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ABSTRACT

Numerous molecules with large hyperpolarisabilities are now known. 
Yet prediction of the bulk, non-linear susceptibilities (x(2)) for their 
molecular crystals is not straightforward. This is because of the need to 
accurately know:
• the in-crystal molecular polarisability (and hyperpolarisability) and
• the local-field factors applicable to the particular crystal lattice.
Both of these quantities affect the other and special methods must be 
used in their determination.

This thesis reports on such x(2) 'construction' in the interesting series of 
charge-transfer addition compounds, Rl3*3Ss, where R = CH, As, Sb. 
An unresolved question concerning the erratic anisotropy of the %(2) 
tensor coefficient across this series appears to have been at least partly 
solved through comparison of these predicted %(2) with the 
experimentally determined coefficients.

In the course of this work, hyperpolarisabilities of the free triiodide 
molecules have been calculated -including ß tensors for ASI3 and Sbl3 
which have been predicted for the first time. The ab initio computations 
incorporated consideration of electron correlation via the MP2 
perturbation-theory approach which represents an improvement over 
earlier ß calculations for CHI3.

Second-order NLO susceptibility measurements were performed for 
CHl3*3S8 and Asl3*3Ss crystals using the second-harmonic Maker- 
Fringe Technique. An electro-optic coefficient was also determined for 
the Asl3*3S8 crystal.

Estimation of local electric fields involved calculation of Lorentz-factor 
tensors and local-field factor tensors for the adduct crystals. This 
approach gives a more realistic description of the local-field at a 
molecular site than the anisotropic Lorentz approximation. A complete 
specification of the hetero-molecular lattice is important for obtaining 
representative local-field-factor tensors.



By doing this, one may incorporate hyperpolarisabilities from both 
molecule types into the NLO-susceptibility calculation. This requires 
assumptions about each polarisability of the different molecules as they 
exist in the adduct crystal. This procedure for calculating %(2) for a 

hetero-molecular crystal had not previously been performed.

Contributions to %(2) from the octa-sulfur molecule are important in some 

of these complexes and this seems to be correlated with the extent of Ss 
ring distortion in the complex. Electronic absorption also influences the 
size of %(2) and can confuse the %(2) anisotropy in these rather 

birefringent crystals. These two factors are primarily responsible for the 
%(2) anisotropy differences in the Rl3*3Ss series. However, this could not 

have been deduced without using the extended local-field description.
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CHAPTER ONE

Physical characteristics of condensed molecular media originate 
ultimately from properties of the molecules themselves. Thus, it is the 
response of the molecule to incident light fields which determines the 
bulk optical properties, for example, one notes that more polarisable 
compounds have greater refractive indices in condensed phases. Yet it 
is also the manner in which molecules aggregate which helps define a 
macroscopic optical property. This is, in turn, determined by the 
physico-chemical properties of the molecule.

In the domain of Nonlinear Optical (NLO) response of molecular 
materials, it is also true that bulk NLO properties are determined by the 
properties and behaviour of the molecules from which they are 
composed. The relationship between microscopic and macroscopic 
NLO response is of fundamental interest and is not necessarily 
straightforward [1,30-36,39]. A major theme in this thesis is the 
macroscopic«-»microscopic relationship between second-order 
nonlinear optical response of a certain group of crystals and that of their 
constituent molecules.



Chapter One: Introduction

Introduction

I .  NONLINEAR OPTICS IN GENERAL

Electronic charge distributions in molecules are distorted by applied electric fields. 

In the low field limit, the resulting polarisation scales linearly with the applied field 

strength. Thus, linear optical properties arise from irradiation with ambient 

electromagnetic radiation of optical frequency. Larger applied field strengths may 

be beyond this range of linear response. The domain of Nonlinear Optics refers 

to the situation in which incident light intensity provides a strong electric field such 

that the polarisation of the molecule is beyond the linear response regime.

When a molecule is polarised, its dipole moment, p if can be described by an 

expansion in powers of the electric field, F, acting on it1:

Mi -  M/0) + a ijFj + h J A  + 7 ijklFjFk.Fl + ••••

where ^ |0) is the permanent dipole moment in the absence of any polarising field 

and QLij is the polarisability tensor accounting for the linear response. The 

tensors, and yj ju  are, respectively, the second-order and third-order 

hyperpolarisabilities. The indices refer to cartesian coordinates of the molecule 

and the convention of summation over repeated indices is assumed.

The analogous expression describing macroscopic polarisation in any medium 

(whether molecular or ionic) including linear and nonlinear response is:

Fi -  X̂ ijFj + XukFjF k + X?jklFjFkFl +... .
(2)

where P7 is the polarisation vector and a term for a permanent macroscopic 

polarisation is omitted. The %(n) coefficients are the nth-order susceptib ility  

tensors. The indices in this case correspond to the chosen axis system for the 

macroscopic sample (crystal axes, for example).

When the electric fields are time-varying, the polarisation also becomes a function 

of time. A nonlinearly oscillating polarisation can be included in a wave equation 

derived from the Maxwell Equations to describe the propagation of an 

electromagnetic wave arising from this nonlinear polarisation. This is illustrated in 

the next Chapter. Bulk nonlinear polarisation can manifest as numerous

1 See, for example, Ref [1] or any one of: G.D. Stucky efaf, D.J. Williams, P.N. Prasad or
J. W. Perry in [3bj.
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Chapter One: Introduction

interesting and useful phenomena; Harmonic Generation, Frequency Mixing and 

Intensity Dependent Refractive Index are just a few examples.

A symmetry requirement exists: for a medium possessing a centre of inversion, 

the second-order susceptibility (quadratic in F) must be zero (i.e. x (2)*  0). This is 

not the case for third order NLO response and all materials have a non-zero x(3)-

The molecules of interest in this study are iodoform and the triiodides of arsenic 

and antimony. These three compounds form crystalline complexes with 

molecules of sulfur, S8. The composition of these complexes is Rl3*3Sg. The 

three complexes are the materials of interest to this study.

This investigation falls into two topical areas within the domain of NLO properties 

of molecular materials. These are:

•  the study of NLO phenomena in "addition-complex" type crystalline materials 

and in particular, in those formed between non-Tt-electron molecules

• the investigation of second-order molecular NLO response in structures with 

'nontraditional' architectures. In most cases, the required molecular 

noncentrosymmetry is present in 'dipolar' asymmetry2 and it is along the 

dipole moment axis that the strongest second-order NLO polarisation occurs. 

Symmetry groups also exist which are noncentrosymmetric yet based on 

elements of three-fold symmetry. These are called octupolar classes. 

'Quadratic' NLO response has been shown [6] from molecules possessing 

such structural elements but this domain is still relatively little-studied.

Both areas are of interest since the existence of new classes of NLO-active 

materials offers greater scope in the development of compounds with specific 

(large) NLO responses. This chapter provides a background to these two fields.

Differences in the second-order NLO susceptibility, x(2)> between two of the 

isomorphous Rl3*3Sg complexes were noted in earlier studies (as described 

later). Possible explanations for this are proposed in this chapter and are of 

central concern in the thesis.

2 Such structures are typified by the organic Don or-Acceptor molecule:

Examples of NLO studies on such molecules may be found in Refs [1-3].
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Chapter One: Introduction

2. SECOND-ORDER NONLINEAR OPTICS IN MULTIPOLAR MEDIA 

Dipolar and Octupolar Molecules

The elements of the third-rank ß  or x(2) tensor quantify the quadratically 

dependent electronic polarisation induced by an applied electric field. The 

associated electron density changes are related to the spatial electronic 

structure of the molecule or crystal respectively.

These tensors may be rather complicated -especially for low symmetry systems. 

A procedure exists, however, whereby a tensor is decomposed  into a number of 

simpler parts. The formalism is outlined here. Further detailed description with 

respect to NLO in molecular media is found in Refs [10].

A general tensor of rank n can be decomposed into a number of irreducible 'sub­

tensors' of the same rank which by definition are invariant upon rotation in any 

dimension. Irreducible tensors1 are linear combinations of parent-tensor elements 
and are described by a quantity called the 'weight', j, defining the number of 
independent components; 2j+\. They may appear as lower rank tensors and be 

considered as such (with rank, j) [10a] or they may be expressed in the higher rank 

tensor space of the parent tensor [10c], The sum of independent components from 
all invariants equals the number of independent components of the parent tensor.

The method by which the irreducible tensors are obtained is described by Coope etd 

[11a] and by Juretschke [11b]. Briefly, (following Juretschke), consider a diagonal 

3 x 3  transformation matrix for the rotation operation on a rank i  parent tensor. 

This matrix contains certain 'blocks’ of dimension (2j+ l)x  (2j+l )  and each 

corresponds to an irreducible tensor of weight j. This gives the types of irreducible 

parts in the decomposition. For the number of each type, one takes the expression 
for the trace of the individual irreducible tensor blocks, y {2j+1}. This is a function

sin(y + ^
only of rotation angle, $ and is given by; X^y+ijM  = ----------------  (3)

sin — ^
2

The transformation matrix of the parent tensor has a trace determined by the Mold 

product of the transformation of the vectors and equals;

(</>) =  ( ' + 2cos<f>Y (4)

1 Juretschke refers to irreducible tensors as 'invariants'. In accordance with 
Jerphagnon, however, this term is reserved for describing 'scalar invariants' in this work.
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Chapter One: Introduction

Since the sum of the traces of each of the blocks must equal the trace of the 

'parent' transformation matrix, one can easily work out integer combinations of each 

j  term of Eq (3) to match the appropriate Eq (4) (expanded to order £).

Following this, any rank-two tensor, Ty, is decomposed into: a scalar part ( j  =0) 

which is the trace, a vector part ( j  =1) and an irreducible tensor of weight j  =2 

(often called a deviator). The sum of components of these irreducible tensors 

(1+3+5) equals the nine components of the original rank-two tensor. A general 
third-rank tensor, Tijk, is decomposed into: a scalar part, three vectors, two

deviators and a 'septor' ( j = 3) part giving 1+(3x3)+(2x5)+7= the 27 components for 

a third-rank tensor.

The number and type of irreducible tensors arising from the parent tensor may be 

simplified depending on the intrinsic symmetry of the physical process being 

described; a symmetric second rank tensor (such as the strain or polarisability 

tensor) decomposes to just a scalar and a deviatric ( j = 2) part. This treatment has 

been performed for the specific case of a fully symmetric2 third-rank tensor as for ß  

or x (2) [10a]. This analysis shows that the only non-zero irreducible parts for these 

tensors are a vector and a septor part3.

Because the irreducib le  sub-tensors are ro ta tionally invariant, they cannot mix 

when the coord inate  system  is changed. This m eans that fo r a m acroscopic 

response m ade up entire ly of m olecules w ith a non-zero ß, an irreducib le  part of 

the decom posed x (2) has its orig ins entirely in the sam e irreducib le part o f ß, 

even if the sym m etries on which the two tensors apply are d ifferent.

for SHG, coj = co2, allowing free permutation of j  and k elements in the tensor. 
The Kleinman symmetry condition allows full index permutation in the non-resonant 
case.

3 The combination of parent-tensor elements in the irreducible parts can be worked 
out:

The vector parts, £(1* , are the traces of the parent third-rank tensor. In the fully
ijK

symmetric case they are all equal and thus:

m  is a dummy variable.

The septor-part describes the “octupolar deviation” from isotropy. Each component is 
given by:

As an example, the 311 component of the septor derived from the /Ttensor for SHG in

where

3m symmetry is: = ^ (3 ß 3u - ß 333). And the total septor part is the sum of

all (many of which will be zero).

5



Chapter One: Introduction

The definition has been established by Zyss whereby a material with a structure 

having a symmetry group such that its /? tensor decomposes into a vector {J=1) 

part only is deemed to be a purely dipolar material. A material with a structure 

of symmetry for which the decomposed ß  tensor has no vector part and only the 

septor ( j = 3) part is a purely octupolar material.

These names reflect the fact that the irreducible parts of x(2) or ß  describe the 

NLO interaction of the dipolar/octupolar parts of the charge distribution of a 

molecule or crystal4. Zyss [8] drew this link when considering a charge 

distribution described as a function of distance and angular position, F(r,Q). A 

general distribution may be expanded as a sum of rotational harmonics in a 

Fourier decomposition:

00

F (r >0 ) =  cos(ß + <Pj(r )) (5)
j=0

where a ^ r )  and cp,(r) are r-dependent constants for the particular y-order

expansion terms. The rotational harmonics (from which NLO response may 

independently arise) have y-fold symmetry and have t!  multipole character [9c], 

This can be seen from radial plots of each of the terms of Eq (5) as shown in 

Refs [7,8], The component of the angular decomposition with three-fold 

symmetry corresponds to an octupolar (23) charge distribution

Note, however, that a purely octupolar material need not necessarily possess 

only an octupole moment [9c, 12a]. Figure One shows representative types.

+
/I /

+

/
+  -

Figure One: Examples of charge distributions conforming to the definition of octupolar
structures.

4 Robinson [12b] showed this via determination of the third-order perturbation energy 
of a nonlinearly polarised material.
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Chapter One: Introduction

Materials with purely octupolar structures do show second-order NLO 

responses. It has been demonstrated that the nonlinear response from such 

molecules can be of the same order of magnitude as traditionally studied one­

dimensional "dipolar" donor-acceptor molecules:

• The example of i,3,5-trinitro-2,4,6-triaminobenzene has been studied both 

experimentally [6a] and theoretically [6b] in order to compute ß .

• The hyperpolarisabilities of C(CN)3" [6d] and tetrahedral organometallic 

SnR4 compounds [6c] were measured with a view to establishing that their 

second-order NLO responses were large enough to have device-application 
potential.

• Early studies of the NLO response of triiodide complexes are described in a 

later section.

• Other examples are summarised in the review of Zyss [7],

Thus, classes of molecular structures based on three-fold symmetry elements 

have a legitimate place in the increasingly important search for molecules with 

sizeable second-order NLO response.

Theoretical. Prediction, of ß  for Dipolar and .Octupolar Molecules

The second-order hyperpolarisability, ß, of a molecule may be estimated via a 

perturbation treatment [5a], The polarisation, //, of a perturbed molecule is:

fu = - e r  (6a)

Mnm = - e | H  ’ 'ndx

= - e ( n \ r \ m )  (6b)

— —̂  *nm

where Q is the number of electronic states (labelled n), e is the electron charge, 

r is the sum of position vectors for all electrons.

7



Chapter One: Introduction

The wavefunction of the perturbed molecule may be approximated (to second- 

order in a static applied field, F) by the expansion:

n '°») +n) =

n (1>) =  —e F  X
n*n

„(2 )\ _  _ „ 2 F 2

) + n (2> > + ....

( 0 )

= - e 2F 2 X . ( 0 )

mn
( 0 ) n (0) Y n (0)

+ e 2 t-2

n * m  n * p

v ( p (0) 
D(°)\

r m '0)
) ( mt0)

r n m )
\ p  )

E „pn^mn

(7)

where E mn = E m -  E „

which invokes the particular excited states m and p. E denotes the energies of 

these states. Integration yields terms proportional to F  and F1. According to Eq 

(1), the coefficient of F1 is the first hyperpolarisability tensor ß.

ß  = 3 e 2 t
n = 1

I  I
n*m n * p

I'nmTi rmp' pn

E  E  ^  p n £-J mn
~ r nn Z  

n±m
(8)

The expression (8) shows that excitations to and between all states should be 

considered. For conjugated organic molecules of the 'dipolar' type, there may 

be a dominant transition from the ground state to a single excited state which 

involves significant internal movement of charge. In such a case, the molecule 

can be approximated by a two-level system [1,2,5b] and the denominators in Eq 

(8) can then be considered equal. This can then be modified to an expression 
utilising the oscillator strength and optical transition frequencies, coeg:

ß  ( -  2 co; cd, o) )  =
3e2 coegf  A ju

2 f i m  {<£>]g  - cd2 ) ( co^  - 4 co2 )
(9)

where /  is the oscillator strength for this dominant transition and A ju is the 

difference between ground and excited state dipole moments. Omitted from the 

denominator of this expression are 'damping terms' to account for electronic 

absorption by the molecule. Eq (9) is useful in showing the dependence of ß  on 
the exciting frequency, co. From the coeg terms in the denominator, it is evident 

that when co is close to a one-photon resonance (coeg -  co ) or a two-photon 

resonance (co^0 -  4 c o 2 ) ,  the hyperpolarisability may become large (infinite were 

it not for some damping factor).

8



Chapter One: Introduction

Such a two-state model is inadequate for description of a purely octupolar 

system because the Ap factor is necessarily zero for such symmetries. An 

expression needs to be derived from Eq (8) invoking at least three states [9a], 
Such a three-level model is consistent with the fact that 'octupolar' groups - D3h, 

D3, etc, all have doubly degenerate "E"-type excited states given by symmetry. 

Thus:

ß  = 3 e 3 r n r  rm ' mp pn
( 10)

where n represents the ground state and m and p  two degenerate excited 

states. At optical frequency this becomes:

ß  ( -  2co;co,(o) = —— M n

K m-coOKm- W )
( 11)

using the notation of Zyss äal[7], in which the ju terms are the transition dipole 
moments between the various states, junm = -e r nm . The frequency symbols,

CD,™, follow the same logic as for Eq (9).

One may better consider the coupling occurring between such states with 

circularly polarised (a+ or a-) light [9a] rather than the coupling between g and u 

states through a vector field (using linearly polarised light) as in the case of a 

two-level dipolar system.

Mate rials from. Octupolar.Molecules

From the point of view of construction of materials with high second-order NLO 

response, there is significant advantage in using architectures with a zero or 

small dipole moment. This is because noncentrosymmetric stacking is less 

likely to be energetically unfavorable as is the case with dipolar molecules5. 

Ths issue of aiming for sizeable quadratic NLO response from 'zero-ju or small- 

p molecular materials has been extensively studied by Zyss and coworkers6.

5 Due to coulombic repulsion, an array of dipoles stacked with all p aligned in the same 
direction (ie, noncentrosymmetrically) is of significantly higher energy than if stacked in a 
head-to-tail fashion.
6 This theme is present in early work [9d] as well as in more recent studies [6a-b,9a-c],

9



Chapter One: Introduction

Mixed dipolar-octupolar systems are those molecules/materials having both 
vector and septor parts to their decomposed ß tensor. These have potential as 
NLO materials as they often have only small dipole moments. The Rl3

molecules studied here are examples of molecules possessing a small 
permanent // and a non-zero octupole moment.

Two important points arise from the formalism outlined earlier:
• The second-order NLO response from both dipolar and octupolar 

'architectures' can be deduced from the ^tensor of mixed molecules.
• These 'dipolar' and 'octupolar' NLO responses can be separately 

distinguished in the x(2) of crystals of mixed dipolar-octupolar molecules.

Scalar _ Invariants

Once obtained, the groupings of tensor elements comprising the components of 
the irreducible parts can be presented more simply as the 'scalar invariants' for 
that particular irreducible part. These are simply worked out as the square root 
of the sum of squares of all the constituent components of the irreducible part 
[10a],

The specific combination of elements for /?vector and /?septor for each crystal 

symmetry group has been derived by Jerphagnon [10a], For the case of the 
fully symmetric x(2) tensor for SHG in the 'mixed' R3m (C3v) symmetry group 

pertinent in this study, the vector and septor parts of the hyperpolarisability 
tensor are:

ßvector ~  “y 5  ^ 3 3 3  + ̂ All) (12a)

ßseptor ~  0 All ~  / ^ 3 3 3  )  +  4 ß\ 11
(12b)

Both parts of the decomposed tensor must be considered when comparing NLO 

coefficients for materials of different symmetry.

10



Chapter One: Introduction

3 . CHARGE TRANSFER COMPLEXES

It is necessary to first define this group of materials more precisely as the term 

"complex" is used widely in chemistry to refer to many systems of interacting 

chemical species. It is complexes occurring between neutral molecules and which 

form stoichiometric crystalline compounds that are of concern in this work.

Not considered here are complexes between metal ions and various ligands 

which form the traditional areas of inorganic and organometallic chemistry. The 

occurrence of charge transfer (CT) interactions is well established in this field9 

and much research into the NLO properties of such complexes has been 

described10. Also of great significance and activity in NLO research (though not 

included here) is the area of molecularly-doped systems which may involve CT 

interactions. These include electrically-poled dye-doped polymers* 11. The 

interaction between dopant molecules and polymer substituents may be of the 

CT type if they include electron donor and acceptor species.

Crystalline materials comprised of two different molecular species have been 

described since at least the first decade of this century12. These materials are 

also called "adducts" or "solid solvates". The number of known examples is now 

very large and the subject has been dealt with in texts [13]. Examples for which 

NLO properties have been examined are complexes of cyclodextrin and para- 

nitroaniline (pNA) [15a] and complexes between pNA and other organic 

donor/acceptor molecules [15b]. These complexes are related to binary molecular 

systems which do not necessarily form stoichiometric crystals. There has been 

some interest in these latter materials for second order NLO.

as demonstrated, for example, by strong LMCT (Ligand to Metal Charge transfer) or 
MLCT bands in absorption spectra of many of these compounds.
10 See for example, the article by S. Marder: pp115-164 in "Inorganic Materials" eds 
D.W. Bruce and D. O'Hare, (J.Wiley and Sons, 1992).

See also: I.R. Whittal, A.M McDonagh, M.G. Humphrey and M.J. Samoc,
Organometallic complexes in nonlinear optics I: Second-order nonlinearities. 
Adv. Organometallic Chem., 42 in-press (1997)
11 The large amount of work concerning NLO of doped-polymer systems is evidenced 
by numerous such reports from symposia proceedings such as listed in Refs [3]. See 
also Chapter 7 in [2]. Examples of second-order NLO response from poled, molecularly- 
doped sol-gel glasses are given in Refs [17].
12 See, for example, the article by Dehn and Connor [16] (which does not, however, 
address the interaction between the constituent molecules). Foster's book [13] and 
Mullikan's works [14] also contain references to early studies of these materials.

12



Chapter One: Introduction

As an example, nonlinear optical coefficients were determined for 
nonstoichiometric co-crystallised (pNA) and meta-nitroaniline (mNA) [15c].

The nature of the weak bonding interaction which causes the adduct formation 
has been investigated. It is discussed using the term (intermolecular) charge 
transfer (CT) which occurs between electron donor (D) and acceptor (A) 
components. In the description of Mulliken [14], an overall ground state 
wavefunction for the complex is considered as a linear combination of 
wavefunctions correponding to the free D and A molecules with an appropriate 
amount of the wavefunction for the completely ionic D+-A" pair:

^ g X D  A)  =  3  ^ ( D ,  A)  +  k  ^ ( Z r - z T )

(13)

where a=1 and b « 1 . An identical expression exists for the wavefunction of the 
(first) excited state except that the proportion, b, of the ionic wavefunction is 
much higher and:

b  x  V  /  (^separated ~  ^ionic pair)

where u is the overlap integral between the interacting donor and acceptor 

orbitais and the denominator contains the difference in energy between the 
wavefunction of the ionic pair and that of the separated molecules. The square of 
the b coefficient indicates the amount of charge transferred. If this is large, the 
dipole moment difference, A|i, between the two states is also likely to be large 
and according to the two-state model outlined earlier at Eq (7), the 
hyperpolarisability, ß, is be expected to be of significant size.

In general, the lowest energy electronic transition in these complexes is that 
between the highest occupied state of the donor and the lowest unoccupied 
state of the acceptor and so the spectroscopic transition corresponds to further 
charge-transfer which explains the increase in b/3. (Figure Two).

13



Chapter One: Introduction

Donor LUMO

Acceptor LUMO

Acceptor HOMO

C T  transition

^ --------  Donor HOMO

Figure Two: Schematic energy level diagram for a charge-transfer complex. The levels may
be blue or red shifted with respect to the levels in the parent donor and acceptor compounds.

The "charge-transfer" classification for this type of attractive interaction is well 

established in chemical terminology. It usually refers to an intermediate situation 

in which attractive forces are stronger than ubiquitous electrostatic forces existing 

between the donor and acceptor species, yet are much weaker than if full ionic or 

covalent bonding occurs and that each component loses its identity. Whether a 

molecule is a strong donor or acceptor lies ultimately in the electronegativity of the 

atoms and depends on the current bonding.

Table One lists several examples of molecules of both electron donor and 
electron acceptor character, as well as those which are able to act as both.

Table One

DONORS BOTH ACCEPTORS
q u in o lin e (n) octa-sulfur iod in e
d ioxan e (n) pyrid ine (n-donor) m any m ain group
sulfur d io x id e  (n) h a lid es
trim ethylam ine (n) carbon tetrachloride
anthracene (7t) trin itrobenzene (n)
azu len e (7t) tetracyan oeth ylen e
ph en ol (7t) (TCNE)

largely taken from Foster [13] and the work of Mullikan [14].
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Chapter One: Introduction

Primary evidence for the existence of a CT complex-forming "bond"13 comes from 

X-ray structural data which can show rather accurately the distance between 

adjacent atoms. If this is shorter than that predicted by considering the sum of 

van der Waals radii of the two atoms (as if they were non-interacting), such an 

interaction is deemed to exist. Typical shortenings are of the order of 10-15%. A 

spectroscopic transition associated with the CT interaction is often not observed 

as it may be obscured by stronger transitions from the interacting donor and 

acceptor molecules [13].

Complexes between two interacting (organic or inorganic) molecules offer several 

favorable features for nonlinear optics:

(i) in crystal matrices of 'complexes', molecules known to have large molecular 

optical nonlinearities but which form centrosymmetric self-molecular crystals may 

be favorably aligned for second order NLO response.

(ii) the incorporation of "NLO-phore" molecules into a matrix may lead to a 

significant enhancement of NLO response due to local field effects as is 

discussed later.

Finding CT partner molecules forming good matrices is, of course, difficult. 
Nevertheless, a large number of potential donor and acceptor partners exists 

from which those forming noncentrosymmetric matrices may be sought. Zyss 

[7,8,9c] suggests that to seek crystallisation of octupolar molecules in (CT) host 

lattices offers promise for producing structures with high second-order NLO 

responses.

13 On this point, it is interesting to note the comment of Kjekshus and Rakke;
"At present, it is impossible to obtain a direct experimental answer to the important 
question whether there is or is not bonding between two given atoms. The 
estimation of bonding is thus confined to deductions from the atomic arrangement 
and accordingly depends on empirical knowledge."

A. Kjekshus and T. Rakke, The valence concept. Structure and Bonding, Vol 19 
( 1974)
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Chapter One: Materials

The Materials

1. GENERAL PROPERTIES

The particular complexes studied in this work are "adducts" of the trigonal- 
nonplanar molecular triiodides, Rl3, with the octa-sulfur molecule, S8. They are 
designated Rl3*3 Ss which indicates the 1:3 stoichiometry between the two 

components. The complexes have been known for decades: Auger first 
described Asl3*3 Ss and Sbl3*3 Sg in 1908 [18a]. The crystal structures of 
CHl3*3 S8 and Asl3*3 Ss were first examined by Hertel in 1932 [18b] and solved 

in 1938 by West [18c]. The latter study includes refractive index measurements. 
CHI3*3 Sb and Sbl3*3 Ss were further examined by Bjorvatten in 1962/3 [37].

The members of the Rl3*3 Sg group (R= As, CH, Sb) resemble each other fairly 
closely. They crystallise in the same space group (R3m) with three Rl3*3 Se 

units in the hexagonal unit cell which has very similar cell dimensions across the 
series (Table Two). The crystal morphologies manifested by each compound 
differ only slightly. Views of the hexagonal unit cell looking down the trigonal 
(c/z) and b axes are shown in Figure Three. An important and unusual feature 
of this structure is that the C3V point symmetry of the RI3 molecule is preserved 

in this crystal lattice. This is an attractive condition from the NLO point of view 
since it means all tensor components of microscopic nonlinearity 
(hyperpolarisabilities) are fully projected on to the macroscopic crystal frame14.

Table Two

a &  b c Volum e

C H I3*3S8 [37a] 24.32 4.440 2274.3 Ä 3

A sI3*3Ss 24.739 4.412 2338.5 A 3

SbI3*3Ss [37b] 24.817 4.428 2361.8 A 3

Bond distances and angles are given in Chapter Three. The X-ray structure of /\sl3*3Sgwas done 
in the course of this work. See Appendix One.

14 This condition simplifies the extrapolation of a molecular NLO-tensor from a crystal- 
susceptibility tensor and vice versa.
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Chapter One: Materials

Figure Three: Unit Cell diagrams for the RI3*3S8 crystal structure. The top image
regards the cell from along the b axis. The coloured atoms are iodine atoms. The lower picture is 
a view looking down the crystal c axis.

S—I distances in the complexes are seen to be shorter than the sum of the 
iodine and sulfur atomic radii (respectively; 1.85Ä & 2.15Ä). The sulfur-iodine 
distance is: 3.50Ä in CHl3*3S8, 3.571 Ä in Asl3*3Ss, and 3.602Ä in Sbl3*3Ss all 

of which are considerably (=11%) shorter than the 4.0Ä "non-interacting" 
separation thus providing strong evidence for a weak intermolecular CT "bond". 
As well as this S—I bond shortening, the R—I bond is seen to become longer
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when RI3 is incorporated in the adduct. This effect is small in these complexes. 

A slight warping of the Ss ring is also observed with the donor sulfur atom 'pulled 

away' from the rest of the ring. This is discussed further in Chapter Five.

Crystals of each of these materials form with ease from CS2 solution at room 

temperature. They are not particularly robust, however, with each exhibiting low 

decomposition temperatures of between 100 and 120°C. Accordingly, optical 

damage thresholds are also low. It was suggested [26] that the antimony adduct 
may be more thermodynamically stable than the other Rl3*3 Sg though the 

assertion has never been tested. The Pl3*3 Ss member of the series has been 

reported [18]. Attempts made during this study to synthesise crystals of this 

compound were, however, unsuccessful.

The optical properties of the crystals belonging to the Rl3*3 Se series are also 

very closely matched. Crystals are uniaxial negative with the unique (ne or n 3) 

axis of the indicatrix parallel to the crystal z (and molecular threefold) axis. They 

all have rather high refractive indices and show large bi-refringences. Important 

differences do however exist in the absorption behaviour of each compound. 

This information is summarised in Table Three.

Table Three
A bsorption

Edge*
n o

(633nm )
n e

(633nm )
C olour

C H I3*3S8 4 5 1 n m 2.235 1.789 pale  y e llo w

A sI3*3S8 504nm 2.283 1.853 orange y e llo w

S b I3*3S 8 476 n m 2.281 1.901 deep  ye llo w

as determined in this work by diffuse reflectance spectra (see Appendix Two). The 
absorption edge is taken as the wavelength of half-height of absorption onset. Such spectra are 
unsatisfactory for examination of the presence of absorption bands due to the CT bond -as Löhr 
[19a] also found. This is due to the strength of absorption in the blue/UV.

The sources for refractive indices of these compounds are given in Chapter Two.

As indicated earlier, these can be described as mixed ‘dipolar-octupolar’ materials. 

The dipole moment of the RI3 molecule lies parallel to the trigonal crystal z axis. 

The octupole moment tensor for molecules of this (C3V) symmetry has a major 

component lying in the plane of the three iodine atoms (which is therefore in the 

crystal x-y plane).
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2. THE CHARGE-TRANSFER INTERACTION IN RI3*3S8

X-ray structural evidence supports the existence of moderately strong charge- 
transfer interactions between RI3 and Ss molecules, accounting for the formation 
of a stable crystalline adduct. Other experimental evidence from these and other 
complexes has also been important in confirming the presence of such an 
interaction between these compounds - and in determining the donor/acceptor 
nature of the component molecules:

• Löhr etal [19a], in a nmr solution study of iodomethane complexes with 
organic ammonium halides, showed that CHI3 was acting as an electron 
acceptor. This was established from the increase in nuclear shielding seen in 
the 1H nmr spectra of complexed iodoform as compared to uncomplexed. 13C 
nmr showed an unexpected deshielding of carbon nuclear spin however, this 
is attributed to the dominating effect of the geometry change induced on CHI3 

by the complexation. It was also tentatively suggested that certain very low 
frequency modes seen in the Raman spectra of crystalline samples of these 
complexes might be due to stretching of the CT bond to the iodine atom of 

CHI3.

• Green and Martin [19b] also found evidence for a weak charge-transfer bond 
between halide donors (from an ammonium salt) and the iodine in CHI3 from 
the increased proton shielding in the 1H nmr spectrum of complexed iodoform. 
In the infra-red spectrum, enhancement of the complexed iodoform C--I 
symmetric stretch absorption at ~400cm-1 was attributed to an interaction 
between the halide donor and the iodine atom.

• The finding by McCusker and Columba Curran [19c] that trigonal RX3 metal 
halides (R = As, Sb) manifest significantly larger dipole moments in the 
solvent dioxane15, was presented as strong evidence that these molecules 
coordinate with this solvent molecule, however, the nature of the donor- 
acceptor interaction was not discussed.

• As suggested in Table One, in the Rl3*3 Ss complexes the RI3 molecule acts 

as an electron acceptor and the octa-sulfur molecule as a donor. Some

15 For example, p for SbBr3 is twice as large in dioxane (5.01 D) as in CS2 (2.47D). For
ASI3, it increases from 0.96D in CS2 to 1.83D in dioxane.
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justification for this categorisation is to be found in the structure of the 
complexes. It is known that divalent sulfur compounds of the type; R-S-R, 
(such as thioethers) may interact through the sulfur atom with both electron 
acceptors and electron donors. As pictured in Figure Four, acceptors come 
toward the sulfur atom perpendicularly with respect to the R-S-R plane as 
this is a region of higher electron density due to the orientation of the filled 
‘lone-pair’ p-type orbital of sulfur.

Figure Four

Donors avoid this region and thus approach the S atom in a parallel sense to 
the R-S-R plane. The crystal structure of these complexes shows that the 
iodine-sulfur ‘bond’ forms an angle with the R-S-R plane (where for Sq, R=S) 
which is closer to 90° than 180°. This is evident if one inspects the unit cell 
diagram for these complexes looking along the b axis (Figure Three). In 
Asl3*3 Ss, for example, it is 71.1°. This indicates that ASI3 is an acceptor in 

this interaction. Such an electrostatic argument also explains the co-linearity 
observed between the CT "bond" and the R-l bond of the RI3 molecule. 
Small deviations from a 180° approach may be due to packing energy 
considerations [13,14].

• Raman spectra measured in this work [Appendix Three] showed that the 
frequency of the symmetric At R -l stretching mode increases upon 
complexation. This is indicative of the bond becoming stiffer when it forms 
the Ss adduct. The Raman scattering intensities from these experiments 
suggest that the bond-polarisability-derivative, 3oc/ar, of this same mode is 
smaller for the complex. This can be related to a decrease in the R -l 'bond 
covalency parameter' when the CT complex forms [22].
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• Mössbauer experiments [20a&b] on the Rl3*3Ss adducts and their parent RI3 

compounds have also indicated that the degree of covalent character of the 

R--I sigma bond increases when the adduct with Ss is formed.

With such evidence for the existence of a weak charge transfer attraction, it is 

instructive to now look at some models which explain the findings just described:

Firstly, a representative molecular orbital (MO) picture of the bonding scheme of 

the RI3 system is depicted in Figure Five, using ASI3 as an example.

Figure Five: The molecular orbital description of bonding in ASI3. The HOMO-LUMO
gap is shown with the darker arrow. The lighter arrow indicates transitions to states which 
have been shifted to higher energy. This is a possible explanation for the blue-shift of 
this transition which occurs in the Ss complex.

The relative orbital energies and degeneracies for this molecule can be 

qualitatively deduced or given from ab initio calculations (such as those described 

in Chapter Three). Semi-empirical 'Xa‘ calculations carried out for a study by
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Grodzicki etal [21 a] also give the same result. That the e states are of lower 
energy than the a states is a consequence of repulsive inter-iodine interactions.

The energy gap corresponding to the lowest spectral transition is from the 
highest occupied non-bonding "a / MO to the lowest energy unoccupied a* anti­
bonding MOs as indicated by the arrow in the diagram. This is consistent with 
conclusions reached by Ito etal[21b] from their study of CHI3 spectra in different 
solvents.

If sulfur lone-pair orbitals lie higher in energy than the bonding o MOs of ASI3 (in 
the energy region indicated by the shaded band in the diagram) the formation of 
the Asl3*3Ss adduct might then be the result of weak a bonding between I and 

S; which would then slightly lower the ASI3 a orbitals and raise the energy of the 
corresponding a* orbital (shown dashed in Figure Five). This would explain the 
blue shift seen upon complexation. The resulting lower energy of the bonding 
orbitals would also mean a stiffer bond and thus account for the observed shift to 
higher energy of the Raman active 'R-l' vibration.

Alternatively, these phenomena may all be explained using qualitative 
electrostatic arguments: The observed blue-shift of the absorption spectrum and 
the Raman spectrum frequency increase which are both seen upon adduct 
formation are accounted for if the R-l bond is strengthened when extra electron 
density is received by the iodine atom. In the formalism of Long and Plane [22], 
the resulting increasing ionicity of the bond is more energy stabilising than the 
destabilisation from the concomitant reduction in the (Pauling) covalency 
parameter,
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Chapter One: Previous Studies

Previous Relevant Studies on Crystal Complexes

1 . NLO MEASUREMENTS ON Rl3 ADDUCTS

Several studies of the nonlinear optical properties of certain addition complexes 

of the nonplanar trihalides have been reported:

Samoc et a! [23] performed electro-optic (EO) experiments on crystals of 

C H l3*3 Ss and C H ^S C g H yN  (the adduct with quinoline -Qn) in order to 

determine values of the Pockels coefficients, r^, governing this phenomenon. 

These are listed in Table Four. These results were tentatively correlated to 

estimations of second harmonic generation (SHG) efficiency made using the 

powder technique16 with co=i064nm. The buik NLO properties of CHl3*3 S8 

were compared to those of m-nitroaniline which is a well studied organic 

compound with a fairly high %(2) [29]. Apart from being a convenient reference 

material, this compound represented the traditional, well-studied class of dipolar, 

conjugated molecules in which a high NLO response stems from intramolecular 

charge transfer between donor and acceptor functional groups through a 

polarisable 7C-electron system. That the iodoform complex appeared to have the 

(slightly) stronger response supported the idea that this class of materials may 

exhibit significant optical nonlinearities and thus have potential for future device 

applications.

Subsequent work from the same laboratories reported similar measurements on 

1:3 iodo fo rm -qu ino line  (C H l3 * 3 Qn) and the related 1:1 iodoform- 

hexamethylenetetramine CT complexes [24a,b ]. These exhibit lower and higher 

NLO responses, respectively, than that of CHl3*3 Sg. The link between this 

response and density of CHI3 molecules in these solid iodoform complexes was 

made, suggesting that the NLO response is mainly due to this molecule.

The other important conclusion drawn from these studies was that the magnitude 

of the crystal NLO response in these very similar iodoform-complexes can be 

greatly changed by altering the donor species with which the CHI3 adduct is 

formed. Possible reasons for this were suggested. They included:

• that an (attractive) electronic interaction between the donor and acceptor 

molecules might explain the %(2) differences. Presumably, bulk NLO 

susceptibility would scale with strength of this interaction.

16 See description of this method in Chapter Two.
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• that differing local field factors apply at the iodoform molecule due to the 

different matrix of donor molecules. These factors describe how the field at 

the molecule is changed from the applied field due to the 'reaction field' set up 

in the polarisable medium. Permanent local fields will also be present in the 

adduct lattices and these will also differ between complexes - perhaps 

explaining the observed NLO response differences.

In further work on these materials [25], Samoc etalaccurately measured the NLO 
susceptibilities for the SHG process in the two iodoform complexes CHl3*3S8 

and CHl3*3Qn. The x (2) coefficients were evaluated from SHG fringes measured 

using a fringe technique similar to that explained in Chapter Two. They also re­
determined electro-optic coefficients for CHl3*3Ss and CHl3*3Qn using two 

independent experimental methods. Comparison of the EC and SHG 

susceptibilities confirmed the earlier hypothesis that the origin of the nonlinearity 

is mostly electronic in that they were found to be similar in magnitude.

By invoking the ‘oriented-gas’ model17, these susceptibility elements could be 

converted to 'effective' hyperpolarisability tensor elements for the molecule as it 

exists in the crystal. This uses the assumption that local-field factors, / ,  from the 

'Anisotropic Lorentz Approximation' (ALA) apply (these are simply determined 
from measured refractive indices, n: /= (n 2+2)/ 3 -see Chapter Four for a 

detailed explanation). These derived microscopic NLO response coefficients for 

both the octa-sulfur and quinoline adducts were seen to be of similar size. For 

the macroscopic susceptibility elements, however, much greater differences were 

seen. This was especially so for the in-13-plane x ^  elements. This was taken 

to indicate that there is a large difference in the local field at CHI3 when the 

applied field is in the plane of the iodine atoms depending on whether the 

complexing partner is Ss or quinoline. It is not possible to directly relate this to 

specific structural differences although it is consistent with the sizes of ALA- 

derived / ' s. This finding also strengthens the idea that CHI3 is mostly 

responsible for this NLO response.

Similar studies [26] were performed on another isomorphous complex of this 
type, Sbl3*3S8. Thus, the triiodide acceptor part of the complex was now 

modified with respect to the iodoform-sulfur complex. Qualitative powder SHG 

measurements were performed as well as quantitative susceptibility

17 This model presumes for molecular solids that the solid is composed -as the name 
suggests- of an array of non-interacting individual molecules. Thus no intermolecular 
forces or fields are taken into consideration, however, this is often reasonable for 
organic molecular crystals. See, for example, Refs [39&1].
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determinations using the Maker fringe technique. Molecular hyperpolarisabilities 

were extracted as for the CHl3*3S8 study using the oriented-gas model and ALA 

local field factors.

The results of the experiments performed on CHl3*3S8, CHl3*3Qn and Sbl3*3Ss 

are summarised in Table Four.

Table Four

C H I3*3Qn [25] C H I3*3S8 [25] SbI3*3S8 [26]

du 8.1 19.1 8.1

d3i 2.5* 5.0* 7.5

d33 2.0 2.6 11.3

r 12 *1.9 -4 .0

The bulk NLO coefficients are given18 as "d\f values which are used in most experimental 

studies. Second order susceptibility is given by; ^ j-)  = 2dtj k•

An asterix indicates that these values were extrapolaied from electro-optic measurements 
performed at 633nm and are thus likely to be over-estimates due to the frequency dependence of 
the djj coefficients.
Units of coefficients are 10'12mV'1 (pm/V). d33 for m-nitroaniline (mNA) is 20 x 10‘12mV'1.

Comparison of the NLO coefficients for both the Sbl3 and CHI3 octa-sulfur 

adducts is especially interesting. It is seen that the relative sizes of these 

elements are quite different for the two complexes. The coefficient d ^ ,  describing 

NLO response in the plane of the iodine atoms, is the largest component in 

C H l3*3 S8 . For the Sbl3 complex, however, the dominant element is d 33 

(describing NLO response parallel to the dipole moment) although the d u  

component is still of significant magnitude.
Topic. Detail

Rigorously, for comparing NLO response from the different charge distributions 
among molecules of different symmetry, it is necessary to compare not the 
individual tensor elements but the invariants of the NLO tensor which are obtained 
from its decomposition into irreducible parts as was described earlier. The invariants 
of beta for SHG in 3m symmetry were shown in that section.

This is however only absolutely necessary for /nfra-tensor element comparisons. 
The problem here has been set out as a question framed in terms of and ^(2) of

18 The shortened notation which applies when 0^=02 is such that for d2(üt<üt(ü; 
d-ii-| =c?ii etc and
^132 =  ^123  =  ^14 
1̂31 = ̂ 113 = ̂ 15 
1̂21 =^112 = ̂ 16

For C3v symmetry, three non-zero, independent tensor elements exist: d M, d33 and d3-\ 
(presuming the Kleinman symmetry condition to be valid and using the convention that 
one of the mirror planes is perpendicular to the y axis).
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all three complexes which have identical symmetry. It remains relevant to compare 
the simple, intra-tensor beta element ratios between these isomorphous materials. 
In addition, determination of invariants involves 311 elements. There is an 
inherently larger uncertainty in these quantities due to their small size and the 
sometimes different measurement technique involved to obtain them. This 
uncertainty carries through as larger error limits for the scalar invariants. Though 
there is a very small dependence of ßseptoron ß3l1>this element has a large bearing 
on /Sectoranc* so the error in each invariant is also expected to be different. Use of 
the simple ratio is also conceptually more accessible.

For these reasons, it is preferred to mostly discuss tensor structure differences 
through the simple ratio of the elements.

A reason for this large difference is not immediately apparent. One suggestion 

made in the Ref [26] study was based on the fact that Sbl3 has a larger 

permanent dipole moment than CHI3. It was proposed that the larger static 

electric field from such a dipole moment induces a ß33 component in the easily 

polarisable octa-sulfur molecule which contributes to SHG polarised in the z 

direction only, thus augmenting d33. This proposal has not been tested.

These authors also demonstrated an additive relationship between the linear 

susceptibility of RI3 and Sq parent molecular crystals and the x (1) of Rl3*3Ss 

crystals. This aspect was discussed in the context of the significant difference 

noted between the %(2) structures for the Sbl3 and CHI3 adducts. The calculation 

of these quantities involves use of the Clausius-Mossotti relation and thus the 

same assumptions are made as for assuming relevance of Lorentz local field 

factors. This indicates that very strong intermolecular interactions are not present.

These results motivated theoretical studies in which microscopic NLO coefficients 

for the RI3 molecules were calculated. Kama and Dupuis [27] had performed ab 

initio calculations to determine polarisabilities and hyperpolarisabilities of iodoform 

(and other haloform molecules). The predicted hyperpolarisabilities were far from 

experimentally derived ß - though the ratios / W t o r / ßseptor (see Eqs (12)) did 

concur with those from experiment. The ßvector/ßseptor ra tio  fo r  S b l3 *3 S s  w a s  

calculated [26 ], however, this indicated a large discrepancy between such 

predicted and measured ratios. This result is discussed in Chapter Five.

Stähelin and Zschokke-Gränacher [28] performed Hyper-Rayleigh Scattering 

experiments on the iodoform molecule in order to study the octupolar contribution 

to SHG (ß n ). Two different solvents were used -one polar and the other 

nonpolar. A significant difference was observed in the total SH intensity 

generated from the two solutions: the more efficient SHG being with the polar 

solvent. Solution values for ß-11 of CHI3 were extracted using measured
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depolarisation ratios in combination with calculated ß tensor element ratios given 

from the work of Kama etä[27a]. The solution hyperpolarisabilities also showed 

a large solvent dependence although reasons for this were not discussed. The 

solution ßn result was compared to that obtained earlier for iodoform in the sulfur 

adduct to show that this NLO coefficient can be changed readily by 

surroundings.

Finally, Fünfschilling et a/made an important point when noting the differences in 

absolute size of second order NLO response in iodoform complexes [24a]. They 

raised the possibility that (different) NLO properties of the donor molecule may 

contribute to observed differences in the overall magnitude of x(2) elements for the 

adducts. This issue is important later in the thesis.

As evident from these studies, the NLO susceptibilities of these types of 

crystalline complexes show quite different anisotropies depending on the inter­

related issues of chemical composition and crystal environment. Questions are 

raised about which factors are important in 'shaping1 x(2) anisotropy. These are 

of fundamental and practical interest since they concern the understanding of 

potentially useful classes of NLO active materials -particularly molecular crystals.

2 . THEORETICAL STUDIES OF%(2) IN MOLECULAR CRYSTALS

The subject of accurate prediction of x(2) and other electric properties of molecular 

crystals has long been hampered by limitations in the knowledge of the electric 

fields existing at the microscopic level. The simple and long-used Lorentz 

approximation mentioned earlier for relating applied field to the 'local' field is known 

to be inadequate and this has been demonstrated in the work of Munn with 

respect to more thorough methods [30].

It is essential to know accurately how different the electric fields are in a crystal in 

order to estimate crystal NLO properties from the molecular hyperpolarisability. 

Important concepts and aspects of research in this area are now introduced:

• In dielectric media, a depolarising electric field is set up in 'reaction' to an 

applied electric (optical) field due to bulk polarisation of the medium. This 

results in a different average field (called the macroscopic field) existing within 

the crystal.

• On a smaller scale, local fields are different again due to the field contributions 

at a molecule from induced dipoles at/on surrounding polarised molecules.
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This phenomenon is ubiquitous and must be accounted for if field-induced 
effects of the material are being studied.

• As well as these, permanent fields exist in molecular crystals due to the 
presence of the permanent multipole moments of the molecules.

• So-called 'non-local' effects also exist within molecular crystals. These are 
effects at a molecule (or between molecules) that arise in response to a field 
applied at another point (molecule) in the cell. They are also ubiquitous but 
may be very much smaller than local field effects and can often be ignored.

• Another useful concept in this area is that of effective hyper/polarisabilities 
which refer to the response of a molecule as it exists in its crystal 
environment.

Both permanent and induced fields may affect NLO response as measured in the 
bulk via: (i) induced molecular geometry changes and

(ii) through modification of molecular charge distribution and thus of 
the hyperpolarisability itself.

The large body of work by Munn etähas relied on rigorous accounting for electric 
fields in the crystal at the molecular scale: this has been included in studies of the 
polarisabilities of certain molecules as they exist in their homomolecular crystals 
[30,32a-d] and in the examination of the size of their local field factors. The 
alternative to use of Lorentz local-field factors, / ,  is use of the local-field-factor 
tensor, d  [31]. The method for its determination involves explicit electric field 
calculation at certain lattice points - these fields arising from induced dipoles on 
other lattice points. The detailed description of this is found in Refs [33] where 
the problem of slow convergence of lattice dipole sums is overcome using the 
'Ewald method' involving summation over real and reciprocal lattices.

Several organic molecular crystals have been the subject of theoretical x (2) 
determination using computed free-molecule hyperpolarisabilities and crystal 
structure and refractive indices as source data. Such x(2) predictions have been 
attempted for only a small number of structures. One of the first examples was 
for meta-nitroaniline [34]. The method of these investigations is described in 
Chapter Four, and further examples are discussed in Chapter Five.

The way in which the shape of the molecule is approximated, and the correct 
specification of sub-molecular (atomic) positions in the lattice, are very important. 
This is evident from the development of the sub-molecule treatment [32b&d] and
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from studies using the sub-molecule approach, for example Ref [34]. Other 

interesting theoretical investigations have been made on this topic. For example, 

it has been noted that the effect of molecular elongation on the local field tensor 

can be significant in certain length ranges [35]. It was predicted that for a given 

molecular polarisability, the local field factor decreases rapidly with molecular 

elongation before reaching a region where d  stays effectively constant as 

molecular length increases.

Munn etal[31] have considered effects of permanent-internal-fields on (NLO) 

susceptibilities of molecular crystals. This issue is of relevance in this study 

since RI3 molecules are polar, and a mechanism whereby the vector part of x(2) in 

these crystals is enhanced by this fi, has been proposed [26]. Such fields are 

part of the general description of the influence of environmental factors on local 

fields and may be incorporated into this theory [31b]. This effect can be 

considerable [31b,36a] and is further discussed in Chapter Five where such 

internal fields are estimated. Also of pertinence is the issue of non-local 

responses in hetero-molecular crystals [31 b] since inter-molecular charge transfer 

interactions are a means by which such effects can occur. They may therefore 

be important in the adduct crystals of interest here. In the investigation described 
in Ref [36b], the non-local effect was a proposed change in the 'effective' 

polarisabilities of the constituent molecules of two charge transfer complexes 

occurring because of field induced charge-transfer (FICT) between the molecules. 

The authors of [36b] were interested in determining the extent of the polarisability 

changes due to FICT in several anthracene CT-complexes. In practise, 

however, the problem was complicated by other factors. The theoretical basis 

for predicting the size of a non-local response [36c] has yet to be successfully 

tested on a real system.

It is apparent that linear and nonlinear responses of molecules in molecular 

crystals are considerably more complicated than for the case of the isolated 
molecule. The Rl3*3 Ss system is a particularly useful system in this regard 

because of its especially tractable structure.
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Explaining the Anisotropy Question

The anisotropies of the second-order NLO susceptibility tensor, %(2), for both the 
CHl3*3Se and Sbl3*3Ss adducts are notably different as has been described in 

the previous section. This thesis examines these differences further and aims to 
provide an explanation for them.

1 . HYPOTHESES

Four hypotheses can be put forward to explain %(2) tensor anisotropy differences 
between CHl3*3S8 and Sbl3*3Sg:

HYPOTHESIS ONE: ß ANISOTROPY DIFFERENCES

This proposes that %(2) anisotropy differences are entirely due to the inherent 
hyperpolarisability differences between the various Rl3 molecules.

Evidence from previous NLO studies [24,25] indicates that the major source 
of nonlinear optical response in these adducts is at the Rl3 molecule. The 
chemical nature19 and polarisable electron distributions in CHI3 and Sbl3 
vary greatly due to differing molecular geometries and numbers of electrons 
(and their binding potentials) in the two molecules. Thus it seems plausible 

to suggest that significant ß differences exist between such different 
molecules and that these might completely dominate the appearance of the 
X(2) tensor.

HYPOTHESIS TWO: LOCAL-FIELD DIFFERENCES

This states that while the Rl3 hyperpolarisabilities are important in their 
contribution to the overall NLO susceptibility, that due to slightly differing 
environments offered by each of the isomorphous adduct lattices, the %(2) 
anisotropy is significantly governed by the resultant local field factors -to 
differing extents for each complex.

The manner in which the macroscopic field is modified depends on the 
densities and the relative positions of both the octa-sulfur and triiodide 

molecules in the adduct crystal. Appreciable geometry differences of RI3 
molecules are depicted in Figure Six. Looking at the variant shapes of CHI3

19 Consider the very different positions of carbon and antimony on the periodic table.
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and Sblß, the lattices of sulfur molecules in each of the adducts are expected 
to be different. Accordingly, the anisotropy of the local-field factors will be 
different in these two complexes. This could explain the variation seen in the 
anisotropies of the %(2) tensors for these materials.

Both RI3 and Ss are rather polarisable molecules which leads to large local 
field factors. This may mean that relative differences in local fields between 
the adduct lattices are also larger. This explanation only considers differing 
local field factors accounting for fields set up in reaction to applied fields on 
the crystal. The possible influence of different permanent internal electric 
fields is discussed in Chapter Five.

HYPOTHESIS THREE: RESONANCE ENHANCEMENT EFFECTS

This suggests that the amount of resonance enhancement occurring for the 
SHG process is different for each x(2) tensor element in each RI3OS8 adduct.

If this occurs, it will do so in addition to the previous two mechanisms which 
will remain of great importance in determining the anisotropy of %(2). This 
effect may, however, obscure the natural (non-resonant) anisotropy given 
by the hyperpolarisability and the crystal lattice.

The transition responsible for the absorption edge falling close to the 532 nm 
Nd:YAG second harmonic (presumably the n ^ a *  transition) is polarisation 
sensitive (Appendix Two). It is anticipated that x (2) tensor elements 
corresponding to the applied field being in the direction where 1064nm 2- 
photon absorption is strongest (the ab plane) will be preferentially 
enhanced. This variation will be not be the same for different Rl3 molecules, 
and so such a mechanism might contribute to the observed x(2) differences. 
Such differences may be due to different influences of the charge-transfer on 
the electron density of the complex molecules.

HYPOTHESIS FOUR: CONTRIBUTIONS FROM SULFUR

The final hypothesis invokes the possibility that there may be some 
second-order NLO response of the octa-sulfur molecule. This could add to 

the RI3 NLO response in such a way to give the total measured x(2) tensor 
of the adduct crystal (or at least its anisotropy). This is possible due to the
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noncentrosymmetric geometry of S8 - the undistorted molecule belongs to the 
Ü4d point group permitting a non-zero ß^23 element at non-zero frequencies. 
It is, however distorted in the adduct and this may allow other non-zero 
elements. This is further discussed in Chapters Three and Five. If 
important, this mechanism would also occur in addition to the first two 
considerations (at least).

These explanations are not mutually incompatible and each can be expected to 
contribute to some degree. Experiments and theoretical estimations aiming to 
demonstrate which of these factors is dominant in explaining the tensor 
differences between CHl3*3Ss and Sbl3*3S8 have been the major tasks of this 

project.

2 . METHODOLOGY

This thesis aims to establish which of the four explanations described in the 
previous section contribute to x(2) anisotropy differences in the Rl3*3Sg series of 

complexes.

As the first step towards this goal, it was deemed useful to quantify the second- 
order NLO behaviour of the third isomorphous member of this group of 
compounds; Asl3*3Sg. Examination of the NLO properties of a closely related 

series of CT complexes (R = CH, As, Sb) will then be possible (an 
improvement on the situation where only two 'isolated' members were available). 
Correlations between the observed NLO response and the electronic and 
geometric structure of the adduct are more likely to become evident. Subsequent 
analyses apply to all three complexes.

It might be anticipated from the positions of the R atoms on the periodic table 
(note the difference in metallic character between C and Sb), as well as from 
inspection of physical properties of each of the various triiodide compounds, that 
the NLO properties of Asl3*3Sg lie somewhere between those of the other two 

adducts. Table Five lists some properties of the solid RI3 compounds and Figure 
Six shows scale models of the free RI3 molecules.
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Table Five
Absorption

Edge

Refractive 
indices: n0,ne*

Band Gap 

(e V )#

M e ltin g
P oint

Density

(gcnr3)

CHI3
I...................

4 7 3 n m 2 .1 1
1 .7 6

- 3 . 6 5 1 2 3 ° C 4 .0 1

A s I 3 5 6 6 n m 2 .5 9
2 .2 3

2 .4 7 1 4 1 ° C 4 . 6 9

S b l 3L 5 8 4 n m 2 .7 8
2 .3 6

2 .4 1 1 7 0 ° C 4 .8 5

Quantities in the last three columns for Asl3 and Sbl3 come from entries in [Landölt Bömstein 
Series III, Teil 17f, p280-4]. Absorption edges are taken from diffuse reflectance spectra 
measured in this work [Appendix Two].

* Refractive indices determined at 633nm for CHI3 [26], at 656nm for Asl3 and at 671 nm for Sbl3. 
[both listed in Landölt Börnstein Series II, Teil 8, 2-236]

# For CHI3 this was measured at room temperature [38]. The others were determined at 90K. 
Melting point and density of CHI3 were taken from the CRC Handbook, ed 70.

It could be expected that differences in the anisotropy of refractive indices of the 
three adducts could be useful since there is a relationship between n and the 
linear susceptibility: n 2=x(1)+ l.  This is not the case, however, as these
properties are a convolution of microscopic response (polarisability of constituent 
molecules) and the macroscopic structure (molecular orientations and local field 
factors).

Actions which can be taken to resolve the question are:

First: one can inspect and compare computed isolated-molecule RI3
hyperpolarisabilities which give an idea of the absolute size and anisotropy of 
the molecular NLO response. If the isolated RI3 hyperpolarisabilities were to 
vary only slightly across the series, Hypothesis One is unlikely to be the reason 
behind the large x(2) differences in these complexes.

If there are significant differences in the ß tensors of these molecules, Hypothesis 
One may be valid and the operation of other factors must be shown separately.

Secondly: examination of the free-molecule ß anisotropy with respect to the 
observed crystal %(2) anisotropy is instructive. Differences necessarily exist 
between ß and %(2) anisotropies due to the local field issues discussed earlier, 
i.e., reaction and permanent local electric fields in condensed media may 
anisotropically modify an applied electric field at a molecule in a non-cubic, 
polarisable lattice. This is in addition to field-induced effects which may occur and
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change geometry and hyperpolarisability20. If the difference between the 

microscopic and macroscopic NLO coefficient anisotropies are very similar for 

each RI3 / Rl3*3S8 pair, this would suggest that the second explanation invoking 

very different local field factors within the different adduct crystals is not 

appropriate.

The Third part of this methodology is centred around the hypothetical process of 

placing an isolated molecule of known hyperpolarisability in a molecular crystal 

lattice and the NLO susceptibility of this crystal being predicted. Various models 

of the 'NLO-phore' in the crystal lattice can be used to try to best account for the 

local fields. One may then compare these 'constructed' NLO susceptibilities with 

measured %(2) values. By doing this, it is possible to gauge the importance of the 

first two explanations, i.e., to what extent inherent RI3 ß differences and different 

local field factors account for the %(2) differences together. If a good agreement 

can be achieved using a particular model, this would indicate that the First and 

Second Hypotheses in combination are of principal importance in explaining the 

observed x (2) anisotropy phenomenon.

The extent of the match in absolute size and anisotropy between measured and 

predicted nonlinear susceptibilities of these adduct crystals will depend on the 

local field model used in the construction of y}2\  The agreement of y j2) from 

particular models with the experimental y (2) is also informative suggesting which 

local field model for these adducts is appropriate.

Four: The above method of second-order susceptibility construction from RI3 

hyperpolarisabilities can be extended so that the microscopic NLO response of 

the Sq molecule is incorporated. This addresses Hypothesis Four in that if these 

Rl3*3 Ss NLO susceptibilities are in better agreement with measured y (2) than for 

when Sg hyperpolarisability is not considered, this would indicate that different 

contributions to %(2) from Ss hyperpolarisability do modify in some way the x (2) 

anisotropies of the complexes.

Five: Information regarding resonance enhancement for Hypothesis Three 

requires data on the differing electronic resonances for different field directions for 

the different adducts. One is specifically interested in the absorption at 532nm 

and 1064nm of the octa-sulfur adduct crystals both parallel (direction 3) and

20 These direct-field effects (geometry and poiarisability changes) may in turn change 
the way in which the applied electric field is modified at the molecule site. Thus the local- 
field subject is quite complicated.
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perpendicular (direction 1) to the uniaxial axis. From the difference in absorbance 
in the 1 and 3 crystal directions, it can be inferred if x ^  or X33 should experience

the largest enhancement. This can be done for each complex to indicate how 
much correction should be applied to the constructed x(2) elements for each 
R l3 *3 S 8 -

Six: Inspection of the local-field-factor tensors which are calculated in the
course of constructing x(2) elements is also informative. These measure the 
extent of the applied field enhancement along the two unique adduct crystal 
directions. Differences in these factors for the each of the adducts can indicate if 
augmentation of particular elements -which occurs in the process of estimating x(2) 
from ß- is different for any of the complexes. This provides evidence about the 
importance of local-field-factor variation suggested in Hypothesis Two.

3. TECHNIQUES

♦ It is necessary to obtain free-molecule hyperpolarisabilities 'ßg . The 
elements of ßg were calculated at an ab initio level using established 
computational chemistry techniques. These yield ß tensor elements for a 
hypothetical gas-phase molecule in the complete absence of other bonding 
interactions or any environmental effects. Experimentally, such 
hyperpolarisabilities might be measured in a gas-phase EFISH experiment - 
although no directly equivalent experiment exists since this measures only the 
vector part of the hyperpolarisability at optical frequency and the calculations are 
performed at zero frequency. It is recognised that absolute values of such 
computed quantities are not free from error, however, trends should be 
preserved. The computational techniques employed for calculating molecular 
hyperpolarisabilities of both RI3 and Ss molecules are discussed in Chapter 
Three. These were Hartree-Fock (SCF) methods run with various basis set 
sizes and the perturbation Moller-Plesset (MP) method by which electron 
correlation is taken into account to a certain degree.

It is presumed that although absolute magnitudes of the hyperpolarisabilities are 
probably underestimated, the error in the relative sizes between computed 
elements is much smaller.
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♦ Measurements of NLO susceptibilities were made using two experimental 
techniques. One was the method whereby SH intensity generated from a 
crystal sample is compared with that induced in a reference material of known 
nonlinearity. The other method was that of measurement of the magnitude of the 
electro-optic (Pockels) effect in these crystals. This is described in detail in 
Chapter Two.

♦ The determination of various adduct %(2) predictions from isolated RI3 
hyperpolarisabilities is a major aspect of this thesis. A model describing the 
manner in which the 'NLO-phore1 entity exists within the medium is always used 
in deriving NLO susceptibility values from a free-molecule ß tensor. This 
naturally affects how local fields are accounted for. Several models are available 
and three are used in this work. Detailed descriptions of the models are provided 
in Chapter Four. In summary they are:

• Using a continuum model of the dielectric medium -in which the NLO active 
molecule resides in a spherical cavity- Anisotropic Lorentz Approximation 
(ALA) local field factors are determined in a simple but approximate manner.

• A more realistic approach is to treat the medium as an assembly of 
(sub)lattices of polarisable entities. A cell is defined which contains the 
'NLO-phore1 molecule and 'submolecular' points are chosen appropriately to 
describe the molecule/s in question. The procedure determines the field using 
normal electrostatic relations at every specified point in the cell due to each 
"lattice" of every other type of point -and each of these determinations is 
done self consistently. The field is averaged over submolecular points to 
yield the 'Lorentz-Factor-Tensor' (LFT) for the cell. A local-field-factor-fensor 
for the molecule in its specific crystalline lattice can be determined using the 
LFT and linear susceptibility or polarisability data. This method is more 
accurate in that local fields are calculated explicitly and one has control over 
how one specifies the polarisable lattice points (according to chemical intuition 
for example). To a first approximation, the complex structure is considered to 

be comprised of F l^ S g b  supermolecules where the Sg ring was 
approximated by a single submolecule.
• Further improvement of this approach is realised by refining the 
specification of the molecules in the unit cell. Grouping as supermolecules 
can be problematic when considering unit cells containing more than one type 
of molecule (as is shown in Chapter Five). The Rlg*3Sg unit cell is thus 

specified as distinct RI3 molecules and Sg molecules, with submolecules at 
each atomic position. This results in one (averaged) Lorentz Factor tensor for 
sulfur molecules and a separate one for the triiodide molecules.
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Chapter Four explains the theory and procedure in detail and leads to four sets of 
coefficients constructed for the Rl3*3Ss complexes; (x ^  > Xsuper’ %full and 

^ composite)- The absolute sizes ancl anisotropies of these predicted coefficients 

are discussed with respect to the experimental x(2) tensors. This comparison 
follows the third part of the methodology principles outlined above, i.e., a good 
theory-experiment agreement of x(2) anisotropies would indicate that the First and 
Second Hypotheses are of most importance and that the particular model used 
represents the adduct crystal well. These comparisons occur in Chapter Five.

♦ To address the question of whether an NLO response from the sulfur 
molecule is contributing to the adduct NLO susceptibility, the crystal lattice is 
specified as two completely defined (in submolecules) molecular components, as 
described above. Once the Lorentz-Factor tensor for this full structure is known, 
it is a relatively straightforward extension to incorporate computed ß from both RI3 
and Sg to predict an adduct bulk susceptibility. Details of x(2) calculation using 
this 'LFT-Composite' method are given in Chapter Four. Agreement of NLO 
susceptibilities predicted in this way with measured x (2) will suggest the 
importance of the Ss NLO response to adduct x(2)-

Other aspects about the optical nonlinearity of Ss in these adducts are 
discussed in Chapter Five. Distorted ring geometries appear to lead to enhanced 
computed hyperpolarisabilities for the Ss molecule.

♦ Information about electronic resonances in these materials was obtained 
from absorption data collected on each complex. Ideally, polarised single crystal 
absorption spectra should be used and this was done for one adduct. Useful 
information can still be drawn from 'average' powder reflectance spectra.

4 . A POSSIBLE ALTERNATIVE

The methodology described in this section takes computed hyperpolarisabilities 
of the isolated Rl3 molecules and uses them in the construction of crystal NLO 
susceptibility values based on knowledge of the crystal structure and the linear 
susceptibility of the bulk material. In principle, the reverse operation could also 

be used to yield information about reasons for x(2) anisotropy. If an effective 
hyperpolarisability can be determined for a complexed RI3 unit, this could be
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compared with ß computed for the isolated non-complexed RI3 molecule. A similar 

methodology to that just outlined would apply; agreement between these ß 

would indicate that inherent hyperpolarisability and local field factor differences 

largely explain differing x(2) anisotropies.

There are certain problems in taking this approach. Deriving molecular 

polarisabilities and hyperpolarisabilities from macroscopic NLO measurements on 

molecular crystals is complicated by the fact that there is no unique way in which 

to do this. A small crystal NLO response may be due to molecules with large 

responses aligned within a cell in such a way that their net induced nonlinear 

oscillations largely cancel. This is especially problematic for a hetero-molecular 

crystal since it is considerably more difficult to estimate the relative in-crystai 

polarisabilities (so the local field factor tensors can be properly derived) and 

hyperpolarisabilities of different molecules present in the unit cell. In homo- 

molecular crystals, on the other hand, setting a to be the same for each molecule 

in the unit cell has more justification.

5 . THE CHARGE-TRANSFER INTERACTION

The question of the effect of the Charge Transfer interaction on NLO response 

exhibited by the crystal is interesting and pertinent. This is because it is very 

likely that it has an impact on the hyperpolarisability of the 'NLO-phore' 

molecule/s of the complex.

A charge-transfer interaction can be seen to fall under the category of non-local 

effects. This is considered in Chapter Five although the problem of how much 

this may affect the bulk NLO susceptibility does not become theoretically 

tractable. An experiment was undertaken to show directly whether or not large 

differences exist between the CT 'bond' strength between iodine and sulfur in 

each of the complexes. A Raman spectroscopic method was employed in which 

the scattering intensities from the R-l bond stretch were related to bond 

covalency changes induced by the Sß complexation. In this way, one could see 

if Sß complexation had a similar impact on each Rl3 molecule.
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Figure Six: Scale pictures of the Rl3 molecules (gas-phase geometries) (i) CHI3 (ii)
Asl3 (iii) Sbl3.
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CHAPTER TWO

In Chapter One, the objective of determining second-order NLO 
susceptibility tensor components in the Asl3*3Ss adduct was proposed. 
The RI3 part in this complex has physical properties in between those of 
CHI3 and Sbl3 and it is anticipated that 'intermediate' NLO properties of 
Asl3*3 S8 may assist in explaining why %(2) tensor anisotropy is so 
different in the series of Rl3*3Ss materials.

This chapter deals with the determination of these coefficients in the 
arsenic complex. This was accomplished using two methods:
• The first was the technique whereby Second Harmonic intensity 

generated in a sample of interest is compared to that in a reference 
crystal. The particular method used is called the Maker Fringe 
Technique.

• The second method employed measurement of the magnitude of the 
linear electro-optic effect (Pockels Effect).

The adducts Sbl3*3Ss and CHl3*3Ss have previously been examined 
using these techniques with fundamental radiation at ~1(im for the first 
technique and at 633nm for the electro-optic experiment. It is 
appropriate, therefore, to study the NLO properties of Asl3*3Ss in the 
same way.

This chapter explains both of these techniques in some detail and 
describes aspects of the experiments as performed in this work. Results 
are presented and examined in the context of the hypotheses proposed 
in Chapter One.



Chapter Two: Maker Fringe Experiments

The Maker Fringe Technique

1. BACKGROUND

The Maker Fringe Technique is a method by which bulk nonlinear optical 

susceptibilities of materials may be determined through measurement of the 

magnitude of their harmonic light generation response. A coherent (laser) light 

source acts as the exciting field. Second and Third harmonic generation in 

materials may be studied in this way.

The first such experiment was performed by P.D. Maker and co-workers in 1961 

[1a] when they passed a ruby laser beam (@694nm) through a quartz slab and 

measured the fluctuating intensity of the second harmonic radiation (@347nm) 

generated as the sample was rotated around an axis perpendicular to the beam 

propagation direction. The intensity fringes were given Maker's name and it was 

recognised that there was great potential for this experiment to be used as a 

method for the accurate determination of nonlinear optical coefficients of suitable 

solid samples.

Used as a measurement technique, the experiment is nearly always performed in 

a comparative sense -absolute determinations of nonlinear susceptibilities are 

very difficult and have been done only for a few materials. With the interest in 

this study in second-order NLO coefficients, description of the method specifically 

deals with the measurement of second harmonic generation (SHG) from solid 

samples1 *.

The experiment performed in this work is essentially identical to that of Maker and 

is sketched in Figure One. A 'fundamental' laser beam is directed through the 

noncentrosymmetric sample (crystal) of interest. The intensity of second 

harmonic light generated after passage through the material is recorded as a 

function of sample rotation and compared to the intensity generated in a well 

known second-order NLO substance such as crystalline quartz or KDP 

(potassium dihydrogenphosphate) measured in identical conditions.

1 Third harmonic generation -including from liquids and gases- is used routinely in third-
order hyperpolarisability Y  or third-order susceptibility Y^3)' measurements but is
somewhat complicated by the need to account for THG from the sample cell and air [1b].
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The technique is appropriate for this study in that it allows quantitative 

determination of individual tensor components of the nonlinear susceptibility. The 

accuracy in x (2) attainable with this method can be around 5% [2,3] with optimum 

sample quality. Measurement of different x (2) tensor elements is possible due to 

the control one has over fundamental and SH beam polarisation and over crystal 

orientation (Figure Three illustrates this). Such determinations are not possible 

with qualitative powder measurements (which are described on page 61).

Figure One: Close-up schematic of the Maker Fringe Experiment. Lateral displacement
between ro and 2co (called the 'walkoff') is shown greatly exaggerated. The point where the beam 
enters the sample coincides with the axis of stage rotation. See text for further explanation.

2. THEORY: Why does Second Harmonic intensity oscillate with sample rotation?

In strong E-M fields, appreciable amounts of second harmonic radiation may be 

induced from where the fundamental beam (of frequency co) first impinges upon a 

noncentrosymmetric medium. The SH light comes from the component of induced 

electric polarisation which oscillates at 2co -which is sometimes referred to as the 

bound wave because it is driven by the fundamental wave providing the 

energy. The 2co oscillating polarisation therefore remains associated (or bound) 

with the fundamental throughout its propagation in the nonlinear medium. Hence,
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Chapter Two: Maker Fringe Experiments

the bound wave travels with a 'phase velocity' c/n ^  as it passes through the 

material. The induced 2co polarisation constructively radiates a 2oo light field in the 
forward direction. This beam is referred to as the free wave since it propagates 
through the medium on its own -experiencing the 1120) refractive index.

So there are two 2co polarisation waves now oscillating in the material, each with 
different phase velocities, c/n^ and c/ri2co- Due to inherent dispersion in all 
materials, the indices n© and 112© will -in general- be different. The condition 
where *  ri2(o is called the 'non-phase-matched' situation. Starting from an in- 

phase situation, this means that the phase fronts of these two waves become 
progressively more out of step until after a certain distance they are completely 
out of phase. The free wave is then destructively interfering with the SH field 
being generated by the bound wave at that point and thus goes to zero 
intensity. Further on, the intensity of the free harmonic wave builds up due to a 
constructively interfering situation between the bound and free waves. Second 
harmonic intensity is at a maximum when bound and free waves are again 
exactly in phase.

Thus, the SH beam leaving the crystal has an intensity determined by where the 
exit plane of the crystal falls in this cycle. The effective thickness can be 
continuously changed by rotating the crystal around an axis perpendicular to that 
of the fundamental laser beam (Figure One). The move through the 
constructive/destructive interference cycle at the exit face is then seen as the so- 
called Maker fringes. A 'fringe' pattern of SH intensity is measured as a function 
of angle of inclination from normal incidence.

An equivalent explanation for the occurrence fringes describes the interacting 
fields as they propagate through the material. A set of "coupled amplitude 
equations" arise which describe the progression of the electric field amplitudes of 
each beam with propagation distance and with respect to each other's change in 
amplitude. The development of these are outlined here (based in general on a 
001 + C02 = C03 process -for SHG, co + co = 2co) as they are the basis for 
developing an expression for I20) (the second harmonic intensity leaving the 

sample).

Following Zernike [4], one starts with the wave equation, Eq (1), and considers 
the derivation for the nonlinear, 2co frequency only (each frequency must be 

treated separately). The 2co electric field vector, £3, of the free wave and the 2co 
electronic polarisation vector, P3, can act as source terms in:
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2£

' C2 dt2 C2 dt2 (1)
To derive the coupled equations, expressions for each term in Eq (1) are found 

by using the relation that the nonlinear polarisation generated in the material is 

given by:

P3 = Xi2):E1 E2 (2)

where the third rank %(2) tensor is the bulk second-order nonlinear susceptibility of 

the material and E\ and £2 are the electric field amplitudes of the fundamental 

beam/s.

We now consider only one dimension, z, for the sake of tractability and take each 

of the electric fields as being of the following form which invokes the 'slowly 

varying envelope' (SVE) approximation:

£>.,)=  £>)e-‘K'--M) + c.c. }

in which E(z, t) is considered to be separable into a time-invariant envelope 
E 0 (z) and a wave part described by the exponential term, k j  is the wave 

vector in the z direction in the material and equals 2tc/ V  where Xj  is the

wavelength in the NLO medium.

Using Eq (3) as the appropriate function, the
d 2E ,

term of Eq (1) is:

<ii> = _m2 E  e -i(<Ht-k}z) 
dt2

In the one dimensional treatment, the V2E  term of Eq (1) is given by d 2E^{z, t) 

dz2
Again using the form of Eq (3) for the electric field:

d =  ̂ ^3jz), e-i(co3t - k 3z) + 2i K e-i(©3t - k 3z) _  k ^ E ^ z )  e^t03̂ "^2)
dz2 dz2 dZ

The physical situation in the experiment is such that the field gradient with 

distance is much larger then the change in this gradient with respect to 

propagation extent through the sample. This is another expression of the SVE

48



Chapter Two: Maker Fringe Experiments

approximation: »  d ^ iz )  _ ThUS, the first term of the RHS of this
dz dz

expression can be disregarded, leading to:

d2E3(z, t)

dz2

Finally, substituting (3) into (2), the nonlinear polarisation is:

P3 = 2 x{-2'IE1(z) E2U) e'1!(“ ,+“2 + *2)z1

which when differentiated twice with respect to time (as appears in Eq (1)), 

gives:

^ -S . = -(co1 + © 2)2 2X^ E 1(Z) E2(z) e -iK“ 1+“ 2H * i+* !W 
dt (6)

k 23E3u) -  2 ik 3 Ä  
dz

,-i (a)3r-/c3z)

Substituting Expressions (4), (5) and (6) into Eq (1) and rearranging to give an

expression for dE3(z)
dz

one obtains:

2ik3M M e- ih ‘-K3z) = +(02f4n2
dz V '  C2 (7)

and after setting coi + C02 = 0)3 for the sum-frequency process:

= _i 4rew| x(2)£iW e 2(z) ei(k t +k2- k 3)z 

9z CL k 3 (8)

Analogous coupled amplitude equations may be derived for E \  and £2- These 

describe the electric field amplitude of a particular beam with respect to that of the 

other beams as they propagate through the NLO medium.

Exact solutions to these equations are complicated to derive. Assume, however, 

that £3 remains small, that E\ and £2 are equal (as for SHG) and constant (no 

depletion of pump beams) and that the interaction occurs in a medium of 

thickness, I .  Eq (8) may then be integrated over the distance, L, (the z direction) 

to give:
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471(03

k3c2Ak
AkL

(9)

where, for the second harmonic generation process, Ak is the mismatch in phase 
between the co and 2co wavevectors:

Ak -  (ki + k 2 -  k3) -  (2k^ -  k 2(ü)

To obtain an expression for the intensity of this radiation, one uses the relation:

( 10)I = —  E E ’

and after multiplying £3 of Eq (9) by its complex conjugate, expressing in 

trigonometric form and converting angular frequency and wavevectors, one 

obtains:

rue
- 8 k 2

n 3X3Ak (x,2>)2 Ij 2  it,

n i c
4sin2(^A)

(11)

Eq (11) can be rearranged and expressed as an equation for the second 
harmonic intensity, l2aj:

I,„ = G
n mn 2u (AkY

(xm )2 l i  sin2( -^ T )
(12a)

where G is a collected constant term 51271s
A X ic '

Jerphagnon and Kurtz [4] derived a similar expression using a different approach: 
the appropriate solutions of the wave equation (1) were taken for the £2© of both 

the bound and free waves in the NLO medium. The sum of these was used to 

determine the SH intensity. Omitting transmission and reflection factors for the 

moment their result was:

17«. = G
(nS - nL)2

(x<2))2 I2 sin2( ^ M
(12b)

where G is the collected constant term 128tc3
Ac
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Inspection of Eqs (12) shows that for a constant Ak 0) for an experiment, 

the intensity of the generated SH beam oscillates due to the s in 2(const x L )  

functional dependence it has on sample thickness. From this expression, one

“ n ai*° •“ M a  ti,e" “ mp“  * * * " “ ■ma,e “ a { 5in(“ r  a* f
'phase-matching1 dependence of ^  on Ak.

Any technique by which sample thickness, L, of the NLO medium can be 

changed during an SHG experiment must show that the second harmonic 

intensity witnessed at the output face is an oscillating function of L. This follows 

from both of the descriptions just offered.

To illustrate that this is the case for the measured patterns, an example of a 

Maker Fringe pattern (measured on the setup assembled during this project) is 

shown in Figure Two in which the sample was a thin plate crystal of potassium 

hydrogen phthalate2.

Second Harmonic 
Intensity 
(Arb Units)

-4B. 0 - 2 4  0 - 8  00 8 00 24 . B 4B 0

Stage Rotation
(Degrees from Normal Incidence)

Figure Two: A pattern of second harmonic intensity 'Maker Fringes' generated in a single
crystal of potassium hydrogen phthalate (measured in this work). The features evident on the main 
peaks are extra interference fringes arising from the ‘etalon effect’ whereby multi-internal 
reflections interfere inside the plane parallel crystal.

The oscillatory nature of the pattern is clear and a resemblance of this (and other 

patterns shown later) to a parent s in 2(const x L )  functional form is evident.

2 Crystals of this compound were easily grown from aqueous solution.
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The term given to the internal distance between the destructively and 
constructively interfering conditions is the coherence length lc. This is dependent 
on the magnitude of the wave-vector mismatch Ak between the co and 2co 

beams -and thus on the difference between no) and 11200. Wave vector 
mismatch, Ak, is equal to:

A k  = 2ka - k 2w

2n0)a cose; - n2ffi^ c o s e ^

2co
c n co cos 0^ -  n 2w cos e'2o3

^ A n
X

at norm al incidence

and since lc is the distance over which a phase shift of n occurs between 
the fundamental and second harmonic beams:

lc x A k
1 --------------------A-----------------

4(nB c o s e ; - n 2c0 cose2(0) (13)
l 4An at norm al incidence

Over this distance the power in the SH beam goes from zero to its maximum (or 
vice versa). Thus, the angle difference between two minima or two maxima of a 
fringe pattern represents a change in optical pathlength of 2 x^ .

Second Harmonic intensity leaving the crystal is given by Eq (12). This can be 
expressed in another form invoking the coherence length:

I,„  = H (X<21)2 I2
n B n 2l0

fy Y
k  s in2(— ) 

k L )  V2 l / (14)

This expression is a little more useful since it is more convenient to deal with 
coherence lengths than phase mismatch. Again, 1^ is the fundamental power, 
X(2) is the bulk second order NLO susceptibility, L is the crystal thickness and H

is the factor iUZ7 l . Equations (12) and (14) do not include transmission
X2c

correction factors to account for reflection losses. These are given in the next 
section.
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The variable in the Maker Fringe experiment is L although in certain experimental 

arrangements, both L and An may be dependent on rotation angle. This means 

that 1c will change as the sample is rotated leading to a more complex functional 

dependence. One can see from Eq (14) that given that L is the only variable, 

the quantities determining the shape of the fringe pattern are:

• the dispersion of the material (between the particular to and 2co concerned) 

since this determines the coherence length,

• and the thickness of the sample.

The frequency dependence of lc is not an issue here as only one fundamental 

wavelength was used.

3. APPLICATION: How are fringe patterns used to measure NLO coefficients?

In this technique, one measures second harmonic fringes from the sample and 

from a reference material of known NLO susceptibility. The procedure requires 

that conditions of fundamental beam power, shape, mode structure be identical 

for both measurements. Therefore reference and sample Maker-fringe pattern 

collection is performed either concurrently or immediately pre/proceeding the other.

In this case, 2co power extrapolated to normal incidence (0=0) in both materials 

can be compared. From Eq (14) it can be seen that:

T oc T2 (v (2))2 I 2
a2co acdvC I XC ( 1 5 )

which is adapted to give:

1Sample

1Reference

(  I \
x2co,Sample

^ 2 ( o ,Reference J

Reference 'HSample 

,Sample hReference
(16)

where the NLO susceptibility, %(2), is replaced by the alternative coefficient, d , 

more usually encountered in experimental work. They are related via:

d = V2 x
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Correction factors '77' have been included in Eq (16) to account for reflection 

losses:

77(0) = + ^  (n 2co + j-) jn which the / 2 term from
^ o o ^ 2co /  nconzco

Eq (12) is included but consideration of the multiple reflections3 is neglected.

All quantities in Eq (16) apply to the case where the fundamental beam is at 

normal incidence (the experiment is usually setup on the premise that the light is 

polarised along one crystallographic axis - in most useful experimental 

geometries, this is only exactly true at normal incidence).

Equation (16) may be used as it stands or rearranged specifically for this 

experiment to give:

''Adduct
d adp x ,adp

c,Adduct

\
2co,Adduct 

V ^2co, ADP J

ADP
f  1 _ jy \

±  r Vco,ADP

1 Adduct Adduct

f  2
■̂co, Adduct fl-2co, Adduct

J

^■(ü,ADP^-2(i>,ADP

(17)

where ADP refers to the reference material (see later) and sample properties are 

labelled as "Adduct" for these experiments. This was how Samoc et al [8 ] 

performed the comparison to get d  in their work on Sbl3 *3 S8 - Here, 77 are 

expressed as standard Fresnel reflection factors:

R -  [(n -D /O i+ l)]2.

For the determination of d, two quantities need to be evaluated - the coherence 

length as well as the SH intensity, both extrapolated to normal incidence.

3 The factor worked out by Jerphagnon and Kurtz applicable to their intensity
(n^ + lA n , + l )3(n„ + n .J

expression is: 77(0) =
n2m^(0)

This factor [2] is the reciprocal of the combination of Fresnel transmission factors; T co4(0)
1T2co(0) multiplied by the

I“ » + n 2.)‘
correction factor determined by Jerphagnon and Kurtz [2]

factor in Eq (12b). R{0) is a multiple reflection

R{ 0) = 1 +

at normal incidence.

- 1

V u 2co + 1
H o " 1

Vnco+ 1

i f

1 -
( . - 1

A \ (

Vu2co+ 1 1 -

J \

^ c o - 1 
nco + 1> J
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For the value of l 2co, one simply extrapolates the 'envelope' in which the fringes 

lie to normal incidence and uses this value - being careful that the scale and all 

other conditions are the same as for the reference measurement. It is possible to 

fit a theoretical envelope function however this is not usually necessary as 

values extrapolated by eye are sufficiently accurate.

Obtaining the value for lc at normal incidence is more involved as it must be 

sufficiently accurate. It can be taken directly from the fringe pattern4 or one may 

measure rico & r i2cD (or gauge them from an accurate dispersion formula if this is 

available) and calculate lc directly from these indices. These methods however, 

are not always sufficiently accurate (usually because of errors in the 

determination of refractive indices of small crystals).
I

To circumvent this problem, one recalls that it is the dispersion of the material and 

the thickness of the sample that determine the fringe spacing. The fringe pattern 

is thus fitted to a function as in Eq (15) by refining values of An (Borneo) and 

the crystal thickness. The relevant An values thus yielded (Arie or Ario) can be 

used for calculation5 of ]q at normal incidence.

Experimental geometries in which refractive index is constant with sample rotation 

are desirable since \q remains constant during the experiment and fringe fitting 

requires fewer parameters. Depending on the crystal symmetry, control of crystal 

orientation and of beam and analyser polarisations may enable these 

arrangements to be selected. It is also by control of these factors that various 

tensor elements may be measured. See Figure Three for the relevant 

experimental geometries for each tensor element.

4 A measure of lc can be obtained from the fringe pattern by determining the thickness 
change, At, that the angle between the maxima and zero of a fringe represents;

where symbols have the same meanings as in Figure One. In the example shown in 
Figure Three, this is ~15.5p.rn which is a typical value in such a low-dispersion material.
5 The situation as described is complicated by crystal-optic factors. Second harmonic 
intensity is an oscillating function largely because thickness changes with angle of 
rotation. But coherence length may also change as the sample is rotated because of 
different refractive index contributions of other crystal axes which become important 
when beams propagate with greater components along other axes of the crystal 
(consider changing propagation direction with respect to the indicatrix). This can be 
seen as a bunching up of the fringes or asymmetry of the fringe pattern around 0=0. 
There may also be a problem with the (slightly) different co & 2co beam paths - called 
"walkoff". This phenomenon can greatly reduce 12© but is generally only a problem for 
thick samples at large angles of incidence. These effects are expected to be very small 
in experiments described here, as they are performed in the preferred ‘thin crystal' limit.

55



Chapter Two: Maker Fringe Experiments

Analyser

Indicatrix

Analyser

,u<w
Indicatrix

V
Figure Three: Diagrams illustrating the experimental geometries employed for various
tensor element determinations for the uniaxial crystals examined in this study. In all diagrams, 
the rotation axis is parallel to the length of the page. A: geometry for J n  1, B: that for J333, C: 
that for J311 (unsuccessful), D: a non-preferred geometry for 6?3n in that n is not constant with 
extent of rotation. The coordinate system is shown for the horizontally drawn crystals.

Once an value (or average value from fits of fringe patterns from several 
samples) is established, this may be used along with 1^ and the reference 
sample parameters in Eq (16) in order to extract a value for the particular / (2) (or 
d) component which was governing the SHG for the given experimental 
geometry. Values for the reference parameters needed are taken from reference 

material measurements made under identical experimental conditions.
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4 . EXPERIMENTAL

Reference. Crystal Samples
Reference and Rl3*3Se crystal samples needed to be prepared. For a reference 

material, attempts at making a thin quartz slab of suitable optical quality were 
abandoned due to polishing difficulties and since it was not possible to determine 
the exact cut of the particular crystal block.

A large crystal of ammonium dihydrogenphosphate (ADP) was grown from an 
aqueous solution immersed in a temperature controlled bath which was slowly 
cooled over a period of some days. For the symmetry of ADP -point group 42m, 
nonzero elements of the nonlinear susceptibility tensor %(2) are: 4 = ^2 5  and d36.
Since 'Kleinman conditions'6 are closely fulfilled in the conditions for these 
experiments, all three elements are in fact equal and thus only one coefficient, 
^ 3 6 , needs to be measured and quoted. To probe this element in the Maker 
Fringe experiment, the geometry shown on the left of Figure Four is required.

Figure Four: Left: experimental geometry required for fringe pattern measurement in ADP.

Unfortunately, tetragonal crystals of ADP develop (010) and (100) faces. Hence 

it was necessary to cut and polish (110) faces at 45° to the natural faces for the

6 These are that there is zero dispersion exhibited by the sample between both 
fundamental and second harmonic wavelengths. This permits full permutation of tensor 
indices [4,8].

Indicatrix

Right: the cut taken from a naturally grown ADP crystal.
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crystals to be used as SHG references. This is indicated on the right of Figure 
Four. The crystal cutting was done using a thin diamond saw and the slabs were 
polished to sub-micron level on both sides by a professional petrographic 
laboratory. The value of J36 for ADP7 is 0.76pmV' 1 and the coherence length 
(calculated from highly accurate dispersion formula [6]) is 10.6|im for co=1064nm.

Adduct Samples
In order to obtain useful fringe patterns with this technique, samples of the 
complexes used in the measurements must be crystal specimens: (i) of high 
internal optical quality, (ii) having faces of high flatness and (iii) possessing 
highly parallel opposing faces. This is necessary so that wavefront phase is not 
distorted and that the thickness change with angle can be accurately known. 
Crystal dimensions needed to be of the order of 1mm (alignment was very 
difficult if the face area was too small) though the thickness was not of concern. 
These requirements presented some challenge for finding appropriate crystal 
growth conditions.

The RI3 and Ss components of the adduct were separately dissolved in CS2, 
the solutions mixed, filtered and the solvent allowed to slowly evaporate. The 
CS2 used was first washed with an aqueous solution of Na2S2C>3 so that 
S2O32' was available in the crystal growth solution to scavenge I2 formed from 
any photochemical decomposition of RI3. Large crystals and crystalline 
aggregates of the adduct readily formed, however, they were mostly of low 
quality due to the presence of opaque inclusions which rendered the crystal 
unsuitable. Small crystals grew in a seemingly high quality manner, but in a 
needlelike fashion and were not suitable because the face areas are too small.

An improvement was made by growing crystals in round-bottom test-tubes 
placed in a refrigerator (dark and ~4°C). When the solution was close to 
saturation (distinguished by its dark colour) one or two seed crystals were 
added. Encouraging growth outward and away from (rather than along) the 
vessel walls by using a test-tube seemed to enable two opposite faces of high 
quality to develop more easily. With these conditions, the temperature and 
evaporation rate for crystal growth yielded several good crystals for Maker-fringe 
measurements each batch.

7 derived from [5] -also listed in Landölt-Börnstein III/ll Sect6.
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Equipment
An experimental arrangement suitable for the quantitative measurement of Maker 
Fringe patterns needed to be specially constructed. The set-up assembled for 
this study is schematically shown in Figure Five.

The fundamental light source was the 1064nm output of a Quantel Nd3+:YAG 
laser running at a 10Hz repetition rate and with a pulse width of ~10 ns. Beam 
profile was periodically checked by the appearance of burn patterns on IR 
sensitive paper - though for this laser, these were never highly uniform. Beam 
polarisation was controlled by adjustment of one of the quarter-wave plates 
mounted just before the exit aperture, inside the laser housing. The degree of 
polarisation was very high, as determined by passing the beam through a Gian 
Thomson polariser.

Beam intensity was attenuated by passing it through a series of ND filters. The 
beam was then preliminarily aligned for appropriate height and levelness with a 
prism on an adjustable mount.

The rotating stage mechanism was built in-house and consisted of a SlowSyn 
HS25 Stepper motor (200 steps/rev) coupled to a 30:1 reduction gearbox which 
then turned a worm/wormwheel mechanism housed within a sturdy aluminium 
block. The stage surface was fixed to the wormwheel and rotated exactly in the 
horizontal plane. A vertical holding unit was firmly securable to the floor of the 
stage such that the centre of the aperture lined up exactly with the rotation axis of 
the stage. The holder could slide back on the stage to compensate for crystal 
thickness. After all gearings, the motor-to-stage step size was 3.564x1 O'3 
degrees/step.
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A/4 plate 
A/4 plate

Figure Five: Schematic of the experimental arrangement used for the measurement of Maker
Fringe patterns.

The focussing lens (1m focal length) was placed in the beam on an xy adjustable 
platform and then the stage unit was positioned carefully such that the beam 
passed through the stage rotation axis. Exact positioning of the beam with 
respect to this axis was very important or else the beam position on the crystal 
moves with rotation and thickness change with angle is not precisely known. 
This was achieved by fine lateral adjustment of the lens position after the stage 
unit was securely fixed. The arrangement was also such that the beam waist of 
the lens falls at the rotation axis though this aspect is not as critical as the beam 
position.

The fundamental laser power was typically 1.2- 1.5 mW and the spot size was 
estimated to be 60-90fim in diameter from observing burn patterns on damaged 
crystals.

An IR pass filter was introduced just before the sample holder to remove the 
small amounts of green light present in the beam from surface SHG from earlier 
optical elements. A heat absorbing visible-pass filter was mounted just behind 
the stage unit. An analysing polariser - which was simply a Polaroid sheet in an 
rotatable collar - was installed behind this. The two elements before the photo­
multiplier tube (PMT) were for further filtering. First, a dichroic mirror reflecting 
532nm and passing infra-red and finally, a green filter was fixed in front of the 
PMT housing which was positioned at 90° to the mirror.
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The measurement system was a synchronised move-collect-store sequence of 

actions coordinated by a Metrabyte 'Mstep' card equipped personal-computer 

running custom software written for this experiment. Bi-directional move 

commands were sent to the stage motor via a controller unit which converted the 

ttl signal from the card to a suitable pulse train for moving the motor. Detection of 

the second harmonic was achieved with a sensitive photomultiplier tube (RCA 

C31024) operated at 1800V. It was found that the relatively great position- 

insensitivity of this PMT was most beneficial to the experiment since there are 

small displacements of the signal beam during stage rotation which for other 

PMTs resulted in an extra intensity change being recorded as this signal-beam 

shift occurred.

Signals were processed by a digital storage oscilloscope (Tektronix 2439) and 

averaged over 128 laser pulses (a photodiode signal from the ND filter reflection 

acted as both a reference channel for laser power and as the scope trigger). The 

computer saved reference and signal values from both channels before sending 

the next move command to the stage.

Procedure

Qualitative SHG powder measurements8 were performed prior to the more 

accurate methods to follow. Finely crushed (ungraded) powders between glass 

slides were positioned in the Nd:YAG fundamental beam. The amount of second 

harmonic light generated was detected by eye. No difference between the 

substantial amounts of green light generated from Asl3*3Ss and Sbl3*3Ss could 

be seen. Both of these complexes showed more SHG than CHl3*3Se. This 

was repeated on different powder samples with the same result.

For the MF experiment, suitable single crystals of the adducts were carefully 

mounted on microscope cover-slips with an adhesive taking care that none 

remained between the cover-slip and the clear part of the crystal being 

examined. This was due to indications that the glue burnt in the laser beam and it 

also slightly dissolved the crystal surface. The cover-slip was clamped in the 

holder unit such that the crystal was in the appropriate orientation for the

8 This was developed by Kurtz and Perry [7] as a semi-quantitative method for the rapid 
assessment of potential second order NLO materials: powdered samples of the 
substance of interest are placed in an IR fundamental beam and the amount of visible 
second harmonic light generated is measured. This is compared with that generated 
from a reference material -usually urea. By using a series of powders graded by size, 
one can predict if the material is phase-matchable.
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particular d y  element being measured. The preferred geometries discussed 

earlier were employed in these measurements (Figure Three).

The unit was then fixed to the rotating stage and set at approximately normal 

incidence while the cover-slip was carefully manipulated so that the laser beam 

passed through a high quality region of the crystal. Due to the generally small 

area of perfect optical quality on/in the crystal, angle scans were mostly 

measured in one direction only - thus avoiding interference from crystal edges9. 

Full information is obtainable from such a half pattern. Some full patterns were 

collected. This improves the confidence in the extrapolated I 2M  slightly.

Scan parameters (step size, step length and shots averaged) were entered and 

the scan initiated. The computer automatically drove the stage to the starting 

stage angle and began collecting. The laser was run for some time to ensure 

output intensity had stabilised.

Analysis

Maker Fringe patterns, once collected, need to be analysed in order to extract the 

relevant parameters and conduct the comparison with the reference sample to 

determine the coefficient.

Data was treated using VAX-based software in which patterns were displayed 

and axes corrections and conversions were performed. It proved easiest to 

obtain extrapolated SH intensities at normal incidence (l2a>(0)), by selecting the 

intensity envelope intercept at zero degrees by eye and using a manually 

controlled cursor to select and record the value.

Coherence length information is contained in the spacing of fringes. One could 

calculate lc given sufficiently accurately known values of refractive indices -see 

Eq (13) and the example shown for potassium hydrogen phthalate in Figure 

Two. For the case of Rl3*3Ss fringes, however, n  are not determinable to the 

accuracy required for reliable ]q calculation.

Thus, for analysis of the patterns to yield \q values a fitting procedure was 

employed in which the refractive indices and the dispersion (between 1064nm 

and 532nm) were variables for the fit. Three main factors affect the shape of the 

fringe pattern:

9 This practice is also employed in measuring Third-Harmonic fringes from liquid samples 
[1b], polymer films [eg 9a] and in measuring SHG from LB films [eg 9b].
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• The material dispersion between the fundamental and SH indices (n 2W-n (0). 

This most strongly influences fringe spacing as one can see by this and the 

V(a ic2) factors appearing in Eqs (12).

• The absolute value of the refractive indices affects breadth of the fringe 

peaks since (due to Snell's law), an increased n  means a smaller increase of 

internal angle occurs as external angle is increased. Hence, for a full fringe to 

be seen, a larger range of external angle needs to be scanned.

• Crystal thickness, L, also affects the width of fringe peaks since the optical

path-length difference which is represented by a small angle change is given
, . L (cos0J -cos09 .. , ... , . .
b y  t  = ------------ ------------- f -  so that thicker samples mean that

n cos Q[ cos 02

there is a greater t with rotation and so more coherence lengths are passed- 

through in the experiment. This is seen as a pattern with more fringes, each 

of which are narrower than for thin samples.

The latter two effects on the pattern shape are the same and so the pattern can 

actually be fitted with the dispersion and the absolute refractive index. These 

were incrementally adjusted from input values. The routine was performed by an 

existing, custom10 PC-based fringe fitting program. It fits dispersion first, then 

absolute index. A single fit is not unique and it was found that there is a 
relationship between the magnitude of the n 2oj and n tt indices determined by the 

fitting procedure and the dispersion it yields. Each pattern was fitted several 

times, each with slightly different input values to give a small range of index- 

dispersion values.

For each fit, the dispersion value was plotted against its n 2 co value to give 

reasonable straight line plots. An example of an assembly of these plots is 

shown in Figure Eight. An average An at the actual value of the refractive index 

was taken which gives a more reliable value for lc than a single fit would offer. 

Coherence lengths are simply calculated from the relation: lc = ^/4An (for normal 

incidence). The An vs n 2W plots for all the fringe patterns fitted fell close to each 

other, indicating a good degree of consistency in these determinations of lc.

10 written by MJS
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5. RESULTS

Numerous crystal samples of both the iodoform and ASI3 adducts were measured 

successfully in both the d n  and ^33  geometries. These were analysed in the 
manner just described. A fringe pattern so measured from a crystal of CHI3*3Sq 

is shown in Figure Six. All attempts, however, at measuring fringe patterns in the 

J 31 experimental geometry were in vain for both materials as the SH signal 

generated was extremely low for the several crystals on which this was tried. It 

is believed that as well as this coefficient being very small, the coherence length 

for this geometry11 is very short. Both these factors prevent a pattern 

developing above the noise.

-14.8
Stage A ng le  (degrees)

Figure Six: Maker Fringe pattern generated from a 0.43mm thick CH3*3Ss crystal.
Experimental geometry was such that harmonic generation is governed by the d-\ 1 susceptibility 
component.

11 since Ak for J31 is given by In3 2co-n i,col which at =0.3 is fairly large, leading to a 
predicted ]q of =0.9pm. This is a consequence of the birefringence being larger than 
dispersion in these crystals.
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Nearly all fringe patterns (both full and half) measured for both components for 
both substances were able to be fitted in the manner described earlier. The very 
close match between calculated and measured patterns, after the fitting routine 
has been applied, is illustrated in Figure Seven with a typical result - in this case 
with J33 fringes from Asl3*3Se.

Figure Seven: Maker Fringe pattern generated from a 0.92mm thick Asl3*3Ss crystal.
Experimental geometry was such that harmonic generation is governed by the ^33 susceptibility 
component. The result of the least-square fit is shown with triangles.
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An example of An versus n max plots obtained from the multiple fits of several 
^33-Asl3*3S8 fringe patterns is shown in Figure Eight. With knowledge of the 

actual appropriate refractive index (n0 or n e for the 2co beam), dispersion values 

can be read from the intercept that the actual index makes with the straight line fit. 

This is evident in the Figure.

max

Figure Eight: Plot of fitted dispersion values (An) vs fitted n 2(0 for ^33 fringes measured in 
different Asl3*3Ss crystals as in Figure Seven. Each fringe pattern is represented by one type of 
point marker.

In this case, n2co is known to be - 1.884 for Asl3*3Ss. The average of the five 

dispersion values is 0.064 and this was taken for calculation of lc(0) [=^/4An]-

Other cases were treated identically and An values determined for both the ^33 
and d .2 2  interaction cases in Asl3*3Ss and in CHl3*3S8 are tabulated in Table 

One with estimates of the uncertainty in these values.
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Table One:

! CHI3*3S8 lc,// CHI3*3S8 1c,35 Asl3*3Sg lc,77 Asl3*3S8 lc,33
An j 0.1186 0.04408 0.12975 0.06455
An 0.1196 0.04375 0.13178 0.06380
An 0.11785 0.04438 0.13526 0.0644
An ! 0.1179 0.04432 0.13865 0.06342

! <ic> 2.25±0.05pm 6.0±0.1 p m 2.010.1pm 4.210.1pm
i A/4An 2.66pm 8.06pm 1.96pm 4.29pm

The average coherence lengths, <lc>, are also shown in the Table and are the 

values subsequently taken for use in Eq (17) for the d value determination. 
Coherence lengths predicted directly from measured refractive indices (see Table 
Two) are also shown in the last row. Error estimates for these coherence length 
predictions are of the same order as the uncertainty in the refractive index values. 
This is estimated to be between 2 and 5% - see the next section.

Except for 1C 3 3  for CHl3*3S8, the agreement between both lc determinations is 
reasonable. The poor agreement for CHl3*3Se could be partly due to error in the 

estimated n o  Such errors can arise quite easily from small errors in the Sellmeier 
formula when making predictions at wavelengths removed from experimental 
points.

The coherence lengths are seen to be small and of similar magnitude for both 
materials. They are shorter for Asl3*3Ss due to its larger dispersion (along both 

axes). These measurements are also consistent with coherence lengths 
determined for Sbl3*3Sg (2.1 pm and 3.6pm for lCin  and 1C 3 3  respectively [10]) 

which has virtually the same ordinary refractive index but a higher extraordinary 
refractive index as Asl3*3Ss.

The dispersion values obtained from fits of fringe patterns measured on several 
different samples of each complex were quite consistent as can be seen in Figure 
Eight. Coherence length determination for ADP was very close to the literature 

value of 10-6pm for these conditions [2].
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Extrapolated second harmonic intensity values, l2co. were unfortunately not so 
consistent. The principal reason for this is due to differing amounts of scatter from 
sample to sample as well as between the same crystals run at different times - it 
was noticed that in both materials, a small amount of surface decomposition 
occurred after a period of IR laser irradiation. This was enough to reduce perfect 
optical faces to those which still yielded good fringes, but which received 
fundamental intensity by a smaller yet unquantifiable amount.

Despite this problem, by measuring half fringe patterns for numerous samples 
and by using different fundamental beam intensities, it was possible to obtain 
reliable values for I203 from a sufficient number of patterns in each experimental 
geometry. Since SHG is a second-order NLO phenomenon, it must show a 
quadratic dependence on fundamental intensity. The I2 C0 values from each 
fringe pattern were thus plotted against the average I**, reference signal (taken 
from the PD channel). This was done first for the ADP reference sample (which 
does not suffer any laser damage). Figure Nine shows the quadratic 
dependence for SHG on Ico seen for ADP and for both tensor geometries for 
CHl3*3Ss and Asl3*3Ss.

As would be expected, data points from fringe patterns generated from crystals 
exhibiting excessive surface scatter are only of lower SH intensity than those for 
good quality samples showing very small amounts of scatter. Additionally, such 
points did not show a quadratic dependence on and on these two criteria 
were rejected. Despite the disappointingly small number of acceptable data 
points for l2co determination (reflecting a major difficulty in performing such 
measurements in these compounds), a good degree of confidence is associated 
with those points deemed useful by virtue of the numerous other crystals 
examined.

2̂to, Adduct
The i 2̂  ^Dp ratio required in the calculation of d is taken from this plot. 
The numbers determined for each compound and tensor geometry are tabulated 
in Table Two along with reflection factors, R, which are also necessary for use in 
Eq (17).
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3x10
Fundamental Power

Figure Nine: Second Harmonic Intensity versus Fundamental (1064nm) laser power
generated in the different experimental configurations in this work. Both scales are 
logarithmic in Arbitrary Units. Points rejected on the basis of low SHG and non-quadratic 
response are not shown on this diagram. The shaded line is the I 200 = (Ico)2 function.

♦  ADP d & .
^  Asl3*3Ss ^ 3 3 ,
□  Asl3*3S8 d-\-\,
®  CHl3*3S8 ^3 3 ,
O CHl3*3Sg J11

The error limits indicated in the Figure are: ±15% in I2co (±10% for ADP) and ±5% in Iw.
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Table Two:

nco n2co Rco R2co
SAMPLE I2co 

REFERENCE I2ca

CHI3*3S8
for d j i

2.1854 (n0) 2.2855 (n0) 0.1531 0.1385
8.6, 8.90, 6.87

: c h i3*3S8
for d33 1.7727 (ne) 1.8057 (ne) 0.07766 0.08246

1.51, 1.52

AsI3*3S8
for d j 1 2.209 (n0) 2.345 (n0) 0.1419 0.1617

8.2, 8.49, ~5.9
AsI3*3S8

for d33
1.820 (ne) 1.882 (ne) 0.08455 0.09366

12.08, 15.43, 16.4

SbI3*3S8
for d u 2.209 (n0) 2.332 (n0)

SbI3*3S8
for d33 1.858 (ne) 1.931 (ne)

j (NH4)H2P04 1.50705
(no)

1.48189
(n̂ )

0.0409 0.0377

The combined use of the data in Tables One and Two in the comparative formula 

Equation (17) enabled the following d values to be obtained:

Table Three:
j

d  pm/V d  pm/V d  pm/V L it d

CHI3*3S8 d u 20.0 22.2 22.8 19.1 [li]

CHI3*3S8 d33 2.3 2.3 2.6

1 AsI3*3S8 d n
s

21.5 25.1 26.0 -

A sI 3*3S8 d33 11.6 11.2 9.9 -

SbI3*3S8 d u 8.1 [io]

SbI3*3S8 d33 11.3

(NH4)H2P04 0.76 [5,6]

It is appropriate at this point to examine the results obtained for these complexes 
with those of the antimony adduct [10]. It is apparent that Asl3*3 Ss does have 

second-order (SHG) NLO properties intermediate to those of the CHI3 and Sbl3
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complexes in that the 11 susceptibility component is of similar size to that of 

CHl3*3Ss and the 33 component being the same as that of Sbl3*3Ss.

^2u>,Adduct
In that study, a spread in l , w ADP of about 15% was noted. A similar

variance is seen between the few useful such points measured in the 

experiments reported here.

Of some significance in support of these results is the comparison of 

susceptib ilities measured on CH l3*3 Ss in these experiments with those 

measured by Samoc eta!using the wedge technique and a fundamental of 937nm 

as reported in [11a]. It can be seen that the agreement is very good. It is 

expected that the values obtained in that work would have differed slightly due 

to the different co employed.

6 . ERRORS AND UNCERTAINTIES

Two important correction factors need to be considered along with these 

measured NLO coefficients. Both corrections are within, but contribute to, a 15- 

20% accuracy range for this technique:

(i) The first is that a slightly larger uncertainty exists in the refractive index 

values for the ASI3 adduct. The n e and n 0 taken for this complex were 

determined from a Sellmeier fit of rather old experimental data reported by West 

[12] and they may carry more uncertainty (particularly for n^) than the index 

values used for CHl3*3Ss. Due to fairly rapid surface decomposition under laser 

irradiation, it was not possible to perform accurate refractive index measurements 

in this study.

A test was made to assess the size of the error. The data of West for CHl3*3Ss 

was fitted to a Sellmeier function exactly as for Asl3*3Ss. Refractive indices at 

532nm and 1064nm were determined from this fit and compared with indices 

determined from the more recent data of Samoc etal[ 11a]. This showed that n© 

values using West's data were a little smaller by about 1% 12 than those 

obtained using Samoc's Sellmeier fit and that 112© values using West's data were 

marginally larger than the more recent values.

12 This is similar to the uncertainty quoted for the measured refractive indices for 
Sbl3*3S8 in Samoc efa[10].
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If one neglects error in determination of the recent refractive indices and takes 

them as "correct", there would be a maximum underestimation of 2.5% for both 

and ^33 arsenic adduct susceptibilities which corresponds to upper error 

limits of =0.6pm/V in d-n and -0.3 pm/V in ^33. For the anisotropy of %<2) for this 

complex, the error introduced with these refractive indices is very small.

(ii) Absorption of fundamental or second harmonic beams is the other 

experimental aspect which can affect the measured NLO coefficients. Through 

the theoretical development by Kurtz and Jerphagnon [3a-c], an expression 

accounting for the effect of absorption of the fundamental and/or second harmonic 

has been derived. I20 is also proportional to an additional factor not included in 

Eqs (16) and (17) and this factor may be applied to the determination of d\

where the a are absorption coefficients in cm’ 1 and L is the thickness of the 

sample.

Using absorption spectra data reported in Appendix One, it is possible to apply 
this to the case of d-n determination for Asl3*3Ss crystals. Taking a ^ O  and 

a2(£>~5 and a crystal of typical thickness of L = 0.07cm leads to the correction that 

this element is =9% larger than when absorption is not considered. This case is 

interesting as it is the most absorptive orientation for the most absorptive material 
yet the predicted underestimation of this element caused by neglect of a2W is 

reassuringly not too large.

In this case, the anisotropy of the d (and j^2)) tensor is affected. The d11 
coefficient for Asl3*3Ss listed in Table Three is too small by =9% yet the J33

anisotropy for this complex which is used in Chapter Five is too small by =3.5%. 

Of course this treatment only takes account of losses of the 2co signal and not of 

any enhancement of response due to proximity of this resonance. This is 

discussed in Chapter Five.

Thus, two of the three tensor elements for the bulk second order NLO coefficients 
have been experimentally determined here for the CHl3*3S8and Asl3*3Ss 

charge transfer addition complexes using the Maker Fringe technique. Data on 

the former adduct was in good agreement with and verifies earlier measurements. 
The information obtained for Asl3*3Ss is hitherto unreported.

0 (ao>+Xa2o))/^

coefficient is underestimated by only =2.5%. This means that the
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Linear Electro-Optic Effect Measurement

Attempts to determine the size of the NLO susceptibility component, x (3u > bY 

measuring second harmonic intensity generated from an appropriately oriented 
Asl3*3S8 crystal in the Maker Fringe experiment were not successful. An 

alternative method of 'accessing1 this element is through measurements of another 

second-order NLO phenomenon, the electro-optic or Pockels effect.

1. EXPLAN A TION AND THEORY

The Pockels effect is a second-order nonlinear interaction in which a strong static 

electric field, Ep, polarises the medium thereby modifying the optical properties 

for a probe beam. This optical field may be of low intensity' and propagates 

through a substance experiencing a different dielectric constant. The 

experimental observable in this method is thus a change in the refractive indices 

of the material. This may be sensitively measured as a phase change in a beam 

propagating along appropriate crystal axes and can be done in various ways. 
The requirement for noncentrosymmetric structures for the manifestation of this 

effect still holds.

The basis for the explanation of the effect [13a,b] is via description of changes in 

material optical properties using the index ellipsoid construction or ’indicatrix1 for 

which - n the general case when ellipsoid axes are not coincident with 

macroscopic axes- the equation is:

x2/  + y 2/  + z2/  + 2 x y / + 2 x ^  + 2 y z / =1
/ £11 / £22 / £33 / £12 / £13 / £ 23 (18)

where x, y  and z are the macroscopic cartesian coordinates and Vsij are 

elements of the dielectric (rank two) tensor of the unperturbed material. The 
inverse of the Ey tensor, [Vey] or [V n ? ] is called the ‘impermeability1 of the 

material and is also a second rank tensor. It relates the applied electric field to the 

dielectric displacement of Maxwell’s equations:
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Upon application of the strong static field, a change is induced in one or more 
tensor elements of the impermeability. The coefficient relating the size of this 
change to the inducing field strength is the electro-optic or Pockels coefficient:

% (19)

where the indices refer to cartesian axes of the laboratory frame. One can see 
that definition of this constant in terms of the reciprocal dielectric tensor is 
convenient in that it facilitates use in the equation for the indicatrix - thus 
describing the change in optical properties more conceptually.

The Pockels coefficient, r, is a third rank tensor often having certain elements 
equivalent as determined by the symmetry of the process and of the medium. 
The uncontracted 3x3x3 tensor has the same structure for each space group as 
does the second-order nonlinear susceptibility tensor governing second harmonic 
generation. In the contraction of these tensors however, they differ in that ryk 
becomes a 3x6 matrix of ry elements where i= 1 -6 and indicates the direction of 
impermeability change and j  is the direction of application of the strong electric 
field. Conversely, x% becomes a 6x3 matrix of elements where i =1-3 and

indicates the direction of the induced nonlinear polarisation and j =1-6 referring to 
possible combinations of directions of application of two electric fields. 
Tabulations of these tensors for the noncentrosymmetric space groups can be 
found (specifically for r )  in Ref [13a] (for example).

The symmetry of the electro-optic medium determine which ra re  nonvanishing 
and one can then easily predict which impermeability tensor elements are 
affected by application of a static field, E(o), in a given direction by using Eq (20). 
For example, consider the case of a material of 3m symmetry with a strong Ep 
applied along the crystal y  axis.

f  0 r 12

r 
^

tq
(N

0 _ r l2 h i
f  0 1

- h - f i l
0 0 r 33 e 2 _ 0
0 r l3 0 n h iE i

h i 0 0
\  j 0

^r 12 0 o , 0 J

Substitution of the non-zero impermeability elements on the RHS of Eq (20) into 
Eq (18) then informs as to which way the indicatrix is changed:
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+  JTi ~>E12^2 + + r12E2 yz  = 1

indicating that the indicatrix axes lengths are modified along y  and x and that 
rotation of ellipsoid axes has also occurred around the x axis (final term) so that 
the indicatrix is no longer exactly coincident with crystal axes when the field is 
applied this way.

Simplifying this expression by rotating coordinates to those of the new indicatrix 
one has (changing £ij to relevant refractive indices):

/  \  /  \  r  \
V r>->E12^2 + y 2 /  I\2^2 3-C-13^2 + T V 2-nf

r,,£13^2 =  1

from which it is possible to determine expressions for the magnitude of refractive 
index changes (An) for different experimental situations. For example, if the 
probe beam was propagated along the z axis and polarised parallel to the y 
axis,

X r l  r u E 2 +  r n E 2 )

Differentiating ny with respect to the applied field strength yields:

~̂ny ZiE~~{ri2+ r i 3 ) ĉ 2  

For small An and taking finite differences:

An = ' ) 2 n°(ri2+ r i3 )f 2  <21>

And so a combination of the T\2 and coefficients would be measured in this 
particular experiment.

Likewise, expressions can be deduced for other experimental conditions of 
applied field and optical field directions. One can then see which components of 
the Pockels coefficient tensor govern the EO effect for each condition, thereby 
enabling a choice of appropriate experimental arrangement. Preferred geometries 
are those which involve only the Tij coefficient of interest - unlike in the above 
example. Of major consideration is which geometries are actually experimentally
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achievable. As shall be seen later, the most favourable geometry may be 
precluded by some sample or instrumental factor.

In order to measure the size of the coefficient, one could conceivably measure n 
with the field present and when it is not and calculate the difference, An, to use in 
the appropriate equation. Due to the small differences induced by the static field 
however, this is not feasible so more sensitive techniques than the classic beam 
deflection methods are required. Direct determination of An by measuring the 
change of phase in the probe beam when Ep is applied is ideal and this is how 
An is obtained. The phase shift, AO, is related to the difference in refractive 

index by:

AO =  An 2tcL /
A  (22)

where L is the optical pathlength (sample thickness at normal incidence) and X is 
the wavelength of the optical field (633nm for the HeNe line). Knowing the field 
strength and refractive indices, i*ij is then easily extracted from the appropriate 
expression such as Eq (21).

There are two main methods for measuring these phase changes accurately [11]. 
One is an interferometric technique in which a beam passing through the sample 
is recombined with a pathlength-matched reference beam and a phase change is 
inferred from shifts in interference fringes upon the recombination of the two 
beams. This method can be very accurate but is not discussed further here as it 
was not employed in this work.

The other method is called the 'intensity modulation' technique. This is where the 
optical or probe field propagates through the birefringent material with 
components along two mutually perpendicular directions , -at least one of which 

undergoes change in refractive index in its direction when Ep is applied. These 
directions are generally selected to be principal axes of the optical indicatrix.

Such a situation is effectively beamsplitting at the front surface and beam 
recombination at the rear crystal face. With the field off, the two components may 
experience different indices and thus exhibit a particular 'baseline' phase shift 
upon recombination. This situation changes when the field is switched on. A 
new phase shift is observed in the exiting beam which is a superposition of the 
phase shifts occurring along each axis. The change of the phase shift is 
manifested as the change of the degree of ellipticity in the exiting polarisation.
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This is sensitively measured as an intensity change after passing through an 
analyser. Figure Ten illustrates this.

In practice, 'dual axis propagation' is simply achieved by polarising the probe 
beam at 45° to both crystal axes. One then adjusts the baseline polarisation 
[E(0) = off] condition to circular (or close to circular) which can be done before or 
after the sample with a A/4 plate or by subtle adjustment of the inclination of the 
crystal sample in the probe beam. With the field off, the intensity passing 
through the analyser is recorded and denoted Idc- When the field is on, the 
ellipticity induced in the circularly polarised light results in a small increase or 
decrease in the signal transmitted through the analyser. This signal is that due to 
E(0) and is denoted Ip. In this arrangement (where the baseline polarisation is 
circular) AO is a linear function of the intensity passing through the analyser. AO 

is then determined from the relation:

ForE(0) being modulated (eg at about 100-1000Flz), Ip is easy to see as the 
modulation of the transmitted signal. If required, lock-in detection can be used to 
increase sensitivity for experiments exhibiting very small phase changes.

Finally, the condition of dual axes propagation must be accounted for in the 
development of the expression for An cf Eq (21). For example, in the case 
above for a probe beam propagating along the y  axis and polarised at 45° to the 
x and y  axes, the expression for An becomes

2 . EXPERIMENTAL ASPECTS

The essential features for the measurement of the strength of this phenomenon 
with the intensity modulation method are shown schematically in Figure Ten. Of 
utmost importance is the crystal sample which may have to be cut correctly and 
also must possess high optical quality (flatness and polish) for the faces through 

which the optical field propagates.

♦ The optical field was the 632.8nm output beam from a small (4mW) 

polarised HeNe laser. An actual polarised output is important as the different

DC
(23)

(24)
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polarisations of different modes will lead to unwanted fluctuations during intensity 

modulation measurements as mode-hops occur. The Ep field was supplied from 

a small high-voltage transformer (an automotive coil) driven by an audio-amplifier 

fed by a WaveTek signal generator through which all control of the field strength 

and frequency was exercised. The modulation frequency was maintained at 

~200Hz and the voltage delivered to the electrodes could be up to 4000V peak- 

to-peak.

Polarised HeNe 
laser output

10cm f l  lens

electrodes

Polariser

Oscilloscope

Figure Ten: Diagrammatic representation of experiment for measurement of Pockels
coefficients in Rl3*3Ss crystals.

♦ A cell was built to securely house the crystal between electrodes. It 

contained index matching fluid and allowed small adjustment of the crystal 

orientation with respect to the HeNe beam (to enable baseline phase shift to be 

manipulated). A teflon cell conforming to these requirements was built in-house. 

The brass electrodes individually screwed in to the threaded core of the teflon rod 

and served also to seal the sample chamber for the index-matching fluid. The 

crystal was appropriately affixed to one of the electrodes, the fluid was then 

introduced through the open window and a coverslip fixed over this to close it 

(ensuring no air bubbles remained). This unit could then be placed in a holder,
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the high-voltage leads attached and alignment in the HeNe beam undertaken. 

The analyser was a high quality Glan-laser polariser held in a rotatable mount. 

Detection was effected using a photodiode, the output of which fed directly to the 

oscilloscope. The experiment is shown schematically Figure Ten.

♦ The crystal samples of Asl3*3S 8 used for these Pockels effect 

measurements were obtained as for those for Maker Fringe experiments.

♦ Following the methodology outlined earlier, a number of conditions in 

which the 1*13 element is involved can be deduced by determining the effect on 

the indicatrix when E(q is applied along each crystallographic axis12. One 

suitable condition would be for E p to be applied along the z axis and the probe 

field is also directed along the z axis and polarised at 45° to x  and y. In such a 

case, An is given by -1/2 n 03r i 3E3. Unfortunately, this particular geometry is 

impossible to achieve experimentally; crystals do not form natural (001) faces 

and cutting and optically polishing plane parallel slabs is virtually impossible in 

these materials. Another 'clean' possibility with E p  applied along y  and the 

probe field along y  at 45° to x  and z had to be ruled out as x and y  axes are 

optically indistinguishable in these uniaxial crystals.

The geometry employed therefore is that in which E(0) acts along the z axis. The 
indicatrix change is then given by:

x 2
\

+  r l3 ^ 3
J

r l3 ^ 3
)

=  1

With the HeNe beam propagating through the only natural face available (of 

Miller index 010 or 100 depending on the axis system chosen) and at 45° to z, 

the index modulation will be:

and it is the grouping (1*13 - ( ne/n o ) 3r 33)tha t is measured.

♦ Fine beam positioning was done by manipulation of the lens in front of the 

sample. After passage through the sample, the beam was passed through a 

pinhole to remove most scatter. The analyser was rotated to check for circular 

polarisation condition (i.e., that there was a minimum of transmitted intensity

12 This is done as before using Eqs (17,19) and then simplifying in the manner of 
obtaining Eq (20).
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fluctuation as the analyser was rotated) and the crystal orientation was carefully 

moved until this was satisfactory. This was checked by eye. It was not 

possible to achieve perfect circular polarisation background for the experiment 

using crystal manipulation however, it makes only a small difference if there is 

some ellipticity already in the background polarisation.

Idc was measured on the scope and the field switched on. The 

modulation depth was recorded for a number of field strengths. The process was 

repeated several times on different parts of the crystal. For each Ip vs E(o) set of 

measurements at different crystal beam positions, the same set of voltages from 

the signal generator were used, thus, the actual applied fields are the same in 

each set.

To help confirm the verity of the signal, the sample was removed and re­

loaded in a different orientation - such that E(o) was directed along x  (or y). A 

much larger modulation signal was observed in this experiment. Unfortunately 

only a limited amount of data was recorded in this orientation -for measuring 1*12- 

as the HV transformer failed at this point.

3 . RESULTS

Data is not collected as a 'scanned' measure of the size of AO or An with 

increasing Ep field strength. In principle, a single measurement for a particular 

geometry suffices although it is most important to ensure that one is working in 

the linear response regime and to try to establish that no mechanical or other 

electronic or optical effects are causing or obfuscating the signal.

Plots of Ip vs E(o) are shown in Figure Eleven. It can be seen that the 

dependence of Ip on E(0) is linear, though with deviations at low and high field 

strengths. At low field, Ip becomes increasingly difficult to read from the 

oscilloscope screen and this may account for deviations here. At high field, some 

sort of saturation region appears to be reached though the reasons for this are 

not known. This linearity alone suggests that -at least predominantly- it is the 

Pockels effect being measured. Mechanical contributions to this 'undamped 

measurement' are presumed to be small due to the low modulation frequency 

used. Furthermore, when the orientation of the sample was changed and the EO 

effect measured in this new geometry, a change in magnitude of the modulated 

signal of the predicted size occurred also indicating that in both of these 

arrangements, it was the Pockels effect that was being observed.
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Figure Eleven: Plot of modulated signal intensity measured in the electro-optic effect
experiment as a function of applied field strength. Error bars indicate worst-case confidence 
limits of ±10mV in Ip and ±0.08x106Vrrf1 in E(0).
The three different data sets are measurements from different crystals.

Evaluation of (A 3 - ( ^ /n o ) 3^ )  from this data commences with determination of 

the phase shift AO induced in the beam by the applied electric field using Eq 

(23). This can be done at any point though it is clearly best to do this within the 

linear domain of Ip vs E(0) . Once a AO value is obtained, it is related to the 

applied field strength through the expression for An from Eq (22):

0 = An 2tcL /
A v (26)

Taking a typical case from the graph in Figure Eleven: 

when E(o) (= E3) = 2.12x106 V/m, Ip =0.06V.

For this measurement, IDC =1200mV. From Eq (23), sinO =If/ I dc = °-06/ i .2 
O is therefore ~50 milliradians.

Taking: X=632.8x10‘9m L = 1.27x10‘3m

ne= 1.853 and no= 2.283 (determined for 633nm using the earlier 

dispersion formula), Eq (26) yields:

(A3 - ( ^ /n o ) 3^ )  = 0.30pmV'1.
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This process is repeated on points within each curve and also on those of the 
other measured Ef vs E(o) plots. In this way, a more reliable average figure for 
the coefficient is obtained. In doing this, values between 0.28 and 0.34pmV' 1 

were evaluated for (1*13 - Q535r 33). Note that it is quite a small range in which 
these lie. In further calculations, a value for (1*13- 05352*33). of 0.31 pmV*1 is used.

It is relevant to compare this figure to the analogous measured electro-optic 
coefficient for CHl3*3S8 [11] in which (2*13 - 05122*33) was found to be 

0 .29±0.12pmV-1. In the context of celebrated crystalline electro-optic materials, 
the particular Rl3*3Ss response measured here is about one tenth that of large 

responses of, say KH2PO4. It is worth remembering, however, that this 
grouping of Pockels coefficient components for Asl3*3Sg is probably not the 

largest for the complex. In the iodoform compound, 2*12 was measured as 
=4pmV'1 [11].

The aim of this experiment was to estimate the X31 NLO susceptibility 

component via measurement of the 2*13 electro-optic coefficient. In practice, 
however, this procedure is problematic:
• Firstly, one cannot experimentally access the 2*13 component alone and must 

measure a phase change dictated by a grouping of components.
• Secondly, one needs to know the size and sign of the 2*33 component if 2*13 

is to be extracted from this measured grouping and this is unknown (and so 
the 2*13 element can conceivably be of any size). It is -in principle- possible 
to derive 2*33 from the SHG-measured 0(33 component13 however, this is 
only strictly possible for dispersionless media and so would be considered to 
have a large error associated with it for this adduct. There is also uncertainty 
as to the appropriate numerical coefficient, K, to use in this determination.

• Even if an 2*13 is extracted in this manner, one must again make the 
assumption of Kleinman conditions [4,8] to derive d\2> = ^31 and by doing this 
the error is further amplified.

It is reasonable to suggest, however, that because ^33 for Asl3*3Sg is larger 
than that for CHl3*3S8, a similar relation applies between the 2*33 coefficients of 

these complexes. If this is the case, then because the {2*i3-(~0.5)2*33}

13 A relationship exists [14] between the Pockels coefficient and the second order 
NLO susceptibility:

d ij = K n il2 n jj2 rXj
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groupings for the two adducts are the same, it follows that the 1*13 coefficient for 
Asl3*3Ss is somewhat larger than that of CHl3*3S8.

Summary

Inspection of the experimentally determined NLO susceptibilities as a group 
reveals that the NLO response of Asl3*3S8 is different again to that of the 

previously measured complexes. The Asl3 adduct exhibits strong NLO 
response in both the xy plane and parallel to the z axis. One also observes a 
decrease in the anisotropy ratios of these two responses across the series CH 
-» Sb. In this property too, the arsenic adduct occupies an intermediate position 
to the other complexes.

The objective of attaining a set of second-order NLO coefficients for the other 
'intermediate' charge-transfer addition complex of the RI3*3S8 type has been 
achieved with the data collected on Asl3*3S8 as described in this chapter. The 

lack of a conclusive determination of d^\ is unfortunate, however, the focus of 
subsequent analyses is on the anisotropy between '11' and '33' NLO response.
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CHAPTER THREE

This Chapter describes the computations of molecular first-hyperpolarisability 
coefficients of the RI3 molecules on whose sulfur adducts experimental NLO 
measurements were undertaken.

The rationale behind the pursuit of calculated values of molecular 
hyperpolarisabilities is that these ß are for hypothetical isolated molecules. It 
was proposed in Chapter One that molecular ß tensors could be used in 
conjunction with various models of the local fields in the adduct crystals to 
‘construct’ values of NLO susceptibility for Rl3*3 Sg. These can then be 

compared with the measured x(2)s of the complexes.

It has been possible to calculate beta-tensor elements for all three tri-iodide 
molecules at a reasonably high level of theory using ab initio quantum chemical 
methods as available in the Gaussian94® program suite. Performing these 
calculations also had the benefit of yielding molecular orbital energies and 
degeneracies. A feature of this work is the computation of hitherto unreported 
molecular hyperpolarisabilities of the arsenic and tri-iodide molecule.

This chapter commences with a short introduction concerning the calculation of 
quadratic hyperpolarisability1. Previous relevant work is outlined and is followed 
by description of the computation methods. Results from these are 
subsequently presented and analysed.

1 Theoretical prediction of molecular third-order NLO response has been discussed. 
For example, see Dudis e?af[1] and Bredas etä[2].
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Theory: The Computation of ß

1. TYPES OF METHODS

For calculations of reliable first hyperpolarisabilities, the appropriate 
computational method must have a sufficiently extended set of basis functions in 
order to accurately describe the outer parts of the electronic charge distribution. 
The hyperpolarisability is particularly sensitive to these less-tightly bound 
electronic distributions, ß tensors may be computed with semi-empirical (SE) 
and ab initio quantum-chemical methods. The review article by Kanis eta l[6 ] 
gives a comparative account of these techniques.

In semi-empirical methods, certain molecular parameters are obtained from 
experimental data rather than being explicitly calculated. The Hamiltonians are of 
simpler form, generally only explicitly dealing with valence electrons and 
containing empirical data for the potential of core electrons. Basis sets may 
contain fixed atomic orbital exponents. Also, the calculation of the molecular 
wavefunction and energy judiciously neglects certain integrals between different 
centres comprising the wavefunction. These choices reduce the number of steps 
in the calculation but can be detrimental to the accuracy for some molecular 
properties.

Semi-empirical techniques were used only sparsely in this work. The majority of 
work involving the calculation of ß do so for 7u-electron organic molecules. It is 
expected that the parametrisation of such methods is quite inappropriate for the 
determination of ß for sigma-bonded heavy atoms - even if the method is 
optimised for calculating NLO response. Their usefulness in this regard is 
discussed in several works [3-7] though the reliability of their computed ßs is not 
established. The simplest SE methods are not relevant to the issue of calculating 
hyperpolarisabilities in molecules such as RI3 since they only consider the n 
electrons of unsaturated organic molecules. Many have been superceded by the 
increased facility of performing ab initio level calculations.

Ab initio calculations of molecular properties are more rigorous in that they deal 
with the entire electron distribution of the molecule but, consequently, they are 
computationally more expensive.
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2 . HARTREE-FOCK METHOD

The most important ab initio computational chemistry procedure is the Self 

Consistent Field (SCF) or Hartree Fock (HF) method of wavefunction calculation. 

A hamiltonian describing all electrostatic interactions in the molecule is first 

devised. For the examination of molecular properties such as optical resonances, 

hyperpolarisabilities etc, this must contain terms describing the change of energy 

imposed by an applied external field. Such a Hamiltonian is shown in Eq (1) [6]:

xu
|v,2 + IZj_

ril
+ F r t

(1)

Where Z is nuclear charge, Rjj is internuclear distance, ru is electron-nucleus 

distance and r,y inter-electron distance. The first term describes nuclear-nuclear 

repulsion, the second accounts for (linear) energy change arising from nuclear 

displacement induced by an applied electric field2, F. The next term is comprised 

of electron kinetic energy, electron-nucleus potential, and applied-field effects on 

the electron and is summed over all electrons. The final term describes electron- 

electron repulsion, i and j  are electron labels and I  and J nuclear labels.

An electronic wavefunction for the entire molecular system is composed and is 

written as a Slater determinant with the elements denoting the products of 

molecular orbitals, <j>, and electron spin states, a or b\

al - $ l  al ' § 2  b i ' § 2  — al  '§n/2 • §„/2

<D = a 2 ’ § \  h .  • <h <*2'§2 h .  • $2 ••• a2 ‘ b2-§nrt

a n - $ l  V < h  <V<t>2 V<l>2 —  hn '$ r S 2

where an and bn designate the 'up and down' spins respectively of electron 1, 2 

... n etc. The <2-<j) products are sometimes called molecular spin-orbitals. Use of 

this procedure guarantees the necessary wavefunction antisymmetry with 

respect to particle exchange. This determinant is generally large with n2 

elements.

The molecular orbitals in turn are considered as being linear combinations of basis 

functions belonging to the atomic centres.

2 In this chapter only, an applied electric field is denoted by F  in order to distinguish it 
from the energy, E.
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d = L c^

Where y/\s the atomic wavefunction and 'c ' is a combination coefficient.

Gaussian-type functions are used as the descriptors for these atomic 

wavefunctions as they are mathematically straightforward to manipulate -
a r 1although generally, several such functions (of the form y  = p e  ) are required 

to describe one atomic orbital basis function, i\r.

Energy is calculated using this starting wavefunction in the time-dependent or 

time-independent Schrödinger equation. A procedure for obtaining the correct 

composition of these molecular orbitals uses the 'Roothaan method' [8]. Some 

starting set of basis function combination coefficients for each MO serves as 

input and the so-called Roothaan-Hall simultaneous equations are solved. This 

involves terms for3;

• the energy of single electrons in the nuclear potential, Hcore.

• the two-electron repulsion interaction for/between each electron

• and factors giving the extent of overlap between one-electron basis 

functions,

In the Roothaan method, the combination coefficient, c, is assigned to a linear 

combination of these terms for each electron and this is adjusted until a set of c

are obtained such that is a minimum. The resulting wavefunction has a new

set of coefficients which are then treated as input and the process repeated until 

the change between the new set of input coefficients and old is negligible at 

which point it is self consistent. The energy of the system should also converge 

as the SCF calculation proceeds. Self consistency of atomic orbital coefficients 

as well as energy convergence are used as criteria to establish when 

wavefunction calculation is complete. 'Restricted' Hartree-Fock (RHF) calculations 

in which paired orbital occupancy is forced is appropriate for closed-shell 

systems such as for the molecules of concern here.

In a geometry optimisation, nuclear coordinates are varied and the SCF energy 

computation is repeated at each geometry in the absence of any field. The 

energy gradient with respect to molecular atomic positions is calculated and the 

optimised structure is taken where this is a minimum.

3 These are each calculated in ab initio procedure but are empirically determined to 
give agreement with experimental data in semiempirical methods.
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3 . SCF HYPERPOLARISABILITES

The calculation of hyperpolarisability tensor elements is done in 'single-point' 

calculations which take a self-consistent/energy-optimised geometry determined 

in the manner just described. From the well known expression4: (using the

Einstein summation convention)

ß i  =  a i jF j + 2 P ijkF jFk  + \  Y i j k i F j h F +  ••• (2)

the polarisability and hyperpolarisabilities can be expressed as appropriate- 

order field derivatives of either the energy or the dipole moment of the system:

_ ay, _ (3)
Pl]k dFjdFk w

presuming the Hellmann-Feynman principle to be valid5. F is the applied electric 

field and E is the energy of the molecule. Thus the derivatives in Eq (3) have to 

be evaluated in order to yield ß. Different tensor components are obtained by 

appropriate substitution of x, y and z for i , j  and k in Eq (3). The computation of 

the derivatives may be done analytically -in which case the technique is referred 

to as Coupled Perturbed Hartree-Fock- or numerically in which case the term 

‘finite field1 (FF) is used. Both should yield identical results but have different 

computational efficiency.

In the description above, the NLO coefficient has been considered to describe 

the static molecular response. It is possible to extend the HF method to 

incorporate the dependence of the response on the frequency of an applied 

oscillating electric field. Implementation of the time-dependent Hartree-Fock 

(TDHF) method is not trivial, however, as the time-dependent Schrödinger 

Equation must be solved. Applied electric fields, F, in the second and fifth terms 

of the hamiltonian, Eq (1), will have a complex form leading to complex orbitals. 

Also, in the determination of ß using Eq (3), the fields, F, are also of a complex 

form and the calculation must be done analytically [5,10b]. Unfortunately, 

however, the TDHF method was not available for this study.

4 The numerical coefficients, 1 /n;, before successive expansion terms are included in 
Eq (2) in accordance with nearly all quantum chemical descriptions of the calculation of 
hyperpolarisabilities. These are frequently omitted in definitions of experimental NLO 
coefficients. This leads to the necessity of introducing n! multipliers when comparing 
experimental and theory-derived hyperpolarisabilities.
c

This is the principle connecting the change in energy of a system with the change in a 
particular molecular property.
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The basis sets necessary for these calculations are extended compared to those

for geometry optimisations. They incorporate 'diffuse functions' which are s and

p orbitals that are larger than those existing for a particular atom in its ground

state. They enable the more 'diffuse' outer electron distribution reaches to be

more accurately accounted for. Similarly, addition of extra functions of higher

angular momentum quantum number allows the spatial characteristics of the

wavefunction to be better described. These are called 'polarisation' functions. It

has been established that the addition of sufficient diffuse and polarisation 
0

functions is mandatory for the reasonable evaluation of beta [4,5,7].

For light atoms, all orbitals -including those of core electrons- are described with 

gaussian basis functions which may be of the 'contracted' type, being linear sets 

of prim itive  gaussian functions. For calculations involving heavy elements 

(iodine, antimony and arsenic atoms in this work), the large number of electrons 

requires use of 'pseudo-potentials' (aslo: effective core potentials)* * 7 in order to 

reduce the number of computed integrals. In this approximation, that part of the 

hamiltonian describing interactions between the core electrons -which play little 

part in the bonding interactions- and valence electrons is replaced by a single 

pre-determined potential. These have been determined for each element [22] and 

are called upon by the Gaussian program when needed.

For all calculations, an appropriate set of basis functions must be chosen. The 6- 

311G(2d,2p) basis set is widely regarded as a good standard level for reliable 

geometry determinations of organic molecules (and was used on C, As & H 

atoms in geometry optimisations in this study). This notation indicates that for 

this set, each orbital of the core is represented by a single gaussian function 

formed from the contraction of six Gaussian-type functions, and that the valence 

orbitals are each represented by a set of three functions ('triple-zeta' basis set), 

one of which is formed from the contraction of three Gaussian-type orbitals. This 

basis set was augmented with two d-type polarisation functions for the carbon 

atom and 2 p-functions for the hydrogen atom. Effective core potentials were 

used for the heavy atoms (As, Sb and I) with diffuse and/or polarisation 

functions added to the valence functions.

0
As quoted in Kanis [6], the basis sets necessary are "discouragingly large".

7 This standard method is described in texts such as Levine [10] and described in detail 
where the potentials are published [19]. Effective core potential use is exemplified in 
Kama's work [12-14] and by Glukhovtsev eta! [21].
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With respect to choice of basis set employed, van Mourik and van Duijneveldt 

[13] found in the study of weak hydrogen bonding interactions between the 

water molecule and several small substituted methane molecules, that singly 

polarised, double zeta basis sets were of sufficient size to yield satisfactory 

interaction energies. These are rather dependent on the outer charge distribution 

as is the hyperpolarisability so this conclusion should be applicable here. This 

observation is confirmed in these results where it is seen for ASI3 and CHI3, little 

change is seen in ß in extending double to triple zeta basis sets.

4 . CONSIDERATION OF ELECTRON CORRELATION

An inherent limitation of the SCF method is the neglect of the effect of electron 

correlation. This stems directly from the procedure where a single determinant is 

used to describe the electron distribution in the molecule. The electron distribution 

is effectively static and so cannot include representation of the tendencies of the 

electrons to minimise their proximity (or rather, probability of close proximity) 

apart from the prohibited extreme close proximity of electrons having the same 

MO and spin. In energy terms, this causes the SCF energy to be an over­

estimate (eg, Atkins, Levine [8]). Hyperpolarisabilities are very sensitive to 
valence electron distribution and hence to electron correlation [5,7].

It is ß tensor components of small absolute value which are generally most 

affected when the calculation method accounts for electron correlation [4]. 

Consideration of electron correlation has greater importance for molecular systems 

of small size [5]. This is presumably because the distortions imposed on the 

electronic wavefunction upon field application are relatively greater in such 

instances. As an example, ßXyZ for H2O2 was larger by =6 times and ßzyy for 

H2O was larger by =3 times when electron correlation was considered [16].

According to Luo [7a], the correlation effect can be large for both small and larger 

molecules. Often however [9,16], electron correlation has only a small effect on 

dominant tensor elements. Also, it is likely that the effects of correlation on ß of 

small molecules are different to those on 7c-electron charge-transfer organic 

molecules (eg, p-nitroaniline). Significantly, it was concluded [4] that for octupolar
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molecular systems, there can be dramatic differences in ß components and 

correlation effects are strong and should be incorporated in methods for calculating 

hyperpolarisabilities.

Computational methods which incorporate electron corelation consideration 

include density functional techniques, perturbation methods and those in which 

configuration-in teraction is included. This work has made use of 

hyperpolarisabilities calculated with a perturbation technique8.

In the computational procedure employed by the Gaussian94 software, an 

approach using the perturbation energy is taken. The system is considered as 

weakly perturbed by the applied electric field, (for example, following Foresman 

[8b]).

A Hamiltonian operator describing the polarised molecule can be written as the 

expansion:

H = H(0) + HW + H(2) + •••• = BO) + XV (4)

where H (n ) represents the various orders of perturbation and H the 

unperturbed system. The coefficient, a , applies to the perturbation, V , which is 

the difference between the instantaneous interaction between electrons and the 

the SCF interaction between electrons in an averaged field.

The wavefunction and energy can be described (to third order) as the Taylor 

expansions:

¥  = 'F(0) + WK(1) + A.2>F<2) + } ? ¥ 3) + ...

E = E<0) + XE01 + X2E® + X’E® +... (5)

which if substituted in the Schrödinger equation gives expressions containing 

higher order terms of ¥  and E. For example:

( f j(0 )  -  £(0))vj/(2) =  (g (l) _  V)vj/(D  +  ]h(2)vj/(0)

8 DensityJunctional methods have not been extensively used for hyperpolarisability 
calculation. This is discussed in Ref [9b] in a study of the use of such methods in 
comparison with the Hartree-Fock method for calculating ß for certain small molecules. 
DFT predictions were closer to experimental values.
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The particular perturbation method used in this work -called the Moller-Plesset 

procedure- uses the fact that the 'Hartree-Fock' energy given by the SCF 

computation is equal to FF°) + EF1). In the second-order treatment where Eq (5) 

is truncated at the third term, the aim is to calculate E(2), the ‘correlation energy'. 

This can be shown to equal

r(0) V
(7)

where XF ^  is the known ground state wavefunction and that of the first- 

order perturbed system. Eq (7) is expressed as a linear combination of ground 

and excited-state wavefunctions and the integrals performed to yield E<2). It is 

this admixture of other states or higher energy configurations which causes an 

effective correlation consideration since the set of quantum numbers possessed 

by each of these must, by definition, be different.

The calculation of molecular polarisabilities and hyperpolarisabilities occurs as 

before by the coupled perturbed Hartree-Fock or finite field evaluation of the 

derivatives of Eq (3). This second-order treatment is called the MP2 method.

From comparative analyses of calculations on numerous small molecules [4,5,9], 

the MP2 method is considered a good approach for ß calculation9 in most 

molecules because it accounts for the majority of correlation effects (-90%  of 

effects on ß) yet it is not too expensive in processor time. Agreements with 

experimental values are good, generally giving very slight underestimates.

9 For a too, good agreement is obtained [14] using MP2 with a 6-31++G(sd,sp) basis 
set, typically giving numbers only 5% below static experimental values.

93



Chapter Three: Previous Calculations

Previous Calculations Performed on Rh and Sa Molecules

1 . PRIOR ß CALCULA TIONS FOR HALOFORMS

In 1990, Kama et al [ 11] reported their ab initio calculations of molecular 

polarisability and first and second hyperpolarisabilities for haloform molecules 

(CHX3). The computed coefficients were determined using the coupled perturbed 

Hartree-Fock (CPHF) method in the static frequency limit (co=0) to yield the vector 

part of beta, ßv, which for isolated molecules belonging to the C3V point group is 

given by10:

ßv= ßxxz + ßyyz + ßzzz
These authors employed the effective core potentials published by Stevens eta! 

[20] for the large atoms, bromine and iodine.

These ß were compared to experim entally derived values of 

(hyper)polarisability. The authors obtained satisfactory agreement between 

measured and calculated polarisabilities but very poor correspondence for 

hyperpolarisabilities (see Table Four). In fact, the calculation underestimated ßv 

by more than two orders of magnitude. Different simulated conditions to those for 

the measurements and neglect of electron correlation were proposed as 
explaining the lack of agreement.

This work was extended by the same group [10a, 12] to determine dynamic 

CHX3 polarisabilities and hyperpolarisabilities at optical frequencies. This used 

a time-dependent CPHF method and effectively, simulated gas phase Kerr, 

electro-optic and EFISHG experiments. Properties were calculated at X=694.3nm 

and electron correlation was not considered. As in the previous work, it was 

found that there was poor agreement between the calculated ß values and liquid 

phase EFISHG derived quantities (a discrepancy of about an order of 

magnitude). They also examined the dispersion of (hyper)polarisability 

manifested by these haloform molecules. For iodoform, a trend was observed in 

the computed dispersion with ßv increasing slightly as co increased* 11.

some studies show this multiplied by a factor of 3/5 depending on choice of 
definition of ßv.
11 This incorporated a =15% increase in the off diagonal elements, = ßyyZ while ß ^  
was slightly diminished.
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These studies are useful for comparison with the NLO calculations on the 

iodoform molecule which were performed in this study (albeit with the different aim 

of looking at individual tensor elements). They were one of the first indications 

that SCF hyperpolarisability calculations -even with reasonable basis sets- may 

be inadequate for small molecules.

2. PRIOR AB-INITIO CALCULATIONS FOR Sbl3 AND Asl3

Sakai and Miyoshi [14a] reported ab initio calculations on ASI3 and Sbl3 

molecules with the intent of examining the influence that two basis set choices 

had on Hartree-Fock-derived molecular geometries. These sets incorporated 

model potentials on the calculated structural parameters of these species. The 

larger of these two basis sets was similar to one of those tried in this work for 

obtaining an optimised geometry. Agreement with experimental quantities was 

good although these workers noted a small overestimation discrepancy which 

was smaller when all electron calculations were performed (ASF3 and SbFs). As 

far as is known, calculated ß values for ASI3 have not been reported.

Breidung and Thiel [14b] reported calculations on the RX3 (and RX5) series 

(where R = P-Bi and X=F-I). In this work, theoretical geometry parameters, 

vibrational frequencies, force constants, dipole moments were determined among 

other properties. Some of their results are included in Tables Two and Three.

Samoc etal[ 15] measured and discussed the NLO properties of Sbl3*3 Ss and 

reported preliminary ab initio calculations of the ß tensor elements of Sbl3. The 

calculations were performed in the same manner as those calculations on 

iodoform, by using the quantum chemical package 'HONDO'.

3. OCTUPOLAR MOLECULES

Bredas et ä  performed calculations of ß on purely octupolar molecules using 

several methods [17]. This has some relevance to the present work in that it 

demonstrates the possibility that optical nonlinearities can be predicted from 

octupolar charge distributions. This work, however, was performed on aromatic
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organic structures in which the origin of the electronic hyperpolarisability is largely 

attributed to the 7r-electron system. This is different to the case of RI3 molecules 

which require a very different parameterisation involving accurate representation 

of atomic charge distributions and that of the sigma bonds. Thus the analysis of 

Bredas for calculations of 1,3,5-triamino-2,4,6-trinitrobenzene are not directly 

relevant to these molecules. An important conclusion was, however, that 

inclusion of electron correlation into such calculations is necessary for proper 

determination of ß from octupolar structures.

4. OCTASULFUR

No previous studies involving computed hyperpolarisabilities of the octasulfur 

molecule have been reported. This is also true for the third-order 

hyperpolarisability of this molecule.

Methods Used in this Study

Ab initio computed hyperpolarisabilities for both RI3 and Ss molecules were 

sought despite the discouraging results attained by Kama's work and despite the 

problems of accounting for the unknown dispersion of the resultant ßs.

The work conducted in this study follows much of the same method as that of the 

earlier studies with certain restrictions and improvements as dictated by available 

computer resources. The computations were performed with the Gaussian94® 

program package. This has routines for performing calculations with numerous 

methods of which Hartree-Fock and MP2 were used in this work. Unfortunately, 

however, there is no means by which to perform frequency-dependent 

hyperpolarisability calculations within the current version of the Gaussian 

program.

In each case, SCF geometry optimisation calculations were performed before the 

single point calculations evaluating the hyperpolarisability coefficients. Basis 

sets can be of a lower level for the first step and those employed are shown in
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Tables One to Three in the next section. The calculations were of medium size 
involving between 83 and 137 basis functions. Polarisation and diffuse functions 
were included for most calculations. Their usage is indicated by the convention of 
'V  symbols for diffuse functions and characters in parentheses for polarisation 
functions.

The 'sp' diffuse and'd' polarisation functions employed for the arsenic atom were 
those published by Binning [18a] (sp=0.021, d=0.273, f=0.372; Breidung et al 
[14b] used d=0.35). When using the Pople basis sets, additional functions 
specified were simply called-up by Gaussian94. For antimony, the value of 
0.211 suggested by Huzinaga [18b] was employed as the exponent for a'd'  
polarisation function to augment the D95 basis set in Sb\^ calculations (Breidung 
used 0.25).

An attempt was made to further improve the basis set of Sb by including an T 
polarisation function as described earlier. As there is no recommended published 
value for this exponent for antimony, an estimate was obtained by extrapolation 
of the f-polarisation functions published for other heavy elements. Using the 
progression of f functions for the fourth-row elements (from Binning and Curtis 
[18a] & Huzinaga [18b]), an analogous progression was extrapolated for the 
fifth-row elements on the basis of the published f exponent for iodine (of 0.441) 
[19]. Thus, a value of 0.411 was obtained for the f exponent that would apply to 
antimony.

In each calculation, the D95 basis set was used for the iodine atom. In most 
cases, it was augmented by diffuse and polarisation functions. These were 
taken from Glukhovtsev etal[ 19]. Calculations using the MP2 method employed 
SCF determined geometries and a primary SCF calculation to determine the initial 
wavefunction.

The point group of Ss is D4cj for which a single ß element is predicted -ßxyz- 

which vanishes in the zero-frequency condition [24]. Since Gaussian94 only 
calculates static ß, a predicted hyperpolarisability was unobtainable for the 
undistorted molecule. Ab initio hyperpolarisabilities for the Ss molecule were 
calculated using warped molecular geometries as they exist in the adduct crystal. 
SCF and MP2 methods were used with the 6-311+* basis set.
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Semi-empirical frequency dependent ß calculations were able to be performed for 
these Sß geometries using a time-dependent HF method available in the semi- 
empirical "MOPAC" program12. The method is similar to that used by Kama in 
the HONDO program and involves semi-empirical calculation of the wavefunction 
and energy using a certain Hamiltonian (MNDO or AM1). Time-dependent 
Hartree-Fock calculation of ß is then done analytically up to a maximum frequency 
of 0.5eV in this case (which is still well removed from the fundamental frequency 
of 1.17eV used in this work). A hyperpolarisability for ASI3 (using the PM3 
Hamiltonian) was also performed, however, the magnitude of the tensor elements 
appeared to be seriously overestimated.

A geometry optimisation and single point (hyperpolarisability) calculation for 
iodoform using a density functional method was also performed. The geometry 
and ß tensor element magnitudes thus yielded were almost identical to those 
achieved using the SCF/MP2 routine (see Tables One and Seven) but they 
required far greater computational effort and thus were not continued.

Gaussian94 yields hyperpolarisabilities and polarisabilities in atomic units (au). 
For ß, conversion to electrostatic units (esu), one multiplies by 8.6392x1 O' 33 and 
from au to SI units of m4V_1, the factor is 3.6213x1 O' 42 [5]. This does not include 
the factor of V2 which must often be included if comparing experimental and 
calculated hyperpolarisabilities (depending on inclusion/exclusion of numerical 
expansion coefficients in Eq (2)).

12 "MOPAC 93 Manuar Fujitsu Limited, 1993. See also [12b] for details of time- 
dependent Hartree-Fock hyperpolarisability computations.
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Results

1. RI3 MOLECULES

The geometries calculated for iodoform with various basis sets are shown in 
Table One. The molecular structure parameters as calculated by the RHF 
method are basically constant with basis set level. Along with the computed 
energy, the dipole moment is recognised as a primary indicator of the quality of 
the calculated molecular geometry. It is a property which reflects molecular 
electronic structure more sensitively than bond lengths and angles and is a 
quantity for which experimental data is available.

Table One:
BASIS SET 

&ECP § C -I (Ä )
I-C -I

(degrees) C-H (Ä )
D ipole

M om ent
Energy
(hartrees)

D95 (d,p) 
I D Z (d) 
WH ECP

2.144 113.1 1.072 0.646D -71.9073

6-31G (2d,2p) 
I D Z (d) 
WEI ECP

2.147 112.9 1.0721 0.717D -71.9088

6-31 lG (2d ,2p ) 
I D Z (d) 
WH ECP

2.15 112.9 1.0719 0.720D -71.9139

D95 (d,p) 
I D Z (2d) 

St ECP
2.152 113.1 1.0716 0.551D -72.0337

6-31G (2d,2p) 
I D Z (2d)

St ECP
2.149 112.8 1.0718 0.622D -72.0370

DFT 2.165 113.1 1.077 0.609D -72.859

i K A R N A  [10a] 

[11 ]

2.150 112.9 1.085 0.79D

0.65D

j Experim ent;

; Gas Phase [22a]

2.120 113.0 1.097 0.86D in benzene [23a] 

0 .8 2 D in C 6Hi2 [23b]

Experim ent; 

in Sß [22b]

2.10 115.9 $

§ The first line of these entries is the basis set applied to C and H atoms 
(polarisation functions for carbon and hydrogen respectively are in parentheses).

A double zeta treatment for the iodine valence electrons was used in all cases 
-the different numbers of polarisation functions for this atom are shown in parentheses 
on the second line.

The Effective Core Potential [20] used for iodine is indicated on the last line: 
'WH‘ = those published by Wadt and Hay and incorporated into the LANL2DZ basis set 
of Gaussian, 'St' = those published by Stevens etal.
$ This quantity is estimated to be 1.2-1.3D in the analysis of Chapter Five.
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A persistent, small discrepancy between calculated and experimental bond 
lengths is observed, with the computed carbon-hydrogen bond length too short 
by -0.03 Ä and the carbon-iodine bond as too long by the same amount. The 
origin of this error is not clear but it is within the same error limits reported by 
Kama [10,11] and Glukhovtsev etal[ 19]. The l-C-l angle is in good agreement 
with the gas-phase experimental value.

The molecular geometry as calculated using the 6-311G(2d,2p) basis set was 
taken for use in 'single point' calculations in which first hyperpolarisability 
components were computed. It is evident from these results that agreement 
between the theory and experiment is slightly better when the Hay-Wadt 
effective core porential set is used as opposed to the set published by Stevens 
etaL The former set was therefore used for the optimisations and the single point 
calculations.

For consistency, one should use the same ‘Wadt and Hay’ effective core 
porentials, for the Aslß & Sbl3 molecules as for iodoform. This does not introduce 
any discrepancies as very good agreement between experimental and computed 
geometries was achieved for both these species, using both effective core 
porentials. These values are included in Tables Two and Three.

Table Two:
B A S IS  SE T  

& E C P  § As-I (Ä)
I-As-I

(degrees)
Dipole

Moment
Energy
(hartrees)

'LANL2DZ' 2.679 101.8 1.09D
As&I=D95 plus 

d:As=2.0 d:I=.279
2.601 101.5 0.65D -39.491

As&I=D95 plus 
d:As=.273 d:I=.279

2.572 101.2 0.74D -39.530

As=6-311G(d)
I=DZ+dexp=.279

2.569 101.3 0.86D -39.535

SAKAI;
As=TZ(d) I=TZ

2.584 101.5 1.30D

SAKAI;
As=TZ(2d) I=TZ(d)

2.579 101.0 0.80D

BREIDUNG [14b]; 
DZ(3/21) & d functs

2.567 101.4 0.766D

Experiment; [22c]
in Asl3 [22d]

2.556
2.591

102.0 ± 0.1 
99.67 ± 0.05

Experiment; [22e]
gas phase

2.557 100.2±0.4 0.96D in CS2 [23c,d]

Experiment; 
j in Sß [Appendix One]

2.574 99.7 ?
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Table Three:
BASIS SET 

& ECP § Sb-I (Ä)
I-Sb-I

(degrees)
Dipole

Moment
Energy
(hartrees)

'LANL2DZ' 2.827 99.7 2.866D -38.7786
Sb&I=D95 plus 

d:Sb=2.73 d:I=.279
2.736 99.5 2.005D -38.8491

Sb&I=D95 plus 
d:Sb=.211 d:I=.279

2.741 99.4 1.960D -38.8529

SAKAI;
Sb=TZ(d) I=TZ

2.750 99.3 2.83D

SAKAI;
Sb=TZ(2d) I=TZ(d)

2.737 99.6 2.07D

| BREIDUNG [14b]; 
DZ(3/21) & d functs

2.739 99.5 2.057D

j Experiment; [22f]
in Sbl3

2.868 99.1

j Experiment; [22g]
! gas phase

2.719 99.1 1.58D in CS2 [23c]

1
: Experiment; 
j in Sg [22h]

2.747 96.6 ?

In Tables Two and Three; D95 indicates use of the basis set of this name in which a 3/21 
contracted gaussian function (double zeta) is applied to all electrons of the system. LANL2DZ 
represents a calculation using the D95 set but for elements above Z=11. The ‘Hay and Wadt’ 
ECPs are employed to treat core electrons. TZ indicates that a triple zeta basis set was used 
(see [7]).

Unlike the dipole moment and higher multipole moments, the structural properties 

of the molecule are fairly insensitive to the level and basis set employed. One 

can also see the close agreement attained with previously calculated properties 

-especially those of Breidung. Comparison with calculated geometry parameters 

for other molecules is good, for example, for AsBr3, Binning [18a] recorded theory- 

experiment discrepencies of: 0.01 Ä in As-Br, 0.4° in Br-As-Br and 0.38D in the 

dipole moment. This lends confidence to the subsequent calculations which used 

these geometries.

For Asl3, the geometry which employed the 6-311G(d) basis set for arsenic was 

used for the single point calculations (fourth row of Table Two). For Sbl3 , though 

acknowledged to be less than ideal, the geometry yielded by the DZ(Sb+d,l+d) 

basis set as in the third row of Table Three was used for the subsequent single 

point calculations. It would have been preferable to be able to use a 6-311G 

type basis set for Sb, however, these are not available in Gaussian94 for fifth- 

row elements.
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Results of the single-point calculations yielding molecular first hyperpolarisability 
tensor elements are presented in the following tables showing the progression of 
these values with increase of basis set level.

Table Four: Calculated Hvperpolarisabilities for Iodoform.
BASIS SET 

§
Pxxx
a.u.

Pzxx
a.u.

Pzzz
a.u.

Dipole
M om ent

E nergy
(hartrees)

LA N L2D Z 163.6 56.9 3 3 .2 0-79D

6-31G (d ,p)
I= D 95(d )

116.5 38.7 2 5 .0 0-73D -7 1 .9 0 4

6-31++G (d,p)
I= D 95(d )

108.4 11.4 117.6 0-63D -71 .906

6-31++G (2d,2p)
I= D 95(d )

101.3 7.0 116.7 0-64D -71.911

6-31++G (2d,2p)
I=D 95+(d)

98.2 2.2 12.1 0-71D -7 1 .912

6-31 ++G (2df,2pd) 
I=D 95+ (df)

102.0 1.9 12.6 0-75D -71 .925

6 -3 1 1++G (2df,2pd) 
I=D 95+ (df)

102.1 4.3 13.6 0-73D -71 .9315

KARNA
! C & I dbl-zeta(2d)/Stev ECP

19.1 8.6 13.7 0-67D

§. '+' indicates that ‘s’ and 'p' diffuse functions are added to the basis set for non-hydrogen
atoms. '++' indicates that an 's' diffuse function was also added to the hydrogen basis set. 
Characters in parentheses indicate the number and type of polarisation functions added. See 
text for those functions used for each atom type.

Table Five:_______ Calculated Hyperpolarisabilities for Arsenic Triiodide.
BASIS SET 

§
Pxxx
a.u.

Pzxx
a.u.

Pzzz
a.u.

Dipole
M om ent

E nergy
(hartrees)

As & I =
straight LANL2DZ

158.1 17.2 0 .4 0-77D -39.441

A s=D 95(d)
I= D 95(d )

89.3 12.6 4 6 .4 0-73D -3 9 .530

A s=D 95+(d)
I=D 95+(d)

58.8 0.2 4 4 .2 0-76D -39 .533

A s=6-31+G (2df)

I=D 95+ (df)

16.2 8.7 7 5 .0 0-77D -3 9 .534

A s=D 95+(df)
I=D 95+ (df)

58.3 0.5 47 .8 0-80D -39 .549

A s= 6-311+G (2df) 
I=D 95+ (df)

8.3 3.7 106.5 0-73D -3 9 .552

A s=6-311+G (3df) 
I=D 95+ (df)

7 .2 7.5 129.7 0-80D -3 9 .554

§. V  indicates that 's' and 'p' diffuse functions are added to the basis set for that atom. 
Characters in parentheses indicate the number and type of polarisation functions added. See 
text for those functions used for each atom type.
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Table Six: Calculated Hyperpolarisabilities for Antimony Triiodide.
B A SIS  SET  

§
ßxxx
a.u.

ßzxx
a.u.

ßzzz
a.u.

Dipole
Moment

Energy
(hartrees)

Sb &  I =
straight LAN L2D Z

364.9 195.1 96.1 2-55D -38.775

Sb=D95(d)
I=D 95(d)

189.5 95.1 134.6 1-99D -38.852

Sb=D95(d)
I=D 95+(d)

154.5 66.0 20.3 1-98D -38.855

Sb=D95(d)
I=D 95+(df)

150.0 64.0 19.8 T99D -38.863

Sb=D95(df§uess)
I=D 95+(d f)

159.3 70.7 18.9 2-00D -38.873

§. V  indicates that 's' and ‘p‘ diffuse functions are added to the basis set for that atom. 
Characters in parentheses indicate the number and type of polarisation functions added. See 
text for those functions used for each atom type.

Several points are to be noted from these results:
• From the SCF iodoform calculations that used progressively larger basis sets 

(Table Four), it is seen that adequate provision of diffuse functions to the 
iodine atoms seems to be rather important. Such an observation is based on 
an observed stability of tensor element values as basis set level increases. 
Further augmentation of C and H basis sets with polarisation functions makes 
relatively little difference.

• Analogous comparison of arsenic triiodide calculations shows that for this 
molecule there is a major difference in the predicted hyperpolarisability 
anisotropy depending on the type of basis set used for the arsenic atom. 
The Pople (eg, 6-31+) sets suggest a dominant ßzzz component over the 'in- 
plane1 contribution whereas the Dunning set (D95) predicts roughly equal 
sizes for both elements. The reason for this probably involves the manner in 
which the multiple primitive gaussian functions are contracted to form the set. 
This discrepancy is mentioned again later in the chapter. Within the Pople 
sets, treatment of arsenic valence electrons at the triple zeta level has an 

impact on the ratio ß^/ßxxx -making the zzz component even more dominant- 
but again, further augmentation of the As basis set with polarisation functions 
makes only a slight difference.

• One might also expect this to be the case for calculations performed on 
antimony triiodide. Values computed for this molecule, however, can only be 
done in Gaussian94 at the double zeta "D95" level (Pople basis sets not yet 
being available for elements heavier than Kr). It is not certain that the
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observation of the hyperpolarisability elements attaining consistency as 
basis set size increases, is sufficient evidence to conclude that the relative 
sizes of these beta elements are reliable. See, for example the previous 
results for the arsenic compound where the ß  values at the double zeta level 
are steady but change dramatically when a triple zeta basis set is employed.

• The off-diagonal 311 component seems to be consistently small.

Results from calculations employing the MP2 method are presented in the 
following two tables. For ASI3 MP2 calculations were performed using both the 
Pople and Dunning basis sets which each gave such different results at the SCF 
level. The one density functional calculation made for CHI3 is also included.

B A SIS  SET  

§
P xxx
a.u.

Pzxx
a.u.

Pzzz
a.u.

Dipole
Moment

DFT 72.3 12.2 18.9 0-86D
6-31++G(2d,2p)

I=D95+(d)
61.9 10.3 16.1 0-80D

6-31 ++G(2df,2pd) 
I=D95+(df)

63.0 9.2 14.9 0-83D

6-311++G(2df,2pd) 
I=D95+(df)

65.1 11.2 15.9 0-80D

§. Characters have the same meaning as for Table Four.
* The B3LYP method of Gaussian 94 was used in the test of the DFT technique.

Table Eight: MP2 Calculated Hvperpolarisabilities for Arsenic/Antimonv Triiodide.
B A SIS  SET  

§
P xxx
a.u.

Pzxx
a.u.

Pzzz
a.u.

Dipole
Moment

As=D95+(df)
I=D95+(df)

46.9 15.5 31.2 0-93D

As=6-311+G(2df) 
I=D95+(df)

30.7 18.4 111.7 0-87D

As=6-311+G(3df) 
I=D95+(df)

47.5 25.5 136.9 0-92D

Sb=D95(df)
I=D95+(df)

72.2 27.4 18.9 2-04D

§. Characters have the same meaning as for Table Five.
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The following important points are noted from these results:
• For each compound, treatment with the MP2 method (or consideration of 

electron correlation more generally) resulted in increases in size for small ß 
components as compared to the SCF results. This was particularly the case 
for ßzzz and ßzxx. This is not unexpected in light of the earlier discussion of 
electron correlation effects. Conversely, there is a substantial decrease in the 
size of the large predicted in-plane hyperpolarisability, ßxxx by a factor of 
about two, though the reason for this effect is not clear.

• The static, SCF and correlated hyperpolarisabilities calculated here for 
iodoform do not closely resemble those of Kama's noncorrelated results 
[10a,11]. In particular, ß elements are considerably larger13 here and the ß ^  
element more dominant. These results seem to be an improvement in that 
their absolute magnitudes are greater and, as will be seen from Chapter Five, 
experimental, gas-phase hyperpolarisabilities are probably larger than those 
predicted here.

• An important observation stems from comparison of these 'higher-level' 
hyperpolarisability calculations for the three triiodides. One notices a 
dramatically different response predicted for ASI3 when the MP2/6-311+G(3df) 
method/basis set is employed as compared to MP2/D95. The possibility has 
to be considered that the former basis set improperly parameterises valence 
electron distribution for computation of ß tensor elements. Such a conclusion 
is also supported by:
- the anomalous behaviour of ß elements during the series of calculations 
during which the basis set 'quality' was progressively increased.
- Semi empirical (MOPAC-PM3) calculation of ß for ASI3 showed the in-plane 
NLO response as much stronger than that parallel to the z axis.
- the change in ß tensor element size (using 6-311+G(3df)) when electron 
correlation is accounted for is very different for ASI3 than that of the other 

triiodide molecules. For example, for CHI3, from SCF/6-311++G(2df,2pd) to 
MP2/6-311++G(2df,2pd), ßxxx is diminished by a factor of about two. For 
ASI3 , from SCF/6-311+G(3df) to MP2/6-311 +G(3df), all ß elements are 
substantially increased.
- a similar comparison was noted between SCF-determined 
hyperpolarisabilities using Dunning and those using Pople basis sets.

13 There may also be a difference in the numerical coefficients used in Eq(2) between 
the two works which would make the difference even larger.
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- the enormous contrast between predicted microscopic NLO response 
anisotropy in ASI3 and Sb\$ which is unexpected given the general similarity 

between these molecules/materials.

Though both at the double zeta level, there are significant differences between 
the Pople 6-31 and Dunning D95 basis sets. These lie in the gaussian functions 
used (they have different exponents and coefficients) and in the way a group of 
primitive gaussians is contracted to yield the final double zeta function. Because 
of this, virtual orbital energies as calculated with the two different sets may be of 
slightly different energy (and this is seen in these outputs). Adding to the 
likelihood of such differences is the extensive use of polarisation and diffuse 
functions. With increased chance of outer virtual orbitals being close in energy, 
differences in order (in energy) of these is also more likely.

Effective core potentials are unlikely to be the cause of the problem as the same 
set was used for all calculations.

For these reasons, the Pople numbers (those obtained using 6-311-type basis 
sets) are considered anomalous and in the next chapter, ASI3 ß tensor elements 
returned using the Dunning D95 basis set will be relied upon when performing 
the yW estimations.

From these computations, it can be seen that for each of the compounds, the 
molecular dipole moment is determined with far greater precision. For the well- 
parameterised ASI3 and CHI3 molecules, the experimental agreement is 
particularly good - although the experimental values relate to measurements 
performed in condensed phase.

The one density functional hyperpolarisability calculation that was performed 
yielded beta tensor elements in close agreement with the MP2 values. Perhaps 
using a triple zeta basis set would have improved the geometry and dipole 
moment agreement however, the computational cost would probably be too large 
and would not be justified given that MP2 computations ran very efficiently. The 
proximity of density functional and MP2 estimations probably indicates that these 

two ways of accounting for electron correlation are approximately equivalent.
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2 .  t h e s 8 m o l e c u l e

The results from calculations for each of the Ss ring geometries are presented in 

Table Nine.

Table Nine

s 8 ring

g e o m e tr y

ß Tensor elements; MOPAC ß Tensor elements; ab in itio

R l3 * 3 S g . y y y 777 y y y 777 Point Group

C H I3* 3 S g -84.5 10.3 -46 -22.5 C2v
A s I 3* 3 S 8 -11 2.0 1.9 0.8 C2v
S b l 3 * 3 S g -7.3 2.2 1 0.3 C2v

These hyperpolarisability elements are calculated at zero frequency and are given in atomic 
units.

For calculations on all these molecules, large basis sets have been used and it is 

unlikely that under-parametrisation of the electron distribution causes the disparity 

in tensor components. An unfortunate consequence of extensive use of extra 

diffuse and polarisation functions to augment basis sets is the possibility that a 

significant ‘basis set superposition error' (BSSE) is introduced [8a]. Uncertainty 

in calculated energies is created due to the probability of spatial overlap of 
electron density from nearby atoms. Orbital confinement effects [25] may also 

contribute to error in these predictions. This occurs when the full spatial extent of 

outer diffuse and polarisation functions cannot be realised due to close proximity 

of filled orbitals of neighbor atoms and it may be significant - though generally 

only when considering anions in crystal lattices.

Discussion

It is appropriate to try to place these results in context. There is no experiment 

which exactly corresponds to the set of conditions that are simulated in the 

theoretical calculations and the most relevant physical determination of ß is a gas- 

phase EFISHG measurement. The hyperpolarisabilities of several small 

molecules have been determined in this way in the work of Ward et a /[21] and 

these can serve as test of the computational methods.
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Measured vector parts of ß for a few such molecules are shown in Table Ten 
with SCF hyperpolarisabilities computed in this work (using similar levels as 
employed for the RI3 molecules).

Table Ten:

ßv (a.u.) § CHF3 CH 3 OH n h 3

static SCF. 

This work.

=-16 =-31 - 6 . 1

static SCF. 
Bartlett

-19.0 -6.5

from  Gas-phase 

EFISHG
-25.0 -30 -20.9

§ ßv= 3/5(ßxxz + ßyyz + ßzzz )

For the CHF3 and NH3 molecules for which ßv was checked, the agreement 
between these calculations and those of Bartlett [9] is seen to be good. The 
agreement with experimental values is erratic but quite satisfactory given that for 
these test calculations neither electron correlation14 nor non-zero frequency 
response were taken into account. This brief test supports the magnitudes of 
calculated ß for the RI3 molecules performed in this work.

The closeness seen between theoretical and gas-phase experimental numbers 
suggests other reasons for the large discrepancies between Kama's RI3 

calculations in condensed-phase measurements. In particular, these are;
♦ the enhancement of NLO response due to local field effects in such media. 

This issue is dealt with extensively in Chapters Four and Five.
♦ generally larger NLO responses at optical frequencies as compared to with 

static fields.

The presumption of a zero-frequency condition in this work is considered a 
weakness. An idea of the size of the effect that this neglect might have on the 
hyperpolarisabilities can be gained from comparison between the results of 

calculations of Bartlett et al[9] on small molecules using the time dependent 
Hartree-Fock method and calculated static values. This shows static-/? to be 
smaller by 5%-15% for most species but by 30% for NH3 . Calculations of ß for 
iodoform by Kama [10a] showed a 10% increase in ß  ̂ in going from a static to 
X=694nm frequency condition15.

14 Bartlett showed that for ammonia, agreement with experiment was good when the 
MP2 method was used.
15 Related results from the same author [14] showed that the calculated time-
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These differences are generally reassuringly small and will be used in the 
discussion in Chapter Five. One cannot, however, extrapolate this result fully to 
the other RI3 molecules as due to the proximity of electronic resonance in these 
substances, so somewhat larger differences are anticipated. Another point of 
view about static-calculated hyperpolarisabilities is that they have merit because 
they exclude the complicating factor of response modification due to electronic 
resonances. Accounting completely for all molecular resonances is rarely 
possible and so static values can provide a sound baseline for comparison of 
non-resonant electronic hyperpolarisabilities.

An objective of this work is to use the relative differences between the calculated 
tensor elements (the anisotropy) as well as their absolute values in later 
analyses. There is the implication when using the anisotropy of static ß values 
that the error coming from using the zero-frequency condition is the same for all 
tensor elements. This is unlikely to be the case. Kama's measure of dispersion 
of ßv which has been mentioned in this chapter, is of little value with respect to 
the /W /fc z  ratio of particular interest in this study since the ß^  element is not 
included in fa. These early non-zero-frequency hyperpolarisability calculations 
for iodoform [10a] estimated ß^  leading to the indication that at optical frequency, 
the ßxxx/ßzzz anisotropy is greatly increased. The effect that such an anisotropy 
change would have on predicted susceptibilities is addressed in Chapter Five. It 
should be remembered, however, that these were preliminary calculations of a 
fairly low level (double-zeta, no correlation) and thus carry significant uncertainty.

An estimate of the frequency dependence of ß for isolated Ss was able to be 
made by using semi-empirical calculations of this quantity. These were 
performed with the MNDO method using the MOPAC program. A trend whereby 
the 33 element increased slightly (by =10%) between the static and 0.5 eV 
conditions was noticed but the overall differences are small.

This part of the study would have benefited had frequency dependent ß 
calculation been possible, nevertheless, useful estimations of the RI3 and Ss 
free-molecule hyperpolarisability and the RI3 ß anisotropy have been made. 
The hyperpolarisability tensors which have been calculated here can be taken 
for use in estimating macroscopic nonlinear optical coefficients for the RI3 octa- 
sulfur adduct crystals. This is done in the next Chapter.

dependent polarisability, a, is - 20% smaller than the experimental quantity.
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CHAPTER FOUR

With calculated hyperpolarisabilities of isolated RI3 and Ss molecules 
available, it is possible to construct NLO susceptibilities for the adduct 
crystals based on these free-molecule ß tensors. By building the %(2) 
values using different methods based on different models of the NLO- 
active lattice, evidence is obtained as to which of the four reasons 
discussed in Chapter One is most important in explaining the anisotropy 
in the susceptibility tensors of each of the Rl3*3Se complexes.



The determination of 'constructed1 NLO susceptibility tensors for each of the RI3- 

octasulfur adducts is the subject of this chapter. The different methods employed 

are:

1. The most straightforward treatment of the RI3 hyperpolarisabilities uses the 

so-called "Oriented Gas" model1 for the molecular crystal. Standard Lorentz 

factors are applied to this to account for the larger 'local' electric field 

experienced by the NLO molecule in the crystal environment. Factors are 

derived for both crystal directions in terms of the refractive indices. The NLO 

active unit is not actually specified. This approach is termed the Anisotropic 

Lorentz Approximation or ALA Method.

2. An alternative treatment deals with the local field problem more rigorously. A 

single NLO-active entity is detailed and the electric field at this position is 

explicitly calculated given that it sits in a polarised lattice of known structure. 

Local-field-factor tensors are obtained which describe the microscopic 

response of the molecule (through its polarisability) as well as the effect of 

the surrounding polarised crystal structure on the local field experienced by 

the NLO-active molecule. These factors can be significantly different to 

those determined by the ALA Method. These approaches are referred to as 
Lorentz-Factor-Tensor Methods.

3. The first of the LFT methods defines the complex as a Rl3(Ss)3 

Supermolecule and x (2) is built by assigning RI3 hyperpolarisabilities to this 

entity. Refinement of this model comes through determination of a complete 

Lorentz-Factor tensor which considers both molecules in the adduct structure. 

The first of these is called the LFT-Full Method. Using this approach, one 

can also incorporate the NLO response of the Ss molecule and this is 

described as the LFT-Composite Method.

The theoretical development in this Chapter relies strongly on concepts 

discussed in Chapter One, specifically the methods introduced by Munn [6].

1 which neglects any interaction between the molecules and any modification by the 
molecular medium of an applied electric field. Thus, ß anisotropy is preserved using this 
model. •
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Chapter Four The ALA Method

The ALA Method:

1. THEORY OF THE ANISOTROPIC LORENTZ APPROXIMATION

Consider a molecular crystal comprised of unit cells containing a single molecule
which may be oriented such that its molecular axes do not coincide with crystal
axes. Each macroscopic NLO tensor element is then the product of:
• the molecular hyperpolarisability element, ß
• the three appropriate cosines transforming each index (i, j, k) from molecular 

to crystal axes,
• the number density, N, of the molecules in the crystal and
• factors, / ,  relating the applied field strength outside the sample to that 

experienced at the molecule. There is one for each electric field in the process 
and the factor may depend on the direction of application/generation of the 
field.

Thus:

X(ijK = H f.fjfx fcose;; cosQjj cosQtĉ ßijk (1)

Expanding this to the more general case where the number of molecules in the 
unit cell, Z, is greater than one. This requires summing {cosfr cos 6jk cos 6 jß ijk

over each molecular site in the unit cell [1]. Eq (1) is sometimes used for Z>1 
assuming the Einstein convention applies.

The local field factors, f, to be used in this model are usually determined through 
application of the approximation formulated by Lorentz in 1880 [2a]. This 
considers the electric field at a molecule as modified by its surroundings. The 
molecule or cell is presumed to exist within a spherical cavity embedded in a 
dielectric continuum. The structure of the medium is not explicitely considered in 
this treatment.

For molecular crystals, the applicability of this model requires the assumption to 
be made that the crystal is well described as a matrix of non-interacting 
molecules. This is generally reasonable for molecular materials in which 
intermolecular attractive forces are weak, such as organic liquids [3], but it is 
clearly less appropriate for solids where non-uniform fields and charge-transfer 

interactions exist.
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Given such a model, the electric field [2b] inside the sphere is made up from:

E/ = Ei + E2 + E3 + E4 (2a)

where E i is the externally applied (optical) field and E2 is the depolarisation 

reaction field of the medium in response to this. Together, E i and E2 comprise the 

macroscopic field, Em - E3 is the field inside a spherical cavity due to an 
assem bly of charges on the surface of the sphere. This contribution arises 
because the dielectric medium is also polarised by Ei;

Consider a sphere of radius, a, polarised in a uniform electric field such that equal 
and opposite charges are distributed on each side of the sphere. The surface 
charge density at a point on the sphere is given by:

-Pcose
where 9 is the angle from the polarisation direction and P is the total amount of 
charge polarisation.
The radial electric field, Er, at the centre of the sphere due to an area elementdA 
at this point is:

Er = PcosG dA /  47t£0a2
and the total field in the polarisation direction due to the entire surface charge is: 

E3 = J* Er cos9 /  47ie0a2 d0
Substituting for Er in the previous expression and integrating yields:

E3 = P /3£o

The field from multipolar charge distributions within the cavity is denoted by E4 . 
This is usually assum ed to be zero -as it is exactly in the case of dipoles 
arranged in a cubic array. In such a case, substituting for the terms in Eq (2a) 
gives (in esu):

E f  = Em + 1/3£0P (2b)

The bulk polarisation, P, is related to the macroscopic electric field through the 
linear susceptibility:

P = Eox(1) Em = £o(e -1) Em (2c)

which when substituted in Eq (2b) and using n 2 = £, can be rearranged to give:

E/ = Em
2 ^n l  + 2 (2d)

In which the term in parentheses is the well known Lorentz local-field factor. The 
ALA method is widely used in many spectroscopic and nonlinear optical 
analyses because of this simple form. However, local fields determined in this 

way will always preserve (and slightly increase) the anisotropy in the refractive 

indices from which they are taken and this is not necessarily realistic.
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Chapter Four The ALA Method

2 . APPLICATION TO RI3*3S8

The structure of these complexes presents the fortuitous case whereby RI3 

molecular and crystal axes coincide meaning direction cosines are unity for all 
tensor elements [4]. Local-field factors for Rl3*3Ss crystals calculated using the 

anisotropic Lorentz approximation from refractive indices2 in the manner just 

described are shown in Table One.

Table One:

Adduct fco,l f  co,3 /  2(0,1 f  2(0,3 N
SbI3*3Sg 2.293 1.817 2.479 1.909 1.270xl027n r 3

§AsI3*3Sg 2.293 1.771 2.500 1.847 1.283xl027n r 3

CH I3*3S8 2.259 1.714 2.408 1.754 1.319xl027m '3

The number densities of Rl3 molecules, N , are also shown in the last column.
§ From the refractive index determinations for this complex, the dispersion is probably
slightly smaller than indicated in Chapter Two and so values are probably slightly 
underestimated and / 2tt overstimated by a small amount. The effect of this on constructed NLO 
susceptbilities is discussed in Chapter Five.

Hyperpolarisabilities for each of the triiodides are taken as indicated in Table Nine 
of last Chapter. Using Eq (1) with the appropriate local field factors, one obtains 

the x (2) elements listed in Table Two.

Table Two:

Adduct y (2)
*1 1 1

(x lO -^m V *1)

v (2)
*311

(xlO ‘ 12m V_1)

y (2)
*3 3 3

(x lO -^m V -1)

CHI3*3S8 3.82 0.48 0.39

A sI 3*3S8 2.86 0.70 0.84

SbI3*3S8 4.33 1.3 0.55

These tensor elements (and their anisotropies) will be used in the comparison 

with experimental and other derived susceptibility tensors. It is interesting, 
however, to note at this point that the NLO susceptibilitiy of the Asl3*3S8 adduct 

appears significantly different to that of the other complexes.

2 see TableTwo of Chapter Two.
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Chapter Four The LFTMethod

The LFT Method

1. INTRODUCTION and THEORY

The Lorentz Approximation accounting for local field enhancement is often rather 

too crude3. Weak assumptions made in the ALA method of relating microscopic- 

macroscopic properties are:

• that due to presumed cubic symmetry within the (ellipsoidal) cavity, the 

dipole field completely cancels.

• that outside the cavity, the medium is treated as a continuous, polarisable 

medium of uniform dielectric constant.

Also, from inspection of Eq (2c) in the development of the ALA local field factors in 

the previous section, one can see that a /<->x(1) relationship exists. Yet /  must 

relate %C) and the polarisability, a, as well as relating the applied and local fields. 

So the anisotropy of f  is determined by microscopic factors (manifested as the 

molecular polarisability) as well as macroscopic properties arising from how the 

molecules are arranged in the condensed phase. This means that the anisotropy 

of the local field factor does not follow that of the linear susceptibility (and thus 

refractive index) unless the polarisability of the molecule is isotropic -which is 

rarely the case. By taking the ALA approach, one obtains the anisotropy of x(1) 
for the anisotropy in f .  This can be quite unrepresentative since x(1) relies on the 

product of the molecular polarisability and the local electric fields acting on them. 

The anisotropies of these can be quite different and even opposite [5a-c] 

(consider the long axis of an elongated molecule -the polarisability tends to be 

greatest along this dimension yet intermolecular fields are smaller due to the 

greater separation) resulting in an uninformative ‘average’ x(1) anisotropy.

It is possible to rectify these shortcomings and determine an f  factor incorporating 

consideration of crystal and molecular properties4. Firstly though, one needs to 

start with an entirely different description of the local field.

3 and has been shown to make inaccurate predictions; for example in p-terphenyl [5a], 
m-nitroaniline [5b] and in 4-(A/,A/-dimethylamino)-2-acetamido-nitrobenzene ('DAN') [5c].
4 Important factors involved when relating molecular properties with those of their 
molecular crystals include the presence of permanent internal fields and non-local 
polarisability response. Thus, the local-field issue is rather more complex than expected 
and this especially influences prediction of NLO properties.
A general description of these issues and development of theoretical frameworks 
incorporating such factors has been the concern of Munn. Refs [6] are important such 
works relevant to this study. These guided the theoretical explanations which follow.
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Chapter Four: The LFT Method

Consider the 'NLO-phore1 molecule in a crystal lattice being polarised by a 

macroscopic electric field. The total local field experienced at a molecule is the 

sum of the macroscopic field and the dipole fields from all other point dipoles, i, in 

the lattice. This may be written [2a]:

where Ef  and Em  have the same meanings as in Eqs (2a-d). The second term is 

the lattice-sum of dipole fields arising from the regular electrostatic relation for the 

electric field, presuming point dipoles at each point, p  is the dipole moment 

vector, r is  the inter-dipole distance, r ,  is the vector between molecule and lattice 

point. The factor (3p, -r,) is a scalar containing the angular dependence of the 

field on the point dipole location.

More generally, the material is considered as Z (where Z>1) inter-penetrating 

lattices of the distinct molecules of the unit cel! - with each bearing an induced 

dipole moment in the direction of the applied polarising field. A summation over 

lattice points, i, in a (spherical) 'shell' is performed to arrive at the total crystal 

field. This is done in a particular manner as briefly described in the next section. 

One may separate molecules into a number of ‘submolecules’ to better represent 

molecular shape and orientation [6f,9a,b]. The fields at each submolecule from 
each lattice-of-submolecules are individually determined and averaged to give the 

overall field sum at the molecule.

Eq (3) can be written in the form of Eq (2b):

where L ^  is the result of the summation described above and is called the 

Lorentz tensor. The tensor is dimensionless and is normalised to unit cell volume 

and so is defined as having a trace of unity. It gives the field arising from each 

lattice (of point dipoles) at each molecule in the unit cell, for each direction of field 

application. The local field at a molecule, k, is comprised of fields from dipoles on 

lattices of the different molecules ic 'o f the unit cell and from point dipoles on the 

lattice of k  molecules - but excluding molecule k  itself (thus k  may equal k ' ) .

r r
(3)

(4a)
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Chapter Four The LFT Method

The bulk polarisation, P, of Eq (2b) has been replaced in Eq (4a) by a sum of 

sub-lattice polarisations5 which for a molecular crystal can be given by [8b]:

PJ</e»v
where pk' is the dipole moment of molecule k '  as it exists in the lattice and v is 

the unit cell volume.

As in the development of the ALA field factors, the macroscopic (unit-cell) 

polarisation, P, is substituted into Eq (4a):

Xpic '/e  0v = P =  £o%(1)-Em
k '

where again, %(1) is the linear bulk susceptibility. This leads to:

B f  = Em  + £o x{1) -Em  c' (4b)
k '

The local-field-factor-tensor, dk is defined: E /  = dk E m

and so from Eq (4b):

d k =  1 + Z~l x m  (5a)
k '

where d k  is the local-field-factor tensor at molecule k  and the summation is over 

all other molecules k ’ in the unit cell. Z is  the number of molecules in the unit cell. 

Implicitly assumed in this preliminary expression is that each sublattice, k, makes 

an equal contribution to the susceptibility.

This expression is workable however it is still reliant on the linear susceptibility, 

the anisotropy of which is the ‘bland1 average of the frequently opposing6 

anisotropies of the molecular polarisability and the Lorentz-factor tensor.

One recognises that in obtaining Lkjcr, the macroscopic effects of differing local 

electric fields at the molecule as a result of the molecular packing are accounted 

for. To incorporate consideration of the molecular polarisability, a, into the local 

field tensor, d, it is necessary to explicitly express it via the relation:

P k=  a ^-E /^c
where pk  is the sublattice polarisation and a ^ is  the ‘effective1 polarisability of 

molecule, k, in the crystal. This may be substituted into Eq (4a) to give:

5 Normally, a molecular crystal is parameterised such that sub-lattices correspond exactly 
with a molecule -though this does not have to be the case.
6 in practice, the more anisotropic a molecule is in shape, the more anisotropic aj< and 
Lk,k' are likely to be, in opposite directions [5].
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E/j< = Em + Xlyc'-ajc'-E/^ (5b)

where = oc  ̂/ £0v and is a dimensionless reduced polarisability and v is the

volume of the unit cell. The LHS of Eq (5b) may be expanded as X E / j<’x§kk' 

(Öic/c'=1 when k '= k a n ö  zero otherwise). The two k '  summation terms may then 

be combined and the equation rearranged to give:

X (  1 ~ Lkk"ak’ ) • % * ' = E m  (5c)

where the unit matrix has been included.

The local-field tensor is then given by:

d;c= X ( 1  - L j ^ ' - a ^ '  ) -1 (5d)
k '

From which one can see that the anisotropies of macroscopic and microscopic 

aspects of the structure are now included in d^. Difficulties associated in 

obtaining appropriate ak are dealt with in the next section.

One can also obtain Eq (5d) by substituting the independent expression [9b]:

5C(1) =
into Eq (4b) to give after rearranging:

dk = 1 + \ k k k ^ k '  dkk' (5e)
where the quantity dkk' is a 3x3 submatrix defined as the specific field factor 
relating effects on applied fields at molecule, k, due to lattice k ’. dkk' = dk'k

and given that dk = X dkk' > Ecl (5e) can be rearranged to yield (5d).

These local field tensors are used in the calculation of x (2) tensor elements from 

hyperpolarisabilities using an expression analogous to Eq (1) [6b,f]:

X $ j = N d J (2(0) d k (<a) d k((d) )cOSeHh COSen COS eJj
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Chapter Four The LFT Method

2 . APPLICATION TO RI3*3S8

Step. One

The first of the series of steps in the susceptibility calculation is the determination 

of the Lorentz-factor tensor, L ^ . A direct lattice dipole summation would be 

quite straightforward but is hampered by very slow convergence7. A technique 

called the Ewald Method is used in which summation is concurrently performed 

over the reciprocal and real lattices. This facilitates convergence as the 

oscillatory part of the summation (from the lattice periodicity) is much more efficient 

in phase-space. It also has the advantage of leaving a shape-independent 

Lorentz-Factor tensor. This is, however, rather more complicated mathematically 

and is dealt with in Refs [7]. An average8 over submolecules is performed to 

give L w . This subtracts out the contributions to the field at the molecule from 

submolecules within that molecule in the same unit cell - since a molecule does 

not polarise itself. This routine is employed in the UMIST program that was used 

for this work.

As a starting model, the Rl3*3Sg complex is specified in the sub-molecular 

treatment in the following way. A ‘super’ molecule is defined comprising seven 

submolecules - at the R and three iodine atomic positions, as well as at ‘average’ 

sulfur positions at the center of each of the three S8 rings. The hexagonal unit cell 

was used (as opposed to the rhombohedral cell) for which Z=3. Cell dimension 

parameters and atomic coordinates were obtained from appropriate X-ray 

structure data9. These are input in the required manner in a command script with 

submolecule positions expressed as fractional coordinates.

As indicated above, field contributions from successive lattice shells are 

calculated -the number of these shells used is the minimum for which a 

satisfactory convergence criterion is achieved. This was specified to be better 

than 1 in 1x1 O'5. For each complex, such a convergence was achieved after 

summation over seven shells.

7 since while the field due to a point dipole decreases as r-3, the number of dipoles in a 
spherical volume increases as rT
8 The average is performed by summing (k ,j;k ',j')  over all submolecules j and j ' and 
dividing by the square of the number of submolecules that are specified.
9 Those for the arsenic triiodide complex were determined in this work -see Appendix 
One. The iodoform-octasulfur complex structure was determined by Bjorvatten [4a] and 
the Sbl3*3S8 complex by Bjorvatten eta! [4b].
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The result is a 3Zx3Z (super)matrix, i.e., a 3x3 matrix for each molecule-lattice 
pair and this is the Lorentz-factor Tensor, L ^ .  These are shown for each 
complex in the following tables:

Table Three i. Lorentz Tensor, LafoW, forCHl3*3S8

k k ’ aß

aa ab ac bb be cc

U -0.8699 0 0 -0.8699 0 2.7398

1.2 0.4958 0 0 0.4958 0 0.00845

1,3 0.4958 0 0 0.4958 0 0.00845

Table Three ii._____________ Lorentz Tensor, Laß;]^', forAsl3*3S8

k k ’ aß
!

aa ab ac bb be cc

U -0.8618 0 0 -0.8618 0 2.7235
1

1,2 0.4963 0 0 0.4963 0 0.00738

1,3 0.4963 0 0 0.4963 0 0.00738

Table Three iii. Lorentz Tensor, Lvcß;kfk\ forSbl3*3Ss

k k ’ aß

aa ab ac bb be cc

1,1 -0.8267 0 0 -0.8267 0 2.6534

1,2 0.4962 0 0 0.4962 0 0.00765

1,3 0.4962 0 0 0.4962 0 0.00765

Tensors are calculated in the fully orthogonal a, b, c axis system in which b is at 90° to a in 
the ab plane. The calculations may also be performed in the hexagonal axis system to 
give identical results.

One can see from these Tables that the off-diagonal elements are zero as 
predicted by symmetry. The highly anisotropic nature of these tensors is 
evident remembering that an isotropic structure has a symmetric LFT with 
diagonal elements equal to V3. The large size of L \\ ;k jc' is consistent with these 

molecules being stacked in close proximity along the c axis (which is of small 

dimensions for these crystals). Unit cell elongation can be implied in the direction 
of an element which tends to one as k '  increases in Ik ', however, this is not 

relevant for this structure.
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It is difficult to interpret the significance of the small differences in tensor elements 

between the various complexes. The general trend in which they diminish 

slightly going from CH to Sb is attributed to the increasing unit cell volume which 

causes the normalised fields to become a little smaller.

Step. Two

The next requirement for the local-field tensor calculation is the molecular 

polarisability, a. For most molecular crystals (Z>1), obtaining this presents a 

double problem as it is the polarisability of the NLO molecule in the lattice which 

is important - this is different to the free-molecule quantity since it is affected by 

geometry differences and the local field it experiences in the crystal. Thus, it is 

not expected that ab initio computed polarisability tensors are at all useful in this 

case. This leaves measured a's as the only source.

The experimental observable to which a  directly contributes is the linear 

susceptibility, x(1)- There is a problem however, in extracting microscopic 

polarisabilities from this bulk quantity as many combinations of individual 

molecule polarisabilities can result in a given susceptibility. This non-uniqueness 

problem can be circumvented by assuming that fixed relations exist between the 

contributions to unit cell %(1) from each molecule (other ways are mentioned later). 

More simply, it is often reasonable to assume for homomolecular crystals that all 

molecules in the unit cell make equal contribution to the susceptibility [5a,b,9a,b]. 

Likewise, one assumes that each submolecule within the molecule contributes 

equally to the total molecular polarisability.

Taking X(1) = and substituting for d ^ w ith  Eq (5a) and
k'

rearranging, an expression for a.k' is obtained:

a k ' -

( 7 Vi

To be consistent with the use of static hyperpolarisabilities, the use of zero 

frequency susceptibility data would be preferred. For these complexes, 

however, this is not available and so x (1) at optical frequency had to be used10 

and was determined from refractive indices through the relation:

10 This approach was also used by other authors, for example, Hurst and Munn [5b] for 
their mNA study.
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^(!) = n 2 - 1

and input in a command script. Lorentz tensors were taken directly from the 
output of the program which computes them. These were used directly in the 
subsequent step for calculation of d£.

Step.Three
Local field tensor elements may now be calculated via Eq (5e) and are shown in 
Tables Four after averaging over submolecules. Note that they are determined 
for a single frequency (co).

Table Four i, Local-Field factor tensor for, d, CHl3*3Ss

k aa ab ac bb be cc

1 1.152 0 0 1.152 0 2.970

2 1.150 0 0 1.154 0 2.970

3 1.151 0 0 1.153 0 2.970

Table Four ii. Local-Field factor tensor, d, for Asl3*3Ss

k aa ab ac bb be cc

1 1.169 0 0 1.169 0 3.111

2 1.169 0 0 1.169 0 3.111

3 1.169 0 0 1.169 0 3.111

Table Four iii. Local-Field factor tensor, d , for Sbl3*3S8

k aa ab ac bb be cc

1 1.214 0 0 1.214 0 3.181

2 1.214 0 0 1.214 0 3.181

3 1.214 0 0 1.214 0 3.181

Tensors are diagonal in this case where molecular and crystal axes coincide. 
Comparison between these d  tensors and the f  factors of the ALA Method 
(shown in Table One) is appropriate. The anisotropies of the two factors are 
very different. Those calculated with the LFT method are considerably more 
polarised and in the opposite sense to the f  factors. This is not unusual in 
context with results from other molecular crystals [5a,c] which were discussed 
earlier. The 33 component of d  calculated here indicates that the local field is 
about three times as great as an applied field in this direction. This is rather large 

but not unrealistic.
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Step.Four

Calculation of the second order NLO susceptibility is via Eq (6). Technically, 

one of the d  tensors should be for the harmonic wavelength. For several 

reasons, however, three local field factors for the fundamental wavelength were 

used11 and the following elements are obtained:

Table Five:

Adduct v (2)
x n i

(x lO -^m V -1)

v (2)*311
(x lO -^m V -1)

y(2)
X333

(x lO -^m V -1)

CHI3*3S8 0.77 0.26 2.3

A sI 3*3S8 0.70 0.46 5.1

SbI3*3S8 0.8 0.78 3.4

These tensors are biased toward the 33 element and the following methods aim 

to rectify this. The supermolecule specification was originally employed because 

it conforms to the methodology of the suite of programs used for calculating L w , 

ajc', djc and x (2) which are designed to be applied to homo-molecular crystals. 

Munn used a supermoiecule approach in the study of effective polarisability of 

CT complex crystals and noted similar aberration along CT interaction axis.

11 This removes ambiguity in tensor elements which are equal under Kleinman 
conditions (and which do not exactly apply at 532nm for these materials) by forcing this 
condition to apply. The direct error introduced is known to underestimate the 
susceptibility by a small amount. The neglect of consideration of resonances and so 
breakdown of the Kleinman assumption can be incorporated in the discussion of 
resonance effects (in Chapter Five).
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The LFT-Full Method:

1. INTRODUCTION and THEORY

As mentioned in Chapter One, an improvement in the accuracy of %(2) predictions 

is effected by calculation of the Lorentz-Factor tensor using full specification of all 

molecules in the unit cell.

Consider, then, the Z=3 hexagonal unit cell of the Rl3*3Ss complex as containing 

two types of molecules; three RI3 molecules, each comprising four submolecules 

at the R and three iodine atomic positions and nine S8 molecules with 

submolecules at each of the eight sulfur atom positions. A Lorentz-factor tensor 

can be calculated for this structure specification as outlined in the previous 

section.

The procedure for calculation of the Local-Field-factor tensor that was developed 

in the last section may be followed -in principle- for the full unit cell specification. 

Due to a software limitation, however, it is currently not possible to determine an 
effective polarisability: Xa* for a unit cell containing more than one type of

k

molecule (possibly with different numbers of submolecules in each). Such a 
quantity would otherwise have been obtained from Eq (7). Therefore it is not 
possible to calculate the Local-Field tensor via Eq (5e). Accordingly one returns 

to Eq (5a) to determine d k . This may be rewritten as follows:

V ( D

d =  1 + (Ln + 3Lls)\  I I  IS) z  ( 8 )

This zero-frequency Local-Field-factor tensor was used with the 

hyperpolarisabilities in Eq (1) as was done in the supermolecule case to 

determine the NLO susceptibility.

2 . APPLICATION TO RI3*3S8

The Lorentz-tensor could be calculated as usual using the hetero-molecular 

crystal specification. The averaged Lorentz-tensor elements12 were sorted into 

In  and Lis subtensors which were then used in the calculation of d. L\\ and

12 averaged over j and j ' to give Ikk ' for each molecule.
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LlS were also used in the next approach and it is more appropriate to show them 

there. They are in Tables Eight (i-iii).

Local-Field-factor tensors determined with this method (Eq (8)) for each of the 

complexes are shown in Tables Six(i-iii). Again, the d are for the fundamental 

wavelength, 1064nm.

Table Six i. Local-Field factor tensor for CHI3*3S8

aa ab ac bb be cc

d 2.2043 0 0 2 .2043 0 2.490

Table Six ii. Local-Field factor tensor for Asl3*3S8

aa ab ac bb be cc

d 2.2745 0 0 2 .2745 0 2 .5640

Table Six iii. Local-Field factor tensor for Sbl8*3S8

aa ab ac bb be cc

d 2 .3106 0 0 2 .3106 0 2 .6126

The 11 and 33 elements of the NLO susceptibility were obtained through use of 

Eq (6) and are shown in Table Seven.

Table Seven:

A dduct y (2)
* 1 1 1

(x lO -^ m V -1)

y <2)
* 3 3 3

( x lO '^ m V - 1)

C H I3*3S8 3.33 1.17

A sI3*3S8 2 .56 2 .44

SbI3*3S 8 4.1 1.55

Even from a brief glance at these coefficients, it is clear that the skewed nature of 

previous constructed x(2) tensors is not replicated here. This seems to indicate 

that this property is rather sensitive to unit cell specification.
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The LFT-Composite Method:

1. INTRODUCTION and THEORY

The previous methods either made gross assumptions about the environment in 

which the NLO-phore exists, or this entity was treated in an approximate 'super- 

molecule' fashion. In the previous LFT-Full basis, explicit molecular polarisability 

contribution to the local field factor was excluded. Such approaches prevented 

the consideration of differing polarisabilities and hyperpolarisabilities from the 

different RI3 and Ss parts of the complex. To this point, response from the 

complexing partner -Sg- has been neglected.

The former shortcoming leads to error in the estimation of the local field factor 

(tensor) and so in the predicted x (2) elements. A failure to account for all 

component hyperpolarisabilities neglects the possibility that each contributes to 

the macroscopic NLO response. A methodology based on the LFT treatment 

which does deal with different components of a hetero-molecular crystal has been 
devised and applied to the Rl3*3Ss complexes.

Consider again the Rl3*3Ss adduct crystal as comprised of a RI3 lattice and three 

Ss lattices, interpenetrating to form the overall structure. A modified Eq (6) for the 

nonlinear susceptibility is defined which incorporates contribution to %(2) from both 

of these hyperpolarisable components:

X (-G>3;tDl f ©2) =  A (©3) • b k (-to3 J(Ö1»(Ü2) : d k (©!> d k (co2)

*  0

where bj<= ß^/ £0v and v is the volume of the unit cell. Other symbols have 

their usual meanings. The summation is over the RI3 and the three Ss lattices.

Consider the general expression Eq (5e) with the intention of determining the 

different dfc at RI3 and Ss molecules as required in Eq (9):

dk = 1 *% ' 'due*
k '
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In this case, in order to incorporate a molecular basis in the LF factor tensor, , 

one cannot presume that each molecular site in the unit cell has the same 

polarisability and contributes equally to %(1). Clearly, this is not appropriate for 

this system where two distinct molecular components are contained in the unit 

cell.

So to derive an expression for an overall dk  composed from the constituent 

lattices, the individual a^-dj^contibutions are examined. The equation:

X(1) = Saj^ -d ic
k

is thus modified according to the stoichiometry of the complex:

3
X(1) =  a { d j  + I  a Sk d Sk (10)

k =  1

where the I  and S subscripts refer to the RI3 and Ss lattices, respectively.

The problem then arises of how to obtain polarisabilities of component molecules 

as they exist in the crystal. Again, the method is used whereby the relationship 

between the polarisabilities of the component molecules is sought13 (although 

they are not deemed to be equal in this case). The ratio of a^-dj^ terms (which 

might be described as 'sub-susceptibilities' of the entire lattice) is designated p 

and Eq (10) becomes:

X (!) =
f 3 )

1 + I  Psk
{  k = l  )

3.1 d j ( 11)

where

PSk = a s k (12)

13 It is possible to derive a single nonlinear equation incorporating for two different 
molecules in a unit cell via expressions for the local-field at each of the molecules. This 
was done for naphthalene and other similar molecules and solutions were determined 
using the Lorentz-tensor and by presuming equivalence between the molecules [8a].
A nonlinear matrix equation relating and a was determined for an anthracene 
complex and solutions determined by taking a suitable starting polarisablity for one of 
the molecules [8c],
One can also work out a range of acceptable effective polarisabilities algebraically using 
arbitrary parameters in the matrix defining p (see later) [9a,c,10].
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There is still no experimental data which indicates what this ratio might be. A 
simple plausible assumption is therefore made:

in which Xs is the linear susceptibility of the homomolecular Ss crystal and Xi is 
the susceptibility of the homomolecular RI3 crystal. Such a claim is justified by 
arguing that these susceptibilities arise from the molecules of interest in a crystal 
environment, which, although different to the adduct crystal environment, is still a 
much better approximation than trying to use gas-phase polarisability data (for 
example). Also, x(1) information is available for the homomolecular crystals of the 
parent compounds [footnote 14].

Substituting Eq (13) into Eq (12) and Eq (11) allows expressions for the 'sub- 
susceptibilities' to be obtained:

* / < * / =  (Xi /Z%)

ask<isk= [xs/Zx) XaLa
(14)

where % is the weighted average of linear susceptibilities:

X=(xi+3Xs)/4

These can be substituted in (5e) to yield:

d I = l  + {LnXl + 3LIsXs) ^ -  

d s = l  + ( L slXl + 3 L 55Xs) ^

(15)

131



Chapter Four. The LFT-Composite Method

where L\s etc are the Lorentz-factor sub-tensors between the particular lattices. 

These are averages over all such kk ' combinations. For example, Lis = Lsi is 

the average of the fields calculated between an RI3 molecule and each of the nine 

Sß molecules in the cell. For symmetry reasons, it is necessary to use a scalar 

average over crystallographic axes of the linear susceptibility of the 

homomolecular RI3 and Sq crystals, Xi and Xs were14:

s8 XS 3.05

c h i3 XI 3.00

Asi3 xi 5.13

Sbl3 Xi 6.01

These Iocal-field-factor tensors are then used in Eq (9) with the appropriate 

hyperpolarisabilities to give the overall x (2) of the crystal.

2 . APPLICATION TO RI3*3S8

In this treatment, the cell was specified as containing twelve molecules - exactly 

as in the previous LFT Full approach. Lorentz-factor tensors were able to be 

calculated in this specification using the same software as used for the LFT 

supermolecule treatment. A sample input file with fractional coordinates for 
Asl3*3 Sg is shown in Appendix One. In this case, the averaged Lorentz-tensor

elements15 were sorted into In , Lis, and Lss sub-tensors which were then used 

'manually* in Eq (15) with the averaged %d) to give the composite local-field-factor 

tensors.

14 Xs was determined as an average of the principle-axis Xij values for orthorhombic 
sulfur (Ss) crystals which were taken from Ref [10]. Analogous xi for the RI3 materials 
were worked out from the relation, X=n2-1 . The refractive indices used were those 
listed in Table Five of Chapter One. These n were for slightly different frequencies 
(between 633nm and 671 nm) for each of the Rl3 compounds and this does introduce a 
small but consistent error. The xi for CHI3 is slightly overestimated with respect to that of 
Asl3 and xi for Sbl3 is slightly underestimated with respect to that of ASI3. The effect this 
has on the predicted x(2) anisotropies is discussed briefly in Chapter Five.
15 averaged as for LFT-Full method -see footnote 12.
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Table Eight i. Averaged Lorentz sub-Tensors for CHl3*3Ss

k k ’ a ß

aa ab ac bb be cc

Ln -0 .4751 0 0 -0.4751 0 1.9502

L\s 0 .4773 0 0 0.4773 0 0 .0454

Lss 0 .2279 0 0 0 .2279 0 0 .5443

Table Eight ii. Averaged Lorentz sub-Tensors for Asl3*3Ss

k k ’ a ß

. aa ab ac bb be cc

I l l -0 .4584 0 0 -0 .4584 0 1.9168

Lis 0 .4813 0 0 0 .4813 0 0 .0 3 7 4 4

Lss 0.2191 0 0 0.2191 0 0 .5618

Table Eight iii. Averaged Lorentz sub-Tensors for Sbl3*3Ss

k k ’ a ß

aa ab ac bb be cc

III -0 .4254 0 0 -0 .4254 0 1.8508

L\s 0 .4796 0 0 0 .4796 0 0 .0407

Lss 0.2191 0 0 0.2191 0 0 .5618

It is noteworthy that the size of the differences between equivalent Lorentz- 

tensor elements of the different complexes are small. Also, within this range, 

there is a diminishing trend in the absolute size of L\\ elements across the series. 

As mentioned for the supermolecule Lorentz-Factor tensors, this might simply be 

due to change in unit cell size. Curiously, however, there is no consistent trend 
in L\s elements. The larger Iis (1 ,1) for Asl3*3Ss is probably due to the fact that

ASI3 actually has a larger spread in the ab plane, yet the unit cell is a little smaller 

in this dimension.

Local-field-factor tensors d / and ds  calculated with the LFT-Composite Method 

through the use of Eqs (15) are shown in Tables Nine. A quantity, d 'cew, is 

also included. This is the appropriate weighted average of d j and ds  and is 

provided so that all of the local-field tensors generated by the various methods of 

this Chapter may be compared.
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Table Nine i. Local-Field factor tensor for CHI3*3S8

k aa ab ac bb be cc

di 2.2185 0 0 2.2185 0 2.4734

ds 2.4572 0 0 2.4572 0 2.2028

d'ceir 2.233 0 0 2.233 0 2.270

Table Nine ii. Local-Field factor tensor for Asl3*3Sa

k aa ab ac bb be cc

d i 1.7434 0 0 1.7434 0 3.1970

ds 2.6207 0 0 2.6207 0 2.1513

d'ceir 2.226 0 0 2.226 0 2.413

Table Nine iii. Local-Field factor tensor for Sbl3*3S8

k aa ab ac bb be cc

d, 1.6254 0 0 1.6254 0 3.4789

ds 2.6676 0 0 2.6676 0 2.1614

d ’ceir 2.228 0 0 2.228 0 2.491

Local field factors at the sulfur molecule indicate a reasonably isotropic 
environment - although components are a little larger in the xy (a,b) plane. The 
ds are relatively constant across the series although it is curious that the ds cc 
element for Asl3*3Ss is not part of a trend as is the case for other elements. For

the factors at the RI3 molecule, however, one can see that the d/ sub-tensor is 
very polarised (though not as much as the d  in the supermolecule treatment). A 
trend in polarisation toward the cc(33) component of d /across the series is also 
observed and this goes against the weaker opposite trend for ds. This reflects 
the significantly different complexed-molecular geometries. There is a large 
difference between d components of the iodoform and antimony complexes 
which is also due to the smaller linear susceptibility of the CHl3*3S8 crystal.
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Finally, the nonlinear susceptibilities are presented in Table Ten. In calculating 

these, two geometric factors needed to be considered. For the 11 component 

coming from the sulfur molecules, one must multiply the individual molecular 

response by:

l+ 2 co s3 0  = 2.732 (rather than 3.0) due to their relative

orientations in the xy plane. The orientation of the sulfur molecule with respect to 

the trigonal axis is also important. From the crystal structures, the plane of the 

sulfur ring is almost perpendicular to this axis in each of these compounds and so 

no correction need be applied to the 33 component.

Table Ten:

A dduct y (2)
K i l l

(xlO~12m V -1)

y(2)
* 3 3 3

(x lO -^ m V -1)

C H I3*3S8 12.3 2.7

AsI3*3S8 3.7 5 .02

S bI3*3S8 3.2 4 .0

These NLO susceptibilities are not skewed toward a particular tensor element as 

was the case for those from the other methodologies. They are also larger and 

thus more realistic. They are discussed in context with the other results in the 
next Chapter.
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CHAPTER FIVE

Through the use of experimental and theoretical methods described in 
the previous chapters, coefficients describing the macroscopic NLO 
responses for Rl3*3Se crystals are now available. It is now possible to 
examine how microscopic NLO properties of the RI3 molecules give rise 
to the bulk NLO response of the adduct crystals. It is possible to identify 
effects responsible for differences in %(2) structure between members of 
this series of complexes.

An overall similarity of microscopic NLO response was noted in Chapter 
Three upon cursory inspection of computed hyperpolarisabilities of the 
R13 molecules. This suggested that investigation of other factors 
explaining %(2) anisotropy differences was warranted. The possible 
suggestions for this phenomenon that were mentioned in Chapter One 
are now discussed in this Chapter.



This Chapter is structured as follows:

1. Results are assembled from each section of this study:
• Computed hyperpolarisabilities for the isolated RI3 molecules are 
listed.
• NLO susceptibility estimations from the Anisotropic Lorentz 
Approximation and Lorentz Factor Tensor - Supermolecule, Full and 
Composite Methods are tabulated.

2. The Methodology which was outlined in Chapter One to resolve the 
question of differing x(2) anisotropies in these complexes is followed:

• Comparisons are made of the anisotropies of 'constructed' and 
measured NLO susceptibilities and of the computed RI3 

hyperpolarisabilities.
• The contribution to the crystal NLO response from the sulfur 
molecule is considered.
• Absorption spectra of the complexes and the issue of anisotropic 
resonance enhancement is discussed.
• The local-field-factor tensors calculated in Chapter Four are 
inspected.

3. Further questions arising from these results are discussed. For example, 
the importance of the consideration of the environment in which the NLO 
active molecules exist is an issue raised by the results of this study.

4. Errors and uncertainties are discussed.
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Assembly of Results

In Table One, calculated hyperpolarisability tensor components for each of the 
triiodide molecules are presented together with the NLO susceptibilities measured 
for the octa-sulfur adducts and the x(2) predicted for these complexes using the 
techniques described in Chapter Four.

1. PRELIMINARY OBSERVATION

As discussed in Chapter Three, the hyperpolarisability tensor for ASI3 calculated 
at the MP2 level using (large) Pople basis sets was most unusual. In units of 
10'40 m4V_1, it was ß333 = 5.0 and ßi 11 = 1-7
A ß333 as large as this actually yields a in very good agreement with 
experiment, but it is felt that the very large difference in ß anisotropy is 
anomalous and thus the elements returned by the MP2/D95 calculation (as used 
for Sbl3) are used here.

2 . SIZE OF PREDICTED SUSCEPTIBILITIES

Comment is warranted on the absolute size of the predicted susceptibilities as 
compared to the measured x(2) tensor elements. One notices from Table One 
that the experimental components are significantly larger than their computed 
counterparts. Since the local-field effects should be fully accounted for, the 
following are possible reasons for this observation:
• Underestimation of calculated ß will carry through to give underestimates of 

predicted x (2)- Neglect of non-zero frequency consideration in the 
computation of hyperpolarisabilities probably results in an underestimation of 
the size of ß - as discussed in Chapter Three. There may also be a 'residual 
underestimation' of ß by the ab initio routine.

• The local field factor tensor, d, used in the calculation of x(2) with the LFT 
methods are those for the fundamental wavelength although in fact, one of the 
factors should be for the frequency of the harmonic beam and this will be 
larger at 2co frequency.

• It might be that yj® elements are generally enhanced because of the nearby 

electronic resonance. Differing resonance enhancement for different x(2) 
elements is expected to occur as is discussed later but a general 

enhancement may also exist.
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Table One: i-iii

C f f l3
A b  In itio ALA 3 3 3

W]
0.39pm /V

| H y p e rp o la r is a b il i t ie s 11 1 3.82pm /V

ß 3 3 3  «  0 .6 L F T 3 3 3
%(2)

2.7pm /V
supermolecule 11 1 0.8pm /V

ß l l l  Ä 2 .4 L F T 3 3 3
%(2)

1.17pm/V
! Full 1 1 1 3.33pm /V

xlO '40 m4V '1 L F T
C om posite

3 3 3
11 1

yP
2.7pm /V
12.3pm/V

E X PE R IM E N T * 3 3 3
x<2>

4.6pm /V
1 1 11 42pm /V

As I 3 x (2)
A b  Initio

H yperpolarisabilities
ALA 3 3 3

1 1 1
0.84pm /V
2.86pm /V

ß333  == 1-1 L F T 3 3 3
~lF r

5.1pm /V
supermolecule 11 1 0.7pm /V

ß l l l  = 1.7 L F T
x (2)

3 3 3 2.44pm /V
Full 11 1 2.56pm /V

x 1 0 ' 40 m 4 V*^ L F T 3 3 3 5.0pm /V
C om posite 11 1 3.7pm /V

E X P E R IM E N T 3 3 3

X<2)
23pm /V

L _ 1 1 1 52pm /V

Sb l3 W >
Ab Initio

H yperpolarisabilities
ALA 3 3 3

1 1 1
0.55pm /V
4.3pm /V

L F T
x<2>

ß333  ~  0 .7 3 3 3 3.9pm /V
supermolecule 1 1 1 0.9pm /V

ß l l l  Ä 2 .6 L F T
x<2>

3 3 3 1.55pm/V
Full 1 1 1 4.1pm /V

x 10 '40 m4V‘1 L F T
x (2)

3 3 3 4.0pm /V
C om posite 1 1 1 3.2pm /V

E X P E R IM E N T 3 3 3
x (2)

22.6pm /V
1 1 1 16.2pm/V

As described in Chapter Two, there was some uncertainty about the coherence length 
for the experimental geometry measuring the 333 component of %(2) for CHI3*3S8. This 
is around 6pmA/ if the larger value of ]q is used.
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• There is a possibility that the 'effective' hyperpolarisability of the unit cell is 
increased by the presence of the CT interaction between the sulfur and 
iodine atoms. This might be expected to increase the NLO response in each 
of the tensor elements - perhaps by more in the I3 plane.

• The occurrence of field-induced effects may lead to enhancement of bulk NLO 
response. Such effects were described in Chapter One; polarisation of the 
NLO-phore molecule by reaction and permanent local (dipole) fields could 
lead to increase in ß.

• The RI3 molecular geometry as it exists in the adduct crystal is slightly 
different to the free-molecule geometries used for ab initio ß calculation. The 
hyperpolarisabilities of these may be different.

The absolute sizes of the predicted coefficients show they are not excessively 
underestimated. For CHl3*3Se the predicted %(2) are too small by a factor of ~4 
and for Sbl3*3Ss by a factor of =5. It is relevant to note that in many studies 

where comparison is made between computed ß and those determined by 
EFISHG [1], similar discrepancies have been noted.

It is interesting to put these constructed susceptibilities in context with other 
predictions of homomolecular crystal x(2) from free molecule hyperpolarisabilities. 
These were all for organic molecular crystals (in which molecular and crystal axes 
did not coincide). In each case, a significant difference was noted between the 
anisotropy of the LFT local field tensor as compared to the ALA field factor. There 
were also off-diagonal elements in the LFT and local field factor tensor.

Hurst and Munn performed such calculations in 1986 for m-nitroaniline [2a]. 
Hyperpolarisabilities computed using the CNDO semi-empirical method were 
used and the molecule was treated as three sub-molecules. They noted that 
their (nominally) zero frequency ‘constructed’ NLO susceptibility was in fairly 
good agreement with experimentally determined values. The 311 element was, 
however, underestimated by about a factor of three.

The same group later calculated %(2) tensors for MBANP and NMBA1 again using 

CNDO hyperpolarisabilities [2b]. These were also smaller than experimental 
results although there was some uncertainty in the conversion of calculated %(2)s

1 2-(a-methyl benzylamino)-5-nitropyridine and 4-nitro-4’-methyl(benzylidene aniline)
respectively.
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in the a, b, c* axis system to the measured dUiK coefficients. A general 

agreement was attained for NMBA whereas for MBANP it was very poor. The 

quality of the CNDO hyperpolarisabilities was questioned.

The 4-(/V,/V-dimethylamino)-2-acetamido-nitrobenzene (DAN) molecular crystal was 

studied by Munn in 1992 [2c] also using CNDO hyperpolarisabilities. In this 

case, the agreement with experimental x (2)s was not nearly as good -the 

theoretical value was 2-6 times too small and not account for the anisotropy. The 

possibility was noted, however, that for this system, intermolecular hydrogen 

bonding is important between certain functional groups and that this is not 

accounted for in the CNDO ßs. This issue is relevant to the present case i.e., 

molecular charge distributions and hence their NLO response may be 

significantly different in the crystal environment as compared to the free molecule. 

Such differences are almost impossible to accurately reproduce - even with 

modern ab initio computational techniques. Perhaps the greater mismatch 

reported here is due in part to an analogous neglect of the S--I charge transfer 

interaction.

For the reasons outlined earlier, the discrepancy in absolute size of x(2) elements 
is regarded with only mild concern. This margin is the same as that seen for the 
%(2) predictions for the DAN molecular crystal discussed earlier this chapter. 

Rather, the relatively close agreement in anisotropy seen for the two non­

absorbing complexes is gratifying.

Following the Methodology

1. Comparison of COMPUTED HYPERPOLARISABILITIES

The computed ß tensors for each of the RI3 molecules are compared in 

accordance with the methodology outlined in Chapter One. It is seen that the 

NLO response for the isolated molecules is largest in the I3 plane for each 

triiodide. The Sbl3 and CHI3 molecules have very similar predicted 

hyperpolarisabilities which is perhaps a little curious given their differing
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geometries and the difference in chemical nature of the R-group. Arsenic triiodide 

has a significantly different anisotropy of its computed hyperpolarisability to that 

of the other RI3 molecules.

This suggests that any differences between the NLO properties of CHl3*3S8 

and Sbl3*3Ss adducts must be due to;

• differing local field corrections applying in these crystals.

• differing resonance enhancements for the %(2) elements of the two complexes.

• that an NLO response from the sulfur molecule contributes to the two lattices 

but by differing extents.

• it might be that different field-induced effects operate in these crystals. 

Geometry and ß changes could be sensitive to permanent local fields which 

may be quite different.

• differing non-local effects may occur in these crystals, including CT interaction 

strength which may influence ß.

Conversely, the different hyperpolarisability tensor determined for ASI3 means 

that inherent RI3 ß difference m ay solely explain the differences in x (2) for the 
Asl3*3Sg adduct. This is unlikely given that other effects must be acting to cause 

the x (2) differences between the other adducts. The ß tensor differences of ASI3 
will of course play a role in the x(2) differences exhibited by this complex.

2 . Comparison of MEASURED %(2) WITH COMPUTED HYPERPOLARISABILITIES

In Chapter One, this comparison was proposed as being useful in indicating if a 

set of local field factors operated consistently across this adduct series. Such a 

demonstration would mean that Hypothesis Two (in which x (2) tensor differences 

in the series are mostly due to ß and local field factor tensor differences) does not 

apply.

The 1V33 anisotropies of both computed RI3 hyperpolarisabilities and of 

measured Rl3*3Sg x(2) are shown for each Rl3/Rl3*3Sg pair in Table Two.
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Table Two

Computed ß l l / ß ^ Experimental

C H I3*3S8 4 .0 9.1

A sI3*3S 8 1.5 2.3

S b I3*3S 8 3.7 0 .7 2

From these results, it is evident that the differences between hyperpolarisability 
and NLO susceptibility anisotropies vary greatly between the RI3 / Rl3*3Ss. 

Therefore it is not possible to rule out Hypothesis Two as a cause. It does not 
necessarily mean that Hypothesis Two is important, as a consistent anisotropy 
difference may be masked by resonance effects or contributions from Sg. 
This evidence implies that local field factor differences and/or resonance 
enhancement differences and/or Ss contribution differences explain experimental 
*(2) anisotropy differences in this series (and so is no more conclusive than the 
previous comparison of ß tensors).

An apparent trend in the anisotropies of experimental Rl3*3Ss susceptibilities is 

not replicated in the anisotropy of calculated hyperpolarisabilities of the isolated 
RI3 molecules. In this regard, the earlier result of Samoc et al [3] has been 
confirmed, namely, the computed anisotropy of the gas-phase Sbl3 molecule's 
NLO response is very different to that which was measured in the octasulfur 
adduct. This is in contrast with the agreement seen between such anisotropies 
for CHI3 and CHl3*3S8 - a result also confirmed by the experimental and 

theoretical results of this work.

3 . Comparison of PREDICTED X(2) WITH MEASURED X(2)

Constructed susceptibilities determined using each of the methods outlined in the 
last chapter are now examined and compared with the experimentally derived 
coefficients. These comparisons may show that only ß and local-field-factor 
differences dictate %(2) tensor differences if good agreement is seen with one of 

the methods.

i. The X u / (2) ratios using %(2) elements predicted using the ALA model are

presented in Table Three. Comparing these firstly with the ßi 1/ß33 ratio, 

one can see that in each case, the anisotropy of %(2) is about twice that of the
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hyperpolarisability. This occurs because three ALA f  factors appear with ß in 
the expression for computing x(2) (Eq (1) in Chapter Four) and all have similar 
anisotropies - large elements in the xy plane and smaller elements 
perpendicular to this. Therefore, this treatment exacerbates the anisotropy of 
X (2). The combination of /co /o )/2 (o  multiplied by ß leads to an increase in the 

anisotropy of a factor of about two in this case - the exact amount depends 
on crystal birefringence (dictating /  anisotropy) and the anisotropy of the 
computed ß.

Table Three

Computed

H 3 3

ALA Experimental

C H I 3* 3 S 8 4 . 0 9 . 8 9 .1

A s I 3* 3 S g 1 .5 3 . 4 2 . 3

S b I 3* 3 S g 3 . 7 7 . 8 0 . 7 2

This model deems the NLO response of the adduct crystal to be much 
stronger in the plane of the iodine atoms than perpendicular to it. While this 
was theoretically predicted to be the case for the free molecules, such a result 
is not necessarily plausible for the x(2) of the adduct crystals in general. This 
is evident from the measured susceptibilities. Another noteworthy point is the

comparison between ALA-derived Xu/  <2) ratios and measured Xu/'&)

ratios. There is a reasonable agreement in these anisotropies for CHl3*3S8, a 
scant and uncertain agreement for Asl3*3Ss and none at all for Sbl3*3Ss (the 

ALA prediction is even of the wrong sense). Some pattern might have been 
expected if there was a systematic error introduced by this method.

As indicated in the last chapter, the ALA model is known to misrepresent the 
local field acting at the NLO active centre (which is unspecified using this 
method) and the agreement in the anisotropy that is seen for CHl3*3S8 is 

therefore considered to be coincidental. The comparison of these x(2) tensors 
with measured NLO susceptibilities is seen to be unable to provide 
information on the question of differing measured x(2) tensor anisotropies.

ii. Susceptibilities predicted using the Lorentz-Tensor method for an adduct 
structure approximated as comprising three super-molecules per hexagonal
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unit cell were potentially more promising2. From first glance one notes that the 

anisotropy of these %(2) tensors is opposite to that determined by the ALA 

method. This result is a rather dramatic change from the previous case and it 

is also unrealistic. It is also curious in being completely different to the 

anisotropy of the calculated hyperpolarisabilities3. It is, however, able to be 

explained if these susceptibilities are instead regarded as showing very 

suppressed Xy) elements and/or slightly enhanced X33 elements.

Such a skewed %(2) anisotropy can in fact be predicted when modelling the 

structure as supermolecules. The problem can be seen to stem from two

errors introduced in the determination of the Lorentz factor tensor:
♦ The determination of Ly?considers fields at each submolecular point 
from each submolecular lattice. It then subtracts fields at submolecules from 
submolecules within the same molecule to prevent self-polarisation effects 
being simulated. Thus in a supermolecule specification the electric fields 
calculated at submolecules 0 ^ '  due to R and I submolecules (and vice versa) are 
actually excluded. Yet for accurate consideration of the NLO response of the Rl3 

molecule it is important to account for lattice points most closely surrounding this 
'NLO-phore' molecule. This is true above and beyond any consideration of a CT 
interaction between these molecules. The sulfur-iodine (CT) axis in these 
structures is closest to the crystallographic xy plane (especially for CHI3). Thus, it 
is fields in the xy plane that are largest4 between these submolecules and these 
are ignored from the submolecular-averaged Lorentz-factor tensor 
determination. Because, the tensor is normalised, such components are 
‘diluted’ and too small in the resultant averaged Lorentz tensor and conversely, 
the z or 33 elements are a little overestimated.
♦ As well as this shortcoming, treating the Se ring as a single submolecule 
further causes 11-component diminishment. The increased distance of the 
center sulfur submolecule from the RI3 molecule as compared to the actual l-S

2 comprised of seven equally-polarisable atoms (sub-molecules) at the R, I and Ss ring 
center positions. This is a homo-molecular description of the structure.
3 This is not at all impossible. That a NLO susceptibility has a different anisotropy to the 
corresponding hyperpolarisability is not surprising in light of the similar relation between 
oc and anisotropies in molecular crystals (it may even be opposite).
4 From basic electrostatics, the field in a plane or along a line containing dipoles 
arranged with their dipole vector in that plane is large and positive and is negative and 
decays quickly perpendicular to it. For a linear or planar array of dipoles with their dipole 
vectors aligned perpendicular to the plane, the field in the plane is smaller than in the 
former situation and still decays rapidly perpendicular to the plane [4].

The situation in the supermolecule is such that the R-l-S axis is nearly linear and 
oriented much closer to the 1,2 crystal plane than to the 3 axis. Thus, field application in 
the x and y direction resembles the former situation more closely than the latter, 
resulting in large (1,1) and (2,2) components between submolecules on this R-l-S line. 
Fields applied in the z direction more closely resemble the latter situation meaning 
smaller (3,3) components. This is borne out from the LFT-Composite work described in 
the previous chapter in which such an anisotropy is observed for the L\$ sub-tensor.
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distance in the adduct means that field contributions between point dipoles lying 
on S atoms and on I atoms (within different molecules) will be smaller. As just 
discussed, it is the 11 component which will most affected. It is suggested that 
this effect is of secondary importance to the previous point.

Because of this aberration, these 'LFT Supermolecule1 tensors are not of use 
for comparative purposes with measured x(2) but it is interesting to note the 
effect of using a supermolecule cell specification for these heteromolecular 
crystals. It may generally be the case that for such charge-transfer 
complexes is poorly predicted when modelled in this way. A similar effect 
was noticed when employing a supermolecule specification in the work 
predicting effective polarisabilities in CT complexes of anthracene [5].

iii. It is evident that x(2) tensors attained where unit-cell atomic positions are 
fully parameterised do not appear unduly biased to either 33 or 11 element. 
They are still an incomplete parametrisation due to the neglect of molecular 
polarisability in the determination of d  but they incorporate explicit local field 
calculation for the actual adduct structure and so are a large improvement over 
the ALA results.

For the iodoform complex, the computed anisotropy is of the correct sign but is 
not as large as the measured x ^  anisotropy. For Asl3*3 Ss also, this method 

predicts a quite different (smaller) anisotropy than is seen experimentally. For 
the antimony complex, this model leads to prediction of a dominant X(-n 

element whereas a larger X33 is observed.

Despite the problems with the first two construction methods and the 
limitations of this one, it can reasonably be said that the agreement mentioned 
earlier with measured NLO susceptibility anisotropies is not apparent. This 
would mean that it is not solely inherent ß tensor differences in combination 
with local field differences that explain the phenomenon of differing x(2) 
anisotropies in these complexes. The corollary to this is that one or more of 
the other factors mentioned must be playing a part.

Interestingly, one can see from this comparison that the anisotropies of LFT- 
Full x (2) tensors roughly imitate the ß tensors (at least x^JLL anisotropies are

more like those of ßthan x ^ AS)- This Prov'des further independent evidence 

that local-field-factor differences across the series are not so different as to be 

able to explain the large x(2) tensor differences.
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4 . SUMMARY OF COEFFICIENT COMPARISONS

Overall, the comparisons that have been discussed have returned rather 

inconclusive answers:

• The comparison of computed RI3 hyperpolarisabilities both within the adduct 

series and with experimental x(2) tensors led to the conclusion that more than 

just ß differences between the triiodide molecules are needed to explain the 

X<2) tensor differences.

• The final comparison was more conclusive, suggesting that local-field-factor 

differences across the series do not play a major role in explaining this.

Thus, the other techniques suggested in the Methodology are now examined for 

clues as to the importance of the alternative explanations.

5. SULFUR CONTRIBUTION

The LFT-Composite method is an extension of the LFT-Full method in which the 

microscopic NLO response of Ss is incorporated into the NLO-susceptibility 
prediction. The idea behind the use of such an approach was that if the %(2) 

elements thus yielded were in good agreement with experimental adduct 

susceptibilities, then this would strongly suggest that the hyperpolarisability of 

the sulfur molecule is important in determining the appearance of the adduct x(2) 

tensor. This importance would, of course, be in combination with proper 

consideration of the ß of the RI3 molecule and the appropriate local-field-factors 

for the particular adduct structure.

One sees upon inspection of these LFT-Com posite  %<2) tensors that the 

agreement with measured NLO susceptibilities is much better than for previous 

constructed tensors. This is attributed to two factors. The first is the effect of the 

addition of the NLO response of the sulfur molecules. The other is that local-field- 

factors are much more realistic through full representation of the complex in distinct 

molecular components (as with the LFT-Full method) and that in this case, 

polarisability contributions to d  from both molecules are included.
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The LFT-Composite x (2) anisotropy computed for the iodoform complex is about 

half that of the experim entally derived tensor. The 11/33 ratios are ~4.5 and 9 

respectively, a lthough this latter ratio is reduced to 7 if the alternative X33 

element is used. This agreement is quite good. For the arsenic complex the 

agreement is poor, 11/33 is -0 .75  for the constructed x (2) tensor and 2 for the 

measured x<2). In this case, however, it is believed that there is a significant 

resonance enhancement of the element - this will be addressed later. For 

Sbl3*3 Sg, the predicted x (2) anisotropy is 0.8 versus the measured 0.7. This is a 

very good agreement although these values can be expected to be a little further 

apart after consideration is made of weak absorption at 532nm, leading to weak 

enhancement of the element. This was also the only method which correctly 

predicted the sense of the anisotropy for this adduct.

In using this method, the assumption was made that the p of the adduct crystal 

-the ratio of polarisab ilities of the d ifferent m olecules in the unit ce ll- w as 

approxim ately equal to the ratio between the susceptib ilities of S° and RI3 

crystalline compounds. How this affects the anisotropy of the constructed x (2) is 

not clear. This is especially so for Xs because the orientations of Ss molecules 

do not map exactly between the adduct and hom o-molecular crystal structures5. 

It might be expected, however, that by taking the susceptibilities of orthorhombic 

sulfur for the scalar average, Xs. the anisotropy of the Ss lattice in these crystals 

is som ewhat underestimated. In any case, the effective estimated anisotropy 

used in the x (2) calculation is zero, due to the susceptib ilities being averaged 

over all crystallographic axes. This will lead to a slight underestimation of the %(2) 

anisotropy. This can be seen by looking at the dk  tensors for the individual RI3 

and Ss lattices comprising the adduct crystal.

Another interesting aspect may be noted from the LFT-Compo x (2) results. It 

appears that the metal triiodide adducts seem to have a sim ilar non-resonant 

NLO response. It is interesting to realise that this arises because the differing 

hyperpolarisabilities and sulfur contributions (and to a small extent, the local-field- 

factors) coincidentally combine to create this similarity. If faced with just the bulk 

responses, it would be impossible to work backwards to predict the actual RI3 

and Ss contributions for each adduct - which are clearly quite different.

5 In the orthorhombic Ss crystal, the 16 molecules in the unit cell are arranged with one 
axis of the mean-ring-plane parallel to the c-axis [6]. The axis perpendicular to this plane 
is aligned along (but not parallel to) the a axis. Molecules are aligned with opposite 
orientations of their mean-ring-plane axes (ie, they do not all lie 'flat' in a crystal plane as is 
the case in the adduct crystals). The anisotropy in x ^  would be expected to be larger if 
the latter arrangement applied.
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The significant NLO response of the sulfur molecules in the CHl3*3S8 lattice 

appears to be due to appreciable geometry distortions induced in this molecule in 

this complex and this is discussed later.

Sulfu r Conclusion

Apart from the Asl3*3Ss complex, NLO susceptibility anisotropies calculated with 

this LFT method are in good agreement with those derived experimentally. With 

respect to the overall question, this result provides very strong evidence that the 

Fourth Hypothesis of the Chapter One methodology is most important, namely, 

sulfur (donor molecule) contributions do matter.

6 . CONS ID ERA TION OF ABSORPTION

The presence of molecular electronic resonances will cause absorption of either 

fundamental or second harmonic radiation. This can have a profound effect on 

the observed nonlinear optical effect. Certain NLO processes may be 

advantaged6, however, such effects are generally unwanted in more fundamental 

studies due to the uncertainty they introduce [7], The losses due to absorption 

of harmonic radiation were mentioned in Chapter Two.

These complexes are yellow or orange-yellow and thus absorb slightly at the 

harmonic wavelength of this study - 532nm. This is shown in Appendix Two in 

diffuse reflectance spectra which were measured on powders of the complexes. 

It is evident from these that the arsenic compound is much more absorptive at 2co 

than the antimony and iodoform complexes. Asl3*3Ss was further examined by 

measuring polarised absorption spectra for single crystals of this complex. A 

strong dichroism at 2co is observed with A  at 532nm is about 3.5 times as great 

in the xy  plane - though this figure is uncorrected for scattering and reflection 

differences. It is reasonable to presume that the CHl3*3Ss and Sbl3*3Sg 

complex crystals exhibit similar polarised absorption behaviour.

It is possible therefore, that the higher x (2)s seen for Asl3*3Ss are attributable to 

an effective hyperpolarisability enhancement stemming from the proximity of the

6 For example, third order effects such as third harmonic generation and intensity- 
dependent refractive index changes can also be significantly enhanced in the region of 
electronic resonances - they are also needed in anomalous-dispersion phase-matching 
[8].
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(fundamental two-photon) resonance in this material. Two photon absorption as 
a material property is actually given by the imaginary part of the third-order 
susceptibility; %(3)(-co;co,co,-co). The resonance itself may affect other NLO 
processes such as frequency mixing - as is noticed here.

Most importantly for the question of %W anisotropies, the strongly polarised 
nature of this absorption can account for the even larger NLO response in the xy 
plane (see Table One) which was greater-than-predicted by the LFT-Compo 
method just discussed.

In principle, it is possible to roughly estimate the extent of this resonance 
enhancement by using the relations mentioned in Chapter One, Eqs (7 ) & (9 ) 
for two- and three-level system approximations (2LS & 3LS) respectively. The 
2LS is appropriate for the vector part of ß whereas the 3LS is needed to examine 
resonance effects on ß tensor elements of octupolar character.

In practise, however, it is not possible to determine Xmax and thus conm or/from 

the reflection spectra of the complexes. Solution spectra of RI3 are 
unsatisfactory due to very different absorption characteristics in the different 
environments. Furthermore, rapid decomposition results in interference from I2 

absorption. No estimates are available for the transition dipole moments needed 
for the 3LS expression. For these reasons, such an estimation was not 
possible, however, if one considers the LFT-Composite X rt element as =4-5 

times smaller than the nonresonant x(2) (as it seems to be for the other adducts), 
this would mean a resonance enhancement of about three times which is 
plausible. Such an effect greatly overwhelms the underestimation (=9%) of this 
element that was caused by the neglect of absorption of second harmonic 
radiation.

Due to this resonance, Asl3*3Ss was less useful for examining the relationship 

between electronic (non-absorptive) and structural properties and the NLO 
susceptibility in these adducts. It is possible that the different absorption 
characteristics for this complex are connected to a slightly different CT interaction, 
however, there is no supporting evidence for this from the interatomic distances 
given by the X-ray structures.
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7. EXAMINA TION OF TENSORS

It was suggested in Chapter One that further insight into the cause for the 
anisotropies of x(2) tensors could be obtained by looking at the anisotropies of 
the locai-field-factor tensors. In this section, those d  determined using the LFT- 
Full and LFT-Composite methods are examined.

The evidence to this point suggests that differing local-field-factor tensors for 
each of these complexes is not a major explanation for their observed differing 
NLO susceptibilities. This is corroborated by the calculated LFT-Full d  tensors 
which show small (<5%) and relatively uniform change across the Rl3*3Sg series 

(see Tables Six i-iii of Chapter Four). Turning to the d 'ce/ r  calculated using the 
LFT-Composite method, again one notices only small changes in the tensor 
elements across the series: for the 33 component, it varies by ~9% and 
remarkably, for the 11 component the local field factor is virtually the same for 
each adduct.

Other points arise from this analysis. The individual contributions from d\ and 
ds are evident from the determination of d 'CelT using the LFT-Composite 
method. It is remarkable to see that the rather isotropic 'unit cell' local field factor 
tensor comes about from the averaging of one d \ tensor which is strongly 
weighted in 33 elements, with three ds tensors weighted toward 11 elements. 
Inspection of individual dk tensors shows some differences between the various 
lattices, for example, the 33 component of d \ for CHl3*3Ss is very much smaller 
than those for Sbl3*3Ss or Asl3*3Sg and conversely, the 11 components are 

much larger. This is to be expected since the latter two adducts have a more 
similar structure whereas CHl3*3S8 has a 'flatter' form (see scale pictures in 

Figure Six of Chapter One).

The lattice of S8 molecules is of different dimensions in each adduct. This is 
expected, given the Rl3 geometry differences. This leads to only a fairly small 
spread in ds across the series. Presumably, that the size and anisotropy of ds 
(opposite to d\) almost cancels the anisotropy of d \ is coincidental.
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8 . IN SUMMARY

Firstly..with respect to.the.central,%(2). anisotropy..question:

It appears that the differences in the tensor across this series of isomorphous

complexes are not explicable by only considering the hyperpolarisability of the 

RI3 molecule -  even with the local fields experienced by this molecule in the Sg

lattice properly accounted for.

Results from this study independently show that this is the case:

• Comparisons of computed hyperpolarisabilities, measured x<2) and various 

'constructed' NLO susceptibilities indicated that local-field-factor tensor 

differences across the series were not a major cause of x<2) anisotropy 
differences in Rl3*3Ss crystals.

• Inspection of local-field-factor tensors shows only small variation in d across 
the Rl3*3S8 series and this leads to the same conclusion.

This implies that the Third and Fourth hypotheses of the Chapter One 

Methodology are of significant importance in rationalising bulk NLO properties 

from molecular hyperpolarisabilities in these complexes. It was also shown that 

significant contributions to come from the complexing partner {Sq) molecule in 
these adducts. This is especially so for CHl3*3Ss. Clearly, the proximity of the 

electronic resonance of the material (stemming from the triiodide molecules) is also 

a major factor determining the bulk susceptibility of these adduct crystals. This is 
especially illustrated by the response of Asl3*3Ss.

Secondly^ with .respect .to other complexes:

The results from these experimental and theoretical x (2) determinations show that 

the process of construction of NLO susceptibility from computed 

hyperpolarisabilities can give a reasonable prediction of the size and anisotropy 

of bulk NLO response in hetero-molecular 'complex' crystals such as these. 

General conclusions that might be drawn from this work include:

• a full tensorial consideration of the local field issue is necessary. The Lorentz 

Factor tensor for the crystal lattice tensor should be calculated using a 

sensible specification of the molecules in the unit cell.

• when local field factor tensors are determined using an LFT approach, they 

are very often different to ALA counterparts and that this may lead to a 

dramatically different anisotropy of %(2l
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• use of a supermolecule specification for the complex is inadvisable - primarily 
due to the absence of consideration of nearest neighbor field contributions to 
the Lorentz tensor.

• contributions to x(2) from the partner molecule should be taken into account. In 
this case, the Ss ring in its distorted form significantly increased the overall 
response. This has not been shown previously.

This work has shown the importance of dealing properly with hetero-molecular 
crystals where both molecules contribute to x(2)- It is quite likely that these 
conclusions also apply to other closely related series of 'adducts', for example, 
the differences noted in the bulk NLO response of CHl3*3Qn with respect to the 
CHl3*3S8 response [9], might be (partly) due to differing contributions from the 

donor quinoline molecule as well as differing local fields experienced by the CHI3 
molecule in this lattice.

Other Conclusions:
Although it is interesting and worthwhile to know of the NLO response of 
Asl3*3Ss, this complex has not been of great use in confirming the utility of the 

LFT-Composite treatment of hetero-molecular complexes. This is due to the 
probable operation of a two-photon resonance enhancement mechanism which 
overwhelms the underlying non-resonant x(2) anisotropy and against which it 
may have been possible to see some agreement with x(2) predicted from ASI3 
hyperpolarisability. This is a limitation of this method -one must look for additivity 
in NLO response from different adduct components at frequencies removed from 
resonances in either component. It would be beneficial to measure these x(2) 
elements using several fundamental sources further into the IR so that this 
complicating factor would not be present.

Finally, this is the first time a hetero-molecular CT complex type material has 
been examined at in this way. Other conclusions following from these results:
• the geometry of molecules as they exist in the lattice can have an important 

bearing on bulk NLO behaviour.
• hetero-molecular treatment of a lattice to include different hyperpolarisability 

contributions is possible without a Lorentz-Factor Tensor treatment of the local 

fields.
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Other Issues

1. THE CHARGE-TRANSFER INTERACTION

The charge-transfer interaction which is responsible for the complex formation 
must have an effect on the way the overall NLO response of the crystal 
develops from the free-molecule RI3 hyperpolarisability. This might be on both 
the anisotropy of the %(2) tensor as well as affecting the overall size of the 

response.

It has been shown that the effective polarisability, , of a molecule in a general 
lattice of molecules is different to the free-molecule polarisabiiity, a°k [11-13,16]. 

This is largely because of effects induced in the molecule from fields at the 
molecule coming from (i) permanent molecular charge distributions on the lattice 
and (iS) dipoles induced on lattice points by an applied electric field. As well as 
these local effects, however, are non-local effects whereby field application at a 
position remote from the molecule leads to some response and change of 
property of the molecule (such as polarisability). This can be expressed [10,11]:

^ Ik  = a lk + 1 ^ .
J k

where A ik is the total polarisability of molecule k  in unit cell 1, and is different to 
the effective molecular polarisability a# because of extra distortions imposed on 
the molecule from short-range interactions (such as those CT interactions in these 
adducts) which are the means through which non-local response occurs, rk .

is the polarisability induced in the molecule from non-local effects on other 
molecules k ’ in the same and in other cells V.

Non-local effects may be manifested within a molecular volume or between 
molecular volumes and the presence of a charge-transfer interaction may provide 
a mechanism for the latter type of non-local effect. This has been discussed in 
terms of 'field-induced charge-transfer' in [4]. Given the existence of a CT 'bond' 
in the crystal, it can be seen that the polarisabilities of both donor and acceptor 
molecules will be different due to their partially ionic nature. As well as this, field- 
induced charge-transfer will result in further polarisability change. Also, if 
attempting to use homomolecular crystal data, different crystal structures may well 
obfuscate any differences seen as occurred for [4].

156



Chapter Five: Other Issues

The non-local contribution to the polarisability, xlKVk., should be quantified as this 

would allow some idea of the importance of such effects on the effective 
hyperpolarisability. In practice, this is not possible due to lack of knowledge of 
the amount of induced CT.

The CT interaction is expected to have an appreciable effect on the electron 
distribution at the iodine atom. A Raman experiment was performed to see if this 
effect is similar for each triiodide [this is presented in Appendix Three]. The 
results indicate that the bond attains significantly greater covalent character upon 
complexation with Sg (by a factor of =2) but that this induced change is almost 
the same for each adduct. The change in bond polarisability derivative also 
indicates that the charge-transfer to the iodine acceptor is significant. It is 
plausible to suggest that this may affect NLO response.

Can the extent that this 'iodine-sulfur bond' affects the overall NLO response be 
deduced by examining the difference between the constructed and measured x(2) 
quantities? In particular, one would look for differences between x(2) elements 
derived from the LFT-Composite treatment and the experimental susceptibilities. 
In principle this is possible, however, in practice this is not at all feasible since:
• The assumptions made in parametrising the system to perform the LFT- 

Composite x<2> construction are too severe. The first of these is the 
approximation that the linear susceptibility of both the RI3 and Sg 
components when determining local field factor tensors for each of these 
lattices. The other is the use of linear susceptibilities at optical frequency for 
X(2) calculation using static computed ß.

• An extremely high degree of reliability in the computed hyperpolarisabilities of 
the free molecules would be required.

• the complicating absorption needs to be avoided (or accurately accounted 
for).

Thus it is not possible to say exactly how the charge-transfer interaction 
contributes to the NLO response of these complexes. With the use of more 
advanced ab initio computations, CT interaction contributions to ß in 'super- 
molecular' systems such as these might be predicted.
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2 . CONTRIBUTION FROM DISTORTED S8 RINGS

One notices a large difference in the contribution to the predicted adduct 

susceptibilities from the octa-sulfur lattice for the iodoform complex as compared 

to the other two. This stems directly from the much larger hyperpolarisability 
manifested by the more distorted Sß ring which exists in CHl3*3Sß. Figure One 

illustrates the differing distortion. This also illustrates that NLO response can be 

very sensitive to molecular geometry.

Octa-sulfur exists as a puckered 8-membered ring which, when undistorted as in 

the gas-phase, belongs to the D4d point group. By symmetry, this 

noncentrosymmetric molecule will exhibit a ß at non-zero frequencies and this 

response is governed by a single tensor element, ß-123. At zero frequency this 

element too becomes zero.

While an undistorted Sß molecule in the adduct lattice will exhibit an NLO 

response, it would only be in the 'off-diagonal' condition required to measure ^123. 

It is only when the symmetry of the molecule is lowered through distortions 

imposed by the combination of charge-transfer interaction, permanent local fields 
and the crystal lattice potentials, that other tensor elements appear such that a 
contribution to and/or X33 is made.

It was noticed in Chapter Three that the static ß calculated for the various S8 ring 

structures vary markedly across the series and that ß is sensitive to octa-sulfur 

geometry - seemingly increasing with the amount of 'distortion' (and vanishing 

when exact D4d symmetry is attained). It is difficult to procure evidence as to 

why the ring shapes are so different in these materials but there is probably a 
connection with the strength of the iodine-sulfur interaction. In CHl3*3Sß one 

sees the shortest iodine-sulfur interatomic distance of 3 .5Ä. This stronger 

interaction may be responsible for extra distortion of the Sß ring -especially the S 

atoms closest to the bonding sulfur. This is indicated in Figure One.
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Figure One: Models of S8 molecules as they exist in two CHI3*3S8 lattices. The view is along
the axis containing the S3/S8 atoms so that distortion in S1 is most visible. An view with S7 
atoms overlaid is shown to highlight the geometry difference.

Ring-geometry distortions are a sum of those produced by the regular crystal 
potential, any distortion arising from the permanent DC field and that due to the 
iodine-sulfur CT interaction. RI3 in-adduct geometries are only slightly different to 
those optimised ab initio molecular geometries. See Table Nine in Chapter 

Three.

This result showing significant Ss contribution to the NLO susceptibility seems to 

be in conflict with earlier work showing the x(2) response to come mainly from RI3 

[Refs 23,24 of Chap 1]. The experiments reported in those studies were not, 

however, intended to be conclusive on this question.
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2 . NLO EFFECTS INDUCED BY PERMANENT FIELDS

The question was raised by Samoc et a! [3] whether an 'EFISHG-type' 

mechanism operates in some adduct crystals to augment the vector part (or just 
the %(323j component) of the NLO susceptibility. This was briefly described in

Chapter One as a valid possibility. A permanent internal electric field exists due 

to the RI3 molecular dipole moment and the suggestion was that this field induces 

a ß in the Ss molecules. In fact, this is not well described as an EFISH process 

since such a term suggests a field-induced bulk nonlinearity arising from removal 

of the orientationally averaged centrosymmetry in a fluid medium. The mechanism 

proposed here is an example of an all-electronic effect of ß enhancement induced 

in a molecule by a permanent internal electric field.

Strong evidence supporting that such a mechanism operates would be to show 

that there is a definite correlation between the size of the RI3 molecular dipole

moment, /i, and the X u / (2) anisotropy ratio7. One would expect a positive

correlation -though not necessarily a straight line dependence. One could also 
use correlation between f i  and the "effective hyperpolarisability" if this could be 

reliably calculated. Further supporting evidence would be provided if it could be 
demonstrated that electric field application to the ’in-adducf Ss geometries results 
in an enhancement of that molecule's hyperpolarisability.

The suggested correlation requires use of nonresonantly enhanced %<2) 
coefficients. Such an exercise also requires p  - ideally for the molecule as it 

exists in the adduct crystal. In practice, such a correlation would be difficult with 
only three members of this series. In any case, it has been seen that Sbl3*3Ss 

has a significantly larger '33' NLO response than CHl3*3S8 and the dipole 

moment of Sbl3 is about twice that of CHI3 in the gas phase. This originally 
prompted the 'permanent-field-enhancement' theory. Asl3*3Ss, however, has a

7 Using such a correlation as evidence for a physical mechanism is quite different to the 
intuitively appealing course of simply trying to relate p with free-molecule 
hyperpolarisability as was discussed by Levine and Bethea [14]. It was concluded there 
that this has no basis for o-electron molecules and that such a relation for conjugated n- 
electron systems is inaccurate.
Incidentally, there is no a priori justification to relate a polarisability or hyperpolarisability 
(distortabilities of bound electric charges by an applied field) to the static moments of 
distribution of these charges although an empirical relation between p and a seems to 
exist for RI3 molecules (using the expression of LeFevre [15] connecting bond 
stretching frequency with bond polarisability, these a correlate well with p ).
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(2 ) /
nonresonant % n / (2) ratio close to that of Sbl3*3Ss, yet ASI3 has an isolated

^33

dipole moment much closer to that of CHI3 which does not fit the trend of the other 

two.

It is informative to look at the internal fields and in-adduct dipole moments for 
CHl3*3Ss and Sbl3*3Sg which have the smallest and largest RI3 dipole moments 

respectively.

Theoretical investigation of dipole moments and permanent electric fields of polar 

molecules within crystals has been discussed in the work of Munn [16] and such 

predictions have been made for the case of HCN crystals [17]. The procedure 

developed there for computing both quantities in homo-molecular crystals 

involves calculating:

• molecular dipole moment as a function of local electric field (using MO 

computational chemistry techniques) and

• local-field at the molecule as a function of dipole moment.
The point at which the two functions cross gives the estimate for both f i and E/.

Given the Lorentz-factor tensor for the structure, the latter can be worked out from 
the earlier formalism in Chapter Four, where local field was given by Eq (4a):

E/ = Em + ^ L w P k '/E o V

For hetero-molecular crystals, the situation is complicated since a dipole moment 
on one type of molecule will induce a / i o n  the others. This then contributes to 

the local-field, thereby modifying the dipole moments etcetera. To properly 

estimate a local field, contributions from all these dipoles must be included self 

consistently. In this case, however, it is useful to consider the local electric field 

at molecular sites simply arising from a RI3 dipole moment and neglecting the 

contribution to this field from the polarised sulfur molecules. By doing this, relative 

differences in the local-fields in the two lattices will be apparent. These will be 

meaningful despite the assumption since -to a first approximation- the 

contribution from the sulfur lattices of the two adducts will be similar.

In the specific case of zero applied-field, Em =0. For the hexagonal Rl3*3Ss unit 

cell, Z=3, and taking the complete submolecular specification (as for the LFT- 

Composite Method), the above equation simplifies to:
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Chapter Five: Other Issues

E/  = 3 ( In  + 3 Lis / v e0 (1a)

for Ef  at the iodoform molecule and

Ef  = 3(Isi + 3Lss )/i /v  £0 (1b)

for Ef  at the octa-sulfur molecule. The Lorentz sub-tensors (averaged fields at a 

molecule from dipoles on sub-lattices) are as described and calculated in Chapter 

Four (Table Eight). These expressions rely on the assumption of there being a 

dipole moment on the Rl3 molecules only.

Only E/3 3  (the local field in the crystal/molecule z direction) need be determined 

since, by symmetry, components in other directions are zero when a z-oriented 

dipole is on Rl3. Thus, the 33 components of the L&subtensors are used in Eqs 
(1) to give E / for various dipole moment magnitudes (see Table Four).

Tabie Four
Site o f  Local Field  

(au)
Mz

0.5D
Mz

2.5D

C H I3 33 l.O lx lO '3 5 .04x l0" 3

S b l3 33 9 . I 8 X I O - 4 4 .5 9 x l0 '3

To determine the dipole moment as a function of E/,  field-dependent fi were 

computed for both the CHI3 and Sbl3 molecules within Gaussian94 - exactly as 

for the MP2 ß calculations which are described in Chapter Three. The computed 

free-molecule dipole moment for iodoform is =0.8D along the C--H bond axis. 
When an electric field of 0.001 au is applied along this axis, /1 increases to =1.0D 

and when a field of 0.01 au is used, a value of -2.6D is obtained. These are 
sufficiently reliable to be used for estimating the in-adduct /x value for CHl3*3 S8.

For the antimony triiodide molecule, a slight problem arises in that the dipole 

moment of free Sbl3 was not particularly well reproduced in ab initio calculations8. 

This introduces some uncertainty as to where the intercept of the two linear 
functions will occur. A 'zone' for the intercept is therefore defined by plotting the ^  
versus Ef  function using all-computed dipole moments and then 'shifting' this to 

the observed E/=0 dipole moment (1.58D) maintaining the same gradient. Both 

lines are depicted in Figure Two.

8 The literature value is 1.58D. The closest ab initio prediction was =2.0D (Chapter 
Three, Tables Six and Eight).
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Once an in-crystal dipole moment has been estimated from the intercept of the E/  

and /i functions, it can be used in Eq (1b) to estimate the local-field strength 

existing at the sulfur molecules of the two complexes

z component of 
Local field, Ef, at RI3 (au)

Figure Two: The Graph contains:
Dependence of molecular Dipole Moment (in Debye -vertical axis) on the z component of 

the local electric field Ef (in atomic units) at the Rl3 molecule.
Dependence of the z component of the local electric field Ef at the Rl3 molecule on the 

molecular Dipole Moment.
The dashed lines indicate the different possible intercepts for Sbl3*3S8. Note the similarity in the 
plots of local-electric-field as a function of /u for both adducts.

From the intercept of the iodoform E/(/z) function with the //(Ef) function in Figure 

Two, one arrives at a value of 1.26D as the in-crystal dipole moment and an 

estimate of the permanent local-field in the z direction of =2.55 x 10-3 a.u. Using 

this dipole moment in Eq (1b), a value of =2.04 x 10-3 a.u. is predicted for the z- 

direction permanent local field at the octa-sulfur molecule.

A range of values were obtained for the in-crystal dipole moment and the local 
electric field at the Sbl3  molecule in Sbl3*3Ss. A figure toward the lower end is 

more likely if one accepts the straight line using the experimental Sbl3  dipole 

moment of =1.6D. In such a case, the in-crystal moment is predicted to be 2.85D 

and the permanent local-field, =5.25 x 10‘3 a.u. Such a dipole moment would 

give rise to a field at the octa-sulfur molecule of =4.58 x 10-3 a.u.
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Despite the uncertainty for Sbl3*3Sg, it is clear that the local electric field in the z 

direction at the Ss molecule is larger by at least a factor of two in the SM3 adduct 
than in CHl3*3S8. The question remains whether the difference in these fields 

may explain yP  differences. It is conceivable that these fields induce a ßzz in the 

S8 molecule as their magnitudes are large9 -three orders of magnitude greater than 

the static external fields usually applied in an electro-optic experiment (although 

an order of magnitude smaller than those predicted to occur in the crystal of the 

highly polar HCN molecule [17]). The induction of such an effect may also be 

nonlinear in Ef.

The results of this brief analysis lead to the rather open conclusion that such a 

mechanism of selective ß tensor enhancement of one molecular component by a 

permanent internal electric field is quite possible. The >two-fold difference in Ef  

at the Ss molecule between the lattices may therefore contribute to the relatively 
larger of Sbl3*3Ss. This does not, however, confirm or rule out the existence 

of such an effect.

Also from this demonstration, a close similarity in the two Ef  vs /x functions for 

the two lattices is noticed. The difference in the size of the z component of local 
field is therefore mostly determined by the difference in the behaviour of f i with 
E /. In this regard, the antimony molecule has a similar slope to the /d(Ef) function 

for iodoform but as it starts from a larger value, it can give rise to much larger 

fields. This also explains why antimony triiodide experiences a proportionally 
greater increase in /x. From the slope of the Ef( jj)  plots, it is curious to note that 

in the antimony complex, there is a slightly lesser E / at RI3 due to a dipole 
moment of fixed size than occurs for the CHl3*3S8 lattice. This must be due to 

adduct crystal structure difference as it arises from the Lorentz sub-tensor 

differences between the two adducts.

As indicated earlier, if it could be shown that a 33 component of the 

hyperpolarisability tensor of Ss is induced/enhanced by the application of a z- 

direction field, this would strongly suggest that these permanent internal field 

strength differences do play an important role in determining the anisotropy of the 

complex yP>. It happens, however, that calculation of hyperpolarisability in an 

applied external electric field is not possible within the Gaussian suite of 

programs so this aspect remains incomplete.

9 approximately 1x 109 Vnr1 in SI units.
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Errors and Uncertainties

1. IN EXPERIMENTAL %(2)

Uncertainties in the experimentally determined NLO coefficients have been 
mentioned in Chapter Two in this thesis. Of particular significance are:

(i) the refractive index determinations for the Asl3*3 Ss crystal. These were 

determined from the Sellmeier fit of fairly old experimental data of West [18] 
but were shown to add negligible uncertainty to experimental x (2) 
anisotropies.

(ii) the determination of reliable la© values for the Rl3*3Sg crystals in the 

Maker Fringe experiment was hampered by crystal surface degradation in 
many samples. A slight underestimation of I20) may persist leading to 
underestimation of measured x (2) values but this will not not affect the x(2) 
anisotropy.

(iii) absorption of second harmonic radiation generated in these crystals 
caused an underestimation of the ni_q coefficient by a factor of about 

9% and of X33 by about 2.5%. Because these two diagonal elements are

affected differently, the measured X -n /(2) anisotropy is expected to be
X 33

underestimated by approximately 3.6%.

2 . IN CONSTRUCTED X(2)

In the determination of the various constructed x (2)> several assumptions were 
made and these unavoidably introduce some error. Some of these were 
mentioned in Chapter Four:

(i) In the construction of NLO susceptibilities, effective cell polarisabilities 
were calculated in order to incorporate molecular response into the local field 
factor tensors. This used refractive index data and so the error in the 
determination of n for Asl3*3 Ss in particular, reappears in this part of the 

study. A test calculation was performed to examine the effect of error in this 
quantity on the constructed x(2)-
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A maximum underestimation of 2% in of Asl3*3Sg is presumed (based on 

the error analysis presented in Chapter Two). Using indices which are larger 
by this amount results in x(2) predictions which are larger10 by «7-11%. So 
the value of this coefficient is rather sensitive to change in n, however, this 

uncertainty is an upper limit and the actual underestimation of constructed x(2) 
values caused by using West's n data for Asl3*3Se is believed to be much 

smaller than this.

(ii) In the determination of the LFT-Composite NLO susceptibilities, there is 
error introduced by using the average homomolecular crystal susceptibility

ratio, %s/  for p, which should actually be the ratio of 'sub-lattice

susceptibilities' of the RI3 and Se molecules in the adduct lattice. As well as 
this, the Xs and Xi used are the scalar averages of x (1) over all crystal 
axes. This latter point is less severe for the more isotropic orthorhombic 
sulfur but for strongly birefringent RI3 crystals* 11, the averaging assumption 
is more drastic. One can expect that some underestimation of the anisotropy

of x SCOMPOSITE tensors results.

It is difficult to say in which direction the anisotropy of LFT-Composite x(2) errs

and by how much through use of the %s/  ratio. This is because the
/  Xi

relationship between (RI3 or Sq) molecular lattices in the homomolecular 
crystal and those in the adducts is not straightforward. This is especially the 
case for Ss where there are 16 molecules in the unit cell with rather different 
orientations to the Ss lattice in the Rl3*3S8 complexes. This was discussed

earlier this Chapter where it was concluded that Xu/ (2) may be
' X 3 3

underestimated.

(iii) Error is introduced in each of the constructed %(2) determinations by taking 
all local field tensors, dk, for 1064nm in the expression Eq (6) of Chapter 
Four. Instead, one of these dk should be for 532nm. The underestimation 
that this assumption causes can be determined by examining the ratio of dk 
tensor elements calculated for co frequency to those at 2co.

10 As an example, for Asl3*3S8 using the supermolecule specification, X^  increased 

from 5.1 to 5.7pmA/ and X33 increased from 0.7 to 0.75pmA/.
11 These have a large n (xd )̂ in the direction corresponding to in-the-plane of the RI3 
iodine atoms and a much smaller n perpendicular to this.
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This was tested for Asl3*3Ss in the supermolecule specification by

d?examining the 1064am,
4  ̂ 4

064r?mtJ532i7m
ratio where the numerator was the

factor used in Eq (6) of Chapter Four and the denominator that which should 

properly be used. One finds, however, that the resultant underestimation in 

X(2) is only by =2.4% for x f j  and by f ° r X33 elements. This also

means that a small increase in the ratio is caused by calculating x(2)
in this way.

This method was employed because it implies Kleinman symmetry is valid 

which results in a simpler x (2) tensor12. These materials are not 

dispersionless, however, meaning that the 'actual' x(2) tensor has certain 

'new' elements - in this case, the following previously equal elements 

become 311=312*131=113. In any case, the focus has not been on these 

elements and so the use of d 3 for 1064nm in Eq (6) is not considered an 

overly serious shortcoming.

The error in the LFT-Composite x (2) estimations is more complicated to 

deduce due to the added consideration that needs to be made of dispersion 

in homo-molecular susceptibilities which appear in determining the Lorentz 

factor tensor. Presumably, neglect of a dj< factor for 532nm and imposition 

of the Kleinman condition has a similar effect on these elements as on the 

supermolecule values just described.

All these errors have resulted in predicted underestimations of x (2) values and so

these effects will compound - the total error is probably of the order of 15-20%.

The two predicted effects on the X n / (2) anisotropy ratio are opposite
^33

suggesting that some cancellation of error in determination of this quantity occurs.

12 This approach is the same as used in which d  tensors at both fundamental and 
harmonic frequencies were used and then the discrepancy between Kleinman-related 
elements in the resultant x ^  tensor were examined. For example, Munn and Smith [2b] 
noted differences in such elements of about 10%.
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APPENDIX ONE

Crystal Structure Determination for

X-ray crystal structures have been previously determined for the complexes 
CH3*3Ss and Sbl3*3Ss [1,2]. In this study, the isomorphous adduct Asl3*3Sg 

was also characterised in this manner:

The sample was a deep yellow fragment broken from a prism-shaped crystal which 

was grown as described in Chapter Two. The measurements were performed on a 

Rigaku AFC6S diffractometer using Mo-Ka radiation for which the absorption 

coefficient was 56.7cnr1. Hexagonal cell dimensions were ascertained from 25 

reflections in the range: 20 between 50-56° - 54-84°.

Thus, the space group was determined to be R3m with 
________________ a = 24.7392 Ä, C = 4.4123 Ä, Vol = 2338 Ä3________________

Overall, 648 unique reflections were collected (from 1401 total). Rjnt = 0.034. The 

least-squares refinement was performed in the teXsan program and converged with 

unweighted and weighted agreement factors of R=0.019 and Rw=0.022. The 

standard deviation was 1.26. The predicted p is 2.61 gem'3 (Lit; 2.608 gem*3 (3]). 

Unit cell diagrams generated in the refinement step were shown in Chapter One; in 

these, thermal ellipsoids indicate 50% probability levels.

Data from this structure determination which has been used in this study are:

• molecular geometry parameters were used in comparing computed molecular 

geometries in Chapter Three.
A s-I (Ä) 2 .5 7 4

I-A s-I (degrees) 9 9 .7
A s-I-S  (degrees) 1 6 9 .6 8

I-S (Ä) 3 .5 7 1

The geometry of the sulfur molecule was taken directly from fractional 

coordinates.

• fractional coordinates for all atoms were used to specify (sub)molecule 

positions in the unit cell when calculating the Lorentz-factor Tensor, L]&\ in 

Chapter Four. These are shown on the next page for the Asl3-3S8 hexagonal 

unit cell as they were input in the command script for this purpose. They were 

generated from the primary atomic coordinates yielded from this sructure 

determination.
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# ! / b i n / s h
t im e  l o r s u b  «  n e x t  
Asl3*3S8 L o re n tz  f a c t o r

t e n s o r
24.7392 24 .7392 4. 4123 90.

90. 0 120.0
12 4 8 8 8 4 8 8 8 4 8 8 8

0 .0  1 .0  l . : 27422
-0 .0 5 3 0 2  1 .05302 1 .0
-0 .05302  0 .89397 1 .0
0.10603 1. 05302 1. 0

-0 .1 3 2 4 1 1.13241 0 .75375
-0 .0 8 3 1 8 1.21581 0 .97658
-0 .0 9 1 3 5 1.28164 0 .73265
-0 .1 5 9 5 8 1.29373 0.93157
-0 .2 4 1 0 0 1.24100 0 .69787
-0 .2 1 5 8 1 1.08318 0.97658
-0 .29373 1.15958 0.93157
-0 .2 8 1 6 4 1.09135 0 .73265

-0 .1 3 2 4 1 0.73518 0 .75375
-0 .2 1 5 8 1 0.70102 0 .97658
-0 .2 8 1 6 4 0.62700 0 .73265
-0 .29373 0.54669 0.93157
-0 .2 4 1 0 0 0.51800 0.69787
-0 .08318 0.70102 0 .97658
-0 .15958 0.54669 0.93157
-0 .0 9 1 3 5 0.62700 0 .73265

0.26482 1.13241 0 .75375  
0.29898 1 .08318 0 .97658 
0.37300 1.09135 0 .73265  
0 .45331 1.15958 0 .93157 
0.48200 1.24100 0 .69787 
0 .29898 1.21581 0 .97658  
0.45331 1.29373 0 .93157 
0.37300 1.28164 0 .73265

0.33333 0 .66667 0 .94089 
0 .28032 0.71968 0.66667 
0.2803-2 0.56063 0.66667 
0.43937 0.71968 0 .66667

0.20092 0.79908 0.42042 
0 .25016 0 .88247 0 .64324 
0.24198 0.94831 0.39932 
0 .17375 0.96040 0 .59824 
0.09233 0 .90767 0 .36454 
0.11753 0.74985 0.64324 
0 .03960 0.82625 0 .59824 
0 .05169 0.75802 0.39932

0.20092 0.40184 0.42042 
0.11753 0.36768 0 .64324  
0 .05169 0.29367 0 .39932 
0 .03960  0.21335 0 .59824  
0.09233 0.18466 0 .36454  
0 .25016 0.36768 0 .64324 
0 .17375 0.21335 0 .59824  
0 .24198 0 .29367 0.39932

0.59816 0.79908 0.42042 
0.63232 0.74985 0 .64324 
0.70633 0.75802 0.39932 
0 .78665 0.82625 0 .59824  
0.81533 0 .90767 0 .36454 
0 .63232 0.88247 0 .64324 
0 .78665 0 .96040 0 .59824  
0.70633 0.94831 0.39932

0.66667 0 .33333  0.60755 
0 .61365  0 .38635  0.33333 
0 .61365  0 .22730  0.33333 
0 .77270  0 .38635  0.33333

0.53426  0 .46575  0.08708 
0 .58349  0 .54914  0.30991 
0 .57531  0 .61498  0.06599 
0 .50708  0 .62706  0.26491 
0 .42567  0 .57433  0.03120 
0 .45086  0 .41651  0.30991 
0 .37294  0 .49292  0.26491 
0 .38502  0 .42469  0.06599

0 .53426 0 .06851  0.08708 
0 .45086  0 .03435  0.30991 
0 .38502  - 0 .0 3 9 6 6  0.06599 
0 .37294  -0 .1 1 9 9 8  0.26491 
0 .42567  -0 .1 4 8 6 7  0.03120 
0 .58349  0 .03435  0.30991 
0 .50708  -0 .1 1 9 9 8  0.26491 
0 .57531  -0 .0 3 9 6 6  0.06599

0.93149 0 .46575  0.08708 
0 .96565  0 .41651  0.30991
1.03966 0 .42469  0.06599
1.11998 0 .49292  0.26491 
1 .14867  0 .57433  0.03120 
0 .96565  0 .54914  0.30991
1.11998 0 .62706  0.26491
1 .03966 0 .61498  0.06599

9 0 .000001 
1 9  9 
1 1 
n e x t

Indented coordinates are for sulfur atoms grouped as S 8 rings. The four-line-groupings of 
fractional coordinates are the As and three I atoms, respectively. The three numbers for each 
atom are its x, y, and z hexagonal-cell coordinates.
{The first five and last four lines are other codes and parameters for the calculation of L ^ .  The 
line: 12 4 8 8 8 . . .  specifies the number of submolecules, followed by how they are grouped as 
molecules.}
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APPENDIX TWO 

Visible Absorbtion Spectra.

The compounds studied here are either yellow / orange-yellow and so have 
absorbtion edges close to the green second-harmonic wavelength, 532nm. 
Resonance enhancement of second-order NLO response is possible through 
two-photon absorption of fundamental radiation at 1064nm, thus, it was important 
to quantify the absorption in this spectral region.

Electronic absorbtion spectra of each of the crystalline Rl3*3Ss adducts were 
measured using the diffuse reflectance method. Finely crushed and sieved 
samples were 'diluted' with spectroscopic grade KBr powder which limited 
degradation by atmospheric moisture. Spectra were recorded within minutes of 
the samples being prepared.

The measurements were recorded with a Varian Cary-45 spectrophotometer 
using the diffuse reflectance capability.
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Figure One: Diffuse reflectance spectra of the RI3*3S8 adducts. Spectra are
normalised to 80% maximum reflectance.

For the arsenic adduct, it is apparent that appreciable absorption occurs at 
532nm. Sbl3*3S& absorbs a little at this wavelength but only about a quarter 

that of Asl3*3Ss. CHl3*3S8 is virtually transparent in this region.

The most absorptive material, Asl3*3Sg, was further examined by measuring the 

absorption of single crystals in different polarisations. This was done using a 

custom built, single-beam instrument designed for the purpose of measuring 

absorption spectra of small crystals. Absorption (at room temperature) of 532nm 

light polarised parallel and perpendicular to the crystal c-axis was examined in 
two Asl3*3Ss crystals of good quality. After baseline correction, the coefficients 

for polarisation in the ab plane were 4.7cm*1 and 5.1cm*1 for the different crystals. 

For polarisation parallel to the c-axis, the absorption coefficient was 1.4cm*1 for 
both crystals. This represents an average difference in a  for the two crystal 

axes of about 3.5. These figures are uncorrected for differing reflection losses of 

the two polarisation geometries. It might therefore be expected that the 

birefringence is overestimated, yet is clearly large.
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A PPEN DIX THREE  

Raman Experiments

A quantitative comparison of the complex-forming I—-S interaction in the Rl3*3Ss 

adducts is desirable in order to see if this is sufficiently different for R = CH, As or 

Sb to be able to account for the observed x(2) differences in these materials. A 

suitable and measurable physical property must be used which is sensitive to 

the perturbation caused by the close proximity of the octa-sulfur molecule to the 

iodine atom.

Other bond parameters that will be affected by the changes induced upon 

complexation are; the bond polarisability and the bond polarisability derivative. 

This latter quantity, act/ar, is the change in bond polarisability accompanying 

moderate changes in distance between two nucleii -such as occurs during an R--I 

bond vibration. It is strongly correlated to the degree of bond covalency [1-3] 
and Is measurable by conventional Raman spectroscopy. This is the property 

that was employed in this study to compare changes induced on the RI3 
molecule.

Methodology and Theory

In these experiments, the differences between the acx/ar of R -l bonds existing in 
the homomolecular RI3 crystal and in the Rl3*3Se adduct are measured. Such 

differences indicate how the nature of the R--I bond is modified upon forming the 

octa-sulfur adduct. Since the structures of ASI3 and Sbl3 are rather similar, 

differences in the extent of da/^r change manifested for each triiodide upon 

entering the matrix are considered to mostly reflect differences in the iodine-sulfur 

CT interaction.
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THEORY

A non-zero aoc/ar for a particular stretching mode allows a Raman signal to be 

expressed and scattering in tens ity  is proportional to the extent of this 

polarisability change occurring during an active mode.

Plazcek was one of the first to describe Raman intensity as an important physical 

quantity, thus, the intensity of radiation scattered in a Raman process can be

given by [1 ]: I  = N n ^ - (v0 -  Av f  P%m

where Av is the mode frequency and vo is the exciting frequency. Nn is the 

number of molecules in initial state n. The P^m factor is the probability of the

occurrence of the transition between states n  and m. It is proportional to
r 7 2

-^ o c  where a ' represents the combined longitudinal polarisability and 

polarisability anisotropy derivative with respect to change in bond length.

After incorporating a Boltzman factor to account for the number of species existing 

in the initial state n  [1,4]:

r _ / . \4  I0 x  N  X K  A J
p ^  A v(l-exp (-hA v/itr)) ( 1)

where Ip is the intensity of the pth normal vibration mode, Qp, (when measured 

at 90° to incident intensity, Iq ) . In this expression, only the longitudinal

(diagonal) polarisability change
dQr

is explicitely included. The change in the

polarisability anisotropy is accounted for by the factor containing the 

depolarisation ratio, p.

dQ, may be simply related to da/^T using the assumptions of Wolkenstein [1,4]

that a is only affected by stretching of that particular bond. The influence of 

bending modes and stretching of other bonds is neglected.

Relative bond-polarisability derivative measurements can be performed thereby 

circumventing difficulties associated with absolute intensity measurement [1]. 

The appropriate expression for comparison of symmetric Ai stretch modes (for 

which depolarisation ratios can be neglected) is:
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h
h

m 2 <N

<ii0
> 4 A v x 1 -  expC -hAV j /  kT) f “ 2")

Ml I v o - A v j Av 2 1 -  e x p ( -h A v 2 /  kT) l « ; J (2)

here, M 2
Mr

indicates the mole fraction of the components being compared and

is the ratio of individual bond-polarisability derivatives,

Eq (2) is used in this experiment to estimate for Rl3*3Ss-Rl3.

Experimental Aspects

Spectra were collected using a custom set-up which reliably yields excellent 
Raman spectra due to utilisation of a 0.75m double monochromator and sensitive 
cooled-PM detection. A 647nm krypton laser line was used as the exciting 
source. The spectra were measured at low temperature (=15 K).

Samples were measured as RI3 - Rl3*3Sg pairs. Finely powdered samples of 

both compounds were prepared (such that passed through a 65pm sieve). 
Weighed amounts of each were mixed and sintered into a pellet. The addition of 
KBr powder as a diluent was sometimes necessary to obtain a pellet of 
adequate thickness. Measurements were made on Asl3*3Se and Sbl3*3Ss.

Pellets of Asl3-Asl3*3Ss and of Sbl3-Sbl3*3Ss were prepared as well as ones 

containing just ASI3 and Sbl3. Spectra were recorded in the frequency range of 
the RI3 "A-|" stretch mode as previously determined by the work of Hayward [5] 
and Fernando [6]. Numerous points on the pellet were probed with the non- 
focussed laser and averages of peak-heights were used.
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Results

Overlaid Raman spectra of Asl3-Asl3*3Ss and of Sbl3-Sbl3*3Ss measured in the 

manner described are presented in Figures One and Two.

if) in
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Raman Frequency (cm "1 )
Figure One: Raman spectra at -10K of a pressed pellet of Aslß and Asl3*3Ss powders (full
line) and that of ASI3 alone (dashed).
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Figure Two: Raman spectra at ~1 OK of a pressed pellet of Sbl3 and Sbl3*3Ss powders (full
line) and that of Sbl3 alone (dashed).

The peaks due to the R--I A-| stretch in Rl3*3Sg can be seen to be significantly 

less intense than in RI3, even considering the mole-fraction ratio of =0.4.
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The parameters taken from these spectra for use in Eq (2) are presented in Table 

One. A subscript of 1 indicates a quantity for the RI3 component and 2 refers to 
an Rl3*3S8 property. The excitation wavelength, vo, was 15453.56 cm-1. At low 

temperature, the ratio of Boltzmann factors equals 1 and is not needed in the

determination of

Table One:

M 2 / M 1 AVi cm"1 AV2 cm"1 I2/ I 1

A s l 3 * 3 S g  - A SI3 0 . 3 8 5 2 0 6 . 8 2 1 0 .6 1 2 . 5 / 1 2 6

S b I 3 * 3 S 8 - S b l 3 0 . 4 7 1 5 8 . 4 5 1 7 4 . 2 1 1 . 5 / 1 1 7

Using the values of Table One in Eq (2) yields:

rap

and

for Asl3*3Ss / ASI3 of 0.51 ± 0.02

=§■ | for Sbl3*3S8 /  Sbl3 of 0.49 ± 0.02

These results show that da/^T for the R-l bond during the A 1 stretch is reduced 

upon complexation. The extent of this reduction is virtually the same for both 

complexes.

Sum mary

One can understand that the magnitude of the bond-polarisability derivative is 

determined by the bond 'covalency' by first considering the extreme case of an 
ionic bond in which a  is simply a sum of the ion polarisabilities and hence, aa/ar 

must be zero. Conversely, a  for a fully covalent bond will be very sensitive to 

nuclear separation and so 3a/ar will be large. Long and Plane [3] have 

developed an expression which proportionally relates a 'bond covalency 

parameter' with da/& .

A reduction in da/^r may therefore be taken to mean that the covalency of the 

vibrating bond decreases. This is what is seen for the R--I bonds when
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incorporated in the Sg adduct. This is consistent with MO and electrostatic 
arguments presented in Chapter One indicating that the C-T interaction adds 
charge density to the iodine acceptor thus increasing ionic character of the R-l 
bond.

It is not possible to infer anything about the extent of the covalency reduction 
from these results since the applicability of the relation of Long and Plane is not 
certain for solid samples. Also, the error introduced by the Wolkenstein 
assumptions in this case is not known, nor is it easy to predict. The result 
showing very similar changes for Sbl3 and ASI3 upon forming the octa-sulfur 
adduct is, however, significant.
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....a perceptual act...as in a wooden jigsaw puzzle —is not a 
sum of elements to be distinguished from each other and 
analysed discretely, but a pattern, that is to say a form, a 
structure: the element's existence does not precede the 
existence of the whole, it comes neither before or after it, 
for the parts do not determine the pattern, but the pattern 
determines the parts: knowledge of the pattern and of its 
laws, of the set and its structure, could not possibly be 
derived from discrete knowledge of the elements that 
compose it.

....in isolation, a puzzle piece means nothing—jus tan 
impossible question, an opaque challenge. But as soon as 
you have succeeded, after minutes of trial and error, or 
after a prodigious half-second flash of inspiration, in fitting 
it into one of its neighbours, the piece disappears, ceases to 
exist as a piece. The intense difficulty preceding this link­
up —which the english word «puzzle» indicates so well —not 
only loses its «raison d'etre», it seems never to have had 
any reason, so obvious does the solution appear. The two 
pieces so miraculously conjoined are henceforth one, which 
in its turn will be a source of error, hesitation, dismay, and 
expectation.

GeorgePerec «Life, A User’s Manual»


