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Abstract

This thesis presents efficient algorithms for internal and external parallel sorting and 

remote data update. The sorting algorithms approach the problem by concentrat­

ing first on highly efficient but incorrect algorithms followed by a cleanup phase that 

completes the sort. The remote data update algorithm, rsync, operates by exchang­

ing block signature information followed by a simple hash search algorithm for block 

matching at arbitrary byte boundaries. The last chapter of the thesis examines a num­

ber of related algorithms for text compression, differencing and incremental backup.
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Introduction

While researching the materials presented in this thesis I have had the pleasure of 

covering a wider range of the discipline of Computer Science than most graduate stu­

dents. My research began with the study of automatic speech recognition using Hid­

den Markov Models, decision trees and large Recurrent Neural Networks[Tridgell 

et al. 1992] but I was soon drawn into studying the details of parallel sorting algo­

rithms when, while implementing my Neural Network code on a CM5 multicom­

puter, I discovered that suitable parallel sorting algorithms were unavailable.

I was surprised to find that practical parallel sorting algorithms offered a lot of 

scope for active research, perhaps more than the rather densely populated field of au­

tomatic speech recognition. As I have always enjoyed working on new algorithms, 

particularly algorithms where efficiency is of primary concern, I jumped at the chance 

to make a contribution in the field of parallel sorting. This led to the research pre­

sented in the first chapter of this thesis and away from my original field of study.

While completing this research I had the opportunity to participate in a coopera­

tive research center research project called the PIOUS project[Tridgell 1996] in which I 

worked on a parallel filesystem for multicomputers. This research led to the creation 

of a parallel filesystem called HiDIOS[Tridgell and Walsh 1996] which led me to in­

vestigate the natural extension of the problem of internal parallel sorting -  external 

parallel algorithm. The result is the research presented in the second chapter of this 

thesis.

The rest of the thesis is dedicated to the rsync algorithm which provides a novel 

method of efficiently updating files over slow network links. The rsync algorithm 

was a direct result of my work on parallel filesystems and external parallel sorting 

algorithms. The link is a simple text searching algorithm[Tridgell and Hawking 1996] 

that I developed and which is used by an application running on the HiDIOS parallel 

filesystem. It was this text searching algorithm which provided the seed from which 

the rsync algorithm was able to grow, although the algorithm presented in this thesis

1
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bears little resemblance to that seed.

This thesis is a testament to the multi-faceted nature of computer science and the 

many and varied links within this relatively new discipline. I hope you will enjoy 

reading it as much as I enjoyed the research which it describes.



Chapter 1

Internal Parallel Sorting

My first introduction to the problem of parallel sorting came from a problem in the 

implementation of an automatic speech recognition training program. A set of speech 

data needed to be normalized in order to be used as the input to a recurrent neural 
network system and I decided that a quick-and-dirty way of doing this would be to 

sort the data, then sample it at regular intervals to generate a histogram.

This is a terribly inefficient way of normalizing data in terms of computational 
complexity but is a quite good way in terms of software engineering because the 

availability of easy to use sorting routines in subroutine libraries makes the amount 
of coding required very small. I had already used this technique in the serial version 
of the speech recognition system so it seemed natural to do the same for the parallel 
version.

With this in mind I looked in the subroutine library of the parallel machine I was 
using (a Fujitsu AP1000 [Ishihata et al. 1991] running CellOS) and discovered that 

there was a problem with my plan -  the library totally lacked a parallel sorting routine. 

I had been expecting that there would be a routine that is the parallel equivalent of 

the ubiquitous qsort() routine found in standard C libraries. The lack of such a routine 

was quite a surprise and prompted me to look into the whole issue of parallel sorting, 

totally ignoring the fact that I only wanted a parallel sorting routine in order to solve 

a problem that didn't really require sorting at all.

A survey of the literature on parallel sorting routines was rather disappointing. 

The routines were not at all general purpose and tended to place unreasonable re­

strictions on the amoimt of data to be sorted, the type of data and the number of 

CPUs in the parallel system. It became clear that the world (or at least my corner of

3
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it) needed a fast, scalable, general-purpose parallel sorting routine.

The rest of this chapter details the design, implementation and performance of just 

such a routine.

1.1 How fast can it go?

A question that arises when considering a new algorithm is "How fast can it go?". It 

helps greatly when designing an algorithm to understand the limits on the algorithm's 

efficiency. In the case of parallel sorting we can perform some simple calculations 

which are very revealing and which provide a great deal of guidance in the algorithm 

design.

It is well known that comparison-based sorting algorithms on a single CPU require 

log A/! time1, which is well approximated[Knuth 1981] by /Vlog/V. This limitation arises 

from the fact the the unsorted data can be in one of N\ possible arrangements and 

that each individual comparison eliminates at most half of the arrangements from 

consideration.

An ideal parallel sorting algorithm which uses P processors would reduce this 

time by at most a factor of P, simply because any deterministic parallel algorithm can 

be simulated by a single processor with a time cost of P. This leads us to the ob­

servation that an ideal comparison-based parallel sorting algorithm would take time 

£log N.

Of course, this totally ignores the constant computational factors, communication 

costs and the memory requirements of the algorithm. All those factors are very impor­

tant in the design of a parallel sorting algorithm and they will be looked at carefully 

in a later part of this chapter.

1.1.1 Divide and conquer

We now consider parallel sorting algorithms which are divided into two stages. In 

the first stage each processor sorts the data that happens to start in its local memory 

and in the second stage the processors exchange elements imtil the final sorted result

th ro u g h p u t this thesis log* will be used to mean [log2Jt].
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is obtained. It seems natural to consider dividing the algorithm in this manner as 

efficient algorithms for the first stage are well known.
How long would we expect each stage to take? The first stage should take 0(  ̂  log 

simply by using an optimally efficient serial sorting algorithm on each processor2. 

This clearly cannot be improved upon3.

The more interesting problem is how long the second stage should take. We want 

the overall parallel sorting algorithm to take logjV) time which means we would 

ideally like the second stage to take O(^logP) time. If it turns out that this is not 

achievable then we might have to revisit the decision to split the algorithm into the 

two stages proposed above.

1.1.2 The parallel merging problem

The second stage of the parallel sorting algorithm that is now beginning to take shape 

is to merge P lists of N/P elements each stored on one of P processors. We would like 

this to be done in 0 ( j  log/5) time.

1.1.2.1 The two processor-problem

Let us first consider the simplest possible parallel merging problem, where we have 

just two processors and each processor starts with ^ elements. The result we want is 

that the first processor ends up with all the small elements and the second processor 

ends up with all the large elements. Of course, "small" and “large" are defined by 

reference to a supplied comparison function.
We will clearly need some communication between the two processors in order to 

transmit the elements that will end up in a different processor to the one they start 

in, and we will need some local movement of elements to ensure that each processor 

ends up with a locally sorted list of elements4.

2I shall initially assume that the data is evenly distributed between the processors. The problem of 
balancing will be considered in the detailed description of the algorithm.

3It turns out that the choice of serial sorting algorithm is in fact very important. Although there are 
numerous "optimal" serial sorting algorithms their practical performance varies greatly depending on 
the data being sorted and the architecture of the machine used.

4As is noted in Section 1.2.12 we don't strictly need to obtain a sorted list in each cell when this two
processor merge is being used as part of a larger parallel merge but it does simplify the discussion.
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Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8f i i i  r r i i

<-- <-- <-- <-- I SteP3
Figure 1.1: The parallelisation of an eight way hypercube merge

Both of these operations will have a linear time cost with respect to the number of 

elements being dealt with. Section 1.2.8 gives a detailed description of an algorithm 

that performs these operations efficiently. The basis of the algorithm is to first work 
out what elements will end up in each processor using a 0(logN) bisection search and 

then to transfer those elements in a single block. A block-wise two-way merge is then 
used to obtain a sorted list within each processor.

The trickiest part of this algorithm is minimizing the memory requirements. A 

simple local merge algorithm typically requires order N additional memory which 
would restrict the overall parallel sorting algorithm to dealing with data sets of less 
than half the total memory in the parallel machine. Section 1.2.12 shows how to 
achieve the same result with 0(y/N) additional memory while retaining a high degree 
of efficiency. Merging algorithms that require less memory are possible but they are 

quite computationally expensive [Ellis and Markov 1998; Huang and Langston 1988; 

Kronrod 1969].

1.1.2.2 Extending to P processors

Can we now produce a P processor parallel merge using a series of two proces­

sor merges conducted in parallel? In order to achieve the aim of an overall cost of 

log/5) we would need to use 0(\ogP) parallel two processor merges spread across 

the P processors.

The simplest arrangement of two processor merges that will achieve this time cost 

is a hypercube arrangement as shown for eight processors in Figure 1.1.

This seems ideal, we have a parallel merge algorithm that completes in log P par-
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alel steps with each step taking O(^) time to complete.
There is only one problem, it doesn't workl

11.3 Almost sorting

Tiis brings us to a central idea in the development of this algorithm. We have so 

fa: developed an algorithm which very naturally arises out of a simple analysis of 

tie lower limit of the sort time. The algorithm is simple to implement, will clearly 

bt very scalable (due to its hypercube arrangement) and is likely to involve minimal 

lead balancing problems. All these features make it very appealing. The fact that the 

fhal result is not actually sorted is an annoyance that must be overcome.
Once the algorithm is implemented it is immediately noticeable that although the 

fhal result is not sorted, it is "almost" sorted. By this I mean that nearly all elements 

ae in their correct final processors and that most of the elements are in fact in their 

arrect final positions within those processors. This will be looked at in Section 1.3.6 

bit for now it is good enough to know that, for large N, the proportion of elements 
tlat are in their correct final position is well approximated by 1 — P/VN.

This is quite extraordinary. It means that we can use this very efficient algorithm 
t( do nearly all the work, leaving only a very small number of elements which are 

n)t sorted. Then we just need to find another algorithm to complete the job. This 

":leanup" algorithm can be designed to work for quite small data sets relative to the 

total size of the data being sorted and doesn't need to be nearly as efficient as the 
iiitial hypercube based algorithm.

The cleanup algorithm chosen for this algorithm is Batcher's merge-exchange al- 
g)rithm[Batcher 1968], applied to the processors so that comparison-exchange oper- 

aions are replaced with merge operations between processors. Batcher's algorithm 

if a sorting network[Knuth 1981], which means that the processors do not need to 

ommunicate in order to determine the order in which merge operations will be per­

formed. The sequence of merge operations is predetermined without regard to the 
data being sorted.
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1.1.4 Putting it all together

We are now in a position to describe the algorithm as a whole. The steps in the algo­
rithm are

• distribute the data over the P processors

• sort the data within each processor using the best available serial sorting algo­

rithm for the data

• perform log P merge steps along the edges of a hypercube

• find which elements are unfinished (this can be done in log{N/P) time)

• sort these unfinished elements using a convenient algorithm

Note that this algorithm arose naturally out of a simple consideration of a lower 

bound on the sort time. By developing the algorithm in this fashion we have guaran­

teed that the algorithm is optimal in the average case.

1.2 Algorithm Details

The remainder of this chapter covers the implementation details of the algorithm, 
showing how it can be implemented with minimal memory overhead. Each stage of 
the algorithm is analyzed more carefully resulting in a more accurate estimate of the 

expected running time of the algorithm.

The algorithm was first presented in [Tridgell and Brent 1993]. The algorithm was 

developed by Andrew Tridgell and Richard Brent and was implemented by Andrew 

Tridgell.

1.2.1 Nomenclature

P is the number of nodes (also called cells or processors) available on the parallel 

machine, and N is the total number of elements to be sorted. Np is the number of 

elements in a particular node p (0 < p < P). To avoid double subscripts NPj may be 

written as Nj where no confusion should arise.

Elements within each node of the machine are referred to as Epi/ for 0 <i <Np and 

0 < p < P. Ejj may be used instead of EPjj if no confusion will arise.
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When giving "big O" time bounds the reader should assume that P is fixed so that 
0(N) and 0(N/P) are the same.

The only operation assumed for elements is binary comparison, written with the 

usual comparison symbols. For example, A < B means that element A precedes ele­

ment B. The elements are considered sorted when they are in non-decreasing order 

in each node, and non-decreasing order between nodes. More precisely, this means 

that Epj < Epj  for all relevant i < j  and p, and that Epi < Eqj  for 0 < p <q < P and all 

relevant /, j.

The speedup offered by a parallel algorithm for sorting N elements is defined as 
the ratio of the time to sort N elements with the fastest known serial algorithm (on 

one node of the parallel machine) to the time taken by the parallel algorithm on the 

parallel machine.

1.2.2 Aims of the Algorithm

The design of the algorithm had several aims:

• Speed.

• Good memory utilization. The number of elements that can be sorted should 

closely approach the physical limits of the machine.

• Flexibility, so that no restrictions are placed on N and P. In particular N should 

not need to be a multiple of P or a power of two. These are common restrictions 

in parallel sorting algorithms [Ajtai et al. 1983; Akl 1985].

In order for the algorithm to be truly general purpose the only operator that will 

be assumed is binary comparison. This rules out methods such as radix sort [Blelloch 

et al. 1991; Thearling and Smith 1992].

It is also assumed that elements are of a fixed size, because of the difficulties of 
pointer representations between nodes in a MIMD machine.

To obtain good memory utilization when sorting small elements linked lists are 
avoided. Thus, the lists of elements referred to below are implemented using arrays, 

without any storage overhead for pointers.
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The algorithm starts with a number of elements N assumed to be distributed over 

P processing nodes. No particular distribution of elements is assumed and the only 

restrictions on the size of N and P are the physical constraints of the machine.

The algorithm presented here is similar in some respects to parallel shellsort [Fox 

et al. 1988], but contains a number of new features. For example, the memory over­

head of the algorithm is considerably reduced.

1.2.3 Infinity Padding

In order for a parallel sorting algorithm to be useful as a general-purpose routine, 

arbitrary restrictions on the number of elements that can be sorted must be removed. 

It is unreasonable to expect that the number of elements N should be a multiple of the 

number of nodes P.
The proof given in [Knuth 1981, solution to problem 5.3.4.38] shows that sort­

ing networks will correctly sort lists of elements provided the number of elements in 
each list is equal, and the comparison-exchange operation is replaced with a merge- 

exchange operation. The restriction to equal-sized lists is necessary, as small examples 
show5. However, a simple extension of the algorithm, which will be referred to as in­
finity padding, can remove this restriction6.

First let us define M to be the maximum number of elements in any one node. It 
is clear that it would be possible to pad each node with M — Np dummy elements so 

that the total number of elements would become M x P. After sorting is complete the 

padding elements could be found and removed from the tail of the sorted list.

Infinity padding is a variation on this theme. We notionally pad each node with 

M — Np "infinity" elements. These elements are assumed to have the property that 

they compare greater than any elements in any possible data set. If we now consider 

one particular step in the sorting algorithm, we see that these infinity elements need 

only be represented implicitly.

Say nodes p\ and pi have N\ and Ni elements respectively before being merged in

5 A small example where unequal sized lists fails with Batchers's merge-exchange sorting network is 
a 4 way sort with elements ([1] [0] [1] [0 0]) which results in the unsorted data set ([0] [0] [1] [0 1]).

6 A method for avoiding infinity-padding using balancing is given in Section 1.2.5 so infinity-padding 
is not strictly needed but it provides some useful concepts nonetheless.
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procedure hypercube_balance(integer base, integer num)
if num = 1 return
for all i in [0..num/2)
pair_balance (base+i, base+i+(num+1)/2) 

hypercube_balance (base+num/2, (num+1)/2)
hypercube_balance (base, num - (num+1)/2) 
end

Figure 1.2: Pseudo-code for load balancing

our algorithm, with node p\ receiving the smaller elements. Then the addition of in­

finity padding elements will result in M — N\ and M — N2 infinity elements being added 

to nodes p\ and p2 respectively. We know that, after the merge, node p2 must contain 

the largest M elements, so we can be sure that it will contain all of the infinity elements 

up to a maximum of M. From this we can calculate the number of real elements which 

each node must contain after merging. If we designate the number of real elements 

after merging as N[ and N'2 then we find that

' N'2 = max(0, N\ + N2 — M)

and

N[ = N x+N2-N'2

This means that if at each merge step we give node p\ the first N[ elements and 

node p2 the remaining elements, we have implicitly performed padding of the nodes 

with infinity elements, thus guaranteeing the correct behavior of the algorithm.

1.2.4 Balancing

The aim of the balancing phase of the algorithm is to produce a distribution of the 

elements on the nodes that approaches as closely as possible N/P  elements per node.

The algorithm chosen for this task is one which reduces to a hypercube for values 

of P which are a power of 2. Pseudo-code is shown in Figure 1.27.

When the algorithm is called, the base is initially set to the index of the smallest 

node in the system and num is set to the number of nodes, P. The algorithm operates

7The pseudo-code in this thesis uses the C convention of integer division.



§1.2 Algorithm Details 12

recirsively and takes logP steps to complete. When the number of nodes is not a 

pover of 2, the effect is to have one of the nodes idle in some phases of the algorithm. 

Because the node which remains idle changes with each step, all nodes take part in a 

pah balance with another node.

Vs can be seen from the code for the algorithm, the actual work of the balance is 

perormed by another routine called pair-balance. This routine is designed to exchange 

elenents between a pair of nodes so that both nodes end up with the same number 

of eements, or as close as possible. If the total number of elements shared by the 

twc nodes is odd then the node with the lower node number gets the extra element. 

Coisequently if the total number of elements N is less than the number of nodes P, 

thei the elements tend to gather in the lower numbered nodes.

1.25 Perfect Balancing

A sight modification can be made to the balancing algorithm in order to improve the 

perormance of the merge-exchange phase of the sorting algorithm. As discussed in 

Secion 1.2.3, infinity padding is used to determine the number of elements to remain 

in eich node after each merge-exchange operation. If this results in a node having less 

elenents after a merge than before then this can lead to complications in the merge- 

exciange operation and a loss of efficiency.

Io ensure that this never happens we can take advantage of the fact that all merge 

operations in the primary merge and in the cleanup phase are performed in a direction 

suci that the node with the smaller index receives the smaller elements, a property of 

thesorting algorithm used. If the node with the smaller index has more elements than 

the other node, then the virtual infinity elements are all required in the other node, 

anc no transfer of real elements is required. This means that if a final balancing phase 

is iitroduced where elements are drawn from the last node to fill the lower numbered 

noies equal to the node with the most elements, then the infinity padding method is 

no required and the number of elements on any one node need not change.

As the number of elements in a node can be changed by the pair-balance routine 

it nust be possible for the node to extend the size of the allocated memory block 

hoding the elements. This leads to a restriction in the current implementation to the
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sorting of blocks of elements that have been allocated using the standard memory 
allocation procedures. It would be possible to remove this restriction by allowing ele­

ments within one node to exist as non-contiguous blocks of elements, and applying an 

un-balancing phase at the end of the algorithm. This idea has not been implemented 

because its complexity outweighs its relatively minor advantages.

In the current version of the algorithm elements may have to move up to logP 

times before reaching their destination. It might be possible to improve the algorithm 

by arranging that elements move only once in reaching their destination. Instead of 

moving elements between the nodes, tokens would be sent to represent blocks of el­

ements along with their original source. When this virtual balancing was completed, 

the elements could then be dispatched directly to their final destinations. This to- 

kenised balance has not been implemented, primarily because the balancing is suffi­

ciently fast without it.

1.2.6 Serial Sorting

The aim of the serial sorting phase is to order the elements in each node in minimum 
time. For this task, the best available serial sorting algorithm should be used, subject 
to the restriction that the algorithm must be comparison-based8.

If the number of nodes is large then another factor must be taken into considera­
tion in the selection of the most appropriate serial sorting algorithm. A serial sorting 

algorithm is normally evaluated using its average case performance, or sometimes its 

worst case performance. The worst case for algorithms such as quicksort is very rare, 

so the average case is more relevant in practice. However, if there is a large variance, 

then the serial average case can give an over-optimistic estimate of the performance of 

a parallel algorithm. This is because a delay in any one of the nodes may cause other 

nodes to be idle while they wait for the delayed node to catch up.

This suggests that it may be safest to choose a serial sorting algorithm such as 

heapsort, which has worst case equal to average case performance. However, experi­

ments showed that the parallel algorithm performed better on average when the serial 

sort was quicksort (for which the average performance is good and the variance small)

8The choice of the best serial sorting algorithm is quite data and architecture dependent.
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procedure primary_merge(integer base, integer num)
if num = 1 return
for all i in [0..num/2)
merge_exchange (base+i, base+i+(num+1)/2) 

primary_merge (base+num/2, (num+1)1 2 ) 

primary_merge (base, num - (num+1)/2) 
end

Figure 1.3: Pseudo-code for primary merge 

than when the serial sort was heapsort.

Our final choice is a combination of quicksort and insertion sort. The basis for this 

selection was a number of tests carried out on implementations of several algorithms. 
The care with which the algorithm was implemented was at least as important as the 

choice of abstract algorithm.

Our implementation is based on code written by the Free Software Foundation 

for the GNU project[GNU 1998]. Several modifications were made to give improved 
performance. For example, the insertion sort threshold was tuned to provide the best 
possible performance for the SPARC architecture used in the AP1000[Ishihata et al. 
1993].

1.2.7 Primary Merge

The aim of the primary merge phase of the algorithm is to almost sort the data in 

minimum time. For this purpose an algorithm with a very high parallel efficiency 

was chosen to control merge-exchange operations between the nodes. This led to sig­

nificant performance improvements over the use of an algorithm with lower parallel 

efficiency that is guaranteed to completely sort the data (for example, Batcher's algo- 
rithm[Batcher 1968] as used in the cleanup phase).

The pattern of merge-exchange operations in the primary merge is identical to that 

used in the pre-balancing phase of the algorithm. The pseudo-code for the algorithm 

is given in Figure 1.3. When the algorithm is called the base is initially set to the index 

of the smallest node in the system and num is set to the number of nodes, P.
This algorithm completes in logP steps per node, with each step consisting of a



§1.2 Algorithm Details 15

merge-exchange operation. As with the pre-balancing algorithm, if P is not a power 
of 2 then a single node may be left idle at each step of the algorithm, with the same 
node never being left idle twice in a row.

If P is a power of 2 and the initial distribution of the elements is random, then at 

each step of the algorithm each node has about the same amount of work to perform 

as the other nodes. In other words, the load balance between the nodes is very good. 

The symmetry is only broken due to an unusual distribution of the original data, or if 

P is not a power of 2. In both these cases load imbalances may occur.

1.2.8 Merge-Exchange Operation

The aim of the merge-exchange algorithm is to exchange elements between two nodes 

so that we end up with one node containing elements which are all smaller than all the 

elements in the other node, while maintaining the order of the elements in the nodes. 
In our implementation of parallel sorting we always require the node with the smaller 

node number to receive the smaller elements. This would not be possible if we used 
Batcher's bitonic algorithm[Fox et al. 1988] instead of his merge-exchange algorithm.

Secondary aims of the merge-exchange operation are that it should be very fast 
for data that is almost sorted already, and that the memory overhead should be mini­

mized.

Suppose that a merge operation is needed between two nodes, p\ and pi, which 
initially contain N\ and Nj elements respectively. We assume that the smaller elements 

are required in node p\ after the merge.

In principle, merging two already sorted lists of elements to obtain a new sorted 

list is a very simple process. The pseudo-code for the most natural implementation is 

shown in Figure 1.4.

This algorithm completes in N\ + /V2 steps, with each step requiring one copy and 

one comparison operation. The problem with this algorithm is the storage require­

ments implied by the presence of the destination array. This means that the use of 
this algorithm as part of a parallel sorting algorithm would restrict the number of ele­

ments that can be sorted to the number that can fit in half the available memory of the 

machine. The question then arises as to whether an algorithm can be developed that
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procedure merge(list dest, list sourcel, list source2) 
while (sourcel not empty) and (source2 not empty) 

if (top_of_sourcel < top_of_source_2) 
put top_of_sourcel into dest 

else
put top_of_source2 into dest 

endif 
endwhile
while (sourcel not empty)

put top_of_sourcel into dest 
endwhile
while (source2 not empty)

put top_of_source2 into dest 
endwhile 
end

Figure 1.4: Pseudo-code for a simple merge 

does not require this destination array.
In order to achieve this, it is clear that the algorithm must re-use the space that is 

freed by moving elements from the two source lists. We now describe how this can be 
done. The algorithm has several parts, each of which is described separately.

The principle of infinity padding is used to determine how many elements will 
be required in each of the nodes at the completion of the merge operation. If the 

complete balance operation has been performed at the start of the whole algorithm 

then the result of this operation must be that the nodes end up with the same number 

of elements after the merge-exchange as before. We assume that infinity padding tells 

us that we require N[ and N'2 elements to be in nodes p\ and p2 respectively after the 
merge.

1.2.9 Find-Exact Algorithm

When a node takes part in a merge-exchange with another node, it will need to be 

able to access the other node's elements as well as its own. The simplest method for 

doing this is for each node to receive a copy of all of the other node's elements before 

the merge begins.

A much better approach is to first determine exactly how many elements from each
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node will be required to complete the merge, and to transfer only those elements. This 
reduces the communications cost by minimizing the number of elements transferred, 

and at the same time reduces the memory overhead of the merge.
The find-exact algorithm allows each node to determine exactly how many ele­

ments are required from another node in order to produce the correct number of ele­

ments in a merged list.

When a comparison is made between element £i^_i and E2̂ \-a then the result 
of the comparison determines whether node p\ will require more or less than A of 

its own elements in the merge. If £1^-1 is greater than E2N̂ _A then the maximum 

number of elements that could be required to be kept by node p\ is A — 1, otherwise 

the minimum number of elements that could be required to be kept by node p\ is A.

The proof that this is correct relies on counting the number of elements that could 

be less than £i^_i. If £i^_\ is greater than E2^_A then we know that there are at least 

N[ — A + 1 elements in node p2 that are less than £14-1. If these are combined with the 

A — 1 elements in node p\ that are less than £1^-1, then we have at least N[ elements 
less than £14-1. This means that the number of elements that must be kept by node 

p 1 must be at most A — 1.
A similar argument can be used to show that if £1^-1 < E2)N̂ _A ^ en number of 

elements to be kept by node p\ must be at least A. Combining these two results leads 

to an algorithm that can find the exact number of elements required in at most logN\ 

steps by successively halving the range of possible values for the number of elements 

required to be kept by node p\.

Once this result is determined it is a simple matter to derive from this the number 

of elements that must be sent from node p\ to node p2 and from node p2 to node p\.

On a machine with a high message latency, this algorithm could be costly, as a rel­

atively large number of small messages are transferred. The cost of the algorithm can 

be reduced, but with a penalty of increased message size and algorithm complexity. 

To do this the nodes must exchange more than a single element at each step, sending a 
tree of elements with each leaf of the tree corresponding to a result of the next several 

possible comparison operations[Zhou et al. 1993]. This method has not been imple­

mented as the practical cost of the find-exact algorithm was found to be very small on
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the CM5 and AP1000.

We assume for the remainder of the discussion on the merge-exchange algorithm 

that after the find exact algorithm has completed it has been determined that node p\ 

must retain L\ elements and must transfer Li elements from node p2 -

1.2.10 Transferring Elements

After the exact number of elements to be transferred has been determined, the actual 

transfer of elements can begin. The transfer takes the form of an exchange of elements 

between the two nodes. The elements that are sent from node p\ leave behind them 

spaces which must be filled with the incoming elements from node p2 . The reverse 

happens on node p2 so the transfer process must be careful not to overwrite elements 

that have not yet been sent.

The implementation of the transfer process was straightforward on the CM5 and 

AP1000 because of appropriate hardware/operating system support. On the CM5 a 

routine called CMMD_send_and_receive does just the type of transfer required, in a 

very efficient manner. On the API000 the fact that a non-blocking message send is 

available allows for blocks of elements to be sent simultaneously on the two nodes, 

which also leads to a fast implementation.

If this routine were to be implemented on a machine without a non-blocking send 

then each element on one of the nodes would have to be copied to a temporary buffer 

before being sent. The relative overhead that this would generate would depend on 

the ratio of the speeds of data transfer within nodes and between nodes.

After the transfer is complete, the elements on node p\ are in two contiguous 

sorted lists, of lengths L\ and N[ — L\. In the remaining steps of the merge-exchange 

algorithm we merge these two lists so that all the elements are in order.

1.2.11 Unbalanced Merging

Before considering the algorithm that has been devised for minimum memory merg­

ing, it is worth considering a special case where the result of the find-exact algorithm 

determines that the number of elements to be kept on node p\ is much larger than the 

number of elements to be transferred from node p2 , i.e. L\ is much greater than L2 .
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This may occur if the data is almost sorted, for example, near the end of the cleanup 
phase.

In this case the task which node p\ must undertake is to merge two lists of very 

different sizes. There is a very efficient algorithm for this special case.

First we determine, for each of the L2 elements that have been transferred from 

p\, where it belongs in the list of length L\. This can be done with at most f^logLi 

comparisons using a method similar to the find-exact algorithm. As L2 is small, this 

number of comparisons is small, and the results take only 0(L2) storage.

Once this is done we can copy all the elements in list 2 to a temporary storage 

area and begin the process of slotting elements from list 1 and list 2 into their proper 

destinations. This takes at most L\ + L2 element copies, but in practice it often takes 

only about 2L2 copies. This is explained by the fact that when only a small number of 
elements are transferred between nodes there is often only a small overlap between 

the ranges of elements in the two nodes, and only the elements in the overlap region 
have to be moved. Thus the unbalanced merge performs very quickly in practice, and 
the overall performance of the sorting procedure is significantly better than it would 
be if we did not take advantage of this special case.

1.2.12 Block-wise Merging

The block-wise merge is a solution to the problem of merging two sorted lists of ele­

ments into one, while using only a small amount of additional storage. The first phase 
in the operation is to break the two lists into blocks of an equal size B. The exact value 

of B is unimportant for the functioning of the algorithm and only makes a difference 

to the efficiency and memory usage of the algorithm. It will be assumed that B is 

0{yjL\ +L2), which is small relative to the memory available on each node. To sim­

plify the exposition also assume, for the time being, that L\ and L2 are multiples of 
B.

The merge takes place by merging from the two blocked lists of elements into 
a destination list of blocks. The destination list is initially primed with two empty 

blocks which comprise a temporary storage area. As each block in the destination list 

becomes full the algorithm moves on to a new, empty block, choosing the next one in
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the destination list. As each block in either of the two source lists becomes empty they 

are added to the destination list.

As the merge proceeds there are always exactly 2B free spaces in the three lists. 

This means that there must always be at least one free block for the algorithm to have 

on the destination list, whenever a new destination block is required. Thus the ele­

ments are merged completely with them ending up in a blocked list format controlled 

by the destination list.

The algorithm actually takes no more steps than the simple merge outlined earlier. 

Each element moves only once. The drawback, however, is that the algorithm results 

in the elements ending up in a blocked list structure rather than in a simple linear 

array.

The simplest method for resolving this problem is to go through a re-arrangement 

phase of the blocks to put them back in the standard form. This is what has been done 

in my implementation of the parallel sorting algorithm. It would be possible, how­

ever, to modify the whole algorithm so that all references to elements are performed 

with the elements in this block list format. At this stage the gain from doing this has 

not warranted the additional complexity, but if the sorting algorithm is to attain its 

true potential then this would become necessary.

As mentioned earlier, it was assumed that L\ and L2 were both multiples of B. In 

general this is not the case. If L\ is not a multiple of B then this introduces the problem 

that the initial breakdown of list 2 into blocks of size B will not produce blocks that 

are aligned on multiples of B relative to the first element in list 1. To overcome this 

problem we must make a copy of the L\ mod B elements on the tail of list 1 and use this 

copy as a final source block. Then we must offset the blocks when transferring them 

from source list 2 to the destination list so that they end up aligned on the proper 

boundaries. Finally we must increase the amount of temporary storage to 3B and 

prime the destination list with three blocks to account for the fact that we cannot use 

the partial block from the tail of list 1 as a destination block.

Consideration must finally be given to the fact that infinity padding may result in 

a gap between the elements in list 1 and list 2. This can come about if a node is keeping 

the larger elements and needs to send more elements than it receives. Handling of this
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gap turns out to be a trivial extension of the method for handling the fact that L\ may 

not be a multiple of B. We just add an additional offset to the destination blocks equal 

to the gap size and the problem is solved.

1.2.13 Cleanup

The cleanup phase of the algorithm is similar to the primary merge phase, but it must 

be guaranteed to complete the sorting process. The method that has been chosen to 

achieve this is Batcher's merge-exchange algorithm. This algorithm has some useful 

properties which make it ideal for a cleanup operation.

The pseudo-code for Batcher's merge-exchange algorithm is given in [Knuth 1981, 

Algorithm M, page 112]. The algorithm defines a pattern of comparison-exchange op­

erations which will sort a list of elements of any length. The way the algorithm is nor­

mally described, the comparison-exchange operation operates on two elements and 

exchanges the elements if the first element is greater than the second. In the applica­

tion of the algorithm to the cleanup operation we generalize the notion of an element 

to include all elements in a node. This means that the comparison-exchange operation 

must make all elements in the first node less than all elements in the second. This is 

identical to the operation of the merge-exchange algorithm. The fact that it is possi­

ble to make this generalization while maintaining the correctness of the algorithm is 

discussed in Section 1.2.3.

Batcher's merge-exchange algorithm is ideal for the cleanup phase because it is 

very fast for almost sorted data. This is a consequence of a unidirectional merging 

property: the merge operations always operate in a direction so that the lower num­

bered node receives the smaller elements. This is not the case for some other fixed 

sorting networks, such as the bitonic algorithm [Fox et al. 1988]. Algorithms that do 

not have the unidirectional merging property are a poor choice for the cleanup phase 

as they tend to unsort the data (undoing the work done by the primary merge phase), 

before sorting it. In practice the cleanup time is of the order of 1 or 2 percent of the 

total sort time if Batcher's merge-exchange algorithm is used and the merge-exchange 

operation is implemented efficiently.



§1.3 Performance 22

1.3 Performance

In this section the performance of my implementation of the parallel sorting algorithm 

given above will be examined, primarily on a 128 node AP1000 multicomputer. While 

the AP1000 is no longer a state of the art parallel computer it does offer a reasonable 

number of processors which allows for good scalability testing.

1.3.1 Estimating the Speedup

An important characteristic of any parallel algorithm is how much faster the algorithm 

performs than an algorithm on a serial machine. Which serial algorithm should be 

chosen for the comparison? Should it be the same as the parallel algorithm (running 

on a single node), or the best known algorithm?

The first choice gives that which is called the parallel efficiency of the algorithm. 

This is a measure of the degree to which the algorithm can take advantage of the 

parallel resources available to it.

The second choice gives the fairest picture of the effectiveness of the algorithm 

itself. It measures the advantage to be gained by using a parallel approach to the 

problem. Ideally a parallel algorithm running on P nodes should complete a task 

P times faster than the best serial algorithm running on a single node of the same 

machine. It is even conceivable, and sometimes realizable, that caching effects could 

give a speedup of more than P.

A problem with both these choices is apparent when we attempt to time the serial 

algorithm on a single node. If we wish to consider problems of a size for which the 

use of a large parallel machine is worthwhile, then it is likely that a single node cannot 

complete the task, because of memory or other constraints.

This is the case for our sorting task. The parallel algorithm only performs at its 

best for values of N which are far beyond that which a single node on the CM5 or 

AP1000 can hold. To overcome this problem, I have extrapolated the timing results of 

the serial algorithm to larger N.

The quicksort/insertion-sort algorithm which I have found to perform best on a 

serial machine is known to have an asymptotic average run time of order /Vlog/V. 

There are, however, contributions to the run time that are of order 1, N and log/V. To
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Sorting 32-bit integers on the 128-node AP1000
Elements per 
second x 106

projected serial rate ----
serial rate x 128 +

parallel rate x

Number of Elements

Figure 1.5: Sorting 32-bit integers on the AP1000

estimate these contributions I have performed a least squares fit of the form:

time(/V) = a + b log N + cN -f dNXogN.

The results of this fit are used in the discussion of the performance of the algorithm 

to estimate the speedup that has been achieved over the use of a serial algorithm.

1.3.2 Timing Results

Several runs have been made on the AP1000 and CM5 to examine the performance 

of the sorting algorithm imder a variety of conditions. The aim of these runs is to 

determine the practical performance of the algorithm and to determine what degree 

of parallel speedup can be achieved on current parallel computers.

The results of the first of these runs are shown in Figure 1.5. This figure shows 

the performance of the algorithm on the 128-node AP1000 as N spans a wide range 

of values, from values which would be easily dealt with on a workstation, to those 

at the limit of the APlOOO's memory capacity (2 Gbyte). The elements are 32-bit ran­

dom integers. The comparison function has been put inline in the code, allowing the 

function call cost (which is significant on the SPARC) to be avoided.

The results give the number of elements that can be sorted per second of real time.
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This time includes all phases of the algorithm, and gives an overall indication of per­

formance.

Shown on the same graph is the performance of a hypothetical serial computer 

that operates P times as fast as the P individual nodes of the parallel computer. This 

performance is calculated by sorting the elements on a single node and multiplying 

the resulting elements per second result by P. An extrapolation of this result to larger 

values of A is also shown using the least squares method described in Section 1.3.1.

The graph shows that the performance of the sorting algorithm increases quickly 

as the number of elements approaches 4 million, after which a slow falloff occurs 

which closely follows the profile of the ideal parallel speedup. The roll-off point of 4 

million elements corresponds to the number of elements that can be held in the 128KB 

cache of each node. This indicates the importance of caching to the performance of 

the algorithm.

It is encouraging to note how close the algorithm comes to the ideal speedup of 

P for a P-node machine. The algorithm achieves 75% of the ideal performance for a 

128-node machine for large N.

A similar result for sorting of 16-byte random strings is shown in Figure 1.6. In this 

case the comparison function is the C library function strcmp(). The roll-off point for 

best performance in terms of elements per second is observed to be 1 million elements, 

again corresponding to the cache size on the nodes.

The performance for 16-byte strings is approximately 6 times worse than for 32-bit 

integers. This is because each data item is 4 times larger, and the cost of the function 

call to the strcmp() function is much higher than an inline integer comparison. The 

parallel speedup, however, is higher than that achieved for the integer sorting. The 

algorithm achieves 85% of the (theoretically optimal) P times speedup over the serial 

algorithm for large N.

1.3.3 Scalability

An important aspect of a parallel algorithm is its scalability, which measures the abil­

ity of the algorithm to utilize additional nodes. Shown in Figure 1.7 is the result of 

sorting 100,000 16-byte strings per node on the AP1000 as the number of nodes is var-
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Sorting 16-byte strings on the 128-node AP1000
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Figure 1.6: Sorting 16-byte strings on the API000

ied. The percentages refer to the proportion of the ideal speedup P that is achieved. 

The number of elements per node is kept constant to ensure that caching factors do 

not influence the result.

The left-most data point shows the speedup for a single node. This is equal to 1 

as the algorithm reduces to our optimized quicksort when only a single node is used. 

As the number of nodes increases, the proportion of the ideal speedup decreases, as 

communication costs and load imbalances begin to appear. The graph flattens out 

for larger numbers of nodes, which indicates that the algorithm should have a good 

efficiency when the number of nodes is large.

The two curves in the graph show the trend when all configurations are included 

and when only configurations with P a power of 2 are included. The difference be­

tween these two curves clearly shows the preference for powers of two in the algo­

rithm. Also clear is that certain values for P are preferred to others. In particular even 

numbers of nodes perform better than odd numbers. Sums of adjacent powers of two 

also seem to be preferred, so that when P takes on values of 24,48 and 96 the efficiency 

is quite high.
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Figure 1.7: Scalability of sorting on the AP1000

1.3.4 Where Does The Time Go?

In evaluating the performance of a parallel sorting algorithm it is interesting to look 
at the proportion of the total time spent in each of the phases of the sort. In Figure 1.8 
this is done over a wide range of values of N for sorting 16-byte strings on the AP1000. 
The three phases that are examined are the initial serial sort, the primary merging and 

the cleanup phase.

This graph shows that as N increases to a significant proportion of the memory of 

the machine the dominating time is the initial serial sort of the elements in each cell. 

This is because this phase of the algorithm is 0(N\ogN) whereas all other phases of 

the algorithm are O(N) or lower. It is the fact that this component of the algorithm is 
able to dominate the time while N is still a relatively small proportion of the capacity 

of the machine which leads to the practical efficiency of the algorithm. Many sorting 

algorithms are asymptotically optimal in the sense that their speedup approaches P 

for large N, but few can get close to this speedup for values of N which are of of interest 

in practice [Natvig 1990].

It is interesting to note the small impact that the cleanup phase has for larger values 
of N. This demonstrates the fact that the primary merge does produce an almost sorted 

data set, and that the cleanup algorithm can take advantage of this.
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Sorting 16-byte strings on the 128-node AP1000
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Figure 1.8: Timing breakdown by phase

A second way of splitting the time taken for the parallel sort to complete is by task. 

In this case we look at what kind of operation each of the nodes is performing, which 

provided a finer division of .the time.

Figure 1.9 shows the result of this kind of split for the sorting of 16-byte strings 

on the 128-node AP1000, over a wide range of values of N. Again it is clear that the 

serial sorting dominates for large values of N, for the same reasons as before. What 

is more interesting is that the proportion of time spent idle (waiting for messages) 

and communicating decreases steadily as N increases. From the point of view of the 

parallel speedup of the algorithm these tasks are wasted time and need to be kept to 

a minimum.

1.3.5 CM5 vs AP1000

The results presented so far are for the 128-node AP1000. It is interesting to compare 

this machine with the CM5 to see if the relative performance is as expected. To make 

the comparison fairer, we compare the 32-node CM5 with a 32-node AP1000 (the other 

96 nodes are physically present but not used). Since the CM5 vector units are not used 

(except as memory controllers), we effectively have two rather similar machines. The 

same C compiler was used on both machines.
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Figure 1.9: Timing breakdown by task

The AP1000 is a single-user machine and the timing results obtained on it are 

very consistent. However, it is difficult to obtain accurate timing information on 

the CM5. This is a consequence of the time-sharing capabilities of the CM5 nodes. 

Communication-intensive operations produce timing results which vary widely from 

run to run. To overcome this problem, the times reported here are for runs with a very 

long time quantum for the time sharing, and with only one process on the machine at 

one time.

Even so, we have ignored occasional anomalous results which take much longer 

than usual. This means that the results are not completely representative of results 

that are regularly achieved in a real application.

In Table 1.1 the speed of the various parts of the sorting algorithm are shown for 

the 32-node API000 and CM5. In this example we are sorting 8 million 32-bit integers.

For the communications operations both machines achieve very similar timing 

results. For each of the computationally intensive parts of the sorting algorithm, how­

ever, the CM5 achieves times which are between 60% and 70% of the times achieved 

on the AP1000.

Sorting 16-byte strings on the 128-node AP1000

Percentage of 
total time

i44iH-+-H-+T+++"
+H+ -H-+J_, 4 ^ f* + ++++ +

Serial Sorting + 
Merging x 

Communicating x
Idle □ 

Rearranging ■

An obvious reason for the difference between the two machines is the difference 

in clock speeds of the individual scalar nodes. There is a ratio of 32 to 25 in favor of
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Task CM5 time AP1000 time
Idle 0.22 0.23

Communicating 0.97 0.99
Merging 0.75 1.24

Serial Sorting 3.17 4.57
Rearranging 0.38 0.59

Total 5.48 7.62

Table 1.1: Sort times (seconds) for 8 million integers

the CM5 in the clock speeds. This explains m ost of the performance difference, but 

not all. The rem ainder of the difference is due to the fact that sorting a large num ber 

of elements is a very memory-intensive operation.

A major bottleneck in the sorting procedure is the m em ory bandw idth  of the 

nodes. W hen operating on blocks which are m uch larger than the cache size, this 

results in a high dependency on how often a cache line m ust be refilled from memory 

and how costly the operation is. Thus, the rem ainder of the difference between the 

two machines may be explained by the fact that cache lines on the CM5 consist of 32 

bytes whereas they consist of 16 bytes on the AP1000. This means a cache line load 

m ust occur only half as often on the CM5 as on the AP1000.

The results illustrate how im portant m inor architectural differences can be for the 

performance of complex algorithms. At the same time the vastly different network 

structures on the two machines are not reflected in significantly different communica­

tion times. This suggests that the parallel sorting algorithm presented here can per­

form well on a variety of parallel machine architectures w ith different communication 

topologies.

1.3.6 Primary Merge Effectiveness

The efficiency of the parallel sorting algorithm relies on the fact that after the prim ary 

merge phase most elements are in their correct final positions. This leaves only a small 

am ount of w ork for the cleanup phase.

Figure 1.10 shows the percentage of elements which are in their correct final po­

sitions after the prim ary merge w hen sorting random  4 byte integers on a 64 and 128 

processor machine. Also show n is 100 (l — P/ \ /N)  which provides a very good ap­

proxim ation to the observed results for large N.
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Figure 1.10: Percentage completion after the primary merge

It is probably possible to analytically derive this form for the primary merge per­

centage completion but unfortunately I have been unable to do so thus far. Never­
theless it is clear from the numerical result that the proportion of unsorted elements 
remaining after the primary merge becomes very small for large N. This is important 
as it implies that the parallel sorting algorithm is asymptotically optimal.

1.3.7 Optimizations

Several optimization ''tricks" have been used to obtain faster performance. It was 

found that these optimizations played a surprisingly large role in the speed of the 
algorithm, producing an overall speed improvement of about 50%.

The first optimization was to replace the standard C library routine memcpy() 

with a much faster version. At first a faster version written in C was used, but this 

was eventually replaced by a version written in SPARC assembler.

The second optimization was the timing of the block size of sends performed when 

elements are exchanged between nodes. This optimization is hidden on the CM5 in 

the CMMD_send_and_receive() routine, but is under the programmer's control on the 

AP1000.

The value of the B parameter in the block-wise merge routine is important. If it is
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too small then overheads slow down the program, but if it is too large then too many 

copies must be performed and the system might run out of memory. The value finally 
chosen was 4\/L\ + L2.

The method of rearranging blocks in the block-wise merge routine can have a big 

influence on the performance as a small change in the algorithm can mean that data is 

far more likely to be in cache when referenced, thus giving a large performance boost.

A very tight kernel for the merging routine is important for good performance. 

With loop unrolling and good use of registers this routine can be improved enor­

mously over the obvious simple implementation.

It is quite conceivable that further optimizations to the code are possible and 

would lead to further improvements in performance.

1.4 Comparison with other algorithms

There has been a lot of research into parallel sorting algorithms. Despite this, when I 
started my work on sorting in 1992 I was unable to find any general purpose efficient 

parallel sorting algorithms suitable for distributed memory machines. My research 
attempted to fill in that gap.

This section examines a number of parallel sorting algorithms where performance 
results are available for machines comparable with those that my research used.

1.4.1 Thearling and Smith

In [Thearling and Smith 1992] Kurt Thearling and Stephen Smith propose a parallel 

integer sorting benchmark and give results for an implementation of an algorithm on 

the CM5. Their algorithm is based on a radix sort, and their paper concentrates on 

the effects of the distribution of the keys within the key space using an entropy based 

measure.

The use of a radix based algorithm means that the algorithm is not comparison- 

based and thus is not general purpose. Additionally, the sending phase of the algo­

rithm consumes temporary memory of 0(N) which reduces the number of elements 

that can be sorted on a machine of a given size by a factor of 2.

The results given in their paper are interesting nonetheless. The time given for
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sorting 64 million uniformly distributed 32 bit elements on 64 CM5 processors was 17 

seconds.

To provide a comparison with their results I used an in-place forward radix sort 

(based on the American flag sort[McIlroy et al. 1993]) for the local sorting phase of our 

algorithm and ran a test of sorting 64 million 32 bit elements on 64 cells of the AP1000. 

I then scaled the timing results using the ratio of sorting speed for the AP1000 to the 

CM5 as observed in earlier results9. This gave a comparative sorting time of 17.5 

seconds. By using a more standard (and memory consuming) radix sort a time of 15.8 

seconds was obtained.

The interesting part of this result is how different the two algorithms are. Then- 

algorithm uses special prefix operations of the CM5 to compute the radix histograms 

in parallel then uses a single all to all communication stage to send the data directly 

to the destination cell. About 85% of the total sort time is spent in the communication 

stage. Despite the totally different algorithm the results are quite similar.

1.4.2 Helman, Bader and JaJa

In [Helman et al. 19961 David Helman, David Bader and Joseph JaJa detail a sample 

sort based parallel sorting algorithm and give results for a 32 node CM5, directly 

comparing their results with the results for our algorithm as presented in [Tridgell and 

Brent 1995; Tridgell and Brent 1993]. They also compare their results with a wide range 

of other parallel sorting algorithms and show results indicating that their algorithm is 

the fastest in most cases.

Like the Thearling algorithm Helman's algorithm uses a radix sort, although in 

this case it is applied independently to the elements in each node. This still leaves 

them with an 0(N ) memory overhead and the problem that the algorithm is not gen­

eral purpose because a comparison function cannot be used in a radix sort.

The table they show comparing their algorithm with ours (which they call the TB 

algorithm) shows results for sorting 8 million uniformly distributed integers on a 32 

node CM5. They give the results as 4.57 seconds for their algorithm and 5.48 seconds 

for ours.

9The CM5 at ANU had been decommissioned by the time the Thearling paper came out, so I couldn't 
test directly on the same hardware.
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To give a fairer comparison I again replaced the quicksort algorithm in my imple­
mentation with the American flag in-place radix sort and scaled for AP1000 to CM5 

differences. This gave an equivalent sorting time of 3.9 seconds.

1.5 Conclusions

The parallel sorting algorithm presented in this chapter arises from a very simple 

analysis following a decision to split the algorithm into a local sorting phase followed 

by a parallel merge. The use of a fast but incorrect initial merge phase followed by a 

simple cleanup algorithm leads to a very high degree of parallel efficiency.

As far as I am aware this is the only efficient, comparison-based distributed mem­

ory parallel sorting algorithm that requires less than order N temporary storage. These 

features, combined with the competitive sorting performance, make the algorithm 
suitable for a parallel algorithms library.



Chapter 2

External Parallel Sorting

This chapter considers the problem of external parallel sorting. External sorting in­

volves sorting more data than can fit in the combined memory of all the processors on 

the machine. This involves using disk as a form of secondary memory, and it presents 

some very interesting challenges because of the huge difference between the band- 

widths and latencies of memory and disk systems.

2.1 Parallel Disk Systems

There are a large variety of different disk 1/O systems available for parallel computers. 

In some systems each CPU has its own private disk and in others there is a central 

bank of disks accessible from all CPUs.

For this work I assumed the following setup:

• a distributed memory parallel computer

• a parallel filesystem where all CPUs can access all the data

The particular setup I used was a 128 cell AP1000 with 32 disks and the HiDIOS 

parallel filesystem[Tridgell and Walsh 1996].

The requirement of a filesystem where all CPUs can access all the data isn't as 

much of an impediment as it might first seem. Almost any distributed filesystem can 

easily be given this property using a remote access protocol coupled to the message 

passing library1.

^ h e  AP1000 has only local disk access in hardware. Remote disk access is provided by the operating 
system.

34
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Figure 2.1: Aggregate throughput with varying block-size

2.2 Designing an algorithm

An external parallel sorting algorithm has design constraints quite different from an 

internal algorithm. The main differences are:

• the average number of I/O  operations per element needs to be minimized.

• the I/O  requests need to be gathered as far as possible into large requests

• the algorithm should, if possible, run in-place to allow data sets up to the full 

size of the available disk space to be sorted

The dramatic difference that the gathering of I/O requests can make is demon­

strated by the write throughput results in Figure 2.1. The graph show the aggregate 

write throughput on a 128 cell AP1000 with 16 disks2. With the throughput varying 

by four orders of magnitude depending on the size of the individual writes it is clear 

that an algorithm that does a smaller number of larger 1/O requests is better than one 

which does a large number of small requests.

2Some results in this chapter are for a system with 32 disks and others are for a system with 16 disks. 
The machine 1 used was reconfigured part way through my research.

- , • -1 ' • ■1 ■ ■ 1 ' '1 *
- throughput (kB/sec)

+ + +
+ + + + + + + + *

+
_ +
- +
- +- + -
- +

+
+

+
+

- +

- __ . .1 .__ .-L.L-J__ 1_X I_1__ L _ d _______L



§2.2 Designing an a lgori thm 36

2.2.1 Characterizing parallel sorting

An external sorting algorithm needs to make extensive use of secondary memory 

(usually disk). In this chapter I will characterize the external sorting using a param­
eter k where k — where N is the number of elements being sorted and M is the 

number of elements that can fit in the internal memory of the machine. This means 

that k equal to 1 implies internal sorting (as the data can fit in memory) and any value 

of k greater than 1 implies external sorting.

In practice k is rarely very large as large parallel disk systems are usually attached 

to computers with fairly large memory subsystems. On the AP1000 available to me k 
is limited to 8 (a total of 2GB of RAM and 16GB of disk). To simulate the effect of a 

larger value for k some of the test runs use a deliberately limited amount of memory.

2.2.2 Lower Limits on I/O

Lower limits on the computational requirements for parallel external sorting are the 

same as those for internal sorting. It is, however, instructive to look at the lower limits 

on I/O  operations required for external sorting as quite clearly the number of I/O 
operations required will impact significantly on the performance of the algorithm.

The most obvious lower limit is at least one read and one write per element. This 

stems from the fact that every element has to be moved at least once to change the 

order of the elements.

Can this limit be achieved? It is fairly easy to show that it cannot. Imagine we 

had an algorithm that performed only one read and one write per element. As the 
elements cannot be predicted in advance we cannot place any element in its correct 

output position with certainty until all elements have been read. That implies that all 

the reads must be performed before all the writes. In that case the algorithm would 

have to store internally (in memory) enough information to characterize the ordering 

of the elements. The memory required to do this for non-compressible data is at least 

log(N\) bits, which is approximately /Vlog(N). With k > 1 this cannot be achieved3.

The algorithm presented in this chapter demonstrates that external parallel sorting 

can, however, be done with an average of approximately two reads and writes per

3Strictly it could be done if the size of each element is greater than /.'logN .
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element, at least for values of k that are practical on the machines available to me.

2.2.3 Overview of the algorithm

The external sorting algorithm works by mapping the file onto a 2 dimensional k x k 

grid in a snake-like fashion4. The columns and rows of the grid are then alternately 

sorted using the internal parallel sorting algorithm described above. It can be demon­

strated [Schnorr and Shamir 1986] that the upper limit on the number of column and 
row sorts required is flogA:] -b 1.

This basic algorithm is augmented with a number of optimizations which greatly 

improve the efficiency of the algorithm in the average case. In particular the grid 

squares are further divided into slices which contain enough elements to fill one pro­
cessor. The top and bottom element in each slice is kept in memory allowing the 

efficient detection of slices for which all elements are in their correct final position. In 

practice this means that most slices are completely sorted after just one column and 
row sort, and they can be ignored in the following operations.

The algorithm also uses a dynamic allocation of processors to slices, allowing for 

an even distribution of work to processors as the number of unfinished slices de­
creases.

The proof that the algorithm does indeed sort and the upper limit on the number of 
column and row sorts comes from the shearsort algorithm[Schnorr and Shamir 1986].

2.2.4 Partitioning

The external sorting algorithm starts off by partitioning the file to be sorted into a two 

dimensional grid of size k x k. Each grid square is further subdivided into a number 

of slices, so that the number of elements in a slice does not exceed the number that 

can be held in one processors memory.

A example of this partitioning is shown in Figure 2.2 for k = 3 and P = 6. Each 

slice in the figure is labeled with two sets of coordinates. One is its slice number and 

the other is its (row,column) coordinates. The slice number uniquely defines the slice 

whereas the (row,column) coordinates are shared between all slices in a grid square.

4This algorithm was first described in [Tridgell et al. 1997].



§2.2 Designing an algorithm 38

0 1 2 3 4 5

(0 ,0) (0 ,0) (0 ,1) (0 , 1) (0 ,2) (0 ,2)

10 11 8 9 6 7

( 1,0) ( 1,0) ( U ) ( U ) ( 1,2 ) ( 1,2)

12 13 14 15 16 17

(2 ,0) (2 ,0) (2 , 1) (2 , 1) (2 ,2) (2 ,2)

Figure 2.2: Partitioning with k = 3 and P = 6
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The snake-like ordering of the slice numbers on the grid squares is essential to the 

sorting process. Note that in the diagram the slices are labeled in snake-like fashion 

between the grid squares but are labeled left-right within a grid square. The ordering 

within a grid square is not essential to the sorting process but is for convenience and 

code simplicity.
One difficulty in the partitioning is achieving some particular restrictions on the 

numbers of slices, elements, processors and grid squares. The restrictions are:

• The number of slices in a row or column must be less than or equal to the number 

of processors P.

• The number of elements in a slice must be less than the amount of available 

memory in a processor M5.

These restrictions arise from the need to load all of a slice into a single processor 

and the need to be able to load a complete row or column into the total internal mem­
ory. To achieve these requirements an iterative procedure is used which first estimates 

k and assigns slices, then increases k until the restrictions are met.
The file itself is mapped onto the slices in slice order. This means that each slice 

represents a particular static region of the file6. Whenever a slice is loaded or saved 

the offset into the file is calculated from the slice number and the block of elements at 
that offset is loaded or saved to a single processor's memory.

Note that the mapping of slices to file position is static, but the mapping of slices 

to processors is dynamic. This is discussed further in Section 2.2.7.

2.2.5 Column and row sorting

The heart of the external sorting algorithm is the alternate column and row sorting. 

To sort a row or column all slices with the required row or column number are loaded 

into memory, with one slice per processor, then the internal sorting algorithm de­

scribed previously is used to sort the row or column into slice order.

5Here and elsewhere in this chapter we measure memory in units of elements, so one memory unit is 
assumed to hold one element.

6Slices must begin and end on element boundaries.
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The algorithm cycles through all columns on the grid, sorting each column in turn, 

then cycles through each row in a similar fashion. This continues until the sort is 

complete. The detection of completion is discussed below.

The only change to the internal sorting algorithm previously presented is to elim­

inate the local sorting phase except the first time a slice is used. Once a slice has taken 

part in one row or column sort, its elements will be internally sorted and thus will not 

need to be sorted in later passes.

2.2.6 Completion

An important part of the algorithm is the detection of completion of the sort. Although 

it would be possible to use the known properties of shearsort to guarantee comple­

tion by just running the algorithm for flog k +  1] passes, it is possible to improve the 

average case enormously by looking for early completion.

Early completion detection is performed on a slice by slice basis, rather than on 

the whole grid. Completion of the overall sorting algorithm is then defined to occur 

when all slices have been completed.

The completion of a slice is detected by first augmenting each slice number with 

a copy of the highest and lowest element in the slice. The last processor to write the 

slice holds these elements.

At the end of each set of column or row sorts these sentinel elements are then gath­

ered in one processor using a simple tree-based gathering algorithm. This processor 

then checks to see if the following two conditions are true to determine if the slice has 

completed:

• the smallest element in the slice is larger than or equal to the largest element in 

all preceding slices; and

• the largest element in each slice is smaller than or equal to the smallest element 

in each of the following slices.

If these two conditions are true then all elements in the slice must be in their correct 

final positions. In this case the elements need never be read or written again and 

the slice is marked as finished. When all slices are marked as finished the sort is
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complete7.

2.2.7 Processor allocation

As slices are marked complete the number of slices in a row or column will drop 

below the number of processors P. This means that if a strictly serialized sorting of 

the rows or columns was made then processors would be left idle in rows or columns 
which have less than P slices remaining.

To take advantage of these processors the allocation of slices to processors is made 

dynamically. Thus while one row is being sorted any unused processors can begin the 

task of sorting the next row. Even if too few unused processors are available to sort 

the next row a significant saving can be made because the data for the slices in the 

next row can be loaded, thus overlapping I/O with computation.
This dynamic allocation of processors can be done without additional communi­

cation costs because the result of the slice completion code is made available to all 

processors through a broadcast from one cell. This means that all processors know 

which slices have not completed and can separately calculate the allocation of proces­
sors to slices.

2.2.8 Large k

The algorithm described above has a limit of k = P. Above this point the allocation of 

slices to processors becomes much trickier. The simplest way of addressing this prob­

lem is to allocate multiple grid squares to a processor. A more complex alternative 

would be to sort recursively, so that rows and columns are further subdivided into 

sections that can be handled by the available processors and memory.

A further problem that comes with very large values of k is that the worst case of 

[log k T 1] passes becomes a more significant burden. To overcome this problem alter­

native grid sorting algorithms to shearsort may be used which work well for much 

larger values of k. For example, reverse-sort[Schnorr and Shamir 1986] has a worst 

case of [loglogk\ for large k. For smaller k, however, it has no advantage over shear-

7The determination of the two conditions can be accomplished in linear time by first calculating the 
cumulative largest and cumulative smallest elements for each slice.
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sort. Values of k large enough to warrant the use of reverse-sort are not investigated 

in this thesis.

2.2.9 Other partitionings

It may not be obvious from the above why a 2 dimensional partitioning was chosen. 

Other partitionings were considered but they lacked essential requirements or were 

slower.

In particular many of the obvious one-dimensional sorting algorithms would re­

quire that either far fewer or far more than l /k  of the elements be in memory at any 

one time. To have more than 1 /k  in memory would be impossible, and to have fewer 

would be inefficient as the obviously valuable resource of memory would be wasted.

Higher dimensional partitionings were also rejected after some consideration. One 

that particularly appealed was a k dimensional hyper-cube, but it was simple to prove 

that its average case would be equal to the worst case of the 2 dimensional partition­

ing. It could not take advantage of the shortcuts which are so easy to produce in the 2 

dimensional case.

This is not to say that there isn't a better partitioning than the 2 dimensional one 

proposed here. There may well be, but I haven't seen one yet.

It should also be noted that if you were to choose k such that k = y/N and also as­

sume that the serial sorting algorithm scales as AMog/V, then one pass of the algorithm 

would take N logN time. The problem, however, is that k = y/N would provide a much 

too fine-grained algorithm, which would suffer badly from overheads and latencies. 

The use of k = N/M  is the best that can be done in terms of the granularity of the 

algorithm and maximizes the size of individual I /O  operations.

2.3 Performance

The problem with measuring the speed of external sorting is finding enough disk 

space. The AP1000 has 2GB of internal memory, which means you need to sort con­

siderably more than 2GB of data to reach reasonable values of k. Unfortunately only 

10GB (of a possible 16GB) is allocated to the HiDIOS filesystem, so a k above 5 is not 

possible when the full internal memory of the machine is used. In practice a k of above
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Figure 2.3: External sorting of 64 bit integers with fixed memory. The y axis is in elements per 
second. The dashed vertical lines show the boundaries between k values, with the left-most 
point at k = 1 and the right-most at k = 15.

2 is difficult to achieve as the disks are invariably quite full.

To overcome this problem  the following experiments limit the am ount of RAM 

available to the program  to m uch less than the full 2GB. This allows a m uch w ider 

range of external sorting param eters to be explored.

In the results that follow the local sorting phase of the internal parallel sorting 

algorithm was im plem ented using the American flag sort[McIlroy et al. 1993], an effi­

cient form of in-place forw ard radix sort. A com parison-based local sort could equally 

well have been used.

Figure 2.3 shows the speed in elements per second of a external sort w here the 

available mem ory per processor has been fixed at 1MB (excluding operating system 

overheads). This means that k increases w ith the num ber of elements to be sorted. 

The left m ost point on the graph is in fact an internal sort as there is sufficient mem ory 

available for k = 1, m eaning the data can fit in internal memory. This graph includes 

the I /O  overhead of loading and saving the data, w hich is w hy the internal point is 

considerably slower than the previous internal results.

The alternate high-low structure of the graph is due to granularity of k. At the 

point just above where k changes from 1 to 2 the num ber of elements being sorted
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Figure 2.4: External sorting of 50 million 64 bit integers with varying amounts of available 
memory. The k values (from left to right) are 62,31,16,8,4 and 2

by the internal parallel sorting algorithm will be approximately half the number of 

elements being sorted at the upper limit of the k = 2 range. This results in significantly 

decreased efficiency for the internal algorithm (see Figure 1.5) which is reflected in the 

external parallel sorting times. A similar effect occurs for each value of k, leading to 

the observed variance.

Figure 2.4 shows the speed of sorting a fixed set of 50 million 64 bit integers while 

the amount of available memory on each processor is changed. The graph shows 

clearly the degradation of the speed of the sort for small memory sizes8.

This degradation arises from several causes. One cause is the inefficiency of disk 

reads/writes for small I /O  sizes. A more significant cause is the overheads for each 

of the internal parallel sorts, with the number of internal sorts required increasing as 

k (which increases as the inverse of the available memory).

Figure 2.5 gives a breakdown of the costs associated with the previous figure. It 

demonstrates that the overheads of the sorting process increase greatly for small mem­

ory sizes, while the serial sorting component stays roughly static.

8It should be noted that the smaller values on the graph do represent extremely small amounts of 
available memory. 50KB is about 0.3% of the memory normally available to each processor!
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Figure 2.5: Breakdown of cost of external sorting as amount of available memory varies

2.3.1 I/O Efficiency

It is interesting to see how close the algorithm comes to the practical limit of 2 reads 

and writes per element for'external sorting. The worst case is 2(log k+  1) reads and 

writes per element but the early completion detection in the algorithm allows much 

smaller values to be reached.

Figure 2.6 shows the number of reads and writes required per element for random 

64 bit integers. The graph shows that the algorithm achieves close to 2 reads and 

writes per element over a wide range of k, with a slight increase for larger k. This 

demonstrates that the early completion detection part of the algorithm is functioning 

well.

2.3.2 Worst case

An important property of a sorting algorithm is the worst case performance. Ideally 

the worst case is not much worse than the average case, but this is hard to achieve.

The worst case for the external sorting algorithm is when the data starts out sorted 

by the column number that is assigned after the partitioning stage. This will mean that 

the initial column sort will not achieve anything. The worst case of log A: + 1 passes can 

then be achieved. Additionally the data distribution required for the worst case of the
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Figure 2.6: Number of reads and writes per element for a range of k values

internal sorting algorithm should be used.

A experiment with 10 million 64 bit elements and a k of 7 gave a slowdown for the 

worst case compared to random data of about a factor of 4.

2.3.3 First pass completion

An important component of the algorithm is the fact that most slices are completed 

in the first pass, allowing the remaining passes to "clean up" the unfinished elements 

quickly. This is analogous to the primary and cleanup phases of the internal parallel 

sorting algorithm discussed in the previous chapter.

Figure 2.7 shows the percentage of slices that are completed after the first pass 

when sorting 50 million 64 bit random elements on the 128 processor AP1000 for vary­

ing values of k. Note the narrow y range on the graph. The results show that even for 

quite high values of k nearly 90% of slices are completed after the first pass.

2.4 Other Algorithms

The field of external parallel sorting is one for which direct comparison between algo­

rithms can be difficult. The wide variation in the configuration of disk and memory 

hierarchies combined with varying requirements for data types and key sizes leaves
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Figure 2.7: Percentage of slices completed after the first pass for varying k

little common ground between many published results. The best that can be done is 

to make broad comparisons.

Akl provides external parallel sorting algorithms for disks and tapes by adapting 
an internal parallel sorting algorithmjAkl 1985]. The result is an algorithm that per­

forms at least 21ogP I/O  operations per element which is excessive except for very 
small machines.

Aggarwal and Plaxton introduce the hypercube-based sharesort external parallel 

sorting algorithm[Aggarwal and Plaxton 1993] and demonstrate that it is asymptot­

ically optimal in terms of I/O  operations on general multi-level storage hierarchies. 

Their algorithm is aimed at larger values of k than are considered in this chapter and 

concentrates on providing a framework for expressing very generalised models of ex­
ternal parallel sorting.

Nodine and Vitter introduce an external parallel sorting algorithm called balance- 

sort[Nodine and Vitter 1992] which, like sharesort, is asymptotically optimal in the 

number of 1/O operations but assumes a CRCW-PRAM model of parallel architecture 

which limits its practical usefulness.

I am not aware of any other external parallel sorting algorithms which take advan­

tage of the early completion that is the key to the algorithm presented in this chapter.
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The use of early completion detection results in an algorithm which uses a very small 

average number of I/O operations per element while maintaining a simple algorith­

mic structure.

2.5 Conclusions

The external parallel sorting algorithm presented in this chapter has some quite strong 

similarities to the internal parallel sorting algorithm from the previous chapter. Both 

get most of their work done with a first pass that leaves the vast majority of elements 

in their correct final position. In the case of the external algorithm this first pass is the 

natural first step in the overall algorithm whereas for the internal algorithm the first 

pass is logically separated from the cleanup phase.
The external algorithm also makes very efficient use of the disk subsystem by us­

ing I/O operations that are of a size equal to the internal memory size of each of the 

processors. This makes an enormous difference to the practical efficiency of the algo­
rithm.



Chapter 3

The rsync algorithm

This chapter describes the rsync algorithm, an algorithm for the efficient remote up­

date of data over a high latency, low bandwidth link. Chapter four describes enhance­

ments and optimizations to the basic algorithm, and chapter five describes some of 

the more interesting alternative uses for the ideas behind rsync that have arisen since 
the algorithm was developed.

3.1 Inspiration

The rsync algorithm was developed out of my frustration with the long time it took 
to send changes in a source code tree across a dialup network link. I have spent a 
lot of time developing several large software packages during the course of my PhD 

and constantly finding myself waiting for source files to be transferred through my 
modem for archiving, distribution or testing on computers at the other end of the link 

or on the other side of the world. The time taken to transfer the changes gave me 

plenty of opportunity to think about better ways of transferring files.

In most cases these transfers were actually updates, where an old version of the 

file already existed at the other end of the link. The common methods for file transfer 

(such as ftp and rep) didn't take advantage of the old file. It was possible to transfer 

just the changes by keeping original files around then using a differencing utility like 

diff and sending the diff files to the other end but I found that very inconvenient in 

practice and very error prone.
So I started looking for a way of updating files remotely without having prior 

knowledge of the relative states of the files at either end of the link. The aims of such 
an algorithm are:

49
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• it should work on arbitrary data, not just text;

• the total data transferred should be about the size of a compressed diff file;

• it should be fast for large files and large collections of files;

• the algorithm should not assume any prior knowledge of the two files, but 

should take advantage of similarities if they exist;

• the number of round trips should be kept to a minimum to minimize the effect 

of transmission latency; and

• the algorithm should be computationally inexpensive, if possible.

3.2 Designing a remote update algorithm

Say you have two computers A and B connected by a low-bandwidth high-latency 

link. At the start of the transfer you have a file with bytes a, on A and a file with bytes 
bi on B. Assume for the sake of discussion that 0 < i < n so that each file is n bytes 

long1. The aim of the algorithm is for B to receive a copy of the file from A.
The basic structure of a remote update algorithm will be:

1. B sends some data S based on bi to A

2. A matches this against a, and sends some data D to B

3. B constructs the new file using bir S and D

The questions then is what form S will take, how A uses S to match on a, and how 

B reconstructs a,-.

Even with this simple outline we can already see that the algorithm requires a 

probabilistic basis to be useful. The data S that B sends to A will need to be much 

smaller than the complete file in order for there to be any significant speedup2. This

1It turns out that the two files being the same length is unimportant, but it does simplify the nomen­
clature a little.

2Unless the link is asymmetric. If the link was very fast from B to A but slow from A to B then it 
wouldn't matter how big S is.
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means that S cannot uniquely identify all possible files bi which means that the algo­

rithm must have a finite probability of failure. We will look at this more closely after 

the algorithm has been fleshed out some more3.

3.2.1 First attempt

An example of a very simple form for the algorithm is

1. B divides bi into N equally sized blocks b'j and computes a signature Sj on each 

block4. These signatures are sent to A.

2. A divides a,- into N blocks dk and computes S'k on each block.

3. A searches for Sj matching S[ for all k

4. for each k, A sends to B either the block number j  in Sj that matched S'k or a literal 

block a'k

5. B constructs a, using blocks from bi or literal blocks from a,-.

This algorithm is very simple and meets some of the aims of our remote update 
algorithm, but it is useless in practice5. The problem with it is that A can only find 
matches that are on block boundaries. If the file on A is the same as B except that one 
byte has been inserted at the start of the file then no block matches will be found and 

the algorithm will transfer the whole file.

3.2.2 A second try

We can solve this problem by getting A to generate signatures not just at block bound­

aries, but at all byte boundaries. When A compares the signature at each byte bound­

ary with each of the signatures Sj on block boundaries of bi it will be able to find 

matches at non-block offsets. This allows for arbitrary length insertions and deletions 

between a, and bi to be handled.

3While there has been some earlier information theoretic work on the remote update prob- 
lem[Orlitsky 1993], that research did not lead to a practical algorithm.

4Think of the blocks as being a few hundred bytes long, we will deal with the optimal size later.
5The above algorithm is the one most commonly suggested to me when I first describe the remote 

update problem to colleagues.
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This would work, but it is not practical because of the computational cost of com­
puting a reasonable signature on every possible block. It could be made computa­

tionally feasible by making the signature algorithm very cheap to compute but this is 

hard to do without making the signature too weak. A weak signature would make 

the algorithm unusable.

For example, the signature could be just the first 4 bytes of each block. This would 

be very easy to compute but the algorithm would fail to produce the right result when 

two different blocks had their first 4 bytes in common.

3.2.3 Two signatures

The solution (and the key to the rsync algorithm) is to use not one signature per block, 

but two. The first signature needs to be very cheap to compute for all byte offsets and 
the second signature needs to have a very low probability of collision. The second, 

expensive signature then only needs to be computed by A at byte offsets where the 
cheap signature matches one of the cheap signatures from B.

If we call the two signatures R and H then the algorithm becomes6:

1. B divides fr, into N equally sized blocks b'j and computes signatures Rj and Hj 
on each block. These signatures are sent to A.

2. For each byte offset / in a, A computes R\ on the block starting at /.

3. A compares R\ to each Rj received from B.

4. For each j  where /?[ matches Rj A computes H[ and compares it to Hj.

5. If H[ matches Hj then A sends a token to B indicating a block match and which 

block matches. Otherwise A sends a literal byte to B.

6. B receives literal bytes and tokens from A and uses these to construct a,.

For this algorithm to be effective and efficient we need the following conditions:

• the signature R needs to be cheap to compute at every byte offset in a file;

6I call them R and H for rolling checksum and hash respectively. Hopefully those names will become 
clear shortly.
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• the signature H needs to have a very low probability of random collision; and

• A needs to perform the matches on all block signatures received from B very 

efficiently, as this needs to be done at all byte offsets.

Most of the rest of this chapter deals with the selection of the two signature algo­
rithms, and the related problem of implementing the matching function efficiently.

3.2.4 Selecting the strong signature

The strong signature algorithm is the easier of the two. It doesn't need to be particu­

larly fast as it is only computed on block boundaries by B and at byte boundaries on 

A only when the fast signature matches.
The main property that the algorithm must have is that if two blocks are different 

they should have a very low probability of having the same signature. There are 

many well known algorithms that have this property, perhaps the best known being 
the message digest algorithms commonly used in cryptographic applications. These 

algorithms are believed to have the following properties (where b is the number of 

bits in the signature)[Schneier 1996]:

• The probability that a randomly generated block has the same signature as a 

given block is 0(2~b).

• The computational difficulty of finding a second block that has the same signa­

ture as a given block is Q(2fc).

• The individual bits in the signature are uncorrelated and have a uniform distri­

bution.

These properties make a message digest algorithm ideal for rsync. The particular 

algorithm that is used for most of the results in this chapter is the 128 bit MD4 mes­

sage digest[Rivest 1990]. This algorithm was chosen because of the ready availability 

of source code implementations and the high throughput compared to many other 

algorithms. Although MD4 is thought to be not as cryptographically strong as some 

later algorithms (such as MD5 or IDEA) the difference is unimportant for rsync.
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In reality, MD4 is "overkill" as the strong signature algorithm for rsync. It would 
be quite possible to use a cryptographically weaker but computationally less expen­

sive algorithm such as a simple polynomial based algorithm. This wasn't done be­

cause testing showed that the MD4 computation does not provide a significant bot­

tleneck on modem CPUs. For example, on a 200 MHz Pentium processor the MD4 

implementation achieved 6 MB/sec throughput, which is far in excess of most local 

area networks. As rsync is aimed at low bandwidth networks the computational cost 
of MD4 is insignificant7.

3.2.5 Selecting the fast signature

The role of the fast signature in rsync is to act as a filter, preventing excessive use of 

the strong signature algorithm. The most important features is that it needs to be able 
to be computed very cheaply at every byte offset in a file.

The first fast signature algorithm that I investigated was just a concatenation of the 

first 4 and last 4 bytes of each block. Although this worked, it had the serious flaw that 
for certain types of structured data (such as tar files) sampling a subset of the bytes in a 
block provided a very poor signature algorithm. It was not uncommon to find a large 
proportion of byte offsets in a file that had the same fast signature, which resulted in 

an excessive use of the strong signature algorithm and very high computational cost.
This led to the investigation of fast signature algorithms which depended on all the 

bytes in a block, while requiring very little computation to find the signature values 

for every byte offset in a file. Perhaps the simplest such algorithm is

This would be very fast because it can be computed incrementally with one addition 

and one subtraction to "slide" the signature from one byte offset to the next8. The 

problem with this signature is that it is independent of the order of the bytes in the 

buffer. This means that, when sliding the buffer, if we add the same byte on the end of

7The use of MD4 also seemed to be an important factor in convincing skeptical users of the safety 
of the file transfer algorithm. The fact that a failed transfer is equivalent to "cracking" MD4 allayed 
suspicions significantly and led to the faster adoption of the algorithm.

81 will sometimes refer to this property as the rolling property.
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the buffer as we remove from the start then we end up with the same signature value.

The solution is to make the signature order dependent by introducing factors de­

pendent on i into the signature. The algorithm that was chosen is defined by9

L- 1

r\{k,L) = ( ^  ai+k) mod M
i=0 
L - 1

r2(k,L) = ( £ ( L - />,+*) mod M
i=0

r(k,L) = r\(k,L) + Mr2(k,L)

where r(k, L) is the signature at offset k for a block of length L. M is an arbitrary' 

modulus, and was chosen to be 216 for simplicity and speed. Note that this results in 

a 32 bit signature.

This signature can be computed incrementally as follows

r\(k-\-1,L) = (n(£,L) -a *  + ak+L) mod M

r2(k+l,L) = (r2(k,L) — La^A- n(£-f 1,L)) mod M

r(k+\ ,L \  = r\(k+ 1,L) +Mr2(k+ 1,L)

This allows the computation of successive values of the fast signature with 3 additions, 

2 subtractions, 1 multiplication and a shift, assuming that M is a power of two10.

3.2.6 The signature search algorithm

Once A has received the list of signatures from B, it must search at for any blocks at 

any offset that match the signatures of some block from B. The basic strategy is to 

compute the fast signature for each block starting at each byte of a,- in turn, and for 

each signature, search the list for a match.

The search algorithm is very important to the efficiency of the rsync algorithm and 

also affects the scalability of the algorithm for large file sizes. The basic search strategy 

used by my implementation is shown in Figure 3.1.

The first step in the algorithm is to sort the received signatures by a 16 bit hash of

9This form of the fast signature for rsync was first suggested by Paul Mackerras. It is based on ideas 
from the Adler checksum as used in zlib[Gailly and Adler 1998]. It also bears some similarity to the hash 
used in the Karp-Rabin string matching algorithm[Karp and Rabin 1987].

10Some alternative fast signature algorithms are discussed in the next chapter.
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Figure 3.1: The signature search algorithm



§3.2 Designing a remote update algorithm 57

the fast signature11. A 16 bit index table is then formed which takes a 16 bit hash value 

and gives an index into the sorted signature table which points to the first entry in the 

table which has a matching hash.

Once the sorted signature table and the index table have been formed the signature 

search process can begin. For each byte offset in a, the fast signature is computed, 

along with the 16 bit hash of the fast signature. The 16 bit hash is then used to lookup 

the signature index, giving the index in the signature table of the first fast signature 

with that hash.

A linear search is then performed through the signature table, stopping when an 

entry is found with a 16 bit hash which doesn't match. For each entry the current 32 bit 

fast signature is compared to the entry in the signature table, and if that matches then 

the full 128 bit strong signature is computed at the current byte offset and compared 

to the strong signature in the signature table.

If the strong signature is found to match then A emits a token telling B that a match 

was found and which block in 6, was matched12. The search then continues at the byte 

after the matching block.

If no matching signature is found in the signature table then a single byte literal is 

emitted and the search continues at the next byte13.

At first glance this search algorithm appears to be 0(n2) in the file size, because for 

a fixed block size the number of blocks with matching 16 bit hashes will rise linearly 

with the size of the file. This turns out not to be a problem because the optimal block 

size also rises with n. This is discussed further in Section 3.314, for now it is sufficient 

to know that the average number of blocks per 16 bit hash is around 1 for file sizes up 

to around 232.

For file sizes much beyond that an alternative signature search strategy would be 

needed to prevent excessive cost in the signature matching. For example the signa­

tures could be arranged in a tree giving logn average lookup cost at the expense of

n The hash algorithm used is the 16 bit sum of the two 16 bit halves of the fast signature.
12These tokens are very amenable to simple run length encoding techniques. This is discussed further 

in the section dealing with stream compression of the rsync output.
13In fact, literal bytes are buffered and only emitted when a threshold is reached or a match is found. 

The literal bytes may also be compressed. This is discussed more in the next chapter.
14It rises as or n depending on the definition of "optimal".
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some extra memory and bookkeeping.

3.2.7 Reconstructing the file

One of the simplest parts of the rsync algorithm is reconstructing the file on B. Af­

ter sending the signatures to A, B receives a stream of literal bytes from A interspersed 

with tokens representing block matches. To reconstruct the file B just needs to sequen­

tially write the literal bytes to the file and write blocks obtained from the old file when 
a token is received.

Note this that process assumes that

• B has fast random access to the old file; and

• the reconstruction is not performed in place.

The fast random access requirement is not a problem for most applications of 

rsync, as that is the natural access method for files. In practice the performance loss 
due to random access isn't a problem as in most cases sequential matching blocks 
will be adjacent in the old file unless the file has undergone a considerable rearrange­
ment. In either case, the speedups due to the reduced network traffic from rsync will 
generally far outweigh the cost of random file access.

The requirement that the reconstruction is not done in place is usually not a prob­
lem except when disk space is very tight. Even without this restriction it would, in 
many cases, be wise for the reconstruction to happen to a temporary file followed by 

an atomic rename as otherwise the transfer would be susceptible to network interrup­

tions leaving a corrupted, half updated file15.

3.3 Choosing the block size

The primary tuning factor in rsync is the block size, L. The choice is governed by the 
following factors:

15Many people use rsync to synchronize application, binary and database files where a partly updated 
file would have disastrous consequences for the integrity and stability of the system.
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• The block size must be larger than the combined sizes of the fast and strong sig­

natures or rsync will provide no benefit in reducing the total bytes transmitted 
over the wire16.

• A larger block size will reduce the size of the signature information sent from B 
to A.

• A smaller block-size is likely to allow A to match more bytes thus reducing the 

number of bytes transmitted from A to B.

To work out the optimal block size we must make some assumptions about the 

number and distribution of differences between the old and new files.

If, for example, we assume that the two files are the same except for Q sequences 

of bytes, with each sequence smaller than the block size and separated by more than 

the block size from the next sequence then the total number of bytes transmitted will 

be approximately

t(L) — (sf + ss)n/L-f- QL + st (n/L — Q) + 0(1)

where s/ is the byte size of the fast signature, ss is the byte size of the strong signature 
and s, is the byte size of the block match token. If we assume that s/ is 4, ss is 16 and 

S[ is 4 then the non-constant parts become

t{L) = 24n/L + Q(L-4)

in which case the optimal value for L is yJlAn/Q. This means that for common file 

sizes of a few kilobytes to a few megabytes and with about a dozen differences in the 

two files the optimal block size is between a hundred and a few thousand bytes.

3.3.1 Worst case overhead

Another way of choosing the block size is to consider the worst case overhead that 

rsync can impose as compared to the traditional "send the whole file" methods. This

16Although it will change the proportion of bytes sent in either direction, which may be beneficial in 
some circumstances.
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is an important consideration when deciding whether rsync should be used for a par­

ticular application.

Clearly the worst case for rsync is where there are no common blocks of data be­

tween the old and new files. In that case the overhead will be the cost of sending the 

signature information from B to A. The information sent from A to B will be a single 

block of literal bytes and will be the same size (apart from a few control bytes) as what 

would be sent by traditional file transmission algorithms.

If the acceptable overhead is expressed as a percentage p of the total file size then 

the minimum block size that could be used is

L{p) = 100 (sf  + ss)/p

so for an acceptable overhead of 1% and with Sf = 4 and ss = 16 we would need to use 

a block size of at least 2000 bytes17.

3.4 The probability of failure

The use of a signature smaller than the block size means that the rsync algorithm 

must have a finite probability of failure, where failure is defined as B constructing an 

incorrect copy of the new file. It is interesting to investigate what this probability is.

3.4.1 The worst case

The first probability of interest is the worst case probability of failure assuming that 

the fast signature is completely ineffective (assume that it is of zero effective bit strength) 

In that case A will need to compare approximately n strong signatures (one for each 

byte offset) with each of the n/L strong signatures from B. The algorithm fails if any of 

these comparisons give a false positive. If we assume that L is O(yjn) then the number 

of pairwise strong signature comparisons per file is 0{n3/2).

To convert this to a probability of failure we need to make an important assump­

tion about the nature of the rsync algorithm -  that rsync is no better at finding colli­

sions in the strong signature algorithm than a brute force search. This is not an unrea-

17Optimizations considered in the next chapter reduce the effective size of the signatures, allowing for 
a considerably smaller block-size while maintaining the same maximum overhead target.
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sonable assumption as otherwise rsync could be employed as a code breaking engine, 

which would indicate a serious flaw in the cryptographic strength of the strong sig­

nature algorithm. Although cryptanalysts do regularly find flaws in message digest 
algorithms it seems implausible that rsync happens to have exposed such a flaw.

Given that assumption we can calculate the probability of failure under specific 

conditions. With a 128 bit strong signature (such as MD4) we would need about 

2127 signature comparisons to have an even chance of finding a false positive. If we 

have one million computers each transferring a one gigabyte file each second then we 

would expect it to take about 1011 years18 for a transfer failure to occur.

3.4.2 Adding a file signature

Even so, it would be desirable for the probability of failure of the rsync algorithm to 

scale not as n3/2 but instead to be independent of the file size. Luckily this is easy to 
achieve.

The change that is needed is the addition of another strong signature which applies 
to the whole file, rather than just to the individual blocks of the file. The algorithm 
needs to change in the following way:

• When working through the file to find the matches, A incrementally computes 

the strong signature of the whole file. This is then sent to B after the matching is 
complete.

• When reconstructing the file, B incrementally computes the strong signature on 

the whole file.

• If the file signature sent from A doesn't match the reconstructed file signature 

then the whole algorithm is repeated, but with a new signature s's for each block.

The algorithm loops until the file signatures match19.

The use of a different strong signature for the block signatures each time through 

the loop is necessary to prevent the same false positive signature match happening

18The universe is thought to be about 1010 years old.
19When the transfer is repeated B uses the result of the incorrect transfer as the starting point for the 

new transfer. This is an advantage as it is highly unlikely that more than one of the blocks was transferred 
incorrectly, so the second transfer will be very fast.
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again. In my implementation I use the simple solution of using the same signature 

code but seeding it with a different value each time through the loop. The seed is 

applied by computing the signature algorithm on an extended block obtained by con­

catenating the original block with a 4 byte timestamp.

With this file signature in place the probability of failure changes to 0(2~128) for 

each file20 which means that for the previous example of one million computers trans­

ferring one file per second it will take about 1025 years on average for a failed transfer 

to occur. That is quite a comfortable margin21.

3.5 Practical performance

The real test of any algorithm is its performance on real world data. In the case of 

rsync that means the amount of network traffic required to update a set of modified 

files.

Choosing appropriate data sets for testing purposes is a difficult task. I wanted 

data sets which were readily available for download on the Internet to facilitate the 

testing of alternative algorithms by other researchers. I also wanted data sets for 

which rsync might reasonably be used. The data sets finally chosen were:

• The Linux kernel source code as distributed by Linus Torvalds. An enormous 

number of people download this source code at each release either by down­

loading the whole source tree or patches from previous versions. I chose ver­

sions 2.0.9 and 2.0.10. These versions were chosen because they have the least 

number of changes of any of the 2.0 versions, as measured by the compressed 

diff files used to distribute kernel source changes.

• The Samba source code as distributed at http://ftp.samba.org/. This was chosen 

largely because it provided the original motivation for developing rsync. I chose 

versions 1.9.18pl0 and 2.0.0betal as these are two adjacent releases which are

20Note that the "birthday paradox" does not apply to rsync because when transferring N files each file 
is compared only to one other file, rather than to the N -  1 other files.

21 It is interesting to note that the probability of failure is now independent of the strength of the 
signature used on each block and depends only on the strength of the file signature. In the next chapter 
this is used to safely reduce the size of the signature bytes to increase the network efficiency of the 
algorithm.

http://ftp.samba.org/
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of particular interest from the point of view of rsync because the source tree 

was substantially rearranged between the two releases. This means there are 

a large number of changes, but many of them are data movements rather than 

insertions or deletions22.

• The binary distribution of Netscape Communicator professional version 4.06 to 

version 4.07, as distributed by Netscape in the original compressed .exe format.

3.5.1 Choosing the format

A problem with the first two files was choosing the appropriate format to process 

the files in. These files are normally distributed as compressed tar files but both the 

compression and the tar format lead to problems in making reasonable comparisons 

between algorithms.

The compression algorithm (usually gzip) has the property that a small change in 

the uncompressed data may cause a change in all of the compressed file beyond that 

point. This can be dealt with using the techniques discussed in the next chapter but 

it unnecessarily complicates the discussion of the initial rsync algorithm and would 

render comparison with text-based differencing algorithms impossible. 1 decided to 

use these archives in uncompressed form.

The second problem is the tar format. The tar files as distributed for Linux (and 

to a lesser extent for Samba) have varying dates for a large number of files that have 

the same content in both versions. In the Linux case these header changes dominate 

the differences between the two versions. The obvious (and most commonly used) 

solution is to run the tools with a recursion into directories option so that only files 

containing differences are actually processed. While both my rsync implementation 

and the GNU diff tools have this option, it does present some significant problems 

in analyzing the results. In particular the appropriate block size for rsync is quite 

different for each of the files in the archive, which makes a simple analysis of the 

results difficult.

To overcome this problem I decided to transform the files into a format that is more 

amenable to analysis. This was done by concatenating all files in the Linux and Samba

22The commonly used "diff" algorithm cannot encode data movements, whereas rsync can.
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name size A size B diff
Linux 22577611 22578079 4566
Samba 9018170 5849994 15532295
Netscape 17742163 17738110 n /a

Table 3.1: Sizes of the test data sets

archives into single files. This produces a file containing all of the data changes of the 

original but without any of the complications of the tar format23.

Table 3.1 shows the size of the two versions of each of the three sets of data. The 

column marked "diff" is the size of a GNU diff file taken between the two versions. As 

diff cannot operate correctly on binary files, diff sizes are not shown for the Netscape 

data sets.

One interesting thing to note is the enormous size of the diff on the Samba data 

set, larger than the sum of the two versions of the file. The size reflects the fact that 

diff encodes only insertions and deletions, so the source code rearrangement made 

between these two versions cannot be efficiently coded by diff.

3.5.2 Speedup

The speedup is the ratio of the size of the source file to the total number of bytes trans­

mitted. The bytes transmitted are made up of the signatures, the literal data, the match 

tokens and a small number of protocol overhead bytes. The speedup peaks at the best 

tradeoff point between the size of the signatures and the size of the literal data24.

Table 3.2 shows the performance of rsync for four different block sizes on the Linux 

data set. The block sizes were chosen to span the observed optimal range for this 

data set. The amount of literal data sent increases roughly in proportion to the block 

size. This is expected for non-overlapping changes in a data set. The matched data 

decreases by the same amount that the literal data increases, as the sum of literal and 

matched data equals the size of the source file.

For the Linux data set there are a total of 20 changes between the two files25. When

23rsync actually works very well on tar files, but GNU diff doesn't.
24Note that the speedup figure does not take into account time spent in computation. In practice the 

computational cost of the algorithm is only a tiny fraction of the total time cost unless an unusually slow 
CPU or fast network is used.

25 As reported by diff.



§3.5 Practical performance 65

6000
block size

Figure 3.2: Speedup on the Linux data set with varying block size

this number is used in the approximate formula given in Section 3.3 we find that the 

predicted optimal block size is 5205, which is in rough agreement with the observed 

best size.

A more accurate picture of the best block size for the Linux data set is given in 

Figure 3.2 which shows the speedup for block sizes ranging from 3000 to 9000 in 

increments of 100. The ragged nature of the graph reflects the fact that some of the 

differences lie within the same block for some block sizes, leading to a higher speedup 

than is predicted by the very simple formula given earlier26.

It is interesting to note that the amount of literal data transferred in the case which 

gives the best speedup is more than an order of magnitude larger than the difference 

file produced by GNU diff for the same data. The reason for this is that the total data 

transferred is dominated by the signature information, which is 20 bytes per block. 

Even with a block size as large as 5000 this signature information amounts to 20 times 

the size of the diff file. In the next chapter some methods of reducing the size of this 

signature information are investigated.

26Note the compact scale on the y-axis of the graph. The speedup is in fact not very sensitive to block 
size, which is fortunate as when used in real applicatons a user would have no way of knowing in 
advance the precise shape of the graph for a given data set, and thus no way of choosing the optimal 
blocksize beyond the rough formula that has been given.



§3.5 Practical performance 66

block
size

literal
data

matched
data

speedup

3000 68532 22509079 90.57
4000 83532 22494079 103.04
5000 94532 22483079 111.20
6000 119532 22458079 107.52

Table 3.2: rsync performance with Linux data set

block
size

literal
data

matched
data

speedup

100 4758070 4260100 1.48
200 5093570 3924600 1.56
300 5281070 3737100 1.57
400 5444570 3573600 1.56

Table 3.3: rsync performance with Samba data set

Table 3.3 shows the speedup for the Samba data set. The block size range is again 

chosen to center on the best observed block sizes.

The speedups for the Samba data set are much lower than those observed for the 

Linux data set, primarily because the new file contains so much data that is not present 

in the old file as is shown by the fact that the new file is around 3.1 MB larger than the 

old file.

In this case the number of changes between the two versions as reported by diff 

is about 29000, which according to the simple formula derived earlier would give an 

optimal block size of approximately 86. The actual optimal block size is much larger, 

reflecting the fact that many of the changes are in fact rearrangements rather than 

insertions or deletions. The large number of changes also means that the assumption 

in the derivation of that formula of non-overlapping changes smaller than the block 

size is completely incorrect.

The speedup shown for the Samba data set is smaller than would be achieved by 

using conventional compression techniques. In the next chapter optimizations and 

the addition of compression techniques in rsync lead to speedups far above those 

achievable with conventional compression.

Table 3.4 shows the speedup of rsync for the Netscape data set. The interesting 

thing about this data set is that it consists of already-compressed data. The large
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block
size

literal
data

matched
data

speedup

500 7422663 10319500 2.16
1000 7501163 10241000 2.25
1500 7562110 10176000 2.27
2000 7610163 10132000 2.27

Table 3.4: rsync performance with Netscape data set

data
set

block
size

tag
hits

false
alarms

matches

Linux 5000 10835 0 4497
Samba 300 1358701 179 12457
Netscape 1500 1256800 159 6784

Table 3.5: Fast signature performance

amount of common data found by rsync in the two versions indicates that the two 

files share large portions of unchanged data, despite the compressed format.

3.5.3 Signature performance

Another important measure of the performance of rsync is the number of times that 

the strong signature needs to be computed. This gives an indication of whether the 

fast signature is doing its job of reducing the computational cost of the algorithm.

Table 3.5 shows the number of tag hits, false alarms and block matches for the 

entries from the previous tables with the best speedup values.

A tag hit is defined as an offset in the new file where the 16 bit hash of the fast 

signature matches any of the 16 bit hashes of the fast signatures from the old file. 

When a tag hit occurs A needs to check all matching 32 bit fast signatures from the old 

file for a match. The number of tag hits is an indication of the effective bit strength of 

the 16 bit hash of the fast signature.

A false alarm occurs when a 32 bit match is made between a fast signature in the 

new and old files but the strong signature indicates that the indicated blocks do not in 

fact match. The ratio of false alarms to actual matches indicates the effectiveness of the 

fast signature algorithm at reducing the computational cost of the strong signature.

We can perform some simple calculations on the number of tag hits and false 

alarms to find an estimate for the effective bit strength of the 32 bit fast signature
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data 16 bit 32 bit
set strength strength
Linux 16 32
Samba 16 30
Netscape 16 29

Table 3.6: Fast signature effective bit strength

and the 16 bit fast signature hash. The fast signature is calculated once for each byte 

of literal data plus once per block and each fast signature is compared to the fast sig­

natures of each block from B so the number of pairwise comparisons of fast signatures 

is (d/ +n/L)n/L where di is the number of bytes of literal data transferred. If a signa­

ture algorithm has an effective bit strength of b then we would expect it to incorrectly 

match approximately every 2b times, which means the effective bit strength is

6 = log ^ (d/ + n/L)n j

where m is the observed number of incorrect matches. Table 3.6 shows the effective 

bit strengths for the three sets of results given in the previous table27.
In all three test sets the 16 bit effective strength is the full 16 bits, which demon­

strates that the 16 bit hash is doing the job it was designed for. The performance of 

the 32 bit fast signature is not quite as good, but still does quite well considering the 

simplicity of the algorithm.

3.6 Summary

The rsync algorithm provides an effective way to solve the remote update problem 

using a randomized method with a very low probability of failure. The dual signature 

method used by rsync allows the algorithm to efficiently find matches at any byte 
boundary in the source file while still using a strong signature for block matching. 

The next chapter will consider various enhancements and optimisations to the basic 

rsync algorithm.

27With zero false alarms for the Linux data set a "perfect" effective 32 bit strength is indicated.



Chapter 4

rsync enhancements and 
optimizations

The previous chapter introduced the basic rsync algorithm which allows for efficient 

remote update of data over a high latency, low bandwidth link.

This chapter will consider optimizations and extensions to the algorithm, practical 

issues to do with mirroring large filesystems and transformations that make rsync 

applicable to a wider range of data.

4.1 Smaller signatures

In Section 3.4.2 an overall file signature was added to the algorithm in order to make 

the probability of failure independent of the file size. This adds very little network 

overhead to the algorithm1 but it does add a lot of redundancy. The algorithm is no 
longer dependent on the bit strength of the strong block signatures in order to produce 

the correct result.

A consequence of this change is that we can afford to use a much weaker (and 

thus smaller) block signature algorithm. Previously we used a 16 byte MD4 block 

signature but as the aim now is to make the probability of a second pass small rather 

than preventing incorrect transfers a much smaller block signature is warranted. The 

question is how small.

To work this out we need to find the probability of a second pass being required, 

given the file size and effective bit strengths of the fast and strong signatures. This 

probability will be approximately the number of pairwise signature comparisons per-

JIt adds 16 bytes per file assuming that a signature mismatch isn't detected.

69
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bit file
strength sizes
8 0 to 2MB
16 2MB to 64MB
24 64MB to 2GB
32 2GB to 64GB
40 64GB to 4TB

Table 4.1: Required strong signature strengths with p=0.01

formed m ultiplied by the probability of a single pairwise com parison random ly giv­

ing an incorrect match
„= 2-(ß.+ß/)ü!
P L

where ß5 and ß/  are the effective bit strengths of the strong and fast signatures respec­

tively2.

This form for p clearly implies that ß* + ß / should be scaled in proportion to logn 

(for large n) in order to m aintain a constant probability of a second pass being needed.

In particular the required bit strength of the combined fast and strong signatures 

needs to be
2 \Xog\rP)

In practice the strong signature needs to be a multiple of eight to avoid messy bit 

shifting in the implementation. If we use L =  yfn and p =  0.013 w ith an effective bit 

strength value for the fast signature of 29 bits4 then the approxim ate sizes needed for 

the strong signature algorithm are given in Table 4.1.

4.2 Better fast signature algorithms

The 32 bit fast signature algorithm described in the previous chapter w orks quite well, 

but it is not the best possible fast signature algorithm. Any algorithm  w ith  the rolling 

property -  the property that it can be quickly updated w hen the buffer is shifted by

2This is actually an overestimate of the probability except in the case where the two files really do 
share no common blocks because when a block match is made the algorithm skips the next L bytes. 
A more accurate estimate would use the number of literal bytes that will be transferred, but that is 
unavailable before the start of the transfer.

3The choice of p is arbitrary.
4See Table 3.6.
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one byte -  can be used. The choice of fast signature algorithm is a tradeoff between 

speed and effective bit strength.

In [Taylor et al. 1997] Richard Taylor examines the fast signature algorithm used in 

rsync and compares it to a number of alternative algorithms with the rolling property 

with the aim of finding a better fast signature algorithm. The algorithms he proposes 

are:

Ci(k) = L'£ 2 L-U+% j+k mod [216 -  i] 
j =o

C2{k) = 2  %L~<J+])aj+k mod [216 -  1]
7=0

C3(k) = X 3 2 My'+%-+*m od[216- i ]
7=0
L - 1

CA(k) = X  m L~u+l)aj+k mod [216 -  1]
7=o

D\{k) = £  3L~{j+l)aj+k mod [216 -  1]
7=0

D2(k)' = £  5L~(j+1)aj+k mod [216 — 3]
7=0

D3 (k) = 2  7My'+1)fly+* mod[216-5 ]
7=0

Ö4W = X  17L~(j+1)aj+k mod [216 — 7]
7=0

These signatures all have the rolling property with the following recurrence relations5:

Ci(*+1) =  (C,(/:) <<  1) +ak+i — ak mod [216 — 1]

C2(* + l)  =  {C2{k) «  3)+ ak+L- a k mod [2l6- \ ]

C3{k+ 1) -  (C3(A:) <<  5) + fl/t+jL — mod [216 — 1]

C4(/:+ l) =  (C4(£) <<  7) + fljk+L-a* mod [216 -  1]

Dx{k+ 1) =  3Dl{k)+ak+L- 3 Lak mod [216 -  1]

D2(k+ \)  = 5D2(k) +ak+L — 5Lak mod [216 — 3]

5The < <  notation is used for left shift, as in C.
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A lgorithm strength
T—U 27.1
C l—C2 30.4
C l—C3 28.0
C l—C4 30.4
C2—C3 30.4
C2—C4 28.1
C3—C4 30.4
D l—D2 32.0
D l—D3 32.1
D l—D4 31.9
D2—D3 32.0
D2—D4 31.8
D3—D4 32.1

Table 4.2: Effective bit strengths for Taylor's checksum algorithms

D j(*+ 1) =  7D ,(k)+  ak+L- l Lak mod [2'6 - 5} 

D i(k+  1) =  \lD i{k) + ak+L — l l Lak mod [216 — 7]

w hich allows the signature to be calculated with one multiplication and a small num ­

ber of elem entary operations (shift, add, subtract).

The effective bit strengths as calculated in the paper are show n in Table 4.2. The 

algorithm  m arked as T—U is the same as that used in the previous chapter. Taylor 

uses a som ew hat different m ethod of calculating effective bit strengths based on ran­

dom  data, w hich results in a more pessimistic view of the T—U algorithm than was 

show n in Table 3.6. These results clearly show that a fast signature algorithm can have 

an effective bit strength close to the optimal theoretical value.

4.2.1 Run-length encoding of the block match tokens

Until now  I have assum ed that the block match tokens are sent individually w ith 

each token match containing information about an individual block in B that has been 

m atched to a portion of A6.

W hen A and B are quite similar these block match tokens consume a considerable

6The offset in A does not need to be sent because it is implied given the current position in the file 
reconstruction process.
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data block without with
set size RLE RLE
Linux 5000 161 185
Samba 300 1.65 1.67
Netscape 1500 2.31 2.32

Table 4.3: Speedup with and without run-length encoding of match tokens

proportion of the total number of bytes sent over the link so it is worthwhile reducing 

this cost if possible. This can be done quite easily by observing that block match 

tokens will come in runs of adjacent blocks when the matching ranges of the two files 

are larger than twice the block size. In practice this is very common.

To encode these tokens A sends the difference between adjacent tokens to B rather 

than the tokens themselves and run-length encodes these token differences. In many 

cases the difference is one which allows for efficient run-length encoding.

Table 4.3 shows the improvement in the speedup factor with the addition of run- 
length encoding of the block match tokens. As expected, the improvement is most 
obvious for the Linux data set where literal data makes only a small part of the total 
network cost.

4.3 Stream compression

Thus far I have ignored the compressibility of the literal data and the token matching 

stream in rsync. While it is fairly clear that employing some sort of stream compres­
sion on the literal data sent from A to B is possible, it is more interesting to look at 

ways to do better than just employing a traditional stream compression algorithm.

The problem with using a normal stream compression algorithm on the literal data 

is that when only a small number of widely separated literal blocks are sent the com­

pressor will usually achieve a lower compression ratio than would be achieved in 

compressing the entire file as it will be deprived of the surrounding data for each 

block. Stream compression algorithms generally rely on finding localized redun­

dancy and building adaptive compression tables, which is why they generally per­
form worse on small chunks of data.

To improve upon stream compression of the literal data we need to take advantage
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data
set

uncompressed stream
compression

enhanced
compression

Linux 94532 32406 30589
Samba 5281070 1160349 1152019

Table 4.4: Literal data sizes with stream and enhanced compression

of some shared knowledge between A and B. That knowledge takes the form of the 

blocks which the rsync algorithm has already determined to be present at both ends 

of the link. This knowledge can be used to increase the compression ratio achieved 

for the literal data by giving the compression algorithm a greater amount of history 

data to work with, without sending that history data over the link.

To achieve this, the compression algorithm used needs to be modified to include 

a "process but don't emit" operation which updates the internal tables used in the 

compressor as though the data had been compressed but doesn't emit the resulting 

compressed data for that range of bytes. The token sending operation from A then 

uses this operation to update the compression tables for data blocks that are found to 

be in common in the old and new files. The result is that the literal data is compressed 

with approximately the same compression ratio that would be achieved with the same 

compression algorithm used on the whole file.

To test this idea the deflate[Gailly and Adler 1998] compression algorithm as used 

by gzip was used, both with and without the "process but don't emit" code7. Table 4.4 

shows the results for the Linux and Samba data sets8 with the same block sizes as used 

in Section 3.5.3.

Although the enhanced compression algorithm does give a noticeable improve­

ment over the use of normal stream compression the effect is not large, just under I % 

for the Samba data set and less than£% for the Linux data set.

7It was fortuitous that the PPP deflate driver written by Paul Mackerras has a "process but don't 
emit" mode for reasons quite different from those required by rsync. This code was reused in rsync.

8The Netscape data set was omitted as the file is already compressed, making additional compression 
of the literal data pointless.
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4.4 Data transformations

One of the weaknesses of the rsync algorithm is that there are some cases where seem­

ingly small modifications do not result in common blocks between the old and new 

files which can be matched by the algorithm. The two situations where this is particu­

larly common are compressed files and files where systematic global editing has been 

done. In both cases the rsync algorithm can be modified to include a data transforma­

tion stage to allow these files to be updated efficiently.

4.4.1 Compressed files

Imagine a situation where a server stores text files (such as source code or documents) 

in a compressed form, using a common compression algorithm such as gzip, bzip or 

zip. A property of these compression algorithms is that any change in one part of the 

uncompressed file results in changes throughout the rest of the compressed file. This 

means that if a change is made towards the start of the uncompressed file and the new 

file is stored in a compressed format then an rsync update of the compressed file to a 

machine containing the old-compressed file will end up sending almost all of the file.

A solution to this problem is to uncompress the files at both ends before the rsync 

algorithm is applied, and then re-compress the files after the transfer is complete. This 

simple data transformation allows the efficient update of compressed files.

This solution isn't ideal, however. The problem is that many compression formats 

are not symmetric, so that when a file is uncompressed then re-compressed you do 

not necessarily end up with identical files. This is particularly the case when different 

versions of the compression utility are used. Even if the data formats are compatible 

there is no guarantee that the compressed data will be identical.

In some cases this isn't a problem as it is the uncompressed content of the com­

pressed file that is important, rather than the compressed file itself, but there are im­

portant situations where the exact bytes in the compressed file must be preserved. 

One such case is where a site is distributing software9 that has been digitally signed 

by the authors to ensure that no tampering is possible. It is common practice to dis-

9One of the most common uses for rsync is as an anonymous rsync server for distributing and mir­
roring software archive sites on the Internet.
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tribute PGP or MD5 fingerprints of the compressed archives. Unless the exact contents 

of the compressed archives are preserved these fingerprints become useless.

Although it would be possible to distribute fingerprints of the uncompressed files 

rather than the compressed archive this may be inconvenient for users who wish to 

confirm the contents of downloaded archives before they are unpacked. This is espe­

cially true if a self-extracting compression format is used as any malicious content in 

the file could be executed during the uncompression process.

4.4.2 Compression resync

A different solution to using rsync with compressed files which overcomes these prob­

lems is to use file compression algorithms which do not propagate changes through­

out the rest of the compressed file when changes are made. Unfortunately most com­

monly used compression algorithms use adaptive coding techniques which result in 

a complete change in the compressed file after the first change in the uncompressed 

file.

It is, however, quite easy to modify almost any existing compression algorithm to 

limit the distance that changes propagate without greatly reducing the compression 

ratio. If the designers of compression algorithms were to include such a modifica­

tion in future algorithms then this would significantly enhance the utility of the rsync 

algorithm.

The modification is quite simple10:

1. A fast rolling signature is computed for a small window around the current 

point in the uncompressed file;

2. stream compression progresses as usual;

3. when the rolling signature equals a pre-determined value the compression ta­

bles are reset and a token is emitted indicating the start of a new compression 

region.

10Although I have found no reference to this compression modification idea in the literature I would 
be surprised if something similar has not been proposed before.
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This works because the compression will be "synchronized" as soon as the rolling 

signature matches the pre-determined value. Any changes in the uncompressed file 

will propagate an average of 2b/c  bytes through the compressed file, where b is the 

effective bit strength of the fast rolling signature algorithm and c is the compression 

ratio.

The value for b can be chosen as a tradeoff between the propagation distance of 

changes in the compressed file and the cost in terms of reduced compression of re­

setting the internal tables in the compression algorithm. For compression algorithms 

designed to be used for the distribution of files which are many megabytes in size a 

propagation distance of a few kilobytes would be appropriate11. In that case the first 

few bits of the fast signature algorithm used in rsync could be used to provide a weak 

fast signature algorithm.

4.4.3 Text transformation

The second common case where rsync will not work efficiently is where simple global 

editing has been applied to a file so that no common blocks remain between the old 

and new files. Examples of this sort of editing include conversion between text for­

mats used on different operating systems or reformatting of text to reflect adjusted 

margins or layout rules.

The case of text format conversion is particularly common. Operating systems 

such as MSDOS store text files using a pair of characters (a carriage return and a 

linefeed) to indicate the end of a line. Other operating systems such as Unix store 

files with a single end-of-line character (a linefeed). Once a file has been converted 

between these two text formats the rsync algorithm would not be able to find any 

common blocks between the old and new files unless a very small block size were 

used, and would thus not result in a speedup over transferring the whole file.

The solution to this problem is to use a reversible data transformation which con­

ditions the modifications (in this case the change of end of line marker) so that they 

are more closely clustered in the file. One such transformation is the BWT trans- 

form[Burrows and Wheeler 1994] which is more commonly used as part of block sort-

11 This would also give a degree of fault tolerance in the compressed archives.
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transformation speedup
none 0.99
BWT 27.1

Table 4.5: The effect of a BWT transformation on Middlemarch 

ing compression algorithms.

The BWT transformation sorts each character in a file as indexed by all the other 

characters in a file viewed as a circular buffer. This means that groups of characters 

that share a common context in the file will be grouped together in the transformed 

file. The transformation is reversible12 and only increases the size of the file by a 

fixed small amount, typically four bytes. In a file stored in MSDOS text format the 

carriage return characters will end up all grouped together as they all share a common 
context -  they are immediately next to a linefeed character.

To take advantage of this transformation all that needs to be done is to apply the 

BWT transform to the files on both A and B then to apply the normal rsync algorithm 

to transfer the transformed file. After the transfer is complete the BWT transform 
can be reversed on B to obtain the original file from A. As the BWT transform is 

completely reversible this system does not suffer from the problems that are inherent 
in uncompressing/recompressing compressed files.

To demonstrate the effectiveness of this transform on text files an electronic copy of 

the book Middlemarch by George Eliot as distributed by Project Gutenberg[GUTENBERG 

1998] was tested with and without a BWT transformation when the book was changed 

from the distributed MSDOS text format to Unix text format. The results are shown 

in Table 4.5 for a block size of 700.

The dramatic speedup afforded by the transformation is an indication of the use­

fulness of reversible transformations in rsync. It also seems likely that other types of 

transformations might be found which are appropriate for a variety of regular editing 

operations.

12The reversibility of the BWT transform is truly amazing, it is one of the most elegant algorithms I 
have ever encountered.
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4.5 Multiple files and pipelining

The speedup in terms of the number of bytes sent over the network link is only one 

aspect of an efficient file transfer algorithm. The other really important consideration 

is the latency costs involved, particularly when the transfer (or update) consists of 
many files rather than a single file.

Commonly used file transfer protocols such as ftp, rep and rdist send each file as 

a separate operation, waiting for the receiver to acknowledge the completion of the 

transfer of the current file before starting to transfer the next file. This means that 

when transferring N files the minimum time will be NX. where A, is the round-trip 

latency of the network link.

When used for a large number of small files (such as mirroring a typical web site) 

over an international Internet link this latency cost may dominate the time taken for 

the transfer. To overcome the latency cost the file transfer algorithm needs to use 
one logical round-trip for multiple files, rather than one per file13. This is commonly 
known as pipelining.

The pipelining method used by rsync is shown in Figure 4.1. The process is broken 
into three pieces -  the generator, the sender and the receiver. The generator runs on B 

and generates the signatures for all files that are to be transferred, sending the signa­
tures to the sender. The sender (running on A) matches the signatures from B against 

the new files and sends a stream of block tokens and literal bytes to the receiver. The 
receiver (running on B) reconstructs the files14.

The link from the receiver to the generator (shown as a dashed line in the diagram) 

is for a small message to indicate if a file has not been successfully received (which is 

detected when the strong signature of the reconstructed file is not correct). In that case 

the generator starts again, but with a larger per-block strong signature15.

To demonstrate the effectiveness of this scheme at reducing latency costs I trans-

131 use the term logical round trip to emphasize the fact that I am ignoring round-trips due to the trans­
port layer, such as TCP acknowledgement packets. Although TCP guarantees that a return acknowl­
edgement packet will be sent at least every second packet these usually do not contribute to latency due 
to the way the TCP windowing works.

14Note that I have ignored the transfer of the file list, which must be done prior to starting the 3-way 
process. This adds a total of one more latency to the algorithm.

15It will also start with the incorrectly transferred file, as it is highly likely that most of the blocks are 
in fact correct.
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\

sender

generator receiver

Figure 4.1: Pipelining in rsync

protocol time
(seconds)

rsync 6.9
rep 351

853

Table 4.6: Time to transfer 1000 small files over a dialup link

ferred 1000 files of size one byte each using rsync, rep and ftp16. The files were trans­

ferred over a PPP link which has a latency of approximately 120 milliseconds and a 

maximum bandwidth of approximately 3.6 kilobytes/sec. The results are shown in 

Table 4.6.

The dramatic effect of the per-file latency in rep and ftp is clearly shown in the 

results. In real application (where files larger than one byte are usually used!) the 

observed differences will be the additional overhead when transferring 1000 files. For 

very large files this will be unimportant but it can have a very significant impact for 

moderately large files or when using a high latency network link.

16For ftp the mget operation was used with prompting disabled.
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4.6 Transferring the file list

Before starting a multiple file transfer with the rsync algorithm it is useful to first 

transfer the list of files from the sending machine to the receiving machine. This allows 

the two computers to reference files using an index into the file list which simplifies 

the implementation considerably.

Although it is quite easy to pack the file list so that it consumes a minimum of 

space while being transferred17 there are some quite common situations where the 

network costs associated with transferring the file list dominate the total network costs 

of the file transfer. This most commonly occurs when rsync is being used to mirror a 

directory tree consisting of many thousands of files where the number of files that 

have changed between mirror runs is small18.

To reduce this cost it is possible to employ the rsync algorithm to more efficiently 

transfer the file list itself. This is done by generating the file list at both the senders 

and receivers end of the connection and storing it in a canonical (sorted) form. The 

receiver can then obtain a copy of the senders file list by running the rsync algorithm 

on the file list data itself.

By doing this the network cost of sending the file list is reduced dramatically when 

the sender and receiver have very similar directory trees. If their trees are not similar 

then the network cost of applying this technique is limited to the cost of sending the 

signatures for the data in the receivers file list.

4.7 Summary

This chapter has examined a number of optimizations and enhancements to the basic 

rsync algorithm described in the previous chapter. The use of smaller signatures, 

stream compression and data transformations improved the efficiency considerably 

for some data sets while the pipelining technique allows the algorithm to minimise 

latency costs normally associated with the transfer of large number of files. The next

17My rsync implementation uses approximately ten bytes per file in the file list, including meta data 
such as file permissions, file type and ownership information.

18By default my rsync implementation skips the transfer phase completely for files that are the same 
size and have the same timestamp on both ends of the link, thereby avoiding the network cost of sending 
the signatures but not avoiding the transfer of a file list entry.
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chapter will consider alternative uses for the ideas behind rsync.



Chapter 5

Further applications for rsync

This chapter describes some alternative uses of the ideas behind rsync. Since starting 

work on rsync (and distributing a free implementation) the number of uses for the 

algorithm has grown enormously, well beyond the initial idea of efficient remote file 

update. From new types of compression systems to differencing algorithms to incre­

mental backup systems the basic rsync algorithm has proved to be quite versatile.

This chapter describes some of the more interesting uses for the rsync algorithm.

5.1 The xdelta algorithm

The xdelta algorithm is a binary differencing algorithm developed by Josh MacDon- 

ald[MacDonald 1998]. It is based on the rsync algorithm but has been extensively 

modified to optimize for high speed and small emitted differences, taking advantage 

of the fact that both files being differenced are available locally, which allows the al­

gorithm to ignore the cost of sending the signatures.

Binary differencing algorithms are extremely useful for transmitting differences 

over non-interactive links or broadcasting differences to many sites. A company 

which wishes to provide a more up-to-date binary for their large software product, 

for example, might distribute a binary patch which can be applied by users without 

requiring them to download the whole product a second time.

Using rsync as a binary differencing algorithm is quite simple. The fast and slow 

signatures are calculated as usual and the hash tables are formed in the same way that 

B does in the rsync algorithm, although the block size is set much smaller than would 

normally be set for rsync. The file being differenced is then searched for block matches 

in the same way that A searches for matches in rsync, with the literal data and token

83
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name diff diff time xdelta xdelta time
size (seconds) size (seconds)

Linux 4566 21.8 1148 10.5
Samba 15532295 130 883824 10.6
Netscape n /a n /a 7066917 25.4

Table 5.1: xdelta performance compared to GNU diff

matches stored in the "difference" file.

To reconstruct the new file using the difference file and the old file is the same as 

reconstructing the new file on B in the rsync algorithm, although it is wise to add ad­

ditional checks in the form of file signatures to ensure that the file that the difference is 

being applied to is the same as the original file. Unlike the text based "diff" algorithm, 

xdelta cannot apply changes to files other than the original file.

As with rsync it is possible to further improve the algorithm by using stream com­

pression on the generated difference file, possibly using the enhanced compression 

algorithm described in Section 4.3. The block match tokens in the difference file can 

also be run-length encoded in the same way that was described in Section 4.2.1.

Table 5.1 shows the performance of xdelta on the three test data sets from Chap­

ter 31. The results show a vast improvement in both the execution time and the re­

sulting difference size between GNU diff and xdelta. Tire small size of the differences 

from xdelta is partly a result of delta being able to efficiently deal with the differences 

in the binary headers in the Linux and Samba tar files.

It is also interesting to note that xdelta produced a considerably smaller difference 

file than the number of bytes of literal data sent by the rsync algorithm in the results 

from Table 3.2, despite the fact that both xdelta and rsync use what is essentially the 

same algorithm. The difference is primarily a result of the very small block size used 

by xdelta, allowing for much finer grained matches. Using such a small block size 

when applying rsync over a network link would result in an excessive amount of 

signature data being sent from B to A.

Version 1.0 of xdelta as distributed by Josh MacDonald was used for these tests.
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5.2 The rzip compression algorithm

One of the more interesting adaptions of the rsync algorithm is as part of a compres­

sion algorithm. This section describes the rzip algorithm, a text compression algo­

rithm inspired by rsync which works particularly well on large, highly redundant 

files. Although I developed the rzip algorithm myself, some similar work on rsync- 

inspired compression algorithms was done independently by Richard Taylor[Taylor 

1998] and although we ended up with quite different compression algorithms we both 

rather confusingly called our algorithms "rzip".

The rsync algorithm has a lot in common with history based compression algo­

rithms2. Both use a known set of data to efficiently encode another set of data using 

references into the known data set interspersed with literal data. In the case of rsync 

the known data is the old file (the one on B). In the case of history based compression 
algorithms it is the data in the file up to the point that is currently being compressed.

One of the problems with these compression algorithms is that they typically do 

not take good advantage of very widely spaced redundancies in the files being com­
pressed. For example, if you take a large file (several megabytes) and produce a new 
file by concatenating the large file together with itself then commonly used history 
based compression algorithms won't produce a significantly better compression ratio 
on the new file than would be achieved with the original file. The reason is that com­
pression algorithms typically have a limited window over which they operate, so they 

can only see redundancies within the window. They may carry over some informa­

tion (such as Huffman encoding tables) when the window moves, but they can't just 

reference the second half of the concatenated file as being a duplicate of the first half.

It may seem that this is a very contrived example, but it is actually quite represen­

tative of data sets that are commonly compressed. If you think about the contents of 

a typical home directory on a workstation, or the contents of several home directories 

among a group of people who are working together then it is quite likely that the di­

rectories will contain many files with large amounts of common data. Typically the

2I shall refer to the family of compression algorithms that encodes the file in terms of offset/length 
pairs as history based compression algorithms. The details of these algorithms vary considerably but they 
all have the same basic form. One of the most commonly used examples of this type of algorithm is 
deflate[Gailly and Adler 1998] which is an implementation of a Lempel-Ziv method[Bell et al. 1990].
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files will be temporary backups or earlier versions of current data files or may contain 

common elements such as images or copyright notices. When these directories (which 

may amount to several gigabytes) are archived using conventional compression algo­

rithms the compression ratios achieved won't be much better than that achieved if 

each file were compressed separately.

The reason that these algorithms aren't able to encode such long distance redun­

dancies is twofold. The first reason is they use a fixed bit-size in the offset encoded in 

the compressed file, fifteen bits in the case of deflate. As the units used for the offset 

are bytes this means they can't encode large offsets. The second reason is computa­

tional cost. The core of history based compression algorithms is a routine that tries to 

find the longest match between the current point in the file and the data in the history 

window. If the history window is made very large then the computational cost of 

searching for the longest match becomes excessive.

5.2.1 Adding an exponent

If we view rsync as a history based compression algorithm where the "history" is 

the old file, then we see that it solves these problems by changing the granularity of 

the offset portion of the offset/length pair. The new file is encoded in terms of block 

references into the old file plus some literal data, but these block references are just 

equivalent to offsets with a coarse grain. Using this coarse grain solves the problem 

of the short maximum offset while at the same time making the task of searching very 

large windows much easier, because the windows are only searched at discrete offsets. 

The use of the fast signature and hash tables from rsync also makes the search quite 

efficient.

So if we want a compression algorithm that works well with very widely spaced 

redundancies then we could modify the algorithm to work w ith offsets larger than one 

byte. While this would solve the problem of efficiently handling very widely spaced 

repeated blocks, it will reduce the compression ratio for closely spaced blocks. Ideally 

we want an algorithm that retains a fine grain for closely spaced repeated blocks while 

using a coarse grain for larger offsets.

The solution I chose for rzip was to break the offset component of Lempel-Ziv
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up into an offset/exponent pair. The exponent encodes the power-of-two size of the 

block size used for the match and the offset encodes the number of these block sized 

units between the current point and the start of the matching block in the history data. 

So when the exponent is zero it refers to matches on any byte boundary in the history 

data, when the exponent is five it refers to matches only on 32 byte boundaries in 

the history and so on. The result is that rzip is able to encode matches at very long 

distances but only starting at coarse byte boundaries, or it can encode matches at short 

distances on any byte boundary.

5.2.2 Short range redundancies

This solves the problem of long-distance matches but leaves us with an algorithm 

that will not perform any better than Lempel-Ziv based algorithms for short-distance 

redundancies. Lempel-Ziv based compressors are not anywhere near state of the art 

for common text compression tasks so what we really need is a combination of good 

long distance matching while obtaining close to state of the art compression for fine­

grained matches. After some experimentation I found that a simple way of achieving 

this was to divide the compression into two stages. The first stage compresses with the 

offset/exponent based algorithm proposed above but without attempting to encode 

any matches that are less than ß bytes long, so that shorter matches are encoded as 

literal strings. The second stage then compresses the resulting literal strings using a 

block sorting compression algorithm, which gives efficient and close to state of the art 

compression[Fenwick 1996].

Although this gives the basic form for rzip, the details are a bit more complex. 

Compression algorithms have been extensively studied and tuned over the years 

making it quite hard to produce an algorithm that performs well for datasets which 

do not have much long-distance redundancy while taking advantage of long-distance 

redundancy if it is present. The details of rzip are as follows:

• After some experimentation ß was chosen to be 64.

• The exponent values are 4 bits and the offset values are 16 bits. The exponents 

range from 0 to 11, with the values 12-15 reserved for special codes. One of them 

is assigned to mean "literal data" and immediately precedes a literal data block
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(a block of data for which no match was found).

• The lengths of matches are encoded in 8 bits and include a implicit offset of 64, 

so a value of one means a match length of 65 bytes3.

• While compressing rzip keeps a 16 bit fast rolling signature (similar to that used 

in rsync) of a 64 byte window at the current point in the file. This signature is 

used to index a hash table containing a list of offsets where that signature value 

occurs in the history data.

• At each byte in the file the hash table is updated with an entry for the current 

signature. While this is done any offsets in the list for that entry in the hash table 

which have expired are removed. An expired entry is an offset which cannot be 

encoded using an offset/exponent pair. For example, any offset less than 216 can 

be encoded, but only offsets on even byte boundaries can be encoded from 216 
to 217.

• A match is foimd by looking up the current fast signature in the hash table and 
comparing the current point in the file with the data at the offsets indicated in 
the list of offsets in that table entry. All list entries are compared and the longest 

match found.

• The rzip output is broken up into a number of streams, each of which is sepa­

rately Huffman encoded4 and output in an interleaved form in the compressed 

file. One stream contains the exponents, another the offsets and a third contains 

the match lengths. A final stream contains the literal data and is not Huffman 

encoded.

• The streams are written to the output file in large interleaved chunks.

• The output file produced by rzip is further compressed using a block sorting 

compression algorithm. This compresses the literal data far better than either

3Actually, 4 bits are used to encode the match length for matches of less than 79 bytes, with a simple 
encoding trick used to include the match length with the exponent bits. Bit packing in compression 
algorithms is.a fiddly business!

4Any entropy coder could be used. An arithmetic coder would give better compression for higher 
computational cost.
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using small matches or using entropy encoding. I used bzip2[Seward 1998] for 

this.

From the above it should be clear that rzip is intended to be used to compress files, 

not streams of bytes. The matching algorithm requires that fast random access is pos­

sible in the file being compressed (in order to find the block matches) and the multiple 

stream encoding used in the output file requires random access when uncompressing.

The algorithm also has memory requirements which rise as the log of the file size 

in order to store the hash table entries. This logarithmic rise stops at a file size of 216+11 

after which memory usage is constant at 216 + 11 x 215 hash entries.

The use of a block sorting compression algorithm as the final stage of rzip greatly 

simplified the design of rzip, and allowed rzip to perform well on a much wider range 

of files. The Lempel-Ziv compression method is not a state of the art compression 

method although it is ideally suited to adaption for coarse-grained block matching us­

ing ideas derived from rsync. Block sorting compression algorithms are much closer 

to state of the art[Fenwick 1996], while being quite efficient. By using a block sorting 

compression algorithm as the final stage in rzip the algorithm can obtain good fine­

grained compression while also taking advantage of any long range block repetitions.

5.2.3 Testing rzip

A compression algorithm is useless unless it performs well on real data that people 

might want to compress. To test rzip I first looked at existing text compression data 

sets, such as the Calgary Text Corpus[Witten and Bell 1990] but I found that the ex­

isting test data sets contained files that are far too small to show the advantages of 

long-distance block matches. To address this I put together a new Large Text Cor- 

pus[Tridgell 1998] consisting of five large files taken from real world applications. 

The files are

1. A tar file of the source code to GNU Emacs version 20.2.

2. A tar file of the source code to the Linux kernel, version 2.1.100.

3. A tar file snapshot of my Samba work area on my workstation.
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4. A snapshot of a two month archive of the linux-kemel mailing list mirror which 

I run on my machine.

5. A snapshot of the unsolicited commercial email caught by the "spam filter" on 

my machine over a two week period.

The Samba snapshot has a high degree of internal redundancy because it contains 

multiple copies of different versions of the source code of Samba in various states of 

testing. Although each version differs slightly from the other versions, they contain 

a large amount of common text. The "spamfile" also contains a lot of widely spaced 

redundancy, due to the nature of unsolicited commercial email. Such email tends to be 

very repetitive and the people who send such email usually send it to many addresses 

on the one machine5.

These files were chosen to represent a range of commonly compressed data while 

being freely distributable so that other researchers can test different algorithms on the 

same data.

Table 5.2 shows the result of applying gzip6, bzip27 and rzip8 to the five test files. 

The results show that rzip was able to find some long-distance redundancy in all the 

files, giving improved compression ratios for each file. The small improvements for 

the Emacs and Linux source code are probably due to repeated copyright headers 

and patterns of include files, while the improvement for the mailing list archive is 

probably a result of quoting and repeated mail headers and email signatures.

The improvements for the Samba snapshot and the spamfile are much larger. The 

Samba snapshot demonstrates the effectiveness of rzip at finding the common com­

ponents in a repetitive source code archive which I believe would be typical of a 

programmer's home directory. The largest improvement is for the highly redundant 

spamfile, which has a compression ratio almost three times larger than the Lempel-Ziv 

based gzip and almost twice that for the bzip2 block sorting compressor.

5Several people have commented that the best way to compress spam is to delete it, and while I tend 
to agree it does make for a good example of data with a very high degree of internal redundancy.

6gzip version 1.2.4 was used with maximum compression selected.
7bzip2 version 0.1pl2 was used with maximum compression selected.
8The rzip snapshot from July 2nd 1998 was used with the default options.
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name file size gzip bzip2 rzip
Emacs 47462400 3.66 4.62 5.00
Linux 47595520 4.24 5.22 5.54
Samba 41584640 3.50 4.78 8.93
archive 27069647 3.64 4.97 5.48
spamfile 84217482 8.43 14.23 26.11

Table 5.2: Compression ratios for gzip, bzip2 and rzip

5.3 Incremental backup systems

One of the first applications for rsync that sprang to mind after it was initially de­

veloped was as part of an incremental backup system. Although this has not been 

implemented yet, it is interesting to examine how such a system would work.

Imagine that you need to backup a number of large files to tape, and that these files 
change regularly but each change only affects a small part of each file. An example 
of an application that might generate such files is a large database9. A typical backup 

system would either backup all files or backup any files that had changed in any way 

since the last backup. If the time taken to do backups is important (as it often is) then 
this is an inefficient way of doing backups.

The solution is to backup only the changes in the files rather than the whole file 
every time. The problem with doing this is that normal differencing algorithms need 

access to the old file in order to compute the differences. This is where rsync comes 

in.

To backup incrementally with rsync the backup application needs to store the fast 

and strong signatures used in the rsync algorithm along with the file. When the time 

comes to perform an incremental backup these signatures are then read and the rsync 

matching algorithm is applied to the new file, generating a stream of literal blocks 

and block match tokens. This delta stream is then stored to tape as the incremental 

backup.

Note that the backup system does not need to read the old file from tape in order

91 should note that rsync seems to work particularly well with large database files. It is used by several 
large companies (including Nokia and Ford) to synchronize multi-gigabyte engineering databases over 
slow network links and I use it myself for a number of smaller databases. I didn't include a database 
file in the example data sets because I couldn't find one that didn't contain any proprietary data. A 
proprietary data set would have prevented other researchers from reproducing the results.
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to compute the differences. This is important because it allows the backup to proceed 
very quickly particularly if the speed of the tape device is the limiting factor in the 

backup process. As the extra storage space required by the signatures is only a tiny 

fraction of the total space consumed by the file on tape, the storage overhead is small 

even if the rsync algorithm does not find a significant number of matches between the 

new and old files.

This sort of incremental backup system would be particularly effective when large 

hierarchical storage systems are used as the backup medium. These devices typically 

have a large front-end set of disks that are used to stage data to a high latency tape 

robot. If the file signatures were kept on the front-end disks then no tape reading 

would be required before the incremental backup started.

5.4 rsync in HTTP

The Hyper-Text Transport Protocol (HTTP) is the most widely used protocol for pre­
senting formatted information on the Internet, and as such the network efficiency of 
the protocol is very important. Increased efficiency results in better response times for 
users and decreased network costs.

Although cache systems such as those employed by popular web browsers or im­

plemented in proxy caching web servers are very effective at reducing this traffic for 
static documents, they do not help at all for dynamic documents. For documents that 

change regularly the currently deployed browsers and caching servers must fetch 

the whole page every time, even if only a small part of the page changes. With the 

trend towards dynamically generated web sites such dynamic documents are becom­

ing more common.

To address this issue a proposal has been put to the W3C, the standards body 

that coordinates HTTP, to incorporate support for differencing in the HTTP protocol. 

The proposal[Hoff and Payne 1997] introduces a differencing format called gdiff for 

sending changes in HTTP served documents and suggests the rsync algorithm as the 

means of generating the differences.

The way this would work is that a client requesting a page would send an aug­

mented HTTP GET request to the server which contained the fast and strong signa-
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tures for the page currently held in the local cache. The server would then apply the 

rsync algorithm to the new page and send back the differences in gdiff format.

The notable features of this system are:

• the server does not need to keep a record of the pages that it has previously 

served in order to compute differences;

• the algorithm does not rely on any defined structure in the document; and

• the worst case overhead (in the case that there are no common blocks between 

the old and new page) is well defined and can be kept small.

The major disadvantage of this system is the additional computational costs im­

posed on the server. The practicality of the system will depend on the relative changes 

in CPU power and effective network bandwidths in common use on the Internet.

5.5 rsync in a network filesystem

Another possible use for rsync is as part of a network filesystem. The advent of 

proposed wide area filesystem protocols such as CIFS[Leach and Naik 1998], Web- 

NFS[Callaghan 1998] and CODA[Satyanarayanan 1998] where clients and servers may 

be separated by high latency, low bandwidth Internet links provides the ideal envi­

ronment for an efficient remote data update algorithm like rsync.

The particular feature of these filesystem protocols which makes them good can­

didates for using the rsync algorithm is the notion of file leases, particularly write 

leases. A file write lease is an exclusive contract between the server and client giv­

ing the client sole access to a file for an extended period of time. These leases allow 

the client to safely cache file changes locally which can have a dramatic effect on the 

effective throughput of the network filesystem.

The use of the rsync algorithm comes when the file lease is terminated. At that 

time the client must send any changes that have been made to the file to the server 

so that the server can make these changes available to other clients. If the changes 

are small, the rsync algorithm could be utilized to update the server's copy of the file 

much more efficiently than could be done by sending the whole file.
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To extend an existing filesystem protocol to support efficient remote rsync updates 

requires the following additions to the standard suite of filesystem operations10:

• The client must be able to request a list of fast and strong signatures from the 

server for a specified file. Alternatively these could be sent as part of the write 

lease break request sent from the server.

• The client must be able to request a file to file block copy operation. This would 

operate like a combined read/write request which takes two file handles, two 

file offsets and a length. The client would use this to remotely reconstruct the 

new file on the server.

As with the proposed HTTP extensions the practicality of these filesystem exten­

sions will depend on the ratio of CPU power to network bandwidth available in real 

deployments of these network protocols.

5.6 Conclusion

This chapter has explored a number of alternative uses for the ideas behind the rsync 
algorithm. Some of the uses have been implemented and demonstrated to work well 

on real-world data while others remain to be implemented.
It is also likely that futher uses for rsync will be discovered once the algorithm 

becomes better known. I think that the rsync algorithm has the potential to become 
a commonly used tool in the toolboxes of software engineers, particularly given the 

explosive growth of wide area networks and online communities that has been seen 

in recent years.

10I have discussed these additions with an engineer working on the specification of the next version 
of the NFS protocol. I am hopeful that they will be included.
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Conclusion

This thesis has covered a range of algorithms for parallel sorting and remote data syn­

chronization. The first chapter described a comparison based internal parallel sorting 

algorithm with low memory overhead and high parallel efficiency The design of the 

algorithm took advantage of a hypercube primary sorting algorithm that works very 

efficiently but leaves a small proportion of elements unsorted. This is followed by a 

less efficient cleanup algorithm that completes the sort.

The second chapter looked at external parallel sorting using the internal parallel 

sorting algorithm of the first chapter as a building block. The external algorithm, 

based around a two dimensional algorithm called shearsort, is able to sort large disk 

based data sets in place while using little more than two read/w rite I /O  pairs per 

element. This is achieved by taking advantage of the fact that the first pass of the 

algorithm leaves most elements in their correct final positions, in a manner similar to 

the primary sorting phase of the internal algorithm.

In the third chapter the thesis starts to look at an algorithm for remote data syn­

chronization. The rsync algorithm, which arose out of work associated with the devel­

opment of the external parallel sorting algorithm from the second chapter, provides 

a low latency remote update mechanism appropriate for a wide range of data sets. 

The algorithm uses a dual signature method to match blocks of data at arbitrary byte 

boundaries while remaining computationally feasible for real-world applications.

Chapter four looked at optimizations to the basic rsync algorithm, reducing the 

commimications overhead of the signatures and taking advantage of stream com­

pression techniques. The issue of latency when transferring multiple files over high 

latency links was also addressed and solved using a simple pipelining technique.
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The final chapter looked at alternative uses for the ideas behind the rsync algo­
rithm, including text compression, differencing, incremental backup and enhance­

ments for commonly used network protocols. Some of the proposed algorithms re­

main to be tested while others have been shown to work well on real-world data.

Some of the algorithms presented in this thesis offer considerable opportunities for 

further research. The sorting algorithms need, if possible, a more complete analytical 

analysis to put strict bounds on the observed efficiency. It would also be useful to 

consider extensions to allow the sorting of elements with non-uniform sizes.

The rsync algorithm also offers extensive possibilities for further research, espe­

cially with regard to the ideas presented in the last chapter. The wide applicability 

of the ideas behind rsync combined with the explosion in the application of network 

technologies that has happened in recent years bodes well for the future of algorithms 

like rsync.



Appendix A

Source code and data

A large part of the work behind this thesis involved writing the source code for the 

various algorithms described. In total about 18000 lines of source code were written, 

although only a part of that was for the core parts of the algorithms, the rest was 

driver and support code.

Rather than including the code in this thesis I decided to make it available for 

download on the Internet. The various parts of the code and their state of develop­

ment are described in this appendix. This appendix also contains some information 

on the availability of the data sets used in the testing of rsync and rzip.
If you have any questions about the source code or data sets then please contact 

me via email at tridge@samba.org.

A.l Internal parallel sorting

The internal parallel sorting code is available from 

ftp://samba.org/pub/tridge/sorting/intemal/.
The main algorithm is in par_sort.c and should be reasonably easily portable to 

a wide range of distributed memory parallel machines. To date it has been ported 

in various forms to six different platforms; the AP1000, AP+/Linux, CM5, Cenju, 

VPP300 and NCube. The code as distributed only supplies build instructions for the 

AP1000 and CM5, if you are interested in other platforms then please contact me.

The driver routines use a custom portable message passing layer contained in 

mimd.h which can use a variety of underlying message passing libraries. The code 

is suitable for academic and research use.
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A.2 External parallel sorting

The external parallel sorting code is available from 

ftp ://sam ba.o rg /pub /tridge/so rting /ex tem al/.

The main algorithm is again in par_sort.c and is derived from the internal paral­

lel sorting code, it also includes a simplified version of the internal algorithm as a 

subroutine.

The driver routines assume MPI but could be easily ported to other message pass­

ing systems. The code is less well developed than the internal parallel sorting code 

but would be suitable for researchers familiar with parallel programming.

A.3 rsync

The rsync source code is available from http://rsync.sam ba.org/. Binaries are also 

available for a wide range of UNIX-like platforms. The source code uses GNU auto- 

conf to facilitate portability.

The rsync code is in production use at a large number of sites and is suitable for 

general purpose efficient file transfer and mirroring. A library version of the algo­

rithm suitable for embedding in other applications is not yet available but is planned 

for sometime in 1999.

To reproduce some of the results in this thesis requires a small amount of code 

modification to disable some features of the code (such as the reduced signature sizes). 

I can provide details on request.

A.4 rzip

The rzip source code is in a state of early development and should only be used by 

researchers very familiar with C programming. It is available via anonymous CVS at 

:pserver:cvs.samba.org:/cvsroot as module rzip1. The code can also be viewed by a 

web browser at h ttp://cvs.sam ba.org/cgi-bin/cvsw eb/rzip/.

The current implementation of rzip is very slow. It could be made much faster 

and the speed problem will be addressed as the algorithm is further developed. No

d eta ils  on accessing the anonymous CVS repository are available from http://samba.org/cvs.html

ftp://samba.org/pub/tridge/sorting/extemal/
http://rsync.samba.org/
http://cvs.samba.org/cgi-bin/cvsweb/rzip/
http://samba.org/cvs.html
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documentation is provided.

A.5 rsync data sets

The data sets used in the testing of the rsync algorithm are available from 

ftp://samba.org/pub/tridge/rsync_data/. The Linux and Samba data sets are in 

gzip compressed format.

I am actively seeking new public data sets for the testing of rsync and similar algo­

rithms. Please contact me if you have some data that is suitable. I would particularly 
like to have a broader variety of data sets.

A.6 rzip data sets

The data sets used in the testing of rzip are available from

ftp://samba.org/pub/tridge/large-corpus/. These data files are stored in bzip2 com­
pressed format.

ftp://samba.org/pub/tridge/rsync_data/
ftp://samba.org/pub/tridge/large-corpus/


Appendix B

Hardware

This appendix gives a brief description of the hardware used to generate the results 

given in this thesis.

B.l AP1000

The Fujitsu AP1000 [Ishihata et al. 1991] at ANU contains 128 Sparc scalar nodes con­

nected on an 8 by 16 torus. Node to node communication is performed by hardware, 

using wormhole routing. Each node has 16MB of local memory and all are connected 

to a host workstation via a relatively slow connection. The AP1000 supports a general 

message passing model using a proprietary library or the MP1 standard. The CPUs 

have a 25 MHz clock speed and a 128KB cache.

B.2 CM5

The Thinking Machines CM5 [TMC 1991] that I used contained 32 Sparc scalar nodes 

connected by a communication network that has the topology of a tree. Each Sparc 

node has two vector processors which are time-sliced to emulate four virtual vector 

processors. Each virtual vector processor controls a bank of 8MB of memory, giving 

the Sparc node access to a total of 32 MB of memory. In this thesis no use is made of 

the vector processors other than as memory controllers. The CM5 supports a general 

message passing model using the proprietry CMMD message passing library. The 

CPUs have a 32 MHz clock speed and a 64KB cache.

100



§B.3 RS6000 101

B.3 RS6000

The results in Chapter 5 were produced on a IBM RS6000 with a 233 MHz 604 Pow­

erPC CPU. The machine has 128 MB of RAM and runs AIX 4.2.
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