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Abstract

A second harmonic generator is constructed to investigate the power and noise behaviour 
of optical frequency conversion.

Strong squeezing of the second harmonic is demonstrated. It is found that pump 
noise critically affects the squeezing, with attenuation of the pump noise significantly 
improving the squeezing. A modular modelling approach is used to describe and quan­
tify this effect, and excellent agreement is found between theory and experiment.

Two methods of SHG are possible, passive (occurs external to a laser) and active (oc­
curs within a laser). Theoretically exploring the possible squeezing regimes, the effect of 
laser noise on both methods is considered. It is concluded that active SHG is not feasible, 
as the high dephasing of practical lasers totally destroys the squeezing.

It is shown that the second harmonic generator can simultaneously support multiple, 
interacting, second order nonlinear processes. Two categories of interaction are iden­
tified: competing, where the interacting processes do not share all of the modes; and 
cooperating, where they do.

Competing nonlinearities are evident in the system as triply resonant optical paramet­
ric oscillation (TROPO): where second harmonic generation (SHG) and non-degenerate 
optical parametric oscillation (NDOPO) occur simultaneously. Power clamping of the 
second harmonic and nondegenerate frequency production in both the visible and in­
frared are observed and explained, again obtaining good agreement between theory and 
experiment. Design criteria are given that allow TROPO to be avoided in future efficient 
SHG systems.

The second harmonic squeezing is observed to be degraded by TROPO, with a max­
imum value occurring just before the onset of TROPO -  in contrast to predictions for 
closely related systems. A model is developed that shows this is due to two effects: a 
noise eating effect related to the second harmonic clamping; and low frequency noise 
added by the additional TROPO modes.

A model of cooperating nonlinearities is developed that shows a wide variety of third 
order effects, including cross- and self phase modulation (Kerr effects) and two photon 
and Raman absorption, are in principle possible in the second harmonic generator. A 
strong third order effect is demonstrated experimentally: the system is phase mismatched 
and optical bistability is observed that is shown to be due to the Kerr effect.

Arguments are presented to prove that, in principle, the system acts as a Kerr medium 
even at the quantum level. A model of Kerr squeezing is developed that allows consider­
ation of the effect of pump noise: it is shown that the predicted squeezing is sensitive to 
both the amplitude and phase quadratures of the pump. Strong classical noise reduction 
(but no squeezing) is observed on light reflected from the cavity. It is speculated that the 
squeezing is masked by excess phase noise from the laser.

Due to the quantitative and qualitative agreement between experiment and theory, 
and the experimental reliability of the system, it is concluded that SHG is now a well un­
derstood and practical source of squeezed light. The potential for future systems, given 
the availability of new nonlinear materials, is discussed.
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Chapter 1

Introduction

Science and technology are separate, but forever intertwined, disciplines. At their best 
they are enabling, with advances in one opening up new vistas for both: the electrical ba­
sis of modem society can be traced to esoteric 18th and 19th century science; conversely, 
a straight intellectual line can be drawn from the mechanical clock to General Relativ­
ity. The laser is a prime example of an enabling technology, with many new sciences 
and technologies resulting from its development. In this thesis we examine the interac­
tion of two such fields that owe their existence to the laser: quantum optics and optical 
frequency conversion.

Optical frequency conversion was first demonstrated in 1961 by Franken and col­
leagues [1], just one year after the first demonstration of the laser [2]. They doubled the 
frequency of a pulsed helium neon laser (694.3nm to 347.2nm) with a conversion effi­
ciency of one millionth of a percent. Throughout the 1960's there were theoretical and 
experimental advances, with the realisation that any frequency manipulation that could 
be performed at radio frequencies, could, in principle at least, be performed at optical 
frequencies. Further technological advances were limited by the performance of avail­
able nonlinear materials, and during the 1970's the field lost much of its impetus as the 
tunable dye laser became seen as the solution to wideband optical frequency production. 
However dye lasers did have considerable experimental disadvantages (mechanically 
complicated, require separate pump laser) and the field once again gained impetus in the 
1980's with the introduction of a suitable optical sources in the form of narrow linewidth, 
solid state lasers (notably the Nd:YAG nonplanar ring oscillator, or NPRO), and the com­
mercial availability of good nonlinear materials. In the last few years both strong up 
and down conversion sources have been developed (second harmonic generation and 
optical parametric oscillation, respectively). At the inception of this thesis, conversion 
efficiencies of 10-40% had been reported and were regarded as impressively high; cur­
rently, figures of 60-80% are regarded as standard. With the rapid development of such 
efficient sources, previously neglected effects, such a simultaneous up and down conver­
sion, have taken on a new significance.

In principle, quantum optics could have been developed as a coherent field any time 
after the final synthesis of quantum mechanics in the 1930's. However, lacking the laser, 
there was no strong impetus to do so, nor a suitable experimental system against which to 
test the theory. Theoretical work began soon after the development of the laser, and con­
tinued throughout the 1960's and 70's. Wider attention was focussed on the field when 
Caves [3] suggested that the sensitivity of interferometers (in particular, interferometers 
to detect gravitational waves) could be improved via the use of squeezed states. These are 
states of light where one quadrature is quieter than the standard quantum limit (SQL). 
Experimentally, the SQL is seen as a flat noise floor on the photocurrent spectrum of the 
detected light, and is thus also known as quantum noise. Squeezing was first demon­
strated in 1985 by Slusher et. al [4]; this was also the year that the input/output for­
malism was developed, which allowed theoretical predictions of quantum noise spectra 
that could be tested against experiment [5]. At the inception of this thesis several bright



2 Introduction

continuous-wave squeezed sources had been demonstrated, but none had achieved their 
predicted potential.

In this thesis we examine the classical and quantum dynamics of optical frequency 
conversion. In particular, we focus on the steady state behaviour of continuous wave 
cavity systems, the system is thus in the linearisable limit. In this limit, the concern 
of classical dynamics is the origin, destination, and frequency behaviour of the optical 
power; similarly the concern of quantum dynamics becomes the origin, destination, and 
frequency behaviour of the quantum noise.

The primary aim of the thesis is to understand what happens to quantum noise in 
second harmonic generation (SHG), where light is produced at twice the frequency of the 
original light. We build and analyse a SHG experiment to address the following questions 
-  where is squeezing generated? how much? what limits it? and how reliable can it 
be made? There has been much previous theoretical and experimental work on these 
questions , which is described in detail at the beginnings of Chapters 4 & 6. To briefly 
summarise previous results: there are two forms of SHG, passive (external to a laser) 
and active (internal to a laser). In principle either form can provide strong squeezing. 
Experimentally, SHG is an attractive source of squeezing as it can be made very stable 
and reliable, and only requires one nonlinear stage. However in practice squeezing has 
only been observed in passive systems, and it has always been less than predicted. We 
aim to explain these results, demonstrate strong squeezing in agreement with theory, find 
what limits the squeezing, and recommend steps to avoid these limits.

As a consequence, a secondary aim of the thesis is to explore the power behaviour of 
an efficient SHG system. SHG is a second order optical effect (where first order effects 
are standard linear optics). As reviewed in Chapters 2, 7 & 8, in recent years there has 
been investigation into a number of curious optical effects in second-order systems that 
are due to two or more second-order processes occurring simultaneously. Depending on 
the nature of the interaction, the final behaviour can effectively be either second-order or 
third-order in nature. Previously, strong second-order effects due to interacting processes 
have been demonstrated in efficient continuous wave systems (such as nondegenerate 
frequency production around the fundamental in SHG); however no strong third order 
effects have been demonstrated. We aim to explore which of these effects can and do 
occur in our experiment, and detail their experimental signatures. Further, we aim to un­
derstand the effect these higher order interactions have on the quantum noise behaviour 
of the system.

1.1 Thesis plan

In the first part of Chapter 2 we give an overview of second order optical processes. In 
the second part we model classical second harmonic generation, and discuss the dou­
bly vs singly resonant limits. The third part introduces the idea of interacting nonlin­
earities. In the fourth we present and contrast a classical model for second harmonic 
generation (SHG) interacting with simultaneous nondegenerate optical parametric os­
cillation (TROPO) and predict power clamping in addition to nondegenerate frequency 
production. In the fifth part we look at the interaction of SHG with itself, and introduce 
equations that shows this can lead to a number of third order effects, notably the Kerr 
effect which we consider in some detail.

The first part of Chapter 3 is an introduction to quantum theory (readers already 
familiar with this material may wish to skip this section, but are advised to read the
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discussion of the sideband picture); the second part looks at the two core methods for 
modelling quantum systems, and the third part is a detailed exposition of the method 
favoured in this thesis (the Heisenberg approach) for the case of an empty cavity.

At the beginning of Chapters 4, 6, 7, & 8, there is an appropriate review of previous 
research. In Chapter 4 the limits to squeezing in both active and passive second harmonic 
generation are explored via a Schrödinger approach -  this is the only place in the thesis 
where the Heisenberg approach is not used, and comparison between the two shows the 
strong advantages of the Heisenberg approach. The first and second parts of the chapter 
introduce the model and numerical parameters, respectively. In the third part, the limits 
to squeezing are explored graphically, with intuitive interpretations provided to explain 
the predicted behaviour.

Chapter 5 is a very detailed discussion of the design and construction of the exper­
iment. The first three parts discuss the laser and modecleaner, and optical path. The 
fourth section concerns the doubling cavity, with particular emphasis placed on design 
considerations. The last two parts discuss the locking system and detection systems.

Chapters 6,7, & 8 contain the bulk of the experimental results. The first part of Chapter 
6 presents a quantum model of singly resonant frequency doubling, and predicts squeez­
ing of the second harmonic. The second part presents the concept of a modular approach 
to noise propagation. The third part presents the experimental squeezing data. Pump 
noise is found to degrade the squeezing; attenuating this noise improves it significantly. 
Using the results of the first two parts of the chapter, excellent agreement is found be­
tween theory and experiment.

Chapter 7 explores the classical and quantum signatures of TROPO. Data is presented 
in the first part of the chapter that shows nondegenerate frequency generation in both 
the visible and the infrared; in the second part power clamping of the second harmonic 
is demonstrated. In the third part a model is developed for the effect on the second 
harmonic noise, and data is presented that confirms the dual effects of noise eating and 
additional low frequency noise.

Chapter 8 considers and explores the classical and quantum behaviour of the Kerr 
effect. The first part explores the nonideal phase matching of our experiment, the sec­
ond part reports significant optical bistability, which demonstrates that large third order 
effects are possible in practical, continuous wave, second order systems. The third part 
introduces a quantum theory of the Kerr effect, and highlights the sensitivity of the Kerr 
effect to both quadratures of the pump noise. The fourth part reports noise reduction (of 
1.5-1.8 dB) on the beam reflected from a doubler run as a Kerr cavity.

Chapter 9 briefly summarises the results, discusses future research, and highlights 
a number of concepts for general consideration, including removing the effect of pump 
noise via optical cancellation. Appendix 1 contains an brief analysis of optical cancella­
tion in SHG, using the Heisenberg approach.

The thesis has been written both as a report and as pedagogical document. It also 
encompasses a fair amount of conceptual ground. Given this, it is natural that many 
readers will only be interested in a selection of the thesis topics. Accordingly, as far as 
was possible, the thesis has been written in a modular fashion. If the reader is chiefly 
interested in classical frequency conversion, the key components are Chapters 2 and the 
relevant experimental results presented in Chapters 6 & 7. If instead the reader's interest 
is quantum optics theory, then the key components are Chapters 3 & 4 and the relevant 
theoretical sections of Chapters 6, 7, & 8. Experimentally minded readers can find the 
nuts and bolts of the experimental design in Chapter 5, and the experimental squeezing 
and noise reduction results in Chapters 6, 7, & 8.



4 Chapter 1 bibliography

Chapter 1 bibliography
[1] P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, Physical Review Letters, 7, no. 4, p. 118,1961. 

Generation of optical harmonics. Note that the second harmonic is so faint that the spectrometer output 
at 347.2nm did not reproduce well, and cannot be seen in the actual journal article!

[2] T. H. Maiman, Nature, 187, p. 493,1960. Stimulated Optical Radiation in Ruby Masers

[3] C. M. Caves, Physical Review D, 23, no. 8, p. 1693,1981. Quantum-mechanical noise in an interferometer

[4] R. E. Slusher, L. W. hollberg, B. yurke, J. C. Mertz, and J. F. Valley, Physical Review Letters, 55, no. 22, 
p. 2409,1985. Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity

[5] M. J. Collett and D. F. Walls, Physics Review A, 32, no. 5, p. 2887,1985. Squeezing spectra for nonlinear 
optical systems



Chapter 2

Classical nonlinear optics

When an electromagnetic (em) wave passes through a dielectric material, the electrons of 
the constituent atoms or molecules are disturbed. As the valence electrons are displaced 
from their normal orbits by the em wave, temporary dipoles are formed in the material. 
The dipoles thus form a polarisation wave in the material. This wave reradiates an em 
field.

For low em field strengths the polarisation wave mimics the incoming em wave. The 
reradiated em wave thus matches the incident em wave. This regime is the province 
of linear optics, for example, light passing through glass. At higher field strengths the 
dipole response is distorted. The reradiated wave contains new frequency components 
that depend on higher orders of the field. This is the province of nonlinear optics l .

The induced macroscopic polarisation, P, is a function of the applied electric and 
magnetic fields, E, B. P can be expanded in a convergent power series:

P = X[l)E + x{2)E2 +  x,{2)E.B + x {3)E 3 +  . . .  (2.1)

where x ^  is the linear susceptibility, and x ^  and x ^  are weaker, higher order nonlin­
earities in the dielectric response. The x ^  term describes linear effects, including the 
electrooptic and photoelastic effects. For the case of an applied DC magnetic field, the 
x '( 2) term describes the Faraday effect. The x ^  term describes third order optical effects, 
such as Four Wave Mixing (FWM), third harmonic generation (THG), self phase mod­
ulation (optical Kerr effect), cross phase modulation (optical cross-Kerr effect), applied 
field phase modulation (electronic Kerr effect), 2 photon absorption (2PA), and Raman 
processes.

In this thesis we consider optical x ^  processes. That is, both electric fields are due to 
the optical em field. (For the case of an applied DC electric field, the x ^  term describes 
the Pockel effect). As intensity is proportional to the square of the electric field, all optical 
X ^  processes are intensity dependent.

2.1 Overview of optical processes

Optical x ^  processes fall into one of two complementary categories: upconversion, 
where 2 low frequency photons are converted into one high frequency photon; or down- 
conversion, where one high frequency photon is converted into two low frequency pho­
tons. Note that optical x ^  processes are always explicitly 3 photon processes. Fig. 2.1 is 
a schematic overview of possible x ^  processes. Optical fields are shown incident onto 
a lossless x ^  material. New fields are generated inside the material, and are shown ex­
iting from the material along with possible residual input fields. The residual fields are 
either from fields not directly involved in the x ^  process, or are due to less than perfect 
nonlinear conversion. To emphasise again that x ^  processes are explicitly 3 photon pro-

'The discussion in these two paragraphs is basically that given in Koechner [1, Ch. 10],

5
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Figure 2.1: Schematic overview of basic x ^ P rocesses- Fields explicitly involved in the 
process are shown in black. Possible residual fields are in grey. Vacuum inputs are not dis­

played. upconversion: parametric frequency generation, a) sum frequency generation (SFG): nonde­
generate. b) second harmonic generation (SHG): degenerate, downconversion: parametric amplifica­
tion - seeded by vacuum. In a cavity system these interactions lead to oscillation, in a travelling wave 
system they lead to parametric fluorescence, c) nondegenerate optical parametric oscillation /  
fluorescence (NDOPO/F). d) degenerate optical parametric oscillation /  fluorescence (DOPO/F).

cesses, the fields that explicitly involve the 3 photons are shown in black. Residual fields 
are shown in grey.

The top half of Fig. 2.1 shows the four basic x ^  processes. The processes on the left 
hand side of the figure are complementary to the those on the right. Fig. 2.1 (a) shows 
Sum Frequency Generation (SFG), where two fields at v \ , v2 are summed to form a fre­
quency i/3. SFG is implemented in frequency chains, and in detection of weak signals low 
optical frequencies (by upconverting to higher optical frequencies that can be detected 
with high efficiency). Second Harmonic Generation (SHG) is obviously the degenerate 
case of SFG, Fig. 2.1 (b). However it is of special interest as the two incoming photons can 
come from the same field. Due to this relative simplicity it is a very widespread tool for 
generating high optical frequencies, the low frequency field is known as the fundamental, 
the high frequency as the second harmonic. As two low frequency photons are required to 
produce one high frequency photon the second harmonic field and residual fundamental 
field tend to be anti-correlated.
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Figure 2.1: Schematic overview of basic x ^  processes, part 2. e) difference frequency genera­
tion (DFG) /  nondegenerate optical parametric amplification (NDOPA). f) difference frequency 
generation (DFG) /  degenerate optical parametric amplification (DOPA). upconversion: high fre­
quency amplification g) nondegenerate pump high frequency amplification, h) degenerate pump 
high frequency amplification.

Note that in both cases the quantum  noise in the generated field, u3, is influenced by 
the vacuum  noise at z/3 incident on the crystal. To keep Fig. 2.1 uncluttered the incident 
vacuum  fields are not shown. Please keep in mind however, that whenever a field is 
generated (right hand side of each block), there is an incident vacuum field at that 
frequency (left hand side of x ^  block, unshown).

Downconversion processes are also known as parametric amplification processes. 
They can be categorised as: vacuum seeded, where only the high frequency pum p field 
is incident on the system; and bright seeded, where there is an additional low frequency 
field. If the vacuum seeded downconversion takes place in a travelling wave system (no 
optical feedback) it is known as Optical Parametric Fluorescence (OPF). If there is optical 
feedback, i.e. the material is inside a cavity, then the the process is known as Optical 
Parametric Oscillation (OPO). In the nondegenerate case (NDOPO/F) the field splits into 
two low frequency fields, 1̂ ,  v2, where v3 = vx +  v2, Fig. 2.1 (c). This is the comple­
mentary process to SFG. The high frequency field is known as the pump field, the low 
frequency fields as the signal and idler fields. Unlike the upconversion processes, where 
the degree of degeneracy is set by the input fields, in downconversion it is set by the 
phase-matching of the crystal (see section 2.1.1 below). In the degenerate case (DOPO/F) 
the field is frequency halved, 1/3 =  2tq, Fig. 2.1 (c). The low frequency field is known
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as the subharmonic. DOPO is obviously complementary to SHG. Note that the x ^  ma­
terial is acting as a parametric amplifier of the vacuum field at u\ . For both DOPO and 
NDOPO the signal and idler fields are perfectly correlated to each other, as each pair of 
low frequency photons is produced by the one high frequency photon.

If we take either DOPO or NDOPO and seed it with a bright field at, say, , we induce 
Difference Frequency Generation (DFG) as shown in Figs 2.1 (e) & (f). The seed field is 
not directly involved in the x ^  process, it acts solely as a catalyst causing the pump 
field to downconvert so that one of the low frequencies matches the seed frequency. DFG 
is often referred to as Optical Parametric Amplification (OPA), as in the limit of perfect 
nonlinear conversion two photons (nondegenerate) or three photons (degenerate) at vY 
are produced for every one incident. DFG most often finds application in frequency 
chains.

The complementary processes, which are equivalent to SFG or SHG with an ad­
ditional pump field at v3, are rarely considered and have no widely accepted name, 
Figs 2.1 (g) & (h). Unlike the seeded downconversion processes, the frequency of the 
seed field does not influence the frequency of the generated wavelengths, which is set 
only by the phasematching conditions. However, if the seed field and the upconverted 
field(s) are the same frequency, then the system acts as an amplifier of the seed field. In 
the limit of perfect nonlinear conversion, for either case, two high frequency photons are 
produced for every incident high frequency photon.

The first four cases are limiting cases of the last four when the seed fields go to zero 
power. In these descriptive sketches we have neglected more complex issues such as the 
effect of unequal field intensities or phases.

2.1.1 Phase matching

Obviously for all the described x ^  processes both energy and momentum of the inter­
acting photons must be conserved. If we use the indices 1, 2, for the low frequency fields 
and the index 3 for the high frequency field, then energy conservation is expressed simply 
in terms of the the relevant photon frequencies, +  v2 = v3. Momentum conservation 
is expressed in terms of the optical wavevector, k, i.e. ki + k2 = k3. When this holds ex­
actly the system is said to be phase matched. To deal with situations where the momentum 
matching does not hold exactly, we define the phase mismatch, Ak = k3 -  (ki +  k2). In x ^  
materials, the wavevector, k, is related to the refractive index of the material, n, via the 
relation (from Yariv [2]):

k(i/, FI) = Uy/p£Ön(iy, II) (2.2)

Note that the refractive index is a function of both wavelength, u, and polarisation, II, and 
thus so is the wavevector. For a certain set of polarisation conditions, the phase matching 
condition becomes:

u\n(ui) + u2n(u2) = u3n(u3) (2.3)

If n(i/i) =  n(i/2), this reduces to:
n(r'i) = n(i/3) (2.4)

That is, the refractive index must be the same for the high and low frequencies. Physically 
this phase matching condition can be understood as follows. The phase velocity and 
wavelength of the polarisation wave that is established is determined by n(ui). The phase 
velocity and wavelength of the generated em wave is determined by n(i/3). Thus, for 
efficient transfer of energy from the polarisation wave to the em wave, n(^i) ~  n(i/3).

In crystalline materials the refractive index is normally polarisation dependent. This
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polarisation dependence offers a degree of freedom to achieve reasonable phase match­
ing. There are currently three methods for achieving phase matching in crystalline sys­
tems:

• Type I phase-matching. The refractive indices are equal when the two low frequency 
fields are of the same polarisation and the high frequency field has orthogonal polarisa­
tion. This can be achieved by orienting the crystal to a certain angle, setting the crystal to 
a certain temperature, or both. If the refractive indices are matched for light propagating 
at 90° to the optical axis the crystal is said to be noncritically phase matched. It is noncrit- 
ical in the sense that the light may propagate in any direction within the xy plane (where 
z is the optical axis) and the phase matching is more robust with respect to changes in 
temperature.

• Type 2 phase-matching. The refractive indices are equal when the two low frequency 
fields have orthogonal polarisations and the high frequency field has the same polari­
sation as one of the low frequency fields. Again, this can be achieved by orienting the 
crystal to a certain angle, setting the crystal to a certain temperature, or both.

• Quasi-phase-matching (QPM) If no particular effort is made to match the refractive in­
dices via Type I or II phase matching then, in general, after some relatively short distance 
(the coherence length, see eqn 2.17) the undesired complementary process begins to oc­
cur (e.g. downconversion instead of upconversion). At twice the coherence length there 
is no net nonlinear effect. In QPM materials the x ^  medium is periodically inverted 
every coherence length, so that the undesired process in suppressed and the desired pro­
cess continues for that coherence length. Arbitrarily long pieces of material can be phase 
matched in this manner. This is difficult in practice, as non-Type I,II coherence lengths are 
typically very short (a few microns) and best results are obtained only when the medium 
is totally and sharply inverted.

All three phase matching methods were first proposed in the 1960's. The first two are 
mature, in that there are several materials commercially available that span a range of 
optical frequencies. The third method only began to reach its full potential in 1996 [3, 4]. 
In this thesis, all experiments were carried out via Type I noncritical phase matching in 
magnesium oxide doped lithium niobate (see Chapters 5-8).

2.2 Second Harmonic Generation, SHG

2.2.1 Deriving the equations of motion

Figure 2.2: Schematic overview of a ring cavity Coupling mirror has reflectivity r, transmittivity, 
t.

Consider a field at a field of frequency u\ , A\, and field of frequency u2 = 2^i, A2 .
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The fields are defined such that the optical power is given by the absolute square, i.e 
P- =  A* A{. The two fields interact in a x<2) crystal of length Z. In the slowly varying 
envelope approximation (SVEA), the interaction is described by [2, p. 399]:

=  —tK,A3(z)AJ(z)/"(Akz) 
dz

~ = — is! k \ (z)//(Akz) (2.5)
dz

where k' is the nonlinear coupling parameter. The phase mismatch function, / ' ( Akz), 
also describes the effect of focussing for Gaussian waves:

+t'Akz
/'(Akz) = — —  (2.6)

In the rest of this chapter we will consider only plane waves, 2 r —> oo, so that.

/(Akz) =  e+iAkz (2.7)

Assuming the fields interact weakly, then after the length Z the fields become (integrating 
eqn 2.5):

Ai(Z) = A1(0) - z'k,ZA3(0) At(0)$(AkZ)
A3(Z) = A3(0) -  ik'Z Aj (0) g(AkZ) (2.8)

Where the function g(AkZ) is [5]:

g(AkZ) =  f (Akz)dz

+iAkZ
= s in c ( ^ )  e+‘^  (2.9)

Now consider the ring cavity shown in Fig. 2.2. A field Ain is incident on a mirror of 
reflectivity r, transmittivity, t. The field just inside the cavity is A, after one round trip 
the field becomes A'. The output field is Aout. The boundary conditions for the cavity 
are:

A = rA' + t Ain
Aout =  —rAin-MA' (2.10)

We require self-consistency, that is after one round-trip of time r  the cavity boundary 
conditions are fulfilled. So from eqn 2.10:

A(0, t + r) = rA(z, t) + £Ain(t) (2.11)

Using the Taylor expansion, f (x  + 5x) = f (x)  +  f (x)6x + ..., this becomes:

+ A(0, t) = rA(Z, t) + £Am(t) (2.12)
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Rewriting A(z, t +  r) =  A(z):

^ 5 1  = I A(Z) -  - A(0) +  - Ain (2.13)
at r  r  r

In practice, the mean field assumption (MFA), is satisfied, which implies that the am­
plitudes vary little along one round trip. Substituting eqn 2.8 into eqn 2.13 gives equa­
tions of motion for the scaled fields, <*,:

hi =  -7iari +  Ka3cq +  v^TiA'"

b3 = ~73»3 -  ~ a i +  (2-14)

where we have used the scalings:

Ax =  A3 = i y / k v t p c *  k = h'7j- ^ - hu\  </(AkZ)

Ai" = A!," = i\Zhi73s/r ^ K 7̂i =  3 L  (2-15)

and, as r ~  1, the approximation:

T = 1 - r 2, (1 -  r) =
T  _ T

(1 +  0  ~  2
(2.16)

The scalings are such that, a t, is dimensionless. The factor of one half that appears in the 
nonlinear term of the second harmonic equation of motion appears directly due to the 
frequency dependence of the scalings.

real part

imaginary
part

Phase mismatch, Ak z

Figure 2.3: Plot of g(AkZ) vs AkZ, where g(AkZ) = sinc(^z) e 1 2 . Black line = real part; gray 
line = imaginary part.

The nonlinear coupling, k, varies as as function of Ak & Z via the function g(AkZ). 
As shown in Fig. 2.3, g(AkZ) has both real and imaginary components. For perfect phase 
matching, Ak = 0, g(AkZ) is purely real. At AkZ = mr, where n = 1,2,3, . . .  both the 
real and imaginary components of g{AkZ) disappear: at these values there is no nonlin­
ear interaction whatsoever. As will be shown in section 2.2.3, the nonlinear conversion
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efficiency is dependent on the absolute value of k. Fig. 2.4 plots Z2|(/(AkZ)|2, the phase 
mismatch dependent part of |k|2, for several values of Ak. When Ak = 0 the nonlin­
ear coupling increases linearly with increasing interaction length. For Ak = 7r /(2) the 
nonlinear coupling reaches a maximum at Z =  2, i.e. the length where AkZ = n. This 
characteristic length is known as the coherence length, lc:

l
7r

Ak
(2.17)

If the phase mismatch is increased further, both the maximum possible nonlinear cou­
pling and the coherence length decrease accordingly. In practice it is impossible to achieve 
perfect phase matching; practical materials also suffer appreciable loss. To maximise non­
linear interaction and minimise loss it is best to design a system so that the crystal length 
is, at most, equal to the coherence length.

Ak = 0,
perfect phase match

Crystal length, Z

Figure 2.4: Nonlinear coupling parameter, |/c| versus crystal length, Z. a) A k = 0 b) Ak = n/‘2 c) 
Ak = 7r.

2.2.2 Decay rate of an optical cavity

There are several possible definitions of the decay rate, 7 , of an optical cavity. For a cavity 
in the steady state, we assume that the field varies smoothly over the length of the cavity, 
with no appreciable change in amplitude. This is known as the mean field assumption 
(MFA). Given the MFA, the field retained in the cavity after each mirror interaction can 
be described by a function that varies smoothly in time:

A(f) = rt/T = (2.18)

where r  is the cavity round trip time, r  = c0/np; c0 is the speed of light in vacuo; n is the 
refractive index; and p is the physical cavity perimeter. The free spectral range (FSR) of 
the cavity is the frequency spacing between cavity resonances, and is defined as 1 /  r. The 
intracavity field amplitude can modelled by an exponential decay:

A(0 = e"7t (2.19)
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Remembering that r = y/~R, simple algebra gives:

ye = — In r =  — Ini? (2.20)
r  2 r

Note that 7̂  diverges as R^O. However using the Taylor expansion:

ln (1 + £ ) —»£, for small x (2.21)

we can rewrite eqn 2.20 so that:

for x = r -  1, 7m = -(1  -  r) =  -(1  -  V r ) (2.22)
r  r

forx = i ? - l ,  7n = — (1 -  i?) (2.23)2 r

Note that eqn 2.23 is equivalent to that given in eqn 2.15. So from eqns 2.20, 2.22, 2.23, 
we now have 3 possible definitions of 7. How suitable are these? We can estimate this 
by considering what happens before the steady state is reached. Assume that intracavity 
power loss occurs only at the mirror, in a stepwise fashion (this is the opposite of the 
MFA). There are then two ways of modelling the intracavity power. We define these as 
Pa (make a round trip of cavity, then lose power at mirror), and P/, (lose power at mirror, 
then make a round trip of cavity). That is:

P a =  flround(t) (2 .24)

P 6 =  R r ound(t) +  1 (2.25)

where round(x) means "round to the nearest integer value of x". Pa & Pj, can be consid­
ered as bounds, in some sense, to the power loss from the cavity. In Fig. 2.5 these bounds 
are plotted, as are the power decay curves predicted using each definition of 7, P =
For R=0.99, Fig. 2.5(a), it is not possible to distinguish between the definitions of 7: they 
agree with each other and lie between the stepwise bounds. For moderate reflectivities, 
such as R=0.70, ye gives the best fit to the stepwise bounds, Fig. 2.5(b). At low reflec­
tivities, such as R=0.15, where we expect the mean field approximation to break down, 
ye still gives a surprisingly good fit to the stepwise bounds. However in the limit R—>-0, 
7m is the better fit, as ye predicts that photons leave the cavity instantaneously, which 
is physically unlikely given that in a standing wave cavity half the photons make one 
round trip, of duration r. As is clear from Fig. 2.5(b-d), for any but high reflectivities yn 
is a poor estimate of the cavity decay rate.

Inherent in this discussion is the assumption that the the cavity supports a single 
resonance of the field ("a mode"). The break down of ye as R—̂0 reflects the fact that this 
assumption breaks down. As a rule of thumb, when the linewidth of a resonance starts to 
approach the FSR then the cavity can no longer be said to be resonant ("a single mode"): it 
instead supports a field. Thus the explicit model of a resonance with a certain decay rate, 
no longer suffices. (A suitable definition of 7 can be obtained by retaining all the terms of 
the Taylor expansion when deriving the equations of motion via self consistency, so that 
eqn 2.12 contains a term that is the infinite sum of the Taylor terms [6].)

To summarise, for high reflectivities the definitions of 7 are equally valid. For moder­
ate reflectivities ye is the best definition, however as R—>0 it breaks down. In this regime 
ym is quite an acceptable definition. As in this thesis we we consider a wide range of
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reflectivities we will favour 7 m to maintain consistency.

g. 0.6

Time

g. 0.6

TimeTime

Figure 2.5: Decay of intracavity power versus time. Step functions are calculated as discussed in 
text. Smooth curves are plotted using various definitions of 7. a) R = 0.99 b) R = 0.70 c) R = 0.15 
d) R—>0.

2.2.3 Doubly vs singly resonant SHG

In section 2.2.1 we derived the equations of motion for a doubly resonant cavity, where 
both the fundamental and second harmonic modes are simultaneously resonant. Re­
membering that for simple SHG, = 0, we recast eqn 2.14 to define the equations of 
motion as 2:

hi =  — (71 +  fAi) 07 +  K O 3 07 +  ^ 2 7 jA\n

d'3 =  — (73 +  *A3) 0 :3 — —07 +  y/273A™  (2.26)

where A, is the detuning for each mode, the losses are related by:

li = l i + l i ther {227)

where 7 ,• is the total decay rate for mode i; -yf is the decay rate through the coupling 
mirror; and j f ther are decay rates due to internal losses, other mirrors, etc.

2The equations of motion 2.14 & 2.26 are effectively those first given in Drummond et. al. [7], except that 
the coupling follows the input/output formalism.
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We define the term (7,+iA,) as the effective decay rate of the cavity. To see why, consider 
the following argument. Without loss of generality, we can assume that the pump rates, 
A \n are real. If all detunings, At, are zero then the field values, n, are real. In this limit it 
is clear that the values of n, are limited by the total decay rates 7 if 7, are large then the 
absolute values of a, will be small. If the detunings are not zero, then the values of a t are 
complex, and their values are limited by both the decay rates, 7,• and the detunings, A,. If 
the detunings, A, are very large, then, even if 7, are small, the absolute values of a t will 
be small. Thus the detuning effectively increases the decay rate of the cavity.

The pump rates, A lf ,  are related to the pump power, P1", by:

Cavity ports include the outcoupling mirror, internal loss, and other cavity mirrors. The 
intracavity or circulating power of a mode i is given by:

where n*s is the steady state value of mode i; A lf  is the incident field for mode i; and ,4°ut 
is the reflected field for mode i.

The singly resonant case, where only the fundamental is resonant, can be derived 
using a similar argument as that given in section 2.2.1. Alternatively, we can use eqn 
2.26 directly. The advantage of this approach is that it makes the connection between the 
doubly and singly resonant cases transparent. In the singly resonant case the dynamics 
of the second harmonic field are much quicker than those of the fundamental. Thus, 
on the time scale of the fundamental field, the second harmonic is constant, letting us 
set d3 = 0. As discussed in section 2.5.3, we can set A3 =  0. Solving for d3 = 0, and 
assuming 73 = y3 we find:

Substituting this into eqn 2.26 we obtain the singly resonant equation of motion:

p;n = /«/j K -"!2 (2.28)

The power through a cavity port, j ,  for a mode, i, is given by:

Pj = 2huxl\3)\oi\2 (2.29)

(2.30)

The boundary conditions for the cavity are:

(2.31)

(2.32)

(2.33)

<*1 =  -(71  +  *Ai) Q'i -  H a i l2«! +  2 y/JtA'foL\ +  ^/2 'tfA ,1n (2.34)

where the nonlinear interaction, [i, is:

_ K2 (73 -  ZA3)
(2.35)

2 (7 3 +  A !)

For SHG, there is no power input at the second harmonic, so A 'f = 0 and the third term 
disappears.
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nonlinear conversion efficiency, r\

scaled reflected power,

Fundamental pump power [W]

Figure 2.6: Nonlinear conversion efficiency, T]ni, and scaled reflected power, Piefl/P ‘in, versus in­
cident power. Values used are: /i = .002; R  = 0.991; = 7 1 ; r  = 1.863 10- 1 0  s; A = 1064
nm.

Thus the first term of equation 2.34 represents linear loss and linear detuning, the 
second term, represents nonlinear loss, and if A3 /  0, nonlinear detuning [7], whilst the 
third term is linear gain. (A3 =  0 is the case given in Paschotta et. al. [8]). The nonlinear 
loss leads to power broadening of the cavity linewidth.

In singly resonant SHG, 7 J = l / r  and A3 can be ignored (see 2.5.3). Using eqns 2.35 
& 2.33 the boundary condition for the second harmonic becomes:

« r  =  \ / £ K T  (2-36)

Equation 2.34 is a cubic in alpha. We obtain the steady state solution:

a, =
(71 +  7nl +  i A i ) 2

(2.37)

where yni =  / i |a f |2. The generated second harmonic power is:

p 3 =

= M ^ K iv r i2
=  4hvi\A"in 12 7 n l7 l

( 7 l  +  7nl +  * 'A i)2

From eqns 2.28 & 2.38, we can calculate the nonlinear conversion efficiency, ?/„i:

4 7 i7 n l

(2.38)

Vnl
(7 l  +  7nl +  * A i ) 2 

The reflected fundamental power is given by:

p iefl _  1 _  47i(7ni +  [71 ~ 7il)

(2.39)

pm (71 +  7nl +  i'Ai)2
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47 i (Ti -  7i) 
(7i +  7nl +  i'Ai)2

(2.40)

For zero detuning, Ai = 0, Fig. 2.6 plots the nonlinear conversion efficiency and 
the ratio of reflected to incident power as a function of incident power. The maximum 
conversion efficiency, 7̂ ax, occurs at, 7ni = x\> with a value:

V T % =  ~  (2.41)
7i

(For 7  ̂ =  7x, perfect conversion occurs, i.e. ^ ax =  1). The pump power at which the 
maximum conversion efficiency occurs, is:

Pm ax conv  
1 2

M7ic
(2.42)

Small fundamental decay rates, large outcoupling ratios (71/ 71) and large nonlinear cou­
plings minimise the power at which maximum conversion occurs.

When the reflected power is zero the cavity is said to be impedance matched. For zero 
detuning this occurs at:

7n?P =  27i -  71» for 7i > 7 i/2 (2.43)

If 7j < 71/2 then there is no power at which the cavity is impedance matched. (Note that 
when 7 i = 7 i, = 71.) The impedance matching power, Pt1mp is given by:

p;mp = 2hvl ^ ± - 1± \  for Tlc > 7 l/2 (2.44)

2.3 Introducing: Interacting nonlinearities

In recent years there has been investigation into a wide number of optical effects in sec­
ond order systems: nonlinear phase shifts; optical bistability; power limiting; efficient 
and broadband frequency generation. All these effects can be considered as due to one 
of the basic x^processes, as considered at the beginning of the chapter, cascaded with at 
least another basic x ^  process, for example SHG followed by OPO. Hence they are often 
refereed to as cascaded nonlinearities.

As we shall see, the problem with this appellation is its generality. Very different 
effects have been labelled as cascaded effects (e.g.. dynamics of simultaneous SHG and 
NDOPO; nonlinear optical phase shift due to phase mismatched SHG; etc) but this name 
does not specify the actual mechanism that causes the effect. To clarify the situation, 
we introduce the concept of interacting nonlinearities. Interacting nonlinearities can be 
categorised as cooperating and competing. Cooperating nonlinearities are those where all 
the downconversion and upconversion processes share the same modes, e.g. v #  2u 
or v ±  A\ 1v. Competing nonlinearities are those where all the downconversion 
and upconversion processes do not share the same modes, e.g. v ^  2v #  v ± A2, 
or, v  ± A i  ^  2v #  v ± A2. We restrict the term “cascading" to describing situations 
where several different competing or cooperating nonlinearities occur simultaneously 
(for example, see section 7.1).
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Figure 2.7: Conceptual layout of competing SHG & NDOPO. Gray lines represent vacuum inputs, 
i.e zero average power.

2.4 C om peting  y ^  non linearities

Systems of competing nonlinearities have been mainly investigated for their potential 
as frequency tunable sources of light. Systems considered include: intracavity SFG and 
NDOPO [10, 11]; intracavity DFG and NDOPO [12]; and intracavity SHG and NDOPO 
[9, 13, 14, 15, 16, 17, 19]. In these systems the y^processes have been considered as 
occurring in separate nonlinear media or as occurring simultaneously in the one medium.

2.4.1 Competing SHG and NDOPO

In this section we will focus on competition between SHG and NDOPO. Consider a 
cavity system in which SHG and NDOPO occur simultaneously. Fig. 2.7 shows the con­
ceptual layout. A frequency doubler, resonant at and pumped by a frequency u, produces 
a resonant field of frequency 2i/. The second harmonic can either downconvert back to 
the original mode, or act as the pump for the NDOPO. For the latter to occur the signal 
& idler modes (vs)t- = u ±  A) must be simultaneously resonant with the mode v. With 
sufficient power in the 2u field the NDOPO can be above threshold, otherwise the system 
is below threshold and acts as an amplifier of the vacuum modes. By inspection (adding 
appropriate terms to 2.26) we can write the equations of motion as [9]:

hi = — (71 +  al + *i<*3cq +  \/27^A1in
AC*

»3 =  -(73 + *A3) <*3 -  y ö j  -

®s,i =  -(Ts,»' +  i&s,i) &s,i +  k2u3u*s (2.45)

where a  1, a 2, a s , a, are the fundamental, second harmonic, signal, and idler field ampli­
tudes, respectively; and ki and k2 are the respective nonlinear interaction rates for SHG 
and NDOPO. All four modes are resonant, so this system has been labelled Quadruply 
Resonant Optical Parametric Oscillation (QROPO). The quantum properties of this sys­
tem have been modelled and several new nonclassical features are predicted [18]: this 
will be discussed further in Chapter 7.

We are particularly interested in the case where the second harmonic is not resonant.
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Adiabatically eliminating the second harmonic gives [19]:

Q'i = — ( 7 1  + iAi) q i -  2y/tiiii2o<\oisOLi -  g11Q'112ni + y ^ A 1/1

dSit = ~(pfs, i T ^AS)l-) o S)J' — <al s 2 /i.2 |n't,s | Q'Sit (2.46)

where the nonlinear interactions for SHG & NDOPO are respectively:

2 ( 7 3  +  iA3) 
/d2

2 ( 7 3  + f A3)
(2.47)

For simplicity, we will consider the case where all detunings are set to zero. The threshold 
power for the NDOPO, and thus competition, is then given by:

P ? r = hv 1 7̂ 7i 1-  1 +  72 — 
7i x/Ä l7̂ 2 2 V 7i

7 (2.48)

where we introduce the cumulative decay rate for the low frequencies of the NDOPO, 7 , 
and the scaled total nonlinearity, 72:

7 =  y / lT f i

K =  yŴ 2

The scaled power, N, is defined with respect to the TROPO threshold as:

(2.49)

(2.50)

The threshold power can be altered by changing either the value of the nonlinearities or 
the signal & idler resonance conditions. The former is achieved via the phase matching. 
The latter is achieved via dispersion matching, i.e. altering the dispersion (by changing 
the laser frequency or cavity length), so that the signal & idler are unable to be resonant 
with the fundamental. As discussed in section 2.2.3, a mode that is so detuned from the 
optimum resonance condition is lossy, and can be considered to have an increased decay 
rate which previously labelled the effective decay rate.

For the likely experimental optimum of equal losses and nonlinearities:

I s  =  I t  =  71» Ai =  ß 2

we define a minimum threshold power:

P P  = h(2vl )

where the cavity escape efficiency, 77 is given by:

1 L
W i

r, = J±
7i

(2.51)

(2.52)

(2.53)

Note that this expression is identical to that for the threshold power of a normal DOPO 
cavity where the second harmonic is double-passed, but not resonant. The conversion
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efficiency at TROPO threshold is defined as:

p t h r (2.54)

Note that the minimum threshold, P™'n, is the impedance matching point for the cavity, 
and thus the point of maximum conversion efficiency, e = 77.

The obvious signature that the cavity is above threshold is production of the signal 
and idler modes. However another, somewhat surprising, signature of competition ex­
ists: clamping of the second harmonic power. From 2.46 we find that for > Plhr 
(N > 1 ), the second harmonic power is:

P2 =  h2v—  (2.55)

i.e above threshold the generated second harmonic power is constant, and is clamped 
to its threshold value. "Excess" fundamental pump power is not converted to second 
harmonic, but instead is reflected or converted to signal and idler. (Clamping has also 
been predicted for QROPO [9])

Similar behaviour has been predicted for the optical limiter [21]. Fig. 2.8 shows the con­
ceptual layout of both the optical limiter and the TROPO cavity. The limiter is a standing 
wave DOPO cavity resonant at the subharmonic, u, which is single-pass pumped at 2u. 
(Note that the following argument works equally well for a NDOPO cavity). At thresh­
old, the 2v field is converted to the subharmonic as it propagates along the cavity so 
that at the end of the cavity it is depleted to some value. As the power of the 2v field is 
increased, it's value at the end of the cavity does not change: "excess" power is downcon- 
verted to the subharmonic field. In turn the backward component of the standing wave 
subharmonic partially upconverts to the pump (an example of cooperating nonlineari­
ties) so that a backward travelling wave at 2v is generated: the remaining power exits the 
cavity as subharmonic. Far above threshold, the reflection at 2v predominates, with very 
little power exiting the cavity at the subharmonic. From the point of view of the incident 
2v field then, the limiter is effectively a nonlinear mirror: at low powers it transmits all 
of the 2v field; above threshold it is limited to passing the threshold power, excess power 
is reflected back from the cavity as fields at 2v or the subharmonic. Note that within the 
cavity the 2v field has a very strong spatial dependence.

The TROPO system is obviously analogous to the limiter in that the 2v field in both 
cases sees three input and three output ports. For the limiter two of the ports are cavity 
ports (input and output mirrors for the pump field) and one is a nonlinear port (inter­
action with the subharmonic). For the TROPO system only one of the ports is a cavity 
port (the input/output port for the second harmonic), the other two ports are nonlin­
ear (interaction with the fundamental, interaction with the subharmonic/signal & idler). 
Without the extra nonlinear port that competition provides, clamping could not occur. 
As with the limiter the second harmonic field has a strong spatial dependence. However 
unlike the optical limiter no additional 2v field is generated: the excess second harmonic 
power is either downconverted to the signal «Sc idler modes, or downconverted back to 
the fundamental mode.

2.4.2 Competition and phase matching

In the systems considered in refs [10, 11, 12, 15] the competing nonlinear processes
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(0 ± A

Figure 2.8: Conceptual layouts of: a) Optical limiter, a standing wave (N)DOPO resonant at the 
subharmonic u, which is single-pass pumped at 2v. Only the DOPO case is shown here. Clamp­
ing of the transmitted 2u (pump) field occurs due to cooperating nonlinearities, b) TROPO, Triply 
Resonant Optical Parametric Oscillator. Fundamental, signal & idler modes are resonant, sec­
ond harmonic executes a double pass through crystal. Clamping of the generated 2u (second 
harmonic) field occurs due to competing nonlinearities. Gray lines represent vacuum inputs, i.e. 
zero average power.
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Figure 2.9. Plot of nonlinear coupling phase mismatch function, |^(AkZ)|2, versus wavelength 
and crystal temperature.
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Wavelength [|im]

Figure 2.10: Plot of nonlinear coupling phase mismatch function, |#(AkZ)|2, versus wavelength 
at optimum temperature for SHG. Note the gain peak at 1031 nm.

occur in separate nonlinear media within the one cavity. This is easy to understand phys­
ically, as the phase matching can be optimised for say, SHG in one crystal, and NDOPO 
in the other. In refs [13, 14, 16, 17] and in this thesis competing SHG & NDOPO occur 
simultaneously within the one nonlinear medium. How is this possible given that in these 
systems the crystal is carefully phase matched to give the optimum SHG effect?

To understand this consider the nonlinear coupling. As was shown in section 2.2.3 
the nonlinear coupling, p, is a function of phase mismatch Ak and the crystal length, Z, 
via the nonlinear coupling phase mismatch function |<7 (AkZ)|2 (which is defined in eqn 
2.9). As discussed in section 2.2.1, the phase mismatch is a function of refractive index. 
Thus, for example, using the refractive index expression for 5% MgO : LiNb03 [20] we 
obtain:

Ak ~  -8666(1 — A0/As)2cm-1 + 7.49(T -  T0)cm-1K_1 (2.56)

where A0 = 1064 nm, T0 =  107.05°C. Substituting this into |#(AkZ)|2 gives the depen­
dence of the nonlinear coupling on wavelength and crystal temperature: Fig. 2.9 plots 
this explicitly. If we optimise the nonlinear coupling for SHG of a 1064 nm beam, then 
we are sitting on top of the ridge at T = 107.05°C (g(AkZ) = 1). At this temperature 
there is still gain for wavelengths other than 1064 nm, as shown in Fig. 2.10 which is a 
slice through Fig. 2.9 at T = 107.05°C. In the 10 nm around 1064 nm the gain is reduced 
only slightly from the optimum, #(AkZ) > 0.9; even 33 nm away there is considerable 
gain (<7 (AkZ) = 0.22 @ 1031 nm, c.f. with the measurements in section 7.1). If the signal 
and idler modes of the NDOPO are resonant at any of these wavelengths there will be 
sufficient nonlinear coupling for significant competition to occur.

2.5 Cooperating nonlinearities

The concept of cooperating nonlinearities bears closer examination. Afterall, in standard 
SHG the complementary OPO process certainly occurs - photons at 2v can be converted 
to photons at v. (The equations of motion for SHG and OPO differ only in the position of 
the the pump term, the interaction terms are exactly the same.) How then is the concept
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of cooperating nonlinearities useful? As we saw in the last section, it's useful when the 
complementary x^processes have non-symmetrical effects. Thus in (N)DOPO pump 
clamping [21], downconversion depletes the single, forward pass, pump wave. Yet up- 
conversion generates a backward travelling wave at the pump frequency, making it ap­
pear as if pump light is reflected - even though there is no mirror or cavity for the pump. 
The up- and down- conversion processes share the same modes, but an asymmetrical 
effect, power calming, results. We describe such a results as being due to cooperating,

processes.
Third order effects, such as a nonlinear phase shift (via the Kerr effect), are normally 

associated with the x ^  nonlinearity of a medium. In standard nonlinear crystals, this 
is some 4 orders of magnitude weaker than the x ^  nonlinearity. As the magnitude of 
nonlinear effects go as the square of the nonlinearity, this means third order effects are 
typically 8 orders of magnitude weaker than second order effects. However in recent 
years large "third order" effects, of the same order of magnitude as second order effects, 
have been produced via cascaded x^nonlinearities. These systems have been the subject 
of extensive research [22, 23], including CW studies using cavities [24, 25]. At the heart 
of all of the effective third order effects is the production of a nonlinear phase shift: from 
that point one can obtain optical bistability, optical switching, and so on.

The origin of the the nonlinear phase shift in "cascaded" systems can be explained 
simply. Consider say, single pass SHG in a lossless crystal of length L. The fundamental 
field enters the crystal and begins to be strongly converted to second harmonic. How­
ever the crystal is phase matched so that it has a coherence length of L/2, i.e. beyond this 
distance the second harmonic converts back to fundamental. Only fundamental light 
exits the crystal. This would seem rather pointless, except that the light experiences a 
phase shift in both the SHG (u —y 2u) and OPO processes (2v —> u). As the x ^ p rocesses 
are nonlinear with intensity, so are the respective phase shifts: the total effect is an in­
tensity dependent phase shift on the fundamental light. Obviously this effect will also 
occur in other x^processes, such as OPO, and in cavity systems. The complementary 
X^processes cooperate to give an overall effect: the nonlinear phase shifts from each 
individual x^process are cumulative. This is non-symmetrical in that the nonlinear 
phase shifts add, as opposed to cancelling. Systems of cooperating x ^  nonlinearities 
hold promise for applications including optical switching, nonlinear optical amplifica­
tion [26], squeezing, and QND measurements [24].

In cavity systems there are three ways to produce a nonlinear phase shift: phase 
matching, detuning, and thermal absorption. We discuss each of these in turn in the 
following sections.

2.5.1 Higher order equations of motion

The preceding explanation of a nonlinear phase shift due to phase mismatch assumed 
that there is no net nonlinear conversion, i.e. there is no nonlinear loss. The alert reader 
is probably somewhat uncomfortable with this: afterall, the equations of motion from 
section 2.2.1 make it clear that at the point of zero nonlinear conversion there is also zero 
nonlinear phase shift. What's going on?

This discrepancy between intuitive model and equation is easily resolved: the stan­
dard equations of motion for SHG are incomplete. This is not a widely realised fact. We 
now present the derivation a more complete set of equations that highlight which third 
order effects are possible in a second order system.

Let us recap the argument that we used to derive the equations of motion in section
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2.2.1. The interaction of the fields in the slowly varying envelope is described by eqns 2.5. 
Using the assumption that the fields interact weakly, we then integrated eqns 2.5 to give 
eqns 2.8. Eqns 2.8 describe, to first order in the nonlinearity, the fields after a single transit 
through the nonlinear medium. The cavity equations of motion were derived from this 
point.

To describe third order effects, it is necessary to have a description of the fields to 
second order in the nonlinearity. This is easily obtained by substituting eqns 2.8 into 
eqns 2.5 to give (writing A,(0) = A,):

AX(Z) = Ai -  in' A3 A; J \  -  k 2 (lA^ 2 +  |A3|2) Ax J 2 +  A?A^J3 

A3 (Z) A3 — is! A2 J i — 2s!2 IA1 12 A3 27̂ 2 T 3 A3 A227 3 (2-57)

Where the functions 271, J  2, 273 are:

271 - j f e+,Akldz =
+t AkZ -  1

-fiAk

J  2

=  Z s in c ( ^ ) e +l 2 =  Zg(AkZ)

=  Z +
*Ak 2 . (+iAk ) 2 3■Z' + + . . .

= f 27 ie — i Akzdz =
z - J \  
+iAk

y  jsinc2( ^ )  + i (V m c (^ )c o sc (^ )  -

Z2 iAk
2"+ ~fT

z3 +. . .

J s ■ L0 J i  “  Ak2

+ . . .  =  J: (2.58)

The expansions of J x are derived using the relation ex =  ^o° z n/ n" Notice that for 
Ak =  0, 27i =  Z, 272 =  Z2 /2, and 273 = Z3 / 6 : the higher order interactions exist even in 
the perfectly phase matched case. For use later, we introduce the scaled functions:

J  \ — y  = <7 (Akz), 27 2 ' =  ^  (2.59)

As can be seen directly from the definition of 272 , the second order interactions are gener­
ated by first order interactions cooperatively interacting with other fields before leaving 
the cavity.

We can now derive the cavity equations of motion using exactly the same argument 
we presented previously 3. Retaining only terms second order in k and lower, and using 
defns 2.15 and eqn 2.13 we find:

£ 2
öl = - ( 7 i + i A 1)a1 + Ka3a : J : - y ( | o i | 2^ - 2 | ö 3 | 2p-)aiJ2 +  V^TfAin

03 = “ (73 + iA^)a^ -  - o i \ j {-  K2 | a , |2ö3J,2 + (2.60)
z rj v

3The results presented in this section and section 2.2.1 were explicitly obtained for plane waves. R. Bruck- 
meier has derived the Gaussian wave form of these results: the singly resonant results are given in [27],
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Similarly we can derive the nondegenerate equations of motion:

25

hi = -(71  + iAi) »! + «»30:2 -  — (2 | a 2|2— -  2 |q'3|2 —)a'! J 22 r 3 r  2

^2 t  t

d 2 =  -(71  + iAi) O'! + KCV3Ö1 J i  -  7T(2|of!|2— -  21CX'3 12 — )a 2 J 22 r3 r x

+>/W
d 3 = - ( 7 3 +  iA3) a 3 -  « 0 : 1 0 : 2 ^ 1  — 2 k;2 ( | q :i | 2 — — 2 | q '2 |2 ~ ) Q;3 ^ 2

2̂ **1

+ V ^ A3n (2‘61)

Eqns 2.60 & 2.61 describe an incredibly rich array of behaviours.
• Terms that are zeroth order in k are simply linear loss, —7 linear gain, +y/2yfAlf ,  

and linear detuning, ± iA t-a,-.
• First order terms in k describe second order effects: parametric gain or loss, +Re J\naioT-, 

-R e  J i n / 2  a 2; and parametric phase shifts, \mJ\naiOt* -Im  J \ k/2 a 2.
• Second order terms in n describe third order effects: intensity dependent absorptions, 

two photon absorption (2PA), — Re J 2 n2 /  2 |a , |2a t-, and Raman absorption, +Re J  2 n2 \aj\2at) 
intensity dependent phase shifts, self phase modulation (SPM) or Kerr effect, -Im  J 2 k2/2 |o:t |2ort, 
and cross phase modulation (CPM) or cross-Kerr effect, +Im J 2 n2 |orj |2art-.

• The system is not a full third order system: for example, there are no terms describ­
ing four wave mixing (FWM), i/taja*, or third harmonic generation (THG).

A note on nomenclature. As can be seen from the above, intensity dependent phase 
shifts are third order effects. In x ^  systems the intensity dependent phase shift is known 
as the Kerr effect: physically, it is an intensity dependent refractive index that leads to an 
intensity dependent phase shift. Strictly speaking, the SPM and CPM in the equations 
above cannot be described as Kerr effects, as they take place in a x ^  system: they are 
only "effective Kerr effects". This is a cumbersome term. As the identification of intensity 
dependent phase shifts as Kerr effects is widespread, we will use the term "Kerr effect" 
in this thesis even though we are discussing x^system s.

The system is similar in some respects to the purely third order system proposed by 
Jack et. al. [28], in which FWM, CPM, & SPM occur simultaneously. In the limit of small 
pumping of the Jack system, as far as quantum noise is concerned, the FWM term acts 
as an OPO/SHG term. Thus we expect the system described above to share certain char­
acteristics with the Jack system, such as multiple bifurcation points, and squeezing that 
rotates in quadrature as the Kerr terms dominate. Investigating in detail the behaviour 
described by eqns 2.60 & 2.61 would in itself be another thesis. In the next section we 
concentrate solely on the effective Kerr effect that occurs in singly resonant SHG.

2.5.2 Phase mismatch induced Kerr effect

To derive the singly resonant case, it is not appropriate to apply adiabatic elimination to 
eqns 2.60, as they contain the reflectivity of the second harmonic cavity explicitly. (It can 
be done, but it requires considerable mathematical lendergermain.) Instead we start once 
again from the description of the field interaction in the SVEA (slowly varying envelope
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approximation):

A M  = -™ 'A3(z)A;(z)/*(Akz) 
dz

= - i K'A?(z)/(Akz) (2.62)
dz

We integrate the second harmonic to first order, remembering that f  f (Akz) .dz  = Zg(Akz)
Ji:

A3(Z) = A3(0) -  U'Z A j(0 )(Ji/Z ) =  A3(0) -  »«' A?(0) J i  (2.63)

As there is no initial second harmonic, A3(0) =  0. Substituting this into eqn 2.62 gives:

A M  =  +K'2|A1(z)|2A1(z ) J 1/'(A kZ ) (2.64)
dz

Integrating this gives:

A,(Z) = A i(0) -  k/2Z2 |Ai (z)|2Ai (z)(.72/Z2) (2-65)

Which, by our now standard technique, gives the equation of motion [24]:

hi =  —(71 +  iA i) c*i — p j 2/|n i |2Q,i +  ^ 2 7 jA\n (2.66)

where p = hi/ifa'Zri/ri)2. Note that we are now using the scaled phase function, J 2 ■ 
The real part of J 2 leads to SHG, i.e. an intensity dependent loss. The imaginary part of 
J  2 leads to an effective Kerr effect, i.e. an intensity dependent phase shift.

As pointed out earlier, intensity dependent losses (2PA, Raman) and phase shifts 
(SPM, CPM) are normally considered to be third order effects: they are seen in many 
applications involving x ^  materials. Thus we see that a singly resonant frequency dou­
bler is effectively a third order system, the third order effects occurring directly due to 
cooperating second order effects. For example, SHG in the singly resonant system is ef­
fectively two photon absorption, as when two fundamental photons form one second 
harmonic photon it is not stored but leaves the cavity immediately. The two fundamen­
tal photons have been removed from the system. If there is a second harmonic cavity, 
then there is a strong chance that the 2z/ photon can downconvert back to fundamental 
photons - this is the normal parametric interaction.

Optical bistability can occur in any Kerr cavity where the linear and nonlinear detun­
ing terms are of opposite sign. However both terms must be above a certain size, i.e there 
is a detuning threshold, for the linear detuning, and a power threshold, for the nonlinear 
detuning, that must be exceeded before bistability is observed.

The nonlinear detuning term, —p l m ( J 2')\o!i\2, is obviously a function of input power. 
The threshold input power is found by solving eqn 2.66 in the steady-state case, Q i = 0, 
under the condition of infinite slope in the cavity lineshape, (d|c*i 12/d A)— 1 = 0 [24]:

P{*‘thr = h { —  p(Akz) = P™inp(Akz) (2.67)
P \ 7 i /

where 7 is the cavity escape efficiency (eqn 2.53); and ;;(Akz) is the phase match function:

“  3^5 (IlmJYI -  y/3 Re.72')3 <2'68)
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By definition P\l thr is the power required to reach bistability for the minimum neces­
sary detuning, A{*thr. For detunings greater than this, power greater than thr will be 
required to observe bistability.

We can rewrite eqn 2.67 as:

2 2
P$‘ thr = p(Akz) (2.69)

m s H G

where Tshg is the power conversion coefficient for SHG. This is defined as:

P2 = r SWG( P f c)2 (2.70)

The power conversion coefficient is a parameter that is widely used for comparison of 
different x^system s. In travelling wave systems it can be measured directly (simply 
replace Pjirc with the power of the travelling wave, Pi). In cavity systems it is somewhat 
inferential, as the circulating power is calculated from other measured parameters, but it 
nevertheless a useful measure of the effective nonlinearity.

The linear detuning threshold is the detuning at which the slope of the cavity line- 
shape becomes vertical. Thus the cavity detuning necessary to achieve bistability is given 
by:

bi thr . „ „ ,,V3|Im J 2'| + R e J 2'= ~ S,gn{lmJ2 W,'| - ̂ ReJ, ' 71
(2.71)

Notice that for the case of zero nonlinear loss ReJY =  0, the threshold for detuning 
reduces to the well-known value Aj*thr = [29].

Phase mismatch, Ak z

Figure 2.11: Phase mismatch dependence of the nonlinear conversion coefficient, R ejV , the non­
linear phase shift coefficient, ImJY, the normalised power threshold, P̂ ’ t/ir/p^nm/ the nor­
malised cavity detuning at threshold, Aj* thr /~i\ . The phase and detuning curves are in grey. Note 
that all curves have been scaled as indicated to fit into the one plot.

Fig. 2.11 plots the phase mismatch dependence of the real and imaginary parts of the 
nonlinear coefficient, J 2 ■ Nonlinear conversion ceases at Akz = m 2ir (m = 1,2, 3,...), 
i.e. when the real part of J 2 becomes zero. At these points the system acts solely as 
a Kerr medium: the large body of literature on Kerr cavities applies exactly, without
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change. The Kerr nonlinearity at Akz = m 2n is ± / i / ( m 7 r ) .  This is very large compared 
to intrinsic third order nonlinearity of typical crystals (~ 108 times larger). The strongest 
possible Kerr nonlinearity which occurs at Akz = 2tt, is only 7r times smaller than the 
second order nonlinearity.

Fig. 2.11 also plots the normalised power threshold, thr/p™inf and the normalised 
cavity detuning at threshold, A}*thr/ j i  versus the phase mismatch. Both functions show 
a striking 27r periodicity. The power minima lie on a line of slope ± 2 /(3\/3) that inter­
sects the origin. For large phase mismatch, the power maxima lie on a parallel lines that 
intersect the y axis at pj* thr/pyun ~  5. Thus at large phase mismatch there is relatively 
little difference between the power maxima and minima. The detuning minima lie on 
a horizontal line that intercepts the y axis at Aj*thr = For large phase mismatch
A}*thr asymptotes to this line.

At Akz = 27t no net second harmonic is produced, as the nonlinearity is purely imagi­
nary. However, considerable second harmonic is still produced within the cavity, and can 
act as a pump source for NDOPO: thus TROPO can still occur. In fact, the minimum opti­
cal bistability threshold power, P f thr, is more than twice the minimum TROPO threshold 
power, P™,n. To avoid TROPO when investigating Kerr behaviour, it will be necessary 
to increase the TROPO threshold, P<1/lr, well above its minimum value P™'71 (which is 
discussed in section 2.4.1.

Scaled input power Scaled input power

for Akz = 2 k

Scaled input power

for Akz = 2 tt

v> 1.0

Scaled input power

Figure 2.12: Transmitted and reflected power versus pump power. Powers scaled by P”1'". 
Bistability occurs for detunings, Ai > Abx thr. a) & b) Ai = 1.5\/37i = 1.5AjIt/ir. c) & d) 
A! = A?‘' t/ir(27r) = x/37i .

Now consider the case Akz = 27r, where the cavity acts purely as a Kerr cavity. The 
output power obviously varies as a function of linear detuning and pump power. In the 
literature this is normally investigated by fixing one of the phase terms in eqn 2.66 and
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Figure 2.13: Transmitted and reflected lineshapes versus pump power. Power scaled by Ppm, 
detuning scaled by 7 1 . Bistability occurs for pump powers, P 1 >  Pj* thr. a) & b) P 1 = 5P™,n. c) & 
d)Pi  =  Pj‘ thr(2n) ~  2.4P™,n.

varying the other. Thus power bistability is observed when the cavity is locked to a linear 
detuning (Ax > A}*thr), and the power is varied. As shown in Fig. 2.12, there is a clear 
bistability. Detuning bistability (i.e. distortions of the line shapes), is observed when the 
power is held constant (Pi > Pj*thr) and the cavity is scanned back and forth through 
resonance, as shown in Fig. 2.13. As the power approaches threshold, the line shapes 
begin to exhibit a marked asymmetry; at threshold the line shape has a vertical slope; 
above threshold the line shapes are bistable.

2.5.3 Detuning induced Kerr effect

While the physics in the previous two sections has only been developed in the last few 
years, it has been appreciated for a long time that it is possible to produce a nonlinear 
phase shift in cavity SHG simply by appropriate detuning. This was first pointed out in 
the seminal paper of Drummond et. al. [7, Section 8], and was alluded to in section 2.2.3. 
Restating equations 2.34& 2.35:

hi = -(71 + iAi) »1 — g\c*\\2oi\ +  ^ A i "  (2.72)

where the nonlinear interaction, p, is:

_  K2 (73 -  ZA3)
M 2 (7|  + A§)

(2.73)
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The real part of p\ai |2o.'i is the SHG term and the imaginary part is the Kerr term. Unlike 
the phase mismatch induced Kerr effect, the nonlinear loss cannot be suppressed in the 
detuning induced Kerr effect.

There is one caveat concerning this mechanism: for it to work, the system needs to be 
more doubly, than singly, resonant. That is, the second harmonic must act more like a res­
onance of the cavity, than as a freely propagating field. Consider the following argument. 
In the limit of low reflectivity the width of the second harmonic resonance becomes so 
large that its half points fall on adjoining cavity resonances (at ±1 FSR). These build up 
resonances, which in turn overlap adjoining resonances, which in turn overlap adjacent 
resonances, and so on. The second harmonic output is no longer a resonance but a field. 
There is no longer a lineshape for the second harmonic cavity, the output is a wide flat 
line, and so there is no detuning dependence - there is no resonance to be detuned from! 
Thus there can be no detuning induced Kerr effect in singly resonant cavities.

Since its introduction, the detuning induced Kerr effect in SHG has rarely been con­
sidered. Given the notorious difficulty of working with doubly resonant SHG it is not 
surprising that no experiments on it have been performed.

Although it is not identified as such, the detuning induced Kerr effect has been consid­
ered in a series of papers concerning a (N)DOPO resonant at the pump and subharmonic 
frequencies simultaneously. Lugiato et. al predict that both bistability and self-pulsing 
will occur in a DOPO where the cavity is detuned with respect to the pump and subhar­
monic [30]. Richy et. al have demonstrated asymmetric lineshapes and pump hysteresis 
in a triply resonant (pump, signal, & idler) NDOPO detuned with respect to the pump 
& signal [31]. The detuning induced Kerr effect has even been used to generate tran­
sient squeezing (66 ms) of -1.2 dB (25%) [32]. Although the given explanation of these 
effects in the original references is somewhat complicated, the underlying mechanism is 
the detuning induced Kerr effect, as identified above.

2.5.4 Thermally induced Kerr effect

In experimental systems there is an additional mechanism that can cause an intensity 
dependent phase shift - absorption. Light that is absorbed in the crystal is converted 
to heat. Most optical crystals have a positive thermal coefficient, so that heat leads to 
expansion of the crystal.

Consider the situation of a monolithic cavity (the cavity is carved from the crystal) 
that is detuned onto resonance from high optical frequency. As resonance is approached, 
the circulating power increases, thus the absorbed power increases, heating the cavity 
and causing it to become longer. The increase in length pushes the resonance frequency to 
a lower frequency, so that it is necessary to decrease the optical frequency further to reach 
resonance. Eventually of course resonance is reached. As the frequency is decreased 
further, and the cavity comes off resonance, the cavity absorbs less heat and shortens 
slightly. At some detuning point, the cavity finds that the resonance condition is now at a 
markedly higher frequency than the detuning where it finds itself, and the output drops 
suddenly, switching to a low output. The resulting lineshape is markedly asymmetric: 
broadened to, and switching on, the low frequency side.

Now consider approaching resonance from the low frequency side. Light that enters 
the cavity heats it, lengthening the cavity and decreasing the cavity resonance frequency 
At some detuning point the cavity suddenly finds itself near resonance, and the cavity 
switches to a high output. The resulting lineshape is also markedly asymmetric: nar­
rowed to, and switching on, the high frequency side. The result is a thermally induced
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Kerr effect.

Thermal absorption is time dependent. Thus thermal distortion of lineshapes can be 
avoided, or at least minimised, by scanning the cavity rapidly, i.e. many times faster 
than the inverse time constant of the absorption, so that the heat dumped into the cavity 
approaches a steady-state value and the cavity length effectively does not change during 
the scan.

The thermally induced Kerr effect is unavoidable when the cavity is locked. How­
ever it is slow to respond - typical thermal absorption time constants are on the order of 
seconds. Thus the thermally induced Kerr effect can be ignored if considering effects at 
frequencies much higher than it can respond, for example, examining the noise reduction 
at several MHz. (It does however complicate the locking the cavity to resonance.)

In this thesis we can always account for the thermal effect in of the two ways de­
scribed above. However, if an experiment is such that the thermal effect cannot be ig­
nored, then it can be modelled in one of two ways. In either case we add to the normal 
equation of motion the term "i f (T)a,", where T is the temperature, and f (T) = FT(t).

The Fourier thermal diffusion equation is:

= —kV2T(F, t) +  Kljjght (2.74)

where t is time, k is the thermal conductivity, T(r, t) is the time dependent spatial tem­
perature distribution, K is the power to temperature conversion constant, and Iught is the 
light intensity. We simplify this to:

T = -B T { t )  + A \a t\2 (2.75)

The thermal effect can be modelled by adding this equation to the other equations of 
motion (remember, they are coupled to it via the term iFT(t)a,) and solving as normal. 
Alternatively an explicit solution to eqn 2.75 can be found. Solving the homogeneous 
part of eqn 2.75, T = -B T (t), gives:

T(t) = T0e"ßt (2.76)

As an ansatz, we allow time variation of the constant, T0, and substitute into the inho­
mogeneous equation, 2.75, and solving, find:

T0(t) = f  eBt'A M 2dt' (2.77)
JtQ

Substituting this into the eqn 2.76 gives:

T(t) = f  e - B(t -  t ')A |a ,|2dt' (2.78)
j  to

This can be substituted directly into the term iF T (t)a t- in the equations of motion.

A more detailed analysis has been made for the case of a triply resonant (pump, sig­
nal, idler) optical parametric oscillator [33]. The phase shift was modelled by considering 
the change in refractive index due to the change in temperature, via the Sellmeier equa­
tions. Good qualitative agreement was found between the model and experiment.
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Figure 2.14: Spring pendulum, left hand side: mechanical second harmonic generation. The pen­
dulum is driven at u = 2-ku. For certain values of pendulum length, L, spring coupling, k, and 
mass m they system is phase matched and the mass oscillates along the pendulum with a fre­
quency 2u>. right hand side: mechanical parametric oscillation. The mass is driven at 2u as shown. 
Above a certain driving amplitude at phase match the pendulum begins to oscillate with a fre­
quency i/.

2.6 A mechanical analogy

Some people (I am one) find that consideration of the mechanical analogs of op­
tical systems deepens their physical intuition. Second order optical systems are sim­
ply two harmonic oscillators (the cavity modes) coupled by a nonlinear interaction (the 

2)interaction). A simple mechanical analog exists for such systems. Consider the spring 
pendulum, as shown in Fig. 2.14, a coil spring of length, L, mass, p, and spring constant, 
k, that is suspended by one end so that it acts as a pendulum supporting a end mass, 
m. The spring pendulum experiences mechanical losses, such as friction (analogous to 
optical losses.) Gravity acts vertically downward.

The spring pendulum is characterised by two frequencies, the frequency of the pen­
dulum oscillation, up = l/{2n)y/(m + p/2)/(m + p/Vj/g/L, and the frequency of the 
spring oscillation, vs — l/{2'K)s/k/{m + p /3). The pendulum can be driven (analogous 
to the pump field) by moving the pivot point horizontally at the frequency up; the spring 
can be driven by moving the pivot point vertically at the frequency us, or by moving the 
end mass at the frequency vs. The interaction is nonlinear because when the pendulum 
oscillates the spring experiences a downward centrifugal force that at a frequency twice 
that of the pendulum frequency.

If the pivot point is driven horizontally at a frequency i/, such that v’s — 2u'p, then 
energy couples strongly from the pendulum to the spring [34], which starts oscillating at 
v’s. This is mechanical second harmonic generation. For v’s — 2up, there must be “phase 
matching", i.e. kL = 4g(m + p/2). Even though the spring pendulum is lossy, there is no 
threshold: as long as the spring pendulum is phase matched, any driving amplitude at vp 
will lead to an oscillation at at us. This is because at any position except the vertical, there 
is always a velocity component that is along the the spring: this will tend to drive the 
spring. (Grab a spring and a lump of metal and try this experiment, it works remarkably 
well! Mind you, you will have to spend a little time finding the phase matched length.)

Now consider driving the pivot point vertically at a frequency u's, again where v’s —
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2v'p. At first the spring oscillates at the frequency, u's, in the vertical direction. If there is 
zero loss, then any infinitesimally small horizontal perturbation (analogous to quantum 
noise) will kick the pendulum sideways. Once away from the vertical the velocity has 
a component perpendicular to the spring that can drive the pendulum oscillation at the 
frequency v'p. This is mechanical subharmonic generation. Now consider the case with 
loss. Again an infinitesimally small horizontal perturbation kicks the spring sideways. 
However if the spring motion does not contain enough energy to overcome the damping, 
the spring remains vertical. The stronger the damping, the more energy is needed. The 
energy is provided by the amplitude of the driving motion. Thus a threshold exists for 
mechanical subharmonic generation, analogous to the optical case.

For optimum mechanical second and sub harmonic generation a phase matching con­
dition has to be fulfilled. If it is very far from being fulfilled, then no coupling between 
oscillators occurs (they are independent harmonic oscillators). This allows us to visualise 
the Kerr effect as follows. Change the system parameters slightly so that there is a slight 
phase mismatch. Again drive the pivot horizontally with a frequency, u'p. Energy is now 
coupled from the pendulum to the spring, but it is returned back to the pendulum. Under 
these conditions the spring does not oscillate. Instead the pendulum motion lags/leads 
the driving field with a phase that depends on the amplitude of the driving motion. This 
is the mechanical analogy to the Kerr effect.

2.7 Summary of x^  effects

Basic effects can be categorised as upconversion and downconversion effects. The 
former includes second and sum frequency generation (SHG & SFG), the latter includes 
(non)degenerate optical parametric oscillation (N)DOPO.

Multiple x ^  nonlinearities interact in one of two ways. Competing nonlinearities 
are those that do not share the same frequencies, for example v ^  2u ^  v ± A2, or, 
v ± Ai #  2v ^  v ± A2. Cooperating nonlinearities are those that do share the same 
frequencies, v ^  2v or v ± Ai #  2v, but interact to produce an asymmetrical result, such 
as an intensity dependent phase shift.

In a singly resonant SHG cavity competition occurs between SHG & NDOPO. This 
competition has a power threshold, produces nondegenerate modes in a frequency range 
around the fundamental, and causes clamping of the second harmonic power.

Cooperating nonlinearities can cause a strong intensity dependent phase shift, aka 
Kerr effect. It can be induced via phase matching, detuning, or by thermal effects. The 
Kerr effect in cavities leads to optical bistability, which has thresholds in both detuning 
and power.
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Chapter 3

Quantum Models

One does not discover new lands without consenting to lose sight of the shore for a very long time

Andre Gide, The Counterfeiters

Physical theories have two equally important aspects: the formalism of the theory, and the 
interpretation of the theory. The formalism of quantum optics is often regarded as com­
plex and mathematically demanding. In this chapter we show that it is in fact relatively 
straightforward. Further, we present intuitive and powerful interpretations of quantum 
noise that we use throughout this thesis: the sideband and ball-on-stick pictures. In de­
tail, in the first section we derive some of the principal results of quantum optics directly 
from classical optics. In the second section we briefly discuss the two principal methods 
of modelling quantum optical systems, the Schrödinger and Heisenberg approaches. In 
the third section we illustrate the simplicity and ease of use of the Heisenberg approach 
by deriving the noise characteristics of an empty cavity. In the fourth section we discuss 
photodetection and the phase sensitive detection of light.

3.1 Quantum optics formalism without pain

The behaviour of light freely propagating in space is described by the source free Maxwell's 
equations. From these it is possible to derive the electromagnetic field as a function of 
position, r, and time, t 1

E (r >t) [ai uj ( r ) e_tWjt -  a> j ( r ) e+,U,jt] (3.1)

where u; (r) are mode functions containing polarisation and spatial phase information. 
The factor ( h u > j / 2 e 0 ) 1/ 2 is chosen so that the Fourier amplitudes, a3 & a*-, are dimension­
less, i.e. they are are solely complex numbers or c-numbers. In this representation the 
Fourier amplitudes are the orthogonal variables of the system.

The electromagnetic field is quantised by transforming the Fourier amplitudes to mu­
tually adjoint operators, äj & 2. Transformation of orthogonal variables in this fashion
is referred to as a canonical transformation.

Mathematically, the commutator, B , is defined as the following operation [3]:

A ,B = AB -  BA (3.2)

If the commutator is zero, then AB = BÄ, and we say Ä and B commute. The operators

'The discussion presented in this section is basically that of reference [1],
2To remind the reader that operators are very different mathematical objects to complex numbers, 

throughout this thesis we will always mark operators with a circumflex, i.e. a " “ "
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äj & ät j obey the boson commutation relations:

[äjjäjt] =  0

äfj , a fk =  0

äj, ä)k =  öjk (3.3)

The electromagnetic field is now quantised. It is the introduction of the above relations 
that allow formal description of the nonclassical behaviour of the electromagnetic field 
in quantum optics.

Classically the total energy of the electromagnetic field is described by the Hamilto­
nian [1]:

h /(*ej-*-£)* (3-4)
where £0 and po are respectively the permittivity and permeability of free space, and E 
and B are the amplitude of the electric and magnetic components of the electromagnetic 
field.

After canonical transformation (using the boundary conditions of the mode functions, 
u, and eqn 3.1 and the equivalent expression for B) this expression becomes:

Ü =  Y^ hvi  + ^) (3-5)

This is just the Hamiltonian of a collection of quantised simple harmonic oscillators 
(SHO). Accordingly, the electromagnetic field can be considered to be a frequency en­
semble of modes, each mode represented by a simple harmonic oscillator.

Several quantum representations of the electromagnetic field enjoy wide circulation. 
These include the number or Fock state representation, the coherent state representation, 
and the squeezed state representation. We will discuss these in the following three sub­
sections.

3.1.1 Number states, or, Annihilation can Fock a state

The eigenstates of the simple harmonic oscillator Hamiltonian (eqn 3.5) are known as 
number or Fock states, and are written | n j ). They are eigenstates of the number operator, 
nj = aJjkj, such that:

hj\nj) =  nj\nj) ( 3.6)

The value of the number state represents the number of photons in that mode, e.g. there 
are three photons in the mode |3y), where j  is the frequency of the mode. 

Mathematically, number states are both orthogonal and complete, i.e:

<ni!my) = Smn and
OO
E  K > W  = 1 (3.7)

nj = 0

As the number states form a complete orthonormal set, any other state can be expanded 
uniquely in terms of number states.

The operators äj & a*j when applied to the number state add and subtract a single 
photon from the mode, and are thus known as the annihilation and creation operators,
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respectively. That is:

Inj ) \A*7 I ^)
ä^lnj) = y j n j  +  1 |n j  + 1) (3.8)

Note that the annihilation operator applied to the ground or vacuum state, |0) gives zero.

äj|0j) =  0|0j) =  0 (3.9)

The eigenvalues of the number operator are simply rtj =  0,1,2, —  The expectation value 
of an operator corresponds to a physical measurement of the quantity represented by that 
operator. The expectation value of the number operator is simply the number of photons 
in the mode, i.e.:

(n;|n|nj) =  (n^Kn^n.,» =  n ^ l n . , )  = ny (3.10)

The SHO Hamiltonian can be rewritten in terms of the number operator:

U = ^ h u k ^  (3.11)

As the Hamiltonian represents the total energy of the system it is not surprising that it is 
the energy operator. The eigenvalues of the energy operator are hu3 (n; + 1/2), i.e:

?Z|nj) =  hvj{nj +  l/2)|rij) (3.12)

So the SHO Hamiltonian represents the sum of (the number of photons in each mode 
multiplied by the energy of the photon for that mode) plus (half the energy of the photon 
for that mode, which represents the energy of the vacuum fluctuations for that mode). 

The expectation value of the SHO Hamiltonian when applied to the ground state is:

< 0 Ä )  = i l > ,  (3.13)
j

That is, the ground state or vacuum energy is not zero. As there is no upper limit to 
frequency for electromagnetic radiation the energy of the vacuum is in fact infinite. 3 
This detail is normally side-stepped by the observation that measurements are made on 
relative changes in the total energy of the electromagnetic field.

Physical light sources that correspond to the number state representation, i.e. all pho­
tons in the field are of exactly the same energy, are rare and normally require exotic ap­
paratus for their production. Thus the number state representation is rarely used for 
modelling practical experiments.

3.1.2 Coherent states

For a laser running well above threshold, at detection frequencies well outside the laser 
linewidth, the light is accurately described by the coherent state representation |q), where

3If an upper limit to the frequency of electromagnetic radiation does exist then the energy of the vacuum 
state will be finite, but very, very large. Whilst intuitive arguments can be made for such a limiting mech­
anism, it is not widely accepted that such a limit exists, and no satisfactory physical model has yet been 
suggested.
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a is a complex-number. Unlike the number state representation, which only contains 
information about photon number (the phase is undefined), the coherent sate contains 
both amplitude and phase information.

Mathematically, coherent states are generated from the vacuum state via the displace-
ment operator, D(u), i.e.:

k )  = D(aj)|0j) (3.14)

where
D(aj) = _ (3.15)

and a  is an arbitrary complex number. Coherent states are eigenstates of the annihilation 
and creation operators, ä & äh This means these operators are poorly named with respect 
to coherent states as they neither annihilate or create. That is:

ä j  l ^ j )  — a j  I )

= (aj\ot* (3.16)

An operator, A, is Hermitean or self-adjoint if Ä = A*. As the annihilation and creation 
operators are non-Hermitean, the eigenvalues, a3 & a*, are complex.

Expressed in terms of the number state, the coherent state is:

k> =  e
-  p - \ o , \ 2 / 2 £

/v

nj = o (nJ!)1/2
k ) (3.17)

Note that we have kept the explicit frequency dependence, j . For a classically noiseless, 
freely propagating electromagnetic field, every mode of the field is a coherent state.

The mean value of the photon number, rij, in the coherent state is |u j |2:

T? = =  (nj)
= (®]\^
= (ajia'jajiaj)

= k j P f e k j )
= k f  (3-18)

The probability distribution of photons in the coherent state is Poissonian:

P(nJ) =  |(ni |a j ) |2 =  e - W ) ^ A  (3.19)
nj !

This Poissonian nature is perhaps clearest expressed in the variance.
Classically, the variance, V (tu), and standard error, ±Aw,  of a measurable parameter,tu, 

are defined as:

V(w) = A w 2
= (tu -  tü)2 (3.20)

For a quantum observable, A, of a state, \f>) this becomes:

V( ÄU = (AÄ)2

=  ( V > I ( Ä - ( Ä ) ^ , ) | V > )
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= (V’KÄ2 -  2(Ä),/,Ä + (A)J)|V>)
= (V>|Ä2|V>) -  2<y>|(Ä)„,Ä|y>> + m k ) l M )

— {k2)j, -  2(Ä)^,(Ä)^, + (Ä)J,)(V’|V')

= (A2)* -  ( k ) l  (3.21)

where (Ä)^ =  {ip\k\ip) and (A2),;, = (t/>|Ä2|ip). The positive root of the variance, + (AA),;,, 
is known as the uncertainty.

The variance of the photon number is thus:

V(nj) Q = (An2)a

= (nJi(atJaj)2|o(j) -  (orjlä^äjlorj)2
= <Ofj-|ä.+j-äj-ä.1 jäj|ofj) -  (|<x, |2)2 

= < « # tj( l  +  ä^äjJä jla j) -  |oy|4
— (njlä^äj |nj) +  (ofj |o(j) — |oy|

=  I O'j 12 +  | » j | 4 -  | » j | 4

= Uj (3.22)

i.e. for the photon number of a coherent state, the variance equals the mean. This is the 
defining characteristic of a Poissonian distribution. Note that the variance and uncer­
tainty of the photon number for the vacuum state, |0), are zero. That is, we are absolutely 
sure that we will not measure any photons in the vacuum state.

3.1.3 Quadrature operators and minimum uncertainty states

Measurements of electronic signals are homologous with measurements of optical signals 
4. We now introduce a concept that enjoys wide use in electronics. Consider an arbitrary 
voltage signal, V, described by a sine wave:

V = Asin(u>£ T 4>) (3.23)

This can expanded to:

V = Asin(cj£) cos(</>) + Acos(wi) sin(<̂ >) (3.24)

If phase information is to be extracted from V, the it needs to be compared to a reference 
signal, known as the local oscillator, V0 = sinful). The first term of eqn 3.24 is called the in- 
phase component, as it is in phase with the local oscillator. The second term is known as 
the in-quadrature component, as it is phase shifted x/2  with respect to the local oscillator. 
Somewhat confusingly, these components are also referred to as quadratures or quadrature 
phases (leading to the delightful term "in-quadrature quadrature").

In practice the signal V is often observed at the rate u  - the information in this case 
is being carried only by the amplitude A and relative phase of the signal <f>. Thus we can

4The only difference is that of greatly increased frequency. Anything that is possible with electronic 
signals is, in principle at least, possible with optical signals. This includes nonlinear processes such as 
frequency doubling, parametric oscillation and frequency mixing
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write, using the rotating wave approximation:

V = Acos(<f)) + Asin(<j6) = X \ + X 2 (3.25)

Once the two quadratures, X\ & X 2, are measured, the amplitude and phase of the signal
can be directly inferred: A = y jx \  -f X \  and 4> = X 2/X\ .

We now introduce operators that correspond to the quadratures of the electromag­
netic field. To keep our notation uncluttered, we consider only a single mode of the field, 
and so drop the frequency dependent subscript, j .  We introduce the quadrature operators, 
Xi and X2

Xx =  a l a 1

X2 =  - f ( ä - ä t ) =  e -17r/2ä +  e+t7r/2ät (3.26)

Note that these operators are Hermitean, i.e. X 3 = x j  5 *. The quadrature operators give 
dimensionless amplitudes (<-0|Xi|V7) and (^|X2|^)) for the two quadrature phases of the 
field mode, respectively the in-phase and in-quadrature components of the field mode.

For coherent states the quadrature amplitudes represent the real and imaginary parts 
of the field mode, and are thus commonly known as the amplitude and phase quadratures.:

<|Xi|> = (a|X i|a) = (or|(ä +  äf)|u) = (<*|ä|a) + (a\a]\a)
= a +  O'* = 2Re(u)

(|X2|) =  (u|X2|a) = —i(or|(ä— ät)|u) = - i(u |ä |u )  -  z(u|ät |u)
-  - i (  a  — a*) — 2Im (a) (3.27)

Thus
2u =<|X 1|)-H (|X 2|> (3.28)

Fig. 3.1a) shows a representation of the coherent state as a phasor in quadrature space.

Figure 3.1: a) Coherent state as a phasor in quadrature space, b) as for (a), but including the 
uncertainty area. Grey lines represent other possible field values.

The amplitude of the coherent state, shown as \a\ in the diagram, is given by l/2y '(X 1)2 + (X2)2,

5This follows automatically from the mathematical properties of operators. If Ä is non-Hermitean it can
be decom posed into Hermitean components (Ä +  Ä*) and —i(A — X ), where Ä =  (Ä +  Ä* )/2 — i(Ä — Ä1 )/2i.
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and the phase of the coherent state, shown as <f) in the diagram, is given by (X2)/(Xi). 
As we discuss below, this picture of a coherent state is still not complete. We have yet to 
consider the uncertainties in the state.

If P and Q are noncommuting Hermitean operators then the physical quantities P and 
Q cannot be simultaneously measured with zero uncertainty. This is known as Heisen­
berg's Uncertainty Principle. To see this6, suppose A and B are two Hermitean operators 
and that all observables are taken for a fixed state \ Now consider the expression :

(C) = (t/>|(Ä + mB)(Ä -  zuB)|-0) (3.29)

This is the squared length of the vector (A -  iuB)|V>) and is therefore always real and 
non-negative for positive u. Rearranging:

(C) = (V>|(ÄZ + u2B + iuBA -  iuAB)\ip)
= (A)l  + u\B)l-iu([k,])* (3.30)

As (C) is positive for real u, then from the root of the quadratic solution (“b2 + 4oc"):

<A2>^<B2)^ > i  |<[A,B]> ,̂[2 (3.31)

Now let A = P + (P) and B =  Q + (Q). As (P) and (Q) are numbers [A, B] = [P, Q]. Thus:

(Ä2)*, = (V>|(P2 + (P)2 -2 (P )P ) |^ )
= (P2) + (P)2 -  2(P}2

= <P2) - ( P >2
=  ( A p >2 (3.32)

And similarly, (B2)̂ , =  ( A q ) Substituting into eqn 3.31 we obtain:

( A p ) 2 ( A q ) 2 = 1/4 |([P, Q])|2

(Ap)^(Aq)^ = 1/2 |<[P, Q])| (3.33)

Thus the smaller the uncertainty in the measurement of the observable (P), the greater 
the uncertainty in the observable (Q).

The commutator for the quadrature operators is:

(3.34)

Remembering that |[Xi,X2]| = 2, the uncertainty relation for quadrature operators is 
thus:

AXlAx2 = l / 2 | ( [ X l l X 2])| =  1 (3.35)

One quadrature cannot be measured to arbitrary accuracy without the other quadrature 
becoming arbitrarily uncertain.

Consider the variance of the amplitude and phase quadratures of the vacuum state. 
As the uncertainty of the photon number was zero, naively we might expect the quadra­
ture variances to be zero. However from the uncertainty relation, eqn 3.35, we know this

6This proof is from reference [2].
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cannot be. We find:

V(Xi)o = (A X , ) 2

=  (0|AX,2|0)
= (0|X,2|0> -  <0|X,|0>2 
= <0|(ä +  ät )2|0 ) - ( 0 | ( ä + ä , )|0}2 
= (0|(ä2 + ä*ä 4- +  ä(2)|0) — 0
=  0 +  0 +  (0 |(1  +  ä 'ä) |0> +  0 = 1  +  0

= 1
<AX,)o = ±1 (3.36)

Similarly for the phase quadrature:

V (X2)0 = <AX2)2 = 1
(AX2)o = ±1 (3.37)

The vacuum state is noisy. This can be thought of as the standard background noise of the 
universe 7. It is directly due to the 1/2hu energy present in each vacuum mode of the 
electromagnetic field. The noise level of the vacuum state is known by various names: 
the standard quantum limit or SQL; shot noise; or the quantum noise limit or QNL

How do the uncertainties of the coherent state compare with those of the vacuum 
state? The variance of the amplitude quadrature of the coherent state is

V(Xl)a =  (AXj)i
= H A X iV )
=

= (ar|(ä+ a*)2!«) -  (or|(ä+ ät ) |n )2
=  (n |(ä2 +  ä^ä +  ää^ +  a^2)!»)

-  [(n|a|a> +  (a |a t |o')]

=  (ck| ä21 or) +  (ar|a"*a|a:) +  (n |( l +  a^a)|a)
+(n |a^2|o:) — [a -f a*]2

=  a 2 + M 2 +  1 +  |n |2 + a* 2 -  [a2 +  a* 2 +  21o-12j
= 1

(AXi)« =  1 (3.38)

Similarly for the phase quadrature:

V(X2)q = (AX2)2 = 1
(AX2)q = ±1 (3.39)

The coherent state has exactly the same uncertainty as the vacuum state. This is what 
makes the coherent state worthy of attention. For both the coherent and vacuum states,

7This electromagnetic noise is present everywhere, at every frequency, in every direction. Your hand is a 
wonderful source of vacuum noise. This noise is not the remnant radiation from the Big Bang. That is at a 
microwave frequency only, and can only been seen by looking carefully at the sky.
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the standard errors of the quadrature operators fulfill a special case of the Heisenberg 
uncertainty relation:

(AX1)a(AX2)Q = 1 (3.40)

Any state with uncertainties that fulfill this relation is known as a minimum uncertainty 
state or MUS. As we shall see, both coherent and vacuum states are special cases of the 
infinite set of minimum uncertainty squeezed states.

The phasor diagram must be modified to include an uncertainty outline, as shown in 
Fig. 3.1(b). This is often, and imaginatively, titled the ball-on-stick diagram. The phasor 
diagram can be interpreted in either the frequency or time domain. In the frequency 
domain, each frequency mode of the electromagnetic field has a separate ball-on-stick 
diagram. As we shall see, the uncertainty outline (a circle for a minimum uncertainty 
state) can differ from mode to mode: a new picture must be drawn for each frequency of 
the field.

3.1.4 Squeezed states

C) X| d)

Figure 3.2: a) Vacuum squeezing, b) Bright squeezing, c) Bright squeezing in rotated quadrature 
space. Yi, Y2 shown on diagram, d) Number state.

Squeezed states are states where the uncertainty in one quadrature is less than the 
standard quantum limit, that is to say, quieter than the normal background noise of 
the universe. The production, measurement and modelling of these somewhat unusual 
states will take up much of the discussion in this thesis.

Any quadrature of the field mode may be smaller than the SQL, not only the in-phase 
and in-quadrature quadratures. That quadrature is said to be squeezed, it's complemen-
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tary quadrature is sometimes said to be anti-squeezed. Minimum uncertainty squeezed 
states are states where the squeezed and anti-squeezed quadratures fulfill the minimum 
uncertainty relation, eqn 3.40.

This is best illustrated with phasor plots. Vacuum squeezed states are electromag­
netic states without any coherent excitation, as shown in Fig. 3.2(a). Bright squeezed 
states are electromagnetic states with a coherent excitation, as shown in Fig. 3.2(b). For 
bright squeezed states, fluctuations in the amplitude quadrature lie along the vector, a, 
as shown. Fluctuations in the phase quadrature are at right angles to this.

Mathematically, both forms of squeezing are generated from the vacuum state. Vac­
uum squeezed states are defined as:

|0,e) = S(e)|0) (3.41)

and bright squeezed states are defined as:

\a,e) = D(a)S(e)\0) (3.42)

where the unitary squeeze operator, S(e) is:

S(c) =  exp(l/2c*a2 -  l/2ea^2) (3.43)

and e = re2l(i>. </> represents the quadrature angle of the squeezing: f  = 0 is amplitude 
squeezing, </> = 7r/2 is phase squeezing. As shown in Fig. 3.2(c) we define rotated quadra­
ture operators, Yi and Y2, that define a rotated complex amplitude, ß:

ß =  ae~l<t>
= 1/2 «*!> + i<X2» e - ’'*
= 1/2((Y i) +  i( Y2>) (3.44)

The squeeze operator attenuates one quadrature component of ß whilst amplifying the 
complementary quadrature. The degree of amplification and attenuation is set by the 
squeeze factor, r = |s|. For a squeezed state, the rotated quadrature uncertainties are:

{&Yi)a,r = e~r
(AY2)0,r = e+r (3.45)

which fulfill the minimum uncertainty relation (eqn 3.40). The photon number of a 
squeezed state is:

(N)a>r = |a |2 + sinh2r (3.46)

Note that a squeezed vacuum (a = 0) contains photons. That is, a squeezed vacuum state 
is not really a vacuum state, as it contains more than zero energy. It requires energy to 
alter the uncertainty circle of quantum noise limited states, be they vacuum or coherent.

How does a squeezed state compare to a number state? The quadrature variances for 
a number state are:

(AX!>n = (AX2)n = 2n + 1 (3.47)

As shown in Fig. 3.2(d), in quadrature space the number state is an annulus with radius 
y/n and width = 1. The number state is certainly not a minimum uncertainty state in
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quadrature space. However it is a minimum uncertainty state in number/phase space8, 
whilst in that parameter space, vacuum, coherent and squeezed states are not. Although 
a detailed treatment is beyond the scope of this thesis, we point out that in a parameter 
space where a state is a minimum uncertainty state (squeezed state in quadrature space; 
number state in number/phase space) the Wigner function is always positive. Further, in 
quadrature space minimum uncertainty states are always Gaussian, and the uncertainty 
outline, which is a contour of the Wigner function, is always an ellipse. The number 
state in quadrature space has a Wigner function with negative values, corresponding to 
negative classical probabilities.

3.1.5 Linearisation

Linearisation is an approximation that makes most empirical quantum optics possible. It 
is only valid for detection of bright, steady-state, electromagnetic fields, i.e. fields with 
amplitudes much larger than their fluctuations. (From the phasor diagram point of view, 
the last requirement is that the "stick" is much longer than the width of the "ball".)

In linearisation, operators are decomposed into two components, one a c-number, the 
other an operator. The c-number component is the steady-state (and thus independent 
of time) expectation value of the operator. The operator component describes the time- 
varying fluctuations of the field. For example, linearising the annihilation operator of the 
coherent state:

ä = a +  <5a(£) (3.48)

where <p is the phase of the coherent state. For the rest of this thesis we shall not explicitly 
write the time dependence of the fluctuation operator. These fluctuation operators are ho­
mologous with the fluctuations discussed in previous section (i.e. 8A = AA). Previously 
established operator relations apply to the fluctuation operators. Thus, the quadrature 
fluctuation operators are:

«DG = {8k+8k])
8X2 = -i(<Sa -  <Sa+) (3.49)

Linearisation offers insight into the physics of various measurements. Consider, for a real 
coherent field, the number operator:

n = a*a = a2 +  n(5a + £a^) (3.50)

where we have omitted the higher order (and thus negligible) terms in the fluctuations. 
We see that the number operator for a coherent field fluctuates around a mean value, and 
that the fluctuations are only observable because they're scaled by the field. Fluctuations 
in photon number correspond to fluctuations in the amplitude quadrature (compare eqns 
3.49 and 3.50). We can thus write the expectation value for the photon number of a co­
herent field as:

(n)a =  (ä.fä )a S  a 2 +  a(<SX,>a (3.51)

As the average value of the amplitude quadrature fluctuations is zero, the average photon 
number is n2.

8This argument is valid, if somewhat hypothetical. The number operator is well defined. The phase 
operator is not, and still remains the subject of active research.
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3.1.6 The sideband picture

In previous sections we've introduced several seemingly disparate concepts: coherent 
and squeezed states; quadrature operators; linearisation; and phasor diagrams. In this 
section we present a physically intuitive picture that unifies these concepts, and allows 
intuitive interpretation of the existing squeezing literature.

Consider a classical optical field of frequency Q. It can be represented by a complex 
phasor on a frequency line, see Fig. 3.3(a). We refer to this phasor as the carrier. Ampli­
tude modulation at a frequency u  is represented by two smaller phasors, referred to as 
sidebands, that are displaced from the carrier by ±ca. The relative height of the sidebands 
with respect to the carrier defines the modulation depth. The phasors are parallel to, and 
in the same direction as, the carrier, as shown in Fig. 3.3(b). Both sidebands beat with the 
carrier. It is the power of this beat signal that is measured experimentally. Phase modu­
lation is represented by an infinite set of sidebands, spaced at u>. The sidebands are in the 
plane perpendicular to the carrier, and their relationship with one another is shown in 
Fig. 3.3(c). The modulation depth, and therefore the relative heights of the sidebands is 
given by a Bessel function. For small modulation depths the higher order sidebands are 
very small and can be ignored. In this limit phase modulation can be represented by just 
the first two sidebands at ±ca. As discussed later (see section 3.4.4), phase modulation is 
normally detected by converting it to amplitude modulation. (A simple way to do this is 
to rotate the carrier 90 degrees whilst leaving the sidebands unaffected.)

Any signal or modulation can be decomposed into amplitude and phase components. 
For a classical field no signal is detected at a frequency u  unless there is explicit modula­
tion at that frequency. However real optical fields are not classical: there is noise at every 
detection frequency. For a coherent field this noise is at the standard quantum limit. We 
now explain this noise using the sideband picture.

In section 3.1.5 the operators ä & at were decomposed into a steady state component, 
a, and frequency dependent fluctuation operators 5ä & <5â  respectively. In the sideband 
picture the fluctuation operators <5a & are considered to be tiny sidebands of fixed 
length located at ± u  with respect to the carrier. The carrier has amplitude 2o: without 
loss of generality we define it to be real. Now consider the fluctuation operators Sk & <5a,t 
at a specific sideband frequency, u  for a coherent state. The operators fluctuate randomly 
around the frequency axis at all frequencies (i.e. for all observation bandwidths of the fre­
quency u.) As they are uncorrelated they fluctuate at random with respect to each other. 
At any given instant <Sa & <5a,t may be parallel to one another and the carrier, giving am­
plitude modulation; at another, they may be out of phase with one another but both per­
pendicular to the carrier, giving phase modulation; and at yet another, any combination 
between these. Thus on average there is modulation, i.e. noise, at every quadrature: the 
magnitude of the modulation is constant, and the same for all quadratures and sideband 
frequencies. It is this noise that is represented by a circle on the phasor, or ball-on-stick, 
diagram.

Although the power of the sideband fluctuations is minute, it is the beating between 
the fluctuation sidebands and the carrier that provides the measurable quantum noise. 
(As can be seen from eqns 3.50 & 3.51.)

Naturally, in the sideband picture the formalism derived in section 3.1.3 applies with­
out change. The amplitude modulation fluctuations are simply fluctuations in the am­
plitude quadrature, <$Xi = <Sa + <$4* (5a & <5at have the same phase as each other and the 
carrier). Likewise, the phase modulation fluctuations are simply the fluctuations in the 
phase quadrature, <*>X2 = ±i(<5a -  (Sa*) (6k & ^at are 180° out of phase with each other
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and both 90° out of phase with the carrier). The sideband picture also makes clear why 
the operators & <5a'*’ cannot be measured explicitly: this would correspond to a mea­
surement of the power of one sideband solely. In contrast, photodetection measures the 
power of the beat between the sidebands.

Linear processes, such as absorption or mixing at a beam splitter, affect the carrier 
and sidebands differently but do not change the statistics of a coherent field. The mag­
nitude of the output carrier is attenuated or amplified. However the magnitude of the 
output field sidebands is the same as the input field sidebands. This is because the linear 
process mixes uncorrelated input vacuum and coherent fields that have the same magni­
tude sidebands. (For a 50/50 beamsplitter, half of the coherent sideband and half of the 
vacuum sideband gives the same magnitude sideband as the initial coherent sideband.)

Nonlinear processes differ in that they can correlate the sidebands in some fashion. 
For example, consider degenerate four-wave-mixing: it correlates the sidebands at ±u 
so that they are parallel to each other and the carrier [4]. Consider the effect of say, 
10% correlation of this type on a coherent field. Previously there was equal likelihood 
that that sidebands would combine to give modulation of the amplitude, phase, or any 
quadrature in between. However the sidebands are now correlated so that they now add 
more often to form amplitude modulation, and thus less often to form phase modulation 
9. Accordingly the amplitude quadrature becomes noisier, the phase quadrature quieter. 
Previously both quadratures were shot noise limited: the amplitude quadrature is now 
anti-squeezed; the phase quadrature is squeezed (by 10%). In the ball-on-stick picture 
the noise outline is now an ellipse, elongated along the carrier. The ellipse is narrower 
than the original quantum noise circle.

Using this picture it is clear why a linear process degrades squeezing, it mixes in 
uncorrelated, quantum noise level, sidebands, and thus reduces the correlation between 
the sidebands of the squeezed field. (For a 50/50 beamsplitter with an incident 10% 
squeezed field, the output fields are 5% squeezed.)

The sideband picture complements the ball-on-stick picture. Using both it is possible 
to develop an intuitive understanding of squeezing in any nonlinear system.
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Figure 3.3: Sideband diagrams, a) optical carrier b) amplitude modulation c) phase modulation

9This is a physically intuitive way of stating Heisenberg's uncertainty principle. As we have seen, the 
behaviour of the sidebands is described mathematically by the commutator.
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3.1.7 Limits of the sideband picture

How far can the sideband picture be taken? In the last section we stated that it can be used 
for any linearised system. This may strike some readers as surprising, afterall, operators 
are mathematically very different objects to electromagnetic field vectors. The following 
argument puts the correspondence between the two on a formal footing.

Consider an electromagnetic field with small positive and negative sidebands:

E = E0 +  6E+ + 6E- (3.52)

where SE+ & 6E_ are located at with respect to the carrier, E0. The variance of the 
intensity of this electromagnetic field is:

Var(7) = Var {EE*)
= ({EE*)2) -  (EE*)2
= E%(6El +  6E2_ + 2 6 E +6E-)  (3.53)

where the final value of the variance will depend on the exact definition of 6E+ & SE_. 
In linearised quantum mechanics, the photon number variance is given by:

v„ = a2KXl
=  a 2 { ( , 5 X 12 > - < < S X 1>2 {

= a 2 |((<$ä + 5ä)2) — (6a+<Sa)2 j

=  a 2 (6a2 q- 6a*2 +  6a^6a +  6a6a^) (3.54)

Comparing eqns 3.53 and 3.54, it does appear that the sidebands 5E+ & 6f?_ are analo­
gous to the operators 6ä & 6aL However this is not quite the complete story.

The operators 6a & 6a* fulfill the commutation rule 6a, 6a* j =  1. Applying this (in 
the case of a coherent field) we find that the self correlation of a given quadrature is 
Vxf =  (SXi, SXi) =  1 (i.e any given quadrature is quantum noise limited); and the cross­
correlation between orthogonal quadratures is Vx ^ = (6Xj, 6X2) = 0 (i.e. orthogonal 
quadratures are totally uncorrelated).

For a coherent electromagnetic field, E, these criteria stipulate that the sideband am­
plitude modulation (SE+ + 6E-) or phase modulation (—i [SE+ -  8E_]) must be at the 
quantum noise limit; and that there is zero correlation between sideband amplitude and 
phase modulation. These criteria are fulfilled when the positive and negative sidebands 
are totally uncorrelated ((8E+8E-) = 0) and of identical size ((8E\) = (8E2_) where 
(ÖE+ +  6 £ 2) = 1). With these definitions, the sideband and fluctuation operator be­
haviours are identical.

Thus for linearised systems the behaviour of the operators 6a & 6a3 can be correctly 
described by considering the operators to represent small sidebands of the optical field 
- this is an interpretation only, the formalism is unchanged. Both linear and nonlinear 
process can be understood in terms of manipulation, and in particular correlation, of 
these sidebands.

3.1.8 Equations of motion

In section 3.1.5 we stressed that linearisation is possible only when the field is in the 
steady-state. The most convenient way to ascertain this is to derive an equation of motion
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for the optical system, and then solve it to see if steady-state solutions ex ist10.
Classically a perfect (i.e lossless) simple harmonic oscillator is described by the equa­

tion of motion:
x = iflx (3.55)

On integration the variable x oscillates indefinitely with angular frequency fl. As the 
system is lossless, it does not interact with the rest of the universe. To model the effect of 
an irreversible (in the thermodynamic sense) interaction with the rest of the universe (for 
example, friction in a mechanical system) we introduce the damping term, 7 , so that:

x = (iQ, — j ) x  (3.56)

The system is now described as open. On integration, the variable x now undergoes an 
oscillatory exponential decay.

For a quantised system, the equation of motion of operator, x * 11, can be found directly 
from the Hamiltonian of the system using the following relation [3]:

ik a — [a, If] (3.57)

The Hamiltonian for a quantised simple harmonic oscillator of frequency v, is:

'H = huj ^a*a + (3.58)

Thus the equation of motion of the quantised Fourier amplitude, a, for a quantised simple 
harmonic oscillator is:

ä =  iQ ä (3.59)

which is clearly analogous to the equation of motion for a classical simple harmonic os­
cillator, eqn 3.55. Once again the classical variables have been transformed to operators. 
By inspection then it would seem straightforward to write the equation of motion for a 
quantised, damped, simple harmonic oscillator as:

ä = (ifl — 7 )a (3.60)

However this is incorrect. It does not include the vital influence of vacuum noise that is 
introduced by the coupling to the rest of the universe. To account for this, we model the 
universe as a reservoir of an infinite number of electromagnetic modes, with Hamiltonian
[51:

r  0 0

7iuni = ih / ÜB]{ü)B{n)dü
J OO

(3.61)

where B and B^ are the boson annihilation and creation operators respectively. The ther­
modynamically irreversible interaction of this reservoir with an arbitrary system opera­
tor, c, is described by the Hamiltonian:

r  00

Hunt = ih / y /2 j (& { n ) c -  B{Sl)c')dn
J OO

(3.62)

10The discussion in this section is adapted from reference [61-
11 In the Heisenberg picture of quantum mechanics, the operators are time dependent and the state vectors 

are not. In the Schrödinger picture the opposite is true. In the interaction picture both operators and state 
vectors are time dependent. The discussion here applies to the Heisenberg picture.
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where we use the Markovian approximation, that the coupling constant is independent 
of frequency. We can now write the equation of motion for c as [5]:

& = ^  [[c,nrev] -  { [ä, ct] (7c +  v^iB(O) -  (TCf + V*rS&(t) )  [ä,c]}] (3.63)

where 6B(t) is defined with respect to some arbitrary time t0:

SB(t) = J e - 'n(,- ‘o)B0(w)dft (3.64)

The first term of equation 3.63 is the normal equation of motion for a closed system, i.e. 
eqn 3.57. Substituting the quantised simple harmonic oscillator, eqn 3.5, into eqn 3.63 we 
obtain the eqn of motion for a:

ä =  (iQ — 7)a — y/2y SB (3.65)

It is not necessary to repeat this calculation for each new system under consideration. 
In practice it is possible to write equations of motion for optical systems by inspection. 
However it is vital to remember, for each coupling port j x, to add a term like "yJ2jxSB". 
Further, in optical systems the equations of motion are normally written in the rotating 
wave frame, i.e. the system is observed at the optical frequency, v = Q/(27r). Thus the 
optical frequency term, iQ is omitted from the equations of motion.

3.2 Thickets of solutions

Theoretical quantum optics in large part consists of deriving a suitable Hamiltonian for 
a system and then extracting from it the system dynamics (i.e. the equations of motion) 
and the noise spectra, which can then be compared to experiment.

The broad outline of this approach was apparent early in the piece, for example, 
Fig. 3.4 shows a conceptual map of possible approaches to modelling a laser, as drawn 
by Haken in 1970 [7]. However the fine details were unclear, and so for example the 
theoretical laser output spectra in [7] lack a quantum noise floor entirely. It took another 
20 years of research before a simple and robust approach to modelling quantum optical 
systems was available.

Until 1984 the most serious problem was that no sensible procedure existed to model 
the input and output of a quantised cavity. Thus for the optical parametric oscillator the 
optimum output squeezing at zero frequency was simultaneously predicted to be perfect 
[8] and limited to 50% [9]. With the development of the input-output formalism [10,11,12] 
this serious limitation was removed. The input/output formalism allowed, in an elegant 
fashion, systems to be modelled with squeezed, coherent, or thermal input fields. (Using 
the formalism the OPO problem was quickly resolved: in principle, perfect squeezing 
can occur at zero frequency in the output field, reducing to the quantum noise limit at a 
high frequencies with a Lorentzian bandwidth set by the cavity.)

Until the late 1980's the Schrödinger approach (emphasised in grey on the right hand 
side of Fig. 3.4) was favoured by the majority of the quantum optics community. In the 
Schrödinger approach the operators are constant and the states vary with time. Fig. 3.5 
shows the approach in more detail: it is quite involved. The penultimate product of this 
approach are drift and diffusion matrices, A & D, that respectively describe the system 
dynamics and noise properties. Deriving spectra from these is computationally intensive,
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as it involves matrix inversion, and modelling practical systems nearly always involves a 
final numerical, rather than algebraic, solution. Despite these shortcomings, the approach 
was popular as it was obviously rigorous and thus reliable.

An alternative approach is the Heisenberg approach, shown in grey on the left hand 
side of Fig. 3.4. The operators vary in time and the states are constant. Fig. 3.6 shows the 
approach in more detail. The strength of this approach is both it's computational sim­
plicity and it's analytical descriptions of the system dynamics and spectra. This allows 
an intuitive understanding of noise sources in practical systems that is not possible with 
the Schrödinger approach due to its requisite numerical solutions. The quantum optics 
community had always been aware of the Heisenberg approach and it was used to model 
very simple systems such as empty cavities. Despite this the Heisenberg approach has 
only recently begun to gain in popularity. In 1989 it was highlighted in a paper as the 
semi-classical method [13]. Considerable scepticism initially greeted this paper, as many 
felt that the method lacked necessary rigour. However it was quickly shown that the re­
sults were exactly equivalent to those of traditional methods [14]. In essence, it does not 
matter whether the linearisation occurs at the end of the calculation (the traditional, or 
Schrödinger, approach) or at the beginning (the semiclassical, or Heisenberg, approach). 
A further cause of reluctance was that it was not at all obvious how to model active sys­
tems in the Heisenberg approach - this problem has only been recently solved [15].

Due to its simplicity and intuitive nature we prefer the Heisenberg approach in this 
thesis, using it in Chapters 3 & 6-9. Comparison with the Schrödinger approach may be 
made in Chapter 4, where it is used to model and compare active and passive SHG. In 
the next section we walk the reader through the Heisenberg approach by modelling the 
empty, passive, cavity. This is not solely a pedagogical exercise: it allows us brevity later 
on when modeling the more complicated nonlinear systems; and the empty cavity results 
are of considerable importance in themselves.

3.3 A walk through the Heisenberg approach

3.3.1 The empty cavity: equations of motion

Consider the ring cavity shown in Fig. 3.7. The cavity irreversibly couples through a 
pump coupling port at mirror mi, a transmission port at mirror m 2, and an absorption 
port represented by a mirror mi. Mirrors m3 & m4 are ideal reflectors and so are not 
coupling ports. The equations of motion for a passive lossless cavity are:

ä =  — (7 4- z‘A)a

at = — (7 +  2A)af (3.66)

By inspection we add coupling terms to write the quantised equations of motion for the 
open cavity:

a —(T + *A)ä-f- \/27m 1A p u m p  T \ Z 2 ' ) Tn2A .a u x \  T \ Z ^ J m e ^ a u x 2

^  ~ ( y  T zA)ä T \ / 2 y m  1 p u m p  T v ^ 2 y m 2 Ä ^ aUx \  T \ / 2 ' y Tn( A ^ aux2

(3.67)

where the total cavity decay rate is 7 = 7mi + 7m2 + 7me-
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Figure 3.7: Schematic of empty cavity. Mirror ini couples the pump; mirrors m2 & mi respectively 
couple vacuum fields from the transmitted and loss ports; mirrors m3 & ?n4 are perfect reflectors 
and so do not couple vacuum in.

3.3.2 The empty cavity: linearisation

Linearising we can write for the fluctuation operators:

— (gf T iA)<5ä-)- \/2'yrnl^ÄpUmp T \Z2Tm2^Ä-auxl T \/^lm iSk.aux2 

Sa.̂  — f'Y -F -F \/2 /yTn,i(5Ä.̂ pump -F 'f^-'y-miSF^ aux\ T \ / 2 ' y aux2
(3.68)

Combining these equations we obtain the equations of motion for the quadrature opera­
tors:

6 * i = -F ASX? -F \/2gff\S  X \ UTnip +  \ / 2 j ^ 6 X i UXl +  \ /2 y ^ 6 X ^ ux2

S k 2 =  -7<5A2 -  A S X l + y /2 ^ S X % ump +  \ / 2 ^ 6 X 2auxl +
(3.69)

3.3.3 The empty cavity: Fourier transform

The fluctuation operators are intrinsically time dependent, i.e. Sc = Sc(t). We define the 
Fourier transform of the fluctuation operators as:

Sc Sc(u)
FT[Sc{t)]

TOO

/ Sc{t)elUJtdt (3.70)

In this thesis the tilde will always signify a Fourier transformed operator. The Fourier 
transform obeys the normal mathematical rules for derivation and conjugation:

FT[it i{t)] =

FT[c(t) <g> d(t)] =  c(cu)d(u;) (3.71)



58 Quantum Models

The Fourier transform of the quadrature operator eqns of motion (eqn 3.69) is thus:

+ASX1}/ 2 ^ 1 6 X ^  + V 2 ^ 6 X r * '  +  y ^ e S X J ^
7 — iu

- a  s x l ^ r 1s x pl '‘mp + +  v̂ tJ ä t 12
7 — iu

(3.72)

Solving these to eliminate the intracavity fluctuation operator, SXi t2, we obtain:

sx, = /̂2̂ ( s x r mp+ +  v^ i s x
+Vn^(sxr2 + gsxrx2)

(1 + 92)(t - * “ )
(3.73)

where:
(3.74)

The subscript i = 1(2) indicates the amplitude (phase) quadrature, whilst the subscript 
j  = 2(1) indicates the complementary quadrature, i.e. phase (amplitude).

3.3.4 The empty cavity: boundary conditions

The boundary conditions for the reflected, transmitted and absorbed light of the empty 
cavity are:

Arefl — \/27ml® Ä pump
A t r a n s  — V 27m2® A a u x l

Äloss — -Äaux2 (3.75)

And thus for the quadrature fluctuation operators are:

sx"1' = 72^ x , - x r mp
sx,‘rans = \f¥~t~2X,~xrxl
SX‘rans = ^/2ymtX, -  X '1“1'2 (3.76)

On Fig. 3.7 we have indicated in grey a return field, Aret. For a ring-cavity (in the 
absence of nonlinear effects) this return field does not affect the mode a. It sets up a mode 
with identical spatial properties to a that circulates in the opposite direction. Flowever 
for a standing wave cavity, the return field becomes the auxiliary field, Aret = Aaux\ and 
thus has considerable influence.

Experimentally only the reflected and transmitted beams can be measured. Substitut­
ing eqns 3.73 into eqns 3.76 we see that the fluctuations in the reflected and transmitted 
beams are:

s x r j ‘ = [27m! -  (1 + q2)(y + iu,)\ s x r mp + 2q7mlSXpump

+ 2 y / 7 ^ n ^ ( S X r x‘ +
+2V/T^?W (<57‘‘“ 2 +
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7 — iu

6X t rans 2>/7mi7m2(<^fUmp + q6X pump) + 2qym26X jaux  1

+ 27m2 — (1 +  q2){ 7 + iu]

+2 V ^ ^ ( S X r x2 + qSX°

sx.
■aux2s

aux  1

7 — iu (3.77)

3.3.5 The empty cavity: deriving spectra

The noise spectra, V{, for the quadratures X t observed on a state ^  are found from the 
self correlations of the fluctuation operators, i.e.:

V x M  =  (SXi,SX})i,
= ( S X i S X ^  -  ( S X M S X t U  (3.78)

Independent fields have zero correlation:

(Xj1\ x j l‘) =  0, (3.79)

So from equations 3.77 the spectra for the reflected and transmitted beams are:

V'xf ( u )  = |27ml -  (1 +  q2)( j  + iu)\2V £ mp + 4q2-ymlV ^ mr

+47mi7m2(V'l“ 1 + 92V^“ ’)

+47m i 7 m l(VxT2 + 12V x T 2)

(72 + « 2)(l + 92)2

v J 7 “ («) =  47mam2 ( v £ mp +  i 2v ^ mp) +

+ |27m2 _ (1 +  92)(7 + *W)|2' /A'”il 
+47m27m l(VxT2 +  <?2'/| “ 2)

(72 +  w 2)(1 + q2)2 (3.80)

3.4 Cavity configurations and photodetection

In this thesis two configurations of the empty cavity are of considerable importance: the 
symmetric cavity and the single-ended cavity. We now examine these in turn.

3.4.1 The symmetric cavity

A symmetric lossless cavity has two coupling ports of equal strength, i.e. 7ml = 7m2 = 
7/2, 7me = 0. Consider the perfectly resonant case, A = 0 =7 q = 0. The reflected and
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transmitted spectra for either quadrature become:

vx, (") = —
a u x l

y t r a n s  
X i M  =

72 -f tv2
7 2 y P “ m p +  w 2 V a u x l

7 2 +  tA
(3.81)

where i =  1,2 represents the amplitude and phase quadrature, respectively. At zero 
frequency, u  = 0, the cavity is transparent to the input fields, i.e.:

vrxf m  = v%*i(o)
V$;aT“ (0) =  V £ mp(0) (3.82)

This is known as the impedance-matched case: the reflected field contains no information 
from the pump at all. At high frequencies co ->■ oo, the cavity acts as a perfect reflector of 
the input fields, i.e.:

VZ?(oo) = V £ mp(oo)
V£tans(oo) = V £ x l(oo) (3.83)

A resonant symmetric lossless cavity acts as a low-pass filter of the input fields. We will 
refer to such a cavity as a mode cleaner, as the high frequency noise of the pump field is 
cleaned off the transmitted field 12.

What is the effect of detuning? Consider the case A = 7. At zero frequency u  = 0, => 
q — The cavity is no longer simply transparent to the input fields: it mixes the input 
fields and the quadratures of the input fields. The reflected and transmitted fields are 
identical:

ry pumP(0) + VP^Pf 0)1 + \ V ^ l {0) +  Vpump(0)]
Vfie/ l(0) =  V ;̂an5(0) =  — — — --^ ----------------—-------------^ --------  (3.84)

At high frequencies, u  —> 00, => q — 0, the cavity again acts as a perfect reflector of the
input fields, i.e.:

v z ?  ( 0 0 )  =  hp;mpM
Vx,ans{oo) = V%*'(oo) (3.85)

A non-resonant symmetric lossless cavity acts as a low-pass filter and mixer of the in­
put fields and quadratures. This is clearly undesirable in mode cleaners: to function 
efficiently they must be locked onto resonance.

3.4.2 The single-ended cavity

A lossless single-ended cavity is a cavity with a sole coupling port, i.e. yml = 7, 7m2 = 
7m£ = 0. Consider the perfectly resonant case, A = 0 => q = 0. The reflected spectrum 
for either quadrature is independent of frequency:

( 3-86)

12Actually the name was originally coined to describe the spatial cleaning properties of such a cavity The 
input field can be spatially very messy (read "non-Gaussian") but the transmitted field is always Gaussian.
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The resonant single-ended cavity simply acts as a perfect mirror.
Now consider a detuned cavity where A = 7. At zero frequency u  = 0, => q — 1. The 

cavity rotates the quadratures of the input field, i.e.:

^ ' ( 0) = V£m"(0)
Vx2f l (0) = V £ mvW) (3.87)

At high frequencies, u  —Y 00, =>■ q =  0, the cavity does not rotate the quadratures of the 
field but once again acts as a perfect reflector of the input field, i.e.:

VreflV Y M  = (3.88)

The detuned single-ended cavity rotates the zero-frequency component with respect to 
the high frequency sidebands. As discussed shortly, this behaviour is most useful as it 
allows us to examine any quadrature of the pump field.

3.4.3 Photodetection

Photodetectors detect the power of the field. The mean optical power of a state \tp) is:

Popt = hv{n)^ = hu( a^a)^ (3.89)

In section 3.1.5 we introduced the concept of linearisation. We now rewrite eqn 3.48 as:

a(u) = a  +  Sa(u)
= e - ‘̂ 0)|a | +  e~l^ w)6ä{ u) (3.90)

where </>(0) is the phase of the zero-frequency component of the field, and are the 
phases of the fluctuation components of the field.

For a coherent state, the mean optical power is:

Popt{u) = hv |a |2 + hve~2lip\a\[6ä(u>) +  e+2zv>5a (̂ca)] (3.91)

where:
<P = 4>(u) -  m  (3.92)

The zero-frequency (steady-state) component of the field, |u| is known as the carrier of 
the field, as it carries most of the energy. Note that the power measured due to the 
fluctuations depends on the frequency dependent phase relationship between the carrier 
and the sideband, cp. Rewriting 3.91 in terms of the quadrature fluctuation operators we 
obtain:

h i / p

PoptH  = M a p  + ----- 2-------- +  e ) +  -  e+2w)l (3.93)

Using eqns 3.78 and 3.93, we find that the photon number, or power, spectrum is related 
to the amplitude and quadrature fluctuation spectra by:

K M  = \<*\ v ^ H  + + 1 e- 2w(1 + e+4,V) {Va._ (w) + V-A.j(a;)) (3.94)

3.4.4 Phase sensitive detection
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Figure 3.8: Quadrature rotation from single ended cavity, left hand side: sideband picture, right 
hand side: ball-on-stick picture.

Consider the single-ended cavity discussed in the last section. In the resonant case, 
there is a flat frequency response, with V^\ui) — V^mp(u). There is no differential 
rotation between the carrier and sideband components of the pump field, 0(0) =  <t>(w), => 
ip = 0. The measured power spectrum is thus:

VfeJl{u) =  |u |2V ^ mpH  (3.95)

For direct detection of fields 13 (including fields relayed by perfect mirrors), the power 
fluctuation spectrum is related to the amplitude quadrature fluctuation spectrum.

Now consider the detuned single-ended cavity, A = 7. The zero-frequency com­
ponent of the pump field is rotated by 7t/ 2, e.g. V ^ l(0) = Vx“mp(Q), whilst the high 
frequency components are unaffected, V ^ l{00) = Vf^mp [00). Thus the relative phase 
between carrier and sideband is ip = 0 (00) — 0 (0) = n /2. The measured power spectrum 
at high frequencies is thus:

v;re//M  = M 2V ^ mp(oo) (3.96)

At high frequencies the power fluctuation spectrum of the reflected field is related to 
the phase quadrature fluctuation spectrum of the pump field. In general, the fluctuation 
spectrum of any pump quadrature can be measured by varying the cavity detuning, A.

A detector placed after a non-resonant single-ended cavity acts as a phase sensitive 
detector, i.e. it can detect any quadrature of the field. It enjoys several advantages, and one 
disadvantage, compared to the standard phase sensitive detector, the homodyne detector. 
The homodyne detector is a balanced detector (see next section) with a local oscillator 
field input at the vacuum port. The local oscillator must have the same properties as the 
signal field (frequency, spatial mode, etc.) and so in practice is normally derived from 
the same source. As the local oscillator must be much stronger than the signal (at least 
an order of magnitude) this constrains considerably the power available to the signal 
beam. A further experimental constraint is that the spatial mode-match between the

13As no steady-state phase information is measured in direct detection, it is possible, without loss of 
generality, to define the detected field as real and the carrier phase angle, 4>(0 ) ,  as zero. This is often done 
to simplify theoretical arguments. However as the theory presented here is in terms of the relative phase 
between sideband and carrier, y>, we don't need this definition.
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local oscillator and signal beam is critical, and needs careful attention. The cavity based 
phase sensitive detector avoids these limitations. The carrier acts as the local oscillator, 
the sideband as the signal beam. The only disadvantage is that the cavity linewidth must 
be an order of magnitude smaller than the signal frequency, so that the approximation 
u —>■ oo is valid.

3.4.5 Balanced detection

50/50

Figure 3.9: Schematic of a balanced detector.

Fig. 3.9 shows the balanced detector. Operators a, b and c, d represent the annihilation 
operators of the two input and output fields of a beam splitter, respectively. They are 
related by:

C =  y / 1 - S ä  -

d = ^ a + y / l - t ' b  (3.97)

where f is the beamsplitter reflectivity. The system is balanced when f = 0.5 as each 
input field contributes equally to each output field, i.e.:

c = \/(h5 a — \/(h5 b
d = VÖtiäyy/Ötib (3.98)

We assume the input fields are linearisable and, without loss of generality, real:

ä = a  +  6ä(u)

b = ß + S'b(u) (3.99)

As the following argument is true for all frequencies, we drop the explicit frequency 
dependence of the fluctuation operator, writing 6ä(u) —> Sä. The number operators for 
the added and subtracted signals are:

n+ =  c^c + d^d

= a2 + ß2 + n(<5ä + Säj) + ß{Sb + 6&)
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= a2 + ß2 + aSXia + ßSXtb (3.100)

and

n~ =  c]c — dßd
= 2aß + a{6b + Sb̂ ) + ß(8ä + Sä^)
= 2aß 4- a8Xib + ßSXia (3.101)

Now consider the case where one input field is bright, a ^  0, and the other is vacuum, 
ß = 0. The number operators for the added and subtracted signals become:

= a2 + a 8 X la (3.102)

and:

h~ = 0 + a S X ^  (3.103)

For a linearised operator, the absolute value of the steady state component gives the mean 
value. Thus for the added and subtracted signals:

{h+)rp = a2
(n~U = 0 (3-104)

On average, there is no energy in the subtracted signal. However there are still fluctua­
tions. For a linearised operator, the spectrum is found by taking the self correlations of 
the fluctuation component. The power spectra of the added and subtracted signals are 
thus:

Ki+M =  o? V x « {u )

Vn_(u) = a2 VXb(u) = a2 (3.105)

The power spectrum of the added signal is proportional to the amplitude spectrum of 
the bright field, a; the power spectrum of the subtracted signal is proportional to the 
amplitude spectrum of the vacuum field, 6, which is the quantum noise limit. A balanced 
detector thus allows comparison of the power (and thus amplitude) fluctuation spectrum 
of any input field, a, with the quantum noise limit. If the balanced detector is used in 
conjunction with a detuned single-ended cavity, the fluctuation of any quadrature can be 
compared to the quantum noise limit.
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C hapter 4

Limits to squeezing in SHG

A vacuum is a hell of a lot better than some of the stuff that nature replaces it with.

Tennessee Williams, Cat On A Hot Tin Roof

As one of the simplest nonlinear optical processes, second harmonic generation (SHG) 
has been extensively investigated as a source of nonclassical light. Both active (occurs 
within a laser cavity) and passive (occurs in a cavity external to a laser) SHG have been 
modelled and found to be potential sources of squeezed light. There have been many 
and varied predictions and the relationship between them all has not been particularly 
clear (for example, some are apparently mutually inconsistent).

In 1981 Drummond et.al considered doubly resonant SHG and predicted anti-bunching 
of the fundamental if a second harmonic field was also injected [1]. The next year Mandel 
considered single pass SHG and found that the second harmonic field was not necessary: 
predicting both squeezing and anti-bunching in the fundamental field [2]. For a dou­
bly resonant sub/second harmonic generation system, Milburn and Walls predicted in 
1983 that the quadrature of the fundamental squeezing could be altered by altering the 
phase of an injected second harmonic [3]. Widespread attention began tobe focussed on 
SHG as a source of squeezing after the paper of Lugiato et. al in 1983. They predicted, 
for doubly resonant SHG pumped solely at the fundamental, that both the fundamental 
and second harmonic would be squeezed (the predicted second harmonic squeezing was 
smaller than that of the fundamental). They also emphasised the critical role of the value 
of the ratio of the damping constants of the two modes [4]. In 1985 Collett and Walls 
showed that, in principle at least, perfect squeezing was possible in either the fundamen­
tal or the second harmonic at the critical point of doubly resonant SHG (the self-pulsing 
instability) [5]. Prompted by experimental difficulties, Collett and Paschotta realised that 
double resonance was not necessary to produce squeezing, and predicted second har­
monic squeezing from a singly resonant cavity [6]. The strong correlation between the 
fundamental and second harmonic has also been proposed as the basis of a QND like 
measurement scheme [7].

Perfect squeezing can only be achieved when there is a strong interaction between 
the fundamental and second harmonic. Experimentally this dictates a doubly resonant 
system. Passive doubly resonant SHG systems are technically complicated, as practical 
passive cavities require locking systems to remain resonant. To date, singly resonant 
systems have proved to be much stabler than doubly resonant: the maximum length of 
time squeezing has been observed in doubly resonant SHG has been 10 s; singly resonant 
systems squeeze continuously for hours. As active modes are automatically resonant 
there is a strong experimental attraction to active SHG as it requires locking of, at most, 
only the second harmonic cavity. It promises strong squeezing in technically elegant 
systems.

Various techniques have been used to model active SHG. In the good cavity  limit where 
the atomic decay rates are much higher than the relevant field decay rates, as is the case 
for a gas laser, the system is modelled by adiabatically eliminating the atomic variables

67
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[8] . This introduces broadband atomic noise which degrades the correlation between the 
amplitudes of the second harmonic and the fundamental. Nevertheless, a maximum of 
50% squeezing of the amplitude of the second harmonic has been predicted, with an op­
timum value at zero frequency and decreasing with frequency. This has been elegantly 
explained as the Poissonian photons of the fundamental being converted with high ef­
ficiency to second-harmonic photons which consequently have half-Poissonian statistics
[9] . In the bad cavity limit, where the field decay rate of the mode of interest is much 
greater then the atomic decay rate and the decay rate of the other mode [10, 11], the 
bandwidth of the atomic noise is small and there is a high correlation between the ampli­
tude of the second harmonic and the fundamental. Appropriate interaction between the 
two cavity modes allows perfect squeezing at non-zero frequencies. Until the treatment 
in this chapter was developed [12], no treatment to date had reconciled these two regimes 
within the one model.

In this chapter we present an overall picture that unifies previous descriptions. We 
consider both active and passive SHG, and include the critical role of laser noise. In 
particular we evaluate the squeezing available using Nd:YAG as an active gain medium 
and investigate which approaches are the most experimentally promising.

In the first two sections we model both active and passive SHG via the Schrödinger 
approach. These sections can be skimmed, or even skipped, by all but the connoisseurs 
as the Schrödinger approach is mathematically heavy-going and the final results aren't 
particularly informative in themselves. However the third section is crucial. In it we 
investigate the regimes of squeezing numerically, endeavouring to provide a physically 
intuitive picture for each result. These intuitive pictures will be used in latter chapters. In 
the last section, we summarise the results, and conclude that active SHG is not, and will 
not be in the foreseeable future, a practical source of squeezed light.

4.1 Theory: Schrödinger approach

There have been successful squeezing experiments via passive SHG; there have been 
none via active SHG. Accordingly we approach modelling the two systems a little dif­
ferently. As we know squeezing via passive SHG is possible, we consider the optimum 
squeezing available in a practical situation, i.e. for a multi-port, lossy system with achiev­
able or near-achievable nonlinearities. To date most treatments of squeezing in passive 
SHG have concentrated on the ideal regime, i.e. single ended, lossless systems that can 
attain extreme nonlinearities, with a coherent pump or with idealized laser phase noise 
[13]. We explicitly model the pump as the intrinsically noisy output of a laser: for the case 
of singly resonant passive SHG, we have compared our model with experimental results 
and found excellent agreement (see, [14] and next chapter). In this chapter we also model 
the doubly resonant case 1.

In contrast, we do not know if squeezing via active SHG is possible, so we allow 
ourselves a little more freedom, and consider situations with extreme nonlinearities. Pre­
viously active SHG has been studied using either the Haken-Lamb or Lax-Louisell laser 
models. The Haken-Lamb model retains all the laser dynamics of a 2-level system. How­
ever for many lasers it is not possible to correctly describe the threshold behaviour using 
a 2-level model. The Lax-Louisell model is a 3-level system in which the lasing coherence 
has been adiabatically eliminated. Unfortunately crucial dynamical behaviour is lost in

1 Ail the theory in this section was originally derived by Dr T. Ralph and published in [12],
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this limit. In this chapter we use a 3-level model [15] similar to Lax-Louisell except that 
it retains all laser dynamics explicitly.

x -

reflected
fundamental

* -----pump

y

second
harmonic

transmitted
fundamental

fundamental

Figure 4.1: Schemata of active and passive second harmonic generation respectively, a is the 
lasing mode, b is the fundamental mode of the SHG cavity, and c is the second harmonic mode.

4.1.1 Hamiltonians and master equations

Figs 4.1a & b are schematics of active and passive second harmonic generation respec­
tively. The same laser model is used for both, and consists of N 3-level atoms interacting 
with an optical ring cavity mode via the resonant Jaynes-Cummings Hamiltonian. In the 
interaction picture this is:

N
Tilas = *% 23  ^ ( ^ 2 3  “  ^ 2 3 ) (4.1)

M—1

where carets indicate operators; <723 is the dipole coupling strength between the atoms 
and the cavity; ä & a* are the lasing mode annihilation and creation operators; J 23 & J 23 

are the collective Hermitean conjugate lowering and raising operators between the | z) th 
and |ji)th levels of the lasing atoms. Level 1 is the ground level. The field phase factors 
have been absorbed into the definition of the atomic operators.

For the passive case the standard Hamiltonian for SHG is used [1]:

Ü p s h g  = ih~(h]2c -  be12) (4.2)

where b & IT are the fundamental annihilation and creation operators, c & cd are the 
second harmonic annihilation and creation operators, and n is the coupling parameter for 
the interaction between the two modes. For the active case the Hamiltonian is essentially
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the same, except now the fundamental and the lasing mode are one and the same, so that:

where the other terms are as above.

For both cases standard techniques [16] are used to couple the lasing atoms and cav­
ities to reservoirs and to derive a master equation for the reduced density operator p of 
the system. Included in the laser model are spontaneous atomic emission from level |3) 
to level \2), and from level |2) to level |1), at rates 723 and 712 respectively. Incoherent 
pumping of the laser occurs at a rate T; the rate of collisional or lattice induced phase 
decay of the lasing coherence is j p.

In general optimum squeezing in these systems occurs at zero detuning, accordingly 
will not examine the effect of non-zero detunings. However in passing we mention the 
varied effects due to detuning: the quadrature of the squeezing can be rotated [17, 18]; 
the squeezing can be degraded as the intracavity intensity is lowered and less power is 
available to drive the nonlinearity; the form of the nonlinearity can change [1]; and the 
stability point of the system can move [8].

In the passive case the driving of the SHG cavity by the laser is modelled using the 
cascaded quantum system formalism of Carmichael [19] and Gardiner [20]. The laser 
cavity damping rate due to the output port which pumps the passive cavity is 2ya, the 
cavity decay rate for the fundamental mode of the passive cavity is 275; and the cavity 
decay rate for the second harmonic mode is 2yc. The resulting interaction picture master 
equation is:

Similarly in the active case the fundamental cavity damping rate is 2ya and the cavity 
decay rate for the second harmonic mode is 2yc. The interaction picture master equation 
is:

L ta sh g  =  (at2c -  act2) (4.3)

+ 7a(2 äpä^ — ä^äp — pa^a) 

+76(2bpb^ — b^bp -  pb^b) 

+ 7c(2cpc^ — c^cp -  pc^c)

+ 2 y / j a j b ( k p b ] +  bpa1 -  pa j b -  pabf), 

LXJp = 2j-pj+. _ J+J - p  -  +J - (4.4)

~Q~t P  — ^ [^ /a s ,P ]  +  T^[^as/i5,P] +  2 ( 7 1 2 ^ 1 2  +  7 2 3 ^ 2 3 )  P +  — ( T i 3 p )

+ ~7p [2(J3 _ J3) P (J3 -  J3) -  (J3 -  J3)2 P -  p(J3 -  J3)2]

+ 7 a(2äpä^ -  ä^äp -  pä^ä) 

+ 7c(2cpc* -  c^cp — pc^c),

W P  = j t . j r .p - p j+ . j r (4.5)
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4.1.2 Semiclassical equations

The semiclassical equations of motion are obtained directly from the master equation by 
making the approximation of factorising expectation values.

The semiclassical equations of motion for the passive case are:

J23 — # 2 3 ^ 3  ~  ~  ~  (723  +  7 l 2  +  2 7 p) J 23

J2 =  + ^ 2 3 ( ^ 2 3 0 *  “  ^ 2 3 ° )  +  7 2 3 ^ 3  — 712^ 2

3̂ =  - 9 2 3 ^ 23 (1*  -  ^23a) +  TJi -  723-̂ 3

ä  =  923^23  —  7 a G

b =  k6*c -  7t6 -  2A/ 7 a7fca

c = -7  aa - ^ 2 (4-6)

and their conjugate equations. The absence of circumflexes indicate semi-classical expec­
tation values. Here 7a is the total loss rate of the laser cavity; 7  ̂ is the total loss rate of the 
fundamental cavity; j c is the total loss rate of the second harmonic cavity; and k is the 
coupling constant between fundamental and second harmonic.

We use the following standard scaling with the number of atoms N:

a'

J'i

~T= h' = -7=V n V n

k\/N g'23 = g23^N (4.7)

In the active case the equations of motion for the active medium are unchanged, however 
the equations for the fundamental and second harmonic modes become:

ä = 523J23 -  lad + na*c
c = —7Cc -  ^ a 2 (4.8)

and their conjugate equations. The conditions for semiclassical steady state are obtained 
by setting derivatives to zero.

4.1.3 Noise spectra

The drift and diffusion matrices are listed at the end of the chapter. Their calculation, by 
obtaining c-number (complex number) Fokker-Planck equations from the master equa­
tion using positive-p representation, is tedious but standard [21]. We linearise the optical 
modes:

z(t) -  z0 -\- Sz (4.9)

where 2 represents modes a, b, or c; and z0 is the semiclassical steady state. For brevity we 
will from this point on use a, b, ... to mean the scaled steady state solutions, e.g. a = a0. 
The spectral matrix 5 (tv) is defined as the Fourier transformed matrix of the two time 
correlation functions of these small quantum perturbations (8a j) about the semiclassical 
steady state, i.e.

= e lut(8oti(t + r), <foi(£))dr,- (4.10)
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where we have used the notation (X, Y)  = ( XY)  — (X) (Y)  and the ordering of the per­
turbations for the passive and active cases respectively is:

5u = (5a, 5a ,̂ 5b, 5b ,̂ 5c, 5c ,̂ 5J23, 5J3, 5J2, 5J^3)
Sa = (5a, 5a ,̂ 5c, 5c ,̂ 5Jy3, 5J3, 5J 2, 5J23)

(4.11)

The spectral matrix may be calculated from the Fokker Planck equations in both cases. 
The solution for the spectral matrix is:

S{u) = {A -  iu l )~ lD(At + iu l )~ l (4.12)

where A & D are the drift and diffusion matrices, respectively and I  is the identity matrix. 
The squeezing spectrum is then defined by:

r+00
VXe(u)=  e - ^ ( X e(t + T) ,Xe(t))dT (4.13)

J —OO

We obtain noise spectra for modes a, b, or c by defining the quadrature phase amplitude 
of the transmitted field z as

Xe(t) = zoute ld +  z\ute+l° (4.14)

where again 2 represents modes a, b, or c. Setting 0 =  0 gives the amplitude noise spectra. 
Using the input/output formalism of Collett and Gardiner [22] we are able to obtain the 
spectra in terms of the spectral matrix S(u>). In the passive case, using the ordering of eqn 
4.11, we obtain for the laser, transmitted fundamental, and second harmonic respectively:

t / la s  
VXi

i /trans
Xi

vZu

— 1 + 27a *S'l2(U7) T £2 1  (w) T e  2lSS \ i  (u>) + e + 2 lS S 2 2 { u>

= 1 +  27r ~  [s 78H  + 587M  + e~2'dS77(u) + e+2ieS88H  

= 1 + 27c 5g io(w) + S\o g(ta) +  e 2lSSqq(u ) -j- S\o 10(tv)

(4.15)

where ■ytbrans is the loss rate of the fundamental transmission (not the pump mirror). The 
spectra of the reflected fundamental depends on both the noise of the laser mode and the 
noise of the fundamental. The amplitude spectra is thus given by:

V £c"  = 1 + 2 7 ^  [578(ta) +  587(u;) + S77(u) +  588(cv)] + 2 7 a
[5i2(w) + 521 (w) +  Sn(u)  +  522(w)]

+ 2^/7  ̂ ^7a[57i(cv) +  S7 2 (tv) + 582 (w) + 58i (tv)

+ 5 i7(tv) + 5 i8(cj) + 527(ca) +  528(w)] (4-16)

In the active case, again using the ordering of eqn 4.11, we obtain spectra for the funda­
mental and second harmonic respectively as:

V I  — 1 + 27a |̂5 i2(w) + 521 (ca) + e 2l05n(u>) + e+2ll9522(w)j

Vl:  = 1 A- 27c |578(u ) + 587(u) + e 216S77{u>) + e+2i0588(ca)j (4.17)
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These spectra can be generated numerically using eqn 4.12 and the drift and diffusion 
matrices.

4.2 Experimental modelling and numerical parameters

We are particularly interested in experimental systems pumped by Nd:YAG lasers. Al­
though Nd:YAG lasers are four level systems, we can accurately model them with a three 
level model as the decay rate of from the fourth to the third level is very much faster 
(approximately tenfold) than the other decay rates of the system, and so has negligible 
effects on the dynamics of the system. Accordingly we use the following values:

723 =  5 X 1 ( T 5712 71 3  =  2 7 2 3 7 1 2  

I to t  =  (7 p  +  713 +  723  +  1 )7 1 2

o — 6.5 x 10_23m2 7P = 9OOO712

#23 =

where the speed of light in Nd:YAG is cyag = 1.64 x 108m.s_1; the density of Nd atoms in 
Nd:YAG is pyag = 1.38 x 1026 atoms.m-3 and a is the stimulated emission cross-section. 
The decay rate from level 2 to 1 is 712 = 1/(30 x 10- 9)s-1.

Please note that although the expressions for squeezing spectra are given in terms of 
angular frequency ([w] = rad.s-1), the decay rates are in expressed in Hertz ([f] = s_1), as 
is customary. All spectra in this paper are plotted in Hz (s-1).

We also wish to model the lossy, multi-port nature of experimental cavities. The total 
loss rate for a standing wave cavity is given by:

7, = 7~ "  + "* + 7“ts (4.19)

where z is the mode; the first two terms are the loss rates through the front and end 
mirrors of a standing wave cavity and the last term is the loss rate due to absorption. The 
mirror decay rates are related to the mirror transmissions by eqn 2.23. The loss due to 
absorption is given by 7“bs =  cyag/(2p) \oge~ayAGi  where a y  AG is the absorption loss per 
unit distance and £ is the physical crystal length.

The interaction is scaled by the number of lasing atoms as shown in eqn 4.7. The 
number of lasing atoms, N, can be estimated one of two ways. The first is to calculate the 
effective mode volume and then to use the known density of Nd atoms in YAG (pyag = 
1.38 x 102°atoms.cm~3). An alternative is to use an expression for the output power:

P,as = 2 /i^W7l27r ' a 2 (4.20)

where h is Planck's constant; v is the laser frequency; and y°ut is the loss rate of the laser 
output mirror. Using the measured laser power the number of atoms is to be N= 101'.

The models presented here are for doubly resonant systems. This allows exploration 
of various squeezing regimes by smoothly varying the interaction between the modes. In 
order to model singly resonant systems we simply take the appropriate bad cavity limit. 
In this way the results of an explicitly singly resonant theory can be exactly duplicated 
without loss of generality.

I Cyag & Pyag')'tot

4
(4.18)
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Table 4.1: Squeezing limits
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4.3 Regimes of squeezing

Table 4.1 summarises the results of this section. The optimum predicted squeezing for 
both active and passive SHG is considered for the two principal configurations: singly 
resonant at the fundamental frequency w, and doubly resonant. Two limits of the squeez­
ing are tabled: ideal and lossy with pump noise. The ideal limit comes from consideration of 
a coherently pumped, single-ended, lossless device, and is only included for easy com­
parison with previous theoretical literature. However all the plots in this chapter come 
from consideration of a lossy device. Thus, even when coherently pumped, the maxi­
mum plotted squeezing is not the ideal, as a fraction of the squeezing goes unobserved 
(i.e. it is absorbed or transmitted through the other port.) Thus the maximum value of 
squeezing in Fig. 4.3 is 0.28, and not the ideal value of 1/9 as listed in the table.

The lossy with pump noise "limit" comes from consideration of the experimental case 
of a multi-port, lossy device pumped by a Nd:YAG laser. It is not a limit in the sense that 
these figures cannot be bettered - it simply summarises the effect of laser noise as shown 
in the plots and provides a realistic guide to the noise suppression that can be expected. 
In addition, the typical detection frequencies at which the best noise suppression occurs 
are listed in table 1. They indicate the optimum point of operation for a squeezing exper­
iment and are given as multiples of the linewidth of the SHG cavity at the fundamental.

4.3.1 Passive SHG

Why does SHG squeeze? Consider the following argument. It is clear from equation 2.34 
that singly resonant SHG acts as a nonlinear loss term. That is, the stronger the field, the 
proportionately larger the reduction in intensity. Now consider the ball-on-stick picture 
for the fundamental field inside the cavity, Fig. 4.2. The stick length is reduced as power 
is lost to the second harmonic field. The ball at the end of the stick is also affected. The 
"top" of the ball (the point furtherest from the origin) is reduced more than the "bot­
tom" of the ball (the point closest to the origin) as it is of greater power. Thus the ball is 
squeezed along the amplitude axis of the stick, and the light is amplitude squeezed. (Of 
course, the ball is extended along the phase quadrature axis as the light obeys Heisen-
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berg's uncertainty principle.) As explained later, the apportioning of squeezing from the 
intracavity fundamental field to the extracavity fundamental and second harmonic fields 
depends on the relative cavity decay rates and the strength of the nonlinear interaction.

Figure 4.2: Intuitive explanation of SHG squeezing. Phasor diagrams for an intracavity funda­
mental field a) without and b) with SHG: the top of the uncertainty area is more intense than the 
bottom, and so is reduced more by the SHG, i.e. d.2 > d i.

Good squeezing of the second harmonic requires the second harmonic loss rate to 
be higher than that of the fundamental cavity, i.e., yc > 76- However to obtain perfect 
squeezing, it is not desirable that yc be arbitrarily larger than 75. To see this, consider the 
singly resonant case (the bad cavity limit for 2u), yc 76. Fig. 4.3a 2 shows the noise 
spectrum with a coherent pump: the maximum squeezing occurs at zero frequency, in 
the vicinity of the optimum value of 1/9 (see earlier comment), and then degrades with 
frequency. Perfect squeezing cannot be achieved.

If a laser pump is used, as shown in Fig. 4.3b, the situation degrades further due to 
the large amounts of low frequency noise added by the laser. This effectively moves the 
maximum squeezing out in frequency whilst reducing it's value. These results suggest a 
partial explanation for the results of Paschotta et. al [6]: the observed deviation between 
theory and experiment increased as a function of power. This can be simply explained 
via our model as the noise tail of the laser masking the squeezing. As the laser power 
is increased, the laser noise increases with respect to the shot noise 3, decreasing the 
observed squeezing.

How then can perfect squeezing be obtained? Consider the doubly resonant case. A 
critical pump power exists for doubly resonant SHG: at this power the system begins 
self-pulsing [1, 23]. Before the critical point there exists a large damped oscillation in the 
phase quadratures of both fields: at the critical point this becomes undamped and be­
comes the self-pulsing frequency, cjosc. This large oscillation in the phase quadrature de­
presses the amplitude quadrature, via Heisenberg's uncertainty principle. At the critical 
point, where the phase quadrature at uosc is infinitely noisy, the amplitude quadrature is 
infinitely quiet, i.e perfectly squeezed. Thus to obtain perfect squeezing we need to force 
the system close to the critical point. This can be done by increasing the power or nonlin­
earity, or it can be done by adjusting the cavity decay rates so that the two modes interact

2The reader is advised to note the shape of the plots, and not w orry too much about the exact numbers 
used to get them. For completeness, the param eter values are given in the figure captions.

3Q uantum  noise scale as the square root of the optical power; classical noise scales as the optical power.
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frequency [f/y.z]

Figure 4.3: Spectra for passive SHG in the singly resonant case. The parameters have been op­
timised to squeeze the second harmonic, i.e. 7C 75, where 7b =  .6O4712, 7c = 77.6712, scaled 
nonlinearity k, =  120000 (approximately 12600 s-1 unsealed), for a pump power of 120 mW. Please 
note that the frequency axis is scaled by 712 = 33.3 MHz. a) dotted lines - spectra obtained using a 
coherent pump. The lower trace is the second harmonic, the upper trace the fundamental, b) un­
broken line - second harmonic spectrum obtained using a laser pump. The squeezing is masked 
at low frequencies.

more strongly. In Fig. 4.4 we adjust only the second harmonic decay rate from the system 
of Fig. 4.3. The large squeezing dip at uosc is clearly evident. Note that the maximum 
squeezing for the laser pump case is nearly equal to the ideal case: the squeezing at high 
frequencies is much less affected by the pump noise.

While much of the behaviour discussed for the second harmonic will apply to the 
fundamental, the two modes are by no means identical. Experimentally it would be 
possible to build a doubler resonant only at the second harmonic, but in CW operation, 
unrealistically high fundamental pump powers are then required to drive the doubling 
process. A high finesse cavity for the fundamental light is employed to build up sufficient 
power. However as good squeezing of the fundamental requires that the fundamental 
cavity be lossier than that of the second harmonic 7̂  > 7c), a doubly resonant system 
is necessary. This is confirmed by the rather poor noise suppression of the fundamental 
light shown in Figs 4.3 & 4.4.

Spectra of the fundamental light from a doubly resonant passive doubler, for both 
coherent and laser pump, are shown in Figs 4.5a & b respectively. For the coherent pump 
the squeezing at zero frequency is modest (the maximum possible value is 2/3), however 
due to the strong interaction between the modes (despite the relative difference in loss 
rates, c.f. Fig. 4.3) there is a large oscillation that dips to nearly zero. Note that the 
fundamental spectra in this figure are for a cavity where the fundamental is strongly 
transmitted. The distinction is important when there is a noisy pump beam. In general 
the reflected beam consists of two components, the part that interacts with the cavity (the 
mode and impedance matched component) and the part that just reflects off of the cavity 
without interacting. This latter component contributes additional noise to the reflected 
beam that can mask the squeezing.
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frequency [f/y.2]

Figure 4.4: Spectra for passive SHG in the doubly resonant case. The parameters are optimised 
to squeeze the second harmonic, and are as for Fig. 4.3, except now 7C = 9.O6712. a) dotted lines - 
spectra obtained using a coherent pump. The lower trace is the second harmonic, the upper trace 
the fundamental. Note the squeezing on the second harmonic is much improved with no increase 
in interaction strength or pump power, b) unbroken line - second harmonic spectrum obtained 
using a laser pump. Again the squeezing is masked at low frequencies.

1.0 1.5 2 .0 2.5

frequency [f/yn]

Figure 4.5: Spectra for passive SHG in the doubly resonant case. The parameters have been 
optimised to squeeze the fundamental, i.e. 71, > 7C, where 7b =  3.46712, 7C = .362712- The 
interaction and pump power are the same as for Figs 4.3 & 4.4. a) dotted lines - spectra obtained 
using a coherent pump. The lower trace is the fundamental, the upper trace the second harmonic. 
Note that the fundamental is squeezed well beyond the 2/3 limit of the singly resonant case. 
In the appropriate ideal case perfect squeezing is possible, b) unbroken lines - spectra obtained 
using a laser pump. Note the squeezing is destroyed at low frequencies. The lower trace is the 
fundamental, the second harmonic trace is above shot noise, and thus not visible on this plot.
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The squeezing of the two modes behaves differently as the interaction is increased. In 
the second harmonic case the squeezing is optimised as the interaction is strengthened 
(i.e. k is increased). This is not the case for the fundamental. At a given pump power 
the squeezing degrades for k ->• oo. There is an optimum nonlinear interaction value: 
for sufficiently large interactions the squeezing is degraded at all detection frequencies. 
This can be understood via the following analogy. Consider the frequency doubler as a 
nonlinear beam splitter, with an incident fundamental beam split into, say, a transmitted 
fundamental beam and a reflected second harmonic beam. The incident beam is the fun­
damental field inside the doubler, and is strongly squeezed in direct proportion to k . A s 

k is increased the squeezing on the incident fundamental increases and importantly, the 
"reflectivity" of the beamsplitter increases. Thus in the limit of infinite k all the incident 
fundamental becomes second harmonic which is strongly squeezed. Conversely as k is 
increased the fraction of incident fundamental that is transmitted (i.e. light remaining at 
the fundamental wavelength) becomes less and less, with a concomitant decrease in the 
squeezing.

4.3.2 Active SHG

For clarity we will first consider active SHG under the assumption that the atomic de­
phasing rate, 7P, is zero (the next section explains why this is desirable). Consider the 
singly resonant limit, >  7a- With a sufficiently high pump rate we obtain the spectra 
shown in Fig. 4.6. For both the fundamental and second harmonic modes the squeezing 
is maximum at zero frequency and then degrades with increasing detection frequency in 
a Lorentzian like manner excepting the region of excess noise due to the laser's resonant 
relaxation oscillation (RRO) 5. Noise features present in the fundamental trace, both re­
laxation oscillation and squeezing are present on the second harmonic trace but amplified 
away from the quantum limit.

As we are using a laser model that can produce rate-matched squeezing [15] it is nec­
essary to confirm that the SHG process is indeed the source of the noise suppression. This 
was checked by turning off the doubling process, i.e setting n to zero, and by adjusting 
the pump rate such that the output power stays the same. We see a larger relaxation os­
cillation and no squeezing. The doubling process can significantly damp the relaxation 
oscillation: a thousandfold reduction is not unusual. By increasing the pump rate a small 
amount of squeezing at low detection frequencies can be created, which is due to rate 
matching. We conclude that the preeminent cause of the squeezing predicted in Fig. 4.6 
is second harmonic generation and not rate matching.

Fig. 4.7 considers the doubly resonant case in the limit of very high pump rate. As 
was discussed in the previous section improved amplitude squeezing is expected due 
to the phase oscillation between the fundamental and second harmonic modes. How­
ever the changes to the noise spectra are dramatic compared to the passive case. The 
relaxation oscillation noise of both modes is suppressed, particularly that of the funda­
mental, and downshifted in frequency. Two regimes of squeezing become evident, that 
before and that after the relation oscillation; hereafter they are called the low and high fre­
quency regimes, respectively. The second harmonic low frequency squeezing increases 
significantly and attains the maximum possible value of 1/2 at zero frequency. Likewise 
the high frequency squeezing is pushed very close to zero in a broad region that is much

5The RRO can be considered as an oscillation between photons stored in the lasing medium and photons 
stored in the laser mode.
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frequency [f/y^]

Figure 4.6: Spectra for active SHG in the singly resonant case. The parameters have been op­
timised to squeeze the second harmonic, i.e. y c 7a, where qa =  .6712, 7c =  36OOO712, 
scaled nonlinearity k = 50000 (approximately 5220 s-1 unsealed), pump rate of T = 8 x 10~57i2 
(Tthresh =  4.08 x 10~97i2) and dephasing rate, 7P = 0. a) dotted line - fundamental spectrum, b) 
unbroken line - second harmonic spectrum. Note that noise features present on the fundamental, 
relaxation oscillation and squeezing both, are amplified away from the quantum limit.

larger than even the bandwidth of the second harmonic cavity. Both the high and the 
low frequency squeezing regimes have been separately described in previous works. We 
now understand the relationship between these regimes, and see that both are possible 
in the one model for the one set of parameters.

Consider, as in Fig. 4.8, an active doubler resonant at the second harmonic (the bad 
cavity limit for v), 7 C. A high pump rate is required simply to induce lasing. As the
interaction is strong both the low and high squeezing regimes are evident (c.f. Fig. 4.6), 
however unlike the second harmonic case the noise features of the second harmonic are 
no longer amplified versions of those of the fundamental. The low frequency squeezing 
of the fundamental is less than that of the second harmonic; the high frequency squeezing 
is greater.

In the doubly resonant case, qa > 7 C/ the low frequency squeezing tends to be buried 
under the relaxation oscillation - it is not robust compared to the second harmonic case. 
Although the high frequency squeezing survives, further consideration of this case is 
omitted for reasons explained in the next section.

4.3.3 Ugly reality; the effect of dephasing

Up to this point the atomic dephasing 7 P (the decay rate of the lasing coherence) was 
considered to be zero. In solid state systems, such as Nd:YAG, this is not even approxi­
mately true as there is a large dephasing value due to coupling between phonons of the 
crystal and the energy levels of the laser (or for gas lasers due to atomic and molecular 
collisions). What then is the effect of large 7 p?

In the passive case the output spectrum of the laser becomes noisier for large j p: the 
relaxation oscillation is down shifted in frequency, and it is amplified, even at the high 
frequencies in the very tail of the oscillation. The extra pump noise leads to a further
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frequency [f/y.2]

frequency [f/y2x 102]

Figure 4.7: Spectra for active SHG in the doubly resonant case. There are two plots, covering 
different frequency ranges. The parameters have been optimised to squeeze the second harmonic 
and are as for Fig. 4.7 except now 7C = 36712. a) dotted line - fundamental spectrum b) unbro­
ken line - second harmonic spectrum. Note the two regions of squeezing: low frequency, before 
the relaxation oscillation, with maximum squeezing of 0.5; high frequency, above the relaxation 
oscillation frequency with almost perfect squeezing.
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0.2  0.3
frequency [f/yn]

Figure 4.8: Spectra for active SHG in the doubly resonant case. The parameters have been op­
timised to squeeze the fundamental, i.e. -ya 7 C, where 7 a = 3 GOO7 1 2 , 7c = G7 1 2 / K — 50000, 
pump rate of V = 3.99 x 10_ 27 i 2 (I' thresh = 2.92 x 10_ 57 i 2 ) and dephasing rate, = 0. a) dot­
ted line - fundamental spectrum. Note that both the relaxation oscillation and the squeezing at 
low frequencies of the fundamental is less than the second harmonic, b) unbroken line - second 
harmonic spectrum.

degradation  of squeezing as the m inim um  po in t of the  spectrum  is reduced  and  m oved 
up in frequency by a small amount. Overall the effect of large j p is minimal.

In the active case increasing 7p is of notable effect. The laser threshold increases; the 
critical point threshold decreases, in some parameter regimes it is lower than the laser 
threshold and the system is consequently unstable; and considerable noise is introduced 
at frequencies below the dephasing value. The squeezing on the fundamental is particu­
larly sensitive, with even low dephasing values, such as 7P = 0.57a/ completely masking 
the squeezing. The squeezing of the second harmonic survives, albeit in a somewhat un­
likely regime. This is illustrated in Fig. 4.9 where the singly resonant system of Fig. 4.7 
is evaluated for dephasing values of 7P = 0, I8712, and 35712; corresponding to 7P = 0, 
0.57c and 0.9?7c. Note that the degradation of the low frequency squeezing is much less 
pronounced and that it does not visibly degrade between the latter two values of 7p.

This behaviour is perhaps best considered as follows. Dephasing adds considerable 
phase noise inside the laser cavity, which is added directly to the fundamental and con­
sequently transmitted to the second harmonic. The survival of the low frequency second 
harmonic amplitude squeezing reflects the fact that when using direct detection one only 
sees amplitude noise at zero frequency. However, at higher frequencies the cavities mixes 
in the internal phase noise. Thus the higher the dephasing rate, the narrower the region 
of squeezing, as the phase noise at a given frequency is stronger. Remembering that the 
parametric process also takes place in second harmonic generation, the phase noise on 
the second harmonic generates additional amplitude noise on the fundamental. As a 
consequence, none of the low frequency fundamental squeezing survives.

Contrast this with the passive case. Here the internal phase noise of the laser is not 
directly involved in the doubling process. The narrow output linewidth of the laser filters 
the phase noise considerably, consequently only a relatively small amount of excess noise 
is added to the pump.
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frequency [f/y.:]

frequency [f/y,2x 102]

Figure 4.9: Spectra showing effect of non-zero dephasing on active SHG, squeezing optimised 
for second harmonic. Excepting the dephasing rates, other parameters are as for Fig. fig:SFDfig6. 
There are two plots, covering different frequency ranges. For a) - c) the significantly squeezed 
trace is the second harmonic, a) dotted lines - fundamental and second harmonic spectra for 
7p = 0. b) long-short lines - fundamental and second harmonic spectra for -yp = 18712- Note that 
both the low and high frequency squeezing is degraded, c) unbroken lines - fundamental and 
second harmonic spectra for j p = 35712- Compared to b) the high frequency squeezing is further 
degraded while the low frequency squeezing is much less affected.



§4.4 SHGing and squeezing: it's better to be passive 83

0.25 0.50 0.75 1.00 1.25 1.50
frequency [f/yn x 103]

Figure 4.10: Demonstration that in the active case low frequency squeezing of the second har­
monic is possible even with very high dephasing. The parameters are as for Fig. 4.7, except now 
7p = 9OOO712 and pump rate T = 1.8 x 10-57i2- Note that our model does not include pump noise 
of the laser, which in real systems will totally mask this effect

It should be noted that the dephasing rate of Nd:YAG at room temperature is much 
higher than the values considered in Fig. 4.9: we approximate it for the moment by 7P = 
9000712- At this value the high frequency squeezing in both the fundamental and second 
harmonic cases is destroyed, as classical noise is introduced below frequencies of 9OOO712 
(300 GHz). To access this squeezing in the laboratory a way of reducing j p must be found, 
either through judicious choice of medium or cooling.

Theoretically the low frequency squeezing of the second harmonic persists even for 
this value of the dephasing. To illustrate this, consider the system discussed for Fig. 4.7 
except with dephasing rate 7P = 9OOO712 and pump rate T = 1.8 x 10_57 i2- This is 
illustrated in Fig. 4.10. Squeezing near the 50% limit occurs at zero frequency, but it 
degrades quickly with increasing detection frequency to the quantum limit (by 56kHz). 
It should be stressed that our laser model ignores both pump noise for the laser and 
thermal noise, which in real lasers raises the noise floor at low frequencies (105 times 
above quantum noise for a Lightwave Nd:YAG laser), completely masking this effect. In 
addition unrealistically high pump powers are required, or alternatively a system with 
an extremely low threshold.

4.4 S H G ing  and  squeezing : it's b e tte r  to be  passive

Passive SHG is already used as a source of bright squeezed light. As modelled here, 
pump noise is a significant effect in passive SHG, and as reported in the next chapter, 
reducing the pump noise significantly improves the squeezing. Although active SHG is 
experimentally attractive, and other analyses have found the theoretical potential to be 
high, we find that active SHG is not a suitable source of squeezed light and is unlikely to 
be so in the foreseeable future. This is primarily due to the high dephasing values that 
are inherent in most laser systems: only if an active system with small dephasing could 
be found would active SHG be suitable for squeezing. Even then the issue of high pump
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rates would need to be addressed. Unfortunately any of these options offers experimental 
complications at least as large as that of doubly resonant passive SHG, and with no extra 
benefit as regards the squeezing.
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Chapter 4 appendix: drift and d iffusion  matrices

For the passive case the drift, A, and diffusion, D, matrices are respectively: 

A =

l a 0 0 0 0 0 —923 0 0 0

0 l a 0 0 0 0 0 0 0 —923

2 y f l a l b l 0 76 — KC — K b * 0 0 0 0 0

0 2 y j l a l b \ — KC * l b — K b 0 0 0 0
0 0 K b 0 1  c 0 0 0 0 0

0 0 0 k6* 0 7c 0 0 0 0

J* 0 0 0 0 0 I t o t 0 923 a 0

9 2 3 ^ 2 3 923 ^23 0 0 0 0 923 a r  +  723 +  713 r 923 a
9 2 3 ^ 2 3 9 2 3 ^ 2 3 0 0 0 0 923 a “ 723 —  713 712 923 0

0 J* 0 0 0 0 0 0 923 <3 I t o t

where y[ot — (713 -f 723 + 712 4 - 27p)/2 and J * —  —<723(̂ 3 -  Jt) -  And: 

D =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 KC 0 0 0 0 0 0 0

0 0 0 KC * 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 9 2 3 2  J23C1 0 —  7 1 2  Y23 I J \  + ( l  + 2 7 p ) J 3

0 0 0 0 0 0 0 I e o h  1 —  9 2 3 2 J 2 3 < 3  — 7 2 3 ^ 3 0

0 0 0 0 0 0 0 0 l c o h 2 0

0 0 0 0 0 0 0 0 —  7 1 2 ^ 2 3 9 2 3 2  J23CI
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Where J Coh l — — 9 2 3 ^ ^ 23^  + I 2 3 J 3  +  I'«A + 7 l3<^3 and l c o h 2 — —9 2 3 ^ 2 3 ^  + 712^2 + l 23- h -

For the active case the drift, A, and diffusion, D, matrices are respectively:

A =

76 —  KC* — k  a 0 — 9 2 3 0 0 0
—  KC l b 0 — K a 0 0 0 — 9 2 3

KQ 0 7 c 0 0 0 0 0
0 KG 0 7 c 0 0 0 0

— 9 2 3  (A — A) 0 0 0 I t o t 0 9 2 3  a 0
923  A 3 923 A 3 0 0 9 2 3  a r  +  7 1 2 - r 9 2 3  a

923 A 3 923 A 3 0 0 9 2 3  a - 7 2 3  -  7 1 3 712 9 2 3  a

0 — 9 2 3 ( A  —  A) 0 0 0 — 9 2 3  a 0 7  to t

and:

D =

KC 0 0 0 0 0 0 0

0 KC 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 923 2 A 3 0 0 0 r A  +  712 A  +  2 7 P A
0 0 0 0 0 0 —923 2  A 3  a  — 723 A 0

0 0 0 0 — 712 A 3 0 l c o h \ — 712 A 3
0 0 0 0 0 0 0 92 3  2  A 3  Q



Chapter 5

Experimental design

Nothing is impossible to the man who hasn't got to do it himself.

Anon

Figure 5.1 shows the core experimental layout that was used to obtain the results in 
this thesis. In this chapter we discuss in detail the design, implementation and charac­
teristics of each stage of the experiment, proceeding componentwise from the laser to the 
balanced detectors.

5.1 The laser

In the past 5 years the nonplanar ring oscillator (NPRO) Nd:YAG laser has become the 
pump laser of choice for frequency conversion experiments. Its chief advantages over 
competing technologies are its high stability, easy frequency tunability, narrow linewidth 
operation, and well collimated output.

The Nd:YAG NPRO lasers used in the experiments in this thesis were all members 
of the Lightwave Laser 122 series: at the Australian National University the 200 mW 
(122-1064-300-F, serial no: 207); at the Universität Konstanz the 300 mW (122-1064-200-F, 
serial no: 127) and the 500 mW (122-1064-500). The laser frequency in the 122 series can 
be tuned via two ports: the slow port, where the laser crystal temperature is changed; and 
the fast port, where a piezo placed on top of the laser crystal is tuned so that it compresses 
the crystal.

When the crystal temperature is increased both the physical cavity length and the re­
fractive index increase: and so the laser frequency decreases. As the slow port is thermal 
it responds best to driving frequencies under the order of a Hertz. The slow port range 
and gain is considerable, over the temperature range 20-50 °C the average tuning coef­
ficient is ~  — lGHz/°C [1]. The laser itself is not stable over this entire range, at some 
temperatures it undergoes a mode hop and two modes coexist, often with some instabil­
ity caused by their competition for gain. Table 5.1 shows the stable single mode regimes 
for the ANU laser: within the stable temperature range the tuning coefficient of the laser 
is ~  —3.lGHz/°C [1] or ~  +1.20GHz/V. The slow port can be linearly driven over a 
range of ±50V, beyond this the response is nonlinear.

The fast port of the laser allows considerably quicker frequency scanning, but at the 
expense of range: Lightwave cites a range of > 30MHz for frequencies below 100kHz 
with a tuning coefficient of > IMHz/V. In 1994 Cantatore et. al [2] showed that it was 
possible to phase and amplitude modulate the laser light using the fast port. Cantatore 
et. al found that at frequencies between 0.5MHz and 1MHz the laser output was both 
phase and amplitude modulated: at certain frequencies, believed to correspond to me­
chanical resonances of the piezo/crystal assembly, the residual amplitude modulation 
was reduced by an order of magnitude and the modulation became chiefly phase. This is 
an incredibly useful phenomenon, as it allows phase modulation of the laser for locking 
purposes without the addition of a phase modulator (which is to be avoided from both

87



88 Experimental design

i  ) = adder/subtractermixer

dichroic (£>0 = photodiode ( ~  s  signal generator

mode cleaner 
(optional) power 

x  monitor monolithic 
frequency 

~ doublerFaraday 
2 rotator transmitted

detector
N'— PBS PBS

 ̂r reflected pump beam 
from doubler

slow
control

V _ fast 
control

45 MHz
BS

532 nm 
balanced 
detector

I 1064 nm
i- balanced 

7 detector

combiner

laser
controller

Figure 5.1: Core experimental layout. The light source is a p-polarised Nd:YAG monolithic ring 
laser (Lightwave 122) producing 200-500 mW of linearly polarised light at 1064 nm. The output of 
the laser is passed through a variable attenuator (a half-wave plate ( | ) and polarising beamsplitter 
assembly) and is then incident on a three mirror, mode cleaning, ring cavity of linewidth 800 
kHz. Locking of the mode cleaner is effected using a 27.650 MHz frequency modulation applied 
directly to the laser, and an error signal derived from the reflected light from the input mirror 
of the mode cleaner. At low frequencies, < 500 Hz, the mode cleaner cavity length is made to 
track the laser frequency via a piezo on the end mirror, while at high frequencies, > 500 Hz, the 
laser frequency is made to track the mode cleaner. The output of the mode cleaner is slightly 
elliptically polarised, this is corrected back to linear polarisation using a zero order quarter wave 
plate ( |) . The light then passes through a a Faraday isolator: this prevents light from returning 
to the laser, and allows easy access to the retroreflected beam. The light is then incident on the 
frequency doubling cavity. Locking of the monolithic cavity is effected by placing a 45.167 MHz 
frequency modulation directly across the xy faces of the MgO:LiNb03 doubling cavity. The error 
signal is derived from the reflected beam and is used to lock the laser at both low (< 500 Hz) 
and high frequencies to the mode of the monolith. The output second harmonic at 532 nm is 
s-polarised and separated from the 1064 nm pump via two dichroic beam splitters. It is incident 
on two angled FND-100 photodetectors with retroreflectors, giving quantum efficiency 65% ± 5%. 
The outputs are added and subtracted and sent to the spectrum analyser. BS = beamsplitter; PBS 
= polarising beamsplitter; PID = proportional/integrator/differentiator; A = amplifier; A/2 = zero 
order half wave plate; A/4 = zero order quarter wave plate.
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Table 5.1: Single mode temperature regimes for ANU Lightwave 122.

NPRO temperature
[°C]

Stable interval
[°C]

20.0-21.6 1.6
22.2 - 26.9 4.7
27.7 - 32.3 4.6
33.1 - 37.5 4.4
38.2 - 42.4 4.2
43.1-47.0 3.9
47.6 - 50.0 2.4

loss and mode match considerations). In the course of our experiments we found that 
this behaviour extends to well above 80 MHz, with the modulation intensity reducing 
with driving frequency. For the majority of the ANTJ experiments the laser was phase 
modulated at 27.650MHz (this accuracy was necessary, a change in the last decimal place 
leading to considerable amplitude modulation). The one caveat concerning modulation 
at such high frequencies is that care must be taken not to feed too much power into the 
piezo: Lightwave advises that powers above 1 W couple too much heat into the laser 
crystal and can cause permanent laser damage.

The fast port can be a source of considerable noise at low frequencies (i.e. below the 
resonant relaxation oscillation). If the fast port is unterminated, or terminated by a 50Q 
cable, then a series of large (10's of dB above the noise floor) spikes are observed on 
both the amplitude and phase of the laser light. The spikes appear to be pickup-driven 
resonances of the piezo: if the port is terminated by a ground or a 50Q load, the spikes 
are severely reduced. Lightwave recommends terminating the fast port when not in use. 
Even when in use, we have found it good practice to pass all signals to the fast port 
through a lOdB attenuator, which provides sufficient loading to damp the spikes.

As the laser temperature is increased the laser power decreases by a few percent. As 
power limitations were initially a concern in most of our experiments, the lasers were 
run as a matter of preference at low temperatures. As Table 5.1 shows, this also gives 
the broadest temperature range of single mode operation. The decrease in power is ba­
sically linear, however occasionally there appeared to be a slight sinusoidal modulation 
around the line of best fit. This may be due to the laser polarisation being slightly temper­
ature dependent, the sinusoidal variation being due to the analysing effect of the internal 
quarter- and half-wave plate and linear polariser assembly of the Lightwave.

A rare, but known, failure mode was observed with the Konstanz 300 mW laser. For 
just over half the temperature tuning range the laser ran dual, instead of single, mode. 
Closer inspection showed that the secondary, lesser power, mode was at a frequency 
2.7nm lower than the main mode. As Fig. 5.2 shows, the secondary mode could be up to 
16% of the power of the primary mode, as its power was reduced by increasing the tem­
perature the primary mode increased in power by a few percent, contrary to the normal 
trend. The secondary mode was observed to go through its own mode hops indepen­
dently of the primary mode. According to Tom Kane of Lightwave [3], the secondary 
mode is the 1061 nm line of Nd:YAG. The line can only be avoided by running the laser 
above 35°C, or if the full tuning range of the laser is required, replacing the laser crystal.
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Main laser mode

Side mode 
(2.7 nm lower)
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Figure 5.2: Power of primary and secondary lasing modes versus temperature for the Lightwave 
122 300mW laser. Note that by 35°C the secondary mode has disappeared. The presence of this 
m ode effectively halves the timing range of the laser.

5.2 T he m odecleaner

The norm al application of mode cleaning cavities in quantum  optics is to provide a spa­
tially and noise cleaned beam for the local oscillator beam in a homodyne detector. This 
requires very narrow linewidths, and, as the signal field is a squeezed vacuum or very 
weak squeezed bright field [5], output powers of only a few mW. This is achieved by de­
signing for as high a finesse as possible, using high reflectance coupling mirrors an d /o r 
lengthy perimeters. Our application is further constrained by requiring transmission of 
high powers, in excess of 100 mW. This limits the modecleaner finesse, as the intracavity 
pow ers rapidly approach the damage threshold of many commercially available mirrors.

We settled on a three mirror, triangular ring cavity design. The mirrors were custom 
built by A. G. Thompson & Co., Adelaide, South Australia to the following specifications: 
input and output couplers reflectivity 98% (loss > .02%), third mirror high reflector, i.e 
reflectivity of >99.9%. The cavity perimeter was 2.450m ±5mm, the free spectral range 
(FSR) of the cavity was thus FSR= co/(np) =  1 / r  =  122 MHz. From Siegman [7] the 
finesse of an optical cavity is:

\ / 9 r t

1 -  9rt
(5-1)

where:
9 r t  = 1 -  \/HlR2{R3 ■ ■ - )R lo s s  -  R t o t  (5.2)

where R x & Tx are the reflectivity and transmittivity of mirror i, respectively; Rioss is the 
fraction of absorbed power; and R tot is the total reflectivity of the cavity. It is related to 
the total decay rate, 7tot by (recalling eqn 2.22):

1 \ /  R to t  1 fjrt
I t o t  — r r

(53)
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The bandwidth of the cavity is related to the finesse by:

T  ~
FSR

FWHM (5.4)

where FWHM is the cavity bandwidth or linewidth (the terms are often, and confusingly, 
used interchangeably). Alternatively, the bandwidth is related to the cavity decay rate by:

FWHM = ~  —  (5.5)

The circulating power is [8]:
pr-e jl  ^  T i j r 2

Ptn 7r2grt (5.6)

For the specified reflectivities the figures for predicted finesse and circulating power gain 
are 138 and 36, respectively. As discussed in the next chapter, the high circulating power 
traps dust in the cavity beams, and eventually deposits this dust onto the cavity mirrors, 
increasing the cavity loss. The predicted cavity bandwidth is «  800 kHz; i.e the output is 
reduced by 3 dB (factor of 2) at «  400 kHz. As the RRO of the laser (resonant relaxation 
oscillation, also see next chapter) is at 542 kHZ, this should provide significant noise 
filtering. As discussed in Chapter 6, linewidths narrower than this do not significantly 
increase the final observed squeezing, but would make the cavity much harder to lock. 
The transmitted and reflected powers are given by [7]:

P refl =  i  (R i - g n ) 2
P in Ri  (1 -  grt)2

P trans ? \ T 2

P in ~  ( I - g r t ) 2 ( j

For the specified reflectivities and absorption we predict that 1.2% of the power will be 
reflected and 64% will be transmitted, the rest is absorbed (c.f. Chapter 6). Thus in the 
best case the modecleaner will attenuate the 200 mW laser beam to 128 mW. This is still 
adequate power for our experiment. Note that the cavity can be fully characterised by 
direct measurement of just five experimental parameters: the cavity perimeter, cavity 
linewidth, and incident, reflected and transmitted powers.

5.3 Up the optical path

Optical loss is a particularly critical concern in squeezing experiments. Loss in the pump­
ing path degrades the optical power necessary to drive the nonlinear effect, which re­
duces the maximum generated squeezing; loss in the detection arm introduces uncorre­
lated noise (from the vacuum) which quickly reduces the maximum observed squeezing. 
Accordingly all components in the experiment were chosen on the basis of low loss. The 
focussing lenses were either V-line coated at the appropriate wavelength or broadband 
AR coated in the suitable wavelength range, with loss typically < 0.1%. For the in­
frared, the original steering mirrors were quartered 2" aluminium coated Newport mir­
rors. However these were relatively lossy (R< 95 -  96%); and were eventually replaced 
by a combination of New Focus 1064nm dielectric coated mirrors (5104, R> 99%) and 
Rimkevicius 1064nm dielectric coated mirrors (R> 98%). All optics used in the ANU 
experiments are listed in Table 5.2
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Table 5.2: Optics used in experiment.

Description Wavelength
[nm]

Manufacturer Model No. Comments

A/2 plate 
zero order

1064 Newport 10RP02-34 loss < 0.2% 
1" round

A/4 plate 
zero order

1064 Newport 10RP04-34 loss < 0.2% 
1" round

A/4 plate 
zero order

532 Newport 10RP04-16 loss < 0.2% 
1" round

non-polarising beam 
splitter (NPBS)

1064 Newport 05BC16NP.9 50/50 ±5% 
1 /2 " round

polarising beam 
splitter (PBS)

1064 Newport 05BC16PC.9 loss < 2% 
1 /2 " round

non-polarising beam 
splitter (NPBS)

532 Newport 05BC16NP.3 50/50 ±5% 
1 /2 " round

polarising beam 
splitter (PBS)

532 Newport 05BC16PC.3 loss < 2% 
1 /2 " round

dichroic (long wave 
pass filter)

1064
/532

Newport 03BDL001 losses < 0.1, < 0.2% 
1" round

Alum inium  steering 
mirror

BBIR Newport 20D10ER.2 loss ~  4 -  5% 
2" round

dielectric steering 
mirror

1064 New Focus 5104 loss < 1% 
1" round

dielectric steering 
mirror

1064 Rimkevicius custom loss < 2% 
1" square

dielectric steering 
mirror

532 Rimkevicius custom loss < 2% 
1" square

assorted lenses 
plano-convex

1064
/532

Newport KPXxxxAR.yy loss < 0.2% 
1",2" round

Fig. 5.1 is conceptually correct, but does not show the actual physical layout of the 
experiment. To fit the experiment into the available table space, the optical path was 
folded through 90° just before the Faraday isolator. The large angle reflection from the 
folding mirror caused the beam to become elliptically polarised (as did, to a different 
degree, transmission through the modecleaner); the A/4 plate was used to rotate the beam 
back to linear polarisation so that the beam propagated through the Faraday isolator 
w ithout additional loss.

Initially a commercial Faraday isolator (OFR IO-2-YAG, serial #:8043) was utilised. 
However due to its small aperture (2mm) and the relatively large beam diameter it was 
found to attenuate the beam by up to 30%. At ANU we constructed our own isolator, 
using N ew port polarising beam splitters (see Table 5.2) and a Faraday rotator (aperture 
10mm) constructed for ANU by Dr Anatoly Masalov of the Lebedev Physical Institute, 
Moscow, Russia. The Faraday isolator assembly functions as shown in Fig. 5.3: the po­
larisation of the light is shown above the incident beam and below the reflected beam. 
The incident, horizontally polarised beam, passes unchanged through the first polaris­
ing beam splitter (PBS); is rotated 45° by the A/2 plate; is rotated back to horizontal by



§5.4 Designing the SHG ca vity 93

the Faraday rotator; passes unchanged through the second PBS and is then incident on 
the reflecting surface, be it monolith or mirror. The horizontally polarised component of 
the reflected beam again passes unchanged through the second PBS (the rest is reflected 
out); is rotated -45° by the Faraday rotator; and hence rotated to the vertical by the A/2 
plate and then reflected perpendicular to the incident beam path by the first PBS. If the 
reflecting mirror or cavity does not alter the polarisation then all of the reflected light 
exits through the port marked "out" (the second PBS is to increase the overall isolation of 
the Faraday isolator). At Konstanz, we borrowed a Gsänger Faraday Isolator (FR 1065/8, 
aperture 8mm) from Gsänger Optoelectronik Gmbh: this had similar performance to the 
ANU isolator. Note that as only the power and noise from the "in" port is incident on the 
reflecting surface, this is a suitable technique for coupling squeezed vacuum into the dark 
port of interferometers, which is of particular interest in gravity wave interferometry.

monolith or 
reflecting mirror

or
rotator

dark port o f  
interferometer

Figure 5.3: Operation of a Faraday isolator. The polarisation of the beam is shown above the 
incident beam, and below the reflected beam. If the mirror at the right does not affect polarisation, 
then all the light that enters the "in" port exits via the "out" port. Note that only the noise of the 
"in" port is coupled into the reflecting mirror.

The power coupled to the monolithic cavity is also reduced by nonperfect modematch 
and alignment. Modematching was optimised using two lenses mounted on Newport 
xyz mounts; alignment was optimised using a custom built beamsteerer. A beamsteerer 
consists of two mirrors fixed to the one substrate. If the substrate is rotated horizontally 
or vertically then the output beam is displaced horizontally or vertically; if one mirror is 
tilted horizontally or vertically with respect to the other then the output beam angle is 
altered horizontally or vertically. The beamsteerer thus allows separate control of the 4 
degrees of freedom necessary to align the cavity. We found that using the beamsteerer it 
was possible to align a cavity very quickly (less than 10 minutes) compared with tradi­
tional alignment procedures.

5.4 Designing the SHG cavity

5.4.1 Types of cavity

Fig. 5.4 shows the three basic styles of nonlinear optical cavity: external mirror, hemilithic, 
and monolithic (these styles can be either standing wave or ring). In the external mirror 
design the majority of cavity reflections are external to the nonlinear medium. The intra­
cavity loss is high due to the two air/crystal interfaces. However it is advantageous in 
doubly resonant SHG as it allows both mirrors to be scanned, so that the fundamental 
and second harmonic modes can be independently locked. The increased dispersion also
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Figure 5.4: The three basic styles of nonlinear optical cavity, external mirror most cavity reflec­
tions external to nonlinear crystal, hemilithic one cavity reflection external to nonlinear crystal. 
monolithic all cavity reflections internal to nonlinear crystal.

acts to suppress TROPO, which allows greater SH squeezing ([6], see Chapter 7.) The 
hemilithic design (hemilith, lit. "half-a-piece") is a good compromise: it halves the num­
ber of intracavity surfaces and thus the intracavity loss but it still leaves free an external 
mirror that can be scanned for locking purposes. The monolithic design (monolith, lit. 
"one piece") avoids loss due to intracavity surfaces (the mode is confined totally within 
the crystal) but at the expense of losing a locking degree of freedom. The laser frequency 
can be locked to the cavity resonance but, due to practical effects that are explained later, 
the cavity length cannot be adjusted so that the cavity resonance matches the laser fre­
quency. Combinations of the three basic styles are possible, for example a hemi-monolith, 
where the fundamental is resonated solely in a monolith and the second harmonic is res­
onated between the external mirror and end reflector of the monolith.

Loss is critical in SHG, as the maximum conversion efficiency, r/ni is equal to the out- 
coupling ratio, rjni = 7i / 7i ~  T i/T <of. Loss directly increases the total decay rate, 71, 
and thus reduces the maximum conversion efficiency. The outcoupling decay rate, 
can be increased accordingly, but this in turn shifts the pump power required to reach 
the maximum conversion efficiency (see eqn 2.42). If designing a doubler purely as a 
source of SH (for example to pump an OPO), the best design approach is to have as large 
an outcoupler as possible, with the point of maximum conversion efficiency, p ‘lnaxconv/ 
just under the maximum available power at the fundamental. It is not wise to have 
pmax conv than the maximum available pump power as the slope of the conversion
efficiency is quite steep up to this point. Conversely, there is no particular advantage 
to pumping at powers much greater than P™ax conv as above it the conversion efficiency 
slowly degrades, and the system becomes susceptible to TROPO (see Chapter 7). For the 
complementary process, OPO, the point of maximum conversion efficiency P™ax conv is 
the threshold power, P3 . A cavity designed to the above criteria is very suitable for the 
production of vacuum squeezing by OPO: near threshold the squeezing is near perfect 
and the high escape efficiency ensures that the majority of the squeezing is detected.

The design criteria are different for the generation of good SH squeezing. At the point 
of maximum conversion efficiency, regardless of what power this actually is, the second 
harmonic is squeezed by 3 dB (see next chapter). It is plainly advantageous to have this 
at low, easily detected, optical powers. The cavity should be designed so that P™ax conv 
is relatively low with respect to the maximum pump power. This enables the cavity to 
be driven far above P™ax conv/ which is the strong squeezing regime. The cavity should 
also be designed with dispersive elements to suppress TROPO, which degrades the SH
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squeezing (see Chapter 7). At the start of this thesis, the neither QROPO or TROPO 
had been observed, and the latter point was not appreciated. Further the state of the art 
material technology at the time could not reliably produce high nonlinearity/low loss 
materials, so low loss was the overwhelming design criterion -  the monolithic cavity 
style was chosen.

5.4.2 Monolith design

There are several forms of monolithic, or internal mirror, cavities. The oldest is the whis­
pering gallery resonator [9], where typically the light is confined by a infinite series of 
total internal reflections (TIR's) in a sphere. WGM's have been investigated for a num­
ber of applications in the past 30 years, including lasing (in dye microdroplets [10], and 
Nd:YAG spheres [11]) and as high Q optical cavities (Q's in excess of 108 have been re­
ported [12, 13]). Their chief disadvantages are small size (and hence high sensitivity to 
mechanical vibration) and highly elliptical output modes (Bessel as opposed to Gaus­
sian modes). As the technology for polishing small perovskite (the structure of MgO:LN) 
spheres had not been perfected at the time (and still has not) this design option was not 
pursued.

There are three methods to form a mirror in a monolithic resonator: total internal 
reflection, frustrated total internal reflection (FTIR), and dielectric coating of a surface. 
These three methods can be combined as required and over the past decade most of 
these have been explored at Stanford University. In the late 80's Kozlovsky et. al. demon­
strated singly resonant SHG in a dielectric mirror, standing wave monolith [14] and in a 
combined TIR/dielectric mirror, travelling wave monolith [15]. S. Schiller et. al. demon­
strated doubly resonant SHG and QROPO (see Chapter 7) in a monolith that used solely 
FTIR and TIR, which they called a MOTIRR (monolithic TIR resonator) [16]; Serkland et. 
al. used a MOTIRR to demonstrate 1064nm pumped OPO [17]. At Konstanz Universität 
Bruckmeier et. al. constructed a cavity that used all three methods for use in a QND 
experiment [18].

Once we decided to focus on squeezing via singly resonant SHG (see Chapter 6) we 
settled on a standing wave cavity with dielectric mirrors as this had the lowest achievable 
loss. (Such cavities are not suitable for doubly resonant SHG, as they lack a locking 
degree of freedom, see section 5.5). We selected the well-tested crystal MgOUiNbCL1 as 
the nonlinear medium since it exhibits a large for SHG of 1064 nm light as well as low 
bulk absorption and scatter loss. LiNb03 is doped with MgO to avoid the photorefractive 
effect, which in pure LN is known to cause crystal damage at high intensities - pure LN 
cannot be used in our experiments. The chief disadvantage of doping is that it increases 
the crystal inhomogeneities and scattering and so decreases the nonlinearity to loss ratio 
(see Chapter 8).

Our chief concern when designing the resonator was to maximise the nonlinearity. 
For LiNb03 the phase matching length, i.e the length of maximum nonlinear interaction 
(see Chapter 2), is 12.5mm. We cut the monolith to this length. The loss figure for LN 
is normally quoted as 0.1%/cm, for 12.5mm the round trip loss is thus 0.25% (Rioss = 
99.75%). At the point of maximum conversion efficiency (P™ax conv) the second harmonic 
is squeezed by 3dB. Experimentally, we desire P™ax conv to be a low power so that we can 
drive the crystal far above it and produce strong squeezing. If the outcoupling decay rate 
is much higher than the loss decay rate (y[ >  yj055), then Pr"ax conv is high. To keep it

Magnesium oxide doped lithium niobate; aka MgO:LN; aka "maglen". n = 2.233
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low, we chose an outcoupling reflectivity of R\ = 99.60%, and an end mirror reflectivity 
of Ri > 99.9%. The predicted finesse is thus 840, and the predicted power build up in 
the absence of SHG (the "cold cavity") is 280: the high circulating power ensures a large 
nonlinear interaction. However this is at the expense of a narrow cold cavity linewidth 
(FWHM = 6.4 Mhz, noise reduced by 3dB at 3.2 MHz). This something of a trade-off 
as the squeezing bandwidth is proportional to the cold cavity bandwidth2, and a large 
squeezing bandwidth is preferred as the laser adds considerable noise at low frequencies 
which destroys the squeezing (see chapters 4 & 6).

As the monolith is so short it has a high FSR -  5.4 GHz. It is not possible to scan 
quickly over the full FSR of the monolith: the fast port of the laser only has in extremis 
a range of 100MHz; scanning via the piezoelectric effect (200V/mm, i.e. 1000V over 5 
mm) does not give a significantly greater range. Users of MgOUiNbOß are typically 
advised against applying high voltages across the crystal when high optical powers are 
present. However we have observed no ill effects after more than 3 years of applying 
1000V (ramped over 20mS) whilst several Watts of light were present in the crystal.

The nonlinearity, p, scales as the square of intensity: as intensity is the ratio of power 
to area a small beam diameter is obviously desirable. However with Gaussian (as op­
posed to waveguided) beams it is not desirable to focus the beam as tightly as possible. 
If this is done the beam expands very rapidly away from the focus, so that at the ends 
of the crystal the intensity is quite low and the contribution to the total nonlinearity is 
small. Nor is a large, parallel beam desirable, as the interaction is quite weak along the 
entire length of the crystal. The optimum interaction occurs somewhere between these 
limits. The following rule of thumb is useful: for a symmetric resonator, set the waist size 
so that the crystal length is twice the Rayleigh length. The Rayleigh length is defined as:

z r  =
7TW q 71

A
(5.8)

where w0 is the spot size at the waist, n is the refractive index and A is the wavelength of 
the light (note that higher frequencies have longer Rayleigh lengths). Thus for a 12.5mm 
LN crystal the desired Rayleigh length is 6.25 mm, which translates to a 30.8 pm  waist 
for 1064 nm. (For the Konstanz crystal these figures are 5mm and 27.5 ^m, respectively). 
From Siegman [7], the waist of a resonator is given by:

wl LA / 0102(1 -  0102) 
mr V (0i+02 ~ 0i 02)2

(5.9)

where L is the length of a standing wave cavity, A is the wavelength, n is the refractive 
index and gt is:

=  1 “  (510)

where ROC; is the radius of curvature for mirror i. The monolith is symmetric, so g\ = 02- 
The ANU crystal was cut and polished by CSIRO, Sydney, Australia, the final di­

mensions being 5(x) x 12.5(y) x 5(z) mm, where (z) is the optic axis. A set of standard 
curvatures was available from CSIRO: the 14.24 mm radius was closest to optimum, giv­
ing a waist of 32.7pm, and the cavity ends were cut accordingly. The dual wavelength 
dielectric mirror coatings were produced by LZH, Hannover, Germany. The specified

2 As SHG is loss from the fundamental, it broadens the cavity linewidth, this is the “hot cavity" linewidth: 
squeezing has this bandwidth.
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reflectivities were 99.60% ±  0.03% @ 1064 nm & ~  4% @ 532 nm for the front coating; 
99.90% ±  0.03% @ 1064 nm & 99.9% @ 532 nm for the back coating. The xy faces of the 
crystal were gold coated by LZH to allow electro-optic modulation of the cavity. The non­
linearity, g, could not be estimated a priori. As the effective nonlinearity, g, depends on 
the cavity geometry and the crystal quality (inhomogeneities etc.) it is not surprising that 
estimates of g inferred from the literature varied by up to a factor of two. Experimentally 
we inferred a maximum value of g = 0.012 (see chapters 6 & 7).

5.4.3 Future design considerations

The criteria used to design the ANU crystal are now effectively obsolete. Materials are 
now commercially available with very high nonlinearity to loss ratios (e.g. KNbCL, 
PPLN). This suggests a completely different approach to designing cavities for SH squeez­
ing: as the nonlinearity to loss ratio is so large the high finesse constraint can be relaxed 
and attention focussed wholly on minimising P™ax conv.

Aside from finesse, the other method to increase the stored power in a cavity is to 
increase the cavity length (there is more room to store photons). As this narrows the 
cavity linewidth the outcoupler reflectivity can be accordingly lowered, which has the 
side benefit of increasing the conversion efficiency. However the feasibility of this is crit­
ically linked to the strength of the nonlinearity. In our experiments the nonlinearity was 
inferred to be g ^  0.01. Say that the nonlinearity for a 50mm piece of PPLN is 9 times 
higher than this, i.e. g — 0.09 (a not unreasonable estimate). The intracavity loss is rel­
atively high, 5 cm @ 0.1%/cm + 2 surfaces @ 0.1%/surface = 0.7% intracavity loss. We 
consider an external mirror, bowtie cavity with an optical perimeter of 4cm and reflectiv­
ities of R\ = 0.90%, and # 2 = R3 = R4 = 99.9%. With these values, P™ax conv ~  lOraW 
(!), the conversion efficiency at this point (assuming perfect mode match) is r]ni = 0.90 
and the cold cavity linewidth is ~  15MHz. These figures are better than those obtained 
from the ANU and Konstanz monoliths, and for a far simpler experimental design: it 
is certainly worth pursuing. Note that P™ax conv scales inversely with g (eqn 2.42): if 
the nonlinearity is simply that of normal LN then P™ax conv «  90mW which is not at all 
favourable.

Doubly resonant SHG has a much lower P™ax conv than the singly resonant case [19]. 
However doubly resonant systems are considered technically difficult as the second har­
monic mode needs to be locked to resonance. In a tight corner it is worth considering 
the intermediate situation, where the power of the second harmonic is built up by a low 
reflectivity mirror (say 10% as opposed to AR). The second harmonic is still such a broad 
resonance that it does not need locking (unless the experimenter is very, very, unlucky). 
(The equations in section 5.2 break down for low R, as arcsin(ö) 9 for large 0. Keeping 
this in mind, for our example of R=10%, we very roughly calculate a finesse for the sec­
ond harmonic of 2 and a half, a circulating power twice the incident power and a FWHM 
for the resonance of two fifths of the FSR, as FWHM/FSR= l /T) .

5.4.4 The Wrong Polarisation

The inhomogeneities of the crystal lead to another subtle effect that can totally upset the 
experiment -  which however is fortunately rare, and easily avoided. In MgO:LN, the re­
fractive indices of the s- and p- polarisations of 1064nm are quite different. Consequently 
the TEMoo modes of the the s- and p- polarisations are, in general, resonant at different 
frequencies. The cavity is driven at p-polarisation, however due to inhomogeneities in
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the crystal, a small amount of light is scattered from the p- polarisation into the s-.
In a typical experiment this appears as the following. When scanning over several 

cavity linewidths (say, via the fast port of the laser) the p-polarised TEMoo mode is clearly 
evident as a large peak. The s-polarised mode appears as a very small peak some distance 
from the large peak: typically it cannot be eliminated via improving the alignment and 
mode match - if desired, unambiguous identification can be made by rotating the input 
polarisation. As the thermal port of the laser is slowly scanned, all the peaks slowly move 
across the range set by the fast scan of the laser. However, and this is a key point, the 
s- and p-polarisation peaks move at different rates: the s-polarised peak moving more 
rapidly than the p-. At some laser temperature, the s- and p-polarisations become fre­
quency degenerate: when this happens, considerable power exchange occurs between 
the two, with the s-polarised mode able to rob almost all of the power from the desired 
p-polarised mode3. Obviously if this occurred when the cavity was locked and generat­
ing second harmonic (as did happen occasionally) the results were disastrous. However 
it is a simple effect to avoid, simply changing the laser temperature destroys the degen­
eracy of the two modes and the problem ceases to exist.

5.5 The locking system

Up to three locking loops were required in this experiment: two optical and one thermal. 
Nominally these loops are independent, although of course they are coupled through 
the optical interactions. For example, as the monolith comes into resonance extra heat is 
dumped into the cavity and the thermal loop must adjust accordingly; in turn the cavity 
expands and the frequency drops and both the monolith and modecleaning loops must 
then adjust; and so on.

The thermal locking loop was used to maintain the crystal temperature to mK stabil­
ity. The loop consisted of a heater, oven, detector and temperature controller. At the time 
of construction, no peltier heaters existed that could run reliably in excess of 100 °C (this 
is no longer true), so a resistive heater was constructed. It consisted of three 20Ü resis­
tors (RS-WH20), wired in parallel; one resistor was attached to each free side of the oven. 
The oven itself was a 32 x 35 x 44mm copper block, with an internal space to accommo­
date the crystal coffin. The oven block was large so as to give a large thermal mass: this 
was desired as only limited heating power was available (~ 4.5 W), and the large ther­
mal mass insulated the crystal from ambient temperature fluctuations. The combination 
of large thermal mass and resistive-only heating led to a large time constant, with the 
system taking 10-20 minutes to stabilise to a new temperature setting. (Alternatively, if 
excess power and /or peltier heating/cooling is available it is better to design for a small 
thermal mass so that the time constant is much smaller.) The crystal coffin was variously 
a Macor© (ceramic) or Teflon©coffin that electrically insulated the crystal from the oven. 
Although much harder to machine (it is very brittle) Macor is to be preferred to Teflon as 
at high temperatures Teflon outgases. The crystal resided inside the coffin between two 
thin copper strips, which were used to apply up to 1000V across the crystal. The temper­
ature sensor was a 220 kQ bead thermistor (RS 256-051) that was set deep into the oven, 
it was not placed on or near the crystal. The design philosophy was to stabilise the core 
temperature of the oven and let this stable environment provide the heat for the crystal.

3R. Bruckmeier has modelled this and found it to be equivalent to an avoided crossing between the two 
polarisations [21].
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The temperature controller design was adapted from that of Bradely et. al. [22] by 
Alex Eades, Matthew Taubman, and this author. The controller is a parallel PID design, 
that has as its input the thermistor as one arm of a resistance bridge. Small changes in 
temperature lead to small resistance, and thus voltage, changes - this is the locking signal. 
The accuracy of the circuit comes from the accurately known resistor values (ppm) in 
the resistance bridge. The option of placing ppm resistors on a internal peltier board, 
to stabilise their values and reduce long term drift, was designed into the system but 
never implemented as the long term drift was found to be within tolerance. The output 
was converted from a current push/pull stage of Bradley's original design (necessary for 
driving peltiers) to a simple current stage ("push vs pull" current is not meaningful w.r.t. 
a resistor). Two 3.5 digit displays were used: one displayed the set point of the controller 
(a.bc V), the other the error signal (cd.e mV). At the stable operating point for the thermal 
locking loop the error signal read 00.0 mV, from this we inferred a stability of ±.05 mV, 
or, reading from the thermistor chart, ±lmK.

Table 5.3: Amplifiers and signal generators.

Description Frequency
[MHz]

Manufacturer Model No. Comments

HV amplifier D C -0.002 David Cooper 
ANU

— 1 kV

power amplifier 
(thumper)

0.25 -150 Electronic
Navigation Industries

325LA 25 W

power amplifier 
(bronze)

ISOMET RFA-1108 5 W

power amplifier 
(black)

Minicircuits ZHL-1A 1 W

power amplifier 
(black)

Q-BIT QB538

signal amplifier 
(bronze)

0.01-500 MITEQ AU-1261 "low-noise"

signal amplifier 
(silver)

5-500 TRONTECH W500EF-AGC > 60dB gain

signal
generator

0.1 Hz - 
2 MHz

Goodwill
Instruments

GFG-8050 5 V

signal
generator

0.35-50 Tektronix 190B 10 V

signal
generator

30 -100 National VP-8177 A > 0.09 V

signal
generator

1-520 Wavetek 3000-200 1 V

The optical locking loops were all Pound-Drever (reflected beam) or modified Pound- 
Drever (transmitted beam) schemes. As discussed earlier, the laser was phase modu­
lated directly at 27.650 MHz to provide the phase modulation for the modecleaner; the 
MgO:LN crystal was modulated at 45.167 MHz to provide the phase modulation for the 
monolithic cavity. In both cases the reflected (or occasionally transmitted beam) was 
detected by a photodetector; the RF signal from this detector was mixed with the local 
oscillator used to drive the original phase modulation; the output of the mixer was then



100 Experimental design

the locking signal. Both locking loops are shown in Fig. 5.1. We now consider the optical 
locking loops separately.

The modecleaner locking signal was sent to a custom PID (MCPID, constructed by 
Matthew Taubman [23]): this unit had very high gain at frequencies below 1 kHz, above 
this the gain was steeply rolled off to avoid exciting the piezo resonances. The PID out­
put was split into low and high frequency components: the low frequency component 
drove a 1000V amplifier that in turn drove the piezo that held the third modecleaner mir­
ror; the high frequency component was fed into the laser locking loop (of which, more 
later). The modecleaner was a problematic beast to lock: due to its long perimeter and 
separated mirrors it was very sensitive to vibration. The following mechanical adjust­
ments reduced, but by no means eliminated, this sensitivity. The mirrors were mounted 
in commercial mirror holders that were in turn mounted on solid metal blocks. It was 
found that stainless steel, as opposed to aluminium, blocks decreased the sensitivity of 
the modecleaner to air-carried acoustic vibrations but increased the sensitivity to table- 
carried vibrations. As the table was mechanically well insulated, this was an acceptable 
trade-off. The spurious motion of the third mirror was damped by wedging the metal 
mount between two rubber machine mounts that were themselves firmly attached to the 
table. The piezo was mounted on a brass counter-weight, which improved the mechani­
cal resonances of the piezo/mirror assembly. Two separate series of these were observed: 
4,8,12.. and 6,12,.. kHz. In future we advise experimenters to avoid this design: it is 
worth exploring the Lutz Pickelmann design of sandwiching the mirror between two 
oppositely wired piezos and preloading the mirror/piezo assembly.

By itself, the modecleaner could be locked solely with the low frequency PID output. 
However once the monolithic cavity was also locked, the modecleaner was no longer 
able to respond sufficiently and it was necessary to modulate the laser frequency so that 
at high frequencies it tracked the narrow resonance of the modecleaner as well as the 
considerably broader resonance of the monolith. This situation was plainly prone to 
conflict, and various noise signals due to this competition were clearly evident on the 
noise spectra (see next chapter). If the MCPID and 1000V amplifier were replaced with 
a higher slew rate combination that could cope with the frequency changes introduced 
by the monolith locking loop then it would no longer be necessary to tie the two optical 
locking loops together.

The monolith locking signal was fed into a PID controller (UNIPID, constructed by 
Matthew Taubman [23]). The output of this was fed into another UNIPID which was used 
to add the high frequency signal from the mode cleaner locking loop. The combined 
output was fed into a laser controller (another Matt Taubman product [23]). The laser 
controller supplied ±100V and ±50V to the fast and slow ports of the laser, respectively. 
As the fast port was also used to phase modulate the laser, the fast locking and 27 MHZ 
signals were added via a junction box, to prevent the locking signal from destroying the 
signal generator.

The monolith and laser were locked together by changing the laser frequency. It is 
in principle possible to instead alter the monolith resonance frequency via the piezoelec­
tric effect - this would then remove the competition between monolith and modecleaner 
locking signals. However this is inadvisable as at high voltages and optical powers the 
MgO:LN crystal becomes susceptible to photorefractive damage. It is also impossible in 
practice as the high DC voltage and optical fields cause "charge screening", i.e. positive 
and negative charges within the crystal lattice migrate so that they cancel out the applied 
DC field. In bulk MgO:LN this cannot be avoided, nor can it be sidestepped by increasing 
the applied DC voltage, as this quickly reaches the dielectric breakdown value for LN.
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Table 5.4: General RF components.

Description Frequency
[MHz]

Manufacturer Model No. Comments

mixer 0.2-500 Minicircuits ZP-10514

splitter/ combiner 5-500 Minicircuits ZFSC-2-1 0°

splitter/ combiner 1-500 Minicircuits ZFSCJ-2-1 180°

adder/subtractor 5-1000 ANZAC
(MA-COM)

H-l-4

RF switch 1-500 Minicircuits ZFSW-2-46 off-. 0V 
on:-7V

attenuator, x dB DC-1500 Minicircuits CAT-x

variable attenuator RS Components: 
Hatfield

610-506

switchable delay 
line

EG&G ORTEC DB463

5.6 The detection systems

There were three quite separate components of the detection systems: the optical spec­
trum analysers, the photodetectors themselves, and the optical and electronic arrange­
ment of the balanced detectors.

The generated second harmonic was s-polarised and picked off the pump path with 
a dichroic (technically a long wave pass optical filter). Some residual infrared remained 
on the SH beam, so it was reflected into the visible detection system via another dichroic, 
which attenuated the IR to a negligible amount. The reflected infrared was extracted from 
the pump beam path via the Faraday isolator, and input directly into the IR detection 
system.

5.6.1 Optical spectrum analysers

An optical spectrum analyser (OSA) is a scanning confocal optical cavity. In the ideal 
limit an OSA is insensitive to alignment and mode mismatch: all the even higher order 
spatial modes of the cavity are frequency degenerate with the TEM0o, and all the odd 
higher order spatial modes are frequency degenerate and located 1/2 FSR away from 
the TEMoo- If the cavity is reasonably well aligned the odd peak becomes very small and 
only one large peak per FSR is observed as the cavity is scanned. Extra optical frequencies 
clearly show up as additional peaks.

In our experiments the OSA's were used to detect the presence of TROPO (see Chap­
ters 2 & 7). The OSA's are not shown in Fig. 5.1: they were set-up so that they could 
intercept some or all of the light from the balanced detection arms of the experiment. 
Both OSA's were standing wave cavities, and relatively narrow linewidth. The infrared 
OSA was constructed in-house from two HR@1064nm, 15cm mirrors (FWHM< 500kHz); 
the visible OSA was a commercial Tropel model (FWHM< 200kHz).
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5.6.2 Photodetectors

In this thesis we sought to detect squeezing of both infrared and visible light on beams 
ranging in power from 30 to 100 mW. In addition to handling relatively high optical 
power, our detectors required high quantum efficiency (QE) and relatively high frequency 
response (MHz to 10's of MHZ). Singly each of these features is readily available with 
commercial photodiodes, as are some combinations of two of these features (e.g. high 
QE and power handling but poor frequency response; high frequency response and QE 
but poor power handling; etc). However it is very difficult to find a commercial photodi­
ode that combines all three.

Quantum efficiency is critical in squeezing as loss quickly degrades the squeezing. 
The QE of a single photodiode can be raised by a combination of the following: removing 
the glass of the diode case; angling the diode to near Brewster's angle for the diode 
material; directing the light reflected from the diode back onto the diode with a curved 
mirror (retroreflecting); AR coating the diode surface. All but the last were used in these 
experiments 4. Until recently the workhorse photodiode for visible photodetection in 
quantum optics has been the EG&G FND-100: we constructed a photodetector with this 
photodiode and using the above techniques measured a maximum QE of 65 ±  2% at 532 
nm. (In the late 1980's QE's of 80% were reported [25]. However it appears that EG&G 
changed their manufacturing process, and with FND-100's purchased from 1992 onwards 
the best measured figure has been 65%.) Care must be taken when retroreflecting: it was 
found that optical feedback from the detectors could both initiate and alter the properties 
of TROPO (see Chapters 2 & 7).

The quantum efficiency was calculated by measuring the DC optical power before 
the detector (taking care not to over or under focus the beam, and to ensure that it was 
consistently the same size) with a NIST traceable power detector; and measuring the DC 
photocurrent drawn by the photodiode (by placing an ammeter in line with the photodi­
ode power supply). The quantum efficiency is calculated from:

Q E =  (5.11)
^photon Q I

where I and P  are the measured DC photocurrent and optical power, respectively.
Better QE's are possible with Hamamatsu silicon photodiodes. We also constructed 

photodetectors based around the Hamamatsu S1721, S1722, and S3590 photodiodes. Ta­
ble 5.5 summarises the results. These are the DC quantum efficiencies (of which more 
later).

The photodetectors in this thesis were built around the dual DC/ AC circuit designed 
by Mai Gray [24]. The basic design is as shown in Fig. 5.5. The DC output has a low-pass 
filter frequency corner of ~  160kHz. The AC output was amplified by low noise mono­
lithic RF amplifier (variously a Minicircuits MAR-6 or Hewlett Packard MIMIC,INA- 
01170). The coupling capacitor and amplifier effectively act as a high pass filter, this 
combined with the inductor, resistor, and capacitor combination between the photodiode 
and ground (which causes a zero in the frequency response) allowed rolling off and sig­
nificant suppression of the resonant relaxation oscillation (RRO). This was necessary to 
avoid saturation of the RF amplifier.

4Owens et.al showed that the QE can also be increased by using a bounce detector arrangement, where a 
second photodetector is used to detect light reflected from the first, and the photocurrents of the two detec­
tors are added. They report a maximum QE of 1.00 ±  0.01 at 830nm using Ham am atsu S1721 photodiodes.
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Table 5.5: Photodiodes. For the visible photodiodes the quantum efficiency (QE) was measured 
when the photodiode was driven at 30V. * = with glass.

Photodiode Material QE w /o  
glass

optimised
QE

Max.
power

Comments

EG&G
FND-100

silicon 46% 65% < 50mW @ 532 nm 
4> = 2.54mm

Hamamatsu
S1721

silicon 74% 91% < 50mW @ 532 nm 
4> =  2.54mm

Hamamatsu
S1722

silicon 63% < 50mW @ 532 nm 
= 4.1mm

Hamamatsu
S3590

silicon 85% 88% < lOOmW @ 532 nm 
10 x 10mm

EG&G
C30641G

InGaAs 75%* 80% < 50mW @ 1064 nm 
area= 1mm2

EG&G
C30642G

InGaAs 64% * < 50mW @ 1064 nm 
area= 2mm2

Squeezing has been detected in experiments for over a decade. Yet it is only recently 
that the problem of measuring the noise of high power optical beams near the quantum 
limit at RF frequencies has begun to be addressed. Currently, there is no widely accepted 
model for the behaviour of pin photodiodes in this limit (high power, high frequency, 
near QNL): this would not matter if the DC and AC responses were similarly behaved, 
but as the following observations show, they are not. The observations are not due to 
quirks in the design of the AC section of the photodetector circuit, excepting the photo­
diode this is easily modelled and understood - they are due to the photodiode itself.

The RF noise power varies as a function of the beam diameter. Obviously if the beam 
is underfocussed (diameter larger than photosensitive area) then not all the light is cap­
tured by the detector: both the AC (RF power) and DC (quantum efficiency) responses 
decrease. However if the beam is overfocussed (diameter somewhat smaller than photo­
sensitive area), the AC and DC responses are longer the same: the RF power can drop sig­
nificantly, no change observed in the DC current. The effect is power dependent: no AC 
saturation is observed at low powers with a given diameter; yet at higher optical powers 
significant AC saturation is observed. It is necessary to increase the beam diameter to 
recover the AC response. Clearly the AC response is clearly dependent on the optical 
power density and a a consequence there exists an optimum beam size for photodetec­
tion (between the under- and over- focussing diameters). The FND-100 was reasonably 
tolerant with respect to this behaviour; the S-1721 was not, it had a very narrow range of 
waists where the RF power was maximised.

At high optical powers, increasing the reverse bias voltage can vastly improve the AC 
response of the photodiode, whilst again changing the DC response only minimally. It is 
as if a certain amount of electrical power is required to respond at RF frequencies, and 
if this power is not supplied then the RF response is severely attenuated. All the visible 
photodiodes in this thesis were run with a reverse bias voltage of at least 50V, below this 
the RF response was notably attenuated for high (> 20 -  30 mW) optical powers. Once 
again, the S1721 showed greater sensitivity to this effect than the FND100.

Thermal effects also affect the AC response. When the photodiode can was not well 
heatsunk (it was free standing in air), increasing the incident optical power consistently
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Figure 5.5: Photodetector circuit. PD = photodiode (EG&G FND100 or Hamamatsu S1721, S1722, 
or S3590). A1 = Minicircuits MAR6 or Hewlett Packard MIMIC INA-01170. Dl = D2 = ln4007 
diode. Rl = 680ft (for MAR6) or 250ft (for INA-01170); R2 = 100ft; R3 = l.lkft; R5 = 20kft poten­
tiometer; R6 = l.lkft; R7 = lOOkft. Cl = InF; C2 = 1 or 10 nF; C3 = 0.1/rF; C4 = lOnF; C5 = 22/iF; 
C6 = C7 = InF. LI = L2 = 10//H; L3 = L4 = 1/iH.

caused the AC response to increase for FND100 photodiodes and decrease for S1721 pho­
todiodes. To avoid these thermal effects, the photodetectors were constructed so that the 
photodiode cans were snugly and firmly in contact with either brass or copper heat sinks. 
A slight thermal effect could still be observed with the brass heatsinks, none at all with 
the copper.

Despite awareness of, and care taken to avoid, the above phenomena, the AC re­
sponse of the high power and quantum efficiency photodiodes is still not fully under­
stood. For example, for a 30mW 532 nm beam 1.7 dB of squeezing was measured using 
the FND100 photodetectors (see next chapter); using the measured DC quantum effi­
ciency of 65% we inferred 3 dB of actual squeezing (which was very consistent with the 
theoretical predictions, see Chapter 6). Using the S1721 photodetectors to measure the 
same beam, 2.1 dB of squeezing is observed; however from the measured DC quantum 
efficiency of 91% we inferred only 2.4 dB of squeezing. Given that the S1721 was observed 
to be more susceptible to affects that change the AC response, we suggest the following. 
There exists an effective AC quantum efficiency for photodetection. Ideally this is the 
same as the DC value, but it may be degraded from it by a variety of phenomena (power 
density saturation, insufficient reverse bias, thermal effects). In this specific instance the 
S1721 AC quantum efficiency would appear to be 77%, as opposed to 91%. (We do not 
consider the alternative, adjusting the AC response of the FND100, for two reasons: the 
FND100 was observed to be much less sensitive to AC effects than the S1721; the ob­
served output from the FND100 agrees with theoretical predictions for the measured and 
inferred cavity parameters, the S1721 output does not.)

It is not clear why the S1721 response is so degraded in this instance. One possible ex­
planation is immediately obvious (there may be others). The over- and under- focussing 
regions may begin to overlap as the incident optical power is increased. Thus, it is not 
possible to make the beam any larger as not all of it will be captured, yet even for the
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maximum beam size there will be some saturation due to the overfocussing effect. If this 
is true then the observed AC response should appear to decrease with increasing optical 
power. Considering the physical mechanism of photodetection, it may not be the actual 
optical power that causes the overfocussing effect, but the amount of photocurrent. The 
problem is no doubt exacerbated by turning the photodiodes to increase the DC quan­
tum efficiency, for circular beams this transforms the incident light to an ellipse. To avoid 
this experiments are planned using a D-lens which will ensure the beam is circular (min­
imum power density) for the turned photodiodes [26]: further work is also required to 
understand the relationship between these phenomena. Given these results, the visible 
squeezing results presented in this thesis are those taken using the FND100 based pho­
todetectors.

5.6.3 Balanced detectors

As discussed in section 3.4.5, balanced detection requires a 50/50 beamsplitter. In prac­
tice commercial nonpolarising beamsplitters are rarely 50/50, varying by up to 5%. Ac­
cordingly we did not use a nonpolarising beam splitter, instead using various A/2 plate 
and polarising beam splitter combinations. For the infrared detector the two output 
beams were at right angles to one another and orthogonally polarised: as the individ­
ual detectors were not turned to Brewster's angle the different polarisations were not 
troublesome. For the visible balanced detector the lowest loss solution was found to be a 
beamsplitter, nominally coated for 543nm, turned so that the two output beams were sep­
arated by «  110°, the polarisations were somewhat different, so care was needed when 
optimising the quantum efficiency via turning the photodetectors to Brewster's angle.

For both the infrared and visible cases the AC outputs of the two individual pho­
todetectors were sent to an an adder/subtractor (see Table 5.4). The two outputs of 
the adder/subtractor were connected to an electronic switch, the output of which was 
sent to a HP-8568B signal analyser. This enabled quick switching between the added 
and subtracted signals without physically disconnecting cables. All cables were carefully 
matched for length. In practice the observed spectra from the individual photodetectors 
had slightly different frequency dependencies (i.e. shapes). By varying the retroreflec- 
tion, angle tuning, and optical balance, it was possible to accurately balance the two 
photodetectors over limited frequency ranges, as the situation demanded. For example, 
better than 40 dB cancellation between 8-12 MHz with lesser cancellation, < 20dB, at 45 
MHz. In the high cancellation frequency regimes, the detectors were balanced to within 
0.1 dB.

It was occasionally necessary to split the photodetector signal, normally between the 
photodetector and adder/subtractor, to obtain a locking signal or to obtain a signal for 
feedback measurements [23]. If this is done, it is vitally important that the splitters are 
correctly balanced and isolated. For example, the output of the adder/subtractor changes 
if one of the splitter outputs, before the adder/subtractor, is not terminated, or drives a 
poorly impedance matched load. (This is fairly normal behaviour for RF components.) 
To avoid any such problems, we systematically placed amplifiers, which incidentally act 
as RF amplifiers, on all splitter outputs.
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Chapter 6

Squeezing in SHG

This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

Winston Churchill

As discussed in Chapter 4, in the early to mid 80's there was a considerable body of the­
oretical literature that indicated SHG was a suitable source of squeezed light. With this 
in mind, the first demonstration of SHG squeezing was made by Pereira et. al in 1988 [1]. 
They used a LiNBCL crystal in a doubly resonant, external mirror, standing wave cavity, 
and observed transient (10 ms) squeezing of 13%/-0.6 dB on a < lOmW reflected funda­
mental beam. Their experiment was chiefly limited by dispersion, i.e. the tendency for 
the fundamental and second harmonic waves to get out of phase with one another due to 
air/crystal interfaces and the mirror coatings. The interface problem was elegantly over­
come in the experiment of Sizmann et. al [2]. By using a doubly resonant monolithic cavity 
they were able to observe transient (ms) squeezing of 19%/-0.9 dB on a 100 /xW second 
harmonic beam. The clever use of monolithic technology attracted widespread attention. 
Using this technology Kürz et. al were eventually able to observe, for up to 10 s at a 
time, 52%/-3.2 dB squeezing on a 3.2 mW reflected fundamental beam [3]. In all of these 
experiments the observed squeezing was much less than that expected from theory, even 
after correction for nonperfect quantum efficiency and electronic noise. This degradation 
was attributed to the problem of maintaining double resonance, i.e actively stabilising 
both the fundamental and second harmonic cavities. Technical difficulties with this lim­
ited both the achievable nonlinearity and the length of time which squeezing could be 
produced.

Prompted by these difficulties, the theory was reexamined by Collett and Paschotta. 
They found that double resonance was not necessary to produce squeezing, and pre­
dicted second harmonic squeezing from a singly resonant cavity. In 1994 Paschotta et. al 
used a singly resonant monolith that only needed to be locked at the fundamental. Stable 
squeezing of 20%/-0.94 dB was observed on a ~  30mW second harmonic beam [4]. After 
correction for detection efficiency and electronic noise the observed squeezing was sig­
nificantly less than the predicted value of -2.2 dB. This was attributed to either laser noise 
or a thermal effect, as a strong power bistability, thought to be due to thermal problems, 
was observed for high pump powers.

In 1995 Ralph et. al [5] observed 13%/-0.6 dB second harmonic squeezing and iden­
tified laser noise as one source of squeezing degradation. By accurately modelling the 
driving laser they obtained excellent agreement between theory and experiment for their 
system. However their model was developed using the Schrödinger approach (see Chap­
ter 4) and was thus computationally laborious and not very intuitive. In the same year 
Tsuchida [6] observed -2.4 dB second harmonic squeezing but again agreement between 
theory (-3.0 dB) and experiment was poor.

The other SHG system that holds great promise as a source of bright strongly squeezed 
light is travelling wave SHG. In 1993 Li & Kumar predicted that amplitude squeezing of 
both the fundamental (100%) and the second harmonic (50%) was possible for single pass

109
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[!ht]
Table 6.1: Experiments in squeezing via SHG

Paper Observed Power A Obs. Agrees
squeezing (mW) N time with

theory
C avity  system s: 

doubly resonant 
1988 Pereira et. al 13%/-0.6 dB < 10 1064 10 ms No
1990 Sizmann et. al 19%/-0.9 dB 0.100 532 1 ms No
1993 Kürz et. al 52%/-3.2 dB 3.2 1064 10 s No

sing ly  resonant 
1994 Paschotta et. al 20%/-0.94 dB ~ 30 532 stable No
1995 Ralph et. al 13%/-0.6 dB 30 532 stable Yes
1995 Tsuchida et. al 42%/-2.4 dB 64 431 stable No
1996 White et. al 30%/-1.7 dB 34 532 stable Yes

Travelling wave: 
1996 Youn et. al. 6%/-0.3 dB O.lOav 532 n.a. No

SHG. The phase matched case is particularly simple, with the prediction of fundamental 
amplitude squeezing of Vxi (0) = 1 -  77 where 77 is the nonlinear conversion parameter. 
In 1996 Youn et. al [7] observed a modest 7%/-0.3 dB for pulsed travelling wave SHG: 
again, agreement between theory and experiment was poor.

In this chapter we examine the squeezing produced by singly resonant SHG. The re­
sults in this chapter were published in 1996 [8]. In the first section we derive the nonlinear 
interaction terms and the quantum noise characteristics via the Heisenberg approach. In 
the second section we introduce the concept of a "modular" approach to noise propa­
gation in quantum optics systems, with particular reference to the experimental system 
presented in the last chapter. In the third section we present and compare the experimen­
tal and theoretical results. We find excellent agreement between theory and experiment. 
In the last section we briefly discuss the future of squeezing via SHG.

6.1 Quantum theory of the frequency doubler

The classical models of frequency doubling presented in Chapter 2 did not consider the 
noise properties of the light. In this section we use the Heisenberg approach to derive the 
noise properties of frequency doubled systems.

6.1.1 Deriving the interaction terms

The beauty of starting from the Hamiltonian is that derivation of the equations of motion 
is straightforward. In Chapter 3 we derived from the Hamiltonian the decay and cou­
pling terms for the equations of motion. We now derive the nonlinear interaction terms. 
(Compare this with derivation with that of Chapter 2 where deriving the nonlinear inter­
action terms was an involved process that required particular care with scaling so as to 
fulfill energy conservation.)
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Consider the interaction Hamiltonian for SHG/DOPO:

hi = i h ^ ( ajJa3 -  ajaf3) (6.1)

Using eqn 3.57 we can obtain the interaction terms for the degenerate equations of motion 
for a second order system. For the low frequency mode (known as the fundamental or 
subharmonic for SHG/DOPO respectively):

iTiki =  ih — (aia^a3 — aia^a^ -  a^aßai +  a^a^) (6.2)

The second and fourth terms cancel. Repeatedly applying the commutator relation gives:

äi =  — (aia^j — a^a i)a3

=  ^(a ia ^  -  a ^ f l  +  a1at i))a3 

=  ^(a ia j i -  af! -  (1 +  a1at 1)at1)a3 

= ^ (—a+! -  at !)a3

=  - K  at Ja3 (6.3)

Similarly for the high frequency mode (known as the second harmonic or pump for 
SHG/DOPO respectively):

a3 = — (a3a ^ a 3 — a3a^a^3 — a ^ a 3a3 -t- a^a^3a3)

=  ^ (aiat3a3 -  a3ajat3)

=  (6-4)

Note the factor of half in the high frequency mode. This was not at all obvious in the 
classical derivation.

Similarly derivation of the interaction terms for the nondegenerate equations of mo­
tion is straightforward. The interaction Hamiltonian for SFG/NDOPO is:

f f  =  i/ i- (a t1at2a3 -  a1a2at3) (6.5)

The interaction term for the signal equation of motion is thus:

a i — ~  2 ( a ^ i a ^2a 3 a i ~  a i a 2a ^3a i — a i a ^ i a ^ 2 a 3 +  a i a 3 a 2a^3 )

= — ~ (a^ia i — aiaM a 2̂a3
* t= ~ 2 a 2a3 (6 -6 )

And similarly for the idler equation of motion:

• _  ^ ta2 — — —a la3 (6.7)
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Whilst for the pump equation of motion:

äß =  +  — (a3atxat2a3 — a3aia2a*3 — a^a^a^ +  aia2at3a3)

= +^aia2(at3a3 -  a3af3)

= + ^ a xa2 (6.8)

For the remainder of this section we consider only the degenerate equations of motion. 
However our calculational methods can be easily extended to the nondegenerate case.

6.1.2 Quantum noise of the singly resonant doubler

Figure 6.1: Schematic of singly resonant doubler, m l = fundamental power coupling input, in2 = 
fundam ental transmission and loss input, in3 = second harmonic vacuum  input.

Using the interaction terms derived in the last section, we can write the equations of 
motion for SHG/OPO as:

ax =  — (71 +  f A i)a x +  /■tâ xa2 +  y^27jÄ'1nl +  y 2̂'yj[Ä'1n2

ä3 =  — (73 +  iA 3)ä3 — K /2äj +  x/^TsÄ^13 (6.9)

where we have explicitly set the low frequency mode to have non-perfect escape effi­
ciency, ?/ = 7x/ 7 i- As Fig. 6.1 shows, we consider a standing wave cavity where the two 
inputs (coupling and combined transmission and loss) for the low frequency mode are 
labelled ini & in2, and the input for the high frequency mode is labelled in3. For singly 
resonant SHG, we can set A 3 = 0 (see section 2.5.3). Adiabatically eliminating the second 
harmonic (see section 2.2.3) we obtain:

( 6 . 10)

Substituting this into eqn 6.9:

ä i  =  —(71 4 -  7 A x ) ä i  — 4- A1/11 +  (6-11)

where g — k2/(272). Linearising (see sections 3.1.5 & 3.3.2) we obtain the fluctuation 
equation of motion:

£äi = -(7i + ?'Ai)($äi -  g(2\ai\28ki + a ^ ä ^ ) + 2v//7(A3n3<$ätx 4 a^Ä 3n3)

+ + \ / H K " 2 ( 6. 12)
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Recalling that for SHG, A3 =  0, the quadratu re  fluctuation equations of m otion for the 
fundam ental are (see section 3.1.3):

S X i =  — (71 +  2 ^ |o ? i |2 +  ~  Oi\ +  o \ 2 )<5Xi +  (A i +  * ^ )  

+ v W « i  +  o ^ S X r 3 -  iyß (o ti -  cx\)SX2^

+ v G i « , inl +  f i t f S X r in2

<54 =  - ( t i + 2 mI« i |2 - ^ M  +  « I 2])<5X2 - ( A i - 4 )

<*1 “  Q'l )<5X;

2 r 1 ■ 1 y "  * v * 2

+  +  Q 'i)5X 2in3 -  *v£(<*l -  ^ ) ^ ! in3

+ ^ 2 ^  +  y j H S X ^ 2

Fourier transform ing (see section 3.3.3) this becomes:

SX! = ^27j5Xiinl + \ J ^ l \ SX\ n2 + + oqMXi

2 *  2 <*1 -Qfj )SX,

(6.13)

in3

— — aq)<$X2 in3 + (Ai + i^)  ja 2 -  oq2] <*>X;

7i +  2 /i |a i  12 +  /i/2 (a 'i +  Qq 2) — zcj

5X2 =  y^27i<5X2ml -f \j2y\SX.2in2 +  y/Ji(oii +  QqMX2,ru

1 -  a ^ X ^ 3 -  (Aj -  i | )  [a? -  a t 2] *Xj

7i +  2/x|aq|2 — /i/2 (n 2 +  Qq2) — ^  

Elim inating the cross term s we obtain the expression:

SXi
_ Ci jDj  + EA + Fj iDi  + Ej)

(6.14)

(6.15)
FiFj -  CiCj

w here the subscripts * =  1,2 and j  — 2,1 denote the quadra tu re  and its com plem ent; Ct 
is the coupling term,

Cx =  ± (A  ±  i~  » I - « ! 2]); (6.16)

The " + "  sign is used for Ct; the sign for Cj. D, is the fundam ental noise inpu t term,

D, = y/2 rfSX" ‘1 + ^ 4 n2;

Et is the second harm onic noise inpu t term ,

Ei = + ^ (a i + cqMX;n3 ± iy/ß{Q\ -  a ^ S x f ;

(6.17)

(6.18)

and F, is the nonlinear loss term ,

Ft =  7i +  2 /i |n i |2 ±  ^ (a ?  +  Q'i 2) “  lu  (6-19)

Consider the quadratu re  fluctuations SXi.  D etuning couples to SXt the com plem entary 
quadra tu re  fluctuations from both  the fundam ental and  second harm onic noise inputs,
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Ci(Dj +  Ej).  As a general rule, extra sources of vacuum noise are to be avoided, as 
they introduce, extra uncorrelated noise and this tends to decrease the squeezing. Fur­
ther, increasing the detuning increases the effective decay rate (see section 2.2.3) which 
decreases the field a?i and thus the nonlinear interaction term, g\a i\2. Thus the overall 
effect of detuning is to introduce additional noise and a weaker nonlinearity: the squeez­
ing degrades. For zero detuning, A =  0, n = a* & Ct = 0, and |a 2| is a maximum: the 
squeezing is optimal.

Now consider the boundary conditions for SF1G in the singly resonant case. For the 
reflected fundamental and the generated second harmonic these are (see eqns 2.32 & 
2.36):

K
A

out l

out3
3

=  y G i ä i - Ä i "  

= y ^ - A ; " 3 (6 .20)

Linearising and Fourier transforming, we obtain:

_ - o u t l  f Z  ~ir<5X, = y  27jX; -  X,

<5X°ut3 = ^  [<5X,(a, + Qj) ±  ! « , ( » ,  -  <*;)] -  5X'"3 (6 .21)

For zero detuning the fluctuations in the reflected fundamental and generated second 
harmonic fields are:

*x?utl

<sx°ut3

= V ^ [  
=  2

Dt + E{ I

-  äx!"3

F,
Di + E{

Fi
(6.22)

Using eqns 6.16-6.19, we take the self correlations (see section 3.3.5) to obtain the noise 
spectrum for the reflected fundamental:

v£utlM  = (27,c - 7i /m2)% c a 2]

+ 4 7 i [71 ^x "2 ^ )  + 2/zarJ ̂ x"3 (u;)

7 i +  [1] /*<*?) +

+ 2/mJVx"3(u;)] -  + [?] fj.a'fj Uini/ \xt H
4Tic

U / m 2 +ca2 (6.23)

and the noise spectrum for the generated second harmonic:

3 8 /m 2 [7i ^ x -1H 7 i ^ ,;2(^)] +  [([3] m  1 -  7 i)2 +  ^ 2] I 'x f M

X' M = (7, + [?]K)J+-S

'4 "3M  +
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8/ior?
[ T f V f f V b f y f f  n j  -  (71 ± ß t y w y n

(Ti +  [?] ^ l ) 2 + u 2
(6.24)

The ports in i & m3 are vacuum inputs, so Vx"2(w) = Vx"3(w) =  1- Eqns 6.23 & 6.24 
simplify to:

V£utl H
-  1) (t{ + [i] MQ'i) ± /“»i

1-471  (7i +  B ]m«?)2 + “ 2

VTut3■Xt (ca) 1 -f 8/xor?TfO'xfM ~ l ) T ^ i
(Ti + [?] /rn? ) 2 +ca2

(6.25)

The intuitive explanation for this squeezing is given in 4.3.1.

6.1.3 Squeezing lim its

It can be seen from eqns 6.25 that both the reflected fundam ental and the generated sec­
ond harmonic can be squeezed. To find the optim um  possible squeezing, consider the 
case of perfect coupling efficiency, = 71, and quantum  noise limited input =  1. 
At high frequencies, u  -» 00, both the reflected fundam ental and generated second 
harmonic are quantum  noise limited in all quadratures and thus minimum uncertainty 
states:

v T H o o )  =  vx2t l M  =  1
Vxjt3(oo) = V^ut3(o°) = l (6.26)

The maximum possible second harmonic squeezing occurs at zero frequency, u  =  0, and 
infinite nonlinear interaction, /in? -> 00. The reflected fundamental is quantum  noise 
limited. Both fields are minimum uncertainty states:

^ ““ (O) =  1 V ^ fcl(0) =  1

W t3(0) = l  V'x»ut3(0) = 9 (6.27)
y

The maximum possible fundam ental squeezing occurs at zero frequency, u  = 0, and 
finite nonlinear interaction, /in? =  71. As this is the impedance matching point for the 
cavity (as 7  ̂ =  7^  the reflected field is a mildly squeezed vacuum 1, the second harmonic 
is som ewhat squeezed. Neither field is a minimum uncertainty state, as VxL Vx2 = 2/6:

VxT'fO) = \  l/xT ‘(°) = \

\/x? ;t3(0) =  \  ^x7 3(0) =  5 (6.28)

All these limits are for the ideal case. In practical systems the squeezing will be less as 
7j =  7 is unobtainable and most seriously, = 1 only at high frequencies. In practical 
lasers V x{ > 1  as the detection frequency nears zero. As we shall see, this driving noise

'in  1991 Sizmann et. al. [10] proposed producing a strongly squeezed vacuum from the impedance 
matched reflection of a doubly resonant SHG cavity. In practice, the observed vacuum squeezing in both 
cases will be degraded by the non-modematched portion of the pump beam.
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can totally obscure the squeezing.

6.2 Transfer of noise: a modular approach

A critical but often overlooked characteristic of quantum optics experiments is their sen­
sitivity to source noise and its effect throughout the experiment. This has implications 
both for practical applications, where source noise is endemic, and for modelling, which 
most often assumes a coherent, and thus quantum noise limited at all frequencies, source.

The best known example of a system insensitive to source noise is the squeezed vac­
uum produced by optical parametric oscillation. By assuming the source is a coherent 
state, excellent agreement has been obtained between theory and experiment [11]. This 
is not the case for bright squeezing produced by processes such as Kerr interactions, rate 
matched lasers, or second harmonic generation. In such processes the statistics of the 
source beam carry over to the output beam. If the source beam is modelled as a coherent 
state for experiments where the source has intrinsic excess noise, the agreement between 
theory and experiment is quite poor [4] [6].

The development of the cascaded quantum formalism [12] allowed the noise char­
acteristics of the source to be fully modelled and propagated via a master equation ap­
proach. The formalism was first tested for the case of squeezed light produced by second 
harmonic generation [5]. As Fig. 6.2 (a) shows, the system was modelled as a second har­
monic generator driven by a solid state laser, which in turn was pumped by a coherent 
state. As is clear from Chapter 4, the cascaded formalism does not lend itself to analytical 
solutions, making physical interpretation of the theory difficult [13].

The noise spectra derived in this Chapter and Chapter 3 are effectively transfer func­
tions: they alter an input function, V xn(u), to an output function, V 0Ut(u). Such a transfer 
function can be derived for any quadrature of any linearisable optical element, be it ac­
tive or passive, linear or nonlinear. This allows any optical element to be treated as a 
standalone module. Complex optical systems are modelled by simply combining these 
modules, and looking at the final output.

In Fig. 6.2 (b) we show the conceptual layout of the SHG squeezing experiment. The 
second harmonic generator is driven by a laser of frequency and produces amplitude 
quadrature squeezed light of frequency 2 ^ . The driving laser, which is in turn pumped 
by a diode laser array, has intrinsic amplitude noise, which masks the squeezing at low 
frequencies. To improve the squeezing, the driving laser is passed through a narrow 
linewidth mode cleaning cavity, which reduces the linewidth of the amplitude noise. 
The system is particularly simple in that the transfer of noise is one way only, and it is 
not necessary to model the effects of optical feedback for any of the modules. The transfer 
function for the second harmonic generator is given by the second equation in eqns 6.25; 
that of the mode cleaning cavity is given by the second equation in eqns 3.81; and that of 
the laser is given in the next section, in eqn 6.32. Combining these three equations to give 
the output spectrum of the system is straightforward. Furthermore, modelling removal 
of the mode cleaner is trivial: the term Vffff is used instead of Vffj  as the input term 
V ^ 1 in eqn 6.25; and the parameter representing the power driving the second harmonic 
generator is adjusted. All other parameters remain fixed. Compare this to Schrödinger 
approach as given in [5, 9], which requires laborious numerical calculations.
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a)
solid
state
laser

numerical calculations (10 x 10 matrices) for V(co)

b)
solid
state
laser

diode
lasers

mode
cleaner

analytical expressions for V(co)

Figure 6.2: Conceptual layout, a) is the system of [5]. A second harmonic generator is driven by 
a coherently pumped laser of frequency and produces amplitude quadrature squeezed light 
of frequency 2v\. Predictions are obtained via numerical calculation of large matrices, b) is the 
system presented in this chapter. To accurately reflect the experimental situation the solid state 
laser is modelled with a noisy diode laser pump. The solid state laser has intrinsic amplitude 
noise which masks the squeezing at low frequencies: to improve the squeezing, the laser can 
be passed through a narrow linewidth mode cleaning cavity which reduces the linewidth of the 
amplitude noise. Analytical spectra are presented for each stage of the experiment.

6.2.1 The laser m odel

A comprehensive quantum model of a NdtYAG laser, including its transfer function, is 
given in [14]. In this section we briefly review the results applicable to our experiment. 
As shown in Fig. 6.3 the Nd:YAG laser is a four level system. As level 4 decays very 
rapidly with respect to the other three levels it can be adiabatically eliminated, allowing 
the laser to be modelled as a three level system. The equations of motion for the system 
are then:

»'la, = f  (J 3 -  -  y ia sO 'll,

= G( 4  - j 'm 'L + -  721J2 
j '  = -  732
N = J, + J 2 + J3 (6.29)

where G is the stimulated emission rate, G = asp c a s is the stimulated cross section for 
the Nd:YAG laser; p is the density of the Nd atoms in the YAG crystal; c' is the speed 
of light in the laser medium; 732 and 721 are the spontaneous emission rates from levels 
|3) to |2), and |2) to 11), respectively; T is the rate of incoherent pumping of the lasing 
transition; 7/asi and 7/as2 are the cavity decay rates for the output mirror and all other 
losses, respectively; 7/as = 7/asi + 7/as2 is the total cavity decay rate; a\as and J[ are the 
semiclassical solutions for the laser mode and atomic populations, respectively; and N is 
the number of active atoms. To aid calculation, the equations of motion are scaled by N,
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i.e.:
ö'/as —-  ^  J, =

y/N '
a
N

The steady state solutions are:

a =

h  =

0 2  (7 2 1  ~  7 3 2 )

V 27/as
1 -  2 y i a s / G

J 1 =

721/r +  2

The amplitude quadrature output spectrum, is

«̂3 — ^2 +

7 2 1 ^ 2

T
27/a

G

(6.30)

(6.31)

VK? = 1 +
(27/a5l )2[^2 +  {G&ias +  732 +  T)2] “  ^HaslllasGoi2las{Goqas +  732 +  I")

+ ^ l l a s \ G 2 Cqa s{Y  J  \V {as + J 32J 3 ) + 27/asiG[(732 + r )2 + w2](J3 + J2)
+47/asl7/as2[(GQ:2as +  732 +  T)2 -f CJ2]

(2Go'2as7/as -  cu2)2 +  ca2(G « L  +  732 +  r ) 2 (6.32)

where u  is the detection frequency and is the amplitude quadrature spectrum of the 
diode laser array field that pumps the Nd:YAG laser. As can be seen from the denomina­
tor of eqn 6.32 there is a resonance in the spectrum at the frequency u 2RRO = 2Ga2asyias. If 
this resonance is underdamped, 2Gn2as7 /as > {Ga2as +  7 3 2  + T)2, then a strong resonance 
appears at w r r o , known as the resonant relaxation oscillation (RRO). The RRO can be 
considered as an oscillation between photons stored in the lasing medium and photons 
stored in the laser mode. Below lorro the spectrum is dominated by pump noise (the 
noise of the diode laser array) and quantum noise from the spontaneous emission and 
phase decay of the coherence. Above urro these noises roll off due to the filtering effect 
of the lasing cavity, so that at high frequencies the laser approaches the quantum noise 
limit. It is the tail of the large noise feature due to the RRO that we wish to attenuate with 
the mode cleaning cavity.

Figure 6.3: Laser level scheme. The fourth level decays very rapidly, and so can be adiabatically 
eliminated. Lasing occurs between levels three and two.
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6.3 The experiment

6.3.1 T h e laser

The values for the material parameters of Nd:YAG can be found in the existing literature: 
as = 6.5 x 10- 23m2; p = 1.38 x 1026atoms.m-3; d — 1.640 x 108m.s-1; 732 = 4-3 x 103s-1; 
721 = 3.3 x 107s-1 [15, p. 49]; thusG*= 1.47 x 1012s_1. The Lightwave laser is most similar 
to that produced by Lazer Zentrum Hannover: the latter has a perimeter of p = 28.5 
mm; an input coupler reflectivity of R = 96.8%; and internal round trip losses of 1.6% 
[16]. We use these parameters to model the Lightwave. Using equation 2.22 we find 
7/asi = 9.28 x 107s-1 & 7 las = 1.39 x 108s-1. r  is the only fit parameter required; its value 
is determined by fitting the frequency of the predicted RRO to that of the experimentally 
observed RRO. The latter for our laser is 542 kHz, and so T = 8.703s-1. The diode 
laser arrays used to pump the Nd:YAG laser suffer large, very broadband, amplitude 
noise. We model the diode laser spectrum as white noise 52 dB above shot noise, i.e. 
V ™ » — 160000. This is consistent with the directly measured noise power for diode 
arrays [19].

The Lightwave 122 has an internal noise-eater, i.e. an optoelectronic feedback circuit 
that reduces the peak power of the RRO. Unfortunately the noise-eater significantly in­
creases the noise in frequency regime that we desire to be quantum noise limited. Ac­
cordingly all data in this thesis have been taken with the noise-eater turned off.

The experimental noise spectra were obtained by examining the photocurrent with 
a Hewlett Packard spectrum analyser (HP-8568B). Despite its name, this instrument is 
actually a signal analyser: incoming photocurrent is digitally processed on the assump­
tion that the input is made up of sinusoidal signals. Thus whilst the absolute power for 
large signals is correctly displayed, stochastic noise (such as the quantum noise floor) is 
displayed at powers 2 dB lower than the true power [18, p. 33] [17, p. 26]. For large sig­
nals, the signal to noise measurements must be corrected by 2 dB; for signals of the same 
power as the noise (nominal SNR = 1) the correction is 0.4 dB.

Although discussed in Hewlett-Packard's technical literature, this discrepancy is not 
at all widely appreciated in the quantum optics community. For experiments that look 
at the relationship between two similar noise spectra, such as squeezing experiments, 
the analyser behaviour can be ignored as it equally affects both spectra. However the 
analyser behaviour cannot be ignored when comparing deterministic signals to noise, as 
in QND and noiseless amplification experiments.

In this section we are interested in modelling the observed output of the laser. Due to 
the analyser effect, the observed spectra is nonlinearly distorted with respect to the actual 
spectra (almost no correction necessary at the peak of the RRO; ~ 2 dB correction neces­
sary at the quantum noise floor; varies in between). Fortunately this nonlinear behaviour 
can be mimicked reasonably well by a brute force adjustment to our model. Consider 
curve (a) in Fig. 6.4: the experimentally observed spectrum for 14 ± 0.5 mW of Nd:YAG 
light, attenuated from an output power of ~ 210 mW. This observed spectra is distorted 
by the analyser effect: the theoretical spectra for this case (210mW attenuated to 14 mW) 
is not shown, as it does not match the observed spectra at all. However if we arbitrarily 
adjust our model (300mW attenuated to 14 mW) we obtain curve (b): the fit is very good, 
albeit a little high in the region 5-15 MHz. This is the only such adjustment necessary in 
this thesis.
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6.3.2 The modecleaner

The mirror reflectivities were directly measured to be Ri = 97.5 ±  0.1%, and R2 = 97.9 ± 
0.1%, at an incident angle of 45 degrees; and R3 = 99.89 ±  0.1% at an incident angle 
of 0 degrees. The losses of the mirrors 1 & 2 were inferred to be 0.35%. The cavity 
perimeter was measured to be 2.450 m ±  5 mm. From this we calculate the free spectral 
range (FSR) to be 122.4 MHz (TSIZ  = c0/(np)). It is now possible to calculate the decay 
rates using eqn 2.22: the total decay rate is 7mc = 3.33 x 106s-1, the incoupling rate is 
Tmc'i =  1-29 x 106s-1 and the outcoupling rate is 7rnC2 = 1.54 x 106s-1 .

The optimum modematch measured for the cavity was 96.0 ±  0.5%, and the optimum 
measured impedance match was 88 ±  1%. The total power matching factor, M , is thus:

M  = 0.96 x 0.88 = 0.8448 (6.33)

The transmitted power was measured to be 60.1 ±  0.5%, and was a maximum imme­
diately following cleaning of all the mirrors. In the hour following a mirror dean the 
transmitted power asymptoted to ~  50% as the high circulating power in the cavity 
trapped and carried dust onto the mirrors (the cavity is free-standing in unfiltered air). 
The observed transmitted power is in excellent agreement with the predicted transmitted 
power, which is given by:

P  . ■■=  M 47mc-7mc-2 = 0.607 (6.34)pin v '1 I me

Curves (c) & (d) in Fig. 6.4 show the predicted and measured spectra for a beam of 14 mW 
transmitted through the modecleaner. The agreement between theory and experiment is 
excellent. The effect of the modecleaner is clear: there is substantial noise reduction as 
seen by the quantum noise limited frequency moving from 45 MHZ to 7MHz.

6.3.3 The frequency doubler

The doubler cavity perimeter is measured to be 25.0 m ±  0.5 mm. From this we 
calculate the free spectral range (FSR) to be 5.370 GHz (FS1Z = c0/ (np)).

When the monolith is at room temperature there is very little nonlinear coupling (if 
the room is darkened some second harmonic can be observed but it is microwatts or 
smaller.) The linewidth of the cavity is only set by the mirror reflectivities and material 
loss: this is the natural, or "cold", cavity linewidth. When the monolith is heated to 
~  110°C the nonlinear coupling becomes significant, and the additional loss from the 
fundamental to the second harmonic significantly broadens the cavity mode. This is the 
power broadened, or "hot", cavity linewidth.

Hot or cold, the linewidth can be measured directly. The monolithic cavity is scanned 
through the TEM0o mode and the FWHM of the transmitted beam is measured with an 
oscilloscope. A frequency scale is provided by modulating the laser at 20 MHz which 
produces obvious side peaks. The ratio of the FWHM (in s) to the distance between the 
sidepeaks (in s) times twice the modulation frequency gives the FWHM in MHz. for the 
cold cavity, the measured FWHM is 5.67 ±0.10 MHz. From this we can infer a total decay 
rate of 71 = 1.78 x 107s-1 .

The maximum observed second harmonic conversion efficiency is r)ni = 56%. From, 
7lni = l \ h \  we can infer the outcoupling decay rate, y\ = 9.95 x 106s-1 . The strength 
of the nonlinear coupling does not alter the maximum second harmonic conversion effi­
ciency, only the power at which it occurs.
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Figure 6.4: A comparison of the mode cleaner and laser output spectra for power incident on the 
infrared balanced detector of 14 mW. The experimental traces have been corrected for electronic 
noise. The upper traces, (a) & (b) are, respectively, the experimental and theoretical traces for the 
output spectrum of the laser (with the noise eater turned off). The lower traces (c) & (d) are the 
equivalent for the mode cleaner output spectrum. The noise filtering action of the mode cleaner 
is very clear. While the laser is not quantum noise limited until beyond 50 MHz, the output of 
the mode cleaner is quantum noise limited beyond 7 MHz. The large peak at 27.6 MHz is the 
modulation signal for the locking of the mode cleaner.

In theory the temperature (phase match) for maximum second harmonic generation 
is the temperature where greatest squeezing will occur. In principle the phasematching 
curve is a sine function: best squeezing results should be obtained at the peak. However 
in practice the phase matching curve is not a sine function, and due to the presence of a 
parasitic OPO and a Kerr effect (see next two chapters), the optimum squeezing was not 
observed for the maximum nonlinearity. At the point of optimum squeezing, we infer
p =  0 . 10.

The second harmonic generator produces squeezed light at 532 nm that is picked 
off with a dichroic and detected via a self-homodyne detector. In general the quantum 
efficiency of available photodetectors is lower in the green than in the infrared. To max­
imise quantum efficiency, the photodetectors (EG&G FND-100) have the external glass 
removed, are turned to Brewsters angle, and the reflected light is directed back onto the 
detector via a curved retroreflector. These measures push the quantum efficiency of each 
detector to 65% ± 5%.

The second harmonic generator was pumped with a mode matched power of 81 mW, 
producing 34 mW of second harmonic light. Higher pump powers than this cause the 
onset of parasitic parametric oscillation (see next chapter) which degrades the squeezing. 
Fig. 6.5 clearly shows the effect of driving noise on the squeezing of the second harmonic.
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Figure 6.5: Squeezing spectra of the second harmonic. The mode matched power of the funda­
mental was 81 mW, the second harmonic power was 34 mW. The experimental traces have been 
corrected for electronic noise. Trace (a) and trace (c) are the spectra obtained for the experiment 
run without and with the mode cleaner respectively. The maximum squeezing and detection fre­
quency of occurrence in each case are: trace (a), 0.47 dB (0.75 dB inferred) at 23 MHz; trace (c), 1.7 
dB (3.0 dB inferred) at 7.5 MHz. The sub shot noise noise feature at 10 MHz on trace (c) is residual 
noise from the locking systems of the mode cleaner and the second harmonic generator. Traces 
(b) and (d) are the theoretical plots corresponding to the experimental traces. Trace (e) is the the­
oretical prediction for the squeezing if there were no extra noise present at all, i.e the driving field 
were coherent.

First consider the system without the modecleaner. Trace (a) is the second harmonic 
spectrum: it is far from the ideal result (quantum noise limited pump) as shown by trace 
(e). Trace (b) is the theoretical spectrum taking into account the laser noise. The agree­
ment between theory and experiment is excellent: very clearly, the laser noise causes 
significant degradation of the squeezing. To produce trace (e), eqn 6.25 was used with 
Vxnl = 1; to produce trace (b) the term V̂ nl in eqn 6.25 was replaced with V ^ ,  i.e. eqn 
6.32.

Now consider the effect of the modecleaner. As trace (c) shows, the squeezing is con­
siderably improved: the maximum squeezing is moved from 0.47 dB (0.75 dB inferred) 
at 23 MHz to 1.6 dB (3.0 dB inferred) at 7.5 MHz, and the spectrum above 11 MHz is that 
predicted for the ideal case with no excess pump noise. The sub shot noise feature at 
~10 MHz is residual noise from the locking system (c.f. Fig. 6.4). The agreement with 
theory, trace (d), is again excellent. To reiterate our earlier point: the only changes to the 
model between producing traces (b) and (d) was the inclusion of the mode cleaner (equa­
tion 3.81) at the appropriate place in equation 6.25, and an adjustment of the parameter 
representing the optical power reaching the monolith. All other parameters remain fixed.
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The squeezing measurement is a sensitive test of the modular model. For example, 
the diode lasers that pump the solid state laser have considerable excess noise (more than 
50 dB above the quantum noise limit). In [5] this was not considered - the diode laser was 
modelled as quantum noise limited, and yet excellent agreement was obtained between 
theory and experiment. This is not true for the modecleaner case, where there is a greater 
degree of squeezing. The approximation that the diode laser pump is quantum noise 
limited gives poor agreement between theory and experiment: it is necessary to include 
the correct amount of excess classical noise.

The excellent agreement between theory and experiment, and the inclusion of the 
modecleaner which led to the large observed improvement in squeezing (from 0.75 dB 
to 3.0 dB, inferred), suggests a significant improvement is possible in the system of ref­
erence [6]. The modular approach can be applied to any experiment where transfer of 
source noise is significant, notably injection locked laser systems [19] and holds great 
potential for modelling complicated multi element experiments, such as gravity wave 
interferometers.

6.4 Squeezing via SHG: the next generation?

As an optical source, SHG offers power, stability, and simplicity. Squeezing via second 
harmonic generation was first demonstrated in 1988: however it has been criticised as a 
squeezing source as it has not been well characterised. This is no longer a valid criticism: 
in this chapter we have identified, modelled, and tested against experiment the effect 
of pump noise on the squeezing. Further, in the next two chapters we do the same for 
the effects of competing and cooperating nonlinearities, respectively. Squeezing via SHG 
in practical systems is now well characterised and understood. There are likely to be 
two directions of research for the next generation of experiments: cavity systems and 
travelling wave systems.

Consider the cavity system is this thesis. There are several obvious improvements and 
extensions that would allow miniaturisation of the experimental setup, improved stabil­
ity, and greater squeezing. Most immediate is replacement of the current modecleaner. 
The relatively low reflectivity of the mirrors necessitate a long perimeter to achieve the 
desired narrow linewidth. However the lengthy perimeter allows for differential vibra­
tion of its component mirrors, making it hard to lock, and the large footprint clutters the 
experimental layout. The 2 m ring cavity could be replaced with a much shorter stand­
ing wave cavity with higher reflectivity mirrors. For example, REO supplies mirrors for 
1064 nm with absorption and scatter loss of 5 ppm and transmission of ~  30 ppm. An 8 
cm cavity with these mirrors would have an equivalent linewidth to the 2 m cavity. The 
reflected beam could be extracted by inputting the beam through a polarising beam split­
ter and quarter wave (A/4) plate; the transmitted beam would need to be passed through 
a quarter wave plate to return it to linear polarisation. If the cavity is built around an 
Invar©spacer, it will be intrinsically stable, and, as it is almost totally enclosed, much 
less susceptible to dust problems.

The current experimental setup could also be extended by adding an external mirror 
for 532 nm. For high reflectivities this would require another locking loop to maintain the 
second harmonic cavity on resonance. As discussed in Chapter 4, the addition of a cavity 
at the second harmonic will tend to improve the squeezing at a frequency well away from 
zero frequency. This further evades the problems of low frequency laser noise.

A longer term, and perhaps more desirable, improvement is to redesign the SHG



124 Chapter 6 bibliography

cavity. A larger linewidth is desirable, as it allows large squeezing at higher frequencies 
away from the pump noise of the laser. This can be achieved by a combination of a shorter 
cavity perimeter and /or using one of the new high nonlinearity materials, such as PPLN 
(periodically poled LiNb03) or BLIRA-free KNb03 2. The higher nonlinearity also allows 
the cavity to be driven harder for a fixed pump power, improving the magnitude of the 
squeezing. The higher nonlinearity lowers the TROPO threshold: it is desirable to design 
a cavity with dispersive elements to avoid this (see next chapter). The combination of 
these features may allow the modecleaner to be dispensed with entirely.

As mentioned in the introduction it has been predicted that strong squeezing will be 
available via travelling wave SHG. The recently developed periodically poled materials 
appear to be the materials of choice for the next generation of these experiments. Previ­
ously high peak power pulses were necessary to attain strong interactions in travelling 
wave SHG systems: now it is possible to use CW light. The Stanford group recently 
achieved 40% nonlinear conversion single-pass with a 50 mm long waveguide pumped 
with a 5.6 W 1064 nm beam, generating 2.25 W at 532nm [20]. It is very likely that the 
residual 3.35 W 1064 nm beam was squeezed by -2.2 dB/40% (S= 1 — i) = 1 -  .4 = .6) 
over a very wide detection bandwidth (no cavity linewidth means the limit is set by the 
material response).

Observations of such very bright beams will be non-trivial: as discussed in section 
3.4.4 one possible technique is to lock the beam to a cavity that transmits most of the 
beam power and then detect the squeezing on the low power reflected beam at a fre­
quency much higher than the cavity linewidth. Alternatively, if the squeezing bandwidth 
is optical, then it may be possible to observe the squeezing by shining the beam onto a 
low-loss high-power diffraction grating and examining the vacuum squeezing at the line 
immediately adjacent to 1064nm. A small amount of the carrier can be used as the lo­
cal oscillator. This will either require extremely high bandwidth photodetection, or, as 
is more likely, frequency shifting of the local oscillator. A final possibility is to chop the 
light beam to reduce the DC power and observe the squeezing at frequencies well above, 
and away from the harmonics of, the chopping frequency.
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Chapter 7

Competing nonlinearities: going 
TROPO

troppo adj. mentally ill, allegedly from exposure to a tropical climate

The Australian Concise Oxford Dictionary

Parametric oscillation in a frequency doubler was first observed in 1993 [1]. Such 
competing nonlinearities are currently the object of much work, both theoretical and ex­
perimental, as they offer the ability to generate widely tunable cw light. In this chapter 
we examine the experimental classical and quantum signatures of Triply Resonant Op­
tical Parametric Oscillation (TROPO), i.e. parametric oscillation in a frequency doubler 
where the second harmonic is not resonant. In the first section we examine the frequency 
generation characteristics: cascaded sum and difference frequency generation cause pro­
duction of new frequencies centred around both the fundamental and the second har­
monic frequencies. In the second section we observe and discuss power clamping of 
the second harmonic field. In the third section we derive the second harmonic squeez­
ing spectrum for TROPO from the quadruply resonant case (QROPO) and compare the 
experimental and theoretical results.

The classical behaviour of TROPO was presented in section 2.4. To recap, the second 
harmonic in singly resonant generation is able to act as the pump for a nondegenerate 
optical parametric oscillation. The NDOPO occurs simultaneously and competes with, 
the SHG. The conceptual layout is shown in Fig. 7.1. The core experimental setup is 
as discussed in the preceding two chapters. The reflected infrared and generated sec­
ond harmonic beams were sent either to balanced-homodyne pairs (to examine the noise 
spectra), or to optical spectrum analysers (to examine the spectral content).

fundamental

second
harmonic

signal ^  
idler

fr
2 v 11 SHG 

\ \  NDOPO

v±A
1

Figure 7.1: Conceptual layout of TROPO. Gray lines represent vacuum inputs, i.e. zero average 
power.

1 r>r7
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7.1 Frequency generation

The obvious signature of competition in TROPO is production of nondegenerate fre­
quency modes once the system is driven above the competition threshold, i.e. N>1.

In section 2.4.2 it was calculated that the phase matching for nondegenerate frequency 
production was quite broad: 90% of the optimum nonlinear gain in the region 1064 ±  10 
nm; 22% of the optimum nonlinear gain at 1031, 1097 nm. The nondegeneracy will be 
further limited by the cavity dispersion and the fixed bandwidth of the cavity mirrors (~ 
40 nm centred at 1064 nm). How large a frequency nondegeneracy can be achieved in 
practice?

To test this experimentally the reflected infrared field was examined with a scanning 
diffraction grating whilst the cavity was scanned repeatedly through the TEM0o mode 1. 
Scanning the monolith ensures that the cavity experiences a wide range of dispersions, 
and thus does not limit the possible resonances of the signal and idler. The output of 
the scanning grating is monitored with a silicon photodiode (EG & G FND-100). Fig. 7.2 
shows the scanning grating output for the most nondegenerate case, A = 31nm. This 
is the broadest nondegeneracy reported to date for this system. The large peak in the 
centre of the plot is the fundamental, at 1064 nm. The peak at the far left of the plot is 
the signal, that at the far right is the idler. The signal intensity is 4.3% of the 1064nm 
peak; the idler is much weaker. This may be intrinsic, i.e. idler production is weaker than 
signal, however it is more probable that this is due to the very steep roll-off in quantum 
efficiency in silicon photodetectors between 1000 & 1100 nm. The signal wavelength of 
1033 nm agrees well with the calculated maximum of nonlinear gain centred at 1031 nm. 
The idler appears displaced slightly (2.5 nm) from its expected position of 1096 nm. This 
is an unavoidable artifact caused by hysteresis in the scanning motor of the scanning 
diffraction grating.

In practice, the phase matching curve is not simply the sine function introduced in 
Chapter 2. (This is discussed in considerably more detail in the next chapter.) What is the 
effect of a non-ideal phase matching curve on the competition threshold?

To measure this, the monolith (#19) was again scanned repeatedly through the res­
onance. The reflected fundamental and generated second harmonic lineshapes were 
observed for signs of TROPO (see next section). Curve (a) in Fig. 7.3 is the observed 
threshold power versus the crystal temperature (and thus phase-matching). Curves (b) 
& (c) are the phase matching curves for SHG when driven by 33 mW of modematched 
fundamental. Curve (b) is single-pass SH, i.e. residual SH power generated on the first 
half of the round trip through the cavity that is transmitted through the high reflectivity 
mirror, and curve (c) is double-pass SH, i.e. the majority of the SH power that exits the 
AR coated side. Note that the threshold curve has two minima: roughly corresponding 
to maxima in the double pass and single pass power, respectively. In the latter case, even 
though minimal second harmonic is produced, the intracavity second harmonic field is 
large enough to pump the NDOPO.

The scanning diffraction grating is a slow method to analyse the spectral content of a 
field (it normally takes a minute or so to complete a scan). An optical spectrum analyser 
(OSA) allows quick spectral analysis of a field (in our case the scan time was 20 mS) but 
at the expense of absolute information. Optical spectrum analysers indicate the presence,

'The locked cavity results in this section were obtained with the ANU monolith ("the log"); the scanned 
cavity results in this section were obtained when the author was at Universität Konstanz, using "Kristall 
# 19" .
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Figure 7.2: Broadband nondegenerate frequency production in the infrared. Light more than 
30nm from 1064 is clearly visible.

but not the absolute optical frequency, of nondegenerate modes.
Fig. 7.4a is the output of the infrared optical spectrum analyser for the laser only. The 

laser frequency is clearly visible as the large spike on each side of the plot. (The small 
spike in the centre has no significance. It is due to misalignment of the analysed beam.) 
Fig. 7.4b is the output for the locked monolith (the log) just above threshold: note the 
strong conversion to signal and idler. The observed minimum threshold was 14 mW, the 
observed conversion efficiency at the minimum threshold was 60%. These values agree 
remarkably well with the calculated values. Using eqn 2.52 and the monolith parameters 
from Chapter 6, y[ = 9.94 x 106 & 71 = 1.66 x 107, a nonlinear strength of g = .012 
gives a calculated minimum threshold of P™in = 14.3 mW and a calculated conversion 
efficiency of 77 = 7 ^ / 7 1  = 0.60. The nonlinear value, g, is different to that used in Chapter 
6 as the crystal temperature was different. (As pointed in Chapter 6, the temperature 
for strongest nonlinear conversion was not the temperature for the strongest observed 
squeezing. For the parameters of Chapter 6, p™in =21 mW.)

In locked operation, the signal and idler mode-hopped irregularly, stable operation 
occurred for up to ten minutes at a time. Gross control of the frequency and existence of 
the signal and idler was achieved by detuning the fundamental mode. As the monolith 
was detuned around resonance, the effective decay rate (see section 2.2.3) of the funda­
mental did not change greatly, but, due to dispersion mismatch, the effective decay rates 
of the signal and idler became very large (see section 2.3). This shifted the threshold 
power above the operating power and suppressed the NDOPO (c.f. eqn 2.48). In the sys­
tem of [5], finer control was achieved by using a hemilithic cavity, i.e. a semi-monolithic 
design where a translatable cavity mirror is external to the MgQLiNbCC crystal. Such 
a cavity has tunable dispersion, and allows for stable operation with long intervals be­
tween mode hops.

As the driving power was increased further two extra modes were observed in the
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Figure 7.3: TROPO threshold and second harmonic power versus crystal tem perature for Kon­
stanz crystal, (a) observed threshold power; (b) single-pass SH power, (residual SH transmitted 
through high reflectivity mirror) & (c) double-pass SH power; as a function of crystal tem perature 
(i.e. phase mismatch). Lines are guides for the eye.

infrared, and four extra modes were observed in the visible, Figs 7.4c,d - this is the first 
observation of extra modes around the second harmonic. Extra modes in the infrared 
were first observed in [2] where they were labelled as an extra signal idler pair. However 
it is impossible for parametric oscillation to drive two signal/idler mode pairs simulta­
neously, and such an explanation does not account for the extra modes in the visible. It 
was then proposed in [3] that the extra modes were due to cascaded second harmonic, 
sum and difference frequency generation between the signal, idler and pump fields. Figs 
7.4c,d strongly support this mechanism. The extra modes in the visible are likely gen­
erated by SFG (is -f isS't — 2is ±  A) or SHG (2isSyl = 2is ±  2A), whilst the extra pair in 
the infrared are from DFG with the visible modes (v +  issi — = 2issi — v — v ±  2A).
Irrefutable proof of the mechanism will require a measurement of the absolute frequency 
of all the extra modes.

When the driving power was increased further, yet more modes were observed in 
the infrared field. This suggests that the cascading mechanism may be extended over 
quite a frequency range (observation of up to 8 extra mode pairs in the infrared has been 
reported [6]). Such systems of multiply competing nonlinearities hold great promise both 
as sources of frequency tunable light and for frequency measurement, e.g as a precise 
frequency chain.

Frequency chains can be made in many ways. One particularly elegant idea is the FM 
laser: a laser is modulated to produce sidebands at ±  the FSR of the laser cavity. These 
build up and steal gain from the gain medium, and are in turn modulated at ±1 FSR; 
the new sidebands at ±2 FSR build up and steal gain and are in turn modulated, and 
so on. A broad frequency comb is generated, (with comb tooth spacing of 1 FSR) that is
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chiefly limited by the gain bandwidth of the lasing medium. Now consider modulating a 
singly resonant doubler at 1 FSR and driving it well above the competition threshold. All 
other things being equal, the modulation will seed the signal and idler pair and a similar 
process to that in the FM laser will occur - with the advantage that frequency combs will 
be generated both in the infrared and the visible. Such a device should find immediate 
application in frequency chain measurements and applications.

v±2A

2v±A, 2v±2A

Figure 7.4: Optical spectrum analyser outputs of the locked monolith. All traces are intensity 
versus frequency (arbitrary units). The small peak in the middle of the infrared traces is due to 
imperfect alignment, infrared traces (a) from laser for Pi =32 mW, FSR = free spectral range of 
the analyser; (b) from monolith for Pi =14 mW, note signal and idler modes; (c) from monolith 
for Pi =49 mW, note extra pair of modes; visible trace (d) from monolith for Pi =155 mW , the 
ordinate is logarithmic to highlight the four extra frequencies.

7.2 Power signatures

For an empty cavity scanned through resonance the reflected and transmitted lineshapes 
have Lorentzian profiles. This is true of the monolith below the competition threshold, 
however above threshold the cavity lineshapes become quite notably distorted. At de­
tunings where the signal and idler become resonant (i.e. at detunings where the driving 
power is above the competition threshold) the second harmonic lineshapes are depleted 
and the fundamental lineshapes are enlarged. The resulting lineshapes are not even ap­
proximately Lorentzian, with very obvious "hat" and "valley" shaped features on the 
infrared and visible lineshapes, respectively.

The signature of competition for a locked cavity is equally as dramatic. Fig. 7.5 shows 
experimental curves of second harmonic versus fundamental power for two different 
detunings. In curve (a) the second harmonic power is clamped at 23 mW at a threshold 
power of 41 mW. This threshold is much higher than the observed minimum threshold, 
pmm _ 3 mw, as the signal and idler modes see high cavity losses due to dispersive
mismatch. In curve (b) the monolith is tuned towards resonance so that the effective 
fundamental decay rate is lower than in curve (a), however the detuning increases the
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dispersive mismatch, and thus j s<l/ suppressing the NDOPO and moving the threshold 
to 54 mW. Fig. 7.5 was the first observation of power clamping, some 34 years after it was 
first predicted [7].

This phenomena has important consequences when designing nonlinear optical sys­
tems. Clamping is undesirable in many applications, such as frequency doubling to form 
a high power light source. With the development of low dispersion, efficient nonlinear 
cavities, clamping is expected to become a widely observed phenomenon. In the past 
year alone it has been observed in systems with competing SHG and NDOPO [4, 5, 8] 
and in an optical limiter formed by an OPO intracavity with a laser [9]. It can be sup­
pressed via tunable dispersion, or avoided entirely by designing the system so that the 
minimum threshold point occurs at a power higher than maximum pump power. Ideally 
clamping shouldn't occur in many frequency doublers as they are optimised for maxi­
mum conversion efficiency, i.e. pumped at P™in. However in practice, many doublers 
are optimised by pumping them at powers above P™in. This is done because for powers 
less than P™in the conversion efficiency falls off very steeply: small variations in fun­
damental power lead to large variations in harmonic power. However above P™m the 
conversion efficiency falls off very slowly: the harmonic power is much more robust to 
small variations in the fundamental power. It is exactly this regime which is prone to 
competition.

Pump power at 1064 nm (mW)

Figure 7.5: Second harmonic power versus fundamental power curves for two different detun­
ings, (a) & (b). The systematic error bar is shown. All power m easurem ents are NIST traceable 
with an absolute error of 7%.

7.3 Squeezing: 4 m odes good, 3 m odes bad

Classical signatures of competition all involve the redistribution of power (the second 
harmonic is clamped, new modes appear, etc.) Naturally such signatures only occur 
above threshold. In contrast, the quantum signatures of competition involve the redistri­
bution of noise, and so can occur both below and above threshold.
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NDOPO generates correlated signal and idler fields at frequencies us l = ±  A,
where vx is half the pump frequency. Above threshold the signal and idler are bright 
fields; below threshold they are correlated vacuum fields. As discussed in section 3.1.6, 
correlated quantum noise implies squeezing, and correlated amplitudes imply squeez­
ing of the phase quadrature. Accordingly, Polzik et. al. [8] have suggested pumping 
the TROPO below threshold and examining the reflected fundamental field. If phase 
squeezing is observed in a region around the difference frequency A, then the presence 
of competition can be inferred, even though the NDOPO is below threshold. For the 
QROPO case, where the second harmonic is also resonant, the threshold will be lower 
but the signature will be the same. In our experiment the free spectral range of the mono­
lith, (which sets the minimum value of A), is much larger than the maximum bandwidth 
of the detectors (5.4 GHz and 100 MHz, respectively), ruling out any observation of this 
signature.

Above threshold the QROPO and TROPO cases have very different quantum signa­
tures. The QROPO case has been considered in a series of papers by Marte [10]. We 
briefly list the chief results here.

In Chapter 4 it was shown that, for high interaction strengths, the modes in doubly 
resonant second harmonic generation (DRSHG) experience a strong phase oscillation of 
frequency, Udip. The amplitude squeezing is improved at and around i^ip- As the funda­
mental power is increased, the phase oscillation becomes larger, pushing the amplitude 
squeezing to zero. Above this power, the oscillation becomes real and the system under­
goes a transition to the self-pulsing regime. QROPO has a notable effect: the frequency of 
perfect squeezing increases with increasing fundamental power; excess power is drained 
off to the signal and idler modes and the self-pulsing oscillation is damped out - the sys­
tem remains stable. Another feature is that the quadrature of the squeezing rotates from 
amplitude to phase as the NDOPO comes to dominate the SHG.

The signal and idler modes are similar to those produced by normal NDOPO: they are 
perfectly correlated so that the subtracted intensity fluctuations of both beams is perfectly 
squeezed; and each individual beam can be amplitude squeezed up to 50% at high inter­
action. In a normal NDOPO, however, the added intensity fluctuations of both beams is 
Poissonian if the pump beam is Poissonian. In the QROPO case however, the added in­
tensity fluctuations are squeezed, i.e. sub-Poissonian. This reflects the amplitude squeez­
ing of the second harmonic that drives the NDOPO. Thus perfectly correlated signal and 
idler photons arrive at predictable intervals.

However in our system the second harmonic is not resonant, and the quantum sig­
nature of competition is very different: above threshold the squeezing degrades. To see 
this, we start with the QROPO case as given by Marte [10]. Recalling the equations of 
motion 2.45:

d'i =  -(71 + zAi) a, + n {a 3al +
*

03 = -(73 + *A3) 03 -  yQ ? -  nm2o sa l

d s,i = - ( 7s,i + iASti) ocs,i +  K2a 3a *5 (7.1)

where 07, 07, as , a-t are the fundamental, second harmonic, signal, and idler field ampli­
tudes, respectively; and *7 and k2 are the respective nonlinear interaction rates for SHG 
and NDOPO. We redefine eqns 2.49 so that:

7 = \ f l7 u



134 Competing nonlinearities: going TROPO

71 — K1/K2 (7.2)

For a quantum noise limited fundamental pump, = 1, and perfect outcoupling effi­
ciency, 7  ̂ =  7 i, the second harmonic spectrum is given by:

where:

v i : 72121 wW?(w) + M 2* 4 M
(7.3)

€2 = 7^7
€i =  \/2 N  7^772

€0 = ^2(N -  1)72772

r+H = ^ 2 + (7i + |€2|)2

TV+M =  -  72(71 +  le2 I) -  k l | 2

Al-f(ca) =  —2ca2[P^ (ca) — |£i |2] +  |ei |2r^  (ca) (7.4)

We can examine the TROPO case by adiabatically eliminating the second harmonic, i.e. 
72 00. After straightforward, albeit somewhat tedious algebra the spectrum becomes
[4]:

v = l  + ______________2(N -  l)£(ca) -  2NA(ca)______________
2 (N -  l)2ß(ca) +ca2(7/ / 27)2 +  N A (u ;)C (N )^+  (ca2/2T)2

where N is the number of times above threshold (N> 1):

and:

(7.6)

7/ = 7 i + e2
A(ca) = 7^2ca2
B(u>) = 72 + ca2
C(N) = 71/7 + 72. (N + 1) + 2(N — 1)

(7.7)

If we assume the minimum threshold for competition, P™in, then ys = 7, = 71 and 
gx =  g 2 arid equation 7.5 simplifies to [11]:

P2 =  1 +
2(7V — 1 — ca2) 

4/V2ca2 + (TV -  1 — cJ2)2
(7.8)

where ca = ca/(27i). Both eqn 7.5 and eqn 7.8 are obviously very different to the descrip­
tion of the second harmonic spectrum in singly resonant SHG, c.f. eqn 6.25:

1 + 87 nl
7iO/x f H  -  1) -  7n/ 

(7l +  37n/)2 +  W2
(7.9)

where the nonlinear loss rate, 7n/ = gi |cv!|2 and V̂ 1 is the amplitude quadrature spec­
trum of the pump field.
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For the singly resonant doubler, maximum squeezing occurs at zero frequency with 
a value of V =l/9 (-9.5 dB) when V̂ 1 =  1 and 7ni > > 71, i.e. for high pumping powers. 
However once competition begins the maximum squeezing occurs at the competition 
threshold, for powers above threshold the squeezing degrades. For the minimum thresh­
old, P™in, the maximum squeezing is at zero frequency with a value V =l/2  (-3 dB). For 
higher thresholds, P\hr > P™in, the maximum squeezing is still at zero frequency , but 
with correspondingly larger values. In all cases eqn 7.5 connects to eqn7.9 without dis­
continuity.

Normalized frequency, co/yi

quantum noise limit

Figure 7.6: Theoretical second harmonic squeezing spectra for the TROPO case when P[hr = p ™in. 
(a) N = 1.001 (b) N = 1.25 and (c) N = 3.

As Fig. 7.6 shows, for N>1 two effects come into in play, both of which degrade 
the squeezing. The first effect is broadband. As N is increased, the second harmonic 
power is clamped, and the second harmonic noise is pulled towards the noise set by the 
second harmonic input field, Vxf-  As this input is a vacuum field, the second harmonic 
noise is pulled towards the quantum noise limit. This occurs regardless of whether the 
original second harmonic noise is above (super-Poissonian), or below (sub-Poissonian), 
shot noise. In the limit N —»■ 00 the output is always quantum noise limited, even if the 
second harmonic amplitude was infinitely noisy (perfectly phase squeezed), or infinitely 
quiet (perfectly amplitude squeezed).

We label this the noise-eater effect. It is analogous to the behaviour of the electro-optic 
noise-eater: i.e. a feedback loop where a beamsplitter cuts off a proportion of a beam and 
feeds it to a photodetector; the photocurrent drives an amplitude modulator that is placed 
before the beamsplitter. (This is an amplitude noise-eater, phase noise-eaters can also be 
constructed.) The input is the field before the modulator, the output is the field after 
the beamsplitter. For high gain, the output noise is pulled towards the limit set by the 
vacuum entering the empty beamsplitter port [12]. As the reflectivity of the beamsplitter 
is increased, the output power decreases but the output noise becomes dominated by the 
input vacuum field: in the limit R—> 1 the output is trivially quantum noise limited, as 
it is simply the perfect reflection of the input vacuum field. The electro-optic noise-eater 
is not homologous to the TROPO case: in the limit N —> 00 the second harmonic field 
still contains power (P2 (see eqn 2.55). This noise-eating behaviour is expected to occur 
in other nonlinear optical systems. It has been predicted for the optical limiter [13], i.e. 
a degenerate OPO that clamps the 2u field (see section 2.4.1); and from simple physical
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7 12 17 22 27 32 37
Detection frequency (MHz)

Figure 7.7: (a) Squeezing spectra, (a) Without competition, Pi = 74 mW (b) With competition, 
Pi = 60 mW.

arguments it is expected to occur in the saturated laser amplifier [14].
The additional squeezing degradation evident at low frequencies on the second har­

monic is due to a second, more subtle, effect. In a conventional OPO, the amplitude 
quadratures of the signal & idler are very noisy above threshold, as the phase quadra­
tures are quite strongly squeezed. (For a DOPO the amplitude only becomes shot noise 
limited at P = 4Pthr and eventually becomes 50% squeezed for P > 25Pthr [15]). This 
low frequency amplitude noise is transmitted from the signal and idler to the second 
harmonic, degrading the squeezing at low frequencies. However as N is increased this 
noise decreases, easing the low-frequency squeezing degradation, as can be seen from 
curves (b) & (c) in Fig. 7.6.

Fig. 7.7(a) shows the experimentally observed squeezing a pump power of 74 mW, 
competition is suppressed via detuning as discussed earlier. Below 6 MHz the squeezing 
degrades due to laser pump noise, as discussed in the last Chapter, above 6 MHz the 
squeezing is as expected from theory with V̂111 = 1. The spikes at 17 and 27 MHz are 
from the locking signals. With competition, even at the lower pump power of 60 mW, the 
squeezing degrades notably as shown in Fig. 7.7(b). As predicted, there is considerable 
excess noise at low frequencies, whilst the degradation at higher frequencies is more 
gradual. The excess noise at low frequencies is greater than that shown in Fig. 7.6 due 
to the presence of numerous, overlapping, noise spikes. It is believed that these spikes 
are due to a locking instability in the modecleaner which is driven by competing locking 
signals; with the modecleaner absent, these spikes disappear.

It is clear that even a small amount of x2 competition leads to a marked degradation 
in the squeezing. This previously unexpected limit to second squeezing can be avoided 
in one of two ways. This weakness can be turned into a strength if the second harmonic
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is made resonant: however experimentally this is a more complicated setup. (With this 
in mind, "4 modes good, 1 mode better"). Alternatively the system can be designed so 
that competition is suppressed when the pump power is greater than the maximum con­
version efficiency power. One solution is a cavity with high dispersion, so that the signal 
and idler modes are unable to become simultaneously resonant with the fundamental. 
The cavity used by Tsuchida [16] was highly dispersive , with many air/material inter­
faces, and the high value of second harmonic squeezing, -5.2 dB inferred, suggests that 
the system was well above its minimum threshold.

7.4 Summary of TROPO signatures

Competition between SHG and NDOPO in a monolithic cavity has been observed to 
cause generation of new frequencies in both the visible and infrared fields, clamping of 
the second harmonic power, and degradation of the second harmonic squeezing. Compe­
tition imposes a previously unsuspected limit to squeezing and power generation. These 
signatures are expected to be commonly observed in efficient, low dispersion systems, 
unless explicit steps are taken to avoid competition.
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C hapter 8

Cooperating nonlinearities: Kerr 
effect

Oh Kerr, Occur!

Sign on laboratory door at Konstanz Universität, courtesy of Robert Bruckmeier

Third order, or x ^ ,  nonlinear optical nonlinearities are of considerable importance in 
modern optics. In signal processing and communications they offer the potential to real­
ize all-optical switching [1, 2]; in quantum optics they may be employed to manipulate 
the quantum fluctuations of light, in particular to generate nonclassical states of light 
[3, 4, 5] and perform quantum nondemolition measurements [6, 7].

Central to these applications is the search for materials exhibiting large nonlinearities; 
in addition they must be enviromentally stable and resistant to optical power. For quan­
tum optical use the media must also have a large ratio of nonlinearity to loss in order to 
suppress the influence of vacuum fluctuations. A variety of x^3) media has been investi­
gated, including vitreous silica, semiconductors, organic compounds, atomic beams, and 
cold atoms [3,4, 5, 6,7]. Because of the limitations (complexity and stability) of these sys­
tems, the possibility [8, 9] of using well known second order nonlinear materials for the 
same purposes sparked a new direction of research [10]. A number of studies [11] have 
discussed or demonstrated various aspects of cooperating effects in second harmonic 
generation.

In this chapter we investigate the strong Kerr effect that occurs in singly resonant 
SHG due to cooperating second order nonlinearities. Phase mismatch is central to this, 
so in the first section we investigate the phase matching curve for our experiments. Previ­
ous investigations that have seen strong third order effects in second order systems have 
been performed with single pass geometries, and used pulsed lasers with high peak in­
tensities to attain a strong interaction. In the second section we report observation of 
optical bistability with low power, continuous wave light. In the third section we derive 
a quantum model for the Kerr effect via the Heisenberg approach, and briefly investigate 
its behaviour. In the fourth section we report preliminary observations of noise reduction 
due to the Kerr effect and in the fifth section we summarise our results.

The classical behaviour of the Kerr effect was presented in section 2.5. To recap, the 
phase matching in singly resonant SHG is tuned so that the second harmonic generated 
on the forward trip through the cavity is backconverted to fundamental on the return 
leg. The light is phase shifted during both processes, the processes are nonlinear, thus 
the fundamental experiences a nonlinear phase shift. The conceptual layout is shown in 
Fig 8.1. The basic experimental setup is as discussed in the previous chapters 1

'The locked cavity results in this chapter were obtained with the ANU monolith ("the log"); the scanned 
cavity results in this chapter were obtained when the author was at Universität Konstanz, using "Kristall 
# 19" .
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Figure 8.1: Conceptual layout of Kerr in nominally singly resonant SHG. Gray lines represent 
vacuum  inputs, i.e. zero average power.

8.1 Phasematching

Double pass 
One way

- 0.2 -

Temperature [°C]

Figure 8.2: Phasematching curve for second harmonic (SH) generation, double pass: total SH 
power leaving the crystal through the AR side; single pass: fraction of SH power generated on 
the first half of the round trip and transm itted through the nominally high-reflectivity mirror. 
M odem atched input 1064 nm power was 33 mW. Lines are guides for the eye.

To map out the phase matching curve the second harmonic power was measured 
as a function of crystal temperature. The cavity was repeatedly scanned through reso­
nance: under these conditions for crystal # 19 the TROPO threshold was 49 mW; to avoid 
TROPO the cavity was driven at 33 mW. The power of both the single pass (residual 
second harmonic that is transmitted through the high reflector) and the double pass (sec­
ond harmonic that exits the monolith through the AR coated face) beams was measured. 
Fig. 8.2 plots the observed results. Two points are striking: the double pass curve does 
not, even remotely, resemble a sine function; and the single and double pass curves do 
not have the same shape.

Why is this? A major reason for the difference between the double pass curve and 
single pass curves is the differential phaseshift between the fundamental and second 
harmonic waves that occurs at the high reflector [12]. For an ideal singly resonant doubler
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phase match, Ak z

Figure 8.3: Nonlinear interaction, g(Akz), versus phase match: a) with no differential phase shift 
between fundamental and second harmonic waves A</> = 0; b) large differential phase shift, A<f> = 
170°.

with interference solely at the back mirror, this interference is described by [13]:

#(Akz)tnt = g(Akz)
s\n(A(J) -f Akz) ‘ 2 

2sin(A (f) + Akz/2).
( 8 . 1)

where A</> is the differential phase shift between the fundamental and the second har­
monic at the back mirror. Fig. 8.3 plots g(Akz)  versus phase match without and with a 
differential phase shift. The effect of the interference is clear: the strength of the nonlin­
earity is greatly reduced and the width of the phase matching peaks is narrowed. (Exper­
imentally this is undesirable, as narrowed phase matching peaks require higher precision 
temperature locking.) Clearly something like this is occurring in our system, however it 
is not the entire story.

If the back reflector is the only cause of degradation then the single pass curve should 
be a sine function. However in our system it is a distorted, asymmetric curve version of 
a sine function (distinctly "sinc-ish", but not a sine). This distortion is due to physical 
and temperature inhomogeneities in the crystal, that leads, even for a single pass, to 
interference effects between the fundamental and second harmonic. It is well known that 
MgO doped LiNb03 has many more inhomogeneities than pure LiNb03, and thus has a 
distorted phase matching curve [14]. For pure LiNb03 the FWHM of the phase matching 
curve has been measured to be 0.55 K [13]; from Fig. 8.3 we see that for our single pass 
curve the FWHM is 0.3 K. From this, and the distorted single and double pass curves, 
we conclude that the effective nonlinearity of our material is well below the optimum 
available with pure LiNb03.
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8.2 Optical bistability

Recalling eqn 2.66, the classical equation of motion for a phase mismatch of Akz = 2ir in 
a singly resonant doubler is:

hi = —(71 + *Ai) »1 ±  ^\(Xi\2a x + yföyft l (8.2)

That is, the system acts exactly as a Kerr medium, where i (M/ 7r) |n i | 2 is the nonlinear 
phase shift and zAi is the linear phase shift. High cavity finesse increases the field a 
and thus enhances the nonlinear interaction. As shown earlier, significant nonlinear be­
haviour occurs when the linear detuning, Ai, is of the order (but opposite in sign to) the 
nonlinear detuning, (M/ 7r)|a 'i|2. Loss thus play a critical role in the experimental reali­
sation of this system, as both the enhancement and the relative detuning scale inversely 
with cavity losses.

Figs 8.4 & 8.5 show the behaviour of the line shape of the cavity mode at high in­
put power (125 mW) as the laser is detuned back and forth. The data was obtained by 
recording the 1064 nm power transmitted through the nominally highly reflecting mirror, 
which is proportional to \a\2. The wavevector mismatch AkL was controlled by varying 
the temperature (T) of the crystal relative to the phasematching peak at about 108°C, with 
a tuning coefficient d A k /d T =7.5 rad/(cm K).

In scanned operation the linewidth of crystal # 19 was measured to be 9.0 MHz: 
from this a total, cold cavity, decay rate of 7  ̂ =  2.8 x 107s_ 1  (i.e. T c = 0.33%). From 
the linewidth and the incoupling at resonance the cavity loss was inferred to be yf =
1.3 x 107s- 1  (i.e. T e =  0.30%): the crystal is relatively lossy. Note that the round-trip 
conversion efficiency at the phasematching peak of 53 ±  1% agrees well with the pre­
dicted maximum conversion efficiency of 1jni = T c/ (Tc + T e) = 53%. A SHG coefficient 
FSHG — 2/kW  is inferred from this result.

From the plane wave analysis in section 2.5.2, the minimum optical bistability thresh­
old is expected when the external conversion efficiency is near zero. The measured dou­
ble pass SHG efficiency in Fig. 8.3 exhibits near zero minima, which were therefore cho­
sen as the operating points for the observation of the cascading effect. Assuming the 
idealised calculations of section 2.5.2 to be valid, we calculate that the minimum power 
for optical bistability is P j1 thr ~  45 mW.

Irrespective of crystal temperature and Ak, absorption of circulating power causes 
the cavity to heat and expand, resulting in the cavity lineshapes leaning to negative de­
tunings (see section 2.5.4). To attenuate the influence of this thermal effect, the laser was 
scanned through resonance relatively quickly (11.8 MHz//zs). Fig. 8.4 shows the line- 
shape when the doubler is operated at room temperature where the phase mismatch is 
extremely large. No significant asymmetry due to the thermal effect is observed. With 
the crystal temperature adjusted for maximum SHG efficiency, a significant broadening 
due to the conversion loss /zReJY |a | 2 is observed and a corresponding reduction in cir­
culating subharmonic power. However there is still no significant scanning asymmetry 
From this we conclude that the thermal effects have been effectively attenuated, and will 
only play a minor role, if any, in what follows.

With the temperature changed slightly from the phasematching peak so as to give 
nearly zero double pass conversion efficiency (see Fig. 8.2), the scans change dramati­
cally as shown in Fig. 8.5. At the high input power level used the scans display hysteresis 
and are strongly asymmetric. For opposite phase mismatches, the bistability occurs at op­
posite detuning, as predicted in section 2.5.2. The Kerr effect caused by the cooperating
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T = 107.49 °CT = 30.0 °C

Frequency [MHz]

Figure 8.4: Lineshapes of the TEMoo resonator mode, 1064 nm input power was 125 mW. The 
phase matching for both curves is such that there nonlinearities do not cooperate. For T = 30.0°C 
there is effectively zero nonlinear loss, the linewidth is due solely to m irror and cavity loss decay 
rates. For T  = 107.49°C the nonlinear loss is large, and the linewidth is accordingly broadened. 
No significant scanning asymmetries can be seen for either case: the thermal effect has been at­
tenuated. The horizontal positions of the lineshapes are arbitrary.

nonlinearities is clearly present. Another signature that this is due to cooperating nonlin­
earities, and not some other mechanism such as thermal absorption, is that the nonlinear 
detuning can be changed by altering the phase mismatch: the thermal bistability can 
never be so affected.

Small thermal effects are still present, as can be seen from the fact that the bistability 
is greater for negative wavevector mismatch. In the scans shown in Fig. 8.5, second har­
monic power production was minimal (a few mW), which is also borne out by the fact 
that the peak subharmonic circulating power was nearly the same as for the cold cavity 
case (Fig. 8.4).

Threshold was observed to occur for a pump power of «  70 mW, which does not 
compare well to the predicted value. This is unsurprising, given that P^1 thl was calcu­
lated using the assumptions of plane waves, a homogeneous nonlinear material and the 
absence of interference effects, which as Fig. 8.2 shows, is not even approximately true.

For crystal #19 TROPO was observed at pump powers above 49 mW, even when the 
crystal was phase matched to produce little or no second harmonic. As discussed in the 
last chapter, if there is sufficient power in the intracavity second harmonic field, TROPO 
can occur. (That is, even if Rej£  = 0). It can be suppressed by changing the phase match, 
however we were constrained in this by the need to be at a phase match value suitable for 
a strong Kerr bistability, i.e. little or no second harmonic production. The fast scanning of 
the cavity also suppresses TROPO to an extent: there appears to be a thermal effect where 
the signal and idler can pull themselves into resonance via heating if they are not quite 
on a favourable resonance. Scanning quickly through such resonances (12 MHz//rS) does 
not give the signal and idler the time they need to establish themselves. A combination 
of both these methods was used to avoid TROPO: this became increasingly difficult at 
higher fundamental powers.

Fig. 8.5 is the first observation of optical bistability due to cooperating (or cascaded)
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T = 109.3 °CT = 107.1 °C

Frequency [MHz]

Figure 8.5: Lineshapes of the TEMoo resonator mode, 1064 nm input power was 125 mW. T  = 
107.1°C and T = 109.3°C are points of opposite and roughly equal phase mismatch: the nonlinear 
loss was m inim al at both temperatures. The distinctly different forward and backward scans are 
evidence for optical bistability due to a cascaded x ^  nonlinearity. The horizontal positions of the 
lineshapes are arbitrary.

nonlinearities 3. As discussed at the end of the chapter, cooperating nonlineari­
ties offer a powerful technique for the next generation of experiments that require large 
X<3> nonlinearities.

8.3 Quantum theory of the Kerr effect

The classical models of the Kerr effect presented in Chapter 2 did not consider the noise 
properties of the light. There have been various treatments of the noise behaviour of 
a Kerr cavity [16, 17, 18, 5]. The treatments have varied in both approach (microscopic 
versus macroscopic) and detail (phenomenological versus rigorous). However all have 
considered only the case of a quantum noise limited driving field, and are thus of limited 
utility for modelling experiments. Accordingly in this section we derive, via the Heisen­
berg approach, our own model to explore the noise reduction behaviour in a Kerr cavity.

8.3.1 Deriving the interaction term

To quantise the doubler acting as a Kerr medium, we replace the complex numbers, a, in 
eqn 8.2 with operators a. In the classical treatment (see sections 2.2.3 and 2.5.2) the extra 
term J[y/2 ilA ^  is omitted from eqn 8.2 as there is no seed second harmonic field, i.e. 
A l2 = 0. In the quantum treatment there is a second harmonic vacuum field: however as 
at Akz = 27t the function J[ — 0, the second harmonic vacuum has no effect. Even at the

3Z.Y. Ou [15]) observed an intensity dependent phase shift in a cw pumped KNbCE doubler. No bista­
bility was observed, and theory and experiment did not agree very well. However for high Akz the theory 
does asymptote to that presented in this thesis. Several, unexplained power features were observed in [15]: 
these appear similar to the signatures of TROPO or of an avoided crossing between the orthogonal polar­
isation modes of the fundamental. The latter are typically frequency nondegenerate, power is exchanged 
between the two when they are not.
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quantum level, the phase mismatched singly resonant doubler does not respond to the 
second harmonic input.

The adiabatic elimination also gives us the ordering of the interaction term, it is ä^ää, 
as opposed to aa*a or ääa* (remember, ordering is important with operators). Is this 
the same ordering as for the x ^b ased  Kerr effect? Consider the classical, interaction 
Hamiltonian for a nonlinear optical system:

Hint = ~ f  d- E dV  (8.3)
Jcrystal

d can be expanded in a Taylor series:

di = XijEj + XijkEjEk + Xx\jkiEjEkEt + . . .  (8.4)

For an isotropic material, the classical Hamiltonian then becomes:

■Hin, =  X (1) [  E 2dV  +  x m  /  E 3dV + x<3> /  E*dV  (8.5)
./crysta l ./crysta l ./crystal

Consider a single optical field, of optical frequency v. Using the interaction picture elec­
tric field (eqn 3.1), and quantising (a„ -» a„) we obtain:

E = is,[a„e~i2’"/‘ + (8.6)

Substituting this into eqn 8.5 we find that the slowly varying parts of the Hamiltonian 
(i.e. terms independent of e±n 27rt) are:

'Hint = X(1) f  4 (1  + 2aJl/i nu)dV + x (2) f  0dV
./crystal ./crystal

+X(3) f  4 ( l  + 4ät2ä2Jd V  (8.7)
J crystal

Evaluating the spatial integrals, and suitably defining yd3) we find the interaction Hamil­
tonian for the third order effect is:

■Him = i/»x(3)(l + 4ät2ä2„) (8.8)

The equation of motion interaction term is thus, using eqn 3.57:

ä  =  l /( ih)[k,nint]
=  ( a f t t n t  -  U i n t E )

= \d3)(ääj2a2 -  a*2a2a)

= Sx^ä^ää = x ^ä^ää  (8.9)

So the form of the interaction for the x^K err effect is ä^ää, the same as the x^based  
Kerr effect. We conclude that the phase mismatched singly resonant doubler (where 
Akz = ± ‘2n7r) is identical in every aspect, both quantum and classical, to a Kerr cavity.
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8.3.2 Quantising the Kerr cavity

Using the interaction term discussed in the last section, we can write the equations of 
motion for the Kerr effect as:

äi =  -(T i + iA 1) ä i ± v ä t 1ä ,ä 1 +  v/2 ^ Ä i1nl +  \/2^fÄ iln2 (8.10)

and its conjugate equation. Note that we have absorbed the the factor of n into g. As 
normal, we explicitly consider non-perfect escape efficiency, g = J i / j i -

Once again we consider two ports for the cavity, the pumping port, in 1 and an “other " 
(loss, transmission, etc.) port in2. Linearising (see sections 3.1.5 & 3.3.2) we obtain the 
fluctuation equations of motion:

<$äi =  — (71 +  iAi)<$äi +  i/i(2|o'i|2<iäi +  Uj^ä^i) +  \J 27 jA 1 + (8.11)

and its complex conjugate. We consider the rotated quadrature operators, Yi & Y2, 
where:

Yi =  ae“*0 +  a)e+i0
Y2 =  äe_t(0+7r/2) +  äte+‘(ö+7r/2)

= - i {  äe",‘fl- ä te+ifl) (8.12)

where 6 is the quadrature angle. For 6 = 0, Yi = & Y2 = X2. The quadrature
fluctuation equations of motion are (see section 3.1.3):

SYt = GSYi + HiSYj +  Ji (8.13)

where the subscripts i = 1,2 and j  = 2,1 denote the quadrature and its complement; G
is:

G = “ (Ti - * '!  [a?e2 -io — a*2+i0 1 e (8.14)

and Ht is:
Hi =  ± (A , - 2 M|a , |2) +  I  [a2e - "  + o ; 2e+,e]) (8,15)

where the "+" sign is used for Ifi and the sign is used for i /2. J t is the coupling 
term:

^  (8.16)

Fourier transforming (see section 3.3.3) eqn 8.12 becomes:

SYi = H'6<{j + Jl
- ( G + iu)

AV -  + Ji
] - { G y  iw)

Eliminating the cross terms we obtain the expressions:

5y ,  =  H j j j  -  M G  + iu) 
1 {G +  iu ) 2 -  HtHj

(8.17)

(8.18)
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The boundary condition for the reflected fundamental is (see eqns 2.32):

Y°utl = -  Y‘nl (8.19)

Thus we obtain:

<5Y°uU = IHiJj ~ 2V/7f7f(G + tw)(5Yjn2
-((G + icj)(2f i + ( G + i o J)) -  HiHj)Y 'nl

(G + zca)2 -  HtHj  (8.20)

Using eqns 8.16 we take the self correlations (see section 3.3.5) to obtain the noise spec­
trum for the reflected fundamental:

= |(G +  iu,)(27f +  (G + iW)) -  W,H) |2\4"i1H  + 47f | / / , | 2i y 1H  

47i7i(|G |2 +  « 2)l4"2H  + |Hi|2V^JH )

I(G + tw) 2 -  H,Hj\7

The port m2 is a vacuum input, so Vy]2^ )  =  1-

(8.21)

8.3.3 Limits to noise reduction

Teasing out the limits analytically for the Kerr case is a little harder than in the SHG case, 
as the final expression contains terms like & a?* as well as |a i|.

Fortunately we can use an algebraic trick to simplify analysis. The complex number, 
a, can be expressed in terms of its magnitude and argument as a = lale1̂ . From some 
straightforward mathematics, we find the following:

e 2xp — 7 r /2 2 ^ 2 ,0  +  7t / 2 2t f  +  7r
O'2 e _ t0  -  » 1  2e+ld 
a 2 e -t61 T  Q'*2 e + l0

+ i 2 | u i | 2 

0

0

2 | m | 2

—* 2 | t t i | 2 

0

0
-21«, I2

That is, observing the light at certain quadratures allows us to only consider the absolute 
magnitude of the field. This simplifies the analysis tremendously, and we find:

e 2i\) -  tt/2 2 ip 2ip T- 7t/2 2 ip -f 7r
G —7i -  /^ K l2 -7 i —7 i + H a'i I2 -7 i
Hi + (Ai -  2/i|ai |2) + (A! -  /i|Q' 112) + (Ai -  2 /i|u i|2) + (Ai -  3/7|q'i |2)
h 2 -H i — (Ai -  3/i|» i|2) - H i - ( A i - H ^ l 2)

It is clear that we do not need to consider 6 = 2'ip±n/2  any further as at those quadrature 
angles Hi = - H 2 so that Vy y = Vy2 and so we will not observe squeezing.

Consider the spectra of the two quadratures, Yi & Y2 when observed at the quadra­
ture angle 0 = 2ip. We introduce the scaled quantities:

Ai n - ^ 2 c = H

•”e=lII

7i 7i 7i 7i
(8.22)

where n is the number of times above threshold and c is the coupling ratio. The spectra
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are now written as:

[w2 -  (2c +  1) -  ( A - n ) ( A  -  3Ä)]2 + 4A2(c +  l ) 2^ « )

+ 4 c2(A -  n )2l4 n2‘ (w) +  4ci(ti2 + l ) l 4 f H  +  (A -

(Ä -  n)(A -  3?i) -  w2 + 1 + 4w2

ca2 -  (2c +  1) -  (A -  n )(A -  3n)]2 +  4o32(c +  l ) 2l4^(w )

+4c2(A -  an)2^ 1^ )  +  4cl{u2 + l ) ^ 2^ )  +  (A -  3n)2l4 f(u ;))

(A -  n ) ( A  — 3n )  -  u 2 +  1 +  4ca2 (8.23)

As always, optimum squeezing occurs when the intracavity squeezed field is output 
through only one port, i.e. 7  ̂ =  71 and c = 1, t  = 0. For these quadratures, the best 
squeezing occurs at zero frequency, u> =  0. Under these conditions, the spectra simplify 
to:

Vy* (w) = [ 3 + ( A - n ) ( A - 3 n ) ] 2Vj"1I(w) + 4 ( A - n ) 2l4"1(u.)

[(A -  n)(A -  3n) +  1 + 4 u *

3 4- (A — ft) (A — 3n)j Vy™1 (tu) 4- 4(A — 377.)217Yq1 (tu)

|(Ä  — n)(Ä — 3n) 4- lj 4- 4tu2 (8.24)

From eqn 8.24 is is clear that when (A -  f t) ( A  — 3f t) =  — 1 both quadratures are infinitely 
noisy. As a general rule, the vicinity of such points is where maximum squeezing occurs. 
This can be seen from the numerators, which are a minimum (and thus the squeezing 
is maximum) when (A -  n)(A -  3ft) = -3 . In the limit that / i |a i |2, Ai »  71 both the 
Yi & Y2 quadratures can be strongly squeezed (at different values of the nonlinearity 
naturally), as shown in Fig. 8.6. However as |2, A i approach 71 the squeezing is less 
robust, and only the squeezing at the Y2 quadrature survives, as shown in Fig. 8.7.

Fig. 8.8 plots the spectra for both quadratures for parameters where one of the quadra­
tures is squeezed. Even under these ideal conditions, the squeezing linewidth is rela­
tively narrow (less than half the cavity linewidth), and there is considerable additional 
noise on the other quadrature. It is clear the Kerr squeezed states are not even close to 
minimum uncertainty states.

Compared to SHG squeezing, Kerr squeezing is unusual in that even for optimum 
squeezing of the output, both quadratures of the input field are coupled together. Indeed, 
this nonlinear coupling is the heart of the squeezing mechanism. Consider the following 
argument. It is clear from equation 8.2 the Kerr effect acts as an intensity dependent 
phase shift. That is, the stronger the field, the proportionately larger the phase shift. Now 
consider the ball-on-stick picture for the fundamental field inside the cavity, Fig. 8.9. The 
stick is rotated by an angle proportional to the square of the length of the stick (/m2). The 
ball at the end of the stick is also affected. The “top" of the ball (the point furtherest from 
the origin) is rotated further than the "bottom" of the ball (the point closest to the origin) 
as it is of greater power. The ball is thus smeared out into a banana or teardrop shape
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Scaled nonlinearity, n

Figure 8.6: Yi & Y2 quadratures versus scaled nonlinearity, ri = /l/ |ori |2/"yi - The pump is quantum 
noise limited Vy"1 (ta) = Vy^1 (ca) =  1, the squeezing is observed at zero frequency, u  = 0 for scaled 
detuning A = A 1/71 = 15, and perfect outcoupling, c = 7 i/7 t = 1. Note that both quadratures 
are strongly squeezed, but at different nonlinearities.

Scaled nonlinearity, n

Figure 8.7: As for Fig. 8.6 except for a smaller detuning, A = 5. Now only one quadrature is 
strongly squeezed.
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Scaled frequency, d)

Figure 8.8: Theoretical Kerr squeezing spectra for Yi, Y2 quadratures. Scaled frequency, lo — 
c j/71; perfect outcoupling, c = 1; scaled detuning A =  15; scaled nonlinearity such that (A -  
h)(A  — 3n) =  -3 ;  and quantum  noise limited pum p Vy"1 (cj) = Vy1̂1 (w) =  1. Note the relatively 
narrow squeezing linewidth.

Figure 8.9: Intuitive explanation of Kerr squeezing. Phasor diagrams for an intracavity funda­
mental field: right hand side without Kerr effect; left hand side with Kerr effect. The top of the 
uncertainty area is more intense than the bottom, and so is phase shifted further by the Kerr 
effect.
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Scaled frequency, to

Figure 8.10: Theoretical Kerr squeezing spectra for Y i, Y2 quadratures. Scaled frequency, u = 
u / 7 i; outcoupling, c = 0.6; scaled detuning A = 15; scaled nonlinearity such that (A -  h)(A -  
3h) =  —3; and noisy pum p Vyn l(u;) =  Vy"1^ )  =  3. The squeezing is strongly degraded, but the 
ou tput beam is still less noisy than the input beam on the Y i quadrature. This noise reduction is 
sometimes known as "classical squeezing".

as shown in Fig. 8.9. Note that at some quadrature axis the banana is narrower than the 
original ball - the light is now squeezed.

As a source of bright squeezing, the Kerr effect is inherently less practical than SHG 
as it is sensitive to both the amplitude and the phase quadrature of the input light beam. 
In practice, the phase quadrature of laser light is even noisier than the amplitude (at 
some frequencies many 10's of dB more). In addition to noise from the same sources that 
contribute to the amplitude noise (RRO, pump noise, spontaneous emission noise, etc) 
the phase quadrature has additional noise due to the high phase diffusion of the laser. 
What is the effect of extra phase noise on Kerr squeezing? No equation for the phase 
quadrature (equivalent to eqn 6.32 for the amplitude spectrum of a 4 level laser) has 
yet been published or tested against experiment. However we can tease out the effects of 
unequal quadratures fairly simply. The quadratures Y\  & Y2, are related to the amplitude 
and phase quadratures, Xi & X2, by:

Vy"1 =  cos2^ ) ^ 1 +  sin2(0) Vxj1

V ^1 = sin2(0)Vx"1 + cos2(^)\/x21 (8-25)

where 6 is the quadrature observation angle. Normally Vy”1, Vy”1 different to
Vy”1, Vy”1. However for the case Vyj1 = Vy”1, then Vy” 1 =  Vy” 1 =  V ™ 1 regardless of the 
value of the quadrature angle. Fig. 8.10 shows the effect of such a uniformly noisy pump, 
Vy”1 (u>) = Vy”1 ( c j ) = 3, and nonperfect output coupling, c = 0.6. The squeezing is con­
siderably degraded, but for the Yi quadrature the output is quieter than the input over 
the same frequency range that it was squeezed in the quantum noise limited case. Thus 
this noise reduction is sometimes known as “classical squeezing". At high frequencies 
both quadratures asymptote to the input noise levels: this is expected, as discussed in 
section 3.4.2 well away from resonance the cavity simply acts a mirror. When the pump 
is noisier in the phase quadrature than the amplitude, the input values of the quadra-
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Scaled frequency, co

Figure 8.11: Theoretical Kerr squeezing spectra for Yi, Y2 quadratures. Scaled frequency, u = 
cj/7 1 ; outcoupling, c = 0.6; scaled detuning A = 15; scaled nonlinearity such that (A — n)(A -  
3n) = —3; and noisy pump V^1 (w) = 3, V ^ ( cj) = 10 observed at a quadrature angle 0 = 7t/6. 
The squeezing is destroyed, but the output beam is still less noisy than the input beam on the Yi 
quadrature.

hires Yi & Y2 depend on the quadrature angle. Fig. 8.10 considers the case 6 = 7r/6: the 
squeezing is now totally destroyed. The classical noise reduction occurs over the same 
frequency range as previously. (It is apparently stronger, as the input noise level has been 
raised, however in absolute terms it is reducing the noise to approximately the same level 
as previously.) Very large differences between the two quadratures quickly swamp the 
squeezing.

In principle, the Kerr medium offers a strong source of squeezed light. In practice, 
considerable care will need to be taken to reduce the doubly deleterious effect of pump 
noise.

8.4 Experimental Kerr noise reduction

As is clear from the above theory, the noise is reduced on a quadrature that varies as a 
function of power, detuning and nonlinearity. Observation of this noise reduction would 
seem to require an extended experimental setup, so that the quadrature of the light could 
be examined at will. Ideally this would be done with an external local oscillator (which 
would, however, have to be much stronger than the signal beam) or by using a single- 
ended analysing cavity as a phase-sensitive detector (see section 3.4.4).

Due to financial and time constraints, neither option was available during this thesis. 
However a preliminary experimental investigation was carried out using the Kerr cavity 
itself as the single ended cavity to form a phase sensitive detector. The trick is to vary the 
detuning whilst examining the reflected beam from the monolithic cavity. As discussed 
earlier, frequencies away from the carrier are rotated in quadrature with respect to the 
carrier, which is by definition the amplitude. Of course using the cavity as both phase 
sensitive detector and nonlinear medium is not ideal, as the detuning used to change the 
observed quadrature also changes the nonlinear process. Nevertheless, the experimen-



§8.4 Experimental Kerr noise reduction 153

f  \  *

5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55

g

s
I
3
C l

c -

3-

Y-

Relative temperature [V]

Figure 8.12: TROPO threshold and second harmonic power versus crystal temperature for ANU 
crystal. Temperature scale has not been calibrated, double pass: total SH power leaving the crystal 
through the AR side. Modematched input 1064 nm power was 33 mW. Lines are guides for 
the eye, but have been omitted when spanning temperatures where TROPO thresholds were not 
recorded.
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Figure 8.13: Reflected fundamental noisepower versus frequency for Kerr cavity, a) Noise from 
laser: measured on light reflected from cavity when laser is not locked, and detuned well away 
from resonance. The cavity thus acts as a simple mirror, R> 99%. b) quantum noise for traces a 
& c. c) Noise on reflected beam at optimum detuning when crystal set to a Kerr point, i.e. phase 
match conditions s.t. minimal second harmonic production, strongly asymmetric cavity scans, 
etc. For this plot, T = 5.34 V, where the optimum SHG squeezing occurred at T = 5.38 V.
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Figure 8.14: Reflected fundamental noisepower versus frequency for Kerr cavity, a) Noise from 
laser: measured on light reflected from cavity when laser is not locked, and detuned well away 
from resonance. The cavity thus acts as a simple mirror, R> 99%. b) quantum noise for traces a 
& c. c) Noise on reflected beam at optimum detuning when crystal set to a Kerr point, i.e. phase 
match conditions s.t. minimal second harmonic production, strongly asymmetric cavity scans, 
etc. For this plot, T = 5.44 V, where the optimum SHG squeezing occurred at T = 5.38 V.

tal results obtained to date are intriguing, and suggest that the phase mismatched Kerr 
system does bear further examination.

The experimental setup is basically that discussed in Chapters 5, 6, & 7. The reflected 
beam was extracted via a Faraday isolator and sent to a balanced infrared detector pair, 
of photodetector quantum efficiency 80%. The propagation efficiency through the isola­
tor and associated optics was approximately 63% so that the total quantum efficiency of 
the detection setup was approximately 50%. The detuning was varied sinusoidally by 
modulating the locking point of the locking loop. The modecleaner was removed (for 
simplicity) and the cavity was driven at 30 mW at 1064 nm. Above this TROPO occurred 
(of which, more later).

The monolith temperature was decreased from the optimum SHG squeezing point 
to a Kerr point (i.e. minimal second harmonic production, strongly asymmetric cavity 
scans, see section 8.2.) Fig. 8.12 shows the phase matching curve for the ANU crystal. 
Note that no effort has been made to absolutely calibrate the temperature scale, as we 
were chiefly interested in relative measurements. The phase matching curve is symmet­
rical and less distorted than that of the Konstanz crystal. The outcoupling ratio of the 
ANU crystal was also some 10% higher (as inferred from the conversion efficiency, see 
Chapter 6): from these data we infer than the ANU crystal suffered from far less material 
inhomogeneity than the Konstanz crystal. We operated at the two Kerr points, T -  5.34 V 
& T -  5.44 V, where the SH production was near zero; optimum SH squeezing occurred 
at T -  5.38 V.

The crystal was set to T = 5.34 V. When the laser was neither locked nor scanned,
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Figure 8.15: Reflected fundamental noisepower versus frequency for Kerr cavity, a) Noise from 
laser: measured on light reflected from cavity when laser is not locked, and detuned well away 
from resonance. The cavity thus acts as a simple mirror, R> 99%. b) Noise on reflected beam at 
5.98 MHz as a function of detuning. T = 5.34 V, c.f. Fig. 8.13. c) quantum noise as a function of 
detuning, c.f. trace b.

and detuned well away from the cavity resonance, the cavity acted as a simple reflector 
(R> 99%). The spectrum of the reflected fundamental for this case is shown in Fig. 8.13a 
(obtained from the sum port of the detector); Fig. 8.13b is the quantum noise (obtained 
from the difference port of the detector). Considerable amplitude noise, due to the tail of 
the RRO of the laser, is evident. The peak at 45 MHz is the residual amplitude noise from 
the phase modulation used in to the Pound-Drever locking scheme (see Chapter 5).

The laser was then brought onto resonance, and locked. As the cavity was manually 
detuned the power of the reflected beam did not appreciably change (and the quantum 
noise trace was identical to trace b). However the spectrum varied considerably: for most 
of the detuning range it was well above the original noise (as represented by trace a). 
However for a narrow range of detunings the observed spectrum was quieter than the 
original light. Fig. 8.13b shows the spectrum for the optimum detuning. The reflected 
light is not squeezed (it is well above shot noise) but at low frequencies it is quieter than 
the original light by up to 1.5 dB. The extra structure around the locking peak highlights 
that we are no longer observing the amplitude quadrature: we are somewhat rotated 
into the phase quadrature, and are thus seeing more of the phase modulation. The noise 
reduction increased with increasing power, however the power could not be increased 
past 30 mW as a strong TROPO occurred.

This noise reduction only occurred in the vicinity of Kerr points. It was not observed 
when the crystal was set to the point of optimum SHG production nor to a temperature 
well away from phase match where no second harmonic was produced nor Kerr bistabil­
ity observed (the "cold" cavity regime). However noise reduction was observed for the
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156 Cooperating nonlinearities: Kerr effect

Frequency [MHz]

re 8.16: As for Fig. 8.13 but with modecleaner in place. No squeezing is seen, but there is 
iderable additional phase noise.

Power [mW]

Figure 8.17: Optimum Kerr detuning (point of minimum noise) versus power, for T = 5.34 V. 
Above TROPO threshold the detuning is clamped.
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opposite Kerr point, T = 5.44 V. Fig. 8.14 shows the spectrum : optimum reduction was 
observed for a detuning of opposite sign to that of Fig. 8.13. This is a typical signature 
of a Kerr mechanism (see section 8.2), but is not in itself conclusive. There is additional 
noise evident at low frequencies that was repeatedly present for this phase match: it is 
currently unexplained but may be linked to the locking system. The detectors were re­
balanced between taking Figs 8.13 & 8.14 so to achieve better cancellation of the peak at 
45 MHz. The residual amplitude modulation was observed to be 25.9 dB above the shot 
noise for the simply reflected case; for the rotated quadrature the peak increased by 17.8 
dB (clipped on the plot shown here).

To gain a feel for the detuning and quadrature dependence of the noise reduction 
the noisepower was examined as the cavity was slowly detuned around zero detuning 
whilst locked (the locking point was scanned at 298 mHz). Of course the cavity could not 
be symmetrically detuned as one side of the lineshape is bistable. On the stable side of the 
lineshape the cavity was detuned far enough that more than 90° of quadrature rotation 
was observed (the noise began to drop again). This suggests that the cavity was detuned 
on the order of 1 linewidth on that side of the lineshape (see section 3.4.4). Fig. 8.15 is 
the noisepower versus detuning at /  =  5.98 Mhz and T = 5.34 V. Trace a is the simply 
reflected noise; trace b is the reflected noise as a function of detuning and trace c is the 
shot noise of the reflected light. The optimum noise reduction occurs near, but not at, the 
peak of the lineshape (i.e. at the minimum power for the reflected beam). As seen from 
the optical bistability measurement, this peak is shifted in detuning from the nominal 
zero detuning point of the cavity. Beyond these simple statements, interpretation must 
be necessarily proscribed as both the observed quadrature and degree of nonlinearity are 
affected by the detuning.

Given such a strong effect on the classical noise, it was natural to reintroduce the 
modecleaner so that the input noise was quantum noise limited, and look for squeezing. 
None was found. There appear to be two reasons for this, both specific to our system. 
Firstly, the TROPO intruded severely As discussed in chapters 5, a locking instability 
exists when both the modecleaner and monolith are locked together. In the last chapter is 
was seen that this had a deleterious effect on the noise, apparently seeding the TROPO. 
This effect was quite strong at the Kerr points: with the modecleaner in place the mono­
lith could not be driven above 20 mW without strong TROPO occurring. This limited the 
power. Secondly the locking instability also appears to introduce considerable additional 
phase noise, as can be seen from Fig. 8.16. This is the quietest spectra, observed at the op­
timum detuning. The features at 45 and 27 MHZ are the locking spikes for the monolith 
and modecleaner, respectively. The other features are beat signals and noise introduced 
by the dual locking loop. Clearly although quantum noise limited in the amplitude, the 
same is not true of the phase quadrature. This must be addressed if squeezing is to be 
observed.

A final observation on the relationship between TROPO and Kerr. The presence of 
TROPO (at powers above 30 mW) was detected via the infrared optical spectrum anal­
yser, as discussed in the last chapter. However there was an additional signature: above 
the TROPO threshold the detuning at which the minimum noise spectra was observed, 
and thus approximately the peak of the lineshape, did not change very much with power. 
This can be seen in Fig. 8.17, where the optimum detuning is plotted versus power.
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8.5 Summary of Kerr effects

Cooperating nonlinearities offer a powerful method for obtaining x^3) effects with 
comparatively low cw powers. As the method is solid state based, it is far simpler than 
previous methods based on atomic media. Furthermore, a large variety of nonlinear solid 
state media are available that cover a very large spectral range. Indeed, even media that 
are not normally considered as phase matchable for SHG may be used, since coopera­
tion is effective even for relatively large phase mismatchs due to the linear, rather than 
quadratic dependence of the bistability threshold on Ak.

Optical bistability was observed with a relatively low power cw pump beam. For 
cavity systems the bistability threshold can be lowered in several ways. Resonating the 
second harmonic significantly reduces the threshold, but at the expense of a more com­
plicated (i.e. doubly resonant) experiment. Now that engineered high nonlinearity ma­
terials (QPM materials, such as PPLN) are commercially available it should be possible 
to significantly lower the threshold simply by virtue of the higher nonlinearity. (Unlike 
MgOiLiNbOß, the phasematching curves for these materials also correspond closely to 
the theoretical optimum, another bonus.)

Since several cavity quantum-optical effects such as squeezing [17, 18, 19], quantum 
nondemolition measurements [20], and noiseless amplification [21], have been predicted 
assuming self- or cross-Kerr interactions [22], an important extension of the present work 
is the demonstration that cooperation can lead not only to a self-interaction, as studied 
here, but also, in phase mismatched sum-frequency generation or type-II SHG, to an 
effective cross-Kerr coupling between two waves of different wavelength or polarization, 
respectively.

Our model for Kerr squeezing shows that pump noise plays a doubly critical role as 
the noise on both quadratures of the pump is coupled into the cavity. When the singly 
resonant doubler was phase mismatched to the Kerr points, classical noise reduction (1.5- 
1.8 dB) was observed on the reflected fundamental field. The reduction increased with 
power, was strongly detuning dependent, and the sign of the optimum detuning changed 
when the sign of the phase mismatch changed. No squeezing was observed, we believe 
due to excess phase noise of the laser.
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Chapter 9

Conclusions

His face was that of one who has undergone a long journey.

Epic of Gilgamesh

Cheer up lad, I see land!

Diogenes, on seeing a reader approach the bottom of a parchment scroll

In this thesis we have studied the classical and quantum dynamics of optical frequency 
conversion, constructing a second harmonic generator to use as our conceptual and ex­
perimental testbed.

Classically we confined our attention to steady state behaviours. We found that in­
stead of a single second order nonlinear process (x ^  nonlinearity), our system could sup­
port multiple processes. To unify the various outcomes, we introduced the concept of 
interacting x^2̂ nonlinearities, and classified the interactions as either competing and co­
operating. Competing nonlinearities are those where all the up and down conversion 
processes do not share the same modes; cooperating nonlinearities are this where they 
do share the same modes.

We observed and modelled competition between second harmonic generation (SHG) 
and non-degenerate optical parametric oscillation (NDOPO). As the cavity supports three 
modes, this competition is labelled triply resonant optical parametric oscillation (TROPO). 
Observed power signatures of TROPO included clamping of the second harmonic power 
and nondegenerate frequency production in both the visible and infrared. We found that 
our system could generate light up to 31 nm from degeneracy in the infrared; multiple 
modes were also observed, which supports the previously suggested idea of cascaded 
second, sum-, and difference- frequency generation. Given its simplicity, TROPO appears 
to be a particularly promising method for nondegenerate frequency production. We 
showed that the second harmonic power is strongly clamped to its competition threshold 
value (the first observation of clamping since its prediction in 1962) and advised on how 
to avoid this clamping if strong second harmonic generation is desired.

We developed a set of cavity equations that showed cooperating second order nonlin­
earities lead to a wide range of third order effects, including self phase modulation (SPM 
or Kerr effect); cross phase modulation (CPM or cross-Kerr effect); two photon absorp­
tion (2PA, this is the effect of singly resonant SHG) and Raman absorption. A cooperating 
X^system is not a full third order system, as neither four wave mixing (FWM) or third 
harmonic generation (THG) are predicted. In our experiment we observed (and mod­
elled) a strong optical bistability due to the Kerr effect, showing that in principle and 
practice a second order cavity can act as a strong third order medium.

For systems with large numbers of photons (linearisable systems), the quantum dy­
namics of the system can be seen in the behaviour of the quantum noise. We emphasised 
an intuitive interpretation of quantum noise, the sideband picture, and explored the lim­
its of this interpretation showing that is is valid for any linearisable system. We discussed 
the Heisenberg approach to modelling linearisable systems, the output of which is quan­
tum noise transfer functions that allow a modular approach to modelling experiments.
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Theoretically we considered the effect of laser noise for various configurations of both 
active (occurs within a laser cavity) and passive (occurs external to a laser cavity) second 
harmonic generation. We concluded that squeezing via active SHG is not feasible with 
practicable systems, as the inherent dephasing of lasers totally destroys the squeezing. 
We highlighted the critical role of laser noise in passive SHG: experimentally pump noise 
was shown to obscure the squeezing (this is true for all bright squeezing processes). We 
improved the squeezing by reducing the pump noise with a modecleaning cavity and, 
unlike previous bright squeezing experiments, obtained perfect agreement between the­
ory and experiment. The simplicity of the modular approach of the theory was high­
lighted.

The effect of TROPO on the second harmonic squeezing was observed and modelled. 
In contrast to the predicted outcome for the related quadruply resonant case, the squeez­
ing was found to degrade. We showed that this was due to two effects: a noise eating 
effect linked to the power clamping, and the effect of the noise of the nondegenerate 
modes. It was shown that maximum SH squeezing is limited to the value that occurs at 
TROPO threshold: TROPO must be avoided if strong SH squeezing is to be observed.

We predicted that for certain phase match values the SHG cavity would act exactly as 
a Kerr cavity, even at the quantum level. We developed a quantum theory that allowed 
consideration of the pump noise and found that as the Kerr effect ties together the ampli­
tude and phase quadratures, it is sensitive to the pump noise of both. Experimentally, we 
observed classical noise reduction (1.5-1.8 dB) due to the Kerr effect, but no squeezing. 
We speculated that the squeezing may be obscured by excess phase noise from the laser.

In conclusion, the work in this thesis has provided definitive limits for classical and 
quantum behaviour of a frequency doubler. Systems can now be tailored to exclude or 
include interacting nonlinearities as desired. The quantum noise behaviour is now 
well understood, with the effects of pump noise and interacting nonlinearities all consid­
ered and investigated. Squeezing via second harmonic generation is currently the most 
reliable and well characterised source of bright, continuous wave, squeezed light.

9.1 Future research

There is no doubt that with the advent of tailored nonlinear materials (PPLN, PPLT, 
etc.) solid state frequency conversion will undergo another renaissance (the last occur­
ring with the introduction of the NPRO laser). The interacting nonlinearity phenomena 
considered in this thesis may prove to be of technological, as well as fundamental, in­
terest: nondegenerate frequency production via TROPO; optical switching via the Kerr 
effect. In particular TROPO and the associated cascaded second, sum-, and difference- 
frequency generation, may be a valuable technique in optical frequency chains, as the 
nondegenerate modes can be directly seeded by appropriate modulation (at ± n  FSR) of 
the fundamental.

The new materials also make possible experiments in quantum optics that up to now 
we have only been able to dream about. Some of these are: squeezing via single pass 
SHG, which will occur on both the fundamental and second harmonic beams and have 
a very broad bandwidth as it is not cavity limited; strong squeezing from ring cavity 
SHG, which allows us to ignore pump noise (see next section); quantum non demolition 
measurements via SHG, which are simpler than the equivalent OPO experiments; more 
than l /9 th  squeezing via singly resonant SHG (see next section); and double-passing 
squeezed vacuum through ring OPO cavities to produce very strongly squeezed vacuum.
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The technology developed for this thesis is already in the process of becoming ob­
solete. Given this, and the design knowledge gained from our experiments, it is clear 
that the current "best" numbers for SHG squeezing will be surpassed quite soon. In the 
longer term, the question is not so much as to how far the technology can be pushed, but 
rather whether a technological use will be found for bright squeezing. It is this that will 
decide the long term relevance of the field.

9.2 Some random ideas

This section contains a number of ideas and approaches that have arisen during the the 
course of the thesis. Of course, it's much easier to generate ideas than to model them 
all (let alone test them experimentally!) and for one reason or another these ideas have 
never quite made it to the publication stage. They are listed here as starting points for 
discussion - and who knows? one of them may eventually get turned into an experiment. 
At any rate I hope the reader enjoys considering and discussing them as much as I did 
(there were more, but these I omitted on grounds of length and humanity).

9.2.1 Resurrecting buried squeezing

There are two methods to evade pump noise. The first, as discussed in Chapter 6, is to 
try very hard to ensure that there is minimal pump noise, for example, by using a mode 
cleaning cavity to produce a quantum noise limited pump. An alternative method is to 
let the squeezing be buried under the pump noise, and resurrect it later in the experiment 
via optical cancellation [l]-[5].

To do this requires two independent sources of quantum noise. Consider a bright 
quantum noise limited beam incident on a 50/50 beamsplitter. The two outputs, c & d, 
are superpositions of the two inputs, a & b, where (from eqn 3.98):

c = Vo.5 ä -  W b  b
d = \/(k5 ä + \/(k5 b (9.1)

and in this sense the output beams are clearly dependent on the input fields. The sum 
of the two outputs is the noise on the bright input, the difference of the two beams is the 
noise of the vacuum input (see section 3.4.5). Experimentally, two sources are defined as 
uncorrelated if the added and subtracted signals are identical. When both beamsplitter 
input fields are quantum noise limited, the added and subtracted signals are identical 
(see section 3.4.5): by definition the beamsplitter outputs are uncorrelated. Now let the 
bright input beam have considerable classical noise: the added signal is noise of the input 
beam; the difference signal is still quantum noise. The added signal is greater than the 
subtracted, from which we conclude that the classical noise on the output beams is cor­
related. However one can still regard the quantum noise of the two output beams, which 
is buried deep under the classical noise and not directly detectable, as uncorrelated.

Now consider driving two identical squeezing experiments with the two noisy out­
puts of the beam splitter. As the inputs to the squeezers are far above quantum noise, 
the outputs are far above quantum noise - any squeezing is buried under the classical 
noise. However, if the two outputs are subtracted (optically or electronically) then the 
correlated classical noise will removed, but the uncorrelated quantum noise, which is 
now squeezed, will not be. The squeezing is resurrected. If the outputs are optically sub­
tracted then the output is a vacuum squeezed beam, even if the squeezing processes are
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Figure 9.1: Resurrecting buried squeezing. The two counterpropagating modes of a singly reso­
nant, ring frequency doubler are pumped with noisy fundamental beams of identical power. The 
detected spectrum of either the SH outputs is noisy, no squeezing is present. However if the two 
SH outputs are subtracted (optically or electronically), then the ideal SH squeezing spectrum is 
retrieved. Optical subtraction is illustrated, this produces a squeezed vacuum at 532 nm. The 
bright noisy beam from the sum port of the beamsplitter can be used as a local oscillator in a 
homodyne detection scheme to detect the vacuum squeezing. All beamsplitters are 50/50.

intrinsically bright (such as SHG).
Optical subtraction to retrieve squeezing was first proposed by Shirasaki & Haus in 

1990, who considered the case of pulsed Kerr squeezing [1]. Proof of the principle was 
provided in 1991 by Bergman and Haus [2] in a remarkable experiment where 5 dB of 
pulsed Kerr squeezing, generated in a Sagnac interferometer, was observed between 35- 
85 kHz. This was notable as previous attempts had been plagued by the addition of fibre 
induced classical noise, which in this experiment was largely cancelled out by the optical 
subtraction. The experiment was repeated with a 1 GHz pump, and squeezing was ob­
served between 10-30 MHz that deviated from the ideal only due to imperfect temporal 
mode matching and detector quantum efficiency [3]. The cancellation had removed all 
sensitivity to the pump noise.

Lai et. al [4] extended the idea to the CW regime, proposing (using chiefly phe­
nomenological arguments) two systems for generating squeezed vacuum. Both systems 
were based on injection locking squeezed laser diode(s), the common classical noise im­
posed by the master laser being optically subtracted to leave a squeezed vacuum output. 
Ralph et. al. considered optical cancellation of the outputs of two identically pumped 
SHG systems [5]. Using the then recently developed cascaded system formalism, they
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presented a rigorous analysis which included the effects of possible experimental limi­
tations (such as asymmetric pumping, detuning, and unbalanced detection) and found 
that laser noise obscured squeezing could be retrieved. However their theory is based on 
the Schrödinger approach, and is not particularly elegant. In Appendix 1 we present a 
simpler, but equivalent treatment, based on the intuitive Heisenberg formalism favoured 
in this thesis.

Experimentally, optical cancellation works best w hen the two squeezing systems are 
identical. For the case of SHG this could be arranged (at least in the first instance) by 
dual pum ping a ring SHG cavity and examining the SH outputs from the counterpropa- 
gating modes, as illustrated in Fig. 9.1. Any technical noise induced by the cavity would 
be identical for both modes and thus removed at the difference port. This scheme is 
experimentally attractive, as it avoids the need for a modecleaner, and with the advent 
of significant squeezing from ring SHG cavities [6], it appears experimentally feasible. 
(If a doubly resonant SHG system is to used to provide fundamental squeezing, then 
the layout is even simpler. The reflected fundamental beams are retroreflected onto the 
cavity and squeezed vacuum exits from the first beamsplitter.) In the longer term it is 
clearly w orth considering construction of Sagnac frequency doubling cavities, so that the 
cancellation is intrinsic, as has been dem onstrated with pulsed Kerr squeezing.

9.2.2 Breaking the l/9th barrier

build-up
cavity?

laser
cavity?

V —  — 7

Figure 9.2: Speculative design to beat 1 /9th limit to SH squeezing. Based on the proposal of 
Maeda and Kikuchi [8). Explanation in text.

All the models presented in this thesis used the mean field approximation (MFA), 
i.e. intracavity loss is sufficiently low that a mean field is established and maintained 
within the cavity. The experiments conformed with this model. (Do not be mislead by 
the figure of 65% conversion efficiency: this is with respect to the pump field, not the 
intracavity field. The intracavity conversion efficiency, and thus loss, were still quite 
low.) Experiments are rapidly approaching the point where this will no longer be true: 
Stanford recently reported a single pass conversion efficiency of 40% using PPLN [7]. If 
a cavity is built around such a crystal, then the fundam ental field will experience very
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large loss, and no mean field as such will be built up.
Maeda and Kikuchi have considered this situation for a singly resonant doubler, and 

examined the squeezing of the second harmonic [8]. The residual fundamental light is 
not built up as such, acting more as an optical negative feedback beam. Although it does 
not contribute much power per circulation, it is strongly anti-correlated to the second 
harmonic and this information is fed back each circulation. The result is the second har­
monic light is squeezed beyond the l/9 th  limit discussed in Chapter 6. For arbitrarily 
large interaction and total feedback the second harmonic squeezing in principle becomes 
perfect.

The key is a high reflectivity coupling mirror, to feed as much of the anticorrelated 
residual fundamental back into the process each circulation. Unfortunately this raises 
the pump power required to unfeasible levels, as most of the power simply reflects from 
the front mirror. Fig. 9.2 shows the beginning of an idea that may help this experiment. 
Either a build-up cavity or laser cavity could be built in around the coupling mirror, so 
that the high circulating power is used to pump the SHG cavity. This may bring the 
experiment into the feasible regime. I feel the laser is more attractive, as it will tend to be 
injection locked by the very small component of residual fundamental, and so a locking 
loop will not be required to keep the front cavity resonant.

9.2.3 Kerr in QPM

piezo

"Kerr" effect in QPM material HR @ 532 nm

dichroic

1064 nm
QPM material

Figure 9.3: System to study the SHG and Kerr behaviour of a x ^ m e d iu m . By varying the phase 
difference between the reflected fundamental and second harmonic beams, the system behaviour 
smoothly varies between pure SHG and pure Kerr. Com pared with tem perature tuning the phase 
match, this is quick and convenient.

There remains much fruitful research to be done on the interaction between pure SHG 
and pure Kerr behaviour in a x^system . One of the frustrating features of investigating 
this using the experimental layout in this thesis was that the phase matching could only 
be changed via the crystal temperature, which was very slow.

We propose here a more convenient design. Fig. 9.3 shows the core idea. A piece of 
QPM material (for example, PPLN) is pumped with fundamental light. For the moment 
we assume that the nonlinear interaction is strong enough that some SHG occurs in a 
single pass. The phase matching at point "A" depends not only on the crystal tempera-
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ture (as per normal) but on the position of the second harmonic mirror with respect to 
the fundamental mirror: this sets the phase difference Afi. If the external mirrors are 
adjusted so that Afi = 0 then the reflected SH light is perfectly in phase with the SH light 
produced on the backward leg by the reflected fundamental. This is a pure SHG case. 
Adjusting the piezo we can also go towards the Kerr situation: the reflected SH light in­
terferes destructively with the SH produced by the forward leg. If the beams interfere 
totally (as is possible in the low conversion limit) then the material acts as a perfect Kerr 
medium. The Kerr phase shift can be detected interferometrically, or may be observed as 
a Z-scan effect due to the intensity gradient of the Gaussian beam. For high nonlinear in­
teractions, optical switching may occur if a weak beam is injected at the second harmonic 
or fundamental.

All kinds of tricks are now possible. Scanning quickly between the Kerr and SHG 
limits while observing the quantum noise properties being just one. As Afi is scanned 
both the quadrature and wavelength of the optimum squeezing will vary. Of course this 
is just the kernel of an idea. A cavity for the fundamental can be built up around the 
crystal by placing an appropriate mirror at A (a high finesse is probably not necessary). 
The cavity has the advantage of making the forward and pump beams equal in intensity 
so that perfect SH cancellation, and thus a perfect Kerr effect, is possible. With a cavity 
the Kerr effect can be observed directly as optical bistability.
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Appendix A

Resurrecting buried squeezing

Consider two fundamental vacuum fields <5a & £b, incident into two separate SHG sys­
tems. From eqn 6.22 the the second harmonic amplitude fluctuations for the two fields 
are, respectively:

Ä X r t3 a 'b =  2a, V M Fi
- s x \ n3a' b (A.l)

where Du Et and Ft are defined in eqns 6.17-6.19. The added and subtracted amplitude 
fluctuations, <$xf, are defined as:

r ^>± ~ o u t 3 a , b  r - o u t 3 a , b  
öA.| — öA |  ±  ÖA^ (A.2)

Substituting eqn A.l and eqns 6.17-6.19 into eqn A.2 we find:

T (/i |a i |2 -  7 i +  iu)
s x f  =

2»! x/2/ryf «xr6±ixr * x \n3b ±  sx \n3a
7! -f 3 /i|u i|2 -  iu

(A3)

Let the two fields a & 6 be the outputs of a 50/50 beamsplitter illuminated by a laser las 
and a vacuum vac, i.e.:

<sx;nla = y/i/2(sx!" + SXT)
sx '" lb = 7 l / 2 ( < 5 x ', as -  <5X,“ C) (A.4)

Using these definitions we write:

4»i v^Ti + (^ |u i|2 -  7 i +  *w)
<sxf =

- - in3Ö , - - in3<2<5Xx ±dXj

7 i T 3^ |q'i |2 -  iu

Taking the self correlations we find the added and subtracted spectra are: 

16/i|ai|27iVxT’VaC + [(Hq'i |2 -  Ti)2 + u 2} [V£|36 T V£f a

(A.5)

^  = (71 + 3/xjaj I2)2 + u 2
(A.6)

Or, recalling that V ^ f b = Vj1}30 = 1:

^xq -  2 y j ( V x r ac - l ) -  ^
(7i T 3^ |q'i |2)2 Tea21 T 8/i|oq|' (A.7)

As = 1, the added and subtracted spectra are identical only if the laser is quantum 
noise limited, i.e. Vyf* = L Irrespective of the laser noise, the subtracted spectrum is
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always:
T / i  _ <-)r/idealSHG
l Xi -  Xi (A.8)

where v ^ ealSHG is the ideal second harmonic squeezing spectrum (as defined in eqn 6.25 
with V^}1 — !)• Experimentally it is actually the photon number spectra that are detected, 
i.e:

For the sum port, the average detected photon number is n+ = 2a\. From this we see 
that the photon number spectrum for the difference port is directly proportional to the 
ideal second harmonic squeezing spectrum:

Thus regardless of the pump noise of the laser the difference port always gives the ideal 
squeezing spectrum. Theoretically, it does not matter whether the difference port is elec­
tronic (two second harmonic beams separately detected, photocurrents added and sub­
tracted) or optical (two second harmonic beams optically combined with a 50/50 beam­
splitter so that all the power exits via one port only; the dark port is vacuum squeezing). 
Experimentally of course the latter is of more interest.

(A.9)

(A.10)


