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A b strac t

The need to characterise surface roughness arises in many branches of science and en

gineering, in areas as diverse as soil science, polymer chemistry and manufacturing. 

The ability to capture information about surface properties with a few statistical in

dicators can provide the basis for control and monitoring of industrial processes, and 

the indicators themselves may be important covariates in scientific investigations.

In the past, the extent of an analysis of roughness has been limited largely to 

calculation of some simple roughness parameters. Although these parameters are 

appealing by virtue of their ease of calculation, they do not perform well in terms of 

characterising surfaces and, from a statistical point of view, there are many problems 

associated with their use.

The two main aims of this thesis are to provide better parameters for characteris

ing surface roughness, and to provide statistical tools to aid scientists and engineers 

in making inferences. In developing the methodology, special care has been taken 

to make the methods as practicable as possible.

The main parameter chosen to characterise surface roughness is fractal dimen

sion. It has the appealing property that, when using it to judge whether one surface 

is rougher than another, the decision will, in many circumstances, agree with the 

subjective ordering made by a trained observer. This is a property the parameters 

in current use do not enjoy.

Fractal dimension is itself limited in terms of its ability to characterise surface 

roughness. It is possible for two surfaces to have similar fractal dimensions, yet 

one may appear much rougher than the other. This is usually due to the difference 

in amplitude between the peaks and troughs of two surfaces being large. Fractal



dimension, being a scale-invariant measure, does not take account of such a dif

ference. So a parameter called topothesy, which is scale-sensitive, is introduced to 

complement fractal dimension.

Many methods have been proposed for estimating fractal dimension from data, 

but little attention has been given to understanding how the estimators perform. 

This thesis includes theoretical and numerical analyses of the performance of esti

mators of fractal dimension and topothesy in a number of different situations.

The analyses provide a guide to how well estimators will perform in general, but 

do not quantify the precision of an estimate calculated from a given data set. So, 

this thesis also proposes methods to calculate standard errors of fractal dimension 

and topothesy, thereby providing an objective way of making comparisons between 

surfaces. Methods for carrying out hypothesis tests are also discussed.

Roughness characterisation methods are also developed for two-dimensional data. 

In the past, most of the data sets used to gauge surface roughness were one

dimensional profiles, collected along a straight path across a surface. As a result of 

advances in both the technology for measurement equipment and the storage capac

ity of computers, genuine two-dimensional surface data sets are now quite common. 

This raises the important question of anisotropy: how do the roughness proper

ties of the surface vary with orientation? This question is thoroughly explored and 

appropriate methods devised.

Computational efficiency has been a prime consideration in practical aspects of 

this study.
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Chapter 1 

Introduction

Fractal analysis of surface roughness is more than a mathematical curiosity. It 

has many applications in science and engineering, where it is used to aid understand

ing of the physical processes occurring at the interface between objects or between an 

object and its environment. In this chapter we describe examples of such applica

tions from three different disciplines. The examples are elaborated throughout the 

thesis, providing the motivation for the methods developed and illustrations of how 

the methodology can be applied.

As in most areas of statistical practice, visualisation has an important role to 

play. We look at conventional ways of visualising surfaces in three dimensions: 

contour plots, wireframe perspective plots and height encoded images. These are 

arguably good devices for discerning the features of relatively smooth surfaces, but 

they lack clarity and intepretability when used to visualise rough surfaces. One 

natural way to view such data is to artificially reconstruct its appearance to the 

human eye. This is achieved by computer-generated renderings of the surfaces.

A thorough statistical analysis must necessarily be based on assumptions set out 

clearly in mathematical terms. We describe the stochastic framework that we shall 

use to model the surface data. We also detail other major assumptions made about 

the data used throughout the thesis, and provide physical and statistical justification 

for them.

1
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1.1 M otivation

The scientific interest in surface roughness is extensive, as can be judged from the 

vast literature on the subject. As well as journals solely devoted to the topic, such 

as The Journal of Tribology, there are many articles in a variety of fields.

A large portion of the literature is concerned with physical effects of surface 

roughness, usually in the setting of particular applications. For example, Thomas 

& Atkinson (1997) consider the ‘Ammonium uptake by coral reef -  effects of water 

velocity and surface roughness on mass transfer’; and Amis (1996) addresses ‘The 

effect of surface roughness in fibroblast adhesion in vitro’. Some of the many phys

ical properties studied are absorption, magnetisation, adhesion, impedance, flow, 

growth, friction, conductivity, reflectance and heat transfer.

Another portion of the literature concentrates on the effects of processes, both 

natural and manufactured, on surface roughness. Two recent examples are McCarrol 

& Nesje (1996), who study the use of ‘Rock surface roughness as an indicator of 

degree of rock surface weathering’; and Hassan (1997), who studies ‘The effects of 

ball- and roller-burnishing on the surface roughness and hardness of non-ferrous 

metals’.

The remainder of the literature is concerned with the measurement and charac

terisation of surface roughness. Measurement is usually achieved through contact 

methods such as stylus profilometry, or non-contact methods using optics or even 

acoustics (Swart et al., 1996). An overview of the various characterisation methods 

is given in Chapter 2.

The development of statistical methods for analysing surfaces has typically been 

driven by the technologies used to record data. A relatively old but still rather 

common approach to measurement is stylus profilometry, in which a fine stylus is 

drawn across a surface and the current generated by its oscillations is taken as 

a measure of height. The total electrical charge resulting from these oscillations is 

proportional to the mean absolute deviation of surface height, not the mean squared 

deviation. Therefore, L\ measures of variation can be more attractive than L2 

measures, quite apart from any statistical advantages that either might have. More
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recent technologies allow extensive and detailed surface height data to be recorded, 

and so permit more sophisticated, flexible approaches to data analysis. The new 

advances include refinements to the performance of stylus profilometers, and optical 

profilometry based, for example, on scanning with a laser, or with white light from 

an optical fibre.

However, all profilometer data are recorded from what are essentially line tran

sects of the surface (albeit with a non-infinitesimal width representing the diameter 

of the stylus or light beam) and so are still rather restrictive. New technologies such 

as scanning electron microscopes allow genuinely two-dimensional data to be gath

ered, typically in the form of digital images. Such data offer exciting opportunities 

for addressing issues of anisotropy and spatial variation in a way that is difficult 

even for extensive profilometer data. This thesis is motivated by these possibilities. 

We suggest new methods for analysing surface data, taking advantage of the new 

technologies and allowing questions of spatial variability to be addressed.

1.2 E xam ples o f applications

The following examples have motivated much of the work within the thesis and are 

used throughout to illustrate how the methodology could be applied.

Roller profile In the manufacture of rolled products such as sheet metal and 

paper, the surface roughness of the roller is crucial. If the roller is too smooth, it 

may slip or skid, causing tears in the product. On the other hand, if the roller is 

too rough this adversely affects the quality of the rolled product, for example by 

causing perforations. Therefore it is important for the surface roughness of a roller 

to lie within predetermined control limits. In order to prevent the manufacturing 

faults mentioned, the rollers are periodically inspected for wear measured in terms 

of adverse changes to the surface roughness.

The data we have are from a polished metal roller used for rolling sheet metal. 

They were obtained using a standard commercial stylus profilometer, and consist 

of 1150 equally spaced heights (above a datum level) along a 4.5mm section of the
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Figure 1.1: The roller profile data broken up into 5 segments with consecutive 

segments plotted down the page. The scale at the bottom applies both horizontally 

and vertically.

roller. The stylus had a nominal tip radius of 4/im. The electrical signal giving 

the profile height, is recorded continuously but is digitised at discrete intervals, 

approximately 4/rni each, by the instrument used to produce the data.

The data are shown in figure 1.1 and a roughness analysis is performed in Chap

ter 4.

Soil surfaces In Soil Science, considerable attention is being placed on under

standing the interaction between land management and environmental conditions, 

as an aid to developing sustainable and productive agricultural systems. To do this,
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(a) 0.00mm (b) 5.30mm (c) 10.05mm

(d) 14.30mm (e) 18.55mm (f) 22.50mm

(g) 27.00mm (h) 31.25mm (i) 35.50mm

Figure 1.2: Rendered images of the soil surface, dry and after eight successive periods 

of rainfall. The cumulative amount of rainfall is indicated in the caption for each 

panel.

scientists must understand many of the physical processes that take place, such 

as infiltration of water, runoff of water, erosion by water and wind, gas exchange, 

evaporation and heat flux. All of these processes occur at the interface between the 

atmosphere and soil, namely at the soil surface; and the roughness of the soil surface
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is an important factor in determining the effects of such processes. Contributing to 

the complexity of the problem is the dynamic nature of the surface as it varies with 

time due to these and other processes, for example rain and cultivation.

The data we have come from a particular study to assess the availability of water 

for plant growth after rain. Rainfall itself changes the surface topography through 

the impact of raindrops and the transportation of particles with the movement of 

water over the surface. Therefore it is necessary to understand the effect of rainfall 

on the soil surface as well as the effect of surface topography on the behaviour of 

water. The water that infiltrates the surface becomes available for plant growth; the 

remainder either evaporates or runs off. To infiltrate the surface the water needs to 

be stationary, collected in depressions on the surface, or travelling at low velocity. 

The surface roughness contributes to the number and size of such depressions and 

the speed at which water can flow.

A single surface measuring 600mm x 500mm was constructed in the laboratory 

with dry soil, a sandy loam sampled from Cowra, in South-Eastern Australia. Under 

the soil was a layer of free-draining coarse sand. The central 512mm x 450mm area 

of the surface was scanned by a laser device. Height averages over circular regions 

approximately 0.5mm in diameter were taken at 1mm intervals along parallel lines 

1mm apart. The soil surface was then subjected to simulated rainfall consisting of 

2.7mm drops falling vertically 13 meters and achieving 97 percent terminal velocity. 

The rainfall intensity was 90 mm per hour, which would correspond to a heavy storm 

in the region from which the soil was sampled. Rain was allowed to fall until ponding 

occurred. (Ponding is the phenomenon of free water appearing on the surface due 

to rainfall exceeding infiltration.) The surface was then scanned again. The process 

was repeated 8 times in all, with a night between each rainfall, yielding a time series 

of 9 images of the soil surface.

The soil surface data are rendered in figure 1.2 and a roughness analysis is given 

in Chapter 5.

Polymer surfaces The aim in the third application was to identify whether two 

alternative manufacturing processes could produce polymers with similar surface
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Figure 1.3: Rendered images of the six polymer surfaces.

roughness properties.

The ultimate use for the polymers was to be as a plastic wrap for food, an 

application where roughness properties are important in promoting the longevity 

of the food. Decay is hastened by the presence of microorganisms, and smoother



CHAPTER 1. INTRODUCTION 8

wraps offer less opportunity for such organisms to adhere. Another contribution of 

statistical analysis is to compare surfaces in terms of smoothness.

The data set comprises three pairs of samples of the polymers, one sample from 

each pair produced by one manufacturing process and the other sample by an alter

native process. Both samples in a pair were produced with similar input parameters 

to the process. The input parameters were different between pairs.

The surface elevations of each polymer sample were measured by coating it with 

a layer of gold just a few molecules thick, and analysing the coated plastic using a 

scanning, tunnelling electron microscope. The data from this source were recorded 

on a 128 x 128 grid, in the form of measurements that were height averages very 

close to grid point centres. For these data, pixels were 40 nanometres square.

The polymer surfaces data are rendered in panels of figure 1.3 and a roughness 

analysis is given in Chapter 6.

1.3 Visualising the data

Visualisation is an important tool in many statistical applications. For the surface 

scientist, visual characterisation plays an important and sometimes crucial role in 

topography analysis. Stout et al. (1993, page 197) state that “it is generally ac

cepted that a full intuitive appreciation of a surface can only be achieved by 3-D 

visualisation methods and that 2-D profiles are inadequate for qualitative assess

ment.”

Profile data Nevertheless, if the only data available are profiles, then it is still 

of value to get an appreciation of the nature of the data by a simple graph. When 

analysing the surface roughness of profiles using a simple scatterplot of heights 

against position, features to which one might pay particular attention are the irreg

ularity of the sample path and the scale of its oscillations. To do this consistently, 

equal scalings should be applied to both the heights and the positions.

Figure 1.1 is a scatterplot of the heights of the metal roller data. The heights 

have been joined together by straight line segments to help the viewer discern the
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(a) contour plot (b) perspective plot

(d) rendered image(c) height encoded image 

Figure 1.4: Four different visualisations of the first polymer surface data

sequence of points. The original surface probably followed a far more irregular path 

between successive points.

Gridded data There are several common ways of viewing the 3-D surfaces in 2 di

mensions, including contour plots, perspective/wireframe plots and colour/greyscale 

height coded images. These are arguably good graphical devices for looking at 

smooth surfaces, such as purely mathematical functions, but for rough surfaces the
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graphs end up a mess of ink in which it is hard to discern features.

One relatively recent way of viewing raw surface height data is to construct an 

image of the surface similar to how it would appear to the human eye. The eye 

remains the most powerful and versatile processor, particularly when complicated 

and ill-defined but patterned data are involved. A “rendered” image is created 

by calculating how much light from a particular source would be reflected to the 

viewer in a particular location. Figure 1.4 is a comparison between a contour plot, 

a perspective plot, an image plot and a computer rendered scene of the surface. 

Notice, in panel (d), that we can see evidence of directional dependence in the 

texture, something which may not be seen in the other graphs except by a trained 

observer.

The sequence of rendered images for the soil surfaces is shown in Figure 1.2. 

With careful inspection, it is possible to see how the surface is changing over time 

with successive amounts of rainfall. The higher areas are gradually being eroded, 

whereas deposits are being formed in the lower areas. This is easier to see if the 

individual ‘snapshots’ are animated to form a short movie sequence and played in 

time, allowing the viewer to switch between scenes both backwards and forwards.

Figure 1.3 shows the surfaces of the six plastic sheets. The fourth sample appears 

smoother and more regular than the others, although its fractal analysis was not 

markedly atypical; in fact its fractal properties are on a much finer scale than the 

“bubbles”.

1.4 Statistical modelling

Throughout the thesis, we think of surface data as realisations from a single-valued 

two-dimensional random field X(t )  in the case of surface data, and from a one

dimensional random process X(r)  in the case of profile data. Thus, the data sets 

may be considered as functions from one- or two-dimensional grids to the set of real 

numbers x : Q —» R — Q is either a one-dimensional equally spaced grid of points 

on the real line for profile data or a two-dimensional equally spaced grid of points
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on the real plane for surface data. Therefore the data from a single surface/profile, 

£(•), is really one datum from an underlying random field X(-).

Since it is hard to carry out any statistical analysis from a single datum, we need 

to make some assumptions concerning the properties of these processes in order to 

obtain an effective increase in the sample size. In doing so, we should also ensure 

that any assumptions made are reasonable, both statistically and physically. By 

‘reasonable’ we mean that they need not necessarily be true, but that they are 

close enough to the truth that any departure will have a negligible effect on the 

assumption-based methods.

The first assumption we make is that of intrinsic stationarity, which is defined 

for a random field (process) through first differences:

E[X(s  + t ) - X { s ) }  = 0, 

var [Ar(s +  t) — X(s)] =  v(t).

That is, the random field has constant expectation, and the variance of the difference 

of the random field at two locations depends solely on the relative displacement 

between the two locations and not on their positions. The function v{t) is known 

as the variogram and is studied in detail in chapter 3.

An earlier form of intrinsic stationarity is the intrinsic hypothesis of Matheron 

(1971). The intrinsic hypothesis differed in that it allowed for a linear drift in the 

process X(-).

The first part of the assumption, namely, that the random field has constant 

expectation, is not as unreasonable as might first appear considering the nature of 

the data. In the case of the practical examples outlined in section 1.2, the data are 

often taken on a much finer scale than the whole surface, so any change in the trend 

over the whole surface would be slight over the range of the data. The second part 

of the assumption requires that the process that produced the surface, again at the 

scale on which the data were collected, behaves in a uniform manner.

Another assumption that might reasonably be made in some circumstances, but 

not always, is that the process that determined the surface topography does not 

favour any particular direction. This might be a valid assumption for the soil surface
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data, where the soil surfaces were artificially constructed, but not for the polymer 

data, where the polymer is manufactured by an extrusion process: the polymer is 

drawn out in one direction. More formally, this assumption is that of isotropy and 

is a tightening of the intrinsic stationarity assumption where we now require that 

the variance of the difference of the random field at two locations depend solely on 

the distance, rather than displacement, between the two locations, and not on their 

relative orientation:

var [X(s + t) - Ar(s)] =  u(||t||).

The function v(||£||) is now one-dimensional, as it would be if the random field 

were itself one-dimensional. Accordingly we call the distance ||t|| the lag, to follow 

one-dimensional time series terminology. Methods for characterising surface rough

ness from two-dimensional data assuming isotropy, and from one-dimensional profile 

data, are considered and applied to the soil surface data in Chapter 5.

If a random field is not isotropic then we say it is anisotropic. Methods for 

deducing whether a surface is either isotropic or anisotropic, and methods for char

acterising the surface roughness for anisotropic surfaces, are given and applied to 

the polymer data in Chapter 6.

When deriving performance properties, it is sometimes necessary to assume that 

the surfaces may be modelled by Gaussian processes. Indeed, Thomas (1982, page 

9) writes:

Many formative processes, particularly those carried out in controlled 

conditions in research laboratories, can produce textures with height 

distributions that are accurately Gaussian. Their Gaussian nature is 

not an artifact: it arises as the natural result of a well-known statistical 

property, and will occur whenever a texture is created as the cumulative 

result of a large number of randomly located events.

However, the methods developed are also applicable to a wide range of non-Gaussian 

surfaces: see for example Hall & Roy (1994), who show that similar performance 

results may be obtained for suitably well-behaved functions of Gaussian surfaces.
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In order to compare the asymptotic properties of one-dimensional and two- 

dimensional estimators, the properties will be expressed in terms of overall sample 

size, iV, the number of points in the domain of x(-). Lower case n will be used for 

the number of unique points in the one-dimensional projections of the domain of 

£(•). So for one-dimensional data, N  — n, and for two-dimensional data, N  = n2.

Self-similar and self-affine Self-similarity is a common assumption made about 

profile data in order to model the irregular behaviour of the data.

There are a number of conflicting definitions of self-similarity, due to their dif

ferent origins in mathematics and statistics. Here, we employ the definition from 

Taqqu (1988) for a one-dimensional process: a process X(t)  is self-similar with pa

rameter H if X(at) and aHX(t)  have identical finite-dimensional distributions for 

all scalar values of a > 0.

For an intrinsically stationary process Ar, self-similarity implies that v(t) =  c|t|Q 

where a = 2H. To see this, observe that

v(as) = var[A(as + at) — X(at)]

= var{a//[A(s +  t) —  X(t)]}

= a2Hv(s).

To obtain the desired form for the variogram, substitute a = |s |_1 and c = u(l).

Self-similarity is sometimes taken to be the case where c = 1, and the term 

self-affine used for the more general case when c is allowed to vary. In that case, a 

self-similar process may be specified by the single parameter, H.

In principle, the definition of self-similarity of a one-dimensional process can 

be applied in two dimensions, by replacing the one-dimensional argument t by a 

two-dimensional vector t. It should be noted that this is more restrictive than the 

condition that every one-dimensional transect of X(t)  be self-similar. The former 

restricts H to a single value, independent of orientation of t, whereas the latter 

allows H to vary with orientation.
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Fractional Brownian motion If X(t)  is intrinsically stationary, self-similar and 

Gaussian, then it can be modelled by a scaled fractional Brownian motion, AZ (T -ft), 

where

Z(0) =  0, EZ(t )  = 0, and -

Modelling profiles using fractional Brownian motion makes an implicit assump

tion of self-similarity. From experience, we believe that in many cases such an 

assumption is unwarranted. As Thomas (1982) warns,

The theoretician and the instrument designer start with some postu

lated mathematical model and are developing numerical descriptions of 

surface texture and theories of surface interaction. Both approaches 

are invaluable. But there is an obvious danger that they may diverge; 

in particular, theories may be developed which contain mathematically 

attractive assumptions not generally valid for real surfaces, and parame

ters may become commonly measured and specified merely because their 

determination is instrumentally convenient.

As H  —> 1, or equivalently as a —> 2, the dependence between increments over large 

lags becomes so great that the fractional Brownian motion tends to a straight line. 

None of the data sets illustrated in section 1.2 seems to exhibit this attribute.

It is sometimes thought that the assumption of self-similarity is necessary for 

developing fractal methods. This is in fact not the case, and has unfortunately led 

to some earlier methods that lack consistency when the assumption is not valid. In 

practical terms, this can be almost all of the time. None of the methods developed 

in this thesis relies on the assumption of self-similarity.



Chapter 2

Characterising surface roughness

We explore existing methods for the characterisation of surface roughness, pay

ing particular attention to their limitations. Most of these methods are for one

dimensional data and do not extend readily to higher dimensions. Some of the 

methods concentrate on a related attribute such as the area about a trend line, and 

fail to distinguish between surfaces with different roughness characteristics but sim

ilar area.

We distinguish two qualitatively different components of roughness: erraticism 

and scale. Most of the existing methods implicitly combine these two components, 

thereby losing important information. At this point we introduce fractal dimension 

and show how, as a scale-independent measure, it quantifies the first component, 

that of erraticism.

We model the behaviour of the variogram in the vicinity of the origin as an 

approximation to a power law. This law can be defined directly in terms of fractal 

dimension, but we define it in terms of an intermediate quantity, fractal index. 

Fractal index is useful in that, like fractal dimension, it measures erraticism, but 

it has the added advantage of being independent of the dimension of the data. We 

derive the simple linear relation between fractal index and fractal dimension that 

allows fractal dimension to be estimated.

15
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Associated with this power law is a scale factor. This serves as a measure of the 

scale component of roughness. To be consistent with similar terminology from Sayles 

& Thomas (1978b), this scale factor will be referred to as topothesy.

Finally, we describe a way of comparing the “overall” roughness between two 

surfaces. This yields a partial ordering of surfaces in which either (a) one of two 

surfaces is rougher than the other, or (b) the two surfaces are incomparable. The 

method is based on the dominance of one variogram over another, and incorporates 

comparisons of both fractal index and topothesy.
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2.1 R eview  of ex isting  m ethods

There are numerous measures extant for quantifying surface roughness from profile 

data. Thomas (1982, pages 86-87) provides a table of definitions and origins for 23 

common measures. This is by no means an exhaustive list.

Although most of the existing roughness measures have been developed for one

dimensional data, some measures exist for two-dimensional gridded data; see for 

example Stout et al. (1993). These include extensions of the one-dimensional pa

rameters, where this is possible, as well as measures specifically designed for two 

dimensions.

Many measures are application-specific, being defined in terms of how the surface 

may be expected to behave functionally in a given environment. One such example 

is the ‘bearing length’, or ‘bearing area’, which seeks to quantify the proportion of 

the surface that would support a flat object being forced upon it, by gravity for 

instance.

Some parameters are easily recognisable as statistical moment estimators, e.g. 

skewness and kurtosis. However, the usual sampling assumption underlying the 

analysis of these estimators, that of independence, has been ignored, severely affect

ing the validity of such approaches in the presence of correlation.

Nearly all measures of roughness can be shown to be measures of scale, in that 

a rescaling of the data is reflected as a similar rescaling to the measures. Thus, for 

two surfaces similar in all other respects, these measures provide an adequate means 

of differentiating the surfaces by size.

Amongst the most commonly used roughness measures (possibly due to their 

appearance in measurement standards) are: average roughness, root-mean-square 

roughness, and ten-point height. Define the mean level as x — n~l Y !xi- Then the 

average roughness is calculated as,
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the root-mean-square roughness by,

1
2

and if rqq < • • • < X[n] denote the order statistics of the Xi s, the ten-point height is 

the quantity,

for n > 10.

Caution must be used when using any of these measures to compare surfaces. 

Indeed, many practitioners advise that to use these measures to compare surfaces, 

the surfaces should be recorded over the same interval at the same sampling rate by 

the same machine. Two of these imperatives relate to the sources of error.

Firstly, there is the accuracy of the measurement equipment used to obtain the 

profile data from the surface. Different machines that employ different measure

ment techniques, such as stylus and optical profilometers, cannot measure the exact 

elevation of a surface at an exact point. Instead, they perform height averages in 

the vicinity of the point. In addition, each type of machine gives a different type of 

average.

The second source of error, which is due to increasing the sample size by in

creasing the range over which the profile is measured, can be attributed to bias. If, 

for the moment, we assume that X  has constant finite variance and a covariance 

function 7 (-), then the expected value of R2q is

(c/. 3.3). For finite samples the bias term can be quite considerable, especially if 

y(-) decays slowly as would be the case for a smooth surface. Therefore, profiles 

measured over different ranges but at the same sampling rate may have considerably 

different biases that would dominate any comparison. When the assumption of a
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constant finite variance for X  is dropped, the problem is exacerbated. In this case, 

the expected R2 is a weighted average of the variogram over the range observed:

E(RS ■ j j s E i : '(<-->) -  ;  E  M
1=1 j  =  1 1=1 V 7

So, depending on the form of the variogram, samples taken over wider ranges are 

measuring different quantities, and are therefore incomparable.

These problems are common to most existing scale-dependent roughness mea

sures, including the other two quantities defined above, Ra and R z.

To date, there do not seem to be any methods for gauging the accuracy of point 

estimates in any of the existing methods. We shall address this shortcoming in later 

chapters.

2.2 W h a t is roughness?

Despite the plethora of roughness measures, there does not seem to be a generally 

agreed definition, either mathematically or in natural language, of what roughness 

is. As we saw in the previous section, it has generally been the case that a particular 

algorithm has been applied to data to obtain a measure, and the algorithm itself 

has been used as a definition of roughness, e.g. root-mean-square roughness.

There has been little discussion of what the result of these algorithms actually 

measures. Rather, there is usually an implicit assumption that the value achieved 

will be different for different data sets, and a hope that the implied ordering of 

data sets, from smooth to rough, will somehow agree with a person’s perception of 

roughness.

This last property, of a measure ordering surfaces according to roughness in 

agreement with an experienced observer, is an appealing one. It would allow the 

observer to gain an appreciation of a surface without necessarily having to see it. It 

would also allow an analysis that is usually subjective to be more objective. This 

is particularly advantageous when there are many surfaces to analyse and an auto

matic method of analysis is sought. Such applications arise in process monitoring
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in manufacturing, where it is necessary to regularly inspect component surfaces for 

wear. Sadly, the existing roughness measures do not have these properties and have 

proven unreliable in this application.

Erraticism One of the appealing properties of fractal dimension as a quantifier 

of roughness is that it captures the degree of erratic behaviour of sample paths. 

Adler (1981, Chapter 8) coined the term erraticism for this property when applied 

to the sample path of a stochastic process. For one-dimensional processes, it refers 

to the irregularity of oscillations as opposed to the scale of oscillations. This idea 

of the degree of irregularity or randomness of sample paths ties in well with human 

perceptions of roughness.

However, a measure of erraticism alone does not fully capture the whole concept 

of roughness. Imagine a profile that took the form of a sine wave. Its path is 

very regular and smooth, but if we were to dramatically increase the frequency and 

amplitude of the sine wave, then the path might appear rough in some sense.

Although it may be argued that increasing the frequency somehow increases the 

erraticism, if we were to look at the path on a smaller scale, i.e. by looking at 

it under magnification, then we may revert to our original characterisation of the 

sample as smooth.

Perhaps, then, scale-independence might be a desirable property for a measure of 

erraticism to possess. True scale-independence can only be achieved if the stochastic 

process is self-similar. As we discussed in Section 1.4, this property does not seem 

to apply in many practical situations. Therefore, we shall require that measures of 

erraticism be vertically scale-independent functionals, in the sense that any vertical 

rescaling of the process leaves the measure of erraticism unaffected.

To date, fractal dimension and closely related methods appear to be the only 

such quantifiers of erraticism. None of the traditional roughness measures manages 

to treat erraticism at all adequately.

Scale Nearly all existing measures of roughness provide a measure of scale, in that 

they respond monotonically to a change in scale of the data, either horizontally or
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vertically. If the data are magnified, then these measures increase.

Indeed, most traditional measures of roughness are linear functionals, for which 

increases in the data are reflected by the same increases in the measure. Since this 

aids comparison of such measurement between surfaces, we note this as a desirable 

property for measures of scale.

If two surfaces have similar erraticism, a measure of scale would seem appropriate 

to differentiate the two surfaces in terms of roughness, the surface that varies more 

being the rougher. In this way, measures of erraticism and scale complement each 

other.

2.3 Fractal m ethods

Undoubtedly, the name most commonly associated with the development of fractals 

and fractal dimension, and their application in the physical sciences, is that of 

Benoit Mandelbrot. The interested reader may consult Mandelbrot (1975, 1977, 

1982, 1985) and Mandelbrot et al. (1984) for an appreciation of early works. Since 

then, there has been considerable investigation of the mathematical theory of fractals 

(Barnsley 1988 and Tricot 1993), and of the practical applicability of fractals in 

a wide variety of areas ranging from urban and landscape planning (e.g. Milne, 

1991a,b) to oceanography and meteorology (e.g. Jain, 1986; Morrison & Srokosz, 

1993), defence science (e.g. Lo et al., 1993), and the study of musical scores (e.g. 

Hsii & Hsii, 1990; Lewin, 1991).

In the remainder of this thesis we shall confine our attention to fractal methods 

as they apply to the problem of characterising surface roughness.

2.3.1 Fractal dimension and fractal index

Fractal dimension There is a variety of different definitions of fractal dimen

sion, including box-counting or Minkowski-Bouligand dimension (e.g. Barnsley 1988, 

Chapter 5; Taylor & Taylor 1991, Chapter 5), and Hausdorff dimension (e.g. Adler, 

1981, Chapter 8). In general, a suitably defined deterministic curve or surface can
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have different fractal dimensions, depending on the definition used, or have well- 

defined dimension according to one approach but not another. However, for the 

Gaussian-based models that we have in mind, all the common definitions are appli

cable, and all produce the same numerical value for dimension.

The practical estimation of fractal dimension is typically based on estimation of 

a quantity that is sometimes called fractal index, that describes the way in which 

the variogram of the underlying stochastic process varies near the origin. (The term 

‘fractal index’ is sometimes used to describe the rate of decay of the covariance 

function for arbitrarily large lags, rather than small lags. The duality between 

behaviour at infinity and the origin in the case of perfectly self-similar processes 

has caused the terminology to be used for behaviour at both extremes.) Quite 

apart from theoretical considerations, practical limitations often restrict estimation 

to moment properties of stochastic processes, so it is particularly helpful to be able 

to characterise relatively complex properties of sample paths in terms of properties 

of low-order moments, in particular of covariance. Thus, many estimators of fractal 

dimension are based on an estimate of fractal index, and use a simple formula relating 

the two to produce an estimate of dimension. Estimators based on the variogram 

and periodogram are of this type.

Fractal index The fractal index of an intrinsically stationary process with vari

ogram v(’) may be defined as the common value, a, of the real numbers

a = sup{£ > 0 : v(t) = 0(||t||^) as t  —> 0}

b = inf{£ > 0 : ||£||* = 0[v(t)} as t  —» 0},

provided they do have a common value. In practice, it is usual to assume a relatively 

simple model for the variogram, that ensures equality of a and b. For example, in 

the case of isotropy it might be supposed that

v(t) =  c||t||a +  o(||t||Q) (2.2)

as t  —» 0. The value of a always lies between 0 and 2, and (for a Gaussian process 

or field) equals 2 if X  is differentiable.
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Since the fractal index is so pervasive in this thesis, we reserve the Greek letter 

a to symbolise it, and the accented a to denote an estimator for it.

Relation between dimension and index If the fractal index a is well-defined, 

and if the process X  is sufficiently closely related to (see below) a Gaussian field, 

then with probability 1 the realizations of X  have fractal dimension

D — d -f- 1 — 5 (2.3)

see for example Adler (1981, Chapter 8), Sayles & Thomas (1978b) and Thomas & 

Thomas (1988). Note particularly that d < D < d + 1. Processes X  for which D is 

larger have rougher-looking realizations, at least on a sufficiently fine scale.

With regard to the phrase ‘sufficiently closely related to’, Hall &: Roy (1994) 

showed that for (2.3) to hold it is not necessary that X  be Gaussian. Indeed for 

(2.3) to hold, it is sufficient that X  be a smooth function of a sequence of Gaussian 

random fields, with the fields having well-defined fractal dimension and the function 

satisfying a suitable moment condition. This implies that variogram-based methods 

for fractal dimension estimation are not restricted by a Gaussian assumption, but 

are appropriate to a much wider class of random field models.

IMPORTANT NOTE: Because of the negative relationship between fractal dimen

sion and fractal index in (2.3), it is imperative that the distinction between the two 

be emphasised. Fractal dimension increases with an increase in the erraticism of a 

curve, and is therefore a measure of increasing roughness. In contrast, fractal index 

decreases with a similar increase in erraticism, and so is a measure of increasing 

smoothness. Throughout this thesis, it will be necessary to switch attention from 

fractal dimension to fractal index and back again.

2.3.2 Point estim ation

Over the past 20 years, increasing interest in fractal dimension has led to the in

vention of many dimension estimators. Some estimators are more general in nature



CHAPTER 2. CHARACTERISING SURFACE ROUGHNESS 24

and apply to a wide range of data types, e.g. to random sample paths within a 

plane, such as the coastline of Britain. Because of their general nature, these meth

ods often perform more poorly than specific methods tailored to special data types. 

Nevertheless, they do provide a means of dimension estimation in cases where there 

might not otherwise be one.

In the present problem, we choose to impose structure on the sample paths, 

specifically, that they are continuous functions. Consequently, we shall confine at

tention to those dimension estimators specifically designed for such data sets. We 

now give descriptions of three of the most common approaches to dimension esti

mation for continuous random functions.

These methods are described in the one-dimensional setting, since most of the 

work on the estimators is for one-dimensional data, the most common case. It is 

often beneficial to gain an understanding in one dimension before progressing to 

two or more dimensions. The two-dimensional setting will be discussed in detail in 

Chapters 5 and 6.

V ariogram  m e th o d

This method relies on the one-dimensional version of (2.2):

Once this assumption has been made, log v(t) should be an approximately linear 

function of log |£|, for small t:

So, given an estimator fi(-) for the variogram, we may construct a plug-in estimator 

of a as the slope of the linear regression of log v(l/n) on xi = log l for the first k 

values of /, i.e.

v(t) =  c|t|a + o(|t|a) as t -> 0. (2.4)

logu(f) =  logc + a\t\ o(l). (2.5)

( 2.6)

where x = k 1 V  jy. Then using (2.3), fractal dimension is estimated by D = 

2 — a/2.



CHAPTER 2. CHARACTERISING SURFACE ROUGHNESS 25

Practical considerations, such as choice of k and the statistical properties of d, 

and therefore of D , will be discussed in Chapter 4.

Box counting

Because it is simple to understand and easy to implement, box counting is a popular 

method for dimension estimation. The basic box counting method involves parti

tioning the plane into equal-sized squares, or boxes. The box covering is taken to be 

the set of boxes that intercept the curve. Fractal dimension is calculated from the 

limit of the ratio of either the logarithm of the box-covering area, or the number of 

boxes in the covering, to the box width, as box width tends to zero. See Barnsley 

(1988) for details.

In practical terms, the smallest box width is determined at least partly by the 

fineness of discretisation of the data, making it difficult to calculate fractal dimension 

from its formal definition. Consequently, the slope of a log-log regression, similar 

to that employed in the variogram method, is used. However, Hall & Wood (1993) 

show that this method is prone to bias of the order of (logn)-1. Instead they provide 

an alternative log-log regression method. Firstly, to imitate collecting the data at 

coarser scales, the data are sub-sampled at regular intervals: the greater the interval 

the coarser the scale. The box-covering area is then calculated for each sub-sample, 

and the log of the area is regressed against the log of the width of the sub-sampling 

interval.

Following their notation, define

B(i, l) = {(z — l)/m/rz, [(z — l)m + l]//rz,. . . ,  i lm/n}  (1 < z < g/, 1 < l < k),

where qi denotes the integer part of (n — T)/lm. Here, l denotes the level of discreti

sation, m the width of a block, and B(i, /) the zth block of indices. The approximate 

area of the box-covering for the zth block is

An = u(Uu — Lu),
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where

e = Im/n, Uu = max X i i / n ), and Lu =  min X(j /n) .

The individual box covering areas are summed over blocks to obtain the total box

covering area,

A(i) = j 2 A'‘ = e‘
i i

An estimate, Z), of fractal dimension may be obtained from the slope of a log-log 

regression,

2 - D  = ~ x ) log A(l)
1=1

x) (2.7)

where xi = log / and x = k~l xi-

The similarity between this box counting method and the variogram method 

above is not restricted to the use of log-log regression. When X(-) is Gaussian and 

m is taken as 1, the two methods coincide.

In this case, Uu and Lu are, respectively, the maximum and minimum of just 

two values, X[(i — 1)1/n] and X(il/ri). Therefore,

(Uu -  Lu) = \X(il/n) -  X{(i -  l)l/n\\

is the absolute difference of X(-) over a lag of l/n. For a Gaussian process this 

absolute difference has an expected value of 2n~l/2v(l /n)1/2.

Thus, the expected box-covering area is
Ql

E{A(l)} = e, J 2  E IX(il /n)  -  X[(i  -  l)l/n}\
i=1

= (l/n)qi(2/ it  ) 1/2v(l /n)1/2

= (2/Tr)l/2v(l /n)1/2.

If we use (7t/ 2 )A(l)2 as the estimate of the variogram in (2.6) then we get (2.7) 

exactly.

In this instance, the equivalence of the two methods allows us to compare the 

two methods. The implicit variogram estimate in the box-counting method is the
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average of just n/l  summands chosen from a possible n — l. All other estimators, 

including the empirical variogram introduced in the next chapter, use n — l. Conse

quently, these estimators perform better, although their rates of convergence are of 

a similar order.

The fact that the box counting method is a special case of the variogram method, 

which performs more poorly by a constant factor, explains why we choose to con

centrate on variogram-based methods rather than box-counting methods in this 

thesis.

S p ectra l m eth ods

Fractal dimension can also be estimated using spectral methods based on the peri- 

odogram (see Dubuc et al., 1989). These methods make use of the relation between 

fractal dimension and fractal index (2.3) and assume second-order moment proper

ties similar to (2.4). Although spectral methods are popular for estimating fractal 

dimension, Constantine & Hall (1994) note,

Consistent estimation of the spectral density, /(•), requires statistical 

smoothing, and a second level of smoothing is needed to estimate a (and 

hence D) from /(•). This complicates both the theoretical and practical 

sides of the procedure. By way of contrast, u(-) may be estimated directly 

and unbiasedly from observations of the stochastic process X  on a grid; 

smoothing is not required at this level.

Nevertheless, Chan et al. (1995) propose a method, based on a continuous version of 

the periodogram, which avoids the complications in analysis introduced by statistical 

smoothing as noted above. Their method follows.

For convenience and without loss of generality, the domain on which X  is ob

served is taken to be (—1,1). Define

I(cu) = A(üü)2 + B(u)2, and J(uj) = A(cj)2.
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Here, I(u) is the full continuum periodogram and J(u)) is a semiperiodogram.

Despite their similar construction, E{^4(u;)2} and E{B(uj)2} have quite different 

asymptotic behaviour:

E {v lH 2} ~ C a w“(“+1)

whereas

E{£(cj)2} ~  <

Ca u ) - ^ \

C W 2,

if 0 < a < 1, 

if a = 1,

C2u 2, if 1 < a < 2,

as ui —» oo through integer multiples of 27t, where C\ and C2 are constants and Ca 

is nonzero and depends on a. From this it can be seen that, for a > 1, a  can not 

be estimated directly from I(w). Therefore estimation of a, and hence D, is based 

solely on the semiperiodogram J (cj), and is again achieved by performing a log-log 

linear regression, viz.

& = - {  ~ x) log i(u )j)2 -  x)2 l -  1,
j = i 3= 1

where w3 — 2ttj, Xj =  loga;^, x = k~l Yhxj and A(u) is an estimator for A{lj). 

Then D is estimated by D = 2 — d/2, as for the variogram method.

We do not intend to explore spectral methods any further in this thesis. Instead 

we have chosen to concentrate on characterising surface roughness using parameters, 

including fractal dimension, derived from the variogram.

2.3.3 Topothesy

Sayles & Thomas (1978b) coined the term topothesy for a parameter that describes 

the scale of oscillations of a surface. They also stated that this parameter “uniquely 

defines the statistical geometry of the random components of an isotropic surface”. 

However, Berry & Hannay (1978) showed that in reaching this conclusion Sayles 

and Thomas had effectively taken the fractal index to be 1 for each surface under



CHAPTER 2. CHARACTERISING SURFACE ROUGHNESS 29

study. This value was obtained from data pooled from all of the example surfaces 

under investigation. Individual estimates for the fractal index for each surface were 

calculated in Sayles & Thomas (1978a), and indeed a wide range of values, cover

ing almost the whole possible range, was obtained. Topothesy may not define the 

statistical geometry uniquely; however, it does provide a measure of the scale of 

surface oscillations complementary to the measure of erraticism offered by fractal 

dimension.

There seems to be no agreed formal definition of topothesy; note the different 

definitions in Sayles & Thomas (1978b), Berry (1979), and Thomas & Thomas 

(1988). In particular, there exist non-equivalent definitions in the frequency and 

spatial domains. Therefore we propose an alternative, more convenient, definition 

based on the multiplicative factor c in (2.2). Since topothesy is to be a measure of 

scale, it is not unreasonable to require that the topothesy of AX(t)  be A times the 

topothesy of X(t),  i.e. a linear functional of X(t).

An expression that fits this requirement is simply c1/2, where c is the constant 

of proportionality in (2.2). Note that Davies & Hall (1999) define topothesy as c. 

The definition of c1/2 is preferred here for its linearity property.

We can estimate c as the intercept of the linear regression of log v(l/n) on x f

Then the estimated topothesy is just c1//2.

For anisotropic two-dimensional data, c will be a function of orientation rather 

than a constant. This will be examined in detail in chapter 6.

Unlike fractal index, topothesy has physical dimensions. A simple dimensional 

analysis using (2.2) yields physical dimensions in metres (m) for topothesy of m1-Q/2, 

or equivalently mD~d — that is, metres to the power of the difference between fractal 

dimension and Euclidean dimension. In practice, it is probably easier to interpret if 

the unit for length is the same as the original unit of measurement, e.g. (^m)D~d.

Bearing this in mind, the two roughness parameters, fractal dimension and 

topothesy, could be combined in a simple expression to characterise the roughness

c =  exp ( 2.8)
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of a profile: for example, ‘the roller has a fractal roughness of 54.6 (//m)0 255

2.4 C om parison of existing and  fracta l m ethods

A numerical study was carried out to show how fractal methods perform in com

parison with existing methods.

The three traditional roughness parameters i?a, Rq and Rz defined in Section 2.1 

and the two fractal estimators D and c defined using the variogram method were 

calculated for a collection of simulated surface profiles. In calculating D and c, the 

one-dimensional empirical variogram (cf. 3.2) was used as an estimator of u(-), and 

k was taken as 2.

Each simulated profile was a realisation of a stationary Gaussian random process 

with the stable exponential covariance model

7M =  7(0) exp(—A|£|Q),

for its covariance function. Here, 7(0), the variance of the process, was set equal to 

the value 0.04 for all of the simulations. The simulations were performed using the 

algorithms in chapter 7.

Seven sets of 1000 profiles were simulated, each with different values for the pair 

(A, a). The a ’s took the values 0.25(0.25)1.75. The corresponding values for A were 

calculated so that the range of dependence within each process was approximately 

half the range of the data. To achieve this, A was calculated so that 7(0.5)/7(0) = 

e~3 «  0.05, which implies that A = 3 x 2Q.

Typical profiles for each pair of parameter values (A, a) are graphed in Figure

2 . 1 .

Figure 2.2 contains 5 panels of boxplots, one panel for each of the roughness pa

rameters discussed so far. Within each panel there are seven boxplots corresponding 

to the seven values of a. Each boxplot depicts the distribution of measures of 1000 

simulated profiles.

Of the three traditional roughness parameters, the ten-point height Rz provides 

the best discrimination between the simulated profiles. However, its superiority is
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Figure 2.1: Simulated profile data sets. Each profile is a realisation of a Gaussian 

random process with a stable exponential covariance model with fractal index a. The 

standard deviation of each surface was 0.2 and the decay constant c was calculated 

so that 7(0.5)/7(0) =  0.05. The vertical scales for each profile are the same as for 

the horizontal scale.
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T
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Figure 2.2: Boxplots of roughness area i?a, root-mean-square roughness Rq, ten- 

point height Rz, estimated fractal dimension D and estimated topothesy c for 1000 

profile data sets, simulated with 7 different values for a\ a typical profile for each 

value of a is shown in Figure 2.1.
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only marginal when compared with the dramatic differences between boxplots for 

estimated fractal dimension and estimated topothesy.

In this instance, the difference in nature between profiles from the different mod

els is exhibited in both the fractal dimension and the topothesy. Since topothesy is a 

linear functional, we could quite easily exaggerate the vertical scale of profiles from 

different models by certain factors so that their estimated topothesies were similar. 

It is comforting to know that this would have no effect on the estimate of fractal 

dimension, since it is scale-independent.

If, on the other hand, profiles from a particular application were found to have 

similar fractal dimensions, topothesy could still be used to determine which might 

be considered roughest.



C h ap te r 3

T he variogram

All of the methods for characterising and comparing surface roughness developed 

in this thesis are based on the variogram. Because the variogram plays such an 

important role in these methods, it is fitting that a chapter be devoted to its study, 

which addresses computational and stochastic properties of an appropriate estimator 

for it.

There are a number of different estimators of the variogram; however for our 

purposes the naive empirical variogram will suffice. Its limitations are mitigated by 

the typical size of data sets in surface problems, and its benefits include mathematical 

tractability, ease of computation (for which we provide computationally efficient al

gorithms), and its familiarity to various scientific and engineering groups, although, 

in some cases, not as an estimator of the variogram.

The variogram and the auto-covariance function of a surface are similar in that 

roughness properties that we wish to estimate can be derived from estimators of 

either. However, there are a number of advantages in using the variogram over the 

auto-covariance in this instance: it exists for a larger class of problems, it excludes 

an unnecessary parameter, and its naive estimator is unbiased.

We look at a few ways of displaying the variogram for one- and two-dimensional 

data. Some of these graphs can provide useful inferences about the roughness char-

34
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acteristics of a surface, such as isotropy or a dominant roughness direction.

The statistical properties of the methods depend heavily on properties of the em

pirical variogram as an estimator. We derive its moment properties and asymptotic 

distributional behaviour in terms of the two roughness parameters, fractal index and 

topothesy.
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3.1 D efin ition

The variogram was defined in section 1.4 for an intrinsically stationary random 

process. More generally, the variogram for a random process X(t)  may be defined 

as a function of two arguments, location t and displacement /i, by

v(t , h) — var [X(t + h) — X(i)].

From this definition, the following observation about v(t, h ) may be deduced:

v(t, h) = v(t + h , —h). (3.1)

If X(t)  is intrinsically stationary then v(t ,h)  is independent of location and 

depends only on displacement. In this case we write it as v(h).

The simple observation (3.1) then becomes v(h) =  v(—/i), that is, symmetry 

about the origin. This implies that when calculating or estimating v(t) from one

dimensional data, one need only calculate v(t) for nonnegative values of t , and sim

ilarly when estimating v(t) from two-dimensional data, one need only be concerned 

with t in a half-plane.

A necessary condition for the validity of variograms, in the sense that associated 

sample paths are real-valued, is that of conditional non-positive definiteness, that 

is, for any finite number of spatial locations t x, . . . ,  tm and real numbers ci , . . . ,  cm 

satisfying ci =
m m

- 1,) < o .
i=i j=i

In chapter 6 we explore the implications of this important property for fractal 

dimension and topothesy in the anisotropic two-dimensional setting.

Many methodologies based upon the variogram, including the best-known ap

plication of kriging, require that variogram estimators also be conditionally non

positive definite. However, most numerical estimators fail in this respect. To over

come this problem, the numerical estimators are used to fit various variogram models 

that are conditionally non-positive definite, and then these fitted models are used. 

This is the case in chapter 7, where we need to simulate surfaces with similar ap

pearances.
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3.2 E stim ation

One of the simplest estimators of the variogram is the empirical variogram. Given 

a realisation of an intrinsically stationary random process X  : Q —> R, the empirical 

variogram is defined as

and IC(h)\ > 1. For one-dimensional data, \C(h)\ = n — n\h\.

When dealing with gridded data, the domain of O(-) is itself a grid, centred at 

the origin. Thus, we can use perspective plots and similar graphical methods to 

explore its features.

The empirical variogram is also called the sample variogram in statistics, or the 

structure function in other sciences. Interestingly, the structure function is already 

used in some areas of application to estimate fractal dimension, although the reasons 

for its use lack a theoretical basis.

There are other methods of estimating the variogram; see for example Cressie 

(1991). Most are concerned with robustifying the estimate against domination by a 

few summands in (3.2). When dealing with smaller non-gridded data sets (often the 

case in geostatistics) this is an important practical consideration. However, surface 

data sets are gridded and often large, implying that the number of summands | C(h)\ 

that go into estimating v(h) is large. The differences between different variogram 

estimators for such data are negligible. So, for mathematical convenience, we shall 

use the naive empirical variogram as our variogram estimator, although the methods 

developed are appropriate for other estimators too.

We shall see that point estimation of fractal dimension and other roughness 

parameters requires the variogram to be estimated at only a relatively small number 

of displacements. However, other methods presented, including the model fitting for 

simulation of section 4.3, require the variogram to be estimated over a large portion

(3.2)
t e c ( h)

where

C(h) — ( f  G ^ T  +  /i  G Q}
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of its domain, if not its whole domain. For this reason we provide a more efficient 

holistic algorithm for its computation.

One-dimensional algorithm

In the one-dimensional case,

n —|/i|

v(h) =  ( n -  |/i|)_1 ^ [ X ( t  + \h\) - X { t ) } 2
t— 1

— ( n - \ h \ )  1(5'ii|#l| — 2C\h\ +  S2,\h\)

where

j  n n - j

S \ , j  =  E j X 2 , S2,; = £ V u2, and C s = ' £ , X J C w ¥ i ,
U=1 U=j  1

for 0 < j  < n. Here, {5ij} and {52,; }’s are sequences of partial sums and, assuming 

that they are calculated in an efficient manner and intermediate results are kept, 

will require 0(n) operations.

The quantity C j  is recognisable as the discrete convolution of {Xj} with the 

reverse of itself. Using the Fast Fourier Transform (FFT) to effect the convolution 

in the Fourier domain, we may calculate all of the Cj s in 0 (n  log n) time.

To avoid edge effects, embed the sequence of Xi s in a sequence of zeroes of 

overall length 2n: for 0 < j  < 2n put

Y  {Xj+i, ifO < j < n

I 0, otherwise.

It should be noted that {Xj} need only be extended to length 2n — 1, but we choose 

to extend it to a length of 2n, since algorithms for implementing the FFT perform 

better if the sequence length is a highly composite number.

Then, if {Ft} is the FFT of {*}},
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Now, {C j } is the circular convolution of { Y j }  with its reverse:

2n—1

C, = £  £

The computational complexity of a sequential algorithm is the maximum com

plexity of its component stages. Hence, the one-dimensional empirical variogram 

may be computed in 0(nlogn) operations, compared with 0 ( n 2) for direct compu

tation.

Two-dimensional algorithm

Although this is a direct extension of the one-dimensional algorithm, there is a 

significant difference: v(-) needs a half-plane rather than just positive values. The 

following method calculates v(h) for all displacements h  in {1 — n, • • • , n — l}2.

Because indices of arrays are usually nonnegative, we introduce the following 

notation to switch between the domain of v(-) and the indices of a two-dimensional 

array. Variables annotated with a prime, such as j', range over 1 — n , . . . ,  n and will 

be used for the domain of {)(•), whereas unannotated variables, such as j, range over 

0 , . . . ,  2n— 1 and will be used to index arrays. Furthermore, the implicit relationship 

between a variable and its annotated counterpart is given by

if 0 < j  < n if 0 < j '  < n

if —n < j ' < 0.

From (3.2)

v( f ,  k') = [(n -  1/1)(n -  \k'\)]~\Si m  -  2Cjk + SUjk))

note the absence of primes on the subscripts — where

-2
u + j' ,v+k'

u v u v

and
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and the ranges for the summations are defined by 1 < u ,u  + j ' < n and 1 < 

v, v +  k' < n.

By analogy with the one-dimensional algorithm, embed the n x n array of data 

{Xu?;} into the 2n x 2n array {Y^},

Y jk  =
I X j + 1,/c-i-l

1 °

if 0 < j ,  k < n 

otherwise.

Perform the two-dimensional FFT on {Yjk}-
2n—l 2 n—l

y  Y j k e - 2 „ u i + km )/n

j=0 k=0

The two-dimensional FFT is just the sequential iteration of the one-dimensional 

FFT, n times in both directions. It requires 0 (n 2 log n) operations.

Note that Cjk is the two-dimensional convolution of {Yjk} with the reversal, in 

both directions, of itself:
2n—1 2n—1

Cjk =  \Flm\2e2’ i^ ,+km^ n.
1=0 m = 0

We may obtain S \t(jk) and S2f(jk) from the four intermediate quantities,
q r q n

^  =  E E * - >  '  =  E E *
2
uvi

U=1 11 =  1
n r

u = l  v= r  
n n

P3,qr — X u v , PA,qr ~  X .
u=q v=  1

2uvi
u=q v=r

where q and r range over 1, . . . ,  n. Then,

S \ , ( j k )  -  S 2, (2n- j , 2n -k )

PA,jk

P 3 , ( j , k - n - l )

< P 2 , ( j —n —l,k)

P l , ( j —n —l , k —n —l)

0
s.

if j , k  < n 

if j  < n < k 

if k < n < j  

if n < j , k

if either j  = n or k = n.

To compute them efficiently, observe that { p i , q r } ,  { P 2, q r } ,  f e i . g r }  and {pA,qr }  are all 

arrays of partial sums. If care is taken each will require only 0 ( n 2) operations.
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Accumulating the computational order of the various stages we can see that the 

overall algorithm requires 0 (n 2 log n) operations, compared with 0 (n 4) for direct 

evaluation. Thus, if N  is the total size of a data set, n for one-dimensional data and 

n2 for two-dimensional data, then both algorithms are 0 ( N  log N).

3.3 A dvantages of variogram  over autocovariance

If X  has a well-defined covariance function then it is possible to construct plug-in 

estimators of fractal dimension and topothesy from the covariance function of X , 

since

v(t) = 2[7(0) -  7(t)].

However, there are several compelling reasons to employ variogram methods.

Firstly, the variogram exists for a wider range of processes. We model profiles 

and surfaces by intrinsically stationary and continuous random processes. Conti

nuity ensures that the variogram exists, but for the processes to have a covariance 

function we also require that they have finite variance. This may not necessarily be 

a physically valid assumption.

As an example, consider the case of fractional Brownian motion. It is intrin

sically stationary and continuous and has a valid variogram that depends only on 

displacement. However, it does not have a covariance function that depends on dis

placement only: either the fBm is tied at one end, in which case the covariance is 

non-stationary, or the variance is infinite.

Secondly, if a stationary process has a covariance function, then it is difficult, if 

not impossible, to construct an unbiased estimator without making extra assump

tions. For example, the naive estimator 7 (h) for the covariance function of a one

dimensional process, similar to the empirical variogram estimator for the variogram,
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will be heavily biased even at the origin:

E7(0) =  E n - i y ^ ( X ,  - V ) 2
i

= E n - 1^ [ ( X , - M) - ( X - / / ) ] 2
i

= E n “1 ] T  [(X, -  ß f  -  2(X,  -  ß)(X - ß )  +  ( X -  ß f ]
i

=  n l E(*. -  A*)2 -  n ~2 E  E  E(*> -  M X i  ~  **)
i i j

= 7(0) - n ~ 2^ 2 ^ 2 y ( i -  j). 
i j

Furthermore, if the process exhibits long-range dependence, where 7 (h) does not 

decrease to zero sufficiently quickly, then the estimator will not even be consistent.

These two problems are both concerned with the variance of a random process: 

either it is infinite or it is difficult to estimate. Our last reason for preferring the 

variogram is that the variance of a process is irrelevant when estimating the main 

roughness parameters, fractal dimension and topothesy. This is because the variance 

is a “wider range” parameter, in that its effects may be ganged by observing the 

process at larger displacements, whereas fractal dimension and topothesy operate 

more locally.

3.4 E xploratory analysis

One-dimensional data The simplest way to explore features of bivariate data 

is to plot their untransformed values using a scatterplot. Indeed, for variogram 

estimators this has often been the only graphical exploration carried out and even 

then, averages of binned values are sometimes all that is actually displayed.

The most common use of such a plot is to help the experienced observer choose 

a suitable model for the variogram to be fitted to the data and then used in subse

quent analysis. By ‘suitable’ we mean that the model is a valid variogram and has 

characteristics or features similar to the empirical variogram.

We shall use some of the standard geostatistical terminology. The si//, if it exists,
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is the fixed value to which the variogram converges as |t| —» oo, and the range is the 

lag at which the variogram can be considered to be “close” to the sill. The nugget 

effect is the size of any discontinuity of the variogram at the origin; its existence is 

due either to measurement error or to variation in the process at a finer scale than 

that measured. Another feature is the behaviour of the variogram near the origin: is 

it concave, linear or convex? In roughness terms, this last property has implications 

for the value of the fractal index a] the variogram will be concave for a < 1, linear 

for a = 1 and convex for a > 1.

Figure 3.1 shows a plot of a large portion of the empirical variogram against 

lag for the roller data described in section 1.2. Both positive and negative lags are

<?>
S'eo
S-HfaO
.2
CC>

*3
.2
‘a.
S

-4 -2 0 2 4

Lag, h (/am)

Figure 3.1: Plot of the empirical variogram calculated from the roller data. The 

graph is highly concave near the origin. This suggests a value of a < 1, which in 

turn indicates a fractal dimension for the roller surface. This rapid decline also makes 

it difficult to discern whether there is a nugget effect in the underlying variogram

or not.
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included, so that the behaviour at the origin is easier to ascertain. The variogram 

appears concave at the origin, implying a value for a less than 1, which indicates a 

fairly rough surface. Because of the rapid decline of the variogram near the origin, 

it is difficult to infer a nugget effect or not.

An alternative to the straightforward scatterplot of variogram estimator against 

lag is a log-log plot of the variables. We have already seen in section 2.3.2 that this 

transforms the behaviour of the variogram near the origin from a power law to a 

linear relationship. Comparing the slopes of lines may be easier than comparing the 

shapes of curves.

The slopes of these lines correspond to the amount of erraticism in the process: 

the steeper the line, the smoother the surface. Note that the gradients of the lines are 

bounded by 2, corresponding to an angle of approximately 63°. Human perception is 

better at differentiating lines up to an angle of 45° Cleveland (1993), and 63° is not 

a slope with which most people can identify. For these reasons it may be preferable 

to plot half of the log of variogram against the log of the lag, or logn(t)1/2. This 

puts the variogram onto the same scale as lag. Lines will then have slopes of a/2, 

ranging from a lower limit of 0, which implies a completely erratic (discontinuous) 

process, to an upper limit of 1 for a smooth (differentiable) process.

Taking logarithms also has the advantage that it allows us to look at the whole 

variogram at once, while at the same time magnifying the area of greatest interest, 

near the origin.

So far we have assumed that the data X{ are exact measurements from a contin

uous process. In practice, the X^s are likely to be subject to error from a number of 

sources, for example due to the precision of the measurement instrument or to local 

averaging of the surface. This was indeed the case for the roller surface data and 

the soil surface data, where the data were discretised height averages. So, variogram 

estimators calculated from X  may exhibit a nugget effect.

If we include an error term in X  by setting X  equal to a continuous process Y  

plus independent error 77, then an update of model (2.4) becomes

v(t) = v{\ — £(£)] -I- c|£|Q + o(|t|Q) as t -> 0,
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Figure 3.2: Plot on log scales of the empirical variogram versus the lag for the 

roller data. The slope over the first few lags is 0.31 corresponding to a fractal index 

a =  0.61 and a fractal dimension D = 1.69.

where v =  2var r) is the nugget effect and S is the Dirac delta function.

Assuming that, on the measurement scale, the measurement error does not dom

inate the approximate power law, i.e. v < c|t|Q, then

log v(t) «  löge -1- a  log \t\ + log[l -f

The last term is positive and decreases with increasing |t|, so that a high nugget 

effect will manifest itself as an increasing slope near the origin.

This behaviour is contrary to that of the examples discussed in section 1.2. All 

of their slopes tend to decrease rather than increase with increasing lag. Therefore, 

we conclude that the measurement error, and hence the nugget effect, is negligible 

for these examples. However, it is a consideration that should be borne in mind.

Figure 3.2 is a plot of half the log of the empirical variogram against log lag for 

the roller surface data. The slope over the first two lags is 0.31, corresponding to 

an estimated fractal dimension of 1.69.

Two-dimensional data Two-dimensional surface data allow us to address the 

issue of anisotropy and how it affects the roughness properties developed in chapter 

2. Before we can explore this relationship, we need to assess whether a surface 

is indeed anisotropic. To explore this graphically we draw a contour plot of the
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(mm)

Figure 3.3: Contour plot of the two-dimensional empirical variogram for the soil 

surface after the maximum amount of simulated rainfall (35.50mm). The individual 

contours are close to circular in shape indicating the soil surface is close to isotropic. 

This is as expected since the the soil surface was constructed in the laboratory using 

a method which did not favour any particular direction.

variogram. A contour plot is more appropriate in this situation than it was for the 

raw surface data, since the variogram is generally a smooth function and so contours 

will be easier to interpret. Anisotropy of the data will be manifested by noncircular 

contours. Because our roughness properties are determined in a local sense, we need 

only draw contours in the neighbourhood of the origin.

Figure 3.3 depicts contours of the empirical variogram for the wettest soil surface. 

Although the contours are not perfectly circular, there is not substantial evidence of
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(x 40nm)

Figure 3.4: Contour plot of the two-dimensional empirical variogram for the fourth 

polymer data set. The anisotropy of this data set is clear; the contours near the 

origin are far from circular.

anisotropy. Figure 3.4 depicts the contours of the empirical variogram for the fourth 

polymer surface. In comparison with Figure 3.3, its contours exhibit a high degree of 

elongation suggesting a far greater degree of anisotropy than the soil data. Chapter 

6 contains a formal statistical test which corroborates this graphical evidence.

Once the existence of anisotropy is decided, we can turn our attention to the 

effects of anisotropy on roughness properties. More specifically, we wish to inves

tigate how erraticism and scale vary with orientation. To explore this, we use a 

simple but informative extension of the one-dimensional log-log plot, by combining 

the one-dimensional log-log plots for each distinct orientation into a single graph.
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Log lag

Figure 3.5: Plot of the logarithm of empirical variogram versus the logarithm of 

lag for the fourth data set. Points originating from displacements with common 

orientation are joined by lines. The anisotropy inferred in Figure 3.4 is clearly 

shown here by the difference in value of the variogram in different orientations. 

However, the form of this anisotropy seems to be limited to the intercepts of the one

dimensional variograms, all having a common slope. This phenomenon is explored 

in detail in chapter 6.

An indication of how the fractal index and topothesy vary can then be gauged by 

the relative slopes and intercepts of lines joining points with small lag.

Figure 3.5 is a plot of half the log of the empirical variogram against log lag for 

the fourth polymer data set. The most striking feature of this graph is that the lines 

between points at lower lags are parallel, indicating a common fractal dimension and 

varying topothesy of line transects with different orientations. This in turn implies 

that the anisotropy of this surface can be explained solely in terms of topothesy. 

This phenomenon is explored in detail in chapter 6, where it is shown that the 

effective independence of fractal dimension and direction is a consequence of the
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conditional non-positivity constraint on the variogram.

The slopes of these lines are close to 45°, indicating that the surface is rather 

smooth; this is in agreement with a visual assessment of the rendered surface in 

panel (d) of Figure 1.3.

One other point to note from Figure 3.5 is the abundance of larger lags at which 

the empirical variogram is approximately 2.75, providing strong evidence that the 

variogram has a sill.

3.5 Properties

An important feature of surface roughness data sets is that they are usually very 

large. Accordingly, we shall require asymptotic distributional properties of the var

iogram in subsequent chapters. In this section we will describe properties of the 

variogram estimator in terms of the roughness characteristics of the underlying sur

face.

It has been shown, as noted in Cressie (1991, page 71), that the limit distribution 

of the empirical variogram is Gaussian, provided certain mixing conditions are sat

isfied. We formalise these mixing conditions in terms of the roughness characteristic 

fractal index, for one- and two-dimensional gridded data. We also give an expression 

for the asymptotic distribution when these mixing conditions are not satisfied. 

Cressie (1991, page 72) states,

Intuitively, the rate of convergence of these estimators to their limiting 

distribution will be slower when the correlations between the data are 

stronger.

We formalise this statement, again in terms of the fractal index, and give infill 

asymptotic convergence rates for both one- and two-dimensional data.
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3.5.1 O ne-d im ensional case

Before we state moment and distributional properties of v , we give mild assumptions 

which ensure they are true. We shall require that

v{t) =  c|t|"{l +  o(l)} (3.3)

as t —> 0, where c > 0 and 0 < a < 2; and that

sup \v"(t)\ < oo for all e 6 (0,1) (3.4)

v"(t) = ca(a — l)\t\a 2{l + o(l)} as t —> 0. (3.5)

Condition (3.5) is a second derivative version of the asymptotic power law assump

tion (3.3).

Bias The empirical variogram is unbiased:

Ev(h) =  |C(/i)|_1 E[X(t + h) -  X(t)}2 
tec{h)

= ICf*.)]-1 var 
tec(h)

= v(h).

Variance The convergence rate of v(h) is determined in a curious manner by the 

amount of dependence in the process X : the rate of convergence increases with 

increasing dependence until a critical point, after which it is no longer influenced 

by dependence. This is a known property of dependent processes and has usually 

been studied in terms of either mixing conditions or m-dependence, both measures 

of dependence (e.g. Rosenblatt, 1961; Davis & Borgman, 1982).

Rather than using mixing conditions, we state the rates of convergence in terms 

of a, since this is more relevant to the present application. Also, recall that a 

provides a measure of dependence.
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Formally, if h = l/n  then the variance of v(h) is 0[A(n)2], where

A(n)

n-l/2-a if o < a  < I

< n -2(logn)1//2 if a = |  

n -2 if I < a  < 2,

as n —> oo; see Constantine & Hall (1994) and Matthews (1998).

Note that here we are interested in the behaviour of the empirical variogram 

near the origin, as measurements are taken on a progressively finer grid. To this 

end we study the performance of v(h) as h decreases. This explains why the con

vergence rates appear to increase with increasing correlation within X, counter to 

our previous claims. To illustrate that the claims hold, note that, proportionally, 

vai[v(h)/v(h)] =  0[n2aA(n)2] as n —> oo. These convergence rates do decrease with 

increasing dependence within X.

Distribution The convergence rate for v(h) is exact, in the sense that A(n) x 

[v(l/ri) — v(l/n)j has a nondegenerate limiting distribution. The form of this distri

bution also depends on a. For values of a not exceeding the critical value of | ,  the 

limiting distribution is Normal. Above | ,  the limiting distribution takes the form of 

a Rosenblatt distribution; these distributions were introduced by Taqqu (1988) and 

include the special case considered by Rosenblatt (1961). To show that the limiting 

distribution is a Rosenblatt distribution, we use the method of cumulants.

Firstly, notice that the empirical variogram estimator at lag h can be written as 

a quadratic form,

v(h) =(n ~ nh)~lö'hIn- nhöh,

where 6h is the (n — n/i)-vector of increments whose zth component is 6^  = X  (i + 

h) — X(i).  Im is the m x m identity matrix.

Since X(-) is Gaussian and intrinsically stationary, <5h is also Gaussian and has 

a covariance matrix Vh whose (z, j ) th element is r(i — j, h) where

r(ii, h) = ^v(u + h) A ^v(u — h) — v(u). (3.6)
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Now, is a second difference of the variogram and so behaves very much like

the second derivative of v(-) away from the origin, as will be seen later.

From formulae giving the characteristic function of a quadratic form in Gaussian 

variables (e.g. Johnson & Kotz, 1970, chapter 29), the characteristic function Xn{t; h) 

of the empirical variogram is

n —nh

Xn(t; h) = Y[ l1 -  2it(n -  nh) - l \ j ] - l/2,
3=1

where the A/s are the eigenvalues of the covariance matrix 14. From the character

istic function we can obtain the individual cumulants,
n

cumjt{v(/i)} =2k~1(k — l)!(n — nh)~k A*
j = i

=2k~l (k -  1 )!(n -  nh)~k tr(Vj). (3.7)

The last equality uses the identity that the sum of kth powers of the eigenvalues of 

a matrix is equal to the trace of that matrix raised to the kth power.

Note that 14 is a Toeplitz matrix whose («, j ) th element is r(i — j, h). For such 

a matrix, the trace of its kth power is given by

n —nh n —nh

tr(14fc) = 2̂ ' ’ * 2̂ r ^ 1 ”  *2, h) . . .  r(ik - i u h).
* 1 = 1  * fc= i

Using Euler’s form for the remainder term in Taylor’s theorem, we can rewrite 

(3.6) as

2T(u,h)=h2 j  (1 — t){v"(u + ht) + v"(u — ht)}dt. (3.8)
Jo

In view of (3.4) and (3.5), there exist constants €1,62 > 0, and 0 < C\(e 1, 62) < 

C2 < 00, such that

fo(l  — t)v"(u +  ht)dt
Cl < {max(|u|, \h\)}a- 2

for all \u\ < €\ and \h\ < e2, and

Jo( l - t )v"(u + ht)dt 
{max(|u|, |/j|)}“-2 "  2
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for all I it I < 1 and \h\ < 1. From these bounds, certain integral approximations to 

series, and the fact that 3/2 < a < 2, we may prove that

n - k tr(V?) =h2kJk(v) +  o(h2k), (3.9)

where

M v )  = f
Jo Jo

\ v " ( X j  - I j + i )

U = i

dx i . . .  dxit,

as n —> oo.

The fact that

c 3 < |«"(t)|/|t| a-2 < c 4

for \t\ < C5, and C5 > 0, implies that the integral in the definition of Jk(v) is 

well-defined.

Combining (3.7) and (3.9) we see that, if h = l/n, then 

cum)t[772{)(/i)] —> 2k~l (k — l)U2kJk(v),  

the cumulants of a Rosenblatt distribution (see Taqqu, 1988).

3.5.2 Two-dimensional case

The results for the two-dimensional empirical variogram are similar to those for the 

one-dimensional case. Since validation of the results requires little extra demonstra

tion, we confine ourselves to studying a special case.

In order to state the two-dimensional results clearly, we introduce the follow

ing notation. Denote the second-order partial derivatives of v by uP9(ui, u2) =  

d2v(ui, U2)/ dupduq, and let <j>i and be the direction cosines of the unit vector </> 

in the direction 0, that is </> = (0i,02)r =  (cos0 ,sin0)'.

First we require assumptions analogous to (3.3), (3.4) and (3.5):

v{t) =  c(argt)||t||“ {l + o(l)} (3.10)
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as t —> 0, where c(-) is a positive periodic function, 0 < a < 2,

sup \vpq(t)\ < oo for all e E (0,1) (3.11)
e<||t | |< l

and

vPq(t) =  cP9(arg t)||t||a~2{l + o(l)} as ||t|| - >  0. (3.12)

Here arg t denotes the angle made by the 2-vector t  to a fixed direction in the plane. 

The quantities cpq(6) are periodic functions depending on a, c(0), d(Q) and c"(6), 

given by

c„(9) =  a[(a -  l)02, +  9$ c(9) -  2(a -  1 )9,92c'(9) + ö|c"(6>), 

c,2(0) = 02,(9) = a(a-  2)9,d2c(9) +  (a -  1)(0? -  022) c'(9) -  9,92

c22(9) — o\9\ + (ct — 1 )^2 ] c(9) ~ 2(ct — l)9,62cr(0) +  92clr(9).

For this we require that c(6),c'(6) and c"(0) exist, are finite, and do not vanish 

simultaneously.

Variance The main difference between the one- and two-dimensional results is the 

critical point at which behaviour changes. For two-dimensional data from a process 

satisfying assumptions (3.10), (3.11) and (3.12), if h = n~ll then the variance of 

v(h) is 0 (A2d(ti)2), where

, —  1  —  Qn * ~ if 0 < a  < 1

^2d(^) — ( n~2(\ogn)1/2 if a =  1

, - 2 if 1 < a  < 2,

as n —> oo; see Davies h  Hall (1999).

Distribution Similar to the one-dimensional case, if conditions (3.11) and (3.12) 

are satisfied then, for 1 < a < 2, the asymptotic distribution of n2[v(n~ll) — v(n~ll)] 

is a Rosenblatt distribution, whose cumulants are 2k~l (k — l)!||Z||2/c Jjt(u, arg/), where
r  r  k 2 2

(ft) =  I I 11 ^   ̂^   ̂(frpfiqVpqiXj X j  + \) d x i  . . . dXfc.  (3.13)
J I 2 I 2 j = l  p - l  q - l
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Ruled surface A ruled surface, Xg, is an extension of a one-dimensional process 

to two dimensions by ‘drawing out’ the process in a specified direction. This is 

formulated mathematically by

where t'G denotes the scalar product of t and 0. Note that 0 is perpendicular to 

the direction of drawing.

For such a surface the variogram obeys a similar law, v(t) =  v(t'G), allowing its 

derivatives to be expressed in terms of a one-dimensional variogram:

vn (t) = 0\v"{t'G), vu(t) = vi2(t) = 9i62v"(t'G) and v22{t) =  6lv"(t'G).

Although these derivatives do not satisfy (3.11) and (3.12), if we assume that v" 

obeys the one-dimensional assumptions (3.4) and (3.5), the cumulants of v(h) will 

behave similarly to those in the one-dimensional case, although the value for Jk(v, 4>) 

will be slightly different.

To see this, note that

Therefore, by rotating the cc/s so that their first component is in the direction of 0 

in (3.13), we get

where L is linear. Comparing this to its one-dimensional form Jk(v), we see that 

the two are indeed well-defined for the same range of a.

Thus, the empirical variogram for data from a ruled surface has similar distribu

tional properties to the one-dimensional estimator. In particular, the critical point

This is not altogether surprising, since measurements of a ruled surface taken 

over a two-dimensional grid are essentially not providing any extra information. In

Xg(t) = X(t'G),

= Y2'^2(t>p(pq6p0qV"(t,G) = (0»V(t'0).

for a is
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practical terms, for those applications where the surface can be modelled as the 

superposition of a dominant ruled surface and a finer rough surface, it may be more 

cost-effective to collect one-dimensional data across and along the direction of the 

rulings. Applications for which this is the case are not as rare as might be expected. 

Some processes do generate surfaces with a dominant direction, for example milled 

engineering surfaces, extruded materials and ploughed fields. The latter example is 

particularly relevant to the soil application detailed in section 1.2, but on a larger 

scale.

Comparison between dimensions The main difference between the one- and 

two-dimensional empirical variograms is the critical point above which their conver

gence rates progressively deteriorate, |  and 1, respectively. Below these points, the 

estimators behave commensurately, in that var{u(-)/u(-)} =  0 ( N ~ l) where N  is the 

total sample size. It is interesting to note that the analyses of all the sample surfaces 

described in section 1.2 lead to estimates of a exceeding the two-dimensional criti

cal point, and mostly below the one-dimensional critical point. So for surfaces that 

may be assumed isotropic for physical reasons, extensive one-dimensional data may 

provide more information than two-dimensional data, at least in terms of variogram- 

based analyses.



C hapter 4

A nalysing roughness from  

one-dim ensional tran sects

The estimators of fractal index and topothesy for one-dimensional data, intro

duced in chapter 2, quantify the erraticism and scale of a particular transect. Before 

the estimators can be put into practice, it is important to stress that the error inher

ent in their estimation is due to the finite, as opposed to infinitesimal, nature of the 

data. To gauge how the error depends on sample size, we present asymptotic conver

gence results for the estimators, showing that they are consistent and showing how 

their rates of convergence depend on the true values of the roughness parameters.

The remainder of the chapter concentrates on practical aspects of roughness anal

ysis using the estimators of fractal index and topothesy. For instance, we consider 

the choice of the number of regression points included in the estimation, showing 

that relatively few points are required to obtain good estimates.

The asymptotic convergence results confirm that the errors in estimating the 

fractal index and topothesy decrease with increasing sample size, but they do not 

quantify the amount of error for particular finite samples. We give two model-based 

methods for estimating these errors, providing a practical means of assessing the 

precision of fractal index and topothesy estimates.

57
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Both these methods require smooth estimates of the variogram, that can be ob

tained by fitting “local” models to the empirical variogram. However, there are two 

significant problems in applying existing fitting procedures: the highly dependent na

ture of the empirical variogram, and the generality of the fitted model. Singly or 

combined, these problems lead to volatile parameter estimates, or to no estimates at 

all, due to failure in convergence. To overcome these problems we provide a heuristic 

fitting procedure tailored to the model we wish to fit. To supplement that procedure 

we give a bootstrap method for model validation.

In many cases, the surface elevation data are not exact: no measurement device 

is perfect. The effects of a particular kind of measurement error, that due to local 

averaging, are shown to have a dramatic effect on the roughness analysis. We ex

plore modifications to the basic estimators that ameliorate the effects of measurement 

error.

The methods developed are also applied to roller data.
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4.1 Point estim ation

For one-dimensional surfaces, roughness is characterised by fractal dimension D and 

topothesy c1//2, as discussed in Chapter 2. Estimates were derived from ä and logc, 

the slope and intercept of a simple linear regression on the log scale.

The defining equations for a and logc, (2.6) and (2.8), may be rewritten as 

simple linear sums,

k k
a = ^  ai \ogv(l/n) and logc =  bi logfi(//n), (4.1)

/ = l / = i

where a/ =  (xi — x ) / Y l ( x i ~ ^)2> ^ = — x i =  log(//n) and x = k~l ^ x i .

Note that = 0, ^ajlog(Z/n) =  1, 5Z&/ =  1 and J]5/log(Z/n) =  0. Rewriting 

the equations in this way reduces the complexity of equations that follow.

4.1.1 Theoretical performance of estim ators

The theoretical properties of ä and log c have been discussed by Constantine & Hall 

(1994) and Matthews (1998). For completeness, we state their results and show 

how they may be obtained from properties of the empirical variogram discussed in 

section 3.5.

There are two main sources of error in ä: a systematic error due to the departure 

of the underlying variogram from a power law, and a random error due to the 

stochastic nature of the variogram estimator. To formulate this mathematically, we 

may write

a. = a + E\ +  E2 ,

where

E i T  a ‘ los v(l/n)
c |//n |Q

a  771 1and E2 = y a i  log——— ,
v\l/n)

are the systematic and random errors, respectively.

In the form of the ratio of v(t) to c\t\a depends on the o(|t|Q) term in (2.4). 

In order to study the contribution of this term to E\, and hence to the error in a,
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we refine (2.4) to model o(|£|Q) more carefully. Assume that

v{t) = c\t\a + d\t\a+ß + o(\t\a+fi),

or equivalently, that

v(t) = c\t\a{l + d\t\ß +  o(|*|/3)},

for d 0 and ß > 0, as t —> 0. Then

Ei = C ln~l3{ \+ o ( l ) }

as n - )  oo, where Ci =  d V a  / / f .

The behaviour of E2 is determined by the error about the mean of v(h) at small 

lags. To see this, note that

l v (h ) ll°g -77T =  log v(h) 1 +
v(h) — v(h) 

v(h)

Thus, from the stochastic properties of the empirical variogram developed in sec

tion 3.5,

E2 = naX { n ) R { lT o p(l)j  (4.2)

as 71 -> oo. Here, R  is a random variable which is independent of n, unbiased 

and with a non-degenerate distribution that is Gaussian for 0 < a < 3/2 and non- 

Gaussian for 3/2 < a < 2. The form of the non-Gaussian distribution is related to 

the Rosenblatt distribution, since R  is a linear combination of a small number of 

Rosenblatt-distributed variables.

Which of Ei and E2 dominates the error of ä depends on the values of a and 

ß. For values of a below the critical point of 3/2, E\ dominates when ß < 1/2, 

and for values of a  above the critical point, E\ dominates when ß < 2 — a. At 

all other times E2 is, asymptotically, the dominant source of error. As an example, 

consider a Gaussian process with the stable exponential covariance function, 7 (t) = 

exp(—c\t\a). Here, ß =  a and E\ dominates only when a < 1/2.

The rates of convergence of estimators of a and c lessen as a gets close to 2 

because the amount of information contained in oscillations of X  decreases as the
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Figure 4.1: Graphs of the parameter a and corresponding standard error s& of 

its estimate d, based on the simulation study; k = 4 points were used to fit the 

regression line. Each curve represents a different sample size n ranging from 25 at 

the top to 216 at the bottom, in powers of 2. The rates of convergence for a > 3/2 

appear less than for a < 3/2.

process becomes smoother. In the extreme case when a = 2, there is insufficient 

information in a record of X  on a finite interval to estimate c consistently. As a 

increases to 2, one needs to examine successively higher-order properties in order to 

obtain good performance; see Kent & Wood (1997).

4.1.2 Numerical issues

The convergence problems as a approaches 2 are observable in a simulation study. 

Figure 4.1 depicts standard errors of ä for transects from fBm (fractional Brownian 

motion) models with different values for a. Each curve represents a different sample 

size, n, with n ranging from 25 to 216 in powers of 2.
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Figure 4.2: (a) Scatterplot of exponents of n from estimated convergence rates of 

the standard error of d, calculated using k =  2, . . . ,  10, for values of a = 0(0.05)2. 

The line denotes the theoretical convergence rates, (b) Graph of constant term in 

the convergence of the standard error of d. Each dotted line represents the number 

of regression points k = 2 , . . . ,  10 used in estimating d. The solid line represents a 

global optimum value of 4 for k. The number of points used in the regression k does 

not affect the asymptotic convergence rates of d, but, for finite samples, a value of 

k = 4 appears optimal for fBm.
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The convergence of the standard error to 0 as a  approaches 2 is a consequence of 

the underlying fBm model. For an fBm process, the correlation between increments 

tends to 1 as a  approaches 2, and sample paths tend towards a straight line. For 

straight lines, a =  a, and there is no error. This is an artifact of the fBm model. 

In general, for Gaussian processes with an underlying stable exponential covariance 

function, the standard error of a does not converge to 0 as a  approaches 2; rather, 

each has a limit that depends on specific parameter values.

Notice how the convergence rate of the standard error lessens for a above 1.5, 

supporting the theoretical results obtained above. To quantify this, experimental 

convergence rates were obtained by simple linear regressions of the logarithm of 

standard error against the logarithm of sample size n, for different values of a; see 

for example panel (a) of Figure 5.1. The 12 points in each linear regression were 

calculated for values of n ranging from 32 to 65536 in powers of 2, and the variogram 

model used was the fBm model. The slope of a regression line then acts as an 

estimator of the exponent of the sample size at which the standard error converges. 

For example, a slope of —0.5 implies a convergence rate of n-1/2. Exponents were 

estimated for a range of values of a, and are shown in panel (a) of Figure 4.2. For all 

values of a there are a number of estimates of convergence exponent. These relate 

to the number of design points k = 2, . . . ,  10, in the regression, used in determining 

the standard errors of d, showing that choice of k does not affect convergence. The 

solid line in the graph is the theoretical convergence rate.

4.1.3 Choice of k

In addition to saving computational labour, there are two reasons for choosing k 

relatively small. Firstly, it minimises bias from the o(l) term in equation (2.5). 

Secondly, estimates of the variogram exhibit high correlation between values at 

neighbouring lags, and using more lags in the regression does not improve the ac

curacy of estimates as much as in the case of data with lower correlation. Indeed, 

if the number of points in the regression increases with sample size, both bias and 

variance will increase; so, even in an asymptotic sense, as n —» oo, the optimal k is
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bounded. This has been shown theoretically by Constantine & Hall (1994).

As mentioned above, panel (a) of Figure 4.2 shows experimental convergence 

rates for the standard error of A, and indicates that the choice of k is not important 

with respect to convergence; however, we can seek to minimise the constant term 

of the standard error by choosing k wisely. Approximate values for this constant 

term may be obtained from the intercept of the regression lines used to determine 

the approximate convergence rate. Panel (b) of Figure 4.2 contains 9 curves, cor

responding to k =  2, . . . ,  10, for this constant term against a. The value of k for 

which the average value of the constant term is minimised is 4 — the solid line — 

providing a global optimum in the limiting case of fBm. Note that, for a > 1, a 

slight improvement in the constant term of the variance may be achieved by taking 

k less than 4.

4.1.4 Possible improvements

The estimators d and logc minimise a least squares criterion. This is the usual 

fitting method for a model with independent Gaussian errors. Although there is 

numerical evidence that the logarithm of the empirical variogram is approximately 

Gaussian for a range of a (Baczkowski & Mardia, 1987), the errors about the mean 

are highly correlated. Indeed, as a approaches 2, the correlation between the values 

of u(-) at different lags tends to 1.

Since the errors are correlated, an improvement in the performance of ä and c 

might be obtained by taking these correlations into account in the fitting criterion. 

For example, it may be better to minimise a generalised least squares criterion: a 

quadratic form in the residuals using the inverse of their covariance matrix. This 

would require calculation, or prior knowledge, of the covariance matrix of the vari

ogram at different lags. Calculation of the covariance matrix is not a simple task, 

and errors are compounded when the inverse of the matrix is taken. The problem 

is exacerbated by the high correlations between lags.

In an extensive study, Kent & Wood (1997) compare ordinary least squares 

and generalised least squares estimates of fractal index based on increments of the
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underlying process Ar, of which the present method is a special case. Although 

some improvement may be gained using the Kent-Wood generalised least squares 

estimators, they do not perform consistently better than the ordinary least squares 

estimators; indeed they may perform more poorly.

A simpler alternative to generalised least squares is to minimise a weighted least 

squares criterion. This is similar to generalised least squares but ignores off-diagonal 

elements in the covariance matrix. As such, it does not take correlations into ac

count, but re-weights individual contributions in inverse proportion to their vari

ances.

Cressie (1985) explores variogram model fitting by weighted least squares. He 

shows that, for one-dimensional equally-spaced data, minimising

is a good approximation to weighted least squares, where u? is the vector of model 

parameters.

When u  is chosen such that v(h;oj) is close to v(h),

Also, for large n and small values of h, \C(h)\ is virtually independent of h. Thus, 

for the present application, by minimising a least squares criterion on the log scale, 

we are in fact approximating (4.3) and hence approximating weighted least squares.

4.2 Q uantifying the error

In the previous section, we derived asymptotic expressions for the bias and variance 

of the estimators. This allowed us to show that the estimators are consistent, but 

did not provide methods for estimating the error for finite samples.

In the present section, we propose two numerical methods for quantifying the 

errors. The first is a plug-in approach based on asymptotic approximations of the 

variance of a, and the second employs the parametric bootstrap. Both provide esti

mates of standard error; however, the bootstrap method may be modified to provide

(4.3)

,, , -  1 ~  logti(A) -  logu(/i;u>).v(h\ LJ)
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confidence intervals. This is particularly relevant when the asymptotic distribution 

of a is non-Gaussian, i.e. for a above the critical point 3/2.

The extra utility of the bootstrap method comes at a computational cost. Since 

it uses Monte Carlo simulations it is computationally expensive, whereas the plug-in 

method is relatively quick to implement. Therefore, the choice of which method to 

use may depend on sample size.

Both the plug-in and bootstrap methods require the underlying process to be 

Gaussian. However, for the bootstrap method, this restriction is due to the avail

ability of appropriate modelling and simulation methods for other distributional 

families. Such methods are not considered in the thesis.

4.2.1 Plug-in method

The variance of ä can be written in terms of the variances and covariances of the 

logarithm of the empirical variogram at small lags:

var(d) =  cov{\ogv(li/n),\ogv(l2/n)}.
i \

If we have estimates s(hi,h2) of the covariances, cov{logu(/ii), logfi(/i2 )}, then 

the plug-in estimate of the variance of a is

Now, the covariance between the empirical variogram at two lags on the log 

scale can be approximated by rescaled covariances of the untransformed empirical 

variogram:

Let T(v\ t , hi, h2) = v(t -f h\ — h2) — v(t -I- h\) — v{t — h2) +  v(t). Then, for a 

Gaussian random field, the covariances of the empirical variogram estimates are

(4.4)
Zi h

cov{logu(/ii), logv(hj)} ~
co y{v(hi),v(hj)} 

v(hi)v(hj)
(4.5)

cov{fi(/ii),fi(/i2)} = ^\C{hi)\ l \C(h2)\ l ^ 2 ^ 2 T ( v , t i / n  -  t2/n ,h i ,h 2)2. (4.6)
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If v(h) were known, cov{v(h\), v(h2)} could be calculated directly and used in 

(4.5) to obtain s(hi,h2). Since u(-) is not known, an estimator for it such as v(-) 

could be used instead. However, the high variability of £>(•) at larger lags would 

dominate the sums in (4.6), especially when squared. Instead, a suitable model ü(-) 

is fitted to v(-) using the methods described in section 4.3, and substituted for v(-) 

in (4.6) to obtain an estimate of cov{v(hi), v(h2)}.

Thus, after some manipulation to reduce computational effort, our estimates 

s(hi,h2) of the covariances cov{logu(/ii), \ogv(h2)} are given by

where N(t) = n x min(l — hi T £, 1 — hi, 1 — h2, 1 — h2 — t). Then the estimate of 

the variance of ä is the quadratic form, s |,  defined in (4.4).

The variance of log c can be calculated in a similar manner by substituting bi for 

ai in (4.4). To obtain an estimate for the variance of c we need to rescale. Thus,

is our estimate for the variance of c.

Note that the difference in behaviour of ä  for a above and below the critical 

point, is attributable to the contributions of the summands in (4.6). When a < 3/2, 

the main contribution to the sums comes when t\ —t2 is small. This implies that the 

choice of the variogram model to fit to the empirical variogram is not crucial, since 

they all have a similar behaviour near the origin. Nevertheless, when a > 3/2 the 

influence of summands for larger values of t\ —12 increases, and they may contribute 

as highly as for smaller values of ti —t2. So, when a > 3/2 the choice for the model 

v(-) is more important.

4.2.2 Bootstrap m ethod

s(hu h2) =  [2n2(l -  hi)(l -  h2)v(hi)v(h2)\ 1
u—l — (n—nhi)

fr A  s(h/n,  l2/n)
11 h

Confidence intervals for ä and c may also be obtained using the parametric boot

strap, starting with an appropriate model for the covariance of the process that
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produced the data. The procedure is as follows.

Step 1: Fit a valid variogram model to the empirical variogram using the methods 

described in section 4.3. The model used should permit the full range of 

allowable values for c* and c. Denote the fitted variogram by £(•).

Step 2: Simulate a number, B  say, of realisations of Gaussian random fields with 

the fitted model as their variogram. Denote a typical realisation by X£.

Step 3: For all simulated processes calculate their respective empirical vari- 

ograms f)J(-) and use (4.1) to obtain B  pairs of estimates, (dj,cjj), for fractal 

index and topothesy.

Standard errors

Step 4: Calculate the sample standard deviations of the resampled parameter values 

{djj} and {cj} to obtain estimated standard errors for the point estimates, d 

and c.

C onfidence intervals

Step 5: Use equations similar to those in (4.1), substituting the fitted variogram 

model v(u) from Step 1 for v(u), to obtain expected values (a*,c*) for (dj,cjj) 

calculated from the simulated data sets. The difference between (a*,c*) and 

the parameter estimates (d, c) from the original data set can be used to correct 

(dj,cj) for bias, yielding (dj,cj).

Step 6: Let dj*̂  < • • • < d*ßj and c*̂  < • • • < c*B  ̂ be ordered sets of values taken from 

the djj’s and the cj’s respectively. Marginal /Tlevel confidence intervals for a 

and c are then given by Qf{l_ a n d  (^i „B|, r e s p e c t i v e l y .

Because of its general nature, application of the bootstrap method is not confined 

to fractal index and topothesy: it can also be used to estimate standard errors 

or approximate confidence intervals for any of the traditional roughness measures 

discussed in section 2.1.
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4.3 F ittin g  a variogram  m odel

Both the plug-in and bootstrap methods for estimating standard errors require an 

estimate of the variogram. In the case of the bootstrap procedure, in which the 

variogram estimate is used to simulate similar data, the variogram estimate must be 

a valid variogram. For the plug-in method, the variance of ä requires the aggrega

tion of successive squared second-differences of the variogram. Since the empirical 

variogram is not guaranteed to be a valid variogram, a valid variogram estimate 

is needed. This is obtained by fitting a suitable variogram model to the empirical 

variogram.

For a variogram model to suit our purposes, we require that it be general enough 

to cover the full range of data sets to which the methodology may be applied, not 

just to a limited number of special cases. However, many of the existing variogram 

models in current use fail this criterion, because they allow only a small (finite) 

number of values for the rate of expansion near the origin, a. The exception is the 

power law model,

which for a Gaussian process implies fBm.

This is a useful model as it is exactly the approximation upon which our methods 

are based. However, as mentioned earlier, as a approaches 2, the correlation across 

lags becomes so great that sample paths of such processes will tend to a straight 

line. If it is our aim to make the methodology cover a wider class of data sets, for 

example to include smoother but non-monotonically varying transects, then a better 

model would be one that allows the correlation to decay over larger lags but retains 

the behaviour near the origin. Such a model is obtained from the stable exponential 

covariance function, 7 (£; <r, A, a) =  a2 exp(—A|£|a), which implies the following model 

for the variogram:

v{t\ c, a) = c\t\a, (4.7)

v{t\ cr, A, a) =  2<72[1 — exp(—A|t|Q)]. (4.8)

Here 2<r2 represents the variogram sill.
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Notice that if the product 2<r2A remains constant while o increases indefinitely, 

then in the limit the stable exponential variogram (4.8) is the power law variogram 

(4.7) with c =  2d2A. So the power law model can be treated as an extreme case 

of the stable exponential model. In practice then, (4.8) may be used as the initial 

model and if, after fitting the model, the estimate of a is an order of magnitude 

greater than c, then (4.7) may be an adequate model over the range of the data.

As noted at the end of 4.2.1, for a < 3/2 the variance properties of ä and 

c depend mostly on the behaviour of the variogram near the origin. Since (4.7) 

and (4.8) behave similarly in this neighbourhood, choice of which model to fit will 

provide only a second-order improvement in estimation of variance. Therefore, in 

this case, (4.7) may be preferable for computational ease and efficiency.

For a > 3/2, it is important to provide a reasonable model for the underly

ing variogram over the whole range of the data. Nevertheless, particular emphasis 

should be placed on fitting the variogram near the origin, since this is the area of 

main concern as well as that of least variability in the empirical variogram. Such 

emphasis may be achieved by appropriate weighting in the fitting criterion. Choos

ing optimal weights is difficult to achieve due to an implied recursion: the variance 

of the empirical variogram at a specific lag has a major contribution to the corre

sponding weight for that lag, and this variance is precisely the quantity we are trying 

to estimate using the weights. To some extent, this problem can be ameliorated by 

fitting the model on a log scale, as noted at the end of section 4.1.4, and by using 

as weights the numbers of increments used to obtain the empirical variogram at 

different lags.

However, there is another problem in fitting (4.8). That model is no longer easily 

transformed into a linear model, as is (4.7), and hence simple linear methods may 

not be used to obtain parameter estimates directly. Indeed, the model (4.8) is so 

highly non-linear, that even non-linear minimisation algorithms have convergence 

problems.

Heuristic fitting procedure To overcome the problems outlined above, and as 

an alternative to other minimisation procedures, a heuristic iterative procedure tai-
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lored to fitting (4.8) was employed. The procedure involves estimating the model 

parameters separately and then iteratively adjusting them until a “reasonable” fit is 

obtained to the empirical variogram. In the rest of this chapter, the fitted variogram 

models will be denoted by v and model parameter estimates will also be accented 

by the tilde: ä, A and b.

The most difficult parameter to estimate consistently is cr2, the variance (if it 

exists) of the surface. This was highlighted in chapter 2 where the performance of 

Rqi an estimator of cr, was compared to that of D (or equivalently a) and c. Its 

poor performance may be attributed to the relative lack of relevant information in 

a transect of data. If it is assumed that correlation decays sufficiently fast, then 

only the differences of the process over a smaller number of large lags may provide 

consistent information for estimating o. In contrast, a larger number of increments 

over small lags can be used to obtain estimates for a and c. To compound the 

problem, Rq is a weighted average of the empirical variogram in which smaller lags 

are given a higher weighting than larger lags; see (2.1) on page 19.

The estimator we propose for a2 is the median of the empirical variogram over its 

range. This provides some adjustment for the incorrect weighting and is more robust 

against the wild fluctuations of the empirical variogram. It is also equivariant under 

monotone transformations of the empirical variogram, such as taking the logarithm. 

So we take

cr2 = I median*{{)(£)}. 

as the estimator of surface variance.

The initial estimates for a and A in (4.8) are obtained from the asymptotic 

expansion of v(t\ a, A, a):

v(t; a, A, a) = 2\cr2\t\a A 0(\t\2a),

as t -a  0. Thus,

a = a  and A =  c/(2cr2)
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Figure 4.3: Fit of the stable exponential variogram model, using the heuristic fitting 

procedure described in the text, to the empirical variogram (marked with x ’s) of 

simulated data. The solid line depicts the fitted model and the dashed line represents 

the underlying variogram from which the data were simulated. The heuristic method 

fits closely in the most important region, near the origin, while also capturing the 

decay in correlation at higher lags.

These parameter estimates define a curve that is asymptotically equal to c|t|Q. 

However, if the discretisation of the data is not fine enough, it may depart apprecia

bly from the empirical variogram because of the size of the bias inherent in ä and 

c. Therefore, an adjustment to parameter estimates is required so that expected 

values of the estimates of ä and c, from data generated from the u(-), are close to 

themselves.

This is done using the following iterative procedure. Firstly estimate the ex

pected values of a and c from fi(-) by

ae = ^ 2  ai logu(Z/n; er, A, d) and logce = y 'b i  logu(//n;d, A, a).
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Then update ä and A by assigning

a := a + a — ae and A A—.
ce

[The symbol is used for assignment to differentiate it from the notion of equal

ity.] These two bias-correcting steps are repeated until a — ae is small. Usually only 

a few iterations are required.

Figure 4.3 is a log-log plot of the empirical variogram, calculated from a simulated 

data set with a sample size of 1024. The solid curve represents the fitted model after 

three iterations of the fitting procedure. The dashed curve is the actual variogram 

from which the data were simulated: v( •; 1,16, 2_1).

4.3.1 M odel validation

To supplement the fitting procedure, a method for model validation is described 

below. In practical situations, this will allow us to make inferences about the fitted 

model before using the model in further analysis. As an example, consider the 

situation outlined above in which the relative values for parameter estimates of c, 

A and cr2, obtained from fitting the stable exponential model, imply that the power 

model is more appropriate. Some model validation may be used to assess this. 

Indeed, since the high correlation between lags has been largely ignored in fitting 

the model, the actual fitted model may also be unrealistic. Validation may help 

here, too.

The method of model validation we propose is graphical. It seeks to provide 

a visual check that a proposed model is not unreasonable for the data. This is 

achieved by calculating the range of variogram estimators that might be expected 

from the model, and then using extreme values of these to define a set of simultaneous 

intervals, or a confidence set. The actual variogram estimate obtained from the 

original data can then be compared with these bands. If it crosses the bands then 

the model would appear to be implausible; see Figure 4.4.

Since the bands are simultaneous intervals of the variogram estimator over all 

possible lags, the procedure requires a simultaneous multivariate test. One method
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Figure 4.4: Critical regions at the 95% level (dotted line) and 99% level (dashed line) 

to test whether a power model is reasonable for the simulated data in Figure 4.3. 

In the top panel, it is difficult to see whether the empirical variogram crosses either 

of the lower critical boundaries because of the steepness of the curve at large lags. 

The problem is removed in the bottom panel by subtracting the empirical variogram 

from all curves. Then if any of the boundaries crosses the horizontal line at 0, the 

departure of the data from the model is (highly) significant.
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of constructing such a test is by using approximations to produce Bonferroni-style 

intervals. The problem with this is that it neglects the large amount of correlation 

across lags. As an alternative, the proposed test reduces the simultaneous multi

variate test to a univariate test based on an order statistic of the rescaled residuals 

of the empirical variogram about its mean.

Formally, the model validation utilises the test of the null hypothesis,

H0 : A ~  IGRP(ü) against Hx : X  no IGRP(v),

where IGRP(ü) is an intrinsic stationary Gaussian random process with variogram 

ü(-). Although the emphasis is on testing whether {>(•) is an appropriate underlying 

model for the data, differences in other assumptions, such as Gaussianity or intrinsic 

stationarity, may also cause rejection. However, the amount of averaging implicit in 

the empirical variogram will dampen the sensitivity to such departures.

Define an acceptance region Dp by

P [(Öo[*l], • • • I Mtm])' € Dß] < 1 “  ß,

or equivalently, on the log scale and for a different Dp, by

P [(logf>o[n], • • •, logüo[̂ m])' G Q ß ]  < 1 -  ß, (4.9)

where v0(t) is an estimator for the variogram under H0. As it stands, (4.9) does not 

define Dp uniquely. Given a certain alternative hypothesis, it may be possible to 

derive a unique Dp to obtain a most powerful test against that alternative. However, 

for the practical purpose of being able to visualise the region Dp graphically, Dp is 

constrained in shape to be the product of simultaneous univariate intervals: Dp = 

(Wß[ti],u)ß[ti\) x ••• x (cjjg[im],cjJj([£m]), where ujp(t) and ujp(t) are the lower and 

upper limits of the interval at t. Thus, (4.9) becomes

P [Uß(t) <\ogv0(t) < u Up{t),iox t = t x, . . .  , tm] < l - ß, 

and, if the intervals are centred about E{logu0(-)}> it becomes

P [|lo g i0(<) -  E{logi0(t)}| < u/s(t),for t = tx, . . . , t m] < ! - / ? . (4.10)
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Note that u.(t) is a function whose form is still to be chosen. Since the test is a 

simultaneous multivariate test, one way to establish a form for ujß is to construct 

equi-probable Bonferroni-style intervals by combining the m separate univariate 

regions defined by

p[|logu0(t) -  E{logv0(*)}| < Uß{t)\ < 1 -  m~lß

for t = Thus, all other things being equal, each interval has an equal

chance of failing to cover the empirical variogram. Unfortunately, because of their 

conservative nature Bonferroni intervals are too conservative for correlated data, 

providing better approximation for independent data. Indeed, the approximation 

also deteriorates as the number of simultaneous variables increases.

However, the property of equalising the sensitivity of the overall test across lags 

is a good one, and may be used in (4.10) by rescaling deviations from the expected 

value by the standard error, to obtain

Uß{t) = C/9 var {log u0 (t)}1 /2.

In this form, the simultaneous multivariate test is reduced to a single-valued test, 

that of finding the value for Q for which

V [ z < C ß ] < l - ß ,

where z is the random variable defined by

MogfloM -  EQogfroWI
t=ti...tm var{logu0(t)}1/2

The distribution of z is complex, depending very much on the correlation across 

lags of the variogram estimator and other underlying properties. So the following 

Monte Carlo method, similar to the bootstrap method for estimating variances in 

section 4.2.2, is employed to estimate Q.

Step 1: Simulate a number, B  say, of realisations of Gaussian random fields with 

v(-) as their variogram. Identify each as X£.
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Step 2: For all simulated processes X£, calculate their respective empirical vari- 

ograms i)J(-).

Step 3: Estimate E{log£>0(£)} and var{logfi0M} by

B B

mW = 5 E logi*w  and sW2 = ~ mW)2>
6=1 6=1

respectively, for t =  t \ , . . . ,  tm.

Step 4: Put

4  = max
t —  11 j  • • *5^771

I log «>*(<)
s(i)

Step 5: Order the z£’s: zfa < ■ • • < Then ^  and

ttß =  II (mW “ C/3«W, wiW + C/3sW)
t —  } • • •  j^TTl

is a nominal 100(1 — /?)% acceptance region for the variogram estimator. If 

the variogram estimator at any lag falls outside the corresponding interval for 

that lag then the null model is rejected at the 100(1 — ß)% level.

It should be stressed that the above method does not use the bootstrap. In 

a bootstrap test it is necessary to approximate the null distribution. Here the 

null distribution is known, and in principle there need be no systematic difference 

between the nominal significance level and the actual significance level. However, 

there will be a difference between nominal and actual significance levels, depending 

on the number of Monte Carlo simulations, B. For B = 1000, the difference is small.

The test was applied to the simulated data shown in Figure 4.3, to see whether 

the power law model, obtained by using a and c calculated from the data as model 

parameters, was an appropriate underlying model for the data. We performed 1000 

simulations in the Monte Carlo procedure and resulting critical bands were calcu

lated at the 95% and 99% levels. These are shown in panel (a) of Figure 4.4 along 

with the empirical variogram from the simulated data shown in Figure 4.3. Due 

to the steepness of the curves at high lags, it is difficult to ascertain whether the
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empirical variogram crosses either of the critical boundaries. To overcome this prob

lem panel (b) shows all curves with the empirical variogram subtracted; thus the 

horizontal line represents the empirical variogram. Since the 95% boundary crosses 

the horizontal line, the null power model is rejected as being unsuitable.

4.4 Effects of m easurem ent e rro r

In practice, virtually all measurements of a continuous process are smoothed to some 

extent during recording. A common theoretical approximation to the smoothing is 

that the measurement at each location is obtained by averaging uniformly over a 

region about that location. This is indeed the case for optical profilometers. For 

other instruments, the average is often taken with respect to a point spread function 

whose shape more closely resembles a circularly symmetric bivariate Normal density 

than it does a uniform density over a square. The shape of the point spread function 

is sometimes known quite accurately.

The observed, degraded signal may be modelled as

preserves average elevation. H(-) represents a spatial average over two dimensions, 

but we shall concentrate on the one-dimensional case to identify the main effects, 

as the two-dimensional case is similar.

Let and vy(-) be the respective variograms of X  and Y. Then

where K[t) = f  H(s — t)H(s)ds is the convolution of H(-) with the reflection of 

itself. Hence f  K(s)ds = 1, K(-) is symmetric, and if H(-) is compactly supported 

then so is K(-).

Note that the variogram of Y  is not only a smoothed version of the variogram 

of A, but that it is also shifted so that the property vy(0) =  0 is maintained. We 

shall now examine the two effects separately.

where H(-) is the point spread function. It is assumed that f  H(s)ds = 1, so that it

(4.11)
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4.4.1 Effects of sm oothing the variogram

Firstly, consider the first integral in (4.11). By Taylor expanding vx(t  — s) about 

vx(t) inside the integral it may be shown that, for t outside the support of K(-),

where \R\{t)\ < and ^ 2  = f  s2K(s)ds. Derivatives of odd order disappear

since K(-) is symmetric. The bound on R\(t) assumes that v'x(t) is decreasing.

For t inside the support of K(-) the effects of smoothing are overwhelming in 

that any analysis of vy(t) as t approaches 0 will relate to properties of K(t) rather 

than vx(t). So we recommend that the variogram be ignored for lags at least up to 

the width of the support of H(-). We shall assume for the rest of this section that t 

is outside the support of K(-).

If we are to make this assumption and look at the behaviour of the smoothing 

as n —> oo then we need to make the corresponding assumption that the support 

for K ( ‘) is decreasing commensurately. In practice, it is of little value to make 

measurements on progressively finer grids below the support of the point spread 

function. So we set Kn(s) = nK(ns),  which also preserves the property J K n(s)ds = 

1, and look at the asymptotic behaviour of f  v x ( j / n  — s)Kn(s)ds.

Assuming the approximate power laws (2.4) and (3.5) for vx(t) and v'x(t) re

spectively,

as n —» oo. The ratio of R\(j)  to c |j |a is less in magnitude than K2a(a — l)\j\ 2/2, 

which decreases rapidly with increasing j.

Example 4.1 Consider the extreme case of a uniform point spread function. Here, 

Y  is the average of X  over a finite support; that is, H(t) = 1 /C  for |£| < C /2  and 

H(t) = 0 elsewhere. Then K(t) = C —1 (1  — C ~ 1 1^1) f°r W < C a n d  K(t) =  0 elsewhere.

The quotient of the smoothed vx(t) to vx(t) itself can be obtained directly at 

multiples of C

J  vx (t -  s)K(s)ds = vx (t) + Ri(t)

J  vx ( j /n -  s)Kn(s)ds = n ac\j\a j l  + + o(l) j  ,

f l c v (K ~s )K ( s )d s  _  (j _ i)°+2 — 2ja+2 +  (j + l)a+2
v(K) (a +  l)(a  +  2

(4.12)
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By Taylor-expanding the numerator on the right-hand side of (4.12), we may obtain 

the following bound for the remainder:

RiUOa (a  ~  1 )  - 2  I  - 2

v(K)  12 6 J

Thus, the contribution due to smoothing is at most one-sixth when the variogram 

is calculated at the width of the point spread function, and rapidly decreases there

after. To cater for these effects, an extra term may be added to the fitted model, 

although this has the disadvantage of making the model non-linear. Alternatively, 

since the contribution is less than 0.05 at twice the support, it may be better to 

continue to use the linear model but to ignore variogram estimates below this point.

This example was for a uniform point spread function. For other point spread 

functions that are more concentrated at the centre of their support, the contribution 

of the remainder term due to smoothing will be less.

4.4.2 Effects of zeroing the sm oothed variogram

When calculating the variogram of V, a more important factor than variogram 

smoothing is the contribution of the shift in (4.11) by a constant term, C = 

f  vx(s)R(s)ds, since this term does not diminish with increasing t. Therefore we 

need to take its effects into account either by updating our fitted model to include 

the constant term, or by modifying our approach to mitigate its effects. We explore 

both avenues here.

Non-linear least squares One updated model containing the constant term has 

the form v(t) ~  c|t|Q — C , which is no longer easily transformed into a linear model 

by taking logarithms. However, it is still preferable to fit this model on the log 

scale because, as noted in chapter 3, taking logarithms provides some variance sta

bilisation. Thus, to fit this model to the empirical variogram we can use a general 

algorithm to minimise the least squares criterion,

k
]P{log vY(hi) -  [log c a log |/ijI T log(l -  C /  c\ht\a)]}2.
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Figure 4.5: Graphs showing least squares criteria for fitting the best line to the log

arithm of offset empirical variogram estimates against logarithm of lag, as described 

in the text. The minimum of each curve provides an estimate of the correction re

quired to reduce the measurement effects on the variogram of smoothing the data. 

The curves in each panel are the criteria calculated for processes that have been 

uniformly locally averaged, thereby reproducing the effects of measurement error. 

Each panel is the result of calculations for processes from different underlying fBm 

models with the values for a as indicated. The solid line in each panel represents 

the expected criterion and the dotted line represents the criterion as calculated from 

a single realisation of a locally averaged process. The horizontal line is at 0 and the 

vertical line is at the actual offset caused by the averaging.
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A similar criterion, but one that preserves some linearity, is

k
$ > g ( M M  + C) -  (logc + alogl/i,!)]2. (4.13)
1=  1

For a given C, (4.13) is minimised when a and logc take on the values

k k
ä  =  ^  üj log(vY(hj) + C) and log c =  ^  bj log(vY (hj) + C),

j =i 3=i

respectively. After substituting these for a and c in (4.13), performing some algebraic 

manipulation, and noting that Yhaj = 0 and bj = 1, (4.13) becomes

E{t(%+̂ w)k«gjg±§}'.
thus transforming the minimisation from a search over three variables to one over a 

single variable, C.

In trying to minimise this function, one problem with the formulation becomes 

apparent. As C becomes large, the criterion approaches its theoretical minimum 

of 0. This general decline towards 0 may remove any local minimum. The solid 

lines in Figure 4.5 depict the minimisation criterion for the deterministic case, in 

which vx{t) = |£|a for a = 0.25(0.25)1.75. The dotted line in each panel represents 

the minimisation criterion applied to the empirical variogram i)y(-) as calculated 

from a realisation of a process with underlying variogram vy{-)- Here, vy{t) is 

calculated from vxif) = |£|Q using (4.11) and assuming measurement error in the 

form of uniform local averaging. Notice how the local minima are completely re

moved for a = 0.25 and 0.50. Notice also that the location of actual minima can be 

dramatically different from their true values.

Taking differences Alternatively, the effects of shifting the variogram by a con

stant may be removed by taking first-order differences of the variogram. An ap

proximate model for these differences can then be obtained by Taylor-expanding 

the difference of v[(j + l)/n] — v(j/n)  about j , to yield

vy[{j + 1 )/n] -  vY(j/n) = n~aco;|j|Q_1[l + # 2(j)]
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where |i?2(j)| < !(<* — l ) j -1/2|. In fitting models to the differences, the contribution 

from R 2 ( j) is too large to ignore, as it stands. However, the contribution may be 

reduced by expanding the same difference about (j +  |) / n  instead of j /n .  Then,

vY[(j + 1 )/n] -  vY(j/n) = n~aca\j +  | | Q_1[1 +  R$(j + |)]

where \R3(j + |) |  < |(a -  l)(a  -  2)j 2/4\\.

This approximate power law leads to the following linear estimators of a and c:

r k - i

a = 1 +
' k - l

y y z i+ 1/2 -  x) log{ü[(/ +  1 )/n] - y](rc,+1/2 -  x)'-
_

(4.14)

and

j f c - i

c = na 1exp|^(A; —1) 1 log{n[(/ + l)/n] — v(l/n)} — (d — l)x j  , (4.15)

where xi =  log(//n) and x = (k — 1)_1 1/2 -

A major difference between these estimators and those introduced at the begin

ning of the chapter is the instability of the logarithm of a difference when applied 

to random variables such as v[(l -f 1 )/n] and v(l/n). Indeed, the stochastic error 

in either of these can give rise to a negative difference, despite their strong positive 

correlation. So, in practical terms, the estimators in (4.14) and (4.15) will require 

very little stochastic error, and hence very large sample sizes, to be effective.

4.5 Analysis of th e  roller d a ta

The discussion in section 4.4 on measurement error is very pertinent to the roller 

data since the stylus used to record the data had a nominal width equal to the width 

of digitisation. Although the stylus does not perform local averaging as an optical 

profilometer would, its shape and other factors such as load will cause smoothing of 

the profile and therefore measurement error similar to that discussed. Following the 

recommendations of section 4.4 the empirical variogram widths up to the width of
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Figure 4.6: (a) The results of fitting the power model (dotted line) and the stable 

exponential model (dashed line) to the empirical variogram of the roller data ex

cluding the initial lag, using the methods described in the text, (b) Implied critical 

region bands at the 95% (dashed line) and 99% (dotted line) levels to assess whether 

the fitted power model in (a) is a reasonable underlying model for the roller data. 

The bands have been translated to remove the empirical variogram, to aid inter- 

pretability. Since the bands do not cross the solid horizontal zero-line, there is not 

enough evidence to reject the fitted power model.

the stylus will be excluded from the analysis; for the roller data, this width is the 

first lag.

Thus, a and c were calculated similarly to (4.1), but with l ranging from 2 to 

k + 1, where k was taken to be 4, the value indicated in section 4.1.3. Point estimates
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for ä and c are given in Table 4.1. The resultant estimated fractal dimension D is 

1.88, a value close to the upper limit of 2, suggesting that this profile of the surface 

is extremely erratic.

a c

0.242 0.131

Plug-in s.e. (0.046) (0.036)

Bootstrap s.e. (0.049) (0.040)

Table 4.1: Estimated fractal index and topothesy for the roller data, with estimates 

of standard error from the plug-in and bootstrap methods. The corresponding esti

mate of fractal dimension D is 1.88, indicating a highly erratic profile.

ä A <7

0.242 0.131 0.123

Table 4.2: Estimated model parameters from fitting the stable exponential vari- 

ogram model to the empirical variogram of the roller data.

The power model for the variogram implied by these estimates is shown as the 

dotted line in panel (a) of Figure 4.6. It can be seen that this model agrees with 

the data over a larger set of lags than those used in estimation. Of course, this 

is partly because of the correlation across lags, but the effects of this correlation 

are smaller for the small values of a that the data appear to exhibit. So, the 

agreement may also suggest that the power model is a fairly good approximation 

over a wider range of scales than the digitisation level. Indeed, the model validation 

procedure of section 4.3.1 was used to test whether the fitted power model was 

a reasonable underlying model for the data. The critical bands, displaced by the 

empirical variogram of the roller data, are shown in panel (b) of Figure 4.6. Since
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they do not intersect with the zero-line, it is not reasonable to reject the power 

model on this basis.

In order to obtain estimated standard errors for ä and c, the stable exponential 

model for the variogram was fitted, yielding estimates of the model parameters 

given in Table 4.2. The resultant fit is shown as the dashed curve in panel (a) of 

Figure 4.6. This model was used to obtain standard errors for parameter estimates 

using both the plug-in and bootstrap methods described in the previous section. 

These standard errors are given in Table 4.1.



Chapter 5

Isotropic surfaces

This chapter deals with estimation of fractal dimension and topothesy measures 

that characterise roughness of two-dimensional isotropic surfaces. The models and 

methods presented are a direct extension of those for one-dimensional profile data 

described in chapter \ .

Although the one-dimensional methods translate directly to the higher dimen

sional case, the performances of estimators differ. It is shown that the critical 

value of fractal index at which the asymptotic behaviour of estimators changes is 1 

for the two-dimensional isotropic case, whereas it was 3 /2  for the one-dimensional 

case. The critical point is the value below which estimators are root-n consistent and 

asymptotically Gaussian. These properties are derived for the isotropic estimators, 

and numerical evidence is given to support these results.

Methods for estimating standard errors of estimators, and for constructing con

fidence intervals for parameters, are given. A box-counting method for estimating 

the fractal dimension of two-dimensional data is also derived, and a comparison is 

made with the variogram method.

The methods are used to analyse the soil surface data described in chapter 1.

87
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5.1 E xtension  from one d im ension

The simplest way to extend the methods for one-dimensional data to two dimensions 

is to assume that the underlying two-dimensional process is isotropic. In this case, 

the question of how the variograms of differently oriented transects might vary is 

ignored.

The validity of the assumption of isotropy can be checked using numerical or 

graphical evidence, for example the almost-circular contours of the two-dimensional 

empirical variogram for the wettest soil surface as shown in figure 3.3. Alternatively, 

there may be physical considerations that justify it. For example, the soil surfaces 

were artificially constructed and the experiment was designed not to favour any spe

cific direction, nor did the artificial rainfall that was used in a controlled laboratory 

environment. Nonetheless, in the absence of a priori physical justification, it may 

be prudent to conduct some confirmatory analysis of isotropy to strengthen infer

ence made purely from graphs of the empirical variogram or parameter estimates. 

A hypothesis test for isotropy against the alternative of weak anisotropy is given 

in chapter 6. (It is similar to the Monte Carlo test presented in section 4.3.1.) A 

process is said to be weakly anisotropic if there exists a linear transformation of its 

domain that will make the transformed process isotropic.

Suppose that the two-dimensional process X  is isotropic. Then its underlying 

variogram at displacement t depends only on lag and not on orientation:

v(t) = v(||t||), for all t  G K2. (5.1)

Here, notation is abused by using u(-) to represent both two-dimensional and one

dimensional variograms, each being distinguished by its argument and context. 

Thus, in (5.1), the expression on the l.h.s. is the value of a two-dimensional var

iogram at displacement t, and the expression of the r.h.s. v(r) is the value of a 

one-dimensional variogram, v(h), at lag h =  ||£||.

From (5.1), the assumption concerning the behaviour of the variogram near the 

origin, corresponding to the one-dimensional counterpart (2.2), is that

»(*) =  c||i||° +  o(||t||“), as t —> 0, (5.2)
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whence,

logu(£) = logc + alog ||£|| + o(l) as t  —¥ 0. (5.3)

This ensures that the fractal index a is well-defined; see the discussion on fractal 

methods in section 2.3. If the process X  is sufficiently related to a Gaussian field 

(Hall & Roy, 1994), then the realisations of X  have fractal dimension

D = Z - \ a .

Estimators for D are obtained by plugging in an estimator for a and, as with the 

one-dimensional methodology, estimators for a and c may be obtained from the 

slope and intercept of a linear regression of the logarithm of estimated variogram 

against the logarithm of lag.

Since the variogram is independent of orientation then we need only provide an 

estimate for the one-dimensional v(||£||). The appropriate naive estimator averages 

the squared interpoint difference of a process over all pairs of points at a lag h = ||t|| 

apart. So, if C/(/i) is the set of pairs of grid locations lag h apart,

Ci(h) = {(r, s) e Q x Q : \\s -  r || =  h},

then the isotropic empirical variogram is defined by

vt(h) = \CI(h)\-iY i  {z(s) - z(r)}2,
(r,s)eC7(/i)

and is an estimator of u(||t||).

Let u0 < U\ < • • • < uu be the ordered sequence of lags for which {)/(•) is

calculable, i.e. the ui s are those values for which |C(iq)| > 1. For convenience, the

sequence starts at Uq so that Uq = 0. In the one-dimensional case, ui was an integer 

multiple of u\. Then a and c may be estimated by
k k

= y ^ a /  log V!(m) and log c7 =  J~^bi log €/(ui), (5.4)
i=i i=i

where a* =  (logrq — logu)/ J](log ui — logu)2, bi = k~l — a^logu and logu =

/c_1^logw /. Note that J2 ai ~  =  1 =  1 and

as in the one-dimensional case.
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Theoretical properties Although the estimators d/ and log C/ are expressed in 

a form similar to their one-dimensional equivalents d and logc, their theoretical 

performance differs significantly. The main difference is a change in the critical value 

of a at which convergence slows and asymptotic distributional properties become 

non-Gaussian. Whereas this value was 3/2 for the one-dimensional case, we shall 

show that it is 1 for the isotropic two-dimensional case.

In order to obtain expressions for the asymptotic behaviour of d/ and c/, it is 

necessary to be more explicit about the form of the o(||t||) term in (5.2). Thus, 

assume that

log v(t) =  logc +  a log ||t||{l +  d\\t\\ß +  o(||t||^)} as t -» 0. (5.5)

Then for two-dimensional data taken on an n x n grid covering a fixed area, the 

errors in d/ and C/ depend on the fineness of the grid in the following way:

aj -  a = (Rna\ 2D(n) + Cn~ß){ 1 + op(l)} (5.6)

and

ci -  c = c{Rna\ 2DW) + Cn 0) logn{l op(l)} (5.7)

as n —> oo, where C is a constant and R  is a random variable that is Gaussian for 

0 < < 1 and non-Gaussian for 1 < a < 2. Recall that A2d (^) also depends on a:

if 0 < a < 1

^2d (^) =   ̂ n~2(logn)1/2 if a =  1

if 1 < a < 2.

. — 1  — Q

. - 2

P roof From the definition of d/ at (5.4), d/ may be broken into two components, 

one systematic and one random:

dj =  ^  ai logu(iq) + log{l + {vi(ut) -  v{ui)}/v(u{)}.

Under assumption (5.5), this becomes

d7 = c Y 2 ai + + o(l)}

+ ^ 2 ai log{ 1 +  {vi(ut) -  v{ui)}/v{ut)},
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as m —> 0. Now the first two summands are 0 and a, respectively, since ai =  0 

and ai\ogui = 1. Thus,

ai =a  + d ^ a i \ u i \ ß{l  + o(l)} + ]T]a, log{l + {vi(ui) -  v(ui)}/v(ui)} (5.8)

as Ui —y 0.

For data collected on an n x n grid covering a fixed area, the s are the ordered 

values of ||t||, for those values of t at which v(t) is calculable. Put w = nt and 

wi = nui. This implies that there is a w  for which \\w\\ =  wi.

In chapter 3 it was shown that {v(n~lw) — v(n~lw)} = Rw\ 2d(ji){\ + op(l)} 

as n —> oo, where Rw is a random variable, independent of n, whose distribution 

depends on the underlying variogram v(-).

Now vi(u{) is the average of the small finite number of f)(t)’s for which ||t|| =  uf.

Vi(ui) = |C/(u,)|_1 Y h  |C(*)|v(*).
l|t||=U|

So,

Vi(ui) -  v(ui) =\CI(wi/n)\~1 ^ 2  \C(n~lw)\RwX2D{n){l + op(l)} 

=i?/A2D(n){l + op(l)},

as n —> oo, where Ri is the weighted combination of the correlated Rw's.

Updating (5.8) gives,

öii =oi P d ' ^ 2 ai\wi/n\ß{l + o(l)} + ^ 2  ai l°g

as n —> oo, which, after Taylor-expanding the logarithm about 1, collecting n ’s and 

subtracting a from both sides, yields the desired result for ä:

öii ~ Oi =Cn~ß{l + o(l)} + R tC \ 2d ip){1 +  op(l)}

as n —» oo, where C =  d ^  aiwß and R = c~l ^  aiRiw^a.

A similar result is obtained for log c — log c, following the same path but substi

tuting bi for a/. Whereas the a/’s are independent of n, the bi s introduce a logn 

term, viz.

bi = k~l -  atk~l ^ 2  ~ aik~l ^2  lo§(wi /n) = ai logn + 0(1)

 ̂ Ri^2p(n){l + Qp(1)}
c|re//n|Q{l + o(l)}
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as n —> oo. Thus,

logc — logc = {C n + Rna\ 2D{v)} logn{l + op(l)} (5.9)

as n —> oo, for the same R and C.

Now,

c — c = c {exp(log c — log c) — 1}

which, after making the substitution implied by (5.9) and Taylor-expanding, yields 

the desired result for c. □

The amount of data on the n x n grid is of order n2, and so a convergence rate 

of a — a = Op(n~l) corresponds to “root-iV consistency” in more classical problems. 

If ß > 1, this rate is attained in (5.6) if and only if 0 < a < 1. Similar behaviour 

is observed in the case of inference about fractal index in one-dimensional processes 

(see Constantine & Hall 1994, and chapter 4), except that the dividing line between 

“root-A7" consistency” and a slower convergence rate occurs at a = 3/2, not a =1.

In both contexts, these respective values of a  also represent the dividing line 

between circumstances where a is asymptotically Normally distributed and those 

where it is not, with Normality occurring for values of a less than the critical one. 

This is of some practical significance, since many of the real bivariate data sets 

that we have encountered are well-approximated by processes having a between 1 

and 3/2.

Numerical properties The rates of convergence of estimators of a and c deterio

rate as a gets closer to 2, because the amount of information contained in oscillations 

of X  decreases as the process becomes smoother. In the extreme case when a = 2, 

there is insufficient information in a record of X  on a finite interval to estimate c 

consistently. As a increases to 2, one needs to examine successively higher-order 

properties in order to obtain similar performance; see Kent & Wood (1997).

The problems as a approaches 2 are observable in a simulation study, such as 

that summarised in Figure 5.1. Panel (a) depicts the logarithm of the standard
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n

Figure 5.1: Plots of logged standard error, bias and mean squared error as a function 

of the logarithm of sample size, for a two-dimensional Gaussian random field with 

covariance 7 (t) = exp(—8 ||t||Q) and for different values of a.
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Figure 5.2: Plot of mean squared error of d against the number of points, k , used 

to compute it by simple linear regression. The data were from a Gaussian process 

with covariance 7 (t) = exp(—8 |t |1-25)

error of d, panel (b) the logarithm of the bias in d, and panel (c) the logarithm 

of the mean squared error of d, plotted against logn for a = 0.5, 1.0 and 1.5. 

Data were generated from a two-dimensional Gaussian random field with covariance 

7 (t) = exp(—16||t||a), in the range t G [0, l]2. We took k = 4 and u to equal n~l 

multiplied by one of 1, 21/2, 2, 23/2. For respective values of n the curves were based 

on 4(1024/n)2 simulations. For a > 1 , performance deteriorates as a increases, ow

ing to an increase in variance; while for a < 1 , performance improves with increasing 

a, due to a decrease in bias.

Choice of k In addition to saving computational labour, there are two reasons for 

choosing k relatively small. Firstly, it minimises bias from the o(l) term in equation 

(5.3). Secondly, estimates of the variogram exhibit high correlation between values
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at neighbouring lags, and using more lags in the regression does not improve the 

accuracy of estimates as much as in the case of data with lower correlation. Indeed, 

taking the number of points in the regression to diverge with increasing sample size 

will inflate both bias and variance, and so even in an asymptotic sense, as n —> oo, 

the optimal k is bounded. This has been shown theoretically by Constantine & Hall 

(1994).

To provide a numerical illustration, Figure 5.2 depicts a plot of mean squared 

error of ä against /c, in the case of a Gaussian process on the interval [0,1] with 

covariance 7 (t) = exp(—16|t|Q) and a = 1.25. Clearly, mean squared error perfor

mance is optimised at a relatively small value, k = 2. Similar results are obtained 

in the bivariate case.

Quantifying the error Estimates of the variances of äj  and c/ may be obtained 

from the parametric bootstrap procedure described in section 4.2.2, or from the 

following plug-in formulae:

k k k k
4 ;  =  ' £ 2 Y l ai'ai*Sl(Ul" Ul^  and = ^  T .  bhbl2S!(ui^Ui2),

Z1 =  1 G =  1 Z1 — 1 Z2 — 1

where si(ui ,u2) is an estimator for cov{logz)/(ui), logf)/(u2)}.

Here, sj(u\,u2) is constructed in a similar fashion to its one-dimensional equiv

alent s(hi,/i2) as defined in section 4.2.1. However, since vi(h) is an average of a 

number of D(£)’s and since these are calculated from data across a two-dimensional 

grid, its formulation is slightly more complex. Put

S(h\,  h 2) =  {t\ — t 2 : t\  £ C(h \ ) and t 2 G C (h2)}

and, for t  G S(/ix,/i2), let N(t) be the number of pairs ( t i , t2) in C(h\) x C(h2) 

such that t\  — t 2 = t , and let

T7(u;t,/ii -  h2) = v(\\t + hi -  h 2\\) -  u(||t + hi\\) -  v(||t -  h 2\\) + u(||t||).
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Then,

si(ui ,u2) =

{2v(u1)t;(u2)|C/ («1)||C/ (U2)|} -1 T E E  N (t )T , (v - t ,hu h 2)2,
||/ii||=iti \\h2\\=u2 t e S ( h i , h 2)

where v(-) is an estimator for the underlying one-dimensional variogram obtained 

by fitting a suitable valid model to v/(-). The one-dimensional fitting procedure 

described in section 4.3 can be used to fit the model.

The bootstrap method for estimating variances may also be used to obtain con

fidence intervals for ä / and c/.

5.2 B ox counting

Existing box counting methods for estimating fractal dimension are defined for sub

sets of Euclidean space with any number of dimensions. As such they are general 

in nature and, for the surface data, they do not take advantage of continuity of the 

underlying process nor the regular fashion in which the data are recorded.

As well as taking advantage of the structure of the data, the modified box count

ing method for one-dimensional data of Hall & Wood (1993), as described in sec

tion 2.3.2, improves on the performance of existing methods. The box counting 

described below is a direct extension of this to two-dimensional data.

The two-dimensional analogue of this method is to conduct linear regression of 

the logarithm of box covering volume against the logarithm of box width, for those 

data pairs with small box width. The fractal dimension is then calculated in an 

analogous way, as a linear function of the slope of the log-log regression.

The two-dimensional box-covering is a direct extension of the one-dimensional 

box-covering described in section 2.3.2. If B(i, l) is as defined in section 2.3.2 then 

denote its two-dimensional counterpart by

B(i, l) = B(i\,l) x B(i2, l) (1 < ii, 12 < Qi, 1 < I < k),

where i = (A, «2)'. Recall qi denotes the integer part of (n — l)//m . Here, l denotes 

the level of discretisation and m the width of a block.
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Figure 5.3: Panel (a) is a scatterplot of the log of the isotropic empirical variogram, 

vj, against log lag for the dry soil surface data shown in panel (a) of Figure 1.2. The 

straight line represents a least-squares fit through the points with lags: 1,21/2, 2, 23/2. 

The dotted curve represents a heuristic fit of the stable exponential variogram model 

to all of the points. Panel (b) is a scatterplot of the log of the box-covering volume, 

V(l), against the log of minimum box-width (discretisation level l) for the same dry 

soil surface data set. The straight line represents a least-squares fit through the 

points with box-width: 1, 2,3,4.
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The approximate volume of the box-covering for the zth block is

Tu = tfiUu — Lu),

where

e = lm /n , Uu=  max X ( j / n ), and L u — min X( j / n) .

The individual box-covering volumes are summed over blocks to obtain the total 

box-covering volume,

v(i) = = e‘ E ( Uii - L ■ « ) ■

Using the Box Counting Theorem (Barnsley, 1988, page 176), a box counting 

estimator, D b c , f°r fractal dimension may be obtained from the slope of a log-log 

regression

3 — D Bc =  ~  ä ) lo6 ^ ( 0 |  j >

where Xi  = log l and x =  x i-

The variogram and box counting methods for estimating fractal dimension are 

compared in Figure 5.3. Panel (a) depicts the variogram method and shows a 

scatterplot of the pairs (log iq, log vi(ui)) for the first soil surface data set, i.e. before 

any rainfall. The solid straight line represents the ordinary least-squares fit to the 

four points with ui = 1, 21/2, 2, 23/2. The estimate of fractal dimension obtained 

from the slope of the regression line is 2.35. Estimates of fractal dimensions for the 

other soil surface data sets are given in Table 5.1.

Panel (b) of Figure 5.3 depicts the box counting method and shows a scatterplot 

of the pairs [log/, log V(Z)], also for the soil surface before rainfall. The solid straight 

line represents the ordinary least squares fit to the four points with / =  1,2,3,4. 

The estimate of fractal dimension is 2.35.

There appears to be less structure and more variability in the scatterplot of 

panel (b) than in the scatterplot of panel (a). This is because the variogram esti

mator is an average of 0 (n 2) terms, whereas the box-covering volume estimator is
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Rainfall

(mm)

Fractal Dimension 

D {Iß: U f ) )

Fractal Index

('-’ä/) [^a/] C l

Topothesy

{ S C j )  [S C/]

0.00 2.35 (2.34, 2.36) 1.30 (0.01) [0.01] 2.02 (0.02) [0.02]

5.30 2.45 (2.44, 2.46) 1.10 (0.01) [0.01] 2.89 (0.02) [0.02]

10.05 2.31 (2.29, 2.32) 1.39 (0.01) [0.01] 1.80 (0.02) [0.02]

14.30 2.31 (2.30, 2.32) 1.39 (0.01) [0.01] 1.56 (0.02) [0.02]

18.55 2.36 (2.35, 2.37) 1.28 (0.01) [0.01] 1.57 (0.02) [0.02]

22.50 2.27 (2.26, 2.28) 1.46 (0.01) [0.01] 1.16 (0.02) [0.02]

27.00 2.37 (2.36, 2.38) 1.26 (0.01) [0.01] 1.41 (0.02) [0.02]

31.25 2.27 (2.26, 2.28) 1.46 (0.01) [0.01] 1.08 (0.02) [0.02]

35.50 2.28 (2.26, 2.29) 1.45 (0.01) [0.01] 1.08 (0.02) [0.02]

Table 5.1: Results of analysing the soil-surface data  after successive amounts of 

rainfall. For each data set, the table shows point estimates and 95% confidence 

intervals for fractal dimension, and point estimates & standard errors for fractal 

index and topothesy. The standard errors shown in parentheses were calculated 

using the plug-in method and the standard errors shown in brackets were calculated 

using the bootstrap method.

an average of 0 (n ) terms. The terms in both estim ators are similar in construction 

and therefore contain similar information.

Nevertheless, the estimates of fractal dimension obtained from both methods 

agree to two decimal places. Since they both yield similar values, it may be advan

tageous to use the box-counting method for large data  sets, since it requires less 

time to compute. However, for precision the variogram method is recommended.
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5.3 A pplication to  soil surfaces

Computer-generated scene renderings of the raw soil-surface data are shown in Fig

ure 1.2. (The data sets and the experiments from which they were collected are 

described in section 1.2.) On first inspection, it is difficult to see any significant 

changes in the surface after successive amounts of rainfall.

However, there are two features in the sequence that may be noted after close 

scrutiny. The first concerns the difference between the dry soil sample, panel (a) of 

Figure 1.2, and the soil after 5.30mm of rain, panel (b). It might be said that the 

surface of the latter exhibits a rougher texture than that of the former. The second 

feature concerns the sequence of soil surfaces, from directly after the initial period 

of rainfall until the wettest soil surface, panels (b) through (i) of Figure 1.2. In 

this sequence, the lower-lying regions of the soil surface appear to become progres

sively smoother, whereas the higher regions are becoming slightly more granular in 

appearance.

These two features are expected, and correspond to the initial “spattering effect” 

of raindrops on a dry soil surface, and to the transportation of smaller particles from 

high regions to lower regions with the flow of rain over the surface, respectively.

Point estimates of fractal dimension and topothesy were obtained for each data 

set using the methods of section 5.1. These estimates are shown in Table 5.1, along 

with confidence intervals for fractal dimension and estimates of standard error for 

fractal index and topothesy.

The confidence intervals for fractal dimension and topothesy are also depicted in 

Figure 5.4, each panel showing how the fractal dimension and topothesy vary with 

successive amounts of rainfall. The estimated fractal dimension varies relatively 

little over time, whereas estimated topothesy decreases steadily after an initial in

crease. This would suggest that the fractal dimension of the soil surface is relatively 

unaffected by rainfall, and it is topothesy that explains the two features of initial 

“spattering” and later erosion and deposition of finer particles.

Care must be taken when comparing the topothesies of surfaces with different 

fractal dimensions as it is not clear how to interpret any differences. However, if
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^ -------------3=

0.0 5.30 10.05 18.55 27.00 35.50

Cumulative rainfall (mm)

Figure 5.4: Graph of 95% confidence intervals for fractal dimensions (joined by a 

solid line) and topothesies (joined by a broken line) versus cumulative rainfall for 

the soil surface data.



CHAPTER 5. ISOTROPIC SURFACES 102

Rainfall ä A G

0.00 1.30 10.27 18.02

5.30 1.11 4.49 17.67

10.05 1.39 17.06 17.52

14.30 1.39 14.82 17.32

18.55 1.28 7.92 17.07

22.50 1.47 19.02 16.71

27.00 1.26 6.79 16.40

31.25 1.46 18.22 16.15

35.50 1.45 17.43 16.06

Table 5.2-. Estimated model parameters obtained from fitting the stable exponential 

variogram model to the isotropic empirical variogram using the heuristic fitting 

procedure of section 4.3.

the fractal dimensions are similar, inferences based on comparing topothesies are 

arguably justified. In such cases, it is preferable to estimate a common fractal 

dimension with individual topothesies simultaneously for the surfaces.

Since fractal dimension estimates vary relatively little for the soil surface data, 

it might be supposed that fractal dimension remains constant. The least squares 

estimators of fractal index and topothesy of section 5.1 were modified to obtain esti

mators for a common fractal index and different topothesies for the soil surface data 

sets. The common fractal index was 1.34, corresponding to a fractal dimension of 

2.33. The values for topothesy were similar to those from the individual fractal anal

yses of each data set, as tabulated in Table 5.1. Indeed, a plot of those topothesies
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estimated assuming a common fractal dimension is very similar to that in Figure 5.4. 

This provides some support that topothesy exhibits the features observed in the raw 

data.

The standard errors and confidence interval estimates in Table 5.1 were obtained 

using the plug-in and bootstrap methods described in section 5.1. Both methods 

required valid variogram models for the underlying process. Parameters estimates 

from fitting the stable exponential variogram model to each of the soil data sets are 

given in Table 5.2. The fitting procedure used was the heuristic method described 

in section 4.3. The fitted model for variogram of the dry surface data is depicted by 

the dotted curve in panel (a) of Figure 5.3.



Chapter 6

Anisotropic surfaces

This chapter is concerned with more general surfaces for which it may not be 

reasonable to make the assumption of isotropy due to physical considerations, nor 

to assume isotropy given empirical evidence. The variogram models from the previ

ous chapter are extended to cater for these surfaces, by allowing fractal index and 

topothesy to vary with orientation.

It is shown that the amount by which the fractal index and hence fractal dimen

sion of line transects can vary is restricted. In fact it can take at most two values. 

The restrictions on topothesy are not so great and it generally take the form of a 

positive periodic function.

Methods for estimating the fractal index and the topothesy function for general 

anisotropy are given. Also, attention is paid to a special form of anisotropy that 

appears common in data sets in the literature. For this form of anisotropy, a model 

is developed and parameterised in a way that allows existing concepts to be quantified.

This special model is used as part of a bootstrap hypothesis test for isotropy. 

Since the bootstrap test methods are quite general, it is shown how to construct a 

two-surface test for common fractal dimension.

All the methods developed are applied to the polymer data described in chapter 1.

104
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6.1 G eneral anisotropy

To date there has been little attention paid to characterising surface roughness in 

terms of anisotropy. Most methods have involved describing roughness with one or 

two global parameters. This has been due largely to the nature of the measurement 

devices used to obtain surface elevation data. Devices such as stylus and optical 

profilometers only record data along a single transect of the surface. In order to sat

isfactorily address the question of anisotropy using data from these devices, it would 

be necessary to measure the same surface many times with the same device, while 

accurately recording the relative positions and orientations of successive transects. 

Instead, the question of anisotropy has largely been ignored. Only recently, with the 

advent of more modern measurement devices such as the laser scanning device used 

to measure the soil surface and the scanning tunnelling microscope used to record 

the polymer surfaces, have genuinely two-dimensional data been gathered. With it, 

attention is starting to concentrate on how to characterise the anisotropy of surface 

roughness.

So far, methods for both one-dimensional data and two-dimensional isotropic 

data are based on properties of a univariate variogram. However for anisotropic 

data, the variogram is a function of two variables, lag and orientation. This has 

implications for the two roughness parameters, fractal dimension and topothesy. In 

the univariate cases these parameters took on a single value but, in the bivariate 

anisotropic case, the parameters may also vary with orientation. Simply extending 

the model for the univariate variogram (2.4) to two dimensions leads to the following 

model:

v(t) = c(arg£)||£||a(argt) + o(||£||Q(argt)), as t  -» 0. (6.1)

Here, fractal index and topothesy are functions of orientation.

Although the form of these functions is not specified in (6.1), it is reasonable to 

suspect that properties of the variogram affect the possible forms these functions 

can take. This is indeed the case as shown by the following theorem, which shows 

that the extent to which the fractal index of line transects can vary is limited. The



CHAPTER 6. ANISOTROPIC SURFACES 106

theorem asserts that for any three orientations, the two lowest fractal indices must 

be identical. Hence, if fractal dimension can be expressed in terms of fractal index 

by the canonical formula D = 2 — a/2, in the case d = 1, then the two highest values 

of fractal dimensions must be equal. In simpler terms this says “if the intrinsically 

stationary stochastic surface X  satisfies the usual one-dimensional scaling laws then 

the fractal dimensions of its line transect processes are the same in all directions 

except possibly one, in which fractal dimension may be less than in all others.”

T heorem 1 Let v(-) denote a valid variogram function in the plane with the prop

erty that, for any three different orientations 01,02,03 (denoting unit vector's such 

that 6i ±6j for i ^  j) , the quantities

ai = sup{ai > 0 : v(u6i) = 0 ( |u |a) as u —» 0} and 

bt =  infjo: > 0 : |u|a = 0[v(u6l)\ as u 0}

satisfy a* = hi (= oci, say). Order the Oi ’s so that Qu < a2 < <23. Then ot\ = a2.

P roof Since 0 i ,0 2,03 are distinct two-dimensional vectors, there exist non-zero 

scalars 7*1, r2, r3 such that r\0\ + r202+7*303 =  0. Construct a triangle whose vertices 

are

t i =  0, t 2 = r\0i and t 3 =  r t f i  + r202.

Choose any positive real numbers c1? C2 > 0 and put c3 =  — (C1+C2) so that C{ = 0. 

Then, because variograms are necessarily conditional non-positive definite,

0 > J2 v (t i ~ ti) =  2c1c2u (rr i0 1) + 2c2c3v{r r262) + 2c3ciu(r r303).

Now suppose that, contrary to the claim of the theorem, a\ < a2 < a 3. Divide both 

sides of the inequality above by u ( r r10 1), and let r —> 0, obtaining 0 > 2ciC2, which 

contradicts the assumption that C1C2 > 0. □

Example 6.1 In section 3.5 the mathematical concept of a ruled surface was in

troduced; a ruled surface, X$, is an extension of a one-dimensional process to two
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dimensions by ‘drawing out’ the process in a particular direction. From its defini

tion, the construction of a ruled surface is not unlike the manufacturing processes 

of extrusion in the case of plastic surfaces or milling in the case of metal surfaces. It 

is conceivable therefore that such surfaces may exhibit a special orientation where 

fractal dimension is different from all others.

A suitable refinement of (6.2) for the underlying variogram of a ruled surface is 

then

v(t) = c I cos(arg t  — VOTIMr + o(||£||a), as t  —► 0.

Empirical evidence of the assertion of the theorem may be observed in Figure 6.1. 

For each of 24 unit vectors 6 , Figure 6.1 (a) illustrates least-squares fits of straight 

lines through pairs (logr, \ogv(r6)) with varying r, for the polymer surface data in 

panel (c) of Figure 1.3. The vectors 6 were approximately equally spaced around 

the circle, subject to the tangents of their orientations being rational. Although the 

intercepts vary considerably the slopes of the lines are similar, suggesting that the 

topothesies vary significantly with orientation but that the fractal dimensions do 

not. For the sake of comparison, Figure 6.1 (b) shows analogous lines for the surface 

depicted in panel (d) of Figure 1.3. This surface is smoother but the evidence of 

local self-affineness is similar. Formal testing will be addressed in section 6.3, where 

bootstrap methods for these data are discussed.

A result related to the Theorem, that fractal dimension is the same in “almost 

all” directions with respect to Lebesgue measure, is given in the non-stationary case 

by Marstrand (1954), Falconer (1985, Chapter 6) and Mattila (1985). The more 

specific result in the Theorem, that fractal dimension is the same in all directions 

except possibly one, is of significantly greater physical interest because most man

ufactured surfaces are produced in a manner that ascribes special importance to a 

particular “manufacturing axis”. Thus, it is feasible that an orientation of special 

fractal character might exist. Engineering surfaces that have been milled, ground, 

face-tuned or bored, often have surfaces that closely resemble the mathematical 

ideal of a ruled surface; see Stout et al. (1993) for examples of such surfaces. After 

processing, they are not unlike the superposition of a ruled surface and a stationary,
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Figure 6.1: Least-squares fits to the scatterplots of the log of the empirical variogram, 

{;(•), against log lag for line transects in different orientations. Panel (a) is for data 

depicted in panel (c) of Figure 1.3, while panel (b) is for data in panel (d) of 

Figure 1.3. In the latter, broken lines represent fits based on larger lags.
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stochastic, isotropic surface.

For cases where there exists an exceptional direction corresponding to lower 

fractal dimension, we may interpret the Theorem by saying that the roughness of a 

strongly directional surface will be experienced in any direction which is not orthog

onal to that of the highest-frequency oscillations. One example of this phenomenon 

is that of a stationary process which may be decomposed into one component that is 

a ruled surface and another that is perhaps more directionally homogeneous (in any 

event, not a ruled surface with the same axis as the first one) but strictly smoother 

than the ruled surface. The unique direction in which the fractal dimension is less 

than that of the overall surface is orthogonal to the oscillations of the ruled surface. 

See also Hall & Davies (1995).

These direction invariance properties may be regarded as the basis for physical 

measurement of surface roughness based on stylus or optical profiling. If one’s goal is 

estimation of fractal dimension, as distinct from scale, then it is often not essential to 

be meticulous about the orientation of a profile. Nevertheless, even if the dimension 

of line transects is the same in all directions, it can be statistically beneficial to take 

measurements in the direction in which the scale of fluctuations is greatest.

It should be stressed that even in cases where the fractal dimension of line tran

sect samples can assume different values in different directions, the fractal dimension 

of the surface {X(t ) , t  E R2} “as a whole” is usually well-defined and equals 1 plus 

the higher of the two fractal dimensions of line transect sections: see for example 

Federer (1969, Section 3.10).

Implications of the theorem The dependence of scale on orientation is more 

complex, but may be appreciated from a version of (2.4) without assuming isotropy. 

If d = 2 then (2.4) should generally be replaced by

v(t) = c(argt)||t||a 4- o(||t||Q), as t  -> 0, (6.2)

where c(argt) is a continuous, periodic and nonnegative function, nondegenerate in 

the case of anisotropy; and 0 < a < 2 is a constant.

The function c(-) is strictly positive except possibly for a single special value of
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argt, ip say, where c(argt) vanishes. Fractal index and fractal dimension for line 

transect samples in this direction are determined by the form of the remainder term 

o(||£||Q) when arg t  = ip. In all other directions, they equal a and 2—^a, respectively. 

Note particularly that in the case of (6.2), c is a function — the topothesy function.

Point estimation For data recorded on a bounded two-dimensional grid, there 

are only a finite number of possible orientations at which the variogram may be 

estimated. These orientations are those of lines passing through two or more grid 

points. Consequently, there are only a finite number of orientations at which naive 

empirical estimates of c(-) may be calculated. Since concern is still primarily with the 

behaviour of the variogram in the vicinity of the origin, the number of orientations 

at which c(-) is directly estimable is smaller. In constructing estimators for a and 

c(-), only those values of the variogram at displacements with lags not greater than 

R  will be used.

Let denote the v distinct orientations that represent lines through

points on the grid at most a distance R  apart. For each orientation 0*, let U{j, for 

1 < j  < A:*, be the ki ordered positive values not exceeding R  for which v(uijOi) is 

calculable. Recall the convention arg# =  9. Put c* =  c($i).

Estimators for a and C{ may be obtained by minimising a least-squares criterion, 

to fit

log v{t) = logc(argt) + a  log ||t||,

over the set of displacements for which ||t|| < R. These least-squares estimators are 

given by

v ki I v

ä  = y ^ y y io g rv , -  logrO logO tr,^) / ^ 2 ^ ( l o g ri} -  logr,.)2 , (6.3)
1=1 j=1 /  Z=1 j = 1

and

2 '  ______________

log Ci = — ^ l o g  v(rjOi) -  dlog r{. (6.4)
j=i

where logr*. =  kt 1 ^ lo g r^ .
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To obtain estimates of c(<f>) for general </>, let c{<f)) be the result of passing a local 

linear smoother (Fan, 1993; Hastie k  Loader, 1993) through the pairs of points 

(0j,c*), using a compactly supported kernel K  and interpreting both (f) and 9t as if 

they took values on the interval (—7r/2, 7t/2] wrapped around a circle.

Moment and distributional properties of ä and c* are very similar to those of äj 

and c/, as described in chapter 5 for isotropic two-dimensional data. Also, estimates 

of the standard errors of a and c* may be obtained similarly to those described in 

section 5.1.

6.2 Weak anisotropy

One particular form of anisotropy that appears relevant, at least to the polymer 

surface data, is that which causes the underlying variogram to have elliptical con

tours. This is often called weak anisotropy in the context of surface metrology and 

geometrical anisotropy in the context of geostatistics.

Geometrical anisotropy is usually given a more formal definition. It refers to 

the situation in which there exists a linear transformation that, when applied to 

the argument of a geometrically anisotropic variogram, corrects for the anisotropy. 

Let v(t) be a geometrically anisotropic variogram and M  be a correcting linear 

transformation. Then

v(t) = u(||M t||),

where, abusing notation, v(t) is a valid univariate variogram.

This definition is not limited to two dimensions, and in geostatistics is often 

applied to problems in three or more dimensions. However, for the problem of 

characterising surface roughness, it will only be used in the two-dimensional setting. 

Hence we prefer to use the terminology of weak anisotropy.

One advantage of using this definition is that properties of the elliptical contours 

can be used to characterise the surface. For instance, the common orientation of 

the ellipses is that in which the topothesy function attains its minimum, and the 

eccentricity of the ellipses is related to the degree to which a surface is anisotropic.
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These are often important factors when considering the manufacture or application 

of surfaces.

A refinement of assumption (6.2) for the behaviour of the variogram in the neigh

bourhood of the origin for a weakly anisotropic surface is

v(t) = c0 {1 +  scos2(argt -  ip)}a/1 ||t||Q + o(||t||Q), as t —> 0. (6.5)

This leads to the following model for the logarithm of the variogram at small 

lags:

log v(t) = log c0 + ^  log{l + scos2(argt -  ip)} +  a  log ||t||. (6.6)

These equations have been parameterised in a manner that makes them easily 

interpretable. The constant cq provides an “average” measure of scale or average 

topothesy, and is comparable to the topothesy from the isotropic model. The pa

rameter s lies between 0 and 1 and provides a measure of the strength of anisotropy 

of a surface. A value of 0 for s would result in the topothesy function degenerating 

to a constant, and hence imply the expansion (2.4) of the variogram of an isotropic 

process, i.e. no anisotropy in a local sense. If s were nonzero then ip, which we 

might call the lay, in agreement with its use in surface metrology, would be the 

orientation at which the topothesy function attained its maximum value.

To see how (6.5) was obtained, first formulate parametric equations for concentric 

elliptical paths centred at the origin. If the eccentricity of these ellipses is A and 

their major axes are oriented in the direction ip then suitable equations are

\\t\\ cos(argt  — ip) = r cos 9, (6.7)

||t|| sin(argt — ip) = r A sin 0. (6.8)

Here eccentricity is defined to be the ratio of the furthest point on the ellipse from 

its centre to the closest point on the ellipse from its centre, and hence is bounded 

below by 1.

For any given family of concentric ellipses specified by the pair (ip, A), the equa

tions allow the determination of the “radius” of a particular ellipse given any point
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on that ellipse. This can be seen from the following identity, achieved by summing 

the squares of (6.7) and (6.8) after appropriate scaling,

=  ( c o s V g t - ^ )  + Sin2(ay - ^ ) .  (6.9)

Suppose that v(-) has concentric elliptical contours. Then the value of the vari- 

ogram at points on the same ellipse are all equal. The furthest points on concentric 

ellipses from their centres all lie in the same direction and so the variogram along 

this direction is a valid one-dimensional variogram. This gives rise to

v(t) = v(r).

For v(r) satisfying the one-dimensional model (2.4) and r obtained from (6.9), 

v(t) =  c |co s2(argt — j/>) + Sln —— j ||t ||a +  o(||t||a),

which, after applying some trigonometric identities and reparametrising, becomes

v(t) = c0 (1 + s cos 2(argt -  ip))2\\t\\a + o(||t||Q),

where c0 = c (\/A2 + l/2A)a and s = (A2 — 1)/(A2 + 1). Thus, the strength of 

anisotropy s is determined solely by the eccentricity of the elliptical contours A. 

From (6.5), the topothesy function is given by

Q

c(argt) =  c0 {1 + s cos 2(argt — ip)}2 .

6.3 A  test for isotropy

The problem of detecting anisotropy and assessing its degree has received little 

attention in the literature. Indeed, in geostatistics, where it has long been recognised 

that it is important to ensure that anisotropy present in the data is detected, most 

texts use graphical methods for detecting anisotropy.

A notable attempt to address the gap was made by Baczkowski & Mardia (1990). 

They developed a variogram-based test for symmetry about the diagonal of a rectan

gular grid. For mathematical convenience they assumed a doubly geometric process
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model for the data which, apart from failing to be radially isotropic, is too restrictive 

for the present application. However, they showed that this test for symmetry may 

be used in a limited number of situations to test for isotropy.

The method for testing for isotropy suggested here is based on the model (6.5) 

for weakly anisotropy processes. The value of the model parameter s determines 

whether the model is of a weakly anisotropic process or an isotropic process. So a 

test for isotropy against the specific alternative of weak anisotropy can be carried 

out by testing the value of the strength of anisotropy s. Formally, we wish to test

H0 : s =  0 against Hi : s > 0.

The obvious suitable test statistic is then s, the estimate of s obtained from (6.6). 

Unfortunately, simple distributional properties of s are difficult, if not impossible, 

to obtain due to the complicated correlation structure inherent in the empirical var- 

iogram, the iterative nature of the fitting procedure, and the dependence on other 

parameter values. Monte Carlo methods, similar to those described in section 4.3.1 

for model validation, again provide a practical solution to estimating the null dis

tribution.

Step 1: Choose a maximum lag R which defines a suitable neighbourhood of the 

origin. Fit the weakly anisotropic model (6.6) using those pairs (£,#(£)) for 

which ||t|| < i?, to obtain estimates d ,c0,5 and if; of model parameters. The 

estimate s will be used as the test statistic.

Step 2: Fit a suitable null (isotropic) model for the variogram, either the power law 

model (4.7) or the stable exponential model (4.8), using all pairs (||£||, v(t)) for 

which v(t) is calculable. This can be done using the heuristic fitting procedure 

suggested in section 4.3. The resultant fitted model, £(•) say, will be used to 

generate the null distribution of s.

NOTE: if the power law model (4.7) is considered suitable then the param

eter estimates a and c0, calculated in STEP 1, offer practical estimates of 

parameters for the purposes of simulation.
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Step 3: Simulate B  realisations of Gaussian random fields with {>(•) as their vari- 

ogram. Identify each as X£.

Step 4: For all simulated processes calculate their respective empirical vari- 

ograms 0J($) and fit (6.6) using those pairs (i,f)J(i)) for which ||t|| < R , to 

obtain model parameter estimates, dJ,CoJ,sj* and

Step 5: Order the sjj’s: < ••• < s*By The null hypothesis is rejected at the

100(1 — ß)% level if the test statistic s exceeds

6.3.1 Comparing fractal dimension between surfaces

Most of the steps involved in the above algorithm are general; only a few are specific

to the test of isotropy. A modification of the test above, producing a two-surface

test for common fractal dimension, is given below.

Step 1: Fit a variogram model to the data. The model used should permit the whole 

range of allowable values for each of the anisotropic roughness parameters.

For the parameter under investigation, “pool” the parameter estimates ob

tained from the two surfaces, and substitute the pooled estimate for the val

ues in the models from which we shall resample. For example, to compare the 

fractal dimensions of two anisotropic surfaces, one might take the average of 

their estimated fractal indices and substitute it for the original fitted values in 

the respective fitted models, leaving all other parameter estimates the same.

Step 2: From the modified models for each surface, simulate a number, B  say, of re

alisations of Gaussian random fields. These simulations will then be conducted 

under the null hypothesis that the surfaces have similar underlying parameter 

values.

Step 3: For each of the 2B  simulated surfaces, calculate their respective empirical 

variograms i)J(-) and fit model (6.6), to obtain B  sets of parameter estimates 

from each model.
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Step 4: For the parameter in question, calculate the absolute difference of its esti

mated values from every combination of pairs of the simulated surfaces, one 

from either model, to obtain a bootstrap distribution. Then compare the 

absolute difference of the parameter’s estimated values for the two real sur

faces. Compare this statistic with the bootstrap statistics. The proportion 

of bootstrap statistics that exceed the actual statistic yields an approximate 

p-value.

6.4 A nalysis of th e  polym er surfaces

Computer-generated scene renderings of the six polymer surfaces are shown in Fig

ure 1.3. Based on these pictures, an initial subjective ranking of the surfaces might 

nominate the surface in panel (d) as the smoothest, the surface in panel (c) as the 

next smoothest and those in panels (a), (b), (e) & (f) as being equally the roughest. 

It might also be noted that in panel (d) there is evidence of directional anisotropy 

rectangular to the edges of the data. If the page is rotated through 90°, all panels 

show evidence of similar directional anisotropy. These features are confirmed later 

using the methods developed in the chapter.

Contour plots of the sample variogram for the polymer surface data were gen

erally of elliptical shape near the origin, providing more graphical evidence that 

the surfaces are anisotropic; see for example Figure 3.4. One possible reason for 

the anisotropy might be traced back to the directional nature of the extrusion pro

cess used to manufacture the polymer. This is a topic that surface scientists might 

explore if their aim was to produce isotropic surfaces as well as surfaces with the 

right roughness characteristics. Our interest here is in characterising the roughness, 

accounting for the anisotropy in our models, and seeking to quantify the anisotropy.

To this end, estimates a and C{ were calculated from (6.3) and (6.4) respectively 

for each data set, using those 0*’s for which there existed < 5. Figure 6.2 

illustrates a scatterplot of pairs (0f,Cj) for the third polymer surface, panel (c) of 

Figure 1.3. The LOESS statistical package (Cleveland & Devlin, 1988; Cleveland &
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Figure 6.2: Estimates of the topothesy functions for the third plastic food wrap data 

set. The points are plotted at (0j,ci). The solid line is a local linear smoother fitted 

to these points. The dashed line is the parametric estimate of topothesy under the 

assumption of weak anisotropy.

Grosse, 1991), employing a tricubic kernel and an average bandwidth of 7r/10, was 

used to produce the local linear smooth depicted by the solid line . (The amount of 

smoothing needed to produce graphs such as Figure 6.2 is usually easy to determine 

by eye, since the points on the curve are themselves estimates and so have relatively 

little noise.)

Fractal indices ä were used to compute estimators of fractal dimension by sub

stituting into the formula D = 3 — Their values are listed in the row labelled 

“Fractal dimension (i)” in Table 6.1 .

Because the contours of the empirical variogram were elliptical in nature for each 

data set, the weak anisotropy model (6.5) was fitted, using ordinary least-squares, 

to the log of the empirical variogram in identical neighbourhoods of the origin.
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Data set (a) (b) (c) (d) (e) (f)

Fractal dimension (i) 2.50 2.49 2.30 2.19 2.47 2.59

(0.010) (0.012) (0.014) (0.011) (0.012) (0.009)

Fractal dimension (ii) 2.50 2.48 2.31 2.19 2.46 2.58

(0.012) (0.015) (0.016) (0.012) (0.015) (0.012)

Average topothesy, Co 1.01 0.63 1.28 4.11 1.30 1.36

(0.014) (0.012) (0.043) (0.194) (0.025) (0.019)

Strength of anisotropy, s 0.41 0.67 0.72 0.69 0.60 0.59

(0.036) (0.025) (0.023) (0.025) (0.030) (0.025)

Lay, ip 0.12 0.12 -0.18 -0.04 0.17 0.09

i (0.052) (0.030) (0.026) (0.029) (0.035) (0.031)

Table 6.1: The estimated fractal dimensions, average topothesies, strengths of 

anisotropy, and lays (in radians), for the six polymer surface data sets. The fig

ures in parentheses are bootstrap estimates of the associated standard errors.

The corresponding estimators of fractal dimension (“Fractal dimension (ii)”, in the 

second row), average topothesy c0, strength of anisotropy s and lay 'ip are listed in 

Table 6.1, along with bootstrap estimates of error in parentheses.

The fitted topothesy function implied by the total fitted model, in the case of 

the third polymer data set, is depicted by the broken line in Figure 6.2. This is to be 

compared with the scatterplot and the local linear smooth. Note that both curves 

differ from a pure sinusoid in that the curvature of the crests is less than that of the 

troughs.

The results in Table 6.1 suggest that the fourth data set has lower fractal dimen-
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Data sets statistic P-value

(a) & (b) 0.016 0.637

(c) & (d) 0.133 0.000

(e) & (f) 0.125 0.000

Table 6.2: Test statistics and associated P-values for parametric bootstrap tests for 

common fractal dimension between successive pairs of the six plastic food wrap data 

sets.

sion than the others and, in partial compensation, higher average topothesy. This 

surface may show evidence of two fractal dimensions at different lags, or scales: see 

panel (b) of Figure 6.1, where the lines corresponding to larger lags (the broken 

lines) have lesser slope. However, this is probably due, at least in part, to greater 

error in estimation of the variogram, mainly owing to the greater bias at greater 

lags.

From a material science point of view, the estimates of fractal dimension provide 

criteria for ranking polymer surfaces in order of roughness. Furthermore, the result

ing rankings agree with subjective assessment. This provides important information 

for determining the manufacturing process that produces the polymer with the most 

desirable properties.

As mentioned in section 6.1, the polymer surfaces sets were manufactured by 

two slightly different processes, those depicted in panels (a), (c) & (e) of Figure 1.3 

by one process and those shown in panels (b), (d) & (f) by the other. Successive 

pairs of data sets had similar input parameters for each process. One of the aims 

of the experiment was to determine whether the roughness properties of surfaces 

manufactured by the first process were different from those for the second process, 

for a range of input parameter values.

Table 6.2 contains results from bootstrap hypothesis tests for common fractal
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dimension. The inference is that the difference in fractal dimension for the first pair 

of surfaces is possibly caused by stochastic error, whereas differences for the other 

pairs are most likely not due to stochastic error.
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