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Abstract

Scheduling algorithms have a significant impact on the optimal utilization of HPC
facilities, yet the vast majority of the research in this area is done using simulations.
In working with simulations, a great deal of factors that affect a real scheduler, such
as its scheduling processing time, communication latencies and the scheduler intrin-
sic implementation complexity are not considered. As a result, despite theoretical
improvements reported in several articles, practically no new algorithms proposed
have been implemented in real schedulers, with HPC facilities still using the basic
first-come-first-served (FCFS) with Backfill policy scheduling algorithm.

A better approach could be, therefore, the use of real schedulers in an emulation
environment to evaluate new algorithms.

This thesis investigates two related challenges in emulations: computational cost
and faithfulness of the results to real scheduling environments.

It finds that the sampling, shrinking and shuffling of a trace must be done carefully
to keep the classical metrics invariant or linear variant in relation to size and times of
the original workload. This is accomplished by the careful control of the submission
period and the consideration of drifts in the submission period and trace duration.
This methodology can help researchers to better evaluate their scheduling algorithms
and help HPC administrators to optimize the parameters of production schedulers.
In order to assess the proposed methodology, we evaluated both the FCFS with
Backfill and Suspend/Resume scheduling algorithms. The results strongly suggest
that Suspend/Resume leads to a better utilization of a supercomputer when high
priorities are given to big jobs.
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Chapter 1

Introduction

1.1 Thesis Statement

The emulation of a supercomputer environment is a more powerful alternative for
evaluating scheduling algorithms than simulation because the first automatically
takes into account the scheduling processing time, communication latencies, multi
programming and fragmentation. Emulation is viable if the processing time of a
workload can be reduced by means of sampling and time shrinking.

1.2 Problem Statement

A supercomputer is a high-level performance computer composed of thousands of
processing units or cores organized into nodes that are connected by a state-of-art
network. Supercomputers are specially designed to carry out the computation of
large problems called jobs. These big problems require multiple processing units for
their timely completion.

A scheduler is a program that decides when and where a job is going to run. This
problem grows in complexity when the number of cores requested by incoming jobs
exceeds the capacity of the supercomputer [Feitelson and Rudolph, 1995; Feitelson
et al., 1997; Feitelson, 1997; Feitelson et al., 2005].

A good scheduler will optimize the use of the resources, e.g., processing units,
resulting in a better return for the High Performance Computing (HPC) investment.
This makes research into scheduling algorithms a hot topic in computer science. The
problem is complex because it requires dealing with various, sometimes conflicting,
requirements such as the number of cores, total of requested and used memory,
priorities among many others [Lifka, 1995].

The usual approach in developing scheduling algorithms involves the use of simu-
lators [Schwiegelshohn and Yahyapour, 1998]. Traditionally, simulators are relatively
simple programs developed by researchers to test their hypotheses. A simulator
usually reads a file with the workload of a supercomputer facility to sort the jobs
according to established and newly proposed algorithms. The basic information con-
tained in these workloads is the arrival time, the number of requested nodes and the
estimated and run time of each job. The outcome of these simulations may contain

1



2 Introduction

information about when a job was submitted, started, finished and the used nodes.
This information can be used to evaluate scheduling metrics like average waiting
time, average response time and overall system throughput. These metric values
form, then, the basis for performance comparisons between scheduling algorithms.

However, despite theoretical improvements reported in several articles [Yuan
et al., 2014; Niu et al., 2012; Niemi and Hameri, 2012], practically no new proposed
algorithms have been implemented in real schedulers with most HPC facilities still
using the basic first-come-first-served (FCFS) with backfill policy scheduling algo-
rithm [Schwiegelshohn and Yahyapour, 1998].

In the present work, instead of disregarding all aspects related to the resource
management, the chosen approach was to use a real system in an emulation environ-
ment to overcome the limitations of the simulators. The emulation environment was
composed of a cluster of virtual machines managed by a real scheduler and running
dummy jobs which were responsive to suspend and continue signals.

1.3 Scope

There are several aspects affecting the evaluation of job scheduling in supercom-
puters, such as the scheduling processing time, workload structure, communication
latencies, communication within a job, memory availability, interactive jobs, multi
programming level inside a processing unit, fragmentation, warm up and cool-down
periods. A great deal of these factors are usually not considered when working with
simulations.

In the present work, due to the fact that emulations are closer to reality, most of
these aspects are automatically considered, like scheduling processing time, commu-
nication latencies, multi programming and fragmentation. Additionally, the warm up
and cool-down periods are also taken into account in our experiments.

However, this thesis does not investigate the workload structure, communications
within a job, memory availability and interactive jobs.

1.4 Contributions

This thesis uncovers the related challenges to perform timely emulations which results
can be safely extrapolate to the original workload. The main contributions of this
thesis are:

• The introduction of a simple, but effective, framework to support the evaluation
of scheduling algorithms.

• The development of an efficient program, sigsleep, that plays the role of an
incoming job. This program uses a small amount of memory, demands little
CPU time and it is responsive to the suspension and continue signals sent by
the scheduler. It logs all data related to its run independently of the scheduler,
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which allows the direct evaluation of the performance metrics. The source code
of this program is presented in Appendix C.

• The development of a submission script that reads a workload and precisely
submits sigsleep jobs to the scheduler.

• The development of a program to evaluate the classical metrics based on the
information logged by sigsleep.

• The study of four artefacts, concurrency, submission order, sampling and time
shrinking that affect the scheduling process and how to overcome their effects
on the evaluation of the scheduling metrics.

• The use of the developed framework to evaluate the implementation of two
popular scheduling algorithms, Backfill and Suspend/Resume, in Slurm. We
found that Suspend/Resume shows a better performance in comparison to
Backfill only when big jobs are presented in the workload.

• The uncovering of a lack of optimization in the Suspend/Resume implementa-
tion in Slurm when used in conjunction with the Consumable Resources plugin.

1.5 Thesis Outline

This thesis has 6 chapters. Chapter 1 states the problems this thesis will address,
defines its scope and outlines its contributions.

Chapter 2 introduces the most relevant concepts related to supercomputers, clus-
ters, cloud computing and classical scheduling metrics. It also presents a literature
review of the current research on scheduling algorithms using both simulation and
emulation.

Chapter 3 explains how the environment used in our experiments was set up.
It also describes the hardware and software platforms used to create this environ-
ment, along with the algorithms and programs developed to evaluate scheduling
algorithms.

Chapter 4 discusses the experimental methodology applied in the experiments
performed in this work. This chapter also introduces the key concepts of the classical
metrics artefacts.

The results of the application of the aforementioned methodology for the eval-
uation of two scheduling algorithms by means of the emulation are presented in
Chapter 5.

Finally, Chapter 6 summarises the contributions of this thesis for the evaluation of
scheduling algorithms, and identifies possible future developments in this research
area.
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Chapter 2

Background and Related Work

This chapter provides the background knowledge required to develop this thesis. It
also contains a comprehensive literature review about simulation, emulation, schedul-
ing algorithms development and the strategies for their evaluation. This chapter starts
by introducing the basic concepts related to this work in Sections 2.1 and 2.2, and
then progresses to explaining supercomputer scheduling in Section 2.3. Section 2.4
gives a brief introduction to classical scheduling metrics while Section 2.5 defines
and compares simulation and emulation. Sections 2.6 and 2.7 review and discuss
previous works on the usage of simulation and emulation to evaluate scheduling
algorithms.

2.1 Supercomputer, Computer Cluster and Cloud Computing

A supercomputer is a high-level performance computer composed of thousands of
processing units designed for HPC. A computer cluster is a set of processing units,
called nodes, connected by a network and used as a single computer. The use of high-
speed networks and powerful microprocessors associated with computer clusters can
turn them into very cost effective supercomputers [Baker and Buyya, 1999].

Cloud computing is a way of sharing computational resources over the Internet.
It is implemented by adding a layer of hardware virtualization called hypervisor that,
among many other functionalities, creates, destroys and runs virtual machines (VM).
Cloud computing is, therefore, a flexible and cost-effective computational environ-
ment where computational resources can be allocated on demand. Nevertheless, this
flexibility may come at the expense of a deteriorated performance due to the extra
work demanded by the hypervisor.

However, due to recent developments in hardware and software, cloud computing
is being increasingly considered as an alternative platform for HPC [Atif et al., 2016].
In a cloud computing environment, instead of having different jobs sharing a single
real cluster, we have single jobs running in dedicated VM clusters. In this scenario,
the costs of performing HPC work would be smaller compared to a dedicated HPC
facility.

5



6 Background and Related Work

2.2 Resource Management Systems

Resource Management Systems (RMS) administrate the utilization of supercomputer
resources, such as CPU, memory, storage, and network. One of the most important
tasks of RMS is scheduling jobs submitted by users. For this reason, RMS are often
simply called schedulers in the literature, which is the terminology adopted for this
thesis. As examples of RMS we can cite Load Sharing Facility (LSF) [IBM, 2017], and
IBM Load Lever [Yonghong and Chapman, 2008], both systems developed by IBM,
Portable Batch Systems (PBS) produced by Altair [Alt, 2017], and Simple Linux Utility
for Resource Management (Slurm) [Jette et al., 2003].

2.3 Scheduling

Supercomputer scheduling is a very popular research topic as shown by the large
number of publications in the area. Almost all of the published works resort to
simulations to test their hypotheses and, as a probable consequence of this ap-
proach, few of the proposed algorithms were actually implemented in real sched-
ulers [Schwiegelshohn and Yahyapour, 1998].

Such a relevant research topic demands a periodic review of the state of the field
from time to time. In 1995, [Feitelson and Rudolph, 1995] and again in 1997 [Feitelson
et al., 1997; Feitelson, 1997] defined precisely the basic concepts of scheduling and
the requirements that should be satisfied by the scheduler. They proposed the use
of different configurations along the day because the user’s expectations about a
submitted job change accordingly with the time of submission. The intractability
of many scheduling problems was also discussed, including preemptive and non-
preemptive gang scheduling. [Feitelson, 1997] cited a number of studies that have
demonstrated that despite the overheads of preemption, the flexibility derived from
the ability to preempt jobs allows for much better schedules. The most often quoted
reason for using preemption is that time slicing gives priority to short running jobs
and, therefore, approximates the Shortest-Job First (SJF) policy. In 2005, [Feitelson
et al., 2005] reviewed again the status of parallel job scheduling. This paper covered
the two main algorithmic approaches, Backfilling and Gang Scheduling, used by real
supercomputer installations. The paper also discussed successful and unsuccessful
approaches to this problem. Its main thesis is that, despite the actual usage patterns
largely remained within the realm of batch scheduling, the progress on this field has
led to significant improvement in the utilization of supercomputer resources, going
from 50-70% in the past to 90% of utilisation by 2005.

The most basic scheduling algorithm is the traditional First-Come-First-Serve
(FCFS). In this case, the incoming jobs are allowed to use the supercomputer nodes
only in the strict order of their submission. When there are not enough idle nodes
left to fulfill the requirements of an incoming job, the scheduler put it in a queue, as
well as all subsequent jobs. The number of idle nodes increases as the running jobs
finish their run. Once the number of idle nodes is enough, the scheduler allows the
execution of the first job in the queue.
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EASY (Extensible Argonne Scheduling sYstem) Backfilling scheduling algorithm
[Lifka, 1995], is an optimisation of the First Coming First Serve (FCFS) scheduler.
EASY requires a user’s estimate for the job runtime. Accordingly to this algorithm,
smaller jobs further in the queue can be scheduled earlier if they do not delay the
starting time, also known as reservation time, of the job on the head of the queue.

One variant of EASY is Conservative Backfilling, where a later job can jump the
queue only if it does not delay any other earlier job in the queue. There is also
a compromise between these two, where only a certain number of reservations is
guaranteed. It was found that guaranteeing the reservation for the first four jobs is a
good compromise. EASY is highly dependent on the estimates of the running time
of each job and the overestimation of this parameter actually helps the performance
of backfilling. This is because the net effect of overestimation is to make backfilling
behaves more like SJF schedulers.

Preemption is a scheduling technique where running jobs can be preempted
(suspended) and queued jobs can use the now freed nodes. Usually, the preempted
jobs can later resume its activities on the same node.

Suspend/Resume algorithms use preemption to obtain a more optimised utilisa-
tion of the resources. In its most simple form, high priority queued jobs preempt low
priority running jobs. As shown in this thesis, even this relatively simple policy can
lead to a better utilization if the priority is related to the job’s size. In this case, big
jobs will preempt small jobs as soon as they become the first job in the queue. This
simple technique avoids the need for the accumulation of idle nodes in order to run
a big job.

Gang scheduling, another algorithm mentioned in [Feitelson et al., 1997; Feitelson,
1997], preempts jobs in all nodes. Other jobs previously preempted in the same nodes,
are then allowed to run for a determined slice of time. This algorithm displays the
particular feature of preventing small jobs from being held in the queue by long
ones. The drawback of this approach is the time wasted by the system to preempt all
jobs across all nodes. Flexible algorithms have been proposed where I/O activity is
monitored and only jobs with complementary characteristics are paired in the same
processors. Despite its theoretical advantages over backfilling, gang scheduling was
only successfully implemented on the Connection Machine CM-5. However, several
efforts have been made to overcome the inherited drawbacks of gang scheduling by
providing hardware that supports faster context switching.

[Schwiegelshohn, 2014] presents a set of guidelines to design a scheduling algo-
rithm. The main motivation of this work was the fact that most research publications
reviewed by the authors had a negligible impact in real schedulers. Its main thesis
was that the definition of a few general rules for presenting new algorithms could
help in their implementation in real schedulers. This work shows that since the intro-
duction of EASY backfilling in 1995, despite the large number of research papers, the
authors were not aware of any actual implementations of the suggested algorithms.
The article identifies two probable reasons for the lack of interest by the practition-
ers: 1) the proposed algorithms were not practicable, or 2) improper communication
between authors and system developers. Another important reason, though not di-
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Table 2.1: Scheduling parameters.

Parameter Description

l Wall time

t CPU time

a Submission time

s Starting time

c Completion time

e Estimate run time

rt Response time

r Run time

u Suspension time

p Priority

b Number of processors (cores)

rectly mentioned by this paper, is that scheduling in practice is very complex, and
the building and modifications of an efficient and stable scheduler requires a huge
amount of time, money and talent.

2.4 Classical scheduling metrics

For the purposes of this thesis, we shall consider the workload as the data about
each job i submitted to a supercomputer during a certain time period. Basically, the
workload contains the submission time, ai, the number of requested cores, bi, the
priority, pi and the estimated runtime, ei and actual runtime, ri, of each job during the
period. This workload, processed by the scheduler, is called then a supercomputer
trace. This trace contains, beyond the information already provided in the workload,
the starting, si, and completion time, ci. Wall time, li, is the elapsed time as deter-
mined by a wall clock. CPU time, ti, is the time consumed by a job and it might
differentiate from wall clock due, for instance, to time-sharing and suspension. If
suspend/resume technique is used, the trace also stores ui, which is the total time
a job is suspended. The classical scheduling metrics are average values calculated
based on the times found in a trace and they are frequently used to compare the
performance of different scheduling algorithms. When comparing algorithms, we
also need to introduce the concept of fairness. Considering the jobs in a queue, an
algorithm is considered fair if no job with lower priority is allowed to run before a
job with higher priority. The algorithm can still be considered fair if the running of
the low priority job does not affect the starting time of the job with higher priority,
as in the case of Backfill. Table 2.1 summarizes all the main parameters used in this
thesis.

Based on the aforementioned values, the most common performance scheduling
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metrics can be easily evaluated. The total time, which is time elapsed from the
submission of the first job until the completion of the last job of the trace, takes the
form

T = clast_job − a f irst_job (2.1)

and it is the most basic metric that can be used to compare two scheduling algorithms.
Algorithm A will be considered superior to algorithm B, provide fairness is kept, if
TA < TB. That is the case, for instance, of FCFS with backfill when compared with
the basic FCFS.

The Deadline di is the maximum wall time that a job is allowed to run, and it is
given by

di = si + ui + ei (2.2)

For a trace with n jobs, the Average Waiting Time,

wt =
n

∑
i=1

si − ai

n
(2.3)

basically measures how long a job will stay in the queue. It has been proved [Conway
et al., 1967] that, given a workload, the strategy of scheduling the shortest job first
(SJF) will result in the lowest values for this metric.

The Response Time,

rt =
n

∑
i=1

ci − ai

n
(2.4)

takes also into account the runtime of each job and measures the time that takes, on
average, for users to obtain their results.

Long jobs have a disproportional influence in the response time. The slowdown,

sd =
n

∑
i=1

(ci − ai)/ri

n
(2.5)

tries to minimize the influence of these long jobs by dividing the response time of
each job by its corresponding runtime.

Weighted Slowdown,

ws =
n

∑
i=1

(ci − ai)bi/ri

n
(2.6)

is a metric that prioritises jobs requiring a big number of cores by multiplying the
slowdown of each job by the number of cores it requires. This is an important metric
because the core objective of a HPC facility is solving complex problems that requires
a considerable number of cores per job.

In a cluster with C cores, the cluster utilization,
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ut =
n

∑
i=1

ri bi

C T
(2.7)

is a metric that evaluates the percentage of the cluster that was effectively used during
the period T.

2.5 Simulation and Emulation

Simulators and emulators try to model, in different levels, the behaviour and the
internal workings of a real system.

In a simulator, the functionalities of the real system are highly abstracted. For
example, scheduling decisions, unlike on a real system, can occur instantaneously.
The internal working of these functionalities in the simulator usually does not reflect
how things are implemented on a real system.

An emulator is an intermediate approach between a real system and a simulator.
An emulator, like the simulator, can also offer only a few functionalities of the real
system, but it tries to reproduce as close as possible the internal workings of the
system.

As an example of a real system, we can think about an old valve radio. One can
write a software that runs on a computer that simulates the appearance of the radio
on the screen. If the power button of the radio simulator is turned clockwise, the
radio would turn on and the volume would increase. The real implementation of this
feature could bear no resemblance with how things work in a real old radio.

In an emulator, the internal working of some parts of a radio would be mimicked
as closely as possible. In this case, we can imagine that the radio emulator wouldn’t
turn on the radio immediately because a real old radio would need some time to
warm up its valves.

According to [McGregor, 2002], an emulator is a model where some working
functions of the model can also be accomplished by the use of components of a real
system.

A real HPC system is composed of a supercomputer with one manager node,
several processing nodes and a scheduler. Users log on to the manager node and
submit their jobs through the scheduler. The scheduler, based on the current state of
the running and queued jobs, decides then when and where a job will run.

Simulators built to test scheduling algorithms can be much simpler because most
of the details of a real scheduler can be ignored. In the simplest case, the simulator
reads a file with a supercomputer trace and applies to its jobs some scheduling algo-
rithms. Classical scheduling metrics are then used to compare the performance of the
proposed and well-established algorithms. Contrastingly, emulators environments
are much more complicated and difficult to build because they try to use, as much as
possible, real components.

Some schedulers, like Moab, PBS-pro and Slurm, provide a simulation mode,
where the running of a trace can be performed without the real execution of jobs.
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This can be classified as emulation since the scheduler operates similarly to the real
system.

In this thesis, an emulator was built using 11 virtual machines of an Openstack
cloud environment connected together via NFS and running a real scheduler. The
emulations were performed by means of a script that reads a trace and runs for each
job a special sleep program.

2.6 Scheduling Research Using Simulation

Being the easiest way of testing an idea, most of the research in new algorithms
is done by means of simulations. The lack of real implementations of algorithms,
as discussed below, is a clear evidence of the considerable distance between the
development of an idea by means of simulation and its actual implementation in a
real scheduler.

This section presents a literature review of the most relevant solutions proposed
to improve scheduling research using simulation.

The user runtime estimates have a great impact on how the scheduling occurs.
The EASY approach is more efficient when users overestimate, by a great degree,
the runtime estimates [Mu’alem and Feitelson, 2001], [Feitelson et al., 2005]. This
happens because the overestimation provides a very long reservation time for the
first job in the queue. As the running jobs finish well before their expected time, large
holes in the scheduling are formed, which can be filled by shorter jobs. This has the
net effect of approximating EASY to FCFS [Tsafrir and Feitelson, 2006].

Checkpointing is a technique where a job periodically saves its state in a file. If
this job is stopped by any reason before its normal ending, it can later resume its work
from the last saved checkpoint. A Checkpoint-based FCFS backfilling algorithm [Niu
et al., 2012] presents improvements of up to 40% in the most common metrics. In this
algorithm, the backfill is done more aggressively, i.e., filling the holes left by FCFS
with jobs that, according to its runtime estimates, would violate the reservation time
for the first job in the queue. Due to the user‘s notorious tendency of overestimating
the runtime of their jobs, most of these jobs finish before the reservation time comes.
The few ones that would be still running after this time would be checkpointed, killed
and put back in the queue.

Given enough memory in the nodes, Suspend/Resume technique can also be used
to explore the idle nodes left by FCFS [Snell et al., 2002]. In this case, instead of
killing a job that is violating a reservation time, this job is simply suspended. A more
sophisticate algorithm, called PV-EASY [Tsafrir and Feitelson, 2006], proposes two
new strategies named Shadow Load Preemption (SLP) and Venture Backfilling (VB).
Usually, it is not possible to guarantee fairness without compromising performance
and vice-versa. When done aggressively, backfilling can delay queued jobs for a
very long period. SLP backfilling scheduling, on the other hand, guarantees strict
fairness while VB is used to improve its performance. In the proposed algorithm,
when either a new job arrived or a job finishes, PV-EASY firstly uses the EASY
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algorithm. The set of the highest priority running jobs are called sunny load. The
set of jobs with priorities lower than any waiting jobs is called shadow load. A
backfilled job can change from the shadow to the sunny state during its lifetime. The
shadow load is the main cause of unfairness. One approach to solve this problem is
to allow the preemption of shadow jobs if this preemption enables higher priorities
jobs in the queue to start immediately. A venture backfilling was devised in order
to minimize the change of preemption and, consequently, improve system utilisation.
This strategy involves the computation of the reservation time of the first job in the
queue, a system-generated runtime prediction and careful selection of a job with the
biggest probability of successful termination. According to the authors, PV-EASY
guaranties fairness, good performance and does not violate reservation times.

Most of the proposed scheduling algorithms focus on improving the so called
classical performance metrics, Equations 2.3-2.6. Notably, although being always
considered an important feature, fairness has rarely been included as an optimisation
criterion for a HPC scheduler. The fair start time (FST) metric [Klusácek and Rudová,
2012] evaluates the influence of arriving jobs on the reservation time for the jobs
already in the queue. The unfairness is evaluated as the difference between the FST,
which is the reservation time for each job disregarding all later jobs and the actual
start time. Another contribution is an optimisation procedure designed to improve
the performance of the Conservative Backfilling algorithm. This heuristic uses three
parameters, the schedule that will be optimised, the maximum number of iterations
and a time limit. In each iteration, one job is randomly removed from its current
position and the schedule is immediately compressed while an overall metric, which
is a combination of the classical and FST metrics, is calculated. This job is inserted
for a period in a taboo list, which means that it is prevented for a while to be selected
again. The experimental evaluation presented by the authors demonstrated that
the proposed extension represented a significant improvement by means of fairness
and performance over several existing algorithms, including FCFS, Conservative and
EASY backfilling, as well as aggressive backfilling without reservations.

A responsiveness metric, the Schedule Length Ratio (SLR), takes into account the
networking delays [Burkimsher et al., 2013]. Through simulations, it was shown that
a proposed algorithm that minimizes this metric delivers better responsiveness and
fairness than other schedulers that do not rely on user runtime estimates.

Another metric, the thinking time, which is the interval between the response and
submission of two consecutive jobs submitted by a single user, can play an important
role in the scheduler decisions [Schlagkamp, 2015]. Several simulations showed that
this happens because changes in the scheduling will change, in turn, the user’s think
time.

A somewhat middle term solution between a simple simulator and an emulator
was proposed by [Lucero, 2011] in the form of a simulation mode for the Slurm
scheduler. The main thesis behind this work was that a real resource manager/sched-
uler has several variables that need to be tuned to optimize the utilization of a HPC
facility. It also emphasizes that the scheduling is a two-step process where first a
job is selected and then the available resources are matched with it. Most simulators
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completely ignore the second step leading to results that are not valid in real situa-
tions. Therefore, a simulation mode where both steps are present, could help Slurm
administrators to find the optimum value for scheduling parameters. This simulation
mode could also help Slurm developers in the development of scheduling algorithms.
The solution presented in this paper tried to make minimum code changes in Slurm
so developers and users would have all Slurm features in the simulation mode. The
modifications used the LD PRELOAD functionality of shared objects in UNIX sys-
tems. This feature made possible to capture specific function calls exported by shared
objects and to replace code when necessary. LD PRELOAD was used to modify the
calls to time() function returning a simulated time instead of real time. By using this
approach, a trace could run 31 times faster than the original runtime.

[Lucero, 2011] also mentioned that the Moab cluster scheduler supported a sim-
ulation mode although it has never worked as described. The reason behind such
behaviour was the complexity and high costs associated with keeping the simulation
mode in the newer versions. This also has proven to be the case of the simulation
mode in Slurm since the development of this feature was abandoned soon after its
inception and it is no longer maintained.

2.7 Scheduling Research Using Emulation

[Tsafrir and Feitelson, 2006] used a cluster of 32 compute nodes plus one management
node to study the influence of two strategies used in schedulers, backfilling and gang
scheduling, and the effects of the multiprogramming level. Their results show that
the best result was achieved by a combination of both backfilling and gang scheduling
with a limited multiprogramming level due to finite memory. One interesting feature
of this study was the need of reducing all times from the used workload by a constant
factor in order to run the experiments faster. The chosen shrinking factor, 100, was
given without any justification and with no analysis of its implications. Contrastingly,
this thesis performs a comprehensive study about the implications of shrinking time
on the stability of the scheduling metrics, aiming to develop a methodology where
this kind of propositions are fully justifiable.

An improved throughput and energy consumption can be achieved through the
increasing of memory utilisation, i.e., running more than one job per computing
node [Niemi and Hameri, 2012]. This was done at the Worldwide LHC Comput-
ing Grid at the Large Hadron Collider at CERN. Due to the fact that this is a HPC
facility exclusively dedicated to analyse LHC data, the submitted jobs could be cat-
egorised into three groups: CPU-intensive, memory intensive and I/O-intensive. It
was proved that running both I/O and CPU intensive jobs in the same node improves
both throughput (10-20%) and energy consumption (5-20%). The emulations were
performed using a front-end computer, 1 GB network and 2 nodes with 6 CPU cores,
16 gigabytes of memory and 1 TB hard disk each.

[Soner and Ozturan, 2013] implemented an auction-based algorithm, called AUC-
SHED, that was used in a heterogeneous CPU-GPU scheduler plug-in. The algorithm
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generates multiple bids for a window of jobs at the beginning of the queue. The
algorithm maximizes an objective function that uses the jobs priorities. The same
authors, in [Soner and Ozturan, 2015], developed a topological aware job scheduling
for Slurm. Slurm documentation discourages the configuration of the exact network
topology because it leads to slower scheduling. The proposed scheduling method
overcomes this limitation and improve the job intercommunication by a judicious job
allocation based on the real network topology. In both papers, the authors utilized an
emulation mode for Slurm.

More recently, [Rodrigo et al., 2017] presented a scheduling simulation frame-
work that encloses all the steps of the scheduling development, providing workload
modeling and generation, system simulation, comparative analysis and experiment
orchestration. The framework utilizes 17 computing nodes and achieves up to 15
speed-ups over real-time. The authors stated that the limiting factor of the simula-
tions speed-up is the scheduling runtime which depends on the number of jobs in
the waiting queue. Speed-ups of the same order were also obtained in this thesis
without the use of a simulator but our conclusion about the limiting factor differs.
Since the number of jobs in the queue was kept constant during our experiments,
the limiting factor found was the job submission rate. When this rate exceeds Slurm
capacity to process jobs, the cluster nodes will be idle for longer which compromises
the evaluation of the classical scheduling metrics. These findings will be discussed in
more detail in Section 4.2.4.

2.8 Summary

Despite the popularity of the research in supercomputer scheduling, only a few of
the proposed algorithms were actually implemented in real schedulers. The main
reason behind this fact is the distance between the relative simplicity of simulations
and the complexity of a real supercomputer environment. In the next chapter we will
present the design and implementation of what we believe is a better environment
and methodology to study and evaluate scheduling algorithms.



Chapter 3

Design and Implementation

This chapter provides a general overview of the design of the cluster used to emulate
a supercomputer as well as the programs and algorithms developed to obtain the
results presented in this thesis. Implementations details are given in the software and
hardware sections.

3.1 Computing Cluster

The design and implementation of the cluster used in this thesis are presented in
the next subsections. Subsection 3.1.1 describes the minimum steps to set up a
cloud-based cluster. Subsection 3.1.2 shows how to establish a Slurm based cluster
at the National Computational Infrastructure (NCI) Nectar Cloud. Finally, using
this infrastructure, Subsection 3.1.3 presents a way to emulate a supercomputer size
cluster.

3.1.1 Cloud-Based Cluster

A cluster can be set up in a cloud environment in a variety of ways depending on
where it is hosted. The most common first step is to create a VM which is going
to serve as the cluster head node. This step is followed by the installation and
configuration of software packages for parallel computing and communication, like
the OpenMP, MPI and ssh based log in. Computing nodes can then be created using
this head node as a template. Adding the IP addresses of each the computing nodes
to the appropriate configuration files in the head node creates a cluster capable of
running parallel jobs.

Additionally, a network file system can be mounted in all VMs so the updating,
installation and running of packages and programs for resource management can be
easily achieved.

3.1.2 NCI Slurm Based Cluster

The National Collaboration Tools and Resources project (Nectar) is an initiative of the
Australian Government to provide computational power to Australian researchers

15
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Figure 3.1: A normal Slurm based cluster configuration: One slurmctld daemon running in
the Head Node (HN) and one slurmd daemon running in each Computing Node (CN).

through the establishment of a cloud computing infrastructure. Nectar allows re-
searches to easily build software and services on the cloud. The Nectar infrastructure
is provided through a partnership among research facilities in Australia where NCI
is one of its eight nodes.

Nectar uses OpenStack as its cloud software platform. OpenStack is free and
open-source software and consists of several components written in Python to control
pools of processing, storage, and networking resources. Users can manage it through
a web-based dashboard, command-line tools, or web services.

Slurm (Simple Linux Utility for Resource Management), [Jette et al., 2003], is an
open-source distributed resource management system software for Linux clusters.
Slurm manages the access to computing resources, starts, executes and monitors
jobs, and schedules jobs. The two basic components of Slurm architecture are slurmd,
which is a daemon running on each compute node (CN) and responsible for starting
each job, and slurmctld, a daemon running on a head node (HN).

Munge [Dunlap, 2004] is a software package for the creation, authentication, and
validation of credentials in an HPC cluster. Slurm uses Munge to secure the commu-
nication between its main components. Each time a slurmd wants to communicate
with the slurmctld, it first requests a credential from Munge in the local node. This
credential is packed together with the message and send to the head node. Likewise,
a communication received by slurmctld is only processed if the credential contained
in the receiving message is validated by Munge in the head node.

[Atif, 2016] developed a series of scripts and Python programs to automate the
steps of building a cloud-based cluster on the Nectar cloud. We used this to build the



§3.1 Computing Cluster 17

HN slurmcltd
slurmd
slurmd

...

HN
slurmcltd

slurmd

(a) (b) 

Figure 3.2: Cluster emulation using Slurm Front End and Multiple slurmds features. (a) A
single slurmctld and single slurmd can run in the Head Node (HN), or in a desktop, if Slurm
is compiled with the Front End option. In this case, the emulated nodes will be set up in the
Slurm configuration file but all job management will be accomplished by the single slurmd. (b)
Additionally to the Front End option we can also run multiples slurmds in a single computing
node with the Multiple Slurmd option. As in (a) the emulated nodes will be also set up in
the configuration file, but the management of all the jobs will be shared between the several
slurmds.

cluster showed in figure 3.1 with one head node and ten processing nodes running
CentOS 6.8. All VMs in this cluster have a m2.medium flavour which is how Nectar
characterizes a VM. A m2.medium flavour is a VM with 2 CPUs, 6 GB of RAM and
30GB of disk. A volume with 10 GB of space was attached to these nodes. This
volume is a storage entity, which is independent of the cluster and can be re-attached
to any other VM. The group X is a standard security group in the Nectar cloud and
it determines the rules set in the iptables of each VM. The cluster configuration is
summarized in Table 3.1.

3.1.3 Cluster Emulation

The emulation of a cluster bigger than its actual size can have many applications. For
instance, such bigger clusters can make a better use of its processing power if the jobs
running on it are not CPU intensive [Niemi and Hameri, 2012]. The emulation can
also help the development of scheduling algorithms. In this case, a sufficiently large
cluster could run a supercomputer workload which might provide more realistic
results to the developer.

Slurm allows a single node to appear as a cluster by enabling the front end option
(Figure 3.2(a)). This permits the running of one slurmd in the same node as the
slurmctld. Emulated nodes can then be set up in the Slurm configuration file but care
must be taken to avoid overloading the slurmd daemon with too many simultaneous
jobs. The front end option allows the running of Slurm in a single node or in a
desktop computer, but this feature was not used in this thesis because we wanted to
isolate the working of the slurmctld from any other sources that could compete for
CPU resources.

Another way of emulating a bigger cluster in Slurm is allowing the running of
multiple slurmds on a single node. This can be achieved during the compilation time
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Figure 3.3: A cluster emulation with a slurmctld in the head node (HN) and multiples slurmds
in each computing node (CN).

by the use of the –enable-multiple-slurmd option. In combination with the Front End
option, we can achieve a configuration like the one showed in Figure 3.2(b), i.e., one
slurmctld and several slurmds running in a single node.

A greater number of emulated CPUs per node can be achieved by simply config-
uring more CPUs per node in the Slurm configuration file (slurm.conf). Additionally,
the parameter FastSchedule needs to be set to 2 so Slurm will only consider the con-
figuration of each node that is specified in the configuration file.

Using only the multiple slurmds per node feature, as shown in Figure 3.3, and
setting more CPUs per node than the actual number, we obtained a cluster with 360
slurmds per node with each one of them configured with 16 CPUs. This combination
was sufficient for the emulation of a 3,600 node/57,600 CPU computing cluster. This
configuration was very close to NCI‘s supercomputer, Raijin, which, by the time the
experiments shown in this thesis were performed, had 3,592 nodes and 57,472 cores.

Throughout this thesis, in accordance with Slurm terminology, we will treat CPUs
and cores as synonyms.

3.2 Hardware platform

The NCI‘s Nectar cloud provides access to a very fast cloud environment composed of
Intel Xeon Sandy Bridge 2.6 GHz processors with 16 cores in 2 sockets, 64GB of mem-
ory per node, solid state disk storage, 56GbE network and redundant storage [Atif
et al., 2016].
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Table 3.1: Cluster parameters.

Parameter Value

Name clusterANU

Operating System CentOS 6.8

Flavor m2.medium

Virtual CPUs per Node 2

Memory per Node 6 GB

Number of Nodes 10

Availability Zone NCI

Security group X

Additonal Securities port 111

Slurmds Per Node 360

Configured CPUs per Node 16

Total Slurmds 3600

Total apparent CPUs 57600

3.3 Main Programs

The main programs and scripts developed during this thesis are presented in the
next subsections. Sigsleep is a program designed to play the role of a job. It responds
to eventual suspensions and writes all context data in a log file. Runtrace is a script
developed to automate the submission of a workload. For each entry in the workload
file, it submits a sigsleep program to the cluster. Calcmets is a program which uses
the data stored in the log file created by sigleep processes to calculate the classical
scheduling metrics.

3.3.1 SigSleep

The emulation of a supercomputer involves the simultaneous running of thousands
of programs. A small part of these programs are related to the management of the
cluster, e.g. the scheduler, while the vast majority represents incoming jobs. In order
to fit all these programs in a finite amount of processors and memory, a dummy
program, preferentially one that consumes very little memory and CPU, may be used
to play the role of a job. The most common choice is the sleep program which is
readily available in the bash environment. However, this program is not affected by
suspensions as illustrated in Appendix A. As we are using scheduling algorithms
that rely on suspensions another solution was required.

This motivated the development of the program sigsleep. Sigsleep (Signal Sleep)
is a program that plays the role of a job during the emulation of a supercomputer‘s
workload. It has a small memory footprint and demands little CPU time. Yet, unlike
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Algorithm 3.1: A sleep program responsive to suspensions.

1 struct {
2 double suspend, resume;
3 suspend_period ∗next;
4 } suspend_period;
5 struct {
6 int id, n_cores, n_suspensions;
7 timespec submission, start, end, runtime;
8 suspend_period ∗sus_res;
9 } job_data;

10 suspend_period ∗sus_per;

11 Function sighandler(signum)
Input : One nonnegative integer signum
Output : The instant the program was suspend

12 sus_per ← new(suspend_period);
13 clock_gettime(suspend);
14 sus_per.suspend← suspend;
15 signal(signum, SIG_DFL);
16 kill(getpid(), signum);

17 Program sigsleep(id,priority,n_cores,submission,runtime)
Input : 2 integers(id, n_cores), 2 timespec (submission, runtime) and 1

string (priority)
Output : A entry in the log file with the submission, start, end and

suspensions times

18 job_data job;
19 clock_gettime(job.start);
20 job← id, priority, n_cores, submission;
21 job.n_suspensions← −1;
22 job.sus_res← emptylist;
23 remain← runtime;
24 do
25 signal(SIG_TSTP, sighandler);
26 job.n_suspensions++;
27 if job.n_suspension > 0 then
28 clock_gettime(resume);
29 sus_per.resume← resume;
30 add sus_per to the list job.sus_res;

31 runtime← remain;
32 while nanosleep(runtime, remain) == −1;
33 clock_gettime(job.end);
34 write(LOG_FILE, job);
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sleep, sigsleep keeps track of the suspension periods by detecting and dynamically
storing the instants the suspension and resume signals that are sent by Slurm.

The pseudo code for sigsleep is given in Algorithm 3.1 and its source code in
Appendix C. Sigsleep starts with the declaration of structures for storing eventual
suspension periods and the characteristics of the job. The function sighandler, lines
11 to 16, is registered by sigsleep to handle the signal SIGTSTP (SIGnal Terminal
SToP). This signal must be handled by a program, otherwise, it will be suspended,
which is equivalent to typing CTRL- Z in a terminal. Each time sighandler is called, it
obtains the current suspension time and resets the program to its default behaviour
by using the function signal(signum,SIG_DFL). SIG_DFL is a macro that expands into
an integral expression that is not equal to an address of any function. The net result of
calling signal(signum,SIG_DFL) is to reset the calling program to its default behaviour,
i.e. being able to be suspended. Lastly, sighandler() re-sends the signal SIGTSTP to
finally suspend itself.

Sigsleep, lines 17 to 32, starts by storing its id, priority, number of cores, submission,
start and runtime in a job_data struct. It then enters in a do-while loop controlled by
the function nanosleep(). Inside this loop, the function sighanler() is registered and the
value of the number of suspensions incremented. In the first passage, this number
will be zero and, therefore, the instructions inside of the if statement in line 26 won‘t
be executed. Nanosleep(runtime, remain) suspends the execution of sigsleep until the
time specified by runtime is elapsed or until a signal SIGTSTP is received. In the last
case, the function sighandler will be called and the program will stop until it receives
a continue (SIGCONT) signal. Once this signal is received, nanosleep() will return -1
and the remaining sleeping time will be given in the parameter remain. This will force
the program to perform a new iteration of the loop, increasing again the number of
suspensions. The condition for the if statement will be true this time, and the resume
time will be obtained and stored in a simple linked list. This loop will continue until
the program is allowed to sleep without any interruptions. The program finishes after
writing in a single log file (LOG_FILE) all data related to the job. The structure of the
log file is a sequence of job_data structs interleaved by eventual suspend_period structs.
The field n_suspensions in job_data specifies the number of suspend_period structs that
follow that particular struct.

3.3.2 RunWorkload

The submission of an individual job in a Slurm cluster can be accomplished by the
use of the sbatch program and a job description file. The main information contained
in this file is the number of cores, nodes, priority and the program to be run.

A bash script, called runworkload, was developed to automate the task of submitting
all jobs contained in a workload. Additional parameters were also introduced to
enable studies on runtime shrinkage. Beyond the workload filename, the user can
also provide the initial and final shrinking factors and a step. For instance, typing
runworkload work_file 100 50 10 in the terminal will result in 5 output files. The first
output file will contain the results of the emulation with 100% of the expecting and



22 Design and Implementation

Algorithm 3.2: A script for workload emulation.

1 Function sleep_submission_period(j, trace_ini)
Input : Two nonnegative integers, submission period and the start of the

trace
Output : sleeping for regular intervals

2 sdj← trace_ini + warmup_period + (dri f t + submission_period) ∗ j;
3 sleep(sdj− now);

4 Program runWorkload(w_file,ini, end, step)
Input : 1 string (workload filename), 3 integers (initial, end and step

shrink factors)
Output : A file containing the trace emulation

5 for i← ini to end by step do
6 n_group, n_jobs← 0;
7 trace_ini← now;
8 foreach job in w_file do
9 n_jobs++;

10 shrink job‘s submission time, expected runtime and runtime by i;
11 if (n_jobs >= n_warm_up) and (n_jobs % sub_group == 0) then
12 sleep_submission_period(n_group, trace_ini) ;
13 n_group++;

14 write submission script, job_description, with job info;
15 submit job (sbatch job_description);
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actual running times as described in the file work_file. These times will be decreased
by steps of 10% until the final shrinkage factor of 50% in the subsequent output files.

Runworkload, presented in Algorithm 3.2, starts by submitting a preconfigured
number of jobs as warm up jobs (n_warm_up). Once the warm up period (warmup_period)
finishes, the following jobs are then submitted in groups (sub_group) in regular inter-
vals (sub_period). The objective of the function sleep_submission_period() is to guarantee
that the start of a new submission period is done in terms of wall time instead of a
period relative to the last submission. This is necessary since the submission time for
each job, line 15, is arbitrary and depends on how busy Slurm is. The importance
of setting the sleeping periods in this way and the necessity of the drift parameter
will be evidenced during the discussion of the emulation methodology presented in
Section 4.2.4.

3.3.3 CalcMets

Calcmets, Algorithm 3.3, is a program that evaluates the classical scheduling metrics,
i.e. average waiting time, response time, slowdown, weigthed slowdown and cluster
utilization. The metrics are calculated from the trace data generated by the running
of several sigsleep programs. This trace is a binary file composed by a sequence of
job_data structs (1-4) interleaved by sequences of suspend_period structs (5-9).

The logic of this program is straightforward. The information about the jobs
are stored in an array of job_data structs (16). All data concerning suspensions of
a particular job is stored in a linked list accessed by the field sus_res. Once this
information is read from the trace file, the scheduling metrics are evaluated according
to the formulas presented in section 2.4.

3.4 Software platform

All programs were compiled using the GNU Compiler Collection (GCC). Programs
using the clock_gettime function were compiled with the flags -lrt.

The versions of all software used in this thesis are summarized in table 3.2.

3.5 Summary

This chapter introduced the steps taken to build the computing cluster where the ex-
periments presented in this thesis were performed. We also discussed the algorithms
corresponding to three key programs: a sleeping program responsive to suspensions
signals, a script to automate job submission, and a program to evaluate classical
scheduling metrics. In the next chapter, the reasons for the methodology proposed in
this thesis will be presented and discussed.
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Algorithm 3.3: An algorithm for classical scheduling metrics evaluation

1 struct {
2 double suspend, resume;
3 suspend_period ∗next;
4 } suspend_period;
5 struct {
6 int id, n_cores, n_suspensions;
7 timespec submission, start, end, runtime;
8 suspend_period ∗sus_res;
9 } job_data;

10 Function read_jobs(trace, jobs)
Input : trace filename
Output : array of job_data

11 while not end of trace do
12 read job data and store in jobs[i++];
13 for j← 1 to jobs[i].n_suspensions do
14 read and add to job[i].sus_res a new suspend_period node;

15 Program calcmets(trace)
Input : Trace File Name
Output : Classical Scheduling Metrics

16 job_data jobs[];
17 read_jobs(trace, jobs);
18 evaluate classical metrics;

Table 3.2: Software Platforms

Software Version

GCC 4.4.7

Python 2.6.6

bash 4.1.2

OpenStack 2.28.1

Slurm 16.05.6

Munge 0.5.10



Chapter 4

Experimental Methodology

This chapter characterizes the experimental workload and details the methodology
used in the emulations presented in this thesis.

4.1 Experimental Workload Characterization

We used a workload containing 4,417,018 jobs submitted to NCI‘s supercomputer
between April 1, 2016, and November 1, 2016. This workload contains, among other
information, the submission time, number of requested cores, and estimated and
actual runtimes for each job. Figure 4.1 shows the distribution of the number of jobs
per CPU count in a logarithmic scale.

One particular feature of this workload is the great presence of one-core jobs,
which make up almost 50% of all jobs submitted during the period. This is a charac-
teristic of NCI which not only provides HPC services, but also provides 8 petabytes of
high-performance storage services. Most of the access to the data is made by one-core
jobs. Table 4.1 displays the most common job sizes and their respective percentage
of the total number of jobs. It is worth noting that, out of 193 different job sizes
presented in the workload, the number of jobs requesting 1, 2, 4, 8, 16, 48 and 64
cores accounts for 90% of all jobs submitted.

This job size distribution could lead to the wrong conclusion that most of the work
done at NCI do not actually need a supercomputer. Nevertheless, Table 4.2 shows

Table 4.1: Job size and its percentage of total jobs

Job Size (cores) % of Total Jobs (%)

1 49
2 11
4 5
8 7
16 8
48 4
64 6

all rest 10

25
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Figure 4.1: Raijin’s job size distribution (Y axis is logarithmic)

the job distribution in terms of service units (S.U.), which is the runtime of a job
multiplied by the number of cores used. This data demonstrates that most of the work
done at NCI‘s supercomputer is performed by jobs that use a considerable number of
cores. One core jobs, on the other hand, use only 1.6% of NCI‘s computational power.

One interesting feature of this workload is the distribution of the job‘s submission
time along the day. It would be reasonable to expect a peak during working hours,
yet Figure 4.2 shows a fairly uniform distribution.

Figure 4.2: Raijin’s job submission time distribution.
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Table 4.2: Job size and its percentage of total Service Units (S.U.)

Job Size (cores) Runtime (106 s) S.U. (109 cores*s) % of Total S.U.

64 2416.1 154.6 16.0
128 850.1 108.8 11.2
320 188.4 60.3 6.3
256 235.0 60.2 6.2
16 3154.5 50.5 5.2
512 82.9 42.6 4.4
8 5243.2 41.9 4.3
32 915.7 29.3 3.0
48 485.7 23.3 2.4
384 60.5 23.2 2.4
1008 17.7 17.8 1.9
1024 17.1 17.5 1.8
192 82.0 15.8 1.6
1 15355.0 15.3 1.6

3200 4.5 14.6 1.5
all rest 30.2

As already explained in Section 2.3, a scheduler using the Backfill algorithm
demands an estimate for the runtime of a job at its submission time. Figure 4.3
exemplifies the users‘ notorious behaviour of largely overestimating the runtime
values. This graph shows the percentage of the total jobs for each interval of the ratio
between the actual runtime (RT) and the runtime estimate (ER). For instance, almost
60% of all jobs submitted have their runtime estimates more or equal than 10 times
the actual runtimes, which is the first interval (0.0,0.1] showed in Figure 4.3. On the
other end, only 0.7% have this ratio falling within the (0.9,1.0] interval which could
be considered a very good estimate. This behaviour is easily explained by the fact
that overestimating the running time incurs no penalty, whilst users might have their
jobs killed if their actual runtime exceeds its runtime estimate. Usually, a job will not
be killed as soon as this situation occurs but after a grace period, which explains the
(1.0,1.1] interval.

4.2 Classical Metrics Artefacts

This section discusses some artefacts that affect the classical metrics. An artefact
is a result arising from a scientific investigation or experiment that is not naturally
present but occurs as a result of the preparative or investigative procedure. This
section describes the effects of concurrency, submission ordering, sampling and time
shrinking on the classical metrics. All the experiments were performed using the
cluster described in Section 3.1. The most relevant parameters of the Slurm configu-
ration file are shown in the Appendix B. Two smaller workloads, derived from the
original workload described in Section 4.1, were used in the following studies and
the procedures to obtain them are shown in Sections 4.2.3 and 4.2.4.
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Figure 4.3: Users’ accuracy for their job runtime estimates. X-axis contains the intervals for
the ratio between the actual runtime and estimated runtime. Y-axis shows the percentage of
these jobs in relation to the total number of jobs in the workload. For instance, all jobs with a
runtime estimate equal or bigger than 10 times the actual runtime are grouped in the (0.0,0.1]
interval which represents 58% of all submitted jobs.

4.2.1 Concurrency

Table 4.3: Stability of the classical metrics over the course of 5 consecutive runs. The columns
are Waiting Time (WT), Response Time (RT), Slowdown (SD), Weighted Slowdown (WS) and
Utilization (UT). The last 4 rows are the Average (AVE), Standard Deviation (SSD), Relative
Standard Deviation (RSD) and the Confidence Interval with a level of Confidence of 95%
(C95) . This notation will be repeated in the following tables.

Run WT (s) RT (s) SD WS UT (%)

1 1261.1 1389.3 64.8 103.5 90.2
2 1286.8 1415.0 67.4 115.3 92.2
3 1256.0 1384.1 67.7 106.8 91.3
4 1294.7 1422.8 67.7 112.2 90.7
5 1304.5 1432.6 64.9 109.9 91.5

AVE 1280.6 1408.8 66.5 109.5 91.2
SSD 48.9 18.9 1.4 4.1 0.7

RSD (%) 1.5 1.3 2.0 3.8 0.8
C95 60.7 23.5 1.7 5.1 0.9

All the experiments performed in this thesis involved a reasonable number of
programs running concurrently in a cluster. As expected, the values of the classical
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metrics varied from one experiment to the next even when all parameters were kept
the same due to the non-deterministic nature of time-dependent experiments in
distributed systems. This shows that emulation presents relevant additional features
when compared with simulation, which usually displays a deterministic behaviour.

Tables 4.3, 4.4, 4.5, and 4.6 utilize a 1,000 job workload running in a 3,000
node/3,000 CPU cluster. Table 4.3 presents the results for five consecutive experi-
ments with all the cluster configuration parameters kept constant. All the metrics
display a low Relative Standard Deviation (RSD). The low values for the RSD and
the similar values between the standard deviation (SSD) and the confidential interval
with a level of confidence of 95% (C95) indicates that these metrics are sufficiently
stable in relation to concurrency to be used in comparisons to different scheduling
algorithms. A particular result shown in this table is the high stability of the cluster
utilization metric, which displays a RSD of only 0.8%. As we will show later, the
utilization also displays a very stable behaviour in relation to all the other artefacts
studied.

4.2.2 Submission order

As discussed in [Frachtenberg and Feitelson, 2005], workloads from different HPC
facilities can be quite different from each other. These differences can influence the
performance of the scheduling algorithms as it was found in [Mu’alem and Feitelson,
2001], where the relative performance of EASY and Conservative Backfill depended
on the workload used and on the performance metrics.

This motivated us to investigate the behaviour of the classical metrics in relation
to the submission order of the jobs for a particular workload. From a single workload,
we generate 10 different workloads by randomly changing the submission order of
the jobs. We kept the submission times equally distributed along the trace duration.
This was done for two reasons: First, Figure 4.2 shows a very uniform submission
time distribution over a 24 hours period while the other reason is related with the dif-
ferences between a simulation and the actual working of a real RMS. In a simulation,
the scheduler can run the scheduling algorithm as soon as a new job arrives. However,
there are many more tasks, beyond scheduling, that a real RMS must perform. This
imposes an empirical limit to the number of jobs in the queue that can be sched-
uled as soon as a running job completes. For instance, Slurm performs two types
of scheduling, one fast that only takes into account a small percentage of the whole
queue and one more comprehensive that involves the whole queue, but that is done
only at preconfigured intervals. The Slurm documentation recommends disabling
the fast scheduling for high throughput clusters, which can be easily accomplished
by setting a parameter, defer, in the configuration file. We use this high throughput
configuration in our cluster because of the time shrinking experiments that will be
discussed in detail in the next section. An arriving job, therefore, will not trigger the
scheduling algorithm in our experiments. In this case, this arriving job will be put in
the end of the queue and it will be included in the scheduling process only when the
scheduling period starts. In the following experiments, we used a scheduling period
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of 30 seconds.

Table 4.4: Classical Metrics for a workload shuffled 10 times. All jobs had the same priority
and they were scheduled with Backfill.

Run WT (s) RT (s) SD WS UT (%)

1 1350.3 1478.4 73.4 109.7 92.0
2 1325.1 1453.2 67.2 108.7 86.6
3 1121.6 1249.7 61.9 123.7 88.1
4 1611.9 1740.0 77.7 102.4 85.6
5 1582.0 1710.0 72.6 119.1 82.2
6 1410.5 1538.6 79.7 102.2 82.2
7 1113.6 1241.7 56.7 81.2 84.4
8 1593.8 1721.9 93.9 146.3 83.7
9 1290.2 1418.3 62.3 95.5 82.9
10 1756.0 1884.2 88.2 142.7 84.2

AVE 1415.5 1543.6 73.4 113.2 85.2
SSD 204.9 204.9 11.3 19.3 2.9

RSD(%) 14.5 13.3 15.4 17.0 3.4
C95 146.5 146.5 8.1 13.8 2.1

Table 4.4 shows the effect of the job submission order on the classical metrics using
backfill. The resulting traces show a RSD between 3.4% and 17.0% for the classical
metrics.

The high variation of these metrics indicates that the submission order plays an
important role in their evaluation. It is worth noting, however, the low value for the
cluster utilization, 3.4%, and the relative high values for the other metrics. These
values were consistent through all our experiments.

Next, we studied the effects of prioritization in the same workloads for two
cases and two scheduling algorithms, Backfill and Suspend/Resume. Prioritization
is necessary since Suspend/Resume algorithm uses it to decide what job suspend.

For each workload in Table 4.4 we randomly assign 20% of the jobs a high priority
and kept the remaining jobs with low priority. In the second case, only jobs requesting
700 CPUs or more received high priority. We processed these two sets of workloads
using backfill and suspend/resume. The results are summarized in Tables 4.5 and 4.6.
The submission order in these new workloads was kept the same as in Table 4.4, so
the effects of the introduction of priorities in the scheduling metrics and the use of
different scheduling algorithms can be readily compared.

The results show that the introduction of priorities worsens the averaged values
for almost all metrics. This effect can be explained since high priority jobs will be
scheduled first, which constrains the number of jobs that the scheduler can use to
optimize the scheduling.

Taking into account only the average values for the classical scheduling metrics,
we found out that for Waiting Time (WT) and Response Time (RT), Backfill performed
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Table 4.5: Classical Metrics for the same workloads and algorithm (Backfill) described in
Table 4.4. The columns labeled Random Priorities had 20% of their jobs randomly assigned
with high priority and the remaining jobs with low priority. The columns labeled Size Based
Priorities had only jobs requesting 700 or more CPUs assigned with high priority.

Run
Random Priorities Size Based Priorities

WT(s) RT(s) SD WS UT(%) WT(s) RT(s) SD WS UT(%)

1 1340.1 1468.2 67.9 134.4 87.9 1418.5 1546.5 60.0 76.4 83.2
2 1344.9 1473.0 64.7 143.6 83.2 2536.5 2664.5 108.6 123.6 87.6
3 1198.3 1326.4 60.9 137.9 91.5 1479.9 1607.9 61.1 105.2 90.7
4 1418.0 1546.2 74.9 140.2 84.7 2118.3 2246.3 89.0 94.0 88.2
5 1704.0 1832.1 81.5 153.2 80.7 2247.9 2375.9 90.8 105.1 81.3
6 1400.1 1528.2 73.1 134.7 89.2 1914.8 2042.8 82.7 92.3 88.3
7 1382.7 1510.8 65.9 120.6 86.1 1675.3 1803.3 68.5 73.4 88.5
8 1457.5 1585.6 72.5 140.1 90.5 2200.8 2328.8 101.1 124.2 84.8
9 1277.6 1405.7 62.3 166.3 83.8 1601.7 1729.7 60.9 86.9 88.6
10 1979.4 2107.6 91.6 167.5 89.5 2564.4 2692.4 108.1 143.1 95.1

AVE 1450.3 1578.4 71.5 143.9 86.7 1975.8 2103.8 83.1 102.4 87.6
SSD 216.6 216.6 9.0 13.9 3.4 399.5 399.5 18.5 21.3 3.7

RSD (%) 14.9 13.7 12.6 9.7 3.9 20.2 19.0 22.3 20.8 4.2
C95 154.9 154.9 6.4 9.9 2.4 285.8 285.8 13.2 15.2 2.6

Table 4.6: Classical Metrics for the same configuration as in Table 4.5. The scheduling
algorithm used was suspend/resume.

Run
Random Priorities Size Based Priorities

WT(s) RT(s) SD WS UT(%) WT(s) RT(s) SD WS UT(%)

1 1704.3 1953.5 81.9 124.8 89.4 2423.1 2623.4 111.2 104.7 82.9
2 1465.8 1678.5 65.0 121.8 84.0 2963.8 3112.8 130.4 117.4 87.3
3 1920.4 2125.2 87.7 143.0 78.2 2523.0 2709.6 113.8 123.0 88.3
4 1438.7 1635.6 68.1 117.9 92.3 2140.6 2346.3 88.6 88.2 88.0
5 1404.6 1627.0 67.3 115.8 95.7 2546.3 2700.0 109.5 114.4 82.3
6 1830.4 2052.6 89.0 110.2 93.0 2269.0 2456.6 101.6 100.9 88.4
7 1640.4 1865.6 79.3 115.6 88.0 2179.4 2352.1 99.8 88.4 88.6
8 1915.4 2116.0 94.1 159.7 81.3 2656.8 2899.8 124.1 119.0 84.6
9 1627.5 1860.1 77.7 129.7 87.9 2347.1 2499.1 95.6 108.4 89.3
10 2042.4 2188.8 90.2 149.0 87.8 2659.8 2790.2 115.7 146.9 95.9

AVE 1699.0 1910.3 80.0 128.8 87.8 2470.9 2649.0 109.0 111.1 87.6
SSD 211.8 200.5 9.9 15.6 5.1 239.6 233.3 12.2 16.5 3.7

RSD (%) 12.5 10.5 12.4 12.1 5.8 9.7 8.8 11.2 14.9 4.2
C95 151.5 143.4 7.1 11.2 3.7 171.4 166.9 8.7 11.8 2.6
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better than suspend/resume as can be summarized in the following relationship

Backfill < Backfill (rand) < SR (rand) < Backfill (size) < SR (size) (4.1)

where SR stands for Suspend/Resume, rand refers to the experiments with randomize
high priorities given to 20% of the jobs, and size refers to experiments with high
priorities given to jobs asking for 700 or more cores.

Slowdown, on the other hand, displayed a slightly different behaviour. We ob-
served that Backfill with random assigned priorities showed a lower value than
Backfill with no priorities. These measurements, however, displayed very close val-
ues, 73.4 and 71.5 and relative high Standard Deviation, 11.3 and 9.0, which makes
difficult to draw any conclusion. Based solely on the average values, the relationship
for slowdown is:

Backfill (rand) < Backfill < SR (rand) < Backfill (size) < SR (size) (4.2)

Weighted slowdown, as discussed in 2.4, is a metric that favors big jobs and, as
one might expect, it is also reflected in our experiments. The best performance for
this metric was obtained for the workload with high priorities given to big jobs for
both Backfill and Suspend/Resume algorithms:

Backfill (size) < SR (size) < Backfill < SR (rand) < Backfill (rand) (4.3)

being the worst case Backfill with random priorities.
Utilization, on the other hand, did not show any clear pattern in the performed

experiments, Tables 4.4 to 4.6. For some workloads Backfill gives a better value,
like run number 1, others, like run number 10, favor Suspend/Resume with high
priorities associated with big jobs. However, all values for this metric were very
similar and within relatively low standard deviations.

Table 4.7: Classical Metrics for the workload described in Section 4.2.3 shuffled 6 times. The
resulting trace was obtained using backfill as the scheduling algorithm. All jobs had the same
priority.

Run WT (s) RT (s) SD WS UT

1 1204.5 1642.4 252.2 74.2 95.1
2 1372.3 1802.0 280.4 85.2 95.0
3 1037.6 1491.3 215.3 60.6 94.5
4 1413.6 1845.0 363.4 91.7 95.2
5 1511.7 1934.6 313.4 82.9 94.9
6 1693.0 2119.0 327.0 106.1 95.9

AVE 1372.1 1805.7 292.0 83.5 95.1
SSD 209.8 200.0 50.0 10.0 0.4

RSD(%) 15.3 11.1 17.1 12.0 0.4
C95 220.2 209.9 52.5 63.6 99.2

The main objective of these experiments was to study the influence of the sub-
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Figure 4.4: Waiting time values for a workload with the submission order shuffled 10 times.
Each new workload gives rise to three more workloads. The first workload has all jobs with
the same priority, the second contains 20% of the jobs randomly assigned with high priority
(rand), and, in the third workload, high priorities are assigned only to jobs asking for 700 or
more CPUs (size). Backfill is applied to all these workloads and the resulting Waiting Times
are labeled bf, bf (rand), and bf (size). Suspend/Resume is applied only to the workloads with
different priorities and the resulting Waiting Times are labeled sr (rand) and sr (size).

Figure 4.5: Response Time values for the same set up shown in Figure 4.4.
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Figure 4.6: Slowdown values for the same set up shown in Figure 4.4.

Figure 4.7: Weighted Slowdown values for the same set up shown in Figure 4.4.
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Figure 4.8: Utilization values for the same set up shown in Figure 4.4.

mission order in the values of the classical metrics. Figures 4.4, 4.5, 4.6, 4.7 and
4.8 display the behaviour of each individual classical metric here studied accordingly
with the submission order, priorities and scheduling algorithm.

On average, the introduction of priorities worsens the values of the Waiting Time,
Figure 4.4, as stated in the Equation 4.1. However, this is not true for all individual
workloads. For instance, while workloads 1, 2, 6 and 9 display similar values for
Backfill with and without priorities (blue and red bars), workloads 4 and 8, favor
Backfill without priorities. The other workloads do not show significant differences.
One can also not draw a definitive conclusion about what is the best scheduler
algorithm in relation to this metric when analysing individual workloads. When
comparing Backfill and Suspend/Resume with random priorities (red and green bars),
workloads 1, 2, 3, 6, 7, 8 and 9 favors Backfill, workload 5 favors Suspend/Resume,
while the remaining workloads give similar results. When high priorities are given
only for big jobs a clearer scenario emerges (yellow and brown bars). In this case,
practically all workloads give better results for Backfill, except for workload 4 which
displays similar values.

Figures 4.4 and 4.5 show practically identical behaviour for the Waiting time
and Response Time metrics. This can be explained due to the similarities in their
definitions, Equations 2.3 and 2.4. A simple mathematical manipulation can easily
show that the Response Time is equal to the Waiting Time plus the average running
time of all jobs.

Slowdown, Figure 4.6, also displays a sensitive behaviour to the submission order.
The Suspend/Resume algorithm applied to the workload with size based priority still
provides the overall worst results. Backfill with random priorities (red bar) operates
better than Suspend/Resume (green bar) in 6 workloads (1, 3, 6, 7, 8 and 9), similar
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in 2 (2 and 10) and worse in 2 (4 and 5).
Weighted Slowdown, as expected, shows smaller values for the workloads that

prioritize big jobs, Figure 4.7. For this metric, however, Suspend/Resume shows now
better results for random priorities (green bar) for workloads 1, 2, 3, 5, 6, 9 and 10
when compared to Backfill (red bar), which is almost the opposite results found for
Waiting Time, Figure 4.4.

Figure 4.8, exhibits the Utilization for all workloads and prioritization schemas.
The visual inspection of this graph can confirm that this metric displays very stable
values through all workloads, prioritization and the two scheduling algorithm used.

As an indication that this behaviour is not a feature of this workload and cluster
size, Table 4.7 compiles the results of a bigger workload with 30,000 jobs processed
in an also bigger emulated cluster with 57,600 CPUs. This workload was shuffled 6
times and the classical scheduling metrics were evaluated in the same way shown
in the previous tables. The values for SSD and RSD are compatible with the values
found in the previous tables which indicates that the submission order is an artefact
for the classical metrics.

We conclude this section by emphasizing the importance of the submission order
in the evaluation of the classical metrics. The results of this section show that a
particular order of the job submission can favors an algorithm conveying lower values
for the classical metrics. We suggest, therefore, that a simpler and more effective way
of overcoming this artefact is through the use of shuffling and averages.

4.2.3 Sampling

Workloads from HPC facilities usually contain thousands or even millions of jobs
and cover long periods. The original workload from NCI’s supercomputer used in
thesis contains 4,417,018 jobs and spans a period of 214 days. Since it is impractical
to work with emulations for such a long period, strategies must be developed to
reduce the emulation time. We use two strategies to make the emulation more time
feasible, sampling and time shrinking. The objective of sampling is to obtain a smaller
subset of the original workload with the same characteristics and that renders similar
values for the classical metrics. We will refer to this smaller subset of the original
workload as the working workload. Time shrinking has the same objective and will
be discussed in detail in the next subsection.

Several strategies can be devised for sampling a big workload. The simplest
would be to arbitrarily choose a day from the workload, which would only yield a
reasonable result if the workload had a uniform distribution of sizes and runtimes
along its whole duration. Figure 4.9 displays the daily job submission for the 4 most
popular job sizes for the workload described in Section 4.1. As can be easily seen
from this graph, the number of jobs of any particular size changes considerably on
a daily basis. This is not a particularity of NCI but a common trend among other
HPC facilities as was noted by other researchers, [Niemi and Hameri, 2012], which
have suggested that adaptive scheduling strategies should be adopted to deal with
this variability.
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Figure 4.9: Raijin’s job daily submission distribution for the 4 most popular job sizes normal-
ized by their average. 1 core jobs displayed an average of 10,028 jobs/day, 2 core jobs 2,220
jobs/day, 8 core jobs 1,423 jobs/day, and 16 core jobs 1,715 jobs/day.

Figure 4.10: Comparison between original and sampled workload (scaled) job size distribu-
tion (Y axis is logarithmic). The scale factor (147.2) is the number of jobs in the original
workload (4,417,018) divided by the number of jobs in the sampled workload (30,000).
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Another strategy would be randomly select jobs from the workload, but this
also wouldn’t guarantee a workload with a similar size distribution of the original
workload.

A technique to obtain a working workload that reflects the size distribution of the
whole original workload period could be:

1. Successively order the original workload by the required runtime, runtime and
size of each job.

2. Select every jobi in the ordered workload given by

jobi =
⌊
sp i

⌋
+ o f (4.4)

where sp is the sampling ratio and o f is an offset value between 0 and sp, which
determines what jobs to choose within the sample population. The sampling ratio is
given by

sp =
Norig

Nwork
(4.5)

where Norig is the number of jobs in the original workload and Nwork is the number
of desired jobs in the working workload.

3. Re-order the jobs in the working workload using the jobs position in the original
workload.

Figure 4.10 displays a comparison between the size distribution of the original
workload and the scaled size distribution of a 30,000 job working workload. The
similarity between the size distributions indicates that the proposed methodology
achieves the desired result.

A 30,000 job working workload implies a sampling ratio of approximately 147.2
(4,417,018 / 30,000), which means that, on average, we choose 1 and discard 146 other
jobs from the original workload.

In order to estimate the impact of this sampling, we prepared 10 workloads
with the same sampling ratio, but with 10 equally spaced offsets o f . The values
of the classical metrics obtained from these workloads are shown in Table 4.8. The
comparison between the values of the RSD found in this table and the same values
displayed in Table 4.7, shows that this sampling introduces an even bigger variation in
the classical metrics than the shuffling of the submission order. A possible explanation
for this increase is that two jobs obtained from the same sampling ratio but different
offsets o′f s will have, in most cases, the same size but possible different submission
times and runtimes. The added effects of shuffling and different runtimes could
explain the increase in the variation of the classical metrics shown in Table 4.8.

Next we proposed a improved sampling technique. We based this technique
on the assumption that similar jobs, i.e., comparable sizes, required runtime and
runtimes, and submitted at similar times (having similar positions in the workload),
will equally contribute to the classical metrics. In order to group these jobs we:

1. Successively order the original workload by the runtime, required runtime and
size of each job. Notice that we now sort first the runtime.
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Table 4.8: Classical metrics for 10 different workloads with a sampling ratio of 147.2, but with
different offsets using Backfill.

Offset(o f ) WT (s) RT (s) SD WS UT

0 666.3 1638.8 94.0 42.1 97.1
14 1048.3 1790.8 147.6 62.4 97.0
28 995.3 1749.5 138.6 63.0 97.3
42 1366.8 1915.3 190.0 78.3 97.4
56 2003.0 2163.3 280.1 116.7 97.3
70 943.5 1752.0 131.4 59.6 97.4
84 1270.5 1890.1 178.2 75.9 97.1
98 1229.5 1853.8 172.3 80.5 96.9
112 1644.5 2012.3 232.6 102.3 95.6
126 1678.8 2046.5 233.9 98.1 96.8

AVE 1284.6 1881.2 179.9 77.9 97.0
SSD 380.7 150.7 53.3 21.4 0.5

RSD(%) 29.6 8.0 29.6 27.5 0.5
C95 272.3 107.8 38.1 15.3 0.4

2. Group all jobs with the same size and required runtime falling within a window
of w seconds.

We used a time window for the required runtime to increase the number of jobs
inside a group and, consequently, to increase the likehood of grouping jobs with
similar size and runtime.

3. Order the jobs in each group by their position in the original workload.
We expected now to have in each group jobs with similar overall characteristics.
4. Evaluate the average service units (size times runtime) of the first sp jobs.
5. Select the job which service unit has the closest value to the average.
6. Compute the difference between the service unit of the selected job and the

average of the sp jobs.
7. Evaluate the average service units of the next sp jobs but adding the difference

calculated in the previous step.
8. Repeat this procedure from step 5 until the workload has been completely

processed.
The last step 6 guarantees that the final service units in the working workload, in

relation to the original workload, holds the same proportion as the sampling ratio.
Figure 4.11 shows the results for 17 sampling experiments using this improved

technique with a window of 60 seconds. The sampling ratio in this graph went
from 100 to 468.5. Below this sampling ratio the experiments would take too long
to perform. Above the sampling ratio of 468.5 the results were inconclusive. Apart
from Weighted Slowdown, the variation of the other classical metrics show that these
are still affected by the sampling, but to a lesser extent than when the workload is
shuffled. The still large variations on the Weight Slowdown metric could be attributed
to the low number of big jobs present in the original workload. Jobs bigger than 1,000
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CPUs represent only 1.2% of the total number of jobs in the original workload and the
proposed sampling technique seems unable to distribute them equally in the working
workloads.

Figure 4.11: Classical metrics for 17 sampled workloads scheduled with Backfill.

4.2.4 Time Shrinking

Time shrinking is a technique for speeding up emulations. It simply decreases each
time of a workload by a percentage called here the shrinking factor. This section
discusses how the classical metrics behave under time shrinking and the techniques
to approximate experimental and expected results.

It is straightforward to show that, if we multiply each time in the workload
by a shrinking factor, some classical metrics like waiting time and response time,
Equations 2.3 and 2.4, would be affected by the same amount. Other classical metrics,
like slowdown and weighted slowdown, on the other hand, should not be affected
since both the numerator and denominator are equally affected by the shrinking.

The key elements of our shrinking experiments are a workload file; the script for
job submission, runworkload, described in the Section 3.3.2; a sleep program, sigsleep,
Section 3.3.1 and a program, calcmets, for the evaluation of the classical metrics,
Section 3.3.3. Originally, each line of the workload file contained six fields: job id,
priority, submission delay, number of CPUs, expected runtime, and runtime.

A run of a shrinking experiment would have four basic steps:
1) The runworload script reads the workload file and, for each line, it sleeps the

number of seconds determined by the submission delay field. Immediately after that,
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it submits a sigsleep job to Slurm using the information contained in the remaining
fields;

2) Just before it finishes, each sigsleep job writes in a common log file all the
information about its run (id, submission, start and end times, runtime and number
of CPUs requested;

3) After all jobs have finished, the log file is copied to another directory and reset;
4) The classical metrics are then evaluated using calmets.
Once these steps are completed, a new workload file is generated by decreasing all

times in the original workload by a shrinking factor and the four steps aforementioned
are repeated.

Figure 4.12: Preliminary results for time shrinking.

Figure 4.12 shows the preliminary results of our shrinking experiments. The
metrics display the general expected trend where waiting and response times have a
decreasing linear dependence on the shrinking factor, while slowdown and weighted
slowdown should not be affected. Utilization, on the other hand, displayed a very
stable behaviour until the shrinkage percentage reaches 92%, when it starts dropping
considerably.

Despite the metrics displayed the expected general behaviour we decided to in-
vestigate in more depth what could be done to improve this result. Figure 4.12 also
displays, beyond the classical metrics, the total time of the trace and the time of the
last job submission. The trace total time is determined by the runworkload script as an
exact percentage of the original workload total time. Therefore, this metric presents a
perfect linearity with relation to the shrinkage percentage in the graph. But the time
of the last submission, in a 30,000 job workload, depends on the submission times for
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each of the 29999 previous jobs. Note that, in this case, the first version of the run-
workload script submitted each job to Slurm after sleeping the submission delay time.
If Slurm was busy doing something else, like scheduling, this submission would not
be instantaneous and the accumulated effect of the submission of thousands of jobs
would definitely affect the time of the last submission. It is also interesting noting the
inverse relation between the last submission and the waiting and response times in
this graph.

It should be expected that these values would lie on the same straight line as the
total time. However, as the last submission displays values below this straight line,
waiting and response times display values above the same. When the last submission
shows values above, waiting and response time show values below. This can easily
be explained as the last submission is a good indicator of the submission time of each
job. If the last submission lies below the straight line it means that, on average, the
jobs were submitted before their expected times, which would increase the waiting
time provided each job started at its expected time. Apparently the jobs actually start
at the expected time since the final utilization was constant for all shrinkage factors
up to 90%. Since the jobs were submitted before but started at the correct times, the
waiting and response times increased. Slowdown and weighted slowdown follows
the response time, as they are directly derived from it. When the response time is
above its expected value the same occurs with slowdown and weighted slowdown.

Figure 4.13: Classical Metrics behaviour using wall clock submission time.

In order to keep the submission time independent of the time of all previous
submissions, runworkload was modified to submit jobs in terms of the wall clock time.
Before starting to submit jobs, runworkload first obtains the current wall clock time
and calculates when the next submission time is due and, only then, it submits the job.
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Table 4.9: Trace with 10 equal jobs with runtime of 60 seconds being submitted at regular
intervals of 60 seconds. The time delay between the ending of a job and the starting of the
next induces a drift around 0.1 second per submission in the start time of each job. The
accumulated effect of this drift by the 10th submission is around 1 second.

ID Sub (s) Start (s) End (s) RU (s) WT (s) RT (s) SD WS

1 0.0000 0.0000 60.0002 60.0000 0.0000 60.0002 1.0000 100.0003
2 0.0000 60.0933 120.0936 60.0000 60.0933 120.0936 2.0016 200.1561
3 60.0249 120.2077 180.2080 60.0000 60.1829 120.1831 2.0031 200.3052
4 120.0049 180.3204 240.3207 60.0000 60.3155 120.3158 2.0053 200.5263
5 180.0041 240.4387 300.4388 60.0000 60.4346 120.4347 2.0072 200.7245
6 240.0047 300.5492 360.5495 60.0000 60.5445 120.5448 2.0091 200.9080
7 300.0042 360.6497 420.6499 60.0000 60.6455 120.6457 2.0108 201.0761
8 360.0038 420.7510 480.7512 60.0000 60.7472 120.7474 2.0125 201.2457
9 420.0056 480.8393 540.8396 60.0000 60.8337 120.8340 2.0139 201.3900
10 480.0042 540.9488 599.9490 59.0000 60.9446 119.9448 2.0330 203.2960

After the submission, which can take an arbitrary time due to how busy Slurm could
be, runworkload obtains again the current time and calculates how long it should sleep
so to wake up in the precise time for the next submission.

Figure 4.13 displays a shrinking experiment up to 40% with the above corrections.
This graph shows a clear improvement when compared to the graph shown in Figure
4.12, but still displays deviations from the expected behaviour.

A new experiment was then devised to understand the possible reasons behind
this behaviour. A simpler workload containing 10 equal jobs, each of them asking for
100 CPUs and running for 60 seconds, was processed by a smaller 100 CPU cluster
and the resulting trace is shown in Table 4.9. Each job was submitted in regular
intervals of 60 seconds and since each job asked for the total cluster capacity, they run
in sequence. For the second job onwards we should have obtained the same values
for the classical metrics for each job, i.e. 60 seconds for waiting time, 120 seconds for
response time, 2 for slowdown and 200 for weighted slowdown. However, the time
delay between the ending of a job and the starting of the next induced a drift around
0.1 second per submission. The effect of this drift continuously increased the values
of the classical metrics during the trace period. For instance, the waiting time for the
second submission was practically 60 seconds, while the waiting time for the last was
almost 61 seconds. Since the value of this drift was constant and independent of the
shrinkage factor, its effects on the classical metrics grew as the runtime decreased.

Figure 4.14 shows the classical metrics behaviour under shrinking when the
submission time had its value controlled by the runworkload script and corrected by
the drift. Now, the classical metrics displayed the expected behaviour in relation to
the shrinkage factor, i.e., waiting time and response time decreased linearly, while
slowdown and weighted slowdown were not affected. This relationship holds for
values below a shrinkage factor of 92-94%. For shrinkage factor values above this
threshold two factors negatively affect the results. First, the runtime of some jobs
in our workload decreased to values less than a second, so they stayed for a very
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Figure 4.14: Classical Metrics behaviour using wall clock and drift corrections for a 30,000
jobs processed in a 57600-CPU cluster.

short period in the cluster. Second, the job submission frequency also grew with
the shrinkage factor. These two factors combined made Slurm so busy dealing with
the ending and arriving of the jobs that it could no longer schedule the workload
efficiently. This caused jobs to stay longer in the queue, which led to a low utilization
of the cluster and the loss of the correlation between the classical metrics and the
shrinkage factor.

4.3 Summary

This chapter characterized a NCI workload. This included the job distribution in
terms of size and service units, submission time, expected runtime accuracy. We also
discussed some classical metrics artefacts; concurrency, submission order, sampling
and time shrinking. We concluded that the submission order was an important
artefact and that shuffling and averaging was a technique to overcome this problem
when analysing scheduling algorithms. Sampling a workload was also a valid method
to decrease the dimensions of a workload to a more manageable size. Sampling
unfortunately induces, like the submission order but in a lesser degree, variations in
the classical metrics. The last studied artefact was time shrinking. Time shrinking
can be used to speed up the processing of a workload but additional care must be
taken to keep the classical metrics linearly invariant. In this case, the submission time
must be externally controlled and constant drifts must be added to each submission
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period.
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Chapter 5

Results

The previous chapter characterized the workload used in this thesis. It also discussed
a methodology to speed up the analysis of scheduling algorithms.

This chapter compares the proposed methodology with other proposed frame-
works. The methodology is then applied to compare the performance the two schedul-
ing algorithms implemented in Slurm, i.e., Backfill and Suspend/Resume.

5.1 A Viable Environment to Evaluate Scheduling Algorithms

Supercomputers are continuously increasing in size, utilization and complexity. How-
ever, there is a lack of frameworks to support the software development lifecycle
and for the comparison of different RMS packages [Rodrigo et al., 2017]. Simulation
modes in the RMS packages have a notorious history of bad support [Lucero, 2011].
This behaviour is usually attributed to the costs of keeping synchronized two slightly
different versions of the same software.

One of the last contributions to this field is the work of [Rodrigo et al., 2017]
were the scalable Scheduling Simulator Framework (ScSF) that supports and auto-
mates workload modeling and generation, Slurm simulation, and data analysis was
introduced.

This paper corroborates the relevance of the research performed in this thesis
since the objectives are basically the same. However, we believe that we reach the
same basic results in a simpler and more flexible way.

A key difference between the work presented in [Rodrigo et al., 2017] and this
thesis is that the first still make use of a Slurm simulator, while the latter uses the
latest available version of Slurm. This implies that, in their case, they will need to
continually modify the Slurm simulator to keep up with the new versions of Slurm.
That was the exact reason why the support for the initial versions of the Slurm
simulator was dropped. We consider, therefore, our approach more appropriate since
it doesn’t rely on the maintenance of a complex software like the Slurm simulator.

It is also worth noting that the reported speed-up obtained by the Slurm simulator
was on the average 10 times, with a maximum of 15 times. The same speed-up was
obtained in our experiments by means of time shrinking. We have shown that it is
possible to shrink the runtimes of a workload by 90-97% and still obtain classical
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metrics that are linearly correlated to the original workload. A shrinkage interval
of 90-97% corresponds to speed-ups of 10-14 times. In our case, the job submission
and the job termination frequencies increased with the time shrinkage. We found
that the shrinkage limit was reached when Slurm, even when configured for a high
throughput cluster, could no longer have time to process job submissions, job termina-
tions, scheduling as well as all other tasks of a RMS. Above this shrinkage percentage,
CPUs were kept idle because Slurm didn’t have time to schedule jobs for them, which
made the utilization and consequently all other metrics to lose the linearity with the
shrinkage percentage.

Still, both research relies on special features of Slurm to emulate bigger clusters.
In Section 6.1, Future Work, we propose one way of overcoming these limitations
with the use of containers.

5.2 Backfill and Suspend/Resume Evaluation

In this section, we compared two scheduling algorithms implemented in Slurm,
Backfill and Suspend/Resume.

The nodes in a supercomputer can be utilised in two modes. In one mode, a
job can only request the whole node. At a facility like NCI it would imply that any
job could only request a multiple of 16 CPUs. Slurm supports this operation mode
through a configuration that uses the Linear plugin. Another mode is when a job has
the possibility of requesting individual CPUs. The Slurm configuration that supports
this mode is called Consumable Resources. Since our workload contains jobs asking
for less than 16 CPUs, we initially configured Slurm to operate with the Consumable
Resources plugin.

The scheduling of big jobs usually implies a drop of a cluster’s utilization when
Backfill is used as the scheduling algorithm. For instance, the original NCI workload
contains 14 jobs asking for 20,000 CPUs. Such big jobs would require almost 35% of
the NCI’s supercomputer capacity to run.

For next the experiment, we gave high priority to all jobs in our workload asking
for more than 3,800 CPUs. There were 31 jobs in this category with only one of these
requiring 20,000 CPUs.

Figure 5.1 shows how the cluster utilization was negatively affected by the sub-
mission of a high priority 20,000-CPU job. Because of its high priority, this job was
immediately put in the beginning of the queue. As jobs finished, the newly released
CPUs were not used to run other jobs but instead they were kept idle until the
scheduler had collected enough CPUs to run this big job. This caused a drop in
the utilization between the submission and the start of a big job, as illustrated by
Figure 5.1.

The Suspend/Resume algorithm, on the other hand, relies on the immediate
suspension of lower priority jobs to run a high priority job. However, as shown in
Figure 5.2, we detected an anomalous drop in the cluster utilization when big jobs are
submitted. Figure 5.3 shows that the reason for this drop is that Slurm is suspending
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Figure 5.1: Cluster utilization affected by the submission of 31 big jobs. Only the submission
(red line) of a high priority 20,000-CPU job for Backfill is shown. The drop in the utilization
after this submission is related to the time necessary to reserve enough CPUs to start (yellow
line) this job.

Table 5.1: Backfill and Suspend/Resume comparison using Linear plugin. The standard
deviation for each metric (5 runs) is shown in parentheses.

Algorithm WT (s) RT (s) SD WS UT (%)

Backfill 718.2 (93.3) 123.8 (12.2) 291.7 (51.2) 135.2 (16.0) 97.7 (0.4)
Suspend/Resume 567.0 (85.1) 119.9 (11.8) 227.2 (41.3) 105.1 (11.6) 99.3 (0.4)

more than necessary jobs when a higher priority job is submitted.
We then reconfigured Slurm to operate with the Linear Plugin and we modified

the workload combining all jobs that requested less than 16 CPUs into jobs asking for
at least this number, and we run again the same experiments. As shown in Figure 5.4,
Backfill still presented the same overall behaviour when the 20,000 CPU job was
submitted.

However, Figure 5.5 shows a much more improved performance for Suspend/Re-
sume, where only the necessary number of jobs were suspended in order to run a
bigger-higher priority job.

The classical metrics were evaluated for five workloads randomly shuffled and the
results are shown in Table 5.1. We concluded, based on this data, that Suspend/Re-
sume can be considered a superior scheduling algorithm than Backfill when the
workload contains jobs whose size are significant in comparison to the cluster’s size.

It is worth noting that Slurm is used in 5 of top 10 HPC systems [Rodrigo et al.,
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Figure 5.2: Cluster utilization affected by the submission high priority jobs for Suspend/Re-
sume scheduling algorithm. The drops in the utilization coincides with the submission of
big-high priority jobs. For comparison with Backfill the submission, the start and end of the
20,000-CPU job is also shown. The start instance (yellow line) coincides with the start (red
line) since the Suspend/Resume algorithm starts a high priority job as soon as it is submitted.

Figure 5.3: Cluster utilization, high priority jobs and suspended jobs. This graph shows that
the implementation of Slurm for Suspend/Resume is suspending more low priority jobs than
necessary to run a higher priority job.
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Figure 5.4: Cluster utilization for Backfill for a new workload a utilising the Linear Plugin.
All jobs in this workload ask now for at least 16 CPUs (A whole node). The overall behaviour
is still the same as presented in Figure 5.1

Figure 5.5: Cluster utilization, high priority jobs and suspended jobs. This graph shows
the Linear plugin suspends only the necessary number of lower priority jobs to run higher
priority jobs, which results in a high cluster utilization.
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2017], however this obvious lack of optimization in the implementation of the Con-
sumable Resources plugin, if was ever known , had not been corrected in the Slurm
version used in this thesis. This absence of optimization in this plugin would prevent,
for instance, the adoption of Slurm at facilities that intend to use the Suspend/Re-
sume technique at the same time as the Consumable Resources plugin.

5.3 Summary

This chapter showed the application of the methodology proposed in the last chap-
ter to evaluate two scheduling algorithms implemented in Slurm. We found that
Suspend/Resume showed an overall better performance when compared to Backfill
but only for the Linear plugin and only when big jobs are present in the workload.
When Slurm was configured to operate with the Consumable Resources plugin, Sus-
pend/Resume suspended more than necessary lower priority jobs.



Chapter 6

Conclusion

Considering that supercomputers are continuously increasing in size, utilization and
complexity and the lack of suitable frameworks to support the software development
life cycle [Rodrigo et al., 2017], a simple and effective technique to emulate a real size
cluster is certainly a valuable tool.

In this thesis, we presented an overview of the past and current scheduling re-
search and introduced an effective framework to support the evaluation of scheduling
algorithms. We overcame the limitations of scheduling simulations, like scheduling
processing time, communication latencies and implementation complexities by intro-
ducing a small set of programs, scripts, and methodologies that emulates a real size
computing cluster.

We have shown how a computing cluster hosted on the Nectar cloud with one
head node and ten processing nodes running Slurm was able to emulate a 3600
node/57600 CPUs supercomputer, which was very close to the NCI’s supercomputer
specification.

We also developed a small dummy program, sigsleep to play the role of a job
during the emulation of a supercomputer’s workload. It has a small memory footprint
and demands little CPU time. Yet, unlike sleep, sigsleep keeps track of the suspension
periods by detecting and dynamically storing the instants that the suspension and
resume signals are sent by Slurm. Sigsleep also logs all data related to its run which
allows the evaluation of the classical metrics as well the production of all graphs
here presented. The job submission was controlled by a script, run_workload that read
a workload and submitted all sigsleep jobs to the cluster. The resulting trace was
processed by another program, calcmets, that read the trace, evaluated the classical
metrics and, optionally, outputted time series data that can be used to produce graphs
like the ones shown in this thesis.

We studied four artefacts related to classical metrics; concurrency, submission
order, sampling and time shrinking.

Concurrency arises from the non-deterministic nature of time dependent emula-
tions in distributed systems. We found that concurrency indeed affects the values of
the classical metrics, but in a small enough degree to conclude that our experiments,
though carried out in a distributed system, are reasonably reproducible.

As noticed by different authors, the relative performance of scheduling algorithms
depends on the workload used. We have shown that, for Backfill and Suspend/Re-
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sume, it is enough to just randomly change the submission order of a single workload
to alter the relative performance of their algorithms. In the absence of a strong reason
to keep the submission order of a workload unaltered, we suggest that evaluation
of the scheduling algorithms be performed using a set of workloads generated by
randomly changing the submission order and averaging the classical metrics.

Sampling is a technique to extract a smaller set of jobs from an original workload.
Sampling is necessary when the original workload spans a long period of time.
Ordering the original workload by respectively expected runtime, runtime and size,
and then sampling guarantees the same size distribution. The submission order is
automatically guaranteed if the sort algorithm is stable. When the sampling was done
in this way the variation of the classical metrics values was found to be smaller than
the variations induced by changes in the submission order.

Time shrinking is another technique to further speed up the emulations. We ex-
plored in this thesis the limits of time shrinking for the expected and actual runtimes.
We discovered that, if the submission time was controlled by the submission script
and constant drifts were added to each submission period, we were able to shrink
the times up to 90-93%. This resulted in speed ups between 10 to 14 times which are
compatible with the results found by [Rodrigo et al., 2017] and [Lucero, 2011].

We used the above methodology to evaluate the implementation of two popular
scheduling algorithms in Slurm, Backfill and Suspend/Resume. We found that Sus-
pend/Resume is only superior to Backfill when processing workloads that contain
jobs whose sizes are comparable with the cluster’s size. In this case, the suspension
of smaller and lower priority jobs and the immediate starting of a bigger and higher
priority job produces a more optimised utilisation of the cluster and, consequently,
better values for the classical metrics. Backfill, on the other hand, needs to keep idle
CPUs until it has collected enough CPUs to run the big job, which results in a drastic
drop in the cluster utilisation during this period.

Despite the widespread Slurm utilisation in HPC facilities around the world, we
found a lack of optimization in its Suspend/Resume implementation. When we
configured our cluster to schedule individual CPUs using the Consumable Resources
plugin, we noticed that Slurm suspended almost twice the CPUs needed to run a
higher priority job. This, obviously, negatively influences the cluster utilisation and
classical metrics. On the other hand, the Linear plugin, which selects only whole
nodes, had a much better performance and suspended only the necessary number of
CPUs in order to run a higher priority job.

6.1 Future Work

One potential direction for the research here presented would be the use of Linux
containers to simulate the computing nodes of a supercomputer. Linux containers
are a lightweight virtualization technology that uses the Linux kernel and cgroups
to run multiple Linux systems within a single computer host. A program running
inside a container is isolated from all other programs in other containers and it can
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be accessed through an internal virtual network.
In this thesis, we used specific Slurm features to emulate a bigger cluster, but the

techniques here presented can be easily adapted to be used in a cluster made out of
Linux containers. An advantage of such design is the possibility to run the same ex-
periments but using different RMS’s like Moab/Torque [Ada, 2017], LoadLever [IBM,
2017] and PBS-pro [Alt, 2017]. Since such experiments would run in the same hard-
ware and software platform they would provide a direct comparison on the per-
formances of different RMS’s, as well the quality of their scheduling algorithms
implementation.
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Appendix A

Scripts

The first script shows the sequence of commands to independently measure the
duration of a sleep 10 command. The date command(3) returns epoch time. The
output "Sleeping time: 10", as expected, coincides with the time set for sleep.

1 #!/bin/bash
2

3 # Store the start time in seconds
4 START=$(date +%s)
5

6 # Sleeps 10 seconds
7 sleep 10
8

9 FINISH=$(date +%s)
10 echo "Sleeping␣time:␣"$((FINISH-START))

(a) testSleep1.

1 Sleeping time: 10

(b) testSleep1 output.

Figure A.1: Sleep program demonstration using a bash script.

The script shown in A.2 mimics the sequence of bash commands starting with
sleep 10(12) followed by CRTL-Z (22), which suspends and sends the program sleeps
to the background, a waiting period of 5 seconds(25), ending by fg(28,31), which
resumes the program and bring it to the foreground. If sleep was aware of the time
that it was suspended the total sleeping time would be 15 seconds but, as the output
shows, the total time of this script still continues to be 10 seconds.
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1 #!/bin/bash
2

3 # Tests the
4

5 # Turn on monitor mode (otherwise fg %1 won’t work)
6 set -o monitor
7

8 # Store the start time in seconds
9 START=$(date +%s)

10

11 # Sleeps 10 and send it to the background
12 sleep 10 &
13

14 # Store the sleep PID
15 SLEEP_PID=$!
16

17 # A necessary dummy instruction. Otherwise the next kill -TSTP
18 # command will suspend "sleep 10" before it has time to start.
19 sleep 0
20

21 # Suspend "sleep 10". Same as CRTL-Z
22 kill -TSTP $SLEEP_PID
23

24 # Sleep more 5 seconds
25 sleep 5
26

27 # Resume "sleep 10"
28 kill -CONT $SLEEP_PID
29

30 # Brings the "sleep 10" to the foreground
31 fg %1
32

33 FINISH=$(date +%s)
34

35 # If "sleep 10" keeps track of the suspension time
36 # the whole time would be 10 + 5 = 15 seconds
37 echo "Sleeping␣time:␣"$((FINISH-START))

(a) testSleep2.

1 sleep 10
2 Sleeping time: 10

(b) testSleep2 output.

Figure A.2: Demonstration that the sleep program is not affect by suspensions.
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Slurm Configuration File

Figure B.1 displays a set of selected parameters from the Slurm configuration file
which are relevant to the experiments discussed in this thesis.

1 ControlMachine= c l u s t e r
2 AuthType=auth/munge
3 CryptoType=crypto/munge
4 MaxJobCount=50000
5 ReturnToService =1
6 S lurmct ldPidF i le=/var/run/slurmct ld . pid
7 Slurmct ldPort =6817−6836
8 SlurmdPidFile=/var/run/slurmd.%n . pid
9 SlurmdSpoolDir=/var/spool/slurmd.%n

10 SlurmUser=slurm
11 StateSaveLocat ion=/var/spool/slurmd
12 Ki l lWai t =600
13 MessageTimeout=20
14 MinJobAge=10
15 OverTimeLimit=1
16 SlurmctldTimeout =120
17 SlurmdTimeout=300
18 Waittime=0
19 FastSchedule =2
20 SchedulerType=sched/ b a c k f i l l
21 SchedulerPort =7321
22 SchedulerParameters=defer , bf_continue , batch_sched_delay =10 , b f _ r e s o l u t i o n =120 , b f _ i n t e r v a l =30 , sched_min_interval

=2000000 , max_rpc_cnt =100 , max_sched_time=5
23 SelectType= s e l e c t /cons_res
24 SelectTypeParameters=CR_CPU
25 PreemptMode=SUSPEND,GANG
26 PreemptType=preempt/ p a r t i t i o n _ p r i o
27 ClusterName= c l u s t e r
28 SlurmSchedLogFile=/var/slurm/log/slurmsched . log
29 # COMPUTE NODES
30 NodeName=DEFAULT CPUs=16 S t a t e =UNKNOWN
31 NodeName=fnode [1−10] NodeHostname=node[1−10] Port =11700
32 . . .
33 NodeName=fnode [3591−3600] NodeHostname=node[1−10] Port =12059
34 PartitionName=DEFAULT Nodes=fnode [1−3600] MaxTime=INFINITE STATE=UP Shared=FORCE: 1 PreemptMode=suspend
35 PartitionName=low Default=YES P r i o r i t y =10
36 PartitionName=hig Default=NO P r i o r i t y =30

Figure B.1: Slurm configuration file for backfill experiments.
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Appendix C

sigsleep

1 // To compile a program that uses clock_gettime, you need to link with librt.a
2 // (the real-time library) by specifying -lrt on your compile line.
3 #include <fcntl.h>
4 #include <inttypes.h>
5 #include <signal.h>
6 #include <stdbool.h>
7 #include <stdio.h>
8 #include <stdint.h>
9 #include <stdlib.h>

10 #include <sys/types.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <time.h>
14 #include "job.h"
15 #define dbl_ts(x) (x.tv_sec + ( x.tv_nsec / 1000000000.0 ))
16

17 struct job_data job;
18 struct timespec submission, start, end, runtime, suspend, resume, remain,
19 susp_i, end_trace;
20 struct suspend_period *sus_res = NULL;
21

22 void sighandler(int signum) {
23 sus_res = (struct suspend_period*)malloc(sizeof(struct suspend_period));
24 clock_gettime(CLOCK_REALTIME, &suspend);
25 sus_res->suspend = dbl_ts(suspend);
26 signal(signum, SIG_DFL); // Re-setting the default behavior
27 kill(getpid(), signum); // Re-sending the signal to obtain the
28 // default behaviour
29 }
30

31 int main(int argc, char *argv[]) {
32 if (argc != 9) {
33 printf("Wrong␣number␣of␣arguments\n");
34 }
35 job.id = atoi(argv[1]);
36 strcpy(job.prio,argv[2]);
37 job.n_cores = atoi(argv[3]);
38 submission.tv_sec = atoi(argv[4]);
39 submission.tv_nsec = atoi(argv[5]);
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40 remain.tv_sec = atoi(argv[6]);
41 remain.tv_nsec = atoi(argv[7]);
42 end_trace.tv_sec = atoi(argv[8]);
43 end_trace.tv_nsec = 0;
44 job.submission = dbl_ts(submission);
45 job.runtime = dbl_ts(remain);
46 job.orig_runtime = job.runtime;
47 job.sus_res = NULL;
48 job.n_suspensions = -1;
49

50 clock_gettime(CLOCK_REALTIME, &start);
51 job.start = dbl_ts(start);
52 resume = start;
53

54 if (start.tv_sec < end_trace.tv_sec) {
55 do {
56 signal(SIGTSTP, sighandler);
57 job.n_suspensions++;
58 if (job.n_suspensions > 0) {
59 // job was suspended and it was now resume. The memory
60 // allocation and the suspension time were dealt inside
61 // the singhandler function
62 clock_gettime(CLOCK_REALTIME, &resume);
63 sus_res->resume = dbl_ts(resume);
64 job.total_suspension += sus_res->resume - sus_res->suspend;
65 sus_res->next = job.sus_res;
66 job.sus_res = sus_res;
67 }
68 if ((resume.tv_sec + remain.tv_sec) > end_trace.tv_sec) {
69 // this job would finish after the end of the trace
70 // Correcting its remaining time and runtime.
71 if (resume.tv_sec > end_trace.tv_sec) {
72 // Discount the remainning sleeping time and finish
73 // the job immediately
74 job.runtime -= dbl_ts(remain);
75 break;
76 } else {
77 // job corrects its runtime and finishes
78 job.runtime = job.runtime - (remain.tv_sec -
79 (end_trace.tv_sec - resume.tv_sec));
80 remain.tv_sec = end_trace.tv_sec - resume.tv_sec;
81 }
82 }
83 runtime = remain;
84 } while (nanosleep(&runtime, &remain) == -1);
85 clock_gettime(CLOCK_REALTIME, &end);
86 job.end = dbl_ts(end);
87 } else {
88 // job started after the end of the trace. In this case lets finish it
89 job.start = dbl_ts(end_trace);
90 job.end = job.start;
91 job.n_suspensions = 0;
92 job.runtime = 0.;
93 }
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94

95 int fd = open("/short/jobs/logs/busySleepLog", O_WRONLY | O_APPEND);
96 struct flock lock;
97 memset(&lock, 0, sizeof(lock));
98 lock.l_type = F_WRLCK;
99 fcntl(fd, F_SETLKW, &lock);

100 write(fd, &job, sizeof(struct job_data));
101 while (sus_res != NULL) {
102 write(fd, sus_res, 2*sizeof(double)); // not writing pointers
103 sus_res = sus_res->next;
104 }
105 lock.l_type = F_UNLCK;
106 fcntl(fd, F_SETLKW, &lock);
107 close(fd);
108 return 0;
109 }
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