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Abstract 

Moving objects pose a challenge to every video stabiliza­
tion algorithm. We present a novel, efficient filtering tech­
nique that manages to remove outlier motion vectors caused 
from moving objects in a per-pixel smoothing setting. We 
leverage semantic information to change the calculation of 
optical flow, forcing the outliers to reside in the edges of our 
semantic mask. After a 'content-preserving warping' and a 
smoothing step we manage to produce stable and artifact-
free videos. 

1. Introduction 

In recent years, video surveillance technology goes in­
creasingly mobile following a wider trend. Body-worn 
cameras, in-car video systems and cameras installed on 
public transportation vehicles are only a few cases of mo­
bile surveillance infrastructure. Moreover, Law Enforce­
ment Agencies are increasingly including videos recorded 
by mobile devices in their investigations. While, this new 
source of videos opens up new opportunities for the au­
thorities, it also introduces new challenges in terms of pro­
cessing, manual or automatic. Besides the huge amount of 
recorded footage, the produced content is usually unstable 
and shaken, making their manual inspection an (even more) 
cumbersome procedure and its automated analysis problem­
atic due to spatial inconsistency between frames. 

Video stabilization is the process of generating a new 
compensated video sequence, where undesirable image mo­
tion is removed and has been steadily gaining in importance 
with the increasing use of mobile camera footage. Often, 
videos captured with a mobile device suffer from a signif­
icant amount of unexpected image motion caused by unin­
tentional shake of their mounting, whether this is a hand, 
body or vehicle. Given an unstable video, the goal of video 
stabilization is to synthesize a new image sequence as seen 

from a new stabilized camera trajectory. A stabilized video 
is sometimes defined as a motionless video where the cam­
era motion is completely removed. In this paper, we refer to 
stabilized video as a motion compensated video where only 
undesirable camera motion is removed. This distinction is 
critical since camera motion can contribute towards an aes­
thetically pleasing result and be instrumental for capturing 
the details of a scene [6]. 

The first step towards video stabilization involves the 
choice of a suitable model that will adequately represent 
camera motion. Optical flow is the most generic motion 
model and recent work has shown great potential in its use 
for video stabilization. However, the optical flow of a gen­
eral video can be rather irregular, especially on moving ob­
jects at different depths of the scene, therefore, a motion 
model with strong spatio-temporal consistency and smooth­
ness is required to stabilize the video. The approach of iden­
tifying discontinuous flows by spatio-temporal analysis and 
enforcing strong spatial smoothness to the optical flow ne­
glects the semantic information of the scene contents, lead­
ing to severe artifacts when moving objects are very close 
to the camera or cover a large part of it. This is due to the 
fact that the distinction between background and foreground 
objects is obscured by their comparable size [16]. 

In this paper, we are proposing the use of semantic in­
formation extracted from the examined scene together with 
a dense 2D motion field to produce a model representing 
the camera motion. The derived model allows us to gener­
ate stabilized videos with good visual quality even in chal­
lenging cases such as scenes with large foreground objects 
which are common in footage from mobile cameras. 

1.1. Related work 

Video stabilization techniques can be roughly catego­
rized regarding their underlying motion model as 2D and 
3D methods. 2D stabilization methods use a cascade of 
geometric transformations (such as homography or affine 
models) to represent the camera motion, and smooth these 



transformations to stabilize the video. The type of smooth­
ing can have a dramatic effect on the qualitative evaluation 
of the result. One early method [17] used simple low-pass 
filtering, which requires very big temporal support to elimi­
nate unwanted low frequency shaking (e.g. walking). Deal­
ing with that, Chen et al. [4] applied polynomial curve fit­
ting on top of Kalman-based filtering. Gleicher and F. Liu 
[6] broke camera trajectories into segments for individual 
smoothing, following principles of cinematography. Grund-
mann et al. [8] encapsulated this idea into an elegant L1-
norm optimization, while S. Liu et al. [15] split the frame 
into multiple segments, each with its own path, and applied 
a joint stabilization method. 

3D methods use the estimated camera position in space 
for stabilization and are, thus, heavily reliant on the ef­
fectiveness of structure from motion algorithms. Although 
they give superior results on complex scenes with parallax 
and depth changes, they are computationally heavier and 
less robust. An example of early work is from Beuhler et 
al. [3], who used a projective 3D reconstruction with an un-
calibrated camera for video stabilization. F. Liu et al. [10] 
used 3D point correspondences to guide a novel and influen­
tial ’content-preserving’ warping method, whose efficiency 
was later improved on planar regions by Zhou et al. [25]. S. 
Liu et al. [14] used a depth camera for robust stabilization. 

In the middle ground between the two, 2.5D methods 
compensate for the lack of 3D information imposing ad­
ditional constraints. F. Liu et al. [11] built on the obser­
vation that feature trajectories from a projective camera lie 
on a subspace and smoothed its basis eigenvectors. There 
is an extension of this method for stereoscopic videos as 
well [12]. Goldstein and Fattal [7] leverage the epipolar 
relations that exist among features of neighboring frames. 
Wang et al. [21] represented each trajectory as a Bezier 
curve and smoothed them with a spatio-temporal optimiza­
tion. Though more robust than 3D methods, 2D ones de­
mand reliable tracking to construct feature trajectories. We 
build on the work of S. Liu et al. [13, 16] which tries to alle­
viate the problem of acquiring long trajectories by smooth­
ing the pixel profiles instead. 

2. Methodology 

In this paper, the assumption made in [16] that the mo­
tion vector of each pixel should approximate the trajectory 
of the corresponding point in the scene is adopted. Given 
this assumption, instead of smoothing feature trajectories, 
we can smooth the pixel profiles, where a pixel profile is de­
fined as the accumulated optical flow vector at each pixel lo­
cation. Thus, video stabilization can be achieved in a pixel-
wise manner by using a pixel profile stabilization model. 
This assumption does not hold well, though, for scenes con­
taining sharp depth changes and moving objects, as they can 
cause the optical flow field to be spatially uneven. In such 
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cases, as it can be seen in figure 2, smoothing the pixel pro­
files leads to artifacts. Therefore, we must modify the initial 
optical flow and discard the motion vectors that cause these 
distortions. In [16] this is performed in two iterative filter­
ing steps, a spatial and a temporal one, trying to enforce 
spatio-temporal consistency. 

Instead, we propose a novel method aiming to perform 
motion outliers rejection on the optical flow field exploiting 
semantic information in the context of video stabilization. 
For this purpose we leverage state of the art semantic seg­
mentation [18, 24] of the scene examined to detect moving 
objects of interest in a surveillance scene, such as people or 
vehicles. Semantic segmentation masks provide the infor­
mation necessary to reject irregular motion vectors, regard­
less of objects’ size, in a single step, eliminating the need 
for an iterative approach and leading to a visually pleasing 
result. 

2 .1. Semantic optical flow refinement 

Classical optical flow algorithms impose smoothness on 
the resulting flow field in order to solve the brightness con­
stancy constraint equation [9]. This results in flow fields 
with smooth transitions between areas with different mo­
tions, producing motion irregularities within a single object. 



(a) Semantic mask (b) Optical flow calculated without our con- (c) Completed flow field after naive filtering 
straint and overlaid semantic boundary 

Figure 3 . Outlier filtering without optical flow refinement. Notice the ”shade” under the right arm and the blue colored artifact that fall out 
of the semantic mask, resulting in insufficiently filtered flow. 

(a) The frame from which we compute the se- (b) New flow that respects semantic segmenta- (c) Flow free from motion vectors that cause 
mantic mask tion boundaries distortions 

Figure 4. Outlier filtering with optical flow refinement. Notice the alignment between the motion vectors and the boundary in (b). 

It is worth noting that this transition causes inaccurate mo­
tion vector estimation at both sides of the motion boundary, 
since the two motion fields influence each other. However, 
recent work on optical flow estimation has leveraged the use 
of additional information to improve flow precision, partic­
ularly at object boundaries [19, 20]. 

In [19] a variational energy minimization approach is 
employed on a grid of dense correspondences. This grid 
is a product of interpolation with respect to a geodesic dis­
tance, whose cost function penalizes boundary crossing. 
Normally, one would use an edge detection algorithm on the 
video frame to define these boundaries. Edge detectors that 
work on natural images, though, produce edges of varying 
strength, which do not adequately restrict the interpolation 
and result in flows that do not respect the boundaries of our 
semantic segmentation, as seen in Figure 3(b). 

In this direction, we acquire a semantic segmentation 
mask for each frame in the examined video using [24] 
trained with the PASCAL VOC dataset that contains 21 la­
bels including background. Given our application we are 
only interested in moving objects (e.g. persons, cars, mo­
torbikes) and, thus, we discard all labels related to static 
objects or background (e.g. potted plant, sofa). A naive ap­
proach would be to discard every motion vector under the 
semantic mask as outlier. Not surprisingly, such a method 
fails because of the discrepancy between the object bound­
aries that are delineated from the motion vectors and the 

corresponding ones from the semantic masks (figure 3(c)). 
Instead, we employ standard edge detection on the se­

mantic masks, producing a set of crisp boundaries surround­
ing the, potentially moving, area of our frame. Leveraging 
the notion of geodesic distance that preserves object bound­
aries, we use these edges as input to the estimation of mo­
tion flow field to force the outlier vectors to reside within 
the boundaries of the moving object (figure 4(b)). Thus, the 
optical flow becomes consistent with our semantic segmen­
tation simplifying the stabilization pipeline. 

2.2. Motion completion 

The next step is to complete the missing values of the 
optical flow field. We interpolate the outlier motion vectors 
from a grid formed in a content preserving way [10]. We use 
the motion vectors at the boundary of the semantic mask to 
form control points for the energy minimization problem: 

E = Ed + aEs, (1) 

where E¿ and Es are the data and similarity terms, 
weighted by a. The data term is defined as a sum over all 
inlier points p: 

EdCV)= ^ \\VTT —(p + u)\\, (2) 

with u being the initial optical flow at pixel p and V in­
dicating the unknown vertices of the new grid that enclose 
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p. Tip is the vector of bilinear coordinates of point p at the 
initial grid. Thus, E¿ weighs toward accurate reconstruc­
tion at each data point. However, this could force the rest 
of the pixels to be extremely warped or distorted which is 
counter-weighted by the similarity term: 

ES(V)= ^ I u — u\ — SRQO(UQ — i¿i)||2, (3) 

R90 

This term requires that each triangle, formed by u and two 
of its neighboring vertices u0,ui, follows a similarity trans­
form. s= \\u — wi 11 /11 wo — n 111 is a term computed from the 
original mesh. The new vertices are calculated minimizing 
a standard sparse linear system. The new motion values are 
then bilinearly interpolated using the resulting grid. 

2.3. Stabilization 

The stable video is produced by smoothing each pixel 
profile independently. We do not employ an adaptation 
scheme for the temporal window, since all these approaches 
require arbitrary thresholding and are heavily influenced 
from the frame rate. The smoothing is achieved minimiz­
ing the following objective function: 

0(Pt)= J2(\\Pt-Ct\\
2 + \J2 Wt,r\\Pt-Pr\\2), (4) 

rEflt 

where C is the cumulative motion vector field of the in­
put video at frame t and P the corresponding one of the 
output video. wt r is the weight of past and future frames 
r in the temporal window ilt and is calculated by wt r = 
exp(—\\r — t | |2/(Ot/3)2). The first term of this sum is the 
similarity between the stabilized and the initial frames, a 
factor that minimizes cropping, while the second term ex­
presses the similarity of the new frame to its neighboring 
ones, which maximizes stability. Finally, A acts as a bal­
ancing term that allows us to favor the one over the other. 

The optimization is solved by a Jacobi-based iteration 
[2] for each pixel by: 

— (c 
7V 

Pt = ~Ct + A E «VP r
( 0 , (5) 

rEflt,r^t 

with the scalar 7 = 1 + A ^ w i r and £ being the itera­
tion index (by default, £ = 10). Note that unlike Liu et 
al. our algorithm runs only once. We render the final re­
sult by warping each frame with a dense displacement field 
Bt = Pt — Ct. 

(a) Scene with many faces (b) Inaccurate semantic mask 

Figure 7. Semantic segmentation failure 

3. Experimental results 

We conducted a wide range of experiments on publicly 
available baseline videos with moving objects, occlusions 
and parallax. Additionally, we experimented on videos 
from the surveillance domain, especially police body-cam 
videos, which contain highly irregular motion (e.g. walk­
ing, running) and occlusions, especially from persons, by­
standers etc. 

Our method manages to successfully filter out moving 
objects in the majority of cases. Figure 5 shows a typical 
failure case for most trajectory based methods, where an 
object covering a significant portion of the screen crosses 
the field of view. Naturally, such an object has a big effect 
on the flow field and if we stabilize the video without some 
way of filtering we see visible artifacts (e.g. the elongated 
head of the lady in the foreground, together with the warped 
body of the lady in the background in row 2). Our output 
is stable and without artifacts. Similarly, in the surveillance 
domain video of figure 6, which again contains a signifi­
cantly big moving object and heavy shake, one can clearly 
see the distortion on the face of the officer, especially on the 
last frame of row 2, which does not exist in our output. The 
presented results are qualitative, since result quantification 
is not a trivial matter in video stabilization, due to the fact 
that there are no benchmarks or widely accepted metrics 
available. 

3.1. Implementation details 

We implemented our method in Python and run it on 
commodity pc hardware consisting of an i7-6700K CPU, 
GTX 1070 GPU with 32 GBs of RAM on Ubuntu Linux 
14.04. For the initial semantic segmentation masks and op­
tical flow we used the, publicly available, CRF-RNN [1,24] 
as well as the GPU implementation of DeepMatching [22] 
in conjunction with EpicFlow [19]. For the videos in our 
domain we empirically choose a = 1, A = 1 as they give 
the most pleasing results. 

4. Conclusions 

We presented a novel video stabilization pipeline that 
leverages the latest advances in semantic image segmen-



Figure 5. Typical failure case for trajectory based methods. Our system manages to stabilize this heavily occluded scene. The rows from 
top to bottom correspond to the original, stabilized without filtering and successfully stabilized cases. Notice the heavy distortions in the 
second row. 

Figure 6. Four frames of a video in the surveillance domain. Again, the first row depicts the original, unstable, video, the second one is a 
stabilized without semantic filtering and the third a stabilized version with our method. Notice the distortions around the officer’s head at 
the last row, while our results remain crisp. 



tation and fuses this information to refine the calculation 
of optical flow. This way we manage to produce stable, 
artifact-free videos in scenes with moving objects, occlu­
sions and parallax. 

4 .1 . Limitations and future work 

Our method does not fall in the realm of 3D methods 
and, as a result, cannot provide 3D camera motion planning. 
The degree of stabilization, though, can be controlled by se­
lecting the appropriate temporal support. Our method relies 
on the quality of optical flow calculation and image seg­
mentation, which, as seen in figure 7, can identify persons 
unexpectedly (e.g. toys, posters). Temporally consistent se­
mantic segmentation is a possible solution for the removal 
of such artifacts, something that we are keen to explore. 

Since we have shown that it is possible to integrate deep 
learning methods in the filtering stage of a stabilization 
pipeline, we would be interested in examining the smooth­
ing and result synthesis steps also. There are promising re­
sults in the field of novel view synthesis [5] and image in-
painting [23] which we are keen to explore and could lead 
to a fully neural, full frame architecture. 
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