

Monitoring maize N status with airborne and ground level sensors

M. QUEMADA, **J.L. GABRIEL**, P. ZARCO-TEJADA, J. LÓPEZ-HERRERA, E. PÉREZ-MARTÍN, M. ALONSO-AYUSO

School of Agricultural Engineering, Technical University of Madrid, Spain Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain. Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain

Outline

- I. Introduction:
 - Maize N dynamic
 - Available N sensors
- II. Experimental setup
- III. Results:
 - Fertiliser rate vs. N uptake
 - Remote sensor predicting N content
 - Scale resolution effect
- IV. Conclusions

Maize yield:

vs. crop N uptake

vs. N applied as fertilizer

I. Maize N dynamic

CAMPUS DE EXCELENCIA INTERNACIONAL

From: Plénet & Lemaire, 2000. Plant and Soil 216, 65-82

Innovative solutions for a sustainable management of N in agriculture AARHUS 26-28 JUNE

dNmark research alliance

I. Available N sensors

CAMPUS **DE EXCELENCIA** INTERNACIONAL

Innovative solutions for a sustainable management of N in agriculture AARHUS 26-28 JUNE

EC-OJ.

II. Experimental setup

Clasification ·

Typic calcixerept (Soil Survey Staff, 2003) Haplic calcisol (FAO-UNESCO, 1988)

Silty clay loam texture pH≈8 OM≈2%
 Polygenic origin soil appropriate for irrigation
 Friable structure and porous along the profile
 Without erosion, compactation, inundation, and with low stone content throughout the profile

II. Experimental setup

Index	Definition						
SPAD							
SPAD	Ratio of transmitted light at the red and infrared wavelengths						
	Dualex [®] Scientific						
Chl	Ratio of transmitted light at two infrared wavelengths						
Flav	Log of the fluerescence emission ratio at the red and UV wavelengths						
NBI	Nitrogen Balance Index = Chl / FlavI						

II. Experimental setup

CAMPUS DE EXCELENCIA

INTERNACIONAL

Index	Equation	-					
Struc	-						
**Normalized difference vegetation index (NDVI)	$NDVI = (R_{800} - R_{670}) / (R_{800} + R_{670})$			Ca	27		
**Renormalized difference vegetation index (RDVI)	$RDVI = (R_{800} - R_{670})/(R_{800} + R_{670})^{\circ.5}$			- EN			
**Optimized soil-adjusted vegetation index (OSAVI)	$OSAVI = (1 + 0.16) \times (R_{800} - R_{670}) / (R_{800} + R_{670} + 0.16)$		0.5	Stracco	1	/	~
Chlore	-	0.4 -	Stressed				
Red edge reflectance index Double peak canopy nitrogen index (DCNI)	R_{750}/R_{710} $DCNI = (R_{720} - R_{700})/(R_{700} - R_{670})/(R_{720} - R_{760} + 0.16)$	tance	e _{0.3} – Healthy				
**Transformed Chlorophyll absorption in reflectance index (TCARI)	$TCARI = 3 [(R_{700} - R_{670}) - 0.2 (R_{700} - R_{550})/(R_{700}/R_{670})]$	Reflec	0.2 -				
**Combined TCARI/OSAVI	TCARI/OSAVI		0.1 -				
Xanth	-						
Photochemical reflectance index (PRI)	$PRI = (R_{570} - R_{539})/(R_{570} + R_{539})$		0.0 +) 500	600	700	800
Normalized photochemical reflectance Index (PRI norm)	PRI norm = $(R_{515} - R_{531})/(R_{515} + R_{531})$		Wavelength (nm)			(nm)	
Blue/green			-	-			
BGI1	$BGI_1 = R_{400}/R_{550}$				1	6.611	
BGI2	$BGI_2 = R_{450}/R_{550}$	_		P			
Fluores			-	Y-			
Fluorescence (SIF760)	FLD3 method using 2 reference bands (750; 762; 780)						
novative solutions for a sustai	nable management of N in agricultu	ire			m	ar	
ARHUS 26-28 ILINE				rococ	rch ·		
ANTIOS ZO-ZO JUNE				resed		amane	-6

III. Fertiliser rate vs. N uptake

III. Remote sensor predicting N content

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria POLITÉCNICA

CAMPUS DE EXCELENCIA INTERNACIONAL

research alliance

"Ingeniamos el futuro

III. Scale resolution effect

CAMPUS DE EXCELENCIA INTERNACIONAL

From: Gabriel et al. 2017. Biosystems Engineering 160, 12

Innovative solutions for a sustainable management of N in agriculture AARHUS 26-28 JUNE

dNmark research alliance

IV. CONCLUSIONS

- Proximal and airborne sensors provided useful information for the assessment of maize N nutritional status.
- Higher accuracy was obtained with indexes combining chlorophyll estimation with canopy structure (i.e. TCARI/OSAVI for airborne sensors) or with polyphenol indexes (NBI for proximal sensors, avoiding index saturation).
- The spatial resolution (SR) of the acquired image had an effect on the indexes performance: Structural indexes (NDVI, RDVI or OSAVI) presented low dependency of image SR, whereas pigment indexes (as TCARI) were highly influenced by SR because of the background and shadow effect.
- Further research is needed to identify robust indexes across species and stress levels related to plant N concentration for better monitoring crop N nutritional status.

Thank you for your attention gabriel.jose@inia.es

