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Abstract

Object technology has changed software development. New programming languages
have given rise to new software design techniques. Concurrently, new software de-
velopment methods have been proposed. All of these changes have an impact on on
methods and tools for software testing. Most of the literature on testing object-oriented
software has concentrated on aspects of object-oriented programming. We review this
literature in the context of object-oriented programming and design.

Development processes that have been proposed for object-oriented software em-
phasise iteration and incremental delivery (Hutt 1994). However, they give little con-
sideration to testing. In these processes, testing also needs to be iterative and incre-
mental. This thesis presents an approach to integrating testing into iterative and incre-
mental software development processes. The proposed approach inserts additional test
design steps into the analysis, design and implementation activities and closes each it-
eration with a test review and execution step. We apply this approach to the Booch
(1994) process.

New design techniques introduced by object technology offer new opportunities as
sources for generating test cases. In this thesis, we propose a tool to generate test cases
from one of these, namely state-transition diagrams. The generated test cases evaluate
classes using the abstract notion of state expressed in a state-transition diagram. We
develop a theory that reconciles this abstract view with the view of state expressed in
object-oriented programs. The tool uses Chow’s (1978) W-method to generate a set
of test cases that “cover” the behaviour described by this design finite state machine.
Then the class interface is used to generate an executable test program for the class.
This test program uses sets of input values for the method arguments, and so combines
domain testing with state machine based testing.
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Chapter 1

Introduction

Software has bugs. This is a fundamental truth of software development today and in
the foreseeable future. Until we can automatically manufacture software from require-
ments that perfectly capture the current and future needs of all potential users, this will
continue to be so. Despite the many advances that have been made in the software de-
velopment process, it is still the case that software has to be individually hand-crafted
to suit its particular purpose. As a consequence, quality must be evaluated separately
for each individual software item. Testing remains one of the major means of ensuring
software quality.

An alternative approach to improving the quality of a product is to evaluate and
improve the process of developing that product. This is a motivation for the increasing
adoption of object-oriented technology. Proponents of object-oriented methods argue
that they improve software quality, and reduce the need for testing and maintenance
effort (Wirfs-Brock et al. 1990, Meyer 1988).

While there appears to be insufficient documented proof of these claims there is
increasing anecdotal evidence of improved productivity and reliability. Recent confer-
ences on object-oriented technology have devoted at least one session to business’s ex-
periences of the benefits of object-orientation. Many of the adopters of object technol-
ogy first see benefits in porting, maintaining and enhancing software due to the modu-
larity of software implemented in object-oriented programming languages. They also
see benefit in the better modelling provided by object-oriented analysis, and the closer
integration of analysis, design and implementation (Taylor 1992, Osmond 1994).

Part of the success of object technology is that it has given software developers
techniques to handle increasingly complex software. It does this through interfaces
that hide the complexity of lower levels, and classification whereby it is possible to ab-
stract common elements and address them separately from the individual differences.
But with an increase in complexity of systems comes an increase in their modes of
failure.

There are, broadly speaking, three ways in which object-orientation has changed
software development. The most obvious is the introduction of new programming lan-
guages built upon the concepts of objects and classes, inheritance, and polymorphism.
The emergence of this programming paradigm has been followed by a profusion of

1



2 Introduction

object-oriented analysis and design notations that support the discovery and design of
objects and classes. More recently, some important work on the software development
process (Boehm 1988, Gilb 1988, Booch 1986) has lead to a number of object-oriented
software development methods to facilitate object-oriented analysis and design.

The aim of this thesis has been to examine the effect of object technology on soft-
ware testing. The discussion presented has been broken down into the same three
areas of object-oriented programming, object-oriented analysis and design, and the
object-oriented software development life-cycle. ‘

Object-oriented programming is, in several respects, substantially different from
procedural programming. Several kinds of errors in procedural programs do not occur
in object-oriented programs. This is as a result of the use of encapsulation, poly-
morphism, stronger type checking, and other features of object-oriented programming
languages. But these concepts also introduce new sources of errors. Further, a number
of widely used testing techniques focus on the source code, so we need to rethink the
application of those testing techniques to object-oriented programs. The research liter-
ature on testing object-oriented software has todate mainly concentrated on the effect
of object-oriented programming constructs on testing.

Object-oriented design has introduced new notations and techniques, as well as
adapting earlier ones. Objects and classes have become the main focus instead of
functions of data. The artifacts of software design, like all those of software develop-
ment, are potential sources for test cases. So there is an opportunity for testing to take
advantage of these new design methods in designing test cases.

In this thesis we propose a tool to generate test cases from one artifact of object-
oriented design: the state-transition diagram. State-transition diagrams describe the
behaviour of objects and classes at a more abstract level than their implementation in
an object-oriented programming language. We also develop a theory that reconciles
the design view of object state with their implementation.

The introduction of object technology provides an opportunity to change the soft-
ware development life-cycle, as well as changing the subprocesses within the life-
cycle. No single model has emerged for an object-oriented life cycle, but there is
an emphasis on iteration, incremental development and the evolution of the software
product. Changing the process requires a reassessment of test activities and how they
fit into the new life-cycle.

This thesis describes a framework for incorporating testing activities into an iter-
ative and incremental software development process. We demonstrate the framework
by applying it to the widely used software development process described by Booch
(1994).
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1.1 Outline of the Thesis

In this thesis we have assumed that the reader has a basic familiarity with software en-
gineering and object-oriented technology, but most concepts are briefly defined when
they are introduced or references are given. Chapter 2 presents a brief introduction
to software testing which provides the necessary background and terminology for the
rest of the thesis. "

Chapter 3 reviews the current literature on testing and object-oriented program-
ming. We discuss in turn encapsulation, object state and behaviour, inheritance, gener-
icity and object interaction, and examine the implications for testing.

Process models for object-oriented software development are discussed in Chap-
ter 4, and a strategy for incorporating testing into them is proposed. This chapter is
derived from a paper given at the International Conference on Testmg Computer Soft-
ware, Washington D.C., June 1996 (Bosman 1996).

In Chapter 5 we return to the state-based testing of classes. We develop a theory
that relates the design view of class state, in the form of state-transition diagrams,
to the programming language view. This chapter is derived from a joint paper with
Prof. Heinz Schmidt, given at the TOOLS Pacific *95 conference (Bosman & Schmidt
1995a). It is also available as a technical report (Bosman & Schmidt 19955).

Chapter 6 proposes a tool to generate test cases from a state-transition diagram.
This is an application of the ideas described in Chapter 5.

For examples of code we have used Sather, but the underlying ideas are more
widely applicable. Sather affords a clear, concise, readily understandable, pure object-
oriented view of the issues. Much of the work on testing object-oriented programs
has been clouded by the peculiarities of C++. Sather permits the presentation of these
ideas less muddied by implementation issues. The examples are intended to be straight
forward, and the reader should have little problem translating them into their favourite
object-oriented programming language. The main features of Sather are summarised
in Appendix B.



Chapter 2

Software Testing

Software testing does not have underlying theoretical foundations. It is a collection of
practices that have been found to discover defects in software. In examining software
testing we find ourselves in a situation not unlike Kilgore Trout’s dog standing on a
mirror: when eventually it looks down, it thinks it is standing on thin air and jumps
a mile (Vonnegut 1972). Despite the fact that testing does find bugs in software and
does, in practice, improve its reliability, we have no sound basis for relating the current
testing techniques to the quality of software.

In this chapter, we do a little “looking down” at the fundamental concepts and
techniques of software testing. After first defining terms that will be used in the rest
of this thesis, we give an overview of some of the many techniques traditionally used

for testing procedural programs. These testing techniques will be re-examined in an
object-orieénted setting in the next chapters.

2.1 Basic Concepts

Testing is the process of exercising software to detect differences between its actual
and required behaviour (IEEE 1990). The required behaviour may be explicitly stated
in terms of a requirements document or formal specification. It is immaterial to this
discussion how these requirements are derived or what form they take. Testing only
requires that we have some means of recognising correct and incorrect behaviour of
the software under test.

To introduce some notation, let P : D — R be a program with inputs from domain
D and outputs in range R. That is, D is the set of all (valid and invalid) inputs that
can be applied to P, and when applied to P produce outputs in the set R, so ford € D,
we have P(d) € R. Note that D usually models some real-world set and is typically
unbounded: for example, the inputs for a compiler includes all strings of text of finite
length. In practice it must be possible to represent the elements of D in a computer
system, so D is the set of strings of length up to some nominated value k. While D is
finite, for realistic values of k it is very large.



6 Software Testing

Now let S : D — R be a function defining the requirements on the output of P, as
derived from its specification. We say that P is correct, if for all d € D, §(d) = P(d).

A test case is an input value and its expected output, or in our formalism, a test
case is a pair (d,r) € D X R such that S(d) = r. We say that a test case is successful if
it causes the program to produce an incorrect result, that is if P(d) # r (Myers 1979,
Pressman 1992)!. The goal of testing is to find successful test cases, those (d,r) for
which $(d) = rand P(d) #r.

In standard software engineering terminology (IEEE 1990), the situation where a
program produces an incorrect result for some d € D is called a failure. A failure is a
run-time manifestation of a fault in the program code. A fault is caused by an error in
the implementation process; for example, a misunderstanding of the specification or a
typographical mistake.

Marick (1994) points out that in order for a fault to manifest as a failure, a test case
must meet three conditions: it must exercise the code containing the fault (reachabil-
ity), it must cause the faulty code to produce a different internal state to that which
would be produced by a correct version (necessity) and, the incorrect internal state
must propagate to some externally visible behaviour (propagation).

Test cases are collected into test suites. A test criterion (also called test requirement
or test condition) describes some aspect of the software that should be tested. For
example, test criteria for a list search routine could include a match at the beginning
of a list, a match at the end, and no match. Test criteria are used to guide the test
process in that, having identified test criteria for a program; a tester creates test cases
by selecting specific values that satisfy test criteria. Based on the above example test
criteria, a tester might select the test cases:

e find a in the list (a, b, ¢,d, e), expected result: 1
e find e in the list (a,b,c,d, e), expected result: 5
e find A in the list (a,b,¢,d, e), expected result: error

A test criterion may be satisfied by several test cases and one test case may satisfy
several criteria.

In realistic applications, D is typically huge and resources available for testing
limited, so the sample of test inputs (T' C D) is necessarily sparse. If there are relatively
few faults in the software then the set of inputs causing a failure (F C D) will likely
also be small, so the probability of a selecting test case causing a fault (T NF # 0) is
very low. This is the situation illustrated in Figure 2.1. The set of test inputs, marked
by the x’s, was selected according to some criteria that misses the failure-causing
inputs in the shaded area. The art of software testing is in developing and applying
practical techniques for identifying test criteria that are likely to find faults.

ISome authors use the reverse definition, e.g. (Ghezzi et al. 1991)
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Figure 2.1: An input domain D showing a set of inputs causing failures F, and test inputs ().

Testing has been described as the “accretion of confidence” (Macro 1990). But as
we have just seen there is no real basis for this confidence and this view of testing is

little more than a psychological crutch for the software developer. Dijkstra made this
clear when he pointed out that:

Program testing can be used to show the presence of bugs, but never to
show their absence. (in Dahl et al. 1972)

Testing techniques are usually divided into those that analyse the sf)eciﬁcation
without reference to its implementation (functional or black-box) and those that anal-
yse the code (structural, white- or glass-box). The next two sections describe some
techniques in each category. Section 2.4 describes an alternate testing technique based
on finite state machines. After individual units of code have been tested, they must
be integrated to produce a functioning system. Section 2.5 of this chapter looks at
integration testing and system testing. Finally we discuss techniques for assessing the
adequacy of a test suite or the likelihood that it has not missed significant faults.

2.2 Functional Testing Techniques

Functional testing refers to techniques that derive test cases without reference to the
code. Since these techniques ignore the implementation language, they can be equally
applied to software developed in an object-oriented programming language. We briefly
review some of the more well-known techniques.

Perhaps the most commonly used functional testing technique is specification-
based testing. This requires some form of requirements specification document. It
involves analysing the document to detect each required function, output or behaviour
of the software and devising a test case to determine its presence in the program. When
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Figure 2.2: An input domain that has been partitioned into equivalence classes, showing test
inputs suggested by equivalence partitioning (x) and boundary-value analysis (O).

the requirements specification is presented in a formal specification language it is pos-
sible to automate this process and a number of tools have been developed based on
this approach. Documentation-based testing is similar, but instead of working from
a requirements document, it analyses the user documentation such as user manuals,
reference manuals, user guides, and on-line help.

Random testing is a functional testing technique that generates test cases by ran-
domly selecting inputs from the program domain D. It is not highly regarded as an
effective method for finding faults. As we have seen in Figure 2.1, if there are rel-
atively few faults in the software then the probability of a test case causing a fault
(P(TNF #0)) is very low. On the other hand, if there are many faults, for example
during earlier stages of development, then random testing may be reasonably success-
ful, and although there is no reason why it should be any more successful than other
techniques, it may be easier to generate test cases randomly. Random testing is, how-
ever, the basis for reliability analysis (see Section 2.6.2 below), and is an essential
~ ingredient in the cleanroom software development process (Lokan 1993).

In equivalence partitioning the input domain of the program is partitioned into
classes that are expected to produce similar behaviour or output. Test cases are then
selected so that all equivalence classes are represented in the test suite. In Figure 2.2
the input domain D has been partitioned into subdomains indicated by the dashed lines.
Test inputs X are selected from each subdomain.

The underlying assumption is that in terms of errors in the logic of the program,
we can reasonably expect all values in an equivalence class to be handled in the same
way and exercise the same logic and thus any one of them will serve as a test case.
For example, if the software under test is a square root function, and the input domain
is the set of representable real numbers, this would be partitioned into negative and



§2.2 Functional Testing Techniques 9

1 search (beg:INT, arr, sub:ARRAYELEM) :INT
-- Returns the index of the leftmost
-~ subarray of ‘arr’ starting at
-- 'beg’ or beyond which matches
-- ‘'‘sub‘’. Returns -1 if no match.

2 r: INT := beg;

3 loop while! (r < arr.size-sub.size);

4 match: BOOL := true;

5 j: INT := O;

6 loop while! (j<sub.size and match);

7 if arr{r+j] /= sub[3j] then

8 match := false;

9 end;

10 j o= j+1;

11 end;

12 if match then

13 ) return r

14 end;

15 r := r+l

16 end;

17 return -1

18 end;

Figure 2.3: A routine and its control-flow graph.

non-negative numbers, being invalid and valid inputs respectively. Another example is
the list search in Figure 2.3 and described in the next section; if we treat the comment
as a specification then equivalence partitioning would find five equivalence classes:

e the sequence sub does not occur in the array arr,

e the start index, beg, is before the start of all occurrences of subinarr,

e beg is after the start of all occurrences of sub,

e beg is between two occurrences of sub in arr, and

e aclass of invalid values, in which beg is not in the range of indices for arr.

Boundary value analysis is based on the recognition that many errors occur at the
boundaries of equivalence partitions. A common example is the “off-by-one” error,
that can occur when iterating through arrays accessing one past the last element. In
Figure 2.2, boundary value analysis selects test case inputs () on the boundaries be-
tween subdomains. Note that an intersection between boundaries is also a boundary.
In the square root example in the previous paragraph, boundary value analysis would
suggest zero and numbers a small increment above and below zero as test cases. In
the substring search example, boundary value analysis leads to test cases where beg
is the first or last index of arr, the beginning of an occurrence of sub in arr, where
sub occurs at the beginning and end of arr, where sub is a single character or the
same as arr, and so forth.
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By regarding blocks of statements as “black-boxes”, these two techniques can also
be applied to code. Each predicate in the code partitions the set of inputs according to
which branch they would cause to be executed. When used in this way, equivalence
partitioning is similar to branch coverage (see Section 2.3.1 below). Boundary value
analysis suggests test cases that are at the edges of these partitions. Given the statement

if a > 0 then ...

test cases should be selected that cause a to be 0, a small increment above O and a
value below 0.

There are several other functional testing techniques described in the literature.
Cause-effect graphing relates input conditions to their effects (Myers 1979, Pressman
1992, Ghezzi et al. 1991). When the input has a well defined syntax, such as compilers
or text processors, syntax testing (Hetzel 1988, Ghezzi et al. 1991) can be used to
generate test cases that have examples of all constructs in the input grammar. State-
based testing is discussed separately in Section 2.4.

Unlike purely structural testing techniques, functional testing techniques can ex-
pose errors of omission in the implementation. Structural and functional testing are to
some extent complementary and are ideally used together. It is usually recommended
that functional tests are devised first and then these are supplemented by structural
tests.

2.3 Structural Testing Techniques

Structural testing techniques examine the implementation of software in order to derive
test conditions. Typically these methods classify structures found in the code, and then
require that the test suite cover these constructs, that is, exercise all occurrences of
them. The simplest example is to recognise functions and procedures in the code and
ensure they are all exercised by the test suite. This is known as call coverage.

Control-flow testing and data-flow testing are the two main structural testing tech-
niques. They focus on the flow of control in a program and, in the latter, the flow
of data through a program. Mutation coverage is a novel technique that focusses on
exposing likely errors. These techniques are described in the rest of this section.

The structural testing techniques described in this section can be, and are, applied
to object-oriented programs. However object-oriented programming languages have
additional structure and the effectiveness of structural testing techniques for object-
oriented programs needs to be reconsidered (see Chapter 3).
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2.3.1 Control-Flow Testing

Control-flow testing derives test criteria from the control-flow graph of a program.
Figure 2.3 shows a sub-string matching routine, written in Sather?, and its control-
flow graph. Each node in the control-flow graph represents a statement and arrows
indicate the possible execution sequences of the statements.

Control-flow test criteria are well known and widely used, and described in many
texts on software testing or software engineering: see for example, (McDermid 1991,
Pressman 1992, Sommerville 1992, Myers 1979) or, for a thorough discussion, (Beizer
1990). The most commonly used control-flow test criteria are:

Statement coverage requires that the test suite executes all statements in a program.

Branch coverage (or edge coverage) requires the test suite execute all alternative
paths at a branch. For example, in Figure 2.3, any path that includes the se-
quence of statements corresponding to the nodes (...,6,7,8,9,...) exercises all
statements in that part of the control-flow graph, but not the branch (...,7,9,...).

Condition coverage requires that each simple term in a compound boolean expression
evaluate to all possible combinations of true and false. Compound boolean ex-
pressions are those containing the operators and or or, such as the expression
j < sub.size and match on line 6 in Figure 2.3.

Path coverage requires that the test suite exercise all possible paths in the control-flow
graph. If the program contains loops then there is infinite or at least impractically
large number of paths, so path coverage is impossible to achieve. In practice the
weaker loop coverage criterion is used.

loop coverage requires that there are test cases that exercise each loop at least 0, 1

and the maximum number of times (or where the loop has no maximum, a large
number of times).

There are a large number of commercial tools available that can evaluate the state-
ment coverage, branch coverage and even loop coverage of a test suite for a number
of programming languages. These work by instrumenting the code under test to mea-
sure the number of times the program counter reaches each statement, branch or loop.
A tester can use the results to find sections of code that were not exercised and then
design new test cases to reach those untested sections.

2In the figure, the expression while! (.. .) is a Sather iterator (see Appendix B). In this example
the two statements containing it are semantically equivalent to while loops. ‘
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Figure 2.4: Subsumption relationships among test coverage criteria.

2.3.2 Data-Flow Testing

Data-flow testing (Frankl & Weyuker 1988, Ntafos 1988) is actually a collection of

structural testing techniques that attempt to find errors by exercising the flow of data
through a program. It borrows from the data-flow analysis techniques used in opti-
mising compilers. In the control flow graph of a program or routine, a definition of a
variable x, def(x), is a node in which the value of x is set or modified (for example,
the statements 2 and 15 in Figure 2.3 are both definitions of the variable r). A use of x
is a node in which the value of x is used. If x is used in a calculation, this is a c-use (we
write cu(x)), or if in a predicate, it is a p-use (pu(x)). The reason for the distinction
is that predicates occur at a branch in the routine’s control-flow graph. In Figure 2.3,
statements 7 and 15 are c-uses of r and statement 3 is a p-use of r. A du-pathis a
path in the program’s control flow graph in which there is a definition of the variable
x followed by a use (for example, in Figure 2.3, the sequences of statements (2, 3) and
(15, 16, 3, 4, 5, 6, 7) are both du-paths for the variable r).

Static data-flow analysis, such as performed by the UNIX utility lint, seeks to
detect those paths with successive definitions of the same variable, or with uses lacking
a preceding definition, as they indicate implementation faults. In testing, data-flow test
criteria assume that these have been removed, and only consider du-paths.

A test suite satisfies all du-paths coverage if, for all variables in the program, every
du-path is exercised. It satisfies all defs coverage if for every variable, every definition
is exercised. Similarly, a test suite exercising all uses of all variables satisfies all uses
coverage. If a test suite exercises the subset of du-paths that includes all c-uses or
p-uses, it satisfies the all c-uses coverage or all p-uses coverage, respectively. If a test
suite satisfies both the all c-uses and the all defs coverage, that is, if for any def(x)
there is no path to any cu(x), then a path to some pu(x) is exercised, it satisfies all
c-uses/some p-uses. The all p-uses/some c-uses is similar.
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2.3.3 Relating Test Criteria

We say that one test criterion A subsumes another, B, if every test suite that satis-
fies B also satisfies A. Clearly the subsumes relation is transitive and reflexive. Of
the control-flow test criteria, branch coverage subsumes statement coverage, and both
are subsumed by condition coverage. Path coverage subsumes all other control-flow
testing criteria.

The subsumption relationships between the various data-flow and control-flow
coverage criteria are illustrated in Figure 2.4 (Ntafos 1988). An arrow indicates that
one criterion subsumes another, so for example, path coverage subsumes du-path cov-
erage which in turn subsumes all uses coverage.

2.4 Testing using Finite State Machines

Finite state machines are a useful tool for specifying, designing, implementing and
testing software. They can describe interfaces, such as network protocols and GUISs,
and simple grammars such as regular expressions. Several tools exist for generat-
ing working code from finite state machine descriptions. Methods for specifying and
building reliable software based on refining finite state machine specifications have
been proposed (Leveson et al. 1994, Zucconi & Reed 1996).

Finite state machines (Hopcroft & Ullman 1979) represent a system as a set of
states and transitions between states. The output of a finite state machine depends upon
its current state as well as the input, and in response it may also change its state. Our
development below and elsewhere in this thesis is based on the Mealy machine which
associates outputs with transitions, rather than the Moore machine which associates
outputs with states. The two have been shown to be equivalent (Hopcroft & Ullman
1979).

Formally, a (deterministic) finite state machine is described by the sextuple

F=<1,0,S8,s,,f,g >
where
I is the set of input (or event) symbols, |
S is the set of state symbols,
O is the set of output symbols,
So € S is the initial state,
f:Ix§ — S is the transition function, and

g : I x S — O is the output function.
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Figure 2.5: A finite state machine diagram for a traffic light.

Both the transition function f and the output function g can be partial, that is, not all
combinations of states and inputs need cause a transition or produce an output. For a
finite state machine S, I and O are all finite. When it is started, a finite state machine is
in the state s,. If there is no sequence of transitions from s, to a state, then that state is
unreachable. Dead states are those for which there is no sequence of transitions back
to s,. A finite state machine with no dead or unreachable states is strongly connected.
In practice, almost all finite state machines used in software are strongly connected
(Beizer 1990, page 373).

Figure 2.5 shows a finite state machine for a traffic light. It has five states each
indicated by a labelled box. The transitions are represented by arrows and labelled
with the inputs that cause them. Initially it is in the Off state. Turning the power on
(input on) causes it to transition to a state in which the red signal is on (state RedOn).
The next input (from a timer and/or traffic sensor in the road) causes it to cycle through
the green (state GreenOn), amber (state AmberOn) and red signals. In any state it can
accept a fault input which sets the FSM in the AmberFlashing state. Further fault
inputs return it to the AmberFlashing state, until turning the power off (input off) sets
it in the Off state.

Finite state machines succinctly describe the behaviour of systems and therefore
are a good source of test criteria. Beizer (1990) and Marick (1994) recommend that,
where possible, testers create a finite state machine model of the software to be tested,
if one wasn’t produced in its development. Where there is a tool to generate test cases
from a finite state machine specification, such as the one which will be described in
Chapter 6, this can be a very efficient practice. '

There are a number of test criteria that can be used for finite state machine specifi-
cations, including:

e entering all states,
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e exercising all transitions,

e exercising all pairs of transitions,

e exercising all sequences of n transitions and
e exercising all paths in a transition tree.

Deriving transition trees is an important testing technique since a test suite derived
from transition tree can show the equivalence of an implementation and its finite state
machine specification. Thus we describe this in detail here. In Chapters 5 and Chap-
ter 6 we use this technique to generate test cases for testing classes.

We say two finite state machines with the same sets of input and output symbols,
Spec =<1,0,8,s,,f,g > and Impl =< 1,0,S',s,, f', g >, are equivalent if any se-
quence of inputs from I produces the same sequence of outputs on both finite state
machines (Hopcroft & Ullman 1979). Chow (1978) showed that if one finite state ma-
chine Spec is minimal, we can select a finite set of input sequences T C I* such that if
Spec and Impl are equivalent over T then they are equivalent for all input sequences I'*.
A number of refinements have reduced the size of the test set T generated by Chow’s
“W-method” (Fujiwara et al. 1991, Bernhard 1994). In essence the W-method derives
a transition tree for Spec.

To construct a transition tree for a finite state machine we can proceed as follows:

1. The initial state is the root node of the tree.

2. For each new, non-terminal node, an edge is drawn for every transition out of
that state to a new node representing its target state.

3. For each node just drawn, if it represents a state alréady visited, then it is marked
as terminal.

4. Repeat until there are no new, non-terminal nodes.

The transition tree thus constructed for the traffic light finite state machine in Figure 2.5
is shown in Figure 2.6. The test cases are formed by taking all paths and subpaths in
the transition tree. The test case input is the sequence' of events from the transitions
along the path and the result of the test case is the state in the end node of the path. A
set of test cases from the transition tree in Figure 2.6 is:

event sequence: 0; final state: Off

event sequence: on; final state: RedOn

event sequence: on, off; final state: Off

event sequence: on, fault; final state: AmberFlashing
event sequence: on, fault, off; final state: Off

event sequence: on, fault, fault; final state: AmberFlashing



16 Software Testing
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Figure 2.6: A transition tree for the traffic light state machine in Figure 2.5.

event sequence: on, next; final state: GreenOn
event sequence: on, next, fault; final state: AmberFlashing
event sequence: on, next, next; final state: AmberOn

event sequence: on, hext, next, fault; final state: AmberFlashing
event sequence: on, next, next, next; final state: RedOn

Test suites derived from transition trees quickly get large as the number of states
and inputs increase. While the length of each test sequence is bounded by the number
of states, the minimal number of tests is at most |S|2 x [7]!¥1=151+1 and the total length of
all test sequences is at most |S|2 x |§'| x [I|IS1=151+1 (Chow 1978). This is practical for
small state machines, but large state machines must be factored or otherwise reduced.
More recent work has developed algorithms that reduce the size of the required test
suite under certain conditions (Fujiwara et al. 1991, Bernhard 1994).

The test suite derived from a transition tree tests that an implementation of a finite
state machine supports all the transitions in its specification. But it is also an error
if the implementation allows extra transitions (sometimes called “sneak paths”). The
test criteria for additional transitions and states is to try all illegal events for each state.
In Figure 2.5 the event b cannot be accepted while in state State 2. To test for the
possibility of a sneak path from State 2to State 1 we would add the following
path to the above test suite:

event sequence: on, fault, next; final state: error

State charts are a development of the state machine diagramming notation that
allows for hierarchies of nested state machines, conditional transitions, and other ex-
tensions (Harel 1987). State charts have been incorporated in to several object-oriented
development methods (also known in this context as “object charts” or “state-transition
diagrams”), where they are used for describing the dynamic behaviour of objects (see,
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for example, Rumbaugh et al. 1991, Booch 1994). The state-based testing of classes
is discussed in Chapter 3.

2.5 Testing in the Large

The test techniques so far described can be applied to single programs. Larger software
systems can be complex to test as well as build. One aim of software engineering is
to develop methods for handling this complexity. Testing is, in the main, a software
process issue and these aspects are further examined in the context of object-oriented
software development in Chapter 4. However, it will be helpful to outline the main
issues and provide a few definitions here.

Large systems are developed in modules which are individually tested. If a module
under test depends upon the services of another, that functionality can be provided, for
the purposes of testing, by a stub. Usually a test driver is required to supply inputs,
run the module and collect the results.

Once individual functions and modules are tested, they must be integrated into the
complete system. The concern of integration testing is to validate the intermediate
stages. As modules are combined and the items being tested become larger, there is
a trend toward functional testing over structural testing and an increasing focus on
testing module interfaces (Harrold & Soffa 1991). The central issue is the order of
combining modules. The two most often described schemes are fop-dowrn and bottom-
up. In the former, the process begins with the system interface; in the latter, with
those core modules that provided services for many other modules. Stubs and drivers
are incrementally replaced by modules and the configuration tested until the system is
complete. Hetzel (1988) recommends integrating small skeletons support increments
of functionality and then building out from these skeletons. In top-down integration
the interface is most heavily tested, in bottom-up it is the core services.

When complete, the system as a whole is tested. This phase is called system testing.
As well as confirming the correct functioning of the software system, this may also
involve testing other factors such as performance, reliability, and security.

2.6 Adequacy

If a test suite fails to uncover any new errors, one of two conclusions can be drawn:
either the program is of sufficient quality and reliability or the test suite is inadequate.
A test suite is adequate if it could expose any possible failure of the program. When
the test suite for a program is adequate, testing can be stopped (Weyuker 1988).

A test suite consisting of the complete set of possible input values is trivially ade-
quate, but complete testing of all but trivial software is infeasible. As we have already
seen, the input domain is typically huge, so if a program is to be run with all possible
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inputs and the results checked against the expected output, this could take arbitrarily
long. Consider, for example, validating a compiler by compiling every possible string
of characters.

On the other hand, a white box approach fares little better: to exercise every
combination of paths in even a moderately complex program leads to a combinato-
rial explosion in the number of test cases. To take a very simple example, a pro-
gram containing a single branch inside a loop that can execute at most 20 times has
20421 .. 4220 =2,097,151 paths, each requiring a separate test case. Software
is considerably more complex than this. Even if all paths are exhaustively tested, the
software may still have errors due to unimplemented functions.

For efficiency, testers aim to build a test suite that is minimal, since test cases take
time to run as well as time to develop. However, it is not easy to determine a minimally
adequate test suite. In practice, a decision to stop testing must be made on the basis of
the cost of developing additional test cases versus the risk of any remaining undetected
faults. This will often depend on the software development context: the risk and cost
of software failure, the quality requirements of the customer or developer, or simply
the time and resources available for testing. This is a project management issue.

In the rest of this section, we briefly examine some techniques that have been used
to determine test suite adequacy.

2.6.1 Coverage

The thoroughness with which control-flow and data-flow testing has been carried out
can be measured by taking the percentage of constructs that were actually exercised
by the test suite. For example, a test suite that exercises every statement in a pro-
gram is said to have achieved 100% statement coverage. Coverage is probably the
most commonly used technique for determining the adequacy of a test suite. It relates
directly to several of the test techniques described above: branch, loop, and du-path
coverage are often used, and tools exist for several programming languages for deter-
mining test suite coverage (for example, see (Marick 1992b, Horgan et al. 1994, Frakes
et al. 1991)).

A typical target for testing is 100% statement coverage and 85% branch coverage
(McDermid 1991). Weyuker (1988) states that an adequate test suite should, at a
minimum, exercise 100% of the executable statements and Marick (1994) also sets
100% feasible coverage as target, but more for psychological reasons. Beizer (1984)
is even more adamant:

If you still believe it’s possible to test and integrate a system without meet-
ing the minimum standard of 100% coverage, then there’s no point in con-
tinuing with this book. There is a philosophical chasm between this writer
and the reader that only the reader’s future bitter and expensive experience
will bridge.
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Although coverage is widely used and often recommended, there have been few
empirical studies of its effectiveness. It is still not clear whether high test coverage
leads to a high rate of fault detection (Hutchins et al. 1994, Horgan et al. 1994).

2.6.2 Reliability Analysis

~ Another basis for a decision to stop testing is reliability analysis. This technique mod-
els the occurrence of failures as a statistical process, such as a Poisson process (Musa &
Ackerman 1989), binomial distribution (Levendel 1991) or Markov chain (Whittaker
& Thomason 1994), to derive a statistically based reliability measure such as mean
time to failure (MTTF). When a predetermined reliability target is reached, testing is
considered complete. Reliability analysis is (at least in theory) the only form of testing
used in the cleanroom software development process (Lokan 1993).

In order to apply statistical techniques, reliability analysis makes a number of as-
sumption about the random distribution of faults and failures. This has been much
criticised since software faults are due to logical failures in the development pro-
cess rather than random processes such as fatigue. Further, software faults clus-
ter: it is a well established observation that 80% of faults occur in 20% of code
(Levendel 1991, Walsh 1992). However, in large systems of high complexity, it may
be reasonable to approximate failure distribution with a random process.

2.6.3 Error Seeding and Mutation Analysis

Error seeding is a method of testing the test suite by determining its effectiveness on a
known set of faults. A representative set of known faults is inserted into the software,
and the number of these faults found by the test is determined. This is then used to
estimate the number of undiscovered faults in the system under test.

Mutation analysis is a more sophisticated version of this technique. It involves gen-
erating copies of the program with a fault inserted (known as mutants). Two forms of

mutation are most commonly used: operator replacement (for examplea := b + c
couldbe mutatedtoa := b - c) and variable replacement (in which original state-
ment could be mutatedtoa := ¢ + c). In mutation analysis, a test suite is adequate

if it can distinguish the program from all possible mutants.

Mutation analysis has been shown to be much more stringent than other testing
techniques. However, generating and testing mutants is an expensive process, as the
number of mutants is proportional to the square of the sum of the statements and vari-
ables. In practice it is generally not feasible, but a number of techniques are under
development that may make the mutation analysis of larger commercial projects pos-
sible (see, for example, Duncan ‘1993).

Mutation analysis assumes that by the time programs are ready for testing, only
such simple faults remain (in the literature on mutation this is known as the “com-
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petent programmer hypothesis”). Mutation analysis seeks to establish the ability of a
test suite to expose these kinds of faults. More recently, mutation coverage has been
proposed as a means of designing test cases that are likely to expose common mistakes
by programmers (Marick 1992b).
Proponents of error seeding and mutation analysis argue that, since it is based on
an analysis of likely faults, it is more efficient at finding errors. However, the technique
~ as described here concentrates on errors with very localised extent. It is interesting to
compare Knuth’s detailed analysis of the errors found in TgX software (Knuth 1992).
Only two of Knuth’s 15 categories of errors (constituting less than 8% total errors
listed) would be exposed by mutation testing. Further, faults in these two categories
tended to occur towards the earlier parts of development, rather than the end as would
be expected under the “competent programmer hypothesis”.

2.6.4 Process-based adequacy criteria

Myers advocates that a decision to stop testing be based on an analysis of the testing
process (Myers 1979, Chap. 6). There are two core ideas. The first is to estimate
the number of faults that are expected to be found, and then test until that many are
uncovered. The second is that testing should not stop while the rate at which faults are
being found is increasing.

The number of faults that are expected to be found is calculated from the expected
number of faults in the software and the effectiveness of the test process and testers.
The number of faults in the software under test can be estimated from historical data
or by error seeding techniques (Myers 1976). If S faults are inserted into the software,
and the test suite exposes s of them as well as z indigenous faults, the actual number of
indigenous errors (N) can be estimated by N = (S x n)/s. The effectiveness of a tester
is also determined from historical records. Thus, for a 2000 line software product
developed by a team that had an error rate of 5 bugs per 100 lines of code in a previous
project, a tester with a effectiveness of 80% should expect to find 80 bugs. So, testing
should continue until that many bugs are found and the rate of finding bugs falls below
a previously set threshold.

2.7 Summary

In Section 2.1 we said that a fault occurs in a program P when S(d) # P(d) for some
d in domain D of the program. We base our confidence in the correctness of a program
if $(d) = P(d) for all d in our test suite 7 C D. In this chapter we have described
a number of heuristics for choosing a good T, that is, one which is likely to expose
faults.

In general, the techniques described in this chapter assist in finding test criteria. It
may be that a single test case may satisfy more than one test criteria. An efficient test
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suite minimises the number of test cases. This can be important if testing is repeated,
as in the iterative style recommended for developing object-oriented software.

Yet, despite some spectacular disasters, we do build software that does work and
is, in the main, reliable. Experience shows that pay packets, electricity bills and bank
statements are nearly always correct, telephones and electronic ignition usually work,
and I have yet to meet a bug in my use of this word processor. So, like the dog
on the mirror, software development and testing does “stand up”, although we don’t
understand why and when we stop to examine it in detail, we have little reason for
confidence in it. It is still the case that in the absence of a unifying theory, a tester’s
best tool is experience. The test techniques described here are just a part of the tester’s
armoury.



Chapter 3

Testing and Object-Oriented
Programming

Most traditional testing techniques were developed in the context of testing software
written in procedural programming languages. So naturally the question arises: to
what extent are these techniques applicable to other programming paradigms, in par-
ticular object-oriented programming? In this chapter we look at the effect of object-
oriented programming on testing.

Of the testing techniques described in Chapter 2, clearly Structural testing tech-
niques need to be re-evaluated, since they are based on source code. In fact it is worth
re-examining all testing techniques, since object-orientation affects so many parts of
the software development process.

Much of what has been written to date on testing object-oriented software has fo-
cussed on aspects of object-oriented programming languages that affected testing. The
main part of this chapter is a discussion of the ways in which aspects of object-oriented
programming languages interact with testing, both from the point of view of testing
objects and testing object interactions. The presentation aims to be language indepen-
dent. In particular, memory management issues are not discussed as they hardly arise
in languages with garbage collection such as Smalltalk, Eiffel, Java and Sather. Spruler
(1994) and Hunt (1994) discuss testing issues for memory management in C++.

While the terminology of software testing has largely been settled, object-oriented
technology is an area of active research, much debate and fluid terminology. The first
section briefly covers those concepts and terms from object technology that will be
needed in the rest of this thesis. In Section 3.2 we shall revisit the formal analysis
from Section 2.1 of the previous chapter in the context of testing objects. Section 3.3
looks at encapsulation and the testing of individual objects or classes. The remaining
sections examine in turn the effects on testing of inheritance, genericity, exceptions,
programming by contract and testing the interactions of objects and classes.

23
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3.1 Concepts in Object-Oriented Programming

The object-oriented approach to building software constructs a solution from objects
and their interactions. Objects represent entities in the problem that the software is
designed to solve. In this problem space, objects can be characterised by their state
and behaviour (Booch 1994). The state of an object is determined by its static and
dynamic properties, and its behaviour by its possible actions and reactions. An object’s
behaviour may change its state, and at any given time the state of an object is an
accumulation of the effects of its behaviours since its creation.

So, objects are packages of data and operations that may act on that data, which we
call its attributes and methods. We call this packaging encapsulation. Objects interact
by sending a message to other objects requesting that they perform one or other of
their methods. The sending object is called the client, and the supplier is the object
receiving and acting on the message and producing some response. It is only possible
to manipulate an object through its methods.

For an object, each of its methods has a name, a (perhaps empty) set of arguments
and possibly returns an object. Its name and the types of its arguments and return
value make up the signature of a method. The set of signatures of an object is its
interface or type. The type of an object determines which messages it can receive, that
is, only those which match a signature in its type. We say that one type is the subtype
of another if it contains all the signatures in the other, which we call its supertype.
Since an object of a particular type can accept the same messages as an object of a
supertype, any object could be replaced by another that is of one its subtypes. This
substitutability property is known as polymorphism.

Types, which can be thought of as existing in the ‘design space’, are implemented
in an object-oriented programming language by classes. A class provides definitions
for the attributes and methods of the type it implements. In the following, we shall
use uppercase names for both classes and the types they represent. It will usually
be clear which is meant from the context. By making the distinction between class
and type we follow Leavens (1991) rather than Meyer (1988). We find this distinction
useful because classes are constrained by the need to represent them in a programming
language, where as types can be represented in a ‘design language’ that also may not
be as formally defined. This representation gap can be a source of defects. We will
return to this issue in Section 5.2.

Simple types such as INTEGER, BOOLEAN or CHARACTER can be repre-
sented in by classes in some object-oriented programming languages such as Smalltalk,
or as a distinct set of elementary types in others, for example C++, Java and Sather.
We will assume the latter. Attributes can be simple values such as integers or booleans,
or they can be other objects. The class ACCOUNT might include the attributes
balance, simple value of type integer, and owners, itself a list object whose ele-
ments are of type CLIENT. The values of an object’s attributes make up its internal
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state.

Methods are implemented by functions or routines. Information hiding is the abil-
ity of a class to restrict the visibility of its attributes and methods and their implemen-
tation. Objects are created by instantiating a class and hence the object is then said
to be an instance of the class. A class method that instantiates objects of that class
we call a constructor. Methods that access an object’s state without changing it are
sometimes called selectors and those that do change an object’s state are modifiers.

A class may inherit the attributes and methods of another class, becoming its sub-
class or child. The inherited class is referred to as a superclass or parent. In many
object-oriented programming languages, inheritance is used both for subtyping and
to reuse part or all of the implementation of the parent. A subclass may redefine an
inherited method by providing a new implementation. Most languages do not dis-
tinguish between these two uses for inheritance, Java (Amold & Gosling 1996) and
Sather (Omohundro & Soutamire 1995) are perhaps the only exceptions.

An abstract class does not provide a complete implementation of its type, and so
cannot be instantiated, that is objects cannot be created from it. Abstract classes are
typically used to define a common interface that will be implemented by several sub-
classes. Classes that define a complete implementation, and hence can be instantiated,
are said to be concrete.

A generic or parameterised class has one or more type parameters. A common
use is to define data structure classes independent of the types that may be used in
the data structure. For example, a LIST{ELT} class has a parameter ELT for the
element type. Then an object could be declared to be a LIST{INTEGER} by sup-
plying INTEGER for the type parameter, or a LIST{POLYGON} by substituting
POLYGON instead. Both classes would have similar behaviour and interface except
that one would work with objects of type INTEGER and the other POLYGON. Some
object-oriented programming languages allow the type parameter to be constrained
to be a subtype of some specified type. For example, a list that permits searching its
elements could that require its element types have a method to make comparisons like
this: SEARCHABLE_LIST{ELT < COMPARABLE}.

Exceptions are a mechanism used in many programming languages for handling
error situations. The general model is that if a method cannot complete its task for
some reason, instead of simply returning to its calling method it raises an exception.
The exception may be caught in the calling method, if it has sufficient context to either
retry the called method or clean up allocated resources and exit. If the exception is not
caught by the immediate caller, it is passed on to the caller’s calling method, and so on
up the call stack. An uncaught exception usually causes the program to fail.

Assertions are boolean valued expressions that, when they evaluate to false, raise
an exception, and otherwise have no effect. Assertions are used in a number of pro-
gramming languages to check the state of a variable or a relationship between vari-
ables during the execution of a routine. Some object-oriented programming languages
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provide the facility for a class to define an invariant and to define preconditions and
postconditions for its methods.

A precondition is an assertion that is evaluated when a method is entered. They
can express requirements of the input arguments or of the state of the supplier
class. For example, before calling the debit method of an ACCOUNT object, it
must have a positive balance and the amount to be debited must be positive.

A postcondition is an assertion that must be true when the method returns. Post-
conditions usually constrain the actions of methods or their returned objects. For
example a debit message on an ACCOUNT object must reduce the account’s
balance by the amount withdrawn.

An invariant is an assertion that constrains the state of an object. For example, a
SAVINGS_ACCOUNT object must always have a non-negative balance. Nor-
mally, a class’s invariants are evaluated upon entry to and exit from each of its
methods.

These terms and definitions are by no means the only ones, but will suffice here. A
common terminology for object-orientation has yet to evolve. Alternate terms and def-
initions can be found, for example in (Meyer 1988, Wirfs-Brock et al. 1990, Rumbaugh
et al. 1991, Booch 1994, Berard 1993a, Henderson-Sellers & Edwards 1994, Palsberg
& Schwartzbach 1994, Liskov & Guttag 1986).

3.2 Testing Redefined ‘

In Section 2.1, we outlined a formal description of testing. There we saw that, given
a program P : D — R and a specification function § for P, we infer the correctness of
P by selecting a (usually small) subset T C D and evaluating the boolean expression
S(d) = P(d) for each d € T. In this section we adapt this definition to testing classes.

Let C be a class with methods c1,c3,...,c,. Each method has a signature of the
form:

ci(Pi1, P, -, Pim;):Ri (3.1

where R; is the return type of ¢; and the P;; are the types of its arguments. We allow
that R; is empty for methods that do not return an object and m; = 0 for methods with
no arguments.

An object of class C can receive messages consisting of a method ¢; and sequence
of objects (pi1, pi2- - -, Pim;) Whose types are P;1,Pp,...,Pm; The method uses the
current state of the object, that is the values of its attributes, and the state of each
argument p;;. The method may also change the object’s state. So the behaviour of an
object is determined by its state and the message received.
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Type: SORTED_LIST (Parameter type: ELT)
Maintains a list of objects of type ELT in sorted order.

Signatures:

size : INTEGER
Retumns the number of elements in the list.
insert (ELT)
Adds the argument as an element of the list, preserving the order.
delete (ELT)
Removes the argument from the list, if it is a member. If not the list is unchanged.
member (ELT): BOOLEAN
Returns ‘true’ if the argument occurs in the list, returns false if not.
equals (SORTED.LIST) : BOOL

Returns ‘true’ if each element of the argument is equal to the elements in the
same position in the list object and vice versa. Returns false otherwise.

Figure 3.1: A SORTED_LIST type.

Let C' be the set of all possible states of objects of the class C. We will call C’ the
state space of the class C. Similarly P;; and R; are the state spaces of the argument
types F;; and return type R;, respectively. We can write ¢; as a (partial) function on
state spaces:

ci:C' X Py x P ...X Pjp, > Rix C' (3.2)

representing the output of the method and its effect on the object’s state. This repre-
sents the most general form: in both the above expressions, the R could be removed if
c; does not return anything or similarly the P’s are removed if ¢; lacks arguments.

A state of an object a that is an instance of class C, can be represented by a graph
with nodes indicating objects and directed edges object references. The state space C’
is then a set of these graphs. Messages sent to a can be represented as transforma-
tions from one state graph into another (Schmidt & Zimmermann 1994b, Schmidt &
Zimmermann 1994a).

Figure 3.1 shows a description of a SORTED_LIST type. A class implementing
- this type appears in Figure 3.4. The state of a SORTED_LIST object is determined by
the number and state of the elements it holds. Figure 3.2 shows two states of an object a
which is an instance of SORTED_LIST{INT}, and how the message a . insert (2)
transforms the object from one state to another. In the figure, list is a reference to
an array object containing references to integer objects (see the implementation in
Figure 3.4).

It may be the case that c; has some side-effect, such as writing to a file, committing
a data base transaction, displaying a window in a GUI, or activating a valve in a process
control system. All such situations could be specified and therefore should be tested.
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Figure 3.2: Two states of a SORTED_LIST{INT} object, before and after the message
a.insert (2).

Let S represent the set of side-effects in which we are interested (it would all also
include a “null side-effect” for the case when there is none). Then expression 3.2
becomes:

ci:C' XPyxPpX ...x Py, —C XR;xS (3.3)

Further, a method either returns normally or raises an exception. It may also have
changed the state of the object or caused some side-effect before raising the excep-
tion. Let Exp be the set of known exceptions that could be raised, and expression 3.2
becomes:

ci:C'xPyxPyx...x P, —C x(R{UExp) xS (3.4)

Now to test the method ¢; of C, we set an object a of type C in the required state
and select arguments b;1, by, ..., bim; for ¢; of the required types and in the required
states. Then we evaluate the message a.c;(bi1,bi, - . ., bim,)-

A test case for the method c; of class C examines one aspect of the behaviour of
that method. Given that the object a of type C (or a subtype of C) is in a particular
state (written as a’), and the states of the arguments to c;, the test case checks whether
the returned object is correct and the resulting state of a is correct.

Let S be a function defining the requirements on the method c;. Then, following
the lines of Section 2.1, we say ¢; is correct if, for all possible combinations of the
states of a, bj1,bi2, . . ., bim;, the following is true:

Sei (a’,b§1 , b:-z, cet ,b:-m'.) = a.ci(by1,biz,- - - ,bim;)’ (3.5)

where a.ci(bi1,bi,-..,bim;) is the state of the object returned from the method call
when a is in the state a’ and the arguments are in states b, b,,..., b;.mi. Of course the
specification function S; must also consider side-effects and exceptions.

In practice, this is complicated by the interaction of state and behaviour. The state
of an object at any moment is the result of the messages it has received and acted upon
up to that moment. So, before the test case can be run there will be some sequence of
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methods to set a in the required state. This will include a constructor and perhaps some
modifiers. Further, the only way to find out an object’s state is to send it a message.
To determine the correct behaviour of the test case, we must evaluate the state of a, the
state of the returned object when there is one, as well as any side-effects or exceptions.

It should be noted that a very similar line of reasoning could be applied to the case
where ¢; is simply a function in a procedural programming language (and a would be
just another of its arguments). In that case, we would need to consider the states of the
whole system rather that just those of the class C. Also note that the states of a class
show a structure which can be taken advantage of in the integration testing of classes.

3.3 | Testing Objects

Chao & Smith (1993) note that the organisation of code in object-oriented programs is
different from procedural programs in the following sense. In structured programming,
procedures are the essential organisational unit while object-oriented programming
is organised around classes. The effect of localisation on testing is that instead of
organising test plans around procedures and modules as in traditional programs, in
object-oriented programs they are organised around classes (Berard 1993a).

In the formal definition of testing presented in the previous section, we have al-
ready seen the important role of an object’s state with regard to testing that object. Also
implicit in the definition is the effect of encapsulation: the encapsulated behaviours of
an object must be tested together. The following subsection looks more closely at these
aspects of testing of individual objects and classes in isolation.

3.3.1 Encapsulation

A class such as the SORTED_LIST class, whose specification appears in Figure 3.3,
encapsulates methods for accessing and manipulating a sorted list data structure. The
methods size, insert, delete, member and equals make up the interface for this
class. As we have seen, the state of objects of this class is represented by the elements
that are in the list, and we will see different behaviour from the methods depending
upon the state of the object.

For the tester, encapsulation can mean that it may not be possible to test meth-
ods of the class individually because of the level of interaction between them. In our
SORTED_LIST class, it would not make sense to test one of the methods without us-
ing the others. Equivalence partitioning (see Section 2.3) suggests the tests for delete,
for instance, should include removing a member from the list and removing a non-
member from a non-empty and an empty list. However, without breaking the class
interface, the only way to create 2 non-empty SORTED_LIST object is to use the
insert method.
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Class: SORTED_LIST

Description: Maintains a list of elements in increasing order. Generic, parameter class must
provide a partial order.

Responsibilities:

size Returns the number of elements in the list. Does not change the object.

insert Takes a single argument of the parameter class. Inserts the argument in the list
in the correct order. .

delete Takes a single argument of the parameter class. If it occurs in the list, the object
is removed, otherwise the list is unchanged.

member Takes a single argument of the parameter class. If an object equal to the
argument occurs in the list, returns true, otherwise returns false. Does not change
the object.

equals Takes a single argument of the same type as the list object. Returns true if the
argument’s elements are equivalent to those in the list object, or false otherwise.
Does not change either the list or argument.

Figure 3.3: Specification for a SORTED_LIST class.

This has led many authors to state that in object-oriented software, the class is the
“unit of testing” (Berard 1993a, Fiedler 1989, Cheatham & Mellinger 1990, Turner
& Robson 1992b). By this they mean that rather than testing the methods of a class
separately, test cases should be selected to test a class as a whole. As Berard (1993b)
puts it:

It makes as much sense to individually add methods to a class and test
them as it does to individually add statements to a procedure and test them.

This does not mean that we do not test individual methods of the class, only that we
do so in the context of the whole class. More precisely, we should take account of the
internal state and the ways in which it can affect the methods.

Some authors see classes as integrating a collection of methods, and thus see a need
to separately test methods (D’Souza & LeBlanc 1994). It should be clear from the
preceding discussion that this is only possible if either the class has no internal state,
or there is some means to access and manipulate the class’s internal state directly.
If such a test interface is not available, this requires that the tester modify the class
either directly, by adding methods to manipulate the state, or indirectly, by subclassing,
adding the state manipulator methods to the subclass and testing the subclass. The
latter is the approach suggested by Turner & Robson (1993). In either case, the class
tested is not the original class, which raises the question “what are we really testing?”’.
If a failure is uncovered, is it due to the additions made by the tester?

On the other hand, when the methods of a class do not communicate through the
class’s internal data, they can be tested and integrated in the traditional way.
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3.3.2 Information Hiding

In object-oriented programming, information hiding is the means for controlling ac-
cess to the attributes and methods of a class. Sather and Eiffel use the keyword private
to remove attributes and methods from the class interface, in C++ this is handled by
the public:, private: and protected: parts of the class declaration.

The most common use for information hiding is to deny clients access to details
of the class’s implementation. In the implementation of the SORTED_LIST type in
Figure 3.4, the attribute list is hidden and can only be accessed indirectly through other
methods. _

Information hiding affects the testability of classes. In order to determine that
the result of a message is correct, we may need to check whether some internal data
structure has been updated correctly. If the data structure cannot be accessed directly,
the (black-box) behaviour of a class must be tested in a “stimulus-response” way.

In structural testing of the insert method in the SORTED_LIST implementation,
we would ideally like to check the change in list directly to see that it was entered in
the list in the correct position. In practice, we rely on the other methods: that size
increased by one, and member returns true.

Berard (1993a) makes the simple suggestion to first establish a level of conﬁdence
in the state reporting methods (member and size in the example) and then use these
to evaluate the other methods. This either requires careful test design or, as in the case
of the example, other means of verifying those methods.

3.3.3 State

As we have seen above, there is a close link between an object’s state and behaviour:
the state of an object can affect its response to the messages sent to it, and this response
may involve a change of the object’s state. In effect, an object’s methods communicate
through its state. So to test the methods of an object, we must take into account its
state as well as the arguments to the method.

Among writers and practitioners of object technology, the word “state” is used in
two different ways. In object-oriented programming, “state” refers to the values of the
attributes of an object at a particular point in time. In modelling systems with objects,
state is an abstraction of this: an object’s state qualitatively determines the response
of an object to messages. We shall use the term internal state for the first sense and
design state for the latter (Jacobson et al. (1992) calls this computational state). The
internal state space of an object is the set of all possible combinations of values of its
attributes (that is the cross-product of the domains of the attributes). For many classes
this will be very large.

These two meanings for “state” are commonly confused in the literature on object-

oriented programming, design and analysis. For the tester however, we shall see that
the distinction is important.
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class SORTED_LIST{T < $IS_LT{T}} is

private attr list: ARRAY{(T}; -- Array holding list elements.
readonly attr size:INT; -- Number of elements in list.
private const initial_size: INT:=5; -- Starting size of the list array.

create: SAME post ~void (result) and result.size = 0 is
-- A new sorted list.

res ::= NEW; res.list := #ARRAY{T} (initial_size);
return res
end; -- create

private elt_eq(el,e2:T) :BOOL is
~- True if ‘'el’ is equal to ‘e2’ for the semantics of this list.
~- If T descends from $IS_EQ{T}, use its ‘'is_eqg’, otherwise use
-- object equality.
typecase el
when $IS_EQ{T} then return el.is_eq(e2)
else return sys::ob_eqg(el,e2) end

end; -- elt_eq

private position(e:T): INT is
-- Return the index of ‘e’, or ‘-1’ if not found.

i:INT;
loop i := size.times!; while! (list[i] < e); end;
if (i < size) then retun i else return -1 end

end; -- is_mem

insert(e:T) post member(e) >= 0 is
-- Put the element ‘e’.

if size >= list.size then -- Expand list if full.
list := list.resize(2 * list.size) -- This copies over the old elts.
end;
-- Search to find where it goes (index held in 'i’).
i:INT;

loop i := size.times!; while! (list[i] < e); end;
-- Copy bigger elements on one place.
loop list.set! (i+1l, list.elt!(i)) end;
list([i] := e; size := size + 1;
end; -- insert

delete(i:INT) pre i >= 0 and i < size is
-- Remove ‘'i’th element from the list.
loop list.set! (i, list.elt!(i+1)) end;
-- Just copy later elts back one place.
size := size -1; 1list[size] := void;
end; -- delete

member(e:T): BOOL is
-- Return true iff ‘e’ is an element of the list.
return position(e) /= -1;

end; -- is_mem

is_eq(other: SAME): BOOL is
-- Return ‘true’ iff ‘other’ has the same elements as ‘'self’.
if size /= other.size then return false end;
loop if ~elt_eq(list.elt!, other.list.elt!) then return false end; end;
return true
end; -- is_eq
end; -- class SORTED_LIST{T}

Figure 3.4: A Sather implementation of the SORTED_LIST class.
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Figure 3.5: A state-transition diagram showing design states for SORTED_LIST.

McGregor & Dyer (1993) regard the design states of an object as a partitioning
of the internal states according to some classification rule or rules that group internal
states which share some observable behavioural attribute. Design states can be mod-
elled by statecharts (Harel 1987) or state-transition diagrams (Booch 1994, Rumbaugh
et al. 1991, Shlaer & Mellor 1988). An example appears in Figure 3.5, and further
examples will be given in Chapters 5 and 6, where we use state-transition diagrams to
generate test suites.

Our SORTED_LIST object has design states that are also determined by the num-
ber and state of its elements. One state corresponds to the empty list, which is also
the initial state or the state of the object when it is created. We would expect a
SORTED_LIST object to respond quite differently to a delete message if was in the
empty state than otherwise.

The internal state of a SORTED_LIST object, as implemented in Figure 3.4, is
determined by the values of list, size and initial_size. This is effectively the number
and value of the elements of the list. The design state is illustrated by the state diagram
in Figure 3.5. The diagram shows two states, one representing the list with no elements
and in the other the list has at least one element. The initial state is indicated by an
arrow with no source. State transitions are caused by the methods insert and delete.
The other methods (member, size and equals) are not shown since they do not lead
to state transitions and would clutter the diagram.

A more formal way to relate internal state to design states is to define the de-
sign states by predicates on the attributes. The empty and not empty states for the
SORTED_LIST class can be defined by the two predicates size = 0 and size > 0
respectively. A SORTED_LIST object is in the Empty state if it satisfies the first,
or the NotEmpty state if it satisfies the latter predicate. Substates can be created by
refining a predicate and concurrent states by independent predicates (having no vari-
able in common). Notice that since the class invariant is a predicate that captures the
valid states for an object of this class, it is the logical disjunction of these design state
predicates. This idea is developed further in chapter 5

If the object has a finite state machine specification or state-transition diagram, or
the tester can deduce such a specification, then functional testing can follow estab-
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Figure 3.6: An alternative state-transition diagram for SORTED_LIST.

lished techniques for testing finite state machines described in Section 2.4 (McGregor
1994, Marick 1994). For example, the set of test cases derived from a transition tree
for the state-transition diagram in Figure 3.5 would be

event sequence: create; final state: Empty
event sequence: create, insert; final state: Not empty
event sequence: create, insert, insert, delete[size>1];  final state: Not empty
event sequence: create, insert, delete[size=1]; final state: Empty

While these test requirements cover the behaviour described by the state-transition
diagram, they will not make an adequate test suite, even when we add test requirements
for testing the other methods in each state. Binder (1996) suggests that a transition
tree can be combined with boundary-value analysis, depending on the class’s kind of
state-based behaviour. Structural testing techniques from Section 2.3 such as data-flow
testing would be required to further test internal state.

Note that there are many possible representations of the design states of a class.
The more refined state-transition diagram for SORTED_LIST shown in Figure 3.6
shows a more detailed description of the class’s behaviour and would lead to a more
detailed set of test requirements. Refining state-transition diagrams can be a useful
technique, especially when the test cases can be automatically generated from the
diagrams, as we shall see in Chapter 6.

3.4 Inheritance

Inheritance is probably the most discussed feature of object-oriented programming lan-
guages and there are many different views. One outcome is that every object-oriented
programming language provides its own unique mechanisms and semantics for inher-
itance. It is in the context of testing, where we compare requirements, design model
and implementation, that we can bring these differences into a new, sharp focus.

In testing classes and objects, one key question is to what extent does a subclass
need to be tested given that its parent has been sufficiently tested. As we shall see
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there are several aspects to be addressed in answering this question. We start this
section with an examination of different views of inheritance and the considerations
for testing, then discuss issues raised by multiple inheritance and briefly look at testing

abstract classes. To finish we shall return to state-based testing, but this time the state-
based testing subclasses.

3.4.1 Inheritance is a Many Splendour’d Thing

Inheritance implements the “is a” relationship between objects in object-oriented de-
sign. During design we might say a OVERDRAFT_ACCOUNT “is a” ACCOUNT,
or a BOUNDED_STACK “is 2” STACK. But there is an essential difference between
these two examples. OVERDRAFT_ACCOUNT has all the behaviour of ACCOUNT
(as well as additional functions), buta BOUNDED_STACK does not provide the same
behaviour as STACK. This is because a BOUNDED_STACK has some maximum
size and once that size is reached, after a maximum number of push messages, ad-
ditional pushs would not change it. A STACK, on the other hand, does not have
this limit and would continue to grow with every push. The relationship between the
ACCOUNTs is an example of classification and the other is an example of special-
isation (Henderson-Sellers & Edwards 1994). In this case, the BOUNDED_STACK
specialisation allows a more efficient implementation to be used.

The distinction is important for the tester who tries to validate the intent of the
designer in the code. Classification implies substitutability while specialisation does
not. It should be completely safe to use an OVERDRAFT_ACCOUNT where ever an
ACCOUNT object is required. But this is not the case for BOUNDED_STACK: when
it replaces a STACK object, its use needs to be validated to ensure that behavioural
differences do not cause failures in that context. Specialisations require retesting each
time they are used.

More formally in a specialisation, method preconditions can be strengthened and
postconditions weakened, while in a classification preconditions can only be weak-
ened and postconditions strengthened (Frick et al. 1994). The precondition for push
is strengthened to size < max.size in BOUNDED_STACK, whereas it has no
precondition in STACK (or more accurately is has the precondition true).

When testing a specialisation we should include test cases that violate its precondi-
tions or its parent’s postconditions in the context where it is used. A test suite for any
class that uses STACK should try to do more than max_size pushs, followed by as
many pops. The intention is to find faults that might arise when BOUNDED_STACK
is substituted for STACK. Further information on pre- and postconditions and testing
can be found in Section 3.7.

Unfortunately, inheritance in object-oriented programming adds further complica-
tions. The central issue for testing is the distinction we drew in Section 3.1 between
two types of inheritance: implementation inheritance or subclassing, and specification
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type SACCOUNT is

balance: MONEY;

open;

close;

credit (amount: MONEY) ;

debit (amount : MONEY) ;
end; -- class $ACCOUNT

class ACCOUNT < $ACCOUNT is

readonly attr balance: MONEY;
private attr isOpen: BOOL;

create: SAME is
res: SAME := new;
res.isOpen := false;
res.balance := #MONEY(O0);
return res;

end;

open is ... end;
close is ... end;

credit(amount : MONEY) is
if isOpen and amount >= 0 then
balance := balance + amount;
end;
end;

debit (amount : MONEY) is
if isOpen and amount >= 0 and balance >= 0 then
balance := balance - amount;
end; .
end;
end; -- class ACCOUNT

class OVERDRAFT_ACCOUNT < $ACCOUNT is
include ACCOUNT debit->;

readonly attr limit: MONEY;

debit (amount: MONEY) is
if isopen and amount >= 0 and balance - amount >= limit then
balance := balance - amount;
end;
end;

set_limit (amount: MONEY) is

if isOpen then
limit := amount;
end;
end;
end; -- class OVERDRAFT_ACCOUNT

Figure 3.7: Part of a Sather implementation of the ACCOUNT - OVERDRAFT_ACCOUNT

inheritance hierarchy.
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or interface inheritance which we called subtyping.

Specification inheritance is a relationship between interfaces or types. A subtype
inherits all the attributes and methods of its parent, and may add more. We say that the
child conforms to its parent’s interface. This means that every signature that appears
in a type will also be found in its subtypes and hence a subtype can receive at least the
same messages as any of its parents (Leavens 1991).

Specification inheritance is the basis for polymorphism: a child can be substituted
for its parent because for any message that the parent could receive the child could also
receive since it has that signature. Note that this means that the child should not remove
any of its inherited methods, or equivalently, hide them by making them private, even
though this is permitted in a number of object-oriented programming languages. It is
nearly always trivial to find a test case that causes a failure when an inherited method
is removed or hidden.

Implementation inheritance, on the other hand, is a form of code reuse. A subclass
includes the implementation of all the methods of its parent classes. It can rename
or remove methods, usually in order to redefine them, as well as define new ones.
Since implementation inheritance occurs behind the wall of a class’s interface it is -
not constrained to conform to the parent class. An alternative technique for reusing a
method implementation from another class is delegation (Lieberman 1986).

In almost all object-oriented programming languages, specification and implemen-
tation inheritance are combined through a single mechanism. In C++ implementation
inheritance can be achieved through private inheritance since it hides the inheri-
tance relation, but public inheritance combines both specification, because it means
the child substituted for the parent, and implementation inheritance, since the parent’s
methods and attributes are included in the child. In Java, implements is pure spec-
ification inheritance, but extends also combines specification and implementation
inheritance. A

Sather is perhaps the only object-oriented programming language that distinguishes
between specification and implementation inheritance. An example of the two forms
of inheritance in Sather is shown in Figure 3.7. The abstract class SACCOUNT de-
fines an interface and both ACCOUNT and OVERDRAFT_ACCOUNT are subtypes,
as indicated by the clause < $ACCOUNT in their declarations. Implementation in-
heritance occurs through the statement

include ACCOUNT;

in the body of OVERDRAFT_ACCOUNT. Semantically, this is as if the implemen-
tation of ACCOUNT were copied in at that point, except that debit is left out. Inheri-
tance in Sather is described in the Appendix, Section B.4.1.

Specification inheritance implies substitutability. Wherever an object of a partic-
ular type is required, it is possible to substitute an object of any subtype because the
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interface of the subtype is a superset of the interface of required type. An immediate
consequence of substitutability is that test cases for objects of one type are applicable
to all its subtypes. Marick (1994, Chap. 22) sees a hierarchy of test requirements that
parallels each (specification) inheritance hierarchy, in which the test requirements for
each class includes the test requirements of its parents.

We can draw a similar distinction in test design for classes: functional test re-
quirements are derived from the interface, and structural test requirements from its
implementation. The functional test requirements for a class should include those of
its supertype and the structural test requirements include those of any class whose
implementation is reused. To these are added the functional test requirements from
additional methods for the interface of the class under test, and structural test require-
ments from new and replaced method implementations.

This, however, is not enough. In the implementation of a class, methods may
interact with each other and the class’s attributes. A change in one part of the im-
plementation, such as when an inherited method is redefined, potentially creates new
interactions and therefore new test requirements. It cannot be assumed that tested
methods remain correct when inherited. They must be retested in their new context,
the subclass. Harrold et al. (1992) have developed an algorithm that applies this to
testing subclasses in C++.

Perry & Kaiser (1990) provide a more detailed answer to this question when they
re-evaluated Weyuker’s axioms of test suite adequacy (Weyuker 1986, Weyuker 1988)
in the context of testing object-oriented software. They found that two of Weyuker’s
axioms have particular relevance to the situation we have just described.

Weyuker’s axiom of antiextensionality states that if two programs compute the
same function, an adequate test suite for one is not necessarily adequate for the other.
If, in a child class, an inherited method is replaced by a locally defined one, antiex-
tensionality warns that it is not necessarily adequately tested by the test suite of the
inherited method.

Weyuker’s axiom of antidecomposition states that given an adequate test suite for
a program, the subset applicable to a component of that program is not necessarily an
adequate test suite for that component. We have already seen that redefined methods
in a child class may need new tests. A consequence of antidecomposition is that this is
also true of inherited methods, since the child class may give them a different context.

3.4.2 Multiple Inheritance

If we allow a type to have more than one parent (multiple inheritance), a subtype in-
herits the attributes and methods of all its parents. A problem arises when two parents
have the same signature, since the subtype can not have two signatures that are the
same.

Consider a scenario in which a software developer is asked to add a graphical
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Figure 3.8: A signature clash resulting from multiple inheritance.

user interface (GUI) to a simulation that plays the card game ‘“Poker”. One way to
create a visual representation of a simulated poker player might be to combine the
POKER_PLAYER class with the services provided by the DISPLAYABLE class from
a GUI framework. Figure 3.8 shows a new class, DISPLAYABLE_POKER_PLAYER,
that combines the required services by inheriting them from both classes. Unfortu-
nately, through lack of prescience on the part of designers of the GUI framework or
the Poker simulation, both these classes use the same method name, draw, for entirely
different behaviours. When a class inherits the same signature from two different par-
ents, we call this a name clash.

More commonly, name clashes occur from convergent inheritance (sometimes
called repeated inheritance). This occurs when a class has multiple parents which
themselves have a common parent. In effect, the class repeatedly inherits the inter-
face of this common “grandparent” through each of its parents. For example in Fig-
ure 3.9, the class QUEUE could be specialised to the classes PRIORITY_QUEUE
and BOUNDED_QUEUE. The new class BOUNDED_PRIORITY_QUEUE would
inherit the methods enqueue and dequeue from both subclasses of QUEUE.

A name clash is usually not a problem when it results from convergent in-
heritance, because both inherited methods will have the same behaviour, having
themselves inherited it from a common parent. The behaviour of enqueue and
dequeue in BOUNDED_PRIORITY_QUEUE is determined in QUEUE since both
PRIORITY_QUEUE and BOUNDED_QUEUE objects can be substituted where
a QUEUE is required. But in the example in Figure 3.8 it cannot be resolved.
One way to avoid the name clash is to rename the method draw inherited from
POKER_PLAYER to say draw_a_card, but in that case, when the poker simulation
sends a draw message to each of its POKER_PLAYER objects, any whose actual type
is DISPLAYABLE_POKER_PLAYER will instead redraw itself on the screen. On the
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Figure 3.9: A signature clash resulting from convergent inheritance.

other hand, the alternative, renaming the draw inherited from DISPLAYABLE, will
cause unexpected behaviour when a collection of DISPLAYABLE objects that include
a DISPLAYABLE_POKER_PLAYER object is drawn on the display.

Object-oriented programming languages have a variety of mechanisms for resolv-
ing name clashes. Some languages, such as Smalltalk and Objective C, avoid this
problem altogether by only allowing single inheritance: a class may have no more
than one parent so a name clash cannot occur. Many object-oriented programming
languages that permit multiple inheritance have some facility for renaming inherited
attributes and methods. When two parents have a common signature, changing the
name of either or both of the inherited attributes or methods prevents a name clash.

As Berard (1993b) points out, different languages have different mechanisms for
resolving these conflicts and this will determine test requirements. Sather has renam-
ing associated with implementation inheritance (the include clause), but signature
conflicts need be resolved by changing the parents. C++ does not have a means of re-
naming attributes and methods, instead the required method is selected at each call by
explicitly indicating the parent from which it was inherited. In some object-oriented
programming languages (including earlier releases of Sather (Omohundro et al. 1993))
a name conflict is resolved by taking the last declaration, so later declarations hide
earlier ones with the same signature. In this case changing the inheritance order is a
small change that can have a significant effect on test design (Perry & Kaiser 1990).
Resolving signature conflicts is more properly a modelling and design issue. See, for
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example, Henderson-Sellers & Edwards (1994, pages 62—65) for a discussion of issues
that arise in modelling with multiple inheritance.

Subclasses need to be retested to show their behaviour is not at odds with
each parent. So the test requirements for a class should include those of all its
parents. With convergent inheritance this is usually straight forward: the tests
for BOUNDED_PRIORITY_QUEUE include those for both PRIORITY_QUEUE
and BOUNDED_QUEUE, and both these include the tests for QUEUE. For
DISPLAYABLE_POKER_PLAYER, substitutability for one or other of the parents
will be broken and the combining tests from POKER_PLAYER and DISPLAYABLE
can be used to discover if this causes a failure.

3.4.3 Abstract classes

To test a concrete class, one or more objects are instantiated from that class and the test
cases applied to those objects. But abstract classes cannot be instantiated, no objects
can be created from them. Obviously abstract classes cannot be tested in this way. So
what is sufficient testing for abstract classes?

Abstract classes often define a common interface abstraction for several classes.
They may hide various trade-offs that need to be made in the implementation, such as
memory usage versus computation speed.

In a typical application there will already be concrete subclasses of an abstract
class. So creating new subclasses specifically for testing is unnecessary. Test require-
ments are derived from the abstract class and then added to those of each concrete
subclass. If there are no concrete subclasses then the abstract class is not used, which
may also indicate an error in the design or the implementation. In short, abstract
classes are tested by testing their (concrete) subclasses.

3.4.4 Inheritance and State

In Section 3.3.3 we made the distinction between design state and internal state. Under
implementation inheritance, a subclass acquires the internal state space of its parent.
This may then be modified in the subclass by adding, renaming, replacing or removing
attributes. Since a class’s internal state is hidden and not part of its interface, it is
unaffected by specification inheritance.

Design states, however, are related to the object’s visible behaviour. In object-
oriented design, we require that an object conform to the behaviour of its parent(s).
Thus a finite state machine specification or state-transition diagram for one type will
also apply to subtypes. So, as we have seen previously, state-based test cases derived
from a parent’s state-transition diagram should be applied to all child classes.

Under specification inheritance, a state-transition diagram for a subclass may only
vary from its parent’s state-transition diagram in a limited number of ways. States
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may be modified, but can only be added as substates of one of the parent’s states or
as concurrent states. Concurrent states often result from new independent attributes
such as occurs in multiple inheritance. Transitions can be added between existing
and new states or changed. Neither states nor transitions may be deleted (Coleman
et al. 1992, McGregor & Dyer 1993). Guard conditions on transition can only be
weakened. These are necessary, but not sufficient conditions to ensure substitutability,
allowing an object of any subtype to act in the role of its parent type. When these rules
are followed, tests based on a transition tree of the parent’s state-transition diagram
should not find any new faults when applied to subtypes.

Figure 3.10 shows an example of the inheritance of design states among members
of the QUEUE inheritance hierarchy in Figure 3.9. Figure 3.10(a) shows a state-
transition diagram for QUEUE with states Empty and Not Empty. In Figure 3.10(b),
a BOUNDED_QUEUE adds its two new states, Full and NotFull as substates of
NotEmpty. The transition

NotEmpty, dequeue[size>1], NotEmpty
has been replaced by the transitions
Full, dequeue, NotFull

NotFull, dequeue[size>1], NotFull

That BOUNDED_QUEUE is a specialisation rather than a proper subtype is apparent
when we look at what happens to the enqueue transition on NotEmpty: it is not
accepted in substate Full.

The state-transition diagram for a PRIORITY_QUEUE, in Figure 3.10(c), also
introduces two substates to the NotEmpty state. Here they represent the situations
where either a new element has the highest priority and can be just pushed onto the
queue (the NewTop state) or the queue needs to be restructured (the NewShape state).
In this case both the enqueue and dequeue messages have modified behaviour that
does conform to that of QUEUE.

Figure 3.10(d) shows concurrent states (or “AND states” in Harel 1987) intro-
duced by multiple inheritance. A BOUNDED_PRIORITY_QUEUE can be in one
of the pairs of states NotFull and NewTop; NotFull and NewShape; Full
and NewTop; or NotFull and NewShape. BOUNDED_PRIORITY_QUEUE is
a proper subtype of both PRIORITY_QUEUE and BOUNDED_QUEUE.

3.5 Genericity

Genericity, like inheritance, is a form of abstraction. A generic or parameterised
type abstracts parametrically identical signatures of a group of behaviourally related
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Figure 3.10: Inheriting design states in the QUEUE hierarchy.

classes.

For example, all of the classes LIST{INTEGER]}, LIST{STRING} and

LIST{TEMPERATURE_SENSOR]} have similar list behaviour, such as inserting
and deleting elements, they differ only in the type of list element. The common list be-
haviour can be extracted by parametrising the list element type INTEGER, STRING
or TEMPERATURE_SENSOR). A generic class is then a template or pattern for
making classes with similar behaviour. Concrete classes are made by substituting for
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the type parameter. Generic classes are often used for collection types with the element
types as parameters, such as the SORTED_LIST{ELT} example from Section 3.3.

Generic classes, like abstract classes, can not be tested directly. Classes must be
chosen to substitute for the parameters, and test cases applied to objects of the resulting
class. -

Of particular concern with generic classes are possible interactions between a
generic class and its parameter class. Sometimes these are hidden in implicit assump-
tions about methods or behaviour the parameter class should provide. For example,
many generic classes that model data structures provide some means of searching for
an element, such as member in the SORTED_LIST example above, and this requires
that element objects are compared. If the generic class assumes that element types all
define the same equivalence relation, it will fail with those that don’t.

Ideally all possible instantiations of parameters should be tested. In an application
it may be possible to test each of the parameters that is actually used in the applica-
tion. For generic classes that are intended for reuse, it is not in general known with
what combinations of parameters they will be used or how they may interact. One
guideline is to instantiate the generic class with at least a small class, such as INT, and
a more complex class (Smillie & Strooper 1995), but where the generic class makes
assumptions about its parameters this is clearly not enough.

3.6 Exceptions and Exception Handling

Exceptions may have many sources and correspondingly are made to serve many roles.
In most programming languages that have exception handling, programmers may de-
fine exceptions to suit their own purposes, but they may also originate in the hardware
or operating system, for example interrupts, file access failures and divide-by-zero er-
rors. They may also be built into the language or its runtime system, such as a failure
to allocate memory or accessing attributes through a variable that does not reference
any object (a “void” access). In languages that have them, violation of an assertion,
method precondition, postcondition or class invariant causes an exception to be raised.
In these examples we have seen exceptions used as a reporting mechanism for system
interrupts, resource acquisition failures, and programming errors.

While these are all examples of unexpected, exceptional conditions, they can mean
different things in different situations. This can make it difficult to set a policy on the
handling of exceptions, and without a policy it can be very difficult to decide on an
appropriate approach to testing exceptions and exception handling. Further, exceptions

‘caused by program errors, such as void accesses and contract violations, should not be
caught during testing and debugging as catching them hides the errors, but in operation
it may be required that no exception is uncaught.

Good examples of exception recovery are rare in the literature (Meyer 1992a).
Part of the problem is defining an appropriate strategy for dealing with what may
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be an internal problem in a supplier. For example a postcondition failure in Eiffel
or Sather triggers an exception which, if caught, must be caught in a client. So in
effect, the client is asked to deal with the supplier’s failure to satisfy its contract. It
is possible that the client will have some alternate strategy for performing the task
normally performed by the supplier but in general this is unlikely to be the case.

With regard to testing, the advice most often given is that test cases should raise all
possible exceptions (Liskov & Guttag 1986, Marick 1994, Berard 1993a). However,
in many object-oriented languages, the exceptions that can be raised by a class are
buried in the implementation of the class’s methods. Worse still, exceptions may also
be raised in a called method of some further supplier class. If the supplier class is
from a class library or under the control of a different development group, there may
be no information other than the class interface. If not caught, these exceptions will
also be suffered by the class’s clients. Exception handling code in a caller creates
dependencies between the client and the implementation of the supplier. Subclasses of
the supplier must not add new exceptions for fear of breaking client code.

In a few object-oriented programming languages, Java and CLU are examples,
exceptions are specified in the method interface. Failure to handle at the method call all
the possible exceptions raised by the method is considered a syntax error and rejected
by the compiler (Liskov & Guttag 1986).

There are two aspects to validating the use of exceptions in software: raising and
catching. In the first case testing seeks to ensure that the right exceptions are raised
in the right place in the right circumstances. The second is to check that exception
handling code responds appropriately to the correct exception. To some extent this can
be checked statically, for example Eiffel’s “exception correctness” (Meyer 1992b) tries
to ensure that the handling of exceptions does not violate the method postcondition or
the class invariant.

Ideally, a complete class design should describe the exceptions raised and caught
by each method, although some of this information could be summarised in an ex-
ception handling policy (testers should be so lucky). But few object-oriented design
methods specify exceptions in the class interface (Berard 1993a, Chap. 8) (the OODLE
notation (Shlaer & Mellor 1992) is one exception).

The above requirements amount to raising all exceptions in each context they af-
fect. This may be difficult to achieve if some exceptions are caused by the operating
system, hardware or some other means beyond programmer control. An important
example of this is exceptions due to failed memory allocation. It is more important to
check that caught exceptions are handled correctly (Marick 1994, p. 226).

3.7 Assertions and Software Contracts

A central concem of verification and validation is whether supplier classes have been
used correctly. The correct syntax can be determined by compilers, but the correct
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semantics of an interaction between objects, in the end, needs to be tested.

Software contracts are a means of specifying the semantics of correct usage. The
“programming by contract” paradigm was developed in the context of object-oriented
programming by Meyer (1988) and Wirfs-Brock et al. (1990), from much earlier work
on formal semantics and program proving. Preconditions and postconditions are cast
as a “contract” between client and supplier: if the client abides by the precondition,
providing arguments as required then the supplier is bound to perform such actions as
necessary to meet the postcondition.

Preconditions and postconditions specify the external behaviour of objects, so they
are properly part of their interface. Since subtypes conform to the behaviour of their
parents (this is the substitutability property described above) they should also fulfil
their parent’s contracts. So preconditions and postconditions preserve semantics under
inheritance (subtyping).

Invariants can be used in two quite distinct ways. Some invariants specify con-
straints on the behaviour of objects of a type, while others ensure the implementation
remains valid. The latter is called a representation invariant (Liskov & Guttag 1986).
An example of the first kind is that elements of a doubly-linked list are strongly con-
nected: next = void or next.prev = self. A representation invariant de-
scribes a consistency relationship between attributes, for example, in the implementa-
tion of SORTED_LIST in Figure 3.4, size should be the index of the first void entry
in 1ist. Marick (1994, Chap. 18) describes a detailed strategy for testing consistency
relationships.

Preconditions, postconditions and invariants can be checked with assertion state-
ments in languages that have them, but few object-oriented programming languages,
Eiffel and Sather among them, provide specific support for programming by con-
tract. Meyer proposed the assertion sub-language for software verification in Eiffel
(Meyer 1994). A more practical approach is ADL (Viswanadha & Sankar 1996),
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