

E T S I S . T e l e c o m u n i c a c i ó n – U n i v e r s i d a d P o l i t é c n i c a d e M a d r i d

2016

Embedded Linux
Systems

Using Buildroot for building Embedded Linux
Systems (BeagleBone Black)

V1.2

Mariano Ruiz

Francisco Javier Jiménez

Dpto. de Telemática y Electrónica
Universidad Politécnica de Madrid

Page 1 of 38

Page 2 of 38

Table of contents

1 SCOPE .. 4

 Document Overview .. 4

 Acronyms .. 4

2 REFERENCED DOCUMENTS ... 5

 References ... 5

3 LAB1: BUILDING LINUX USING BUILDROOT ... 6

 Elements needed for the execution of these LABS. .. 6

 Starting the VMware .. 6

 Configuring Buildroot. .. 10

 Compiling buildroot. .. 14

 Buildroot Output. ... 15

 Configuring the Linux kernel parameters .. 16

 Booting the BeagleBone. .. 17

 Basic test your embedded Linux System ... 22

 Understanding the boot process with u-boot in the BeagleBone ... 23

 Booting the BeagleBone using a script. ... 24

 Additional details about the configuration of BBB in u-boot. ... 24

 Configuring the network interface in the BBB. .. 25

4 LAB2: USING INTEGRATED DEVELOPMENT ENVIRONMENT: ECLIPSE/CDT 26

 Adding cross-compiling tools to PATH variable. ... 26

 Cross-Compiling application using Eclipse. .. 26

 Automatic debugging using gdb and gdbserver. .. 34

5 PREPARING THE LINUX VIRTUAL MACHINE. .. 36

 Download VMware Workstation Player. ... 36

 Installing Ubuntu 14.04 LTS as virtual machine. ... 36

 Installing packages for supporting Buildroot. .. 36

6 ANNEX I: UBUNTU 14.04 LTS PACKAGES INSTALLED. ... 37

 List of packages used by Buidlroot . .. 37

 Typical Ubuntu virtual machine problems ... 38

6.2.1 Manually installation of VMware client tools in a Linux Virtual Machine. 38

6.2.2 Ubuntu presents a black screen after graphical login ... 38

6.2.3 Ubuntu is using us keyboard and not Spanish one .. 38

Page 3 of 38

Table of figures
Fig. 1: Main screen of VMware player with some VM available to be executed. _______________ 6

Fig. 2: Ubuntu Virtual Machine login screen. ___ 7

Fig. 3 Buildroot home page. __ 7

Fig. 4: Downloading buildroot source code. __ 8

Fig. 5: Buildroot folder (the folder name depends on the version downloaded). ______________ 8

Fig. 6: Dash home, Terminal application ___ 9

Fig. 7: Buildroot setup screen (make xconfig). The content of this windows depends on the
parameter selected. ___ 10

Fig. 8: Successful compilation and installation of Buildroot ______________________________ 15

Fig. 9: Schematic representation of the Buildroot tool. Buildroot generates the root file system,
the kernel image, the booloader and the toolchain. Figure copied from “Free
Electrons” training materials (http://free-electrons.com/training/) __________ 15

Fig. 10: images folder contains the binary files for our embedded system. __________________ 16

Fig. 11: Main window for configuring the Linux kernel. __________________________________ 17

Fig. 12: BBB. 18

Fig. 13: BeagleBone Black block diagram ___ 18

Fig. 14: Powering BBB with USB __ 19

Fig. 15: BBB serial line header terminal identification. __________________________________ 19

Fig. 16: Identification of the terminals in the USB-RS232 adapter _________________________ 19

Fig. 17: Booting process for BBB.__ 20

Fig. 18: BeagleBone. S2 push button ___ 21

Fig. 19: Putty program main window. __ 21

Fig. 20: Running Linux. __ 22

Fig. 21: AM335x Processor’s memory map. ___ 23

Fig. 22: Summary of the different configurations for developing applications for embedded
systems. Figure copied from “Free Electrons” training materials (http://free-
electrons.com/training/) ___ 26

Fig. 23: Cross compiling tools installed in the host computer _____________________________ 27

Fig. 24: Selection of the workspace for Eclipse. Use a folder in your account. ________________ 27

Fig. 25: Eclipse welcome window. ___ 28

Fig. 26: Eclipse main window. __ 28

Fig. 27: Basic C project creation in Eclipse __ 29

Fig. 28: Cross-compiler prefix and path window. _______________________________________ 29

Fig. 29: Hello world example. __ 30

Fig. 30: Tool Chain Editor should be configured to use Cross GCC. _________________________ 30

Fig. 31: Cross tools locate on (path).The path shown in this figure is an example.Use always the
path of your toolchain. __ 31

Fig. 32: Include search path. ___ 31

Fig. 33: Libraries search path. __ 32

Fig. 34: Eclipse project compiled (Binaries has been generated). __________________________ 33

Fig. 35: Run test program in Raspberry PI ___ 34

Fig. 36: Creating a Debug Configuration __ 34

Fig. 37: Debug configuration including the path to locate the cross gdb tool. ________________ 35

Fig. 38: Synaptic program from Dash __ 37

Fig. 39: Synaptic windows ___ 38

Page 4 of 38

1 SCOPE

T

 Document Overview

 This document describes the basic steps to develop and embedded Linux-based system using the
BeagleBone Black (BBB). The document has been specifically written to use a BBB development
system based on the AM335x Texas Instruments Sitara processor. All the software elements used to
build the Linux distribution have a GPL license.

Read carefully all the instructions before executing the practical part otherwise you will find errors and
probably unpredicted errors. In parallel you need to review the slides available at Moodle site or at [RD1]

 Acronyms

BBB BeagleBone Black

CPU Central Processing Unit

EABI Extended Application Binary Interface

EHCI Enhanced Host Controller Interface

I/O Input and Output

MMC Multimedia card

NAND Flash memory type for fast sequential read and write

PCI Peripheral Component Interconnect – computer bus standard

PCI Express Peripheral Component Interconnect Express

OS Operating system

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

[Time to complete the tutorial]: The time necessary to complete all the steps in this
tutorial is approximately 8 hours.

Page 5 of 38

2 REFERENCED DOCUMENTS

 References

[RD1] Embedded Linux system development.

Slides at https://moodle.upm.es/titulaciones/oficiales/course/<your course>

[RD2] Hallinan, C. Embedded Linux Primer. Second Edition. Prentice Hall. 2011.

[RD3] getting-started-with-ubuntu

[RD4] http://free-electrons.com/training/embedded-linux/

[RD5] http://elinux.org/Beagleboard:BeagleBone#Rev_A6A User Guide. Reference Manual.

[RD6] http://www.uclibc.org/ uclib web site.

[RD7] http://www.gnu.org/software/binutils/ Binutils web site.

[RD8] http://elinux.org/BeagleBoardBeginners#Formatting_the_SD_card_via_fdisk_.22Expert_m
ode.22

https://moodle.upm.es/titulaciones/oficiales/course/%3cyour
http://files.ubuntu-manual.org/manuals/getting-started-with-ubuntu/12.04/en_US/screen/Getting%20Started%20with%20Ubuntu%2012.04.pdf
http://free-electrons.com/training/embedded-linux/
http://elinux.org/Beagleboard:BeagleBone#Rev_A6A
http://www.uclibc.org/
http://www.gnu.org/software/binutils/
http://elinux.org/BeagleBoardBeginners#Formatting_the_SD_card_via_fdisk_.22Expert_mode.22
http://elinux.org/BeagleBoardBeginners#Formatting_the_SD_card_via_fdisk_.22Expert_mode.22

Page 6 of 38

3 LAB1: BUILDING LINUX USING BUILDROOT

 Elements needed for the execution of these LABS.

In order to execute properly this lab you need the following elements:

1. VMware WorkStation player version 12.0 or above. Available at www.wmware.com (free download
and use). This software is already installed in the laboratory desktop computer.

2. A VMWare virtual machine with Ubuntu 14.04 and all the software packages installed is already
available in the Desktop. This virtual machine is available for your personal use at the Department
assistance office (preferred method). If you want to setup your virtual machine by yourself follow
the instructions provided in the Annex I.

3. A BBB, the accessories and USB cable are available at the laboratory.

4. Basic knowledge of Linux commands. Available at http://www.ee.surrey.ac.uk/Teaching/Unix/ UNIX
tutorial for beginners.

 Starting the VMware

Start VMware player and open the Ubuntu Virtual Machine. Wait until the welcome screen is displayed (see
Fig. 1 and Fig. 2). Login as “ubuntuBuildroot” user using the password “dte.2016”. An Ubuntu tutorial is
available at Moodle site.

Fig. 1: Main screen of VMware player with some VM available to be executed.

http://www.wmware.com/
http://www.ee.surrey.ac.uk/Teaching/Unix/

Page 7 of 38

Fig. 2: Ubuntu Virtual Machine login screen.

Open the Firefox web browser and download from https://buildroot.org/ the version identified as
buidlroot2016-05 (use the download link, see Fig. 3, and navigate searching for a specific release,
https://buildroot.org/downloads/). Save the file to the Documents folder in your account (Fig. 4).

Fig. 3 Buildroot home page.

Buildroot is a tool to generate embedded Linux systems in our PC and then this Linux will be installed in the
target.

https://buildroot.org/
https://buildroot.org/downloads/

Page 8 of 38

Fig. 4: Downloading buildroot source code.

Copy the file to the “Documents” folder and decompress the file (Fig. 5).

Fig. 5: Buildroot folder (the folder name depends on the version downloaded).

Right click in the window and execute “Open in Terminal” or execute from Dash home the Terminal
application as is shown in the Fig. 6 (if “Open in Terminal” is not available, search how to install it in Ubuntu).

Page 9 of 38

Fig. 6: Dash home, Terminal application

In some seconds a command window is displayed. Then, execute these commands:

In some seconds you will see a new window with a content similar to Fig. 7.

[Help]: You can use either “make xconfig” or “make menuconfig”. If “make xconfig”
returns an error try “make menuconfig”

[Help]: In Linux “TAB” key helps you to autocomplete de commands, folders and files
names. You can find a description of “make” application in this link
https://www.gnu.org/software/make/manual/make.pdf

xxx@ubuntu:~/Documents$ cd buildroot-2016.05

xxx@ubuntu:~/Documents/buildroot-2016.05$ make xconfig {or make menuconfig}

Page 10 of 38

Fig. 7: Buildroot setup screen (make xconfig). The content of this windows depends on the parameter selected.

 Configuring Buildroot.

Once Buildroot configuration is started, it is necessary to configure the different items. You need to navigate
through the different menus and select the elements to install. Table I contains the specific configuration of
Buildroot for installing it in the BeagleBone Black. Depending on the version downloaded the organization
and the items displayed can be different.

Table I: Parameters for Buildroot configuration

Main Item Subitem Value Comments

Target options Target Architecture ARM (little endian)

 Target Architecture
Variant

Cortex-A8

 Target ABI EABIhf An embedded-application
binary interface (EABI)
specifies standard
conventions for file formats,
data types, register usage,
stack frame organization, and
function parameter passing of
an embedded software
program.

 Floating point
strategy

VFPv3-D16

 ARM instruction Set ARM

[Help]: The Buildroot configuration is an iterative process. In order to set up your
embedded Linux system probably you will need to execute the configuration several
times.

Page 11 of 38

Main Item Subitem Value Comments

Build options Default values How Buildroot will built the
code. Leave default values.

Toolchain Cross Compiler, linker,
libraries to be built to compile
our embedded application

 Toolchain Type Buildroot toolchain Embedded system will be
compiled with tools
integrated in Buildroot

 Kernel Headers

Same as kernel Source header files of the
Linux Kernel. Navigate to
kernel option and select it.
The option is now displayed.

 Custom kernel
headers series

3.12.x

 C library uClibc

 uClib configuration
file to use?

package/uclibc/uClibc-ng.config

 Enable WCHAR
support

Yes Support for extender set of
chars.

 Thread library
implementation

Native POSIX Threading (NTPL)

 Thread library
debugging

Yes

Embedded system will have
debugeable threads,

 Compile and install
uClibC utilities

Yes

 Binutils Version binutils 2.25.1 Binutils contains tools to
manage the binary files
obtained in the compilation of
the different applications

 GCC compiler
Version

gcc 4.9.x GCC tools version to be
installed

 Enable C++ support Yes Including support for C++
programming, compiling, and
linking.

 Enable compiler tls
support

Yes Enable code generation for
Thread Local Storage

 Build cross gdb for
the host

GDB Debugger Version, gdb 7.9.x

Includes the support for GDB.
GCC debugger.

 Enable MMU support Yes Mandatory if building a Linux
system

System
Configuration

 System Hostname

beaglebone Name of the embedded
system

 System Banner

Linux BBB Master MISSSI Banner

Page 12 of 38

Main Item Subitem Value Comments

 Passwords encoding md5

 Init System BusyBox

 /dev management Dynamic using devtmpfs only

 Path to permissions
table

system/device_table.txt Text files with permissions for
/dev files

 Root FS skeleton

Default target skeleton Linux folder organization for
the embedded system

 Enable root login
with password

Root passwd: ada

 /bin/sh busybox

 Remount root
filesystem…

yes

 Network Interface to
configure through
DHCP

eth0

 Path to user tables /home/<user>/ut/test This file contains the list of
user to be created in the
embedded Linux system. Use
this link to understand how to
complete the file

https://buildroot.org/downlo
ads/manual/manual.html#ma
keuser-syntax

 Custom Scripts to run
…

board/beaglebone/post-image.sh This script is executed after
buildroot has finished all the
job. Inspect this Shell script to
see an example.

 Run a getty: Port to
run a getty

/dev/ttyO0 Linux device file with the port
to run getty (login) process.
Uses ttyO0 for serial port

 Baud rate to use Keep kernel default

 TERM environment
variable

Vt100

Linux Kernel

 Kernel version Custom Git Repository

 URL of custom
repository

git://git.ti.com/ti-linux-kernel/ti-
linux.git

 Custom repository
version

7f280334068b7c875ade51f8f3921ab31
1f0c824

 Custom kernel
patches

board/beaglebone/patches/linux

 Kernel configuration Using a custom (def)config file

 Configuration file
path

board/beaglebone/linux-3.12.config

 Kernel binary format zImage

https://buildroot.org/downloads/manual/manual.html#makeuser-syntax
https://buildroot.org/downloads/manual/manual.html#makeuser-syntax
https://buildroot.org/downloads/manual/manual.html#makeuser-syntax

Page 13 of 38

Main Item Subitem Value Comments

 Kernel compression
format

gzip

 Build Device Tree
Blob

Use a device tree present in the kernel

 Device Tree Source
Filenames

am335x-bone am335x-boneblack Device tree source filenames

 Linux Kernel
Extensions

Nothing

 Linux kernel tools Nothing

Target
Packages

 BusyBox
configuration file to
use

package/busybox/busybox.config

 Audio and video
applications

Default values

 Compresssors and
decompressors

Default values

 Debugging, profiling
and benchmark

Gdb, gdbserver

 Developments tools Default values

 Filesystem and flash
utilities

Default values

 Games Default values

 Graphic libraries and
applications
(graphic/text)

Default values

 Hardware handling Firmware->am33x-cm3

 Interpreters
language and
scripting

Default values

 Libraries Default

 Mail Default

 Miscellaneous Default

 Networking
applications

openssh

 Package managers

Real Time

Shell and utilities

System Tools

Text Editors and
viewers

Default

 Real-Time Default

 Security Default

 Shell and utilities Default

 System tools Default

Page 14 of 38

Main Item Subitem Value Comments

 Text editors and
viewers

Default

Filesystem
Images

 ext2/3/4 root
filesystem

ext2 (rev0)

Compression method no compression

Bootloaders

 U-Boot Build system: Legacy

U-Boot board name: am335x_evm

U-Boot Version: 2016.03

U-Boot binary format: u-boot.img

Install U-Boot SPL binary image name:
“MLO”

You need to provide in the “U-
boot SPL binary image name”
the name of the file to be
generated. In this case is
“MLO”

Host utilities

 host u-boot tools ??

host omap-ti-boot-
utils??

Yes

Legacy config
options

 Default values

Once you have configured all the menus you need to exit saving the values (File->Quit).

Empezamos a las 11:40

 Compiling buildroot.

In the Terminal Window executes the following command:

If everything is correct you will see a final window similar to the represented in Fig. 8.

Warning. If you have errors in the configuration of buildroot you could obtain errors in
this compilation phase. Check correctly your configuration. Use “make clean” to clean
up your partial compilation.

[Help]: The Buildroot configuration is stored in a file named as “.config”. You should
have a backup of this file.

[Time for this step]: In this step buildroot is going to connect, using the internet, to
different repositories. After downloading the code, Buildroot is going to compile the
applications and generates a lot files and folders. Depending of your internet speed
access and the configuration chosen this step could take up to two hour and half. The
download of kernel source code from TI is very slowly.

xxx@ubuntu:~/Documents/buildroot-2016.05$ make

Page 15 of 38

Warning. dl subfolder in your buildroot folder contains all the packages download for
the internet. If you want to move your buildroot configuration from one computer to
another avoiding the copy of the virtual machine you can copy this folder.

Fig. 8: Successful compilation and installation of Buildroot

Buildroot has generated some folders with different files and subfolders containing the tools for generating
your Embedded Linux System. Next paragraph explains the main outputs obtained,

 Buildroot Output.

The main output files of the execution of the previous steps can be located at the folder “./output/images”.
Fig. 9 summarizes the use of Buildroot. Buildroot generates a boot loader, a kernel image, and a file system.

Fig. 9: Schematic representation of the Buildroot tool. Buildroot generates the root file system, the kernel image,

the booloader and the toolchain. Figure copied from “Free Electrons” training materials (http://free-

electrons.com/training/)

In our specific case the folder content is shown in Fig. 10

http://free-electrons.com/training/
http://free-electrons.com/training/

Page 16 of 38

Fig. 10: images folder contains the binary files for our embedded system.

The file MLO is the X-Loader. The u-boot.img file contains the u-boot binary for booting your Linux. Linux
image is zImage. The files with dtb extension are the device tree in binary form used by Linux in the booting
phase to discover the hardware available in the BeagleBone. The file rootfs.ext2 contains all the files of the
file system of your embedded Linux. In order to boot the BBB from a SD card firstly you need to format it
adequately, follow the instructions included in [RD8]. All files (Fig. 10) with the exception of the rootfs.ext2
must be copied to the SD card FAT32 partition for booting BBB. It is mandatory to copy first the MLO file.
Copy the content of rootfs.ext2 to Linux partition using the dd command as follow:

xxx@ubuntu:~/Documents$ cd buildroot-2016.05/output/images

xxx@ubuntu:~/Documents/output/images $ sudo dd if=rootfs.ext2 of=/dev/sd<n>2

Please use “dmesg” Linux command to find out the device assigned to your SD card. Use “eject” of Ubuntu (

) to unmount the SD Card, this is similar to eject an USB disk in Windows. Insert again the SD card in the
computer and verify that the files are correctly copied.

 Configuring the Linux kernel parameters

In all the Linux embedded applications it is necessary to set up the kernel in order to support the different
physical devices and user space applications. All kernel sources provide a basic configuration for specific
hardware platforms. If you are using a commercial hardware platform probably you will find a kernel
configuration suitable for you, if not you will need to define it. This is a hard task but you will find hundreds
of examples in the Internet. Linux kernel has a directory with predefined hardware configurations. The
relative path is this: “./<your buildroot installation path>/output/build/linux-
<xxxxxxxxx>/arch/arm/configs”. Have a look to this folder and you will find plenty of text files with a
defconfig suffix containing the kernel parameter configuration of a specific hardware.

If you want to modify the kernel configuration from a Buidlroot folder execute this command (Fig. 11):

rpi@ubuntu:~/Documents/buildroot-2016.05$ make linux-menuconfig

Page 17 of 38

You can navigate in this application using the arrows. Inspect the configuration of the kernel. If you add or
remove features, save them and compile again buildroot using make command. This will generate new
images that must be copied to SD card.

Fig. 11: Main window for configuring the Linux kernel.

 Booting the BeagleBone.

Fig. 12 displays a BeagleBone Black. The description of this card, their functionalities, interfaces and
connectors are explained in the ref [RD5]. The basic connection requires:

a) To connect the USB to RS232 adapter (provided) to the BBB serial line header (see Fig. 15 and Fig.
16). This adapter will be provide the serial line interface to be used as console in the Linux operating
system.

b) To connect the power supply provided to the jack identified as 5v or using a USB cable.

[Info]: We do not need to apply changes in the default kernel configuration for BBB. This
step has been included here in order to understand how to proceed whether you need
to tune your kernel

[Connecting the USB serial interface in the VM]: In order to connect the serial interface
in your virtual machine you need to connect it selecting un VMWare Player the option
Player->Removable Devices->Future Devices TTL 232R 3V3->Connect

Page 18 of 38

Fig. 12: BBB.

Fig. 13: BeagleBone Black block diagram

Page 19 of 38

Fig. 14: Powering BBB with USB

Fig. 15: BBB serial line header terminal identification.

Fig. 16: Identification of the terminals in the USB-RS232 adapter

Page 20 of 38

The booting process of the BBB with its AM335x processor is depicted in Fig. 17. By default, the ROM in the
Sitara AM335x will boot from the MMC1 interface first (the onboard eMMC), followed by MMC0 (MicroSD),
UART0 and USB0. If the boot switch (S2) is held down during power-up, the processor starts running the ROM
code and boots from the SPI0 Interface first, followed by MMC0, USB0 and UART0. This allows the
BeagleBone Black to bypass the on-board eMMC and boot from the removable uSD (provided no valid boot
device is found on SPI0).

Open the putty application in the Linux host (execute “sudo putty” in a Linux terminal) and open a session to
the serial line (use /dev/ttyUSB0 with 115200 baud rate). Apply the power supply pressing S2 button (Fig. 18)
and releasing it after (for instance) one second, the BeagleBone will boot from SD card.

FIRST STAGE

AM335x ROM code

Basic peripheral

configuration

Searches for booting

devices

Load x-loader into SRAM

POWER ON

SECOND STAGE

Secondary Program Loader

X-loader

Setup pin mux

Clock initialization. Memory configuration

Loads u-boot inti SDRAM

THIRD STAGE

U-boot Additional Platform

intialization

Boot arguments

Load kernel image and boot

FOUR STAGE

Linux Kernel boot

Fig. 17: Booting process for BBB.

Page 21 of 38

Fig. 18: BeagleBone. S2 push button

Fig. 19: Putty program main window.

Page 22 of 38

After some seconds you will see a lot messages displaying in the terminal. Linux kernel is booting and the
operating system is running their configuration and initial daemons. If the system boots correctly you will see
an output like the represented in Fig. 20. Introduce the user name root and the Linux shell will be available
for you.

Fig. 20: Running Linux.

 Basic test your embedded Linux System

Your embedded Linux system is running in the Beaglebone, execute the following commands and analyse the
output information.

$dmesg

….

$uname –r

….

$ifconfig

….

$ps –ax

Answer the following questions:

a) Which are the kernel parameters used to boot the system? Explain the meaning of them.
b) What IP address has been assigned to BBB? Who is providing tis IP?
c) How many processes are running in the Linux OS?

[Serial interface identification in Linux]: In Linux the serial devices are identified
typically with the names /dev/ttyS0, /dev/ttyS1, etc. In the figure the example has been
checked with a serial port implemented with an USB-RS232 converter. This is the reason
of why the name is /dev/ttyUSB0. In your computer you need to find the identification
of your serial port. Use Linux dmesg command to do this.

Page 23 of 38

d) Which devices have been detected in the system boot?
e) Try to access to BBB using putty with a ssh connection. First try to access with root account and later

with another account. What happens? Find a possible solution to this.

 Understanding the boot process with u-boot in the BeagleBone

The Texas Instruments am335x processor (based on an ARM cortex-A8) has a memory area for SDRAM
available in the range 0x80000000-0xC0000000. In this memory area we are going to load using u-boot two
basic elements: the kernel and the device-tree. The starting address for the kernel is 0x80200000 and for the
device tree 0x80F80000.

Fig. 21: AM335x Processor’s memory map.

When we perform the reset in the BBB pressing the S2 button the first stage bootloader, boot ROM inside
the AM335x) will search for the MLO (secondary bootloader) and u-boot (tertiary) loaders in the SD card.
The u-boot binary performs the following actions:

a) Once U-boot performs the basic initialization it is waiting for a user keystroke a specific time in
seconds. This time is controlled with a u-boot environment variable named bootdelay (typically 3
seconds).

b) If this timeout is reached U-boot firstly searches for a binary script named “boot.scr.uimg”. If this
scripts ends without executing the Linux kernel, u-boot will search a “uEnv.txt” file, with user defined
variables, in the SD card. If these file doesn’t run the Linux kernel, u-boot will execute the content of
“bootcmd” environment variable. Typically embedded Linux systems uses the “boot.scr.uimg” script
to boot using a sequence defined by the developer. This file has a binary content and is obtained
using a text file (for instance called boot.scr) with the mkimage tool. This tool is part of u-boot
software.

[Comment] uEnv.txt allows pre-setting of the U-Boot environment variable

values, prior to running bootcmd. boot.scr allows running of a U-Boot script

file, prior to running bootcmd.

[Info] u-boot source code can be found in different internet repositories. In this

tutorial we are using the official repository of DENX Software Engineering

(git://git.denx.de/u-boot.git). You can also find u-boot in other internet sites. In

particular Texas Instruments, the manufacture of the AM335x processor provides

Page 24 of 38

a site with the u-boot code for the TI processors. This link is “git://git.ti.com/ti-u-

boot/ti-u-boot.git”. For sure that if you compare the code you will see small

differences between them. Be aware of this.

The embedded Linux system developed in this tutorial uses the content of “uEnv.txt” file in the boot process.
This file has been copied to FAT32 partition in the SD card. Remove it and power on the BBB pressing the S2
button and releasing it after some seconds. During u-boot boot process you will see a message inviting you
to press a key to interrupt the u-boot sequence. Press a key to get the u-boot prompt and execute the
following commands (Explain the meaning of the different u-boot commands). The bootz command will
launch the execution of the zImage loaded in the BBB DRAM memory.

mmc rescan

setenv bootargs console=ttyO0,115200n8 root=/dev/mmcblk0p2 rw rootfstype=ext2 rootwait

fatload mmc 0 0x80F80000 am335x-boneblack.dtb

fatload mmc 0 0x80007fc0 zImage

bootz 0x80007fc0 - 0x80F80000

Of course booting in this way, manually, is not very interesting for functional embedded system. In the next
point we are going to develop a script automating this boot process.

 Booting the BeagleBone using a script.

The previous aforementioned step for starting up the Linux can be simplified a little bit using a u-boot script.
If you create a text file with the u-boot commands listed previously you obtain a binary script using the
following command in an Ubuntu Linux command terminal:

Copy the “boot.scr.uimg” file into the SD card and reboot the BBB. Now the BBB is booting automatically
without the need of user intervention.

 Additional details about the configuration of BBB in u-boot.

The configuration of the BBB in u-boot is available in the following files listed in Table 2.

Table 2: Main files in u-boot with the configuration for BBB hardware based on Am335x processor.

File Objective

<u-boot>/include/configs/am335x_evm.h Definition of the different constants
and environment variables of u-boot
for AM335x-based hardware. In this file
the default addresses to store kernel,
device tree and filesystem are defined.

<u-boot>/board/ti/am335x Folder with source files containing the
code to initialize and manage the
AM335x processor and the board
resources.

<uboot>/configs/am335x_evm_defconfig Default u-boot configuration for BBB

mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "BBB" -d boot_mmc.txt boot.scr.uimg

Page 25 of 38

 Configuring the network interface in the BBB.

The configuration generated by buildroot for the BBB’s network interface (eth0) is DHCP. This means that in
Linux initialization the “init” process is launching an application working as DHCP client. Execute the
commands ifconfig and ps to see the network configuration and the processes running in the BBB. You can
test if the network is working using the ping command. Use the ping command with a known address. For
instance, the address of one computer in the lab.

[Question] What is the MAC address of your BBB?

[Help]: If you execute the ping command in the BBB trying to connect with a computer
in the laboratory probably you obtain a connection timeout. Consider that computers
running windows could have the firewall activated. You can also try to run the ping in a
windows computer or in Linux virtual machine. In this case the BBB doesn’t have a
firewall running and the connection should be ok.

[DHCP Server]: The DHCP server providing the IP address to the BBB should be active in
your network. In the UPM ETSIST labs the IP is assigned using the BBB’s MAC address.
Check with your instructor the IP assigned to your RPI. If you are using the RPI at home,
the DNS server is running in your router. The method used by this should be different
from one manufactures to others. If you want to know the IP address assigned you have
two options: use a serial cable connected to the RPI or check the router status web page
and display the table of the DHCP clients connected. Looking for the MAC in the list you
will obtain the IP.

Page 26 of 38

4 LAB2: USING INTEGRATED DEVELOPMENT
ENVIRONMENT: ECLIPSE/CDT

 Adding cross-compiling tools to PATH variable.

Using a text editor, edit the .profile file (available at your home directory). Add a line at the end of the file
containing: PATH="<your buildroot installation>/output/host/usr/bin:$PATH". This add to the PATH
environment variable the location of the cross-compiling tools. You must logout and login again.

 Cross-Compiling application using Eclipse.

How a program will be compiled? Remember that we are developing cross applications. We are developing
and compiling the code in a Linux x86 machine and we are executing it in an ARM architecture (see Fig. 22).

Fig. 22: Summary of the different configurations for developing applications for embedded systems. Figure

copied from “Free Electrons” training materials (http://free-electrons.com/training/)

The first question is where the cross-compiler is located. The answer is this: in the folder “buildroot-
2016.05/output/host/usr/bin”. If you inspect the content of this folder you can see the entire compiling,
linking and debugging tool (see Fig. 23). These programs are executed in your x86 computer but they
generate code for ARM processor.

http://free-electrons.com/training/

Page 27 of 38

Fig. 23: Cross compiling tools installed in the host computer

In a Terminal window start Eclipse with the following command:

The popup window invites you to enter the workspace (see Fig. 24). The workspace is the folder that will
contain all the eclipse projects created by the user. You can have as many workspaces as you want. Please
specify a folder in your account.

Fig. 24: Selection of the workspace for Eclipse. Use a folder in your account.

[Help]: The figures displayed in the following paragraphs can be different depending on
the Eclipse version installed.

xxxx@ubuntu:~$ eclipse

Page 28 of 38

Select Ok and the welcome window of Eclipse will be shown (Fig. 25). Next, close the welcome window and
the main eclipse window will be displayed (Fig. 26).

Fig. 25: Eclipse welcome window.

Fig. 26: Eclipse main window.

Create an Eclipse C/C++ project (File->New->Project->C/C++project->C project) selecting the hello world
example (see Fig. 27). Specify the project name and the toolchain to be used. In this case a Cross GCC. Press
Next.

Page 29 of 38

Fig. 27: Basic C project creation in Eclipse

There is a window (Fig. 28) requesting the Cross Compiler prefix and path, leave both inputs blank and click
on the Finish button. You will obtain your first project created with eclipse.

Fig. 28: Cross-compiler prefix and path window.

Page 30 of 38

Fig. 29: Hello world example.

The next step (mandatory) is the Eclipse project configuration for managing the Cross-tools. In Project ->
Properties configure the C/C++ Build Setting as the Fig. 30 and Fig. 31 shown. Pay attention that Prefix
requires a string ending in a hyphen.

Fig. 30: Tool Chain Editor should be configured to use Cross GCC.

Page 31 of 38

Fig. 31: Cross tools locate on (path).The path shown in this figure is an example.Use always the path of your

toolchain.

The next step is to configure the search paths for the compiler and linker, and the different tools to use.
Complete the different fields with the information included in Fig. 32 and Fig. 33. Please consider the paths.
The figures are showing examples for an specific user account.

Fig. 32: Include search path.

Page 32 of 38

Fig. 33: Libraries search path.

Once you have configured the cross chain in Eclipse you can build your project using Project->Build Project.
If everything is correct you will see the eclipse project as represented in Fig. 35.

In order to copy the executalbe to the target you have different options. You can use the linux application
called “scp” or other similar applications. In our case we are going to use “Connect to Server….” utility
included in ubuntu (under Places menu). Specify in Server Address ssh://<ip address>

[Console in Eclipse]: Have a look to the messages displayed in the Console. You will see
how eclipse is calling the cross compiler with different parameters.

Page 33 of 38

Fig. 34: Pop up window when executing “Connect to Server”

Fig. 35: Eclipse project compiled (Binaries has been generated).

You can run the program in the Raspberry PI using putty (remember that once you have a network connection
available in the BeagleBone you can also use putty to connect to it).

Page 34 of 38

Fig. 36: Run test program in Raspberry PI

Warning. If you experiment problems using ssh, delete the .ssh folder in

your home directory.

 Automatic debugging using gdb and gdbserver.

You can directly debug the program running in the Raspberry-pi using Eclipse. There are two methods to do
it: manually and automatically. In the manual method, firstly, you need to copy the executable program to
the BBB, change the file permissions to “executable” and execute the program to be debugged using
gdbserver utility. Of course this is a time consuming process and very inefficient. The alternative solution is
to use the automatic debugging. In order to debug your applications we need to define a debug session and
configure it. Firstly, Select Run->Debug Configurations and generate a new configuration under C/C++
Remote Application. You need to complete the different tabs available in this window. The first one is the
main tab (see Fig. 37). You need to configure here the path to the C/C++ application to be debugged, the
project name, the connection with the target (you will need to create a new one using the IP address of your
BBB), the remote path where your executable file will be downloaded, and the mode for the debugging
(Automatic Remote Debugging Launcher). Secondly, in the argument tab you can specify the argument of
your executable program. Very important here is that you can also specify the path of the working directory
where the executable will be launched.

Fig. 37: Creating a Debug Configuration

In the debugger window (main tab) you need to configure the path of your gdb application. Remember that
we are working with a cross-compiler, cross debugging, therefore, you need to provide here the correct path
of your gdb. The GDB command file must be specified, providing a path with an empty file. In the Gdbserver
settings tab you need to provide path to the gdbserver in the target and the port used (by default 2345).

Page 35 of 38

Fig. 38: Debug configuration including the path to locate the cross gdb tool.

Now, press Debug in Eclipse window and you can debug remotely your application.

Page 36 of 38

5 PREPARING THE LINUX VIRTUAL MACHINE.

 Download VMware Workstation Player.

The link https://www.vmware.com/support/pubs/player_pubs.html contains documentation describing the
installation and basic use of VMware Workstation Player. Follow the instructions to setup the application in
your computer.

 Installing Ubuntu 14.04 LTS as virtual machine.

The first step is to download Ubuntu 14.04 (32 bit PC-i386) from Ubuntu web site using this link:

http://releases.ubuntu.com/14.04/ . You will download an ISO image with this Linux operating System.

Run WMware player and install Ubuntu using the VMWare player instructions. Consider the following when
creating the virtual machine: you need at least 80Gbytes of hard disk space (in multiple files) and 1GByte of
RAM. The installation time will be half an hour more or less depending of your computer. Moving a virtual
machine form one computer to another is a time consuming task, therefore, take this into account to
minimize the development time.

 Installing packages for supporting Buildroot.

The annex I contains the instructions for downloading the list of packages installed in the Ubuntu 14.04 LTS
in order to run correctly Buildroot tools.

[Ubuntu version]: It is mandatory to install Ubuntu 14.04 version. 16.04 version will
generate compatibility problems.

https://www.vmware.com/support/pubs/player_pubs.html
http://releases.ubuntu.com/14.04/

Page 37 of 38

6 ANNEX I: UBUNTU 14.04 LTS PACKAGES INSTALLED.

 List of packages used by Buidlroot .

Using buildroot requires some software packages that have to be installed in the VM. These are listed in this
link http://buildroot.uclibc.org/downloads/manual/manual.html#requirement. If you need to install
software packages you can do it using the command apt-get. Another alternative process is the use of
synaptic utility. In order to use it you need to install it using this command:

$ sudo apt-get install synaptic

Once installed you can search and execute the synaptic program. When you click two times over the package
it will show all the dependent packages than would be installed.

Fig. 39: Synaptic program from Dash

http://buildroot.uclibc.org/downloads/manual/manual.html#requirement

Page 38 of 38

Fig. 40: Synaptic windows

 Typical Ubuntu virtual machine problems

6.2.1 Manually installation of VMware client tools in a Linux Virtual Machine.

Check the tag “Manually Install or Upgrade VMware Tools in a Linux Virtual Machine” in VMWare player help
file to see how to install client tools.

6.2.2 Ubuntu presents a black screen after graphical login

http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-
ubuntu.html

6.2.3 Ubuntu is using us keyboard and not Spanish one

In a terminal window change the keyboard with this command: loadkeys es

http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-ubuntu.html
http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-ubuntu.html

