Dpto. de Telematica y Electronica
Universidad Politécnica de Madrid

ETSIS.Telecomunicacion —Universidad Politécnica de Madrid

Page 1 of 38

Table of contents

1 0 S 4
1.1 DOCUMENE OVEIVIEWuuiiiiiiiienueniiiiiiiieiietaeiiiiisieeieessesssiiisrieemsssssssssisseeersssssssssssssersssssssssssssn 4
R £ Yo o T3V o -3 4

2 REFERENCED DOCUMENTSciuuiiiiiiiieeiinuniiieitraeisiueisreessrsassiesssssasssrsssssasssssssssenssssnssssassssassssansss 5
R R U= =T =T o= N 5

3 LAB1: BUILDING LINUX USING BUILDROOTcceeueeememenenmmemenmsesmsmsesesesssssssssssssssssssssssssssssssssssssssans 6
3.1 Elements needed for the execution of these LABS...........cccceeiiiiiiiiiiiiiiiiiiiiiiinnneeeeseeeeeeeeeeeeeeeeene 6
3.2 Starting the VIMIWAIE......ccuuiiiiieiiiiiiiiiciireeiniisneissnisassseiissssssiissssssissssssssesssssssesssssssesssssssannsssns 6
3.3 Configuring BUIlArOOt.ccuuuuiiiiiiiiinirnnnisiiiiiiinemssiiiniiiressssiiiremsssssiimmsssssssssssmrersss 10
3.4 Compiling buildroot.ccceueiiiiiiiiiiiiiniiiiiiirirerssssirrsesssssssssttrsessssssssssssaserane 14
3.5 BUIldroot QUEPUL......couiiiiiiiiiicrrr e rene s s renessssrenesssssensssssaenesssssenssssssennns 15
3.6 Configuring the Linux kernel parametersccccccciveiiiiiiiininneniiiiiniiinessese. 16
3.7 Booting the BeagleBonec..cieeuiieeeiiieniiieeerennirenereesiereseressersasssensessnssessssssnssessnssssnsessnssssane 17
3.8 Basic test your embedded LiNUX SYStEM ...c..cieeeiiieiiieiiiiniireenetennirenerennterenceressersnsssensesensessans 22
3.9 Understanding the boot process with u-boot in the BeagleBoneccccceeeveiriiinnnnnnniiiininnennns 23
3.10 Booting the BeagleBone USiNg @ SCrPL. ...cccceereuiieeerrenieieniereererenerenserensseressernssersnssssnsesenssesnns 24
3.11 Additional details about the configuration of BBB in U-boot.ccceereerniiiiiniinnnnnnnniiciniinnene 24
3.12 Configuring the network interface in the BBB.ccccoitiiiirmeiiiiiniiinnnseiemsseeee. 25

4 LAB2: USING INTEGRATED DEVELOPMENT ENVIRONMENT: ECLIPSE/CDTccccceereeereeeeeneeeeenenens 26
4.1 Adding cross-compiling tools to PATH variable........c.cccovuuiiiiiimiiiiiiiiiiiiicnnreecnnceeeesnennenens 26
4.2 Cross-Compiling application using ECliPSe.cccccireiiiiiiiinimnnnniiiiiniiiiieennesiisniiiieemsemsienne 26
4.3 Automatic debugging using gdb and gdbserver.coouviiiiiiiiiiini e 34

5 PREPARING THE LINUX VIRTUAL MAGCHINE.ccuuiiiiiieiiiiiieeiieessres s reas e ssan s saa s e aassnas 36
5.1 Download VIMware Workstation PIayer.ccccccceisiiiiiniininnnnnniiiiiniiinimssmsiiimmmssssenee 36
5.2 Installing Ubuntu 14.04 LTS as virtual machine..........ccooiiiiireeniiiiiniinnnnneee. 36
5.3 Installing packages for supporting Buildroot.ccccceiiiimiiiiiiniiiiiiciiiinennncnrenesesrenessessenens 36

6 ANNEX I: UBUNTU 14.04 LTS PACKAGES INSTALLED. ...c.coveuiiieiiiiniiiiireeiireesneeensaesseasseaeneanns 37
6.1 List of packages used by BUIdIrootc.cccceiiiiiiimmnniiiiiiiiinineeiiiiiimsssse. 37
6.2 Typical Ubuntu virtual machine problems.........cccccceeiiiiiiiiinrmiiiiiiinininiee, 38

6.2.1 Manually installation of VMware client tools in a Linux Virtual Machine.ccccccccevveennnen. 38
6.2.2 Ubuntu presents a black screen after graphical [08iNccoeveiiiiiiiiiieiicce e, 38
6.2.3 Ubuntu is using us keyboard and not Spanish 0Ne.........ccccccueeeiiiieiiciiee e 38

Page 2 of 38

Fig. 1: Main screen of VMware player with some VM available to be executed.
Fig. 2: Ubuntu Virtual Machine login screen.
3 Buildroot home page.
4: Downloading buildroot source code.
5: Buildroot folder (the folder name depends on the version downloaded).
6: Dash home, Terminal application

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Table of figures

O 00 00 N NO

7: Buildroot setup screen (make xconfig). The content of this windows depends on the

8: Successful compilation and installation of Buildroot

parameter selected.

10

15

9: Schematic representation of the Buildroot tool. Buildroot generates the root file system,

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:

the kernel image, the booloader and the toolchain. Figure copied from “Free
Electrons” training materials (http://free-electrons.com/training/)
images folder contains the binary files for our embedded system.

15
16

Main window for configuring the Linux kernel.

17

BBB. 18
BeagleBone Black block diagram

18

Powering BBB with USB

19

BBB serial line header terminal identification.

19

Identification of the terminals in the USB-RS232 adapter

19

Booting process for BBB.

20

BeagleBone. S2 push button

21

Putty program main window.

21

Running Linux.

22

AM335x Processor’s memory map.

23

Summary of the different configurations for developing applications for embedded
systems. Figure copied from “Free Electrons” training materials (http://free-
electrons.com/training/)

26

Cross compiling tools installed in the host computer

27

Selection of the workspace for Eclipse. Use a folder in your account.

27

Eclipse welcome window.

28

Eclipse main window.

28

Basic C project creation in Eclipse

29

Cross-compiler prefix and path window.

29

Hello world example.

30

Tool Chain Editor should be configured to use Cross GCC.

30

Cross tools locate on (path).The path shown in this figure is an example.Use always the
path of your toolchain.

31

Include search path.

31

Libraries search path.

32

Eclipse project compiled (Binaries has been generated).

33

Run test program in Raspberry Pl

34

Creating a Debug Configuration

34

Debug configuration including the path to locate the cross gdb tool.

35

Synaptic program from Dash

37

Synaptic windows

38

Page 3 of 38

1.1 Document Overview

1 SCOPE

e This document describes the basic steps to develop and embedded Linux-based system using the
BeagleBone Black (BBB). The document has been specifically written to use a BBB development
system based on the AM335x Texas Instruments Sitara processor. All the software elements used to

build the Linux distribution have a GPL license.

7

[Time to complete the tutorial]: The time necessary to complete all the steps in this
tutorial is approximately 8 hours.

Read carefully all the instructions before executing the practical part otherwise you will find errors and
probably unpredicted errors. In parallel you need to review the slides available at Moodle site or at [RD1]

1.2 Acronyms

BBB BeagleBone Black

CPU Central Processing Unit

EABI Extended Application Binary Interface

EHCI Enhanced Host Controller Interface
1/O Input and Output

MMC Multimedia card

NAND Flash memory type for fast sequential read and write
PCI Peripheral Component Interconnect — computer bus standard

PCl Express Peripheral Component Interconnect Express

(0N Operating system

UART Universal Asynchronous Receiver Transmitter
UsB Universal Serial Bus

Page 4 of 38

2 REFERENCED DOCUMENTS

2.1 References
[RD1] Embedded Linux system development.

Slides at https://moodle.upm.es/titulaciones/oficiales/course/<your course>

[RD2] Hallinan, C. Embedded Linux Primer. Second Edition. Prentice Hall. 2011.
[RD3] getting-started-with-ubuntu

[RD4] http://free-electrons.com/training/embedded-linux/

[RD5] http://elinux.org/Beagleboard:BeagleBone#Rev A6A User Guide. Reference Manual.

[RD6] http://www.uclibc.org/ uclib web site.

[RD7] http://www.gnu.org/software/binutils/ Binutils web site.

[RD8] http://elinux.org/BeagleBoardBeginners#Formatting the SD card via fdisk .22Expert m
ode.22

Page 5 of 38

https://moodle.upm.es/titulaciones/oficiales/course/%3cyour
http://files.ubuntu-manual.org/manuals/getting-started-with-ubuntu/12.04/en_US/screen/Getting%20Started%20with%20Ubuntu%2012.04.pdf
http://free-electrons.com/training/embedded-linux/
http://elinux.org/Beagleboard:BeagleBone#Rev_A6A
http://www.uclibc.org/
http://www.gnu.org/software/binutils/
http://elinux.org/BeagleBoardBeginners#Formatting_the_SD_card_via_fdisk_.22Expert_mode.22
http://elinux.org/BeagleBoardBeginners#Formatting_the_SD_card_via_fdisk_.22Expert_mode.22

3 LAB1: BUILDING LINUX USING BUILDROOT

3.1 Elements needed for the execution of these LABS.

In order to execute properly this lab you need the following elements:

1. VMware WorkStation player version 12.0 or above. Available at www.wmware.com (free download

and use). This software is already installed in the laboratory desktop computer.

2. A VMWare virtual machine with Ubuntu 14.04 and all the software packages installed is already
available in the Desktop. This virtual machine is available for your personal use at the Department
assistance office (preferred method). If you want to setup your virtual machine by yourself follow

the instructions provided in the Annex I.

3. ABBB, the accessories and USB cable are available at the laboratory.
4. Basic knowledge of Linux commands. Available at http://www.ee.surrey.ac.uk/Teaching/Unix/ UNIX

tutorial for beginners.

3.2 Starting the VMware

Start VMware player and open the Ubuntu Virtual Machine. Wait until the welcome screen is displayed (see
Fig. 1 and Fig. 2). Login as “ubuntuBuildroot” user using the password “dte.2016”. An Ubuntu tutorial is

available at Moodle site.

'En Vhware Workstation 12 Player (Non-commercial use only)

Player ~ ~ =

@ Home

E’T‘j UbuntuADA
@ Lubuntu-14.04.4-64

@ Ubuntu

UbuntuADA

State:
0s:
Version:
RAM:

Powered Off

Ubuntu

Workstation 12.0 virtual machine
1GB

¢ virtual machine

P Play

Fig. 1: Main screen of VMware player with some VM available to be executed.

Page 6 of 38

http://www.wmware.com/
http://www.ee.surrey.ac.uk/Teaching/Unix/

ubuntu® 14.04 TS

Fig. 2: Ubuntu Virtual Machine login screen.

Open the Firefox web browser and download from https://buildroot.org/ the version identified as
buidlroot2016-05 (use the download link, see Fig. 3, and navigate searching for a specific release,
https://buildroot.org/downloads/). Save the file to the Documents folder in your account (Fig. 4).

Buildroot % News @l Documentation @ Support @ Contribute $ Sponsors

Buildroot
Making Embedded Linux Easy

© LEARN MORE & DOWNLOAD

Buildroot is a simple, efficient and
easy-to-use tool to generate embedded
Linux systems through cross-compilation.

» O

Fig. 3 Buildroot home page.

Buildroot is a tool to generate embedded Linux systems in our PC and then this Linux will be installed in the
target.

Page 7 of 38

https://buildroot.org/
https://buildroot.org/downloads/

_{gix|
b Indes of fdownloads x

@ (@ htps:fbuildrock.orgjdownlnads

E1 ¢ ||O\beagleboneblack -)| ﬂ' E H ‘4 =

@ IMost Yisited 0 Getting Started |5 Latest Headlines @ Mew Tab 1. WEBMAIL - LPM @ IPC_Overview-LCA-2.. &,-) Wiebmail ELITT/UPM (... |5 CODAC Repo - fiterfc...

[2] buildroot-2016.02-rc3, tar. gz, siqn

buildroot-2016.02, tar.hed

buildroot-2016.

0Z.tar.

bz2.zigm

buildroot-2016.

0Z. tar.

gz

buildroot-2016.

0Z. tar.

gz.sigm

buildroot-2016.

05-rcl.

tar.bzZ

buildroot-2016.

O5-rcl.

tar.hz2.sign

buildroot-2016.

O5-recl.

tar. gz

buildroot-2016.

05-rcl.

Lar.gz.3igm

buildroot-2016.

05-rca.

tar.bzZ

buildroot-2016.

05-rca.

tar.bza.sigm

buildroot-2016.

05-rca.

LAY, gz

buildroot-2016.

O05-rca.

tar.gz. sigm

buildroot-2016.

05-rc3.

tar.bzZ

buildroot-2016.

05-rc3.

tar.bza.sigm

buildroot-2016.

05-rc3.

LAY, gz

buildroot-2016.

05-rc3.

tar.gz.s3ign

buildroot-2016.

05.tar.

buildroot-2016.

05. tar.

05. tar.

gz

buildroot-2016.

buildroot-2016.

05. tar.

gz.sigm

0le-02-27

1]

Sdd

2016-03-01 20:54 4,58

FN1E_N2_N1_ 7N

Dpening buildroot-2016.05.tar.gz ﬂ

‘fou have chosen ko open:

IE buildroot-2016.05.tar.gz

. CaA

cac

which is: archivo WinRAR (5.4 MB)

From: https:}{buildroot

What should Firefiox do with this File?

.org

% Open with:

{~ Save File

™ Do this automatically For files like this From now on.

| wirkaR. (default)

Cancel_|

2016-05-26 Z1:
2016-05-26 Z1:
2016-05-31 21:
2016-05-31 Z1:
2016-05-31 Z1:
2016-05-31 Z1:

41
41
57
57
57
57

5.4
544
4.7
535
5.4
532

K

Fig. 4: Downloading buildroot source code.

Copy the file to the “Documents” folder and decompress the file (Fig. 5).

Documents

f Home Documents

Right click in the window and execute “Open in Termina

Places
© Recent
™ Home
[Desktop

Devices

Network

< Downloads
dd Music
A Pictures
H videos
1 Trash

[computer

o2 Browse Network

B connect to Server

e

buildroot-2016.05

“buildroot-2016.05.tar.gz” selected (5.7 MB)

Fig. 5: Buildroot folder (the folder name depends on the version downloaded).

III

or execute from Dash home the Terminal

application as is shown in the Fig. 6 (if “Open in Terminal” is not available, search how to install it in Ubuntu).

Page 8 of 38

® 1y @) %12AM Rrpi %

® [q

H Eii RecentApps see3moreresults »
| o
4

e Q2 QK » @ =

Terminal Users and User Accounts Thunderbird Movie Player
Groups i

4

- REDS | |

Fig. 6: Dash home, Terminal application

In some seconds a command window is displayed. Then, execute these commands:

xxx@ubuntu:~/Documents$ cd buildroot-2016.05
xxx@ubuntu:~/Documents/buildroot-2016.05$ make xconfig {or make menuconfig}

[Help]: You can use either “make xconfig” or “make menuconfig”. If “make xconfig”
returns an error try “make menuconfig”

[Help]: In Linux “TAB” key helps you to autocomplete de commands, folders and files
names. You can find a description of “make” application in this link
https://www.gnu.org/software/make/manual/make.pdf

In some seconds you will see a new window with a content similar to Fig. 7.

Page 9 of 38

Buildroot 2016.05 Configuration

o & | IlE

Option

=-Build options
Commands
Mirrors and Download locations
Advanced

Toolchain

| &-System configuration

HRun a getty (login prompt) after boot (NEW)
Kernel

: =-Target packages

=-Audio and video applications
Dalsa-utils (NEW)
~Offmpeg (NEW)
Compressors and decompressors
Debugging, profiling and benchmark
Development tools
~Filesystem and flash utilities
Fonts, cursors, icons, sounds and themes
Games
~Graphic libraries and applications (graphic/text)
Hardware handling
Firmware
OFreescale i.MX libraries (NEW)
~Interpreter languages and scripting
Libraries
=-Audio/Sound
Dalsa-lib (NEW)
~Compression and decompression

Option
& Target Architecture
=-Target Binary Format (NEwW)
@ELF (NEW)
+ Target Architecture Variant (NEW)
+OEnable VFP extension support (NEW)
=-Target ABI (NEW)
! L@EABI (NEW)
=-Floating point strategy (NEW)
@Soft float (NEW)
=-ARM instruction set (NEW)
@ARM (NEW)
]

Thumb (BR2_ARM_INSTRUCTIONS_THUMB)
BR2_ARM_INSTRUCTIONS_THUMB:

This option instructions the compiler to generate Thumb
instructions, which allows to mix 16 bits instructions and
32 bits instructions. This generally provides a much smaller
compiled binary size.

Symbol: BR2_ARM_INSTRUCTIONS_THUMB [=n]

Crypto Type : boolean
Database Prompt: Thumb
~Filesystem Lo;atlont: :
i -> Target options
GrapHcs i -> ARM instruction set (<choice> [=y])
Hardwa're handling Defined at arch/Config.in.arm:410
---Javascript Depends on: <choice> && BR2_ARM_CPU_HAS_THUMB [=y] && BR2_ARM_SOFT_FLOAT [=y]
Oangularjs (NEw)
- JSON/XML - =

Fig. 7: Buildroot setup screen (make xconfig). The content of this windows depends on the parameter selected.
3.3 Configuring Buildroot.

Once Buildroot configuration is started, it is necessary to configure the different items. You need to navigate
through the different menus and select the elements to install. Table | contains the specific configuration of
Buildroot for installing it in the BeagleBone Black. Depending on the version downloaded the organization
and the items displayed can be different.

[Help]: The Buildroot configuration is an iterative process. In order to set up your
embedded Linux system probably you will need to execute the configuration several

times.
Table I: Parameters for Buildroot configuration
Main Item Subitem Value Comments
Target options | Target Architecture ARM (little endian)
Target Architecture | Cortex-A8
Variant
Target ABI EABIhf An embedded-application
binary interface (EABI)
specifies standard
conventions for file formats,
data types, register usage,
stack frame organization, and
function parameter passing of
an embedded software
program.
Floating point | VFPv3-D16
strategy
ARM instruction Set | ARM

Page 10 of 38

Main Item Subitem Value Comments
Build options Default values How Buildroot will built the
code. Leave default values.
Toolchain Cross Compiler, linker,
libraries to be built to compile
our embedded application
Toolchain Type Buildroot toolchain Embedded system will be
compiled with tools
integrated in Buildroot
Kernel Headers Same as kernel Source header files of the
Linux Kernel. Navigate to
kernel option and select it.
The option is now displayed.
Custom kernel | 3.12.x
headers series
Clibrary uClibc
uClib configuration | package/uclibc/uClibc-ng.config
file to use?
Enable WCHAR | Yes Support for extender set of
support chars.
Thread library | Native POSIX Threading (NTPL)
implementation
Thread library | Yes Embedded system will have
debugging debugeable threads,
Compile and install | Yes
uClibC utilities
Binutils Version binutils 2.25.1 Binutils contains tools to
manage the binary files
obtained in the compilation of
the different applications
GCC compiler | gcc 4.9.x GCC tools version to be
Version installed
Enable C++ support | Yes Including support for C++
programming, compiling, and
linking.
Enable compiler tls | Yes Enable code generation for
support Thread Local Storage
Build cross gdb for | GDB Debugger Version, gdb 7.9.x Includes the support for GDB.
the host GCC debugger.
Enable MMU support | Yes Mandatory if building a Linux
system
System
Configuration
System Hostname beaglebone Name of the embedded
system
System Banner Linux BBB Master MISSSI Banner

Page 11 of 38

Main Item Subitem Value Comments

Passwords encoding | md5

Init System BusyBox

/dev management Dynamic using devtmpfs only

Path to permissions | system/device_table.txt Text files with permissions for

table /dev files

Root FS skeleton Default target skeleton Linux folder organization for
the embedded system

Enable root login | Root passwd: ada

with password

/bin/sh busybox

Remount root | yes

filesystem...

Network Interface to | ethO

configure through

DHCP

Path to user tables /home/<user>/ut/test This file contains the list of
user to be created in the
embedded Linux system. Use
this link to understand how to
complete the file
https://buildroot.org/downlo
ads/manual/manual.html#ma
keuser-syntax

Custom Scripts to run | board/beaglebone/post-image.sh This script is executed after
buildroot has finished all the
job. Inspect this Shell script to
see an example.

Run a getty: Port to | /dev/ttyO0 Linux device file with the port

run a getty to run getty (login) process.
Uses ttyOO for serial port

Baud rate to use Keep kernel default

TERM environment | Vt100

variable

Linux Kernel

Kernel version

Custom Git Repository

URL of custom | git://git.ti.com/ti-linux-kernel/ti-
repository linux.git

Custom repository | 7f280334068b7c¢875ade51f8f3921ab31
version 1f0c824

Custom kernel | board/beaglebone/patches/linux
patches

Kernel configuration

Using a custom (def)config file

Configuration file
path

board/beaglebone/linux-3.12.config

Kernel binary format

zlmage

Page 12 of 38

https://buildroot.org/downloads/manual/manual.html#makeuser-syntax
https://buildroot.org/downloads/manual/manual.html#makeuser-syntax
https://buildroot.org/downloads/manual/manual.html#makeuser-syntax

Main Item Subitem Value Comments
Kernel compression | gzip
format
Build Device Tree | Use a device tree present in the kernel
Blob
Device Tree Source | am335x-bone am335x-boneblack Device tree source filenames
Filenames
Linux Kernel | Nothing
Extensions
Linux kernel tools Nothing
Target
Packages

BusyBox
configuration file to
use

package/busybox/busybox.config

Audio and video
applications

Default values

Compresssors and
decompressors

Default values

Debugging, profiling
and benchmark

Gdb, gdbserver

Developments tools

Default values

Filesystem and flash
utilities

Default values

Games

Default values

Graphic libraries and
applications
(graphic/text)

Default values

Hardware handling

Firmware->am33x-cm3

Interpreters Default values
language and

scripting

Libraries Default
Mail Default
Miscellaneous Default
Networking openssh
applications

Package managers Default
Real Time

Shell and utilities

System Tools

Text Editors and

viewers

Real-Time Default
Security Default
Shell and utilities Default
System tools Default

Page 13 of 38

Main Item Subitem Value Comments
Text editors and | Default
viewers
Filesystem
Images
ext2/3/4 root | ext2 (rev0)
filesystem Compression method no compression
Bootloaders
U-Boot Build system: Legacy You need to provide in the “U-

U-Boot board name: am335x_evm
U-Boot Version: 2016.03
U-Boot binary format: u-boot.img

Install U-Boot SPL binary image name:

”M LOII

boot SPL binary image name”
the name of the file to be

generated. In this case
IIIVILOH

is

Host utilities

host u-boot tools ??
host omap-ti-boot-
utils??

Yes

Legacy config
options

Default values

Once you have configured all the menus you need to exit saving the values (File->Quit).

have a backup of this file.

9 [Help]: The Buildroot configuration is stored in a file named as “.config”. You should

Empezamos a las 11:40

3.4 Compiling buildroot.

In the Terminal Window executes the following command:

xxx@ubuntu:~/Documents/buildroot-2016.05$ make

If everything is correct you will see a final window similar to the represented in Fig. 8.

different repositories. After downloading the code, Buildroot is going to compile the

0 [Time for this step]: In this step buildroot is going to connect, using the internet, to

applications and generates a lot files and folders. Depending of your internet speed
access and the configuration chosen this step could take up to two hour and half. The
download of kernel source code from Tl is very slowly.

Warning. If you have errors in the configuration of buildroot you could obtain errors in
this compilation phase. Check correctly your configuration. Use “make clean” to clean
up your partial compilation.

Page 14 of 38

Warning. dl subfolder in your buildroot folder contains all the packages download for
the internet. If you want to move your buildroot configuration from one computer to
another avoiding the copy of the virtual machine you can copy this folder.

adastudent@ubuntu: ~/Documents/buildroot-2016.05
adastudent@ubuntu: ~/Documents/buildroot-... x | adastudent@ubuntu: ~/Documents/buildroot-... X

ot-2016.05/output/build/_fakeroot.fs

chmod a+x /home/adastudent/Documents/buildroot-2016.05/output/build/_fakeroot.fs
PATH="/home /adastudent/Documents/buildroot-2016.05/output/host/bin: /home/adastud
ent/Documents/buildroot-2016.05/output/host/sbin: /home/adastudent/Documents/buil
droot-2016.05/output/host/usr/bin: /home/adastudent/Documents/buildroot-2016.065/0
utput/host/usr/sbin: /usr/local/sbin: /usr/local/bin: /usr/sbin:/usr/bin:/sbin:/bin
:/usr/games: /usr/local/games" /home/adastudent/Documents/buildroot-2016.05/outpu
t/host/usr/bin/fakeroot -- /home/adastudent/Documents/buildroot-2016.05/output/b
uild/_fakeroot.fs
rootdir=/home/adastudent/Documents/buildroot-2016.05/output/target
table="'/home/adastudent/Documents/buildroot-2016.05/output/build/_device_table.t
xt'

tune2fs 1.42.13 (17-May-2015)

mke2img: e2fsck was successfully run on '/home/adastudent/Documents/buildroot-20
16.05/output/images/rootfs.ext2' (ext2)

tune2fs 1.42.13 (17-May-2015)

Setting maximal mount count to -1

Setting interval between checks to @ seconds

Jusr/bin/install -m 0644 support/misc/target-dir-warning.txt /home/adastudent/Do

Executing
adastudent@ubuntu:~/Documents/buildroot-2016.05$

Fig. 8: Successful compilation and installation of Buildroot

Buildroot has generated some folders with different files and subfolders containing the tools for generating
your Embedded Linux System. Next paragraph explains the main outputs obtained,

3.5 Buildroot Output.

The main output files of the execution of the previous steps can be located at the folder “./output/images”.
Fig. 9 summarizes the use of Buildroot. Buildroot generates a boot loader, a kernel image, and a file system.

» root filesystem
Image
Open-source components Buildroot
{from http, ftp, git, svn, etc.) o
Makefiles Config.in = kerne| image
ouild configuration
— procedures options
wl bootloader
canfig image(s)
|n-house components .
tiramibittp; o gl v, oke.) your configuration
> toclchain

Fig. 9: Schematic representation of the Buildroot tool. Buildroot generates the root file system, the kernel image,
the booloader and the toolchain. Figure copied from “Free Electrons” training materials (http://free-
electrons.com/training/)

In our specific case the folder content is shown in Fig. 10

Page 15 of 38

http://free-electrons.com/training/
http://free-electrons.com/training/

M Home Documents buildroot-2016.05 | output images

Places
© Recent o w : i
™ Home am335x-bone.dtb am335x-boneblack. MLO rootfs.ext2
[Desktop
[bocuments bootd
< Downloads —
dd Music
I3 Pictures
H videos
i Trash

u-boot.img uEnw.bxt zlmage

Devices
Computer
Network
@2 Browse Network
B Connect to Server

Fig. 10: images folder contains the binary files for our embedded system.

The file MLO is the X-Loader. The u-boot.img file contains the u-boot binary for booting your Linux. Linux
image is zImage. The files with dtb extension are the device tree in binary form used by Linux in the booting
phase to discover the hardware available in the BeagleBone. The file rootfs.ext2 contains all the files of the
file system of your embedded Linux. In order to boot the BBB from a SD card firstly you need to format it
adequately, follow the instructions included in [RD8]. All files (Fig. 10) with the exception of the rootfs.ext2
must be copied to the SD card FAT32 partition for booting BBB. It is mandatory to copy first the MLO file.
Copy the content of rootfs.ext2 to Linux partition using the dd command as follow:

xxxQ@ubuntu:~/Documents$ cd buildroot-2016.05/output/images
xxx@ubuntu:~/Documents/output/images $ sudo dd if=rootfs.ext2 of=/dev/sd<n>2

Please use “dmesg” Linux command to find out the device assigned to your SD card. Use “eject” of Ubuntu (

A

===) to unmount the SD Card, this is similar to eject an USB disk in Windows. Insert again the SD card in the
computer and verify that the files are correctly copied.

3.6 Configuring the Linux kernel parameters

In all the Linux embedded applications it is necessary to set up the kernel in order to support the different
physical devices and user space applications. All kernel sources provide a basic configuration for specific
hardware platforms. If you are using a commercial hardware platform probably you will find a kernel
configuration suitable for you, if not you will need to define it. This is a hard task but you will find hundreds
of examples in the Internet. Linux kernel has a directory with predefined hardware configurations. The
relative path is this: “.[<your buildroot installation path>/output/build/linux-
<xxxxxxxxx>/arch/arm/configs”. Have a look to this folder and you will find plenty of text files with a
defconfig suffix containing the kernel parameter configuration of a specific hardware.

If you want to modify the kernel configuration from a Buidlroot folder execute this command (Fig. 11):

rpi@ubuntu:~/Documents/buildroot-2016.05$ make linux-menuconfig

Page 16 of 38

You can navigate in this application using the arrows. Inspect the configuration of the kernel. If you add or
remove features, save them and compile again buildroot using make command. This will generate new
images that must be copied to SD card.

.config - Linux/arm 3.12.10 Kernel Configuration

Linux/arm 3.12.10 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

| |l _General setup --->|

[*] Enable loadable module support --->
[*] Enable the block layer --->

system Type --->

Bus support --->

Kernel Features --->

Boot options --->

CPU Power Management --->

Floating point emulation --->

Userspace binary formats --->

< Exit > < Help > < Save > < Load >

Fig. 11: Main window for configuring the Linux kernel.

step has been included here in order to understand how to proceed whether you need

0 [Info]: We do not need to apply changes in the default kernel configuration for BBB. This
to tune your kernel

3.7 Booting the BeagleBone.

Fig. 12 displays a BeagleBone Black. The description of this card, their functionalities, interfaces and
connectors are explained in the ref [RD5]. The basic connection requires:
a) To connect the USB to RS232 adapter (provided) to the BBB serial line header (see Fig. 15 and Fig.
16). This adapter will be provide the serial line interface to be used as console in the Linux operating
system.

in your virtual machine you need to connect it selecting un VMWare Player the option

0 [Connecting the USB serial interface in the VM]: In order to connect the serial interface
Player->Removable Devices->Future Devices TTL 232R 3V3->Connect

b) To connect the power supply provided to the jack identified as 5v or using a USB cable.

Page 17 of 38

23

.R\i
00

I 2=
s
jaulayy

20 020:
0 oon a0 0005

Fig. 12: BBB.

EXPANSION

USBHOST

TPS65217C

Fig. 13: BeagleBone Black block diagram

Page 18 of 38

Fig. 14: Powering BBB with USB

Fig. 15: BBB serial line header terminal identification.

6 pin header
VCC

0.1in pitch
GND 1 ! BLACK
§|E BROWN

CABLE 1.8m RED

Fig. 16: Identification of the terminals in the USB-RS232 adapter

Page 19 of 38

The booting process of the BBB with its AM335x processor is depicted in Fig. 17. By default, the ROM in the
Sitara AM335x will boot from the MMC1 interface first (the onboard eMMC), followed by MMCO (MicroSD),
UARTO and USBO. If the boot switch (S2) is held down during power-up, the processor starts running the ROM
code and boots from the SPIO Interface first, followed by MMCO, USBO and UARTO. This allows the
BeagleBone Black to bypass the on-board eMMC and boot from the removable uSD (provided no valid boot
device is found on SPI0).

Open the putty application in the Linux host (execute “sudo putty” in a Linux terminal) and open a session to
the serial line (use /dev/ttyUSBO with 115200 baud rate). Apply the power supply pressing S2 button (Fig. 18)
and releasing it after (for instance) one second, the BeagleBone will boot from SD card.

FIRST STAGE
AM335x ROM code

@OWER ON | | Basic peripheral

configuration
Searches for booting
devices
| oad x-loader into SRAM

SECOND STAGE
Secondary Program Loader
X-loader
Setup pin mux
Clock initialization. Memory configuration
Loads u-boot inti SDRAM

FOUR STAGE
Linux Kernel boot

Fig. 17: Booting process for BBB.

Page 20 of 38

1513BBBK 0001

ernegt
e Nty
=
sC

ey
o

A -—J '“nnm!;

LELEi e

Ty

P ELLE AL U
b £l e e
fat s

e
e o

1Aa33

> -

; TERbeepfebene . £

-ErLO MmO >

LRLIE
i} 4.5

microSD Card

Fig. 18: BeagleBone. S2 push button

PUTTY SSH Client ERes 3ty @) 1:02PM RISE %
@ PuTTY Configuration
@ ise@ubuntu:~$S sudo putty . .
S| b e Category: Basic options for your PUTTY session
v Session Specify the destination you want to connect to
Logging Serial line Speed
— v Terminal /dev/ttyusBo 115200
S ; Keyboard Connection type:
| Bell) Raw Telnet O Rlogin () SSH @ Serial
Features Load, save or delete a stored session
¥ Window Saved Sessions
Appearance
Behaviour
Translation
|

Default Settings Load

beagleUsBo
Save

Selection
| Colodrs Delete
Fonts

H ¥ Connection

Data

Froxy Close window on exit:
Telnet @ Always () Never ") only on clean exit
Rlogin

g |
m L

About Open || Cancel |

Fig. 19: Putty program main window.

Page 21 of 38

typically with the names /dev/ttyS0, /dev/ttyS1, etc. In the figure the example has been
checked with a serial port implemented with an USB-RS232 converter. This is the reason
of why the name is /dev/ttyUSBO. In your computer you need to find the identification
of your serial port. Use Linux dmesg command to do this.

0 [Serial interface identification in Linux]: In Linux the serial devices are identified

After some seconds you will see a lot messages displaying in the terminal. Linux kernel is booting and the
operating system is running their configuration and initial daemons. If the system boots correctly you will see
an output like the represented in Fig. 20. Introduce the user name root and the Linux shell will be available
for you.

@S @ [devfttyUSBO - PuTTY)

1omdio:
1omdio?

Welcome to Buildroot
buildroot loging I

Fig. 20: Running Linux.
3.8 Basic test your embedded Linux System

Your embedded Linux system is running in the Beaglebone, execute the following commands and analyse the
output information.

Sdmesg
Suname -r
Sifconfig

Sps —ax

Answer the following questions:
a) Which are the kernel parameters used to boot the system? Explain the meaning of them.
b) What IP address has been assigned to BBB? Who is providing tis IP?
¢) How many processes are running in the Linux OS?

Page 22 of 38

d) Which devices have been detected in the system boot?
e) Try to access to BBB using putty with a ssh connection. First try to access with root account and later
with another account. What happens? Find a possible solution to this.

3.9 Understanding the boot process with u-boot in the BeagleBone

The Texas Instruments am335x processor (based on an ARM cortex-A8) has a memory area for SDRAM
available in the range 0x80000000-0xC0000000. In this memory area we are going to load using u-boot two
basic elements: the kernel and the device-tree. The starting address for the kernel is 0x80200000 and for the
device tree 0x80F80000.

Table 2-1. L3 Memory Map (continued)

Block Name Start_address (hex) End_address (hex) Size Description
SGX530 0x5600_0000 0x56FF_FFFF 16MB SGX530 Slave Port
Reserved 0x5700_0000 0x57FF_FFFF 16MB Reserved
Reserved 0x5800_0000 0x58FF_FFFF 16MB Reserved
Reserved 0x5900_0000 0x59FF_FFFF 16MB Reserved
Reserved 0x5A00_0000 0x5AFF_FFFF 16MB Reserved
Reserved 0x5B00_0000 0x5BFF_FFFF 16MB Reserved
Reserved 0x5C00_0000 0x5DFF_FFFF 32MB Reserved
Reserved 0x5E00_0000 0x5FFF_FFFF 32MB Reserved
Reserved 0x6000_0000 0x7FFF_FFFF 512MB Reserved

EMIFO SDRAM 0x8000_0000 0xBFFF_FFFF 1GB 8-/16-bit External Memory
(Ex/IRIW)@
Reserved 0xC000_0000 OxFFFF_FFFF 1GB Reserved

Fig. 21: AM335x Processor’s memory map.

When we perform the reset in the BBB pressing the S2 button the first stage bootloader, boot ROM inside
the AM335x) will search for the MLO (secondary bootloader) and u-boot (tertiary) loaders in the SD card.
The u-boot binary performs the following actions:

a) Once U-boot performs the basic initialization it is waiting for a user keystroke a specific time in
seconds. This time is controlled with a u-boot environment variable named bootdelay (typically 3
seconds).

b) If this timeout is reached U-boot firstly searches for a binary script named “boot.scr.uimg”. If this
scripts ends without executing the Linux kernel, u-boot will search a “uEnv.txt” file, with user defined
variables, in the SD card. If these file doesn’t run the Linux kernel, u-boot will execute the content of
“bootcmd” environment variable. Typically embedded Linux systems uses the “boot.scr.uimg” script
to boot using a sequence defined by the developer. This file has a binary content and is obtained
using a text file (for instance called boot.scr) with the mkimage tool. This tool is part of u-boot
software.

[Comment] uEnv.txt allows pre-setting of the U-Boot environment variable
values, prior to running bootcmd. boot.scr allows running of a U-Boot script
file, prior to running bootcmd.

tutorial we are using the official repository of DENX Software Engineering
(git://git.denx.de/u-boot.git). You can also find u-boot in other internet sites. In
particular Texas Instruments, the manufacture of the AM335x processor provides

o [Info] u-boot source code can be found in different internet repositories. In this

Page 23 of 38

a site with the u-boot code for the TI processors. This link is “git:/git.ti.com/ti-u-
boot/ti-u-boot.git”. For sure that if you compare the code you will see small
differences between them. Be aware of this.

The embedded Linux system developed in this tutorial uses the content of “uEnv.txt” file in the boot process.
This file has been copied to FAT32 partition in the SD card. Remove it and power on the BBB pressing the S2
button and releasing it after some seconds. During u-boot boot process you will see a message inviting you
to press a key to interrupt the u-boot sequence. Press a key to get the u-boot prompt and execute the
following commands (Explain the meaning of the different u-boot commands). The bootz command will
launch the execution of the zlmage loaded in the BBB DRAM memory.

mmc rescan

setenv bootargs console=tty00,115200n8 root=/dev/mmcblkOp2 rw rootfstype=ext2 rootwait
fatload mmc 0 0x80F80000 am335x-boneblack.dtb

fatload mmc 0 0x80007fcO =zImage

bootz 0x80007fc0 - 0x80F80000

Of course booting in this way, manually, is not very interesting for functional embedded system. In the next
point we are going to develop a script automating this boot process.

3.10 Booting the BeagleBone using a script.

The previous aforementioned step for starting up the Linux can be simplified a little bit using a u-boot script.
If you create a text file with the u-boot commands listed previously you obtain a binary script using the
following command in an Ubuntu Linux command terminal:

mkimage -A arm -0 linux -T script -C none -a 0 -e 0 -n "BBB" -d boot_mmc.txt boot.scr.uimg

Copy the “boot.scr.uimg” file into the SD card and reboot the BBB. Now the BBB is booting automatically
without the need of user intervention.

3.11 Additional details about the configuration of BBB in u-boot.

The configuration of the BBB in u-boot is available in the following files listed in Table 2.

Table 2: Main files in u-boot with the configuration for BBB hardware based on Am335x processor.

File Objective
<u-boot>/include/configs/am335x_evm.h Definition of the different constants
and environment variables of u-boot
for AM335x-based hardware. In this file
the default addresses to store kernel,
device tree and filesystem are defined.
<u-boot>/board/ti/am335x Folder with source files containing the
code to initialize and manage the
AM335x processor and the board
resources.
<uboot>/configs/am335x_evm_defconfig Default u-boot configuration for BBB

Page 24 of 38

3.12 Configuring the network interface in the BBB.

The configuration generated by buildroot for the BBB’s network interface (eth0) is DHCP. This means that in
Linux initialization the “init” process is launching an application working as DHCP client. Execute the
commands ifconfig and ps to see the network configuration and the processes running in the BBB. You can
test if the network is working using the ping command. Use the ping command with a known address. For
instance, the address of one computer in the lab.

2

[Help]: If you execute the ping command in the BBB trying to connect with a computer
in the laboratory probably you obtain a connection timeout. Consider that computers
running windows could have the firewall activated. You can also try to run the pingin a
windows computer or in Linux virtual machine. In this case the BBB doesn’t have a
firewall running and the connection should be ok.

o [Question] What is the MAC address of your BBB?

2

[DHCP Server]: The DHCP server providing the IP address to the BBB should be active in
your network. In the UPM ETSIST labs the IP is assigned using the BBB’s MAC address.
Check with your instructor the IP assigned to your RPI. If you are using the RPI at home,
the DNS server is running in your router. The method used by this should be different
from one manufactures to others. If you want to know the IP address assigned you have
two options: use a serial cable connected to the RPI or check the router status web page
and display the table of the DHCP clients connected. Looking for the MAC in the list you
will obtain the IP.

Page 25 of 38

4 LAB2: USING INTEGRATED DEVELOPMENT
ENVIRONMENT: ECLIPSE/CDT

4.1 Adding cross-compiling tools to PATH variable.

Using a text editor, edit the .profile file (available at your home directory). Add a line at the end of the file
containing: PATH="<your buildroot installation>/output/host/usr/bin:SPATH". This add to the PATH
environment variable the location of the cross-compiling tools. You must logout and login again.

4.2 Cross-Compiling application using Eclipse.

How a program will be compiled? Remember that we are developing cross applications. We are developing
and compiling the code in a Linux x86 machine and we are executing it in an ARM architecture (see Fig. 22).

Build Host Target Build Host Target
Native build Cross build

used o build the narmal goc used ta build a toslchain that runs

ol & workstation af yaur warkstaltion bul ganeraleas

tinaries for the target

The measl cafmimon case in embedded developmant
Build Host Target Build Host Target
Cross-native build Canadian build
usad to bulld a teolchain thak runs en yoeur used to bulld en architecture A a
target and generates binaries for the target toolchain that runs on architectura B

and genarates binaries for architectures O

Fig. 22: Summary of the different configurations for developing applications for embedded systems. Figure
copied from “Free Electrons” training materials (http://free-electrons.com/training/)

The first question is where the cross-compiler is located. The answer is this: in the folder “buildroot-
2016.05/output/host/usr/bin”. If you inspect the content of this folder you can see the entire compiling,

linking and debugging tool (see Fig. 23). These programs are executed in your x86 computer but they
generate code for ARM processor.

Page 26 of 38

http://free-electrons.com/training/

™ Home Documents buildroot-2016.05 output host usr bin

o @ Q Q <,}

 Home arm-buildrootlinux- arm-buildrootlinux- arm-buildrootlinux- arm-buildrootlinux-
uclibegnueabihf- uclibcgnueabihf-ar uclibcgnueabihfas uclibcgnueabihf-c++
(I Desktop addrzline

[Documents

P s @ & @
A

dd Music arm-buildroot-linux- arm-buildroot-linux- arm-buildroot-linux- arm-buildroot-linux-

I3 Pictures uclibcgnueabihf-c+ uclibegnueabihfcc uclibegnueabihf-cc. uclibegnueabihf-c+
. +.br_real br_real +File

H videos - -

i Trash <> @ <> <>
o e
Devices N A
arm-buildroot-linux- arm-buildroot-linux- arm-buildroot-linux- arm-buildroot-linux-

(8 computer uclibcgnueabihf-cpp uclibcgnueabihf- uclibcgnueabihf- uclibcgnueabihf-g++
Network cpp.br_real elfedit

@2 Browse Network @ O <> G
" o
B connect to Server A A
arm-buildroot-linux- arm-buildroot-linux- arm-buildrootlinux- arm-buildrootlinux-

uclibcgnueabihf-g+ uclibcgnueabihf-gce uclibegnueabihf-gee. uclibegnueabihf-gee-
+.br_real br_real 4.9.3

4 4 4 4

R T T R TR R ST T JRPR TI SR ST TN PR S TIR R WP I JRPR TI

Fig. 23: Cross compiling tools installed in the host computer

In a Terminal window start Eclipse with the following command:

xxxx@ubuntu:~$ eclipse

The popup window invites you to enter the workspace (see Fig. 24). The workspace is the folder that will
contain all the eclipse projects created by the user. You can have as many workspaces as you want. Please
specify a folder in your account.

[Help]: The figures displayed in the following paragraphs can be different depending on
the Eclipse version installed.

Workspace Launcher

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace Folder ko use For this session.

Workspace: [home/adastudent/Documents v Browse...

[] Use this as the default and do not ask again

Cancel OK

Fig. 24: Selection of the workspace for Eclipse. Use a folder in your account.

Page 27 of 38

Select Ok and the welcome window of Eclipse will be shown (Fig. 25). Next, close the welcome window and
the main eclipse window will be displayed (Fig. 26).

Resource - Eclipse Platform

File Edit Navigate Search Project Run Window Help

% Welcome £2 i A =g

[&4
Workbench

Welcome to Eclipse

("-)"\ Overview Tutorials
) Get an overview of the features BN Go through tutorials
4, Samples A What's New
4 = >
Try out the samples ™/ Find out what is new

Fig. 25: Eclipse welcome window.

Resource - Eclipse Platform

File Edit Navigate Search Project Run Window Help

qv Qv | £~ & | [(5Resource:
L1 Project Explorer 2 =0 =0
B & v

5= outline =8 N

An outline is not available.
& Tasks B ¥ =8
Oitems
v ! Description Resource Path Location

0% Oitems selected

Fig. 26: Eclipse main window.

Create an Eclipse C/C++ project (File->New->Project->C/C++project->C project) selecting the hello world

example (see Fig. 27). Specify the project name and the toolchain to be used. In this case a Cross GCC. Press
Next.

Page 28 of 38

™ C Project

C Project —

Project name must be specified |

Project name:

& Use default location

w
o

wse

Project type: Toolchains:
¥ = Executable Cross GCC
® Emply Project Linux GCC

> Hello world ANSI C Project
¥ = Shared Library
* = Static Library
> = Makefile project

& Show project types and toolchains only if they are supported on the platform

®@

m
=]
n

Nexkt > Cancel Finish

Fig. 27: Basic C project creation in Eclipse

There is a window (Fig. 28) requesting the Cross Compiler prefix and path, leave both inputs blank and click
on the Finish button. You will obtain your first project created with eclipse.

C Project

Cross GCC Command —>
Configure the Cross GCC path and prefix [
Cross compiler prefix:
Cross compiler path: i Browse...
@ Cancel Finish
1

Fig. 28: Cross-compiler prefix and path window.

Page 29 of 38

File Edit Source Refactor

C/C++ - test/src/ftest.c - Eclipse Platform

Navigate Search Projed Run Window

Civ & @ @y ey [fy @v | &~ By | By O~ Q- T |FRC/C++ »
Y~ Fle
[Project Explorer &2 =0 [4 test.c & =B|Fouxn @Ma =0
=% |V AR e kT
[X=% Name 1 test.c W stdio.h
Author = stdlib.h
Version o
Copyright : Your copyright notice e main(void): int
Description : Hello World in C, Ansi-style
*)
#include <stdio.h>
#include <stdlib.h>
int main(void) {
puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */
return EXIT_SUCCESS;
}
v
[£f Problems 52 ™. & Tasks & console| B Properties v =0
0items
Description Resource Path Location Type
D
n® writable SmartInsert 1:1

Fig. 29: Hello world example.

The next step (mandatory) is the Eclipse project configuration for managing the Cross-tools. In Project ->
Properties configure the C/C++ Build Setting as the Fig. 30 and Fig. 31 shown. Pay attention that Prefix
requires a string ending in a hyphen.

@ Properties for test X

@ Tool Chain Editor

> Resource
Builders
¥ C/C++Build
Build Variables
Discovery Options
Environment
Logging
Settings
¥ C/C++ General
» Code Analysis
Code Style
Documentation
File Types
Indexer
Language Mappings
Paths and Symbols
Project References
Run/Debug Settings

Configuration: | Debug [Active]

e <

Manage Configurations... |

Display compatible toolchains only

Current toolchain: | Cross GCC

Current builder: | Gnu Make Builder

Used tools

Cross GCC Compiler
Cross G++ Compiler
Cross GCC Linker
Cross G++ Linker
Cross GCC Archiver
Cross GCC Assembler

| Select Tools... |
| Restore Defaults| | Apply
{ OK I | cancel

Fig. 30: Tool Chain Editor should be configured to use Cross GCC.

Page 30 of 38

Propertie

@ Settings

* Resource
Builders Configuration: | Debug [Active] % | Manage Configurations...
¥ C/ce+Build
Build Variables
Environment ®Tool Settings | #Build steps PBuild Artifact E8inary Parsers | @ Error Parsers
;:f:'"q 4 Cross Settings Prefix |arm-buildrootlinux-uclibcgnueabihf-
ings ® Cross GCC Compiler
Tool Chain Editor 3 Dislect Path | /homejtestada/Documents/buildroot-2016.05/output/hostfusr/bin Browse...
R -
Gce+ General (& Preprocessor
Project References
Run/Debug Settings
2 warnings
& Miscellaneous
2 Mmiscellaneous
2 shared Library Settings
Restore Defaults Apply
@ oK. Cancel

Fig. 31: Cross tools locate on (path).The path shown in this figure is an example.Use always the path of your
toolchain.

The next step is to configure the search paths for the compiler and linker, and the different tools to use.

Complete the different fields with the information included in Fig. 32 and Fig. 33. Please consider the paths.
The figures are showing examples for an specific user account.

D @ Properties for test

Iei) Settings

» Resource
Builders Configuration: | Debug [Active] % || Manage Configurations...
¥ C/C++Build
Build Variables
Environment B Tool Settings | #Build Steps ¥Build Artifact | G Binary Parsers | @ Errer Parsers
;:ff"""; (3 Cross Settings Include paths (-) a8 a8 9
P " ® Cross GCC Compiler /home/testada/Documents/buildroot:2016.05/eutput/host/usr/include
Tool Chain Editor 5 Dial
> C/C++ General (& Dialect
/ 3 (& Preprocessor
Project References & symbols
Run/Debug Settings & Incl

(& optimization
(& Debugging
(& warnings
(8 Miscellaneous
v ® Cross GCC Linker
(2 General
(2 Libraries -
5 Miscellangous Include files (-include) 8
(& Shared Library Settings
v & Cross GCC Assembler
(2 General

Restore Defaults Apply

OK Cancel
Fig. 32: Include search path.

Page 31 of 38

o Properties for test

» Resource
Builders
v c/c++Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
b C/C++General
Project References
Run/Debug Settings

Settings

Configuration: | Debug [Active]

®Tool Settings | # Build Steps

(& Cross Settings
v & Cross GCC Compiler
2 Dialect
(2 Preprocessor
(& symbols
& Includes
(2 Optimization
(& Debugging
& warnings
& Miscellaneous
v & Cross GCC Linker
& General
(& Libraries
(& Miscellaneous
(& shared Library Settings
v & Cross GCC Assembler
2 General

Build Artifact | GiBinary Parsers | @ Error Parsers

Library search path (-L)
/home/testada/Documents/buildroot-2016.05/output/host/usr/lib
/home/testada/Documents/buildroot-2016.05/output/host/usr/arm-buildroot-linux-uclibcgnueabihfflib

Fig. 33: Libraries search path.

Manage Configurations...

Restore Defaults Apply

OK Cancel

Once you have configured the cross chain in Eclipse you can build your project using Project->Build Project.

If everything is correct you will see the eclipse project as represented in Fig. 35.

[Console in Eclipse]: Have a look to the messages displayed in the Console. You will see
how eclipse is calling the cross compiler with different parameters.

In order to copy the executalbe to the target you have different options. You can use the linux application
called “scp” or other similar applications. In our case we are going to use “Connect to Server....” utility

included in ubuntu (under Places menu). Specify in Server Address ssh://<ip address>

Page 32 of 38

 Connect to Server

Server Address

Recent Servers

Cancel

Fig. 34: Pop up window when executing “Connect to Server”

DO® cfC++- test,’src,’t-k;t.c - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Window Help
CHv & | @ 8y [y G- v O Qv | & &~ | Rig/cs+ »
[y Project Explorer % =0 [E test.c B =0lgtouxn . @mal| 0O
5 g | C R T
hA= i test.c o stdio.h
> 4 Binaries o stdlib.h
* il Includes : Your copyright notice e main(void): int
P Bsrc : Hello C, Ansi-style
» =Debug
#include <stdio.h>
#include <stdlib.h>
int main(void) {
puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */
return EXIT SUCCESS; =
D
[%¢ Problems £3 . ¥ Tasks| B Console = Properties ¥ =8
0items
Description Resource Path Location Type

Fig. 35: Eclipse project compiled (Binaries has been generated).

You can run the program in the Raspberry Pl using putty (remember that once you have a network connection

available in the BeagleBone you can also use putty to connect to it).
OO ® [devfttyUSBO- PuTTY

Page 33 of 38

Fig. 36: Run test program in Raspberry PI

Warning. If you experiment problems using ssh, delete the .ssh folder in
your home directory.

4.3 Automatic debugging using gdb and gdbserver.

You can directly debug the program running in the Raspberry-pi using Eclipse. There are two methods to do
it: manually and automatically. In the manual method, firstly, you need to copy the executable program to
the BBB, change the file permissions to “executable” and execute the program to be debugged using
gdbserver utility. Of course this is a time consuming process and very inefficient. The alternative solution is
to use the automatic debugging. In order to debug your applications we need to define a debug session and
configure it. Firstly, Select Run->Debug Configurations and generate a new configuration under C/C++
Remote Application. You need to complete the different tabs available in this window. The first one is the
main tab (see Fig. 37). You need to configure here the path to the C/C++ application to be debugged, the
project name, the connection with the target (you will need to create a new one using the IP address of your
BBB), the remote path where your executable file will be downloaded, and the mode for the debugging
(Automatic Remote Debugging Launcher). Secondly, in the argument tab you can specify the argument of
your executable program. Very important here is that you can also specify the path of the working directory
where the executable will be launched.

@ Debug Configurations

Create, manage, and run configurations @\7

TR % B & v Name: | pruebaGyroL3GD20h

” (E] [2 Main - Arguments| %* Debugger | &~ Source| E] Common

[E] ¢/C++ Application C/c++Application:
[t] ¢/C++ Attachto Application /home/adastudent/workspace/GyrolL3GD20h/Debug/GyraL3GD20h
[E] ¢/C++ Postmortem Debugger

o Variables... Search Project... Browse...
¥ [©] ¢/C++ Remote Application
[©] prueba Debug Project:
[€] pruebaGyroL3GD20h GyroL3GD20h Browse...
Ci ¢/C++ Unit Build (if required) before launching
@ Eclipse Application - c 5
5 Java Applet uild configuration:
[T Java Application & select configuration using 'C/C++ Application'
Ju JUnil , 5 .
v Junit Enable auto build Disable auto build
Jt Junit Plug-in Test - . - :
q p g5...
» LaunchGroup ® Useworkspace settings Confiqure Workspace Settings.
4 0sGi Framework
&, Remote Java Application Connection: | 192.168.1.129 o New... Properties...
Remote Absolute File Path For C/C++ Application:
/home/mruiz/GyroL3GD20h Browse...
Commands to execute before application
chmod +x /home/mruiz/GyroL3GD20h
] skip download to target path.
. . Using GDB (DSF) Automatic Remote Debugging Launcher - Select other...
Filter matched 15 of 15 items -
@:‘ Close | Debug |

Fig. 37: Creating a Debug Configuration

In the debugger window (main tab) you need to configure the path of your gdb application. Remember that
we are working with a cross-compiler, cross debugging, therefore, you need to provide here the correct path
of your gdb. The GDB command file must be specified, providing a path with an empty file. In the Gdbserver
settings tab you need to provide path to the gdbserver in the target and the port used (by default 2345).

Page 34 of 38

™ Debug Configural

ns

Create, manage, and run configurations

it
x
m
it
4

4
B}

[i

[©] ¢/c++ Application

[E] ¢/c++ Attach to Application

[E] ¢/C++ Postmortem Debugger

¥ [] C/C++Remote Application

[€] prueba Debug
(€] pruebaGyroL3GD20h

Cii ¢/C++ Unit

@ Eclipse Application

9 Java Applet

Java Application

Ju Junit

Ji JUnit Plug-in Test

& Launch Group

4 0sGi Framework

Remote Java Application

Filter matched 15 of 15 items

®

Name: |pruebaGyroL3GD20h

@] Main [®- Arguments (%% Debugger . &~ Source| = Common

[& Stop onstartup at: [main
Debugger Options

Main | shared Libraries Gdbserver Settings

GDB debugger: /home/adastudent/Documents/buildroot-2016.05/output/host/usr/bin/arm-buildrootlinux-uclibcgnueabihf-gdb
GDB command file: | fhome/adastudent/Documents/.gdbinit

(warning: Some commands in this File may interfere with the startup operation of the debugger, for example "run".)
| Non-stop mode (Note: Requires non-stop GDB)

" Enable Reverse Debugging at startup (Note: Requires Reverse GDB)
] Force thread list update on suspend
| Automatically debug Forked processes (Note: Requires Multi Process GDB)

Tracepoint mode: | Normal &

Using GDB (DSF) Automatic Remote D Launcher - Select other...

Close

Fig. 38: Debug configuration including the path to locate the cross gdb tool.

Now, press Debug in Eclipse window and you can debug remotely your application.

L

Browse...

Browse...

Page 35 of 38

5 PREPARING THE LINUX VIRTUAL MACHINE.

5.1 Download VMware Workstation Player.

The link https://www.vmware.com/support/pubs/player pubs.html contains documentation describing the
installation and basic use of VMware Workstation Player. Follow the instructions to setup the application in
your computer.

5.2 Installing Ubuntu 14.04 LTS as virtual machine.

[Ubuntu version]: It is mandatory to install Ubuntu 14.04 version. 16.04 version will
generate compatibility problems.

The first step is to download Ubuntu 14.04 (32 bit PC-i386) from Ubuntu web site using this link:
http://releases.ubuntu.com/14.04/ . You will download an I1SO image with this Linux operating System.

Run WMware player and install Ubuntu using the VMWare player instructions. Consider the following when
creating the virtual machine: you need at least 80Gbytes of hard disk space (in multiple files) and 1GByte of
RAM. The installation time will be half an hour more or less depending of your computer. Moving a virtual
machine form one computer to another is a time consuming task, therefore, take this into account to
minimize the development time.

5.3 Installing packages for supporting Buildroot.

The annex | contains the instructions for downloading the list of packages installed in the Ubuntu 14.04 LTS
in order to run correctly Buildroot tools.

Page 36 of 38

https://www.vmware.com/support/pubs/player_pubs.html
http://releases.ubuntu.com/14.04/

6 ANNEXI: UBUNTU 14.04 LTS PACKAGES INSTALLED.

6.1 List of packages used by Buidiroot .

Using buildroot requires some software packages that have to be installed in the VM. These are listed in this

link http://buildroot.uclibc.org/downloads/manual/manual.html#requirement.

If you need to install

software packages you can do it using the command apt-get. Another alternative process is the use of
synaptic utility. In order to use it you need to install it using this command:

$ sudo apt-get install synaptic

Once installed you can search and execute the synaptic program. When you click two times over the package
it will show all the dependent packages than would be installed.

® - | ® synaptic|

—_ Eii Applications

-
*‘ Synaptic
é Package...

@ Files & Folders See s more results »

|_

v A
? %
101

1010

xdriver_xf86- Config.in
input-synaptics

=
L]
7

B

Fig. 39: Synaptic program from Dash

7. 1)
10

101

1010 =

xdriver_xf86- synaptics.c
input-...

synaptics.h

synaptics_i2c.c

Page 37 of 38

http://buildroot.uclibc.org/downloads/manual/manual.html#requirement

-~

Synaptic Package Manager

File Edit Package Settings Help

c) Quick Filter Q cearch
Reload Mark AllUpgrades gdbserver|]

all S Package Installed Version Latest Versio
Amateur Radio (universe) B gdbserver 7.4-2012.04-Oubunt 7.4-2012.04-01
Communication [J gdb-mingw-w64 7.4-0ubuntu-
Communication (multivers| |[J gdb-mingw-w64-target 7.4-0ubuntu1-
Communication (universe)

Cross Platform - y

No package is selected.

Sections l

Status

Origin

Custom Filters

Search Results

Architecture

3 packages listed, 1587 installed, 0 broken. 0 to install/upgrade, 0 to remove ﬁ
Fig. 40: Synaptic windows

6.2 Typical Ubuntu virtual machine problems

6.2.1 Manually installation of VMware client tools in a Linux Virtual Machine.

Check the tag “Manually Install or Upgrade VMware Tools in a Linux Virtual Machine” in VMWare player help
file to see how to install client tools.

6.2.2 Ubuntu presents a black screen after graphical login

http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-
ubuntu.html

6.2.3 Ubuntu is using us keyboard and not Spanish one

In a terminal window change the keyboard with this command: loadkeys es

Page 38 of 38

http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-ubuntu.html
http://www.ubuntugeek.com/ubuntu-tiphow-to-removeinstall-and-reconfigure-xorg-without-reinstalling-ubuntu.html

