
Testing Object-Oriented Software

Oscar Bosnian

A thesis submitted for the degree of
Master of Science at

The Australian National University

January 1999

Except where otherwise indicated, this thesis is my own original work.

Oscar Bosman
1 January 1999

To Deborah, Hugh and Gareth

Acknowledgements

Without Dr. Brian Molinari’s patience and consummate skill as a supervisor this thesis
would have taken infinitely longer to reach a state that would not have been anywhere
near as satisfactory. He kept me heading in the right direction and provided insights
that both improved my own understanding of the subject and my ability to explain
it. He patiently read and re-read drafts and ensured that my scattered and incomplete
ideas were formed into a coherent whole. Prof. Heinz Schmidt motivated me to per-
sue the topic of testing object-oriented software, and he maintained an interest in my
work and provided inspiration despite the difficulties of geography and his many other
commitments.

Many people read and commented on drafts of chapters, including Jenny Adams,
Neale Fulton, Lin Zucconi, John Colton and especially Kerry Taylor who provided
timely feedback on the final draft. I particularly thank the other members of my super­
visory panel: Prof. Krishnamurty who provided guidance in the early stages, and Dr.
John Smith who patiently read and commented on everything I wrote. Any remaining
faults are, of course, my own.

CSIRO DPT (now CMIS) awarded me a scholarship that funded the bulk of this
work. I would like to show my appreciation to my collegues at CSIRO with whom I
had so many useful discussions. There are many other people who contributed to this
work in ways large and small and I thank them all.

I would like to thank my family for the love and support that made this possible.

vii

Abstract

Object technology has changed software development. New programming languages
have given rise to new software design techniques. Concurrently, new software de­
velopment methods have been proposed. All of these changes have an impact on on
methods and tools for software testing. Most of the literature on testing object-oriented
software has concentrated on aspects of object-oriented programming. We review this
literature in the context of object-oriented programming and design.

Development processes that have been proposed for object-oriented software em­
phasise iteration and incremental delivery (Hutt 1994). However, they give little con­
sideration to testing. In these processes, testing also needs to be iterative and incre­
mental. This thesis presents an approach to integrating testing into iterative and incre­
mental software development processes. The proposed approach inserts additional test
design steps into the analysis, design and implementation activities and closes each it­
eration with a test review and execution step. We apply this approach to the Booch
(1994) process.

New design techniques introduced by object technology offer new opportunities as
sources for generating test cases. In this thesis, we propose a tool to generate test cases
from one of these, namely state-transition diagrams. The generated test cases evaluate
classes using the abstract notion of state expressed in a state-transition diagram. We
develop a theory that reconciles this abstract view with the view of state expressed in
object-oriented programs. The tool uses Chow’s (1978) W-method to generate a set
of test cases that “cover” the behaviour described by this design finite state machine.
Then the class interface is used to generate an executable test program for the class.
This test program uses sets of input values for the method arguments, and so combines
domain testing with state machine based testing.

ix

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Outline of the T h e s i s .. 3

2 Software Testing 5
2.1 Basic C o n c e p ts .. 5
2.2 Functional Testing T ech n iq u es ... 7
2.3 Structural Testing Techniques... 10

2.3.1 Control-Flow T esting ... 11
2.3.2 Data-Flow T e s t in g .. 12
2.3.3 Relating Test C rite ria ... 13

2.4 Testing using Finite State M a c h in e s .. 13
2.5 Testing in the L a rg e ... •. . . 17
2.6 A d eq u acy ... 17

2.6.1 C o v e rag e .. 18
2.6.2 Reliability A nalysis.. 19
2.6.3 Error Seeding and Mutation A n a ly s is 19
2.6.4 Process-based adequacy c r i te r ia ... 20

2.7 S u m m a ry ... 20

3 Testing and Object-Oriented Programming 23
3.1 Concepts in Object-Oriented Programming ... 24
3.2 Testing R edefined... 26
3.3 Testing O b je c ts .. 29

3.3.1 Encapsulation.. 29
3.3.2 Information H id in g .. 31
3.3.3 State ... 31

3.4 Inheritance .. 34
3.4.1 Inheritance is a Many Splendour’d T h i n g 35
3.4.2 Multiple In h e rita n c e ... 38
3.4.3 Abstract c lasses... 41
3.4.4 Inheritance and S ta te ... 41

xi

xii Contents

3.5 Genericity... 42
3.6 Exceptions and Exception H andling ... 44
3.7 Assertions and Software Contracts.. 45
3.8 Integrating Classes and Subsystems ... 47

3.8.1 Associations and Aggregations.. 47
3.8.2 Inheritance and Dynamic-Binding.. 49
3.8.3 A lia se s .. 50

3.9 Testing and Reuse... 51
3.10 Other Object Testing Issues.. 52
3.11 S um m ary ... 53

4 Testing and Object-Oriented Software Development 55
4.1 The Software Development P ro c e s s .. 55

4.1.1 Waterfall Process M o d e l... 56
4.1.2 Evolutionary Process Models .. 57

4.2 Testing and the Software Development P ro c e ss 59
4.2.1 A Process Model for Software Testing.................................... 61

4.3 Object-Oriented Software Development Processes.............................. 63
4.3.1 The Booch Process.. 66

4.4 Testing and Object-Oriented Software Development........................... 67
4.4.1 Incorporating Testing in the Booch P rocess............................. 68

4.5 Other Object-Oriented Process Models.. 70
4.6 S um m ary ... 72

5 Testing Objects as Finite State Machines 73
5.1 State-Based Models for Class Design.. 73
5.2 Representation and Implementation ... 76
5.3 Testing Finite State Machines... 79
5.4 Test Case Generator.. 82
5.5 Related W o rk ... 82
5.6 S um m ary ... 84

6 STAT: Generating Test Cases from Object-Oriented Design 85
6.1 State-Transition D iagram s.. 86
6.2 Generating Test Cases... 88
6.3 Experience To D a te 91
6.4 Possible Extensions.. 93
6.5 Sum m ary ... 94

7 Conclusion 97
7.1 Future d irec tions... 98

7.1.1 Testing and Object-Oriented Program ming........................... 98

Contents xiii

7.1.2 Testing and Object-Oriented Analysis and Design.................. 98
7.1.3 Testing and Object-Oriented Software D evelopm ent............ 98

A An Example of STAT test cases 101

B Overview of Sather 109
B.0.1 A little background and history.. 109

B.l A brief overview of Sather syntax .. 109
B. 1.1 C lasses.. 109
B.1.2 Features... 113

B.2 Compiling and running Sather programs... 115
B.3 Programming environment.. 115
B.4 Special features.. 116

B.4.1 Inheritance in S a th er... 116
B.4.2 Programming by contract... 117
B.4.3 Type safe down-casts... 118
B.4.4 Iteration abstraction ... 118
B.4.5 Bound routines.. 119
B.4.6 pS ather.. 120
B.4.7 The test class idiom.. 120

Bibliography 123

Contents

List of Figures

2.1 An input domain D showing a set of inputs causing failures F, and test
inputs (x)... 7

2.2 An input domain partitioned into equivalence c la sse s 8
2.3 A routine and its control-flow graph.. 9
2.4 Subsumption relationships among test coverage criteria....................... 12
2.5 A finite state machine diagram for a traffic light................................... 14
2.6 A transition tree for the traffic light state machine in Figure 2.5........... 16

3.1 A SORTED.LIST type... 27
3.2 Two states of a SORTED_LIST{INT} o b je c t 28
3.3 Specification for a SORTED.LIST class.. 30
3.4 A Sather implementation of the SORTED.LIST class......................... 32
3.5 A state-transition diagram showing design states for SORTED.LIST. 33
3.6 An alternative state-transition diagram for SORTED.LIST................. 34
3.7 Sather implementation of ACCOUNT - OVERDRAFT.ACCOUNT

hierarchy 36
3.8 A signature clash resulting from multiple inheritance........................... 39
3.9 A signature clash resulting from convergent inheritance....................... 40
3.10 Inheriting design states in the QUEUE hierarchy.................................. 43
3.11 The classes involved testing a polymorphic method call enqueue. . . 49
3.12 Changing the internal state of a class through an alias.......................... 50

4.1 The waterfall process m o d e l ... 56
4.2 The spiral process m o d e l... 58
4.3 The “V” model of software development... 60
4.4 The major activities in each testing process 62
4.5 Coordinating testing and software development p h a s e s 63
4.6 The fountain model of software developm ent.................................... 64
4.7 The Booch macro and micro processes.. 65
4.8 Adding testing to the Booch micro process.. 68

5.1 State-transition diagram for a TRAFFIC-LIGHT.................................. 74
5.2 State-transition diagram for a STACK.. 75
5.3 State-transition diagram for a BOUNDED.STACK.............................. 75
5.4 Different views of object/class behaviour.. 77

xvi LIST OF FIGURES

5.5 A STACK class implemented in Sather.. 78
5.6 A BOUNDED.STACK class implemented in Sather 79
5.7 Eliminating concurrent states... 80
5.8 A transition tree for BOUNDED.STACK... 81

6.1 A state-transition diagram for an ACCOUNT object............................ 86
6.2 Transition tree for the ACCOUNT state-transition diagram................. 87
6.3 Test cases derived from the transition tree for ACCOUNT................... 87
6.4 The Sather interface for querying an object’s state................................ 88
6.5 Code generated for event sequence no. 3 in Figure 6.3......................... 89
6.6 Test data for the class MONEY... 90
6.7 Code generated for event sequence no. 11 in Figure 6.3....................... 91
6.8 A state-transition diagram for testing the class TIME............................ 92
6.9 Test data for the class TIME... 92
6.10 A state-transition diagram for an OVERDRAFT.ACCOUNT object. . 93

B.l An abstract class .. 110
B.2 A concrete class... I l l
B.3 Sather string class STR reuses the implementation of array of char. . . 112
B.4 Exception handling... 114
B.5 A “hello world” program in Sather... 115
B.6 Pre-and postconditions in Sather.. 117
B.7 An example of atypecase statement ... 118
B.8 A dot product of vectors (showing the use of iters).............................. 118
B.9 Using a bound routine in an “applicative” context.............................. 119
B. 10 Part of a test class for the class STACK ... 120

Chapter 1

Introduction

Software has bugs. This is a fundamental truth of software development today and in
the foreseeable future. Until we can automatically manufacture software from require­
ments that perfectly capture the current and future needs of all potential users, this will
continue to be so. Despite the many advances that have been made in the software de­
velopment process, it is still the case that software has to be individually hand-crafted
to suit its particular purpose. As a consequence, quality must be evaluated separately
for each individual software item. Testing remains one of the major means of ensuring
software quality.

An alternative approach to improving the quality of a product is to evaluate and
improve the process of developing that product. This is a motivation for the increasing
adoption of object-oriented technology. Proponents of object-oriented methods argue
that they improve software quality, and reduce the need for testing and maintenance
effort (Wirfs-Brock et al. 1990, Meyer 1988).

While there appears to be insufficient documented proof of these claims there is
increasing anecdotal evidence of improved productivity and reliability. Recent confer­
ences on object-oriented technology have devoted at least one session to business’s ex­
periences of the benefits of object-orientation. Many of the adopters of object technol­
ogy first see benefits in porting, maintaining and enhancing software due to the modu­
larity of software implemented in object-oriented programming languages. They also
see benefit in the better modelling provided by object-oriented analysis, and the closer
integration of analysis, design and implementation (Taylor 1992, Osmond 1994).

Part of the success of object technology is that it has given software developers
techniques to handle increasingly complex software. It does this through interfaces
that hide the complexity of lower levels, and classification whereby it is possible to ab­
stract common elements and address them separately from the individual differences.
But with an increase in complexity of systems comes an increase in their modes of
failure.

There are, broadly speaking, three ways in which object-orientation has changed
software development. The most obvious is the introduction of new programming lan­
guages built upon the concepts of objects and classes, inheritance, and polymorphism.
The emergence of this programming paradigm has been followed by a profusion of

1

2 Introduction

object-oriented analysis and design notations that support the discovery and design of
objects and classes. More recently, some important work on the software development
process (Boehm 1988, Gilb 1988, Booch 1986) has lead to a number of object-oriented
software development methods to facilitate object-oriented analysis and design.

The aim of this thesis has been to examine the effect of object technology on soft­
ware testing. The discussion presented has been broken down into the same three
areas of object-oriented programming, object-oriented analysis and design, and the
object-oriented software development life-cycle.

Object-oriented programming is, in several respects, substantially different from
procedural programming. Several kinds of errors in procedural programs do not occur
in object-oriented programs. This is as a result of the use of encapsulation, poly­
morphism, stronger type checking, and other features of object-oriented programming
languages. But these concepts also introduce new sources of errors. Further, a number
of widely used testing techniques focus on the source code, so we need to rethink the
application of those testing techniques to object-oriented programs. The research liter­
ature on testing object-oriented software has todate mainly concentrated on the effect
of object-oriented programming constructs on testing.

Object-oriented design has introduced new notations and techniques, as well as
adapting earlier ones. Objects and classes have become the main focus instead of
functions of data. The artifacts of software design, like all those of software develop­
ment, are potential sources for test cases. So there is an opportunity for testing to take
advantage of these new design methods in designing test cases.

In this thesis we propose a tool to generate test cases from one artifact of object-
oriented design: the state-transition diagram. State-transition diagrams describe the
behaviour of objects and classes at a more abstract level than their implementation in
an object-oriented programming language. We also develop a theory that reconciles
the design view of object state with their implementation.

The introduction of object technology provides an opportunity to change the soft­
ware development life-cycle, as well as changing the subprocesses within the life-
cycle. No single model has emerged for an object-oriented life cycle, but there is
an emphasis on iteration, incremental development and the evolution of the software
product. Changing the process requires a reassessment of test activities and how they
fit into the new life-cycle.

This thesis describes a framework for incorporating testing activities into an iter­
ative and incremental software development process. We demonstrate the framework
by applying it to the widely used software development process described by Booch
(1994).

§1.1 Outline o f the Thesis 3

1.1 Outline of the Thesis
In this thesis we have assumed that the reader has a basic familiarity with software en­
gineering and object-oriented technology, but most concepts are briefly defined when
they are introduced or references are given. Chapter 2 presents a brief introduction
to software testing which provides the necessary background and terminology for the
rest of the thesis.

Chapter 3 reviews the current literature on testing and object-oriented program­
ming. We discuss in turn encapsulation, object state and behaviour, inheritance, gener-
icity and object interaction, and examine the implications for testing.

Process models for object-oriented software development are discussed in Chap­
ter 4, and a strategy for incorporating testing into them is proposed. This chapter is
derived from a paper given at the International Conference on Testing Computer Soft­
ware, Washington D.C., June 1996 (Bosman 1996).

In Chapter 5 we return to the state-based testing of classes. We develop a theory
that relates the design view of class state, in the form of state-transition diagrams,
to the programming language view. This chapter is derived from a joint paper with
Prof. Heinz Schmidt, given at the TOOLS Pacific ’95 conference (Bosman & Schmidt
1995a). It is also available as a technical report (Bosman & Schmidt 19956).

Chapter 6 proposes a tool to generate test cases from a state-transition diagram.
This is an application of the ideas described in Chapter 5.

For examples of code we have used Sather, but the underlying ideas are more
widely applicable. Sather affords a clear, concise, readily understandable, pure object-
oriented view of the issues. Much of the work on testing object-oriented programs
has been clouded by the peculiarities of C+ + . Sather permits the presentation of these
ideas less muddied by implementation issues. The examples are intended to be straight
forward, and the reader should have little problem translating them into their favourite
object-oriented programming language. The main features of Sather are summarised
in Appendix B.

Chapter 2

Software Testing

Software testing does not have underlying theoretical foundations. It is a collection of
practices that have been found to discover defects in software. In examining software
testing we find ourselves in a situation not unlike Kilgore Trout’s dog standing on a
mirror: when eventually it looks down, it thinks it is standing on thin air and jumps
a mile (Vonnegut 1972). Despite the fact that testing does find bugs in software and
does, in practice, improve its reliability, we have no sound basis for relating the current
testing techniques to the quality of software.

In this chapter, we do a little “looking down” at the fundamental concepts and
techniques of software testing. After first defining terms that will be used in the rest
of this thesis, we give an overview of some of the many techniques traditionally used
for testing procedural programs. These testing techniques will be re-examined in an
object-oriented setting in the next chapters.

2.1 Basic Concepts
Testing is the process of exercising software to detect differences between its actual
and required behaviour (IEEE 1990). The required behaviour may be explicitly stated
in terms of a requirements document or formal specification. It is immaterial to this
discussion how these requirements are derived or what form they take. Testing only
requires that we have some means of recognising correct and incorrect behaviour of
the software under test.

To introduce some notation, let P : D —> R be a program with inputs from domain
D and outputs in range R. That is, D is the set of all (valid and invalid) inputs that
can be applied to P, and when applied to P produce outputs in the set R , so for d E D,
we have P (d) E R. Note that D usually models some real-world set and is typically
unbounded: for example, the inputs for a compiler includes all strings of text of finite
length. In practice it must be possible to represent the elements of D in a computer
system, so D is the set of strings of length up to some nominated value k. While D is
finite, for realistic values of k it is very large.

5

6 Software Testing

Now let S : D -* R be a function defining the requirements on the output of P, as
derived from its specification. We say that P is correct, if for all d € D, S{d) = P(d).

A test case is an input value and its expected output, or in our formalism, a test
case is a pair (d:r) € D x R such that S{d) = r. We say that a test case is successful if
it causes the program to produce an incorrect result, that is if P(d) ^ r (Myers 1979,
Pressman 1992)1. The goal of testing is to find successful test cases, those (d,r) for
which S{d) = r and P(d) ^ r.

In standard software engineering terminology (IEEE 1990), the situation where a
program produces an incorrect result for some d £ D is called a failure. A failure is a
run-time manifestation of a fault in the program code. A fault is caused by an error in
the implementation process; for example, a misunderstanding of the specification or a
typographical mistake.

Marick (1994) points out that in order for a fault to manifest as a failure, a test case
must meet three conditions: it must exercise the code containing the fault (reachabil­
ity), it must cause the faulty code to produce a different internal state to that which
would be produced by a correct version {necessity) and, the incorrect internal state
must propagate to some externally visible behaviour (propagation).

Test cases are collected into test suites. A test criterion (also called test requirement
or test condition) describes some aspect of the software that should be tested. For
example, test criteria for a list search routine could include a match at the beginning
of a list, a match at the end, and no match. Test criteria are used to guide the test
process in that, having identified test criteria for a program, a tester creates test cases
by selecting specific values that satisfy test criteria. Based on the above example test
criteria, a tester might select the test cases:

• find a in the list (a,&,c, <7, e), expected result: 1

• find e in the list {a,b,c,d,e), expected result: 5

• find h in the list (a,Z?,c,<i,e), expected result: error

A test criterion may be satisfied by several test cases and one test case may satisfy
several criteria.

In realistic applications, D is typically huge and resources available for testing
limited, so the sample of test inputs (T C D) is necessarily sparse. If there are relatively
few faults in the software then the set of inputs causing a failure {F C D) will likely
also be small, so the probability of a selecting test case causing a fault (T fl F 0) is
very low. This is the situation illustrated in Figure 2.1. The set of test inputs, marked
by the x ’s, was selected according to some criteria that misses the failure-causing
inputs in the shaded area. The art of software testing is in developing and applying
practical techniques for identifying test criteria that are likely to find faults.

'Some authors use the reverse definition, e.g. (Ghezzi et al. 1991)

§2.2 Functional Testing Techniques 1

Figure 2.1: An input domain D showing a set of inputs causing failures F, and test inputs (x).

Testing has been described as the “accretion of confidence” (Macro 1990). But as
we have just seen there is no real basis for this confidence and this view of testing is
little more than a psychological crutch for the software developer. Dijkstra made this
clear when he pointed out that:

Program testing can be used to show the presence of bugs, but never to
show their absence, (in Dahl et al. 1972)

Testing techniques are usually divided into those that analyse the specification
without reference to its implementation {functional or black-box) and those that anal­
yse the code (structural, white- or glass-box). The next two sections describe some
techniques in each category. Section 2.4 describes an alternate testing technique based
on finite state machines. After individual units of code have been tested, they must
be integrated to produce a functioning system. Section 2.5 of this chapter looks at
integration testing and system testing. Finally we discuss techniques for assessing the
adequacy of a test suite or the likelihood that it has not missed significant faults.

2.2 Functional Testing Techniques

Functional testing refers to techniques that derive test cases without reference to the
code. Since these techniques ignore the implementation language, they can be equally
applied to software developed in an object-oriented programming language. We briefly
review some of the more well-known techniques.

Perhaps the most commonly used functional testing technique is specification-
based testing. This requires some form of requirements specification document. It
involves analysing the document to detect each required function, output or behaviour
of the software and devising a test case to determine its presence in the program. When

8 Software Testing

O x

Figure 2.2: An input domain that has been partitioned into equivalence classes, showing test
inputs suggested by equivalence partitioning (x) and boundary-value analysis (O)-

the requirements specification is presented in a formal specification language it is pos­
sible to automate this process and a number of tools have been developed based on
this approach. Documentation-based testing is similar, but instead of working from
a requirements document, it analyses the user documentation such as user manuals,
reference manuals, user guides, and on-line help.

Random testing is a functional testing technique that generates test cases by ran­
domly selecting inputs from the program domain D. It is not highly regarded as an
effective method for finding faults. As we have seen in Figure 2.1, if there are rel­
atively few faults in the software then the probability of a test case causing a fault
(P{T n F ^ 0)) is very low. On the other hand, if there are many faults, for example
during earlier stages of development, then random testing may be reasonably success­
ful, and although there is no reason why it should be any more successful than other
techniques, it may be easier to generate test cases randomly. Random testing is, how­
ever, the basis for reliability analysis (see Section 2.6.2 below), and is an essential
ingredient in the cleanroom software development process (Lokan 1993).

In equivalence partitioning the input domain of the program is partitioned into
classes that are expected to produce similar behaviour or output. Test cases are then
selected so that all equivalence classes are represented in the test suite. In Figure 2.2
the input domain D has been partitioned into subdomains indicated by the dashed lines.
Test inputs x are selected from each subdomain.

The underlying assumption is that in terms of errors in the logic of the program,
we can reasonably expect all values in an equivalence class to be handled in the same
way and exercise the same logic and thus any one of them will serve as a test case.
For example, if the software under test is a square root function, and the input domain
is the set of representable real numbers, this would be partitioned into negative and

§2.2 Functional Testing Techniques 9

1 search(beg:INT, arr, sub:ARRAYELEM):INT
-- Returns the index of the leftmost
-- subarray of 'arr' starting at
-- 'beg' or beyond which matches
-- 'sub'. Returns -1 if no match.

2 r: INT := beg;
3 loop while!(r < arr.size-sub.size);
4 match: BOOL := true;
5 j: INT := 0;
6 loop while!(j<sub.size and match);
7 if arr[r+j] /= sub[j] then
8 match := false;
9 end ;

10 j := j+1;
11 end;
12 if match then
13 return r
14 end;
15 r := r+1
16 end;
17 return -1
18 end;

Figure 2.3: A routine and its control-flow graph.

non-negative numbers, being invalid and valid inputs respectively. Another example is
the list search in Figure 2.3 and described in the next section; if we treat the comment
as a specification then equivalence partitioning would find five equivalence classes:

• the sequence sub does not occur in the array a r r ,

• the start index, beg, is before the start of all occurrences of sub in a r r ,

• beg is after the start of all occurrences of sub,

• beg is between two occurrences of sub in a r r , and

• a class of invalid values, in which beg is not in the range of indices for a r r .

Boundary value analysis is based on the recognition that many errors occur at the
boundaries of equivalence partitions. A common example is the “off-by-one” error,
that can occur when iterating through arrays accessing one past the last element. In
Figure 2.2, boundary value analysis selects test case inputs O on the boundaries be­
tween subdomains. Note that an intersection between boundaries is also a boundary.
In the square root example in the previous paragraph, boundary value analysis would
suggest zero and numbers a small increment above and below zero as test cases. In
the substring search example, boundary value analysis leads to test cases where beg
is the first or last index of a r r , the beginning of an occurrence of sub in a r r , where
su b occurs at the beginning and end of a r r , where sub is a single character or the
same as a r r , and so forth.

10 Software Testing

By regarding blocks of statements as “black-boxes”, these two techniques can also
be applied to code. Each predicate in the code partitions the set of inputs according to
which branch they would cause to be executed. When used in this way, equivalence
partitioning is similar to branch coverage (see Section 2.3.1 below). Boundary value
analysis suggests test cases that are at the edges of these partitions. Given the statement

if a > 0 then ...

test cases should be selected that cause a to be 0, a small increment above 0 and a
value below 0.

There are several other functional testing techniques described in the literature.
Cause-effect graphing relates input conditions to their effects (Myers 1979, Pressman
1992, Ghezzi et al. 1991). When the input has a well defined syntax, such as compilers
or text processors, syntax testing (Hetzel 1988, Ghezzi et al. 1991) can be used to
generate test cases that have examples of all constructs in the input grammar. State-
based testing is discussed separately in Section 2.4.

Unlike purely structural testing techniques, functional testing techniques can ex­
pose errors of omission in the implementation. Structural and functional testing are to
some extent complementary and are ideally used together. It is usually recommended
that functional tests are devised first and then these are supplemented by structural
tests.

2.3 Structural Testing Techniques

Structural testing techniques examine the implementation of software in order to derive
test conditions. Typically these methods classify structures found in the code, and then
require that the test suite cover these constructs, that is, exercise all occurrences of
them. The simplest example is to recognise functions and procedures in the code and
ensure they are all exercised by the test suite. This is known as call coverage.

Control-flow testing and data-flow testing are the two main structural testing tech­
niques. They focus on the flow of control in a program and, in the latter, the flow
of data through a program. Mutation coverage is a novel technique that focusses on
exposing likely errors. These techniques are described in the rest of this section.

The structural testing techniques described in this section can be, and are, applied
to object-oriented programs. However object-oriented programming languages have
additional structure and the effectiveness of structural testing techniques for object-
oriented programs needs to be reconsidered (see Chapter 3).

§2.3 Structural Testing Techniques 11

2.3.1 Control-Flow Testing

Control-flow testing derives test criteria from the control-flow graph of a program.
Figure 2.3 shows a sub-string matching routine, written in Sather2, and its control-
flow graph. Each node in the control-flow graph represents a statement and arrows
indicate the possible execution sequences of the statements.

Control-flow test criteria are well known and widely used, and described in many
texts on software testing or software engineering: see for example, (McDermid 1991,
Pressman 1992, Sommerville 1992, Myers 1979) or, for a thorough discussion, (Beizer
1990). The most commonly used control-flow test criteria are:

Statement coverage requires that the test suite executes all statements in a program.

Branch coverage (or edge coverage) requires the test suite execute all alternative
paths at a branch. For example, in Figure 2.3, any path that includes the se­
quence of statements corresponding to the nodes (... ,6 ,7,8,9,...) exercises all
statements in that part of the control-flow graph, but not the branch (.. . ,7 ,9 ,...).

Condition coverage requires that each simple term in a compound boolean expression
evaluate to all possible combinations of true and false. Compound boolean ex­
pressions are those containing the operators a n d or o r , such as the expression
j < s u b . s i z e a n d m a tc h on line 6 in Figure 2.3.

Path coverage requires that the test suite exercise all possible paths in the control-flow
graph. If the program contains loops then there is infinite or at least impractically
large number of paths, so path coverage is impossible to achieve. In practice the
weaker loop coverage criterion is used.

loop coverage requires that there are test cases that exercise each loop at least 0, 1
and the maximum number of times (or where the loop has no maximum, a large
number of times).

There are a large number of commercial tools available that can evaluate the state­
ment coverage, branch coverage and even loop coverage of a test suite for a number
of programming languages. These work by instrumenting the code under test to mea­
sure the number of times the program counter reaches each statement, branch or loop.
A tester can use the results to find sections of code that were not exercised and then
design new test cases to reach those untested sections.

2In the figure, the expression w h i l e ! (. . .) is a Sather iterator (see Appendix B). In this example
the two statements containing it are semantically equivalent to while loops.

12 Software Testing

(all paths
V (all du-paths

(all condition^) all uses)

(all p-uses/some c-uses) (all c-uses/some p-uses)
_______ / > X

(all branches)^ ~ Call p-uses) (all defs) (all c-uses)
V

(all statements)

Figure 2.4: Subsumption relationships among test coverage criteria.

2.3.2 Data-Flow Testing
Data-flow testing (Frankl & Weyuker 1988, Ntafos 1988) is actually a collection of
structural testing techniques that attempt to find errors by exercising the flow of data
through a program. It borrows from the data-flow analysis techniques used in opti­
mising compilers. In the control flow graph of a program or routine, a definition of a
variable x , def(x), is a node in which the value of x is set or modified (for example,
the statements 2 and 15 in Figure 2.3 are both definitions of the variable r) . A use of x
is a node in which the value of x is used. If x is used in a calculation, this is a c-use (we
write cu(x)), or if in a predicate, it is a p-use (pu(x)). The reason for the distinction
is that predicates occur at a branch in the routine’s control-flow graph. In Figure 2.3,
statements 7 and 15 are c-uses of r and statement 3 is a p-use of r . A du-path is a
path in the program’s control flow graph in which there is a definition of the variable
x followed by a use (for example, in Figure 2.3, the sequences of statements (2, 3) and
(15, 16, 3, 4, 5, 6, 7) are both du-paths for the variable r) .

Static data-flow analysis, such as performed by the UNIX utility lint, seeks to
detect those paths with successive definitions of the same variable, or with uses lacking
a preceding definition, as they indicate implementation faults. In testing, data-flow test
criteria assume that these have been removed, and only consider du-paths.

A test suite satisfies all du-paths coverage if, for all variables in the program, every
du-path is exercised. It satisfies all defs coverage if for every variable, every definition
is exercised. Similarly, a test suite exercising all uses of all variables satisfies all uses
coverage. If a test suite exercises the subset of du-paths that includes all c-uses or
p-uses, it satisfies the all c-uses coverage or all p-uses coverage, respectively. If a test
suite satisfies both the all c-uses and the all defs coverage, that is, if for any def(x)
there is no path to any cu(x), then a path to some pu(x) is exercised, it satisfies all
c-uses/some p-uses. The all p-uses/some c-uses is similar.

§2.4 Testing using Finite State Machines 13

2.3.3 Relating Test Criteria
We say that one test criterion A subsumes another, B, if every test suite that satis­
fies B also satisfies A. Clearly the subsumes relation is transitive and reflexive. Of
the control-flow test criteria, branch coverage subsumes statement coverage, and both
are subsumed by condition coverage. Path coverage subsumes all other control-flow
testing criteria.

The subsumption relationships between the various data-flow and control-flow
coverage criteria are illustrated in Figure 2.4 (Ntafos 1988). An arrow indicates that
one criterion subsumes another, so for example, path coverage subsumes du-path cov­
erage which in turn subsumes all uses coverage.

2.4 Testing using Finite State Machines
Finite state machines are a useful tool for specifying, designing, implementing and
testing software. They can describe interfaces, such as network protocols and GUIs,
and simple grammars such as regular expressions. Several tools exist for generat­
ing working code from finite state machine descriptions. Methods for specifying and
building reliable software based on refining finite state machine specifications have
been proposed (Leveson et al. 1994, Zucconi & Reed 1996).

Finite state machines (Hopcroft & Ullman 1979) represent a system as a set of
states and transitions between states. The output of a finite state machine depends upon
its current state as well as the input, and in response it may also change its state. Our
development below and elsewhere in this thesis is based on the Mealy machine which
associates outputs with transitions, rather than the Moore machine which associates
outputs with states. The two have been shown to be equivalent (Hopcroft & Ullman
1979).

Formally, a (deterministic) finite state machine is described by the sextuple

F =< I ,0 ,S ,s o, f ,g >

where

I is the set of input (or event) symbols,

S is the set of state symbols,

O is the set of output symbols,

s0 G S is the initial state,

/ : / x S S is the transition function, and

g : I x S —»• O is the output function.

14 Software Testing

AmberFlashing

RedOn AmberOn GreenOn
next

Figure 2.5: A finite state machine diagram for a traffic light.

Both the transition function / and the output function g can be partial, that is, not all
combinations of states and inputs need cause a transition or produce an output. For a
finite state machine S, I and O are all finite. When it is started, a finite state machine is
in the state s0. If there is no sequence of transitions from s0 to a state, then that state is
unreachable. Dead states are those for which there is no sequence of transitions back
to s0. A finite state machine with no dead or unreachable states is strongly connected.
In practice, almost all finite state machines used in software are strongly connected
(Beizer 1990, page 373).

Figure 2.5 shows a finite state machine for a traffic light. It has five states each
indicated by a labelled box. The transitions are represented by arrows and labelled
with the inputs that cause them. Initially it is in the Off state. Turning the power on
(input on) causes it to transition to a state in which the red signal is on (state RedOn).
The next input (from a timer and/or traffic sensor in the road) causes it to cycle through
the green (state GreenOn), amber (state AmberOn) and red signals. In any state it can
accept a fault input which sets the FSM in the AmberFlasbing state. Further fault
inputs return it to the AmberFlasbing state, until turning the power off (input off) sets
it in the Off state.

Finite state machines succinctly describe the behaviour of systems and therefore
are a good source of test criteria. Beizer (1990) and Marick (1994) recommend that,
where possible, testers create a finite state machine model of the software to be tested,
if one wasn’t produced in its development. Where there is a tool to generate test cases
from a finite state machine specification, such as the one which will be described in
Chapter 6, this can be a very efficient practice.

There are a number of test criteria that can be used for finite state machine specifi­
cations, including:

entering all states,

§2.4 Testing using Finite State Machines 15

• exercising all transitions,

• exercising all pairs of transitions,

• exercising all sequences of n transitions and

• exercising all paths in a transition tree.

Deriving transition trees is an important testing technique since a test suite derived
from transition tree can show the equivalence of an implementation and its finite state
machine specification. Thus we describe this in detail here. In Chapters 5 and Chap­
ter 6 we use this technique to generate test cases for testing classes.

We say two finite state machines with the same sets of input and output symbols,
Spec=< I ,0 ,S ,s 0, f ,g > and Impl =< 1, 0, S ' , g ' > , are equivalent if any se­
quence of inputs from 1 produces the same sequence of outputs on both finite state
machines (Hopcroft & Ullman 1979). Chow (1978) showed that if one finite state ma­
chine Spec is minimal, we can select a finite set of input sequences T Cl* such that if
Spec and Impl are equivalent over T then they are equivalent for all input sequences I*.
A number of refinements have reduced the size of the test set T generated by Chow’s
“W-method” (Fujiwara et al. 1991, Bernhard 1994). In essence the W-method derives
a transition tree for Spec.

To construct a transition tree for a finite state machine we can proceed as follows:

1. The initial state is the root node of the tree.

2. For each new, non-terminal node, an edge is drawn for every transition out of
that state to a new node representing its target state.

3. For each node just drawn, if it represents a state already visited, then it is marked
as terminal.

4. Repeat until there are no new, non-terminal nodes.

The transition tree thus constructed for the traffic light finite state machine in Figure 2.5
is shown in Figure 2.6. The test cases are formed by taking all paths and subpaths in
the transition tree. The test case input is the sequence of events from the transitions
along the path and the result of the test case is the state in the end node of the path. A
set of test cases from the transition tree in Figure 2.6 is:

event sequence: 0;
event sequence: on;
event sequence: on, off;
event sequence: on, fault;
event sequence: on, fault, off;
event sequence: on, fault, fault;

final state: O ff
final state: RedOn
final state: O ff
final state: AmberFlashing
final state: O ff
final state: AmberFlashing

16 Software Testing

next
AmberOn RedOnRedOn GreenOn

AmberFlashing AmberFlashing

AmberFlashingAmberFlashing

Figure 2.6: A transition tree for the traffic light state machine in Figure 2.5.

event sequence: on, next; final state: GreenOn
event sequence: on, next, fault; final state: AmberFlashing
event sequence: on, next, next; final state: AmberOn
event sequence: on, next, next, fault; final state: AmberFlashing
event sequence: on, next, next, next; final state: RedOn

Test suites derived from transition trees quickly get large as the number of states
and inputs increase. While the length of each test sequence is bounded by the number
of states, the minimal number of tests is at most |5j2 x and the total length of
all test sequences is at most |Sj2 x \S'\ x |/|l5,HS|+i (Chow 1978). This is practical for
small state machines, but large state machines must be factored or otherwise reduced.
More recent work has developed algorithms that reduce the size of the required test
suite under certain conditions (Fujiwara et al. 1991, Bernhard 1994).

The test suite derived from a transition tree tests that an implementation of a finite
state machine supports all the transitions in its specification. But it is also an error
if the implementation allows extra transitions (sometimes called “sneak paths”). The
test criteria for additional transitions and states is to try all illegal events for each state.
In Figure 2.5 the event b cannot be accepted while in state S t a t e 2. To test for the
possibility of a sneak path from S t a t e 2 to S t a t e 1 we would add the following
path to the above test suite:

event sequence: on, fault, next; final state: error

State charts are a development of the state machine diagramming notation that
allows for hierarchies of nested state machines, conditional transitions, and other ex­
tensions (Harel 1987). State charts have been incorporated in to several object-oriented
development methods (also known in this context as “object charts” or “state-transition
diagrams”), where they are used for describing the dynamic behaviour of objects (see,

§2.5 Testing in the Large 17

for example, Rumbaugh et al. 1991, Booch 1994). The state-based testing of classes
is discussed in Chapter 3.

2.5 Testing in the Large

The test techniques so far described can be applied to single programs. Larger software
systems can be complex to test as well as build. One aim of software engineering is
to develop methods for handling this complexity. Testing is, in the main, a software
process issue and these aspects are further examined in the context of object-oriented
software development in Chapter 4. However, it will be helpful to outline the main
issues and provide a few definitions here.

Large systems are developed in modules which are individually tested. If a module
under test depends upon the services of another, that functionality can be provided, for
the purposes of testing, by a stub. Usually a test driver is required to supply inputs,
run the module and collect the results.

Once individual functions and modules are tested, they must be integrated into the
complete system. The concern of integration testing is to validate the intermediate
stages. As modules are combined and the items being tested become larger, there is
a trend toward functional testing over structural testing and an increasing focus on
testing module interfaces (Harrold & Soffa 1991). The central issue is the order of
combining modules. The two most often described schemes are top-down and bottom-
up. In the former, the process begins with the system interface; in the latter, with
those core modules that provided services for many other modules. Stubs and drivers
are incrementally replaced by modules and the configuration tested until the system is
complete. Hetzel (1988) recommends integrating small skeletons support increments
of functionality and then building out from these skeletons. In top-down integration
the interface is most heavily tested, in bottom-up it is the core services.

When complete, the system as a whole is tested. This phase is called system testing.
As well as confirming the correct functioning of the software system, this may also
involve testing other factors such as performance, reliability, and security.

2.6 Adequacy

If a test suite fails to uncover any new errors, one of two conclusions can be drawn:
either the program is of sufficient quality and reliability or the test suite is inadequate.
A test suite is adequate if it could expose any possible failure of the program. When
the test suite for a program is adequate, testing can be stopped (Weyuker 1988).

A test suite consisting of the complete set of possible input values is trivially ade­
quate, but complete testing of all but trivial software is infeasible. As we have already
seen, the input domain is typically huge, so if a program is to be run with all possible

18 Software Testing

inputs and the results checked against the expected output, this could take arbitrarily
long. Consider, for example, validating a compiler by compiling every possible string
of characters.

On the other hand, a white box approach fares little better: to exercise every
combination of paths in even a moderately complex program leads to a combinato­
rial explosion in the number of test cases. To take a very simple example, a pro­
gram containing a single branch inside a loop that can execute at most 20 times has
2° -f 2 1 + . . . + 220 = 2,097,151 paths, each requiring a separate test case. Software
is considerably more complex than this. Even if all paths are exhaustively tested, the
software may still have errors due to unimplemented functions.

For efficiency, testers aim to build a test suite that is minimal, since test cases take
time to run as well as time to develop. However, it is not easy to determine a minimally
adequate test suite. In practice, a decision to stop testing must be made on the basis of
the cost of developing additional test cases versus the risk of any remaining undetected
faults. This will often depend on the software development context: the risk and cost
of software failure, the quality requirements of the customer or developer, or simply
the time and resources available for testing. This is a project management issue.

In the rest of this section, we briefly examine some techniques that have been used
to determine test suite adequacy.

2.6.1 Coverage
The thoroughness with which control-flow and data-flow testing has been carried out
can be measured by taking the percentage of constructs that were actually exercised
by the test suite. For example, a test suite that exercises every statement in a pro­
gram is said to have achieved 100% statement coverage. Coverage is probably the
most commonly used technique for determining the adequacy of a test suite. It relates
directly to several of the test techniques described above: branch, loop, and du-path
coverage are often used, and tools exist for several programming languages for deter­
mining test suite coverage (for example, see (Marick 19927?, Horgan et al. 1994, Frakes
e ta l. 1991)).

A typical target for testing is 100% statement coverage and 85% branch coverage
(McDermid 1991). Weyuker (1988) states that an adequate test suite should, at a
minimum, exercise 100% of the executable statements and Marick (1994) also sets
100% feasible coverage as target, but more for psychological reasons. Beizer (1984)
is even more adamant:

If you still believe it’s possible to test and integrate a system without meet­
ing the minimum standard of 100% coverage, then there’s no point in con­
tinuing with this book. There is a philosophical chasm between this writer
and the reader that only the reader’s future bitter and expensive experience
will bridge.

§2.6 Adequacy 19

Although coverage is widely used and often recommended, there have been few
empirical studies of its effectiveness. It is still not clear whether high test coverage
leads to a high rate of fault detection (Hutchins et al. 1994, Horgan et al. 1994).

2.6.2 Reliability Analysis
Another basis for a decision to stop testing is reliability analysis. This technique mod­
els the occurrence of failures as a statistical process, such as a Poisson process (Musa &
Ackerman 1989), binomial distribution (Levendel 1991) or Markov chain (Whittaker
& Thomason 1994), to derive a statistically based reliability measure such as mean
time to failure (MTTF). When a predetermined reliability target is reached, testing is
considered complete. Reliability analysis is (at least in theory) the only form of testing
used in the cleanroom software development process (Lokan 1993).

In order to apply statistical techniques, reliability analysis makes a number of as­
sumption about the random distribution of faults and failures. This has been much
criticised since software faults are due to logical failures in the development pro­
cess rather than random processes such as fatigue. Further, software faults clus­
ter: it is a well established observation that 80% of faults occur in 20% of code
(Levendel 1991, Walsh 1992). However, in large systems of high complexity, it may
be reasonable to approximate failure distribution with a random process.

2.6.3 Error Seeding and Mutation Analysis
Error seeding is a method of testing the test suite by determining its effectiveness on a
known set of faults. A representative set of known faults is inserted into the software,
and the number of these faults found by the test is determined. This is then used to
estimate the number of undiscovered faults in the system under test.

Mutation analysis is a more sophisticated version of this technique. It involves gen­
erating copies of the program with a fault inserted (known as mutants). Two forms of
mutation are most commonly used: operator replacement (for example a : = b + c
could be mutated to a : = b - c) and variable replacement (in which original state­
ment could be mutated to a : = c + c). In mutation analysis, a test suite is adequate
if it can distinguish the program from all possible mutants.

Mutation analysis has been shown to be much more stringent than other testing
techniques. However, generating and testing mutants is an expensive process, as the
number of mutants is proportional to the square of the sum of the statements and vari­
ables. In practice it is generally not feasible, but a number of techniques are under
development that may make the mutation analysis of larger commercial projects pos­
sible (see, for example, Duncan 1993).

Mutation analysis assumes that by the time programs are ready for testing, only
such simple faults remain (in the literature on mutation this is known as the “com-

20 Software Testing

petent programmer hypothesis”). Mutation analysis seeks to establish the ability of a
test suite to expose these kinds of faults. More recently, mutation coverage has been
proposed as a means of designing test cases that are likely to expose common mistakes
by programmers (Marick 1992b).

Proponents of error seeding and mutation analysis argue that, since it is based on
an analysis of likely faults, it is more efficient at finding errors. However, the technique
as described here concentrates on errors with very localised extent. It is interesting to
compare Knuth’s detailed analysis of the errors found in TjßX software (Knuth 1992).
Only two of Knuth’s 15 categories of errors (constituting less than 8% total errors
listed) would be exposed by mutation testing. Further, faults in these two categories
tended to occur towards the earlier parts of development, rather than the end as would
be expected under the “competent programmer hypothesis”.

2.6.4 Process-based adequacy criteria
Myers advocates that a decision to stop testing be based on an analysis of the testing
process (Myers 1979, Chap. 6). There are two core ideas. The first is to estimate
the number of faults that are expected to be found, and then test until that many are
uncovered. The second is that testing should not stop while the rate at which faults are
being found is increasing.

The number of faults that are expected to be found is calculated from the expected
number of faults in the software and the effectiveness of the test process and testers.
The number of faults in the software under test can be estimated from historical data
or by error seeding techniques (Myers 1976). If S faults are inserted into the software,
and the test suite exposes s of them as well as n indigenous faults, the actual number of
indigenous errors (N) can be estimated by N = (S xn) / s . The effectiveness of a tester
is also determined from historical records. Thus, for a 2000 line software product
developed by a team that had an error rate of 5 bugs per 100 lines of code in a previous
project, a tester with a effectiveness of 80% should expect to find 80 bugs. So, testing
should continue until that many bugs are found and the rate of finding bugs falls below
a previously set threshold.

2.7 Summary
In Section 2.1 we said that a fault occurs in a program P when S(d) / P(d) for some
d in domain D of the program. We base our confidence in the correctness of a program
if S(d) = P (d) for all d in our test suite T C D. In this chapter we have described
a number of heuristics for choosing a good T, that is, one which is likely to expose
faults.

In general, the techniques described in this chapter assist in finding test criteria. It
may be that a single test case may satisfy more than one test criteria. An efficient test

§2.7 Summary 21

suite minimises the number of test cases. This can be important if testing is repeated,
as in the iterative style recommended for developing object-oriented software.

Yet, despite some spectacular disasters, we do build software that does work and
is, in the main, reliable. Experience shows that pay packets, electricity bills and bank
statements are nearly always correct, telephones and electronic ignition usually work,
and I have yet to meet a bug in my use of this word processor. So, like the dog
on the mirror, software development and testing does “stand up”, although we don’t
understand why and when we stop to examine it in detail, we have little reason for
confidence in it. It is still the case that in the absence of a unifying theory, a tester’s
best tool is experience. The test techniques described here are just a part of the tester’s
armoury.

Chapter 3

Testing and Object-Oriented
Programming

Most traditional testing techniques were developed in the context of testing software
written in procedural programming languages. So naturally the question arises: to
what extent are these techniques applicable to other programming paradigms, in par­
ticular object-oriented programming? In this chapter we look at the effect of object-
oriented programming on testing.

Of the testing techniques described in Chapter 2, clearly Structural testing tech­
niques need to be re-evaluated, since they are based on source code. In fact it is worth
re-examining all testing techniques, since object-orientation affects so many parts of
the software development process.

Much of what has been written to date on testing object-oriented software has fo­
cussed on aspects of object-oriented programming languages that affected testing. The
main part of this chapter is a discussion of the ways in which aspects of object-oriented
programming languages interact with testing, both from the point of view of testing
objects and testing object interactions. The presentation aims to be language indepen­
dent. In particular, memory management issues are not discussed as they hardly arise
in languages with garbage collection such as Smalltalk, Eiffel, Java and Sather. Spruler
(1994) and Hunt (1994) discuss testing issues for memory management in C+ + .

While the terminology of software testing has largely been settled, object-oriented
technology is an area of active research, much debate and fluid terminology. The first
section briefly covers those concepts and terms from object technology that will be
needed in the rest of this thesis. In Section 3.2 we shall revisit the formal analysis
from Section 2.1 of the previous chapter in the context of testing objects. Section 3.3
looks at encapsulation and the testing of individual objects or classes. The remaining
sections examine in turn the effects on testing of inheritance, genericity, exceptions,
programming by contract and testing the interactions of objects and classes.

23

24 Testing and Object-Oriented Programming

3.1 Concepts in Object-Oriented Programming
The object-oriented approach to building software constructs a solution from objects
and their interactions. Objects represent entities in the problem that the software is
designed to solve. In this problem space, objects can be characterised by their state
and behaviour (Booch 1994). The state of an object is determined by its static and
dynamic properties, and its behaviour by its possible actions and reactions. An object’s
behaviour may change its state, and at any given time the state of an object is an
accumulation of the effects of its behaviours since its creation.

So, objects are packages of data and operations that may act on that data, which we
call its attributes and methods. We call this packaging encapsulation. Objects interact
by sending a message to other objects requesting that they perform one or other of
their methods. The sending object is called the client, and the supplier is the object
receiving and acting on the message and producing some response. It is only possible
to manipulate an object through its methods.

For an object, each of its methods has a name, a (perhaps empty) set of arguments
and possibly returns an object. Its name and the types of its arguments and return
value make up the signature of a method. The set of signatures of an object is its
interface or type. The type of an object determines which messages it can receive, that
is, only those which match a signature in its type. We say that one type is the subtype
of another if it contains all the signatures in the other, which we call its supertype.
Since an object of a particular type can accept the same messages as an object of a
supertype, any object could be replaced by another that is of one its subtypes. This
substitutability property is known as polymorphism.

Types, which can be thought of as existing in the ‘design space’, are implemented
in an object-oriented programming language by classes. A class provides definitions
for the attributes and methods of the type it implements. In the following, we shall
use uppercase names for both classes and the types they represent. It will usually
be clear which is meant from the context. By making the distinction between class
and type we follow Leavens (1991) rather than Meyer (1988). We find this distinction
useful because classes are constrained by the need to represent them in a programming
language, where as types can be represented in a ‘design language’ that also may not
be as formally defined. This representation gap can be a source of defects. We will
return to this issue in Section 5.2.

Simple types such as INTEGER, BOOLEAN or CHARACTER can be repre­
sented in by classes in some object-oriented programming languages such as Smalltalk,
or as a distinct set of elementary types in others, for example C ++, Java and Sather.
We will assume the latter. Attributes can be simple values such as integers or booleans,
or they can be other objects. The class ACCOUNT might include the attributes
balance, simple value of type integer, and owners, itself a list object whose ele­
ments are of type CLIENT. The values of an object’s attributes make up its internal

§3.1 Concepts in Object-Oriented Programming 25

state.
Methods are implemented by functions or routines. Information hiding is the abil­

ity of a class to restrict the visibility of its attributes and methods and their implemen­
tation. Objects are created by instantiating a class and hence the object is then said
to be an instance of the class. A class method that instantiates objects of that class
we call a constructor. Methods that access an object’s state without changing it are
sometimes called selectors and those that do change an object’s state are modifiers.

A class may inherit the attributes and methods of another class, becoming its sub­
class or child. The inherited class is referred to as a superclass or parent. In many
object-oriented programming languages, inheritance is used both for subtyping and
to reuse part or all of the implementation of the parent. A subclass may redefine an
inherited method by providing a new implementation. Most languages do not dis­
tinguish between these two uses for inheritance, Java (Arnold & Gosling 1996) and
Sather (Omohundro & Soutamire 1995) are perhaps the only exceptions.

An abstract class does not provide a complete implementation of its type, and so
cannot be instantiated, that is objects cannot be created from it. Abstract classes are
typically used to define a common interface that will be implemented by several sub­
classes. Classes that define a complete implementation, and hence can be instantiated,
are said to be concrete.

A generic or parameterised class has one or more type parameters. A common
use is to define data structure classes independent of the types that may be used in
the data structure. For example, a LIST{ELT} class has a parameter ELT for the
element type. Then an object could be declared to be a L1ST{INTEGER} by sup­
plying INTEGER for the type parameter, or a LIST{POLYGON} by substituting
POLYGON instead. Both classes would have similar behaviour and interface except
that one would work with objects of type INTEGER and the other POLYGON. Some
object-oriented programming languages allow the type parameter to be constrained
to be a subtype of some specified type. For example, a list that permits searching its
elements could that require its element types have a method to make comparisons like
this: SEARCHABLE_LIST{ELT < COMPARABLE}.

Exceptions are a mechanism used in many programming languages for handling
error situations. The general model is that if a method cannot complete its task for
some reason, instead of simply returning to its calling method it raises an exception.
The exception may be caught in the calling method, if it has sufficient context to either
retry the called method or clean up allocated resources and exit. If the exception is not
caught by the immediate caller, it is passed on to the caller’s calling method, and so on
up the call stack. An uncaught exception usually causes the program to fail.

Assertions are boolean valued expressions that, when they evaluate to false, raise
an exception, and otherwise have no effect. Assertions are used in a number of pro­
gramming languages to check the state of a variable or a relationship between vari­
ables during the execution of a routine. Some object-oriented programming languages

26 Testing and Object-Oriented Programming

provide the facility for a class to define an invariant and to define preconditions and
postconditions for its methods.

A precondition is an assertion that is evaluated when a method is entered. They
can express requirements of the input arguments or of the state of the supplier
class. For example, before calling the debit method of an ACCOUNT object, it
must have a positive balance and the amount to be debited must be positive.

A postcondition is an assertion that must be true when the method returns. Post­
conditions usually constrain the actions of methods or their returned objects. For
example a debit message on an ACCOUNT object must reduce the account’s
balance by the amount withdrawn.

An invariant is an assertion that constrains the state of an object. For example, a
SAVINGS-ACCOUNT object must always have a non-negative balance. Nor­
mally, a class’s invariants are evaluated upon entry to and exit from each of its
methods.

These terms and definitions are by no means the only ones, but will suffice here. A
common terminology for object-orientation has yet to evolve. Alternate terms and def­
initions can be found, for example in (Meyer 1988, Wirfs-Brock et al. 1990, Rumbaugh
et al. 1991, Booch 1994, Berard 1993a, Henderson-Sellers & Edwards 1994, Palsberg
& Schwartzbach 1994, Liskov & Guttag 1986).

3.2 Testing Redefined
In Section 2.1, we outlined a formal description of testing. There we saw that, given
a program P : D —> R and a specification function S for P, we infer the correctness of
P by selecting a (usually small) subset T C D and evaluating the boolean expression
S(d) = P(d) for each d e T. In this section we adapt this definition to testing classes.

Let C be a class with methods Each method has a signature of the
form:

Ci(Pil, F/2,. . . , Pim,)'-Ri (3.1)

where Ri is the return type of c, and the are the types of its arguments. We allow
that Ri is empty for methods that do not return an object and m,- = 0 for methods with
no arguments.

An object of class C can receive messages consisting of a method c, and sequence
of objects (p n , p/2 , • • • 5 Pinti) whose types are P n ,P a , . . . The method uses the
current state of the object, that is the values of its attributes, and the state of each
argument pij. The method may also change the object’s state. So the behaviour of an
object is determined by its state and the message received.

§3.2 ' Testing Redefined 27

Type: SORTED.LIST (Parameter type: ELT)

Maintains a list of objects o f type ELT in sorted order.

Signatures:

s iz e : INTEGER
Returns the number o f elements in the list,

insert (ELT)
Adds the argument as an element of the list, preserving the order,

delete (ELT)
Removes the argument from the list, if it is a member. If not the list is unchanged,

member (ELT): BOOLEAN
Returns ‘true’ if the argument occurs in the list, returns false if not.

equals (SORTED.L1ST): BOOL
Returns ‘true’ if each element of the argument is equal to the elements in the
same position in the list object and vice versa. Returns false otherwise.

Figure 3.1: A SORTED.LIST type.

Let C be the set of all possible states of objects of the class C. We will call C the
state space of the class C. Similarly P/;- and R\ are the state spaces of the argument
types Pij and return type Rj, respectively. We can write c,- as a (partial) function on
state spaces:

ci : C , x P ' 1xP; 2 x . . . x P,im. -y P ' x d (3.2)

representing the output of the method and its effect on the object’s state. This repre­
sents the most general form: in both the above expressions, the R could be removed if
Ci does not return anything or similarly the P ’s are removed if ct- lacks arguments.

A state of an object a that is an instance of class C, can be represented by a graph
with nodes indicating objects and directed edges object references. The state space C'
is then a set of these graphs. Messages sent to a can be represented as transforma­
tions from one state graph into another (Schmidt & Zimmermann 1994b, Schmidt &
Zimmermann 1994a).

Figure 3.1 shows a description of a SORTED.LIST type. A class implementing
this type appears in Figure 3.4. The state of a SORTED.LIST object is determined by
the number and state of the elements it holds. Figure 3.2 shows two states of an object a
which is an instance of SORTED_LIST{INT}, and how the message a . i n s e r t (2)
transforms the object from one state to another. In the figure, list is a reference to
an array object containing references to integer objects (see the implementation in
Figure 3.4).

It may be the case that c; has some side-effect, such as writing to a file, committing
a data base transaction, displaying a window in a GUI, or activating a valve in a process
control system. All such situations could be specified and therefore should be tested.

28 Testing and Object-Oriented Programming

size:4

a.insert(2)

Figure 3.2: Two states of a SORTED_LIST{INT} object, before and after the message
a . i n s e r t (2).

Let S represent the set of side-effects in which we are interested (it would all also
include a “null side-effect” for the case when there is none). Then expression 3.2
becomes:

Ci :C, xP'n xP'2 x ... x P,im. - t d x R ^ x S (3.3)

Further, a method either returns normally or raises an exception. It may also have
changed the state of the object or caused some side-effect before raising the excep­
tion. Let Exp be the set of known exceptions that could be raised, and expression 3.2
becomes:

Ci : C ' x P /il x ^ x ... x Pfa. —>• d x (R'j U Exp) x S (3.4)

Now to test the method c, of C, we set an object a of type C in the required state
and select arguments bn,bi2 , . . . 1bjmi for c, of the required types and in the required
states. Then we evaluate the message a.Ci(bn, bi2 , . . . , Z?tm/).

A test case for the method c,- of class C examines one aspect of the behaviour of
that method. Given that the object a of type C (or a subtype of C) is in a particular
state (written as a'), and the states of the arguments to q , the test case checks whether
the returned object is correct and the resulting state of a is correct.

Let SCj be a function defining the requirements on the method c,. Then, following
the lines of Section 2.1, we say c, is correct if, for all possible combinations of the
states of a , bn , ba , . . . , Z?im/, the following is true:

Sa(a , b}j ,bj2 5 • • • 5 bifjij) o..Ci{bi\ , b^i • • • 5 bim-) (3.5)

where a.Ciipn, ba , ... ,bimj)' is the state of the object returned from the method call
when a is in the state a! and the arguments are in states b'iX,b'i2, ■. ■ibrimj. Of course the
specification function Sc, must also consider side-effects and exceptions.

In practice, this is complicated by the interaction of state and behaviour. The state
of an object at any moment is the result of the messages it has received and acted upon
up to that moment. So, before the test case can be run there will be some sequence of

§3.3 Testing Objects 29

methods to set a in the required state. This will include a constructor and perhaps some
modifiers. Further, the only way to find out an object’s state is to send it a message.
To determine the correct behaviour of the test case, we must evaluate the state of a, the
state of the returned object when there is one, as well as any side-effects or exceptions.

It should be noted that a very similar line of reasoning could be applied to the case
where a is simply a function in a procedural programming language (and a would be
just another of its arguments). In that case, we would need to consider the states of the
whole system rather that just those of the class C. Also note that the states of a class
show a structure which can be taken advantage of in the integration testing of classes.

3.3 Testing Objects

Chao & Smith (1993) note that the organisation of code in object-oriented programs is
different from procedural programs in the following sense. In structured programming,
procedures are the essential organisational unit while object-oriented programming
is organised around classes. The effect of localisation on testing is that instead of
organising test plans around procedures and modules as in traditional programs, in
object-oriented programs they are organised around classes (Berard 1993a).

In the formal definition of testing presented in the previous section, we have al­
ready seen the important role of an object’s state with regard to testing that object. Also
implicit in the definition is the effect of encapsulation: the encapsulated behaviours of
an object must be tested together. The following subsection looks more closely at these
aspects of testing of individual objects and classes in isolation.

3.3.1 Encapsulation
A class such as the SORTED JJST class, whose specification appears in Figure 3.3,
encapsulates methods for accessing and manipulating a sorted list data structure. The
methods size, insert, delete, member and equals make up the interface for this
class. As we have seen, the state of objects of this class is represented by the elements
that are in the list, and we will see different behaviour from the methods depending
upon the state of the object.

For the tester, encapsulation can mean that it may not be possible to test meth­
ods of the class individually because of the level of interaction between them. In our
SORTED JJS T class, it would not make sense to test one of the methods without us­
ing the others. Equivalence partitioning (see Section 2.3) suggests the tests for delete,
for instance, should include removing a member from the list and removing a non­
member from a non-empty and an empty list. However, without breaking the class
interface, the only way to create si non-empty SORTED_L!ST object is to use the
insert method.

30 Testing and Object-Oriented Programming

Class: SORTED.LIST

Description: Maintains a list of elements in increasing order. Generic, parameter class must
provide a partial order.

Responsibilities:

Size Returns the number of elements in the list. Does not change the object.

insert Takes a single argument of the parameter class. Inserts the argument in the list
in the correct order.

delete Takes a single argument of the parameter class. If it occurs in the list, the object
is removed, otherwise the list is unchanged.

member Takes a single argument of the parameter class. If an object equal to the
argument occurs in the list, returns true, otherwise returns false. Does not change
the object.

equals Takes a single argument of the same type as the list object. Returns true if the
argument’s elements are equivalent to those in the list object, or false otherwise.
Does not change either the list or argument.

Figure 3.3: Specification for a SORTED JJST class.

This has led many authors to state that in object-oriented software, the class is the
“unit of testing” (Berard 1993a, Fiedler 1989, Cheatham & Mellinger 1990, Turner
& Robson 1992b). By this they mean that rather than testing the methods of a class
separately, test cases should be selected to test a class as a whole. As Berard (1993Z?)
puts it:

It makes as much sense to individually add methods to a class and test
them as it does to individually add statements to a procedure and test them.

This does not mean that we do not test individual methods of the class, only that we
do so in the context of the whole class. More precisely, we should take account of the
internal state and the ways in which it can affect the methods.

Some authors see classes as integrating a collection of methods, and thus see a need
to separately test methods (D’Souza & LeBlanc 1994). It should be clear from the
preceding discussion that this is only possible if either the class has no internal state,
or there is some means to access and manipulate the class’s internal state directly.
If such a test interface is not available, this requires that the tester modify the class
either directly, by adding methods to manipulate the state, or indirectly, by subclassing,
adding the state manipulator methods to the subclass and testing the subclass. The
latter is the approach suggested by Turner & Robson (1993). In either case, the class
tested is not the original class, which raises the question “what are we really testing?”.
If a failure is uncovered, is it due to the additions made by the tester?

On the other hand, when the methods of a class do not communicate through the
class’s internal data, they can be tested and integrated in the traditional way.

§3.3 Testing Objects 31

3.3.2 Information Hiding

In object-oriented programming, information hiding is the means for controlling ac­
cess to the attributes and methods of a class. Sather and Eiffel use the keyword private
to remove attributes and methods from the class interface, in C++ this is handled by
the public:, private: and protected: parts of the class declaration.

The most common use for information hiding is to deny clients access to details
of the class’s implementation. In the implementation of the SORTEDJJST type in
Figure 3.4, the attribute list is hidden and can only be accessed indirectly through other
methods.

Information hiding affects the testability of classes. In order to determine that
the result of a message is correct, we may need to check whether some internal data
structure has been updated correctly. If the data structure cannot be accessed directly,
the (black-box) behaviour of a class must be tested in a “stimulus-response” way.

In structural testing of the insert method in the SORTEDJJST implementation,
we would ideally like to check the change in list directly to see that it was entered in
the list in the correct position. In practice, we rely on the other methods: that size
increased by one, and member returns true.

Berard (1993a) makes the simple suggestion to first establish a level of confidence
in the state reporting methods (member and size in the example) and then use these
to evaluate the other methods. This either requires careful test design or, as in the case
of the example, other means of verifying those methods.

3.3.3 State
As we have seen above, there is a close link between an object’s state and behaviour:
the state of an object can affect its response to the messages sent to it, and this response
may involve a change of the object’s state. In effect, an object’s methods communicate
through its state. So to test the methods of an object, we must take into account its
state as well as the arguments to the method.

Among writers and practitioners of object technology, the word “state” is used in
two different ways. In object-oriented programming, “state” refers to the values of the
attributes of an object at a particular point in time. In modelling systems with objects,
state is an abstraction of this: an object’s state qualitatively determines the response
of an object to messages. We shall use the term internal state for the first sense and
design state for the latter (Jacobson et al. (1992) calls this computational state). The
internal state space of an object is the set of all possible combinations of values of its
attributes (that is the cross-product of the domains of the attributes). For many classes
this will be very large.

These two meanings for “state” are commonly confused in the literature on object-
oriented programming, design and analysis. For the tester however, we shall see that
the distinction is important.

32 Testing and Object-Oriented Programming

Class SORTED_LIST{T < $IS_LT{T}} is
private attr list:ARRAY{T}; — A r r a y h o ld in g l i s t e l e m e n ts .
readonly attr size:INT; - - Number o f e le m e n ts in l i s t .
private const initial_s ize : INT:=5; - - S t a r t i n g s i z e o f th e l i s t a r r a y .

create:same post -void(result) and result.size = 0 is
-- A new s o r t e d l i s t .
res ::= new; res.list := #ARRAY{T)(initial_size);
return res

end; - - create

private elt_eq (el, e2: T) : BOOL is
— True i f ' e l ' i s equ a l to 'e2 ' f o r th e s e m a n t i c s o f t h i s l i s t .
- - I f T d e s c e n d s from $IS_EQ{T}, u se i t s ' i s _ e q ' , o th e r w i s e u se
- - o b j e c t e q u a l i t y .
typecase e l
when $i s_ eq{T } then return el.is_eq(e2)
else return SYS:: ob_eq (el, e2) end

end; - - e l t _ e q

private position(e:T) : in t is
-- R etu rn th e in d e x o f ' e ' , o r *-1' i f n o t found.
i : INT;
loop i := size.times!; while! (list[i] < e) ; end;
if (i < size) then return i else return -1 end

end; - - i s_mem

insert(e:T) post member(e) >= 0 is
-- Put th e e le m e n t ' e ' .
if size >= list.size then — Expand l i s t i f f u l l .

list := list.resize(2 * list.size) — T h is c o p i e s o v e r th e o l d e l t s .
end;
-- Search to find where it goes (in d ex h e ld in ' i ') .
i:INT;
loop i := size.times!; while! (list [i] < e); end;
-- Copy b i g g e r e le m e n ts on one p l a c e .
loop list.set!(i+1, list.elt!(i)) end;
list[i] := e; size := size + 1;

end; - - i n s e r t

delete (i : i n t) pre i >= 0 and i < size is
— Remove ' i ' t h e le m e n t from th e l i s t .
loop list.set! (i, list.elt! (i+1)) end;
-- J u s t c o p y l a t e r e l t s ba ck one p l a c e .
size := size -1; list[size] := void;

end; - - d e l e t e

member(e:T) : bool is
-- R etu rn t r u e i f f ' e ' i s an e lem en t o f th e l i s t .
return position(e) /= -1;

end; - - is_mem

is_eq(other: SAME): BOOL is
-- R etu rn ' t r u e ' i f f ' o t h e r ' has th e same e le m e n ts a s ' s e l f ' .
if size /= other.size then return false end;
loop if -elt_eq(list.elt!, other. list. elt!) then return false end; end;
return true

end; - - i s _ e q
end; - - c l a s s sorted_ l i s t {t }

Figure 3.4: A Sather implementation of the SORTEDJJST class.

§3.3 Testing Objects 33

insert ^ ^
 ̂ insert

r \

V J

^ r \

^ NotEnrmtv

d elete [size= 1]
L d e le te [s iz e > ll

Figure 3.5: A state-transition diagram showing design states for SORTED_LIST.

McGregor & Dyer (1993) regard the design states of an object as a partitioning
of the internal states according to some classification rule or rules that group internal
states which share some observable behavioural attribute. Design states can be mod­
elled by statecharts (Harel 1987) or state-transition diagrams (Booch 1994, Rumbaugh
et al. 1991, Shlaer & Mellor 1988). An example appears in Figure 3.5, and further
examples will be given in Chapters 5 and 6, where we use state-transition diagrams to
generate test suites.

Our SORTED JJST object has design states that are also determined by the num­
ber and state of its elements. One state corresponds to the empty list, which is also
the initial state or the state of the object when it is created. We would expect a
SORTED JJST object to respond quite differently to a delete message if was in the
empty state than otherwise.

The internal state of a SORTED JJST object, as implemented in Figure 3.4, is
determined by the values of list, size and initiaLsize. This is effectively the number
and value of the elements of the list. The design state is illustrated by the state diagram
in Figure 3.5. The diagram shows two states, one representing the list with no elements
and in the other the list has at least one element. The initial state is indicated by an
arrow with no source. State transitions are caused by the methods insert and delete.
The other methods (member, size and equals) are not shown since they do not lead
to state transitions and would clutter the diagram.

A more formal way to relate internal state to design states is to define the de­
sign states by predicates on the attributes. The empty and not empty states for the
SORTED JJST class can be defined by the two predicates size = 0 and size > 0
respectively. A SORTED_LIST object is in the E m p t y state if it satisfies the first,
or the N o t E m p t y state if it satisfies the latter predicate. Substates can be created by
refining a predicate and concurrent states by independent predicates (having no vari­
able in common). Notice that since the class invariant is a predicate that captures the
valid states for an object of this class, it is the logical disjunction of these design state
predicates. This idea is developed further in chapter 5

If the object has a finite state machine specification or state-transition diagram, or
the tester can deduce such a specification, then functional testing can follow estab-

34 Testing and Object-Oriented Programming

insert
insert insert insert

delete delete delete[size=3]
delete[size>3]

2 Elts

Figure 3.6: An alternative state-transition diagram for SORTEDJJST.

lished techniques for testing finite state machines described in Section 2.4 (McGregor
1994, Marick 1994). For example, the set of test cases derived from a transition tree
for the state-transition diagram in Figure 3.5 would be

event sequence: create; final state: Empty
event sequence: create, insert; final state: Not empty
event sequence: create, insert, insert, delete[size>1]; final state: Not empty
event sequence: create, insert, delete[size=1]; final state: Empty

While these test requirements cover the behaviour described by the state-transition
diagram, they will not make an adequate test suite, even when we add test requirements
for testing the other methods in each state. Binder (1996) suggests that a transition
tree can be combined with boundary-value analysis, depending on the class’s kind of
state-based behaviour. Structural testing techniques from Section 2.3 such as data-flow
testing would be required to further test internal state.

Note that there are many possible representations of the design states of a class.
The more refined state-transition diagram for SORTED_LIST shown in Figure 3.6
shows a more detailed description of the class’s behaviour and would lead to a more
detailed set of test requirements. Refining state-transition diagrams can be a useful
technique, especially when the test cases can be automatically generated from the
diagrams, as we shall see in Chapter 6.

3.4 Inheritance
Inheritance is probably the most discussed feature of object-oriented programming lan­
guages and there are many different views. One outcome is that every object-oriented
programming language provides its own unique mechanisms and semantics for inher­
itance. It is in the context of testing, where we compare requirements, design model
and implementation, that we can bring these differences into a new, sharp focus.

In testing classes and objects, one key question is to what extent does a subclass
need to be tested given that its parent has been sufficiently tested. As we shall see

§3.4 Inheritance 35

there are several aspects to be addressed in answering this question. We start this
section with an examination of different views of inheritance and the considerations
for testing, then discuss issues raised by multiple inheritance and briefly look at testing
abstract classes. To finish we shall return to state-based testing, but this time the state-
based testing subclasses.

3.4.1 Inheritance is a Many Splendour’d Thing
Inheritance implements the “is a” relationship between objects in object-oriented de­
sign. During design we might say a OVERDRAFT.ACCOUNT “is a” ACCOUNT,
or a BOUNDED.STACK “is a” STACK. But there is an essential difference between
these two examples. OVERDRAFT_ACCOUNT has all the behaviour of ACCOUNT
(as well as additional functions), but a BOUNDED.STACK does not provide the same
behaviour as STACK. This is because a BOUNDED.STACK has some maximum
size and once that size is reached, after a maximum number of push messages, ad­
ditional pushs would not change it. A STACK, on the other hand, does not have
this limit and would continue to grow with every push. The relationship between the
ACCOUNTS is an example of classification and the other is an example of special­
isation (Henderson-Sellers & Edwards 1994). In this case, the BOUNDED.STACK
specialisation allows a more efficient implementation to be used.

The distinction is important for the tester who tries to validate the intent of the
designer in the code. Classification implies substitutability while specialisation does
not. It should be completely safe to use an OVERDRAFT.ACCOUNT where ever an
ACCOUNT object is required. But this is not the case for BOUNDED.STACK: when
it replaces a STACK object, its use needs to be validated to ensure that behavioural
differences do not cause failures in that context. Specialisations require retesting each
time they are used.

More formally in a specialisation, method preconditions can be strengthened and
postconditions weakened, while in a classification preconditions can only be weak­
ened and postconditions strengthened (Frick et al. 1994). The precondition for push
is strengthened to s i z e < m ax .s iz e in BOUNDED.STACK, whereas it has no
precondition in STACK (or more accurately is has the precondition t ru e) .

When testing a specialisation we should include test cases that violate its precondi­
tions or its parent’s postconditions in the context where it is used. A test suite for any
class that uses STACK should try to do more than m ax -s ize pushs, followed by as
many pops. The intention is to find faults that might arise when BOUNDED.STACK
is substituted for STACK. Further information on pre- and postconditions and testing
can be found in Section 3.7.

Unfortunately, inheritance in object-oriented programming adds further complica­
tions. The central issue for testing is the distinction we drew in Section 3.1 between
two types of inheritance: implementation inheritance or subclassing, and specification

36 Testing and Object-Oriented Programming

type $a c c o u n t is

balance: m o n e y ,-
open;
close ;
credit (amount: MONEY) ;
debit (amount: MONEY) ;

end; - - class $ACCOUNT

Class ACCOUNT < $ ACCOUNT is

readonly attr balance: m o n e y ,-
private attr isOpen-. b o o l ,-

create: same is
res: SAME := new,-
res. isOpen := false;
res.balance := #MONEY(0);
return res;

end,-

open is . . . end ,-

close is . . . end,-

credit (amount: m oney) is
if isOpen and amount >= 0 then

balance := balance + amount-
end,-

end,-

debit l amount: MONEY) is
if isOpen and amount >= 0 and balance >= 0 then

balance := balance - amount;
end;

end,-
end,- - - class ACCOUNT

Class OVERDRAFT_ACCOUNT < $ACCOUNT is
include a c c o u n t debit-»,•

readonly attr limit: m o n e y ,-

debit (amount: MONEY) is
if isOpen and amount >= 0 and balance - amount >= limit then

balance := balance - amount;
end,-

end,-

set_limit (amount: MONEY) is
if isOpen then

limit := amount;
end,-

end,-
end; - - class OVERDRAFT_ACCOUNT

Figure 3.7: Part of a Sather implementation of the ACCOUNT - OVERDRAFT.ACCOUNT
inheritance hierarchy.

§3.4 Inheritance 37

or interface inheritance which we called subtyping.
Specification inheritance is a relationship between interfaces or types. A subtype

inherits all the attributes and methods of its parent, and may add more. We say that the
child conforms to its parent’s interface. This means that every signature that appears
in a type will also be found in its subtypes and hence a subtype can receive at least the
same messages as any of its parents (Leavens 1991).

Specification inheritance is the basis for polymorphism: a child can be substituted
for its parent because for any message that the parent could receive the child could also
receive since it has that signature. Note that this means that the child should not remove
any of its inherited methods, or equivalently, hide them by making them private, even
though this is permitted in a number of object-oriented programming languages. It is
nearly always trivial to find a test case that causes a failure when an inherited method
is removed or hidden.

Implementation inheritance, on the other hand, is a form of code reuse. A subclass
includes the implementation of all the methods of its parent classes. It can rename
or remove methods, usually in order to redefine them, as well as define new ones.
Since implementation inheritance occurs behind the wall of a class’s interface it is
not constrained to conform to the parent class. An alternative technique for reusing a
method implementation from another class is delegation (Lieberman 1986).

In almost all object-oriented programming languages, specification and implemen­
tation inheritance are combined through a single mechanism. In C+ + implementation
inheritance can be achieved through p r i v a t e inheritance since it hides the inheri­
tance relation, but p u b l i c inheritance combines both specification, because it means
the child substituted for the parent, and implementation inheritance, since the parent’s
methods and attributes are included in the child. In Java, im p le m e n ts is pure spec­
ification inheritance, but e x t e n d s also combines specification and implementation
inheritance.

Sather is perhaps the only object-oriented programming language that distinguishes
between specification and implementation inheritance. An example of the two forms
of inheritance in Sather is shown in Figure 3.7. The abstract class $ACCOUNT de­
fines an interface and both ACCOUNT and OVERDRAFT-ACCOUNT are subtypes,
as indicated by the clause < $ACCOUNT in their declarations. Implementation in­
heritance occurs through the statement

include ACCOUNT;

in the body of OVERDRAFTACCOUNT. Semantically, this is as if the implemen­
tation of ACCOUNT were copied in at that point, except that debit is left out. Inheri­
tance in Sather is described in the Appendix, Section B.4.1.

Specification inheritance implies substitutability. Wherever an object of a partic­
ular type is required, it is possible to substitute an object of any subtype because the

38 Testing and Object-Oriented Programming

interface of the subtype is a superset of the interface of required type. An immediate
consequence of substitutability is that test cases for objects of one type are applicable
to all its subtypes. Marick (1994, Chap. 22) sees a hierarchy of test requirements that
parallels each (specification) inheritance hierarchy, in which the test requirements for
each class includes the test requirements of its parents.

We can draw a similar distinction in test design for classes: functional test re­
quirements are derived from the interface, and structural test requirements from its
implementation. The functional test requirements for a class should include those of
its supertype and the structural test requirements include those of any class whose
implementation is reused. To these are added the functional test requirements from
additional methods for the interface of the class under test, and structural test require­
ments from new and replaced method implementations.

This, however, is not enough. In the implementation of a class, methods may
interact with each other and the class’s attributes. A change in one part of the im­
plementation, such as when an inherited method is redefined, potentially creates new
interactions and therefore new test requirements. It cannot be assumed that tested
methods remain correct when inherited. They must be retested in their new context,
the subclass. Harrold et al. (1992) have developed an algorithm that applies this to
testing subclasses in C+ + .

Perry & Kaiser (1990) provide a more detailed answer to this question when they
re-evaluated Weyuker’s axioms of test suite adequacy (Weyuker 1986, Weyuker 1988)
in the context of testing object-oriented software. They found that two of Weyuker’s
axioms have particular relevance to the situation we have just described.

Weyuker’s axiom of antiextensionality states that if two programs compute the
same function, an adequate test suite for one is not necessarily adequate for the other.
If, in a child class, an inherited method is replaced by a locally defined one, antiex­
tensionality warns that it is not necessarily adequately tested by the test suite of the
inherited method.

Weyuker’s axiom of antidecomposition states that given an adequate test suite for
a program, the subset applicable to a component of that program is not necessarily an
adequate test suite for that component. We have already seen that redefined methods
in a child class may need new tests. A consequence of antidecomposition is that this is
also true of inherited methods, since the child class may give them a different context.

3.4.2 Multiple Inheritance
If we allow a type to have more than one parent (multiple inheritance), a subtype in­
herits the attributes and methods of all its parents. A problem arises when two parents
have the same signature, since the subtype can not have two signatures that are the
same.

Consider a scenario in which a software developer is asked to add a graphical

§3.4 Inheritance 39

POKER PLAYER DISPLAYABLE

DISPLAYABLE
POKER_PLAYER

Figure 3.8: A signature clash resulting from multiple inheritance.

user interface (GUI) to a simulation that plays the card game “Poker”. One way to
create a visual representation of a simulated poker player might be to combine the
POKER.PLAYER class with the services provided by the DISPLAYABLE class from
a GUI framework. Figure 3.8 shows a new class, DISPLAYABLE_POKER_PLAYER,
that combines the required services by inheriting them from both classes. Unfortu­
nately, through lack of prescience on the part of designers of the GUI framework or
the Poker simulation, both these classes use the same method name, draw, for entirely
different behaviours. When a class inherits the same signature from two different par­
ents, we call this a name clash.

More commonly, name clashes occur from convergent inheritance (sometimes
called repeated inheritance). This occurs when a class has multiple parents which
themselves have a common parent. In effect, the class repeatedly inherits the inter­
face of this common “grandparent” through each of its parents. For example in Fig­
ure 3.9, the class QUEUE could be specialised to the classes PRIORITY .QUEUE
and BOUNDED.QUEUE. The new class BOUNDED.PRIORITY.QUEUE would
inherit the methods enqueue and dequeue from both subclasses of QUEUE.

A name clash is usually not a problem when it results from convergent in­
heritance, because both inherited methods will have the same behaviour, having
themselves inherited it from a common parent. The behaviour of enqueue and
dequeue in BOUNDED.PRIORITY .QUEUE is determined in QUEUE since both
PRIORITY .QUEUE and BOUNDED.QUEUE objects can be substituted where
a QUEUE is required. But in the example in Figure 3.8 it cannot be resolved.
One way to avoid the name clash is to rename the method draw inherited from
POKER.PLAYER to say draw.a.card, but in that case, when the poker simulation
sends a draw message to each of its POKER.PLAYER objects, any whose actual type
is DISPLAYABLE.POKER.PLAYER will instead redraw itself on the screen. On the

40 Testing and Object-Oriented Programming

enqueue
dequeue

QUEUE

PRIOITY_QUEUE

enqueue
dequeue

BOUNDED_QUEUE

enqueue
dequeue

BOUNDED.
PRIORITY.QUEUE

enqueue
dequeue

Figure 3.9: A signature clash resulting from convergent inheritance.

other hand, the alternative, renaming the draw inherited from DISPLAYABLE, will
cause unexpected behaviour when a collection of DISPLAYABLE objects that include
a DISPLAYABLE_POKER_PLAYER object is drawn on the display.

Object-oriented programming languages have a variety of mechanisms for resolv­
ing name clashes. Some languages, such as Smalltalk and Objective C, avoid this
problem altogether by only allowing single inheritance: a class may have no more
than one parent so a name clash cannot occur. Many object-oriented programming
languages that permit multiple inheritance have some facility for renaming inherited
attributes and methods. When two parents have a common signature, changing the
name of either or both of the inherited attributes or methods prevents a name clash.

As Berard (19936) points out, different languages have different mechanisms for
resolving these conflicts and this will determine test requirements. Sather has renam­
ing associated with implementation inheritance (the i n c l u d e clause), but signature
conflicts need be resolved by changing the parents. C ++ does not have a means of re­
naming attributes and methods, instead the required method is selected at each call by
explicitly indicating the parent from which it was inherited. In some object-oriented
programming languages (including earlier releases of Sather (Omohundro et al. 1993))
a name conflict is resolved by taking the last declaration, so later declarations hide
earlier ones with the same signature. In this case changing the inheritance order is a
small change that can have a significant effect on test design (Perry & Kaiser 1990).
Resolving signature conflicts is more properly a modelling and design issue. See, for

§3.4 Inheritance 41

example, Henderson-Sellers & Edwards (1994, pages 62-65) for a discussion of issues
that arise in modelling with multiple inheritance.

Subclasses need to be retested to show their behaviour is not at odds with
each parent. So the test requirements for a class should include those of all its
parents. With convergent inheritance this is usually straight forward: the tests
for BOUNDEDJ3RIORITY_QUEUE include those for both PRIORITY_QUEUE
and BOUNDED.QUEUE, and both these include the tests for QUEUE. For
DISPLAYABLE_POKER_PLAYER, substitutability for one or other of the parents
will be broken and the combining tests from POKER_PLAYER and DISPLAYABLE
can be used to discover if this causes a failure.

3.4.3 Abstract classes
To test a concrete class, one or more objects are instantiated from that class and the test
cases applied to those objects. But abstract classes cannot be instantiated, no objects
can be created from them. Obviously abstract classes cannot be tested in this way. So
what is sufficient testing for abstract classes?

Abstract classes often define a common interface abstraction for several classes.
They may hide various trade-offs that need to be made in the implementation, such as
memory usage versus computation speed.

In a typical application there will already be concrete subclasses of an abstract
class. So creating new subclasses specifically for testing is unnecessary. Test require­
ments are derived from the abstract class and then added to those of each concrete
subclass. If there are no concrete subclasses then the abstract class is not used, which
may also indicate an error in the design or the implementation. In short, abstract
classes are tested by testing their (concrete) subclasses.

3.4.4 Inheritance and State
In Section 3.3.3 we made the distinction between design state and internal state. Under
implementation inheritance, a subclass acquires the internal state space of its parent.
This may then be modified in the subclass by adding, renaming, replacing or removing
attributes. Since a class’s internal state is hidden and not part of its interface, it is
unaffected by specification inheritance.

Design states, however, are related to the object’s visible behaviour. In object-
oriented design, we require that an object conform to the behaviour of its parent(s).
Thus a finite state machine specification or state-transition diagram for one type will
also apply to subtypes. So, as we have seen previously, state-based test cases derived
from a parent’s state-transition diagram should be applied to all child classes.

Under specification inheritance, a state-transition diagram for a subclass may only
vary from its parent’s state-transition diagram in a limited number of ways. States

42 Testing and Object-Oriented Programming

may be modified, but can only be added as substates of one of the parent’s states or
as concurrent states. Concurrent states often result from new independent attributes
such as occurs in multiple inheritance. Transitions can be added between existing
and new states or changed. Neither states nor transitions may be deleted (Coleman
et al. 1992, McGregor & Dyer 1993). Guard conditions on transition can only be
weakened. These are necessary, but not sufficient conditions to ensure substitutability,
allowing an object of any subtype to act in the role of its parent type. When these rules
are followed, tests based on a transition tree of the parent’s state-transition diagram
should not find any new faults when applied to subtypes.

Figure 3.10 shows an example of the inheritance of design states among members
of the QUEUE inheritance hierarchy in Figure 3.9. Figure 3.10(a) shows a state-
transition diagram for QUEUE with states Empty and NotEmpty. In Figure 3.10(b),
a BOUNDED.QUEUE adds its two new states, Full and NotFull as substates of
NotEmpty. The transition

NotEmpty, dequeue[size>l], NotEmpty
has been replaced by the transitions

Full, dequeue, NotFull

NotFull, dequeue [size>l] , NotFull
That BOUNDED.QUEUE is a specialisation rather than a proper subtype is apparent
when we look at what happens to the enqueue transition on NotEmpty: it is not
accepted in substate Full.

The state-transition diagram for a PRIORITY .QUEUE, in Figure 3.10(c), also
introduces two substates to the NotEmpty state. Here they represent the situations
where either a new element has the highest priority and can be just pushed onto the
queue (the NewTop state) or the queue needs to be restructured (the NewShape state).
In this case both the enqueue and dequeue messages have modified behaviour that
does conform to that of QUEUE.

Figure 3.10(d) shows concurrent states (or “AND states” in Harel 1987) intro­
duced by multiple inheritance. A BOUNDED.PRIORITY.QUEUE can be in one
of the pairs of states NotFull and NewTop; NotFull and NewShape; Full
and NewTop; or NotFull and NewShape. BOUNDED.PRIORITY .QUEUE is
a proper subtype of both PRIORITY.QUEUE and BOUNDED.QUEUE.

3.5 Genericity

Genericity, like inheritance, is a form of abstraction. A generic or parameterised
type abstracts parametrically identical signatures of a group of behaviourally related

§3.5 Genen city 43

dequeue[size>l]
dequeue[size=l]

NotEmpty

enqueue
enqueue

(a) QUEUE

y dequeue[size=l]enqueue enqueue
create

NotEmpty j enqueue[size<max-l]

enqueue[size=max-1]

dequeue

dequeue[size>l]

^ [NotFulI]

NotEmpty j

enqueue[priority>=top]

(NewTop

enqueue[priority>=top]

dequeue
dequeue[size>l]

enqueue[priority<top]

enqueue[priority<top]

f NewShape

(b) BOUNDED.QUEUE (c) PRIORITY_QUEUE

(d) BOUNDED_PRIORITY_QUEUE

Figure 3.10: Inheriting design states in the QUEUE hierarchy.

classes. For exam ple, all o f the classes LIST{INTEGER}, L1ST{STR1NG} and
LIST{TEMPERATURE_SENSOR} have sim ilar list behaviour, such as inserting
and deleting elem ents, they differ only in the type o f list elem ent. The com m on list be­
haviour can be extracted by param etrising the list elem ent type (INTEGER, STRING
or TEMPERATURE.SENSOR). A generic class is then a tem plate or pattern for
m aking classes with sim ilar behaviour. Concrete classes are m ade by substitu ting for

44 Testing and Object-Oriented Programming

the type parameter. Generic classes are often used for collection types with the element
types as parameters, such as the SORTED_LIST{ELT} example from Section 3.3.

Generic classes, like abstract classes, can not be tested directly. Classes must be
chosen to substitute for the parameters, and test cases applied to objects of the resulting
class.

Of particular concern with generic classes are possible interactions between a
generic class and its parameter class. Sometimes these are hidden in implicit assump­
tions about methods or behaviour the parameter class should provide. For example,
many generic classes that model data structures provide some means of searching for
an element, such as member in the SORTED .LIST example above, and this requires
that element objects are compared. If the generic class assumes that element types all
define the same equivalence relation, it will fail with those that don’t.

Ideally all possible instantiations of parameters should be tested. In an application
it may be possible to test each of the parameters that is actually used in the applica­
tion. For generic classes that are intended for reuse, it is not in general known with
what combinations of parameters they will be used or how they may interact. One
guideline is to instantiate the generic class with at least a small class, such as I NT, and
a more complex class (Smillie & Strooper 1995), but where the generic class makes
assumptions about its parameters this is clearly not enough.

3.6 Exceptions and Exception Handling
Exceptions may have many sources and correspondingly are made to serve many roles.
In most programming languages that have exception handling, programmers may de­
fine exceptions to suit their own purposes, but they may also originate in the hardware
or operating system, for example interrupts, file access failures and divide-by-zero er­
rors. They may also be built into the language or its runtime system, such as a failure
to allocate memory or accessing attributes through a variable that does not reference
any object (a “void” access). In languages that have them, violation of an assertion,
method precondition, postcondition or class invariant causes an exception to be raised.
In these examples we have seen exceptions used as a reporting mechanism for system
interrupts, resource acquisition failures, and programming errors.

While these are all examples of unexpected, exceptional conditions, they can mean
different things in different situations. This can make it difficult to set a policy on the
handling of exceptions, and without a policy it can be very difficult to decide on an
appropriate approach to testing exceptions and exception handling. Further, exceptions
caused by program errors, such as void accesses and contract violations, should not be
caught during testing and debugging as catching them hides the errors, but in operation
it may be required that no exception is uncaught.

Good examples of exception recovery are rare in the literature (Meyer 1992a).
Part of the problem is defining an appropriate strategy for dealing with what may

§3.7 Assertions and Software Contracts 45

be an internal problem in a supplier. For example a postcondition failure in Eiffel
or Sather triggers an exception which, if caught, must be caught in a client. So in
effect, the client is asked to deal with the supplier’s failure to satisfy its contract. It
is possible that the client will have some alternate strategy for performing the task
normally performed by the supplier but in general this is unlikely to be the case.

With regard to testing, the advice most often given is that test cases should raise all
possible exceptions (Liskov & Guttag 1986, Marick 1994, Berard 1993a). However,
in many object-oriented languages, the exceptions that can be raised by a class are
buried in the implementation of the class’s methods. Worse still, exceptions may also
be raised in a called method of some further supplier class. If the supplier class is
from a class library or under the control of a different development group, there may
be no information other than the class interface. If not caught, these exceptions will
also be suffered by the class’s clients. Exception handling code in a caller creates
dependencies between the client and the implementation of the supplier. Subclasses of
the supplier must not add new exceptions for fear of breaking client code.

In a few object-oriented programming languages, Java and CLU are examples,
exceptions are specified in the method interface. Failure to handle at the method call all
the possible exceptions raised by the method is considered a syntax error and rejected
by the compiler (Liskov & Guttag 1986).

There are two aspects to validating the use of exceptions in software: raising and
catching. In the first case testing seeks to ensure that the right exceptions are raised
in the right place in the right circumstances. The second is to check that exception
handling code responds appropriately to the correct exception. To some extent this can
be checked statically, for example Eiffel’s “exception correctness” (Meyer 19926) tries
to ensure that the handling of exceptions does not violate the method postcondition or
the class invariant.

Ideally, a complete class design should describe the exceptions raised and caught
by each method, although some of this information could be summarised in an ex­
ception handling policy (testers should be so lucky). But few object-oriented design
methods specify exceptions in the class interface (Berard 1993a, Chap. 8) (the OODLE
notation (Shlaer & Mellor 1992) is one exception).

The above requirements amount to raising all exceptions in each context they af­
fect. This may be difficult to achieve if some exceptions are caused by the operating
system, hardware or some other means beyond programmer control. An important
example of this is exceptions due to failed memory allocation. It is more important to
check that caught exceptions are handled correctly (Marick 1994, p. 226).

3.7 Assertions and Software Contracts
A central concern of verification and validation is whether supplier classes have been
used correctly. The correct syntax can be determined by compilers, but the correct

46 Testing and Object-Oriented Programming

semantics of an interaction between objects, in the end, needs to be tested.
Software contracts are a means of specifying the semantics of correct usage. The

“programming by contract” paradigm was developed in the context of object-oriented
programming by Meyer (1988) and Wirfs-Brock et al. (1990), from much earlier work
on formal semantics and program proving. Preconditions and postconditions are cast
as a “contract” between client and supplier: if the client abides by the precondition,
providing arguments as required then the supplier is bound to perform such actions as
necessary to meet the postcondition.

Preconditions and postconditions specify the external behaviour of objects, so they
are properly part of their interface. Since subtypes conform to the behaviour of their
parents (this is the substitutability property described above) they should also fulfil
their parent’s contracts. So preconditions and postconditions preserve semantics under
inheritance (subtyping).

Invariants can be used in two quite distinct ways. Some invariants specify con­
straints on the behaviour of objects of a type, while others ensure the implementation
remains valid. The latter is called a representation invariant (Liskov & Guttag 1986).
An example of the first kind is that elements of a doubly-linked list are strongly con­
nected: n e x t = v o id o r n e x t .p r e v = s e l f . A representation invariant de­
scribes a consistency relationship between attributes, for example, in the implementa­
tion of SORTEDJJST in Figure 3.4, s i z e should be the index of the first void entry
in l i s t . Marick (1994, Chap. 18) describes a detailed strategy for testing consistency
relationships.

Preconditions, postconditions and invariants can be checked with assertion state­
ments in languages that have them, but few object-oriented programming languages,
Eiffel and Sather among them, provide specific support for programming by con­
tract. Meyer proposed the assertion sub-language for software verification in Eiffel
(Meyer 1994). A more practical approach is ADL (Viswanadha & Sankar 1996),
where invariants, preconditions and postconditions are used to generate test cases.

Adding assertions for checking preconditions, postconditions and invariants is a
useful technique for testing if a method of a class is used incorrectly (in the case of a
precondition violation) or if it is implemented incorrectly (in the case that a postcon­
dition or invariant is violated) (Marick 1994, page 348). As Meyer (1992a) points out:
“any runtime violation of an assertion is [...] always the manifestation of a software
bug.” So assertions are an aid in exposing errors (or propagation as we called it in Sec­
tion 2.1). In any case, preconditions, postconditions and invariants are an important
source of test requirements.

Given their important role in ensuring correctness, it is vital to validate all asser­
tions. It is not uncommon for functions to appear in assertions, since if functions are
not used, this limits the programmer to the expressibility of propositional logic. Of
particular concern for testing is that functions in assertions “should be of unimpeach­
able quality, avoiding change to the current state and any operation that could result in

§3.8 Integrating Classes and Subsysterns 47

abnormal situations” (Meyer 1992a). Such functions could, of course, be redefined in
subclasses and need to be retested as described previously in Section 3.4.

Invariants can constrain the relations between objects in a cluster or subsystem
(Duke 1994). Unless it can be applied to a single class in the cluster, there is currently
no way to capture such invariants in code. In that case they can only be validated by
testing and are then a further source of test requirements (Marick 1994, Chap. 21).

3.8 Integrating Classes and Subsystems
Objects rarely exist in isolation. Useful object-oriented programs consist of many
interacting objects. In well designed object-oriented software, objects are grouped
into clusters or subsystems, which in turn are combined into larger subsystems until
they form an application. Many design patterns (Gamma et al. 1995) are such clusters.
Objects typically interact more closely with other objects in the same subsystem than
those outside it. Subsystems may have one or more interfaces and objects outside the
subsystem interact with those inside through one of the interfaces.

Given that objects are accessed only through their interfaces, if their individual
classes are correct, why, it might be asked, do we need integration testing of subsys­
tems? Part of the answer is that class interfaces only define the syntax of interaction,
not how they should work together. Groups of classes that are designed to work to­
gether need to be tested together (Marick 1994, Chap. 21) and there can be errors in
the interfaces between them (Harrold & Soffa 1991).

Perry & Kaiser (1990) apply another of Weyuker’s axioms of test set adequacy to
this question. Anticomposition states that given an adequate test suite for a program,
and the outputs of applying that test suite to the program forms an adequate test suite
for a second program, then the original test suite is not necessarily an adequate test
suite for the composition of the two programs (Weyuker 1986, Weyuker 1988). Be­
cause of encapsulation, intuition may suggest that it is sufficient to test each class in
isolation. However anticomposition warns that classes must be tested in the context in
which they are used. It is not enough to test subclasses according to their parent’s test
requirements and test each use of the parent; the subclasses should also be tested in
those contexts where it is substituted for its parent(s).

The rest of this section discusses specific forms of interaction between objects and
examines the implications for testing those interactions.

3.8.1 Associations and Aggregations
When one object sends a message to another, an association exists between them.
Association is the most common form of relationship between objects. A special kind
of association is aggregation, which refers to the case where one object is a component
of another. For example, MEETING-ROOM and RECEPTION objects might be

48 Testing and Object-Oriented Programming

parts of an OFFICE_BUILDING object, and CHAIR, TABLE and WHITE_BOARD
objects components of the MEETING-ROOM object. The objects in this example
form a “parts-of” hierarchy, characteristic of aggregation.

The client-supplier relationship is a dependency between objects. A client object
requires the existence and correct operation of the supplier object for its own correct
operation. This implies a similar relationship, and dependency between classes. The
objects of a supplier class provide services for objects of a client class, and the client
class depends on the supplier class.

The most natural strategy to apply to testing groups of interacting classes is the
“bottom-up” approach, borrowed from integration testing. This requires the construc­
tion of a graph of the dependencies between classes in the cluster or subsystem. Good
design indicates that this graph will have no cycles, and redesign to remove cyclic de­
pendencies is straight forward (Lakos 1992). Classes with no dependencies are tested
first. Then each remaining class can be tested when those classes that it depends upon
have been tested.

However, circular dependencies are not uncommon in low-level design, for ex­
ample the “model” and “view” classes in the model-view-controller design pattern.
Co-dependant classes appear in some of the design patterns (Gamma et al. 1995) as
recursive data structures such as Composite, Decorator and Interpreter, and also where
an aspect of the behaviour of an object is captured in a separate object such as Iterator,
Mediator and Observer. In these cases, the same argument used in Section 3.3.1 can be
applied and the “unit of testing” becomes a small cluster of tightly bound, cyclically
dependant classes. It makes no sense to test an iterator, for instance, without the con­
tainer it iterates over, and at least some of the container class’s behaviour will require
the iterator. Such cyclically intra-dependant clusters can then be treated as a single
node in a class dependency graph and integrated as described.

This technique assumes all the classes to be tested are complete. This is not al­
ways the case. A “top-down” or “middle-out” approach may be more appropriate if
the required “stub” classes and methods can be added at minimal cost or are part of the
development anyway. As the stub classes are replaced the classes which relied upon
them will have to be re-tested. These approaches still make use of a class dependency
graph, which will need to be updated as class interactions are redesigned during devel­
opment. An approach to integrating testing into this sort of iterative and incremental
software development is proposed in chapter 4.

Some classes assume that their methods will only be applied in certain sequences.
For example, an ACCOUNT object will not accept debit and credit messages before
it has received an open or after a close. These built-in assumptions can be explicitly
tested using the method sequence specification (MtSS) technique of Kirani & Tsai
(1994).

In fact these correct message sequences are equivalent to valid sequences of tran­
sitions of design states discussed in Section 3.3.3. As we saw there, the receiver of a

§3.8 Integrating Classes and Subsystems 49

MESSAGE

TEXT.MESSAGE BINARY.MESSAGE

enqueue(T)
dequeue:T

SECURE.
COMMS.CHANNEL

REDUNDANT.
COMMS.CHANNEL

BOUNDED.
PRIORITY.QUEUE {T }
enqueue(T)
dequeue:T

buffer: QUEUE{MESSAGE}

queue_message(msg:MESSAGE)

COMMUNICATIONS
.CHANNEL

enqueue(T)
dequeue:T

PRIOITY_QUEUE{T} BOUNDED_QUEUE{ T }
enqueue(T)
dequeue:T

buffer.enqueue(msjj)

Figure 3.11: The classes involved testing a polymorphic method call enqueue.

message may respond differently according to its state. So not only is it necessary to
test every different message but also to test each message with the different states of
the receiver.

3.8.2 Inheritance and Dynamic-Binding
In Section 3.4, we have seen that specification inheritance implies that objects of a
subtype are substitutable for objects of the parent type. In other words, if an object
can receive a message, so can objects of each of its subtypes. Dynamic binding is the
mechanism that defers until run-time the decision as to which actual object will receive
a message, and thus which subclass’s method is invoked. To ensure the substitutability
of subtypes, they should be tested in the same situations as the parent is used.

Testing all the combinations of subtypes that could be involved in each inter­
action can lead to a combinatorial explosion in the number of test cases. Take,
for example, the situation in Figure 3.11. Here we see that during the exe­
cution of its q u eu e.m essage method, a COMMUNICATIONS.CHANNEL ob­
ject sends a message e n q u e u e (msg) to its buffer attribute. Both the subtypes
SECURE.COMMS.CHANNEL and REDUNDANT_COMMS_CHANNEL inherit
q u eu e.m essage and buffer, but could redefine or add other attributes and methods
that interact with them, and so they should be retested as was explained in Section 3.4.
The attribute buffer has type QUEUE(MESSAGE) and so could also be any of the
three subtypes we have seen previously, and the actual method argument m sg could be
a TEXT.MESSAGE or a BINARY.MESSAGE object instead of a MESSAGE ob­
ject. Complete testing of all combinations of subtypes requires 3 x 4 x 3 = 36 versions
of the tests for qu eu e.m essage. In fact, we need to also consider the design states
of COMMUNICATIONS.CHANNEL, QUEUE and MESSAGE, according to Sec-

50 Testing and Object-Oriented Programming

a.insert(x) x.update(17)

Figure 3.12: Changing the internal state of a class through an alias.

tion 3.3.3. So, the number of tests required is the product of the numbers of subtypes
and states involved in the message.

McDaniel & McGregor (1994) suggest a strategy that selects from all these com­
binations, a set of test cases that includes at least one of each subtype and state. This is
a similar idea to configuration testing (see, for example, Kaner et al. 1993, Chapter 8).
This technique ensures that each known subclass and state is exercised at least once,
which is a fairly weak notion of coverage. They report that it produces a test suite that
is substantially smaller than exhaustively testing all combinations but still has quite
good error detecting ability.

3.8.3 Aliases
An alias occurs in a program whenever two different objects posses the same ref­
erences to another object. An alias makes it possible for a value in the referenced
object to be changed through one reference, with unexpected consequences for the
other referencing object. Figure 3.12 show how this might occur, and the potential
consequences, for the SORTEDJJST list class from Figure 3.4. When the value ref­
erenced by x is inserted on the list, x ’s reference to it remains resulting in an alias.
If this value is changed through x ’s reference, the list may no longer be sorted. This
would violate the class invariant of SORTEDJJST without executing any of its meth­
ods! Testing SORTEDJJST on its own will not find this kind of error, it only appears
in its interaction with other classes.

It needs to be remembered that aliasing is useful and even unavoidable in object-
oriented programs. Most object-oriented programmers have had the experience of
writing a class that performs some manipulation with objects of the same type as itself,
such as an append method in a STRING class. The first time an object of this class
is given itself as an argument, as in s . append (s), it fails.

Sometimes the aliasing comes from the problem domain. Usually this results from
many-to-many relationships, such as multiple transactions in a data base system, or
joint bank accounts in which two or more customers can operate the same account.

Like exceptions, aliasing is not unique to object-oriented programming, but also

§3.9 Testing and Reuse 51

like exceptions, they have a special prominence. There are essentially two reasons for
this. One is that object-oriented programming makes heavy use of references: objects
are accessed through pointers, so there are many more opportunities for aliasing to
arise. The other is that objects have state that persists between accesses. For many
reasons, an object may make its attributes accessible to other objects, which leaves it
susceptible to an unexpected change of its internal state.

Several techniques for limiting aliasing in object-oriented programs have been dis­
cussed in the literature (Hogg et al. 1992). One is the use of so-called “copy” or
value semantics: whenever an object is to be returned by a function, a copy is made
first and that is returned instead. In many object-oriented languages, basic types like
CHAR and INT have value semantics. If this were the way SORTED_LIST oper­
ated, in Figure 3.12 x ’s reference would not point into the list. However this can be
expensive if the objects are large, and is not always the most suitable behaviour: any
other references to the SORTEDJJST object would also be broken. “Islands” are
a more sophisticated method of isolating groups of classes, so that aliasing can only
occur within an “island” (Hogg 1991). In some situations, correct behaviour in the
presence of aliases can be described by a predicate on the classes in a subsystem or
cluster (Duke 1994). For example, it is perfectly acceptable for other objects to access
elements in a SORTEDJJST as long as the elements are not changed. However, this
too requires special language support.

Checking programs for aliasing is very difficult. Detecting the possibility of alias­
ing (“may-alias”) is undecidable in most programming languages, and determining
whether two variables must be aliased at some point in the program (“must-alias”) is
not even recursively enumerable (Ramalingam 1994, Landi 1992).

For the same reason, it is very difficult to design a test strategy for detecting faults
due to aliasing. In reviewing a class design for test requirements, each attribute should
be checked to see if it can be aliased and what could be the effect of changing it.
In particular, class invariants that constrain attributes that could be aliased should be
checked. Test requirements for methods with two arguments of the same type should
include the case that the same object is the actual argument for both. In particular,
for methods with an argument of the same type as the class, the object receiving the
message (“self”) could be passed as the actual argument.

3.9 Testing and Reuse

Reuse is widely promoted as the mechanism whereby object technology will drasti­
cally improve the efficiency of developing software. Object-oriented software devel­
opment creates components which can be reused in developing other applications. In
this view, “everything is reusable”: not only class implementations but designs, archi­
tectures, plans and of course, test requirements and test cases. To be reusable test cases

52 Testing and Object-Oriented Programming

and test requirements must be traceable to the thing they validate, so they should be
archived with their associated product.

We expect software components archived in a reuse repository to be of a higher
level of quality than other software. When test cases for those components are avail­
able we have a means of assessing their quality. But test requirements should also be
archived with the reusable components they test. As Marick (1994) points out, when
we use one of these components we will need to test that it is used correctly. The test
requirements for exposing a usage error will be the same for all users of the component
and properly belongs with it in the repository.

Classes can be reused in two quite different ways: as suppliers or by creating a
subclass and inheriting attributes and methods. The test requirements for the two cases
will be different, as we have seen in see Sections 3.4 and 3.8.

The requirements for testing frameworks and class libraries are somewhat different
than for applications. Classes used in a specific application need to work correctly in
that application, whereas those in frameworks or libraries are intended to be reused
and must work in yet unwritten applications. Of particular concern here is speciali­
sation inheritance, discussed in Section 3.4. A subclass that is a specialisation can be
substituted for its parent provided the strengthened method preconditions are not vio­
lated. While a specific application may be able to guarantee this, it can be a potential
source for errors in the use of a class library. In an ideal world, developers of class
libraries and frameworks would provide their customers with test requirements for the
correct use of their software (Marick 1992a), and this would include test requirements
that make their specialised subclasses fail substitutability.

3.10 Other Object Testing Issues

Reflection is the ability to manipulate, as data, some aspect of the program during
its own execution (Paepcke 1993, Kiczales et al. 1993). This feature has been used
to build test drivers that can detect the interface of known classes and automatically
create and execute test cases for them (Rettig 1991).

In object-oriented design, “patterns” describe, at an abstract level, recurring pat­
terns of interaction between classes. Design patterns have been documented so that
they can be reused in other object-oriented designs (Gamma et al. 1995). It seems
reasonable that such recurring patterns should also have recurring test requirements,
which could be described at the same level of abstraction. Current techniques for
describing design patterns do not specifically record these test requirements.

The patterns technique has also been applied to testing. “Pattern languages” have
been proposed for specific object-oriented programming languages (Firesmith 1996),
component testing (McGregor & Kare 1996) and system testing (DeLano & Rising
1996). It remains to be seen whether this is a useful technique.

§3.11 Summary 53

3.11 Summary
A broad survey of the issues concerning the testing of object-oriented programs was
presented. While object-oriented programming doesn’t invalidate traditional testing
techniques, those techniques do need to be adapted to testing classes and their inter­
actions. In particular, the testing of object-oriented software needs to address object
state and its interaction in inheritance hierarchies.

Object-oriented techniques provide the means to design and build larger and more
complex systems. However, the underlying complexity of object-oriented systems is
reflected in their testing. Discovering techniques for reducing the complexity of testing
remains an opportunity for furthfer research.

Chapter 4

Testing and Object-Oriented Software
Development

The previous chapter examined testing issues in object-oriented software. This chapter
looks at the process issues involving testing and its place in object-oriented software
development. We develop a framework for incorporating software testing into the
kind of incremental and iterative process that is common in object-oriented software
development. We then illustrate the framework by applying it to the popular Booch
method (Booch 1994).

Our current model of the software testing process has been developed in the con­
text of traditional models of software development. So, before we examine testing in
the object-oriented software development process, we need to review those traditional
process models and how object-oriented development differs.

In the next section we review three well-known models of the software develop­
ment process and, in Section 4.2, the part played by testing. We look at object-oriented
software development processes in Section 4.3. Section 4.4 describes the proposed
framework for incorporating testing into an object-oriented software development pro­
cess and then applies it to the Booch process. We finish with a brief look at testing in
a few other object-oriented software development methods.

This chapter is derived from a paper given at the International Conference on Test­
ing Computer Software, Washington D.C., June 1996 (Bosman 1996).

4.1 The Software Development Process
Before we begin, it will help to clarify a few terms that are essential to this chapter.
A software development process model or process specifies a set of tasks or activities
that must be carried out in order to manufacture a software article, their entry and
exit criteria, their inputs and outputs, and interrelationships between them. A software
development method (or methodology) prescribes how one or perhaps several of the
activities should be carried out and the type of deliverables to be produced.

55

56 Testing and Object-Oriented Software Development

Integration
and Test

Analysis

Operation

Feasibility

Design

Requirements

Figure 4.1: The waterfall process model

4.1.1 Waterfall Process Model
The most widely recognised process for software development is the “waterfall” pro­
cess model, one form of which is illustrated in Figure 4.1. This model presents soft­
ware development as a sequence of phases or stages. The first three stages, namely
project feasibility, software requirements and analysis, address the clients, clarifying
their requirements. A solution is developed in the design stage. Programmers construct
the software to implement the solution in the implementation phase. After integration
and validation the software is released to the clients. At the completion of develop­
ment the software product enters the operation or maintenance phase, in which new
requirements are accommodated and bugs fixed.

The way this model is most commonly read, requires that one stage should be com­
pleted before the next is begun, hence the name “waterfall,” indicating that returning
to a previously completed process is like pushing water back uphill. The waterfall
model is suited to the management of the process, since there are well defined criteria
for entry to and exit from each stage. It assumes that the problem is sufficiently well
understood beforehand so that all requirements can be specified before commencing
analysis, all analysis completed before commencing design and all design completed
before coding starts. In practice, faults introduced in one stage may not become visible
until later stages are entered, thus it becomes necessary to return to earlier stages to

§4.1 The Software Development Process 57

solve the introduced fault. Hence, as indicated in Figure 4.1, it is permissible to iterate
between successive stages (Royce 1970).

Actually, it is often the case that larger iterations are required. For example integra­
tion testing may uncover a problem that should properly be fixed in the design, or later
stages of design and implementation may uncover missing requirements. In fact, typ­
ically over 30% of errors occur in requirements gathering, and errors in requirements
are also the most significant technical risk factor in software development projects. In
a strictly enforced waterfall process, the fault is fixed in the phase in which it is found.
If the design cannot be changed this can result in an inferior solution and potentially,
a dissatisfied client. On the other hand, returning to previously completed tasks can
have an impact on all the dependant tasks. This makes the process more difficult to
manage, potentially resulting in delayed delivery, increased defects and a dissatisfied
client.

In reality there is often a great deal of overlap between stages (Berard 1993*2,
Chap. 5). It is possible for analysis to commence on one aspect of a proposed system
for which requirements exist, while work on requirements for other parts continues.
Further, it is not uncommon for requirements to be specified at different levels of de­
tail, with the intention that the higher level ones will be refined “when we get to that
part”. The same considerations can be applied to the analysis and design activities and
the design and coding activities. Testing is an activity which properly extends across
almost the whole process— as we shall see in Section 4.2.

4.1.2 Evolutionary Process Models
There are many alternative models for software development and the field is subject
to lively debate, particularly in the context of alternative implementation techniques,
such as “fourth generation” languages, logic programming, expert systems, applicative
programming and, of course object-oriented programming. For our purposes it is more
important to recognise the subprocesses or tasks that make up the software develop­
ment process. These subprocesses are more or less common to all models (McDermid
& Rook 1991), with the models differing rather in the ordering of tasks and their entry
and exit criteria. A number of different process models are described by McDermid &
Rook (1991) and Berard (1993*2, Chap. 4). The two most influential alternative process
models are evolutionary delivery (Gilb 1988) and the spiral model (Boehm 1988). For
our understanding of object-oriented software development process models, it will be
useful to outline them here.

Project milestones in the waterfall process occur at the end of each stage, and as a
result the users do not see the software until the project nears completion. Gilb (1988)
suggests that it is unrealistic to wait until acceptance testing at the end of development
to involve the customer. So instead, he proposed an evolutionary process that delivers
the software to the users in small increments of functionality, as early in the project

58 Testing and Object-Oriented Software Development

as possible. From a process view, this requires many small frequent iterations through
the whole set of development activities, once for each delivered increment.

Evolutionary development is much better at handling changes to requirements and
early delivery gives the customers (and therefore project managers) confidence that
the project is “on the right track”. It also gives management flexibility in dealing with
schedule overrun because there is the additional option of reducing the functionality
of the final product (Kaner et al. 1993).

In the spiral model (see Figure 4.2), software development proceeds along an out­
ward spiral curve, iterating through the tasks for each quadrant and building incremen­
tally more detailed prototypes. Progress to the next cycle is based on risk assessment.
Each new iteration progresses through the tasks in increasing detail, with consequently
increasing cost. Boehm claims that his spiral model extends most other process mod­
els.

Different software development process models may be more or less applicable in
particular situations. A waterfall process is suited to a domain where the problems are
well understood or where a similar system has already been built. Where user require­
ments are unclear or user-computer interaction is an important facet, an evolutionary
delivery process may be more appropriate. The choice of development process is an
important early project management decision.

§4.2 Testing and the Software Development Process 59

The concepts of prototyping and iterating through all the development tasks are
central to many views of the object-oriented software development process, as we
shall see in Section 4.3. But first we must examine in more detail the part played by
testing in the software development process, which is the subject of the next section.

4.2 Testing and the Software Development Process
In the waterfall model of software development, testing is generally carried out in the
reverse order to software construction. This is represented in the “V” model of soft­
ware verification and validation from the STARTS Guide (DTI 1987). Figure 4.3 illus­
trates one form of this model (McDermid & Rook 1991). In this diagram, processes
are represented by boxes and the products of those processes by ellipses. Notice that
verification tasks (inspections, walk-through and reviews) tend to appear in the right
side of this model and testing in the left. The horizontal dotted lines are intended to
indicate that the product on the right is expected to meet the specification on the left.

This model suffers from the same problems as the waterfall model. In fact the
need to return to earlier phases is more apparent because the V model makes the de­
pendencies between them visible. But as before our purpose here is to identify the
components of the testing process and their dependencies with the other processes and
products of software development.

At the lowest level, unit testing, the smallest testable components of the software
are tested. These units of test will have been identified during design. In procedural
programming the units of testing are typically procedures, functions and modules.
In object-oriented programming they will typically be classes, as we have seen in
Section 3.3.1. The techniques described in the previous two chapters apply in the
main to unit testing.

At the next level, modules or classes are combined according to the design and then
integration tested to detect incorrect interactions between the components. Integration
testing focusses on interfaces and thus uses mainly black-box testing techniques. The
method of integration has a major effect on how integration testing is performed, as
we have seen in Section 2.5.

Incremental integration is largely a matter of how the dependencies between com­
ponents are handled. For the purposes of integration testing, we say that one module
depends upon another if it uses the services of that module, that is, it calls a function
or procedure or references some data defined in that module. The same can be said
of classes but in this case dependency may occur through inheritance as well as asso­
ciation since the services may be provided by a parent class or a supplier class (see
section 3.8 for a discussion of the integration testing of classes). A module depen­
dency graph or class dependency graph illustrates this relationship within subsystems
or across the whole system (see, for example, Hetzel 1988). Its nodes are modules or
classes and a directed edge indicates a dependency relationship between modules or

60 Testing and Object-Oriented Software Development

Requirements
analysis

Feasibility
study

Project
phase out

Operation

Statement of
requirements

Operational
software

Project
initiation

Operational
test

Project
completion

Accepted
software

Updated
requirements

Requirements
specification

Acceptance
testTest cases

Test data

Review Requirements
^specification

Tested
software

Test cases'
Test data

Architectural
design

Integration
testTest cases

Test data
Review Design

specification
Integrated
softwareIntegration

plan

Detailed
design Integration

Walkthrough
Module
designs

Tested
modules

Coding
\

Code reading

Figure 4.3: The “V” model of software development (after McDermid & Rook 1991)

§4.2 Testing and the Software Development Process 61

classes. A dependency graph is typically a product of the architectural design. Good
design will generally avoid large cycles in the dependency graph resulting in a tree-like
structure. One common architecture is a sequence of layers in which the top level is
closest to the application domain and at the bottom closest to the hardware and operat­
ing system. In this case modules in one layer can only depend upon those in the layer
immediately below. Another common architecture is a hierarchy of subsystems where
modules are grouped into subsystems which are grouped into larger subsystems and
so forth, and interdependencies are restricted to occur only within a subsystem.

System testing, in which the system as a whole is tested, occurs when all the sub­
systems are integrated. This may include other forms of test such as performance
testing, stress testing, usability testing, security testing, and reliability testing.

Acceptance testing is carried out by or on behalf of the customer to decide whether
the software meets the customer’s original requirements, as modified and agreed dur­
ing development, and operational testing deals with the customer’s initial experience
in operating the software.

An important test activity not shown in Figure 4.3 is Regression testing. This in­
volves re-executing an existing test suite to check that changes to the software don’t
introduce new faults. Regression testing does not appear in the figure since it is asso­
ciated with iterations, which are not shown in the “V” model. During the maintenance
phase, regression testing ensures that bug fixes and new features do not adversely af­
fect the correctness and existing functions of the software. As we shall see, regression
testing is also important in an iterative software development process. Test sets from
earlier cycles are re-executed to check that work done in the current cycle does not
change existing correct functionality.

4.2.1 A Process Model for Software Testing
In the last section we identified four main test activities: acceptance, system, integra­
tion and unit testing. Each of these activities can be broken down into the following
phases: planning, acquisition and measurement (Hetzel 1988). These phases are de­
scribed in Figure 4.4. In the Figure 4.4, the test phases have also been linked to the
relevant ANSI/IEEE standard 829 test documents (IEEE 1983).

Tasks in the planning phase determine such things as the level of testing required,
parts of the software that will or will not be tested and test techniques to be used.
Test planning must of course be done in the context of the overall project plan and the
quality assurance plan.

In the acquisition phase, tasks extract test requirements from products of the cur­
rent stage of development, for example, requirements specification documents for ac­
ceptance testing, design documents for integration testing, and source code and detail
designs for unit testing. Then test data is designed and test cases implemented.

Tasks in the measurement phase run the test cases to establish that the software

62 Testing and Object-Oriented Software Development

Planning: Determine testing objectives and overall approach.

Inputs: project plans, products from earlier stages of development.

Outputs: test plan (ANSI/IEEE Std. 829: test plan).

Tasks:

1. Plan the general approach

2. Determine testing objectives

3. Refine the general plan

Acquisition: Specify and develop test configuration for the current level of testing.

Inputs: test plan, products from current stage of development.

Outputs: test set and documentation (ANSI/IEEE Std. 829: test-design specification,
test-case specification, test-procedure specification).

Tasks:

4. Design the tests

5. W rite the tests

Measurement: Execute test set and evaluate results.

Inputs: test set, software to be tested.

Outputs: test reports (ANSI/IEEE Std. 829: test-item transmittal report, test log, test-
incident report, test-summary report).

Tasks:

6. Execute the tests

7. Check termination

8. Evaluate results

Figure 4.4: The major activities in each testing process (after Hetzel 1988)

achieves the level of quality required by the test cases, and report the results and any
defects found.

When we recognise the role of planning and acquisition in the test process, we
must come to the conclusion that testing and software construction are properly par­
allel activities (Hetzel 1988). Acceptance testing parallels requirements specification,
integration testing is done in parallel with design, as are unit testing and implementa­
tion. This is because test case design and test data collection, the acquisition tasks, for,
say, acceptance tests can commence as soon as even partial documents from require­
ments specification are available. Delaying these tasks means delaying test execution
in the measurement phase, and it is this task that is on the critical path for any software
project. The same applies to system, integration and unit testing and their matching
development activities.

Figure 4.5 illustrates the synchronisation of test phases and their associated devel­
opment activities. Here we see the acquisition phase occurring during the associated
development phase. If we were to draw the “V” diagram (Figure 4.3) over the top of

§4.3 Object-Oriented Software Development Processes 63

Test
Planning

Unit testing

RefineX^ Acquire
Measure

Refine

Integration testing
's v Acquire Measure

Refine

System testing

Acquire Measure

Refine

Acceptance testing
Acquire Measure

Requirements

Analysis

Design

Figure 4.5: Coordinating testing and software development phases (after Hetzel 1988)

this figure, we would find that only the measurement phase lies on its “up-stroke”. Test
planning occurs alongside other project planning activities, although some refinement
of the test plan is inevitable once its execution has started, as indicated by the “refine”
tasks in the figure.

Next, we leave testing for a moment to look at process models for object-oriented
software development. In Section 4.4 we will introduce into those processes, the test
phases and tasks described here.

4.3 Object-Oriented Software Development Processes
While object-oriented software could conceivably be developed in any of the software
development process models we have mentioned in Section 4.1 above, the conceptual
closeness of object-oriented analysis, design and programming encourages a highly
iterative development style in which these phases are closely integrated. This has
lead several authors of object-oriented methods to rethink the process (for example,
Booch 1994, Henderson-Sellers & Edwards 1994, Jacobson et al. 1992)

Software development process models are, essentially, idealisations (Parnas &
Clements 1986). As we have already seen, even in older process models such as
the “waterfall” model, earlier phases are inevitably revisited because the implications

64 Testing and Object-Oriented Software Development

Library
acceptance

Testing

Generalisation/
reevaluation

Generalisation/
reevaluation

Component
design

Conceptual
design

Analysis

Subsystem
requirements

Software pool

Figure 4.6: The fountain model of software development

of decisions made in those phases cannot be completely understood until it is worked
through in later phases. There is a folk wisdom that in software, we need to build
something three times to get the design right (Love 1993, Lorenz 1993).

This experience has, to some extent, been absorbed into the practice of object-
oriented software development. When authors of object-oriented methods describe a
software development process, they typically suggest one that incorporates incremen­
tal and iterative elements from Gilb’s evolutionary development and Boehm’s spiral,
described above.

A recent survey of sixteen object-oriented software development methods (Hutt
1994) found that of those that specified a development process, all supported some
form of iterative development strategy, while less than half additionally supported a
once through, waterfall-style strategy. Further, all surveyed methods used an additive
progression strategy, where each phase contributes new objects and details to an ex­
isting model, but less than half also transform a model from one phase to the model
that will be the basis of the next phase. Transformational progression, which is typical

§4.3 Object-Oriented Software Development Processes 65

Identify classes

and objects

Identify class and

object semantics

Identify class and

object relationships

Specify interfaces

and implementation

Establish core requirements
(conceptualisation)

Create an architecture
(design)

Model desired behaviour
(analysis)

Post-delivery evolution
(maintenance)

Evolve the implementation
(evolution)

Figure 4.7: The Booch micro process (a) and macro process (b)

of structured analysis/structured design processes, implies a sequential, waterfall style
development. By contrast, in additive progression the current phase of development is
less clear and it is possible to swap rapidly between analysis, design and implementa­
tion activities.

One of the earliest representations of the iterative nature of object-oriented soft­
ware development is the “fountain” model (Henderson-Sellers & Edwards 1990). In
this model the main thrust of development is upward (see Figure 4.6). However, indi­
vidual software items and other products will, like droplets of water in a fountain, fall
back to earlier phases only to be caught in the upward thrust again. Eventually they
fall back to be collected in a repository where they can be used again in other projects

Once again this model is an idealisation. By turning the waterfall model on its
head, the fountain model has given to the software development process the flexibility
to design a better solution, but at the cost of management control. Where there was
an ordered waterfall there is now a chaotic fountain. A practical object-oriented soft­
ware development process must address entry and exit criteria for tasks as well as the
progression of tasks.

For the purpose of illustrating the object-oriented software development process
and the part that is (or could be) played by testing, we will use as an example the Booch
process. Booch (1994) provides an overall idealised structure and general descriptions
of the tasks making up the process.

66 Testing and Object-Oriented Software Development

4.3.1 The Booch Process

Grady Booch is credited with the aphorism “analyse a little; design a little; code a little;
test a little,” emphasising fine-grained iteration and incremental delivery, which has
become a catch-cry of object-oriented software development1. This idea is embodied
in his micro development process (Figure 4.7a). The micro process is directed by a
macro development process (Figure 4.7b) that guides development to completion and
manages risk. The Booch process is described in (Booch 1991, Booch 1994). Isseult
White in her tutorial on the Booch method (White 1994) describes the earlier phases
of the macro process in more detail.

The micro process iterates through the four steps in the figure to build an “exe­
cutable release”2 which could be delivered to the customer. Each iteration adds a new
increment of functionality to the executable release. At the same time, these steps form
a sequence of tasks for producing and refining a set of documents that form the archi­
tectural description of the system. We can deduce from Booch’s reference to Parnas &
Clements’s (1986) article, that their order is less important than their existence.

The first phase of the macro process, conceptualisation, seeks to establish the core
requirements of the proposed system (White calls this phase “requirements analysis”).
Booch suggests that the products of this phase are prototypes that establish vision and
validate assumptions. White recommends producing a system function statement and
a system charter. The first captures the key use cases3 and sample outputs. The latter
is a statement of the system’s responsibilities and scope. These form a contract with
the customer, although they will change as development proceeds.

In the second phase of the macro process, analysis, Booch advises that we focus
on outwardly observable and testable behaviours. According to White, who calls this
phase “domain analysis,” this includes identifying all major objects, data and opera­
tions need to carry out the system’s function and the result should be a precise and
concise object-oriented model of the problem domain. Products of this phase include
object, class and inheritance diagrams, object scenarios and a data dictionary or CRC
cards4.

Berard also claims partial credit for this expression (Berard 1993a).
2White’s book has an interesting bug: a short extract from the text is printed on the cover, but where

the words “executable release” have been replaced by “prototype”. Perhaps it was taken from an earlier
executable release/prototype of the text, which leaves room for speculation as to why the change was
made.

3Use cases are a high-level modelling technique developed by Jacobson et al. (1992). A use case is
a scenario of a user initiated interaction with the system that is an exemplar or shows a pattern of usage,
for example a customer withdrawal in a banking system.

4CRC cards were popularised by Wirfs-Brock et al. (1990) and are used in a number of object-
oriented design methods. CRC stands for Class-Responsibilities-Collaborators. Each card describes a
class in terms of its inheritance hierarchy, the operations it provides for other classes (responsibilities),
and the classes providing services that support those operations (collaborators). The cards were origi­
nally 3”x 5 ” file cards on which this information was laid out, but could also be entries in an automated

§4.4 Testing and Object-Oriented Software Development 67

During the design phase we define an initial architecture for the proposed system
leading to the first executable release (a version of the product that is released to the
customer). It would appear that White sees this as the first iteration of the evolution
phase (she calls it “system design”), in which a series of executable releases are pro­
duced.

In the process of creating executable releases (the design, evolution and mainte­
nance phases), a number of documents are generated and revised. One is an archi­
tecture description which may include class, object, cluster and subsystem diagrams,
class specifications, object scenario diagrams and state-transition diagrams, among
others.

4.4 Testing and Object-Oriented Software Development
This section will first motivate and outline a general framework for integrating testing
into an object-oriented software development process, before examining testing in the
Booch process.

When testing waits until coding is complete, development in effect reverts to a
waterfall process—with its accompanying problems. In particular, testing becomes
limited by the schedule, with any over-runs in other phases pushing testing against the
deadline for the whole project. This is the problem which was discussed in Section 4.2.
Just as in other process models, testing effort in object-oriented software development
must be distributed throughout the other development phases, so an iterative develop­
ment model must include testing in the iterations.

The question then is how should testing be integrated. The answer lies in an un­
derstanding of the test process, as outlined in Section 4.2.1. There we saw that testing
consisted of three phases: a planning phase, an acquisition phase, and a measurement
phase. Following the distribution of effort recommended in Figure 4.5, we should
see development and test case acquisition as concurrent activities, and measurement
occurring at the end of each iteration.

Each phase of development produces a specification of some aspect of the final
software product in some form and at some level of detail. Whether it be a require­
ments document, a class interaction diagram or source code, we can view them as
specifications. Each item specified also creates a test requirement. Each functional
requirement, class interaction or algorithm is also a criterion that the software should
satisfy and each such criterion can be evaluated by one or more test cases.

The approach suggested here is to associate with each specification or design docu­
ment a set of test requirements. These test requirements are developed along with their
associated specification document. During each iteration these documents may be re­
visited, in which case associated test requirements should be updated. Test cases are

data dictionary.

68 Testing and Object-Oriented Software Development

Identify class and
object semantics

Identify class and
object relationships

Identify classes
and objects

Build and execute

Specify interfaces
and implementation

Figure 4.8: Adding testing to the Booch micro process

developed or updated from the test requirements and executed in each iteration. Test
planning determines the acceptance criteria for each release which, in turn, determines
the criteria used for selecting test requirements.

Let us now see how this approach can be applied in the Booch software develop­
ment process.

4.4.1 Incorporating Testing in the Booch Process
The iterations in the Booch process are captured by the micro process. So the acquisi­
tion, execution and revision of the test suite has to be integrated into the micro process.
There are two aspects to this. One is to add an extra step to the micro process, “build
and execute test cases,” to look for defects in the executable release currently under
development. This is illustrated in Figure 4.8. The other aspect is to incorporate test
requirement acquisition into the other steps of the micro process.

The purpose of the added step is to find defects in the system in its current state
of development. To do this we update and execute the current test suite, report defects
found and collect and report the test results. The test results contribute information to
the risk analysis that precedes decisions to release the current product and on the focus
of the next iteration. This step also marks the closure of each micro process iteration.

In order to execute the test cases in this new step, they must first exist. Test re­
quirement acquisition must occur in the other four existing steps the micro process. To
each of the documents that are generated and revisited in the micro process, we should
add a new section containing the test requirements that are derived from it. The kinds
of test requirements to be collected in each document can be specified in the test plan.

Turning now to the macro process view, the products of the conceptualisation phase
address the customer, so the test effort should focus on acquiring acceptance tests. The

§4.4 Testing and Object-Oriented Software Development 69

use cases in the system function statement describe a user’s interaction with the sys­
tem to produce some result. Each use case will be the basis of one or more acceptance
test requirements and the possible interactions between them will provide more. The
use case’s variables and their domains should be identified and equivalence partition­
ing (see section 2.2) used to expand the set of test requirements (Binder 1995). The
sequence of inputs and operations required to produce the sample outputs can also be
used to find acceptance test requirements. Prototypes are not very useful as a source
of test requirements but can be used as “oracles”: either to derive the expected results
of test cases, or to compare the results of executing test cases with the system under
development.

During the analysis phase we identify system test requirements. These will be de­
rived from the requirements and behaviours of “system level” or “problem domain”
objects and classes. In particular, each object scenario defines at least one test require­
ment, as do its alternate paths. Equivalence partitioning on the scenario’s input data
can be used to select further test requirements.

The process of creating executable releases, that is the design, evolution and main­
tenance phases, generates and revises a number of documents. These constitute an
architecture description may which include class, object, cluster and subsystem di­
agrams, class specifications, object scenario diagrams and state-transition diagrams.
These are all sources of unit, integration and system test requirements. Those docu­
ments relating to an individual class will provide unit test requirements. There will
be several levels of integration test requirements each testing the interactions between
classes, clusters and subsystems. System test requirements are those that examine the
behaviour and performance of the system as a whole. Taken together, these form a test
suite for the executable release.

Many of the techniques described in Chapter 3 can be applied to derive test re­
quirements from the documents comprising the architecture description. For example
a class specification is a source of functional unit test requirements for the class. At
a minimum we would expect each method to exercised and equivalence partitioning
on the method arguments could be used to further refine the test requirements. State-
transition machine diagrams permit testing strategies described in Section 2.4. Every
path through object interaction diagrams and scenarios can be expressed as an integra­
tion test requirement.

The added “build and execute test cases” step ensures that test cases reflect the
current state of development of the product they test. The documents constituting the
architectural plan will be revisited many times during iterations of the evolutionary
phase. Since the test requirements are associated with the document from which they
are derived, they are revisited together with that document. Test cases in turn, are
linked to the test requirements they were developed from. In the added step the test
cases are updated from the changes to these test requirements. In this way a test suite
for the system is built up and maintained in a way that tracks the system’s development.

70 Testing and Object-Oriented Software Development

Part of the assessment of the current state of the product is an assessment of the
adequacy of the test suite. The added step should include a review of the test cases for
this purpose. The test suite should be reviewed against adequacy criteria specified in
the test plan.

In a process based on incremental delivery, as the Booch process is, the customer
will receive many versions of the system, each providing some new functionality or
features. It is important that functionality that was added in one version is not lost in
a later version. That is the role of regression testing. The step added in Figure 4.8
builds regression testing into the Booch micro process, ensuring that functionality and
quality are not lost between executable releases.

4.5 Other Object-Oriented Process Models
The approach just described for incorporating testing into object-oriented software
development can be applied to other object-oriented software development processes.
It requires that we

• identify which of the documents that are generated during development are po­
tential sources of test requirements,

• ensure that as part of each iteration test cases are built from the test requirements,
collected into a test suite and the test suite exercised,

• ensure that the test requirements are updated as their associated documents are
revisited during iterations of the development process,

• ensure that test cases are updated when the test requirements from which they
were derived are updated, and

• ensure that the planning process determines what level of testing is required
for each of the identified documents in the context of the quality goals for the
proposed releases of the product.

In a development process with many iterations, the documents and their test suites
will be revisited many times and the same test case may be run many times. It is useful
to automate as much of these repetitive and clerical tasks as possible. There is a range
of existing tools to support activities such as regression testing. Tools for identifying
test cases is an area of continuing research.

In the rest of this section we look briefly at applying this approach to testing to a
few other object-oriented software development processes.

§4.5 Other Object-Oriented Process Models 71

MOSES

Software development in the MOSES method (Henderson-Sellers & Edwards 1994)
has five phases: planning, investigation, specification, implementation and review;
and some twenty activities that occur during one, some or all phases. In addition to
iterating through a sequence of tasks as in the Booch micro process, MOSES allows
the possibility of falling back to an earlier phase as suggested by the fountain model
(Figure 4.6).

Each phase of the MOSES process is concluded by an inspection or review of the
products of that phase. They recommend unit testing of classes by the developer at
the end of implementation, and the review phase includes class integration testing,
subsystem integration testing and system testing. Thus each iteration is somewhat like
a miniature “V” model.

In fact MOSES already contains the necessary test steps. What is needed is to move
test requirement acquisition into activities where products are created and revised.

Classworks

Class works (Ratjens & Steele 1993) is in a similar vein to MOSES. Tasks are identified
on a three-dimensional grid whose dimensions are the application framework which is
an architecture in which systems are built; a “technical cycle” whose steps are design,
construct and review; and a “management cycle” consisting of the cycle of tasks: plan,
initiate or do, monitor and review.

Those tasks in the plane of the cube marked by the “review” step of the techni­
cal cycle provide the right place to test planning, where it intersects with “plan” in
the management cycle, and test execution. Test requirement acquisition needs to be
incorporated into the other steps of the technical cycle.

Objectory

In Objectory (Jacobson et al. 1992), object-oriented software development is based
around identifying, describing and implementing use cases. The system is delivered
in increments of added use cases. They suggest that testing is a parallel activity that
should begin early in the process. They do not, however, integrate it into development
as is described in the previous section. On the other hand they also say that testing
can not begin until there is an implementation, a view that is contradicted by the test
process described in Section 4.2.1. Integration testing and system testing is based on
executing use cases.

72 Testing and Object-Oriented Software Development

4.6 Summary
In this chapter we presented a framework for integrating testing into an object-oriented
software development process. This is, of course, an idealised view of the testing
process and should to be viewed in the context of software process improvement.

In an iterative and incremental software development process, typical of object-
oriented software development, the development activities can no longer be readily
identified by their position in a life-cycle but rather by their inputs, deliverables and
purpose. So it should be with testing. Testing is more efficient and effective, and has
less impact on the release date, when test activities are scheduled into the iterations.

Chapter 5

Testing Objects as Finite State
Machines

In this chapter, we focus on the behaviour of objects in terms of states and state transi­
tions, which we introduced in Section 3.3.3. We develop a technique for testing object
state that both reconciles the design view of object state with that of object-oriented
programming, and also builds upon the established techniques for testing finite state
machines first mentioned in Chapter 2.

The first section discusses finite state machines and object-oriented design. Sec­
tion 5.2 describes our method for relating the finite state machine view of object be­
haviour to an implementation in an object-oriented programming language. The ap­
plications to testing are addressed in Section 5.3 and our approach to generating test
cases is described in Section 5.4. In Section 5.5, we relate the concepts presented here
to the work of others.

This chapter is derived from a joint paper with Prof. Heinz Schmidt, given at the
TOOLS Pacific ’95 conference (Bosman & Schmidt 1995a). An earlier version is also
available as a technical report (Bosman & Schmidt 19956).

5.1 State-Based Models for Class Design
As we have seen in Section 3.3.3, objects have state and behaviour, and these two
aspects of objects are closely related: the state of an object affects its behaviour in
response to the messages sent to it, and this behaviour may, in turn, change the object’s
state. In Section 3.3.3 we introduced the concept of design states. In this section we
show how the Abstract behaviour of many kinds of objects can be represented by finite
state machines based on design states.

In Section 2.4, we defined a (deterministic) finite state machine as a sextuple,
M = < /,0 ,S ,50, / ,g >. For an object, the inputs I represent messages accepted by
the object, that is, a method call and actual parameters, and the outputs O are mes­
sages sent to other objects. The initial state s0 is the initial state of the object when
constructed. The transition function / and output function g can be derived from the

73

74 Testing Objects as Finite State Machines

AmberFlashing

RedOn GreenOnAmberOn
next

Figure 5.1: State-transition diagram for a TRAFFIC-LIGHT,

actions of the object’s methods.
As we have seen in Section 3.3.3 and in Chapter 4, many object-oriented de­

sign methods use statecharts (Harel 1987) or some derivative of them such as state-
transition diagrams (Booch 1994, Rumbaugh et al. 1991, Shlaer & Mellor 1988), to
specify the dynamic behaviour of objects. In state-transition diagrams, states are in­
dicated by rounded boxes and transitions between them by arrows. Transitions are
labelled by the event (message) that causes them, and may have a “guard condition”
in square brackets. The initial state is indicated by an arrow with no source, corre­
sponding to a creation message (a call on the constructor method). We call these finite
state machine models design finite state machines, their states design states and their
transitions design transitions.

Binder (1996) classifies the state-based behaviour of objects into four kinds, which
he calls nonmodal, unimodal, quasimodal and modal.

Nonmodal classes place no constraints on the sequence of messages they will accept.
Nonmodal behaviour is typical of simple data types, for example a TIME class.
Any sequence of calls to the methods set, get, is_equal of a TIME object is
accepted. When partitioned into design states, nonmodal classes do not exhibit
obvious state-based behaviour: all messages cause transitions in all states.

Unimodal classes accept messages based only on the sequence of previous messages,
not the message content. Application control objects are typically unimodal.
When partitioned into design states, unimodal classes can be represented by
state-transition diagrams without guards. Figure 5.1 shows a finite state machine
representation of the behaviour of a TRAFFIC-LIGHT object.

Quasimodal classes accept messages depending only upon the internal state of the
object. For example, a pop on a STACK object is not accepted when it has no
elements. A state-transition diagram for a quasimodal class will have guard con­
ditions, but they are only on attributes of the object. This behaviour is common

§5.1 State-Based Models for Class Design 75

push r ̂ push

v J

► f)^ N otF.m ptv

pop [#elts = 1] ^j i pop [#elts > 1]

Figure 5.2: State-transition diagram for a STACK.

NotEmpty

v J
\

^ ^ push [#elts < max-1]

^ J push [#elts = max-1]

^ NotFull Full
(w POP

pop [#elts > 1]
y

Figure 5.3: State-transition diagram for a BOUNDED.STACK.

to many container or collection classes. Figure 5.2 shows the state-transition
diagram for a STACK. To avoid cluttering the diagram, some methods that do
not change the state of the object, such as top, are not shown.

Modal classes may also reject messages according to their content, that is, the actual
arguments. For example, an ACCOUNT object will only accept a debit message
if the amount argument is less than the balance (see Figure 6.1 on page 86). No­
tice that subsets of a class’s methods may show behaviour in different categories.
If we ignore all but ACCOUNT’S open and c lo se methods, it is unimodal and
restricting to its balance is nonmodal. Both modal and unimodal classes have
distinct finite state machine behaviour, which can be tested by transition trees
(Binder 1996).

In Section 3.4.4 we discussed the relationship between a state-transition diagram
for a subclass and that for its parent. Figure 5.3 shows the state-transition diagram
for a specialisation of STACK, the BOUNDED.STACK. Notice that the new states
have been added as substates and the finite state machine of the parent has been pre­
served. In this case, however, not all sequences of inputs to a STACK are legitimate
for a BOUNDED.STACK, for example a BOUNDED.STACK of length 10 will not
support a sequence of 11 consecutive pushes.

76 Testing Objects as Finite State Machines

5.2 Representation and Implementation
In Section 3.2 we introduced a graph representation for the internal states of objects.
The nodes of this graph are objects in an executing program. Each (directed) arc is a
reference from its source object to its destination object. The source of a reference can
be a local variable of a currently executing method, an actual argument of a currently
executing method, or an attribute of an object. Each arc is labelled with the name of
the variable, formal argument or attribute. The current value of attributes of basic type
(for example, I NT or BOOL) can be kept with their object’s node. These state graphs
have been used to reason about the behaviour of object-oriented programs (Schmidt &
Zimmermann 1994a, Schmidt & Zimmermann 1994b, Schmidt & Chen 1995).

In practice, the mapping from design states to internal states is often not explicit
and state transitions are usually buried in the method implementations. All these fac­
tors can make it difficult to validate that an implementation is correct with respect to
its design.

We suggest an abstract representation of implementation decisions as a represen­
tation finite state machine which captures the most important internal states as repre­
sentation states or predicates together with an abstraction of implementation transi­
tions. The corresponding finite state machine invariant is called representation invari­
ant following the terminology of CLU (Liskov & Guttag 1986) and Alphard (Wulf
e tal. 1976).

With this distinction, each design state corresponds to one or more representation
states, that is, vectors of values for the object’s attributes. So, the design states of
an object can be represented by partitioning its representation states. The represen­
tation state predicates are defined on attribute values of the object. Furthermore, we
assume that there is a similar mapping from representation transitions to design tran­
sitions. Representation finite state machines make the mapping between design and
implementation levels explicit, and simplify the validation of the dynamic behaviour
of classes.

In methodologys such as RSML (Leveson et al. 1994) and Shlaer & Mellor (1992),
finite state machines are developed in requirements and analysis, and transformed into
implementation FSMs. In this approach there is a one-to-one mapping from design
to representation states that is constructed by the method. Our proposal extends this
concept to other methodologies that do not use finite state machines as a basis for
requirements and analysis.

Figure 5.4 summarises the proposed testing strategy. Our aim is to validate the
implementation of the class against its specification. At the specification level, a class
design has structural elements which are captured in the class interface, namely meth­
ods and attributes, and their types. The class design also describes the class’s behaviour
which we can capture in its design finite state machine. At the implementation level,
that the class body conforms to its interface can be checked statically by a compiler.

§5.2 Representation and Implementation 77

Class design
Behaviour Structure

Design FSM Class interface
S p ec if ic a tio n

Behavioural Im p lem en ta tion Structural
conformance conformance

\f Representation '1
Representation FSM

mapping
-«s-- ----- Class body

Figure 5.4: Different views of object/class behaviour.

Checking behavioural conformance requires testing, and the representation finite state
machine provides a natural vehicle for comparing the behaviour of the design finite
state machine to that of the class body. The representation mapping we describe here
projects the implementation onto a representation finite state machine. Then, as we
shall see in Section 5.3, we can determine the behavioural conformance of the two
finite state machines using the state-based testing techniques described in Section 2.4.

A simple example of the use of representation state predicates can be seen in Fig­
ure 5.5, which shows an implementation in Sather of the STACK class whose finite
state machine specification is illustrated in Figure 5.2. Two representation states are
defined by the predicates E m p ty and N o t E m p ty , corresponding to the similarly
named the design states from the state-transition diagram.

While the design finite state machines of those classes related by inheritance are
similar or identical, a corresponding relation is not present at the level of code. The
implementation states are the values of an object’s attributes. When these are hidden,
as suggested by good programming practice, inheritance makes no restriction on their
addition or removal. In the absence of language support, preserving the correct finite
state machine behaviour requires a programming discipline.

A Sather implementation of the BOUNDED_STACK specialisation of STACK
can be found in Figure 5.6. The new states in the design finite state machine (see
Figure 5.3) partition the N o tE m p ty state of the parent. In the implementation, this
appears in the redefined predicate notempty, which has become the disjunction of the
representation state predicates for the added substates. Thus the invariant of the parent
still holds and is inherited unchanged.

Clearly, since design states are abstractions of attribute values (both basic types
and referenced objects), any design state can be represented by a predicate on those
attributes. Furthermore, if every valid representation state of the object makes a pred­
icate true, the disjunction of all these predicates is an invariant for the object. For

78 Testing Objects as Finite State Machines

class STACKfO is
- - Im p lem en ta t io n o f s t a c k u s in g a r r a y s
stack: ARRAYfT},-
ssize: INT;
constant initsize := 5;

create: SAME is
res := STACKfT}:: new (ssize : = 0);
— c r e a t e an em pty a r r a y f o r s t o r i n g th e e le m e n ts
r e s .stack := ARRAYfT}: : new (size := initsize);

end; - - c r e a t e

push(x:T) is
if stack, size = ssize then -- e x te n d th e s t a c k

h: ARRAYfT} := ARRAYfT}: : new (size := 2*ssize) ;
— c o p y a l l th e e le m e n ts a c r o s s t o the new a r r a y .
i: INT := 0;
while not i = ssize do

h[i] := stack[i];
i := i + 1;

end; — w h i le
stack := h;

end; - - i f
stackfssize] := x;
ssize := ssize + 1;

end; — pu sh

pop:T is if notempty then ssize: =ssize-l; end; end;

top:T is if notempty then res := stack[ssize-l] end; end;

- - R e p r e s e n t a t i o n s t a t e p r e d i c a t e s
empty: BOOL is res := ssize = 0 end;
notempty:BOOL is res := ssize > 0 end;

— R e p r e s e n t a t i o n i n v a r i a n t
invariant welldefined = empty or notempty end;

end; — c l a s s STACK

Figure 5.5: A STACK class implemented in Sather

each method, the finite state machine design specifies the possible transitions between
design states. In the implementation, this can be expressed in a post condition for
the method using the representation state predicates. In languages that support in­
variants and pre- and postconditions, such as Sather, explicitly describing the map­
ping to the finite state machine design enhances the robustness of the implementation
(Meyer 1992a).

§5.3 Testing Finite State Machines 79

class BOUNDED_STACK{T} is
- - Im p le m e n ta t io n o f bounded s t a c k
include STACKfT}; - - r e u s e i m p l e m e n t a t i o n o f STACK.
constant max_size := 1000;

create: SAME is
res := BOUNDED_STACK{T}: :new (ssize := 0);
- - c r e a t e an em pty a r r a y f o r s t o r i n g t h e e l e m e n t s
r e s .stack : = ARRAYfT}: : new (size := max_size);

end; - - create
push(x:T) is

if notfull then
stack[ssize] := x;
ssize := ssize + 1;

end; — i f
end; - - p u s h

— R e p r e s e n t a t i o n s t a t e p r e d i c a t e s .
full:BOOL is res := ssize = max_size end;
notfull:BOOL is res := ssize < max_size end;
notempty: BOOL is

- - R e d e f i n e p a r e n t ' s ' n o t e m p t y ' s t a t e (assume m a x _ s i z e > 0) .
res := full or notfull

end;
end; - - c l a s s BOUNDED_STACK

Figure 5.6: A BOUNDED_STACK class implemented in Sather

5.3 Testing Finite State Machines

To test a representation finite state machine, we use the test sequences T derived from
its transition tree by Chow’s W-method, which we first met in Section 2.4. Here we
adapt this method to state-transition diagrams with substates and concurrent states.
The nodes of the tree represent states of a state-transition diagram and the arcs repre­
sent transitions.

In practice the restriction to a minimal finite state machine presents little difficulty,
since the specification represented by the design finite state machine will typically
be minimal or can readily be minimised (Hopcroft & Ullman 1979). In fact, we are
less concerned to show the equivalence of the design and representation finite state
machines for a class than to generate test cases that are likely to expose differences
in their behaviour. The value of Chow’s result is that T is sufficient: it “covers” the
behaviour described by the design finite state machine. We do not claim that T is a
complete test of a class, since a design finite state machine does not completely de­
scribe its behaviour, and as we have seen, there are classes whose behaviour is not well
captured by a design finite state machine. Using the W-method we can automatically
generate a test suite that efficiently and effectively validates the behaviour described
by a design finite state machine.

80 Testing Objects as Finite State Machines

NotEmpty J enqueue[size<max-l]

enqueue[size=max-l] y

enqueue[priority>=top] enqueue[priority<top]
/ ' " \ enqueue[priority>=top] y N,

V P ^ T ^ ^ q u e u e [priori ty<top] \ V

f Full }'m ^ f NotFull) [NewTop j ^ _ NewShape
dequeue f v k

dequeue[size>l] y \
I f ^ dequeue

/ ' ----- y dequeue[size>l]

enqueue y dequeue[size= 1]
create r >

(a)

Full and
NewTop

Full and
■ NewShape

NotFull and
■ NewShape

NotFull and
NewTop

enqueue[size<max-1
and priority>=top]

NotEmpty j

enqueue[size=max-1
and priority>=top]

dequeue[size>l] enqueue[size<max
and priority>=top]

enqueue[size<max
and priority<top]

dequeue[size>l]

enqueue[size=max-1
and priority>=top]

dequeue

enqueue[size<max-1
and priority>=top]

dequeue
[size>l]

(b)

Figure 5.7: Eliminating concurrent states.

The first step is to eliminate any concurrent states by replacing those sub­
states with an equivalent, non-concurrent state-transition diagram (Harel 1987). Fig­
ure 5.7(a) shows the state-transition diagram for BOUNDED-PRIORITY-QUEUE
from Section 3.4.4. Its N o tE m p ty state has two concurrent substates, so a
BOUNDED-PRIORITY-QUEUE will be simultaneously in both, that is, it will be
in both N o t F u l l and NewTop, N o t F u l l and NewShape, F u l l and NewTop or
F u l l and NewShape.

Figure 5.7(b) shows a state-transition diagram equivalent to Figure 5.7(a) that is
non-concurrent. The states in the new state-transition diagram are all pairs of possible
concurrent states. Transitions are derived from those in the concurrent version in the
obvious way, conjoining guard conditions as necessary. For example, in the concurrent

§5.3 Testing Finite State Machines 81

create
Empty

push NotEmpty:
NotFull

pop [#elts = 1]
-(Empty]

pop [#elts > NotEmpty:
NotFull

push [#elts < max-1] NotEmpty:
NotFull

push [#elts = max-1]

pop [#elts = 1]
---------------- ► { Empty j

NotEmpty: H p° p (ANotEmpty:
Full NotFull

Figure 5.8: A transition tree for BOUNDED_STACK.

version a dequeue message in the Full state transitions to the NotFull state and
also from NewShape to NewTop, so in the non-concurrent version dequeue transi­
tions from the new Full and NewShape state to NotFull and NewTop. An­
other example is the transition enqueue[size=max-1 and priority>=top] from the
new NotFull and NewTop state to Full and NewTop, which results from
combining the enqueue[size=max-1] transition from NotFull to Full and the
enqueue[priority>=top] transition on NewTop. Notice how the derived guard con­
dition on the new transition is the conjunction of the guard conditions of the transitions
in the version with concurrent states. If there are three or more concurrent substates
they can be replaced in this manner pair-wise.

To construct a transition tree for a state-transition diagram without concurrent
states we proceed exactly as in Section 2.4 except that in each node we include the
names of all containing states. Figure 5.8 shows a transition tree derived from the
state-transition diagram for a BOUNDED_STACK in Figure 5.3.

Thus we can derive a set of traces or sequences of transitions that cover the repre­
sentation finite state machine. Each trace is a test case of the implementation relative
to its representation finite state machine. Each trace is implemented by a sequence
of calls to the appropriate methods in the code guarded by tests of the preconditions.
If the test cases find no errors, then the implementation is complete and correct with
respect to its representation finite state machine (Fujiwara et al. 1991, Chow 1978).
Since we can map the states and transitions of the representation finite state machine
to those of the design finite state machine, this is also a cover of the design finite state
machine.

While representation invariants could be related by subtyping, we would gain an
advantage from this situation only in a case where the design finite state machine, D
say, stays fixed and the representation finite state machine (R say) is changed to R’. If
we generate a coverage of R by R’ we could reuse the coverage of D by R. We do not
expect the benefits of such an approach to outweigh the restrictions introduced by sub-

82 Testing Objects as Finite State Machines

typing, viz. the requirements of not weakening representation invariants. Therefore,
in the context of this project we prefer that representation invariants of subclasses are
not related at all under subtyping.

5.4 Test Case Generator

Chapter 6 describes the design of a test case generator using the principles described
here. Constructing the representation finite state machine requires adding the pred­
icates defining representation states to the class. However we believe that this is a
small portion of the implementation effort. Testing is typically in excess of 40% of to­
tal development effort (Pressman 1992). By basing our testing on finite state machine
models, test data generation is straight forward using well established techniques.

A further advantage is the clear semantic relation between finite state machines
and the class invariants. This has the additional benefit of documenting design (from
the design finite state machine) and implementation decisions (in terms of the repre­
sentation finite state machine). So the understandability and hence maintainability of
software is increased.

The representation finite state machine drives the tests of the class’s code. The
design finite state machine defines the expected outcomes. The level of testing, or
how much of a class’s behaviour is actually tested, is defined by the granularity of
the representation finite state machine. How much of this behaviour is observed or
required is defined by the granularity of the design finite state machine. The more
detailed these two aspects of the behavioural model, the more coverage of the interface
during testing and the greater the confidence in the correctness of its workings. By
selecting the appropriate level of detail for the design and representation finite state
machine, it is possible to strike a balance between the cost of validation effort, and
targeted reliability and robustness.

Ideally we would also like to have some notion of coverage for the code itself rather
than just the behavioural model as described by the design finite state machine, which
is typically a coarse abstraction of the actual behaviour. Such a coverage analysis
would have to compare the control flow graph of the program with the representation
finite state machine. Once this is established, it will be possible to design guidelines
for combining the test coverage system with runtime instrumentation.

5.5 Related Work

State-defining predicates are used in (Chambers 1993), where the class of an object
is determined dynamically according to whether its attributes satisfy that class’s pred­
icate. This is a powerful design technique and simplifies class implementation, but

§5.5 Related Work 83

it requires multi-methods and so its applicability is limited to the few object-oriented
programming languages that support them.

Over the last two decades there has been much work in generating test cases from
various kinds of specifications. Some of the more significant include (Gannon et al.
1981, Maurer 1990, Korel 1990, Ostrand & Balcer 1988, Balcer et al. 1989, DeMillo &
Offutt 1993). More recently Barbey et al. (1996) have developed a tool that generates
tests from a specification in an object-oriented variation of Petri nets. Some work has
also been done on adapting ADL specification language and test generation tools to
C + + (Viswanadha & Sankar 1996).

Hoffman & Strooper (1995) use an approach to class testing that is in some ways
similar to ours. They also partition a class’s implementation state, from which they
derive appropriate transitions, creating in effect a finite state machine. Rather than
deriving finite state machine-based test cases from the class design specification, an
implementation of this finite state machine is used as a test oracle, and a test set should
cover nodes and arcs of this “test-graph.” In this case finite state machine testing
techniques could also have been used to show the equivalence of the class and the
test-graph, as we propose.

The ACE tool (Murphy et al. 1994), like the testgraph method just mentioned, is
derived from the PGMGEN tool for testing C code (Hoffman & Brealey 1989), but
uses a very different strategy. The tester is required to develop their own test cases in
a script file. ACE generates the test drivers and runs the test cases.

The StP/T tool (Poston 1994) also uses design information and input data values
to generate test case inputs, but it does not generate expected outputs for the test cases.
In practice there are too many test cases for a tester to manually enter the expected
results, so the program under test is run as an “oracle” and the test suite is used for
regression testing of changes to the system. This means that original bugs have to
be found and removed from the test suite as well as the system. And as the product
evolves, the tester must determine which failures are due to introduced bugs and which
are due to the correct implementation of changes to the design or specification.

A more immediate approach to testing object state in C + + classes is described
in (Turner & Robson 1992b, Turner & Robson 1992«). Object state, in this case the
vector of attribute values, is seen as additional method arguments, so adequacy is ad­
dressed by covering a partitioning of the state values in the same way as the other
inputs. To use their tool, the tester must develop a subclass of the class under test
which identifies the representation states to be tested, and a test script. The tool gener­
ates a test driver which runs the test case in the script against the subclass defined by
the tester.

Doong & Frankl (1993) derive a test suite for a class that consists of pairs of mes­
sage sequences that should put an object in the same state. This in essence implements
trace equivalence (Wang & Parnas 1994) for the class when viewed as a finite state
machine. A further method for testing class behaviour based on Method Sequence

84 Testing Objects as Finite State Machines

Specifications and Message Sequence Specifications (Kirani & Tsai 1994) can be de­
rived from a complete finite state machine model.

5.6 Summary
We have described a technique for validating the dynamic behaviour of objects, based
on refinement of finite state machines, for which coverage becomes equivalence. The
method is adaptable to software development priorities since it allows users to define
granularity of testing by means of the representation finite state machine against which
the implementation is tested. In the next chapter we describe a tool that applies this
technique to generate test case from state-transition diagrams.

C h a p te r 6

STAT: Generating Test Cases from
Object-Oriented Design

This chapter describes the result of a practical application of the ideas developed in
Chapters 4 and 5. It describes STAT, a tool we propose for generating executable
test cases from state-transition diagrams. STAT is an abbreviation for State-Transition
Automatic Tester.

In Chapter 4, we described a framework for incorporating testing into the iterative
and incremental development process recommended by most object-oriented develop­
ment methods. In the approach suggested there, the gathering of test requirements,
test design and implementation of test cases are conducted concurrently with the other
analysis, design and implementation phases. A natural extension of these ideas is to
include support for test analysis and test design in the CASE tools used to facilitate
software design. By generating test cases from design documents, this tool demon­
strates how part of that test design support could be achieved.

STAT implements the technique described in Chapter 5. In order for STAT to
access the representation finite state machine of the class under test, it makes use of
an interface, STAT .TESTABLE. When it implements this interface, a class describes
the representation mapping from its implementation states to the design states in its
state-transition diagram. The STAT .TESTABLE interface provides a standard means
of accessing the testable behaviour of the class, much as “test pins” do on a hardware
integrated circuit.

It is intended that STAT be integrated into a CASE tool to enable concurrent devel­
opment of test design and software design. The aim is to allow the user of the CASE
tool to move easily between designing the software and developing test cases from the
design information. STAT makes use of information in the class interface specifica­
tions and state-transition diagrams, which are a normal part of object-oriented design
and supported by most object-oriented CASE tools. The user is also required to supply
data values for method arguments. These may either be the values the designer uses as
examples in the design process, or the result of a more thorough test strategy such as
domain testing.

85

86 STAT: Generating Test Cases from Object-Oriented Design

Active
credit(amt)

debit(amt)[bal-amt<0]InBalance
Closed

debit(amt)[bal-amt>=0]

credit(amt) [bal+amt<0]

credit(amt)[bal+amt<=0] Overdrawn

Figure 6.1: A state-transition diagram for an ACCOUNT object.

The next section describes informally the semantics of state-transition diagrams
as they are used in object-oriented software development, and standard approaches to
testing them. Section 6.2 describes the kinds of test cases generated by STAT. Some
initial results are discussed in Section 6.3, then further work is proposed in Section 6.4.

6.1 State-Transition Diagrams
The example we shall use for explaining the operation of STAT appears in Figure 6.1.
The complete input and generated code for this example appears in Appendix A.

The figure shows an abstraction of the dynamic behaviour of an ACCOUNT object
such as might occur in a financial system. Upon creation the object is in the state
Closed and the event open brings it into the Active state. The Active state is in fact
a cluster of two substates: InBalance and Overdrawn. The first time it enters the
Active state, the object is in the InBalance substate. In either substate, a close event
takes the ACCOUNT object to the Closed state and a further open event returns it
to its previous substate (this is indicated by the “history” marker (H) on the Active
state). While in the Active state, credit(amt) and debit(amt) events move the object
between the InBalance and Overdrawn states. In the InBalance state, a debit(amt)
event triggers either a transition to Overdrawn or back to InBalance depending upon
the difference between b a l and am t, as specified in the guard conditions. While in
the Overdrawn state no further debit(amt) events will trigger transitions.

In Chapter 5, we described the use of transition trees to derive test cases from
state-transition diagrams. Transitions leaving a superstate correspond to that transition
occurring on each substate, but where the superstate has “history”, the transition tree
for the subgraph outside the superstate must be traversed for each substate. Handling

§6.1 State-Transition Diagrams 87

Closed -) ■{ Closed } ■

credit(amt) credit(amt)[bal+amt<=0]

debit(amt)[bal-amt>=0] credit(amt)[bal+amt<0]

debit(amt)[bal-amt<0]
{ Closed)■

Active (g)
\ InBalance

Active (g)
OverDrawn

Active (g)
InBalance

Active (g)
' InBalance

Active (g)

Active (g)
InBalance

InBalance

Figure 6.2: Transition tree for the ACCOUNT state-transition diagram.

Event sequence Final state
1 . create Closed
2. create, open InBalance
3. create, open , c lo se Closed
4. create, open , c lo se , open InBalance
5. create, open , credit(amt) InBalance
6. create, open , deb it(am t)[bal-am t>0] InBalance
7. create, open , deb it(am t)[bal-am t<0] Overdrawn
8. create, open , debit(am t)[bal-am t<0], c lo se Closed
9. create, open , deb it(am t)[bal-am t<0], c lo se , open Overdrawn

10. create, open , debit(am t)[bal-am t<0], credit(am t)[bal+am t<0] Overdrawn
11. create, open , deb it(am t)[bal-am t<0], credit(am t)[bal+am t>0] InBalance

Figure 6.3: Test cases derived from the transition tree for ACCOUNT.

states with history requires a small extension to the algorithm presented in Chapter 5.
Firstly, nodes whose state (or a superstate of which) has history are marked as such.
Along paths leaving nodes marked with history, no nodes are marked as terminal nodes
until that state is re-entered. An example appears in Figure 6.2, which shows the
transition tree derived from the state-transition diagram for ACCOUNT in Figure 6.1.

The transition tree approach also assumes that the state-transition diagram is con­
nected, that is, there is a sequence of transitions from the initial state to every state.
However guards may make some transitions impossible or require a complex conjunc­
tion of conditions to trigger the transition.

Figure 6.3 lists the sequences of events and final states derived by the method
from the transition tree for the state-transition diagram of the ACCOUNT object in
Figure 6.2. Note the two sets of sequences that c lose and open the object from each
of the substates InBalance (3 and 4) and Overdrawn (8 and 9) which test the “history”
behaviour of the Active state.

88 STAT: Generating Test Cases from Object-Oriented Design

abstract class $stat_testable is
-- An i n t e r f a c e th a t i s used b y t e s t code g e n e r a t e d b y STAT t e s t i n g
- - t o o l . C la s s e s to b e t e s t e d w i th STAT sh o u ld im plem ent t h i s c l a s s .

in_state ($ str): bool ;
-- Returns true i f ' s e l f ' i s in a d e s ig n s t a t e named in th e argument,
- - o r f a l s e o t h e r w i s e . T h is must match th e name o f a s t a t e in th e
- - s t a t e - t r a n s i t i o n d iagram from which t e s t c a s e s a r e g e n e r a t e d .

end; -- a b s t r a c t c l a s s $STAT_TESTABLE

Figure 6.4: The Sather interface for querying an object’s state.

The tool generates test cases from event sequences derived from the transition tree.
Each event is assumed to be a method call on the object under test. Some of the events
have arguments, and suitable values need to be supplied. The next section describes in
more detail the input and output to the tool.

6.2 Generating Test Cases
STAT takes as input a signature (interface) for the class under test, a state-transition
diagram describing the behaviour of that class and test data for types that are used in
method arguments by the class. It generates a class containing test cases in the form of
compilable Sather code. A method is created for each of the events sequences derived
from a transition tree. The generated test class also has a main method that runs all the
test cases and reports the results.

During design, state-transition diagrams are usually used somewhat informally.
Booch (1996), for example, suggests that design documents should only have enough
information to communicate the design to engineers. In order to generate test cases,
however, the diagrams and the classes under test need to be “test ready.” This sec­
tion describes assumptions made by the tool about the semantics of state-transition
diagrams and the class under test, and the resulting test code produced.

STAT assumes that events in the state-transition diagram are calls on the methods
of the class under test. These are checked against the class signature for name and
number of arguments. The class signature also supplies the types for the arguments.
STAT also assumes that guard conditions are fully specified as boolean-valued Sather
expressions. Any identifiers either appear as formal arguments to the method or are
themselves methods of the class under test. In Figure 6.1, the guard condition for the
transition

debit (amt) [b a la n c e -a m t> = 0]

has an event argument named amt and balance is a method of ACCOUNT.
We also require some means of querying the current state of the object and inter-

§6.2 Generating Test Cases 89

event_seq_003 is
test_label:= "event seq. 003: open, close";
ob::= #ACCOUNT;
ob.open;
ob.close;
test(test_label, true.str, ob.in_state("Closed”).str);

end;

Figure 6.5: Code generated for event sequence no. 3 in Figure 6.3.

preting the result as one of the design states represented in the state-transition diagram.
The code generated by STAT assumes this is provided by a method in.state in the class
under test. This method provides the mapping from the internal states of the object to
representation states discussed in Chapter 5. The code generated by STAT assumes
that this method returns true when passed the name of design state matching the cur­
rent representation state. The abstract class $STAT.TESTABLE, shown in Figure 6.4,
specifies the required interface. It can be inherited by the class under test which must
supply an appropriate implementation. As we saw in Section 5.2, the implementation
of this method is a matter of finding the predicates defining the representation states,
and is usually straight forward.

For each event sequence, a separate method is generated. An object of the class
under test is created and each of the events sent to it as method calls, then the final
state is checked. Figure 6.5 is an example: it shows the code generated for the third
event sequence in Figure 6.3. This code makes use of the test method of the Sather
system class TEST, which records the result of the comparison of its second and third
argument (the first is a label used for reporting the test case). The TEST accummulates
these results and reports them at the end of the test run. The Sather TEST class is
described in the Appendix, Section B.4.7.

Not many of the transitions for which we wish to generate test cases are quite so
straight forward as this example: they may also have guards, and events may have
arguments. Arguments on events correspond to method arguments under our assump­
tion that events in a state-transition diagram are messages. STAT requires a set of one
or more input data values for each argument type used in the state-transition diagram.
In the ACCOUNT class example, the credit and debit methods both have a single
argument of type MONEY. The tool determines the argument type from the class
signature. Possible values for this argument are in the range 0 - 9 9 cents and $0 -
$2147483647 (the largest signed integer representable in 32 bits1). A suitable set of
input values can be found using the equivalence partitioning and boundary value anal-

l4‘Real testers”, whether or not they eat quiche, withdraw $2147483648 from an ATM to see if it
adds $1 to their account’s balance!

90 STAT: Generating Test Cases from Object-Oriented Design

#MONEY(-0.01),
#MONEY(0),
#MONEY(0.01),
#MONEY(0.17),
#MONEY(0.99),
#MONEY(1.00),
#MONEY(1.01),
#MONEY(52.30),
#MONEY(21474836.47) ,
#MONEY(21474836.48) ,
#MONEY(2147483646.99) ,
#MONEY(2147483 647.99) ,
#MONEY(2147483648.99)

Figure 6.6: Test data for the class MONEY.

ysis testing strategy, which we described in Section 2.2. This strategy uses values at,
immediately above and immediately below the range limits, as well as a typical value.
The set of data used for testing the ACCOUNT class is shown in Figure 6.6. The syn­
tax in the figure is that for creating an object with each of the required values (in Sather
#MONEY is a constructor for the class MONEY, see the Appendix, Section B.1.2).
STAT leaves it up to the user to select a suitable set of input data values.

In the generated methods of the test class, the guard conditions are checked in an
if-statem ent before calling the method corresponding to the event. If there is more
than one guard in an event sequence then the checks are nested. STAT assumes each
guard in the state-transition diagram contains a boolean-valued Sather expression, and
that any identifiers either match one of the event’s arguments or are methods of the
class under test. If the latter it is converted to a call on the object under test. Figure 6.7
shows the code generated for the last (11th) event sequence in Figure 6.3.

Methods that check guard conditions return the value true if all the guard condi­
tions evaluate to true, and false otherwise. This is used to check that the event sequence
in this method was achieved during execution of the test cases, as can be seen in the
example in Figure 6.7. This example also show the handling of an event arguments,
which become arguments to the method.

The main method runs event sequence methods with all combinations of input data
for the types of its arguments. If none of the combinations exercise the transition it
prints a warning. This should be considered a failure of the test data set. Where the
guard conditions check event arguments this usually requires adding values to the input
data set. The user can use the guard conditions to reason backwards about boundaries
in the input domains that have been missed. Where the guard conditions depend only
upon the internal state of the class under test, then this is a quasimodal class (see
Section 5.1). Quasimodal classes should be validated using other techniques (Binder
1996).

§6.3 Experience To Date 91

event_seq_011 (am tl, amt2 : MONEY): bool is
test_label:= "event seq. Oil: open, debit("+amtl+")[balance - "

+amtl+" < 0], credit("+amt2+“)[balance + "+amt2+" >= 0]";
Ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
if (ob.balance + amt2 >= 0) then

ob.credit(amt2);
test(test_label, true.str, ob.in_state("InBalance").str);
return true,-

e lse return false,-
end;

e lse return false,-
end,-

end,-

Figure 6.7: Code generated for event sequence no. 11 in Figure 6.3.

6.3 Experience To Date
In Section 5.1, we described Binder’s (1996) classification of four kinds of classes for
the purpose of selecting an appropriate test strategy. The suggested test strategies are
based on different combinations of domain testing and transition trees according to
the kind of class. STAT also combines these two strategies for testing classes, but it
generates the test cases. Thus the user need only specify the behaviour of the class in
a state-transition diagram and a set of input values. In effect, STAT allows a tester to
concentrate more effort on test design rather than the implementation of test cases.

STAT has been used to generate test cases for examples of three of the four kinds of
classes in Binder’s (1996) classification. The ACCOUNT example in Figure 6.1 is an
example of Binder’s “modal” class. A “unimodal” class such as TRAFFIC-SIGNAL
from Section 5.1, is simpler because there are no event arguments. Binder’s testing
strategy for the other two kinds, “quasimodal” and “nonmodal,” does not use transition
trees.

Nevertheless, STAT has been used to generate test cases for nonmodal classes. To
generate test cases for the class TIME, which performs arithmetic with hours, minutes
and seconds, we created the state-transition diagram in Figure 6.8, and a boundary-
value analysis testing strategy was used to develop the input data in Figure 6.9.

An important consideration is the tool’s ease of use in evolutionary development.
For example, in a later iteration of the development of a system, an over-draft facility
could be added to the ACCOUNT class. This would make it possible to debit an
overdrawn account provided the balance remained above a specified limit. The state-
transition diagram used to test this class is shown in Figure 6.10.

According to Perry & Kaiser (1990), not only does the new set-limit method need
to be tested, but both the methods credit and debit need to be retested, since they

92 STAT: Generating Test Cases from Object-Oriented Design

plus(amt)[-amt<val]plus(amt)[-amt=val]
minus(amt)[val=amt]

Positive
minus(amt)[amt<0 minus(amt)[val<amt]

v \ plus(aim)[val<-amt]
plus(amt)[0<amt]

minus(amt)[amt<val]

minus(amt)[0<amt]
''^^r>lus(am t)[am t<0]

plus(amt)[val<-amt]

'plus(amt)[-amt<val]
minus(amt)[amt=0] Sminus(amt)[val=amt] minus(amt)[amt<val]Negative

plus(amt)[-amt=val]
minus(amt)[val<amt]

Figure 6.8: A state-transition diagram for testing the class TIME.

#T IM E (0 , 0 , - 1) ,
#T IM E (o o o

#T IM E (

1—1

o

o

#T IM E (0 , 0 , 5 9) ,
#T IM E (0 , 1 , 0) ,
#T IM E (0 , 1 , 1) ,
#T IM E (0 , 5 9 , 5 9) ,
#T IM E (0 , 0 , 3 6 0 0) ,
#T IM E (1 , 0 , 1) ,
#T IM E (0 , - 5 9 , - 5 9) ,
#T IM E l 1 H O O

#T IM E (- 1 , 0 , - 1) ,
T I ME (5 2 , 3 0 , 2 2) ,
T I ME (2 1 4 7 4 8 3 6 4 7 , 5 9 , 5 9) ,
#T IM E (- 2 1 4 7 4 8 3 6 4 7 , 5 9 , 5 9)

Figure 6.9: Test data for the class TIME.

would have to be reimplemented to handle the over-draft limit, (see Section 3.4). Note
that the OVERDRAFT^ACCOUNT class has behaviour that differentiates it from
ACCOUNT (except when the over-draft limit is $0) in the sense that the same se­
quence of method calls would produce different results in objects of each class. So
although the interface of OVERDRAFT.ACCOUNT conforms to that of ACCOUNT
it is not substitutable for it.

During software design, state-transition diagrams along with all other design doc­
umentation can be incomplete: “obvious” information is left out in order to avoid
cluttering the diagram, and they can quickly become out of date. This can be a prob­
lem when using state-transition diagrams to generate test cases. For example in testing
the ACCOUNT class using the state-transition diagram in Figure 6.1, the domain test­
ing strategy led to the inclusion of a negative value in the set of input data values (see

§6.4 Possible Extensions 93

Closed

openir

-S|setjimit(amt)[bal>=amt]credii(amt)[bal+amt<0]

debit(amt)[bal-amt<0 and bal-amt>=limit]
OverdrawnInBalance

credit(amt)[bal+amt<=0]

debit(amt)[bal-amt>=0 and bal-amt>=limit] debit(amt)[bal-amt>limit]

set_limit(amt)[bal<amt] debit(amt)[bal-amt<limit]

set_limit(anit)[bal<0 and bal>=amt]
credit(amt)[ba]-amt<0 and bal-amt>=limit]

set Jimit(amt)[bal>=0 and ba l> = am tT ^~ ^C l]^^

credit(amt)[bal-anit>=0 and bal-amt>=limit] OverLimit

credit(amt)(bal+amt<limit]set_limit(amt)[bal<amt]

Figure 6.10: A state-transition diagram for an OVERDRAFT.ACCOUNT object.

Figure 6.6). But a negative argument to the credit or debit methods was “obvious­
ly” an error and an exception should be raised. In executing the generated test cases
there were a number of failures when the object under test raised an exception instead
of changing state as apparently indicated in the state-transition diagram. Usually this
problem is fixed by making the “obvious” details explicit in the diagram before gen­
erating the test cases. In this case, the way to correct the generated test suite was
to include a non-negative condition in the guards of the affected transitions, that is,
the transitions whose events are either credit (am t) or debit (am t) should have the
condition and amt>0 included in their guards.

6.4 Possible Extensions
In Chapter 5 we discussed the scope and limitations of our transition tree based ap­
proach. In particular the event sequences generated by a transition tree provide a min­
imal complete coverage of the state-transition diagram, that is, it produces the shortest
sequences that reach all states. Occasionally this leads to inadequate testing of some
transitions. A case in point occurs in the OVERDRAFT.ACCOUNT example in Fig­
ure 6.10: the only event sequences that include setJimit are

create, open, set_limit(amt)[bal>amt] InBalance
create, open, debit(amt)[bal—amt<0], set_limit(amt)[bal>amt] Overdrawn

Most testers would like to include test cases that check the effect of credit and debit
after a setJimit.

94 STAT: Generating Test Cases from Object-Oriented Design

One way to generate longer sequences is to develop more elaborate state-transition
diagrams, but this is not always easy. A future version of STAT could include the
option to generate additional transition sequences that add a specified number of tran­
sitions to each of those in the transition tree.

Another reason for incorporating such an option is to enable the testing of “sneak
paths”, discussed in Section 3.3.3. These are incorrect transitions in the implemen­
tation of the class under test that do not appear in the state-transition diagram. The
suggested strategy to test for sneak paths is for each state to try events that are not
permitted in that state. The main issue for sneak path testing in STAT is how should
the correct handling of error conditions be represented? Error handling of illegal tran­
sitions may cause the class to enter an error state, raise an exception or simply ignore
them. This information is sometimes represented in comments in the class specifi­
cation, but is overlooked in most object-oriented design methods. A consistent error
handling policy is necessary in order to automatically generate test cases for error
situations.

It is possible with state-transition diagrams to describe the behaviour of a system of
several interacting objects. However, STAT assumes that a single object is the receiver
of all events. One strategy for testing such a system using STAT would be to add a
test harness class to the system, for example using the Facade design pattem (Gamma
et al. 1995). The state-transition diagram would have to be altered to route all events
through the test facade class. The test facade class would also have to construct the
system under test and perform any other necessary initialisations.

6.5 Summary
The goal of STAT is to simplify the generation of test cases in an iterative and incre­
mental development environment typical of object-oriented software development. It
makes use of information generated during object-oriented design and so is intended
to be easily integrated into a CASE tool used to generate those design documents.

Our experience with STAT has suggested that it can also be used by testers as a tool
to simplify test design and automatically generate a covering test suite. It reduces the
effort in the mechanical and error prone activity of developing test cases and allows
the user to concentrate on defining the behaviour of the class under test.

The applicability of STAT to testing object-oriented software is constrained by
the applicability, expressiveness and use of state-transition diagrams. We have seen in
Section 3.4.4 that the state-transition diagram for a class should apply to all subclasses,
so the test suite generated by STAT can also test the subclasses, but this is true of any
test suite for a class. The syntax used to specify test data for parameters to events, as
in Figure 6.6, allows any subclass of the parameter type. One strategy which could
be used to select data across multiple subtypes is described by McDaniel & McGregor
(1994).

§6.5 Summary 95

The future of a software component industry depends first on the wide acceptance
of standard interfaces such as CORBA and JVM that provide the “sockets” for the
components to plug into. But secondly, such an industry depends upon consumer trust
in the reliability of those components. One way to build this trust is to use a standard
component test interface such as the STAT.TESTABLE class. This would become a
software component industry’s equivalent of the “test pins” in hardware IC’s.

Chapter 7

Conclusion

In this thesis we have explored the effect of object-oriented technology on software
testing. We broke the discussion down into three broad themes: namely testing and
object-oriented programming, testing and object-oriented design, and testing process
issues in object-oriented software development. We began in Chapter 2 with an intro­
duction to the established terminology and concepts of software testing.

In Chapter 3, we looked at a number of aspects of object-oriented programming
and how they affected testing. These were encapsulation and object state, inheritance,
exception handling, the use of assertions, and object interactions. It is possible to
say that issues in testing classes: encapsulation, state, inheritance and polymorphism
have been well covered in the research literature. What constitutes adequate testing
for higher level constructs, including parameterised classes, clusters and subsystems
of interacting classes, and frameworks, is still to be determined.

In Chapter 4, we considered the object-oriented software development process and
the role of testing. The central issues to the discussion there were iteration and incre­
mental delivery. We developed a framework that ensures test design should be carried
out in parallel with other development activities. This chapter described an adaption
of the Booch process (Booch 1994) that explicitly includes testing in its iterations.

The final two chapters focussed on testing a particular aspect of object-oriented
design: object behaviour described in terms of state-transition diagrams. In Chapter 5,
we presented the concept of a representation finite state machine to capture the rela­
tionship between an object’s design states, as might be described in a state-transition
diagram, and the implementation states, which are the possible values of its attributes.

In Chapter 6 we described the design of a tool, STAT, that makes use of the rep­
resentation finite state machine concept to generate test cases from a state-transition
diagram. This chapter also introduced an interface to access the representation finite
state machine of a class. By combining the state-based testing approach of Chap­
ter 5 with equivalence partitioning and boundary-value analysis on the arguments of
a class’s methods we were able to achieve good coverage of the behaviour of three of
the four kinds of classes in Binder’s (1996) classification of class behaviour.

In the remainder of this chapter we identify aspects of the interaction of testing
and object technology that would benefit from further research. Once again, we dis-

97

98 Conclusion

cuss these under the three headings of object-oriented programming, object-oriented
analysis and design, and testing in the development process.

7.1 Future directions

7.1.1 Testing and Object-Oriented Programming
Many of the issues to do with testing object-oriented programs have been dealt with in
the research literature, as we have already seen. New languages and new technologies,
however, will introduce their own specific problems to which test technology must
respond. At the time of writing, some of the interesting new technologies are Java and
middle-ware for distributed computing, in particular CORBA and COM. While new
technologies make feasible new kinds of applications they also introduce new kinds
of software faults. Software engineers will require new tools and techniques to either
avoid or test for these faults.

One of Java’s significant contributions to object-oriented programming is to pop­
ularise concurrency. While support for concurrency in object-oriented programming
languages is by no means new, Java’s wide adoption means that significant systems
with strong quality requirements are being built in Java, using Java’s concurrency
mechanisms. Test techniques for concurrent programs are not well developed. Prac­
tical techniques are needed for identifying potential dead-locks, race conditions, re­
source sharing problems and other defects that can occur in concurrent programs.

7.1.2 Testing and Object-Oriented Analysis and Design
The future of software test tools is as integrated components of a software develop­
ment environment. CASE tools are a case in point: there are many more possibilities
for extracting information for test design from CASE models, than the state-transition
diagrams used by STAT. In particular, use cases, object interaction diagrams and mes­
sage sequence diagrams are used to design the behaviour of object-oriented software
and so have behavioural information which potentially could be used to generate test
cases.

New object-oriented design methods are being developed to address emerging
technologies, such as PARSE (Gorton et al. 1995) for concurrency and distributed ob­
jects, and Catalysis (D’Souza 1996) for Java. These offer the opportunity to develop
test techniques that extract test requirements from design artifacts.

7.1.3 Testing and Object-Oriented Software Development
Software is built for an enormous variety of applications, with a variety of quality
requirements, and by a variety of development teams. No single software develop-

§7.1 Future directions 99

ment process is suitable for all these situations. The testing required for a fly-by-wire
avionics system in a commercial aircraft is substantially different from that which cre­
ates an animated picture in a web page, as are the teams which undertake the testing.
It remains to tailor testing processes to specific development processes and environ­
ments. Some of the variables that will to be addressed in the design of software testing
processes are

scale While inspections are a recommended practice for defect reduction in a large
team, a lone tester, or a developer performing their own testing, requires other
means for objectively assessing the quality of their product. Test techniques that
are suitable for a software development project of one size and with one set of
available resources can be unmanageable or inefficient on another.

quality requirements A risk-based approach to testing is needed that selects test
techniques and directs effort with the aim of reducing the likelihood and con­
sequences of software failures.

emerging technologies Applications built on specific technologies often require spe­
cific testing techniques. We have mentioned some these for Java and CORBA
in the previous sections. Applications based on the World Wide Web require
significant cross-platform testing and have a range of security issues, this will
be particularly important for the various proposed e-commerce platforms.

A ppendix A

An Example of STAT test cases

This Appendix lists the test case code generated by the STAT tool for the ACCOUNT
example described in Chapter 6. It also lists the complete input files used to generate
the testcases.

The first code file below defines the state-transition diagram for ACCOUNT in
Figure 6.1. STAT uses the grammar for state-transition diagrams developed by Lucas
(1993).

account.sm
#
State machine model for Account
Author: Oscar Bosman (CSIRO CMIS) <oscar@cmis.csiro.au>
Id
#
#

StateChartName Account
Version Id

Initial create Closed balance := 0

Closed open (Opened H InBalance)
Opened has History, initial state is InBalance

(Opened) close Closed

InBalance: Opened
credit(amt) InBalance balance := balance + amt
debit(amt) [balance - amt >= 0] InBalance balance := balance - amt
debit(amt) [balance - amt < 0] Overdrawn balance := balance - amt

Overdrawn: Opened
credit(amt) [balance + amt >= 0] InBalance balance := balance + amt
credit(amt) [balance + amt < 0] Overdrawn balance := balance + amt
debit(amt) [balance - amt >= lim] Overdrawn balance := balance - amt

The next file is the Sather source code for the class ACCOUNT. STAT uses the
signatures defined in this file to determine method calls on the class.

101

mailto:oscar@cmis.csiro.au

102 An Example of STAT test cases

-- account.sa:
-- Author: Oscar Bosman (CSIRO CMIS) <oscar@cmis.csiro.au>
-- Id

type $ACCOUNT is

open;

close;

credit(amount: MONEY);

debit(amount: MONEY);

end; -- class $ACCOUNT

class ACCOUNT < $ACCOUNT, $STAT_TESTABLE is

readonly attr balance: MONEY;
private attr isOpen: BOOL;

create: SAME is
res: SAME := new;
res.isOpen := false;
res.balance := #MONEY(0);
return res;

end;

open is
isOpen := true;

end;

close is
isOpen := false;

end;

credit(amount: MONEY) is
if isOpen and amount >= 0 then

balance := balance + amount;
end;

end;

debit(amount: MONEY) is
if isOpen and amount >= 0 and balance >= 0 then

balance := balance - amount;
end;

end;

reset is
isOpen := false;
balance := #MONEY(0);

end ;

state: $STR is
if isOpen then

if (balance >= #MONEY(0)) then
return "InBalance“;

else
return "Overdrawn";

mailto:oscar@cmis.csiro.au

103

end;
else

return "Closed";
end;

end;

end; -- class ACCOUNT

The test data set in the next file is used by STAT to provide values for method
calls. A set of values should be supplied for each class that appears as a parameter in a
transition. If no values are supplied, STAT will use a single value that is created by the
defaule constructor for the type. However this is usually not sufficient to adequately
test the class.

-- money.td
-- Author: Oscar Bosman (CSIRO CMIS) <oscar@cmis.csiro.au>
-- Id

Type
MONEY

values
#MONEY(-0.01),
#MONEY(0),
#MONEY(0.01),
#MONEY(0.17),
#MONEY(0.99),
#MONEY(1.00),
#MONEY(1.01),
#MONEY(52.30),
#MONEY(21474836.47),
#MONEY(21474836.48),
#MONEY(2147483646.99),
#MONEY(2147483647.99),
#MONEY(2147483648.99)

end

The file below (test_tree_account.sa) is compilable Sather source code that has been
generated by STAT from the state-transition specification (account.sm), the class defi­
nition (account.sa) and the test data set (money.td). Some of the lines have been edited
to fit onto the page.

-- test_tree_account.sa:

-- Generated transition tree coverage for class ACCOUNT (account.sa) from
-- state-transition diagram (account.sm).

class TEST_TREE_ACCOUNT is
include STAT_TEST_SUPPORT;

attr test_label: STR;

-- Test input data and initialisation for type MONEY

mailto:oscar@cmis.csiro.au

104 An Example o f STAT test cases

attr money_type_test_data_list: ARRAYMONEY;

test_data_init is
money_type_test_data_list := |

#MONEY(-0.01),
#MONEY(0) ,
#MONEY(0.01),
#MONEY(0.17),
#MONEY(0.99),
#MONEY(1.00),
#MONEY(1.01),
#MONEY(52.30),
#MONEY(21474836.47),
#MONEY(21474836.48),
#MONEY(2147483646.99),
#MONEY(2147483647.99),
#MONEY(2147483648.99)
I;

end;

-- Test case execution

main is

covered : BOOL; — check for test case reach
amtl: MONEY; -- generated argument
amt2: MONEY; — generated argument

tes t_data_init;

amtl_values: ARRAYMONEY := money_type_test_data_list. copy;
amt2_values : ARRAYMONEY := money_type_test_data_list. copy ;

class_name("ACCOUNT");

-- test cases
event_s eq_0 01 ;

event_seq_002 ;

event_seq_003 ;

event_seq_004;

loop amtl := amtl_values.elt!;
event_seq_005(amtl);

end;

covered := false;
loop amtl := amtl_values.elt! ;

covered := event_seq_006(amtl) or covered;
end;
if -covered then warning(test_label,"No tests for event seq. 006."); end;

covered := false;
loop amtl := amtl_values.elt!;

covered := event_seq_007(amtl) or covered;
end;
if -covered then warning(test_label,"No tests for event seq. 007."); end;

covered := false;
loop amtl := amtl_values.elt!;

covered := event_seq_008(amtl) or covered;
end;
if -covered then warning(test_label,"No tests for event seq. 008."); end;

covered := false;
loop amtl := amtl_valu.es . elt! ;

covered := event_seq_009(amtl) or covered;
end;
if -covered then warning(test_label,"No tests for event seq. 009."); end;

covered := false;
loop amtl := amtl_values.elt!;

loop amt2 := amt2_values.elt! ;
covered : = event_seq_010(amtl, amt2) or covered;

end;
end;
if -covered then warning(test_label,"No tests for event seq. 010."); end;

covered := false;
loop amtl := amtl_values.elt!;

loop amt2 := amt2_values.elt!;
covered := event_seq_011(amtl, amt2) or covered;

end;
end;
if -covered then warning(test_label,"No tests for event seq. 011."); end;

finish;
end;

— Event sequences

event_seq_001 is
test_label:= "start state";
Ob::= #ACCOUNT;
test(test_label, ob.state, "Closed“);

end;

event_seq_002 is
test_label:= "event seq. 002: open";
ob::= #ACCOUNT;
ob.open;
test(test_label, ob.state, "InBalance");

end;

event_seq_003 is
test_label:= "event seq. 003: open, close";
ob::= #ACCOUNT;
ob.open;
ob.close;
test(test_label, ob.state, "Closed");

end;

event_seq_004 is
test_label:= "event seq. 004: open, close, open";
ob::= #ACCOUNT;
ob.open;
ob.close;
ob.open;
test(test_label, ob.state, "InBalance");

106 An Example o f STAT test cases

end;

event_seq_005(amtl: MONEY) is
test_label:= "event seq. 005: open, credit(“+amtl+")";
ob::= #ACCOUNT;
ob.open;
ob.credit(amtl);
test(test_label, ob.state, "InBalance");

end;

event_seq_006(amtl: MONEY): BOOL is
test_label:= "event seq. 006: open, debit("+amtl+")[balance - “+amtl+" >= 0]";
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl >= 0) then

ob.debit(amtl);
test(test_label, ob.state, "InBalance");
return true;

else
return false;

end;
end;

event_seq_007(amtl: MONEY): BOOL is
test_label:= "event seq. 007: open, debit("+amtl+")[balance - "+amtl+" < 0]";
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
test(test_label, ob.state, "Overdrawn");
return true;

else
return false;

end;
end;

event_seq_008(amtl: MONEY): BOOL is
test_label:= "event seq. 008: open, debit(“+amtl+")[balance - "+amtl+

" < 0], close";
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
ob.close;
test(test_label, ob.state, "Closed");
return true;

else
return false;

end;
end;

event_seq_009(amtl: MONEY): BOOL is
test_label:= "event seq. 009: open, debit("+amtl+“)[balance - "+amtl+

" < 0], close, open";
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
ob.close;
ob.open;
test(test_label, ob.state, "Overdrawn“);
return true;

107

else
return false;

end;
end;

event_seq_010(amtl, amt2 : MONEY): BOOL is
test_label:= "event seq. 010: open, debit("+amtl+“)[balance - "+amtl+

*' < 0], credit ("+amt2+") [balance + M+amt2+" < 0]“;
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
if (ob.balance + amt2 < 0) then

ob.credit(amt2);
test(test_label, ob.state, "Overdrawn");
return true;

else
return false;

end;
else

return false;
end;

end;

event_seq_011(amtl, amt2: MONEY): BOOL is
test_label:= "event seq. 011: open, debit("+amtl+")[balance - "+amtl+

" < 0], credit("+amt2+")[balance + "+amt2+" >= 0]";
ob::= #ACCOUNT;
ob.open;
if (ob.balance - amtl < 0) then

ob.debit(amtl);
if (ob.balance + amt2 >= 0) then

ob.credit(amt2);
test(test_label, ob.state, "InBalance");
return true;

else
return false;

end;
else

return false;
end;

end;

end; -- class TEST_TREE_ACCOUNT

The file below (stat_test_support.sa) is included by the test class generated by STAT.
It simply includes the Sather system class TEST and adds a method for printing warn­
ing messages.

-- stat_test_support.sa:
-- Author: Oscar Bosman (CSIRO CMIS) <oscar@cmis.csiro.au>
-- Id

class STAT_TEST_SUPPORT is
-- A collection of utility functions used by the generated test code

include TEST; -- class_name($STR), test($STR,$STR,$STR) and finish

mailto:oscar@cmis.csiro.au

108 An Example of STAT test cases

warning(label,msg:$STR) is
#ERR + "Warning: " + label +

end;

" + msg + “

end; class STAT_TEST_SUPPORT

Appendix B

Overview of Sather

Sather is a statically typed object-oriented programming language that emphasises cor­
rectness and runtime efficiency. It supports statically checked strong typing, multiple
inheritance, separate implementation and type inheritance, garbage collection, itera­
tion abstraction, higher order functions, assertions, preconditions, postconditions and
class invariants, all in a small, clean, orthogonal syntax. It is also free. This appendix
gives an overview of its syntax and major features.

More information, including the free compiler, can be found at the Sather home
page: h t t p : / /www. i c s i . b e r k e l e y . e d u / ~ s a t h e r / . There is also an Inter­
net news group devoted to Sather: comp . l a n g . s a t h e r .

B.0.1 A little background and history
Sather is being developed at the International Computer Science Institute, in the Uni­
versity of California at Berkeley. The original version 0.2 was released in June 1991. It
was originally intended as a smaller, more efficient Eiffel, but the two languages have
since evolved in different directions. Version 0.5 (also known as “Canberra Sather”)
was the work of a few people at CSIRO-DIT, and was released in late 1993. At the
time of writing, the current version is 1.0. Sather is named after the Sather tower, a
building on the campus of the University of California at Berkeley.

Version 0.1 was modified at Karlsruhe University, Germany, where it is used for
teaching and research. This version is known as Sather-K and has an extensive algo­
rithm library, Karla. Further information can be accessed from its own home page:
h t t p : / / i 4 4 w w w . i n f o . u n i - k a r l s r u h e . d e / ~ f r i c k / S a t h e r K .

B.l A brief overview of Sather syntax

B.1.1 Classes
Sather programs consist of a list of class declarations. There are essentially two kinds
of classes: abstract classes and concrete classes. Class names in Sather are written in

109

http://i44www.info.uni-karlsruhe.de/~frick/SatherK

110 Overview of Sather

type $STACK{T} < $ELT{T} is
- - An a b s t r a c t s t a c k

push(e l t : T) ;
— Push e l t t o th e to p o f th e s t a c k

POP: T;
- - R etu rn and remove th e topm ost e lem en t

top: T;
- - R etu rn th e topm ost e lem en t

size: INT;
- - Number o f e le m e n ts in th e s t a c k

is_empty: BOOL;
— True i f s i z e = 0

elt!: T;
- - Y i e l d e le m e n ts in FIFO o rd e r .

e n d ; -------- t y p e $STACK{T}

Figure B.l: An abstract class

all uppercase characters.
Abstract classes declare interfaces. They are introduced by the keyword type and

their names must begin with a dollar sign ($). The abstract class $STACK in Figure B. 1
is an example. Notice that it only lists the class’s features (its signature); there are no
implementations. An abstract class specifies exactly what we need to know in order to
(syntactically correctly) access objects of that type.

The “<” after the class’s name indicates subtyping (specification inheritance). In
Figure B .l, the abstract type $STACK{T} is a subtype of $ELT{T}, which means
that it has at least all the features of $ELT{T}. Thus any object that is a subtype of
$STACK{T} can handle any message that is allowed for a $ELT{T}. (In the Sather
libraries, the abstract class $ELT{T} merely declares the feature elt!: T, so the appear­
ance of that feature in $STACK{T} is redundant). If consecutive dashes appear on a
line (“- - ”), the rest of the line is a comment. Sather also has a supertype operator “>”
which declares that an abstract class is a parent of the listed classes.

Concrete classes declare an implementation and are introduced by the keyword
class. An example appears in Figure B.2, below. Concrete classes can be instanti­
ated, that is we can create objects from them. Abstract classes of course cannot be
instantiated.

STACK{T}, $STACK{T} and $ELT{T} are parameterised classes. They are sim­
ilar to templates in C + + and Eiffel’s generic classes. The formal parameter types
are listed in braces after the class name. In order to use a parameterised class, we
must replace the arguments with real class names, for example STACK{INT} or

§B. 1 A brief overview of Sather syntax 111

class STACK{T] < $STACK{T} is
- - An a r r a y - b a s e d s t a c k im plem en ted b y d e l e g a t i o n to an FLISTT,
- - which a l l o c a t e s sp a c e b y a m o r t i z e d d o u b l in g .

private attr s : FLIST{T};

create: SAME is
r e s ::= new;
r e s . s := #FLIST{T};
return (re s) ;

end;

create(n: INT) : SAME is
— P r e a l l o c a t e n e le m e n ts
r e s : := new;
r e s . s := #FLIST{T}(n) ;
return (r e s) ;

end;

push (e : T) pre -void(self) is
s := s .p u s h (e);

end;

pop: T pre -void(self) and -is_ em p ty is
return (s . pop) ;

end;

top: T pre -void(self) and ~is_em pty is
re tu rn (s.top) ;

end;

elt!: T pre -void(self) is
loop y ie ld (s .e l t !) end;

end;

size: INT pre -void(self) is return(s. s iz e) end;

is_empty: BOOL pre -void (self) is return (s iz e = 0) end;

contains(e: T) : BOOL pre -void(self) is
return (s . c o n ta in s (e)) ;

end;

str: STR is
return s . s t r ;

end;

end;

Figure B.2: A concrete class

TEMPERATURE.SENSOR}.
Parameter types can be constrained, for example in

class SORTED_LIST{T < $IS_LT} is . . .end;

Here element classes must be subtypes of $IS_LT. The abstract class $IS_LT declares

112 Overview o f Sather

class STR < $IS_EQ{STR}($IS_LT{STR}, $HASH, $STR, $ELT{CHAR} is
- - S t r i n g s .
— S t r i n g s a r e r e p r e s e n t e d a s a r r a y s o f c h a r a c t e r s . E v e ry c h a r a c t e r
- - i s s i g n i f i c a n t .

- - R e f e r e n c e s : Gönnet and B a e za -Y a te s , "Handbook o f A lg o r i th m s and
- - Data S t r u c t u r e s ", A d d iso n W esley , 1991.

private include AREF{CHAR} a g e t - > a g e t ;
- - Make m o d i f i c a t i o n r o u t i n e s p r i v a t e .

o t h e r f e a t u r e s s p e c i f i c t o STR.

Figure B.3: Sather string class STR reuses the implementation of array of char.

a single feature which is the “is less than” operator. The “< $IS_LT” qualifier ensures
that we will only create sorted lists of objects that can be compared. It also means that
when we write the implementation of SO R T E D JJST , we can safely assume that its
elements will understand the < operator.

A concrete class can reuse the implementation of another with an include clause.
For example, strings behave a lot like arrays of characters, so that class was reused
to implement Sather strings, as in Figure B.3. It is as though all the features in the
included class are textually copied into the class in place of the include clause. If we
don’t want some of the included features, we can rename them like this:

oldname -> newname
or remove them like this:

oldname ->
In Figure B.3 all the included routines are made private (by putting that keyword before
the include clause) and then aget is renamed to make it public.

The concepts of subtyping and code inclusion are combined in nearly every other
object-oriented programming language, although you can achieve the effect of code
inclusion in C++ with private inheritance. Java’s implements is pure subtyping, but
extends also combines subtyping with code reuse. Inheritance in Sather is discussed
in Section B.4.1.

Two more special kinds of classes need to be mentioned: value classes and external
classes. By default Sather objects are created on the program’s heap and accessed by
reference semantics, i.e. a variable is a “pointer” to an object, more than one variable
may refer to the same object (alias) and assignment only changes the pointer, so the old
object still exists. When an object has no references to it, it is deleted by the garbage
collector. If we precede the class declaration with the keyword value object created
from it will have value semantics, like integers and chars in most languages. That

§B. 1 A brief overview of Sather syntax 113

means a variable “contains” a value object and assignment means overwriting the old
value with a new one, so aliasing is not possible.

External classes are used to provide access to code in other programming lan­
guages. A feature declared in an external class is either the name of a routine written
in an other language that can be called from Sather code, or a Sather routine that can
be called from another language.

B.1.2 Features
Sather’s classes are nothing more that a list of their features. There are two kinds
of features, attributes and routines (for those familiar with C++, these correspond to
“data members” and “member functions”). Features can be made private, in which
case they are not visible outside the class.

Attributes

Attributes are introduced by the keyword attr. Space is allocated for them in an object.
An attribute declaration implicitly defines two routines: an accessor and a modifier.
So the attribute declaration attr s : FLIST{T}; in Figure B.2, means the class has the
routines s : FLIST{T} (accessor for s) and s (x: FLIST{T}) (modifier for s). The
compiler translates an assignment to an object attribute to a call on the latter method,
thus s t a c k . s : = new_s becomes s t a c k . s (new_s). Notice that it is not possi­
ble to tell from the from a message whether it is implemented in a particular class by
an attribute or a routine. In fact, given an abstract class with either of the above two
signatures, it would be possible to implement it using an attribute in one subtype and
a routine in another.

Attributes can be made immutable with the const keyword, in effect they have no
modifier routine. The readonly keyword is the same as making the modifier routine
private, so the attribute can not be changed outside the class. An attribute preceded
by the keyword shared is class allocated, i.e. all objects of that class access the same
value.

Routines

The features create, push, pop, top, etc. in Figure B.2 are all examples of routines.
Notice the two create routines: Sather allows overloading on method names. Routines
with the same name are disambiguated by the number and type of arguments, and
return type.

The create feature is called to instantiate objects of that class. The expression
#A_CLASS (a rg) is shorthand for A_CLASS: : c r e a t e (arg)

Sather is garbage collected, so there is never any need to explicity destroy objects
and memory is automatically recovered from objects that are not referenced. It is

114 Overview o f Sather

protect

raise #error_ c l a ss ,-

when error_ class then . . .
when $ error then . . .
else
end;

Figure B.4: Exception handling

possible to ensure specific tasks, such as closing files, are performed when objects
are recovered (this is known as finalisation). Objects can be manually deallocated, if
needed.

In Sather, declarations have a Pascal-like syntax, which shows its heritage from
Eiffel. The special type SAME is replaced by the name of the enclosing class. SAME
is useful in code that will be reused by including it in another class. SAME can not
appear in an abstract class.

Most other kinds of statements will no doubt be familiar. Branching is by the usual

if . . .then . . .else . . .end

construct, multi-way branching by

case <variable> when <expression> then . . . e l s e . . . e n d

There is only one way to loop loop . . . end. The reason for this will become clear
when we discuss Sather’s iters in Section B.4.4.

Sather supports exceptions based on the common “throw and catch” model. An
exception is “thrown” by a raise statement. If an exception is raised in a block of
statements preceded by the protect keyword, as in Figure B.4, it will be caught in a
following when clause if the exception’s type conforms to the type expression in that
when clause. The else clause catches all exceptions not caught by the when clauses.

Most of Sather’s expressions will be obvious to those familiar with another ob­
ject-oriented programming language. The few that perhaps need explanation are new
which allocates space for an object, self refers to the current object (much as “this”
does in C++), void refers to a non-existent object of the required type, and void (a)
returns the boolean value “true” if a references void, or “false” otherwise.

§B.2 Compiling and running Satherprograms 115

class HELLO is

main is
#OUT + "Hello, world" + '\n';

end; - - main
end; - - class HELLO

Figure B.5: A “hello world” program in Sather

B.2 Compiling and running Sather programs
A routine whose name is main is treated specially. If a class containing such a method
is specified when Sather compiler is run, the program it generates will begin executing
by calling that routine. Figure B.5 shows a “hello world” program in Sather. The
expression #OUT creates an object attached to the stream stcL o u t. To print, we
concatenate strings to the stream object.

If the code in Figure B.5 is in a file called h e l l o . s a then the command

cs -main HELLO -o hello hello.sa
compiles it and generates an executable called hello. The flag -main HELLO tells
the compiler the name of the class in which to find the main routine where execution
starts.

B.3 Programming environment
To a large extent a programming language is only as useful as its programming envi­
ronment: the libraries, compiler and tools to support program development.

The Sather compiler provides a large range of options for runtime checking. Far
fewer bugs get through the Sather compiler than a typical C++ program, and with
checking enable many more are easily found. Garbage collection also removes possi­
bility of the memory management bugs that plague C and C+ + .

An interpreter and debugger are being developed. The compiler generates C code
that is sufficiently readable to be debugged with gdb. In my experience, there is little
need to use a debugger because most bugs are found by the compiler or are readily
located with the compiler’s runtime checking options.

Sather comes with class libraries covering basic data types, common data struc­
tures, file I/O and user interface (based on tcl/tk). There are an increasing number of
contributed libraries. Sather is positioning itself as a language for scientific and nu­
merical computing, so contributed libraries include classes for neural net simulation,
image processing and numerical algorithms. We will soon see a collection of classes

116 Overview of Sather

interfacing to the BLAS libraries. Most of the examples in this appendix are taken
from the Sather libraries.

Many of the features a developer would hope for can be found in the sather-mode
for emacs. These include class browsing, template editing, interfacing with the com­
piler. There is a separate class browser that uses the tcl/tk-based user interface.

B.4 Special features
This section describes a few of the unique features of Sather. These include the separa­
tion of subtyping and and implementation inheritance, pre- and postconditions, type-
safe down casting, iteration abstraction and higher-order functions.

B.4.1 Inheritance in Sather
Subtyping (or as it is sometimes called, specification inheritance) and implementation
inheritance are not the same thing (Leavens 1991). They are orthogonal concepts, but
in nearly every object-oriented programming language they are combined in a single
inheritance mechanism. In Sather they are distinct.

Subtyping is a modelling tool, it relates abstract data types. If class A is a subtype
of B, then A can receive any message that B understands. Implementation inheritance
on the other hand is about code reuse: a child class need not re-implement a method
when the parent’s can be reused.

To tie code reuse to subtyping introduces a number of problems, some of which
we have discussed in Section 3.4. The Sather string class STR in Figure B.3 is a
good example. To implement it, we regard it as an array of characters. But in object
modelling terms, a string is no more a-kind-of array of characters than an integer is
a-kind-of array of bits. There are times when we want to handle strings as arrays
of characters, or integers as arrays of bits, so these classes provide the appropriate
conversion methods.

Sather’s type system enforces the rule that all super-classes are abstract. As well
as making the type system simpler, there are many good data modelling reasons for
this (Hiirsch 1994). The classical “hierarchy of polygons” modelling problem serves
to illustrate just one of them. If the classes TRIANGLE and SQUARE are sub­
classes of POLYGON then either POLYGON cannot have a adcLvertex method or the
method has different semantics in TRIANGLE and SQUARE. In Sather, the classes
POLYGON, TRIANGLE and SQUARE would be subtypes of $POLYGON, and so
POLYGON can correctly have a adcLvertex method.

§B.4 Special features 117

class FSTR < $IS_EQ{FSTR}, $IS_LT{FSTR}, SHASH, $STR is
-- B u f f e r s f o r e f f i c i e n t l y c o n s t r u c t i n g strings b y r e p e a t e d
-- c o n c a te n a t io n u s in g a m o r t i z e d d o u b l in g .

substring (beg, mam: INT) : SAME
-- The s u b s t r i n g w i th 'num' c h a r a c t e r s whose f i r s t c h a r a c t e r
-- h as in d e x ' b e g ' . S e l f may b e v o i d i f beg=0 and num=0.

pre num>=0 and beg.is_bet(0,size-mom)
post result.size = num

is
if void (self) then return void end;
r ; ; =#SAME (num) ; r .acopy(0, mom,beg,self) ; r.loc := num;
return r

end;

Figure B.6: Pre- and postconditions in Sather

B.4.2 Programming by contract
A routine’s interface is a contract between its user and its implementor. The user is
required to provide arguments of the specified type and the implementor to return a
value of the specified return type. This is a syntactic constraint, but Bertrand Meyer
has suggested that we can extend this idea to the routine’s semantics (Meyer 1988,
Meyer 1992a).

A precondition is a boolean expression that must be true when a routine is called,
similarly a postcondition must be true when the routine returns. To abide by the con­
tract, callers of the routine must ensure that the precondition is satisfied and, based on
that assumption, the implementation must ensure the postcondition. The benefit for
the implementor of the routine is that they don’t need to handle problems like out-of-
range inputs. The benefit for the user that abides by the precondition is that they can
assume the result is valid.

Routines in Sather can have pre- and postconditions, introduced by the keywords
pre and post. An example of their use can be found in Figure B.6. The precondition
ensures that the routine’s arguments are valid indices, and the postcondition that the
returned string is the expected length.

Concrete classes may also have an invariant, a boolean valued function which at
each method return checks that the object is in a valid state. Precondition, postcondi­
tion and invariant checking can be enabled or disabled with compiler switches.

A thorough implementation of the programming by contract paradigm requires
that preconditions, postconditions and invariants are inherited. Further, in a subtype
preconditions can only be weakened, and postconditions and invariants strengthened.
In Sather since preconditions, postconditions and invariants can only be specified in
concrete classes, and so cannot be inherited.

118 Overview of Sather

a: $ 0 B ; i : INT;
- - a i s a s s i g n e d an o b j e c t r e t r i e v e d from an o b j e c t d a ta b a s e .
typecase a

when INT then i := a * 2;
when FLT then i := a . f l o o r ;
when STR then i : = a . cou n t (' e ') ;
else

raise " Unknown t y p e "
end;

Figure B.7: An example of a typecase statement

a , b , c : VECTOR{FLT};

x: FLT;
loop

x := s u m ! (a . e l t ! * b . e l t !) ;
end;

Figure B.8: A dot product of vectors (showing the use of iters)

B.4.3 Type safe down-casts
It is always safe to assign an object of one type to a variable whose type is a supertype.
Occasionally however, we need to do the reverse: assign a supertype to a subtype. This
is often the case when retrieving objects from some source external to the program,
such as a persistent store. The problem is that to do so directly contravenes type
safety.

Sather’s answer is the typecase statement. In Figure B.7 the variable a has type
$OB, but in a then clause of the typecase it has the same type as the type expression
in the immediately preceeding when. A then clause is only executed if the runtime
type of the variable referenced by a conforms to its corresponding type expression,
thus type safety is guaranteed.

B.4.4 Iteration abstraction
In Figure B.8 we see an implementation of a vector dot product. This should be suf­
ficiently terse to make even hardened C/C++ programmers feel happy. The methods
with names ending in “ ! ” are iterators (or in Sather-speak, “iters”). The iter elt! re­
turns the elements of the vector in order on each pass through the loop, and causes the
loop to exit when there are no more elements.

The real reason this code is terse is that Sather’s iteration abstraction achieves a
separation of concerns. We define in one place how a class’s data structure is to be

§B.4 Special features 119

class ARRAY{T} < $CONTAINER{T}, $COPY{SAME} is
- - O n e-d im en s io n a l a r r a y s o f e le m e n ts o f t y p e T, in c l u d i n g s o r t i n g ,

is_ sorted _b y(lt:R O U T {T ,T } :BOOL) :BOOL is
- - True i f th e e le m e n ts o f s e l f a r e in s o r t e d o r d e r u s in g
- - ' t ' t o d e f i n e " l e s s than". S e l f may b e v o i d .
if -void (self) then

loop
i : : = l . u p t o ! (a s i z e - 1) ;
if l t . c a l l ([i] , [i - l]) then return false end

end
end;
return true

end;

Figure B.9: Using a bound routine in an “applicative” context

traversed, then we can simply use that mechanism where ever we need to retrieve the
class’s elements. The user of the class is not exposed to its internal structure.

We have already an implementation of an iter in Figure B.2 (the feature eltl).
In an iter, the statement “yield < e x p r e s s i o n > r e t u r n s the current value of the
expression and returns execution to the enclosing loop that the iter was called from.
When called again, the iter resumes immediately after the yield statement. When the
end of the iter is reached or a quit statement is encountered, execution resumes at the
statement following the enclosing loop.

All classes define the iters while! (x : B O O L) , until! (x :BOOL) and break!,
with the semantics you would expect.

Aside from the problems of exposing a class’s internal structure, looping over data
structures is a source of “off-by-one” errors. Since iters capture the algorithm for
traversing a class’s elements is in one place, these kinds of errors only need to be fixed
once.

B.4.5 Bound routines
Bound routines are similar to function pointers in C or C ++ (or to closures in lan­
guages such as Lisp). However, Sather’s bound routines are type safe, that is their
declaration and use must match in number and type of parameters and return type.

In Figure B.9 a bound routine is passed as an argument to a method of the library
class ARRAY. The type declaration ROUT{T, T} : BOOL means that the bound rou­
tine must take two arguments of the array’s element type and return a boolean value
(all bound routine declarations begin with “ROUT”).

To apply a bound routine, we use the keyword call. In the figure, the expression
I t .call ([i] , [i - l]) applies the passed bound routine to successive elements of
the array. The expression [i] on its own is shorthand for s e l f [i].

120 Overview o f Sather

class TEST_STACK is
include TEST;

main is
class_name(”STACKSTR");
S : : = # STACK { STR } ;
s .push("a “) ;
s.push("b") ;
test("push”,s .str,"a,b");
test("size",s .size.str,2.str);

test(”is_empty",s .is_empty.str,true.str);
finish;

end;
end;

Figure B.10: Part of a test class for the class STACK

To use the is_sorted_by method, we can create a bound routine like this

b r : ROUT{INT, I NT} : BOOL : = #ROUT (_: IN T . i s . l t (_)) ;

and then b r can be passed as an argument. The underscores are place holders for
arguments that w ill be filled in when the bound routine is called. When we come to ap­
ply the bound routine, the expression b r . call (x , y) is the same as (x) . i s J L t (y) .

Apart from applicative programming such as in Figure B.9, bound routines also
have applications in higher-order functions and “ call-backs,” such as routines provid­
ing functionality for user interface objects.

B.4.6 pSather

pSather is a parallel object-oriented programming language that has evolved with
Sather. It is based on the SPMD (single program, multi data) model. Its additional
features support threads, synchronisation, communication and placement of objects.
It treats objects and processes as orthogonal concepts, as opposed to Actor type lan­
guages which combine them. There are implementations of pSather for the CM5 and
networks of UNIX workstations. Further information on pSather can be found on the
Sather home page.

B.4.7 The test class idiom

In a thesis on testing, it would be remiss to fail to mention Sather’s test class idiom.
This is not so much of a feature of Sather as it is a part of culture of Sather programmers
(which, I believe, is as it should be).

§B.4 Special features 121

A test class has a main routine which runs a set of test cases for a class. It will
typically have a name of the form TEST.C if it has the test cases for the class C. An
small example, part of a test class for the library class STACK, appears in Figure B. 10.
When done thoroughly, a test class can be larger than the class it tests. The methods
class_name, test and finish are provided by the included library class TEST. Each
test case has a label, and compares an actual result with the expected result. The finish
method accumulates and reports the test results.

Test classes are kept with the classes they test, usually in the same file, or at least
the same directory. That way the test cases can be conveniently updated as the class
evolves. Test classes make regression testing automatic because they become part of
the “edit, compile, run” development cycle.

122 Overview of Sather

Bibliography

Arnold, K. & Gosling, J. (1996), The Java Programming Language, Addison-Wesley
Publishing Co., USA.

Balcer, M. J., Hasling, W. M. & Ostrand, T. J. (1989), Automatic generation of test
scripts from formal test specifications, in R. A. Kemmerer, ed., ‘Proceedings of
the ACM SIGSOFT 3rd Symposium on Software Testing Analysis and Valida­
tion, Key West, Florida’, ACM SIGSOFT, pp. 210-218. (published as ACM
SIGSOFT Software Engineering Notes 14(8), December 1989).

Barbey, S., Buchs, D. & Peraire, C. (1996), Theory of specification-based testing for
object-oriented software, in ‘Proceedings of the European Dependable Com­
puting Conference, EDCC2’, LNCS 1150, Springer Verlag, Taormina, Italy,
pp. 303-320.

Beizer, B. (1984), Software System Testing and Quality Assurance, Van Nostrand Rein­
hold.

Beizer, B. (1990), Software Testing Techniques, 2nd edn, Van Nostrand Reinhold.

Berard, E. V. (1993a), Essays on Object-Oriented Software Engineering Volume /,
Prentice Hall.

Berard, E. V. (19936), Testing object-oriented software, in ‘Proceedings of the Object
World '93 - Australia’.

Bernhard, P. J. (1994), ‘A reduced test suite for protocol conformance testing’, ACM
Trans. Software Engineering and Methodology 3(3), 201-220.

Binder, R. V. (1995), ‘The FREE approach to testing object-oriented soft­
ware: An overview’, Available from the the author’s WWW site, URL:
http://www.rbsc.com.

Binder, R. V. (1996), ‘Modal testing strategies for OO software’, IEEE Computer
29(11), 97-99.

Boehm, B. W. (1988), ‘A spiral model of software development and enhancement’,
IEEE Computer 12(5), 61-72.

Booch, G. (1986), Software Engineering with Ada, 2nd edn, Benjamin Cummings.

123

http://www.rbsc.com

124 Bibliography

Booch, G. (1991), Object-Oriented Design with Applications, Benjamin/Cummings.

Booch, G. (1994), Object-Oriented Analysis and Design with Applications, 2nd edn,
B enj amin/Cummings.

Booch, G. (1996), Object Solutions, Benjamin/Cummings.

Bosnian, O. (1996), Testing and iterative development: Adapting the Booch method,
in ‘Proceedings of the 13th International Conference on Testing Computer Soft­
ware’, Washington, D.C., USA, pp. 1-9.

Bosman, O. & Schmidt, H. W. (1995a), Object test coverage using finite state ma­
chines, in Mingins et al. (1995), pp. 171-178.

Bosman, O. & Schmidt, H. W. (19956), Object test coverage using finite state ma­
chines, Technical Report TR95-15, Dept. Software Development, Monash Uni­
versity, Melbourne, Australia.

Chambers, C. (1993), Predicate classes, in O. M. Nierstrasz, ed., ‘Proceedings of the
European Conference on Object-Oriented Programming: ECOOP’93’, LNCS
707, Springer-Verlag, Kaiserslautern, Germany, pp. 268-296.

Chao, B. P. & Smith, D. M. (1993), ‘Applying software testing practices to an object-
oriented software development’, OOPS Messenger 5(3), 49-52. (Addendum to
the proceedings of OOPSLA’93).

Cheatham, T. J. & Mellinger, L. (1990), Testing object-oriented software systems, in
‘Proceedings of the 1990 ACM Eighteenth Annual Computer Science Confer­
ence’, ACM, pp. 161-165.

Chow, T. S. (1978), ‘Testing software design modeled by finite-state machines’, IEEE
Trans. Software Engineering 4(3), 178-187.

Coleman, D., Hayes, F. & Bear, S. (1992), ‘Introducing objectcharts or how to use stat-
echarts in object-oriented design’, IEEE Trans. Software Engineering 18(1), 9-
18.

Dahl, O. J., Dijkstra, E. W. & Hoare, C. A. R. (1972), Structured Programming, Aca­
demic Press.

DeLano, D. E. & Rising, L. (1996), ‘System test pattern language’, pre­
sented at Pattern Languages of Program Design, PLoP’96, URL:
http://www.cs.wustl.edu/ schmidt/PLoP-96/index.html.

DeMillo, R. A. & Offutt, A. J. (1993), ‘Experimental results from an automatic test
case generator’, ACM Trans. Software Engineering and Methodology 2(2), 109—
127.

http://www.cs.wustl.edu/

Bibliography 125

Doong, R.-K. & Frankl, P. G. (1993), The ASTOOT approach to testing object-
oriented programs, Technical Report PUCS-104-93, Polytechnic University, 333
Jay St., Brooklyn NY 11201.

D’Souza, D. (1996), ‘Advanced modeling and design for java systems using catalysis’,
Tutorial notes, the 2nd USENIX Conference on Object-Oriented Technologies
and Systems (COOTS), Toronto, Canada. Also available from the author’s web
site, URL: http://www.iconcomp.com/catalysis.

D’Souza, R. J. & LeBlanc, Jr., R. J. (1994), ‘Class testing by examining pointers’,
Journal of Object-Oriented Programming 7(4), 33-39.

DTI (1987), ‘The STARTS guide’, Department of Trade and Industry, UK, avail,
from the National Computing Centre, Manchester, UK. Reprinted in (Thayer
& McGettrick 1993).

Duke, R. (1994), Do formal object-oriented methods have a future?, in Mingins &
Meyer (1994), pp. 273-280.

Duncan, I. M. M. (1993), Strong Mutation Testing Strategies, PhD thesis, Computer
Science Division, School of Engineering and Computer Science, University of
Durham, Durham UK.

Fiedler, S. P. (1989), ‘Object-oriented unit testing’, Hewlett-Packard Journal
40(2), 69-74.

Firesmith, D. G. (1996), ‘Pattem language for testing object-oriented software’, Object
Magazine 5(9), 32-38.

Frakes, W. B., Lubinsky, D. J. & Neal, D. N. (1991), ‘Experimental evaluation of a
test coverage analyser for C and C ++’, J. Systems and Software 16(2), 135-139.

Frankl, P. G. & Weyuker, E. J. (1988), ‘An applicable family of data flow testing
criteria’, IEEE Trans. Software Engineering 14(10), 1483-1498.

Frick, A., Zimmer, W. & Zimmermann, W. (1994), On the design of reliable li­
braries, in R. Ege, M. Singh & B. Meyer, eds, ‘Proceedings of Technology
of Object-Oriented Languages and Systems: TOOLS 17’, Prentice Hall, Santa
Barbara, CA, USA, pp. 13-23. Also available from the author’s web site,
http://i44s 11 .info.uni-karlsmhe.de/pub/papers/frick/tools95 .ps.gz.

Fujiwara, S., v. Bochman, G., Khendek, E, Amalou, M. & Ghedamsi, A. (1991),
‘Test selection based on finite state models’, IEEE Trans. Software Engineering
17(6), 591-603.

http://www.iconcomp.com/catalysis
http://i44s

126 Bibliography

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns: Elements
o f Reusable Object-Oriented Software, Addison-Wesley.

Gannon, J., McMullin, R & Hamlet, R. (1981), ‘Data-abstraction implementation
specification and testing’, ACM Trans. Programming Languages and Systems
3(3), 211-223.

Ghezzi, C., Jazayeri, M. & Mandrioli, D. (1991), Fundamentals o f Software Engineer­
ing, Prentice Hall International.

Gilb, T. (1988), Principles o f Software Engineering Management, Addison-Wesley.

Gorton, I., Gray, J. P. & Jelly, I. (1995), ‘Object-based modelling of parallel programs’,
IEEE Parallel and Distributed Technology 3(2), 52-63.

Harel, D. (1987), ‘Statecharts: A visual formalism for complex systems’, Science of
Computer Programming 8, 231-274.

Harrold, M. J., McGregor, J. D. & Fitzpatrick, K. J. (1992), Incremental testing of
object-oriented class structures, in ‘Proceedings of the 14th International Confer­
ence on Software Engineering’, ACM Press, Melbourne, Australia, pp. 68-80.

Harrold, M. J. & Soffa, M. L. (1991), ‘Selecting and using data for integration testing’,
IEEE Software 8(2), 58-65.

Henderson-Sellers, B. & Edwards, J. M. (1990), ‘The object-oriented systems life
cycle’, Comm. ACM 33(9), 143-159.

Henderson-Sellers, B. & Edwards, J. M. (1994), BOOKTWO of Object-Oriented
Knowledge: The Working Object, Prentice Hall.

Hetzel, B. (1988), The Complete Guide to Software Testing, 2nd edn, QED Information
Sciences Inc.

Hoffman, D. & Brealey, C. (1989), Module test case generation, in R. A. Kemmerer,
ed., ‘Proceedings of the ACM SIGSOFT 3rd Symposium on Software Testing
Analysis and Validation, Key West, Florida’, ACM SIGSOFT, pp. 97-102. (pub­
lished as Software Engineering Notes 14(8), December 1989).

Hoffman, D. & Strooper, P. (1995), ‘The testgraph methodology: automated testing of
collection classes’, Journal o f Object-Oriented Programming 8(7), 35-41.

Hogg, J. (1991), Islands: Aliasing protection in object-oriented languages, in ‘Pro­
ceedings of Object-Oriented Programming: Systems, Languages and Applica­
tions, OOPSLA’91’, ACM, ACM Press, Phoenix, AZ, USA, pp. 271-285.

Bibliography 127

Hogg, J., Lea, D., Wills, A., deChampeaux, D. & Holt, R. (1992), ‘The geneva con­
vention on the treatment of object aliasing’, OOPS Messenger 3(2), 11-16.

Hopcroft, J. E. & Ullman, J. D. (1979), Introduction to Automata Theory, Languages
and Computation, Addison-Wesley.

Horgan, J. R., London, S. & Lyu, M. R. (1994), ‘Achieving software quality with
testing coverage measures’, IEEE Computer 27(9), 60-69.

Hunt, N. (1994), ‘C++ boundary conditions and edge cases’, Journal of Object-
Oriented Programming 8(2), 25-29.

Hürsch, W. L. (1994), Should superclasses be abstract, in M. Tokoro & R. Pareschi,
eds, ‘Proceedings of the European Conference on Object-Oriented Programming:
ECOOP’94’, LNCS 821, Springer-Verlag, Bologna, Italy, pp. 12-31.

Hutchins, M., Foster, H., Goradia, T. & Ostrand, T. (1994), Experiments on the ef­
fectiveness of dataflow- and controlflow-based test adequacy criteria, in ‘Pro­
ceedings of the 16th International Conference of Software Engineering’, IEEE
Computer Society Press, Los Alamitos, CA, USA., pp. 191-200.

Hutt, A. T. F. (1994), Object Analysis and Design: Comparison of Methods, Wiley
QED.

IEEE (1983), ‘ANSI/IEEE Std. 829-1983: IEEE Standard for Software Test Docu­
mentation’, IEEE Inc.

IEEE (1990), ‘ANSI/IEEE Std. 610.12-1990: IEEE Standard Glossary of Software
Engineering Terminology’, IEEE Inc.

Jacobson, L, Christerson, M., Jonsson, P. & Övergaard, G. (1992), Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley.

Kaner, C., Falk, J. & Nguyen, H. Q. (1993), Testing Computer Software, 2nd edn, Van
Nostrand Reinhold.

Kiczales, G., des Rivieres, J. & Bobrow, D. G. (1993), The Art of the Metaobject
Protocol, The MIT Press.

Kirani, S. & Tsai, W. T. (1994), Specification and verification of object-oriented
programs, Technical report, Computer Science Department, University of Min­
nesota, Minneapolis, MN 55455, USA.

Knuth, D. E. (1992), Literate Programming, number 27 in ‘CLSI Lecture Notes’, Cen­
ter for the Study of Language and Information, Leland Stanford Junior Univer­
sity, chapter The Errors of TjtX(1989), pp. 243-291.

128 Bibliography

Korel, B. (1990), ‘Automated software test data generation’, IEEE Trans. Software
Engineering 16(8), 870-879.

Lakos, J. S. (1992), ‘Designing-in quality’, Provided by the author (email:
j ohn_ lakos@ w arren . m e n to rg . com).

Landi, W. (1992), ‘Undecidability of static analysis’, Letters on Programming Lan­
guages and Systems 1(4).

Leavens, G. (1991), ‘Modular specification and verification of object-oriented pro­
grams’, IEEE Software 8(4), 72-80.

Levendel, Y. (1991), ‘Improving quality with a manufacturing process’, IEEE Software
8(2), 13-25.

Leveson, N. G., Heimdahl, M. P. E., Hildreth, H. & Reese, J. D. (1994), ‘Require­
ments specification for process-control systems’, IEEE Trans. Software Engi­
neering 20(9), 684—707.

Lieberman, H. (1986), Using prototypical objects to implement shared behaviour in
object-oriented systems, in ‘Proceedings of Object-Oriented Programming: Sys­
tems, Languages and Applications, OOPSLA’86’, ACM, ACM Press, Portland,
OR, USA.

Liskov, B. & Guttag, J. (1986), Abstraction and Specification in Program Develop­
ment, The MIT Press.

Lokan, C. J. (1993), ‘The cleanroom process for software development’, Australian
Computer J. 25(4), 129-134.

Lorenz, M. (1993), Object-Oriented Software Development: A Practical Guide, Pren­
tice Hall.

Love, T. (1993), Object Lessons, SIGS Books.

Lucas, P. J. (1993), An object-oriented language system for implementing concurrent,
heirarchical, finite state machines, Master’s thesis, Graduate College of the Uni­
versity of Illinois at Urbana-Champaign.

Macro, A. (1990), Software Engineering: Concepts and Management, Prentice Hall.

Marick, B. (1992a), ‘Testing software that reuses’, Technical Note 2, Testing Founda­
tions, Campaign, II 61820, USA.

Marick, B. (1992b), A Tutorial Introduction to GCT, Testing Foundations, 809 Balboa,
Campaign, Illinois 61820, USA.

Bibliography 129

Marick, B. (1994), The Craft of Software Testing, Prentice Hall.

Maurer, P. M. (1990), ‘Generating test data with enhanced context-free grammars’,
IEEE Software 7(4), 50-55.

McDaniel, R. & McGregor, J. D. (1994), Testing the polymorphic interactions between
classes, Technical Report TR-94-103, Clemson University.

McDermid, J. A., ed. (1991), Software Engineer's Reference Book, Butterworth-Hei­
nemann Ltd.

McDermid, J. A. & Rook, P. (1991), Software development process models, in Mc­
Dermid (1991).

McGregor, J. D. (1994), ‘Testing object-oriented software’, Tutorial notes, the Euro­
pean Conference on Object-Oriented Programming: ECOOP’94, Bologna, Italy.

McGregor, J. D. & Dyer, D. M. (1993), ‘A note on inheritance and state machines’,
ACM SIGSOFT Software Engineering Notes 18(4), 61-69.

McGregor, J. D. & Kare, A. (1996), Parallel architecture for component testing of
object-oriented software, in ‘Proceedings of the 9th Annual Software Quality
Week’, Software Research, Inc., San Francisco.

Meyer, B. (1988), Object-Oriented Software Construction, International Series in
Computer Science, Prentice Hall International.

Meyer, B. (1992a), ‘Applying “design by contract’” , Comm. ACM 35(10), 40-51.

Meyer, B. (1992b), Eiffel: The Language, Prentice Hall.

Meyer, B. (1994), Beyond design by contract: Putting more formality into object-
oriented development, in Mingins & Meyer (1994).

Mingins, C., Duke, R. & Meyer, B., eds (1995), Proceedings of Technology of Object-
Oriented Languages and Systems: TOOLS 18, Prentice Hall, Melbourne, Aus­
tralia.

Mingins, C. & Meyer, B., eds (1994), Proceedings of Technology of Object-Oriented
Languages and Systems: TOOLS 15, Prentice Hall, Melbourne, Australia.

Murphy, G. C., Townsend, P. & Wong, P. S. (1994), ‘Experiences with cluster and
class testing’, Comm. ACM 37(9), 39—47.

Musa, J. D. & Ackerman, A. F. (1989), ‘Quantifying software validation: When to
stop testing?’, IEEE Software 6(3), 19-30.

130 Bibliography

Myers, G. J. (1976), Software Reliability: Principles and Practices, John Wiley &
Sons.

Myers, G. J. (1979), The Art of Software Testing, John Wiley & Sons.

Ntafos, S. C. (1988), ‘A comparison of some structural testing strategies’, IEEE Trans.
Software Engineering 14(6), 868-874.

Omohundro, S. M., Bilmes, J., Schmidt, H. W. & Bosman, O. (1993), The Sather
Language. Provided with the public domain Sather compiler, version 0.5.6.

Omohundro, S. M. & Soutamire, D. (1995), The Sather 1.0 Specification, In­
ternational Computer Science Institute, University of California at Berkley.
Documentation provided with the Sather compiler, version 1.0, URL:
http://http.icsi.berkeley.edu/Sather.

Osmond, R. F. (1994), Components of success: Real life experiences with object tech­
nology, in Mingins & Meyer (1994), pp. 281-293.

Ostrand, T. J. & Balcer, M. J. (1988), ‘The category-partition method for specifying
and generating functional tests’, Comm. ACM 31(6), 676-86.

Paepcke, A., ed. (1993), Object-Oriented Programming: The CLOS Perspective, The
MIT Press.

Palsberg, J. & Schwartzbach, M. I. (1994), Object-Oriented Type Systems, John Wiley
& Sons.

Parnas, D. L. & Clements, P. C. (1986), ‘A rational design process: How and why to
fake it’, IEEE Trans. Software Engineering 12(2), 251-257.

Perry, D. E. & Kaiser, G. E. (1990), ‘Adequate testing and object-oriented program­
ming’, Journal of Object-Oriented Programming 2, 13-19.

Poston, R. M. (1994), ‘Automated testing from object models’, Comm. ACM
37(9), 48-58.

Pressman, R. S. (1992), Software Engineering: A Practitioner’s Approach, 3rd edn,
McGraw-Hill.

Ramalingam, G. (1994), ‘The undecidability of aliasing’, ACM Trans. Programming
Languages and Systems 16(5), 1467-1471.

Ratjens, M. & Steele, R. (1993), An introduction to Classworks: A systems develop­
ment methodology, Technical report, Class Technology Pty. Ltd.

Rettig, M. (1991), ‘Testing made palatable’, Comm. ACM 34(5), 25-29.

http://http.icsi.berkeley.edu/Sather

Bibliography 131

Royce, W. W. (1970), Managing development of large software systems: Concepts
and techniques, in ‘Proceedings of IEEE WESCON’, IEEE, pp. 1-9. also in
Proc. 1CSE 9 Computer Society Press 1987, and Thayer, R. H. (ed.) Software
Engineering Project Management, IEEE Tutorial EH0263-4, 1988.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991), Object-
Oriented Modeling and Design, Prentice Hall International.

Schmidt, H. W. & Chen, J. (1995), Reasoning about concurrent objects, Technical
Report TR-95-05, Department of Software Development, Monash University,
Melbourne, Australia.

Schmidt, H. W. & Zimmermann, W. (1994a), ‘A complexity calculus for object-
oriented programs’, Object-Oriented Systems J. 1(2), 117-147.

Schmidt, H. W. & Zimmermann, W. (1994b), Reasoning about complexity in object-
oriented programs, in ‘Proceedings of the International Conference Programming
Concepts, Methods and Calculi, San Miniato, Italy’.

Shlaer, S. & Mellor, S. J. (1988), Object-Oriented Systems Analysis: Modelling the
World in Data, Prentice Hall.

Shlaer, S. & Mellor, S. J. (1992), Object Lifecycles: Modelling the World in States,
Prentice Hall.

Smillie, J. & Strooper, P. (1995), Testing generic classes in the testgraph framework,
in Mingins et al. (1995), pp. 147-158.

Sommerville, I. (1992), Software Engineering, 4th edn, Addison-Wesley.

Spruler, D. A. (1994), C++ and C Debugging, Testing and Reliability, Prentice Hall.

Taylor, P. (1992), Experiences with object-oriented software development, in J. Potter
& B. Meyer, eds, ‘Proceedings of Technology of Object-Oriented Languages and
Systems: TOOLS 9’, Prentice Hall, Sydney, Australia, pp. 171-183.

Thayer, R. H. & McGettrick, A. D., eds (1993), Software Engineering: A European
Perspective, IEEE Computer Society Press.

Turner, C. D. & Robson, D. J. (1992a), A suite of tools for the state-based testing
of object-oriented programs, Technical Report TR 14/92, Computer Science Di­
vision, School of Engineering and Computer Science, University of Durham,
Durham UK.

Turner, C. D. & Robson, D. J. (1992b), The testing of object-oriented programs, Tech­
nical Report TR 13/92, Computer Science Division, School of Engineering and
Computer Science, University of Durham, Durham UK.

132 Bibliography

Turner, C. D. & Robson, D. J. (1993), State-based testing and inheritance, Technical
Report TR 1/93, Computer Science Division, School of Engineering and Com­
puter Science, University of Durham, Durham UK.

Viswanadha, S. R. & Sankar, S. (1996), Preliminary design of ADL/C++- a speci­
fication language for C++, in ‘Proceedings of the 2nd USENIX Conference on
Object-Oriented Technologies and Systems (COOTS)’, The USENDC Associa­
tion, Toronto, Canada, pp. 97-111.

Vonnegut, Jr., K. (1972), Slaughterhouse-Five, Panther Books.

Walsh, J. F. (1992), Preliminary defect data from the iterative development of a large
C++ program (experience report), in ‘Proceedings of Object-Oriented Program­
ming: Systems, Languages and Applications, OOPSLA’92’, ACM, ACM Press,
Vancouver, BC, Canada, pp. 178-183.

Wang, Y. & Pamas, D. L. (1994), ‘Simulating the behaviour of software modules by
trace rewriting’, IEEE Trans. Software Engineering 20(10), 750-759.

Weyuker, E. J. (1986), ‘Axiomatizing software test data adequacy’, IEEE Trans. Soft­
ware Engineering 12(12), 1128-1138.

Weyuker, E. J. (1988), ‘The evaluation of program-based software test data adequacy
criteria’, Comm. ACM 31(6), 668-75.

White, I. (1994), Using the Booch Method: A Rational Approach, Benjamin/Cumm­
ings.

Whittaker, J. A. & Thomason, M. G. (1994), ‘A markov chain model for statistical
software testing’, IEEE Trans. Software Engineering 20(10), 812-824.

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990), Designing Object-Oriented Soft­
ware, Prentice Hall.

Wulf, W. A., London, R. L. & Shaw, M. (1976), Abstraction and verification in Al-
phard: Introduction to language and methodology, Technical report, USC Infor­
mation Science, University of Southern California, Los Angeles, USA.

Zucconi, L. & Reed, K. (1996), ‘Building testable software’, ACM SIGSOFTSoftware
Engineering Notes 21(5), 51-55.

