Classical and quantum dynamics of
optical frequency conversion

By

| Andrew G. White

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
OF THE AUSTRALIAN NATIONAL UNIVERSITY

DEPARTMENT OF PHYSICS
28TH MARCH, 1997



© Andrew G. White, 1997

Typeset in Palatino by TEX and ETEX 2,.
0 NUSTRALIA

LlBRARY ,(\
N\
A710NAL UNNERS




To my parents

Who encouraged me to find out about dinosaurs



Declaration

This thesis is an account of research undertaken in the Department of Physics, Faculty
of Science, Australian National University and the Fakultét fiir Physik, Universitat Kon-
stanz, Germany, between March 1991 and October 1996.

Except where acknowledged in the customary manner, the material presented in this
thesis is, to the best of my knowledge, original and has not been submitted in whole or
part for a degree in any university.

[

~ Andrew G. White
Friday 28th March, 1997

EXAMINER"S ¥MERST N



Abstract

A second harmonic generator is constructed to investigate the power and noise behaviour
of optical frequency conversion.

Strong squeezing of the second harmonic is demonstrated. It is found that pump
noise critically affects the squeezing, with attenuation of the pump noise significantly
improving the squeezing. A modular modelling approach is used to describe and quan-
tify this effect, and excellent agreement is found between theory and experiment.

Two methods of SHG are possible, passive (occurs external to a laser) and active (oc-
curs within a laser). Theoretically exploring the possible squeezing regimes, the effect of
laser noise on both methods is considered. It is concluded that active SHG is not feasible,
as the high dephasing of practical lasers totally destroys the squeezing.

It is shown that the second harmonic generator can simultaneously support multiple,
interacting, second order nonlinear processes. Two categories of interaction are iden-
tified: competing, where the interacting processes do not share all of the modes; and
cooperating, where they do.

Competing nonlinearities are evident in the system as triply resonant optical paramet-
ric oscillation (TROPO): where second harmonic generation (SHG) and non-degenerate
optical parametric oscillation (NDOPO) occur simultaneously. Power clamping of the
second harmonic and nondegenerate frequency production in both the visible and in-
frared are observed and explained, again obtaining good agreement between theory and
experiment. Design criteria are given that allow TROPO to be avoided in future efficient
SHG systems.

The second harmonic squeezing is observed to be degraded by TROPO, with a max-
imum value occurring just before the onset of TROPO - in contrast to predictions for
closely related systems. A model is developed that shows this is due to two effects: a
noise eating effect related to the second harmonic clamping; and low frequency noise
added by the additional TROPO modes.

A model of cooperating nonlinearities is developed that shows a wide variety of third
order effects, including cross- and self phase modulation (Kerr effects) and two photon
and Raman absorption, are in principle possible in the second harmonic generator. A
strong third order effect is demonstrated experimentally: the system is phase mismatched
and optical bistability is observed that is shown to be due to the Kerr effect.

Arguments are presented to prove that, in principle, the system acts as a Kerr medium
even at the quantum level. A model of Kerr squeezing is developed that allows consider-
ation of the effect of pump noise: it is shown that the predicted squeezing is sensitive to
both the amplitude and phase quadratures of the pump. Strong classical noise reduction
(but no squeezing) is observed on light reflected from the cavity. It is speculated that the
squeezing is masked by excess phase noise from the laser.

Due to the quantitative and qualitative agreement between experiment and theory,
and the experimental reliability of the system, it is concluded that SHG is now a well un-
derstood and practical source of squeezed light. The potential for future systems, given
the availability of new nonlinear materials, is discussed.
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Chapter 1

Introduction

Science and technology are separate, but forever intertwined, disciplines. At their best
they are enabling, with advances in one opening up new vistas for both: the electrical ba-
sis of modern society can be traced to esoteric 18th and 19th century science; conversely,
a straight intellectual line can be drawn from the mechanical clock to General Relativ-
ity. The laser is a prime example of an enabling technology, with many new sciences
and technologies resulting from its development. In this thesis we examine the interac-
tion of two such fields that owe their existence to the laser: quantum optics and optical
frequency conversion.

Optical frequency conversion was first demonstrated in 1961 by Franken and col-
leagues [1], just one year after the first demonstration of the laser [2]. They doubled the
frequency of a pulsed helium neon laser (694.3nm to 347.2nm) with a conversion effi-
ciency of one millionth of a percent. Throughout the 1960’s there were theoretical and
experimental advances, with the realisation that any frequency manipulation that could
be performed at radio frequencies, could, in principle at least, be performed at optical
frequencies. Further technological advances were limited by the performance of avail-
able nonlinear materials, and during the 1970’s the field lost much of its impetus as the

tunable dye laser became seen as the solution to wideband optical frequency production.
However dye lasers did have considerable experimental disadvantages (mechanically

“complicated, require separate pump laser) and the field once again gained impétus in the
1980’s with the introduction of a suitable optical sources in the form of narrow linewidth,
solid state lasers.(notably the Nd:YAG nonplanar ring oscillator, or NPRO), and the com-
mercial availability of good nonlinear materials. In the last few years both strong up
and down conversion sources have been developed (second harmonic generation and
optical parametric oscillation, respectively). At the inception of this thesis, conversion
efficiencies of 10-40% had been reported and were regarded as impressively high; cur-
rently, figures of 60-80% are regarded as standard. With the rapid development of such
efficient sources, previously neglected effects, such a simultaneous up and down conver-
sion, have taken on a new significance.

In principle, quantum optics could have been developed as a coherent field any time
after the final synthesis of quantum mechanics in the 1930’s. However, lacking the laser,
there was no strong impetus to do so, nor a suitable experimental system against which to
test the theory. Theoretical work began soon after the development of the laser, and con-
tinued throughout the 1960’s and 70’s. Wider attention was focussed on the field when
Caves [3] suggested that the sensitivity of interferometers (in particular, interferometers
to detect gravitational waves) could be improved via the use of squeezed states. These are
states of light where one quadrature is quieter than the standard quantum limit (SQL).
Experimentally, the SQL is seen as a flat noise floor on the photocurrent spectrum of the
detected light, and is thus also known as quantum noise. Squeezing was first demon-
strated in 1985 by Slusher et. al [4]; this was also the year that the input/output for-
malism was developed, which allowed theoretical predictions of quantum noise spectra
that could be tested against experiment [5]. At the inception of this thesis several bright
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2 Introduction

continuous-wave squeezed sources had been demonstrated, but none had achieved their
predicted potential.

In this thesis we examine the classical and quantum dynamics of optical frequency
conversion. In particular, we focus on the steady state behaviour of continuous wave
cavity systems, the system is thus in the linearisable limit. In this limit, the concern
of classical dynamics is the origin, destination, and frequency behaviour of the optical
power; similarly the concern of quantum dynamics becomes the origin, destination, and
frequency behaviour of the quantum noise.

The primary aim of the thesis is to understand what happens to quantum noise in
second harmonic generation (SHG), where light is produced at twice the frequency of the
original light. We build and analyse a SHG experiment to address the following questions
— where is squeezing generated? how much? what limits it? and how reliable can it
be made? There has been much previous theoretical and experimental work on these
questions , which is described in detail at the beginnings of Chapters 4 & 6. To briefly
summarise previous results: there are two forms of SHG, passive (external to a laser)
and active (internal to a laser). In principle either form can provide strong squeezing.
Experimentally, SHG is an attractive source of squeezing as it can be made very stable
and reliable, and only requires one nonlinear stage. However in practice squeezing has
only been observed in passive systems, and it has always been less than predicted. We
aim to explain these results, demonstrate strong squeezing in agreement with theory, find
what limits the squeezing, and recommend steps to avoid these limits.

As a consequence, a secondary aim of the thesis is to explore the power behaviour of
an e£f1c1ent SHG system. SHG is a second order optical effect (where first order effects
are standard linear optics). As reviewed in Chapters 2, 7 & 8, in recent years there has
been investigation into a _number,of, curious optical effects in second-order systems that
are due to two or more second-order processes occurring simultaneously. Depending on
the nature of the interaction, the final behaviour can effectively be either second-order or
third-order in nature. Previously, strong second-order effects due to interacting processes
have been demonstrated in efficient continuous wave systems (such as nondegenerate
frequency production around the fundamental in SHG); however no strong third order
effects have been demonstrated. We aim to explore which of these effects can and do
occur in our experiment, and detail their experimental signatures. Further, we aim to un-
derstand the effect these higher order interactions have on the quantum noise behaviour
of the system.

1.1 Thesis plan

In the first part of Chapter 2 we give an overview of second order optical processes. In
the second part we model classical second harmonic generation, and discuss the dou-
bly vs singly resonant limits. The third part introduces the idea of interacting nonlin-
earities. In the fourth we present and contrast a classical model for second harmonic
generation (SHG) interacting with simultaneous nondegenerate optical parametric os-
cillation (TROPO) and predict power clamping in addition to nondegenerate frequency
production. In the fifth part we look at the interaction of SHG with itself, and introduce
equations that shows this can lead to a number of third order effects, notably the Kerr
effect which we consider in some detail.

The first part of Chapter 3 is an introduction to quantum theory (readers already
familiar with this material may wish to skip this section, but are advised to read the
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discussion of the sideband picture); the second part looks at the two core methods for
modelling quantum systems, and the third part is a detailed exposition of the method
favoured in this thesis (the Heisenberg approach) for the case of an empty cavity.

At the beginning of Chapters 4, 6, 7, & 8, there is an appropriate review of previous
research. In Chapter 4 the limits to squeezing in both active and passive second harmonic
generation are explored via a Schrodinger approach ~ this is the only place in the thesis
where the Heisenberg approach is not used, and comparison between the two shows the
strong advantages of the Heisenberg approach. The first and second parts of the chapter
introduce the model and numerical parameters, respectively. In the third part, the limits
to squeezing are explored graphically, with intuitive interpretations provided to explain
the predicted behaviour.

Chapter 5 is a very detailed discussion of the design and construction of the exper-
iment. The first three parts discuss the laser and modecleaner, and optical path. The
fourth section concerns the doubling cavity, with particular emphasis placed on design
considerations. The last two parts discuss the locking system and detection systems.

Chapters 6,7, & 8 contain the bulk of the experimental results. The first part of Chapter
6 presents a quantum model of singly resonant frequency doubling, and predicts squeez-
ing of the second harmonic. The second part presents the concept of a modular approach
to noise propagation. The third part presents the experimental squeezing data. Pump
noise is found to degrade the squeezing; attenuating this noise improves it significantly.
Using the results of the first two parts of the chapter, excellent agreement is found be-
tween theory and experiment.

Chapter 7 explores the classical and quantum signatures of TROPO. Data is presented
in the first part of the chapter that shows nondegenerate frequency generation in both
the visible and the infrared; in the second part power clamping of the second harmonic
is demonstrated. In the third part a model is developed for the effect on the second
harmonic noise, and data is presented that confirms the dual effects of noise eating and
~ additional low frequency noise.

Chapter 8 considers and explores the classical and quantum behaviour of the Kerr
effect. The first part explores the nonideal phase matching of our experiment, the sec-
ond part reports significant optical bistability, which demonstrates that large third order
effects are possible in practical, continuous wave, second order systems. The third part
introduces a quantum theory of the Kerr effect, and highlights the sensitivity of the Kerr
effect to both quadratures of the pump noise. The fourth part reports noise reduction (of
1.5-1.8 dB) on the beam reflected from a doubler run as a Kerr cavity.

Chapter 9 briefly summarises the results, discusses future research, and highlights
a number of concepts for general consideration, including removing the effect of pump
noise via optical cancellation. Appendix 1 contains an brief analysis of optical cancella-
tion in SHG, using the Heisenberg approach.

The thesis has been written both as a report and as pedagogical document. It also
encompasses a fair amount of conceptual ground. Given this, it is natural that many
readers will only be interested in a selection of the thesis topics. Accordingly, as far as
was possible, the thesis has been written in a modular fashion. If the reader is chiefly
interested in classical frequency conversion, the key components are Chapters 2 and the
relevant experimental results presented in Chapters 6 & 7. If instead the reader’s interest
is quantum optics theory, then the key components are Chapters 3 & 4 and the relevant
theoretical sections of Chapters 6, 7, & 8. Experimentally minded readers can find the

nuts and bolts of the experimental design in Chapter 5, and the experimental squeezing
and