], see also [107, 109]). A differentiable 
curve y (t) in the Euclidean plane E2, parametrized by arc length, can be lifted to the group 
of motions of E2 by means of a positively oriented orthonormal moving frame v1,v2 defined 
by

Y(t) =  Vi(t) , V i(t) =  K(t)V2 (t) , V2 (t) =  -K (t)v 1 (t) (0.1)

where n(t) is the signed curvature of y(t). The moving frame can be expressed by a rotation 
matrix R(t) whose columns consist of the coordinates of vi and v2 relative to a fixed orthonor
mal frame e1, e2 £ E2. Identifying vectors with their coordinate vectors, we have R(t)ej =  v». 
The curve y(t), along with its moving frame, can be represented as a curve g(t) on the group 
of motions of E2, namely

SE (2)
1

Yi
Y2

0 0

R Yi ,Y2 £ R, R £ SO (2)

Interpreting the curvature n(t) as a control function, the Serret-Frenet differential system (0.1) 
can then written as an (inhomogeneous) left-invariant control system

/ 0 0 0 0 0

1---0

g =  g 1 1 0 0 +  K(t) 0 0 -1
V 0 0 0 0 1

---1
0

g £ SE (2 ).

In this way, many classic variational problems in geometry become problems in optimal control. 
For example, the problem of finding a curve y (t) that will satisfy the given boundary conditions 
Y(0) =  a, 7 (0 ) =  a, y (T) =  b, Y(T) =  b, and will minimize J0T K2 (t) dt goes back to Euler; its 
solutions are known as the elastica.

On the other hand, a sub-Riemannian structure on a smooth manifold consists of a non- 
integrable distribution with a Riemannian metric on this distribution. Sub-Riemannian struc
tures can be thought of as generalizing Riemannian structures, in the sense that if the dis
tribution is the entire tangent bundle, then we recover a Riemannian structure. When the 
distribution is bracket generating, then any two points on the manifold can be joined by a 
curve tangent to the distribution ([47,94]). A fundamental problem in sub-Riemannian geom
etry is to determine the minimizing geodesics of a structure, i.e., to find those curves tangent 
to the distribution that have minimal length (with respect to the given metric).
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It is perhaps not surprising that there is some significant overlap between the theory of 
smooth optimal control problems and geodesics of various structures in differential geometry 
(cf. [12, 13]). Indeed, (locally) a sub-Riemannian structure can be regarded as a smooth 
control system, linear in the controls, together with a quadratic cost. Moreover, the Pontryagin 
Maximum Principle is often used to obtain first order necessary conditions for minimising 
geodesics of sub-Riemannian structures. “Even in the classical case of Riemannian geometry, 
the maximum principle approach to finding geodesics leads to a final result much simpler and 
shorter than the traditional method of using the Levi-Civita connection” ( [13]).

A sub-Riemannian structure on a Lie group is said to be left-invariant if the both the 
distribution and the metric are invariant under left translations (i.e., each left translation by 
a group element is an isometry of the structure). Such structures are the basic models of 
sub-Riemannian manifolds and as such serve to elucidate general features of sub-Riemannian 
geometry (cf. [10]). We note that the former of the two optimal control problems mentioned 
above (the plate-ball problem) may be reinterpreted as determining a minimising geodesic for a 
left-invariant sub-Riemannian structure on R2 x SO (3); the latter problem however cannot be 
reinterpreted in this way (as the system is affine but not linear in the controls). Recently, left- 
invariant sub-Riemannian structures (especially on low-dimensional Lie groups) have received 
a fair amount of attention (see e.g., [3, 10, 17, 18,44,46,89,92, 111], also [62,75, 117]).

In this thesis we consider invariant optimal control problems and left-invariant sub-Riemannian 
structures on Lie groups, as well as the associated Hamilton-Poisson systems (obtained via the 
Pontryagin Maximum Principle). Primarily, we are interested in the equivalence and interre
lations between systems (resp. structures) in each of these classes, as well as the functorial 
interrelations between these classes themselves. Furthermore, we are also interested in the 
classification of various subclasses of systems (resp. structures).

Chapter 1 is concerned with formalising (as categories) invariant optimal control problems, 
left-invariant sub-Riemannian structures, and Hamilton-Poisson systems. The class of invariant 
optimal control problems (with affine dynamics and quadratic cost) is organised as a category 
of cost-extended systems. Morphisms in this category are Lie group homomorphisms preserv
ing the underlying left-invariant control affine system as well as the quadratic cost. By means 
of the Pontryagin Maximum Principle, we associate to each cost-extended system a quadratic 
Hamilton-Poisson system on the associated Lie-Poisson space; this in turn yields a contravari- 
ant functor from the category of cost-extended systems to the category of Hamilton-Poisson 
systems. Left-invariant sub-Riemannian structures are also organised into a category (with 
morphisms being Lie group homomorphisms preserving the distribution and the metric) which 
is shown to be functorially equivalent to a full subcategory of the category of cost-extended 
systems. Lastly, a few examples illustrating some of the results of the chapter are discussed.

The rest of this thesis is concerned with the classification (and investigation) of certain 
subclasses of structures (and systems). Generally, there are two strategies followed when in
vestigating (various) structures on Lie groups or Lie algebras. The first strategy is to make a 
systematic study of structures on low-dimensional Lie groups (or algebras). The second strat
egy is to investigate structures on a (sufficiently) regular family of groups (usually parametrized 
by dimension); frequently occurring cases are subclasses of the nilpotent Lie groups. We shall 
consider structures on the three-dimensional groups and algebras, as well as on the family of 
Heisenberg groups.
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Chapter 2 is concerned with the classification of a class of quadratic Hamilton-Poisson 
systems in three dimensions. Specifically, we consider the homogeneous quadratic Hamilton- 
Poisson systems on three-dimensional Lie-Poisson spaces. Such systems are of interest in their 
own right (apart from arising in invariant optimal control), as class of Hamiltonian dynamical 
systems. For each Lie-Poisson space, we classify the systems up to linear equivalence (i.e., the 
associated Hamiltonian vector fields being compatible with a linear isomorphism). Thereafter 
we determine whether any systems on distinct (non-isomorphic) Lie-Poisson spaces are linearly 
equivalent and so arrive at a general classification; a list of 23 normal forms is exhibited.

Chapter 3 is concerned with the classification of left-invariant sub-Riemannian structures 
in three dimensions, as well as the description of isometries between such structures. For each 
simply connected three-dimensional Lie group, we classify the left-invariant sub-Riemannian 
structures up to isometric group isomorphism. For each normal form we determine the associ
ated quadratic Hamilton-Poisson system (and its normal form as presented in Chapter 2), as 
well as the subgroup of isometries fixing the identity. By comparing our results to the classifi
cation of Agrachev and Barilari [10], we are able to show that most isometries are in fact the 
composition of a left translation and a group isomorphism.

Chapter 4 is concerned with sub-Riemannian and Riemannian structures on the (2n +  1)- 
dimensional Heisenberg groups. We classify these structures up to isometry. The associated 
isometry group for each normal form is determined. By use of the isometries, simple expressions 
for the geodesics are obtained. Finally, the similarities between the results for the Riemannian 
and sub-Riemannian structures are (partially) explained by a result in the first chapter.

We append (Appendix A) a classification of the three-dimensional Lie groups and Lie al
gebras, as well as matrix representations of these groups and automorphism groups of the Lie 
algebras. Appendix B contains some tables relevant to Chapters 2 and 3. Mathematica was 
used to facilitate some computations in Chapters 2 and 3; sample code for some typical cases 
is given in Appendix C.

Much of the material presented in this thesis expands on the following publications:
[38] Biggs R., Remsing C.C., Cost-extended control systems on Lie groups, Mediterr. J. Math. 

11 (2014), 193-215.
[33] Biggs R., Remsing C.C., A classification of quadratic Hamilton-Poisson systems in three 

dimensions, in Fifteenth International Conference on Geometry, Integrability and Quan
tization, Editors I.M. Mladenov, A. Ludu, A. Yoshioka, Bulgarian Academy of Sciences, 
Varna, Bulgaria, 2013, 67-78.

[30] Biggs R., Nagy P.T., A classification of sub-Riemannian structures on the Heisenberg 
groups, Acta Polytech. Hungar. 10 (2013), 41-52.

Among others, the following publications (although not part of the presentation made in this 
thesis) form part of its conceptualization:

[31] Biggs R., Remsing C.C., A category of control systems, An. §tiin$. Univ. “Ovidius” 
Constanta Ser. Mat. 20 (2012), 355-367.

[37] Biggs R., Remsing C.C., Control systems on three-dimensional Lie groups: equivalence 
and controllability, J. Dyn. Control Syst. 20 (2014), 307-339.

Several papers, expanding on the results of this thesis, are in preparation.



Chapter 1

Invariant systems and structures on 
Lie groups

In this chapter we consider invariant optimal control problems for which the underlying invariant 
system is affine in the controls and for which the cost function is quadratic in the controls. This 
class of problems has received considerable attention in the last few decades. Various physical 
problems have been modelled in this manner, for instance optimal path planning for airplanes, 
motion planning for wheeled mobile robots, spacecraft attitude control, and the control of 
underactuated underwater vehicles ([83,103,124]); also, the control of quantum systems and the 
dynamic formation of DNA ( [52,61]). Many problems (as well as sub-Riemannian structures) 
on various low-dimensional matrix Lie groups have been considered by a number of authors 
(see, e.g., [28,29,43,69, 72, 74,93,96, 102, 108,109]).

We wish to develop a language for comparing such invariant optimal control problems; 
in particular, we want to introduce a form of equivalence. Category theory (see, e.g., [2, 
86]) provides a convenient (and elegant) framework for these purposes. Indeed, for various 
problems in systems and control theory such a framework has proved useful (see, e.g., [31,97, 
115,116]). For invariant sub-Riemannian structures, our formulation of equivalence turns out 
to be equivalent to structures being related by an isometric Lie group isomorphism (i.e., an 
isometry which is also a Lie group isomorphism).

In the first section we formally define what we mean by a left-invariant control affine sys
tem. We briefly discuss equivalence of these control systems (our equivalence of optimal control 
problems involves the equivalence of the underlying control systems). We then formally intro
duce the class of invariant optimal control problems to be considered and state the Pontryagin 
Maximum Principle (adapted to invariant optimal control problems).

To each invariant optimal control problem we associate a cost-extended system. In the 
second section we introduce the category of cost-extended systems and investigate some basic 
properties. In particular, we show that morphisms in the category behave well with respect to 
optimal (and extremal) trajectories and characterise equivalence in this category.

By means of the Pontryagin Maximum Principle, we associate to each cost-extended system 
a quadratic Hamilton-Poisson systems on the associated Lie-Poisson space. In the third section 
we introduce a category of Hamilton-Poisson systems and realize the Pontryagin lift as a con-
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6 1.1. Invariant control affine systems

travariant functor from the category of cost-extended systems to this category. In particular, we 
find that if two cost-extended systems are equivalent, then their associated Hamilton-Poisson 
systems are equivalent.

In the fourth section we consider invariant sub-Riemannian structures. We organise these 
structures as a category and show that this category is functorially equivalent to a full sub
category of the cost-extended systems. We briefly compare our formalism of equivalence (of 
sub-Riemannian structures) to that of being isometric. Lastly, we show that by promoting some 
central vector fields of a sub-Riemannian structure to an orthogonal complement of the distri
bution, one obtains a sub-Riemannian (or Riemannian) structure with very similar geodesics.

In the fifth and last section we provide examples illustrating some of the main results of 
this chapter (as well as one counter example).
Note. Much of the material (regarding cost-extended systems) presented in this chapter appears 
in [38] (which is an extension of [32]).

1.1 Invariant control affine systems

A k-input left-invariant control affine system £ =  (G, 5) on a (real, finite-dimensional, con
nected) Lie group G consists of a family of left-invariant vector fields 5 u on G, affinely 
parametrized by controls u £ Rk. Such a system is written as

g =  5u(g) =  E(g,u) =  g(A  +  u iB  +-------+ UkBk), g £ G, u £ Rk.

Here A, B 1, . . . ,  Bk are elements of the Lie algebra g with B 1, . . . ,  Bk linearly independent. 
The “product” gA denotes the left translation T\Lg ■ A of A £ g by the tangent map of 
Lg : G ^  G, h ^  gh. (When G is a matrix Lie group, this product is simply a matrix 
multiplication.) Note that the dynamics 5 : G x Rk ^  TG are invariant under left translations, 
i.e., 5 (g ,u ) =  g 5 (1 ,u ). £  is completely determined by the specification of its state space 
G and its parametrization map 5 (1 , ■). When G is fixed, we specify £  =  (G, 5) by simply 
writing

£ : A +  uiBi +  ■ ■ ■ +  uk Bk.

The trace r  of a system £ is the affine subspace r  =  A +  r 0 =  A +  (B1, . . . ,  Bk} of g. 
(Here r 0 =  (B1, . . . ,  Bk} is the subspace of g spanned by B1, . . . ,  Bk.) A system £ is called 
homogeneous if A £ r 0, and inhomogeneous otherwise; £  is said to be drift free if A =  0. 
Also, £  is said to have full rank if its trace generates the whole Lie algebra, i.e., Lie(r) =  g.

Rem ark 1.1. We have the following characterization of the full-rank condition for systems on 
G when dim G =  3. No homogeneous single-input system has full rank. An inhomogeneous 
single-input system has full rank if and only if A, B 1, and [A, B 1] are linearly independent. A 
homogeneous two-input system has full rank if and only if B 1, B2, and [B1 ,B 2] are linearly 
independent. Any inhomogeneous two-input or (homogeneous) three-input system has full 
rank.

The admissible controls are piecewise continuous maps u(-) : [0,T] ^  Rk. A trajectory 
for an admissible control u(-) is an absolutely continuous curve g(-) : [0 , T] ^  G such that
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g(t) =  g(t) 5 (1,u(t)) for almost every t £ [0,T]; the pair (g(-) ,u ( -)) is referred to as a 
controlled trajectory. We say that a system £ is controllable if for any g0 ,g 1 £ G, there exists 
a trajectory g (-) : [0 ,T ] ^  G such that g(0) =  g0 and g(T) =  g1. If £  is controllable, then it 
has full rank. For more details about invariant control systems see, e.g., [14,70,73,110].

Remark 1.2. If (g(-) ,u (-)) is a controlled trajectory, then its left translation (hg(-) ,u ( -)) is 
a controlled trajectory.

Note. Left-invariant control systems on Lie groups were organised as a category in [31]; some 
basic properties were investigated.

1.1.1 Equivalence of systems

The most natural equivalence relation for control systems is equivalence up to coordinate 
changes in the state space. This is called state space equivalence (see [6 8 ]). State space equiv
alence is well understood. It establishes a one-to-one correspondence between the trajectories 
of the equivalent systems. However, this equivalence relation is very strong. In the (general) 
analytic case, Krener characterized local state space equivalence in terms of the existence of a 
linear isomorphism preserving iterated Lie brackets of the system’s vector fields ([77], see also 
[14, 113, 114]).

Another fundamental equivalence relation for control systems is that of feedback equivalence. 
Two feedback equivalent control systems have the same set of trajectories (up to a diffeomor- 
phism in the state space) which are parametrized differently by admissible controls. Feedback 
equivalence has been extensively studied in the last few decades (see [105] and the references 
therein).

We briefly consider these equivalences in the context of left-invariant control systems ( [41]). 
Characterizations of state space equivalence and (detached) feedback equivalence are obtained 
in terms of Lie group isomorphisms.

State space equivalence

Two systems £  and £ ' are called state space equivalent if there exists a diffeomorphism 
0 : G ^  G' such that for each control value u £ Rk the vector fields 5 u and 5 U are 0-related,
i.e., Tg 0 ■ 5 (g, u) =  5 ' (0(g), u) for g £ G and u £ Rk . We have the following simple algebraic 
characterization of this equivalence.

Proposition 1.3 ( [41], see also [77]) . Two full-rank systems £ and £ ' are state space equiv
alent if and only if there exists a Lie group isomorphism 0 : G ^  G' such that Ti 0 ■ 5 (1, u) =  
5 ' (1, u) for all u £ Rk .

Proof sketch. Suppose that £  and £ ' are state space equivalent equivalent. By composition 
with a left translation, we may assume 0 (1) =  1. As the elements 5 U(1), u £ Rk generate 
g and the push-forward 0*5U of left-invariant vector fields 5 U are left invariant, it follows 
that 0 is a Lie group isomorphism satisfying the requisite property (cf. [31]). Conversely, 
suppose that 0 : G ^  G' is a Lie group isomorphism as prescribed. Then Tg 0 ■ 5(g, u) =  
T1( 0  O Lg ) ■ 5 (1,u) =  T1(L^ (g ) ◦  0) ■ 5 (1,u) =  5 ' (0 (g),u ). □
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State space equivalence is quite a strong equivalence relation. Hence, there are so many 
equivalence classes that any general classification appears to be very difficult if not impossible. 
However, there is a chance for some reasonable classification in low dimensions. We give an 
example to illustrate this point.

Example 1.4 ( [4]) . Any two-input inhomogeneous full-rank control affine system on the Eu
clidean group SE (2 ) is state space equivalent to exactly one of the following systems

£ 1 ,a,87 : aE3 +  u 1 ( E 1 +  Y1 E2) +  u2 (^E2)
£ 2,a,8 7  : ^E1 +  71^2 +  Y2E3 +  u1(aE3) +  u2 E2 
£ 3,7 8 7  : +  7 1 E2 +  7 2 E3 +  u 1 ( E  +  7 3 E3) +  u2 (aE 3 ).

Here a > 0, ^ =  0 and Y1, y2, y3 £ R, with different values of these parameters yielding distinct 
(non-equivalent) class representatives.

Note. A complete classification (under state space equivalence) of systems on SE (2 ) appears 
in [4], whereas a classification of systems on SE (1,1) appears in [24]. For a classification of 
systems on SO (2 , 1 )0, see [40].

Detached feedback equivalence

We specialize feedback equivalence in the context of invariant systems by requiring that the 
feedback transformations are compatible with the Lie group structure. Two systems £  and 
£ ' are called detached feedback equivalent if there exist diffeomorphisms 0 : G ^  G' and 
^ : Rk ^  Rk such that for each control value u £ Rk the vector fields 5U and 5^(u) are 
0-related, i.e., Tg0 ■ 5 (g ,u ) =  5 ' (0(g), ^(u)) for g £ G and u £ Rk. We have the following 
simple algebraic characterization of this equivalence in terms of the traces r  =  im 5(1, ■) and 
r ' =  im 5 '(1, ■) of £  and £'.

Proposition 1.5 ( [41]) . Two full-rank systems £ and £ ' are detached feedback equivalent if 
and only if there exists a Lie group isomorphism 0 : G ^  G' such that T10 ■ r  =  r ' .

Proof sketch. Suppose £  and £ ' are detached feedback equivalent. By composing 0 with an 
appropriate left translation, we may assume 0 (1) =  1'. Hence T10 ■ 5 (1, u) =  5 '(1',^>(u)) and 
so T10 ■ r  =  r ' . Moreover, as the elements 5 U(1), u £ Rk generate g and the push-forward of 
the left-invariant vector fields 5u are left invariant, it follows that 0 is a group isomorphism 
(cf. [31]). On the other hand, suppose there exists a group isomorphism 0 : G ^  G' such 
that T10 ■ r  =  r '. Then there exists a unique affine isomorphism <p : Rk ^  Rk such that 
T10 ■ 5 (1,u) =  5 '(1',^ (u)). As with state space equivalence, by left-invariance and the fact 
that 0 is a Lie group isomorphism, it then follows that Tg0 ■ 5(g,u) =  5'(0(g), < (̂u)). □

Detached feedback equivalence is notably weaker than state space equivalence. To illustrate 
this point, we give a classification, under detached feedback equivalence, of the same class of 
systems considered in Example 1.4.



Chapter 1. Invariant systems and structures on Lie groups 9

Example 1.6 ( [36,37]) . Any two-input inhomogeneous full-rank control affine system on SE (2) 
is detached feedback equivalent to exactly one of the following systems

£ 1  : E 1 +  u 1 ^ 2  +  u2^3
£ 2,0 : +  u 1 E  +  u2^ 2 .

Here a > 0 parametrizes a family of class representatives, each different value corresponding 
to a distinct non-equivalent representative.

Note. Equivalence and controllability of left-invariant control affine systems on three-dimensional 
matrix Lie groups was investigated in [37] (see also [34-36]). On higher dimensional Lie groups, 
left-invariant control affine systems have been classified on the six-dimensional orthogonal group 
SO (4) [6 ] and the four-dimensional oscillator group [39].

1.1.2 Optimal control and Pontryagin Maximum Principle

We shall consider the class of left-invariant optimal control problems on Lie groups with fixed 
terminal time, affine dynamics, and affine quadratic cost. Formally, such problems are written 
as

g =  g (A +  u ! # 1  +------ + uk Bk), g £ G, u £ Rk (1.1)
g(0) =  go, g( T ) =  g 1 (1.2)

r T
J  =  X(u(t)) dt — > min, x(u) =  (u — u)T Q (u — u). (1.3)

0

Here G is a (real, finite-dimensional) connected Lie group with Lie algebra g, A, B 1, . . . ,  Bk £ 
g (with B 1, . . . ,  Bk linearly independent), u =  (u1 , . . . , u k) £ Rk, u £ Rk, and Q is a 
positive definite k x k matrix. To each such problem, we associate a cost-extended system 
(£,%). Here £  is the control system (1.1) and the cost function x  : Rk ^  R has the form 
x(u) =  (u — u)T Q (u — u). Each cost-extended system corresponds to a family of invariant 
optimal control problems; by specification of the boundary data B(g0 ,g 1 ,T ), the associated 
problem is uniquely determined.

The Pontryagin Maximum Principle provides necessary conditions for optimality which are 
naturally expressed in the language of the geometry of the cotangent bundle T*G of G (see 
[14, 57, 70]). The cotangent bundle T*G can be trivialized (from the left) such that T*G = 
G x g*; here g* is the dual of the Lie algebra g. More precisely, each element (g,p) £ G x g* 
is identified with (TgLg- i )* ■ p £ Tg*G. To an optimal control problem (1.1)- (1.2)- (1.3) we 
associate, for each real number A and each control parameter u £ Rk a Hamiltonian function 
on T*G =  G x g*:

H« (C) =  Ax (u) +  C( 5 u (g))
=  Ax(u) +  p(5 u (1) ) , £ =  (g,p) £ T*G. (1.4)

We denote by HU the corresponding Hamiltonian vector field (with respect to the symplectic 
structure on T *G).



10 1.2. Cost-extended systems

Lemma 1.7 ( [70, Chapter 12], see also [14, Chapter 18]). A curve £(■) =  (g(-),p(-)) is an 
integral curve of (the time varying Hamiltonian vector field) Ht (t) if and only if

g(t) =  5(g(t), u(t)) pi(t) =  ad* 5 uW(1) ■ p(t).

Here (ad* A ■ p)(B) =  p([A, B]) for A, B £ g and p £ g*.

In terms of the above Hamiltonians, the Maximum Principle can be stated as follows.

M axim um  Principle. Suppose the controlled trajectory (g(-),u(-)) defined over the interval 
[0,T] is a solution for the optimal control problem (1.1)- (1.2)- (1.3). Then, there exists a curve 
£(■) : [0,T] ^  T*G with £(t) £ Tg*t)G, t £ [0,T], and there exists a real number A < 0, such 
that the following conditions hold for almost every t £ [0, T] :

(A, £(t)) ^  (0,0) (1.5)
£(t) =  H ( t)(£(t)) (1.6)

HU(t) (£ (t))= mufx HU (£(t)) = constant. (1.7)

Any optimal trajectory, g(-) : [0, T ] ^  G is the projection of an integral curve £(■) of the 
(time-varying) Hamiltonian vector field H t (t). A trajectory-control pair (£(■),u(-)) is said to 
be an extremal pair if it satisfies the conditions (1.5), (1.6), and (1.7). We call the projection 
(g(-),u(-)) of an extremal pair an extremal controlled trajectory (here g(t) =  n(£(t)) where 
n : T*G ^  G is the canonical projection). An extremal controlled trajectory is called normal 
if A < 0 and abnormal if A =  0.

1.2 Cost-extended systems

1.2.1 Definition and basic properties

We define now the concrete category L iC A SM of cost-extended left-invariant control affine 
systems. An object is a cost-extended system (£ ,x ), where the system £ =  (G,5) is a (k- 
input) left-invariant control affine system and the cost x  : Rk ^  R, u ^  (u — u)T Q (u — u) 
is a positive definite affine quadratic form. A morphism $  =  (0, >̂) : (£ ,x ) ^  (£ 7,x 7) is a 
mapping

$ : G x Rk ^  G7 x Rk , (g, u) ^  (0(g), ^(u))

where the state component 0 : G ^  G7 is a Lie group homomorphism and the feedback compo
nent <p : Rk ^  Rk is an affine isomorphism (in particular, k =  k7), such that the diagrams

G G7

TG
t ^

TG7

$

dr
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commute, or equivalently

Tg 0 ■ 5 u (g) =  4 (u) (0(g)) and x7 o p =  rx
for some r > 0. Here denotes the dilation by r .

Remark 1.8. If $  =  (0, p) : (£ ,x ) ^  (£ 7,X7) and $ 7 =  (07,p7) : (£ 7,x7) ^  (£ 77 ,X77) are 
morphisms, then $ 7 o $  =  (07 o 0, p7 o p) : (£ , x ) ^  (£ 77, x " ) is indeed a morphism as

Tg (07 o 0) ■ 5 u (g) =  T0 (g )07 ■ Tg 0 ■ 5 u (g) =  T<̂ (g )07 ■ 5 'p (u ) (0(g)) =  5 (V ô )(u) ((07 0 0)(g)) 

and x77 o (p7 o p) =  r7x7 o p =  rr7x .

Lemma 1.9. Let $ =  (0, p) : (£ ,x ) ^  (£ 7,x7) be a LiCASM-morphismm.

1. The constant r is unique.

2. The state component 0 : G ^  G7 of a LiCASM-morphism maps controlled trajectories 
to controlled trajectories.

3. The feedback component p : Rk Rk uniquely determined by Ti 0 ■ 5 (1 , u) :7(1 , p (u)).

Proof. (1). If x7 o p =  rx , then ( x .°(U))(u) =  r for u =  u.
(2) . Suppose $  =  (0,p) : (£ ,x ) ^  (£ 7,x7) is a morphism and let (g(-),u(-)) be a

controlled trajectory of £. Then ^ 0(g(t)) =  Tg (t) 0 ■ 5 (g(t) ,u(t)) =  5 7(0(g(t) ) , p (u(t)), i.e., 
(0(g(O) ,p (u(O)) is a controlled trajectory of £ 7.

(3) . The map 5 7(1, ■) : Rk ^  r  is an affine isomorphism and hence has inverse 5 7-1  : r  ^
Rk . Consequently, if T10 ■ 5 (1, u) =  5 7(1, p(u)) for u £ Rk , then p =  5 - 1  o T10 o 5 (1, ■). □

We can characterise morphisms at the level of Lie algebras as follows.

Lemma 1.10. $ =  (0, p) : (£ =  (G, 5 ),x ) ^  (£ 7 =  (G7, 5 7) ,x 7) is a morphism if and only if 
0 : G ^  G7 is a Lie group homomorphism, p : Rk ^  Rk is an affine isomorphism, and for 
some r > 0 the diagrams

R > R k'

3(1,0 '(i,0

Ti 0
g7

R k 

X

> R k'
p p

5r

commute, or equivalently,

Ti0 ■ 5 (1, u) =  5 7(1, p(u)) and x 7 o p =  rx.

Proof. Necessity follows by definition. Suppose the maps 0 and p, and a constant r > 0, 
satisfy the conditions of the proposition. As 0 is a Lie group morphism, we have (0 o Lh)(g) =  
(L<0(h) o 0)(g) for g, h £ G. Hence Tg0 ■ 5(g,u) =  TiL^g) ■ Ti0 ■ 5(1, u). Therefore

Tg0 ■ 5(g, u) =  TiL^(g) ■ Ti0 ■ 5(1, u) =  TiL^g) ■ 5 7(1, p(u)) =  5 7(0(g),p(u)). □
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Let (g(-),u(-)) be a controlled trajectory, defined over an interval [0,T], of a cost-extended 
system (£ ,x ). We say (g(-),u(-)) is a virtually optimal controlled trajectory or VOCT of 
(£, x) if it is a solution for the associated optimal control problem (with boundary data 
B (g(0),g(T ),T )). On the other hand, we say (g(-),u(-)) is a normal (resp. abnormal) ex
tremal controlled trajectory or ECT of (£ ,x ) if it satisfies the necessary conditions of the 
Pontryagin Maximum Principle (see Section 1.1.2).

Lemma 1.11. If (g(-),u(-)) is a VOCT (resp. ECT), then its left translation (hg(-),u(-)) 
by h £ G is a VOCT (resp. ECT).

Proof. Suppose (g(-),u(-)) is a VOCT, but the controlled trajectory (hg(-),u(-)) is not a 
VOCT. Then there exists a controlled trajectory (g7(-), u7(-)) such that g7(0) =  hg(0), g7(T) =  
hg(T) and J (u 7(-)) =  / QT x(u7(t)) < / 0T x(u(t)) =  J(u (-)). Accordingly, (h-1g7( ) ,  u(0) is a
controlled trajectory such that h-1g7(0) =  g(0), h-1g7(T) =  g(T), and J (u 7( )̂) < J(u(^)). 
However, this contradicts the fact that (g(-),u(-)) is a VOCT. Hence the left translation 
(hg(-),u(-)) of a VOCT (g(^),u ()) must be a VOCT.

Suppose (g(0 ,u (0) is an ECT. Then there exists p(-) : [0,T] ^  g* such that (£(■),u(-)), 
£(■) =  (g(0,p(0) satisfies (1.5)-(1.6)-(1.7). We claim that (£7(-),u(-)), £7( )  =  (hg(0,p(0) also 
satisfies (1.5)-(1.6)- (1.7) and so (h g ( ) ,u ( ) )  is an ECT. The condition (A,£(t)) ^  (0,0) (1.5) 
is equivalent to (A,p(-)) ^  0 and thus holds. As d th g(t) =  h5(g (t),u(t)) =  5 (h g(t),u(t)), it 
follows by Lemma 1.7 that (1.6) holds. Finally, as the Hamiltonian H  (1.4) is G-invariant, it 
follows that (1.7) holds. □

We now investigate the compatibility of VOCTs and ECTs with morphisms. First, we show 
that if the image under a morphism of a controlled trajectory is a VOCT (resp. ECT), then 
that controlled trajectory is a VOCT (resp. ECT).

Theorem 1.12. Let $ =  (0, p) : (£ ,x ) ^  (£ 7,x 7) be a LiCASM-morphism and let (g(-),u(-)) 
be a controlled trajectory of £ .

1. If (0 o g(-),p  o u (0) is a VOCT of (£ 7,x 7), then (g(-),u(-)) is a VOCT of (£ ,x ).

2. If (0 o g(^),p o u ())  is a normal ECT of (£ 7,x 7), then (g(-),u(-)) is a normal ECT of
(£ 7 ,x 7).

3. If $ is an epimorphism and (0 o g ( ) ,p  o u ())  is an abnormal ECT of (£ 7,x 7), then 
(g(),u(^)) is an abnormal ECT of (£ 7,x 7).

Proof. (1). Suppose (g(-),u(-)) is a controlled trajectory of (£ ,x ) such that its image (0 o 
g (),p ou (^ )) is a VOCT of (£ 7, x7), but (g(-),u(-)) is not a VOCT of (£ ,x ). Then there exists 
another controlled trajectory (h ( ) ,v ( ) )  of (£, x) such that h(0) =  g(0), h(T) =  g(T), and

J « ) )  =  /  x (v (t))d t<  /  x(u(t))dt =  J(u(-)). 
jo  Jo
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Hence (0 o h(-), p o v ( ) )  is a controlled trajectory of (£ 7, x 7) such that (for some r > 0)

J7(p o v ( ) )  =  /  (x7 o p )(v(t)) dt =  r /  x (v(t)) dt 0 0

< r /  x(u(t)) dt =  /  (x7 o p)(u(t)) dt =  J 7(p o u(0). 
0 0

This contradicts the fact that (0 o g ( ) ,p  o u ())  is a VOCT of (£ 7,x 7).
(2 and 3). The Hamiltonian functions (1.4) associated to (£ ,x ) and (£ 7,x 7) are given by

H„(g,p) =  p (5 „(1)) +  Ax(u) and H'u, (g7,p7) =  p7(5U (1)) +  Ax7(u)

respectively (for a fixed A). Let g7( )  =  0 o #(■) and u7(̂ ) =  p o u (). We suppose (g7( ) ,  u7( ) )  
is an ECT of (£ 7,x 7). Then there exists p7( )  : [0,T] ^  g* such that (£7(-),u7( ) ) ,  £7(t) =  
(g7(t),p7(t)) satisfies (1.5)-(1.6)-(1.7). As £7(t) =  H7(t)(£7(t)) (1.6) we have (see Lemma 1.7)

g7(t) =  57(g7(t),u7(t)) p7(t) =  ad* 5U'(t}(1) ■ p7(t).

Here (ad* A ■ p)(B ) =  p([A, B]) for A, B £ g7 and p £ g7*. Let p(-) =  1 (Ti0)* ■ p7(̂ ) and
£(t) =  (g(t),p(t)). (Here r > 0 is the unique constant associated to $).

Weshowthat (£(■), u ())  satisfies (1.6)-(1.7). By assumption we have that g(t) =  5(g(t), u(t)). 
Thus, in order to satisfy (1.6), we are left to show that p(t) =  ad* 5 u(t)(1) ■ p(t). Indeed, for 
A £ g* we have

p(t) ■ A 1 ((Ti0)* ■ p7(t)) ■ A 
1 (p7(t)) ■ (Ti0 ■ A)

1 (ad* 5 ^ ( 1) ■ p7(t)) ■ (Ti0 ■ A)

1 p7(t) 'U '(t)( 1 ) , T i 0  ■A

1 p7(t) ■ [Ti0 ■ 5u(t)(1),T i0  ■ A]
1 p7(t) ■ (Ti 0 ■ [5 u(t)(1) ,A ] )
(ad* 5u(t)(1) ■ p(t)) ■ A.

In order to show that (£(■), u(-)) satisfies (1.7), we first show that Hu(£(t)) =  1H^(u)({7(t)) 
for u £ Rk. Indeed,

H« (£(t)) =  p(t) ■ 5 u (1) +  Ax(u)
=  ( 1 (Ti 0)* ■ p7(t)) ■ 5 u (1) +  Ax(u) 
=  1 p7(t) ■ 5 ^ ( 1) +  1 Ax7(p(u))

=  1 H ;H (£7(t)).
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Hence, it follows that

Hu(t) (£(t)) 1 H  ,(t)(e7(t)) 

max 1HU  ({7(t))
u 'eRfe'

.max1H  o ({7(t))
max Hu ({(t)) =  constant
«eRfc

(=  constant)

It is left to show that (1.5) holds when (g7( ) ,  u7(-)) is a normal or when (g7( ) ,  u7(-)) is 
abnormal and $ is an epimorphism. If (g7(-), u7(-)) is normal, then A < 0 and so (A, {(■)) ^  0. 
Suppose $  is an epimorphism and (g7( ) ,u 7(-)) is abnormal. As the state component 0 is 
surjective we have that (Ti 0)* is injective. Hence, as (A, £7(-)) ^  0, i.e., p7( )  ^  0, it follows 
that p(-) =  1 (Ti0)* ■ p7(t) ^  0, i.e., (A ,{())  ^  0. □

Next we show that, under a LiCASM-epimorphism, any VOCT (resp. ECT) is the image 
of some VOCT (resp. ECT).

Theorem 1.13. Let $ =  (0, p) : (£ ,x ) ^  (£ 7,x 7) be a LiCASM -epimorphism.

(i) If (g7(-),u7(-)) is a VOCT of (£ 7,x 7) , then there exists a VOCT (g(-),u(-)) of (£ ,x ) 
such that (g7(-),u7(-)) =  (0 o g( ■ ), p o u ( ) ) .

(ii) If (g7( ■ ),u 7( ■ )) is an ECT of (£ 7,x 7) , then there exists an ECT (g( ■ ),u ( ■ )) of (£ ,x ) such 
that (g7( ■ ),u 7( ■ )) =  (0 o g( ■ ) ,p  o u(■ ) ) .

Proof. Suppose that (g7( ■ ),u 7( ■ )) is a VOCT (resp. ECT) of (£ 7,x 7). As 0 is surjective, 
there exists g £ G such that 0(g) =  g7(0). Accordingly, there exists a controlled trajectory 
(g( ■ ) ,p -1 ou7( ■ )) of £  such that g(0) =  g. We claim that the image of (g( ■ ) ,p -1 ou7( ■ )) under 
$  is (g7( ■ ),u7( ■ )). Now

d
dt0(g (t)) =  Tg(*)0  ̂5 (g(t),p -1(u7(t))) =  57(0(g(t)), (p o p -1)(u7(t))) =  57(0(g (t)),u7(t)).

Hence, as 0(g( ■ )) and g7( ■ ) solve the same Cauchy problem, they are equal. By Theorem 1.12, 
it then follows that (g( ■ ) ,p -1 o u( ■ )) is a VOCT (resp. ECT) of (£ ,x ). □

Accordingly, we have that a LiCASM-isomorphism establishes a one-to-one correspondence 
between VOCTs (resp. ECTs).

Corollary 1.14. Suppose $ =  (0, p) : (£ ,x ) ^  (£ 7,x 7) is a LiCASM-isomorphism.

(i) (g(■ ) ,u (■ )) is a VOCT if and only if (0 o g( ■ ) ,p  o u( ■ )) is a VOCT.

(ii) (g( ■ ) ,u (■ )) is an ECT if and only if (0 o g( ■ ) ,p  o u( ■ )) is an ECT.

Lastly, we show that when the state component 0 : G ^  G7 is a Lie group covering 
homomorphism (i.e., 0 is surjective and Ti 0 is a linear isomorphism), then ECTs project and 
lift to ECTs. We note that the proof is formally very similar to that of Theorem 1.12.



Chapter 1. Invariant systems and structures on Lie groups 15

Theorem 1.15. Suppose $ =  (0, p) : (£, x) ^  (£ 7,x 7) is a LiCASM-epimorphism with state 
component 0 a covering homomorphism. Then a controlled trajectory (g( ■ ),u ( ■ )) is an ECT 
of (£ ,x ) if and only if (0 o g( ■ ) ,p  o u( ■ )) is an ECT of (£ 7,x 7).

Proof. If (g( ■ ),u( ■ )) is a controlled trajectory and (0og( ■ ),p ou ( ■ )) is an ECT, then (g( ■ ),u ( ■ )) 
is an ECT by Theorem 1.12. Conversely, suppose (g( ■ ),u ( ■ )) is an ECT. The Hamiltonian 
functions (1.4) associated to (£ ,x ) and (£ 7,x 7) are given by

H„(g,p) =  p (5 „(1)) +  Ax(u) and HU (g7,p7) =  p7(5U (1)) +  Ax7(u)

respectively (for a fixed A). Accordingly, there exists p( ■ ) : [0, T] ^  g* such that ({( ■ ),u ( ■ )), 
{(t) =  (g(t),p(t)) satisfies (1.5)-(1.6)-(1.7). As {(t) =  H*(t)({(t)) (1.6) we have (see Lemma 1.7)

g(t) =  5(g(t),u(t)) p(t) =  ad* 5„(t)(1) ^p(t).

Here (ad* A ■ p)(B) =  p([A, B]) for A, B £ g and p £ g*. Let g7( ■ ) =  0og( ■ ) and u7( ■ ) =  pou( ■ ). 
As 0 is a covering homomorphism, Ti 0 is a Lie algebra isomorphism and so ((Ti 0)-1 )* : g* ^  
g7* is well defined. Let p7( ■ ) =  r((Ti 0 )-1 )* -p( ■ ). (Here r > 0 is the unique constant associated 
to $). We claim that ( {7( ■ ),u 7( ■ )), { 7( ■ ) =  (g(■ ),p( ■ )) satisfies (1.5)-(1.6)- (1.7).

As Tg0 ■ 5(g(t),u(t)) =  5 7(g7(t), u7(t)), we have that g7(t) =  5 7(g7(t), u7(t)). Thus, in order 
to satisfy (1.6), we are left to show that p7(t) =  ad* 5g/(t)(1) ■ p7(t). Indeed, for A £ g7* we 
have

p7(t) ■A =  r (((T i0 )- 1)* ■p(t)) ■A 
=  r(p(t)) ■ ((T i0)- 1 ■yi)
=  r (ad* 5 „(t)(1) ■ p(t)) ■ (Ti0 • A)

=  r p(t) ■ [5 «( )̂(1), (Ti 0)- 1 ■ A]
=  r p(t) ■ [(Ti 0 )- 1 ■ ^ / ( t ^ ^  (Ti 0 )- 1 ■ A]
=  ( p(t) ■ ((Ti 0)- 1 ■ [5 u(t)(1) ,A ] )
=  (ad* 5u/(t)(1) V (t)) ■ A .

In order to show that ({( ■ ),u ( ■ )) satisfies (1.7), we first show that H ;(u)({7(t)) =  rHU({(t)) 
for u £ Rk. Indeed,

H (u )({7( t ) )=  p7(t) ■ 5^(u)(1) +  Ax7(p(u))

=  r(((Ti 0 )-1 )* ■ p(t)) ■ 5 ';(„) (1) +  Ax 7(p (u))
=  rp(t) ■ 5u(1) +  Arx(u)
=  rHu({(t)).
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Hence, it follows that

HU/(t)( {7(t)) =  rHu(t) ({(t))
=  max rHU ({(t)) (=  constant)

« eRfc

=  maX rH ; - l (u /) ({(t))
« / €Rfc

=  max HU/ ( {7(t)) =  constant
« / GRfc/

It is left to show that (1.5) holds. We have (A,p( ■ )) ^  0. Hence, as ((Ti 0)- 1)* is bijective, we 
have (A,p7(■ )) =  (A ,r((T i0)- 1)* -p (■ )) ^  0. □

Remark 1.16. The above result is not true for VOCTs.

1.2.2 Equivalence

We say that two cost-extended systems (£ ,x ) and (£ 7,x 7) are cost equivalent (shortly C- 
equivalent) if they are isomorphic in LiCASM. We have the following basic results.

Proposition 1.17. (£  =  (G ,5 ),x ) and (£ 7 =  (G7,5 7) ,x 7) are C -equivalent if and only if 
there exist a Lie group isomorphism 0 : G ^  G7 and an affine isomorphism p : Rk ^  Rk such 
that Ti 0 ■ 5 (1, u) =  57(1, p(u)) and x 7 o p =  rx for some r > 0.

Proof. (£  =  (G ,5),x ) and (£ 7 =  (G7,5 7) ,x 7) are C-equivalent, i.e., we have a LiCASM- 
isomorphism (0, p) : G x Rk ^  G7 x Rk , (g,u) ^  (0(g), p(u)). It follows that Lie group
homomorphism 0 is bijective and hence a Lie group isomorphism. Hence, by Lemma 1.10 
we have that 0 and p satisfy the required properties. Conversely, suppose there exist a 
Lie group isomorphism 0 : G ^  G7 and an affine isomorphism p : Rk ^  Rk such that 
Ti 0 ■ 5 (1, u) =  5 7(1,p(u)) and x 7 o p =  rx for some r > 0. By Lemma 1.10 we have that 
(0, p) is a morphism. We have that (0, p) is an isomorphism as it has inverse (0 - 1, p - 1). □

Corollary 1.18. If (£ ,x ) and (£ 7,x 7) are C -equivalent, then £  and £ 7 are detached feedback 
equivalent.

Proof. Follows by Propositions 1.5 and 1.17. □

Corollary 1.19. Let £  and £ 7 be two k-input full-rank systems, and let x  : Rk ^  R be any 
admissible cost.

(i) If £  and £ 7 are state space equivalent, then (£, x) and (£ 7, x) are C -equivalent.

(ii) If £  and £ 7 are detached feedback equivalent, then (£, x  o p) and (£ 7, x) are C - 
equivalent. (Here (0, p) defines the detached feedback equivalence.)

Proposition 1.20. Any cost-extended system (£ =  (G, 5 ),x ) is C -equivalent to a system 
(£ 7 =  (G, 57), x 7) with r 7 =  r  and x 7(u) =  uTu.
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Proof. Let x(u) =  (u—u)T Q (u—u). As Q is symmetric and positive-definite, there exists (see 
e.g., [90]) a non-singular real matrix R such that RTQR =  I . Let p : Rk ^  Rk , u ^  Ru +  u 
and let 57 : G x Rk ^  T G, 57(1,u) =  5 (1, p(u)). Then Ti  idG ■ 5 7(1,u) =  5 (1, p(u)) and 
x(p(u)) =  uTRTQRu =  uTu. The result then follows by Proposition 1.17. □

For a k-input system £ =  (G, 5), let 7s denote the group of feedback transformations 
leaving £  invariant. More precisely,

7s =  {p  G Aff (Rk) : 3^ G d Aut (G), ^ ■ 5 (1, u) =  5 (1, p (u))}.

Likewise, for an admissible cost x : Rk ^  R, let 7X denote the group of feedback transforma
tions leaving x  invariant. More precisely,

7X =  {p  G Aff (Rk) : x  o p =  rx for some r > 0}.

Here Aff (Rk ) is the group of affine automorphisms of Rk , Aut(G) is the group of Lie group 
automorphisms, and d Aut(G) =  {T i 0 : 0 G Aut(G)}.

Proposition 1.21. (£ ,x ) and (£ ,x 7) are C -equivalent if and only if there exists p G 7s 
such that x 7 =  rx o p for some r > 0.

Proof. Suppose there exists a LiCASM-isomorphism $ =  0 x p : (£ ,x )  ^  (£ ,x 7). Then
Ti 0 G d Aut (G) and Ti 0 ■ 5 (1, u) =  5 (1, p(u)). Hence p G 7s. Also, as $  is a LiCASM-
isomorphism, there exists a constant r > 0 such that x7 o p =  rx. Therefore, p =  p -1 G 7s 
and x 7 =  rx o p.

Conversely, suppose there exists some p -1 G 7s such that x 7 =  rx o p -1 for some r > 0,
i.e., x 7op =  rx. As p G 7s, there exists an automorphism 0 : G ^  G such that Tj.0 -5 (1, u) =  
5 (1, p(u)). The result then follows by Proposition 1.17. □

Proposition 1.22. (£  =  (G, 5 ),x ) and (£ 7 =  (G7, 5 7),x ) are C -equivalent if and only if there 
exists a Lie group isomorphism 0 : G ^  G7 and p G 7X such that 5 7(1,u) =  Ti 0 ■ 5 (1, p(u)).

Proof. Suppose we have a LiCASM-isomorphism $ =  0 x p : (£ ,x ) ^  (£ 7,x). Then Ti 0 ■
5 (1, u) =  5 7(1,p(u)) and x o p =  rx for some r > 0. Hence p G 7X and so p =  p -1 G 7X

Also, Ti 0 ■ 5 (1, p(u)) =  57(1, u).
Conversely, suppose that 0 : G ^  G7 is a Lie group isomorphism, p -1 G 7X , and 57(1,u) =  

Ti 0 ■ 5 (1, p -1 (u)). Then Ti 0 ^5(1,u) =  5 7(1,p(u)) and x o p =  rx for some r > 0 (as 
p G 7X ). The result then follows by proposition 1.17. □

1.3 Pontryagin lift and Hamilton-Poisson systems

To any cost-extended system (£, x) on a Lie group G we associate a (lifted) Hamilton-Poisson 
system on the associated Lie-Poisson space g* , via the Pontryagin Maximum Principle (cf. 
[14,70,110]). Indeed, the maximum condition (1.7) eliminates the parameter u from the family 
of Hamiltonians (Hu ); as a result, we obtain a smooth G-invariant function H on T *G =  G x g*.
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This Hamilton-Poisson system on T*G can be reduced (cf. [78]) to a Hamilton-Poisson system 
on the (minus) Lie-Poisson space g -, with Poisson bracket given by

{F, G } =  —p ■ [dF(p),dG(p)].

Here F, G G C^(g*) and dF(p),dG(p) are elements of the double dual g** which is canoni
cally identified with the Lie algebra g. We shall realize the Pontryagin lift as a contravariant 
functor (cf. [57]) between the category of cost-extended systems and an appropriate category 
of quadratic Hamilton-Poisson systems.

A quadratic Hamilton-Poisson system (g - ,H ^ ,g ) is specified by

Ha ,q : g* ^  R, p ^  p ■ A +  Q(p).

Here A G g and Q is a quadratic form on g*. If A =  0, then the system is called homogeneous; 
otherwise, it is called inhomogeneous. When g - is fixed, a system (g-, Ha ,q ) is identified with 
its Hamiltonian Ha ,q . To each function H G C^(g*), we associate a Hamiltonian vector field 
H  on g* specified by H [F] =  {F, H } . A function C G C^(g*) is a Casimir function if 
{C ,F } =  0 for all F  G C^(g*), or, equivalently C =  0. A linear map 0  : g* ^  h* is a 
linear Poisson morphism if {F, G } o 0  =  {F o 0, G o0 } for all F, G G C^(h*). Linear Poisson 
morphisms are exactly the dual maps of Lie algebra homomorphisms; indeed, this leads to a 
contravariant functor from the category of finite-dimensional Lie algebras to the category of 
Poisson manifolds (see, e.g., [79,88]).

Let (E1, . . . ,  Fn ) be an ordered basis for the Lie algebra g and let (F1, . . . ,  F^ ) denote 
the corresponding dual basis for g*. We write elements B G g as column vectors and elements 
p G g* as row vectors. Whenever convenient, linear maps will be identified with their matrices. 
If we write elements u G Rk as column vectors as well, then we can express 5 u (1) =  A + 
u1B 1 +  ...  +  ukBk as 5 u (1) =  A +  B u, where B =  [B1 ■ ■ ■ Bk] is a n x k matrix. The
equations of motion for the integral curve p( ■ ) of the Hamiltonian vector field H  corresponding 
to H G C^(g*) then take the form p* =  —p ■ [Fj , dH(p)].

Let (£ ,x ) be a cost-extended system with

5 u (1) =  A +  B u, x(u) =  (u — u)TQ(u — u).

An application of the Pontryagin Maximum Principle yields the following result.

Theorem  1.23 (cf. [70,78]). Any normal ECT (g( ■ ),u ( ■ )) of (£ ,x )  is given by

g(t) =  5(g(t),u(t)), u(t) =  Q-1 B t  p(t)T +  u

where p( ■ ) : [0, T] ^  g* is an integral curve for the Hamilton-Poisson system on g -  specified 
by

H(p) =  p (A +  B u) +  1 p B Q-1 B t  pT. (1.8)

Proof. The Hamiltonian (1.4) is given by Hu (g,p) =  pA  +  p B  u +  A (u — u)T Q (u — u). 
Now, (g,p) =  p B +  2A(u — u)T Q. Hence the maximum maxu Hu (g,p) occurs at uT =
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— p B Q 1 +  uT (for a normal ECT we have A < 0). Therefore the maximized Hamiltonian 
is given by

H (g,p) =  max Hu (g,p)

=  p A +  p B (— ̂ Q-1 BT pT +  u) +  4^2 p B Q-1 Q Q-1 BT pT 
=  p (A +  B u) — ^  p B Q-1 Bt pT.

As the maximized Hamiltonian H is defined and smooth, it follows that if ({( ■ ),u ( ■ )) satisfies 
(1.5)-(1.6)-(1.7) , then {(t) =  H ( { (t)) and u( ■ ) =  — 2x Q-1 BT p( ■ ) +  u; moreover, if {(■ ) =  
(g( ■ ),p( ■ )) is an integral curve of H , then the pair ({( ■ ),u ( ■ )), u( ■ ) =  — 2̂  Q-1 BT p( ■ ) +  u 
satisfies (1.5)- (1.6)-(1.7) (see [14, Chapter 12]). Accordingly the normal ECTs are the projection 
(g( ■ ) ,p ( ■ )) of the pairs ({( ■ ),u ( ■ )) where u( ■ ) =  — ̂  Q-1 BT p( ■ ) +  u and { (  ■ ) =  (g( ■ ),p( ■ )) 
is an integral curve of the Hamiltonian vector field H  on T*G =  G x g*. However, as the 
Hamiltonian H is G-invariant, the integral curves (g( ■ ),p( ■ )) of H are given by (see, e.g., 
[70, Chapter 12])

g(t) =  g(t) dH(p(t)) and p(t) =  ad* dH(p(t)) ■ p(t)

where H is viewed as a function on g* and dH(p) G g** is canonically identified with an 
element in g. Accordingly we get g(t) =  5(g(t),u(t)) where u(t) =  — 2^Q - 1 BT p(t)T +  u and 
p(t) is an integral curve of the Hamiltonian system (g - ,H ). Finally, as the pair (A, { ( ■ )) can 
be multiplied by any positive number [14, Chapter 12], we take A =  — 2 for convenience. □

Remark 1.24. B Q - 1 BT is a positive semidefinite matrix (of rank k).

Accordingly, the study of extremal controls of a cost-extended system may be reduced, 
essentially, to the study of the associated Hamilton-Poisson system (1.8). We define the concrete 
category of quadratic Hamilton-Poisson systems, HPn, as follows. An object is a pair (g - , H ), 
where H =  Ha ,q : g- — R, p — p(A) +  Q(p). Here A G g and Q is a positive semidefinite 
quadratic form on g - . (When g- is fixed, (g - ,H ) is identified with H .) A morphism 
0  : (g - ,H ) — ((g7) - ,H 7) is a linear mapping 0  : g* — (g7)* such that H  and Hr are 
compatible with 0, i.e., Tp0  ■ H (p) =  HH7(0(p)) for p G g*. If 0  : (g - ,H ) — ((g7) - , H7) and 
0 7 : ((g7) - ,H 7) — ((g77) - ,H 77) are morphisms, then 0 7 o 0  : (g - ,H ) —- ((g77) - ,H 77) is indeed a 
morphism as Tp(07 o 0) ■ H  (p) =  T^(p)07 ■ H 7(0(p)) =  H77 ((0 7 o 0)(p)). We will say that two 
Hamilton-Poisson systems (g - ,H ) and ((g7)- ,H 7) are linearly equivalent or L-equivalent if 
they are isomorphic in HPn.

Proposition 1.25. The following pairs of Hamilton-Poisson systems (on g - , specified by their 
Hamiltonians) are L-equivalent:

1. Ha ,q o 0  and Ha ,q , where 0  : g- — g- is a linear Lie-Poisson automorphism;

2. Ha ,q and Ha ,tq , where r > 0;

3. Ha ,q and Ha ,q +  C , where C is a Casimir function.
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Proof. (1). As 0  is a (linear) Poisson isomorphism, it follows that T 0  oH —q o 0  =  Ha ,q o 0  
(see e.g., [88]), i.e., 0* H—q o 0  =  Ha ,q .

(2) . Let p(-) be an integral curve of Ha ,q , i.e., suppose pj (t) =  —p(t) ■ [Fj , A +  p(t)TQ]. 
Let £(■) =  1 p(^). Then p?i (t) =  — 1p(t) ■ [Fj , A +  p(t)TQ] =  —p(t) ■ [Fj , A +  p(t)TrQ]. Thus 
pp) is an integral curve of HA ,r Q . Thus Ha ,q and HA ,r Q are compatible with the dilation 
51/ r : p — 1p (as 51/ r maps the flow of Ha ,q to the flow of Ha ^q ).

(3) . We have {H a ,q +  C, F } =  {H a ,q ,F } for F  G C~(g*). Thus Ha ,— +  — =  Ha ,q , i.e., 
these vector fields are compatible with the identity map. □

We now realize the Pontryagin lift as a contravariant functor from LiC ASM to H P n.

Lemma 1.26. Let (£ ,x ) and (£ 7,x 7) be cost-extended systems with 5 U(1) =  A +  B u and 
5 U (1) =  A7 +  B7u7, respectively. If $  =  (0, <̂ ) : (£, x) — (£ 7,x 7), <̂ (u) =  Ru +  ^>0 is a 
L iC ASM -morphism, then

Ti^ A =  A7 +  B7 >̂0 Ru +  >̂0 =  u7
Ti0 B =  B 7R R Q -1 Rt =  r (Q7) -1 .

Here r is the unique positive constant associated to the morphism $.

Proof. As Ti 0 ■ 5 (1 ,u) =  5 7(1, ^>(u)), we have Ti 0 A  +  Ti 0 B u  =  A7 +  B p 0 +  B7 Ru. Equating 
the coefficients of u yields Ti 0 A  =  A7 +  B 7 >̂0 and Ti 0 B =  B 7R. Also, as rx =  x7 o ^ for 
some r > 0, we have

r(u — u)T Q (u — u) =  (<̂ (u) — u)T Q7 (<̂ (u) — u)
=  (u — R-1 (u7 — >̂0))T Rt Q7 R (u — R-1 (u7 — <̂0)).

Consequently, as Q and RT Q7 R are symmetric and positive definite, it follows that rQ = 
Rt Q7R and Ru +  >̂0 =  u7. □

Theorem  1.27. The assignment

P (£ ,x )  =  (g -,H (S,X)) 

p ( ( £ ,x )  —- (— — (£ 7,x 7)) =  ((g7) - ,  H(e/,x/))
:(Ti )̂*1

* (g- ,  H(S,x))

defines a contravariant functor P  : L iC A SM — H P n. Here H(S,X) denotes the Hamiltonian 
associated to (£ , x ) as given in (1.8).

Proof. Let (£ ,x ) and (£ 7,x7) be cost-extended systems with 5 (1 , u) =  A+B  u and 5 7(1 ,u7) = 
A7 +  B 7 u7, respectively. The associated Hamilton-Poisson systems on g - and (g7) - ,  are re
spectively given by

H(e,x) (p) =  p (A +  B u) +  2 p B Q-1 B t pT 
H(s/,x/)(p) =  p (A7 +  B 7u7) +  1 p B 7 (Q7)-1 (B7)T pT
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Let $  =  (0, >̂) : (£ ,x )  — (£ 7,x 7), ^(u) =  Ru+ ^>0 be a LiCASM-morphism. Then, by Lemma 
1.26, we have

(H(e,x) o (Ti 0)*)(p) =  p (Ti0 (A +  B u)) +  2 p Ti 0 B Q- 1 BT Ti 0T pT 
=  p (A7 +  B7 (Ru +  ^ 0 ) +  2 p B7 R Q - 1 Rt B7TpT 
=  p (A7 +  B7 u7) +  § p B7 (Q7) - 1 B7T pT.

Thus the vector fields associated with H(S/,X/) and H(S,X) o (Ti 0)*, respectively, are compat
ible with the dilation 51 / r (Proposition 1.25). Furthermore, the vector fields associated with 
H(s ,x ) o (Ti0)* and H(S)X), respectively, are compatible with the linear Poisson morphism 
(Ti 0)*. Consequently 1  (Ti 0)* : ((g7)*, H(S, jX,)) — (g*, H(S>X)) is a HPn-morphism.

For LiCASM morphisms $ : (£ ,x ) — (£ 7,x 7) and $ 7 : (£ 7,x 7) — (£ 77,x 77) we have

P ($ 7 o $) =  ^ ( T i (07 o 0))* =  1 (Ti0)* £ (Ti07)* =  P ($) o P ($ 7)

For the identity morphism id(s,x ) =  (idG , idRk) : (£ ,x ) — (£ ,x )  we have P (id(s,x )) =  idfl* = 
idp (s ,x ). °

Corollary 1.28. If (£ ,x ) and (£ 7,x 7) are C -equivalent, then p (£ ,x ) and P (£ 7,x 7) are 
L-equivalent.

Remark 1.29. The converse of the above statement is not true in general. In fact, one can 
construct cost-extended systems with different numbers of inputs, but equivalent Hamiltonians 
( [38]).

1.4 Invariant sub-Riemannian structures

1.4.1 Formalism

A left-invariant sub-Riemannian manifold is a triplet (G,D ,g), where G is a (real, finite
dimensional) connected Lie group, D is a smooth nonintegrable left-invariant distribution on 
G, and g is a left-invariant Riemannian metric on D. More precisely, D (1) is a linear subspace 
of the Lie algebra g of G and D(g) =  gD (1); the metric gi is a positive definite symmetric 
bilinear form on g and gg (gA, gB) =  gi (A ,B ) for A ,B G g, g G G. Again, the product 
gA is given by Ti Lg ■ A, where Lg : h — gh is the left translation by g and Ti Lg is the 
tangent map of Lg at identity. When D =  T G (i.e., D (1) =  g) then we have a left-invariant 
Riemannian manifold which we simply denote (G, g). Note that the structure (D, g) on G is 
completely determined by the subspace D (1) C g and the scalar product gi on D (1). We 
say that a list of k smooth vector fields (X 1, . . .  ,X k) is an orthonormal frame for (G, D, g) 
if D(g) =  span(X1 (g ),. . . ,  (g)) and g(X j ,X j ) =  . We note that any left-invariant sub-
Riemannian structure on a Lie group admits a (global) orthonormal frame of left-invariant 
vector fields.

An absolutely continuous curve g(-) : [0,T] — G is called a D-curve if g(t) G D(g(t)) 
for almost all t G [0,T]. We shall assume that D satisfies the bracket generating condition,
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i.e., D (1) generates g; this condition is necessary and sufficient for any two points in G to be 
connected by a D-curve (see, e.g., [47,94]). The length of a horizontal curve g(-) is given by

^(gO)) = /  ^/g(g(t),g(t))0
A sub-Riemannian manifold (G, D, g) is endowed with a natural metric space structure, namely 
the Carnot-Caratheodory distance ([47,94]):

dcc(g ,h )= in f{^ (g(-)) : g (g is a horizontal curve joining g and h}.

A standard argument (see, e.g., [100], cf. [11]) shows that the length minimization problem

g(t) G D(g (t ))  g (0) =  go, g (T) =  g l,
rT

V g (g(t),g(t)) - — min
(1.9)

0
is equivalent to the energy minimization problem, or invariant optimal control problem

g(0) =  g0 , g ( T ) =  gxg =  =«(g), u g R

[  x(u(t)) dt
(1.10)

min.
0

Here ^ ( 1) =  u1B 1 +  ■ ■ ■ +  ukBk where B 1, . . . ,  Bk are some linearly independent elements 
of g such that (B 1 , . . . , B fc) =  D (1); x(u(t)) =  u(t)TQu(t) =  gi(S M(t) (1), 2 ^ ( 1)) for some 
k x k positive definite (symmetric) matrix Q. Indeed, energy minimizers are exactly those 
length minimizers which have constant speed

Accordingly, to solve the length minimising problem (1.9), it suffices to solve a corresponding 
optimal control problem (1.10). We shall call the projection g(-) of a normal (resp. abnormal) 
ECT (g(-),u(-)) a normal (resp. abnormal) geodesic. Likewise, the projection g(-) of a VOCT 
(g(-), u(-)) will be referred to as a minimising geodesic. Note that a minimising geodesic realizes 
the Carnot-Caratheodory distance between its endpoints. We find it convenient to restate a 
modified form of Theorem 1.23 in this context.

Theorem 1.30. Let ( X1, . . . ,  ) be an orthonormal frame of left-invariant vector fields for
(G,D, g) . The normal geodesics g(-) of (G,D, g) are given by

g =  g(u 1 ^ 1 (1) +-------+ ufc X fc (1))
ui (t) =  p(t) ■ X i (1), p(t) =  H (p(t))

where (g - ,H ) is the Hamilton-Poisson system specified by H(p) =  1 ^ k=1 p(X i (1))2.

1.4.2 Functorial relation to LiC ASM

We define the concrete category LiSR of left-invariant sub-Riemannian manifolds as follows. 
An object is a left-invariant sub-Riemannian (or Riemannian) manifold (G, D , g) with bracket 
generating-distribution D. A morphism 0 : (G, D , g) — (G7, D7, g7) is a Lie group homomor
phism 0 : G — G7 such that
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1. D(1) n ker Ti0 =  {0},

2. Tg0 ■ D(g) =  D7(0(g)) for g G G,

3. and rgg(gA,gB) =  g^(g)(T0 ■ gA, T0 ■ gB) for g G G, A ,B  G D(1) and some r > 0.

Note that the first two conditions imply that dimD(1) =  dimD7(1 ) ; we also have that for a 
given morphism 0, the constant r > 0 is uniquely defined. Furthermore, if 0 : (G, D, g) — 
(G7, D7, g7) and 07 : (G7, D7, g7) — (G77, D77, g77) are morphisms, then 07 o 0 : (G, D, g) — 
(G77, D77, g77) is indeed a morphism.

Analogous to Lemma 1.10, we can characterise morphisms as follows.

Lemma 1.31. A Lie group homomorphism 0 : G — G7 defines a morphism 0 : (G, D, g) — 
(G7, D7, g7) if and only if D(1) n ker Ti 0 =  {0},

Ti0 ■ D(1) =  D7(17) and r g i(A ,B ) =  g i, (Ti0 ■ A ,T i0 ■ B ) A, B G g.

Proof. Necessity follows by definition. Suppose the map 0 and a constant r > 0 satisfy the 
conditions of the proposition. As 0 is a Lie group morphism, we have (0oLh)(g) =  (L^(h)o0)(g) 
for g, h G G. Hence Tg0 -D(g) =  Tg0-gD(1) =  TiL^g) ■ Ti0^D(1) =  T iL ^ ) -D7(17) =  D7(0(g)) 
for g G G. Likewise, we have rgg (gA,gB) =  rg i(A ,B ) =  gi, (Ti0 ■ A ,T i0  ■ B) =  g^(g)(TiL^(g) ■ 
(Ti 0 ■ A),Ti L (̂g) ■ (Ti 0 ■ B)) =  g^(g)(Tg0 ■ gA,Tg0 ■ gB) for g G G, A, B G D (1). □

We show that LiSR is equivalent (as a category) to a full subcategory of L iC A SM. Let 
LiCASg be the full subcategory of L iC A SM with objects (£ ,x )  being full-rank homogeneous 
systems (i.e., 5(1,0) =  0 and Lie(r) =  g) with homogeneous cost (i.e., x(0) =  0). Let (£ ,x ) 
be a LiCASg object. We denote by Ds the associated left-invariant distribution specified 
by Ds(1) =  r  =  im5(1, ■). We denote by g (s,x) the unique left-invariant metric (on Ds) 
satisfying gis,x) (5 (1 ,u), 5 (1 ,u)) =  x(u) for u G Rk.

Theorem  1.32. The assignment

F (£ ,x ) =  (G, Ds, g (s,x))

F ((£ ,x )  - = - - — (£ 7,x 7)) =  (G, Ds, g (s,x)) — (G7, D s,, g (s' ,x,)) 

defines a covariant functor F : LiCASg — LiSR.

Proof. Let $  =  (0, >̂) : (£ ,x ) — (£ 7,x 7) be a LiCASg-morphism. Furthermore, let (G, D, g) =  
F (£ ,x ) and (G7,D 7, g7) =  F (£7,x 7). We have Ti 0 ■ 5 (1 ,u) =  57(17,^>(u)) and x7 o ^ =  rx. 
Hence Ti 0 ■ D(1) =  Ti 0 ■ im5(1, ■) =  im 57(17, ■) =  D7(17). Let A, B G D(1). There exists 
u G Rk such that A =  5 (1 ,u). Therefore

g i, (Ti 0 ■ A  Ti 0 ■ A) =  g i, (57(1, 57(1, ^ (u)))
=  (x7 o ^)(u)
=  rx(u)
=  rgi(5(1 , u), 5 (1 ,u))
=  rg1 (A, A).
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Thus gi,(Ti 0 ■ A, Ti 0 ■ B) =  rgi (A, B). Consequently, by Lemma 1.31, we have that F ($) : 
(G, D, g) — (G7, D7, g7) is indeed a morphism.

For LiCASg morphisms $ : (£ ,x ) — (£ 7,x 7) and $ 7 : (£ 7,x 7) — (£ 77 ,x 77) we have 
F ($7 o $) =  07 o 0 =  F ($7) o F($). For the identity morphism id(S,x) =  (idG, idRk) : (£ ,x ) — 
(£, x) we have F(id(s,x)) =  idc =  id^(s,x). D

Lemma 1.33. F is surjective on objects, i.e., for any LiSR-object (G ,D ,g) there exists a 
LiCASg -object (£ ,x ) such that F (£ ,x ) =  (G, D, g).

Proof. Let (G, D, g) be a LiSR-object and let (Ai, A2, . . . ,  Ak) be an orthonormal basis for
(D(1), g i ). Define a cost-extended system (£ ,x ) on G by 5(1, u) =  uiA i +  u2A2 4-------4 ukAk
and x(u) =  uTu. Then F (£ ,x) =  (G ,D ,g). □

Theorem  1.34. F is an equivalence of categories.

Proof. By the preceding lemma we have that F is isomorphism-dense. Hence it suffices to show 
that F is full and faithful.

Let (£ ,x )  and (£ 7,x 7) be a pair of LiCASg-objects and let (G, D, g) =  F (£ ,x ) and 
(G7, D7, g7) =  F (£7,x 7). Suppose 0 : F (£ ,x ) — F (£7,x 7) is a LiSR-morphism. Then Ti 0 ■ 
im5(1, ■) =  im 57(1, ■). Hence, there exists a unique linear isomorphism ^ : Rk — Rk such 
that T i0 ■ 5(1, u) =  57(1, <£>(u)). We claim that $  =  (0, >̂) is a LiCASg-morphism. Indeed, 
Tj_0 ■ 5(1, u) =  5 7(1, < (̂u)) by definition and

(x7 o ^)(u) =  g i ,(57(1, 57(1, ^ (u)))
=  gi,(T i0  ■ 5(1, u), Ti0 ■ 5(1, u))
=  r g i (5(1, u), 5(1, u))
=  rx(u).

T h u s F( $ )  =  0 and so F is full.
S u p pose  $  =  (0, >̂) , $ 7 =  (07, >̂7) : ( £ , x ) — ( £ 7, x 7) are tw o  LiC ASg -m orp h ism s such  that 

F( $ )  =  0 =  07 =  F( $ 7) . A s Ti0 ■ 5 ( 1, u) =  Ti07 ■ 5 ( 1, u) we have 5 7( 17,^ (u) )  =  5 7( 17,^ 7(u))  
and so ^ =  ^7 (see L em m a  1 .9 ) . T h u s $  =  $ 7. C on sequently , F is fa ith fu l. □

Corollary 1.35. Two LiCASg -objects ( £ , x ) and ( £ 7,x 7) are C -equivalent if and only if 
F( £ , x ) and F( £ 7, x 7) are L iSR -isomorphic.

A ccord in g ly , i f  0 : ( G, D, g ) — ( G7, D7, g7) is a LiSR -m orp h ism , th en  there exists a 
LiCASg -m orp h ism  $  : ( £ ,x ) — ( £ 7,x 7) such th a t 0 =  F( $ )  (and  ( G, D, g ) =  F( £ ,x ), 
(G7, D7, g7) =  F( £ 7, x7) ) .  W e  ca n  thus restate results con cern in g  th e  co m p a tib ility  o f  LiC ASg - 
m orph ism s w ith  V O C T s  and E C T s  in term s o f  th e  co m p a tib ility  o f  LiSR -m orp h ism s w ith  
geodesics.

Corollary 1.36. Let 0 : (G, D, g ) — ( G7, D7, g7 ) be a LiSR-morphism and let g ( )̂ be a
D-curve.

• Suppose 0 is a LiSR-morphism.
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-  If 0 o g( )̂ is a minimising geodesic, then g( )̂ is a minimizing geodesic.
-  If 0 o g( )̂ is a normal geodesic, then g( )̂ is a normal geodesic.

• Suppose 0 is a L iSR -epimorphism.

-  If 0 o g( )̂ is an abnormal geodesic, then g( )̂ is an abnormal geodesic.
-  If 0 is a Lie group covering homomorphism, then g( )̂ is a normal (resp. abnormal) 

geodesic if and only if 0 o g( )̂ is a normal (resp. abnormal) geodesic.

• Suppose 0 is a L iSR -isomorphism.

-  g( )̂ is a minimising geodesic if and only if 0 o g( )̂ is a minimising geodesic.
-  g( )̂ is a normal (resp. abnormal) geodesic if and only if 0 o g( )̂ is a normal (resp. 

abnormal) geodesic.

Rem ark 1.37. Let 0 : (G, D, g) — (G7, D7, g7) be a LiSR-epimorphism. In this case we can 
restate the above result in terms of lifted curves. We have that Tg0|D(g) : D(g) — D7(0(g)) 
is a linear isomorphism for g e G. Hence, for every D7-curve g p )  and go € G such that 
0(go) =  g7(0) there exists a unique D-curve g( )̂ such that g(0) =  g0 and 0 og(^) =  g7( p  We 
call g( )̂ the D-lift through g0 of g p ). In these terms, the D-lift of a (minimising, normal, 
or abnormal) geodesic of (G7, D7, g7) is a (resp. minimising, normal, or abnormal) geodesic of 
(G, D, g).

Rem ark 1.38. Analogous to Lemma 1.11, we have that the left translation hg(^) of any 
(minimising, normal, or abnormal) geodesic is a (resp. minimising, normal, or abnormal) 
geodesic.

Analogous to Theorem 1.27, we have a contravariant functor from LiSR to H P n.

Theorem  1.39. There exists a unique contravariant functor H : LiSR — H P n such that the 
diagram

L iC A S g ------F--------- > LiSR

P
H P n

commutes.

Proof. As F is an equivalence of categories and F surjective on objects, there exists a functor 
G : LiSR — LiCASg such that G is an equivalence and Fo G : LiSR — LiSR is the identity 
functor (see, e.g., [86]). Let H =  P  o G. Then H : LiSR — H P n is a contravariant functor.

We claim that H o F =  P , i.e., P  o G o F =  P . Let (£ ,x ) be a L iC ASg-object and let 
(£ 7,x 7) =  (G o F )(£ ,x ). We have that F (£7,x 7) =  (F o G o F )(£ ,x ) =  F (£ ,x ). Therefore, as 
GoF is full, there exists a LiCASg-isomorphism 0x^> : (£ 7,x 7) — (£ ,x ) such that F (0 x p  = 
id^(s,x). It follows that 0 =  idc and r =  1. Consequently, if (£ ,x ) is given by 5u(1) =  Bu 
and x(u) =  uTQu, then (£ 7,x 7) is given by 5^, (1) =  B^u and x 7(u7) =  u7T̂ TQ^u (here the 
linear map ^ : Rk — Rk is identified with its matrix). Consequently the Hamiltonian systems 
(1.8) associated to these systems are P (£ ,x )  =  (g - ,H ), H  =  ipB Q - i B TpT and P (£ 7,x 7) =
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(g - ,H 7), H7 =  ± p B f( f  1Q V T i )^TB TpT =  H . That is to say, P (£ 7,x 7) =  P (£ ,x ) , i.e., 
(P  o G o F )(£ ,x ) =  P (£ ,x )  for any LiCASg-object (£ ,x ).

Now let 0 x f  : (£, x) — (£ 7, x7) be a LiCASg-morphism between some LiCASg-objects 
(£, x) and (£ 7, x 7); further, let 07 x f 7 =  (G o F)(0 x f ). We have that F(0 x f ) =  F(07 x f 7) 
and so 0 =  07 and r =  r7. Consequently,

(P  o g  o F) ((£ , x) ■— — (£ 7,x 7)
A(Ti '̂)*

(P  o G o F )(£ ,x ) - ----------— (P  o G o F )(£7,x 7)

P (£ , x) — — P (£ 7,x 7)

P  ( (£ ,x )  -— — (£ 7,x 7) ) .

Hence, we have that P  o G o F =  P  as claimed.
Suppose H7 : LiSR — H P n is another contravariant functor such that H7 o F =  P . Then 

H7 o F o G =  P  o G and so H7 =  H. □

Corollary 1.40 (Compare with Theorems 1.27 and 1.30). The contravariant functor H : 
LiSR — H P n is given by

H(G, D, g) =  (g—, H(G,D,g)), H(G,D,g) =  p(Xi(1))
i=i

(Ti<«*
h ((G, D, g) - — (G7, D7, g7))  =  ((g7) —, H(G,,D,,g,)) - L - L — (g—, H(G,D,g)).

2

Here (X i , . . . ,  ) is any left-invariant orthonormal frame for (G, D, g).

1.4.3 Isometries and L -isometries

An isometry between two left-invariant sub-Riemannian (or Riemannian) manifolds (G, D, g) 
and (G7, D7, g7) is a diffeomorphism 0 : G — G7 such that

0*D =  D7 and g =  0*g7

i.e., Tg0 ■D(g) =  D7(0(g)) and gg(gA,gB) =  g^g(Tg0■ gA,Tg0■ gB) for g e G and A ,B  e g. 
If the isometry 0 is a Lie group isomorphism, we shall say it is an L -isometry. If there exists 
an isometry (resp. L-isometry) between two structures, then we say they are isometric (resp. 
L-isometric). Note that, by definition, any left translation Lg : G — G, h — gh is an isometry 
between a left-invariant structure (G, D, g) and itself.

We can characterize isomorphisms in LiSR in terms of L-isometries.

Proposition 1.41. Two invariant sub-Riemannian structures (G, D, g) and (G, D, g) are 
LiSR-isomorphic if and only if they are L-isometric up to rescaling, i.e., there exists a Lie 
group isomorphism 0 : G — G7 such that 0*D =  D7 and rg =  0*g7 for some r > 0.

Corollary 1.42. Two LiCASg -objects (£, x) and (£ 7,x 7) are C -equivalent if and only if 
F (£ ,x ) and F (£7,x 7) are L-isometric up to rescaling.
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Clearly every L-isometry is a isometry. At least in some contexts, every isometry is the 
composition of a left translation and a L-isometry.

Theorem  1.43 (cf. [80, 81, 125]). Let (G,g) and (G7,g 7) be two invariant Riemannian 
structures on simply connected nilpotent Lie groups G and G7, respectively. A diffeomor- 
phism 0 : G — G7 is an isometry between (G, g) and (G7, g7) if and only if 0 is the 
composition 0 =  L ^ )  o 07 of a left translation L ^ )  on G7 and a Lie group isomorphism 
07 =  L^(x)-i o 0 : G — G7 such that gi(A , B) =  g'x,(Ti07 ■ A, Ti07 ■ B).

Corollary 1.44. Two invariant Riemannian structures on simply connected nilpotent Lie 
groups are isometric if and only if they are L-isometric.

A k-step Carnot group G is a simply connected nilpotent Lie group whose Lie algebra g 
has stratification g =  g i® g 2 ©■ ■ ■©gfc with [gi,gj] =  gi+ j, j  =  1 ,. . . ,  k - 1  and [gj,gfc] =  {0}, 
j  =  1 , . . . ,  k. Let D be the left-invariant distribution on G specified by D(1) =  gi . Once we fix 
a left-invariant metric g on D we have a left-invariant structure on G (note that D is bracket 
generating). We shall refer to such a structure as a sub-Riemannian Carnot group. Analogous 
to the above theorem, we have the following characterization of the isometries between such 
structures.

Theorem  1.45 (cf. [63,75], see also [48, 82]). Let (G, D, g) and (G7, D7, g7) be two sub- 
Riemannian Carnot groups. A diffeomorphism 0 : G — G7 is an isometry between (G, D, g) 
and (G7, D7, g7) if and only if 0 is the composition 0 =  L^(1) o 07 of a left translation L^(1) 
on G7 and a Lie group isomorphism 07 =  L ^ ^ -i o 0 : G — G7 such that T107 ■ D(1) =  D7(17) 
and gi(A , B) =  gi, (Ti07 ■ A ,T i07 ■ B).

Corollary 1.46. Two sub-Riemannian Carnot groups are isometric if and only if they are 
L-isometric.

Rem ark 1.47. Among the three-dimensional simply connected Lie groups, only the Abelian 
R3 and Heisenberg H3 groups are nilpotent. Among the four-dimensional simply connected 
Lie groups, only the Abelian R4, trivially extended Heisenberg H3 x R and Engel G4.i groups 
are nilpotent (see, e.g, [95,98, 101]). Except for the Abelian groups, all these groups admit 
sub-Riemannian Carnot groups.

Rem ark 1.48. If two sub-Riemannian structures are L-isometric, then their corresponding 
quadratic Hamilton-Poisson systems are L-equivalent (Theorem 1.39). However, this does not 
hold for isometries in general. A counterexample is given by the isometric sub-Riemannian 
structures on the three-dimensional Lie groups Aff (R) x R and SL (2, R). Although the struc
tures are isomorphic (Theorem 3.7, [10]), their associated Hamilton-Poisson systems are not 
L-equivalent (see Theorem 2.15 and Propositions 3.9 and 3.16).

1.4.4 Central expansions

Let G be a Lie group with Lie algebra g and let N a closed central subgroup of G with 
Lie algebra n. Further, let q : G — G/N be the canonical quotient map. We say that an 
invariant sub-Riemannian (or Riemannian) structure (G, D , g) is a central expansion of a sub- 
Riemannian structure (G, D, g), with respect to N, if
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1. (G, D , g) tames (G, D, g) (i.e., D(1) C D(1) and g|D =  g);

2. the gi -orthogonal complement of D(1) n n is D(1), i.e.,

D(1) =  (dD(1) n n)x =  {A  e D(1) : gi(A , B ) =  0 for B e D(1) n n}.

As the following Lemma shows, any central expansion (G, D , g) of (G, D, g) with respect 
to N can be constructed by promoting central vector fields.

Lemma 1.49. (G, D , g) is a central expansion of (G, D, g) with respect to N if and only if 
(G, D, g) admits a left-invariant orthonormal frame (X i , . . . ,  X k) such that

span(Xi(1),. . . ,  Xk(1)) n n =  {0}

and (G, D , g) admits a corresponding left-invariant orthonormal frame (X i , . . . ,  X k, Z i , . . . ,  Zm) 
such that Z i (1 ) ,. . . ,  Zm(1) e n C Z(g).

Proof. Suppose (G, D , g) is a central expansion of (G, D, g) with respect to N. As (G, D, g) is 
an invariant sub-Riemannian structure, it admits a left-invariant orthonormal frame (X i , . . . ,  Xk). 
Moreover, we have D(1) =  (D (1)nn)x and so span(Xi (1 ),. . . ,  (1 ))nn =  {0}. As (G, D , g)
tames (G,D,g) the vectors (X i , . . . , X k) are orthonormal for (G,D, g). As D(1) decom
poses as the orthogonal direct sum D(1) =  D(1) © DD(1) n n and X i ( 1 ) , . . . ,X k(1) span 
D(1), there exists left-invariant vector fields Z i , . . . ,  with Z i (1 ),. . . ,  Zm(1) e n such that 
(X i , . . . ,  X k, Z i , . . . ,  Zm) is an orthonormal frame for (G, D , g).

Conversely, suppose (G, D, g) admits a left-invariant orthonormal frame (X i , . . . ,  X k) with 
span(Xi (1 ),. . . ,  (1)) n n =  {0 } and (G, D , g) admits a corresponding left-invariant or
thonormal frame (X i , . . . , X k ,Z i , . . . , Z m) with Z i (1 ) ,. . . ,  Zm(1) e n C Z(g). Then D(1) =  
span(Xi,. . .  ,X fc) C D(1) and gg(aiXi(g) +  . ..  +  afcXk(g),biXi(g) +  . ..  +  X fc(g)) =  a ib  +
...  +  a f c =  gg(aiXi(g) +  . ..  +  afcX fc(g), biXi(g) +  . ..  +  X fc(g)) so g.D =  g, i.e., (G, D , g) 
tames (G, D, g). Moreover, we have that D(1) decomposes as an orthonormal direct sum 
D(1) =  span(Xi,. . . ,  ) © span(Zi,. . . ,  ) =  D(1) © D(1) n n. □

We show that the normal geodesics of a central expansion of a structure are related to the 
normal geodesics of that structure. Let (G, D , g) be a central expansion of (G, D, g) with 
respect to N. Further, let G (resp. G) denote the set of normal geodesics of (G, D, g) (resp. 
(^  D, g )) .

Theorem  1.50. The images of the sets G and G under q : G — G/N are identical, i.e.,
q(G ) =  q(G).

Proof. Let (X i , . . . ,  ) be a left-invariant orthonormal frame for (G, D, g) and let (X i , . . . ,  ,
X k+i, . . . ,  X n) be a left-invariant orthonormal frame for (G, D , g) with X k+i(1 ),. . . ,  X n(1) e n 
(see Lemma 1.49). The Hamiltonian systems on g - associated to (G, dD, g) and (G, D, g) are 
given by (see Theorem 1.30)

n k
ig (p) =  2 ^ P (X i (1 ) )2 and H (p) =  2 ^ P (X i (1 ) )2

i=i i=i
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respectively. We claim that C(p) =  2 Sn=k+i P(X j(1))2 is a Casimir function. Indeed, 
{F ,C }(p ) =  -p([dF(p), EILk+i X*(1)]) =  —p(0) =  0 as EILk+i Xj(1) e Z(g). Consequently, 
as H  =  H +  C , it follows that the Hamiltonian vector fields on g -  associated to H  and H 
are identical. We denote this vector field H .

The normal geodesics for (G, D , g) and (G, D, g) are given by (see Theorem 1.30)
d d ->
—g(t) =  Ui(t)Xi(g(t)) +  ■ ■ ■ +  Un(t)Xn(g(t)), Uj(t) =  p(t) ■ X j(1), dtp(t) =  H (p(t))

and
d d  
ddtg(t) =  Ui(t)Xi(g(t)) +  ■ ■ ■ +  Uk(t)Xk(g(t)), Ui(t) =  p(t) ■ Xi(1), ddtp(t) =  H (p(t))

respectively. Note that Ui(-) =  ui(-) for i =  1, . . . ,k .  We claim that Tgq ■ Xj(g) =  0 for 
i =  k +  1 , . . . ,  n. Indeed, the flow of X j is <pt(g) =  g exp(tXi(1)) and as X j(1) e n we have that 
exp(tXj(1)) e N; consequently q(pt(g)) =  q(g) q(exp(tXj(1)) =  q(g) and so Tgq ■ Xj(g) =  0. 
Therefore, for the normal geodesics g(-) and g(-) corresponding to a fixed integral curve p(-) 
of H , we have

d
dt q(g(t)) =  ^?(t)q ■ Ui(t)Xi(g(t)) +  ■ ■ ■ +  ^j(t)q ■ Un(t)Xn (g(t))

=  Ui(t)T~(t)q ■ X i(g(t)) +  ■ ■ ■ +  Uk(t)Tg(t)q ■ Xk(g(t)) +  0 +  ■ ■ ■ +  0

and likewise
d
dt q(g(t)) =  Ui(t)Tg(t)q ■ X i(g(t)) +  ■ ■ ■ +  Uk(t)Tg(t)q ■ Xk(g(t))

Hence, if q(g(0)) =  q(g(0)), then the curves t — q(g(t)) and t — q(g(t)) solve the same 
Cauchy problem and hence are identical. It therefore follows (by varying through all initial 
conditions and integral curves p(-) of I?) that q(G) =  q(G). □

Corollary 1.51. Let g(-) be a D-curve; g(-) is normal geodesic of (G, D, g) if and only if 
there exists normal geodesic g(-) of the central expansion (G, D , g) such that g(0) =  g(0) and
q ◦  g(') =  q ◦  g(-).
Proof. Suppose g(-) is a normal geodesic of (G, D, g). As q(G) =  q(G), there exists a normal 
geodesic g(-) of (G, D , g) such that q(g(t)) =  q(g(t)). By use of a suitable left-translation (by 
an element h e kerq =  N), we may assume g(0) =  g(0) (see Remark 1.38).

Conversely, suppose g(-) is a normal geodesic of (G, I?, g) such that g(0) =  g(0) and 
q ◦  g(') =  q ◦  g('). As q(G) =  q(G), there exists a normal geodesic g'(-) of (G, D, g) such that 
q ◦  g7(') =  q ◦  g('). Again, by use of a suitable left-translation (by an element h e ker q =  N), 
we may assume g'(0) =  g(0). We claim that g(-) =  g'(-). Indeed, as qog'(-) =  qog(-) we have 
that

Tiq-g(t)-i g(t) =  Tq(g(t))Lq(g(t))-i-Tg(t)q-g(t) =  Tq(g'(t))Lq(g'(t))-! 'Tg'(t) q-g/(t) =  Tiq-g/(t )-i g/(t).

Consequently, as Ti q|D(i ) : D(1) — g/n is injective (since D(1) n n =  {0}), we have 
g(t)- i  g(t) =  g/(t)- i  g/(t). Therefore the curves g(-) and g/(-) solve the same Cauchy problem 
and hence are identical. □
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Rem ark 1.52. For any D-curve g(-), there exists a unique D-curve g(-) such that g(0) =  g(0) 
and q o g(-) =  q o g(-). We call g(-) the D-projection of g(-). Note that the D-projection of 
g(-) is the D-lift through g(0) of the D/-curve q o g(-) where D/(1/) =  Ti q ■ D(1) C g/n (see 
Remark 1.37). In these terms, the normal geodesics of (G, D, g) are exactly the D-projections 
of the normal geodesics of the normal geodesics of (G, D , g).

Corollary 1.53. If (G,Dgi ,g i ) and (G,D2,g 2) are two central expansions of (G ,D,g) with 
respect to N, then q(Ggi) =  q(G2). Here G1 and G2 denote the respective sets of normal 
geodesics.

Rem ark 1.54. Theorem 1.50 does not hold for abnormal geodesics. A counterexample shall 
be provided in Section 1.5.2.

Rem ark 1.55. Central expansions are stable under LiSR-isomorphisms, i.e., if 0 : (G, D, g) — 
(G/, D/, g/) is a LiSR-isomorphism and (G,D , g) is a central expansion of (G ,D ,g), then 
(G/, 0*D,0*g) is a central expansion of (G/, D/, g/). However, this is not true for isometries 
in general. For example the sub-Riemannian structure on Aff(R)o x R (see Proposition 3.9) 
admits a Riemannian central expansion whereas the isometric structure on SL (2, R) (see Propo
sition 3.16 and Theorem 3.7) does not.

1.5 Examples

In the first subsection, we illustrate the main results of this chapter by giving simple but demon
strative examples involving the three-dimensional Heisenberg group. In the second subsection 
we give a counterexample showing that Theorem 1.50 does not hold for abnormal geodesics.

1.5.1 Structures on the three-dimensional Heisenberg group

The three-dimensional Heisenberg group

has Lie algebra

ha

r 1 x
=  \ 0 1

l 0 0

'0 x z
0 0 y
0 0 0

=  m (z,x,y) : z ,x ,y  e R

zEi +  xE2 +  yE3 : z, x, y e R

y

The center of h3 is spanned by E i and correspondingly the center of H3 is {m(z, 0, 0) : z e 
R}. The group of automorphisms of h3 is given by

Aut(ha)
x2y3 -  y2x3 x i yi

0 x2 y2
0 x3 y3

x i ,x 2 ,x3,yi,y2,y3 e R, X2y3 y2 X3 =  0

As H3 is simply connected, dAut(H3) =  Aut(h3).
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Proposition 1.56. Any controllable cost-extended system on H3 is C -equivalent to exactly 
one of the cost-extended systems

£ (2,0) (2,0) 
x i , )

£ (2,0) x22J>)

x (3,°)Aa

£ (2,0) : uiE 2 +  U2E3

xi2,0)(u) =  u2 +  u2

£ (2,0) : uiE 2 +  U2E3

x 22,0)(u) =  (ui - 1 ) 2  +  u 2

£ (2,i) : Ei +  uiE 2 +  U2E3

x i2,i)(u) =  (ui -  a ) 2 +  u2

£ (3,0) : uiEi +  u2E2 +  u3E3 ,

xL3,0) (u) =  (ui -  a i ) 2 +  (u2 -  a 2 ) 2 +  u2.

Here a, a i ,a 2 > 0 parametrize families of (non-equivalent) class representatives.

Proof. H3 is simply connected and completely solvable. Hence, a control system £ with trace 
r  =  A + r 0 on H3 is controllable if and only if Lie(r0) =  h3 (cf. [110]). Consequently, it is fairly 
easy to show that any controllable system on H3 is detached feedback equivalent to exactly one 
of £ (2,0), £ (2,i), or £ (3,0) ( [35]). Accordingly, any controllable cost-extended system (£ ,x )  is 
C-equivalent to ( £ (2,0) ,x /), ( £ (2,i),x /), or ( £ (3,0) ,x /) for some cost x / (see Corollary 1.19).

Suppose (£ ,x ) is C-equivalent to ( £ (2,0) ,x /). For ^ e dAut(H3) we have ^ ■ S (2,0)(1,u) =  
ui(xiE i +  X2E2 +  X3E3) +  u2 (yiEi +  y2E2 +  y3E3 ). Hence, if ^ ■ S (2,0)(1,u) =  S (2,0)(1, p>(u)) for 
some affine isomorphism <p and all u e Rk, then <p is a linear isomorphism, x i =  yi =  0 , and 
<p(u) =  (x2ui+y 2u2 , x 3ui+y 3u2). Accordingly 7 (̂2,o) =  GL (2, R). Let x /(u) =  (u -u )TQ (u-u)

for some u e R2 and positive definite matrix Q ai
b

b
0-2

. We have

fa

0
“m / - ai+“2

-  ai + “2

b

e 7 (̂2,0) and p>/T Q ^ / =  diag(1,1).

Hence (£ (2,0),x /) is C-equivalent to (£ (2,0),x //), with x //(u) =  (x/ o <pO(u) =  (ui -  pcosd)2 + 
(u2 -  psind)2 for some p > 0 and d e R (see Proposition 1.21). If p =  0, then (£ (2, 0),x '/) =

(£ (2,0),x i2,0)). Suppose p >  0. Then, =  
that

p cos d - p  sin d 
p sin d p cos d is an element of 7 (̂2,0) such

ii p cos d 1
p sin d 0 and V//TV// =

2 0
2p

Thus (£ (2,0),x //) is C-equivalent to (£ (2,0) ,x22,0)), as x22,0) =  pix//o =  (ui - 1)2 +  u2 (again 
by Proposition 1.21).
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We claim that (£ (2,0), x i2,0)) and (£ (2,0), x22,0)) are not C-equivalent. Suppose that they

are C-equivalent. Then there exists Vi V2
Zl Z2 S 7̂ (2,0) such that (2,0) 

x i , )
(2,0)

rx2 o p for

some r >  0 (Proposition 1.21). In particular, we have i 0 1
0 0 a contradiction.

A similar argument holds for the inhomogeneous two-input case. We have 7 (̂2,i) =  
SL (2, R); more details may be found in [32, Example 4]. Likewise, in the three-input case 
any cost-extended system is equivalent to exactly one cost-extended system (£ (3,0), x a ,0)) 
with a i , a 2 > 0. □

Corollary 1.57 (cf. Proposition 3.10; also Theorems 4.6 and 4.8). Any invariant sub-Riemannian 
structure on H3 is isometric up to rescaling to the structure (H3, D (1), g(i)) given by

D(i)(1) =  <E2,E3>, g1i) =  diag(1,1)
i.e., with orthonormal frame (Ef ,E L). On the other hand, any invariant Riemannian structure 
on H3 is isometric up to rescaling to the structure (H3, g (0)) given by

g(0) =  diag(1,1,1)

i.e., with orthonormal frame (E^yE^E^). Here E L, Eft, and E L denote the left-invariant 
vector fields specified by E L( 1) =  Ei.

Proof. For any invariant sub-Riemannian structure (H3, D, g) there exists a controllable cost- 
extended system (£ ,x ) with x(0) =  0 and 5(1,0) =  0 such that F (£ ,x )  =  (H3, D, g) 
(Lemma 1.33). If (£, x) is C-equivalent to some cost-extended system (£ /,x /) with 5'(1, 0) =
0, then x /(0) =  0. Consequently (£ ,x ) is C-equivalent to (£ (2,0), x i2,0)). It therefore follows, 
by Corollary 1.42, that (H3, D, g) =  F (£ ,x ) is isometric up to rescaling to F (£ (2,0), x i2,0)) =  
(H3, D(i), g (i)). Likewise, any invariant Riemannian structure is equivalent to F(E(3,0), x03 0)) =  
(H3, g(0)). □

A classification of the cost-extended systems or sub-Riemannian structures also yields some 
information regarding the equivalence of the corresponding quadratic Hamilton-Poisson sys
tems. For instance, we have the following result.

Corollary 1.58. Any quadratic Hamilton-Poisson systems ((h3) - ,H ) with Hamiltonian H (p) =  
Q(p) being a positive-definite quadratic form is L-equivalent to the system on (h3) -  with 
Hamiltonian H /(p) =  1(p1 +  p2 +  p2).
Proof. Let ((h3) - ,H ) be a quadratic Hamilton-Poisson system with Hamiltonian H(p) =  
p Q p T being a positive-definite quadratic form. For the cost-extended system (£ ,x ) on H3 
specified by

(£ ,x )
£  : uiEi +  U2E2 +  U3E3 

W T ^ - 1 ux(u) =  ^uT Q-
we have that P (£ ,x )  =  ((h3) - ,H ). Furthermore, we have that (£ ,x ) is C-equivalent to 
(£ (3,0), x03,0)) (we have a  =  0 as 5(1, 0) =  5 (3,0)(1 ,0) =  0 and x(0) =  0). Consequently, by 
Corollary 1.28, we have that ((h3) - ,H ) is L-equivalent to P(x030)) =  ((h3) - ,H /). □
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Next, we give some applications of the properties of epimorphisms in L iC A SM (Theo
rem 1.12) and LiSR (Corollary 1.36). Let q : H3 ^  R2 =  H3 /Z (H 3 ) be the Lie group 
epimorphism given by

q :
1 x z
0 1 V
0 0 1

^  (x,y).

Further, let £  be the invariant control system on the Abelian group R2 specified by

£ : ui Tiq ■ E2 +  U2 T1q ■ E3 .

The quotient map q : H3 ^  R2 induces the following L iC ASM-epimorphisms

1 . (q, idR2) : ( £ (2,0),x i2,0)) ^  (£ ,x i2,0))

2. (q, idR2) : (£(2,0),x 22,0)) ^  (£ ,x 22,0))

3. (q, idR2) : (£ (2,1),x i2,1)) ^  (£ ,x l2,1))
and the following LiSR-epimorphism

4. q : (H3 , D (1), g (1)) ^  (R2, g) =  F(£ (2,0) ,x i2,0)).

Accordingly, a subclass of the ECTs of (£ (2,0) ,x12,0)), (£ (2,0),x22,0)), and (£ (2,1), x«2,1)), re
spectively, are controlled trajectories with image (under (q, idR2)) being ECTs of the Abelian 
structures (£ ,x12,0)), (£ , x22,0)), and (£ , x«2,1)), respectively. Likewise for the sub-Riemannian 
structure (H3, D(1), g (1)) a subclass of the normal geodesics are the lifts of the geodesics (being 
straight lines) of the Euclidean space (R2, g) (see Remark 1.37). We provide details for the 
latter situation. The (normal) geodesics of (R2, £) are simply (x(t), y(t)) =  (a1 +  b1 t,a 2 +  b2t), 
a1, a2, b1, b2 e R. Accordingly,

Proposition 1.59. The D (1) -curves

g(t)
1  a1 +  b1t c0 +  a1 b2t +  2  b1 b2t2 

0 1  a2 +  621

0 0 1
C0 , 0 1 , 0 2 , 6 1 , 62 e R

are some normal geodesics of (H3 , D (1), g (1)).

Proof. Suppose g(t) =  m(z(t), x(t), y(t)) is a D (1)-curve such that q(g(t)) =  (a1 +  61 t,a2 +
b2t), i.e., x(t) =  a1 +  6 1 t and y(t) =  a2 +  b2t. As g(t) is a D(1)-curve we have that
dtm(z(t), x(t), y(t)) e D (2,0)(m(z(t), x(t), y(t))) or equivalently

m (z(t),x (t),y (t))-1 —m (z(t),x(t),y(t)) e D(1)(1)

0 X(t)
0 0

0 0

■x(t)3/(t) +  Z(t)
V(t)

0

e < E2 , E3 > .

Therefore, Z(t) =  x(t) V(t) =  a1 b2 +  6 1 62t and so z(t) =  c0 +  a1 b2t +  2b1 b2t2, c0 e R. By
Corollary 1.36, it follows that g(t) is a normal geodesic. □
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Lastly, we claim that the Riemannian structures on H3 are simply central expansions of 
the sub-Riemannian structures on H3.

Proposition 1.60. The Riemannian structure (H3, g (0)) is a central expansion of the sub- 
Riemannian structure (H3,D (1),g (1)) with respect to Z(H3).

Accordingly, the image under q of the set of normal geodesics of (H3, g (0)) and the image 
under q of the set of normal geodesics of (H3, D (1), g (1)) are identical. More details, and 
explicit calculation of the geodesics for structures on H2n+1, will be given in Chapter 4.

1.5.2 Abnormal geodesics on SO (3) x R

The four-dimensional trivial expansion of the orthogonal group

SO (3) x R

0
g 0

0
0 0 0 ew

: gTg =  1, det g =  1, w e R

has Lie algebra 

so (3) ® R

0 x —y 0
—x 0 z 0
y —z 0 0
0 0 0 w

xE 1 +  yE2 +  zE3 +  wE4 : x ,y ,z ,w  e R

The nonzero commutators of so (3) ® R are [E2, E3] =  E 1, [E3, E1] =  E2, [E1, E2] =  E3. The 
center of so (3) ® R is span(E4). Correspondingly, the center of SO (3) x R is {1 } x R. The 
quotient q : SO (3) x R ^  SO (3) =  (SO (3) x R )/Z(SO  (3) x R) may simply be realized as 
q : (g,w) ^  g.

We give an example of an invariant sub-Riemannian structure on SO (3) x R admitting 
central expansion such that images under q : SO (3) x R ^  SO (3) of the respective classes 
of abnormal geodesics are not identical. By left translation, it is enough to show this for the 
abnormal geodesics through identity (i.e., g(0) =  1).

Consider the sub-Riemannian structure (SO (3) x R, D, g) with left-invariant orthonormal 
frame (X 1,X 2) given by X 1(1) =  E1 +  E4 and X 2(1) =  E 1 +  E2 +  2E4.

Proposition 1.61. The abnormal geodesics of (SO (3) x R, D, g) through the identity are the 
curves on the subgroup

exp(RX2(1))

cos^ /2 1 ) 72 sin(^ f) — sin(^ 2 f) 0 >

l — 7 !  sin(^ 2f) 1 (1 +  cos(^2 t)) 1(1 — cos(^2 1)) 0
: t e  Rs

72 sin(^21 ) 2 (1 — cos(^2 1 )) 2 (1 +  cos(^2 1)) 0
< 0 0 0 e2t_ ,

with Lie algebra span(X2(1)).
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Proof. Consider the optimal control problem (1.10) associated to (SO (3) x R, D, g) via the 
orthonormal frame (X 1, X 2), i.e., 2(1, u) =  u 1 X 1(1) +  u2X 2(1) and x(u) =  u2 +  u|. Suppose
({(•),u ()) , {(t) =  (g(t),p(t)) e  (SO (3) x R) x (so (3) ® R)* is an abnormal extremal. Then
(1.7) implies p(t) • ̂ 1 ( 1 ) =  p(t) • X 2(1) =  0, i.e., p 1 (t) +  p4 (t) =  0 and p 1 (t) +  p2 ( t )+ 2p4(t) =  0 
(here p =  p1E* +  p2E* +  p3E*). Consequently (see Lemma 1.7)

d
0 =  dt(P1(t) +  P4(t)) =  —p(t) • [* (• ), 2u(t)(1)] =  u2 (t)p3(t) 

d
0 =  dt(P1(t) +  P2(t) +2p4(t)) =  —p(t) • [X2(1), 2u(t)(1)] =  —U1(t)p3(t).

If p3( )  =  0 then U1 O  =  u2( )  =  0 and g ( )  is constant, i.e., g(t) =  g(0 ). Suppose p3(•) =  0 . 
Then

d
0 =  d ^ t )  =  —P(t)  ̂ [E3, 2 u(t)(1)] =  —U2P1 (t) +  (U1 +  U2)p2 (t) =  —U1P4(t).

By (1.5) we have that p4( )  =  0 and so u1(̂ ) =  0. Hence, g(t) =  u2 (t)X 2 (g(t)) and so g(t) is 
a curve evolving on exp(RX2(1)).

On the other hand, for any curve g(t) evolving on exp(RX2(1)) there exists u2(-) such 
that g(t) =  u2 (t)X 2 (g(t)). We have that (£(•),«(•)), C(t) =  (g(t),p(t)), p(t) =  (—1, —1, 0,1),
u 1 (t) =  0 satisfies (1.5)- (1.6)- (1.7). □

Rem ark 1.62 ([84, Section 9.5]). The integral curves of X 2 are strictly abnormal geodesics 
and are locally minimizing.

On the other hand, let (SO (3) x R, D , g) be the central expansion of (SO (3) x R, D, g) with 
respect to Z(SO (3) x R) having left-invariant orthonormal frame (X 1 ,X 2 ,X 3) with X 3(1) =  
E4 (see Lemma 1.49).

Proposition 1.63. The abnormal geodesics of (SO (3) x R, D , g) through the identity are the 
curves on the center Z(SO (3) x R, D , g) =  {1 } x R.

Proof. Consider the optimal control problem (1.10) associated to (SO (3) x R, D , g) via the 
orthonormal frame (X 1 ,X 2 ,X 3), i.e., 2 (1, u) =  u 1 X 1(1) +  u2X 2(1) +  u2X 3(1) and x(u) =  
u2 +  U2 +  U3 . Suppose (£(•), u(-)), {(t) =  (g(t),p(t)) e (SO (3) x R) x (so (3) ® R)* is an 
abnormal extremal. Then (1.7) implies p(t) • X 1(1) =  p(t) • X 2(1) =  p(t) • X 3(1) =  0, i.e., 
p 1 (t) =  p2 (t) =  p4 (t) =  0. Consequently (see Lemma 1.7)

d
0 =  dt(P1 (t) +  P4(t)) =  —P(t) • [X 1 ( )̂, 2 u(t)(1)] =  U2(t)p3(t)

d
0 =  ~dtt(P1(t) +  P2(t) +2p4(t)) =  —p(t) • [X2 (1 ),2u(t)(1)] =  —U1(t)p3(t)

By (1.5) we have that p3(-) =  0 and so u1(̂ ) =  u2(̂ ) =  0. Consequently g(t) =  u3 (t)X 3 (g(t)) 
and so g( )̂ evolves on Z(SO (3) x R).

On the other hand, for any curve g(t) evolving on exp(RX3(1)) there exists u3(-) such 
that g(t) =  U3 (t)X 3 (g(t)). We have that ({(•), u(^)), {(t) =  (g(t),p(t)), p(t) =  (0,0,1,0),
u 1 (t) =  u2 (t) =  0 satisfies (1.5)- (1.6)- (1.7).

□
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Hence the image under q of the abnormal geodesics (through identity) of (SO (3) x R, D, g) 
are simply curves tangent to exp(RTiq • X 2(1)) =  q(exp(RX2(1))). On the other hand, the 
abnormal geodesics (through identity) of (SO (3) x R, D , g) have trivial image under q. Conse
quently, we have that q(G) =  q(G) when G and G denote the respective collections of abnormal 
geodesics.



Chapter 2

Quadratic Hamilton-Poisson systems 
in three dimensions

The dual space of a Lie algebra admits a natural Poisson structure, namely the Lie-Poisson 
structure. Quadratic and homogeneous Hamiltonian systems on these structures form a natural 
setting for a variety of interesting dynamical systems; prevalent examples are Euler’s classic 
equations for the rigid body as well as its extensions and generalizations (see, e.g., [1, 65-67, 
70,88, 120]).

As discussed in the first chapter (Section 1.3), quadratic Hamilton-Poisson systems (on 
Lie-Poisson spaces) arise naturally in the study of invariant optimal control problems as well 
as invariant sub-Riemannian structures on Lie groups. In this vein, a number of quadratic 
Hamilton-Poisson systems on lower-dimensional Lie-Poisson spaces have been considered (see, 
e.g., [5,9,29,51,93, 104,109]).

The equivalence of quadratic Hamilton-Poisson systems on Lie-Poisson spaces has been 
investigated by a few authors. Specifically, normal forms have been computed for a special 
class of quadratic systems ( [119-121]). Orthogonal equivalence of systems on so (3 )- has also 
been considered ( [53]) whereas linear equivalence (of both homogeneous and inhomogeneous 
quadratic) systems was considered in [8]. On the other hand, we have classifications of homo
geneous quadratic systems on se (2 )- ([7]) and se (1 ,1 )- ( [26]).

In this chapter, we classify a significant subclass of quadratic Hamilton-Poisson systems on 
three-dimensional Lie-Poisson spaces. More precisely, we consider those systems that are both 
homogeneous and for which the underlying quadratic form is positive semidefinite (in particu
lar, the Hamiltonian associated to any LiCASg -object or invariant sub-Riemannian structure 
belongs to this class). This class covers a number of systems recently considered by several 
authors (see, e.g., [7,8,20-23,26, 121]). In our opinion, the most significant consequence of our 
classification is that a number of these systems (on distinct Lie-Poisson spaces), which have 
been treated independently, are in fact linearly equivalent. Moreover, the reduction to normal 
form should dramatically simplify the computational complexity in investigating stability and 
integration.

Our classification of systems (under L-equivalence, see Section 1.3) is carried out in two 
parts. First, we classify systems within the context of each three-dimensional Lie-Poisson
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space (by making use of the Bianchi-Behr classification of three-dimensional Lie algebras, see 
Appendix A.1). Subsequently, we consider equivalences of systems on non-isomorphic Lie- 
Poisson spaces. Finally, an exhaustive and non-redundant list of normal forms is exhibited. 
Moreover, by identifying some simple invariants, we arrive at a taxonomy of systems.

Some of the computations involved in this chapter are quite demanding and hence Mathe- 
matica was used to facilitate these computations (typical code is given in Appendix C.1); these 
details shall often be omitted from the proofs. We note that as the same classification procedure 
is carried out for each Lie algebra, some of the details are repetitive. Furthermore, we note 
that we shall make no explicit mention of the case of trivial dynamics (i.e., H(p) =  0).
Note. Some of the material presented in this chapter appears in [33]. A substantially expanded 
version of this paper, dealing with the classification, and the systematic investigation of stability 
and integration, of positive semidefinite homogeneous quadratic Hamilton-Poisson systems on 
three-dimensional Lie-Poisson spaces is in preparation.

Preliminaries

For the purposes of this chapter we find it convenient to change notation slightly. Given a basis 
(E ^E ^E ©  for a Lie algebra g (as in Appendix A.1), an element p =  piE^ +  p2E| +  p3E| 
expressed in the dual basis (E©E|,Eg) will be written as a column matrix p =  (pi) i<i<3. A 
system H q (on g -)  is then represented as H q (p) =  pT Qp, where Q is a positive semidefinite 
3 x 3 matrix. The equations of motion of a Hamiltonian H (on each of the respective associated 
Lie-Poisson spaces) take the form

pi =  -p([E i,dH  (p)]), i =  1 ,.. . ,n .

For the sake of convenience, all linear maps will be identified with their corresponding matri
ces. Accordingly, as linear Poisson automorphisms are exactly the dual maps of Lie algebra 
automorphism, the group of (matrices of) linear Poisson automorphisms can be obtained from 
the group of Lie algebra automorphisms (Appendix A.3) by simply taking the transpose.

An exhaustive list of Casimir functions, for low-dimensional Lie algebras, was obtained by 
Patera et al. [98]; For each three-dimensional Lie-Poisson space g - (associated to a three
dimensional Lie algebra g) we exhibit its Casimir function:

g2.i © gi : C (p) =  p3 g3.i •: C(p) =  pi

g3.2
P2

: C(p) =  pi epi g3.3 :: C (p) =  p2 
pi

-0g3.4 : C (p) =  p? -  p2 ag3.4 •i=a>0
X gpi +  2p2 

: C(p) =  © © a-1 
(± ip i  © 2p2) “+1

„0g3.5 : C (p) =  p2 +  p2 ag3.5 •a> 0
: C(p) =  (pi +  p2) ( p i^ + ^  

\pi +  ip2
g3.6 2 2 2  : pi +  p2 -  p3 g3.7 • 2 2 2  : pi +  p2 +  ps .

ia

On the trivial Lie-Poisson space (3gi) - , every function is a Casimir function. Note that only 
3gi, g2.i © gi, g3.i, g0.4, g3.5, g3.6, and g3.7 admit globally defined Casimir functions.
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2 . 1  S y s t e m s  o n  s o l v a b l e  L ie  a lg e b r a s

For each solvable Lie algebra g, we classify all Hamilton-Poisson systems (g—, H q), where Q is 
a positive semidefinite quadratic form on g*; an exhaustive and non-redundant list of class rep
resentatives is obtained. The classification procedure is as follows. We use the three basic types 
of equivalence (Proposition 1.25) to simplify the form of Q as much as possible (note however 
that some Lie-Poisson spaces admit no polynomial Casimir.) This type of normalization is 
often sufficient for arriving at class representatives. However, in some cases further normal
ization may be required; in such cases we find, explicitly, linear isomorphisms conjugating the 
Hamiltonian vector fields in question.

Lastly, we verify that no two of the class representatives obtained are equivalent, as follows. 
Suppose two representatives are equivalent. Then the associated Hamiltonian vector fields H 
and H' are compatible with a linear isomorphism Q =  (Q j) i<i,j<3 , i.e., Q ■ H  =  H' o Q. This 
is shown to lead to a contradiction.

2.1.1 T y p e  g2.i © gi

The nonzero commutators of g2.1 © g1 are [E1,E 2] =  E1; C(p) =  p3 is a Casimir function. 

Proposition 2.1. On (g2.1 © g1) - ,  any system is equivalent to exactly one of the systems

HQp) =  p2 H2(p) =  p2 H3(p) =  p1 +  p2
H4(p) =  (p1 +  p3)2 H5(p) =  p2 +  (p1 +  p3)2.

Proof. Let Hq (p) =  pT Qp and let

Suppose a2 > 0. Then

Q

Q

a1 b1 b2
b1 a2 b3
b2 b3 a3

x 0 0
xbi 1 _vb3
a2 a2
0 0 v

is a linear Poisson automorphism (for any nonzero real numbers x and v) such that

1  Qt QQ

x2(ai a2— Q)
a2 0 vx(a2 b2—bib3)

a2
0 1 0

vx(a2b2—bib3) 
a2 0 v2(-2-3—b3)

a2

If a1a2 — 

Suppose a1a2

0, then H is equivalent to H2, as (H o Q) H2(p) +
2V (-2-3 —1>3)

a22 c  (p).

b2 =  0 and let x a22
aia2—b'f If a2b2 b1 b3 0, then H is equivalent to H3.
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If a2b2 — b1b3 =  0, then there exists v,w G R such that (H o Q)(p) =  (p1 +  p3)2 +  p2 +  wC(p); 
hence H is equivalent to H5.

Suppose a2 =  0. Then Q =  diag(x, 1, v) is a linear Poisson automorphism (for any nonzero 
numbers x and v) such that

QT Q Q
x2a1 0 vxb2 

0 0 0  
vxb2 0 v2a3

If a1 = 0  and b2 =  0, then H is equivalent to H4. If a1 =  0 and b2 =  0, then H is equivalent 
to H1. (If a1 =  0, then H is equivalent to the trivial system Ho(p) =  0.)

It is straightforward to show that no two of these five systems are equivalent. We provide 
details only for one case: we show that H3(p) =  p1 +  p2 and H4(p) =  (p1 +  p3)2 are not
equivalent. Suppose H4 and H5 are equivalent, i.e., suppose there exists a linear isomorphism 
Q : g2.1 © g1 ^  g2.1 © g1 such that Q ■ H4 =  H5 o Q. Let Q have matrix (Q j)1<i,j<3. Then

Q ■ H4 (p) =
2p 1 (Q12p 1 — Qnp2)

(H5 o Q)(p) =
0

2p 1 (Q22p 1 — Q21p2) *1

_2p 1 (Q32p1 — Q31p2)_ 0

*1 = 2 (Qiipi + Ql2p + Ql3p3) ((Ql1 + Q3l)pi + (Ql2 + Q32)p2 + (Ql3 + Q33)p3)

Hence, by equating coefficients, we get Q11 =  Q12 =  Q31 =  Q32 =  0. This contradicts that Q is 
an isomorphism. □

2.1.2 T y p e  g3.1

The Heisenberg Lie algebra g3.1 has nonzero commutators [E2,E 3] =  E 1; C(p) =  p1 is a
Casimir function.

Proposition 2.2 ([32]). On (g3.1)* , any system is equivalent to exactly one of the systems

H1(p) =  p3

Proof. Let H q (p) =  pT Qp, where

H2(p) =  p2 +  p2.

Suppose a3 =  0. Then

Q =

Q =

a1 b1 

b1 a2

b2 b3

b2

b3
a3

1
0

_b2
a3

0
1

a3
is a linear Poisson automorphism such that

QT Q Q =

b2
a1 — ^  b1 —1 a3 1 a3
^ bob̂  b2b2b3

a3 a3
0 0

0 a'1 b'1 0
0 = b'1 a'2 0
a3 0 0 a3
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If a'2 =  0, then H is equivalent to Hi. Suppose a'2 =  0. Then

Q/

0 ■

0
1
fa,3 -

is a linear Poisson automorphism such that

q /t q t q q q / =
“1“,2-(bl)2 0 0

«3(«2)2
0 1 0
0 0 1

Thus H is equivalent to H2.
Now suppose a3 =  0 and assume a2 =  0 (if a2 =  a3 =  0, then H is equivalent to the 

trivial system H0(p) =  0). Then

Q 613/22
0

0
0
1

0
x/a
0

is a linear Poisson automorphism such that

q t q q

0,10,2-61 0 0© to to

0 0 0
0 0 1

Hence H is equivalent to H 1

It remains to be shown that H 1 and H2 are not equivalent. Assume that they are equiva
lent, i.e., suppose there exists a linear isomorphism Q such that Q ■ H 1 =  H2 o Q. Let Q have 
matrix (Q j) 1 <i,j<3 . Then

"—2 Q12P1 p3 0
—2 Q22P1P3 = —2 (Q1 1 P1 +  Q12P2 +  Q13P3) (Q31P1 +  Q32P2 +  Q33P3 )

_—2 Q32P1 P3_ _ 2 (Q1 1 P1 +  Q12P2 +  Q13P3 ) (Q2 1P1 +  Q22P2 +  Q23P3) _

must hold for all p1 ,p2 ,p3 G R. A straightforward argument shows that Q is not an isomor
phism, a contradiction. □

2.1.3 T y p e  0 3 .2

The nonzero commutators of g3.2 are [E2 ,E 3] =  E 1 — E2 and [E3 ,E 1\ =  E 1 ; (g3.2) -  does not 
admit any polynomial Casimir functions.
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Proposition 2.3. On ( 5 3 .2) - ,  any system is equivalent to exactly one of the systems

Hi(p) =  pj H2 (p) =  p2 H3(p) =  p3
H±(p) =  pj +  p2 H5(p )=  p2 +  p3 H6 ^(p) =  fip2 +  p2 +  p2.

Here fi > 0 parametrizes a family of non-equivalent class representatives. 

Proof. Let H q (p) =  pT Qp, where

Suppose a3 =  0. Then

ai b i b2
Q = bi a2 b3

b2 b3 a3

a3 0 0
$  = 0 a3 0

- b 2 -b3 1
is a linear Poisson automorphism such that

$ T Q $
ai a3 -  b22 a3bi -  b2b3 0 ai bi 0

a3bi -  b2b3 a2a3 -  b3 0 = bi a'2 0
0 0 1 0 0 1

If a2 =  0, then it is easy to show that H is equivalent to either H3 or 
Then

$  =

is a linear Poisson automorphism such that

«3
,,/T T ,

i
\Ta 2

0
i

(a2)3/2 Va2
0

t
0

aia2—(bi)
' (a2)2

0
0

0 0

1 0
0 1

2

H5. Suppose a2 =  0.

Thus H is equivalent to H6^ with fi > 0.
Suppose a3 =  0. If a2 =  0, then H is equivalent to H i. Suppose a2 =  0. Then

$
1 0 0
a2 1 0
0 0 1

is a linear Poisson automorphism such that

at $ T Q $

aia2 — bi 0 0© to to

0 1 0
0 0 0
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Hence H is equivalent to the intermediate system Hf  =  fip2 +  p2 with fi > 0. If fi =  0, then 
H f is equivalent to H2. If 0 < fi < ?, then H f is equivalent to H2. Indeed,

4fi -2 0
2fi 4fi - 1 0
0 0 - 4fi

is a linear isomorphism such that

Q ■ Hf  (P)
0
0

8fi (fip? -  piPf +  pf )
(H2 o Q)(p).

If fi =  1, then

is a linear isomorphism such that

1 - 2 0
0 1 0
0 0 4

Q ■ Hf  (p)
0
0

- 2  (p? -  2pf)2
(Hi o Q)(p).

Thus H1 is equivalent to H?. If fi > 4, then H f is equivalent to H4. Indeed,

4fi -2 0
2fi -1  -  V12fi -  3 0
0 0 12fi

is a linear isomorphism such that

Q ■ Hf  (p)
0

( 0 )
24fi (fip? -  p?p2 +  p2)

(H4 o Q)(p).

Tedious but straightforward computations show that none of the class representatives are 
equivalent. In particular, H6,f and H3,p/ are equivalent only if fi =  fi' (see Appendix C.1 for 
sample Mathematica code to verify this fact). □

2.1.4 T y p e  £3.3

The nonzero commutators of g3.3 are [E2 ,E 3] =  - E2 and [E3 ,E?] =  E?; (g3.3 ) -  does not
admit any polynomial Casimir functions.

Proposition 2.4. On (g3.3 ) - ,  any system is equivalent to exactly one of the systems

Hi (p) =  p2 H2 (p) =  p2 H3(p) =  p? +  p3

H4(p) =  p2 +  p2 H3 (p) =  p? +  p2 +  p2 .
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Proof. Let H q (p) =  pT Qp, where

Suppose a3 =  0. Then

Q
ai bi b2
bi a2 b3
b2 b3 a3

1 0
0 1

_b2 b3
«3 «3

0
0
1

is a linear Poisson automorphism such that

i  f T Q f «3
ai

b2b2
«3

bi &2&3
«3

0

bi -  ^1 a-3
a2 b3

«3

0 ai bi 0
0 = bi a’2 0
a3 0 0 1

If a2 
Then

0, then it is easy to show that H is equivalent to either H2 or H3. Suppose a'2 =  0.

f

x 0 0
xb1 v 0a2
0 0 1

is a linear Poisson automorphism (for all nonzero x and v) such that

a3 f ’T f  T Q f f
x 2 (ai -  ^ ) 0 0

0 v2a2 0 •
0 0 1

Thus H is equivalent to H5 or the intermediate system H’ (p) =  p2 +  p§. However,

f ’’
0 1 0
1 0 0
0 0 1

is an automorphism such that H ’ o f ’ =  H3.
Likewise, if a3 =  0, then H is equivalent to H1 or H4 (or the trivial system H0(p) =  0). 

It is straightforward to verify that none of the representatives are equivalent. □

2.1.5 Type g3.4

The semi-Euclidean Lie algebra g3.4 has nonzero commutators [E2,E 3] =  E 1 and [E3 ,E 1] =  
- E 2 ; C (p) =  pi — p2 is a Casimir function.

Proposition 2.5 ([26]). On (g34) - ,  any system is equivalent to exactly one of the systems 

Hi (p) =  p2 H2(p) =  p2 H3(p) =  pi +  p3
H4(p) =  (pi +  p2 )2 H5(p) =  (pi +  p2)2 +  p t
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Proof. Let Hq (p) =  pT Qp, where

Q
ai b" b2
bi a2 b3
b2 b3 a3

Suppose a3 =  0. Then

Q
1
0
_ b2a3

is a linear Poisson automorphism such that

0 0
1 0
_ b3 
“3 1

a3 Qt QQ

ai“3-b2 a3bi-b2 b3
a2 2a3bi-b2b3 a2 a3-b3

a2 a2
0 0

0

0
1

1----- a'" b'" 0'
= b'" a'2 0-----1

0 0 1

Suppose b" =  0 and suppose that a" =  a'2 or (a")2 =  (b")2. Then

Q' =
1 - ai +a2+v3ai+a2) 4(bi )

2bi 0

ai +a2 + \/ ( ai +a2 ) 
2bi

_ 4 ( b i) 2 1 0
0 0 1

is a linear Poisson automorphism such that

a'"' 0
0'

03 q 't q t QQQ' = 0 a'2' 0
0 0 1

for some a" > 0, a2 > 0. (If b" =  0, then we have the same situation.) If a" =  a2 =  0, then H 
is equivalent to H2. Suppose a"' > 0 or a2 > 0. Then H is equivalent to H' =  (a"'+ af)p" +  p2, 
as H'(p) — a2C(p) =  a'/p2 +  a2p2 +  p2. Furthermore Q'' =  diag( . "  „ , . "  n, 1) is a linear

V ai +a2 v ai +“2
Poisson automorphism such that (H ' o Q'')(p) =  p" +  p2. Thus H is equivalent to H3.

Suppose that a" =  a2 and (a")2 =  (b")2. Then

a'" ka'"
0'

a3 Qt QQ = ka'" a'" 0
0 0 1

with k =  ±1. If a" =  0, then H is equivalent to H2. Suppose a" >  0. Then Q' =
diag( —= , —7=, 1) is a linear Poisson automorphism such that\ “  JaL 1

a3 q 't q t q q q '
1 k 0' 
k 1 0 .  
0 0 1
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If k =  1, then H is equivalent to H5. If k =  -1 , then fi" =  diag(1, -1 , -1 )  is a linear Poisson 
automorphism such that

T  fi//T fi/T fiT Q fif i 'fi ''
1 1 0
1 1 0
0 0 1

Hence if k =  -1 , then H is again equivalent to H5.
Similarly, if a3 =  0, then H is equivalent to Hi or H4 (or the trivial system H0(p) =  0). 

Straightforward computations again show that none of the class representatives are equivalent.
□

2.1.6 T y p e

The nonzero commutators of ga4 are [E2 ,E 3] =  Ei -  a E 2 and [E3 ,E?] =  a E i -  E2 ; (gOfi) —
does not admit any polynomial Casimir functions. The classification of systems on (gfi4) — 
depends on the value of a. We find it convenient to classify the entire collection {((g^fi)—, H ) : 
a > 0, a =  1} of systems, rather than classifying for each fixed value for a. Moreover, we will 
use class representatives not strictly belonging to this collection.

Proposition 2.6. Any system ((g3 4 ) — ,H ), a > 0, a =  1 is equivalent to exactly one of the 
systems

((ga.4)- ,P 2)
((03.4) - , (Pi -  P2)2 +  P2)
((g0.4)-,p2)
((03.3)-,p2).

Here 0 < fi < 1, a >  0, a =  1 parametrize families of non-equivalent systems.

Proof. Consider the system ((gfi4) — , H q), a > 0, a =  1. By arguments similar to those in 
proof of Proposition 2.5, we have that ((g3 4 ) — , H q ) is equivalent to one of the systems

Hi(p) =  p3 H3 =  (pi +  P2)2 H5(p) =  (pi +  P2)2 +  p3
H2,p(p) =  pi +  fip2 H4 =  (pi -  P2)2 He(p) =  (pi -  P2)2 +  p3
Hi,? (p) =  f ip ?+ p2 + p3

on (gfi4) — . Here 0 < fi < 1 parametrizes families of representatives. It turns out that no 
further reduction of H?, H5 , H6, or H7,? is possible.

The systems ((g".4) - ,H 3 ) and ((ga.4)—,H 4) are both equivalent to the system ((g3.3 ) - ,p 2), 
for any a > 0, a =  1. Indeed, the required linear isomorphisms have matrices

1 -  a 1 - a 0 -1  -  a 1 +  a 0
fi = 0 1 0 and fi' = 0 1 0

0 0 —1 +  a 0 0 1 +  a

((g3.4) —, (pi +  p2)2 +  p2)
((ga.4) —, fi p? +  p2 +  p2) 
((g3.3)-,p2 +  p2)
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respectively. More precisely, 0 ,0 ' : (53.4) -  ^  (5 3. 3) -  and, in coordinates,

(0 ■ H3 o 0  : )(p) (0 ' ■ H4 o 0 ' : )(p)

which is the Hamiltonian vector field associated to ((g3.3) - ,p 2).
Next we consider the (two-parameter) family ((gOQ)-, H2jg). It turns out that each member 

of this family is equivalent to one of three systems. Let k± =  —1 +  2a2 ±  2 a 0 a 2 — 1. If a > 1, 
then 0 < k-  < 1 < k+. The following three conditions partition the family ((g04) - ,  H2, )̂ 
into its equivalence classes

0 < a <  1 A 0 < 0 < 1 or a >  1 A 0 < 0 < k-  (2.1)
a > 1 A 0 =  k-  (2.2)

a >  1 A k-  < 0  < 1. (2.3)

Let H be the Hamiltonian vector field associated to ((ga4) - ,H 2jg). Suppose (2.1) holds. 
Then 0  : ( f l^ ) -  ^  (fl§.4>-,

2a —1 — 0 — a/  1 +  0 (2 — 4a2 +  0) 0
0  = —2a 1 +  0 — a/ 1 +  0 (2 — 4a2 +  0) 0

0 0 4a

2a —1 — 0 — ^/ (k-  — 0 )(k+ — 0) 0
= —2a 1 +  0 — J  (k-  — 0 )(k+ — 0) 0

0 0 4a

is a linear isomorphism (with det 0  =  — 16a2y^(k-  — 0 )(k+ — 0 ))  such that

0  ■ H  o 0  1 =
0
0

2piP2

Thus, if (2.1) is satisfied, then ((g3 4) - ,  H ^ ) is equivalent to ((g34)-,p1). Next suppose (2.2) 
holds. Then 0  : (gf.4) -  ^  (5 3 .3 ) - ,

0 =
—a a2 — a V a 2 — 1 0
0 1 0
0 0 a

is a linear isomorphism (with det 0  =  —a 2) such that

0  ■ H  o 0  1 =
0
0

—2p1
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Hence ((5 3 4 ) - ,p2 +  k_ p2) is equivalent to ((g3.3 )*_,pf). Lastly, suppose (2.3) holds. Then 
¥ : C03.4)- ^  (03.3)1,

¥ =

2 a —1  — 0 0

0 \J(0  — k_ ) ( k+ — 0 ) 0

0 0 4a

is a linear isomorphism (with det 0  =  80? ^ (0 — k_ ) (k++ — 0)) such that

0  ■ H  o 0  1 =
—2 (p2 +  pi).

Therefore, if (2.3) holds, then ((g3 4)_, H ^ ) is equivalent to ((0 3.3 )_ ,p 2 +  p2).
Finally, straightforward but tedious computations again show that none of the class repre

sentatives are equivalent. □

2.1 .7  T y p e  0 °.5

The nonzero commutators of the Euclidean Lie algebra g35 are [E2 ,E 3] =  E 1 and [E3,E 1] = 
E2 ; C (p) =  pi +  p2 is a Casimir function.

Proposition 2.7 (cf. [7]). On (g35)_, any system is equivalent to exactly one of the systems 

Hi(p) =  p2 H2 (p) =  p3

Proof. Let H q (p) =  pT Qp, where

H3(p) =  p2 +  p3.

Suppose a3 =  0. We have that

Q =

¥ =

ai bi b2
bi a2 b3
b2 b3 a3

1
0

0 0
1 0

_b2 _  b3 1
a 3 ~~

bs
a3

is a linear Poisson automorphism such that
aia3 b2 a3bi_b2b3

1 T
a3 ¥  q ^ =

.2 .,2 a3 a3
a3bi_b2b3 a2a3_b3

a23 a23
0 0

1------- a) bi 0 '
= bi a2 0-------

1

O 0 1

Suppose b) =  0. Then

¥  = _a'i+a,2+y (_a1 +a2) +4(b1)
2b

_ai+a2 + (_a,i+a2) +4(bl)
2bi

1
0

1 0

0
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is a linear Poisson automorphism such that

Q'T Qt QQQ'

---
1

0 0
0 a'2' 0
0 0 1

for some a/ > 0, a'2 > 0. (If b/ =  0, then we have the same situation.) If a / =  a'2, then H is 
equivalent to H2. Suppose that a/' =  a'2 and that a/' > 0 or a'2 > 0. We may assume a/' < a'2'. 
If not, the linear Poisson automorphism

'0 -1  0'
1 0 0 
0 0 1

serves to swap the values. It follows that H is equivalent to H ' =  (a'2 — a/)p  ̂ +  p3, as 
H'(p) +  a/'C(p) =  a/'p/ +  a'2p2 +  p3. Furthermore Q" =  diag( , n, , n, 1) is a linearV“2- “ l /̂«2 —a1
Poisson automorphism such that (H ' o Q'')(p) =  p2 +  p3. Thus H is equivalent to H3.

Similarly, if a3 =  0, then H is equivalent to Hi (or the trivial system Ho(p) =  0). 
Straightforward computations show that none of the class representatives are equivalent. □

2.1.8 T y p e  0«5

The nonzero commutators of gf.5 are [E2,E 3] =  E / — a E 2 and [E3,E^ =  a E / +  E2; ( 03 .5) -
does not admit any polynomial Casimir functions. We again find it convenient to classify the 
entire collection {((03.5) - ,  H ) : a > 0} of systems, rather than classifying for each fixed value 
for a; we shall use class representatives not strictly belonging to this collection.
Proposition 2.8. Any system ( (g f5) - ,H ), a > 0 is equivalent to exactly one of the systems

((sOQ)-,p2) ((sOQ)-,Qp2 +  p2 +  p3) (Cs3.5)-,p2)
((fl3.3)-,p/ +  p2 ) ((03.3)-,p2).

Here 0 < Q < 1, a >  0 parametrize families of non-equivalent systems.

Proof. Consider the system ((0 “.5) - ,H q), a > 0. By arguments similar to those in the proof 
of Proposition 2.7, we have that ((gf.Q -, H q) is equivalent to one of the systems

H/ (p) =  pi H2,p (p) =  Qp/ +  p2 H3 ,̂  (p) =  Qpf +  p2 +  p3

on ( 0f 5 )L. Here 0 < Q < 1 parametrizes families of representatives.
We consider the (two-parameter) family ((0 QQ-, H2,p), a >  0, 0 < Q < 1. It turns out that 

each member of this family is equivalent to one of three systems. Let k± =  1+2a2 ±2a\/a 2 +  1; 
note that 0 < k-  < 1 < k+. The family is partitioned into its equivalence classes by the 
conditions 0 < Q < k-  , Q =  k- ,  and k-  < Q < 1 . Let H  be the Hamiltonian vector field 
associated to ( ( 0“.5) - ,  H2,p). Suppose 0 < Q < k- . Then Q : ( 03 5) -  ^  (0 o.5) - ,

Q
2aQ Q — 1 -  ^/(k« -  Q)(k+ -  Q) 0
_ ! ______ ; a 0

2 (k- -P)(k+-P)
0 0 1
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is a linear isomorphism (with det Q =  — \J(k— — Q)(k+ — Q )) such that

Q ■ H o Q / =
0
0

2p1p2

Thus ((0 f5) - ,H 2, )̂ is equivalent to ( ( 03 5) - ,p 2). Next, suppose Q =  k- . Then Q : (0“ 5) -
(03.3) —,

1 —a — V 1 +  a 2 0
Q = 0  1 0

0 0 -/ +  2a +  2V1 +  a 2

is a linear isomorphism (with det Q =  -/ +  2a +  2\/1 +  a 2) such that

Q ■ H o Q /
0
0
2p2

Hence ( ( 03 5) —, K— p2 +  p2) is equivalent to ((03.3) — ,p2). Lastly, suppose K— 
Q : (03.5)— ^  (03.3) —,

Q
0 —J(Q — k— )(k+ — Q) 0

2aQ Q —1 0
0 0 4aQ

< Q < 1. Then

is a linear isomorphism (with det Q 8a2Q2 \j(Q — K— )(k+ — Q))  such that

Q ■ H o Q /
0
0

2 (p/ +  p2)_

Therefore ((0 “.5)—, H2„a) is equivalent to ((0 3 .3 )—,p2 +  p2).
Finally, straightforward but tedious computations again show that none of the class repre

sentatives are equivalent. □

2.2 Systems on semisimple Lie algebras

For each of the two simple Lie algebras 0 3.6 and 0 3.7, we classify the positive semidefinite 
quadratic Hamilton-Poisson systems on the associated Lie-Poisson space. The procedure is 
essentially the same as in the solvable case. However, for 0 3.6 the argument becomes more 
involved. More precisely, simple composition with linear Poisson automorphisms is not feasible; 
we use a Cholesky factorization of the quadratic form and perform the normalization on the 
Cholesky factor.
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2.2.1 T y p e  £3.5

The pseudo-orthogonal Lie algebra g3.6 has nonzero commutators [E2 ,E 3] =  E ,  [E3,E i] =  
E2 , [Ei ,E 2] =  —E3 ; C(p) =  pi +  p2 — P3 is a Casimir function. The group SO (2,1) is 
generated by

P1 (t)

P3(t)

1 0 0 
0 cosh t sinh t 
0 sinh t cosh t
cos t sin t 0

— sin t cos t 0
0 0 1

—1 0 0 '
0 1 0
0 0 —1

P2(t)

n(t)

cosh t 0 sinh t 
0 1 0 

sinh t 0 cosh t
T — 2t2 t i t2 ■

—t 1 t 
—212 t 1  + 112

The following lemma proves helpful in classifying systems on so (2,1)*.

Lemma 2.9 (cf. [40]). For any matrix

> 1 0 0

R = 0 r2 0 , ri e R, ri, r2 > 0

r3 r4 0

there exists Q e SO ( 2 , 1 ) and s > 0 such that sQ R  equals

x 0 0 0 0 0 1 0 0 0 0 0 0 0 0 k 0 0
y 1 0 , x 1 0 , x 1 0 , x 0 0 , x 1 0 or 0 1 0
0 0 0 y 0 0 k 0 0 y 1 0 y 1 0 0 1 0

Here x, y, e R, and k e  { —1,1}.

Proof. The group SO (2,1) acts transitively on each level set Hs =  {p e so (2 ,1)*\{0} : 
C(p) =  5}. (Hs is a hyperboloid of two sheets when 5 < 0, a hyperboloid of one sheet when 
5 > 0, and a punctured cone when 5 =  0.) Therefore, for any nonzero p e so (2,1)*, there 
exists Q e SO (2,1) such that Q ■ p equals 5E*, 5E3* or E2 +  E3 with 5 > 0.

sp1(t) R =

s OA such that

a1 0 0"
a2 1 0
a3 0 0

for some a1,a2,a3 e R. Suppose ai — a2 > 0. Then there exists p2(t) such that

a1 0 0 x 0 0
P2(t) a2 1 0 = y 1 0

a3 0 0 0 0 0
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Suppose af — af < 0. Likewise, there then there exists pf (t) such that

a1 0 0 0 0 0
Pf (t) af 1 0 = x 1 0

a3 0 0 y 0 0

Suppose af =  a|. (Note the situation ai =  a3 =  0 is impossible.) There exists 0  =  p2(t), 
0  =  ?P2(t), 0  =  P3(n) P2(t) P3(n), or 0  =  <jps(n) Pf(t) P3(n) such that

a1 0 0 1 0 0
0 af 1 0 = x 1 0

a3 0 0 k 0 0

s oA such that

a1 0 0'
af 0 0
a3 1 0

a1 0 0 0 0 0
af 0 0 = x 0 0
a3 1 0 y 1 0

Assume rf — r2 < 0. There exists p1 (t) an

sp1 (t) R =

for some a1 ,a2 ,a 3 £ R. Accordingly, there exists p3(t) such that

P3(t)

Assume rf =  rf. Then there exists an automorphism 0  =  1 or 0  =  such that

-1 0  R =r2 r

for some a1 ,a3 £ R. Suppose a3 =  0. Then

P3( f ) n( ) P3(—f )

Suppose a3 =  0. Then there exists p1(t) such that

jin P1(t)

a1 0 0
0 1 0
a3 1 0

a1 0 0 0 0 0
0 1 0 = x 1 0
a3 1 0 y 1 0

a1 0 0 k 0 0
0 1 0 = 0 1 0
0 1 0 0 1 0

Proposition 2.10. On (g3.6) - ,  any system is equivalent to exactly one of the systems

H!(p) =  Pf Hf(p) =  pf H3(p) =  p1 +  p3
H4(p) =  (p2 +  P3 )2 H5(p) =  pf +  (P1 +  P3 )2 .

□
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Proof. Let H q(p) =  pT Qp. Symmetric matrices are diagonalizable by orthogonal matrices; 
hence there exists 9 £ R such that

Q  =  Pa(9)T QP3(9)
a 1 0 b2
0 a 2 b3

b2 b3 a3

for some a^ b  £ R.
If ai =  0 or a2 =  0, then

OOo ooo

Q' = 0 (12  b3 
0 b3 a3

or p3(§ )T Q' p3(2 ) = 0 a1 b2 
0 b2 a3

respectively. We deal with this case below.
Assume a1 ,a 2 =  0. Let K  be the matrix of the underlying quadratic form of the Casimir 

function C(p) =  pi +  p2 — p3. We claim that Q' + x K  has a Cholesky decomposition Q' +  x K  =  
RT R, where

with

r 3

r i ,r 2
by

=  0 and r 5 =  
by

R =

0 for some x 
and r5

r 1 0 r3
0 r 2 r4
0 0 r5
> 0 . Indeed, r 1 =  yjx +  a1, r2 =  —Jx +  a2

TX+Ty , r4 =  — TX+a , and r5 =  ^ a solution to Q' +  XK =  RTR. ^
x > 0, then x +  a1 >  0 and x +  a2 >  0.) Now det(Q' +  0 K ) > 0 and det(Q' +  xK ) is a cubic 
in x with leading term —x3. Thus there exists x > 0 such that det(Q' +  xK ) =  0.

Note that QT(Q' +  xK)Q =  (RQ)T RQ =  QTRT(QTRT)T. (Also, Q £ SO ( 2 , 1 ) if and only 
if Qt £ SO (2,1).) Hence, by the preceding lemma, Hq is equivalent to a system HRi(p) =  
pT Ri p with quadratic form

a 1 b1 0 0 0 0

R 1 = b1 a 2 0 R2 = 0 a 2 b3
0 0 0 0 b3 a3
1 x k " 1 0 0 '

R3 = x 1  +  x 2 kx R4 = 0 1 1

k kx 1 0 1 1

(Here k =  ±1, x ,a 1 ,a2 ,a3 ,b1 ,b3 £ R, and each matrix Ri is PSD.)
Consider the case HR i. There exists 9 £ R such that p2(9)T Q 1 p2 (9) =  diag(a1, a'2 , 0) 

for some al1 ,a l2 >  0. If a1 =  0 or a!2 =  0, then H qx is equivalent to H1. (For the case 
a1 =  0, a!2 =  0, apply an automorphism p3(n).) Suppose a1 ,a!2 >  0. Then there exists 
an automorphism Q ( Q =  1 or Q =  p3(|)) and constant r =  max{a/1,a/2} > 0 such that 
1 Qt  diag(a1, a'2 , 0) Q =  diag(1,a, 0) with 0 < a < 1. Hence H q is equivalent to the (inter
mediate) system H'(p) =  p2 +  a p 2_ Suppose a =  1. Then Q =  diag(1, —1, —1) is an auto
morphism such that Q ■ H' =  H2 o Q, i.e., H q is equivalent to H2. Suppose 0 < a <  1. Then
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0  =  d i a g ( 1 — a, a/ (1 — a )a , —20a ) is a linear isomorphism such that 0  ■ H' =  H3 o 0. 
Thus H q is equivalent to H3.

Next, consider the case Hr 2. If a2 =  0 or a3 =  0, then Hr 2 is equivalent to Hi or H2
(or the trivial system H0(p) =  0). Suppose a2,a3 >  0. If b3 =  0, then Hr 2 is equivalent to 
the (intermediate system) H'(p) =  p2 +  ap|, a > 0. As R2 is PSD, we have (a2 +  a3)2 > 4b§. 
Suppose b3 =  0 and (a2 +  a3)2 > 4b2. Then

1 0

0
0

0

1 /l | J2+J3
—2 0  0 (J2+J3)2-4b3

sgn(b3 0 / J2 +“3 -0  (J2+J3)2 —4b3 
—2((a2+«3)2-4b2)1/4

is an automorphism such that

0
sgn(b30 /  a2+a3-0(a2+«3)2-463

—2((j2 +“3)2-4b3)1/4
1 1 | “2+“3

—2 y  0(a2+«3)2-463 _

0 T R2 0  =  diag 0  2 a2 — a3 + (a2 +  a3 )2 — 4b3 2 ( — a2 +  a3 +  ^/(a2 +  a3)2

Thus s 0 T R2 0  =  diag(0,1, a) for some s, a > 0, i.e., Hr 2 is equivalent to the (intermediate 
system) H'(p) =  p2 +  ap3. We have that

0
0 0 2  0 1 + a  0

0 0 0 a (1  +  a)
0 2 0 0

is a linear isomorphism such that 0  ■ H ' =  H3 o 0. Now suppose b3 =  0 and (a2 +  a3)2 =  4b2. 
It follows that a2a3 =  b2. Therefore

R2 =  JL R22 J2 2
0 0 0
0 1 a
0 a a2

for some a =  0. If a2 > 1 (resp. a 2 < 1), then

0

1
0
0

0
|a|

—a2- 1 sgn(a)
—a2- 1

0 / 0
sgn(a)

resp. 0  = 1
—a2- 1 —1 -  a2
|a| V

a
—a2 -1 - _ —1 -  a2

1
0
0

0 \
_ a
—i-a 2

—1-a2 /
is an automorphism such that |1-1a2|Hr / o 0  equals H2 (resp. H1). If a 
or 0  =   ̂ is an automorphism such that Hr / o 0  =  H4.

Now consider the case Hr 3 . We have that

1 — x2 2x k (3 +  x2)
0 kx k 1 | x2 ( x )

±1, then 0 1

is a linear isomorphism (with det 0  =  —2 (1 +  x2) 2) such that 0  ■ Hr 3 =  H5 o 0.
For the last case Hr 4, we have Hr 4 o p3( ) =  H5. It is fairly straightforward to verify that 

no two representatives are equivalent. □
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Rem ark 2.11. Let H q be a system on (g3.6) -  with Q positive definite. There exists Q G 
SO (2 , 1 ) such that QT QQ is diagonal ([118]). Accordingly, H q is equivalent to H i , H2, or
H3 .

2.2.2 T y p e  £3.7

The pseudo-orthogonal Lie algebra g3.7 has nonzero commutators [E2 ,E 3] =  E?, [E3 ,E?] =  
E2 , [Ei , E2] =  E3 ; C (p) =  p2 +  p2 +  p2 is a Casimir function.

Proposition 2.12 ( [8,38]). On (g3.7 ) - ,  any system is equivalent to exactly one of the systems

Hi(p) =  p2 H2 (p) =  p? +  ? p2.

Proof. Let Hq (p) =  pT Qp. We may assume that Q is positive definite. Indeed, if Q is 
not positive definite, then H is equivalent to a system H +  AC for which the quadratic 
form is positive definite (for some sufficiently large A). There exists Q G SO (3) such that 
Qt QQ =  diag(a?, a2 , a3), where a? > a2 > a3 >  0. Hence (H q o Q)(p) — a3C (p) =  p diag(a? — 
a3 ,a2 — a3 , 0) pT with a? — a3 > a2 — a3 > 0. If a? — a3 =  0, then H q is equivalent to the
trivial system. If a? — a3 >  0, then (Hq o Q)(p) — a3C (p) =  (a? — a3) p diag(1, a— 3 , 0) pT and 
so Hq is equivalent to (the intermediate system)

H3,a(p) =  p2 +  ap% a =  a— f , 0 < a < 1 .

If a =  0, then H3,a 
isomorphism

H?. If a =  1, then H3,a and H? are compatible with the linear

Q
0 0 —1
0 1 0
1 0 0

If 0 < a < 1, then H3,a and H2 are compatible with the linear isomorphism

Q
v/ 2 ^ 1 — a 0 0 '

0 2 ^ a ( 1  — a) 0

0 0 —V 2 ^a_

It is easy to show that H? and H2 are not equivalent. □
Rem ark 2.13. The above result holds true in the context of all homogeneous quadratic 
Hamilton-Poisson systems on (g3.7) - . This is due to the fact that for any quadratic form 
Q on g3 7, there exists a scalar multiple of the Casimir function C such that the sum Q +  AC 
is positive definite.

2 .3  G e n e r a l  c l a s s i f i c a t i o n  a n d  r e m a r k s

We now proceed to classify systems in the context of all three-dimensional Lie-Poisson spaces. 
First we determine if any systems on different Lie-Poisson systems are equivalent; a summary 
appears in Tables 2.1 and 2.2. The main classification result then follows.
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Table 2.1: Equivalence of ruled systems (systems in the same column are equivalent)
R3) R(4) R(5)

52.i © fli Pi (Pi +  P3)2

53.i p3
53.2 Pi +  p2 Pi p2
53.3 Pi +  p2 Pi
0°53.4 (Pi +  P2)2 Pi5°53.5 p2

Table 2.2: Equivalence of non-ruled systems (systems in the same column are equivalent)
P(6) P(8) Np(3) Np(7)

53.i p2 +  p3
53.4 p3 (pi +  P2 ) 2 +  p3 p2 +  p3
53.5 p3 p2 +  p3
53.6 Pi p3 p2 +  (pi +  P3 ) 2 p2 +  p3
53.7 Pi Pi +  2 p2

Proposition 2.14. In each of the following cases, any two systems are equivalent:

1. ((fl2.i © 5i) —, (Pi +  P3 )2), ((53.i) —,p3), ((53.2) —,p2), (fl°.4)-,Pl),
((fl§.5 )—,p2) •

2. ((fla.i)-,p2 +  p3), ((5 3 .5 )—,p2), ((fla.6)-,p3), ((5 3 .7)—,p2).

3. ((s3.4)-,p2 +  p2), ((s3.5)-,p2 +  p3), ( ( 5 3 .6)—,p1 +  p2), ( ( 5 3 .7 )—,p2 +  i p2).

4. ((fl2.i © 5i) —,Pi), ((fl3.2)-,Pi), ((53.3)—,Pi), ((fl°.4) - ,  (Pi +  P2)2).

5. ((fl°.4)-,P2), ((S3.6) - , p2).

6. ( ( 5 3 .4) - ,  (Pi +  P2)2 +  P2), ((B3.6)-,p2 +  (pi +  P3 )2).

7. ( ( 5 3 .2)—,p2 +  P2), ( ( 5 3 .3 )—,p2 +  P2).

Proof. We prove only item 1; the other items follow very similarly. We claim that each of the 
systems is equivalent to ((g3.i )—,p2). Indeed,

' 1  0 c ' 0 1  c 0 1 0 0 1 0
^i = 0 - 1 0  

1 0 1
, ^ 2  = 0 0 1 

-1  1 0
, ^3 = 0 0 -1  

1 0 0
, and ^4 = 0 0 -1  

1 0 0

are linear isomorphisms with codomain (g3.i )h such that ^  ■ Hj o ^  i =  H . Here H is the 
vector field associated with ((g3.i) — ,p3); H i , H2, H3, and H4 are the vector fields associated 
with ((g2.i © 5i) —, (Pi +  P3)2), ((5 3 .2) — ,P2), (5 3 .4)—,P2), and ((5 3 .5 )—,p2), respectively. □
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We say that a system (g—, H ) is ruled, if for each integral curve of H there exists a line 
containing its trace. Likewise, (g—,H ) is called planar if it is not ruled and for each integral 
curve of H  there exists a plane containing its trace. Otherwise, (g—,H ) is called non-planar. 
The ruled, planar, and non-planar properties are each invariant under equivalence, i.e., if two 
systems are equivalent, then they must belong to the same class.

Theorem  2.15. Suppose (g—,H ), H (p) =  Q(p) is a Hamilton-Poisson system on a three
dimensional Lie-Poisson space (and suppose Q is positive semidefinite).

1. If (g—,H ) is ruled, then it is equivalent to exactly one of the systems 

R(1) : ((g2.i © g i) - ,P 2)
R(2):((g3.3)-,p2) R (3):((g3.s)-,p? +  p2)

R (4 ) :( (g L ) - ,  (Pi +  P2)2) R(5):((g3.5)-,P2).

2. If (g l ,H ) is planar, then it is equivalent to exactly one of the systems

P(1) ((g2.i © gi) —,pi +  p2) P(2) ((g2.i © g i)—,p2 +  (pi
P(3) ((g3.2)—,p3)
P(4) ((g3.3)—,p i + p2) P(5) ((g3.3) —,p2 + p2 +  p3)
P(6) ((g0.4) —,p3) P(7) ((ga.4)—,p3)
P(8) ((g3.5) —,p3) P(9) ((ga.5)—,p3)

P(10) ((g3.6) — (p2 +  p3)2).

2

3. If (g—,H ) is non-planar, then it is equivalent to exactly one of the systems

Np(1) : ((g3.2)-,pi +  P2)
NP(3) : ((g03A)*-, (pi +  p2)2 +  p2) 
NP(5) : ((g3.4) —, (pi -  p2)2 +  p2)
n p(7) : ((g3.5)—, p2 + p3)

Np(2) : ((g3.2) — ,5p? +  p2 +  p2)
Np(4) : ((g?.4) —, (pi +  p2)2 +  p2) 
NP(6) : ((g?.4) — ,^p? +  p2 +  p2)
Np(8) : ((ga.5) — ,^p2 +  p2 +  p2).

Here a >  0, 0 < fi < 1, and 5 >  0 parametrize families of class representatives, each different 
value corresponding to a distinct non-equivalent representative. (For (g“.4)—, we have a =  1.)

The associated Hamiltonian vector fields (and their equilibrium states) are tabulated in ap
pendix B.1 (Tables B.1, B.2, B.3, and B.4).

Proof. By the preceding propositions, we have that the system (g—,H ) is indeed equivalent 
to one of the given normal forms. Some computationally taxing calculations show that no two 
normal forms are equivalent. Indeed, for the majority of pairs this has already been established 
in the foregoing propositions. (Some further invariants distinguishing between the normal forms 
will be discussed below.)
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It is not difficult to establish the class of the system (ruled, planar or non-planar) by 
investigating the Hamiltonian and Casimir function, as any integral curve must evolve on the 
intersection of some level sets of the Hamiltonian and Casimir. Moreover, in many cases simple 
inspection of the equations of motion shows that a system is ruled or planar (as the evolution 
along certain coordinates is constant). Nonetheless, we can determine the class of a system 
(g—, H ) as follows. In coordinates p =  (pi ,p2 ,p3) we can interpret an integral curve of H  as 
a space curve and hence calculate its curvature and torsion. We have that the system is ruled 
if and only if every integral curve has zero curvature; the system is planar if and only if there 
exists integral curves with nonzero curvature and every integral curve with nonzero curvature 
has zero torsion; the non-planar system are those for which there exist integral curves having 
nonzero curvature and nonzero torsion. Although the curvature and torsion are dependent 
on the choice of coordinates (i.e., choice of induced inner product), their being zero does not 
depend on the choice of coordinates. We give details for P(10) as a typical case. Suppose p(-) 
is an integral curve of the system P(10), i.e., p =  (2(p2 +  p3)2, — pi (p2 +  p3), 2pi (p2 +  p3)). Then 
we have

p =  (4(p2 +  p3)(p2 +  p3), —2p)i(p2 +  p3) — 2pi(p)2 +  p3), 2p>i(p2 +  p3) +  2pi (p2 +  p3))
=  (0, —4(p2 +  p3)3, 4(p2 +  p3)3).

Consequently, k = V2\/(P2+P3)10, , NN372 =  0 and so P(10) is not ruled. However,
((P2+P3)2(2pf + (P2+P3)2))

p (t) =  (0, 0 , 0) and so p(-) has zero torsion; therefore P(10) is planar. □

Rem ark 2.16. In [120] it was shown that a number of quadratic Hamilton-Poisson systems 
are equivalent to the free rigid body dynamics

{pi =  (A3 — A2)p2p3 
pi =  (Ai — A3)p2p3 Ab A2 , A3 G r .

pi =  (A2 — Ai)p2p3The above system may be realised as ((g3.7)—, Aipf+A2p2+A3p3); we may assume Ai , A2, A3 > 0 
by adding a multiple of the Casimir. Note however, that by the above theorem, any (non-trivial) 
system ((g3.7) —, Aipf +  A2p2 +  A3p3) is equivalent to P(8 ) or Np(7).

Rem ark 2.17. We remark on some interesting features inferred from the above theorem and 
preceding propositions.

• Any system on (g3.i )— or (g3.7)— is equivalent to one on (g0.5)—.

• Any system on (g3.i ) —, (g2.i © gi)— or (g3.3)— is a planar (or ruled) one. (This is follows 
immediately from the fact that the coadjoint orbits for each of these spaces are contained 
in planes.)

• Every system on (g3.i) —, (g°.4)—, (g0.5) —, or (g3.7)— may be realized on more than 
one Lie-Poisson space. (For (g36) —, the only exceptions are those systems equivalent to
P(10).) —



Chapter 2. Quadratic Hamilton-Poisson systems in three dimensions 59

Rem ark 2.18. It will be shown in the next chapter that the Hamilton-Poisson system associ
ated to any invariant sub-Riemannian structure on a three-dimensional Lie group is equivalent 
to P(2), P(8), Np(2)^=o, Np(6)^=o, Np(7), or Np(8). In particular, for structures on unimod
ular groups, the associated Hamilton-Poisson system is equivalent to P (8) or Np (7).

Rem ark 2.19. It turns out that among those spaces that admit global Casimir functions (i.e., 
(g2.i © gi) —, (g3.i) —, (g3.4) —, (g3.5)—, (g3.6) —, and (g3.7)—) explicit expressions for the integral 
curves can be obtained in terms of elementary or Jacobi elliptic functions. Indeed, the integral 
curves of R(1), R(4), R(5), P(1), P(2), P(6), P(8), P(10) and Np(3) can be found in terms 
of elementary functions, whereas the integral curves of Np(7) can be found in terms of Jacobi 
elliptic functions (cf. [7-9]).

We note that the set of equilibrium points for each of the normal forms is the finite union 
of some lines and planes (see Table B.4). Accordingly, as the set of equilibria of equivalent 
systems are related by a linear isomorphism, the same property holds true for all homogeneous 
systems on three-dimensional Lie-Poisson spaces. Suppose the set of equilibrium points for a 
system is the union of i lines and j  planes. We refer to the pair of numbers (i, j )  as the 
equilibrium index of a system.

Proposition 2.20. If two systems are equivalent, they have the same equilibrium index.

Often the equilibrium index of a system, together with its class (i.e., ruled, planar, or non
planar), is enough to determine the normal form of a system on a given Lie-Poisson space. 
Accordingly, this gives us a taxonomy of systems for each Lie-Poisson space, see Appendix B.1.





Chapter 3

Sub-Riemannian structures on 
three-dimensional Lie groups

The classification of sub-Riemannian structures (up to local isometry) in three dimensions 
has been considered by a number of authors. In particular, Strichartz [112] classified the 
symmetric sub-Riemannian structures, Falbel and Gorodski [56] classified the homogeneous 
sub-Riemannian structures, and Agrachev and Barilari [10] classified the left-invariant sub- 
Riemannian structures.

For some classes of structures, it is known that the isometries and L-isometries are closely 
related. More precisely, for invariant nilpotent Riemannian manifolds and sub-Riemannian 
Carnot groups, it is known that any isometry is the composition of a left translation and a Lie 
group isomorphism (see Theorems 1.43 and 1.45).

In this chapter, we aim to explore the relation between isometries and L-isometries for 
invariant sub-Riemannian structures in three dimensions; the results of Agrachev and Barilari 
[10] are used in our comparison. We shall carry out the following program for each simply 
connected three-dimensional Lie group G:

1. We classify the sub-Riemannian structures on G up to L-isometry and rescaling (i.e., 
LiSR-isomorphism). A list of normal forms (G, V*, g*) is exhibited; for each solvable 
group it turns out there is only one structure. A similar classification is stated, but not 
proved, in [123, p. 52].

2. We calculate the associate group of L-isometries (for each normal form).

3. We determine the normal form of the associated quadratic Hamilton-Poisson system 
H(G, V*, g*) (see Corollary 1.40 and Theorem 2.15).

4. To every (invariant) sub-Riemannian structure in three-dimensions, one can associate a 
contact structure which is preserved (up to a change of sign) by isometries (cf. [10]).

(a) We calculate the Reeb vector field associated to this structure and hence determine 
the scalar invariants (x, k) for the structure as given in [10]. (As a typical case, 
accompaning Mathematica code for these calculations is given in the case of SE (2) 
in Appendix C.2.)

61
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(b) By promoting the associated Reeb vector field to an orthogonal complement of 
the distribution, one obtains a Riemannian structure; the isometries of the sub- 
Riemannian structure are a subgroup of isometries of this Riemannian structure. 
By exploiting this property, we determine the subgroup of linearized isotropies of 
the identity, which amounts to describing the full isometry group. (As a typical case, 
accompaning Mathematica code for these calculations is given in the case of G3.2 in 
Appendix C.3.)

After carrying out this program, we find (by comparing our results to those of [10]) that two 
invariant structures on the same Lie group are isometric if and only if they are L-isometric. 
Moreover, it turns out that most isometries are in fact the composition of a left translation 
and a L-isometry (by virtue of Theorem 1.45, this was already known for isometries between 
structures on the Heisenberg group.)

The Abelian group R3 and the group G3.3 admit no invariant bracket generating distribu
tions (cf. [35]); hence, these cases are ruled out from the start. For the classification of three
dimensional Lie groups and the corresponding automorphism groups, refer to Appendix A. We 
note that since the same program is carried out for each three-dimensional Lie group, some of 
the details are somewhat repetitive. A list of normal forms (up to L-isometry and rescaling) 
of invariant structures, the corresponding linearized isotropy subgroups, and the correspond
ing normal forms of the associated Hamilton-Poisson systems, are exhibited in Appendix B.2, 
Tables B .8 and B.9.

3 .1  P r e l i m i n a r i e s

3.1.1 E lem ents o f  invariant R iem an nian  geom etry

Let (G, g) be a left-invariant Riemannian structure and let V denote the associated Rieman
nian (or Levi-Civita) connection. For left-invariant vector fields Y , Z , and W , we have ([91])

g (V y Z, W ) =  2(g([Y, Z ], W ) -  g([Z, W ], Y ) +  g([W, Y ], Z )).

Accordingly, if (X i ,X 2 ,X 3) is a left-invariant orthonormal frame for (G, g), then

V y Z  =  g(VYZ, X i)X i +  g(VYZ, X 2)X 2 +  g(VYZ, X 3)X 3 .

The curvature tensor R for (G, g) is given by RYZ =  V[Y,Z] — V YV Z +  V ZV Y for vector fields 
Y, Z ; its covariant derivative VR is given by

VR(Y, Zi, Z2 , Z3 ) =  V y  R(Zi, Z2 , Z3 ) — R (V y Z i, Z2 , Z3 ) — R(Zi, V y Z2 , Z3 ) — R(Zi, Z2 , V y Z3) 

for vector fields Y, Z i , Z2, Z3.
Isometries are compatible with the Riemannian connection. That is, if 0 : (G, g) ^  (G, g) 

is an isometry, then
0*Vy  Z  =  V  y 0*Z
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for vector fields Y and Z  (see, e.g., [100]). Accordingly, 0*R(Y, Z, W ) =  R(0*Y, 0*Z, 0*W) 
and 0*VR(Y, Z i , Z2, Z3) =  VR(0*Y, 0*ZY 0*Z2, 0*Z3) for any isometry 0. In particular, if 
0 ( 1 ) =  1 , then

Ti0 ■ R (Y (1), Z (1), W (1)) =  R(Ti0 ■ Y (1 ),T i0  ■ Z (1 ),T i0  ■ W (1)) (3.1)

and

Ti0 ■ V R (Y (1), Z i(1), Z2 (1), Z3 (1))
=  VR(Ti0 ■ Y (1 ),T i0  ■ Zi(1), Ti0 ■ Z2(1),Ti0 ■ Z3(1)) (3.2)

The above two conditions turn out to often fully determine the linearization of the isometries 
fixing identity of a invariant Riemannian structure in three dimensions. As isometries are 
uniquely determined by there tangent maps at a single point (see, e.g., [1 0 0 ]), this amounts to 
determining the subgroup of isometries fixing the identity.

3.1.2 C on ta ct stru ctu re

Let (Yi ,Y2) be an orthonormal frame for an invariant sub-Riemannian structure (G, V ,g). 
There exists a unique contact one form w on G such that ( [10])

ker w =  V =  span(Y[, Y2) and dw(Yi , Y2) =  1. (3.3)

(A one form w on a three-dimensional group G is contact if dw A w is a non-vanishing volume 
form.) Moreover, any other choice of orthonormal frame (Yi, Y2) yields the same one form, up 
to a change of sign. We claim that pull back of w by any isometry is ±w.

Lemma 3.1. If 0 : (G, V, g) ^  (G, V, g) is an isometry, then 0*w =  ±w.

Proof. Let 0 : (G, V, g) ^  (G, V, g) be an isometry, let (Yi , Y2) be an orthonormal frame for 
(G, V, g), and let w be the contact one form given by (3.3) with respect to the orthonormal 
frame (0 *Yy 0 *Y2) for (G, V ,g). Further, let w' =  0*w, i.e., wg(X(g),Y(g)) =  w (̂fl)(Tg0 ■ 
X(g),Tg0 ■ Y(g)). We have that w'(Y;) =  0*w(Y;) =  w(0*Y;) =  0 and iYi dw' =  iYi0*dw = 
i^Yidw =  0 for i =  1,2. Hence w' is the contact one form given by (3.3) with respect to the 
orthonormal frame (YqY2). Consequently, as any choice of orthonormal frame (YqY2) yields 
the same contact one form up to a change of sign, we have w' =  ±w. □

The Reeb vector field associated to the contact one form w is the unique vector field 
such that w(Y0) =  1 and iYo dw =  0 . Note that the Reeb vector field is uniquely determined 
for a structure (G, V, g), up to a change of sign (as w is the same, up to a change in sign, 
for any orthonormal frame). The Reeb vector field is likewise preserved by isometries (up to a 
change in sign).

Lemma 3.2. If 0 : (G, V, g) ^  (G, V, g) is an isometry, then 0*Y0 =  ±Y0.

Proof. By Lemma 3.1, we have i^tYodw =  iYo0*dw =  ± iYodw =  0 and w(0*Yo) =  0*w(Yo) = 
±w(Yo) =  ±1. Thus either 0*Y0 or —0*Yo is identical to Y0. □
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Rem ark 3.3. As left translations are (orientation preserving) isometries for any invariant 
sub-Riemannian structure, it follows that the Reeb vector field is left invariant.

We note that rescaling the metric g by a constant A > 0 rescales the associated Reeb 
vector field by ^.

Lemma 3.4. If Y0 is the Reeb vector field for (G, V, g) with respect to an orthonormal frame 
(Yi , Y2), then  ̂Y0 is the Reeb vector field for (G, V, Ag) with respect to the orthonormal frame

(A ^  A Y2).

Proof. Let w be the contact one form for (G, V ,g ) with respect to (Yi ,Y2). We have that 
d w ( Y i , Y2) =  i  and so the contact one form for (G, V, Ag) with respect to (^ Y i , Y2)
is Aw. Consequently, (Aw)(Y0) =  A and so iY0 is the Reeb vector field for (G, V, Ag) with 
respect to (—̂ Yi, —̂ Y2). □

We find it convenient to calculate the contact one form and Reeb vector field in three
dimensional Cartesian space. Let m : R3 ^  G, x =  (xi ,x 2 ,x 3 ) ^  m (xi ,x 2 ,x 3) be a 
parametrization of G. For the simply connected solvable Lie groups, m can be taken to 
be a diffeomorphism (see Appendix A.2). However, for our purposes a diffeomorphism between 
some neighbourhoods of 0 e R3 and 1 e G is sufficient.

The pull back of a left-invariant vector field AL, AL( 1 ) =  A e g can be explicitly calculated 
by m*AL(x) =  Tm- i  ■ AL(m(x)) =  Tm- i  ■ m(x) A. We shall denote by (X i ,X 2 ,X 3 ) the 
pull back m*EL of the (Maurer-Cartan) frame (E ^ E ^ E ^ ) of left-invariant vector fields 
corresponding to the given basis (E i ,E 2 ,E 3 ) for g. We shall denote by (vi , v2 ,v3) the (left- 
invariant) coframe dual to (X i ,X 2 ,X 3 ).
Note. We make use of the “Differential Forms” Mathematica package (Version 3.1, February 
2007) by Frank Zizza for the exterior algebra of differential forms in n-dimensional Cartesian 
space (http ://library.w olfram .com /infocenter/M athSource/482/).

3 .1.3 Isom etries and characteristic  expansion

We define the characteristic Riemannian expansion (G, g) of a sub-Riemannian structure 
(G, V, g) as the structure obtained by promoting the Reeb vector field to an orthogonal com
plement of the distribution. That is, if (Yi ,Y2) is an orthonormal frame for (G, V, g), then 
its characteristic Riemannian expansion is the Riemannian structure admitting orthonormal 
frames (±Y0,Yi ,Y2). Note that (G, g) does not depend on the choice of orthonormal frame 
(Yi ,Y2). We show that the isometries of (G, V, g) are exactly those isometries of (G, g) pre
serving V.

Proposition 3.5. Let (G, g) be the characteristic Riemannian expansion of a sub-Riemannian 
structure (G, V, g). A diffeomorphism 0 : G ^  G is an isometry of (G, V, g) if and only if it 
is an isometry of (G, g) such that 0*V =  V.

Proof. Suppose 0 is an isometry of a sub-Riemannian structure (G, V, g) with orthonormal 
frame (Yi ,Y2). We have that (0*Yi ,0*Y2) is an orthonormal frame for (G, V ,g ) and so

http://library.wolfram.com/infocenter/MathSource/482/
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(±Yo, 0*Yi , 0*Y2) is an orthonormal frame for (G, g). That is, 0 pushes forward the orthonor
mal frame (Y0,Yi ,Y2) of (G, g) to an orthonormal frame (±Yo, 0*Yi ,0*Y2) of (G, g). Thus 
0 is an isometry of (G, g) such that 0*V =  V.

Conversely, suppose 0 is an isometry of (G, g) such that 0*V =  V. Let (Yi ,Y2) be an 
orthonormal frame for (G, V, g) and (Y0,Yi ,Y2) be an orthonormal frame for (G, g). We have 
that (0*Yo,0*Yi ,0*Y2) is an orthonormal frame for (G,g). Moreover, as 0*V =  V, we have 
that (0*Yi ,0*Y2) is an orthonormal frame for V with respect to g (as gj^, =  g). Hence 0 is 
an isometry of (G, V, g). □

We shall denote the group of isometries of a structure (G, V, g) by Iso(G, V, g). The 
subgroup of isotropies fixing an element g e G will be denoted by Isog(G, V, g). By left- 
invariance, we have that Iso(G, V, g) is generated by the left translations Lg : h ^  gh, g e G 
and the isotropy subgroup of identity. Indeed, any isometry 0 e Iso(G, V, g) can be written 
as 0 =  o 0', where 0' e Isoi(G.V, g). Moreover, any isotropy subgroup Isog(G, V, g) is 
conjugate to Iso1(G, V, g); indeed Isog(G, V, g) =  o Iso1(G, V, g) o Lg- i .

As any isometry of (G, V, g) is an isometry of its characteristic Riemannian expansion, it 
is uniquely determined by its tangent map at a point. Accordingly, we shall denote by

d Isoi(G, V, g) =  {T i0 : 0 e Isoi(G, V, g )}

the corresponding linearized isotropy group. Any element T1 0 e d Iso1(G, V, g) must satisfy 
(3.1) and (3.2) for the characteristic Riemannian expansions of (G, V, g); we shall use this 
fact in determining d Iso1(G, V, g) for each invariant sub-Riemannian structure (on a three
dimensional Lie group).

On the other hand, we denote the group of L-isometries of a structure (G, V, g) by 
£-Iso(G, V, g). We have that L-Iso(G, V, g) =  Iso(G, V, g) n Aut(G) and that L-Iso(G, V, g) 
is a subgroup of Iso1(G, V, g). We denote by dL-Iso(G, V, g) the subgroup of linearized L- 
isometries, i.e.,

dL-Iso(G, V, g) =  {T 1 0 : 0 e L-Iso(G, V, g )}
=  {^  e dAut(G) : ^ ■ V(1) =  V(1), ^*g 1  =  g i} .

We shall show that for almost all structures in three dimensions d L-Iso(G, V, g) =  d Iso(G, V, g).

3 .1.4 C lassification  and scalar invariants

We restate here adaptations of the classification results for invariant sub-Riemannian structures 
in three dimensions obtained in [10], specialized to our purposes.

Let (Yi ,Y2) be a left-invariant orthonormal frame for a sub-Riemannian structure (G, V, g) 
and let Yo be the associated (left-invariant) Reeb vector field as specified in Section 3.1.2. The 
Lie algebra of the vector fields Yo, Yi , Y2 then takes the form

[Yi,Yo] =  ciiYi +  c2iY2 
[Y2 ,Yo] =  c^Yi +  Cq2 Y2 
[Y2,Yi] =  cIqYi +  cQqYq +  Yo.
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In terms of the structure constants c j , we have the following scalar invariants

x =  q \/ (co2+ coi)2 -  4cii co2

K =  (c°2)2 -  (ci2)2 +  ° (coi -  co2) .

The constants x  and k are scalar invariants in the following sense.

Theorem  3.6 ( [10]). If (G, V, g) and (G', V', g') are isometric, then x  =  x ' and k =  k'.

The invariants k and x are homogeneous (with degree two) with respect to a dilation of 
the orthonormal frame (Y[,Y2). In other words, if (G, V, g) has scalar invariants (x, k), then 
(G V, X2g), A > 0 has scalar invariants (A2k,A2x ). Hence by rescaling the metric, we may 
assume that either

x =  k =  0 or x 2 +  k2 =  1

For a given structure, the scalar invariants (satisfying the above equation) for a suitably rescaled 
structure will be referred to as the normalized scalar invariants.

In terms of the scalar invariants x and k, we have the following classification result.

Theorem  3.7 ( [10]). Let (G, V, g) and (G', V ', g') be two left-invariant sub-Riemannian struc
tures with matching scalar invariants x  and k.

1. If x  =  k =  0, then (G, V, g) is locally isometric to the Heisenberg group.

2. If x  =  0 or x  =  0 and k > 0, then (G, V, g) and (G', V', g') are locally isometric if 
and only if their Lie algebras are isomorphic.

3. If x  =  0, k =  -1 ,  and G is simply connected, then (G, V, g) is isometric to A =  SL (2) 
with elliptic type Killing metric.

In Figure 3.1 we graph the normalized scalar invariants x  and k for the respective normal 
forms of sub-Riemannian structures (obtained in the next two sections).

3.1.5 M etric  subspaces

For invariant sub-Riemannian structures on a simply connected Lie group G, the classifica
tion up to L-isometry and rescaling of the metric can be accomplished by classifying metric 
subspaces of the associated Lie algebra up to Lie algebra isomorphism (and dilation of the 
metric).

We say that a pair (r, ^) is a metric subspace of a Lie algebra g if r  is a full-rank subspace 
of g and ^  is an inner product on r . Two metric subspaces (r, ^) and (r', ^ ') are said to 
be equivalent if there exists a Lie algebra automorphism 0  e Aut(g) such that 0  ■ r  =  r ' 
and r^(A, B) =  ^ '(0  ■ A, 0  ■ B) for A, B e r  and some r > 0. We will likewise say that 
two full-rank subspaces r  and r ' are equivalent if there exists a Lie algebra automorphism 
0  e Aut(g) such that 0  ■ r  =  r '.
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Lemma 3.8. The sub-Riemannian structures (G, D, g) and (G, D ', g') on a simply connected 
Lie group G are LiSR-isomorphic (i.e., L-isometric up to rescaling) if and only if the associ
ated metric subspaces (D(1), g i) and (D'(1), g i) of g are equivalent.

Proof. This follows immediately from Lemma 1.31 (as for any LiSR-isomorphism f  we have 
ker f  =  {0}). □

We shall denote by Autr (g) the subgroup of Lie algebra automorphisms preserving r , i.e., 
Autr (g) =  { f  e Aut(r) : f  ■ r  =  r } .  We denote by Aut(g)|r the restriction to r  of the 
subgroup of automorphisms preserving r, i.e,

Aut(g) |r =  { f  e GL (r) : 3 f  e Autr(g), f  ̂  =  f  }  .

Accordingly, the classification of the metric subspaces of a Lie algebra can be accomplished by 
first classifying the full-rank subspaces up to isomorphism, then calculating the transformations 
Aut(g)|r preserving a given a normal form r , and then reducing the inner products on r  by 
these transformations.

We note that each automorphism is identified with its matrix (with respect to the standard 
basis as given in Appendix A ). Moreover, given a subspace r  =  (Ap A2) implicitly with basis 
(Ai, A2), each linear transformation f  e Aut(g)|r and each quadratic form on r  will also be 
identified with its matrix.

3 .2  S t r u c t u r e s  o n  s o l v a b l e  g r o u p s

We consider first those structures on solvable Lie groups. Table B.9 in Appendix B.2 contains a 
summary (listing the normal forms of sub-Riemannian structures, the corresponding linearized 
isotropy subgroups, and the corresponding normal forms of the associated Hamilton-Poisson 
systems).

3.2.1 T y p e  g2.i © gi

The nonzero commutators of g2.i © gi are [Ei , E2] =  E i ; the corresponding simply connected 
Lie group Aff (R)o x R is diffeomorphic to R3.

Proposition 3.9. Any sub-Riemannian structure on Aff(R)0 xR  is L-isometric up to rescaling 
to the structure (Aff(R)0 x R,D, g) given by D(1) =  (Ei +  E3,E 2) and g1 =  diag(1,1), i.e., 
with orthonormal frame (Ef  +  Ef , Ef ). 1

1. The group of linearized, L-isometries is given by

d L-Iso(Aff(R)0 x R, D, g)
a 0 0

0 1 0 : a =  ± 1

0 0 a

)- is given by H  (p)
and is L-equivalent to P(2).

i S ((Pi +  P3)2 +  p2)
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3. The Reeb vector field corresponding to (Aff (R)0 x R, D, g) is ± E f . The normalized scalar 
invariants are given by x  =  0 and k =  -1 .

4. The subgroup of linearized isotropies is given by

d Iso1 (Aff(R)0 x R, D, g)
a cos 9 —a sin 9 0
sin 9 cos 9 0

a +  a cos 9 —a sin 9 a
9 e R, a 1 =  O (2)

Proof. It is a simple matter to show that any full-rank subspace of g2.i © gi is equivalent to 
the full-rank subspace r  =  (Ei +  E3 ,E 2 ) ( [36]). The subgroup of automorphisms preserving 
r  is given by

Autr(g2.i © gi)
x y 0
0 1 0  
0 y x

x, y e R, x =  0

The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(g2.i © g i )|r
x y
0 1 x, y e R, x =  0

ai b
b a2

with respect to the basis (Ei +  E3, E2) for r ). We have that

Let ^ be positive definite quadratic form on r  (here the matrix for ^  is written

f
\/a.ia.2—b2 

ai 
0

b
ai
1

e Aut(g2.i © g i )|r

and ^  o f  =  f T^ f  =  (a2 — ^ )d ia g (1 ,1). Therefore any metric subspace of g2.i © gi is 
equivalent to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). The group of linearized L-isometries d L-Iso(Aff(R)0 x R) consists of those 
automorphisms

f  e Autr(g2.i © gi)
x y 0 
0 1 0
0 y x

x, y e R, x =  0

satisfying g1(A ,B) =  g1( f  ■ A , f  ■ B ) for A ,B  e D(1), i.e., f|D(1) e O (2). Thus an 
automorphism f  e Autr (g2.i © gi ) is an element of dL-Iso(Aff(R)0 x R) if and only if

i.e., x =  ±1 and y =  0. The associated Hamiltonian system is

to 1 0
xy 1 +  y2 0 1

((g2. i © gi )—, i( (p i +  p3)2 +  p2)); it is a simple matter to see that this system is L-equivalent 
to P(2) (see Proposition 1.25, item 2).

(3). The pull back (X i ,X 2,X 3) of the frame (EL,E L,E L) to R3 and its corresponding 
dual frame is given by

( X i =  e—x2 dxi 
< X 2 =  dx2

{ X 3 =  dx3 .

vi =  ex2 dxi 
V2 =  dx2 

V3 =  dx3.
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Let Y1 =  A(X 1 +  X 3) =  Ae- X2 dx1 +  Xdxa and Y2 =  AX2 =  \dX2 ; we have that (Yi, Y2) is an
orthonormal frame for (Aff (R) x R, D, fag) (or rather, of the pull back by the parametrisation 
m : R3 ^  Aff (R)o x R of this structure). The (left-invariant) contact one-form u can be 
expressed as u =  a1v1 +  a2v2 +  a3v3 for some a1 ,a2 ,a3 e  R. The condition Y1, Y2 e  ker u 
implies a2 =  0 and a3 =  —a1. The exterior derivative du =  — a1 eX2 dx1 A dx2 and so 
du(Y1 ,Y2) =  —a1 A2. Thus we have u =  — f j v1 +  1  v2 =  — f j  eX2 dx1 +  f2 dx3 and du =  
fa v1 A v2 =  ^2 dx1 A dx2. The (left-invariant) Reeb vector field Y0 can be expressed as 
Y0 =  a1X 1 +  a2X 2 +  a3X 3 for some a1 ,a2 ,a3 e  R. We have iYodu =  — ft  eX2 dx1 +  dx2 and 
so a1 =  a2 =  0, i.e., Y0 =  a3X 3. Hence, as u(Y0) =  f t , we have Y0 =  A2X 3 . Therefore the 
Reeb vector field corresponding to (Aff(R) 0 x R, D, g) is (with respect to the orientation 
defined by the frame (EL +  E L, E ")). Accordingly, we have

[Y1 ,Y0] = 0Y1 +  0 Y2 

[Y2 ,Y0] = 0Y1 +  0 Y2 

[Y2 ,Y 1 ] =  — AY1 + 0 Y2 +  Y0

and so x  =  0 and k =  —A2. For A =  1 we obtain normalized scalar invariants x  =  0 and 
k =  —1 .

(4). The Riemannian characteristic expansion (Aff(R) 0 x R, g) of (Aff(R) 0 x R, D, g) has 
orthonormal frame (E f +  E.", EL", E^). Consequently, we have

2 0 —1
0 1 0

—1 0 1

with respect to the basis (E 1 ,E 2 ,E 3). Suppose ^ e  d Isoi(Aff(R) 0 x R, D, g) and let 0 e 
Isoi(Aff(R) 0 x R, D, g) be the unique isometry such that T10 =  ^. As ^  preserves D(1) and 
g 1 , it follows that

a1 cos 9 —a1 sin 9 0

0  = sin 9 cos 9 0

0 0 ^2

with respect to the basis (E 1 +  E3, E2, E3) for some 9 e  R and a1, a2 e  { —1,1}; equivalently,

a1 cos 9 —a 1 sin 9 0

0  = sin 9 cos 9 0

—a2 +  a1 cos 9 —a 1 sin 9 ^2

with respect to the basis (E 1 ,E 2 ,E 3). Furthermore, as 0 is an isometry of (Aff(R) 0 x R, g) 
(Proposition 3.5), we have that ^  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). It turns out that ^  preserves R, but from preservation 
of VR  we get

■0 ■ VR(E 2 , E2 , E3 , E 1 ) =  V R (0 ■ E2 , 0  ■ E2 , 0  ■ E3 , 0  ■ E 1 )
—a1 sin 9E1 +  cos 9E2 — a 1 sin 9E3 =  — a2 sin 9E1 +  a 1a2 cos 9E2 — a2 sin 9E3.
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Hence a 1 

group
a2 and so it follows that any 0  e d Iso1 (Aff(R) 0 x R, D, g) is an element of the

H
a cos 9 —a sin 9 0
sin 9 cos 9 0

a +  a cos 9 —a sin 9 a
9 e  R, a 1 =  O (2).

The sub-Riemannian structure (Aff(R)0 x R , D , g) turns out to be isometric to the struc
ture (A,D 1,g 1,a), a =  1 (see Proposition 3.16) as both have normalized scalar invariants 
(x, k) =  (0, —1) (see Theorem 3.7). Accordingly the linearized isotropy groups d Iso1 (Aff(R)0 x 
R, D, g) and d Iso1 (/\, D1, g 1,a), a =  1 are isomorphic. Moreover, it will be shown that 
d Iso1 (/A, D1, g 1,1) =  O(2) (Proposition 3.16). It follows that d Iso1 (Aff(R)0 x R, D, g) is a sub
group of H =  O(2) which is isomorphic to O(2). Consequently, d Iso1 (Aff(R)0 x R, D, g) =  H 
(as the only subgroup O (2 ) isomorphic to O (2 ) is O (2 ) itself). □

Note. A description of the isometry between the isometric structures on Aff (R) 0 x R and 
A =  SL (2 , R) can be found in [1 0 ].

3.2.2 T y p e  0 3 .1

The Heisenberg Lie algebra g3.1 has nonzero commutators [E2,E 3] =  E 1; the corresponding 
simply connected Lie group H3 is diffeomorphic to R3.

Proposition 3.10 (cf. Theorems 4.6 and 4.8; also Proposition 1.57). Any sub-Riemannian 
structure on H3 is L-isometric to the structure (H3 , D, g) given by D(1) =  (E2,E 3) and 
g 1  =  diag(1,1), i.e., with orthonormal frame (Ef ,E f ). 1

1. The group of linearized L-isometries is given by

d L-Iso(H3 , D, g)
det g 

0 

0

0 0

g
g e O (2 )

2. The associated Hamiltonian system on (h3) -  is given by H (p) =  1 (p2 +  p3) and is 
L-equivalent to P(8 ).

3. The Reeb vector field corresponding to (H3, D, g) is ± E f . The normalized scalar invari
ants are given by x  =  0 and k =  0 .

4 . The subgroup of linearized isotropies d Iso1 (H3, D, g) is identical to d L- Iso(H3 , D, g).

Proof. Any full-rank subspace r  c  h3 is the image under some automorphisms of the full-rank 
subspace r  =  (E2 ,E 3) ( [35]). The subgroup of automorphisms preserving r  is given by

Autr(h3)
wy — vz 0 0

0 y v
0 z w

y, z, v, w e R, wy vz =  0

The restriction to r  of the subgroup of automorphisms preserving r  is Aut(h3 )|r =  GL (r). 
Hence, for any positive definite quadratic form p  on r  there exists 0  e Aut(h3 ) such that
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0 Tp 0  =  diag(1,1) (note that there is no need to rescale the quadratic form). Therefore any 
metric subspace is equivalent to the one associated with (D, g). Consequently, by Lemma 3.8 
the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the 
associated Hamiltonian system; by Proposition 2.14 we have that ((h3) - ,H ) is L-equivalent 
to P(8 ).

(3). The pull back (X 1 ,X 2 ,X 3) of the frame (E f,E 2",E L) to R3 and its corresponding 
dual frame is given by

{X 1 =  dxi | v1 =  dx1 — x 2 dx3

X  =  dx2 < V2 =  dX2

X 3 =  X2dx! +  dx3. [ V3 =  dX3.

Let Y1 =  AX2 =  Adx2 and Y2 =  AX3 =  A(x2dxi +  dx3). The contact one-form w is given by 
w =  — -̂ 2 v1 =  — p- (dx1 — x 2 dx3) and has exterior derivative dw =  2̂  v2 A v3 =  2̂  dx2 A dx3. 
Accordingly the corresponding Reeb vector field is Y0 =  — A2X 1 =  — A2dxi. Hence we get

[Y1 ,Y)] =0Y1 + 0 Y2 

[Y2 ,Y)] =0Y1 + 0 Y2 

[Y2 ,Y1] =0Y1 + 0 Y2 +  Y0and so x =  0 and k =  0 .
(4). The structure (H3, D, g) is a sub-Riemannian Carnot group and so the result follows 

by Theorem 1.45; see also Theorem 4.8. □

3.2.3 T y p e  0 3 .2

The nonzero commutators of g3.2 are [E2, E3] =  E1 — E2 and [E3, E1] =  E 1; the corresponding 
simply connected Lie group is diffeomorphic to R3.

Proposition 3.11. Any sub-Riemannian structure on the group G3.2 is L-isometric up to 
rescaling to the structure (G3.2,D, g) given by D(1) =  (E2,E 3) and g 1  =  diag(1,1), i.e., with 
orthonormal frame (EL,E L). 1

1. The group of linearized L-isometries is given by

2 .

3.

4.

d L-Iso(G3.2 , D, g)
a 0 0 1
0 a 0 : a =  ±1
0 0 1 J

) - is given by H (p) 2 (p2
L-equivalent to Np(2)^= 0 .
The Reeb vector field corresponding to (G3.2, D, g) is ± (E L +  E2"). The normalized scalar 
invariants are given by x  =  5^72 and k =  — 5 ^ .
The subgroup of linearized isotropies d Iso1(G3.2, D, g) is identical to dL-Iso(G3.2, D, g).

2
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Proof. Any full-rank subspace of g3.2 is the image under some automorphism of the full-rank 
subspace r  =  (E2,E 3) ( [35]). The subgroup of automorphisms preserving r  is given by

Autr(03.2)
u 0 0
0 u z
0 0 1

u, z e R, u =  0

The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(03.2)|r
u z
0 1 u, z e R, u =  0

As in the proof of Proposition 3.9, it then follows that any metric subspace of g2.1 © g1 is 
equivalent to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the 
associated Hamiltonian system; ((g2.1 © g1) - ,H ) is L-equivalent to Np(2)^=0 (see Proposi
tion 1.25, item 2).

(3). The pull back (X 1,X 2,X 3) of the frame (E f ,E L,E L) to R3 and its corresponding 
dual frame is given by

( X 1 =  ex3 dxi ( v1 =  e- x3 dx1 +  x3 e- x3 dx2

< X  =  —X3 ex3 dxi +  ex3 dx2 < V2 =  e- x3 dx2

[ X 3 =  dx3 [ V3 =  dx3.
Let Y1 =  AX2 =  A(—x3 ex3 dxi +  ex3 dx2) and Y2 =  AX3 =  Adx 3 . The contact one-form
w is given by w =  — ̂ 2 v1 =  — ̂ 2 (e- x3 dx1 +  x3 e- x3 dx2) and has exterior derivative dw = 
^2v2 A v3 +  ^2v3 A v1 =  — ̂ 2 e- x3 dx1 A dx3 — ^2(x3 — 1) e- x3 dx2 A dx3. Accordingly the 
corresponding Reeb vector field is Y0 =  — A2(X 1 +  X 2) =  A2(x3 — 1) ex3 dxi — A2 ex3 dx 2 . Hence 
we get

[Y1,Y0] =0Y1 +  0Y2 
[Y2, Y0] =  — A2Y  +  0Y2 
[Y2,Y1] = 2 A Y  + 0 Y2 +  Y0

and so x =  1 A2 and k =  — 2A2. For A =  y  ^  we obtain normalized scalar invariants 

x =  572 and k =  — 571.
(4). Accompanying Mathematica code is given in Appendix C.3. The Riemannian char

acteristic expansion (G3.2, g) of (G3.2, D, g) has orthonormal frame (E2",E l ,E l +  E^). Con
sequently, we have

2 —1 0
g1 = —1 1 0

0 0 1
with respect to the basis (E1,E 2,E 3). Suppose 7  e d Iso1(G3.2, D, g) and let 0 e Iso1(G3.2, D, g) 
be the unique isometry such that T10 =  7 . As 7  preserves D(1) and g1, it follows that

7
a1 cos 9 —a 1 sin9 0

sin 9 cos 9 0
0 0 a2
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with respect to the basis (E2, E3, E1 +  E3) for some 9 e R and a1, a2 e { —1,1}; equivalently,

0
a2 0 0

a2 — a 1 cos 9 a 1 cos 9 —a 1 sin 9
sin 9 sin 9 cos 9

with respect to the basis (E1,E 2,E 3). Furthermore, as 0 is an isometry of (G3.2, g) (Propo
sition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). Hence,

0  ■ R(E 1 ,E 2 , E3 ) =  R (0 ■ E 1 , 0  ■ E2,0 ■ E3)
0 =  a2 sin(29)E2 +  2a1a2 sin 92E3

and so sin 9 =  0. Similarly,

0  ■ R(E3 , E2 , E3 ) =  R (0 ■ E3 ,0  ■ E2 , 0  ■ E3 )
—2a2E 1 — 2(a2 +  2a1 cos 9)E2 — 4 sin 9E3 =  —2a1 cos 9E1 — 6 a 1 cos 9E2 — 4 sin 9E3

and so cos9 =  a 1 a2. Consequently we have that 0  =  diag(a2 , a2 , a 1 a2). Hence

0  ■ V R (E 1 , E2 , E3 , E 1 ) =  V R (0 ■ E 1 , 0  ■ E2 ,0  ■ E3 , 0  ■ E 1 )
—4a2E1 — 8 a2E2 =  —4a1E1 — 8 a 1 E2

which implies that a 1 =  a2 and so 0  =  diag(a2 ,a 2 , 1). Thus 0  e dL-Iso(G3.2 , D, g) and 
therefore dIso1 (G3.2 ,D ,g ) =  dL-Iso(G3.2 ,D ,g). □

3 .2 .4 T y p e 03.4

The semi-Euclidean Lie algebra g^ 4 has nonzero commutators [E2 ,E 3] =  E 1 and [E3 ,E 1] =  
—E2; the corresponding simply connected Lie group SE (1,1) is diffeomorphic to R3 4.

Proposition 3.12 (cf. [25]). Any sub-Riemannian structure on SE (1,1) is L-isometric up to 
rescaling to the structure (SE (1,1), D, g) given by D(1) =  (E2 ,E 3) and g 1  =  diag(1,1), i.e., 
with orthonormal frame (E ^ E ^ ).

1. The group of linearized L-isometries is given by

r a1 0 0

dL-Iso(SE (1,1), D, g) =  < 0 a 1 a2 0 : a 1 , a2

1 0 0 a2

2. The associated Hamiltonian system on se (1 ,1 )- is given by H(p) =  2(p2 +  p2) and is 
L-equivalent to Np(7).

3. The Reeb vector field corresponding to (SE (1,1), D, g) is ± E L. The normalized scalar 
invariants are given by x  =  ^  and k =  — .

4 . The subgroup d Iso1(SE (1,1), D, g) is identical to dL-Iso(SE (1,1), D, g).
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Proof. Any full-rank subspace of se (1,1) is the image under some automorphism of the full- 
rank subspace r  =  (E2 ,E 3) ( [24,36]). The subgroup of automorphisms preserving r  is given 
by

Autr (se ( 1 , 1 ))
x 0 0

0 ax v
0 0 a

x, v e R, x =  0, a

The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(se (1 ,1))|r ax v
0 a x, v e R, x =  0, a

As in the proof of Proposition 3.9, it then follows that any metric subspace of se (1,1) is 
equivalent to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the as
sociated Hamiltonian system. It is straightforward to show that (se (1 ,1 )- ,H ) is L-equivalent 
to (se (1 ,1)-,p1 +  p2) (see Proposition 1.25, items 2 and 3). The system (se (1 ,1 )- ,p1 +  p2) 
in turn is L-equivalent to Np(7) by Proposition 2.14.

(3). The pull back (X 1 ,X 2 ,X 3) of the frame (E ^ E ^ E ^ ) to R3 and its corresponding 
dual frame is given by

{X 1 =  cosh x3 dxi — sinh x3 dx2 

X 2 =  — sinh x 3 dxi +  cosh x 3 dx2

X 3 =  dx3
{v1 =  cosh x 3 dx1 +  sinh x3 dx2 

v2 =  sinh x 3 dx1 +  cosh x3 dx2 

V3 =  dx3.

Let Y1 =  AX2 =  A(— sinhx3 dxi +  cosh x3 dx2) and Y2 =  AX3 =  Adx3. The contact one- 
form w is given by w =  — -2v1 =  — - 2 (cosh x3 dx1 +  sinh x3 dx2) and has exterior derivative 
dw =  -2 v2 A v3 =  -2 sinhx3 dx1 A dx3 +  -2 coshx3 dx2 A dx3. Accordingly the corresponding 
Reeb vector field is Y0 =  —A2X 1 =  —A2 cosh x3dxi +  A2 sinh x3dx2. Hence we get

[Y1,Y0] =0Y1 + 0 Y2 

[Y2, Y0] =  A2Y1 + 0 Y2 

[Y2,Y1] =0Y1 + 0 Y2 +  Y0

and so 
and k =  —

A =  21/4 we obtain normalized scalar invariants x  =  —V2x =  and k =  — 4 .̂ For 
1

72.
(4). The Riemannian characteristic expansion (SE (1,1), g) of (SE (1,1), D, g) has or

thonormal frame (E^, E L,E L). Consequently, we have g 1  =  diag(1,1,1) with respect to the 
basis (E 1 ,E 2 ,E 3). Suppose 0  e d Iso1 (SE (1,1), D, g) and let 0 e Iso1  (SE (1,1), D, g) be the 
unique isometry such that T1 0 =  0. As 0  preserves D(1) and g 1 , it follows that

a 1 cos 9 —a 1 sin9 0

0  = sin 9 cos 9 0

0 0 a 2
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with respect to the basis (E2,E 3,E 1) for some 9 e R and a1,a 2 e { —1,1}; equivalently,

a2 0 0
0  = 0 a 1 cos 9 —a 1 sin 9

0 sin 9 cos 9

with respect to the basis (E 1 ,E 2 ,E 3 ). Furthermore, as 0 is an isometry of (SE (1,1), g) 
(Proposition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). Hence,

0  ■ R(E2 , E 1 , E 1 ) =  R (0 ■ E2 ,0  ■ E 1 , 0  ■ E 1 )
—a 1 cos 9E2 — sin 9E3 =  —a 1 cos 9E2 +  sin 9E3

and so sin 9 =  0 and cos 9 =  ±1. Therefore, we have 0  =  diag(a1, a2, a3) for some a1, a2, a3 e 
{ —1 , 1 } . Hence

0  ■ VR (E 2 , E2 , E3 , E 1 ) =  V R (0 ■ E2 , 0  ■ E2 , 0  ■ E3 , 0  ■ E 1 )
2a2E2 =  2a1a3E2

which implies that a2 =  a 1 a3 and so 0  =  diag(a1 , a 1 a3 , a3). Thus 0  e dL-Iso(SE (1,1), D, g) 
and therefore d Iso1  (SE (1,1), D, g) =  dL-Iso(SE (1,1), D, g). □

3.2.5 T y p e

The nonzero commutators of are [E2,E 3] =  E1 — a E 2 and [E3,E 1 ] =  a E 1 — E2; the 
corresponding simply connected Lie group G“.4 is diffeomorphic to R3.

Proposition 3.13. Any sub-Riemannian structure on the group G“.4 is L-isometric up to 
rescaling to the structure (Gf.4,D, g) given by D(1) =  (E2,E 3) and g1 =  diag(1,1), i.e., with 
orthonormal frame (EL,E L).

1. The group of linearized L-isometries is given by

2 .

3.

4.

d L-Iso(Ga.4, D, g)

L-equivalent to Np(6)^=0.
The Reeb vector field corresponding to (G“.4, D, g) is ± (E f  +  aEL).

a 0 0 1
0 a 0 : a =  ±1 >
0 0 1 J

) — is given by H (p) 1
2(p2 +  p2) and is 

The normalized
la2 — 1 1

scalar invariants are given by x  =  7 2+^a2 +50a4 

The subgroup of linearized isotropies d Iso1 (G“.4 ,
and k =  , — 1 l^==,r.V2+12a2+50a4

D, g) is identical to dL-Iso(G“.4, D, g ).

Proof. Any full-rank subspace of g“ 4 is the image under some automorphism of the full-rank 
subspace r  =  (E2,E 3) ( [36]). The subgroup of automorphisms preserving r  is given by

Autr (0 a.4)
x 0 0
0 x v
0 0 1

x, v e R, x =  0
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The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(03.4) |r
x v 
0 1 x, v e R, x =  0

As in the proof of Proposition 3.9, it then follows that any metric subspace of g3.4 is equivalent 
to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the 
associated Hamiltonian system; (g“.4 ,H ) is L-equivalent to Np(6 ) ^ = 0 (see Proposition 1.25, 
item 2 ).

(3). The pull back (X 1 ,X 2 ,X 3) of the frame (EL,E L,E L) to R3 and its corresponding 
dual frame is given by

( X 1 =  eax3 cosh x 3 dxi — eax3 sinh x 3 dX2 ( v1 =  e- a x 3  cosh x 3 dx1 +  e- a x 3  sinh x 3 dx2

< X 2 =  — eax3 sinh x3 dxi +  eax3 cosh x 3 dX2 < v2 =  e- a x 3  sinh x 3 dx1 +  e- a x 3  cosh x 3 dx2

[ X 3 =  dx3 [ V3 =  dx3.

Let Y1 =  AX2 =  A(— eax3 sinh x3 dxi +  eax3 cosh x3 dX2) and Y2 =  AX3 =  AdX3. The contact
one-form w is given by w =  — _2 v1 =  — ̂ 2  (e- a x 3  cosh x3 dx1 +  e- a x 3  sinh x 3 dx2) and has 
exterior derivative dw =  ^2  v2 A v3 +  3̂2 v3 A v1 =  1̂j e- a x 3  (sinh x3 — a cosh x3) dx1 A dx3 +  
_2 e- a x 3  (cosh x 3 — a sinh x3) dx2 A dx3. Accordingly the corresponding Reeb vector field is 
Y0 =  — A2X 1 — aA2X 2 =  —A2 eax3 (cosh x3 — a sinh x3 )dxi +  A2 eax3 (sinh x 3 — a cosh x 3)dX2. 
Hence we get

[Y1 , Y0] =  0 Y1 +  0 Y2

[Y2 , Y0] =  —A2 (a 2 — 1 ) Y1 +  0 Y2

[Y2 , Y1 ] =  2 aAY1 +  0 Y2 +  Y0

21 / 4 we obtain normal-and so x =  1  A2 la2 — 1| and k =  —1  A2 (1 +  7a2) . For A =   ------ ------- —ruA 2 1 1 2 v ’ (1+6a2+25a4)1/4
ized scalar invariants x =  ^ r  and k =  , -} ~ 1oa^ m .A V2+12a2+50a4 V2+12a2+50a4

(4). The Riemannian characteristic expansion (G3 4 , g) of (G3 4 ,D ,g ) has orthonormal 
frame (E2", E l , E l +  aE L). Consequently, we have

g1
1  +  a 2 — a 0

—a 1  0

0 0 1

with respect to the basis (E 1 ,E 2 ,E 3 ). Suppose 0  e d Iso1 (G".4 , D, g) and let 0 e Iso1 (G".4 , D, g) 
be the unique isometry such that T1 0 =  0. As 0  preserves D(1) and g 1 , it follows that

0
a 1 cos 9 —a 1 sin9 0

sin 9 cos 9 0

0 0 a 2
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with respect to the basis (E2 , E3 , E 1 +  aE 2) for some 9 e R and a 1 , a2 e { —1,1}; equivalently,

0
a2 0

a2a — a 1 a cos 9 a 1 cos 9 
a sin 9 sin 9

0

a 1 sin 9 
cos 9

with respect to the basis (E 1 ,E 2 ,E 3). Furthermore, as 0 is an isometry of (G3.4, g) (Propo
sition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). Hence, we have

0  ■ R(E3 , E2 , E2) — R(0 ■ E3 , 0  ■ E2 , 0  ■ E2) =  0 
2a(a2 — 1)a1 sin 9E1 +  2a2 (a 2 — 1)a1 sin 9E2 =  0

and

0  ■ R(E3, E2 , E3 ) — R(0 ■ E3 , 0  ■ E2 , 0  ■ E3 ) =  0 
—2a(a2 — 1)(a2 — a1 cos 9)E1 — 2a2(a2 — 1)(a2 — a1 cos 9)E2 =  0.

Thus sin9 =  0 and cos9 =  a1a2. Therefore, we have 0  =  diag(a2, a2, a1a2). Hence

0  ■ VR(E1, E 1 , E2 , E2) — V R (0  ■ E 1 , 0  ■ E 1 , 0  ■ E2 , 0  ■ E2) =  0
2a3 4 (2 +  3a2) a2 (—a1 +  a|) =  0

which implies that a1 =  a2 and so 0  =  diag(a1,a 1, 1). Thus 0  e dL-Iso(G".4, D, g) and 
therefore dIso1(G34,D ,g ) =  dL-Iso(G34,D ,g). □

3 .2 .6 T y p e 03.5

The nonzero commutators of the Euclidean Lie algebra 0 ° 5 are [E2, E3] =  E 1 and [E3, E1] = 
E2; the corresponding simply connected Lie group SE (2) is diffeomorphic to R3.

Proposition 3.14. Any sub-Riemannian structure on SE (2) is L-isometric up to rescaling to 
the structure (SE (2), D, g) given by D(1) =  (E2 ,E 3 ) and g 1  =  diag(1,1), i.e., with orthonor
mal frame (e l , e l ).

1. The group of linearized L-isometries is given by

dL-Iso(SE (2), D, g)
a 1 0 0

0 a 1 a2 0

0 0 a 2

a 1 , a2

2. The associated Hamiltonian system on se (2 )- is given by H(p) =  1 (p2 +  p3) and is 
L-equivalent to Np(7).

3. The Reeb vector field corresponding to (SE (2), D, g) is ± E L. The normalized scalar 
invariants are given by x  =  and k =  .

4 . The subgroup of linearized isotropies d Iso1  (SE (2), D, g) is identical to d L-Iso(SE (2), D, g ) .
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Proof. Any full-rank subspace of se (2 ) is the image under some automorphism of the full-rank 
subspace r  =  (E2 ,E 3) ( [36]). The subgroup of automorphisms preserving r  is given by

Autr (se (2 ))
x 0 0

0 ax v
0 0 a

x, v e R, x =  0, a

The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(se (2)) |r ax v
0 a x, v e R, x =  0, a

As in the proof of Proposition 3.9, it then follows that any metric subspace of se (2 ) is equivalent 
to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the 
associated Hamiltonian system; (se (2 )-,H ) is L-equivalent to Np(7) (see Proposition 1.25, 
item 2 ).

(3). Accompanying Mathematica code is given in Appendix C.2. The pull back (X 1 ,X 2 ,X 3) 
of the frame (Ef , Ef , Ef ) to R3 and its corresponding dual frame is given by

{X 1 =  cos x3 dxi +  sin x3 dX2 | v1 =  cos x3 dx1 +  sin x3 dx2
X 2 =  — sin x3 dxi +  cos x3 dX2 < v2 =  — sin x3 dx1 +  cos x3 dx2

X 3 =  dx3 [ V3 =  dx3.

Let Y1 =  AX2 =  A(— sinx3 dxi +  cos x3 dX2) and Y2 =  AX3 =  AdX3. The contact one-form
w is given by w =  — _2v1 =  — _2 (cos x3 dx1 +  sin x3 dx2) and has exterior derivative dw = 
_2 v2 A v3 =  — _2 sin x3 dx1 A dx3 +  _2 cos x3 dx2 A dx3. Accordingly the corresponding Reeb 
vector field is Y0 =  — A2X 1 =  —A2 cos x3dxi — A2 sinx3dX2. Hence we get[Y1,Y0] =0Y1 + 0 Y2 

[Y2, Y0] =  — A2Y1 +  0 Y2 

[Y2,Y1] =0Y1 + 0 Y2 +  Y0

and so x =  _r and k =  _2 .F or A =  2 1 /4 we obtain normalized scalar invariants x =  and
k = .

(4). We note that the isotropy group Iso1 (SE (2), D, g) of a structure and the isotropy sub
group Iso1 (SE (2), D, Ag), A > 0 of any rescaled structure are identical. We find it more conve
nient to take a Riemannian characteristic expansion of (SE (2), D, 4 g) than of (SE (2), D, g); in 
the former case it is enough to impose the conditions (3.1) and (3.2) to determine the linearized 
isotropy subgroup whereas in the latter case the condition 0*D =  D needs to be imposed as
well. _  _

The Riemannian characteristic expansion (SE (2), g) of (SE (2), D, 4 g) has orthonormal 
frame (2Ef , 2Ef , 4Ef ). Consequently, we have

g1
116 0 0 
0 4 0 
0 0 4
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with respect to (E1 ,E 2,E 3). Suppose 0  e d Iso1(SE (2), D, g) and let 0 e Iso1(SE (2), D, 1 g) 
be the unique isometry such that T10 =  0. As 0  preserves D(1) and g1, it follows that

a 1 cos 9 —a 1 sin 9 0
0  = sin 9 cos 9 0

0 0 a2

with respect to the basis (2E2,2E3, 4E1) for some 9 e R and a1, a2 e { —1,1}; equivalently,

a2 0 0
0  = 0 a 1 cos 9 —a1 sin 9

0 sin 9 cos 9

with respect to the basis (E1, E2, E3). Furthermore, as 0 is an isometry of (SE (2), g) (Propo
sition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). Hence,

0  ■ R(E1, E2 , E 1 ) — R(0 ■ E 1 , 0  ■ E2 , 0  ■ E 1 ) =  0
3 sin 9E3 =  0

and so sin 9 =  0 and cos 9 =  ±1. Therefore, we have 0  =  diag(a1, a2, a3) for some a1, a2, a3 e 
{ —1 , 1 } . Hence

0  ■ VR(E1, E 1 , E2 , E 1 ) — V R (0  ■ E 1 , 0  ■ E 1 , 0  ■ E2 , 0  ■ E 1 ) =  0

— 32 (a3a2 — a3) =  0

which implies that a3 =  a 1 a2 and so 0  =  diag(a1 , a2 , a 1 a2). Thus 0  e dL-Iso(SE (2), D, g) 
and therefore d Iso1  (SE (2), D, 4g) =  d Iso1 (SE (2), D, g) =  dL-Iso(SE (2), D, g). □

3.2 .7  T y p e

The nonzero commutators of 0 “.5 are [E2 ,E 3] =  E 1 — a E 2 and [E3 ,E 1 ] =  a E 1 +  E2 ; the
corresponding simply connected Lie group G05 is diffeomorphic to R3 .

Proposition 3.15. Any sub-Riemannian structure on the group G“.5 is L-isometric up to 
rescaling to the structure (G“.5 ,D, g) given by D(1) =  (E2 ,E 3 ) and g 1  =  diag(1,1), i.e., with
orthonormal frame (EL,E L). 1

1. The group of linearized L-isometries is given by

d L-Iso(G05, D, g)
a 0 0 1
0 a 0 : a =  ±1 >
0 0 1 J

) - is given by H (p)
L-equivalent to Np(8)p=0.

=  1 (P2 +  p3) and is
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3. The Reeb vector field corresponding to (G“.5, D, g) is ± (E L +  aEf ). The normalized
scalar invariants are given by X =  V2-1^+50a4 and K =  V2-12~Ja+50a4 .

4 . The subgroup of linearized isotropies d Iso1 (G“.5, D, g) is identical to d L-Iso(G35, D, g).

Proof. Any full-rank subspace of ga5 is the image under some automorphism of the full-rank 
subspace r  =  (E2 ,E 3) ( [36]). The subgroup of automorphisms preserving r  is given by

Autr(03.5)
x 0 0

0 x v
0 0 1

x, v e R, x =  0

The restriction to r  of the subgroup of automorphisms preserving r  is

Aut(03.5) |r
x v
0 1 : x, v e R, x =  0

As in the proof of Proposition 3.9, it then follows that any metric subspace of g3 5 is equivalent 
to the one associated with (D, g). Consequently, by Lemma 3.8, the result follows.

(1 and 2). A direct computation yields the subgroup of linearized L-isometries and the 
associated Hamiltonian system; (( 0 3  5) - ,H ) is L-equivalent to Np(8 )^= 0 (see Proposition 1.25, 
item 2 ).

(3). The pull back (X 1 ,X 2 ,X 3) of the frame (E ^ E ^ E ^ ) to R3 and its corresponding 
dual frame is given by

( X 1 =  eaX3 cos x 3 dx1 +  eaX3 sin x 3 dX2 ( v1 =  e-ax3 cos x3 dx1 +  e-ax3 sin x3 dx2

< X 2 =  — eaX3 sin x 3 dx1 +  eaX3 cos x3 dX2 < v2 =  — e-ax3 sin x3 dx1 +  e-ax3 cos x 3 dx2

[ X 3 =  dx3 [ V3 =  dx3.

Let Y1 =  AX2 =  A(— eaX3 sin x3 dx1 +  eaX3 cos x3 dX2) and Y2 =  AX3 =  AdX3. The contact 
one-form w is given by w =  — ̂ 2 v1 =  — ̂ 2 (e-ax3 cosx3 dx1 +  e-ax3 sinx3 dx2) and has exterior 
derivative dw =  2̂ v2 Av3 +  jOj v3 Av1 =  — j2 e-ax3 (sin x3+ a cos x3) dx1 Adx3 +  ̂ 2 e-ax3 (cos x3 — 
a sin x3) dx2 A dx3. Accordingly the corresponding Reeb vector field is Y0 =  — A2X 1 — aA2X 2 =  
—A2 eaX3 (cos x 3 — a sin x3)dXl +  A2 eaX3 (sin x3 +  a cos x3)dX2. Hence we get

[Y1 , Y0] =  0Y1 +  0 Y2

[Y2, Y0] =  —A2 (1 +  a 2) Y1 +  0 Y2

[Y2, Y1] =  2aAY1 +  0 Y2 +  Y0

and so x  =  2 A2 (1 +  a 2) and k =  1 A2 (1 — 7a2) . For A 21 / 4
(1-6a2+25a4)1/4 we obtain normal-

ized scalar invariants X =  V2-1^+50a4 and K =  V2-1-j2+50a4 .
(4). The Riemannian characteristic expansion (G3 5, g) of (G35, D, g) has orthonormal 

frame (Ef , E L, Ef  +  aEf ). Consequently, we have 1

g1
1 +  a 2 —a 0

—a 1 0
0 0 1
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with respect to the basis (E1, E2, E3). Suppose 0  e d Iso1(Gf.5
be the unique isometry such that 1 1 0  =  0 . As 0  preserves D

a 1 cos 9 —a 1 sin 9 0
0  = sin 9 cos 9 0

0 0 CT2

1

with respect to the basis (E2, E3, E 1 +  aE2) for some 9 e R and oq, a2 e { -1 ,1 } ;  equivalently,

0
a2 0 0

a2a — a 1 a cos 9 a 1 cos 9 —a 1 sin 9 
—a sin 9 sin 9 cos 9

with respect to the basis (E 1 ,E 2 ,E 3). Furthermore, as 0 is an isometry of (G3 5 , g) (Propo
sition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). Hence, we have

0  ' R(E3, E2 , E2) — R(0 ■ E3 , 0  ■ E2 , 0  ■ E2) =  0 
2a(1 +  a 2)a 1 sin 9E1 +  2a2(1 +  a 2)a 1 sin 9E2 =  0

and

0  ■ R(E3 , E2 , E3 ) — R(0 ■ E3 , 0  ■ E2 , 0  ■ E3 ) =  0 
—2a(1 +  a 2)(a2 — a 1 cos 9)E 1 — 2a2(1 +  a 2)(a2 — a 1 cos 9)E2 =  0.

Thus sin9 =  0 and cos9 =  a 1 a2. Therefore, we have 0  =  diag(a2, a2, a 1 a2). Hence

0  ■ V R (E 1 , E 1 , E2 , E 1 ) — V R (0  ■ E 1 , 0  ■ E 1 , 0  ■ E2 , 0  ■ E 1 ) =  0
2a 4 (5 +  2a2) a2 ( a  — a|) E3 =  0

which implies that a 1 =  a2 and so 0  =  diag(a1 ,a 1 , 1). Thus 0  e d£-Iso(G35, D, g) and 
therefore d Isoi(Gf.5 , D, g) =  d L-Iso(Gf.5 , D, g). □

3 .3  S t r u c t u r e s  o n  s e m i s i m p l e  g r o u p s

Next we treat those structures on semisimple groups. Table B .8 in Appendix B.2 contains a 
summary (listing the normal forms of sub-Riemannian structures, the corresponding linearized 
isotropy subgroups, and the corresponding normal forms of the associated Hamilton-Poisson 
systems).

3.3.1 T y p e  03.5

The pseudo-orthogonal Lie algebra g3.6 has nonzero commutators [E2 ,E 3] =  E1, [E3 ,E 1] =  
E2, [E1 ,E 2] =  —E3; the corresponding simply connected Lie group A is diffeomorphic to R3.
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Proposition 3.16. Any left-invariant sub-Riemannian structure on A =  SL (2) is L-isometric 
up to rescaling to exactly one of the structures

(A, £ 1 , g 1>a) : £ 1  (1 ) =  (E 1 , E2 ) , g 1 ,a =  diag(a, 1 ), 0 < a  < 1

(A, £ 2 , g2,a) : £ 2 (1 ) =  (E2 , E3 ) , g 1 ,a =  diag(a, 1 ), 0 < a

i.e., with orthonormal frame ( -=  E f ,E f ) or (—= Ef ,E f ) respectively.

1. The respective groups of linearized L-isometries are given by

d L-Iso(A, £ 1 , g 1 ,a)

d L-Iso(A, £ 1 , g 1 ,a)

d L-Iso(A, £ 2 , g2,a)

04 0 0

0 02 0 : 0 1 0 2  =  ± 1

0 0 0 1 0 2_

g
0 I
0 : g e O (2 )

0 0 det g J
0 1 0 0

0 02 0 : 0 1 0 2  =  ± 1

0 0 0 1  02

if 0 < a < 1

if a =  1

2. The respective associated Hamiltonian systems (and their normal forms) are given by

H(A, £ b g 1,a) =  ((03.6) —, 2(ap? +  p2))

H(A, £ 2, g2,a) =  ((03.6) —, 1 (a p2 +  p3))

( Np(7) if 0 < a < 1
normal form:

| P(8 ) if a =  1 

normal form: Np(7).

3. The respective Reeb vector fields and normalized scalar invariants are given by

1  — a 1  +  a
(A, £ 1 , g 1 ,a) : 

(A, £ 2 , g2,a) :

±  -1= E3la 3

±  - 1= E fa 1

X

X

V 2 V 1  +  a 2:
1  +  a

V 2 V 1  +  a 2:

K =  —

K =  —

^ 2  V 1  +  a 2 
1 —a

^ 2  V 1  +  a2'

4 . Each respective group of linearized isotropies d Iso1 (/\, £ , g) is identical to the correspond
ing group of linearized L-isometries d L-Iso(A, £ , g).

Proof. Any full-rank subspace of g3.6 is equivalent to exactly one of the full-rank subspaces 
r 1 =  (E 1 ,E 2 ) and r 2 =  (E2 ,E 3 ) ( [34]). We consider first the subspace r 1 . The automorphisms 
0  e Aut(g3.6) are exactly those linear transformations 0  which have det 0  =  1 and preserve the 
Lorentzian product A 0  B =  a1 b1 +  a2b2 — a3b3 (here A =  a1 E 1 +  a2E2 +  a3E3 and B =  b1 E 1 +  
b2E2 +  b3E3 ), i.e., (0 ■ A) 0  (0 ■ B) =  A 0 B for A, B e g3.6 . Hence an automorphism preserves 
r 1 =  (E 1 , E2 ) if and only if it preserves its orthogonal complement r^  =  (E3 ). Consequently, 
as 0  preserves both (E 1 ,E 2 ) and (E3 ), the subgroup of automorphism preserving r 1 is given 
by (cf. [40])

Autri (03.6) g
0 0

0

0

det g
: g e O (2 )
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The restriction to r 1 of the subgroup of automorphisms preserving r 1 is Aut(g3.6)|r =  O (2). 
Let ^  be a positive definite quadratic form on r 1. There exists an orthogonal transformation 
0  e Aut(g3.6)|r such that ^  o 0  =  0 T^ 0  =  diag(A1,A2) =  A2 d ia g (^ , 1) with A2 > A1 > 0. 
It then follows that any metric subspace (g3.6, r , ^) with r  equivalent to r 1 is equivalent to 
the metric subspace associated with ( £ 1,g 1,a), 0 < a < 1. Moreover, the metric subspaces 
( r 1, ^a), p,a =  diag(a, 1), 0 < a  < 1 and ( r 1, p,a ), 0 < a' < 1  are equivalent only if a =  a'. 
Indeed, if 0 T^a0  =  r^a for some r > 0 and 0  e Aut(g3.6)|r =  O (2) then the eigenvalues 
of a must coincide with those of r^a , i.e., {a, 1} =  {r a ',r }  and so a =  a '.

We now consider the subspace r 2 =  (E2,E 3). An automorphism preserves r 2 if and 
only if it preserves its orthogonal complement r<j- =  (E1). Consequently, the subgroup of 
automorphism preserving r 2 is given by (cf. [40])

Autri (03.6)
det g 

0 
0

0 0

g
g e O (1,1)

where O (1,1) =  {g e R2 x2 : gTJ'g =  J '}, J' =  diag(1, —1). Accordingly, the restriction 
to r 2 of the subgroup of automorphisms preserving r 2 is Aut(g3.6)|r =  O (1,1). Let ^  
be a positive definite quadratic form on r 2. There exists 0  e O (1,1) such that ^  o 0  = 
0 T^ 0  =  diag(A1 ,A2) =  A2 d ia g (^ , 1) with A1 ,A2 > 0 (see e.g., [118]). It then follows that 
any metric subspace (g3.6, r , ^) with r  equivalent to r 2 is equivalent to the one associated 
with (£ 2, g 2,a), a > 0. Moreover, the metric subspaces ( r 2, ^ a), ^a =  diag(a, 1), 0 < a and 

), 0 < a' are equivalent only if a =  a'. Indeed, if 0 T^ a0  =  r^a/ for some r > 0 and 
0  e Aut(g3.6)|r =  O (1,1) then 0 -1 J' diag(a, 1)0 =  rJ' diag(a', 1) and so the eigenvalues 
of J ' diag(a, 1 ) must coincide with those of rJ ' diag(a', 1 ), i.e., {a, —1 } =  {ra ', —r} and 
so a =  a'. Consequently, as any metric subspace is equivalent to exactly one of the metric 
subspaces associated with (£ 1, g 1 ,a) and (£ 2, g 2,a), the result follows (by Lemma 3.8).

(1 and 2). It is straightforward to calculate the subgroups of linearized L-isometries (given 
Aut(g3.6) |ri and A u t ^ x ) ^ ). We have H(A, £ 1 , g 1,a) =  ((0 3 .6) —,H ), H(p) =  2(apf +  p2). 
When a =  1, then ((g3.6)—,H ) is L-equivalent to ((g3.6) — ,p2) (see Proposition 1.25, items 2 
and 3); the system ((g3.6) —,p2) in turn is L-equivalent to P(8 ) by Proposition 2.14. When 
0 < a < 1 , then the corresponding Hamiltonian vector field H  =  (p2p3, — ap 1p3, a—■1  p 1p2) has 
equilibria (^, 0, 0), (0,^, 0), (0,0,^), ^ e R and thus equilibrium index (3,0) (see Proposition 
2.20). Consequently, we have that ((0 3.6) — ,H ) is L-equivalent to Np(7) if 0 < a < 1 (see 
Table B.5). On the other hand, we have H(A, £ 2, g2,a) =  ((g3.6) —,H ), H(p) =  1 ( =p2 +p2). The 
corresponding Hamiltonian vector field H  =  ( p2p3, — p 1p3, aap1p2) has equilibria (^, 0 , 0 ), 
(0,^,0), (0,0,^), ^ e R and thus equilibrium index (3,0). Consequently ((g3.6)—, H ) is 
L-equivalent to Np(7) (see Table B.5)

(3). Locally (i.e., between some neighbourhoods of the origin and identity), the pull back
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(X ^ X 2 ,X 3) of the frame (EL, E^, E ") to R3 and its corresponding dual frame is given by

{X 1 =  sech x2 cos x3 dxi +  sin x 3dX2 +  tanh x2 cos x 3dX3 

X 2 =  — sech x2 sin x3 dxi +  cos x 3 dX2 — tanh x2 sin x 3dX3 

X 3 =  dx3

{v1 =  cosh x2 cos x3 dx1 +  sin x 3 dx2 

v2 =  — cosh x 2 sin x3 dx1 +  cos x3 dx2 

v3 =  — sinh x2 dx1 +  dx3.

As we need only realize the frame (X 1 ,X 2 ,X 3) locally, it sufficed to consider (locally) the 
pull back of the corresponding frame (E^E^gE^) for SO (2 , 1) 0 by m : R3 ^  SO (2 , 1)0, 
(x 1 ,x 2 ,x 3) ^  exp(x1 E1) exp(x2E2) exp(x3E3). (One can show that A is diffeomorphic to R3 

by means of its Cartan decomposition, see e.g., [59]; hence it is possible to realize a frame 
(X 1, X 2, X 3) globally with respect to some diffeomorphism m : R3 ^  A. However, we find the 
above frame preferable.)

We consider first (A, D1, g 1 ,a). Let Y1 =  —- X 1 =  —- cos x3 sech x2dxi +  —- sin x3dX2 +  
—- cos x 3 tanh x2dX3 and Y2 =  AX2 =  —A sech x 2 sin x3dxi +  A cos x3dX2 — A sin x3 tanh x2dX3. 

The contact one-form w is given by w =  v3 =  ^ (— sinh x 2 dx1 +  dx3) and has exterior 
derivative dw =  ^  v1 A v2 =  ^  coshx2 dx1 A dx2. Accordingly the corresponding Reeb vector 
field is Y0 =  —=X 3 =  —= dX3. Hence we get

[Y1 ,Yo] = 0Y1 +  — f  Y2

[Y>, Yo] =  A2Y1 +  OY2 

[Y2,Y1] =0Y1 +OY2 +  Yo

and so x =  ^ (1 — a) and k =  — 2= (1  +  a). For A =  - —2 \ 1/4 we obtain normalized scalar
( 1 + 0 0

invariants x  =  and K =  — .

Next we consider (A, D2, g 2,a). Let Y1 =  —-X 2 =  — —- sech x2 sin x 3 dxi +  —- cos x3 dX2 —
—- sin x3 tanh x2 dX3 and Y2 =  AX3 =  AdX3. The contact one-form w is given by w =

— v1 =  — :|a (cos x 3 cosh x2 dx1 +  sin x 3 dx2) and has exterior derivative dw =  ^  v2 A v3 =
^  cos x 3 sinh x2 dx1 A dx2 +  ^  cos x 3 dx2 A dx3 — ^  cosh x2 sin x3 dx1 A dx3. Accordingly the 
corresponding Reeb vector field is Y0 =  — —= X 1 =  — cos x 3 sech x2 dxi — —= sin x 3 dX3 —
■= cos x 3 tanh x2 dX3. Hence we get

[Y1 ,Yo] = 0Y1 — f  Y2 

[Y2 ,Yo] =  — A2Y1 +  0 Y2 

[Y2 , Y1 ] =  OY1 + 0 Y2 +  Yo
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and so x  =  (1+2= )A2 and k =  (~1+ -)A2. For A = 2i/4 we obtain normalized scalar
( 1 +*  r

invarmnte x =  and K = -  • _
(4)- We consider first (A, D1, g 1’- ). The Riemannian characteristic expansion (A, g) 

of (A, D 1, g1’- ) has orthonormal frame (■= E f,E ^ , 1̂= E L). Consequently, we have gi =
diag(a, 1,a) with respect to the basis (E1,E 2,E 3). Suppose 0  G d Iso1(A, D1, g 1’- ) and let 
0 G Iso1(AA, D1, g 1’- ) be the unique isometry such that T10 =  0. As 0  preserves D(1) and 
g1, it follows that

o 1 cos 0 —o 1 sin 0 0

0  = sin 0 cos 0 0

0 0 02

with respect to the basis (—-E1, E2, -1-# 3 ) for some 0 G R

" o 1 cos 0 ai sin 0
—- 0

0  = 0 a sin 0 cos 0 0

0 0 02

with respect to the basis (E1, E2, # 3) Furthermore, as 0 is
3.5), we have that 0  preserves the associated curvature tensor R and its covariant derivative 
VR (see (3.1) and (3.2)). First, suppose a =  1. Then we have

0  ■ VR(#1, #2, # 1 , E 1 ) — V R (0  ■ #1 ,0  ■ #2 ,0  ■ #1 ,0  ■ # 1 ) =  0
( 0 1  — 02 )#3 =  0

which implies that oq =  o 2 . Thus 0  G d L-Iso(A, D 1 , g 1 ’- ) and therefore d Iso1 (AA, D 1 , g 1 ’- ) =  
dL-Iso(A,D 1 ,g 1 ’- ), when a =  1.

On the other hand, suppose 0 < a < 1. We have

0  ■ R (# 3 , # 2 , # 3 ) — R(0 ' #3 ,0  ' # 2 ,0  ' E3 ) =  0
(—4—4<-+8<-2)a'i . „
A-----4- 3/2  ̂ sin 0# 1 = ° .

and so sin0 =  0 and cos0 =  ±1. Thus 0  =  diag(o1 , o 2 , o3) for some o 1 ,o 2 ,o 3 G { —1,1}. 
Hence, we get

0  ■ V R (# 1 , # 2 , # 1 , # 1 ) — V R (0  ■ #1 ,0  ■ #2 ,0  ■ #1 ,0  ■ # 1 )
( 1  — 2 a ) 2 ( 1  +  a) (05*0 2  — 0 3 ) 
------------------ -----------------------#3

0

0

which implies that o 3 =  o 1 o 2 and so 0  =  diag(o1 ,o 2 , o 1 o2). Thus 0  G dL-Iso(A, D1, g 1’- ) 
and therefore d Iso1  (A, D1, g 1’- ) =  d L-Iso(A, D1, g1’- ) for 0 < a < 1.

Next, we consider (A, D2, g2’- ). The Riemannian characteristic expansion (A, g) of the 
structure (A, D2, g2’- ) has orthonormal frame (■-#2", #3", ^1-# L). Consequently, we have
g 1  =  diag(a, a, 1) with respect to the basis ( # 1, # 2, # 3). Suppose 0  G d Iso1 (AA, D2, g2’- ) and
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let 0 G Iso1(/A, D2, g2’- ) be the unique isometry such that T10 =  0. As 0  preserves D(1) 
and g1, it follows that

with respect to the basis (

0 =

#2, #3,

0 =

0 1  cos 0 —0 1  sin0 0
sin 0 cos 0 0

0 0 02
-1- # 1) for some 0 G R and o 1,o 2 G { —1,1}; equivalently,

"o2 0 0
0 0 1  cos 0 —1 v -

_ 0 sin 0 cos 0 _

with respect to the basis (# p  # 2, # 3). Furthermore, as 0 is an isometry of (/A, g) (Proposition 
3.5), we have that 0  preserves the associated curvature tensor R and its covariant derivative 
VR (see (3.1) and (3.2)). We have

0  ■ R(#1, #2, #1) — R(0 ■ #1 ,0  ■ #2 ,0  ■ # 1 ) =  0
— ia-  sin 0 # 3  =  0.V- 3

and so sin0 =  0 and cos 0 =  ±1. Thus 0  =  diag(0 1, 0 2, 0 3) for some 0 1, 0 2, 0 3 G { —1,1}. 
Hence, we get

0  ■ V R (# 1 , #2, #1, # 1 ) — V R (0 ■ #1 ,0  ■ #2 ,0  ■ #1 ,0  ■ # 1 )
(1 +  a) (q30 2  — 0 3 ) 

2a # 3

0

0

which implies that 0 3 =  0 10 2 and so 0  =  diag( 0 1, 0 2, 0 10 2). Thus 0  G dL-Iso(A, D2, g2’- ) 
and therefore dIso1(A,D2, g2’- ) =  dL-Iso(A,D2, g2’- ). □

3.3.2 T y p e  £3.7

The pseudo-orthogonal Lie algebra g3.7 has nonzero commutators [#2,# 3] =  # 1, [#3, # 1] =  
# 2, [#1,# 2] =  # 3; the corresponding simply connected Lie group SU (2 ) is diffeomorphic to 
the three-sphere S3.

Proposition 3.17. Any left-invariant sub-Riemannian structure on SU (2) is L-isometric up 
to rescaling to exactly one of the structures (D, g- ), 0 < a < 1 given by D1(1) =  (# 2, # 3) 
and g - =  diag(a, 1), i.e., with orthonormal frame ( - j - #^ ,#30. 1

1. The respective groups of linearized L-isometries are given by

dL-Iso(SU (2), D, g- )

dL-Iso(SU (2), D, g- )

01 0 0
0 02 0
0 0 01 02

det g 0 0
0
0 g

01, 02 =  ± 1

g G O (2)

if 0 < a < 1

if a =  1 .
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2. The respective associated Hamiltonian systems (and their normal forms) are given by

H(A, D, g- ) =  ((.03.7)-, 1
2(1 p2 + p3)) normal form:

Np(7) if 0 < a < 1 
P(8) if a =  1.

3. The Reeb vector field corresponding to (SU (2), D, g- ) is ±  —- # f . The normalized scalar 
invariants are given by x  =  —2-/i+a2 and k =  —2-/ 1+- 2.

4. The group of linearized isotropies d Iso1(SU (2 ), D, g- ) is identical to d L-Iso(SU (2 ), D, g- ).

Proof. Any full-rank subspace of g3.7 is equivalent to the full-rank subspace r  =  (# 2, # 3) ( [34]). 
The automorphisms 0  G Aut(g3.7) are exactly those linear transformations 0  which have 
det 0  =  1 and preserve the dot product =  a1b1+ a2b2+ a3b3 (here A =  a1# 1 + a2# 2+ a3# 3 
and B =  b1 # 1 +  b2# 2 +  b3# 3), i.e., (0 ■ A) • (0 ■ B) =  A • B for A, B G g3.7. Hence an
automorphism preserves r  =  (# 2,# 3) if and only if it preserves its orthogonal complement 
r x =  (# 1). Consequently, the subgroup of automorphism preserving r  is given by

Autr(g3.7 )
det g 

0 

0

0 0

g
g G O (2 )

The restriction to r  of the subgroup of automorphisms preserving r  is Aut(g3.7)|r =  O (2). 
Let p  be a positive definite quadratic form on r. There exists an orthogonal transformation 
0  G Aut(g3.7)|r such that p  o 0  =  0 Tp 0  =  diag(A1,A2) =  A2 d iag (^ , 1) with A2 > A1 > 0. 
It follows that any metric subspace of g3.7 is equivalent to the one associated with (D1, g 1’- ) 
for some 0 < a < 1. Moreover, the metric subspaces (r, p - ), p -  =  diag(a, 1), 0 < a < 1 and 
( rH 0 < a ' < 1 are equivalent only if a =  a'. Indeed, if 0 Tp - 0  =  rp -  for some r > 0 
and 0  G Aut(g3.7)|r =  O (2) then the eigenvalues of p -  must coincide with those of rp -  , i.e., 
{a, 1} =  {ra ', r } and so a =  a'. Consequently, by Lemma 3.8, we get the result.

(1 and 2). It is straightforward to calculate the subgroups of linearized L-isometries (given 
Aut(g3.7 ) 1 r ). We have H(SU (2),D, g- ) =  ((0 3 .7 ) - ,  H ), H (p) =  1 (^^2 +  PD- When a =  1, then 
((g3.7) - ,H ) is L-equivalent to ((g3.7)-,p1) (see Proposition 1.25, items 2 and 3); the system 
((03.7)-,p1) in turn is L-equivalent to P(8) by Proposition 2.14. On the other hand, when 
0 < a < 1, then the corresponding Hamiltonian vector field H  =  (p2p3, — 1 p1p3, 1 p1p2) has
equilibria (p, 0,0), (0,p, 0), (0, 0, p), p G R and thus equilibrium index (3, 0) (see Proposition 
2.20). Consequently ((g3.7) - ,H ) is L-equivalent to Np(7) if 0 < a < 1 (see Table B.5).

(3). Locally (i.e., between some neighbourhoods of the origin and identity), the pull back 
(X 1,X 2,X 3) of the frame (#^ ,#^ ,#3") to R3 and its corresponding dual frame is given by

{X 1 =  cos x3 sec x 2 dxi +  sin x 3 dX2 — cos x3 tan x2 dX3 

X 2 =  — sec x2 sin x 3 dxi +  cos x 3 dX2 +  sin x 3 tan x2 dX3

X 3 =  dx3

{v1 =  cos x2 cos x3 dx1 +  sin x 3 dx2 

v2 =  — cos x 2 sin x 3 dx1 +  cos x3 dx2 

v3 =  sin x 2 dx1 +  dx3
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More precisely, (X 1, X 2, X 3) is (locally) the pull back of (# f ,  #2", #3") under m : R3 ^  SU (2), 
(x1,X2,X3) ^  exp(x1#1) exp(x2#2) exp(x3#3).

Let Y1 =  —- X 2 =  — —-  sec x2 sin x3 dxi +  —- cos x3 dX2 +  —-  sin x3 tan x2 dX3 and Y2 =

AX3 =  AdX3. The contact one-form w is given by w =  — ̂ v 1 =  — -̂ s- (cos x2 cos x3 dx1 + 
sin x3 dx2) and has exterior derivative dw =  ^s- v2 Av3 =  ^s- cos x3 dx2Adx3 — ̂ s- cos x3 sin x2 dx1A 
dx2 — ^  cos x2 sinx3 dx1 A dx3. Accordingly the corresponding Reeb vector field is Y0 =
— —- X 1 =  — —-  cos x3 sec x2 dxi — sin x3 dX2 +  —-  cos x3 tan x2 dX3. Hence we get

[Y1,Y0] =0Y1 +  f  Y2 
[Y2,Y0] =  — A2Y1 +  0Y2 
[Y2,Y1] =0Y1 +0Y2 +  Yo

and so x  =  2-(1 — a) and k =  2-(1 +  a). For A =  —1=2 we obtain normalized scalar
invariants x =  r̂1- -  2 and k =  1+-  2.A v^vT+o2 v^vr+o2

(4). As in the proof of Proposition 3.14, we find it preferable to take a central expansion 
not of (SU (2), D, g- ) but rather of the rescaled structure (SU (2), D, 4g- ) (note however that 
d Iso1(SU (2), D ,1 g- ) =  d Iso1(SU (2), D, g- )).

The Riemannian characteristic expansion (SU (2), g) of (SU (2), D, 1 g- ) has orthonormal 
frame (—-#2", 2#^, —- # L). Consequently, we have g1 =  diag( 1-6, 4, 4) with respect to the 
basis ( # 1, # 2,# 3). Suppose 0  G d Iso1(SU (2), D, 1 g- ) and let 0 G Iso1(SU (2), D, 4g- ) be the 
unique isometry such that T10 =  0. As 0  preserves D(1) and g1, it follows that

with respect to the basis (

0 =

#2, 2#3,

0 =

c 1 cos 0 —c 1 sin 0 0
sin 0 cos 0 0

0 0 C2

2-# 1) for some 0 G R and a1, c 2 G { —1,1}; equivalently,

>2 0 
0 c 1cos 0 

, 0 sin 0

0
ai sin 0

\fo t 
cos 0

with respect to the basis ( # 1, # 2, # 3). Furthermore, as 0 is an isometry of (SU (2), g) (Propo
sition 3.5), we have that 0  preserves the associated curvature tensor R and its covariant 
derivative VR (see (3.1) and (3.2)). First, suppose a =  1. Then we have

0  ■ VR(#3, # 2 , #3, #3) — V R (0 ■ #3 ,0  ■ # 2 , 0  ■ #3 ,0  ' # 3) =  0
— § (C1 — C2)#3 =  0

which implies that c 1 =  c 2. Thus it follows that 0  G dL-Iso(SU (2), D, g- ) and therefore 
d Iso1(SU (2), D, 4g- ) =  d Iso1(SU (2), D, g- ) =  dL-Iso(A, D1, g 1’- ), when a =  1.
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On the other hand, suppose 0 < a < 1. We have

0  ■ R (£ i , # 2, El) -  R (0 ■ E i,0  ■ E2 , 0  ■ El) =  0
-4+a+3a2 sin 0E3 =  0.

3

and so sind =  0 and cosd =  ±1. Thus 0  =  diag(a1, ct2, ct3) for some ct1, ct2, ct3 e { —1,1}. 
Hence, we get

0  ■ VR (E 3 ,E 2 ,E 3 ,E 3 ) -  V R (0  ■ E3 ,0  ■ E2,0 ■ E3,0 ■ E3 ) =  0
3(4-5«)2(cti-CT2ct|) _  n

SO =  0

which implies that ct3 =  ct1 ct2 and so 0  =  diag(a1 , ct2, ct1 ct2). Thus 0  e d£-Iso(SU (2), D, ga) 
and therefore d Isoi(SU (2),D, 1 ga) =  dIsoi(SU (2), D, ga) =  dL-Iso(A,D 1 , g 1,a), when 0 
a < 1.

3 .4  D e s c r i p t i o n  o f  i s o m e t r i e s

In Figure 3.1, we graph the normalized invariants x  and k for each normal form (up to 
L-isometry and rescaling) obtained in Sections 3.2 and 3.3. By Theorem 3.7, the only two 
normal forms isometric up to rescaling are the two structures with normalized scalar invariants 
(x, k) =  (0, -1 )  on Aff (R)o x R and A respectively. Accordingly, we find that two structures 
on the same Lie group are isometric if and only if they are L-isometric.

*

Figure 3.1: Scalar invariants x  and k for normal forms of sub-Riemannian structures

□
 A
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Lemma 3.18. Let (G, D, g) be a left-invariant sub-Riemannian structure (on a three-dimensional 
Lie group) with scalar invariants x  and k. If x 2 +  k2 =  0, then (G, D, g) is not isometric to 
any rescaled structure (G, D, Ag), A > ff A =  L

Proof. We have that (G, D, Ag) has scalar invariants (Xx, x k). If x 2 +  k2 =  0, then (x, k) =
(Xx, x k) and hence the result follows from Theorem 3.6. □

Theorem  3.19. Two invariant structures (G, D, g) and (G, D', g') on the same simply con
nected three-dimensional Lie group G are isometric if and only if they are L-isometric.

Proof. Clearly, if two structures on G are L-isometric, then they are isometric. To prove 
the converse, it suffices to show that no two normal forms (of structures on G, with respect 
to L-isometries) are isometric. Indeed, suppose (G, D, g) and (G, D ', g') are isometric; let 
(G, D1, g 1) and (G, D2, g2) be their respective normal forms (i.e., (G, D, g) is L-isometric to 
(G, D1, g 1) and (G, D', g') is L-isometric to (G, D2, g2)). If (G, D1, g1) and (G, D2, g2) are 
not isometric, then (G, D, g) and (G, D ', g') cannot be isometric. Hence, if no two normal 
forms are isometric, then (G, D1, g 1) and (G, D2, g2) must be identical and so (G, D, g) and 
(G, D', g') must be L-isometric.

For the Heisenberg group (Proposition 3.10), there is exactly one normal form with respect 
to L-isometries (i.e., all structures on H3 are L-isometric). Similarly, for each other solvable 
group G (Section 3.2), every sub-Riemannian structure on G is L-isometric up to rescaling 
to exactly one structure on G; for these structures we have that x 2 +  k2 =  0 and so by the 
preceding Lemma no two rescaled versions of the normal form are isometric. For the simple 
Lie groups (Section 3.3) we have one or two one-parameter families of normal forms. However, 
each permissible value of the parameter gives rise to distinct normalized scalar invariants x 
and k and so no two normal forms are isometric up to rescaling. Moreover, as x 2 +  k2 =  0, no 
two rescaled versions of the same normal form are isometric (again by the preceding Lemma). 
Thus it follows that no two rescaled normal forms are isometric. □

We have shown that the isotropy subgroup of the identity Iso1(G, D, g) is a subgroup of 
the automorphism group for each normal form (except the one on Aff (R)o x R). In summary, 
we have the following result.

Theorem  3.20. Let (G, D, g) be an invariant structure on a three-dimensional simply con
nected Lie group G with Lie algebra g not isomorphic to g2.1 © g1.

1. The isotropy subgroup Iso1(G,D,g) is a subgroup of Aut(G).

2. The isometry group Iso(G, D, g) decomposes as a semi-direct product Lg x Iso1(G, D, g) 
of the left translations Lg =  {Lg : g e G} and the isotropy subgroup Iso1(G, D, g).

Proof. (1). We have already shown that d Iso1(G, D, g) =  dL-Iso(G, D, g) for every group 
(except Aff (R)o x R) from which it follows that Iso1(G,D, g) is a subgroup of Aut(G).

(2). Clearly Lg n Iso1(G,D,g) =  {idG}. Also, for any f  e Iso(G,D,g) we have that 
L^(1) - i o f  e Iso1(G, D, g) and so Lg Iso1(G, D, g) =  Iso(G, D, g). It only remains to be shown 
that Lg is normal in Iso(G, D, g). Let Lg o f  e Iso(G,D, g), f  e Iso1(G, D, g). We have 
(Lg o f ) -1Lh(Lg o f ) =  L^-i(g- i hg) e Lg as f  is an automorphism. □
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Consequently we have the following simple description of the isometries between structures 
on three-dimensional Lie groups.

Theorem  3.21. Let (G, D, g) and (G', D', g') be two invariant structures on some three
dimensional simply connected Lie groups; suppose neither g nor g' is isomorphic to g2.1 © g1. 
If f  : G ^  G' is an isometry between (G, D, g) and (G', D', g'), then f  =  L^(1) o f '  is the
composition of a left translation L^(1) on G' and a Lie group isomorphism f '  : G ^  G'.

Proof. Let f  : G ^  G' be an isometry between (G, D, g) and (G', D', g'). First, we claim 
that (G, D, g) and (G', D', g') are L-isometric. Indeed, if the scalar invariants satisfy x  =  0 
or x  =  0 and k > 0 then the Lie algebras g and g' must be isomorphic (Theorem 3.7) and 
so the Lie groups G and G' must be isomorphic; hence we may assume G =  G' and so, by 
Theorem 3.19, (G, D, g) and (G', D', g ') are L-isometric. On the other hand, if x  =  0 and 
k < 0, then we may assume G =  G' =  A  (as the only groups that admit invariant structures 
with x  =  0 and k < 0 are A and Aff (R)o x R, see Figure 3.1, but Aff (R)o x R has been 
ruled out); again it follows that (G, D, g) and (G', D', g') are L-isometric by Theorem 3.19.

Let f  : G ^  G' bean L-isometry between (G, D, g) and (G', D', g') and let f '  =  L ^ ^ -i o f. 
We have that f -1 of '  e Iso1(G, D, g). By Theorem 3.20, f -1 of '  is a Lie group automorphism, 
and so (as f  is a Lie group isomorphism) it follows that f '  is a Lie group isomorphism. As 
f  =  L^(1) o f ',  the result follows. □

Rem ark 3.22. A symmetric (invariant) sub-Riemannian structure is essentially one for which 
there exists an isotropy f  e Iso1(G,D,g) such that Tgf|D(g) =  — idD(g). By inspection of 
Tables B.8 and B.9, we have that any invariant sub-Riemannian structure on a simply connected 
unimodular Lie group, or on Aff (R)o x R, is a symmetric structure. Moreover, as the structure 
on Aff (R)o x R is isometric to a structure on A, we have that any symmetric invariant sub- 
Riemannian structure (on a simply connected three-dimensional Lie group) is isometric to 
exactly one of our structures on a unimodular group. This is consistent with the classification 
by Strichartz [112] of three-dimensional symmetric sub-Riemannian structures.





Chapter 4

Sub-Riemannian and Riemannian 
structures on the Heisenberg groups

Among the invariant sub-Riemannian (and Riemannian) structures on Lie groups, those on 
the Heisenberg groups are arguably the simplest and serve as prototypes. In this chapter we 
classify these structures up to isometry; a parametrized family of normal forms is exhibited. 
We then determine the isometry group for each normal form and hence find the geodesics.

A standard computation yields the automorphism group of H2n+1, a subgroup of which is 
a symplectic group. By use of the automorphisms, we normalize the distributions on H2n+1. 
Equivalence class representatives are then constructed by successively applying automorphisms, 
that preserve the normalized distribution, to the metric. (The Riemannian case is treated 
similarly.) Central to our argument is Williamson’s theorem, which states that any positive 
definite symmetric matrix can be diagonalized, in a certain way, by symplectic matrices.

Once normal forms have been determined, the isometry group of each normal form is deter
mined; this amounts to finding the isotropy subgroup at identity. Next, explicit expressions for 
the geodesics of each structure are calculated; by use of the isometry group, these expressions 
are brought to a very simple form. By inspection of the geodesics, some totally geodesic sub
groups are identified. It is a simple matter to show that the Riemannian structures are central 
extensions of the sub-Riemannian structures; this explains the similarity between the respective 
geodesics. (In fact, the similarity between these two classes of geodesics is what instigated the 
investigation into central expansions in Section 1.4.4.)

As prototypical structures, sub-Riemannian and Riemannian structures on the Heisenberg 
groups have been considered by quite a few authors. Vershik and Gershkovich [122] describe 
the geodesics and wave front in the three-dimensional case. Tan and Yang [117] find explicit 
expressions minimizing sub-Riemannian geodesics on H-type groups as well as describing the 
isometry groups; for sub-Riemannian structures on the Heisenberg group, this covers only the 
case of maximal symmetry. Ambrosio and Rigot [16] also determine minimising geodesics 
in case of maximal symmetry. Monroy-Perez and Anzaldo-Meneses [93] consider a class of 
invariant optimal control problems on H2n+1 (which turns out to cover all sub-Riemannian 
structures on H2n+1 up to isometry); they find expressions for the geodesics and determine the 
conjugate locus. Beals et al. [27] also consider a class of structures on H2n+1 (which turns out
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to cover all sub-Riemannian structures on H2n+ 1  up to isometry); in particular, they describe 
the minimising geodesics for these structures. On the other hand, Riemannian structures on 
Heisenberg groups (and generalizations) are well understood (see [55,80,81,125]). For a classical 
derivation of the Riemannian geodesics (in the case of maximal symmetry), see [87].

We believe that we make the following novel contributions: the classification of both the 
sub-Riemannian and Riemannian structures on the Heisenberg groups, up to isometry; explicit 
calculation of the isometry groups (to our knowledge only the case of maximal symmetry has 
been covered before); normal forms for geodesics (i.e., expressions for geodesics simplified by 
use of isometries); exposition of some similarities between the Riemannian and sub-Riemannian 
cases (and more specifically, that the Riemannian structures are central expansions of the sub- 
Riemannian structures). Moreover, it turns out that in the case of maximal symmetry, a 
structure on H2n+ 1  is reducible (in a certain sense) to a structure on H3 (see Remarks 4.14 
and 4.17).
Note. The first part of this chapter, regarding the classification of structures on H2n+ 1 , appears 
in [30].

4 .1  T h e  H e i s e n b e r g  g r o u p s

The (2n +  1)-dimensional Heisenberg group may be realized as a matrix Lie group

H2n+ 1

1 x 1 X2 ■ ■ z >
0 1 0 0 y1

<
0 0 1 0 y2

=  m (z,x,y) : xpypz e R

0 1 yn
< 0 0 1

The diffeomorphism m : R x Rn x Rn ^  H2n+ 1  is used simply as convenient notation. H2n+ 1  

is a two-step Carnot group with one-dimensional centre {m(z, 0,0) : z e R}; its Lie algebra

0 x 1 X2 ■ ■ z >
0 0 0 0 y1
0 0 0 0 y2

n
< =  zZ  +  ^ 2  (xiXi +  yiYi) : Xi, yi, z e R

i= 1
0 0 yn

<
0 0 0

has non-zero commutators [Xj,Yj] =  Z . (If g 1 =  span(X1, Y1, . . . ,  X n, Yn) and g2 =
span(Z), then hi2n+ 1  =  g 1 © g2 with [g1 , 5 1 ] =  5 2 and [5 1 , 5 2 ] =  { 0 }.)

The automorphisms of h2n+ 1 are exactly those linear isomorphisms that preserve the center 
3 of h2n+ 1 and for which the induced map on h2n+ 1 / 3  preserves an appropriate symplectic 
structure (cf. [60]). More precisely, let w be the skew-symmetric bilinear form on h2n+ 1 

specified by
[A  B ] =  w(A  B)Z) A  B e h2n+1.
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Note that w(Xi,Y?- ) =  $ij and that u is zero on the remaining pairs of basis vectors. Accord
ingly, we get the following characterization of automorphisms.

Lemma 4.1. A linear isomorphism 0  : h)2n+i ^  h)2n+i is a Lie algebra automorphism if and 
only if

0  ■ Z  =  cZ and u (0  ■ A, 0  ■ B) =  cu(A, B)
for some c =  0.

Proof. Suppose 0  is an automorphism. As 0  preserves the center of h2n+1 we have 0 -Z =  cZ 
for some c =  0. For A, B e h2n+1, we have [0 ■ A, 0  ■ B] =  0  ■ [A, B ] and so u (0  ■ A, 0  ■ B )Z  = 
0  ■ u(A, B )Z , i.e., u (0  ■ A, 0  ■ B) =  cu (A ,B ). Conversely, suppose 0  is a linear isomorphism 
such that the given conditions hold. For A ,B  e h2n+1, we have

[0 ■ A, 0  ■ B ] =  u (0  ■ A, 0  ■ B )Z  =  cu(A, B )Z  =  0  ■ u(A, B )Z  =  0  ■ [A, B ]. □

We now proceed to give a matrix representation for the group of automorphisms. Through
out, we shall make use the ordered basis

(Z ,X i,Y 1 ,X 2 ,Y 2 ,...,X ra,Yra)

for h2n+1; linear maps will be identified with their corresponding matrices. Furthermore, the 
left-invariant vector fields corresponding to Z , Xj, and Yi will be denoted by Z L, X L, and 
YiL, respectively. The bilinear form u takes the form

u 0 0 
0 J , where J

0 1
-1  0

We note that the linear involution

4

0

- 1 0  ••• 0
0 0 1 0

1 0

0

0 1
1 0

0 1
0 0 1 0_

is an automorphism (indeed 4 ■ Z  =  (—1)Z and 4Tu^ =  (—1)u).

(4.1)

Proposition 4.2 (cf. [106]). The group of automorphisms Aut(h2n+1) is given by

J r 2 v
\ 0 rg

r2 v
0 rg r > 0, v e R 1x2n, g e Sp (n,

where
Sp (n, R) =  { g e R2nx2n : gTJg =  j J 

is the n(2n +  1)-dimensional symplectic group over R.
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Proof. If 0  =
r2 v
0 rg then 0  ■ Z  =  r2Z  and

0 T u 0  =
r2 0 0 0 r2 v
vT rgT 0 J 0 rg
0 0 2
0 r2gTJg r u.

Thus
r2 v
0 rg and 4

r2 v
0 rg are indeed automorphisms.

Suppose 0  is an automorphism. We have 0  ■ Z  =  cZ for some c =  0. We may assume

c > 0 (if c < 0, then 40 has this property). Thus 0  = 

and h e  GL (2n, R). Ao -W, ^

gT J g =  J. Thus 0  =

2r2 v 
0 h for some r > 0, v e R2n

. As 0  1 u0 =  r2u, it follows that h 1 Jh =  r2J . For g =  1 h, we get 
2 ...

for some r > 0, v e R2n and g e Sp (n, R). Finally note thatr v  
0 rg

if 40 =
2r2 v

, then 0  =  4
r2 v
0 rg □0 rg

Rem ark 4.3. The group of automorphisms Aut(H2n+1) decomposes as a semidirect product

Aut(h2n+1) =  R2n x R x Sp(n, R) x {1 ,4 } 

of the following subgroups:

: v e R2M  =  R2n1. the subgroup of inner automorphisms Int(H3) =

r2 0
0 r/2n 

1 0  
0 g

4. and the two-element subgroup { 1 , 4}.

1 v  
0 l2n

2. the dilation subgroup

3. the symplectic subgroup

: r > 0 j  =  R; 

: g e Sp (n, R Sp (n,

4 .2  C l a s s i f i c a t i o n  o f  s t r u c t u r e s

We consider the sub-Riemannian case first; we start by normalizing the distribution.

Lemma 4.4. If D is a bracket-generating left-invariant distribution on H2n+1, then there exists 
an (inner) automorphism 0 e Aut(H2n+1) such that 0*D =  D , where D is the left-invariant 
distribution specified by D(1) =  span(X1, Y1, X 2, Y2, . . . ,  X n, Yn).

Proof. It suffices to show that there exists an (inner) automorphism 0  e Aut(h2n+1) such that 
0  ■ D(1) =  D(1). For any subspace s C h2n+1, we have Lie(s) < span(s, Z ). Therefore, if 
Lie(s) =  h2n+1 and s =  h2n+1, then s has codimension one, Z  e s and so s takes the form

s =  span(X1 +  v1 Z, Y1 +  v2Z , . . .  ,X „  +  v2n - 1 Z, Y„ +  v2„ Z ).
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Accordingly,

0
1 —v
0 hn

v =  [v! v2 ■ ■ ■ v2n]

is an inner automorphism such that 0  ■ s =  span(X1, Y1, X 2, Y2, . . . ,  X n, Yn). □
We now proceed to normalise the sub-Riemannian metric and so obtain a classification of 

the sub-Riemannian structures. We shall make use of the fact that positive definite matrices 
are diagonalizable by symplectic matrices (see e.g., [54], Chapter 8.3: “Symplectic Spectrum 
and Williamson’s Theorem” ). More precisely,

Lemma 4.5. If M  e R2nx2n is positive definite, then there exists g e Sp (n, R) such that

gT M g =  diag(A1 , A1 , A2 , A2 , . . . ,  An, An)

where A1 > A2 > ••• > An > 0; ±iAj are exactly the eigenvalues of J M . Moreover, the 
symplectic spectrum Spec(M) =  (A1, . . . ,A n) is a symplectic invariant, i.e., Spec(gT M g) = 
Spec(M) for g e Sp (n, R).

Theorem  4.6. Any left-invariant sub-Riemannian structure on H2n+1 is isometric to exactly 
one of the structures (D, gA) specified by

D(1) =  span(X1 , Y1 , X 2 , Y2 , . . . ,  Xn, Yn) 
gi =  A =  diag(A1 , A1 , A2 , A2 , . . . ,  An, An).

i.e., with orthonormal frame

( 1 x 1 \rL 1 x̂ L 1 1 x̂ L 1 \rL\
( VMX  , VH Y1 , VA2X  , VA2 Y2 , . . . , VMXn, VM Yn ) .

Here 1 =  A1 > A2 > ■ ■ ■ > An > 0 parametrize a family of (non-isometric) class representatives.

Proof. By Lemma 4.4, any sub-Riemannian structure on H2n+1 is isometric to one on the 
distribution specified by D(1) =  span(X1, Y1, X 2, Y2, . . . ,  X n, Yn). As sub-Riemannian Carnot 
groups, any two such structures are isometric if and only if they are L-isometric (see Theo
rem 1.43). Consequently, it remains only to classify the positive definite quadratic forms on 
D(1) up to Lie group automorphism.

Let ^  be a positive definite quadratic form on D(1). By Lemma 4.5 there exists g e 
Sp (n, R) such that

gT ^ g  =  diag(A1 , A1 , A2 , A2 , . . . ,  An, An)

where (A1 , . . . ,  An) 
fore

Spec(^). Hence ( g)T ^ g )  =  diag(1,1, 12 12 in inAi , Ai, . . . , Ai , Ai ). There-

0 Ai
0

0

VAi g
is a Lie algebra automorphism such that 0-D(1) =  D(1) and 0*^ =  diag(1,1, A2, A2, . . . ,  A ,̂ A )̂. 
Consequently, as H2n+1 is simply connected, by Lemma 1.31 (and relabelling A  as Aj) we get 
the given normal forms.
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It remains to be shown that no two class representatives are equivalent. Suppose (D, gA) 
and (D, gA ) are isometric (and so L-isometric) structures of the form given. Then there exists 
a Lie algebra automorphism

0
2r2 v 

0 rg or 0
r2 v
0 rg

such that 0 -D(1) =  D(1) and gA (A, B) =  gA' (0 ■ A, 0  ■ B) for A, B e D(1). The former condi
tion implies v =  0 and so the latter implies A =  r2gTA'g, where A =  diag(A1, A1, . . . ,  An, An) 
and A' =  diag(A1, A1,. . . ,  An, An). Thus, by Lemma 4.5, we have Spec(A) =  r2 Spec(A'). How
ever, for both Spec(A) and Spec(A') the largest value is one; so r =  1. Consequently A =  A'. 
That is to say, (D, gA) and (D, gA ) are isometric only if A =  A'. □

Next, we consider the Riemannian case; the classification is very similar to the sub-Riemannian 
case.

Theorem  4.7. Any left-invariant Riemannian structure on H2n+1 is isometric to exactly one 
of the structures gA specified by

gA 1 0 
0 A , A =  diag(A1 , Ab A2 , A2 , . . . ,  An, An) (4.3)

i.e., with orthonormal frame

L 1 L 1 L 1 L 1 L
(Z , VATX  , VATY1 , VA2X  , VA2Y2 1 X L —̂  Y l ), V T  X n , ,rr~Y n ) .

Here A1 > A2 > ■ ■ ■ > An > 0 parametrize a family of (non-equivalent) class representatives.

Proof. As H2n+1 is simply connected and nilpotent, two Riemannian structures g and g' 
on H2n+1 are isometric if and only if there exists 0  e Aut(h2n+1) such that g i(A ,B ) = 
g '(0  ■ A ,0  ■ B) for A, B e h2n+1 (see Theorem 1.43). Hence it suffices to classify the positive 
definite quadratic forms on h2n+1 up to Lie algebra automorphism.

Let m be a positive definite quadratic form on h2n+1. We have

M r4
v
Q

for some r > 0, v e R2n and Q e R2nx2n. Hence

0 =
2 5r̂   ^̂ v

0 r/2n e Aut(h2n+1 ) and 0 T m 0
1 0  
0 Q'

for some positive definite matrix Q'. Accordingly, there exists an automorphism 0 '

g e Sp (n, R) such that

(0 O 0 ')T M (0 0 0 ')
1 0
0 A

1 0 
0 g ,
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where A =  diag(Ab A1 , . . . ,  An, An) (and (A1 , . . . ,  An) =  Spec(Q')).
As in the sub-Riemannian case, it is a simple matter to show that none of these structures 

are isometric. Suppose gA and gA are isometric (and so L-isometric) structures of the form 
given. Then there exists a Lie algebra automorphism

0 = 0
v
rg or 0  =  g 0

v
rg

2 2r r

such that gA(A, B) =  g ^ (0 ■ A, 0  ■ B) for A, B e h2n+1. In either case we have 1 =  r4, 
0 =  r2v and A =  r2gTA'g. Hence v =  0, r =  1 and so, by Lemma 4.5, Spec(A) =  Spec(A'). 
Consequently A =  A', i.e., gA and gA are isometric only if A =  A'. □

4 .3  I s o m e t r y  g r o u p s

We calculate the group of isometries for each of the normal forms given in Section 4.2. Again, we 
denote the group of isometries of a structure (H2n+1, D, g) by Iso(H2n+1, D, g); the subgroup 
of isotropies fixing the identity element is denoted Iso1(H2n+1,D, g). By Theorems 1.43 and 
1.45, the isotropy subgroup is given by

Is°i(H M 1,D ,g) =  { *  e Aut(H2n+1> : g i i A . j r l t g l ^ ^  ■ B) }  .

The isometry group Iso(H2n+1, D, g) decomposes as a semidirect product of the subgroup 
Lh2„+1 =  : g e H2n+1} of left translations and the isotropy subgroup Iso 1 (H2n+1, D, g) of
the identity (compare with Theorem 3.20).

As H2n+1 is simply connected, there is a one-to-one correspondence between the auto
morphisms of H2n+1 and the automorphisms of its Lie algebra h2n+1. Moreover, as H2n+1 
is nilpotent, the exponential map exp : h2n+1 ^  H2n+1 is a diffeomorphism (with inverse 
log : H2n+ 1  ^  h2n+ 1 , see e.g., [59]) and so Aut(H2n+ 1 ) =  {expo0  0 log : 0  e Aut(h2n+ 1 )}. Ac
cordingly, we shall denote by d Iso 1 (H2n+1, D, g) the group {T10 : 0 e Iso 1 (H2n+1, D, g )} of 
linearized isotropies; we have Iso 1 (H2n+1, D, g) =  d Iso 1 (H2n+1, D, g) and Iso1 (H2n+1, D, g) =  
{exp o0  0 log : 0  e d Iso1(H2n+1, D, g)}. Furthermore,

d ls°1(H2„ +1.D ,g) = { 0  € Aut(l>2„ +0  : g1(A0B)I l(1g)1=0DA1)0  ■ B) }  ■

For a sub-Riemannian manifold (4.2) (resp. Riemannian manifold (4.3)) on H2n+1, let 
n1 > n2 > ' ' '  > > 0 denote the distinct values in the list (A1, A2, . . . ,  An) and m1, . . . ,  mk
denote the corresponding multiplicities. We refer to the pair (n, m) as the metric data for the 
structure.
Theorem  4.8. The group of linearized isotropies for the sub-Riemannian structure (4.2) (resp. 
Riemannian structure (4.3)) with metric data (n, m) is given by

1 0 ■•• 0" 1 0 ■ ■ 0" >

d Iso1 (H2n+ 1 , D, gA) =  <
0 g1 0

, ?
0 g1 0

: gi e U (mi)

< 0 0 gfc. 0 0 gfc. ,
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Here the unitary group U (mi) =  Sp (mi, R) n O (2mi) where the orthogonal group O(n) =  {g e 
Mnxn : gTg =  1 };  ̂ is the involutive automorphism (4.1).

Rem ark 4.9. In the following representations of the complex group, symplectic group, and 
orthogonal group

GL(n, C) =  {g e R2nx2n : g-1 Jg =  J }
Sp(n, R) =  {g e R2nx2n : gTJg =  J }

O(2n) =  {g e R2nx2n : gT =  g-1 }

we have (see, e.g., [19, p. 225])

U(n) =  GL(n, C) n Sp(n, R) =  GL(n, C) n O(2n) =  Sp(n, R) n O(2n).

Proof. Suppose that 0  e d Iso1(H2n+1, D, gA), i.e., 0  e Aut(h2n+1), 0  ■ D(1) =  D(1), and 
gA(A, B) =  gA(0 ■ A, 0  ■ B ). As 0  is a Lie algebra automorphism, we have

0
r2 v 
0 rg or 0

r2 v
0 rg

for some r > 0, v e R 1x2n and g e Sp(n,R). We need only consider the former case as 
£ ■ D(1) =  D(1), and gA(A, B) =  g ^  ■ A, £ ■ B), i.e., £ e d Iso1 (H2n+ 1 , D, gA).

For the sub-Riemannian case, we have v =  0 as 0  ■ D(1) =  D(1) and r =  1, gTAg =  A 
as g1(A, B ) =  g1 (0 ■ A, 0  ■ B) for A, B e D(1) (compare with the last paragraph of the proof 
of Theorem 4.6). Likewise, in the Riemannian case we have r =  1, v =  0 and gTAg =  A as 
g1(A, B) =  g1 (0 ■ A, 0  ■ B) for A, B e h2n+1 (compare with the last paragraph of the proof of 
Theorem 4.7).

In either case, we have

0
1 0
0 g gTJg =  J, and gTAg =  A.

From gTJg =  J it follows that gT =  —Jg-1 J . Hence from gTAg =  A it follows that 
—Jg-1 J Ag =  A. Consequently we have J Ag =  gJ A. As A =  —J AJ we also have A2 = 
—J AJ A. Thus A2g =  gA2. Hence A2gx =  n2gx whenever x is an eigenvector of A2 associated 
to the eigenvalue n2 It follows that g (resp. gT) preserves each eigenspace of A2. That is, 
g a  =  a  and gT a  =  a , i =  1, . . . ,k  where a  denotes the eigenspace of A2 corresponding 
to ^2 . Therefore g takes block diagonal form

g
g1 0

0 gfc
gi e GL (2mi, R).

Moreover, as gTJg =  J and gTAg =  A, we have gi e Sp (mi, R) n O (2mi) =  U(mi).
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On the other hand, suppose

0

1 0 ■■■ 0
0 g1 0

0 0 gk
is a linear map such that gi e Sp (mi, R) n O (2mi) =  U(mi). As gi e Sp (mi, R) we have that 
0  is a Lie algebra automorphism. In the sub-Riemannian case we have that 0  ■ D(1) =  D(1) 
and g1(A, B) =  g1(0 ■ A, 0  ■ B) for A, B e D(1) as gi e O (2mi). In the Riemannian case we 
likewise have g1(A ,B ) =  g1(0 ■ A, 0  ■ B ) for A, B e h2n+1. Thus the given maps are indeed 
linearized isotropies. □

Rem ark 4.10. We have that

1 0 ■ ■ 0 '

0  =
0 g1 0

, gi e SO (2) (4.4)

0 0 gn

is always a linearized isotropy of identity irrespective of the metric data. Hence, the isotropy 
subgroup must be at least n-dimensional.

Corollary 4.11. For a sub-Riemannian or Riemannian manifold (H2n+1, D, gA) with metric 
data (n, m), we have

Iso1(H2n+1, D, gA) =  (U (m1) x ■ ■ ■ x U (mfc)) x {1, £}

and so
k

n < dim Iso1 (Hn+ 1 , D, gA) =  E m2 < n2.
i=1

The minimal dimension dim Iso1(H2n+1, D, gA) =  n is attained when all values A1, . . . ,  An are 
distinct (i.e., (m1, . . . ,m k) =  (1 ,1 ,... ,  1)); the maximal dimension dim Iso1(H2n+1, D, gA) = 
n2 is attained when the values A1, . . . ,  An are all identical (i.e., m1 =  n, k =  1).

4 .4  G e o d e s i c s

We determine (normal forms for) the geodesics of the sub-Riemannian and Riemannian struc
tures on H2n+1. In the sub-Riemannian case, the distribution is strongly bracket generating 
and hence there are no abnormal geodesics (see, e.g., [47, 94]). Henceforth, we shall refer to 
normal geodesics simply as geodesics. By inspection of the normal forms for the geodesics, we 
identify a number of totally geodesic subgroups.

Theorem  4.12. The unit speed geodesics for the sub-Riemannian structure (4.2) are, up to 
composition with an isometry, given by
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(i) g(t) =  m (z(t),x(t),y(t)), where
n

z(t) =  1 E  i (T*t -  sin(2 ? t))
i=1

Xi(t) =  I  sin( 1 )

»•(*) =  f j (1 -  cos( AJ *));

(ii) g(t) =  m (0,x(t),0), where x^t) =  —1.
c2

Here c1, . . . ,  cn > 0, ^n=1 —■ =  1  and co > 0 parametrize a family of geodesics.

Proof. The sub-Riemannian structure (4.2) has orthonormal frame

( yL 1 -yL 1 yL 1 yL 1 yL 1 yL 1 yL\
(Z , GatX1 , GXTY1 , Ga2X2 , Ga2 , . . . , GaAX n, GaAYn ) .

Accordingly, by Theorem 1.30, the geodesics are given by
n

z =  I ]  A1 X pY pz
i=1

Xi =  -1 pXi pXi

yi =  A! pYi pYi

0

-  A! Pz  PYi
— PZ PXi.

Here p =  p zZ * +  £ n=(PXX* +  p y Yi*) where (Z * ,X 1* ,F ;,. 
(h2n+ 1 ) — dual to (Z ,X 1,Y 1,...,X n ,Y n); furthermore, H(p) =  
extremal controls are uXi =  pXi and uYi =  pYi.

. . ,X n , Yn*) is the basis for
E E 1 -7 (pXi +  pY ) and the

We note that the action of an isotropy f  e Isoi(G, D, gA) on a geodesic corresponds to 
the action (g,p) ^  (f(g), (T1f)* ■ p) on an extremal curve £(•) =  (g(-),p(-)) (see the proof of 
Theorem 1.12). Hence, by application of the isometry g (see (4.1)), we may assume pz > 0. 
By application of a left translation, we may assume g0 =  1, i.e., z(0) =  xj(0) =  y»(0) =  0. 
By application of an isotropy of the form (4.4), we may assume y(0) =  0 and 4 (0 ) > 0, i.e., 
pYi (0) =  0 and pXi (0) > 0. Let ai =  pXi (0) > 0 and a0 =  pz > 0. The corresponding integral 
curves (satisfying these initial conditions) are given by

z(t)

Xi(t)

yi(t)

E 1  (G 1 -  si” < G
i=1
sin( a01)a0 v Ai /

t))

ao(1 -  cos( ao t))

if a0 > 0 and g(t) =  m(0,x(t), 0), xj(t) =  —1 if a0 =  0.
The length of the curve g(-) =  m(z(t), x(t), y(t)) from 1 to g(T) is

% (•)) (  \ /E n=1Ai(X2 +  y2) dt T En a2
i=1 Ai .
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Hence, replacing t by 1

^ i=1 Ai
t yields the required unit speed curve. Let c0 an

^ i=1 Ai
and

Ci V̂ n ai
^ i=1 Ai

ai . (Note that ai
an

Ci
cn.) Then ^

2n ci
i=1 Ai 1 and we get the given expression. □

We say that a submanifold N of G is a totally geodesic submanifold of the sub-Riemannian 
(or Riemannian) structure (G, D, g) if it satisfies the following property: whenever a geodesic 
g(-) is tangent to N at some point g £ N, then the entire trace of g(-) is contained in N.

Corollary 4.13. The subgroups with Lie algebra spanned by

(Z,Xi1 ,Yi1, . . . ,  X ik ,Yik), 1 < ii < i 2 < ...  < ik  <  n, 1 < k < n

are totally geodesic submanifolds of (4.2).

Rem ark 4.14. In the case of minimal symmetry, i.e., A1 < A2 < ■ ■ ■ < An, no further normal
ization of the geodesics (as stated in Theorem 4.12) is possible. However, in the other cases, 
more normalization is possible. We give details here for the case of maximal symmetry (i.e., 
A1 =  A2 =  ■ ■ ■ =  An). We have

cos d 0 sin d 0
0
sin d

cos d 
0

0
cos d

sin d 
0 £ U(2) =  Sp(2, R) n O(4)

0 — sin d 0 cos d

Accordingly, there exist Vj £ d Isoi(H2n+1, D, gA), j  =  1 , . . . ,  n — 1 such that

span (Xj ,Yj ,Xj+1 ,Yj+1 )

and V (Z) =  Z , ip(Xi) =  X i, V(Y;) =  Yi, i =  1 , . . . ,  j  — 1, j  +  2 ,.. .  ,n. Notice that V ' 
(r cos d, 0,r sin d, 0) =  (r, 0,0,0). Accordingly, the unit speed geodesics are, up to composition 
with an isometry, given by

(i) g(t) =  m(z(t),x(t),y(t)),  where

z(t) = 25 t — s i  s*n( 2? i)

x 1 (i) =  sin( A11) y1 (t) = &  (1 — cos( g  t))
Xj(t) =  yj (t) =  0, j  =  2 , . . . ,  n, Co > 0.

(ii) g(t) =  m(0, x(t), 0), where x 1(t) =  t and Xj(t) =  0, j  =  2 , . . . ,  n.

Hence any geodesic is the image, under an isometry, of a geodesic of the totally geodesic 
subgroup with Lie algebra generated by Z, X 1, Y1. Accordingly, in the case of maximal symme
try the problem of determining minimal geodesics on H2n+1 reduces to determining minimal 
geodesics on H3 (indeed, g(-) is a minimising geodesic if and only if its image 0 og(-), evolving 
on the totally geodesic subgroup H3, is a minimising geodesic).
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We now proceed to the Riemannian case. The proof of the following theorem is very similar 
to that of Theorem 4.12 and hence omitted. The main difference is that in the equations for 
the geodesics Z =  ^n=1 A~xipYi is replaced by Z =  ^n=1 A x ipYi. Remarkably, the only
difference in the expressions for the Riemannian geodesics is the introduction of the cot term 
for z(t); this similarity can be explained by the fact that the Riemannian structure is a central 
expansion of the sub-Riemannian structure (see the remarks that follow).

Theorem  4.15. The unit speed geodesic g(-) through g(0) =  1 with g(0) =  a0Z +  5^*= AiXi + 
As1 Yi for the Riemannian structure (4.3) is, up to a composition with an isometry, given by

(i) g(t) =  m (z(t),x(t),y(t)), where

z(t) =  Cot +  4 £ I ( 2e t  — s*n(2C01))
i=1

xi(t) =  Cisin( Ait)
Ci,yi(t) =  Ci(1 — cos( Ait))

if ao =  0;

(ii) g(t) =  m (0,x(t),0), where xi(t) =  At if a0 =  0.

Here ci =  a2 +  b? and c0 =  |a0|.

Corollary 4.16. The subgroups with Lie algebra spanned by

(Z ,X i 1 ,Yi1 , . . . ,X i k ,Yik) 1 < i 1 < i 2 < . . .  < ik < n, 1 < k < n

are totally geodesic submanifolds of (4.3).

Rem ark 4.17. In the case of maximal symmetry (i.e., A1 =  A2 =  ■ ■ ■ =  An) any geodesic is 
the image, under an isometry, of a geodesic of the totally geodesic subgroup with Lie algebra 
spanned by Z, X 1,Y1. This follows in the same way as for the sub-Riemannian case (see 
Remark 4.14).

4 .5  R e m a r k s

The Riemannian structures (4.3) are central expansions of the sub-Riemannian structures (4.2) 
with respect to Z(H2n+1); this is most easily seen by inspection of the given orthonormal frames 
(see Lemma 1.49). Accordingly, the images of the respective sets of geodesics under the quotient 
map

q : H2n+ 1  ^  R2n =  H2n+ 1 /Z (H 2n+ 1 ), m (z,x,y) ^  (x,y)

are identical. In terms of the parametrisations of the geodesics given in Theorems 4.12 and 
4.15, this means that the expressions for the (x1, y1, . . . ,  xn, yn) coordinates should match (see 
Theorem 1.50 and its corollary), which is indeed the case.
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On the other hand, we note that the subclass g(t) =  m(0, x(t), 0), xi(t) =  a1 t of geodesics 
of (4.2) are the lifts of geodesics (being straight lines) of an invariant Riemannian structure on 
R2n (compare with Proposition 1.59; see also Corollary 1.36). Indeed, we have that

q :(H 2n, D, gA) ^  (R2n, gA)

is a LiSR-epimorphism; here gA is the inner product on R2 with respect to which (Tiq ■ 
X 1 ,Tiq ■ ^Y 1 , .. .Tiq ■ Xn,Tiq ■ Yn) is orthonormal.





Conclusion

This thesis investigated equivalences and interrelations between cost-extended systems (as
sociated to invariant optimal control problems), invariant sub-Riemannian structures, and 
quadratic Hamilton-Poisson systems, both within the context of each of these classes as well 
as between these classes. In Chapter 1 we developed a (simple and elegant) framework for 
these purposes. By formulating each class as a category, equivalence relations for cost-extended 
systems, sub-Riemannian structures, and Hamilton-Poisson systems were introduced. The cat
egory of sub-Riemannian structures was shown to be functorially equivalent to a subcategory 
of the category cost-extended systems. Accordingly, sub-Riemannian structures are equivalent 
(i.e., L-isometric up to rescaling) if and only if the corresponding cost-extended systems are 
equivalent. Furthermore, equivalence of cost-extended systems (resp. sub-Riemannian struc
tures) implies equivalence of the associated Hamilton-Poisson systems. It was also shown that 
the geodesics of central expansion of an invariant sub-Riemannian structure are closely re
lated to the geodesics of that structure. The primary aim in our formalism is to facilitate the 
systematic investigation of these various systems and structures.

A few examples illustrating some of the main results of Chapter 1 were discussed (at the end 
of Chapter 1); these examples pertained to the properties of structures on the three-dimensional 
Heisenberg group. In Section 4.5 we noticed that some properties generalized to the (2n +  1)- 
dimensional Heisenberg groups. With regards to quotient objects (in the respective categories) 
and central expansions (of sub-Riemannian structures), we would like to briefly point out two 
other significant cases. Any rank-two invariant sub-Riemannian structure (i.e., dimD(1) =  2) 
on the four-dimensional Engel group (see, e.g., [3, 17]) admits both an Abelian Riemannian 
quotient structure (by taking the quotient of the group by its commutator subgroup) and a 
sub-Riemannian quotient structure on the three-dimensional Heisenberg group (by taking the 
quotient of the group by its center). Accordingly, some subclasses of geodesics on the Engel 
group will be intimately related to the geodesics on these quotient structures. Moreover, the 
rank-two invariant sub-Riemannian structures on the Engel group admit rank-three central 
expansions. For a non-nilpotent example, we have the rank-two sub-Riemannian structures on 
the four-dimensional oscillator group ( [39]). These structures admit sub-Riemannian quotient 
structures on the three-dimensional Euclidean group SE (2) (by taking the quotient of the 
group by its center). Hence, a subclass of geodesics for these structures will be intimately 
related to the sub-Riemannian geodesics on SE(2) (which were studied in [92, 111]). The 
rank-two sub-Riemannian structures on the oscillator group likewise admit rank-three central 
expansions. Hence, we believe that quotients and central expansions will be useful new tools 
for the investigation of invariant sub-Riemannian structures.
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108 Conclusion

In Chapter 2 we classified the positive semidefinite quadratic Hamilton-Poisson systems on 
three-dimensional Lie-Poisson spaces. An exhaustive and nonredundent list of normal forms 
was obtained. Some simple invariants for these systems allow for a taxonomy of systems on 
each Lie-Poisson space, thus giving us the means (in most cases) to easily identify the normal 
form of an arbitrary system. The primary aim of this chapter was to unite and systematise 
the treatment of these systems, especially as several systems may be equivalently realized on 
a number of non-isomorphic Lie-Poisson spaces (see Tables 2.1 and 2.2). By studying normal 
forms for systems, one can accomplish more elegant and clear results. A systematic treatment 
of the stability of equilibria and computation of integral curves for this class of systems is 
currently in preparation. Avenues of further investigation include considering the class of all 
quadratic Hamilton-Poisson systems in three dimensions (i.e., not only the positive semidefinite 
ones), a systematic treatment of the inhomogeneous systems (for se (2 )- some partial results 
were obtained in [5,9]), and a classification of homogeneous systems in four dimensions.

In Chapter 3 we classified the invariant sub-Riemannian structures in three dimensions and 
determined the subgroup of isometries fixing the identity for each normal form. By comparing 
our results to that of Agrachev and Barilari [10], we were able to show that, quite remarkably, 
most isometries are the composition of a left-translation and a group automorphism. This begs 
the question as to whether this property generally holds true for some class of structures be
yond nilpotent Riemannian structures and sub-Riemannian Carnot groups (cf. Theorems 1.43 
and 1.45). Towards this end, it would be of interest to carry out a similar study (including 
classifications) of the invariant Riemannian structures in three dimensions, as well as the sub- 
Riemannian structures in four dimensions. Such studies would of course also be of interest 
in their own right. So far, the invariant three-dimensional Riemannian structures have been 
classified up to L-isometry in [62] and the larger class of homogeneous Riemannian struc
tures has been classified up to isometry in [99]; some partial classifications of sub-Riemannian 
structures in four dimensions have also been obtained (see, e.g., [15, 56]). We are currently 
preparing a classification of the invariant distributions on four-dimensional Lie groups (up to 
group automorphism).

The classification of invariant sub-Riemannian structures in Chapter 3 can be reinterpreted 
as a classification of the two-input cost-extended systems (where the system is linear in the con
trol and the cost is homogeneous). It would be of interest to expand this classification to cover 
all cost extended systems in three-dimensions (cf. Proposition 1.56). Another avenue of inves
tigation would be to formalise the inhomogeneous cost-extended systems as affine distributions 
together with quadratic forms and consider diffeomorphisms relating such structures; such an 
approach has been followed to study the geometry of more general (point-)affine distributions 
on manifolds in [49, 50].

In Chapter 4 we classified the Riemannian and sub-Riemannian structures on the Heisenberg 
groups, determined the associated isometry groups, and briefly investigated the geodesics. By 
making use of the isometries (and normal forms for geodesics) we suspect that we may be 
able to find a simpler derivation and description of the minimising geodesics in the general 
case (cf. [27]). Furthermore, investigation of the similarities between the Riemannian and 
sub-Riemannian structures may elucidate some more general properties for central expansions. 
As prototypical cases, it would also be of interest to classify and study more generally the 
cost-extended systems (or affine distributions) on the Heisenberg groups.



Appendix A

Three-dimensional Lie algebras and 
groups

A . 1  C l a s s i f i c a t i o n

There are eleven types of three-dimensional real Lie algebras; in fact, nine algebras and two 
parametrized infinite families of algebras (see, e.g., [76, 85,95]). In terms of an (appropriate) 
ordered basis (E ^ E 2 ,E 3), the commutation operation is given by

[E2 , E3] =  ni Ei — aE 2 

[E3 , Ei] =  aEi +  n2E2 

[Ei, E2] =  n3 E3 .

The structure parameters a ,n i ,n 2 ,n 3 for each type are given in Table A.1.
Note. Throughout this thesis we shall use a basis for g2.i © gi different from the one listed in 
Table A.1. More precisely, we use the basis Ei =  i (E i — E2), E2 =  — \E3, E3 =  i (E i +  E2); 
the only nonzero commutator is [Ei, E2] =  E i.

A classification of the three-dimensional (real connected) Lie groups can be found in [59]. 
Let G be a three-dimensional (real connected) Lie group with Lie algebra g.

1. If g is Abelian, i.e., g =  3gi , then G is isomorphic to R3, R2 x T, R x T, or T3.
2. If g =  g2.i © gi , then G is isomorphic to Aff (R) 0 x R or Aff (R) 0 x T.
3. If g =  g3.i , then G is isomorphic to the Heisenberg group H3 or the Lie group H3 =  

H3/Z (H 3(Z)), where Z(H3(Z)) is the group of integer points in the centre Z(H3) =  R of 
H3 .

4. If g =  g3.2, g3.3 , g °4, gf.4, or g“.5, then G is isomorphic to the simply connected Lie 
group G3.2, G3.3, G0.4 =  SE ( 1 , 1 ), G3 4, or G3 5, respectively (the centres of these groups 
are trivial.)

5. If g =  g°.5, then G is isomorphic to the Euclidean group SE (2), the n-fold covering 
SEn(2 ) of SEi (2 ) =  SE (2 ), or the universal covering group SE (2 ).

6 . If g =  g3.6, then G is isomorphic to the pseudo-orthogonaljgroup SO ( 2 , 1 )0, the n-fold 
covering An of SO (2 ,1)0, or the universal covering group A. Here A2 =  SL (2, R).
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Tab e A.1: Three-c imensional Lie algebras

a n1 n2 n3 U
ni

m
od

ul
ar

N
ilp

ot
en

t

Co
m

pl
. 

So
lv

.

Ex
po

ne
nt

ia
l

So
lv

ab
le

Si
m

pl
e

Connected Groups

3gi
02.1 © 01

0
1

0
1

0
-1

0
0

• • •
•

•
•

•
•

R3, R2 x T, R x T2, T3 
Aff (R)° x R, Aff (R)° x T

03.1
03.2
03.3

03.4
03.4
0°03.5
03.5

0
1
1
0

a>°
a=1

0
a>°

1
1
0
1
1
1
1

0
0
0

-1
-1

1
1

0
0
0
0
0
0
0

•

•

•

• •
•
•
•
•

•
•
•
•
•

•

•
•
•
•
•
•
•

H3 , H3
G3.2
G3.3

SE (1,1)
raG3.4

Se (2), SEn(2), SE(2)
raG3.5

03.6
03.7

0
0

1
1

1
1

-1
1

•
•

•
•

A, An, SL (2, R), SO (2 ,1)° 
SU (2), SO (3)

7. If g =  0 3 .7 , then G is isomorphic to either the unitary group SU (2 ) or the orthogonal 
group SO (3).

Among these Lie groups, only H3, An, n > 3, and A are not matrix Lie groups.

A . 2  M a t r i x  L ie  g r o u p s

We have the following parametrizations of the solvable three-dimensional matrix Lie groups 
and their Lie algebras (cf. [37, 58]). We omit the Abelian groups.

1 0 0 0 0 0
Aff (R)° x R : x e-y 0 02.1 © 01 : x - y 0

0 0 ez 0 0 z
1 0 0 0 0 0

Aff (R)° x T : x e-y 0 02.1 © 01 : x - y 0
0 0 eiz 0 0 iz

1 y x 0 y x
H3 : 0 1 z h3 : 0 0 z

0 0 1 0 0 0
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G3.2

G3.3

SE (1,1)

Ga3.4a>0a=1

SE (2)

SE„(2)

SE(2)

Ga3.5

1 0 0
y ez 0
x —zez ez

1

1oo

y ez 0
x 1

O

1 0 0
x cosh z — sinh z
y — sinh z cosh z
1 0 0
x eaz cosh z — eaz sinh z
y —eaz sinh z eaz cosh z

1 0  0 0
x cos z — sin z 0 
y sin z cos z 0
0 0 0 ez_
'1 0 0 0 '
x cos z — sin z 0 
y sin z cos z 0

iz0 0 0 e n
' 1 0  0
x cos z — sin z 
y sin z cos z
1 0 0
x eaz cos z — eaz sin z
y eaz sin z eaz cos z

g3.2

g3.3

se (1,1)

fla.4a> 0a=1

se (2) 

sen(2)

se(2)

aS3.5

0 0 0
y z 0
x —z z
0 0 0'
y z 0
x 0 z
0 0 0 “

x 0 —z
y —z 0
0 0 0
x az —z
y —z az

0 0 0
0'

x 0 z 0
y z 0 0
0 0 0 z

0 0 0 0 '

x 0 z 0
y z 0 0
0 0 0 iz

n-1
0 0 0
x 0 z
y z 0
0 0 0
x az —z
y z az

An appropriate ordered basis for the Lie algebra in each case is given by setting (x, y, z) =  
(1, 0, 0) for E 1, (x,y, z) =  (0,1, 0) for E2, and (x ,y ,z) =  (0, 0,1) for E3.

M a trix  Lie groups w ith  a lgebra  g3.6

There are only two connected matrix Lie groups with Lie algebra g3.6, namely the pseudo
orthogonal group SO (2 ,1)0 and the special linear group SL (2, R); SL (2, R) is a double cover 
of SO (2 ,1)o.

The pseudo-orthogonal group

SO (2,1) =  {g e R3x3 : gTJg =  J, det g =  1}

has two connected components. Here J =  diag(1,1, —1). The identity component of SO (2,1) 
is SO (2 ,1)0 =  {g e SO (2,1) : g33 > 0} where g =  [g j] (for g e SO (2,1)). Its Lie algebra is
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given by

so (2,1) =  {A  e  R3x3 : AT J +  JA =  0} 
" 0 z yl
—z 0 x : x, y, z e R 

_ y x 0

On the other hand, the special linear group is given by

SL (2, R) =  {g e R2x2 : det g =  1}.

Its Lie algebra is given by

sl (2, R)
" x 2y+z
L 2

y-z
2_x
2

: x, y, z e R

M a tr ix  Lie groups w ith  a lgebra g37

There are exactly two connected Lie groups with Lie algebra g3.7; both are matrix Lie groups. 
The special unitary group and its Lie algebra are given by

SU (2) =  

su (2) =

g e C2x2 : gg
" i rp 1

2 x 2
2(iz — y)

2 (iz +  y) : x, y, z e R—■k x2

SU (2) is a double cover of the orthogonal group SO (3). The orthogonal group SO (3) and its 
Lie algebra are given by

SO (3) =  j g e R3x3 : ggT =  1, det g =  1

so (3)
0 - z y
z 0 - x

- y x 0
x, y, z e R

Note. Again, for both g3.6 and g3.7, an appropriate ordered basis for the Lie algebra in each case 
is given by setting (x, y, z) =  (1,0,0) for E1, (x, y, z) =  (0,1,0) for E2, and (x, y, z) =  (0,0,1) 
for E3.

A . 3  A u t o m o r p h i s m  g r o u p s

A standard computation yields the automorphism group for each three-dimensional Lie algebra 
(see, e.g., [64]). With respect to the given ordered basis (E1, E2, E3) , the automorphism group
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of each solvable Lie algebra has parametrization:

"yw vz x u x y 0
Aut(g3.i) : 0 y v Aut(g2.i © fli) : 0 1 0

0 z w 0 u v
u x y x y z

Aut(g3.2) : 0 u z Aut(g3.3) : u v w
0 0 1 0 0 1
x y u x y u x y u

Aut(g3.4) : y x v y - x v Aut(fl3.4) : y x v
0 0 1 0 0 -1 0 0 1
x y u x y u x y u

Aut(fl3.5)) : - y x v , y - x v Aut(fl3.5) : - y x v
0 0 1 0 0 -1 0 0 1

For the semisimple Lie algebras, we have

Aut(g3.6) =  SO (2,1) and Aut(g3.7 ) =  SO (3).
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Tables

B .1  Q u a d r a t i c  H a m i l t o n - P o i s s o n  s y s t e m s  in  t h r e e  d i m e n s i o n s

T abu lation  o f  system s and equilibria

Table B.1: Ruled systems (Equations of motion and equilibria) 
System Eqn. of motion Equilibria

R(1) : ((fl2.i © fli)-,P 2) 

R(2) : ((fl3.3)-,P2 +  PD 

R(3) : ((S3.3,P3)

R(4) : ( ( f lL )-, (Pi +  P2)2)

R(5) : ((flL )-,P2)

Pi =  -2piP2 
p2 =  0 
p3 =  0 
Pi =  2piP3
p2 =  2P2P3
p3 =  0 
Pi = 0  
p2 =  0
p3 =  -2(P i +  P2) 
Pi =  0 
p2 =  0
p3 =  2(pi +  P2)2

Pi =  0 

p2 =  0

p3 =  2piP2

115
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Table B.2: Planar systems (Equations of motion and equilibria) 
System Eqn. of motion Equilibria

P(1) : ((fl2.i © fli)-,P 2 +  PD

P(2) : ((02.i0 0 i)-,p2+(pi +P3)2)

P(3) : ((S3.2)-,P3)

P(4) : ((fl3.3)-,P? +  P2)

P(5) : ((fl3.3)-,P? +  p2 +  P2)

P(6) : ((S0.4)-,P2)

P(7) : ((fl?.4)-,P2)

P(8) : ((flD -,P 3 )

P(9) : ((0 3 .5 ) - , P3)

P(10) : ((03.6)-, (P2 +  P3)2)

Pi =  -2piP2 
P2 =  2pi
P3 =  0
Pi =  -2piP2 
P2 =  2pi(pi +  P3 )
P3 =  0
Pi =  2piP3
P2 =  2 (-p i +  P2 )P3 
P3 =  0
Pi =  2piP3
P2 =  2P2P3 
P3 =  -2p?
Pi =  2piP3
P2 =  2P2P3 
p3 =  -2(P i +  P2)
Pi =  -2P2P3
P2 =  -2PiP3 
P3 =  0

Pi =  2(aPi -  P2)P3
P2 =  -2(P i -  aP2)P3 
P3 =  0

Pi =  2P2P3
P2 =  -2PiP3 
P3 =  0
Pi =  2(aPi +  P2)P3
P2 =  -2(P i -  aP2)P3 
P3 =  0
Pi =  2(P2 +  P3 ) 2 

P2 =  - 2Pi(P2 +  P3 ) 
P3 =  2Pi(P2 +  P3 )

0<a<i a>i
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Table B.3: Non-planar systems (Equations of motion and equilibria) 
System Equilibria

Np(1) : ((03.2) - , P2 +  P2)

{Pi =  2PiP3
P2 =  2 (-P i +  P2)P3 
P3 =  - 2 p?

Np(2) : ((03.2) - ,  5p? +  p2 +  P2)

{P>i =  2piP3 
P2 =  2pi(-P i +  P2)P3

P3 =  -2 (5  P2 -  PiP2 +  p2)

Np(3) : ((03.4) - ,  (Pi +  P2)2 +  P2)

{Pi =  -2P2P3
P2 =  -2piP3 
P3 =  2(pi +  P2 )2

Np(4) : ((0^.4) - ,  (pi +  P2)2 +  P2)

{Pi =  2(api -  P2)P3 
P2 =  - 2(pi -  a p 2)p3 

P3 =  -2 (a  -  1)(pi +  P2)2 

Np(5) : ((0 .̂4) - ,  (Pi -  P2)2 +  P2)

{Pi =  2(api -  P2)P3 
P2 =  - 2(pi -  ap2)p3 
P3 =  -2 (1  +  a)(pi -  P2)2

Np(6) : ((0^.4) - , ^p? +  p2 +  P2)

{p)1 = 2(api-P2)P3 
P2 = -2(pi-ap2 )P3 
p3=-2(«p P2-(P+i)PiP2+«P2)

Np(7) : ((03.5) - , p2 +  p3)

{P>i =  2P2P3 
P2 =  -2piP3 
P3 =  2piP2

Np(8) : ((03.5) - ,^Pi +  p2 +  P2)

{pi = 2(api+p2)p3 
P2 = -2(pi a P2 )p3 
p3=-2(«p P2+(P- i)piP2+ap2)
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Table B.4: Equilibria of systems
Normal form Set of equilibria (1 , v G R) Eq. Index

R(1)

"5o'

"5sTo' (0, 2)
R(2) (v,1 , 0 ), ( 0 , 0 , 1 ) (1,1)
R(3) (0, 0 , 1 ) (1, 0)
R(4) (v, -v ,  1 ) (0,1)
R(5)

"5o'

"5sTo' (0, 2)
P(1)

"5sTo' (0,1)
P(2) ( 0 ,v , 1 ), (1 , 0, —1 ) (1,1)
P(3) (v,1 , 0 ), ( 0 , 0 , 1 ) (1,1)
P(4) ( 0 , 1 , 0 ), ( 0 , 0 , 1 ) (2, 0)
P(5) (0, 0 , 1 ) (1, 0)
P(6) (v,1 , 0 ), ( 0 , 0 , 1 ) (1,1)
P(7) (0, 0 , 1 ), (v ,1 , 0) (1,1)
P(8) (v,1 , 0 ), ( 0 , 0 , 1 ) (1,1)
P(9) (v,1 , 0 ), ( 0 , 0 , 1 ) (1,1)
P(10) (v,1 , —1 ) (0,1)

Np(1) ( 0 , 1 , 0 ), ( 0 , 0 , 1 ) (2, 0)
Np(2) o<5<4 (0, 0 , 1 ), (1 , 1 (1 )1 , 0) (3, 0)
Np(2) ^=4 ( 0 , 0 , 1 ), (1 , 1 1 , 0) (2, 0)
Np(2) 5>4 (0, 0 , 1 ) (1, 0)
Np(3) (1, —1 , 0), (0, 0 , 1 ) (2, 0)
Np(4) (1, —1 , 0), (0, 0 , 1 ) (2, 0)
Np(5) (1 , 1 , 0 ), ( 0 , 0 , 1 ) (2, 0)
Np(6) (0<a<1 and 0<^<1) or (a>1 and 0</d<-1+2a2-2aVa2- 1)

(0, 0 .m) . ( m. (1+s)±v/ 1̂ f(2-4“ 2+s)1 ,0) (3, 0)
Np(6) a>1 and ^=—1+2a2 - 2aVa2- 1 (0, 0, 1 ), (1 , (a — \/a2 — 1 )1 , 0) (2, 0)
Np(6) a>1 and — 1+2a2-  2aVa2-1<^<1 (0, 0 , 1 ) (1, 0)
Np(7) (1, 0, 0), (0,1, 0), (0, 0 ,i) (3, 0)
Np(8) 0<^<1+2a2-2«Va2 + 1 (0,0,1), (1, v 2a 1,0) (3, 0)
Np(8) ^=1+2a2-2aVa2 + 1 (0,0 , 1 ), (1 , (—a +  11 +  a 2) i ,  0) (2, 0)
Np(8) 1+2a2-2aVa2 + 1<^<1 ( 0 , 0 , 1 ) (1, 0)
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T a xon om y o f  system s

Table B.5: Taxonomy of 3D systems, semisimple algebras
Algebra Class Eq. Index Normal Forms

g3.6 planar (1,1) P(6); P(8)
(0,1) P(10)

non-planar (2, 0) Np(3)
(3, 0) Np(7)

g3.7 planar (1,1) P(8)

non-planar (3, 0) Np(7)

Table B.6: Taxonomy of 3D systems, solvable algebras I
Algebra Class Eq. Index Normal Forms

g2.1 © gl ruled (0,1) R(4)
(0, 2) R(1); R(5)

planar (1,1) P(2)
(0,1) P(1)

g3.1 ruled (0, 2) R(5)
planar (1,1) P(8)

g3.2 linear (1, 0) R(3)
(0,1) R(4)
(0, 2) R(5)

planar (1,1) P(3)
non-planar (1, 0) Np(2), 5 > 4

(2, 0) Np(1); Np(2), 5 =  4
(3, 0) Np(2), 0 < 5 <  4

g3.3 ruled (1, 0) R(3)
(1,1) R(2)
(0,1) R(4)

planar (1, 0) P(5)
(2, 0) P(4)
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Table B.7: Taxonomy of 3D systems, solvable algebras II
Algebra Class Eq. Index Normal Forms

S3.4 ruled (0 , 1 ) R(4)
(0, 2) R(5)

planar (1,1) P(6)

non-planar (2, 0) Np(3)
(3, 0) Np(7)

S?.4 ruled ( 1 , 0) R(3)
(0 , 1 ) R(4)
(0, 2) R(5)

planar (1,1) P(7)
non-planar ( 1 , 0) Np(6), case d

(2, 0) Np(4); Np(5); 
Np(6), case c

(3, 0) Np(6), cases a&b

s3.5 ruled (0, 2) R(5)

planar (1,1) P(8)

non-planar (3, 0) Np(7)

S?.5 ruled ( 1 , 0) R(3)
(0 , 1 ) R(4)
(0, 2) R(5)

planar (1,1) P(9)

non-planar ( 1 , 0) Np(8), k-  < 0 < 1
(2, 0) Np(8), 0 =  k-
(3, 0) Np(8), 0 < 0 < k-
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B .2  T h r e e - d i m e n s i o n a l  s u b - R i e m a n n i a n  s t r u c t u r e s

Group & algebra

Table B.8: Invariant structures on simple groups
Orthonormal

frame d Isoi(G, D, g) H(G, D, g)

(A  E f .E L)
0<a<i

Oi 0 0 1
0 O2 0 : Ob O2 =  i 1 ? Np(7)
0 0 CTl̂ 2_ J

A
[E2 , E3] =  Ei 
[E3 , Ei] =  E2

[Eb E2] =  —E3

(E f, e L)
0

g 0 
0 0 det g

g e O (2) P(8)

( I s  Eh Ef )  1
0<a |

o i 0 0 

0 o2 0 

0 0 o io2
: oi,O2 =  ± l J  Np(7)

( -laEL,E3L) J 
SU (2) ^  2 |V ' 0<a<i  ̂
[E2, E3] =  Ei

o i 0 0 

0 o2 0 

0 0 o io2
: oi,O2 =  ± l J  Np(7)

[E3, E i] =  E2
[Ei , E2] =  E3 f

(Ef,E3L) I

O0ts 
0

 
0

1 ______1

: g e O (2) 1 P(8)
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Table B.9: Invariant structu 
OrthonormalGroup & algebra _frame

Aff (R)o x R ,

(e l + E i-E i) >
[E\, E2] =  Ei

ires on solvable groups

d IsOl (G: D: g) H (G: D  g)

a cos 0 —a sin 0 0 
sin 0 cos 0 0

—a + a cos 0 —a sin 0 a P(2)
: 0 e R, a = ± 1 }  = O (2)

H3

[E2: E3] =  E1 (EL eL) j
[ES:E i ]= 0  (E 2 :E l) \
[Ei, E2] =  0

det g 0 0 

0

0 g
: g e O (2)| P(8 )

G3.2
[E2, E3] =  E1 -  E2 ( e l eL) j
[E3 :E , ]=  E, (E 2 :E l) \
[Ei, E2] =  0

V  0 0 '
0 a 0

0 0 1
: a =  ± l |  Np(2 )^=o

SE (1 : 1 )

[E2 : E3] =  E1 (E l EL) j  
[E3:E1] =  - E 2 (E2:E3) \ 
[ E 1 : E2] =  0

a 1 0 0 

0 a ^ 2 0 

0 0 a2

: a 1 : a2 =  ± l |  Np(7)

r aG3.4 ( 
[E2 : E3] =  E1 -  a E 2 (EL EL) j  
[E3: E 1 ! =  a E 1 -  E2 ( 2 : 3 ) | 
[E1: E2] =  0

a 0 0'
0 a 0
0 0 1

: a =  ± l |  Np(6)^=o

SE (2) (

[E2: E3]=  E1 (E ^  EL) j  
!E 3 ,E l!=  E2 [  
[E1: E2] =  0

a1 0 0 
0 a ^ 2 0 
0 0 a2

: a1: a2 =  ± l |  Np(7)

r aG3.5
[E2: E3] =  E1 -  a E2 ( e l eL) j
!E3,El! =  a E 1 +  E2 ( 2 : 3 ) | 
[E1: E2] =  0

a 0 0'
0 a 0
0 0 1

: a =  E1| Np(% =o
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Mathematica notebooks

Wolfram Mathematica 8 was used for var- {z1, z2, z3} /.ss[[1]] 
ious computations; we include here some sim- ]; 
plified notebooks as typical examples. Input is 
presented in bold, and output not bold. PB^ F^ G_]:=

C .1  H a m i l t o n - P o i s s o n  s y s t e m s
o n  (g3.2

A lg eb ra  

Mg32[{x_, y_, z_}]:=

0 —

{ 0 0 0

y z 0

V x —z z )

—pp.Minv[MP, cc[MP@D[F, {pp}], 

MP@D[G, {pp}]]];

Hvec[MP_, H_, pv_]:=

Table [PB [MP, p,, H], {i, 3}]/.

{pi ^  pv[[1]],P2 ^  pv[[2]],

P3 ^  pv[[3]]};
Hvec[MP_, Hmax_]:=Hvec[MP, Hmax, pp]

C om m on  functions Fam ily fipi2 +  p22 +

cc[A_, B_]:=A.B — B.A; ( ^11 # 2 ^13 ^
pp =  {pi,P2,P3} ; = ^21 ^22 ^23
Minv[MP_, A_]:=  ̂ ^31 ^32 ^33 y
Module[{ss, z1, z2, z3} , H1 = Ppi2 +  Pi2 +  P32;
ss = H2 = YPi2 +  P22 +  P32;
Solve[ Alg = { Mg32, Mg32} ;

A = =  z1MP[{ 1,0,0} ]+ .̂Hvec[Alg[[1]], H1]//

z2MP[{0,1,0} ]+ FullSimplify

z3MP[{0,0,1} ], Hvec[Alg[[2]], H2, ̂ .pp]//

{z1, z2, z3}]; FullSimplify

2

123
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Print[“— Conditions —”];

Thread[%% = =  %%%]

Print[

“— Coefficients equated —”]; 

Flatten[D[D[%%, {pp}], {pp}]]

Print[“— Reduced equations —”]; 

Reduce[Flatten[{%%, Det[0] =  0}]]

{-2013 (fipl -  pip2 + pi) +

2 ((0 1 1  -  0 1 2 )pi + 0 1 2 p0  P3 ,

-  2023 (l3pl -  pip2 + pi) +

2 (("0 2 1  -  0 2 2 )pi + 0 2 2 p0  P3 ,

-  2033 (3pj -  P1P2 + pi) +

2 ((031 -  032)pi + 032p2)p3}

{2 (011pi + 012p2 + 013p3)

(031pi + 032p2 + 033p3),

2 ((-011 + 021)pi + (-012 + 022)p2 +

(-013 + 023)p3)

(031pi + 032p2 + 033p3),

-  2 (011pi + 012p2 + 0 13p3)

((7011 -  021)pi + (y0 12 -  022)p2+ 

(Y013 -  023)p3) -

2 (021pi + 022p2 + 023p3) 2}

-  Conditions —

{2 (011p 1 + 012p2 + 0 13p3)

(031pi + 032p2 + 033p3) ==

-  2013 (3p 2 -  pip2 + p;]) +

2 ((011 -  012)pi + 012p2) p3,

2 ((-011 + 021)pi + (-012 + 022)p2 +

(-013 + 023)p3)

(031pi + 032p2 + 033p3) ==

-  2023 (3pi -  pip2 + p2) +

2 ((021 -  022)pi + 022p2)ps,

-  2 (011pi + 012p2 + 0 13p3)

((Y011 -  021)pi + (y012 -  022)p2+

(y013 -  023)p3) -  
2 (021pi + 022p2 + 023p3) 2 ==

-  2033 (3p2 -  pip2 + p2]) +

2 ((031 -  032)pi + 032p2)p3}

-  Coefficients equated —

{4011031 ==  -43013,

2012031 + 2011032 ==  2013,

2013031 + 2011033 ==  2(011 -  012), 

2012031 + 2011032 ==  2013,

4012032 == -4013,

2013032 + 2012033 ==  2012,

2013031 + 2011033 ==  2(011 -  012),

2013032 + 2012033 ==  2012,

4013033 == 0,

4 ( -011 + 021)031 ==  -43023,

2 ( -012 + 022)031 + 2 ( -011 + 021)032 ==  

2023, 2 ( -013 + 023)031 +

2 ( -011 + 021)033 ==  2(021 -  022),

2 ( -012 + 022)031 + 2 ( -011 + 021)032 ==  

2023, 4 ( -012 + 022)032 == -4023,

2 ( -013 + 023)032 + 2 ( -012 + 022)033 ==  

2022, 2 ( -013 + 023)031 +

2 ( -011 + 021)033 ==  2(021 -  022),

2 ( -013 + 023)032 + 2 ( -012 + 022)033 ==  

2022, 4 ( -013 + 023)033 == 0,

-  4011(y011 -  021) -  40212 ==  -43033,

-  2012(y011 -  021) -
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2011(y012 -  022) -  4021022 ==  2-033,

-  2013(y011 -  021) -  

2011(y013 -  023) -  4021023 ==

2(031 -  032), -2012(y011 -  021) -  

2011(y012 -  022) -  4021022 ==  2033,

-  4012(y012 -  022) -  40222 ==  -4033,

-  2013(y012 -  022) -

2012(y013 -  023) -  4022023 ==  2032,

-  2013(y011 -  021) -  

2011(y013 -  023) -  4021023 ==

2(031 -  032), -2013(y012 -  022) -  

2012(y013 -  023) -  4022023 ==  2032, 

-4013(y013 -  023) -  40232 == 0}

-  Reduced equations —

033 ==  1&&032 == O&&031 == O&&023 

0&&

(022 ==  -1||022 ==  1)&&021 ==  0&&

013 == O&&012 ==  O&&011 ==  022&&0 =

C.2 Contact structure 
for (SE (2), D, g)

Sum[

Sum[

X  [[i]]D[Y [[j]], crd[[i]]] 

crdv[[j]]-

Y  [[j]]D[X [[i]], crd[[j]]] 

crdv[[i]], {i, 1, Length[crd]}],

{j, 1, Length[crd]}]; 

SetAttributes[{A, a1, a2, a3, a},

Constant]

G rou p  and algebra

m[{x-, y_, z_}]:=
( 1 0 0 0 ^

x Cos[z] - Sin[z] 0

y Sin[z] Cos[z] 0

0 0

Y

M [{x_, y_, z_}]

0

0

ez /
0 0 0

x 0 - z 0

y z 0 0

0 0 0 z

Note. This notebook relies on the Differential Forms
Mathematica package (Version 3.1, February 2007) M au rer-C artan  fram e
by Frank Zizza (see Section 3.1.2). 

S etu p

crd =  {x1, x2, x3};

XB =  {X  [x1], X  [x2], X  [x3]}; 

crdv = IdentityMatrix[Length[crd]]; 

ip[a_, b_]:=InteriorProduct[a, b]; 

LB[X_, Y_]:=

Tm[{xL, x2_, x3_}, {vL, v2_, v3_}]:= 
(D[m[{x1 +  tv1, x2 + tv2, x3 +  tv3}], 

t]/.t —— 0);

Tminv[{x1_, x2_, x3_}, mxA]:=

({v1, v2, v3}/.

(Solve[Thread[

Flatten[Tm[{x1, x2, x3},
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{v1, v2, v3}]] ==

Flatten[mxA]],

{v1, v2, v3}])[[1]]);

Tminv[{x1, x2, x3},

m[{x1, x2, x3}].M [{u1, u2, u3}]];

ttt =  % //FullSimplify;

X1 =  ttt/.{u1 —— 1, u2 —— 0, u3 —— 0}

X2 =  ttt/.{u1 —— 0, u2 —— 1, u3 —— 0}

X3 =  ttt/.{u1 —— 0, u2 —— 0, u3 —— 1} 

Print[“—”]

LB[X2, X3]//Simplify 

LB[X3, X1]

LB[X1, X2]

{Cos[x3], Sin[x3], 0}

{ —Sin[x3], Cos[x3], 0}

{0, 0,1}

{Cos[x3], Sin[x3], 0}

{ —Sin[x3], Cos[x3], 0}

{0, 0, 0}

{X1.XB, X2.XB, X3.XB}//MatrixForm

 ̂ (Cos[x3]) X[x1] + (Sin[x3]) X[x2]  ̂

(Cos[x3]) X[x2] + (—Sin[x3]) X[x1]

V (1) X[x3]

C ofra m e

vt =  a1 d[x1] +  a2d[x2] +  a3d[x3]; 

v 1 =

(vt/.

(Solve[Thread[

{ip[X1.XB, vt], 

ip[X2.XB, vt],

ip[X3.XB, vt]} = =  {1,0,0}],

{a1, a2, a3}])[[1]]//

FullSimplify); 

v2 =

(vt/.
(Solve[Thread[

{ip[X1.XB, vt], 

ip[X2.XB, vt],

ip[X3.XB, vt]} = =  {0,1,0}],

{a1, a2, a3}])[[1]]//

FullSimplify); 

v3 =

(vt/.
(Solve[Thread[

{ip[X1.XB, vt], 

ip[X2.XB, vt],

ip[X3.XB, vt]} = =  {0,0,1}],

{a1, a2, a3}])[[1]]//

FullSimplify);

{v 1, v2, v3}//MatrixForm

 ̂ (Cos[x3]) dx1 + (Sin[x3]) dx2  ̂

(Cos[x3]) dx2 + (—Sin[x3]) dx1 

y (1) dx3 j
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{{ip[X1.XB,v1], ip[X2.XB, v 1], 

ip[X3.XB, v 1]},

{ip[X1.XB, v 2], ip[X2.XB, v2], 

ip[X3.XB, v 2]},

{ip[X1.XB, v 3], ip[X2.XB, v3], 

ip[X3.XB, v3]}}//FullSimplify// 

MatrixForm 

v1 A v2 A v3//Simplify

/  1 0 0 \

0 1 0 

0 0 1

(1) dx1 A dx2 A dx3

C on ta ct one form

Y1 =  A(X2)

Y2 =  A(X3)

{ —ASin|x3], ACos[x3], 0}

{0,0, A}

w =  a1v 1 +  a2v2 +  a3v3; 

ip[Y1.XB, w]//FullSimplify 

ip[Y2.XB,w]

a2A

a3A

w =  a1v 1; 

ip[Y1.XB, w] 

ip[Y2.XB, w] 

d[w]//FullSimplify

ip[Y2.XB, ip[Y1.XB,d[w]]]// 

FullSimplify

0

0

(—a1Cos[x3]) dx2 A dx3 +

(a1Sin[x3]) dx1 A dx3

—a1A2

w =  —* 1 v1

ip[Y1.XB,w]

ip[Y2.XB,w]

ip[Y2.XB, ip[Y1.XB,d[w]]]//

Simplify

(Cos[x3]) dx1 + (Sin[x3]) dx2
A2

0

0

1

d[w]//Simplify

d[w]—

(0v 1 A v2 +  A? v2 A v3 +  0v3 A v 1) / /  

FullSimplify

( ^Ax3 ) dx2 A dx3 +

( — ) dx1 A dx3

0
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R e e b  v e cto r  field

Y0 =  a1X1 +  a2X2 +  a3X3; 

ip[Y0.XB, d[w]]//Simplify 

ip[Y0.XB, w]//Simplify

(f ) dx3 + ( - a3CosM ) dx2 +

( a3SAn[x31) dx1

-  A2

Y0 =  —A2X1 +  0X2 +  0X3//FullSimplify 

ip[Y0.XB, d[w]]//Simplify 

ip[Y0.XB, w]//Simplify

{ —A2Cos[x3], —A2Sin[x3], 0}

0

1

E valuation  o f  invariants

csln =

Solve[LB[Y1, Y0] = =  c101Y1 +  c201Y2, 

{c101, c201}]; 

csln =

(Append[csln,

Solve[

Thread[LB[Y2, Y0] ==  

c102Y1+c202Y2]//

FullSimplify, {c102, c202}]]); 

csln =

(Flatten[Append[csln,

Solve[

Thread[LB[Y2, Y1] — Y0 ==  

c112Y1 + c212Y2]//

FullSimplify,

{c112, c212}]]]); 
(  c101 c201 \

c102 c202 /.csln//MatrixForm

y c112 c212 y 
{h0 =

c101

\ 1 (c201 +  c102) 
csln;

1 (c201 +  c102) 

c202
/•

Print[“—x—"];

X =  V —Det[hh0]// 
FullSimplify[#, A > > 0]&

Print[“—k—"];

((—(c112)2 — (c212)2 +  c201-c102) /• 

csln)//
FullSimplify[#, A > > 0]&

Print[“-  {x ,k} normalized —”];

Av =

(A/. (Solve [x2 +  k2 = =  1&&A > 0, A]) [[ 

1]]//FullSimplify)

{X, k}/.A ^  Av

0 0  

—A2 0

0 0

—X—
Xi2

— k—

Ai2
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-  {x ,k} normalized -

21/4

{72 ’ 7 2 }

C .3  I s o m e t r i e s  o f  (G 3.2, D , g )

Setup  algebra

0 0 0
M [{x_, y. , z.}]:= y z 0

 ̂ x —z z
Minv[MM_]:=Module[{ss, zv}, 

zv =  Table [z», {i, 1,3}];

ss =

Solve[

MM ==

zv.{M [{1,0,0}],M [{0,1,0}], 

M [{0,0,1}]}, zv];

zv/.SS[[1]]

cc[A_, B_]:=AB — B.A;

Table[ONB[[i]].gm.ONB[[j]],

{i, 1,3}, {j, 1 3}]//MatrixForm

2 —1 0 ^

—1 1 0

V 0 0 1

1 0 0  

0 1 0

V 0 0 1 /

C on n ection  and curvature

Conn[x_, y_]:=Module[{Connxyz}, 

Connxyz[xs_, ys_, zs_]:=

2 (Minv[cc[M [xs], M [ys]]].gm.zs— 

Minv[cc[M [ys], M [zs]]].gm.xs+ 

Minv[cc[M [zs], M [xs]]]. 

gm.ys);

Connxyz[x, y, ONB[[1]]]ONB[[1]]+ 

Connxyz[x, y, ONB[[2]]]ONB[[2]]+ 

Connxyz[x, y, ONB[[3]]]ONB[[3]]

R iem an nian  expansion

rE1 =  ({0,1,0});

rE2=({0,0,1});

rE3=({1,1,0});

gm =  Inverse[{rE1, rE2, rE3}].

Inverse[{rE1, rE2, rE3}T];

gm//MatrixForm

ONB =  {rE1, rE2, rE3};

R[x_, y_, z_]:=

Conn[Minv[cc[M [x], M [y]]], z] — 

Conn[x, Conn[y, z]]+

Conn[y, Conn[x, z]]; 

codR[Y_, Z1_, Z2_, Z3_]:= 

Conn[Y, R[Z1, Z2, Z3]]— 

R[Conn[Y, Z1], Z2, Z3]—

R[Z1, Conn[Y, Z2], Z3]—

R[Z1, Z2, Conn[Y, Z3]];
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Linear m aps preservin g D (1 ), R, and 
V R

i  =  onbt .
 ̂ o!Cos[0] 

Sin[0]

V 0
Inverse[ONBT];

%//MatrixForm

—olSm[0] 0 ^

Cos[0] 0

0 a2 J

/  o-2 0 0 \

a2 — a1Cos[0] a1Cos[0] — a1Sin[0]

v —Sin[0] Sin[0] Cos[0] /

A1 =  {1,0,0};

A2 =  {0,1,0};

A3 =  {0,0,1}; 

i.R[A1, A2, A3]; 

R[i.A1, i.A2, i.A3]; 

%%//Simplify 

%%//Simplify

i/.Sin[0] ^  0/.Cos[0] ^  a1a2; 

i  =  %/.a12 ^  1; 

%//MatrixForm

/  a2 0 0 \

0 a2 0

y 0 0 a1a2 j

A1 =  {1,0,0};

A2 =  {0,1,0};

A3 =  {0,0,1};

A4 =  {1,0,0}; 

i.codR[A1, A2, A3, A4]; 

codR[i.A1, i.A2, i.A3, i.A4]; 

%%//Simplify 

%%//Simplify

{ —4a2, — 8a2, 0}

{ —4a1a24, —8a1a24, 0}

{0, 0, 0}

{0, a2Sin[20], 2a 1a2Sin[0]2 }

A1 =  {0,0,1};

A2 =  {0,1,0};

A3 =  {0,0,1}; 

i.R[A1, A2, A3]; 

R[i.A1, i.A2, i.A3]; 

%%//Simplify 

%%//Simplify

{ —2a2, —2(a2 + 2a1Cos[0]), —4Sm[0]}

{ —2a1Cos[0],

—6a1Cos[0], —4a12Sin[0]}
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