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Abstract 

In the work described in this thesis, analytical methods for the detection and 

quantification of peptide hormones featuring on-line analyte concentration, post-

separation tagging and HPLC-fluorescence detection were presented. These methods 

were used to detect and quantify calcitonin (CT) and its prohormones glycyllysyllysine-

extended CT (CTGKK), glycyllysine-extended CT (CTGK) and glycine-extended CT (CT-

G) for the first time, in DMS53 small cell lung carcinoma (SCLC) cell culture medium 

and lysate. Additionally, novel glycosylated versions of each species were also identified, 

suggesting the presence of a parallel biosynthetic pathway in DMS53. Extracellular but 

not intracellular levels of CT were reduced as a result of treatment with biosynthesis 

inhibitors, and it was suggested CT precursor flux through the glycosylated pathway acts 

as a bypass mechanism to maintain intracellular CT levels. Moreover, the up-regulation 

of extracellular levels of CT-related species in response to increased medium volume 

provided evidence of a homeostatic feedback loop maintaining extracellular CT 

concentrations.  

To interrogate the mechanism of this feedback, DMS53 cultures were treated with a 

specific human calcitonin receptor (hCTR) agonist, SUNB8155, to determine if the hCTR 

is involved in the regulation of CT. It was observed that the relative levels of extracellular 

CT increased with SUNB8155 treatment, but that the relative levels of the intracellular 

CT-related species were unchanged. This suggested that hCTR is expressed in DMS53, 

and that activation of the receptor influences the expression and biosynthetic processing 

of CT-related species. To investigate this hypothesis, hCTR was identified in DMS53 cells 

using reverse transcription PCR and Western blot analyses. Specifically, transcriptional 

and translational evidence of the isoform hCTR2 was identified. Thus, for the first time, 
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hCTR activation was implicated in the up-regulation of CT. This suggested that a 

positive autocrine feedback loop was operating in DMS53, and based on the hCTR2 

isoform, may be mediated by signal transduction through the cAMP- and Ca2+- 

dependent signalling pathways.  

To assess which signalling enzymes are activated by hCTR, signal transduction pathways 

were investigated using small molecule enzymes inhibitors, and their effects on the 

levels of CT-related species observed. It was observed that treatment of DMS53 cultures 

with the protein kinase C inhibitor, GF109203X had an effect on the levels of CT-related 

species in the medium. Again, the relative levels of the intracellular CT-related species 

were not changed by treatment with this inhibitor.  This implicated PKC as a component 

of the hCTR signal transduction pathway. 

It was concluded that DMS53 cultures have mechanisms to maintain the intracellular 

and extracellular concentrations of CT-related species. The concentration of extracellular 

CT is regulated by a positive feedback mechanism, mediated by hCTR activation, and 

subsequent signalling involving PKC and AC. Treatment with biosynthetic and signalling 

inhibitors had no significant effect on the intracellular levels of CT-related species, 

demonstrating that DMS53 cultures prioritise tight control of intracellular 

concentrations over extracellular concentrations.  With the methodology to detect and 

quantify peptide hormones in cell culture medium and lysate in hand, the generality of 

CT glycosylation was explored. Preliminary experiments successfully characterised the 

presence of glycosylated CT and CT-G in the medullary thyroid carcinoma cell line, TT. 

To broaden the range of detected hormones, HPLC-fluorescence methodology was 

developed to detect and quantify oxytocin (OT) and its precursors, and this 

methodology was used to investigate the presence of OT in the DMS79 SCLC cell line. 
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Chapter One 

 Introduction 

1.1 Hormones, the endocrine system and cancer  

As multicellular organisms evolved, the need arose to coordinate functions between 

cells. As outlined by Griffin and Ojeda,[1] two systems developed to fulfill this role: the 

nervous system and the endocrine system. The nervous system is characterised by the 

use of electrochemical signals to send and receive messages from periphery organs, while 

the endocrine system accomplishes a similar and complementary role by utilising 

chemical agents transported through the blood stream. These chemical agents are 

known as hormones. While the systems differ in their mechanistic agents, they are 

closely linked, thus these distinctions can be blurred. In the pituitary gland, neuronal 

cells send signals to the hypothalamus, which in turn dictates secretion of hormones as 

part of the endocrine system. Conversely, hormones such as gastrin and ghrelin, initially 

discovered in the gastrointestinal tract, were later identified in neuronal cells of the 

peripheral and central nervous system acting as neurotransmitters. As a consequence, 

interplay between the nervous and endocrine networks forms what is collectively known 

as the neuroendocrine system.[1] 

Hormone Structure and Function 

Hormones are categorised by their structure and manner of action, of which there is a 

large diversity, providing a range of chemical properties and nuance of function.[2, 3] After 

the discovery of the first hormone, the peptide hormone secretin in 1902,[4] Starling 
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proposed that hormones are produced by an organ and transported via the bloodstream 

to a distant organ where they exert their effects, thus defining “classical” hormone 

action.[5] Subsequently, it has been discovered that classical hormones can act on cells 

near their site of production, and also on the cell producing the hormone, in 

mechanisms known as paracrine and autocrine signalling, respectively (Figure 1.1).[2] 

This has complicated the definition of a hormone somewhat, as other paracrine factors 

share features with some hormones. For example, cytokines are peptidic and can effect 

systemic changes in a similar manner to some peptide hormones.[6, 7] The modern 

definition of a hormones[7] requires that they are produced in large amounts relative to 

other signalling molecules to maintain effective concentrations in blood, that their 

specificity does not vary with distance from the site of production to the target cell or 

organ, and that they are not reliant on binding proteins to control diffusion.   

All hormones exert their actions through high affinity receptors specific to one or several 

hormones.[3] Most peptide and amine hormones act at the cell surface through 

membrane-bound receptors belonging to two super families: G protein-coupled 

receptors and tyrosine kinase-activated receptors. Regardless of the receptor family, 

upon hormone binding the receptors transmit signals via the generation of secondary 

messenger chemicals or through protein phosphorylation, providing a connection 

between the cell nucleus and the extracellular environment. In contrast, most steroid 

hormones diffuse into cells and bind to nuclear receptors. These interact directly with 

hormone-response proteins to affect transcription of specific genes.  

As described by Melmed and coworkers,[7] each class of hormone has inherent chemical 

and structural properties that define its function. Amine hormones are derived from 

amino acids, and are small water-soluble compounds. Tyrosine is a common precursor; 

derivatives include catecholamines, thyroid hormones and dopamine. Catecholamines 

are a good example of the interlinked nature of the endocrine and nervous system, as 
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members of this family, for example epinephrine, are also sympathetic 

neurotransmitters. Steroid hormones are lipid-soluble hormones synthesised from 

cholesterol and often control sex and reproductive signalling. Due to their insolubility, 

steroid hormones are transported through the bloodstream bound to carrier proteins. 

Peptidic hormones are diverse, in terms of both structure and function. Examples range 

in size from the thyrotropin-releasing hormone (TRH) tripeptide at 362 Da, to the 

human growth hormone (HGH) protein at 22 kDA.[8] Generally, peptidic hormones with 

a molecular weight less than 10 kDa are considered peptides, whilst larger species are 

proteins.[9] The work described in this thesis focuses on peptide hormones. 

 

Figure 1.1: Mechanisms of hormone and neurotransmitter action.
[2]

 Used with permission from Wiley-

Blackwell. 

 

Peptide Hormone Biosynthesis 

Peptide hormones are responsible for the regulation of numerous physiological 

processes, including digestion,[10] serum glucose[11] and calcium levels,[12] lactation and 
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social bonding responses.[13] The biosynthesis of peptide hormones is shown in Figure 

1.2. Beginning in the ribosome, mRNA is translated into a large peptide chain called a 

preprohormone. The preprohormone is directed through the endoplasmic reticulum 

(ER) lumen, where it is cleaved to form the prohormone.[7] The prohormone leaves the 

ER packaged into transport vesicles for the Golgi complex, to be exposed to enzymes 

mediating post-translational modifications (PTMs). The modified prohormone is then 

packaged in secretory granules derived from the Golgi membrane, along with maturation 

enzymes that convert the prohormone to the mature hormone via further cleavages and 

additional PTMs.[2] The mature hormone is then transported to the cell membrane for 

secretion. Secretion can also occur earlier in the biosynthesis, either by transport of 

vesicles or by transport of immature secretory granules. 

 

Figure 1.2: Outline of the biosynthetic route of a peptide hormone from preprohormone to secretion of the 

mature hormone. Used with permission from Aleksis Kavalieris. 

 

Enzymes involved in the maturation of the hormone include prohormone convertases 

(PCs), exopeptidases such as carboxypeptidase E (CPE), aminopeptidases, and specific 

PTM enzymes such as glycosidases, carboxylases and hydroxylases (Figure 1.3). 

Prohormones typically contain basic residues (K-K, R-R, K-R, R-K) that act as markers 
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for where PCs should cleave. The extraneous basic residues are then removed by exo- 

and aminopeptidases.  Certain hormones require PTMs to achieve full biological activity, 

typically for specific receptor recognition. Modifications include acetylation, 

phosphorylation, glycosylation and C-terminal amidation.[14] Of these, one of the most 

prevalent is C-terminal amidation, which occurs for around 50% of all mammalian 

hormones and 80% of insect hormones. C-terminal amidation is processed by 

peptidylglycine α-amidating monooxygenase (PAM), which converts a C-terminal 

glycine into an amide.[15] It has been suggested that processing by PAM is the rate-

limiting step in the biosynthesis of α-amidated neuropeptides in vivo.[16]   

 

Figure 1.3: Outline of enzymatic conversion of the preprohormone to a mature C-terminally amidated 

hormone.
[14, 17]

 Used with permission from Feihua Cao. 

 

Peptide Hormone Regulation and Disease 

Errors in the regulation of the biosynthesis or the secretion of a hormone can result in 

the development of disease states, due to a dearth or an excess of the hormone. For 
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example, Cushing’s disease is caused by excess production of adrenocorticotropic 

hormone (ACTH) in the thyroid. Typically, this results in obesity, as well as wide-ranging 

health issues with the skin, bone and reproductive systems.[7] In contrast, pathology 

associated with type 2 diabetes mellitus[11] and hypopituitarism[18] are the result of 

reduced production of insulin or growth hormone, respectively. Overproduction of 

peptide hormones is also associated with specific forms of cancer. Neoplasia in hormone 

producing organs may develop into cancers referred to as neuroendocrine tumours 

(NETs), as these secrete hormones into the tumour microenvironment that interact with 

both the endocrine and nervous systems, and can support the growth of the tumour.[19] 

Such tumours are often characterised by the hormones they produce, for example 

insulinomas, gastrinomas and VIPomas (vasoactive intestinal peptide).[19] Given that the 

majority of peptide hormones are C-terminally amidated, hormones with this 

modification are commonly produced by NETs and have been associated with the 

growth and development of the cancer.[20] Examples of NET-related C-terminally 

amidated hormones are summarised in Table 1.1 

This work focuses on calcitonin (CT) as a case study for the pathological regulation of 

amidated peptide hormones in cancer, and as a model for the exogenous control of this 

regulation. The link between CT and cancer is well established in the literature; its 

oncogenic action on prostate cancer has been investigated in depth, and it is routinely 

used as a marker for medullary thyroid carcinoma.[12, 21, 22] Thus understanding the 

regulation of CT is not only biochemically but also medically important. The remainder 

of this Introduction will outline the structure and biosynthesis of CT; discuss the 

structure, function and signalling of the human calcitonin receptor (hCTR); and outline 

and contrast the physiological and pathological actions of CT. 



Chapter One: Introduction 7 

 

 

Table 1.1: Example of C-terminally amidated peptide hormones known to be involved in cancer. 

Peptide Hormone Associated Cancer(s) Action(s) Reference 

Adrenomedullin (AM) Lung, breast, brain, skin Increases growth, angiogenesis, bone 

metastasis 

[23]
 

 

Amylin (AMY)/ islet 

amyloid polypeptide 

(IAPP) 

Pancreatic Overproduced, thought to lead to 

diabetes 

[24]
 

Bombesin Prostate, small cell lung, 

pancreatic, gastric, breast 

Increases angiogenesis, cell division 

and growth 

[25]
 

Calcitonin (CT) Lung, prostate, thyroid, 

breast 

Increases growth, tumour marker. 

Decreases growth in certain systems 

[26, 27, 28]
 

Calcitonin gene-

related peptide 

(CGRP) 

Breast, prostate Increases bone metastases, 

angiogenesis, and invasion 

[29]
 

Cholecystokinin 

(CKK) 

Lung, pancreatic, colon Increases growth and survival 
[30, 31]

 

Gastrin Pancreatic, lung, gastric, 

colon 

Increases growth, migration and 

proliferation 

[10, 32]
 

Gastrin-regulating 

peptide (GRP) 

Head and neck, lung, 

pancreatic, prostate, 

gastric, breast, colorectal 

Increases growth, cell division, 

survival and migration 

[30, 33]
 

Glucagon-like peptide 

1 (GLP-1) 

Breast, colon, pancreatic Inhibits growth and augments 

apoptosis in breast and colon. May 

increase growth of pancreatic cancer 

[34]
 

Gonadotropin-

releasing hormone 1 & 

Endometrial, ovarian, Antiproliferative effects, increases 
[35]
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2 (GnRH-1, -2) prostate apoptosis 

Growth Hormone- 

Releasing Hormone 

(GHRH) 

Breast, endometrial, 

ovarian 

Increases proliferation and growth 
[36]

 

Neuromedin U 

(NMU) 

Bladder, pancreas Increases tumourigenicity, 

invasiveness and metastatic potential 

[37]
 

Neuropeptide Y (NPY) Prostate, breast, ovarian, 

brain, pancreas, bone, 

bile duct 

Increases growth and angiogenesis in 

prostate, brain, breast, ovarian and 

pancreas. Decreases in bile duct and 

bone 

[38]
 

Oxytocin (OT) Lung, bone, endometrial, 

prostate 

Increases growth, invasion and 

migration. Decreases growth in some 

bone cancers 

[39, 40]
 

Secretin Bile duct Inhibits growth in bile duct 
[41]

 

Substance P (SP) Brain, breast, colon, 

gastric 

Increases growth, cell division, and 

drug resistance 

[42]
 

Vasoactive intestinal 

peptide (VIP) 

Prostate, breast Increases growth and angiogenesis 
[43]
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1.2  Calcitonin 

Structure and Chemistry 

Originally known as thyrocalcitonin, the hormone was identified by Copp and 

coworkers[44] during experiments to determine whether parathyroid hormone 

cooperated with other molecules to maintain tight control of serum calcium levels. 

Perfusion of the thyroid-parathyroid glands of dogs with high calcium blood resulted in 

a rapid drop in blood calcium. This was attributed to the secretion of an unknown factor, 

later named calcitonin (CT). 

 

Figure 1.4: Amino acid sequence of human CT (hCT). A disulphide bridge is formed between Cys1 and Cys7, 

with Pro32 C-terminally amidated. 

 

The peptide sequence of CT has been elucidated for many species (human CT is 

illustrated in Figure 1.4) and highly conserved in the N-terminal region (1-7) but with 

variation through residues 8 to 32. Categorised by structure, CT variants fall into three 

families: artiodacyl (including porcine, bovine and ovine, differing by four amino acids), 

primate/rodent (including human and rat, differing by two amino acids) and 

televost/avian (including salmon, eel, goldfish and chicken, differing by four amino 

acids).[21] Common to all variants is the 32 amino acid length containing the C-terminal 

proline amide and a disulphide bridge between residues 1 and 7. Divergence in the 

structure occurs at the α-helix motif, typically spanning residues 8 to 22, where amino 
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acid variations have profound effects on biological activity. In general, CT potency 

follows the trend televost≥artiodacyl≥human.[21] For example, the binding preference of 

salmon CT (sCT) to the most common isoform of human calcitonin receptor (hCTR2) is 

more than ten times that of human CT (hCT), attributed to an increased α-helicity. [45, 46] 

hCTR is the main physiological target of hCT and this interaction is well explored in the 

literature.[46, 47] It is generally accepted that the N-terminal disulphide ring sits within the 

seven-transmembrane (7TM) region of the receptor and is responsible for receptor 

activation,[48] while the α-helix determines binding to the extracellular domain (ECD) of 

the receptor.[49] The C-terminal amide is also reported to be important for binding as the 

glycine-extended precursor exhibits a weaker binding.[50] This model was elegantly 

supported in a study by Bergwitz and coworkers,[51] where chimeric peptides comprising 

the C-terminus of PTH (a hormone thought to oppose CT physiological action) and the 

N-terminus of CT, failed to activate wildtype receptors but successfully activated 

chimeric receptors consisting of the PTH receptor (PTHr) ECD and the hCTR 7TM 

region.  

CT is known to possess unusual physical properties for a peptide. It has exhibited cell 

penetrating ability; specifically it was shown to cross the nasal epithelium allowing it to 

be used in nasal sprays.[52] Through structure-activity relationship analysis, this property 

was attributed to the C-terminal sequence of the peptide[53] which was isolated as the 

hCT(9-32) peptide. This fragment has subsequently been used to transport both 

fluorescent proteins[54] and drugs[55] across cell membranes. CT can also form amyloid 

fibrils when present in high concentration.[56, 57] There has been some suggestion that CT 

is secreted from secretory granules in fibril-form, both in pathological (particularly 

medullary thyroid carcinoma) and non-pathological conditions.[57] The role of these 

fibrils in physiology or disease is not clear. 
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Biosynthesis 

CT is produced primarily in the thyroid, by parafollicular cells (C cells) although its 

production has also been detected in the human prostate,[58] lungs,[59] seminal fluid[60] 

and brain.[61] The biosynthesis of CT begins with a complicated transcription process.  

 

Figure 1.5: Summary of the mRNA transcripts generated from alternate splicing of the CT/CGRP (CALCA) 

gene. When translated, these transcripts produce either the CT or CGRP precursor polypeptide.
[62, 63]

 Used 

with permission from Wiley-Blackwell. 

The CT gene (CALCA) can encode two possible mRNA transcripts depending on the 

splicing; CT or calcitonin gene-related peptide (CGRP) are the two possible products.[21] 

The splicing is cell and tissue specific, with one product favoured over the other 

depending on the cell type.  The production of a CT mRNA transcript from 

premessenger RNA uses exons 1-4, with exon 4 as the 3’ terminal and polyadenylation 

site. In contrast, the CGRP transcript excludes exon 4 and involves the direct ligation of 

exon 3 to exon 5 with polyadenylation occurring at the end of exon 6 (Figure 1.5).[8, 64] 
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Figure 1.6: Proposed enzymatic processing of CT precursor to mature CT by analogy to other hormones. 
[14, 17]

 

Used with permission from Feihua Cao. 

The large molecular weight protein (or preprohormone) translated from CT-specific 

mRNA contains two peptide hormone sequences: CT and calcitonin carboxyterminus 

peptide 1 (CCP1, also known as katacalcin). CCP1 was originally thought to oppose the 

biological action of CT,[65] however this has been called into question[66] and as a result 

the function of this peptide is not known. There is evidence that the preprohormone is 

N-glycosylated, but this glycosylation has not been observed in mature CT.[67] Based on 

analogy to other peptide hormones, the enzymatic maturation of the CT preprohormone 

is outlined in Figure 1.6.  CT and CCP1 are preceded by a large signal peptide sequence 

that is involved in directing the preprohormone through the cell. This is removed by 

signal peptidases in the ER. CT is thought to be packaged between basic amino acid 

cleavage sites, which guide cleavage by PCs.[68] If correct, this generates glycyllysyllysine-
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extended CT (CTGKK), which is cleaved sequentially by CPE[68-70] to glycyllysine-

extended CT (CTGK) and then glycine-extended CT (CT-G) following transport of the 

prohormone from the Golgi apparatus into the secretory vesicles.[69] Finally, the C-

terminal glycine is cleaved by PAM to produce C-terminally amidated mature CT.[50, 71] 

Detection 

CT is measured diagnostically in plasma as a marker for medullary thyroid carcinoma,[28] 

as well as in tissue, serum and medium samples for medical and biological studies. The 

most common assay is an immunoassay, which uses a specific antibody to recognise CT 

and generates a measurable signal, often using luminescence or radiation. The first 

antibody was developed in 1968 for use in a radioimmunoassay,[72] however as the 

understanding of CT improved, it became apparent that this antibody was not specific 

for the mature form of CT, but rather, it recognised many biosynthetic CT precursors as 

well. In 1988 an antibody specific for mature CT (that is, the 32 amino acid peptide with 

an amidated C-terminal proline) was reported.[73] The main issues with current 

immunoassay detection of CT are that quantification of the hormone is poor, that there 

are no antibodies that can distinguish CT-G from any other CT precursor, and that the 

specificity of the mature CT antibody has been questioned.[74]  

Other analytical detection methods have been developed, often in aid of the 

pharmaceutical production of sCT, such as HPLC separation with antibody 

quantification,[75] HPLC separation with UV detection,[76] electrochemical[77] or 

fluorescence tagging pre- and post-separation,[78]  and LCMS detection.[79] However, few 

attempts have been made to apply these techniques to biological samples and they suffer 

either from a lack of sensitivity or the inability to accurately quantify the peptide. 
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1.3 The Calcitonin Receptor 

General Structure and Function 

Ten years after the discovery of CT, Marx and coworkers[80] discovered its primary 

physiological target, CTR, in isolated rat bone and kidney samples. The CTR falls into a 

superfamily of proteins known as G-protein coupled receptors (GCPRs), due to their 

activation of guanyl-nucleotide regulatory proteins (G proteins) upon the binding of an 

agonist. As the most common membrane receptors, GPCRs are ubiquitous across biology 

and are the cellular targets of a variety of effectors including light, ions, small molecules, 

peptides and proteins.[81] It is estimated that over 40% of pharmaceuticals target 

GPCRs.[82]  

As described by Melmed and coworkers,[7] GPCRs have characteristic hydrophobic 

helical sequences that span the plasma membrane of the cell seven times and are joined 

by three intracellular and three extracellular loops. They are also known as seven-

transmembrane domain (7TM) receptors for this reason. Ligands bind to GPCRs through 

interactions with the cavities between the transmembrane helices, the extracellular loops 

and the N-terminal extracellular domain (ECD), with the importance of each interaction 

dependent on the receptor class and type. Ligand binding activates the receptor and 

causes a conformational change that affects receptor structure across the cell membrane. 

A receptor in an active conformation can then bind G proteins through interactions with 

the intracellular transmembrane domains, intracellular loops and the C-terminal 

intracellular domain (ICD). When bound and activated by the GPCR, G proteins 

generate a cascade of secondary messengers such as cyclic adenosine monophosphate 

(cAMP) and inositol 1,4,5-trisphosphate (IP3) inside the cell. This allows the cell to 

respond to extracellular stimuli without allowing foreign species inside the cell 

membrane.[7] A characteristic GPCR-G protein complex, and thus the activation model, 
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was characterised in its entirety for the first time in 2011, when Rasmunssen and 

coworkers[83] reported a crystal structure of the β2 adrenergic receptor bound to the 

corresponding G protein, Gαs. This work contributed to the Nobel prize won by the 

corresponding author Brian Kobilka.[84] 

CTR is a member of the class B/secretin GPCR family, which encompasses the majority 

peptide hormone receptors such as the glucagon and parathyroid hormone receptors, 

and was originally characterised from porcine cDNA in 1991.[85] The general structure of 

these of receptors is represented in Figure 1.7.[86] Class B receptors are characterised by 

ECDs of around 120 amino acids extending from the 7TM domain, which dictates 

peptide binding affinity and specificity (although the role of the ECD in peptide binding 

varies between receptors). [87] Glycosylation in this region is also common.[86]  

 

Figure 1.7: The general architecture of Class B GCPRs.
[86]

 Used with permission from Nature Publishing 

Group. 

 

Peptide binding to CTR is outlined pictorially in Figure 1.8. The N-terminal ECD 

governs the binding of peptide substrates to the receptor, initially guiding the C-

terminus of the peptide into a binding orientation. Structurally, the ECD is dominated 

by an α-helix and two anti-parallel β-sheets. In turn, this helix forces binding peptides to 

adopt an α-helical conformation, generating electrostatic and hydrophobic stabilizing 

interactions, favouring a bound state.[88] The ECLs and the outer 7TM structures are 
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collectively known as the juxtamembrane region, which governs the binding of the N-

terminal residues of the peptide to the cavity among the helices. This interaction is 

known to be responsible for the agonist mediated-activation of the receptor, as the 

binding induces a conformational change in the 7TM and cytoplasmic domain of the 

receptor, which mediates the interaction between the intracellular GPCR loops and a 

heterotrimeric G protein.[89]  

 

Figure 1.8: Binding of peptide hormone to a class B GPCR. Used with permission from Nature Publishing 

Group. 

In humans, receptors for the CT family of peptides (CT, CGRPα, CGRPβ, AM, Intermedin 

and AMY) differ from other class B receptors in that they are further functionalized by 

RAMPs (Receptor Activity Modifying Proteins). RAMPs are a unique class of 

transmembrane proteins comprising of RAMP1, RAMP2 and RAMP3.[89] These proteins 

can associate with either CTR or the calcitonin-like receptor (CLR) to alter their 

specificity to members of the CT peptide family. When RAMPs are coexpressed with 

CTR, specific Amylin receptors are generated. Each protein dimerises with CTR to form a 

distinct receptor with a unique phenotype, surface level expression and binding 

characteristics, designated AMY1, AMY2 and AMY3.
[90] Receptors AMY1 and AMY3 have 

been shown to bind AMY selectively over CT, but the selectivity is not high (pEC50 9.12 

vs. 8.93 for AMY1 respectively).[89] Receptors AMY1 and AMY3 have been shown to bind 

AMY selectively over CT, however this selectivity is hard to investigate due to the 

difficulties in generating a homogenous RAMP-modified CTR population.   
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Ligands 

hCT is the primary physiological ligand for the unmodified hCTR. However, it has been 

reported that an orphan peptide (PHM-27) identified in neuroblastoma and 

neuroendocrine tumours, is able to stimulate a cAMP response with high efficacy upon 

binding to hCTR.[91] This suggests biological roles for hCTR that have not previously been 

identified. Several synthetic ligands have been generated in order to probe receptor 

biology and to aid in the development of new drugs. The most commonly studied ligand 

is sCT residues 8-32 (sCT(8-32)).[92] Interestingly, the truncation of the N-terminus of 

sCT produced a range of hCTR antagonists with sCT(8-32) the most effective (IC50 1 x 

10-9 M against competitive binding of sCT to hCTR2).[46, 93] This was attributed to the α-

helix of sCT(8-32) binding to the ECD and preventing other ligands from binding; 

sCT(8-32) could not activate the receptor due to the lack of the disulphide ring at the N-

terminus. 

 Katayama and coworkers[94] developed a small molecule agonist, SUNB8155, in 2001 as 

an orally available alternative to sCT for pharmaceutical applications. It bound to the 

hCTR selectively over hPTHr, stimulated a cAMP response (EC50 21μM) and was 

antagonized by sCT(8-32). However, it did not displace radiolabelled sCT, which implied 

that SUNB8155 has an alternative mode of binding to CT. Its mode of binding has not 

been investigated further.[95] Further studies with other small molecule hCTR agonist 

candidates suggest that small molecule binding to the hCTR is dependent on the 

juxtamembrane region rather than the ECD, a finding which may shed light on the 

binding mode of SUNB8155.[96]  
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Isoforms 

hCTR is reportedly expressed as multiple isoforms or splice variants depending on the 

mRNA splicing of the CALCR gene transcripts. At least five regions of difference in the 

receptor protein structure and six isoforms or splice variants have been reported 

resulting in protein varying in mass from 34 kDa to 59 kDa.[97, 98] Nomenclature for the 

isoforms varies in the literature. In this work, in accordance with the isoform 

assignments reported by Beaudreuil and coworkers,[97] the longest transcript first 

reported by Gorn and coworkers[99] is the canonical transcript and referred to as hCTR1. 

Subsequently reported transcripts considered by Beaudreuil and coworkers are labeled 

isoforms hCTR2 to hCTR6. Transcripts reported in the literature but not considered in 

the analysis by Beaudreuil and coworkers have not been assigned an isoform number. It 

should be noted that almost all characterisation of hCTR isoforms has been performed at 

the mRNA level rather than protein level. 

 The sequences of hCTR1-6 are outlined in Figure 1.9 and the remaining reported 

variants in Figure 1.10. In 1992, Gorn and coworkers[99] first isolated hCTR cDNA 3588 

bp in length, with the CDS (coding DNA sequence) corresponding to a 508 amino acid 

protein, from an ovarian small cell carcinoma line BIN-67. This cDNA was transfected 

into COS-M6 cells and the resulting receptor expression was verified through the 

competitive binding between radiolabelled and unlabeled hCT and sCT, and the 

stimulated production of the secondary messenger cAMP. Initially, the CDS region of 

hCTR cDNA was reported to begin at position 247, however later this was revised to be 

at position 192.[100] In 1994, a second isoform (hCTR2) was reported independently by 

two groups, Kuestner and co-workers,[101] and Frendo and coworkers.[63] Kuestner and 

coworkers isolated hCTR2 from T47D, a breast cancer cell line, while Frendo and 

coworkers used TT, a medullary thyroid carcinoma cell line. The specific cDNA sequence 

reported by Kuestner is described in Figure 1.9, and starts at position 221 of hCTR1. Both 
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groups reported a deletion of 48 bp (16 amino acids) relative to hCTR1 in the region 

coding for the putative first intracellular loop joining the transmembrane helices. It was 

later reported that this loop alters the binding of G proteins to the ICD of the hCTR.[102] 

hCTR2 activation led to the stimulation of IP3 production, unlike the activation of 

hCTR1, which suggests it is able to bind different G protein complexes and activate 

different signalling pathways. It was subsequently recognised that hCTR2 is the most 

commonly expressed form of hCTR, and that the 48 bp excision is the defining structural 

variation in terms of hCTR activity and pharmacology.[103]   

hCTR3 and 4 were both discovered in 1995, by Albrandt and coworkers[104] in MCF-7 

breast cancer cells, and by Moore and coworkers in baby hamster kidney cells 

transfected with hCTR2,[105] respectively. hCTR3 has the same 48 bp excision as hCTR2, 

but also exhibits a truncated ECD due to the loss of 125 bp at the start of the CDS 

corresponding to 47 amino acids. Surprisingly, it was found that this truncation still 

allowed the binding of sCT and the stimulation of cAMP production. hCTR4 was 

identified while assessing the binding characteristics of hCTR2. Rather than the 

previously reported 48 bp excision, a 35 bp alternative sequence at the same location was 

identified. This new sequence coded six amino acids of the first intracellular loop, and a 

stop codon, prematurely ending synthesis of the protein. It was suggested that this 

isoform could act as a soluble binding protein to modulate hormone activity, based on 

observations regarding thyrotropin.[106]  

In 2004, Beaudreuil and coworkers[97] summarised the hCTR isoforms outlined above 

and presented two new isoforms isolated from T47D breast cancer cells; hCTR5 and 

hCTR6. Both isoforms are missing 218 amino acids from the 2nd intracellular loop, due to 

a 50 bp insertion after 850 base pairs that terminates protein translation 23 base pairs 

later. hCTR5 has the 48 bp excision in the first intracellular loop common to hCTR2 and 

3, while hCTR6 does not. hCTR6 was transfected into HEK293 cells, and radiolabeled 
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sCT was unable to bind thus cAMP production was not stimulated. The inability to bind 

sCT raised the question as to whether the protein was expressed on the cell surface, as 

the ECD of the isoform remained unchanged. ' 

The analysis of the literature by Beaudreuil and coworkers[97] did not take into account 

the work reported in 1995 by Gorn and coworkers,[100] Nishikawa and coworkers[107] or by 

Nakamura and coworkers.[108] In 1995, Gorn and coworkers demonstrated the presence of 

two additional variants exhibiting N-terminal truncation isolated from giant cell tumour 

of the bone. In this case, the 71 bp excision from the cDNA overlapped with the 5′-UTR 

(5′-untranslated region) and CDS region, resulting in an 18 amino acid truncation of the 

putative ECD. This variation was observed both in the presence and the absence of the 

48 bp excision reported for hCTR2. It was noted that the variant with the 48 bp excision 

exhibited reduced binding of sCT, but a stronger cAMP stimulation response. This 

suggests that the ECD is important not only for binding, but also for G protein signal 

transduction.  In 1999, two more possible variations in the translation of hCTR were 

reported. Nishikawa and coworkers[107] reported two splice variations to the 5′-UTR in 

samples isolated from osteoclasts. It was suggested that these variations might be the 

result of multiple promoters splicing alternative exons, which is the case for other class B 

GPCRs.[107, 109] In contrast to the previous examples, Nakamura and coworkers[108] 

reported an allelic polymorphism in the Japanese population, with a base pair change of 

cytosine to thymidine at the 1377th position resulting in the substitution of leucine for 

proline. It was proposed that this change may effect signal transduction and later 

suggested that the leucine substitution is more common in sufferers of osteoporosis.[110]  
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Figure 1.9: The reported cDNA sequences corresponding to hCTR isoforms 1-6 assigned by Beaudreuil and 

coworkers.
[97]

 The sequence reported by Gorn and coworkers
[99]

 has been taken as canonical (hCTR1) and 

subsequent sequence variants are aligned to it.
[63, 99, 101, 105]
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Figure 1.10: Reported CTR cDNA sequences not considered in the 2004 analysis of Beaudreuil and coworkers. 

[100, 107, 108]
 

 

Signalling 

The understanding of hCTR signalling has progressed alongside the general 

understanding of GPCRs. In the past, it had been recognised that the activation of hCTR 

increased the intracellular concentrations of the secondary messengers cAMP and 

Ca2+,[103, 111, 112] and that in CT-secreting cells these messengers impacted CT regulation; for 

example, by up regulating CT gene transcription.[113] However, it was not clear how the 
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activation of hCTR stimulated the production of secondary messengers. The discovery of 

G proteins in the 1980s provided understanding of the mechanistic link between the 

receptor and secondary messengers.[114]  

It is now understood that binding of an agonist to the hCTR mediates a change in the 

conformation of the transmembrane cytoplasmic segments, enabling the intracellular 

binding of a G protein.[83] The receptor activation process is illustrated for a GPCR 

binding a Gαs protein in Figure 1.11. Upon binding to the ICD of the activated receptor, 

the α-subunit of the G protein heterotrimer releases GDP in favour of binding GTP. This 

results in the release of the heterotrimer from the receptor, and dissociation of the 

trimer into α- and βγ-subunits, with the α-subunit primarily dictating which secondary 

messenger pathway is activated.[30] In this example, the α- and βγ-subunits activate the 

adenylyl cyclase protein and the Ca2+ channel respectively, before reforming the 

heterotrimer following the hydrolysis of GTP to GDP by the α-subunit.[83]  

 

Figure 1.11: G protein activation and dissociation cycle for the GPCR-Gαs complex.
[83]

 Used with permission 

from Nature Publishing Group.  

Classical G protein signalling pathways are outlined in Figure 1.12. After the 

disassociation of the G protein heterotrimer, the α-subunit can affect a variety of 

secondary messaging enzymes.[115] Four main subclasses are known: Gαs, Gαi, Gαq and 

Gα12/13.
[116] Both Gαs and Gαi interact with adenylate cyclase (AC); Gαs activates cAMP 
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production, while Gαi inhibits formation. This in turn affects protein kinase A (PKA), up-

regulating or down-regulating phosphorylation respectively. Gαq activates phospholipase 

C (PLC), increasing generation of diacylglyerol (DAG) and IP3, which in turn activates 

protein kinase C (PKC), and increases intracellular Ca2+, respectively. Gα12/13 activates the 

GTPase activating protein RhoGEF, which in turn activates RhoA. Those signalling 

components displayed in green then activate further signalling mechanisms, such as the 

MAPK pathway, which transduce towards the cell nucleus.[63, 117]  

 

Figure 1.12: Classical GCPR G protein α-subunit signalling pathways.
[117]

 Used with permission from Nature 

Publishing Group. 

 

hCTR is thought to bind Gαs,
[112, 118] Gαq,

[119]and Gαi.
[120, 121] These assignments are based on 

studies of the secondary messengers generated by activation of hCTR, and the typical 

corresponding G protein, rather than direct evidence of G proteins binding to hCTR.[21, 

103] Signalling through these pathways is thought to be responsible for the majority of the 

biological effects CT exerts.   hCTR is also thought to interact with β-arrestin as part of 
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the receptor internalisation pathway,[122] and activate MAPK pathways, potentially by 

binding the GTPase, Ras.[123] Interestingly it has been reported for hCTR1 and 2 that 

uncontrolled, agonist-independent signalling can occur.[124] Specifically, stimulation of 

cAMP production occurs in the absence of an agonist, and this may provide a 

mechanism for uncontrolled cell growth in cancer. 

 

1.4 Roles of Calcitonin in Physiology 

The well-established role CT plays in physiology involves the inhibition of bone 

resorption through binding to the CTR on osteoclasts, the cells that break down bone 

and transfer the mineral content to the serum.[125] Specifically CT action on osteoclasts 

decreases motility, induces contraction and causes the loss of the morphologically 

characteristic ruffled border required for bone resorption.[126] CT also interferes with 

osteoclast differentiation, and thus osteoblast generation, from precursor cells.[127] 

Because of these effects sCT has been approved for the treatment of osteoporosis and 

Paget’s disease, diseases which involve unregulated bone loss.[21] CT is often associated 

with calcium regulation, however this is not entirely accurate regarding its action on 

bone. While the ability of CT to alter calcium levels is pronounced in young organisms or 

those under calcium stress (such as pregnant or lactating mammals),[128] its effectiveness 

decreases with age. In healthy adults CT has little direct impact on calcium regulation.[21, 

129]  The rate of bone resorption greatly decreases with age unless under stress, implying 

that the influence of CT is proportional to the rate of bone resorption. Therefore, CT 

should more accurately be thought of as a regulator of bone resorption rather than the 

calcium regulator as its name might suggest.[21] 

The relationship between CT and bone density was confounded by studies 

demonstrating an increase in bone density in calcitonin-negative knockout mice,[130] and 
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the lack of osteoporosis pathology (low bone density) in patients who had undergone 

thyroidectomy.[131] It was not until 30 years after the initial hormone characterization 

that the mechanism of the hCTR-osteoclast axis was unraveled. Keller and coworkers[132] 

discovered that the activation of osteoclast hCTR by CT reduced the secretion of a key 

bone resorption compound, sphingosine 1-phosphate, by inhibiting the expression of the 

transporter gene Spns 2. The non-linear relationship between CT and the effector species 

provides an explanation as to why calcium-unstressed organisms do not experience a 

sharp decrease in bone density in the absence of CT. 

CT is also active in the renal system, where its main reported action is to increase 

calcium excretion via inhibiting renal tubular resorption in the kidney, again through the 

CTR.[133] This is of particular importance for the treatment of cancer-derived 

hypercalcemia, which is thought to be due to the breakdown of bone. Administration of 

CT to hypercalcemic patients results in a rapid decrease in serum calcium levels, and in 

part, this action is distinct from the action of CT on osteoclasts.[134] As previously 

mentioned, CT has the properties of a cell penetrating peptide. A recent study reported 

that calcium ions could bind to CT, encouraging membrane pore formation and 

discouraging aggregation, indicating that pore formation may represent another method 

of calcium control by CT.[135]  

CT has been implicated in both the implantation of the embryo to the uterus, and the 

development of the foetus.[103] In a study by Dacquin and coworkers,[136] it has been 

shown that a full CTR knockout through the deletion of exons 6 and 7 is embryonically 

lethal in mice. This has been challenged by the study of Keller and coworkers,[132] where 

CTR was successfully knocked down through the deletion of exons 13 and 14. The reason 

for this contradiction is not yet clear although differences in editing strategy may have 

had an influence In the rat uterus, it was found that the silencing of the CT gene and the 

subsequent abrogation of CT expression resulted in the severe impairment of embryo 
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implantation.[137] Recently, it was proposed that this impairment was mediated through 

the up-regulation of integrin β3, which is known to increase endometrial receptivity.[138] 

It has also been demonstrated that CT is involved in the development of blastocysts, 

particularly with regard to intracellular Ca2+ regulation. Upon implantation trophoblast 

cells, which make up the exterior of the blastocyst, begin to grow outwards. There is a 

relationship between trophoblast growth, differentiation and increases in intracellular 

Ca2+. Wang and coworkers[139] demonstrated that hCTR2 is expressed in unfertilized eggs 

and zygotes, and that after fertilization, hCTR expression increases. They further showed 

that exposing blastocysts to calcitonin increased growth and intracellular Ca2+.  

There is evidence that CT can also exert an analgesic effect.[140] CTRs are expressed on 

serotonergic neurons in the regions of the mouse brain involved in processing pain.[141] 

Moreover, interruption of the serotonergic pathway decreases the analgesic potency of 

CT,[142] suggesting they interact. The analgesic effect is less well-established in 

humans,[143] with the most convincing evidence provided by a meta-study assessing the 

reduction of pain specifically during the treatment of osteoporotic vertebral fractures 

with sCT. In this context, 13 of the 14 studies reported a statistically significant 

improvement in pain or function in sCT-treated patients.[144] However, it is not clear if 

this effect is relevant for general analgesia, as opposed to bone-specific conditions. 

1.5 Roles of Calcitonin in Cancer 

CT has been associated with cancer since its discovery; many neuroendocrine cancer cell 

lines are reported to secrete CT and much of the characterisation has been undertaken in 

neuroendocrine cancer systems. Up-regulation of CT in certain cancers occurs to such an 

extent that it is used as a diagnostic marker in plasma, such as in the case of medullary 

thyroid carcinoma (MTC).[145] Despite this relationship, there has been little direct 

mechanistic evidence linking CT and the growth or development of cancer. In MTC, 
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Frendo and coworkers demonstrated that hCTR2 is expressed in TT cells derived from 

MTC tumours, and suggested that autocrine regulation of CT may be operating.[63] More 

recently, inhibition of the GPCR signalling enzyme PKC reduced cell proliferation and 

prevented the stimulation of CT secretion by Insulin-like Growth Factor 1 (IGF-1).[146] 

These reports suggest a link between CT and tumour growth, however there remains a 

lack of direct mechanistic evidence to implicate CT as an oncogenic peptide in MTC. 

CT has only been mechanistically linked to growth and proliferation in prostate cancer, 

due in a large part to the work of Girish Shah and coworkers. In 1994, it was reported by 

Shah and coworkers[147] that exposure of LnCaP prostate cancer cells to CT mediated CT-

hCTR binding and increased intracellular Ca2+ and cAMP. Downstream, this also 

mediated an increase in the incorporation of radiolabeled [3H]thymidine, implying 

elevated DNA synthesis and therefore growth. This was the first mechanistic evidence 

for the oncogenic activity of CT in prostate cancer. Furthermore in the same model the 

elevated cAMP activated the MAPK signalling pathways, also stimulating growth.[148]  

Over the next decade in a series of papers,[27, 149-152] Shah and coworkers elucidated the 

role of hCTR signalling in PC-3 and PC-3M (a hCTR-transfected cell line) cells. They 

implicated the Gαs protein as responsible for the growth effects CT enacts on cells,[149] and 

demonstrated that the resultant PKA signalling promoted invasiveness[150] and 

tumourgenicity.[151] Moreover transcriptional knockdown of hCTR mediated growth 

arrest and apoptosis in in vitro and in vivo prostate cancer models,[27] and silencing CT 

expression in vivo decreased tumour size and frequency.[152] Most recently, Zonula 

Occludens-1 (ZO-1) was suggested as a possible effector protein required for increased 

prostate cancer metastatic potential upon stimulation with CT.[153] 

 While the presence of CT in high concentrations in neuroendocrine tumours and cells 

suggests a role in the cancer development, for the majority of cancers this role remains 
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unclear. It is well documented that neuroendocrine tumours of the lung, specifically 

small cell lung carcinoma (SCLC), produce higher concentrations of calcitonin compared 

to non-cancerous tissue,[154, 155] although this trait has not been adopted as a diagnostic 

marker.[155] Not surprisingly cell lines derived from SCLCs,[156] such as DMS53 secrete 

orders of magnitude greater (43 ng/ml/106 cells) CT,[157] than healthy lung tissue. It has 

been reported that BEN bronchial carcinoma cells respond to CT exposure by activating 

intracellular cAMP[158] and PKA,[159] and more CT is secreted when the external 

concentration of CT decreases.[160] However, there have been no reports that these 

mechanisms influence growth, invasion or tumourgenicity. Interestingly in 1988, for 

both humans and rodents, increased CT in the lung correlated with the nicotine levels of 

cigarettes.[59] This was later reinforced in a larger cohort study of smokers.[161] This 

relationship provides a tantalizing link between high precancerous levels of CT in the 

lung and the onset of smoking-induced lung cancer. 

In contrast to the reported effects on prostate cancer, CT appears to have an anti-

proliferative effect in breast cancer.  Like the prostate cancer cell lines discussed above, 

the breast cancer cell line T47D expresses hCTR, along with a CT-responsive adenylate 

cyclase.[158] However, a PKC-dependent signalling pathway that down-regulates hCTR 

expression in response to CT stimulus was also observed.[162] As a consequence, CT 

exposure decreases the proliferation of T47D cells.[163] This suggests that CT has the 

ability to act as a growth or anti-proliferative agent, depending on the cell line. Based on 

the action of CT in T47D cells, this appears to be dependent on the activation of specific 

signalling pathways by hCTR, rather than on hCTR expression. 

Taken as a whole, these findings suggest a complicated and nuanced relationship 

between CT and cancer that varies with cell type, tumour location and CT concentration. 

Given that the same receptor and signalling pathways mediate the apparently 

contradictory effects of CT in different cell lines, it can be assumed that the factors 
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responsible for differentiating the actions of CT have not yet been elucidated. In part, 

this is due to a lack of incisive tools that allow quantification of CT and its precursors in 

vitro, as described earlier in the discussion of CT detection techniques. The ability to 

compare the relative amounts of CT and its precursors secreted by cancer cells over 

different periods of growth is the first step towards discerning its role, and how this may 

vary in different systems.  

1.6 Summary and Aims 

It is clear that new analytical tools need to be developed to quantify CT and its 

precursors in order to explore its multifaceted relationship with cancer. It is also clear, 

based on the roles of CT in normal physiology and the result of its dysregulation in 

diseases such as cancer, that the ability to externally regulate CT production in vitro and 

in vivo is of medical and biochemical interest. Previous attempts to regulate CT 

production in order to elucidate its proliferative effect in cancer involved complicated 

techniques, such as antibody neutralization[150] and genetic silencing,[152] which are not 

suitable for broader applications. However, the biosynthesis of other hormones has been 

targeted through the inhibition of the hormone biosynthesis apparatus using small 

molecule inhibitors.  

PAM, which mediates the C-terminal amidation essential for complete bioactivity in over 

50% of human hormones, has been implicated as the rate-limiting enzyme in the 

production of neuropeptides.[16] This makes it a potential target for the generic 

disruption of hormone biosynthesis.[164] In a study by Iwai and coworkers,[165] production 

of the hormone GRP was targeted through the inhibition of the PAM enzyme with E-4-

phenyl-3-butenoic acid (PBA) in SCLC cells. PBA reduced cell viability and growth in the 

treated cultures, while treatment with synthetic GRP overcame the growth inhibition. 

Growth inhibition was also observed when cell lines were transfected with antisense 
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PAM RNA to silence expression. It was suggested that PAM inhibition disrupted the GRP 

autocrine growth loop operating in the cell. However, because many hormones are C-

terminally amidated, and changes in endogenous GRP concentration were not 

quantified, the reduction of GRP was not directly linked to the growth abrogation 

observed. The effect of CPE inhibition on neuroendocrine cancer survival and 

proliferation has also been investigated,[166] using guanidinoethylmercaptosuccinic 

acid (GEMSA) to inhibit CPE activity. It was found that the presence of CPE increased 

the survival of cells in hypoxic conditions, and that GEMSA inhibition did not reduce 

this effect. Again, effects on peptide hormone production in these conditions were not 

assessed. In order to link the disruption of hormone biosynthesis with changes in cancer 

cell growth and proliferation, it must first be demonstrated that biosynthesis inhibition 

decreases peptide hormone production. 

As CT is C-terminally amidated, these findings suggest that CT may be regulated 

through the inhibition of PAM. CT precursors are also processed by CPE, so it is of 

interest to compare the effects of PAM and CPE inhibition on CT and CT precursor 

production. In order to thoroughly assess the effectiveness of CT biosynthesis inhibition, 

an assay method that can measure the relative proportions of the substrates and 

products of the inhibited enzymes is required. Specifically, this requires the detection 

and quantification of CT, CT-G and the two hypothesised base-residue extended CT 

precursors, CTGK and CTGKK. Such an analysis will provide insight as to whether 

inhibition of the biosynthetic enzymes is an effective strategy to abrogate CT production. 

As noted previously, immunological methods are not specific for the individual 

biosynthetic precursors of CT, and quantification is also difficult.  

In the work performed in Chapter 2, an HPLC-fluorescence based protocol with online 

concentration and post-separation fluorescence tagging was developed to detect and 

quantify the relative amounts of CT, CT-G, CTGK and CTGKK for the first time, in 
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DMS53 SCLC cell medium and lysate. Novel glycosylated versions of each species were 

also detected, where they formed a parallel biosynthetic pathway. The effect of PAM 

inhibition, CPE inhibition and growth medium dilution on the glycosylated and non-

glycosylated CT species produced by DMS53 SCLC cells was then assessed. Inhibition of 

the biosynthetic enzymes was shown to be ineffective in controlling CT production, 

raising the possibility that the parallel glycosylation pathway was involved in 

maintaining CT homeostasis. Additionally, DMS53 cells responded to dilution of the cell 

medium with the up-regulation of CT production. Together, these observations 

suggested that a feedback mechanism was operating in DMS53 cells to maintain 

intracellular and extracellular CT. It was hypothesised this mechanism might be 

mediated by the hCTR. In the work performed in Chapter 3, the relationship between 

the hCTR and CT feedback in DMS53 cells was explored through the application of a 

specific hCTR agonist, SUNB8155. Expression of hCTR mRNA and protein was 

determined in DMS53  (Chapter 4), and the impact of hCTR signalling pathway 

inhibition on CT production was investigated in Chapter 5. In Chapter 6, conclusions 

from the work in this thesis are drawn, and preliminary experiments screening the MTC 

TT cell line for CT-related species are outlined, as well as the development of 

methodology to detect and quantify another peptide hormone, OT. 

This work aims to demonstrate that the ability to quantify CT and its related species in 

vitro would unlock an understanding of its regulation, and provide clues to its generic 

mechanisms of action in cancer.  
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Chapter Two 

 Results and Discussion: Detection of Biosynthetic 

Precursors, Discovery of a Glycosylation Pathway and 

Homeostasis of Calcitonin in Human Cancer Cells 

2.1 Introduction 

In the previous Chapter, the need for a quantitative detection method for CT and its 

biosynthetic precursors was outlined, as this would provide a platform to understand the 

regulation and role of CT in neuroendocrine cancers. While the speculative biosynthesis 

of CT had been proposed by analogy to other hormones,[167] the key precursors (CT-G, 

CTGK and CTGKK) had not been detected or quantified (Figure 1a in the following 

manuscript, denoted as Cao and coworkers). By extension, there had been no way to 

examine the impact of inhibitors of CT biosynthetic enzymes such as CPE or PAM even 

though such inhibitors may have significant therapeutic utility.[165, 168] In order to identify 

these species and investigate the effects of enzyme inhibition on CT, an HPLC-

fluorescence detection technique featuring on-line analyte concentration and post-

separation fluorescence labeling was developed. Using this system, an in vitro analysis 

method for CT-related species in the medium and lysate of the SCLC cell line DMS53 

was designed. This was used to screen cell-derived samples for CT and its related species, 

and assess the effect of PBA, GEMSA, and changes in growth medium volume and 

incubation time on the production of these species. This work has been published in 

ACS Analytical Chemistry,[169] and is copied on the following pages. The work outlined in 
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the manuscript was undertaken in parallel to the work described in this thesis. As such, 

the manuscript is the first report of our methodology in the literature, and serves as an 

introduction to my independent studies. To delineate my contribution to this 

multiauthored paper: Drs. Onagi, Gamble and Hennessy developed the original 

analytical methods. Dr. Cao, Ms. Howes and Mr. Gu characterised CT and its precursors.  

Dr. Cao and Ms. Howes developed analytical methods to detect glycosylated CT-related 

species using HPLC-fluorescence, and to detect CT-related species in the lysate.  Drs. 

Cao and Onagi and Ms. Howes characterised the glycosylated CT-related species using 

MS. Dr. Cao and Ms. Howes performed the PBA and GEMSA assays. Prof. Easton 

designed the research and wrote the manuscript. My contributions were to aid in the 

development of analytical methods for detecting glycosylated CT-related species and CT-

related species in the lysate using HPLC-fluorescence, to perform the incubation time 

and medium volume variation assays in DMS53, and with Dr. Onagi, to perform the 

experiments with TT cells. Due to the limited space in the manuscript, the results from 

the incubation time and medium volume variation experiments will be discussed in 

detail after the manuscript in this Chapter, and the experiments with TT cells are 

discussed in Chapter 6. 

The analysis of DMS53 medium and lysate revealed the presence of CT, CT-G, CTGK and 

CTGKK and their relative concentrations. Of these, CT and CT-G were shown to be the 

major species in the medium, while CT predominated in the lysate. The hydroxylated 

intermediate HO-CT-G, generated in the PAM-mediated conversion of CT-G to CT, was 

identified for the first time using MS. The buildup of CT-G and CT indicates that PAM 

processing is the limiting step in the post-translational CT biosynthetic pathway. 

Specifically, the lack of HO-CT-G in the HPLC chromatogram indicates that the first 

subunit of PAM (peptidylglycine α-hydroxylating monooxygenase (PHM), responsible 

for the formation of HO-CT-G) is the product-limiting component of PAM. Glycosylated 
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forms of CT and its precursors were identified by HPLC and characterised using LCMS. It 

was found that they were present in approximately equal amounts to the non-

glycosylated species in the medium, but at much lower concentrations in the lysate. This 

suggested a bypass mechanism for the maintenance of cellular CT, where CT is 

selectively retained in the cell and excess CT precursor is shuttled towards the 

glycosylation pathway for subsequent secretion.  

The effects of inhibitors of the biosynthetic enzymes supported this hypothesis, as a 

PAM inhibitor had moderate effect on the CT and gCT concentrations in the medium, 

but little effect in the lysate. CPE inhibition did not decrease CT concentration at all. A 

decrease in the amidated to glycine-extended CT ratio was observed with increased 

growth medium volume (and thus, endogenous CT dilution), suggesting a response in 

CT production to decreased extracellular CT occurred. Together, these studies suggest 

that complex interplay between regulatory mechanisms occurs to regulate CT 

production, and that understanding these mechanisms is required to effectively perturb 

CT biosynthesis. The following pages are the copied manuscript: 
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2.2 Investigating the Effect of Medium Volume and Incubation Time 

on the Production of Calcitonin and Calcitonin-Related Species 

by DMS53 Cells. 

In Table 1 of the work described by Cao and coworkers, it was demonstrated that PBA 

more than halved the proportion of CT in the medium (11% of the total peak area, 

decreased from 25% in the control), and that it had less effect on CT in the lysate (53% of 

the total peak area, decreased from 63%). It was proposed that a by-pass mechanism is 

operating in DMS53 cells to maintain intracellular CT levels, where CT’s biosynthetic 

precursors are transcribed in excess, and the flux through the non-glycosylated pathway 

is adjusted by diversion to the glycosylation pathway. This leads to an accumulation of 

CT-G, with the conversion to CT determined by PAM (specifically, PHM) expression and 

activity. Excess CT-G, and glycosylated species gCT and gCT-G, are then selectively 

secreted from the cells.  

As outlined in the manuscript, the treatment of DMS53 cells with PAM and GEMSA 

inhibitors was undertaken over a incubation time of 48 h, and in a growth medium 

volume of 10 ml. Given the potential importance of the cellular efflux of CT-related 

species in the homeostasis of intracellular CT, it was of interest to compare the levels of 

the CT-related species present in the medium and lysate after different incubation times 

and with incubation in different volumes of growth medium. After a series of preliminary 

experiments to develop the methodology, experiments were devised comprising equally 

seeded cell cultures incubated in two different volumes of medium. Duplicate DMS53 

cultures were seeded with 10 million cells and incubated in either 10 or 30 ml of 

medium. The medium and lysate was analysed after incubation for either 24 or 72 h  (full 

protocol outlined in experimental section 7.6 of this thesis, HPLC analysis method 

outlined in experimental section 7.3).  
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Figure 2.1: HPLC chromatograms of A: DMS53 culture medium, after incubation for 24 h in 10 ml of growth 

medium; B: DMS53 culture medium, after incubation for 24 h in 30 ml of growth medium; C: DMS53 culture 

lysate, after incubation for 24 h in 10 ml of growth medium; D: DMS53 culture lysate, after incubation for 24 h 

in 30 ml of growth medium. 

 

In Figure 2.1, representative medium and lysate chromatograms for DMS53 cultures 

incubated in either 10 ml or 30 ml of growth medium for 24 h are presented. The 

difference in medium volume of the 10 ml (A) and 30 ml (B) cultures was 3-fold. 

Therefore, if the 10 ml and 30 ml cultures secreted equal amounts of CT-related species 

into the medium, the total peak areas in the 30 ml culture chromatograms would be 3-

fold smaller than those in the 10 ml culture chromatograms due to the dilution of the 

CT-related species in the larger volume. The sum of the CT-related species’ peak areas in 

the 30 ml medium chromatogram is approximately 37% of that of the CT-related species’ 

peak areas in the 10 ml medium chromatogram, indicating that after 24 h both cultures 

were producing approximately equivalent amounts of CT-related species in the medium. 

In the medium of the 10 ml culture, the CT to CT-G ratio was 1.03 and the gCT to gCT-G 

ratio was 2.90, while in the medium of the 30 ml culture, the CT to CT-G ratio decreased 

to 0.58 and the gCT to gCT-G ratio to 1.91. The non-glycosylated to glycosylated species 

ratio was 1.56 in the 10 ml culture medium, and increased to 1.85 in the 30 ml culture 
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medium. In the lysate chromatograms of the 10 ml (C) and 30 ml (D) cultures, the levels 

of gCT-G and CT-G were below the limits of accurate quantification after 24 h. 

Incubation volume had no discernable effect on intracellular CT and gCT levels in the 

lysate; the peak area of CT was approximately 4-fold that of gCT in both the 10 ml and 30 

ml culture lysate chromatograms. The average cell number in the 10 ml culture was 25 x 

106 compared with 27 x 106 in the 30 ml culture, indicating incubation volume had little 

effect on cell proliferation over 24 h. 
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Figure 2.2: HPLC chromatograms of A: DMS53 culture medium, after incubation for 72 h in 10 ml of growth 

medium; B: DMS53 culture medium, after incubation for 72 h in 30 ml of growth medium; C: DMS53 culture 

lysate, after incubation for 72 h in 10 ml of growth medium; D: DMS53 culture lysate, after incubation for 72 h 

in 30 ml of growth medium.  

 

In Figure 2.2, representative medium and lysate chromatograms for DMS53 cultures 

incubated in either 10 ml or 30 ml of growth medium for 72 h are presented. Comparing 

the relative levels of CT-related species in the medium and lysate of the 10 ml culture 

experiments at the 24 h and 72 h time points demonstrates the effect of incubation time 

on the production of these species. In the 10 ml culture lysate after 72 h (C), CT-G and 

gCT-G were quantifiable. However, the levels of gCT-G, gCT, and CT-G relative to CT did 

not change greatly when compared to the levels after 24 h. Compared to the 24 h 10 ml 
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culture experiments, the 72 h 10 ml (A) medium chromatogram shows many additional 

unidentified species. The relative proportions of the CT-related species changed with 

incubation time as well. After 72 h, the ratio of non-glycosylated to glycosylated species 

in the 10 ml culture medium was 0.75, compared to 1.56 after 24 h. There was also a 

decrease in the relative proportion of amidated species. The gCT to gCT-G ratio 

decreased from 2.90 after 24 h to 1.03 after 72 h. The CT to CT-G ratio decreased from 

1.03 after 24h to 0.72 after 72 h. Average cell numbers in the 10 ml culture increased 

from 25 x 106 after 24 h to 30 x 106 after 72 h. 

As with the 24 h experiment, if the 10 ml and 30 ml cultures secreted equal amounts of 

CT-related species into the medium, the peak areas in the 30 ml culture chromatogram 

would be 3-fold smaller than those in the 10 ml culture chromatogram. After 72 h, in the 

30 ml culture medium chromatogram (B), the sum of the CT-related species’ peak areas 

is 72% of that of the CT-related species’ peak areas in the 10 ml medium chromatogram. 

This indicates that more than double the amount of CT-related species was present in 

the 30 ml culture medium compared to the 10 ml culture medium.  After 72 h, the CT to 

CT-G and gCT to gCT-G ratios in the 10 ml culture medium (0.78 and 1.28, respectively) 

were higher than those observed in the 30 ml culture medium (0.44 and 0.45, 

respectively). There was no major difference in the non-glycosylated to glycosylated 

species ratio between the 10 ml culture and 30 ml culture medium. In the lysate 

chromatograms of the 10 ml (C) and 30 ml (D) cultures, little variation in the relative 

proportions of the CT-related species was observed. There was some variation in cell 

numbers between the 10 ml and 30 ml cultures after 72 h, with averages of 30 x 106 and 

39 x 106 observed, respectively. 

The levels of CT-related species in the DMS53 culture medium change with time. After 

24 h, it appears that DMS53 cultures prioritise the production and secretion of CT, as the 

production ratios favour non-glycosylated and C-terminal amidated species. However, 
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after 72 h, it appears that CT is no longer the biosynthetic priority; production ratios 

favour glycosylation, and the ratio of glycine-extended precursors to the C-terminally 

amidated products increases. In the lysate after 72 h, the levels of gCT-G and CT-G are 

quantifiable, but do not change to any major extent relative to CT.  

No changes were observed in the lysate of a larger incubation volume, which is 

consistent with the incubation time-variable assays.  This again demonstrates that 

intracellular levels of CT-related species, particularly CT, are tightly controlled in DMS53 

cultures. The production of CT-related precursors was up-regulated in the 30 ml culture 

medium in a larger incubation volume. After 24 h, CT-G was the major precursor, but 

after 72 h, gCT-G and CT-G were produced in more equal amounts. PAM activity limited 

the conversion of CT-G and gCT-G to their respective amidiated products. However, 

with up-regulation of the CT-related species’ production pathway after 72 h, levels of 

gCT and CT began to increase in the medium. This suggests that if cultures were 

incubated for a longer duration, the concentration of gCT and CT in the 30 ml culture 

medium would become comparable to that observed in the 10 ml culture medium.  

There have been reports of CT-producing lung cancer cells maintaining homeostatic 

control of extracellular CT-related species in the literature. Ellison and coworkers,[160] 

using a radioimmunoassay which did not distinguish CT from its precursors, observed 

that in a bronchial carcinoma cell line (BEN) concentrations of immunoreactive CT-

related species plateaued over time, and incubation in increased volumes of culture 

medium stimulated the cells to produce more CT-related species over 72 h until 

comparable concentrations across all medium volumes were achieved.[158, 160] This 

suggests that specific concentrations of external CT-related species are desirable for BEN 

cells. 
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 The experiments performed in this Chapter demonstrate that DMS53 cells respond to 

larger incubation volumes with increased production of CT-related species in a similar 

manner to BEN cells. With the ability to discern the relative level of the CT-related 

species, it was observed that glycine-extended precursors made up the majority of the 

extracellular species detected after 72 h, rather than CT, as was suggested in the analysis 

of the BEN culture medium. It was also demonstrated that the changes in the levels of 

CT-related species had no effect on the intracellular levels of CT-related species, which 

could not be explored previously. It is not clear yet whether immunoassays detect gCT or 

gCT-G, but if the glycosylation of CT–related species is generic across CT-producing cell 

lines, it may be that up to half the CT-related content observed in the BEN cell medium 

is glycosylated.  

2.3 Conclusion 

In the work described by Cao and coworkers, it was demonstrated that intracellular CT 

concentration was tightly controlled, even in the presence of biosynthetic enzyme 

inhibitors. This conclusion is reinforced by the experiments performed in this Chapter, 

as it was shown that the levels of CT-related species in the medium of DMS53 cultures 

vary with changes in incubation duration and medium volume, but the levels in the 

lysate remain stable. At shorter incubation times, DMS53 cultures favour the production 

of non-glycosylated species in the medium and after 72 h, production priority shifts 

towards glycosylated species. In larger volumes of medium, DMS53 cultures up-regulate 

the production of CT-related precursors, with the conversion to gCT and CT limited by 

PAM processing. In spite of this limitation, up-regulation leads to increased amounts of 

all CT-related species present into the medium after 72 h. These observations suggest 

that DMS53 cultures respond to the external concentration of CT-related species and 

attempt to maintain a particular range of concentrations through changes in CT 

biosynthesis.  
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Cellular mechanisms to maintain both intracellular and extracellular CT-related species 

suggest it is important to the biology of DMS53 cells. These mechanisms appear to 

frustrate strategies to reduce CT production, such as targeting biosynthesis with PBA 

and GEMSA treatment. Thus, an understanding of their function is prerequisite to 

controlling CT. It was proposed by Hunt and coworkers[158] that the BEN cells’ response 

to extracellular CT concentration might be mediated by the hCTR. To investigate the 

possibility that the hCTR is responsible for the response to extracellular CT 

concentration in DMS53 cells, work in Chapter 3 was directed to the treatment of 

DMS53 cultures with a specific hCTR agonist in order to determine if hCTR activation 

affects the production of CT-related species. 
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Chapter Three 

 Results and Discussion: The Effect of a Human 

Calcitonin Receptor Agonist on the Production of 

Calcitonin-Related Species in DMS53 Cells 

3.1 Introduction 

In the work described in Chapter 2, it was demonstrated that incubating DMS53 cultures 

in an increased volume of growth medium resulted in the up-regulation of CT precursor 

biosynthesis, and an eventual increase in the levels of all CT-related species present in 

the medium. These observations imply a feedback loop is operating in DMS53 cells, 

which maintains the extracellular concentrations of CT-related species in response to an 

increase in growth medium volume. Similar responses in other CT-producing cell lines 

have been reported, by Ellison and coworkers[160] in BEN cells, and by Hunt and 

coworkers[158] in thyroid C cells. Hunt and coworkers speculated that this feedback 

mechanism might be initiated by hCTR activation and mediated by cAMP signalling 

through AC. Subsequently, it has been reported that there is a cAMP responsive element 

(CRE) modulating the transcription of the CT gene,[170] further linking CT transcription 

to hCTR activation.  

If hCTR acts as a detector for extracellular CT, and its activation causes changes in the 

levels of CT-related species in the medium, then treatment of DMS53 cultures with a 

specific hCTR agonist should change these levels as well. These changes could be 

assessed using the HPLC-fluorescence method reported in Chapter 2. Since this method 
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involves the post-separation tagging of free primary amino groups with fluorescamine, 

treatment with sCT or other peptidic hCTR agonists is undesirable as these compounds 

would be tagged in the analysis and may interfere with the detection of analytes. For this 

reason, the small molecule hCTR agonist SUNB8155 (Figure 3.1) was selected, as it 

contains no primary amine group. As described by Katayama and coworkers,[94] 

SUNB8155 activates the hCTR receptor specifically over hPTHr, and stimulates cAMP 

production at concentrations between 10 and 1000 µM. Therefore, in order to discover if 

the levels of CT-related species produced by DMS53 cultures in the medium changed in 

response to SUNB8155 treatment, trials were initiated using concentrations of 200 µM 

and 100 µM. 

 

Figure 3.1: The specific hCTR agonist SUNB8155 reported by Katayama and coworkers.
[94]

 

 

3.2 Investigating the Effect of SUNB8155 on the Production of 

Calcitonin-Related Species in DMS53 Cells Using a First 

HPLC-Fluorescence Calcitonin Detection Method  

Preliminary experiments to evaluate the effect of SUNB8155 on CT production in DMS53 

medium were undertaken using the HPLC separation system used for the separation of 

CT, CT-G, CTGK and CTGKK described in Chapter 2. Outlined in Figure 3.2, the CT 

method 1 (designated CT-M1) begins with online solid phase extraction of the analytes 

from the injected sample on a reverse phase Oasis® HLB 25 μm cartridge column (2.1 × 
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20 mm) with the switching valve open to waste (SW 1 OFF) to pre-clean and pre-

concentrate the analytes. The switching valve (SW 1) is then turned on to connect with a 

C12 Synergi Max-RP column (250 × 4.6 mm) for elution of the analytes and separation. 

The separation column is followed by a Waters Reagent Manager (SW 2) containing 

fluorescamine (30 mg/100 ml acetonitrile) and a Waters RXN 1000 coil for online post-

column derivatisation of the separated and purified peptides at 25 ̊C, which allows 

sensitive fluorescence detection at excitation 390 nm and emission 470 nm by a Waters 

2475 Fluorescence Detector. The solvent system used is reported in the experimental 

chapter (section 7.2). This high throughput method of automatic online concentration, 

separation, derivatisation and detection is rapid, efficient and sensitive.[17]  

 

Figure 3.2: HPLC separation Method 1 for CT species (CT-M1).  Used with permission from Hideki Onagi. 

  

Although SUNB8155 has a primary aromatic amine moiety and it is known that aromatic 

amines can be labelled by fluorescamine,[171] a control experiment, where a SUNB8155 

solution was injected onto the HPLC and analysed using the CT-M1 method, showed no 

peak on the HPLC trace. This shows that any reaction of SUNB8155 with fluorescamine 

does not interfere with the assay. The solid phase extraction of the cell culture species is 

optimised to retain peptides and it is likely that SUNB8155 is not retained during this 

step and is thus not present during the analysis.In order to obtain detectable levels of CT 

and its precursors in the cell medium, as well as reproducible HPLC chromatograms 

with high quality signal to noise ratios, both a high cell density (2-3 million/ml of 



Chapter Three: Effect of hCTR Agonist on Calcitonin in DMS53 69 

 

 

medium) and incubation times of at least 24 h were required. The first generation in 

vitro cell assay for testing the effects of SUNB8155 on the levels of CT-related species in 

the medium involved the incubation of three cultures in 75 cm2 flasks to confluence in 

10 ml of growth medium (3 to 4 days growth from equally seeded cultures). After 

refreshing the medium, cultures were treated with 200 μM SUNB8155 in DMSO, or 10 μl 

of DMSO in the control cultures. The cultures were then incubated for a further 24 h. 

The medium was then harvested and 5 ml was injected directly onto the HPLC and 

analysed using CT-M1. The areas of the CT and CT-G peaks in the SUNB8155-treated 

culture were then compared with the peak areas in the control culture to determine if 

any change in the levels had occurred. A detailed protocol outlined in experimental 

section 7.4. The expected elution time for the CT peak was approximately 43 min while 

CT-G eluted at approximately 40 min. The CT and CT-G peaks had been characterised 

previously through comparison to the elution times of CT and CT-G standards, and 

confirmation by MS analysis (as described in Chapter 2).[17] The results of this assay are 

shown in Figure 3.3, with experiments repeated twice with concordant results. 
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Figure 3.3: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M1; B: DMS53 culture medium, after treatment with SUNB8155 (200 μM) and incubation for 24 h, analysed 

using CT-M1. 

In the control culture (A), CT and CT-G were present at similar levels in the medium; the 

ratio between the two peak areas was 1.05. In contrast, the chromatogram of the DMS53 

culture treated with 200 μM SUNB8155 (B) showed that the level of CT was higher than 

CT-G in the medium. The ratio of CT to CT-G was 1.82, a 75% increase compared to the 

ratio observed in the control culture. To briefly assess the concentration-dependence of 

the effect of SUNB8155 on DMS53 cultures, the experiment was repeated with 100 μM 

SUNB8155 treatment (Figure 3.4). Again, in the control medium chromatogram (A) the 

CT to CT-G ratio was 1.07, while for cultures treated with 100 μM SUNB8155 (B) the ratio 

in the medium was 2.03, an 89% increase compared to the control.  
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Figure 3.4: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M1; B: DMS53 culture medium, after treatment with SUNB8155 (100 μM) and incubation for 24 h, analysed 

using CT-M1. 

 

Treatment of DMS53 cultures with SUNB8155 changed the relative proportions of CT-

related species present in the medium. In the treated cultures, the ratio of CT to CT-G 

increased by 75% and 89%, compared to the ratio observed in the control cultures. This 

suggests that an increase in the activity or expression of PAM may have occurred, as 

more CT-G appears to have been converted to CT. SUNB8155 is known to activate hCTR, 

and as both treatment concentrations resulted in similar changes in CT-related species’ 

levels in the medium, this suggests that the binding site of hCTR is saturated at 

concentrations of 100 μM or lower. These findings support the possibility that hCTR 

mediates activation of the feedback loop proposed in Chapter 2. As experimental 

observations suggest that hCTR stimulation increases the proportion of CT in the 

medium, this implies that a positive feedback loop is operating in DMS53. This raised the 

question of whether the levels of gCT and gCT-G produced by DMS53 cultures in the 

medium would respond to SUNB8155 treatment, and if so, whether it would be in the 

same manner as the levels of CT and CT-G. 
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3.3 Investigating the Effect of SUNB8155 on the Production of 

Calcitonin-Related Species by DMS53 Cells Using a Second 

HPLC-Fluorescence Calcitonin Detection Method  

In order to characterise changes in the levels of CT, CT-G, gCT and gCT-G in response to 

SUNB8155 treatment, the second HPLC method developed in Chapter 2 was used 

(designated CT-M2). To increase the separation power of CT-M1, the single C12 Synergi 

Max-RP column was substituted for two columns: a C18 YMC ODS-AQ 3 μm (4.6 x 100 

mm) reverse-phase column coupled to a Phenomenex Phenosphere SCX (4.6 x 250 mm) 

cation-exchange column (Figure 3.5). This allowed analytes to be separated on the basis 

of two properties, hydrophobicity and charge, rather than just hydrophobicity. The 

solvent system is outlined in section 7.3 of the experimental chapter. In order to take 

advantage of the additional separating power of the new system, the method was 

extended to 80 min and the acetonitrile gradient decreased. Additionally, the 

concentration of AccQ.Tag™ Eluent A acetate buffer was increased from 25 ml/l to 100 

ml/l.  

 

Figure 3.5: HPLC separation Method 2 for CT species (CT-M2). Used with permission from Hideki Onagi. 

 

As well as refining the HPLC method, the cell assay was redesigned. The second 

generation cell assay featured duplicate control and SUNB8155-treated 25 cm2 cultures 

that were seeded with equal cell numbers (approximately 3 million cells) at low density 
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in 5 ml of growth medium and incubated until confluent (2-3 days, approx. 10 million 

cells). The growth medium was refreshed, and the cultures were treated with either 100 

μM of SUNB8155 in DMSO, or 10 μl of DMSO in the control cultures. The cultures were 

incubated for a further 24 h, and then the medium was removed and placed into 15 ml 

Falcon™ tubes. The medium was centrifuged (10,000g for 5 min at 4 °C) to remove dead 

cells and insoluble medium components, then 3 ml was injected onto the HPLC and 

analysed using CT-M2. A detailed protocol is outlined in experiment section 7.5. 

Experiments were repeated at least twice with concordant results. 

 

 

 

Figure 3.6: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture medium, after treatment with SUNB8155 (100 μM) and incubation for 24 h, analysed 

using CT-M2. 
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Figure 3.6A is a representative chromatogram of DMS53 control medium analysed using 

CT-M2. The elution time of CT and CT-G increased compared to medium samples 

analysed using CT-M1, to approximately 65 min and 60 min respectively. In addition, 

two other peaks were observed at approximately 49 min and 44 min. As described in 

Chapter 2, these were identified as CT and CT-G glycosylated at the Thr21 position with 

Neu-Ac(α2-3)Gal-(β1-3)-[NeuAc(α2-6)]GalNAc (gCT and gCT-G), having being 

characterised through MS and enzymology. The effect of SUNB8155 treatment on the 

levels of glycosylated and non-glycosylated CT species in the medium is shown in Figure 

3.6B. The CT to CT-G peak area ratio increased from 0.36 in the control medium to 0.63 

in the SUNB8155 treated culture medium, an increase of 75%. In contrast, the gCT to 

gCT-G ratio increased by only 27%, from 0.29 in the control medium to 0.40 in the 

treated culture medium. There was a small increase in the ratio of non-glycosylated to 

glycosylated species, from 1.11 to 1.32 (18%). 

Treatment of DMS53 cultures changed the levels of gCT and gCT-G in the medium. The 

gCT to gCT-G ratio increased, but by less than half the increase observed in the CT to 

CT-G ratio. This suggests that the putative activation of hCTR increases the proportion 

of CT in the medium selectively over gCT. Interestingly, little change was observed in the 

non-glycosylated to glycosylated species ratio. This implies that PAM expression or 

activity is up-regulated and that the turnover of CT-G is favoured over gCT-G. 

In order to have a more comprehensive understanding of SUNB8155 action on CT 

regulation in DMS53, the concentration-dependence of the effect required 

quantification, and a comparison of the intracellular and extracellular CT-related species 

was performed. This would allow the changes in CT biosynthesis and secretion of CT-

related species to be distinguished from one another, in turn examining the mechanisms 
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triggered by putative hCTR activation. To accomplish this, changes in peak area needed 

to be compared between experimental replicates, and the results averaged across a 

number of experiments.  In turn, this required a more consistent assay with comparable 

cell numbers between the treated and control cultures, and lysate analysis methodology. 

 

3.4 Investigating the Effect of SUNB8155 on the Production of 

Calcitonin-Related Species by DMS53 Cells with a More 

Robust Assay. 

The third generation cell assay focused on tight control of cell numbers at the beginning 

of treatment and at the end of the experiment to allow direct comparison between 

experimental replicates. Methodology was also developed to analyse cell lysates 

alongside media, allowing the intracellular levels of CT-related species to be observed. 

With these tools, the effect of SUNB8155 treatment at three increasing concentrations on 

the levels of CT-related species in DMS53 culture medium and lysate was assessed.  

 Stock cultures (in 175 cm2 flasks) of DMS53 were grown to confluence, lifted and 

counted. Eight cultures were each seeded with 10 million cells. The cells were grown for 

3 days, with a final cell count of 20-25 million cells per culture. After refreshing the 

medium, 2 cultures were treated with the relevant concentrations of SUNB8155 (1 μM, 10 

μM and 100 μM), or 10 μl of DMSO in the control cultures. The cultures were incubated 

for 24 h, then the medium and cells harvested for analysis. The experiment was repeated 

three times with concordant results. Both the medium and cell lysates were prepared as 

described in Chapter 2. Briefly, the cells were lysed by freeze-thawing, where the cell 

pellet was frozen in liquid nitrogen then heated to 100 °C for 7 min to denature 

proteases that might otherwise degrade the CT-related species. The lysate was then 
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subjected to centrifugal filtration using a 50 kDa cut-off filter. The centrifugal filtration 

was also applied to the medium to remove cell debris as an improvement over the 

centrifugation methodology described above. A detailed protocol is outlined in section 

7.6 of the experimental Chapter. 
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Figure 3.7: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture medium, after treatment with SUNB8155 (1 μM) and incubation for 24 h, analysed using 

CT-M2; C: DMS53 culture medium, after treatment with SUNB8155 (10 μM) and incubation for 24 h, analysed 

using CT-M2; D: DMS53 culture medium, after treatment with SUNB8155 (100 μM) and incubation for 24 h, 

analysed using CT-M2. 

 

Representative medium chromatograms are presented in Figure 3.7A-D, with species 

ratios summarised in Table 3.1 and Table 3.2. In the control medium, the average CT to 

CT-G ratio was 0.53 ± 0.03. This ratio did not increase significantly in the medium of 

cultures treated with 1 μM and 10 μM SUNB8155 (0.61 ± 0.06 and 0.58 ± 0.03 

respectively), while in the medium of the cultures treated with 100 μM SUNB8155, the 

average ratio increased by 96% to 1.04 ± 0.07. This trend was mirrored in the gCT to 

gCT-G ratio with an average of 1.09 ± 0.07 in the control cultures, remaining the same 

within error at 1.08 ± 0.05 and 1.15 ± 0.07 in the 1 μM and 10 μM treated cultures 

respectively, before increasing by 36% to 1.49 ± 0.05 in the 100 μM treated cultures. 

When comparing the proportion of non-glycosylated to glycosylated species in the 

medium, the ratio increased by 37% from an average of 0.70 ± 0.07 in the control 

cultures to 0.96 ± 0.06 in the 100 μM treated cultures.  
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Representative lysate chromatograms are presented in Figure 3.8A-D, with the species 

ratios summarised in Table 3.3. The work described in Chapter 2 demonstrated that CT 

was the major species present in untreated DMS53 lysate, and CT levels relative to the 

other CT-related species did not significantly change with treatment. The predominance 

of CT was again observed in the lysate of the control cultures in this experiment. 

Treatment of cultures with SUNB8155 at a concentration of 100 μM had no significant 

effect on the CT to CT-G ratio, or the levels of CT relative to the other CT-related species 

in the lysate. 

Changes to the levels of CT-related species in the medium and lysate were further 

interrogated to determine the level of statistical significance. .As described in Appendix 

One, the average relative proportions of each CT-related species in a given treatment 

condition was calculated and normalised. Treatment conditions were then compared to 

the control using Welch’s unequal variances t-test (Table A1.1). At 100 µM, SUNB8155 

treatment was found to increase the relative proportion of CT in the medium (p<0.05, 

Table A.12),consistent with the observations above. Only minor effects were observed in 

the lysate, and lower concentrations had little effect. 
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Figure 3.8: HPLC chromatograms of A: DMS53 culture lysate after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture lysate, after treatment with SUNB8155 (1 μM) and incubation for 24 h, analysed using 

CT-M2; C: DMS53 culture lysate, after treatment with SUNB8155 (10 μM) and incubation for 24 h, analysed 

using CT-M2; D: DMS53 culture lysate, after treatment with SUNB8155 (100 μM) and incubation for 24 h, 

analysed using CT-M2. 
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Table 3.1: CT-related species ratios in the medium of DMS53 cultures treated with increasing concentrations of 

SUNB8155. Data obtained from triplicate experiments. Standard error of the mean determined from 

corrected sample standard deviation. 

SUNB8155 

Concentration  
gCT/gCT-G SEM (+/-) CT/CT-G SEM  (+/-) 

Control 1.09 0.07 0.53 0.03 

1 μM 1.08 0.05 0.61 0.06 

10 μM 1.15 0.07 0.58 0.03 

100 μM 1.49 0.05 1.04 0.07 

 

Table 3.2: Further CT-related species ratios in the medium of DMS53 cultures treated with increasing 

concentrations of SUNB8155. Data obtained from triplicate experiments. Standard error of the mean 

determined from corrected sample standard deviation. 

SUNB8155 

Concentration  

non-

glycosylated/ 

glycosylated 

SEM (+/-) 

Total Peak Area/ 

Control Total Peak 

Area 

SEM  (+/-) 

Control 0.70 0.07 1.00 0.04 

1 μM 0.80 0.08 1.10 0.07 

10 μM 0.81 0.08 0.94 0.06 

100 μM 0.96 0.06 0.84 0.07 
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Table 3.3: CT-related species ratios in the lysate of DMS53 cultures treated with increasing concentrations of 

SUNB8155. Data obtained from triplicate experiments. Standard error of the mean determined from 

corrected sample standard deviation. 

SUNB8155 

Concentration  
CT/CT-G SEM (+/-) 

CT Peak Area/ Total 

Peak Area 
SEM (+/-) 

Control 4.80 0.62 0.57 0.02 

1 μM 5.00 0.60 0.56 0.03 

10 μM 4.12 0.25 0.60 0.06 

100 μM 4.72 0.38 0.63 0.09 

 

 

These experiments demonstrate that treatment of DMS53 cultures with SUNB8155 at a 

concentration of 100 μM increased the proportion of CT relative to gCT in the medium. 

In the medium, the CT to CT-G and gCT to gCT-G ratios increased by 96% and 36% 

respectively, indicating that the expression or activity of PAM was up-regulated and that 

processing was biased away from glycosylation. In the lysate, the levels of CT did not 

change relative to the other CT-related species in the lysate.  

 

3.5 Conclusions 

Given that SUNB8155 is a specific hCTR agonist, it is inferred that the increases in 

intracellular and extracellular CT in response to SUNB8155 treatment are initiated by 

hCTR activation and are the result of secondary messengers activating transcriptional or 

biosynthetic mechanisms downstream. hCTR expression in DMS53 cells had yet to be 

demonstrated. If present though, this would suggest that hCTR has the capability to 
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regulate the production and secretion of its own ligand in an autocrine manner, 

previously reported only for the glucagon, insulin and gastrin receptors.[172] One caveat 

to this conclusion is that because GPCR ligands may trigger biased receptor signalling 

(the preferential activation of one transduction pathway over another), the cellular 

response to the activation of hCTR by SUNB8155 may not be the same as the response to 

CT.[122] However, the experiments performed in this Chapter have demonstrated that 

putative hCTR activation has the ability to affect the levels of CT-related species in the 

medium, implicating it as a mediator of CT regulation. The stability of CT levels in the 

lysate is consistent with the observations made in Chapter 2, which suggested tight 

intracellular CT regulation. The possibility that off-target activation is responsible for the 

changes to the levels of CT-related species observed is unlikely, as it has been shown that 

SUNB8155 is specific to hCTR and does not activate hPTHr (human parathyroid 

hormone receptor, the target most likely after hCTR to have influence over CT 

production) in CHO cells at the treatment concentrations.[94] 

Treatment of DMS53 cultures with 100 μM SUNB8155 increased the proportion of 

amidated species in the medium, suggesting an up-regulation of PAM expression or 

activity had occurred. In the work described in Chapter 2, DMS53 cultures incubated in 

larger volumes of medium experienced lower effective extracellular concentrations of 

CT. In the larger volume cultures, greater proportions of CT-G and gCT-G accumulated 

in the medium, suggesting PAM activity or concentration was limiting the turnover of 

these species to CT and gCT. Together, these observations provide strong evidence that 

activation of hCTR increases PAM activity or expression. However, implicating hCTR as 

the initiator of a positive feedback loop that increases CT production requires that hCTR 

is expressed in DMS53. Work described in Chapter 4 was directed to determining 

whether this is the case. 
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Chapter Four 

 Results and Discussion: Characterisation of the Human 

Calcitonin Receptor in DMS53 Cells by Reverse 

Transcription PCR and Western Blot 

4.1 Introduction 

In the work described in Chapter 2, evidence was presented demonstrating that 

proportions of CT-related species produced in DMS53 culture medium changed in 

response to incubation in larger volumes of medium. This finding suggested that levels 

of CT-related species are recognised and regulated by DMS53 cultures.  The work 

described in Chapter 3 implicated hCTR as a component in this regulation mechanism, 

since the specific hCTR agonist SUNB8155 up-regulated CT relative to gCT in the 

medium of DMS53 cultures. This implies that hCTR activation regulates the biosynthesis 

of CT-related species in DMS53 cells; however there was no evidence in the literature to 

suggest that hCTR is expressed. The presence of hCTR in DMS53 cells was therefore 

investigated. 

The presence of hCTR mRNA and protein in cells has generally been established using 

reverse transcription PCR and Western blot.[153, 173] If hCTR was positively identified in 

DMS53, these techniques would also allow the specific isoform to be determined. This is 

of value because the hCTR isoform is reported to dictate the signalling pathways utilised. 

[102] For example, hCTR1 and hCTR6, which possess the 48 bp sequence in the putative 

first intracellular loop excised in hCTR2 and other isoforms, are unable to signal through 
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the Ca2+-dependent PLC/PKC pathway[102] or MAPK pathway,[174] ostensibly due to the 

extra loop residues blocking the binding of the relevant G protein(s). Thus identifying 

any hCTR isoform expressed in DMS53 cells is important in order to understand the 

receptor signalling.  

4.2 Detection and Characterisation of Human Calcitonin Receptor 

mRNA in DMS53 and PC3 Cell Lysate using Reverse 

Transcription PCR 

To identify the hCTR mRNA transcript expressed in DMS53, previously published 

primers and reverse transcription PCR conditions were initially used.[175, 176] To aid in 

interpreting the experimentally amplified cDNA sequences, a hCTR cDNA reference 

sequence annotated with the reported isoform variations was generated (Figure 4.1), 

based on the longest hCTR transcript (NM_001164737.1) in the NBCI RefSeq database.[177] 

This sequence is an aggregate of 10 cDNA sequences reported in the literature,[99, 104, 178, 

179] and codes for the longest hCTR isoform, hCTR1. The reported sequences of hCTR2-

6[97, 101, 104, 105, 107] were then aligned to this reference sequence and the regions of variation 

noted. With this model in hand, literature primers could then be aligned to the model 

sequence to identify which regions of the model sequence the primers would amplify, 

and how amplicon length would change if certain isoform variations were present. In 

Figure 4.2, all the primers used in this work are aligned to the hCTR model sequence. 
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Figure 4.1: A homology model of hCTR cDNA with reported transcript variants aligned. The double line 

represents the CDS region, the solid line represents the UTR regions, and dotted boxes represent regions of 

variation from the reference sequence (NM_001164737.1). The UTR/ECD excision refers to the cDNA 

sequence reported by Gorn and coworkers in 1995.
[100]

 

Initially, hCTR mRNA transcripts in DMS53 were evaluated using primer pairs designed 

by Wu and colleagues,[175] designated P1P2 and P3P4. The primer pair P3P4 is reported to 

amplify a region common to all the hCTR isoforms (339 bp). Complementarily, the P1P2 

pair is reported to amplify the 674 bp region containing the 48 bp excision specific to 

isoforms 2, 3 and 6 (Figure 4.2). In addition, based on the sequence homology analysis, 

it was determined that the P1P2 pair would generate a larger amplicon for isoform 

hCTR5 and 6 compared to hCTR2 (98 bp greater). This had not been reported in the 

original paper as hCTR5 and 6 had not been discovered at the time of publication. In a 

number of publications the prostate cancer cell line PC3 is used as a negative control for 

the presence of hCTR,[152, 153] so it was also utilised for these experiments.  

RNA was extracted from 1 million or 2 million cells for the analyses of PC3 and DMS53, 

and 10 million for DMS53 only. An initial screen using these samples evaluated the 

optimal amplification conditions for the P1P2 and P3P4 primer pairs. After the initial 

one-step RT-PCR reaction, an additional round of cDNA amplification was performed.  It 

was determined that the RNA derived from 2 million cells resulted in the strongest 

amplicon bands. A detailed protocol and thermocycler conditions are reported in 
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experimental section 7.7. 

 

Figure 4.2: A homology model of hCTR cDNA with all primers discussed in this chapter aligned to the 

NM_001164737.1 reference sequence (hCTR1). Vertical black bars represent primer-binding locations, and the 

arrowheads indicate primer direction.  P1-P4 reported by Wu and coworkers,
[175]

 F1-F4 and R1-R4 reported by 

Silvestris and coworkers,
[176]

 and P5 and P6 designed herein. P1, P3, P5 and F1-F4 are forward primers, while 

P2, P4, P6 and R1-R4 are reverse primers. Primer binding positions are reported in experimental section 7.7. 

Base pair positions are in reference to the NM_001164737.1 sequence.  

 

In Figure 4.3, DMS53 cDNA amplification with primer pair P1P2 produced a band at a 

migration consistent with the 674 bp amplicon, or a slightly truncated version of it. No 

bands were detected in the PC3 lane when amplified with P1P2. DMS53 samples 

amplified with the P3P4 primers generated a product at a migration consistent with the 

339 bp amplicon, as well as a smaller second band. Multiple products were observed in 

the PC3 sample, however they were smaller that those in the DMS53 sample. 

Amplification of DMS53 cDNA by the P1P2 and P3P4 primer pairs indicates that hCTR 

mRNA is transcribed in DMS53 cells. However, the identity of the product generated by 

P3P4 amplification in the PC3 sample is not clear, as hCTR mRNA transcription and thus 

amplification was not expected. In order to confirm the identity of the observed bands in 

both DMS53 and PC3 samples, each sample was sequenced. The results are summarised 

in Table 4.1. 
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Figure 4.3: Agarose gel displaying the amplified products from the first RT-PCR approach. ‘-‘ refers to a 

control experiment with no template mRNA.  

 

Table 4.1: Sequencing results for DMS53 and PC3 amplified products from the first RT-PCR approach. Samples 

were generated through further amplification of the PCR products, using forward and reverse primers 

separately. Sequenced using Sanger sequencing with 3730xl DNA Analyzer from Applied Biosystems. 

Amplicon  

(Primer) 
Length 

hCTR1 cDNA match regions: Query 

(Subject) 
Identity Gaps 

DMS53 P1P2 (P1) 601 791-875 (38-122), 941-1399 (123-600) 

473/478, 

83/85 

2/478, 

0/85 

DMS53 P1P2 

(P2) 
686 727-875 (596-447), 924-1337(446-33) 

414/414, 

148/150 

0/414, 

1/150 

DMS53 P3P4 

(P3) 
307 1499-1795 (12-307) 292/298 3/298 

DMS53 P3P4 

(P4) 
265 1504-1761 (257-6) 235/258 6/258 

PC3 P1P2 (P1) 637 No match   
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PC3 P1P2 (P2) 463 No match   

PC3 P3P4 (P3) 441 1521-1803 (37-315) 262/285 8/285 

PC3 P3P4 (P4) 444 1453-1657 (297-104) 185/206 13/206 

 

The sequences of the DMS53 forward and reverse amplicons generated by the P1P2 and 

P3P4 primer pairs in Table 4.1 show an almost complete identify match with the hCTR 

model sequence (Figure 4.1) when aligned. This provides strong evidence that hCTR 

mRNA is transcribed in DMS53 cells. Surprisingly, the sequences of the PC3 forward and 

reverse amplicons generated by P3P4 also have regions of sequence homology with the 

hCTR model sequence, although the identify match was lower than sequences amplified 

from DMS53. This was not observed in sequences generated by the P1P2 primer pair 

however. Although the majority of reports in the literature characterise PC3 cells as 

hCTR-negative,[152, 153] there have been accounts of hCTR mRNA transcription in the cell 

line.[180] Given the discrepancy between the identity matches of the P1P2 and P3P4 

amplicons with the hCTR model sequence, a definitive conclusion regarding the 

presence of hCTR mRNA in the PC3 cells could not be made. Since this was not relevant 

to the investigation into DMS53 cells, it was not pursued further. 

The P1P2 primer pair amplifies a region of hCTR cDNA containing the 48 bp excision 

that distinguishes hCTR isoforms 2, 3 and 6. The sequences of the forward and reverse 

DMS53 P1P2 amplicons show a gap of at least 49 bp from base pair 875 in this region 

when aligned to the hCTR model sequence. This indicates that in DMS53 cells the 48 bp 

excision most likely occurs.  Conversely, no gap was observed in the amplicon sequence 

from base pair 1204, indicating that the 50 bp excision associated with hCTR5 and 6 is 
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not present. Together, this suggests that the most likely isoforms transcribed in DMS53 

are hCTR 2 or 3. Compared to hCTR2, hCTR3 is characterised by additional truncation in 

the ECD, which may affect ligand binding. Therefore, it was desirable to distinguish 

which of these isoforms is present in DMS53. 

 

4.3 Identification of the Human Calcitonin Receptor mRNA Isoform 

in DMS53 and TT Cell Lysate using Reverse Transcription PCR 

In order to distinguish hCTR2 from hCTR3, a primer pair that amplifies the region 

encompassing the 125 bp excised (at position 360-485 on hCTR model sequence) from 

hCTR3 in the putative ECD was designed using the NCBI Primer-BLAST database[177] 

(P5P6). The P5 binding region overlaps with the 125 bp excised region, while P6 binds to 

an isoform-generic region near P2 (Figure 4.2). Amplification with this primer pair 

would occur only if isoforms other than hCTR3 are transcribed in DMS53, as P5 would 

be unable to bind to hCTR3 cDNA. Since it was concluded from the previous approach 

that either hCTR2 or 3 mRNA is transcribed in DMS53, amplification would indicate that 

hCTR2 cDNA is present. 

The RT-PCR protocol was refined from the first approach. Given the ambiguity of hCTR 

mRNA transcription in PC3 cells encountered in the previous approach, a positive 

control was included in this approach. RNA derived from the TT cell line, a medullary 

thyroid carcinoma reported to express hCTR2,[63] was amplified to allow comparison 

with DMS53 RNA. Cells were harvested at 60-70% confluence, as hCTR mRNA 

concentration is likely to be highest when cells are actively dividing. RNA was extracted 

from 10 million cells, thus the second round of amplification after the initial RT-PCR 

step used in the first approach was not required. A detailed protocol and thermocycler 
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conditions are described in experimental section 7.7. Primer pairs P1P2, P5P6, P1P6 and 

P5P2 were tested against both DMS53 and TT cDNA. The agarose gel displaying the 

resulting amplicon bands is presented in Figure 4.4. 

 

Figure 4.4: Agarose gel displaying the amplified products from the second RT-PCR approach. ‘-‘ refers to a 

control with no template mRNA.  

 

As with the first approach, the amplification of DMS53 cDNA with P1P2 primers 

produced a faint band at a migration consistent with the 674 bp amplicon. No products 

were observed when amplified with P5P6.  Surprisingly, given TT is reported to express 

hCTR2 mRNA, no product was detected with P1P2 amplification. A similar result was 

observed when TT and DMS53 cDNA was amplified using P5P2; a band at a migration 

consistent with 932 bp amplicon was observed in the DMS53 sample, but no 

amplification was observed for the TT sample. Although it is not clear why, P2 did not 

amplify TT cDNA. This could be related to the relative primer affinity of P2 or cDNA 

concentration in the TT samples. Regardless, products at migrations consistent with 717 

bp were identified in both the DMS53 and TT samples when amplified using the primer 

pair P1P6, confirming the presence of hCTR cDNA in DMS53 and TT samples.   

For the P5P2 forward sequence to be amplified, P5 must have bound to the hCTR cDNA, 

proving the 125 bp excision associated with hCTR2 is not present in at least a proportion 
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of the hCTR mRNA in DMS53 cells. This means hCTR2 mRNA is transcribed in DMS53. 

In order to confirm the identity of the amplicons observed, sequencing was undertaken 

on the RT-PCR products. The results are summarised in Table 4.2. The sequences of the 

forward and reverse P1P6 amplicons from DMS53 and TT are almost identical, with 

similar amplicon length and the characteristic 48 bp excision at base pair 875, as 

observed previously. The DMS53 P5P2 forward sequence and the P1P2 forward sequence 

also display this excision, however neither of the P2 reverse sequences displayed matches 

with the model sequence. 

Table 4.2: Sequencing results for DMS53 and TT RT-PCR samples from the second RT-PCR approach. Samples 

were generated through further amplification of the RT-PCR product, using forward and reverse primers 

separately. Sequenced using Sanger sequencing with 3730xl DNA Analyzer from Applied Biosystems. 

Amplicon  

(Primer) 
Length 

hCTR1 cDNA match regions: 

Query (Subject) 
Identity Gaps 

DMS53 P1P2 (P1) 1249 938-1399 (145-604) 416/463 4/463 

DMS53 P1P2 

(P2) 
1256 No match. 

  

DMS53 P1P6 (P1) 523 792-875 (37-119), 924-1324 (120-519) 

387/402, 

74/83 

3/402, 

0/83 

DMS53 P1P6 

(P6) 
535 731-875 (528-385), 924-1294 (384-17) 

338/372, 

144/145 

5/372, 

1/145 

DMS53 P5P2 

(P5) 
844 

490-875 (49-435), 924-1330 (436-

844) 

400/409, 

361/387 

2/409, 

1/387 

DMS53 P5P2 

(P2) 
476 No match.   
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TT P1P6 (P1) 540 768-875 (13-118), 924-1324 (119-521) 

398/403, 

105/108 

2/403, 

2/108 

TT P1P6 (P6) 525 738-875 (523-386), 924-1306 (385-8) 

376/383, 

138/138 

5/383, 

0/138 

 

The forward and reverse sequences of the P1P6 amplicons for the DMS53 and TT samples 

exhibited the 48 bp excision at base pair 875 characteristic of hCTR2 and 3. 

Amplification of the forward sequence of P5P2 in DMS53 indicated that P5 had bound to 

hCTR mRNA not exhibiting the 125 bp excision associated with hCTR3. By the process of 

elimination, this means that hCTR2 must be transcribed in DMS53, although it does not 

rule out the possibility of hCTR3 co-transcription. Given this possibility, primer pairs 

amplifying the entire region of hCTR isoform-defining excisions would be required to 

determine if multiple isoforms are transcribed in DMS53. 

 

4.4 Assessment of Human Calcitonin Receptor mRNA Variant Co-

transcription in DMS53 and TT Cell Lysate using Reverse 

Transcription PCR 

In 2008, Silvestris and coworkers[176] published 8 primers (four forward primers (F1-4) 

and four reverse primers (R1-4)) designed to bind different regions of an hCTR sequence 

derived from osteoclasts,[107] but the results from the use of only one of these 

combinations were displayed. The hCTR model sequence described previously (Figure 

4.1) was used to identify the binding regions of each primer and find those suitable for 

distinguishing the 125 bp excision associated with hCTR3 and the 48 bp excision 
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associated with hCTR2. Further, this would allow the 71 bp excision at the UTR/ECD 

interface observed by Nishikawa and coworkers,[107] unaccounted for in the analysis of 

hCTR isoforms by Beaudreuil and coworkers,[97] to also be interrogated.  

Several discrepancies were identified between the analysis of primer utility performed in 

this work and the utility outlined in the publication. For example, the primer pair F2R3 

was said to be designed to identify the 48 bp excision associated with hCTR2, and the 

125 bp excision in hCTR3. However, based on Figure 4.2, primer F2 actually binds 300 

bp after this excision, at base pair 619, and thus cannot amplify this region. Primer R2 

was designed to bind to the 50 bp insert present in hCTR5 and 6 at position 1204, but 

did match the sequence in the RefSeq database[177] relating to hCTR cDNA. The F1 primer 

did match the model hCTR sequence but to an alternative sequence in the UTR of hCTR 

transcript variant 3 according to the RefSeq database. As a result, the primer pairings 

proposed by Silvestris and coworkers were adapted. 

Instead of F2R3, the primer pair F4R3 was used as it amplifies a region encompassing the 

125 bp hCTR3 excision, the 48 bp hCTR2 excision and the 71bp UTR/ECD excision. 

Amplifying DMS53 cDNA with the F4R3 primer pair was expected to identify the 

combinations of excisions that occur together, and whether multiple hCTR variants 

occur. Based on the earlier approaches used, the length of the F4R3 amplicon in DMS53 

is 1321 bp, accounting for the presence of the hCTR2 excision and the lack of the hCTR3 

and UTR/ECD excisions. If all excisions were present, an amplicon length of 1125 bp 

would be observed. If multiple amplicons were observed, this would indicate that more 

than one isoform of hCTR mRNA is transcribed in DSM53.  

 TT cells were used again as a control. The primer pair F3R3, which binds to an isoform-

generic region of the hCTR mRNA and produces an amplicon of 296 bp, was used as a 

control for mRNA sample quality. To avoid the variation in TT and DMS53 amplification 
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with the same primer pair in the previous approach, the cell culture protocol was altered 

to standardise cell growth between flasks. The cells were then lysed, and RNA was 

isolated from approximately a quarter of the total lysate. An additional DNase cleanup 

and purification step was included in the extraction protocol. mRNA concentration and 

quality was estimated by nanodrop. A detailed protocol and thermocycler conditions are 

reported in experimental section 7.7. The results of the RT-PCR approach are presented 

in Figure 4.5. 

 

Figure 4.5: Agarose gel displaying the amplified products from the third RT-PCR approach. ‘-‘ refers to a 

control with no template mRNA. 

 

 

In Figure 4.5, the amplicons produced in the DMS53 and TT samples for primer pairs 

F4R3 and F3R3 are compared. Amplification with F3R3 produced a band at a migration 

consistent with 296 bp, confirming hCTR transcription in both DMS53 and TT cells. 
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Amplification with F4R3 produced a major band at a migration consistent with 1300 bp 

in both the TT and DMS53 samples. This amplicon is consistent with the presence of 

hCTR2 cDNA. In the TT sample, additional minor bands at migrations consistent with 

750 bp and 600 bp (marked with white arrows) were observed. In the DMS53 sample, 

weaker bands at migrations consistent with 1100 bp and 750 bp (marked with white 

arrows) were observed, as well as an intense band consistent with 250 bp.  The larger 

minor band (1100 bp) may represent another isoform of hCTR with the 48, 71 and 125 bp 

excisions. The smaller products (600-700 bp) do not correlate with any expected 

amplicons, and may be the result of the fragmentation of the full-length amplicon. The 

origin of the 250 bp product in DMS53 cells is also unclear.  Due to the mixture of 

amplified products observed in each sample, sequencing was not pursued. Nevertheless, 

these observations confirm that hCTR2 mRNA is transcribed in DMS53, even though it 

may not be the only variant present. 

In summary, analysis of extracted RNA using RT-PCR showed that hCTR2 mRNA is 

present in DMS53. The first approach demonstrated that the 48 bp excision associated 

with hCTR2 occurred in DMS53 hCTR mRNA, while the second approach showed that 

this excision did not occur alongside the 125 bp excision associated with hCTR3. The 

third approach demonstrated that hCTR2 is again present but might not be the only 

mRNA variant transcribed. The confirmation of not only hCTR transcription but also 

expression in DMS53 required that the hCTR protein be characterised. This would 

possibly also allow the isoform of the expressed protein to be determined. 
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4.5 Detection and Characterisation of Human Calcitonin Receptor 

Immunoreactivity in DMS53 using Western Blot Analysis 

Numerous reports have demonstrated expression of hCTR in various cell types by 

Western analysis.[153, 173, 178, 181] Wookey and coworkers[178] report a 70 kDa protein 

corresponding to the fully glycosylated membrane protein hCTR and a smaller protein at 

52 kDa, presumably belonging to the non-glycosylated protein, Alternatively Segovia-

Silvestre and coworkers,[173] Liu and coworkers,[181] and Aljameeli and coworkers[153] report 

proteins migrating between 50 kDa and 60 kDa corresponding to an hCTR isoform 

(predicted MWs of the isoforms according to amino acid analysis are hCTR1: 59 kDa, 

hCTR2: 55 kDa, hCTR3: 49 kDa, hCTR4: 22 kDa, hCTR5: 34 kDa, hCTR6: 32 kDa).[98] 

Upon assessing the methodologies used, the latter three reports used a cytosol-targeted 

lysis with RIPA buffer, while Wookey and coworkers used membrane-targeted lysis with 

Lamelli buffer. The RIPA lysis buffer was chosen for use in this work in order to try and 

establish a clearer picture of which hCTR isoform is expressed. Glycosylation typically 

causes the protein to run as a smear, making detecting various sized proteins 

complicated, so lysis with Lamelli buffer was avoided. A rabbit polyclonal antibody 

raised against hCTR2 (RefSeq: NP_001733.1) was obtained from Abcam (ab103422) for 

the purpose of identifying hCTR in DMS53 cells, with target protein predicted to have a 

molecular weight of 55 kDa.[182]  

DMS53 cells were grown to confluence, lysed, and the protein extract cleared by 

centrifugation. The protein concentration was determined using a DC BioRad protein 

assay with BSA as a standard curve. The lysates were denatured at 95 °C in the presence 

of β-mercaptoethanol and 15 μg, 23 μg and 30 μg of protein lysate was loaded onto a 

precast 4-20% polyacrylamide gel. The gel was run for approximately 2 hours, after 

which time the proteins were transferred to a PVDF membrane. The membrane was 
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blocked and incubated with 15 μg of the primary antibody overnight. The following day 

the membrane was washed then incubated with the secondary anti-rabbit-HRP antibody 

(1.5 μg) for 1 hour before final washing. The protein was detected using 

chemiluminescent imaging with ECL Western blotting reagents. A detailed lysis protocol 

and Western blot protocols are outlined in experimental section 7.8. The result of this 

investigation is illustrated in Figure 4.6.   

 

Figure 4.6: Western blot of DMS53 lysate imaged with an hCTR2-specific antibody comparing different 

loading amounts of total lysate protein.  

 

An intense immunoreactive band was observed, independent of protein concentration, 

at a migration consistent with 55 kDa, the predicted molecular weight of hCTR2. There 

was also a protein detected at approximately 40 kDa. Since there is no obvious 

correlation with the predicted molecular weight of any other isoform, it is more likely to 

be non-specific binding or degradation of hCTR2. It was concluded that 25 μg of protein 

is an appropriate loading amount for the detection of hCTR, and that hCTR (most likely 

hCTR2) is expressed in DMS53. In order to validate the hCTR isoform expressed, 

comparison between the protein observed in DMS53 and the protein observed in a cell 

line expressing a known hCTR isoform was therefore performed. 
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4.6 Comparison of Human Calcitonin Receptor Immunoreactivity in 

DMS53, DU145 and PC3 Cell Lysate using Western Blot 

In work described by Aljameeli and coworkers,[153]  DU145 and PC3 (prostate cancer cell 

lines) were used as positive and negative controls respectively for Western blot analysis 

of hCTR2-transfected cell line protein lysate. Thus protein lysate samples were prepared 

from these cell lines as well as duplicate samples from DMS53, and were then analysed 

using Western blot as described previously, except that the protein lysate (25 μg) was 

separated by SDS-PAGE for a longer time (2½ h) to improve the resolution of the blot. 

The protocol is described in detail in experimental section 7.8, and the resulting blot is 

displayed in Figure 4.7. 

 

Figure 4.7: Western blot of DMS53, DU145 and PC3 lysate imaged with an hCTR2-specific antibody.  
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In the DMS53 sample, a protein with a migration of approximately 50 kDa was observed. 

A band with the same migration was also observed in the DU145 sample, and was not 

observed in the PC3 sample. This appears to be the same major band observed in the 

first experiment based on the intensity, and therefore corresponds to hCTR. Since 

hCTR2 is expressed in DU145, the co-migration of the DU145 band with the DMS53 band 

confirms hCTR2 expression in DMS53. The difference in migration compared to the 

previous experiment may be due to the increased blot resolution as a result of longer 

SDS-PAGE separation. Since hCTR is not expressed in PC3 cells, it is likely the bands 

common to the PC3 sample and the other samples are the result of non-specific binding 

rather than other hCTR isoforms. 

 

4.7 Conclusions 

Using RT-PCR and Western blot analysis, the presence of hCTR mRNA and protein was 

shown in DMS53 cells. Specifically, hCTR2 mRNA was present in DMS53, as was the 

protein. Evidence of mRNA transcripts that may correspond to smaller hCTR isoforms 

was observed in the RT-PCR studies. Since the antibody used in the Western blot 

experiments was raised against hCTR2, it is not clear if it would identify other hCTR 

isoforms. Therefore, the co-expression of smaller hCTR isoforms with hCTR2 in DMS53 

remains a possibility.  Although hCTR mRNA has been identified in lung cancer cells 

previously,[183] this study represents the first characterisation of an hCTR isoform in a 

lung cancer cell line. The presence of hCTR2 in DMS53 cells implies that both the Ca2+- 

and cAMP-dependent signalling pathways could be utilised in this cell line when the 

receptor is activated.  

In the work described in Chapter 3, it was observed that application of the hCTR agonist 

SUNB8155 to DMS53 cultures increased the proportion of CT relative to gCT in the 
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medium. This may have occurred through the up-regulation of PAM activity or 

expression, or an increase in CT precursor transcription. With the discovery of hCTR2 

expression in DMS53, it is now reasonable to assume that the changes to the levels of 

CT-related species are the result of hCTR activation by SUNB8155, and that the cellular 

mechanisms responsible are most likely mediated by cAMP- or Ca2+-dependent signal 

transduction. Selectively inhibiting enzymes in the signal transduction pathways would 

reveal which pathways are involved in the regulation of CT-related species in DMS53, 

and may help to discern the mechanisms the cell uses to control the production of these 

species. Work in Chapter 5 was therefore directed toward the treatment of DMS53 

cultures with signalling enzyme inhibitors.  
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Chapter Five 

 Results and Discussion: Inhibition of Human Calcitonin 

Receptor Signal Transduction Enzymes and its Effect 

on the Levels of Calcitonin-Related Species in DMS53 

5.1 Introduction 

In the work described in Chapter 3, it was observed that treatment of DMS53 cultures 

with the hCTR agonist SUNB8155 at 100 μM concentration increased the proportion of 

CT in the medium, while levels in the lysate were unaffected.  In the work described in 

Chapter 4, hCTR transcription and expression was characterised in DMS53 for the first 

time, and hCTR2 was identified as the isoform expressed. It was concluded that 

ostensible hCTR activation increased the production of CT and CT-related species in 

DMS53. Therefore, intramolecular signal transduction originating from hCTR is likely to 

mediate the biosynthesis of CT-related species within the cell. Understanding which 

pathways are utilised in the hCTR-dependent regulation of CT production would aid in 

the identification of the cellular mechanisms involved.  

hCTR signal transduction is well characterised in the literature. It has been 

demonstrated that hCTR2 can bind Gαs and Gαi, which up-regulate and down-regulate 

production of cAMP, respectively.[120] hCTR2 can also bind Gαq, which up-regulates 

production of the secondary messenger Ca2+.[162] As mentioned previously, it has been 

shown that the CT/CGRP gene (CALCA) has a cAMP responsive element (CRE)[170] as 

well as a more recently identified Ca2+-dependent downstream regulating element 
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(DRE)[184] suggesting that gene expression and therefore CT transcription is linked to 

cAMP and Ca2+ flux. To identify whether a given hCTR signalling enzyme is involved in 

the regulation of CT-related species’ production in DMS53 cells, the relative 

concentrations of the CT-related species could be monitored while hCTR signal 

transduction is selectively disrupted with inhibitors. The cAMP- and Ca2+-mediated 

pathways were interrogated in this preliminary study (Figure 5.1) 

 

Figure 5.1: The known Ca
2+

-dependent (top) and cAMP-dependent (bottom) signal transduction pathways of 

hCTR.
[8]

 Used with permission from Elsevier. 
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Table 5.1: hCTR signalling pathway inhibitors used in this study. 

Name Structure 
Primary 

Target  

Efficacy 

(IC50) 
Mechanism  Specificity 

SQ22536 

 

AC 

13 μM  

(human 

platelets)
[185]

  

Non-

competitive 

[186]
 

May also 

inhibit the 

neuritogenic 

cAMP sensor 

downstream of 

AC
[187]

 

H89 

 

PKA 

10-30 μM 

(PC12D 

cells)
[188]

 

Competitive 

with ATP
[189]

 

Inhibits at 

least three 

other kinases 

with IC50 

comparable to 

PKA
[189, 190]

  

U73122 

 

PLC 

1-13 μM 

(human 

platelets)
[191]

 

Unknown, 

may be 

covalent 

through the 

alkylation of 

cysteine 

residues
[192]

 

Interacts with 

ion channels; 

effects Ca
2+

 

and K
+
 flux

[192]
 

GF109203X 

(BIM1) 

 

PKC 

0.8-0.9 μM 

(human 

platelets)
[193]

 

Competitive 

with ATP
[194]

 

Inhibits all 

isoforms, low 

promiscuity
[195]

 

 

The inhibitors used in the work are summarised in Table 5.1. Two enzymes in each of 

the cAMP- and Ca2+-dependent signalling pathways were targeted with small molecule 
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inhibitors. In each pathway, the enzyme responsible for the generation of the secondary 

messenger was targeted; AC in the cAMP-dependent pathway, and PLC in the Ca2+-

dependent pathway. Additionally, the kinase responding to the respective secondary 

messenger was target in each pathway; PKA in the cAMP-dependent pathway, and PKC 

in the Ca2+-dependent pathway. Small molecule inhibitors for each of the four enzymes 

were selected based on efficacy in vitro and common usage in the literature. Target 

promiscuity is a problem for many signalling enzyme inhibitors, particularly kinase 

inhibitors,[189] but the compounds selected are widely used for inhibiting the designated 

targets, and represent the best candidates available for this role. 

 

5.2 Investigating the Effect of Signalling Pathway Inhibition on the 

Production of Calcitonin-Related Species by DMS53 Cells 

Using a First HPLC-Fluorescence Detection Method 

Initial experiments to screen whether signalling inhibitors had an effect on the levels of 

CT-related species in the medium of treated DMS53 cultures used a variation of the 

second generation in vitro assay (described in experimental section 7.5), and were 

analysed using the first HPLC method, CT-M1 (described in experimental section 7.2). 

After reaching confluence, cultures were incubated for 24 h, before being treated with 

the relevant signalling enzyme inhibitor and incubated for a further 24 h. Inhibitors 

SQ22536 (100 μM) and H89 (1 μM) were tested in parallel, as were inhibitors U73122 (10 

μM) and GF109203X (2 μM), as each pair targets enzymes in the same transduction 

pathway (the cAMP-dependent and Ca2+-dependent pathways, respectively). Treatment 

concentrations were based on literature reports for specificity in vitro,[120, 196, 197, 198] with 

experiments repeated twice with concordant results.  Representative medium 

chromatograms of cultures treated with SQ22536 and H89 are presented in Figure 5.2, 
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and those treated with U73312 and GF109203X are presented in Figure 5.3.  

 

 

 

Figure 5.2: HPLC chromatograms of A: DMS53 culture medium after incubation for 48 h, analysed using CT-

M1; B: DMS53 culture medium, after incubation for 24 h, treatment with SQ22536 (100 μM) and incubation for 

a further 24 h, analysed using CT-M1. C: DMS53 culture medium, after incubation for 24 h, treatment with 

H89 (1 μM) and incubation for a further 24 h, analysed using CT-M1. 
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Figure 5.3: HPLC chromatograms of A: DMS53 culture medium after incubation for 48 h, analysed using CT-

M1; B: DMS53 culture medium, after incubation for 24 h, treatment with U73122 (10 μM) and incubation for a 

further 24 h, analysed using CT-M1. C: DMS53 culture medium, after incubation for 24 h, treatment with 

GF109203X (2 μM) and incubation for a further 24 h, analysed using CT-M1. 
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In Figure 5.2B, treatment with SQ22536 increased the CT to CT-G ratio from 0.50 in the 

control culture medium, to 0.61 in the treated culture medium. The ratios of the CT and 

CT-G peaks to the peak at 34 min (later discovered to be gCT) also increased. The CT to 

gCT ratio increased from 1.07 in the control medium (Figure 5.2A) to 1.66 in the treated 

culture medium. The CT-G to gCT ratio increased from 2.15 in the control medium to 

2.74 in the treated culture medium. The H89 treatment (Figure 5.2C) had no affect on 

CT-related species ratios. H89 concentration was increased to 10 μM and again, no effect 

was observed (data not shown). In Figure 5.3B, treatment of DMS53 cultures with 

U73122 did not change the CT to CT-G ratio in the medium compared to the control 

(Figure 5.3A), however a new large peak appeared at 50 min. GF109203X treatment of 

DMS53 cultures (Figure 5.3C) increased the CT to CT-G ratio to 0.68, from a ratio of 

0.51 in the control culture medium.  

These experiments suggest that SQ22536 and GF109203X have an effect on the levels of 

CT-related species in the medium of treated cultures. U73122 may also have an effect on 

the species secreted by DMS53 cultures, based on the appearance of a large new peak in 

the medium. However, given the size of this peak compared to the other species in the 

medium chromatogram, it may be of exogenous origin. H89 appeared to have no effect 

on the levels of CT-related species in the medium. With the discovery of the glycosylated 

CT-related species in the course of this work and the development of an HPLC method 

to separate and quantify these species (as described in Chapter 2), these preliminary 

results suggested that subsequent experiments should focus on comparing the effect of 

GF109203X, SQ22536 and U73122 on the levels of glycosylated and non-glycosylated CT 

and CT-G in the medium of DMS53 cultures. As H89 had no effect on CT-related species, 

the target enzyme PKA was not implicated as a potential mediator of hCTR signal 

transduction. As a result no further experiments with this inhibitor were pursued. 
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5.3 Investigating the Effect of Signalling Pathway Inhibition on the 

Production of Calcitonin-Related Species by DMS53 Cells 

Using a Second HPLC-Fluorescence Detection Method 

In order to investigate whether signalling enzyme inhibitors affected the levels of gCT 

and gCT-G in the same way as CT and CT-G, treatment of DMS53 cultures with SQ22536 

and U73122 followed the second generation DMS53 in vitro assay methodology (outlined 

in experimental section 7.5), and were analysed using CT-M2 (outlined in experimental 

section 7.3). Experiments were repeated twice with concordant results. The treatment 

concentration of U73122 was increased to 40 μM; treatment at this concentration is still 

specific to PLC.[197] The effect of GF109203X treatment was explored in a subsequent 

experiment.  

In Figure 5.4, a representative medium chromatogram of a DMS53 culture treated with 

100 μM SQ22536 is compared to that of a control culture. In Figure 5.4A, the CT to CT-

G and gCT to gCT-G ratios in the control culture medium are equivalent, at 0.46, and 

the non-glycosyated to glycosylated ratio was 1.29. In Figure 5.4B, a DMS53 culture 

treated with SQ22536 showed CT to CT-G and gCT to gCT-G ratios of 0.45 and 0.39 

respectively, while the non-glycosylated to glycosylated species ratio was 1.66.  

In Figure 5.5, a representative medium chromatogram of a DMS53 culture treated with 

40 μM U73122 is compared to that of a control culture. In Figure 5.5B, the culture 

treated with U73122 produced a large peak at 61 min. This is presumably the same 

species that was detected at 50 min in the first experiment.  In Figure 5.5C, a 

chromatogram of U73122 in MilliQ showed that no peak was observed at 61 min. 

Accurate integration of the CT and CT-G peaks could not be obtained due to the overlap 

with the 61 min peak. The gCT to gCT-G ratio in the control (Figure 5.5A) was 0.69, 

while in the treated culture, a ratio of 0.67 was observed.  
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Figure 5.4: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture medium, after treatment with SQ22536 (100 μM) and incubation for 24 h, analysed 

using CT-M2. 
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Figure 5.5: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture medium, after treatment with U73122 (40 μM) and incubation for 24 h, analysed using 

CT-M2; C: U73122 (5 μM) in MilliQ water, analysed using HPLC CT-M2. 

 

Treatment of DMS53 cultures with SQ22536 may have had a small effect on the ratio of 

non-glycosylated species to glycosylated. U73122 treatment caused a large peak to be 

observed at 61 min, interfering with the integration of CT and CT-G. As the mechanism 

of action is thought to proceed via the alkylation of cysteine residues,[192] it may be that 

this peak originated from an alkylated peptide or protein. Alternatively, the inhibitor 

may degrade and generate a fluorescently active species.  In any event, due to 

incompatibility with the assay, U73122 was abandoned as a signalling pathway probe.  
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In the work described in Chapter 3, a more robust assay was designed which allowed 

changes in the levels of CT-related species in the medium and lysate of DMS53 cultures 

to be averaged across experimental replicates. This meant that the effect of SUNB8155 

could be quantified, and distinguished from experimental variation. Because the possible 

effects of SQ22536 in the previous experiment appeared to be small, this methodology 

was employed to provide evidence of whether levels of CT-related species change 

significantly in response to SQ22536 treatment. It would also allow the effects on CT-

related species in the lysate to be assessed. As the effects of GF109203X on the levels of 

gCT and gCT-G had not been assessed by the time this methodology was developed, 

GF109203X was also be tested using the new methodology. 

 

5.4 Investigating the Effect of Signalling Pathway Inhibition on the 

Production of Calcitonin-Related Species by DMS53 Cells with 

a More Robust Assay. 

Using the third generation in vitro assay (outlined in experimental section 7.6) and the 

HPLC method CT-M2, the effect of SQ22536 (100 μM) and GF109203X (10 μM) on the 

levels of CT-related species in DMS53 medium and lysate was interrogated. The 

treatment concentration of GF109203X was increased from 2 μM to 10 μM (GF109203X 

is still selective for PKC at this concentration).[198] The experiment was repeated three 

times with concordant results. Representative medium chromatograms are presented in 

Figure 5.6, while lysate chromatograms are shown in Figure 5.7. Summaries of the ratio 

changes between CT-related species are presented in Table 5.2 to Table 5.4. 
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Figure 5.6: HPLC chromatograms of A: DMS53 culture medium after incubation for 24 h, analysed using CT-

M2; B: DMS53 culture medium, after treatment with GF10920X (10 μM) and incubation for 24 h, analysed 

using CT-M2; C: DMS53 culture medium, after treatment with SQ22536 (100 μM) and incubation for 24 h, 

analysed using CT-M2. 



Chapter Five: Signal Transduction Inhibition 113 

 

 

 

 

 

Figure 5.7: HPLC chromatograms of A: DMS53 culture lysate after incubation for 24 h, analysed using CT-M2; 

B: DMS53 culture lysate, after treatment with GF10920X (10 μM) and incubation for 24 h, analysed using CT-

M2; C: DMS53 culture lysate, after treatment with SQ22536 (100 μM) and incubation for 24 h, analysed using 

CT-M2. 
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Table 5.2: CT-related species ratios in the medium of DMS53 cultures treated with inhibitors SQ22536 and 

GF109203X. Data obtained from triplicate experiments. Standard error of the mean determined from 

corrected sample standard deviation. 

Treatment 

(medium) 
gCT/gCT-G SEM (+/-) CT/CT-G SEM  (+/-) 

Control 1.09 0.13 0.52 0.09 

GF109203X (10 μM) 2.17 0.16 1.02 0.14 

SQ22536 (100 μM) 1.04 0.12 0.57 0.07 

 

Table 5.3: Further CT-related species ratios in the medium of DMS53 cultures treated with inhibitors SQ22536 

and GF109203X. Data obtained from triplicate experiments. Standard error of the mean determined from 

corrected sample standard deviation. 

Treatment 

(medium) 

non-

glycosylated/ 

glycosylated 

SEM (+/-) 

Total Peak Area/ 

Control Total Peak 

Area 

SEM  (+/-) 

Control 0.81 0.05 1 0.03 

GF109203X (10 μM) 0.91 0.09 0.93 0.06 

SQ22536 (100 μM) 1.18 0.17 1.31 0.11 
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Table 5.4: CT-related species ratios in the lysate of DMS53 cultures treated with inhibitors SQ22536 and 

GF109203X. Data obtained from triplicate experiments. Standard error of the mean determined from 

corrected sample standard deviation. 

Treatment      

(lysate) 
CT/CT-G SEM (+/-) 

CT Peak Area/ Total 

Peak Area 
SEM  (+/-) 

Control 4.55 0.64 0.63 0.01 

GF109203X (10 μM) 4.13 0.91 0.63 0.03 

SQ22536 (100 μM) 4.27 0.33 0.63 0.01 

 

In Table 5.2, the medium of the GF109203X treated cultures showed changes in the CT 

to CT-G and gCT to gCT-G ratios compared to the control cultures. The CT to CT-G ratio 

increased from 0.52 ± 0.09 in the control to 1.02 ± 0.14 in the treated cultures; the gCT 

to gCT-G ratio increased from 1.09 ± 0.13 in the control to 2.17 ± 0.16 in the treated 

cultures. In Table 5.3, with cultures treated with SQ22635, the ratio of non-glycosylated 

to glycosylated CT species (1.18 ± 0.17) was slightly higher than in the control culture 

(0.81 ± 0.05). In Table 5.4, treatment of cultures with GF109203X and SQ22536 had no 

significant effect on the levels of CT relative to the other CT-related species in the lysate, 

or on the CT to CT-G ratio. 

Changes to the levels of CT-related species in the medium and lysate were further 

interrogated to determine the level of statistical significance. .As described in Appendix 

One, the average relative proportions of each CT-related species in a given treatment 

condition were calculated and normalised. Treatment conditions were then compared to 

the control using Welch’s unequal variances t-test (Table A1.3). GF109203X (40 µM) 

treatment was found have a significant effect on the levels of CT-related species in the 
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medium (p<0.05, Table A1.4), while the effect of SQ22536 was not significant due to 

uncertainty, again consistent with the observations above. Minor changes to the levels of 

CT-related species in the lysate were observed with GF190203X treatment. 

GF109203X treatment of DMS53 cultures resulted in significant changes to CT to CT-G 

and gCT to gCT-G ratios in the medium. However, the relative proportions of the CT-

related species in the lysate remained remarkably unchanged. The effect of GF109203X 

on CT-related species suggests that PKC, the target of GF109203X, is involved in hCTR 

signal transduction. As the ratios of CT to CT-G and gCT to gCT-G in the medium 

increased by almost 100%, this in turn suggests that PKC activity has some control over 

the activity or expression of PAM. SQ22536 treatment of DMS53 cultures may have 

slightly increased levels of non-glycosylated species in the medium. However changes 

were smaller compared to those observed with GF109203X treatment, and the 

proportional error was larger. For this reason it was concluded that AC, the target of 

SQ22536, might be involved in hCTR signal transduction, but the evidence is much less 

convincing than for the involvement of PKC. 

5.5 Conclusion 

The experiments performed in this Chapter have demonstrated that the levels of CT and 

its related species in DMS53 medium changed significantly with GF109203X treatment, 

and possibly with SQ22536 treatment. This suggests that PKC is involved in the hCTR 

signal transduction pathway, and that AC could be involved.  The relative levels of the 

CT-related species in the lysate were again unchanged by treatment with these 

inhibitors, consistent with the observations in Chapters 2 and 3. This further reinforces 

the tight regulation intracellular CT is under. Treatment of DMS53 cultures with U73122 

generated a large peak that disrupted the analysis of the CT-related species levels, 

leading to experiments with the inhibitor being abandoned. This meant that the effect of 
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PLC inhibition on the levels of CT-related species was not accurately assessed. Therefore, 

the possibility remains that the Ca2+-dependent pathway as a whole may be involved in 

hCTR signal transduction. Treatment with H89 had no significant effect on the levels of 

CT-related species in the medium, suggesting that PKA is not involved in hCTR signal 

transduction. As PKA is downstream of AC, this indicates that the cAMP-dependent 

pathway as a whole is not involved in hCTR signal transduction. cAMP may activate 

other signalling pathways such as the MAPK pathway however,[148] so this observation 

does exclude AC involvement in hCTR signal transduction.  

In the work described in Chapter 2, it was observed that DMS53 cultures grown in larger 

volumes of medium showed decreased CT to CT-G and gCT to gCT-G ratios due to the 

accumulation of CT-G and gCT-G in the medium. In contrast, experiments described in 

Chapter 3 showed DMS53 cultures treated with the hCTR agonist SUNB8155 exhibited 

increased CT to CT-G and gCT to gCT-G ratios in the medium, as a response to putative 

hCTR activation. As it appears that treatment with GF190203X alters PAM activity or 

expression, this observation suggests that the apparent changes in PAM processing 

observed previously were mediated by PKC signalling.  
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Chapter Six 

 Conclusions and Future Directions 

Peptide hormones are essential in physiology and heavily involved in a range of 

pathological conditions, notably neuroendocrine cancers. In particular, CT is used as a 

diagnostic marker for MTC, and drives growth and proliferation of prostate cancer, 

among others. Understanding the oncogenic mechanisms activated by CT and how they 

differ from system to system, and cognately, the biosynthesis of CT and how it can be 

perturbed, is limited by the ability to detect and quantify CT and its biosynthetic 

precursors in vitro. This thesis presents the development of an HPLC-fluorescence 

method to measure CT and its related species in the DMS53 SCLC cell line, and the 

characterisation of mechanisms that regulate the production of these species.  

The development of an HPLC method capable of separating CT from CT-G, CTGK and 

CTGKK in DMS53 cell medium and lysate was described in Chapter 2. The method 

featured on-line concentration, separation of analytes with a two-column system and 

post-separation fluorescent labeling. With this system, CT precursors were detected and 

quantified of the first time, novel glycosylated versions of each species forming a parallel 

biosynthetic pathway were detected and characterised, and the effect of biosynthesis 

inhibitors, time, and medium volume on the regulation of CT species characterised. It 

was demonstrated that DMS53 cells tightly regulated intracellular CT concentration, 

which could not be perturbed through treatment with biosynthesis inhibitors. Moreover, 

the results suggest that the glycosylation pathway might play a role in regulating the 

intracellular CT concentration by removing excess precursors from the system. DMS53 
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cultures incubated in larger volumes of medium showed altered distributions and up-

regulated production of CT-related species, suggesting that the cells sought to maintain 

specific external levels of CT-related species, although these levels were controlled less 

tightly than intracellular levels.  

Understanding the effect of the glycosylation on the functionality of CT-related species is 

the first step in determining its importance. If glycosylation is simply a means to mediate 

export of CT-related species, targeting glycosylation enzymes in tandem with PAM 

inhibitors may upset the homeostasis of intracellular CT.  However, if glycosylation plays 

a role in the oncogenicity of CT, then reducing production of the glycosylated species is 

also desirable. Tagashira and coworkers[199] examined the effect of O-glycosylation on the 

structure of eel CT, based on an interest of improving treatments for osteoporosis. It was 

found that glycosylation at the Thr21 position decreased the α-helicity of the peptide. 

This suggests that glycosylation may change the receptor binding properties of CT-

related species. Future work to investigate the effect of glycosylation of CT would begin 

with the synthesis of gCT and comparing gCT and CT hCTR binding properties. 

The detection of glycosylated CT-related species in DMS53 raises the question of 

whether these species are unique to DMS53, or whether they are present in other cancer 

cell lines or in other tissue types. The generality of these species may also provide 

information regarding the function of the glycosylation. To this end, a preliminary 

attempt to identify any CT-related species produced in the TT cell line was carried out. 

TT cells were first isolated from a MTC biopsy in 1981,[200] and are reported to secrete CT 

and express  hCTR2.[63, 201] Initial investigations began by culturing cells in a similar 

manner to DMS53 and analysing the medium using the HPLC methodology. It was 

found that CT and CT-G could be detected in the medium, with the identity confirmed 

by MS, but that cultures had to reach higher cell numbers and be grown for longer in 

order for detection to be possible. Even then, levels of CT and CT-G were lower in TT 
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medium than in DMS53 culture medium grown under the conditions of the third 

generation in vitro assays. For this reason, method development became focused on the 

detection of CT-related species in the TT lysate. 

The preliminary investigation into the intracellular CT-related species in TT cells was 

undertaken using a modified version of the third generation in vitro assay (outlined in 

experimental section 7.6).  TT cultures were seeded with 20 million cells in a 75 cm2 

flask and incubated for 13 days with medium changes every two days, except for the final 

96 h. Cell lysate was then harvested. Briefly, the cells were lysed by freeze-thawing, 

where the cell pellet was frozen in liquid nitrogen then heated to 100 °C for 7 min to 

denature proteases that might otherwise degrade the CT-related species. The lysate was 

then purified via centrifugal filtration using a 50 kDa cut-off filter. The lysate (1 ml) was 

analysed using CT-M2, with the resulting chromatogram shown in Figure 6.1. 

 

 

Figure 6.1: HPLC chromatogram of TT culture lysate after 13 days of culture growth, analysed using CT-M2. 
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In the TT lysate HPLC chromatogram (Figure 6.1), a large CT peak was observed along 

with a much smaller CT-G peak, with a CT to CT-G ratio of 7.4. These peaks co-eluted 

with the CT and CT-G standards, and MS confirmed the presence of CT and CT-G in TT 

lysate. However, the presence of gCT and gCT-G could not be confirmed with this 

technique. The relative proportions of CT and CT-G are very similar to those observed in 

the lysate of DMS53 cultures, indicating that the preferred intracellular levels of CT-

related species may be the same in both cell lines. Four peaks were detected between 43 

and 51 min, the region in which elution of gCT and gCT-G is observed in DMS53. 

Without standards of the gCT and gCT-G species however, identification of these species 

in TT samples was difficult. 

For this reason, LCMS MRM was selected as the primary analysis tool to identify gCT 

and gCT-G in TT lysate. TT cells were seeded in a 175 cm2 flask and cultured in 50 ml of 

medium until confluent, then incubated for a further 5 days (approx. 200 million cells). 

The new culture procedure was designed to maximise cell number and therefore, the 

levels of gCT and gCT-G levels in the lysate. Lysate was harvested and analysed using 

LCMS MRM (shown in Figure 6.2). LCMS MRM conditions are described in detail in 

experimental section 7.9. 

 

Figure 6.2: LCMS MRM analyses for gCT and gCT-G in TT lysate. 
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In the MRM analysis for gCT-G and gCT in the TT lysate, there was a clear peak at 18 min 

corresponding to the MRM signature of gCT. This indicates that the gCT parent ion in 

the 4+ charge state (1092.65) and two specific daughter ions (70.07 and 115.15) generated 

by fragmentation of the parent ion in the MS were simultaneously detected at the 

elution time equivalent to that of gCT in DMS53.  This is strong evidence that gCT is 

present in TT lysate. The presence of gCT in TT cultures requires the production of gCT-

G, based on the biosynthetic pathway established with DMS53. As gCT-G was not 

observed in the lysate, it was postulated that it might be present in the medium. To 

overcome the lower production of CT-related species in the medium of TT cultures, 

which hindered efforts at detecting gCT and gCT-G, a method to concentrate TT culture 

medium through lyophilisation was developed. This resulted in a 15-fold increase in 

concentration of the TT medium (sample preparation protocol described in detail in 

experimental section 7.9). 

A lyophilised concentrated medium sample was generated from cultures grown under 

the same assay conditions as for the lysate analysis, and was then fractionated using the 

LCMS. From 17 min 30 s until 20 min, 8 second fractions were collected in HPLC vials 

and then reinjected and analysed by MS (sample preparation protocol to detect gCT-G in 

the medium and LCMS MRM conditions are described in detail in experimental section 

7.9). Figure 6.3A shows the structure, exact mass and the molecular mass of gCT-G. In 

Figure 6.3B, the MS spectrum for fraction 10 of the lyophilised medium concentrate is 

presented, which was found to contain 4 charge states corresponding to gCT-G (1474.6 

(+3), 1106.2 (4+), 885.1 (5+) and 632.5 (7+)). Ions corresponding to gCT-G were also 

detected in fractions 11-13. This provides strong evidence that gCT-G is produced by TT 

cells and is found in the medium. 
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Figure 6.3A: Structure and mass characteristics of gCT-G; B: MS spectrum of gCT-G in fractionated TT 

medium. Fractions 10-13 showed evidence of gCT-G, with 4 charge states present in fraction 10 (3+, 4+, 5+, 

7+). 

 

With these preliminary experiments, it has been demonstrated that the HPLC-

fluorescence methodology developed in Chapter 2 can be applied to the detection of CT-

related species in multiple cell lines. The TT lysate chromatogram shows ratios of CT-

related species that are very similar to DMS53 lysate, despite the fact that the levels of 

CT-related species in the medium are very different between the two cell lines. This 

implies that intracellular CT levels are important to CT-producing cell lines in general, 
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and that intracellular levels in TT may be under similar control to those in DMS53. It has 

also been demonstrated that the production gCT and gCT-G is not unique to DMS53, 

also indicating that is not unique to SCLC or lung tissue. In Chapter 2, it was proposed 

that in DMS53 cells, CT precursor flux through the glycosylation pathway allowed excess 

precursor to be produced and selectively secreted when not required. This pathway 

could be diverted to maintain intracellular CT levels when required.  Given the lower 

levels of CT-related species in the TT culture medium relative to the lysate, this 

mechanism may not be operating in TT cultures. Future experiments would begin which 

the development of a stable cell culture protocol, presumably over longer time periods 

than DMS53, to allow for the measurement of CT, CT-G. gCT and gCT-G in the medium 

and lysate. With this in hand, the experiments performed on DMS53 cultures in chapter 

2 could be repeated on TT cultures, such as treatment with PBA and GEMSA, as well as 

varying assay time, and incubating in larger volumes.  

The observation that levels of CT-related species produced by DMS53 cultures changed 

when incubated in larger volumes of medium prompted experiments to determine the 

mechanism of this response. It was hypothesised that hCTR might initiate a cellular 

response to changes in extracellular CT, and mediate increases in CT biosynthesis and 

secretion. In the work described in Chapter 3, it was demonstrated that treatment of 

DMS53 with a specific small molecule hCTR agonist, SUNB8155 (100 μM), increased the 

CT to CT-G and gCT to gCT-G ratios, and the proportion of CT to gCT in the medium. 

SUNB8155 treatment had no significant effect on the relative levels of CT-related species 

in the lysate. This suggested that hCTR was expressed in DMS53, and that activation of 

this receptor selectively increased extracellular CT. In the work described in Chapter 4, 

the transcription and expression of hCTR in DMS53, as well as the identity of the 

isoform, was interrogated using RT-PCR and Western blot analyses. RT-PCR confirmed 

that mRNA corresponding to hCTR2 was transcribed in DMS53 samples. Western blot 
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using an antibody raised against hCTR2 compared DMS53 protein lysate to that of the 

hCTR2-positive DU145 cell line. The blot showed co-migrating immunoresponsive 

bands, indicating hCTR2 was expressed in DMS53.  

Treatment of DMS53 cultures with SUNB8155 demonstrated that hCTR2 activation 

increases CT in the medium, which strongly suggests that an autocrine positive feedback 

loop is active in DMS53. This conclusion could be further interrogated by treating 

cultures with an hCTR antagonist (such as sCT8-32) and SUNB8155 in concert to 

confirm that the effect observed is due to activation of hCTR, rather than off-target 

effects. The possibly that hCTR activation is ligand-dependent, and therefore that 

activation by SUNB8155 may have a different effect on the levels of CT-related species to 

activation by CT, could be probed using an alternative agonist such as sCT, and 

observing whether changes in the levels of CT-related species are different to those 

observed with SUNB8155 treatment. 

There are few examples of peptide hormone receptors behaving in this manner in the 

literature,[172] and none of those identified are in the CT family of peptide hormones. 

With that said, hCTR acts as the base for the RAMP-functionalised AMY receptor, and 

CGRP is generated from a splice variant of CALCA mRNA (the same gene CT is 

transcribed from). This may indicate that AMY and CGRP are also mediated by positive 

feedback loops, given the close relationship with the CT-hCTR signalling axis. Future 

work could involve investigating whether these receptors and their ligands are also 

regulated through positive feedback loops. 

In the work described in Chapter 5, enzymes in two of the canonical signalling pathways 

of hCTR were investigated using inhibitors, in order to determine their involvement in 

the regulation of CT-related species. Two enzymes in each pathway were selected for 

inhibition: AC and PKA in the cAMP-dependent pathway, and PLC and PKC in the Ca2+-
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dependent pathway. It was discovered that PKA inhibition with H89 (1 and 10 M) had 

no effect on the levels CT-related species in the medium, and the PLC inhibitor U73122 

(10 and 40 M) was unsuitable in assay conditions. It was concluded that treatment with 

SQ22536 (100 M) may have had a small effect on CT and CT-G production in the 

medium, either by influencing transcription or by diverting precursors away from the 

glycosylation pathway. Treatment with GF109203X (10 M) increased the levels of CT 

and gCT, presumably by increasing PAM turnover. The relative proportions of CT-

related species in the lysate were not significantly affected by treatment with either 

inhibitor. 

 These experiments suggest that PKC, and possibly AC signalling is involved in 

regulation of CT-related species, and that together these enzymes have influence over 

the flux of CT precursors and PAM expression or activity. These are the same 

mechanisms that appear to be controlled under putative hCTR activation by SUNB8155.  

However, this activity is mainly confined to the CT-related species in the medium, while 

the CT-related species in the lysate remain relatively unchanged. This is consistent with 

the observations made in Chapters 2 and 3, where the levels of the CT-related species in 

the lysate stayed constant despite treatment with biosynthesis inhibitors and an hCTR 

agonist, longer incubation times, and incubation in larger volumes of medium. 

The enzyme inhibitor treatments provided a basis to screen for the association of 

individual signalling enzymes in the regulation of CT-related species, but did not 

conclusively prove their involvement. Experiments investigating the concentration-

dependence of the inhibitors on the levels of CT-related species would confirm the 

observations made. One caveat is that at higher concentrations, the inhibitors would 

lose specificity, so the interpretation of changes to CT-related species at high inhibitor 

concentrations would have to be conservative. Additional experiments to strengthen the 

link between signalling enzymes and the regulation of CT-related species could involve 



Chapter Six: Conclusions and Future Work 127 

 

 

the treatment of DMS53 cultures with alternative inhibitors for each of the enzymes 

tested, or treatment with secondary messengers such as cAMP. More in-depth 

approaches could include G protein α-subunit knockdowns to isolate signalling 

pathways, and partial mRNA silencing of signalling enzymes to mute their effects. These 

experiments are required to ultimately prove the involvement of specific signalling 

enzymes in the regulation of CT-related species. 

The work described in this thesis has demonstrated that CT and its related species are 

carefully regulated in the intracellular and extracellular environment, and has 

interrogated the mechanisms that direct this regulation. The presence of this cellular 

infrastructure suggests that the levels of CT are important to the DMS53 cells, and may 

play some role in the development of the cancer. Experiments involving the treatment of 

DMS53 cultures with biosynthesis and signaling enzyme inhibitors, as well as an hCTR 

agonist have demonstrated that while extracellular levels of CT-related species show 

some response to treatment, intracellular levels are resistant to disruption. It was not 

possible to effectively reduce the production of CT-related species with any of these 

approaches. This suggests new approaches are required to control the production of CT 

and its related species, and perhaps, peptide hormones in general. With these 

conclusions reached, it became of interest to investigate the regulation of another 

hormone implicated in cancer development, in order to compare the regulation with 

that of CT. The first step in this investigation is the development of a method to detect 

and quantify the hormone, first from a standard, and then in vitro.   

For these preliminary detection experiments, OT was selected as the candidate hormone 

because it is physiologically and clinically relevant; it has received much attention for its 

physiological actions in pair bonding, trust and relationships,[202] as well as more 

classical roles in pregnancy and lactation.[203] Unsurprisingly, OT dysregulation has been 

associated with autism and other social disorders.[204] It is also associated with 
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neuroendocrine cancers, but its role is complex, as it has been reported as both a 

positive[40, 205] and negative[206] growth modulator. In a small cell lung cancer cell line, 

DMS79, OT has been shown to act as an autocrine growth factor.[207] OT is similar in 

structure to CT as it has a disulphide-bonded 5 membered ring, and is C-terminally 

amidated  (Figure 6.4). Its biosynthesis is thought to follow a pathway similar to that 

derived for CT, and as antibody detection of OT is more advanced than that of CT, 

immunoassays can distinguish between OT, OT-G, OT-GK and OT-GKR.[208] This has 

allowed biological impact of OT precursors to be assessed, such as observations of an 

increased OT/OT-X ratio in autism patients[209] and the characterisation of the 

cardiomyogenic effect of OT-GKR.[210] With that said, doubts have been raised regarding 

the specificity of antibodies to OT, as inflated concentrations have been reported in 

plasma samples, particularly in unextracted samples.[211, 212] OT is reported to have a half-

life of approximately 5 min,[213] which is shorter than the 10-30 min half-lives reported 

for CT-related peptides[214] and may affect detection. Direct detection of OT and its 

biosynthetic precursors with the HPLC-fluorescence method would verify the generality 

of the approach and provide a tool to confirm conclusions drawn from immunoassays. 

 

Figure 6.4: Amino acid sequence of human OT. A disulphide bridge is formed between Cys1 and Cys5, with 

Gly9 C-terminally amidated. 

 

OT production has been quantified in the SCLC cell line DMS79 medium and lysate, 

with a maximum of 30 pg/ml per 1 x 106 cells after 96 h, and a maximum of 120 pg/ml 

per 1 x 106 cells after 96h, respectively.[215] As DMS79 cells are a suspension cell line, the 

ability to control the ratio between cell number and medium volume is more limited 
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than with adherent cultures such as DMS53. Based on the reported levels of OT in the 

medium, it was not possible to design a culture protocol to produce OT at levels above 

the detection limit of approximately 1 ng/ml. For this reason, assay development focused 

on detection of OT and OT-G in the lysate of DMS79 cultures. As DMS79 cells are 

reported to produce 120 pg/ml of OT per 1 x 106 cells after 96 h in the lysate, a culture of 

50 million cells is expected to produce approximately 6 ng/ml of OT, well above the 

limit of detection.  

 

Figure 6.5: HPLC system for OT detection and quantification. Used with permission from Hideki Onagi. 

 

An HPLC separation method for OT and OT-G in DMS79 lysate was developed. In 

Figure 6.5, the two-column system used to separate OT and OT-G is shown, the same 

system as described in Chapters 2 and 3. Several iterations of separation methodologies 

were designed and tested, and the final method was denoted OT-M3, with the solvent 

system outlined in Table 6.1. Separation occurred from 7 to 70 min, due to an increasing 

acetonitrile gradient (from 15:85 acetonitrile to AccQ.tag Eluent A buffer (100 ml 

concentrate in 1000ml) at 7 min, to 20:80 at 70 min).  

Two DMS79 cultures were grown to a density of approx. 65 million cells over at least 96 

h. Cultures were then lysed. Briefly, the cells were lysed by freeze-thawing, where the cell 

pellet was frozen in liquid nitrogen then heated to 100 °C for 7 min to denature 

proteases that might otherwise degrade the CT-related species. The lysate was then 

purified via centrifugal filtration using a 50 kDa cut-off filter. To minimise the loss of OT 
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and OT-G due to degradation, one sample was treated with P3840 and EDTA (1 mM), 

while the other was used as a control (detailed protocol outlined in experimental section 

7.10). Both samples were analysed using OT-M3 (Figure 6.6) 

Table 6.1: Solvent system for the first generation OT separation method (OT-M3).  

Time 

(min) 

Flow 

(ml/min) 

Water 

(%) 

Acetonitrile 

(%) 

0.1% TFA in 2-

Propanol (%) 

Waters 

AccQ.Tag 

Eluent A (100 ml 

in 1000 ml 

water) (%) 

Gradient 

Curve 

0.00 3.00 0.0 0.0 0.0 100.0 0 

1.00 1.00 0.0 0.0 0.0 100.0 6 

3.00 1.00 0.0 3.0 0.0 97.0 6 

3.50 1.00 0.0 3.0 0.0 97.0 6 

4.00 1.00 0.0 10.0 0.0 90.0 6 

7.00 1.00 0.0 15.0 0.0 85.0 6 

70.00 1.00 0.0 20.0 0.0 80.0 6 
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Figure 6.6: HPLC chromatograms of A: OT standard (0.1 μg/ml, 50 μl injection) in MilliQ, analysed using OT-

M3; B: OT-G standard (0.1 μg/ml, 50 μl injection) in MilliQ, analysed using OT-M3; C: DMS79 culture lysate 

after 24 h incubation, treated with P8340 protease inhibitor cocktail solution (1:20 by volume), and EDTA (1 

mM), analysed using OT-M3; D: DMS79 culture lysate after 24 incubation, analysed using OT-M3. 

 

The experiment was repeated with LCMS MRM analysis of the DMS79 lysate, as a check 

of the observations of the HPLC-fluorescence experiment. For the generation of the 

lysate samples, EDTA treatment was omitted and instead both samples were treated 

with P3840. Additionally, one sample was spiked with OT-d10 to act as an internal 

standard for LCMS detection (detailed protocol outlined in experimental section 7.9). 

LCMS chromatograms are displayed in Figure 6.7. 
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Figure 6.7A: LCMS MRM analysis for OT-G in DMS79 lysate. B: LCMS MRM analysis for OT in DMS79 lysate. 

C: LCMS MRM analysis for OT-d10 spike (50 μg/ml) in DMS79 lysate. 

 

Figure 6.6A and B shows the elution times of OT (33.4 min) and OT-G (28.4 min) 

standards respectively using the OT-M3 separation method. Figure 6.6C shows the 

lysate sample treated with protease inhibitors. Major peaks were observed at 24.6, 30.6 

and 32.4 min, but none of these corresponded to the OT or OT-G elution times. The 

absence of protease inhibitor (Figure 6.6D) led to the appearance of two new peaks at 

20.7 and 23.0 min, suggesting that these may be breakdown products. Again, no peaks 

corresponding to OT or OT-G were observed. In Figure 6.7, the LCMS MRM analyses 

are presented. Figure 6.7C shows the MRM analysis of the OT spike in the lysate, with 

an elution time of 7.54 min. In Figure 6.7B, no corresponding peak above the 

background is observed in OT MRM analysis of the unspiked lysate. This is reflected in 

Figure 6.7A, where no peak above noise is observed for OT-G. 

These experiments demonstrate that OT and OT-G were not present in DMS79 lysate 

above the limit of detection. Based on literature reports of OT quantification in 
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DMS79,[215] OT should have been detectable in the DMS79 lysate given the culture 

conditions used. A second cell line, N38 (a mouse hypothalamus cell line) was also 

investigated using the same methodology. The structure of mouse OT is the same as 

human, and OT expression in N38 had been confirmed through Western blot, but not 

been quantified.[216] However, no evidence of OT or OT-G was observed in the medium 

or lysate using both HPLC-fluorescence detection and LCMS.  

One possibility is that the half-life of OT is too short for the assays used, and that sample 

concentrations decrease below the limit of detection before they can be analysed. 

Another possibly is that OT and OT-G are not present as monomers. A study reporting 

HPLC separation of OT from synthetic impurities for use in pharmaceutical preparations 

reported multiple dimer species stemming from intermolecular disulphide bonds 

forming between cysteine residues.[217] If these species account for the majority of OT in 

vitro, these detection methods would not have observed them. Alternatively, it may be 

that the quantity of OT in DMS79 was overestimated by the immunoassay used to detect 

it due to non-specific recognition. Szeto and coworkers[212] reported that in plasma 

samples, even after HPLC fractionation, multiple immunoreactive peaks were detected 

by EIA and RIA, suggesting OT antibody cross-reactivity confounded quantification. It is 

possible that this may have occurred in the literature characterisation[215] of OT 

production in DMS79, and that the cell line does not produce OT above the limits of 

detection of the HPLC-fluorescence method. 

 

The application of this technique to the detection of other peptide hormones is still a 

priority, and candidate hormones such as CGRP and AM have been identified as 

potential targets. These hormones are of comparable size to CT, are C-terminally 

amidated, have half-lives greater than 10 min[218] and are reportedly overproduced in 
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DMS53 and other SCLC cell lines.[157] Method development for each species needs to be 

undertaken, and then screening DMS53 medium and lysate for these species can follow.  

Many pharmaceutical purifications and assays, as well as general biochemistry 

experiments, rely on the quantification of peptides. An ultra-sensitive analytical method 

would remove the need for pre-separation tagging or the use of hazardous reagents such 

as radioactive labels. Possible applications for the HPLC-fluorescence method described 

in this work include assessing the degradation of therapeutic peptides and characterising 

the fragments, measuring the turnover of substrate peptides in the characterisation of 

enzyme activity, and separating wild type and engineered peptides from biological 

expression sources.  The ability to separate large species with minor differences at such 

low concentrations is very powerful, and the possible applications of this method have 

only begun to be explored. 
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Chapter Seven 

 Experimental 

7.1 General 

The experimental related to the work described in Chapter 2 of this thesis has been 

published as part of the manuscript derived from that work, and is incorporated in this 

thesis at pages 44-70 

Materials and Reagents 

SUNB8155, SQ22536, H89 and GF109203X were obtained from Tocris Bioscience. 

Fluorescamine, tris HCl, SDS, triton X-100, tween 20, bromophenol blue, β-

mercaptoethanol, NaF, deocycholic acid and the P3840 mammalian protease inhibitor 

cocktail were obtained from Sigma Aldrich. NaCl and EDTA were obtained from Univar. 

GelRed™ was obtained from Biotium. CT, CT-G, CT-GK, CT-GKK, OT and OT-G 

standards (99% purity) were obtained from GL Biochem. RNasin was obtained from 

Promega. 4-20% mini-PROTEAN® precast polyacrylamide gels, secondary HRP anti-

rabbit antibody and Clarity™ Western ECL blotting reagents were obtained from BioRad. 

Primers for RT-PCR analysis were obtained from IDT. UltraPure agarose was obtained 

from Invitrogen. AccQ.Tag Eluent A concentrate was obtained from Waters. Primary 

anti-hCTR2 antibody ab103422 obtained from Abcam.  

Kits 

Onestep RT-PCR and RNeasy Mini kits were obtained from QIAGEN. cOmplete™ lysis-M 
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(EDTA free) kit was obtained from Roche. RQ1 DNase kit was obtained from Promega. 

Bradford protein assay and Bio-Rad Trans-Blot® Turbo™ semi-dry transfer kits were 

obtained from BioRad. 

Cell Culture 

DMS53, DMS79, PC3, TT, and DU145 cells were obtained from the American Type 

Culture Collection. N38 cells were obtained from CELLutions Biosystems. DMS53, 

DMS79, PC3, TT and DU145 cells were cultured in GIBCO© RPMI-1640 supplemented 

with 10% fetal bovine serum obtained from Sigma Aldrich, and penicillin-streptomycin 

(55,000 U Penicillin, 55mg Streptomycin) from Invitrogen. N38 cells were cultured in 

Dubecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine 

serum obtained from Sigma Aldrich, and penicillin-streptomycin (55,000 U Penicillin, 

55 mg Streptomycin) from Invitrogen. Cell lines were cultured in 95% humidity under a 

5% CO2/ 95% air atmosphere at 37 °C, in growth medium refreshed every two days 

unless otherwise stated. Cell lines were passaged weekly; cells were washed twice with 

Dubeccos’s Phosphate-Buffered Saline (DPBS) from ThermoFisher Scientific and lifted 

with 0.05% Trypsin-EDTA from Invitrogen. Cells were counted using the BioRad TC20 

automated cell counter and Trypan Blue stain from Invitrogen.  

7.2 HPLC Method 1 for the Detection of CT and its Prohormones 

HPLC separation and quantification of CT and its prohormones (i.e., CT-G, CTGK and 

CTGKK) from DMS53 and TT cell medium and lysate used a Waters Alliance 2695 

separation module and a Waters 600E Pump connected to a two position, six port 

switching valve (Switch 1), a Waters Reagent Manager (Switch 2) containing 

fluorescamine (30 mg/100 ml acetonitrile) and a Waters 2475 Fluorescence Detector 

(Figure 7.1). 
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Figure 7.1: First generation HPLC setup for peptide hormone detection and quantification. 

Injected samples underwent an online solid phase extraction on a reverse phase Oasis® 

HLB 25 µm cartridge column (2.1 × 20 mm) with the switching valve open to waste 

(Switch 1 OFF). After 6 min switch 1 was turned ON allowing separation of CT, CTG, 

CTGK, CTGKK with a C12 Synergi 4u Max-RP column (250 × 4.6 mm) over 50 min. After 

30 min switch 2 was turned ON, allowing fluorescent labelling of the N-terminus of 

substrate and product by reaction with fluorescamine (30 mg fluorescamine in 100 ml 

acetonitrile) in a post-column Waters 1000 RXN coil at 25 °C and detection with a 

Waters 2475 Fluorescence Detector (Ex. 390 nm, Em. 470 nm). The solvent and gradient 

system for the separation is shown in Table 7.1. Data were collected and processed with 

Empower Pro-Empower 2 software using an IBM data station. Between each sample 

injection a cleaning routine was applied (20 min total) using the solvent and gradient 

system in Table 7.2. 

 

 

 

 

 



Chapter Seven: Experimental 139 

 

 

Table 7.1: Solvent and gradient system for Waters 2695 separations module used for separation of CT, CTG, 

CTGK and CTGKK over 50 min. Events: 6 min Switch 1 is ON; 30 min Switch 2 is ON. 

Time 

(min) 

Flow 

(ml/min) 
Water (%) 

Acetonitrile 

(%) 

Waters AccQ.Tag 

Eluent A (25 ml in 1000 

ml water) (%) 

Gradient 

Curve 

0.00 3.00 100.0 0.0 0.0 0 

2.00 3.00 100.0 0.0 0.0 6 

4.00 3.00 0.0 20.0 80.0 6 

5.00 1.20 0.0 20.0 80.0 6 

40.00 1.20 0.0 30.0 70.0 6 
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Table 7.2: Solvent and gradient system for Waters 2695 separations module used for cleaning routine. Events: 

8.70 min Switch 1 is ON; 17.0 min Switch 1 is OFF.  

 Time 

(min) 

Flow 

(ml/min) 

Water 

(%) 

Acetonitrile 

(%) 

0.1% TFA in 2-

Propanol (%) 

Waters 

AccQ.Tag 

Eluent A (25 ml 

in 1000 ml 

water) (%) 

Gradient 

Curve 

0.00 2.00 0.0 0.0 100.0 0.0 0 

4.50 2.00 0.0 0.0 100.0 0.0 6 

5.50 2.00 50.0 50.0 0.0 0.0 6 

8.00 2.00 50.0 50.0 0.0 0.0 6 

8.50 0.30 50.0 50.0 0.0 0.0 6 

8.80 0.30 0.0 50.0 0.0 50.0 6 

9.00 1.20 0.0 50.0 0.0 50.0 6 

12.00 1.20 0.0 10.0 0.0 90.0 6 

17.00 1.20 0.0 10.0 0.0 90.0 6 

18.50 3.00 100.0 0.0 0.0 0.0 6 

20.00 3.00 100.0 0.0 0.0 0.0 6 
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7.3 HPLC Method 2 for the Detection of CT and its Prohormones 

HPLC separation and quantification of CT and its prohormones (i.e., CT-G, CTGK and 

CTGKK) from DMS53 and TT cell medium and lysate used a Waters Alliance 2695 

separation module and a Waters 600E Pump connected to a two position, six port 

switching valve (Switch 1), a Waters Reagent Manager (Switch 2) containing 

fluorescamine (30 mg/100 ml acetonitrile) and a Waters 2475 Fluorescence Detector 

(Figure 7.2). 

 

Figure 7.2: Second generation HPLC setup for peptide hormone detection and quantification. 

 

Injected samples underwent an online solid phase extraction on a reverse phase Oasis® 

HLB 25 µm cartridge column (2.1 × 20 mm) with the switching valve open to waste 

(Switch 1 OFF). After 6 min switch 1 was turned ON allowing separation of CT, CTG, 

CTGK, CTGKK with a C18 YMC ODS-AQ 3μm (4.6 x 100 mm) reverse-phase column 

coupled to a Phenomenex Phenosphere SCX (4.6 x 250 mm) cation-exchange column 

over 80 min. After 10 min switch 2 was turned ON, allowing fluorescent labelling of the 

N-terminus of substrate and product by reaction with fluorescamine (30 mg 

fluorescamine in 100 ml acetonitrile) in a post-column Waters 1000 RXN coil at 25 °C 

and detection with a Waters 2475 Fluorescence Detector (Ex. 390 nm, Em. 470 nm). The 

solvent and gradient system for the separation is shown in Table 7.3. Data were 

collected and processed with Empower Pro-Empower 2 software using an IBM data 

station. Between each sample injection a cleaning routine was applied (52 min total) 
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using the solvent and gradient system in Table 7.4 and Table 7.5, with the second 

method directly following the first. 

Table 7.3: Solvent and gradient system for Waters 2695 separations module used for separation of CT, CTG, 

CTGK and CTGKK over 50 min. Events: 6 min Switch 1 is ON; 10 min Switch 2 is ON. 

Time 

(min) 

Flow 

(ml/min) 
Water (%) 

Acetonitrile 

(%) 

Waters AccQ.Tag 

Eluent A (100 ml in 

1000 ml water) (%) 

Gradient 

Curve 

0.00 3.00 100.0 0.0 0.0 0 

2.00 3.00 100.0 0.0 0.0 6 

4.00 3.00 0.0 20.0 80.0 6 

5.00 1.20 0.0 20.0 80.0 6 

70.00 1.20 0.0 30.0 70.0 6 
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Table 7.4: Solvent and gradient system for Waters 2695 separations module used for cleaning routine. Events: 

8.70 min Switch 1 is ON. 

Time 

(min) 

Flow 

(ml/min) 

Water 

(%) 

Acetonitrile 

(%) 

0.1% TFA in 2-

Propanol (%) 

Waters 

AccQ.Tag 

Eluent A (100 ml 

in 1000 ml 

water) (%) 

Gradient 

Curve 

0.00 2.00 0.0 0.0 100.0 0.0 0 

1.00 2.00 100.0 0.0 0.0 0.0 6 

2.00 2.00 0.0 0.0 100.0 0.0 6 

3.00 2.00 100.0 0.0 0.0 0.0 6 

4.00 2.00 0.0 0.0 100.0 0.0 6 

5.50 2.00 50.0 50.0 0.0 0.0 6 

8.00 2.00 50.0 50.0 0.0 0.0 6 

8.50 0.30 50.0 50.0 0.0 0.0 6 

9.00 1.20 50.0 50.0 0.0 0.0 6 

16.00 1.20 0.0 100.0 0.0 0.0 6 

22.00 1.20 50.0 50.0 0.0 0.0 6 
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27.00 1.20 0.0 100.0 0.0 0.0 6 

32.00 1.20 50.0 50.0 0.0 0.0 6 

33.00 1.20 0.0 0.0 0.0 100.0 6 

42.00 1.20 0.0 0.0 0.0 100.0 6 

 

Table 7.5: Solvent and gradient system for Waters 2695 separations module used for conditioning routine. 

Events: 6.50 min Switch 1 is OFF.  

Time 

(min) 

Flow 

(ml/min) 

Water 

(%) 

Acetonitrile 

(%) 

0.1% TFA in 2-

Propanol 

Waters 

AccQ.Tag 

Eluent A (100 ml 

in 1000 ml 

water) (%) 

Gradient 

Curve 

0.00 0.50 0.0 0.0 0.0 100.0 0 

1.00 1.20 0.0 20.0 0.0 80.0 6 

6.00 1.20 0.0 20.0 0.0 80.0 6 

7.00 0.30 0.0 20.0 0.0 80.0 6 

8.00 2.00 100.0 0.0 0.0 0.0 6 

10.00 2.00 100.0 0.0 0.0 0.0 6 
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7.4 Procedure for First Generation In Vitro Assays 

General Procedure 

DMS53 cells were counted and seeded equally into 75 cm2 flasks at low density in 10 ml 

of growth medium, with two duplicate control cultures and as many additional cultures 

as required for the compounds of interest to be tested in duplicate. The cultures were 

incubated until confluent (approximately 3 days of growth, 40 million cells).  Growth 

medium was then replaced, and the compound of interest was added in 10 μl of DMSO 

to treated cultures.  10 μl of DMSO only was added to the control cultures. All cultures 

were then incubated for 24 h. After incubation, 10 ml of medium from each culture was 

collected in a 15 ml Falcon™ tube. 5 ml of this sample was injected onto the HPLC (5 x 1 

ml aliquots) and analysed using CT-M1. The remainder was frozen at -80 °C for further 

analysis. The cells remaining in the cultures were washed twice with DPBS, and lifted 

with Trypsin-EDTA before being counted. 

Experimental Specifics 

In section 3.2, DMS53 cultures were treated with 100 and 200 μM SUNB8155 in 

successive experiments. Each concentration treatment was compared to duplicate 

controls, and at least two replicates were performed. Treatment had no significant effect 

on cell numbers relative to the control cultures. 

7.5 Procedure for Second Generation In Vitro Assays 

General Procedure 

DMS53 cells were counted and cultures seeded equally into 25 cm2 flasks at low density 

in 5 ml of growth medium, with two duplicate control cultures and as many additional 

cultures as required for the compounds of interest to be tested in duplicate. The cultures 
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were incubated until confluent (approximately 3 days of growth, 10 million cells). 

Growth medium was then replaced, and the compound of interest was added at the 

desired concentration in 10 μl of DMSO to the relevant cultures. 10 μl of DMSO was then 

added to the control cultures. All cultures were then incubated for 24 h. After 

incubation, 5 ml of medium from each culture was collected in a 15 ml Falcon™ tube. The 

medium was then centrifuged at 10,000g for 5 min to pellet any insoluble components. 3 

ml of this sample was injected onto the HPLC (3 x 1 ml aliquots) and analysed using CT-

M2. The remainder was frozen at -80 °C for further analysis. The cells remaining in the 

cultures were washed twice with DPBS, and lifted with Trypsin-EDTA-EDTA before 

being counted. Cell counts averaged 10-15 million cells per flask. 

Experimental Specifics 

In section 3.3, DMS53 cultures were treated with 100 μM SUNB8155. Treatment was 

performed in duplicate and compared to duplicate controls, with two replicates were 

performed. Treatment had no significant effect on cell numbers relative to the control 

cultures. 

In section 5.2, DMS53 cultures were incubated for 24 h before treatment, and an 

additional 24 h with treatment. Cultures were treated with 100 μM SQ22536, 1 μM and 

10 μM H89, 20 μM U73122 and 2μM GF109203X. Each treatment was compared to 

duplicate controls, and two replicates were performed. Treatment had no significant 

effect on cell numbers relative to the control cultures. 

In section 5.3, DMS53 cultures were treated with 100 μM SQ22536 and 40 μM U73122. 5 

μM U73122 in MilliQ was also analysed to determine signal response under assay 

conditions. Each treatment was performed in duplicate and compared to duplicate 

controls, and two replicates were performed. Treatment had no significant effect on cell 

numbers relative to the control cultures. 
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7.6 Procedure for Third Generation In Vitro Assays 

General Procedure 

DMS53 cells were grown to high density in 175 cm2 flasks before being lifted, combined 

and counted. 10 million cells were then seeded into 75 cm 2 flasks with 10ml of growth 

medium. Two duplicate control cultures, and duplicate pairs for each compound of 

interest or compound concentration were established. The cultures were then incubated 

over 72 h, to achieve a cell count of approximately 20-25 million cells. The growth 

medium was refreshed and each of the duplicate pairs was dosed with the compound of 

interest in 10 μl of DMSO.  The control cultures were then dosed with 10 μl of DMSO. All 

cultures were then incubated for 24 h. 

After incubation, 3.5 ml of medium was transferred directly into Amicon® 4 ml Ultra-4 

50 kDa size-exclusion centrifuge filters (Millipore, presoaked for a minimum of 48 h in 

50% fetal bovine serum to reduce non-specific adsorption), and the remainder stored in 

15 ml Falcon™ tubes at -80 °C for further analysis. The 50 kDa filters were then 

centrifuged at 7000g for 15 min to remove insoluble components from solution. 3 ml of 

the filtered medium (3 x 1 ml aliquots) was injected onto the HPLC and analysed using 

the second-generation separation method.  

The cells remaining in each culture were lifted and counted, then pelleted (2500g, 5 

min) in 15 ml Falcon™ tubes before being washed with DPBS and repelleted. The cell 

pellets were resuspended in 400 μl RPMI/10% FCS and frozen in liquid nitrogen. After at 

least 10 min, the frozen tubes were transferred directly to a 100 °C water bath and heated 

for 7 minutes. The rapid freeze-thawing process resulted in the lysis of the cells. The 

lysate was then transferred to Amicon® 0.5 ml Ultra-4 50 kDa centrifuge filters 

(Millipore, presoaked for a minimum of 48 h in 50% fetal bovine serum) and was 

centrifuged at 12000g for 30 min. 200 μl RPMI/10% FCS was used to wash each Falcon™ 



148 Chapter Seven: Experimental 

 

 

tube and was then transferred to the corresponding 50 kDa filter. The filters were then 

centrifuged for 10 min. The washing step was repeated again, and after centrifugation, 

the filtrate was transferred to HPLC vials. A third washing step was performed, and the 

filters centrifuged for 30 min or until the solution had passed through, and the 

remaining filtrate was transferred to the corresponding HPLC vials. The filtered lysate 

(~1 ml) was injected onto the HPLC and analysed using the second-generation separation 

method.  

Experimental Specifics 

In section 2.2, DMS53 cultures were grown for either 24 or 72 h with either 10 ml or 30 

ml of growth medium. Each growth condition was performed in duplicate. Cell numbers 

did not significantly differ between cultures incubated for 24 h in 10 h and 30 ml of 

medium. After 72 h, 10 ml cultures comprised, on average, 30 million cells, while 30 ml 

cultures comprised, on average, 39 million cells. 

In section 3.4, DMS53 cultures were treated with 1 μM, 10 μM and 100 μM SUNB8155. 

Each concentration treatment was performed in duplicate and compared to duplicate 

controls, and three replicates were performed and averaged. Treatment had no 

significant effect on cell numbers relative to the control cultures. 

In section 5.4, DMS53 cultures were treated with 10 μM GF109203X and 100 μM 

SUNB8155. Medium samples were frozen at -80 °C, then for analysis were thawed and 

centrifuged at 10000g, 5 min, 4 °C. Centrifuged medium (3 x 1 ml aliquots) was injected 

onto the HPLC and analysed using CT-M2. Each concentration treatment was performed 

in duplicate and compared to duplicate controls, and three replicates were performed 

and averaged. Treatment had no significant effect on cell numbers relative to the control 

cultures. 
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In Chapter 6, for the detection of gCT and gCT-G, two TT cultures were seeded with 20 

million cells and cultured for 13 days (approx. 100 million cells). Medium was changed 

every two days except for the final 96 h. Lysate was prepared as above and analysed 

using CT-M2. 

7.7 Reverse Transcription PCR Procedures 

mRNA extraction from mammalian cell cultures 

General Procedure 

mRNA was obtained from cell lysates using the QIAGEN RNeasy mini kit following the 

manufacturer’s instructions. Cultures of the cell line of interest were grown until the 

desired confluence had been reached and then lifted with 0.05% trypsin-EDTA and 

counted. The cells were aliquoted into Eppendorf tubes (less than 10 million per sample) 

and were pelleted by centrifugation at 1200g for 5 min, washed with DPBS, and then re-

pelleted. The appropriate volume of RLT buffer (350-600 μl with 1% β-mercaptoethanol 

added) was added to lyse each pellet, which was then mixed thoroughly by pipetting. 

The same volume of 70% ethanol was added to the lysate and mixed thoroughly. Each 

lysate sample (700 μl) was loaded onto separate RNeasy spin columns, which were 

centrifuged at 10000g for 30 s and the run through discarded, before being loaded with 

another 700 μl of lysate and centrifuged again. The columns were then washed with 

subsequent aliquots of 1 x 700 μl of RW1 buffer and 2 x 500 μl of RPE buffer (with 

ethanol added), with the columns spun at 10000g for 30 s and the run through 

discarded after each loading. The columns were placed in clean collection tubes and 

spun for 2 min at 10000g to dry the column. RNase–free water (30 μl) was then added to 

each column, and they were placed in 1.5 ml Eppendorf tubes and centrifuged for 1 min 

to elute the mRNA from the columns. The extracted mRNA samples were then stored at 

-20 °C. 
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Experimental Specifics 

In the first RT-PCR approach (Section 4.2), cultures in 75 cm2 flasks were grown for 

mRNA analysis. A PC3 culture and a DMS53 culture were both grown to confluence and 

lifted with 2 ml of 0.05% trypsin-EDTA. After counting, these were divided into 1 and 2 

million cell aliquots for the PC3 cells, and 1, 2 and 10 million aliquots for the DMS53 cells 

for lysis. RLT buffer and ethanol (600 μl of each) were used to lyse each sample.  

In the second RT-PCR approach (Section 4.3), cultures in 175 cm2 flasks were grown for 

mRNA analysis. A TT culture was incubated until it reached approximately 80% 

confluence while a DMS53 culture was incubated until it reached approximately 50% 

confluence. Both were lifted with 5 ml of 0.05% trypsin-EDTA and counted. A sample of 

10 million cells was aliquoted for each cell line, and these were lysed with 1 ml of RLT 

and 1 ml of 70% ethanol. mRNA was eluted with 45 μl of RNase-free water.  

In the third RT-PCR approach (Section 4.4), two cultures of TT and DMS53 cells were 

grown in 175 cm2 flasks until 80% confluent (approx. 60-80 million cells). The adhered 

cells were washed twice on ice with DPBS before 6 ml of RLT buffer was added to lyse 

the cells in-flask, followed by scrapping. Ethanol (6 ml, 70%) was then added and the 

lysate mixed thoroughly. For the TT cell lysate, two duplicate columns were loaded and 

washed as described in the general procedure, then eluted with 50 μl RNase-free water. 

For the DMS53 lysate, one column was loaded and washed as described above, while one 

was loaded with only one 700 μl aliquot of lysate and then washed as described above. 

Each column was eluted with 2 x 30 μl RNase-free water, and these were not combined. 

The six resulting samples then underwent DNase treatment with the Promega RQ1 

DNase kit. DNase (30 units, 1 u/μl) was added to each sample with 10 μl of reaction 

buffer and incubated for 30 min at 37 °C. The DNase activity was then quenched with 10 

μl STOP solution and incubated at 65 °C for 10 min. RNasin RNase-inhibitor (2 μl) was 
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added to each sample before freezing at -20 °C. 

Before use, these samples underwent an additional purification step, where 350 μl of 

RLT buffer and 250 μl of 100% ethanol were added to each sample, followed by loading 

onto RNeasy spin columns and undergoing the washing process outlined in the general 

procedure, before elution with 30 μl RNase-free water. Samples were then analysed using 

nanodrop. 260:280 ratios were all greater than 1.98, most 260:230 ratios were greater 

1.93 (the second elution of the 2 x 700 μl loaded DMS53 sample was 1.39). mRNA 

quantifications were as follows: DMS53 1 x 700 μl elution 1: 778 ng/μl, DMS53 1 x 700 μl 

elution 2: 189 ng/μl, DMS53 2 x 700 μl elution 1: 1849ng/μl, DMS53 2x 700 μl elution 2: 

256 ng/μl, TT1 2 x 700 μl: 363 ng/μl, TT2 2 x 700 μl: 321 ng/μl.  

 

One step cDNA synthesis and hCTR cDNA Amplification 

General Procedure 

All RT-PCR reactions were undertaken using QIAGEN OneStep RT-PCR kits. For each 

primer pair used in a given analysis, a master mix of the primers along with the required 

deoxynucleotide triphosphates (dNTPs), enzymes and buffers was made up according to 

the number of reactions required, and then aliquoted into PCR tubes along with the 

template. The general composition of this mix is listed in Table 7.6. This composition 

was scaled up according to the number of templates to analysed with a particular primer 

pair, with a new master mix made for each primer pair used. Primer sequences and 

binding regions are listed in Table 7.7. 

Thermocycler conditions were obtained from the OneStep RT-PCR kit protocol and 

adapted based the reports published by Wu and coworkers[175] (Primers P1-6, Table 7.8) 

and by Silvestris and coworkers[173] (Primers F1-4 and R1-4, Table 7.9). After 
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amplification was complete, samples were stored at -20 °C. 

Amplification for sequencing was undertaken with the Taq polymerase protocol (Table 

7.10 and Table 7.11), but using only one primer of the pair used in the amplification of 

the sample (i.e. primer A but not B added to a sample transcribing the AB amplicon, and 

vice versa for the reverse reaction). Sequencing performed using the Sanger method with 

with a 3730xl DNA Analyzer from Applied Biosystems.  

Table 7.6: General composition of RT-PCR master mix. 

PCR Reaction Component Vol. Required per Reaction (μl) 

RNase-Free Water 

24.5  

(+ 5 μl (10% total vol.) to account for loss) 

5x PCR Buffer 10 

Primer A (10 μM) 3 

Primer B (10 μM) 3 

dNTPs 10 mM (dATP, dCTP, dGTP, dTTP) 2 

Enzyme Mix (reverse transcriptases + DNA 

polymerase) 
2 

RNasin 0.5 

Template 5 (if less, made up with RNAse-free water) 
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Table 7.7: Primers used for RT-PCR, Taq PCR and PCR for sequencing. 

Primer 

(Direction) 
Length Sequence 

hCTR transcript variant 1 

(NM_001164737.1) binding 

region 

P1 (F)
[175]

 20 CAATCGAACCTGGTCCAACT 726-745 

P2 (R)
[175]

 20 CCTCATGGGTTTCCCTCATT 1399-1380 

P3 (F)
[175]

 20 TGGGAATCCAGTTTGTCGTC 1457-1476 

P4 (R)
[175]

 20 AAGGGATGATCTCAGCACTC 1795-1776 

P5 (F) 20 CCAACAATAGAGCCCAAGCC 448-467 

P6 (R) 20 AGGTCTCCAGGGAAAGACGA 1491-1472 

F1 (F)
[176]

 23 CCAGTGAGAAGTATGAGAGAGTG  

Binds to alternative sequence 

(NM_001742.3) 

 21-44 

F2 (F)
[176]

 22 GTATTGTCCTATCAGTTCTGCC 619-640 

F3 (F)
[176]

 21 ACTGCTGGCTGAGTGTGGAAA 1265-1285 

F4 (F)
[176]

 21 TTGCTTCTATTGAGCTGTGCC 212-232 

R1 (R)
[176]

 21 ATGTTCTTGTGCAGGGTTACC 962-942 
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R2 (R)
[176]

 20 GAG AAG GCC AGG GAA AGG AA  No binding against any hCTR 

transcript in ReqSeq database. 

R3 (R)
[176]

 21 GAAGCAGTAGATGGTCGCA C(A?)C 

C should be A based on binding. 

1581-1561 

R4 (R)
[176]

 24 ACATTCAAGCAGATGACTCTTGCT 1831-1808 

 

Table 7.8: Thermocycler conditions for RT-PCR with primers P1-6. Adapted from Wu.
[175]

 

Temperature (°C) Duration Purpose 

50 30 min Reverse transcription 

95 15 min Initial PCR activation 

94 45 s 

3 step cycling: 

Denaturation 

50 45 s Annealing 

72 1 min 

Extension 

40 cycles 

72 10 min Final extension 

Final ∞ Stasis 
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Table 7.9: Thermocycler conditions for RT-PCR with primers F1-4 and R1-4. Adapted from Silvestris.
[176]

  

Temperature (°C) Duration Purpose 

50 30 min Reverse transcription 

95 15 min Initial PCR activation 

94 45 s 

3 step cycling: 

Denaturation 

60 60 s Annealing 

72 90 s 

Extension 

35 cycles 

72 10 min Final extension 

Final ∞ Stasis 

 

Experimental Specifics 

In the first RT-PCR approach  (Section 4.2), DMS53 and PC3 cDNA was amplified with 

two primer pairs, P12 and P34. Since three concentrations of DMS53 mRNA (from 1, 2 

and 10 million cells, 2 and 10 million samples in duplicate) and two of PC3 mRNA (from 1 

and 2 million cells) were obtained, 16 RT-PCR reactions were run (including controls) 

following the general procedure above, except that 10 μl of template was used rather 

than 5 μl. No RNasin was used. These samples were run on an agarose gel to determine 

which conditions produced the best amplification. However, band intensity was low so 

an additional Taq PCR reaction was undertaken with each RT-PCR product. Master mix 
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composition is outlined in Table 7.10, and thermocycler conditions are outlined in 

Table 7.11. These samples were rerun on an agarose gel, and it was determined that 

mRNA from the DMS53 and PC3 2 million cell samples was the most effective. These 

samples were rerun in isolation. The agarose gel composition was 2% agarose, with 1.5 μl 

of 10000x GelRed™ stain in 60 ml total volume. Samples were loaded in a solution 

comprising 10 μl of PCR product, 6 μl of RNase-free water and 4 μl Bromophenol Blue 

solution. A 500bp ladder (5 μl) was loaded, and the gel was run at 200 V for approx. 20 

min (Figure 4.3). 

Table 7.10: Master mix composition for Taq PCR reaction. 

PCR Reaction Component Vol. Required per Reaction (μl) 

RNase-Free Water 

36.5 

(+ 5μl (10% total vol.) to account for loss) 

10x Taq Buffer 5 

Primer A (10 μM) 1 

Primer B (10 μM) 1 

dNTPs 10 mM (dATP, dCTP, dGTP, dTTP) 1 

Taq polymerase 0.5 

Template 5 
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Table 7.11: Thermocycler conditions for secondary Taq PCR and  for sequencing. 

Temperature (°C) Duration Purpose 

94 2 min Initial PCR activation 

50 30 sec 

3 step cycling: 

Denaturation 

72 2 min Annealing 

94 10 sec 

Extension 

40 cycles 

50 2 min Final annealing 

72 5 min Final extension 

4 ∞ Stasis 

 

In the second RT-PCR approach (Section 4.3), DMS53 and TT cDNA was amplified with 

four primer pairs, P12, P56, P16 and P52. Primers P5 and P6 were designed using the 

NCBI Primer-BLAST tool, with Tm of 58.8 °C and 59.8 °C, GC% of 55 and 55, self-

complementarities of 2 and 4, and self-3′ complementarities of 1 and 0. Twelve PCR 

reactions were performed in total. The master mix solution comprised 10 μl of Q-

solution (provided in OneStep RT-PCR kit to improve amplification of GC-rich regions) 

and 10 μl (+5 μl to account for loss) of water, allowing 10 μl of template to be used. No 

RNasin was used. The annealing and extension steps were altered, with annealing 

occurring at 52 °C for 45 s, and extension occurring at 72 °C for 1 min. The agarose gel 
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composition was 2% agarose, with 1.5 μl of 10000x GelRed™ stain in 60 ml total volume. 

Samples were loaded in a solution comprising 5 μl of PCR product, 3 μl of RNase-free 

water and 2 μl Bromophenol Blue solution. A 500bp ladder (5 μl) was loaded, and the gel 

was run at 200 V for approx. 20 min (Figure 4.4). 

In the third RT-PCR approach (Section 4.4), DMS53 and TT mRNA samples were 

amplified. DMS53 2 x 700 μl elution one and TT1 2 x 700 μl samples were used. These 

samples were amplified with primer pairs F4R3 and F3R3, resulting in a total of 6 PCR 

reactions (including controls). Based on nanodrop analysis, 1.5 μg mRNA was aliquoted 

for each sample and made up to 5 μl for use as the template. The agarose gel 

composition was 2% agarose, with 4 μl of 10000x GelRed™ stain in 60 ml total volume. 

Samples were loaded in a solution comprising 16 μl of PCR product and 4 μl 

bromophenol blue solution. A 1000bp ladder (3 μl) was loaded, and the gel was run at 

100 V for approx. 1 ½ h (Figure 4.5). 

 

7.8 Western Blot Procedures 

Cell Lysis and Protein Quantification Procedures 

General Procedure 

RIPA buffer was prepared from the components listed in Table 7.12. Flasks containing 

the cell lines of interest were placed on ice, the medium aspirated and the cells washed 

twice with DPBS followed by aspiration. RIPA buffer (10 ml in 175 cm2 flasks, 5 ml in 75 

cm2 flasks) was added each flasks, which were then rocked for 2 min and scrapped. The 

lysate was transferred to 15 ml Falcon™ tubes and centrifuged at 750g for 10 min. The 

supernatant was removed and aliquoted into 1.5ml Eppendorf tubes, then frozen at -20 

°C. 
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Protein quantification was undertaken using the Bio-Rad Bradford protein assay kit. Cell 

lysate was aliquoted into a 96 well plate alongside known concentrations of bovine 

serum albumin (BSA) ranging from 0.2 mg/ml to 2 mg/ml as per the manufacturer’s 

instructions. The colourmetric reagents provided in the kit were then added and the 

relative absorbance intensities for each well were recorded using a plate reader. The 

absorbance of the BSA samples was plotted and a linear relationship between 

concentration and absorbance derived. Absorbance measurements from cell lysate 

samples could then be used to determine protein concentration based on this 

relationship. 

Table 7.12: Components of RIPA buffer. 

Component Volume (ml) 

MilliQ water 85.6 

2 M Tris.HCl solution 2.5 

5 M NaCl solution 2 

0.54 M EDTA solution 0.4 

10% SDS (v/v) solution 1 

20% Deocycholic acid (w/v) solution 2.5 

 1M NaF solution 5 

Triton x100 1 

P8340 protease inhibitor cocktail 0.1 per 10 ml of complete buffer 
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Experimental Specifics 

In Western blot experiment 1 (Section 4.5), a 175 cm2 flask of DMS53 cells was cultured 

to confluence and lysed as described in the general procedure. The protein 

concentration was found to be 1.5 μg/μl. 

In Western blot experiment 2 (Section 4.6), DMS53 cultures were grown in 75 cm2 flasks. 

Growth was controlled by seeding flasks with 10 million cells and culturing for 3 days 

before lysing. Lysis was carried out as described in the general procedure. In addition, 

PC3 and DU145 cultures in 75 cm2 flasks were grown and lysed using the same method. 

The protein concentrations found are as follows: DMS53: 0.65 μg/μl, PC3: 0.82 μg/μl, 

DU145: 0.98 μg/μl. 

Western Blot Procedures 

General Procedure 

A volume of cell lysate corresponding to the desired total protein concentration was 

transferred into an Eppendorf tube for each sample, along with 6x SDS-PAGE loading 

buffer containing β-mercaptoethanol, and was made up to 24 μl with milliQ water. The 

samples were heated at 95 °C for 10 min. Each sample (24 μl) was loaded onto a 4-20% 

mini-PROTEAN® 10 well precast polyacrylamide gel assembled in a Bio-Rad mini-

PROTEAN 3 assembly with running buffer. PageRuler™ prestained protein ladder (15-180 

kDA, 10 μl) was loaded. The gel was then run at 100 V for approximately 2 hours or until 

the 70 kDa marker was in the middle of the gel. The gel was then removed from the 

cassette and transferred using the Bio-Rad Trans-Blot® Turbo™ semi-dry transfer kit onto 

a PVDF membrane, according to the manufacturers instructions (Mixed MW setting; 2.5 

A constant, 7 min). 

The PVDF membrane was blocked with 5% (w/v) skim milk powder in TBST (Tris 
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buffered saline – Tween 20, comprising 50 mM Tris, 150 mM NaCl, 0.05% Tween 20) 

buffer for an hour. The specific hCTR2 rabbit polyclonal antibody ab103422 from Abcam 

(15 μg) was added to 3 ml of 5% (w/v) skim milk powder in TBST in a 50 ml Falcon™ 

tube, and the PVDF membrane was placed in the tube and incubated with rotation 

overnight at 4 °C. The membrane was then washed three times with TBST for 5 min 

while rocking. The membrane was then incubated with secondary antibody (rabbit with 

horseradish peroxidase, 1:2000 or 1.5 μg) in 3 ml 5% (w/v) skim milk powder in TBST for 

an hour. The membrane was again washed three times with TBST for 5 min while 

rocking. Finally, Bio-Rad Clarity™ Western ECL blotting reagents (50:50 reagents A and 

B, 1 ml) pipetted onto the membrane, and the chemiluminescence was measured using 

the Chemidoc imager from Bio-Rad. 

Experimental Specifics 

In Western blot experiment 1 (Section 4.5), three different total protein concentration 

samples were loaded onto the gel; 15 μg, 23 μg and 30 μg. 

In Western blot experiment 2 (Section 4.6) one sample of DMS53 lysate, one sample of 

PC3 lysate, and one sample of DU145 lysate were loaded onto the gel in volumes 

corresponding to 20 μg. The loading solution volume was doubled to 48 μl and the 

entirety loaded, to account for lower total protein concentration in the lysate. After 

primary antibody incubation, three washes were undertaken with 5% (w/v) skim milk 

powder in TBST instead of TBST. 

7.9 LCMS Methodology for the Detection of CT and OT species 

Detection 

LCMS separation and detection of CT and its related species, as well as OT and its 

precursor from cell lysate used a Waters Alliance 2695 separation module connected to a 
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Waters Flow Splitter, a Waters TQD Mass Detector (ESI) and a Waters Fraction 

Collector. For separation of CT species, injected samples underwent separation with a 

Waters Symmetry C8 (4.6 x 150 mm) reverse phase column. The solvent and gradient 

system is shown in Table 7.13. For separation of OT species, injected samples underwent 

separation with a Synergi 4u MAX-RP 80A (2 x 250 mm) reverse phase column. The 

solvent and gradient system is shown in Table 7.14. For analysis, the flow splitter was set 

to a single output and analytes were directed to the TQD Mass Detector for MS or MRM 

analysis. The parameters for MRM detection of CT and OT species including parent and 

daughter ions, cone voltage and collision energy are listed in Table 7.15. For 

fractionation, the flow splitter was set to dual output and analytes were directed to the 

Waters Fraction Collector and TQD Mass Detector in a 15:1 ratio. Fractions of relevant 

chromatogram regions were then reinjected onto the LCMS for analysis. 

 

Figure 7.3: LCMS system used in the separation and detection of peptide hormones and their related species. 
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Table 7.13: LCMS solvent system used for separating CT species. 

Time 

(min) 
Flow (ml/min) 

Water + 0.1% 

Formic Acid (%) 

Acetonitrile + 0.1% 

Formic Acid (%) 
Gradient Curve 

0.00 0.30 95.0 5.0 1 

1.00 0.30 95.0 5.0 1 

10.00 0.30 70.0 30.0 6 

24.00 0.30 70.0 30.0 6 

25.00 0.30 95.0 5.0 6 

 

Table 7.14: LCMS solvent system used for separating OT species. 

Time 

(min) 
Flow (ml/min) 

Water + 0.1% 

Formic Acid (%) 

Acetonitrile + 0.1% 

Formic Acid (%) 
Gradient Curve 

0.00 0.30 95.0 5.0 1 

1.00 0.30 95.0 5.0 1 

5.00 0.30 60.0 40.0 6 

9.00 0.30 60.0 40.0 6 

10.00 0.30 95.0 5.0 6 
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Table 7.15: MRM conditions for the detection of CT and OT species using LCMS. 

Compound  Parent (m/z) Daughter (m/z) Cone (V) Collision (V) 

Calcitonin 1140.09 70.07 34 50 

 1140.09 115.15 34 46 

 1140.09 1102.16 34 24 

Calcitonin-Glycine 1159.47 70.07 42 60 

 1159.47 173.15 42 44 

 1159.47 1102.16 42 14 

Glycosylated 

Calcitonin 
1092.65 70.07 34 50 

 1092.65 115.15 34 46 

Glycosylated 

Calcitonin- Glycine 
1106.0 70.07 42 60 

 1106.0 173.15 42 44 

Oxytocin 1007.40 86.11 52 76 

 1007.40 136.06 52 66 

 1007.40 285.18 52 48 

 1007.40 323.06 52 66 

Oxytocin-Glycine 1048.34 70.07 84 80 



Chapter Seven: Experimental 165 

 

 

Oxytocin-Glycine 1048.34 86.11 84 80 

Oxytocin-Glycine 1048.34 86.51 84 58 

 

Sample Preparation and Analysis 

For the detection of gCT and gCT-G from TT lysate, TT cells were seeded in a 175 cm2 

flask and cultured until confluent, then incubated for a further 5 days (approx. 200 

million cells). Cultures were lysed as outlined in experimental section 7.6, and analysed 

by LCMS. 

For the detection of gCT and gCT-G in TT medium, concentrated TT medium samples 

were prepared for fractionation studies by lyophilisation. The medium was harvested 

from cultures and frozen, then 15 ml was thawed and filtered as outlined in section 7.6. 

The filtered medium was frozen in liquid nitrogen in a 50 ml Falcon™ tube, lyophilised 

overnight at  -20 °C, 160 mBar and reconstituted in 1 ml of MilliQ. This was centrifuged 

at 10000g (5 min, 4 °C) and the supernatant transferred to an HPLC vial for LCMS 

analysis. The fraction collector was set to collect fractions from 17 min 30 sec to 20 min, 

with each fraction accounting for 8 s of elution. These fractions were reinjected onto the 

LCMS for analysis.  

For detection of OT, OT-d10 and OT-G in DMS79 lysate, cells were cultured in a 175 cm2 

flask in 50 ml of RPMI for at least 96 h until large clumps of suspended cells were 

present (approx. 60-70 million cells). Cells were lifted and counted, then pelleted 

(2500g, 5 min) in a 15 ml Falcon™ tube before being washed with DPBS and repelleted. 

The cell pellet was resuspended in 400 μl RPMI/10% FCS and frozen in liquid nitrogen. 

After at least 10 min, the frozen tube was transferred directly to a 100 °C water bath and 
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heated for 7 minutes. The rapid freeze-thawing process resulted in the lysis of the cells. 

The lysate was then transferred to an Amicon® 0.5 ml Ultra-4 50 kDa centrifuge filter 

(Millipore, presoaked for a minimum of 48 h in 50% fetal bovine serum) and was 

centrifuged at 12000g for 30 min. 200 μl RPMI/10% FCS was used to wash the Falcon™ 

tube and was then transferred to the corresponding 50 kDa filter. The filter and contents 

were then centrifuged for 10 min. The washing step was repeated again, and after 

centrifugation, the filtrate was transferred to HPLC vials. A third washing step was 

performed, and the filter centrifuged for 30 min or until the solution had passed 

through, and the remaining filtrate was transferred to the corresponding HPLC vial (1 

ml). OT-d10 (100 μl, 0.5 ng/ml) was spiked into one lysate sample while the other acted 

as a control. 
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7.10  HPLC Method for Detection OT and OT-G (OT-M3) 

HPLC separation and quantification of OT from N38 cell medium and lysate used the 

same HPLC system as outlined in section 7.3 (Figure 7.2). The solvent and gradient 

system for the separation is shown in Table 7.16. Data were collected and processed with 

Empower Pro-Empower 2 software using an IBM data station. Between each sample 

injection a cleaning routine was applied (52 min total) using the solvent and gradient 

system in Table 7.4 and Table 7.5, with the second method directly following the first. 

Table 7.16: Solvent system for the third generation OT separation method. 

Time 

(min) 

Flow 

(ml/min) 

Water 

(%) 

Acetonitrile 

(%) 

0.1% TFA in 2-

Propanol (%) 

Waters 

AccQ.Tag 

Eluent A (100 ml 

in 1000 ml 

water) (%) 

Gradient 

Curve 

0.00 3.00 0.0 0.0 0.0 100.0 0 

1.00 1.00 0.0 0.0 0.0 100.0 6 

3.00 1.00 0.0 3.0 0.0 97.0 6 

3.50 1.00 0.0 3.0 0.0 97.0 6 

4.00 1.00 0.0 10.0 0.0 90.0 6 

7.00 1.00 0.0 15.0 0.0 85.0 6 

70.00 1.00 0.0 20.0 0.0 80.0 6 
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Sample Preparation 

For DMS79 lysate preparation, cells were cultured in a 175 cm2 flask in 50 ml of RPMI for 

at least 96 h until large clumps of suspended cells were present (approx. 60-70 million 

cells). Cells were lifted and counted, then pelleted (2500g, 5 min) in a Falcon™ tube 

before being washed with DPBS and repelleted. P3840 mammalian protease inhibitor 

solution (20 μl) was added to the pellet.  The cell pellet was resuspended in 400 μl 

RPMI/10% FCS and frozen in liquid nitrogen. After at least 10 min, the frozen tube was 

transferred directly to a 100 °C water bath and heated for 7 minutes. The rapid freeze-

thawing process resulted in the lysis of the cells. The lysate was then transferred to an 

Amicon® 0.5 ml Ultra-4 50 kDa centrifuge filter (Millipore, presoaked for a minimum of 

48 h in 50% fetal bovine serum) and was centrifuged at 12000g for 30 min. RPMI/10% 

FCS (200 μl) was used to wash the Falcon™ tube and was then transferred to the 

corresponding 50 kDa filter. The filter and contents were then centrifuged for 10 min. 

The washing step was repeated again, and after centrifugation, the filtrate was 

transferred to HPLC vials. A third washing step was performed, and the filter centrifuged 

for 30 min or until the solution had passed through, and the remaining filtrate  (1 ml) 

was transferred to the corresponding HPLC vial for analysis. 
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 Statistical Analyses 

A1.1 Statistical Analysis of Data Presented in Section 3.4. 

To further interrogate the effect of SUNB8155 treatment on the relative levels of CT-

related species in DMS53 lysate and medium, additional data analysis was performed. As 

described in Equation A1.1, in a given treatment condition the relative proportion of 

each CT-related species was determined by comparing the peak area of the species of 

interest to the total peak area of the four species. Each relative proportion was then 

normalised that of the control replicate. The relative proportions in each treatment 

replicate were then averaged and compared to the control cultures using a  two-sided 

Welch’s unequal variances t-test. The normalised relative proportions are presented in 

Table A1.1 and the associated p-values presented in Table A1.2. This data indicates that 

treatment of DMS53 cultures with 100 µM SUNB8155 significantly increases CT 

(p<0.05), and amidated species in general (p<0.01) in the medium, along with minor 

decreases in glycosylated species in the lysate. Lower concentrations had little significant 

effect on CT-related species in the medium or lysate. These observations are consistent 

with the conclusions drawn in Section 3.4.   
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Equation A1.1: Normalised relative proportions of CT-related species; where x is the HPLC peak area of 

interest, x′ is the normalised proportion, Pt is the peak area of the given peak in the treated culture and Pc is 

the peak area of the given peak in the control chromatogram. 

 

Table A1.1: Summary of average proportional changes of the CT-related species determined by HPLC peak 

area, normalised to the replicate control, in response to SUNB8155 treatment at concentrations of 1, 10 and 100 

μM. Data are reported as mean ± standard deviation (SD), and are based on n=3 biological replicates for each 

condition, with two technical replicates performed. Significance was determined by comparing normalised 

proportion averages obtained from treated cultures with those obtained from control cultures using an 

unpaired, two-sided Welch’s t-test. A p-value of <0.05 was considered to be significant. * = p<0.05, ** = 

p<0.01 
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Table A1.2: P-values corresponding to treatment data presented in Table A1.1. Normalised proportion averages 

obtained from treated cultures were compared with those obtained from control cultures using an unpaired, 

two-sided Welch’s t-test. A p-value of <0.05 was considered to be significant (underlined). 

 

 

A1.2 Statistical Analysis of Data Presented in Section 5.4. 

The data concerning the effect of inhibitors SQ22536 and GF190203X on CT-related 

species in DMS53 medium and lysate presented in Section 5.4 were subjected to the 

same statistical analysis as described above for Section 3.4. The normalised relative 

proportions derived from this analysis are presented in Table A1.3, with associated p-

values presented in Table A1.4. This analysis indicates that treatment with GF109203X 

has a statistically significant effect on the levels of CT-related species in the medium, 

while the effect of SQ22536 on CT-related species in the medium and lysate is not 

evident. Only minor changes are observed to the relative proportions of species in the 

lysate with GF109203X treatment. These observations are consistent with the 

conclusions drawn in Section 5.4. 
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Table A1.3: Summary of average proportional changes of the CT-related species as determined by HPLC peak 

area, normalised to the replicate control, in response to SQ22536 (100 μM) and GF109203X (40 μM) 

treatment. Data are reported as mean ± standard deviation (SD), and are based on n=3 biological replicates 

for each condition, with two technical replicates performed. Significance was determined by comparing 

normalised proportion averages obtained from treated cultures with those obtained from control cultures 

using an unpaired, two-sided Welch’s t-test. A p-value of <0.05 was considered to be significant. * = p<0.05, 

** = p<0.01. 

 

 

Table A1.4: P-values corresponding to treatment data presented in Table A1.3. Normalised proportion 

averages obtained from treated cultures were compared with those obtained from control cultures using an 

unpaired, two-sided Welch’s t-test. A p-value of <0.05 was considered to be significant (underlined).

 

 


