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1.1.1. 

Abstract 

The aim of this study was to investigate the model of 

intelligence and the test theory used in the actual development of 

a test of general ability. It was hypothesised that a three factor 

model of intelligence, comprising verbal, numeric, and spatial 

abilities, would provide as good a fit to the data as a similar 

model including fluid intelligence. It was also hypothesised that 

a test based on Classical Test Theory (CTT) and one based on Item 

Response Theory (IRT), although having different item compositions, 

would perform similarly in predicting scores on an existing general 

ability test. It was further hypothesised that, for the IRT based 

test, examinees' number right score would provide an adequate 

approximation of the formal IRT ability estimates. 

A 52 item test was administered to a sample (N=209) to 

investigate the factor structure and to develop the IRT and CTT 

tests. A factor analysis of the items and a reliability analysis 

of the scales showed good support for the three factor model of 

intelligence over the four factor model. Two twenty item tests 

were then developed from this item set and administered to a second 

sample (N=371). These results showed strong support for both 

hypotheses, namely, there was little difference between the CTT and 

IRT based tests in the amount of criterion variance they predicted; 

and number right scores and IRT ability estimates showed extremely 

high correlations. 

• 



TABLE OF CONTENTS 

Declaration 

Acknowledgements 

Abstract 

1 INTRODUCTION 

1.1 General Entry Selection 

1.1.1 
1.1.2 

Recruit Training 
Allocation to Initial Trade Training 

1.2 The Importance of Psychological Testing 

1.3 The Current Problem 

1.4 Chapter Summary 

2 MODELS OF INTELLIGENCE 

2.1 The Cognitive Paradigm 

2,,2 

2.3 

2.1.1 
2.1.2 
2.1.3 

Sternberg's Triarchic Theory 
Carroll's Theory 
Application of the cognitive Approach 
to the Current Problem 

Psychometric Models 

2.2.1 Spearman's Model 
2.2.2 The Work of Burt and Vernon 
2.2.3 Thurstone's Primary Mental Abilities 
2.2e4 Guilford's Structure of Intellect Model 
2.2,,5 Fluid and Crystallised Intelligence 
2.2.6 Common Methodological Problems 
2.2.,7 A Unifying Model 
2.2.8 Selecting a Model 
2.209 Testing the Model 

Chapter Summary 

3 TEST THEORY 

3.0.1 
3.0.2 

Selecting Items 
Scoring the Test 

3.1 Classical Test Theory 

3.1.1 

3.1.2 
3.1.3 

The Basic Assumptions of Classical Test 
Theory 
The Methodology of Classical Test Theory 
Limitations of Classical Test Theory 

. 
1 

.. 
11 

... 
111 

2 

3 
4 

4 

6 

7 

9 

12 
13 
15 

17 

18 
19 
22 
23 
25 
26 
28 
29 
29 

32 

34 
35 

37 

37 

38 
43 

;' . 



3.1.4 Benefits of Classical Test Theory 

3.2 Item Response Theory 

3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 

Dimensionality 
Local Independence 
Item Response Models 
The Methodology of Item Response Theory 
Limitations of Item Response Theory 

3.3 Comparing the Models 

3.4 Chapter Summary 

4 METHOD 

4.1 The Instrument 

4.2 Analyses 

4.3 Sample 

5 RESULTS 

6 

5.1 Sample 

5.2 First Phase of the Research 

5.2.1 
5.2.2 
5.2.3 
5.2.4 

Factor Structure of the Item Set 
CTT Analysis 
IRT Analysis 
Supplementary Analyses 

5.3 Second Phase of the Research 

5.3.1 
5.3.2 

Regression Analysis 
Supplementary Analyses 

5.4 Chapter Summary 

DISCUSSION 

6.1 Study Findings 

6.1.1 The Model of Intelligence 
6.1.2 Test Theory 

6.2 Implications of the Findings 

6.2.1 Models of Intelligence 
6.2.2 Test Theory 
6.2.3 Latent Traits versus True Scores 

6.3 Improvements to the Study 

45 

46 

46 
47 
49 
51 
54 

58 

60 

62 

62 

65 

67 

68 

68 
71 
72 
72 

74 

74 
76 

80 

82 

82 
84 

86 

86 
89 
93 

94 

• 



I: 

6.4 contributions of the study 96 

References 98 

Annex A. Unique Variances - Different Factor Models 112 

Annex B. Classical Test Theory Item statistics - TO 114 

Annex C. Item Response Theory Item Parameter Estimates - TO 116 

Annex D. T1 Item-Model Fit stastistics: Two Parameter and 120 

Rasch Models 

Annex E. Item Parameter Estimates for both Samples 

Annex F. Details of NOHARM Analysis 

Annex G. A Note of Reliabilities 

121 

125 

130 

• 



Figure 2-1: 

Figure 5-1: 

Figure 5-2: 

Figure 5-3: 

Figure 5-4: 

II· 

List of Figures 

Vernon's (1950) Hierarchical Model of Abilities 

Plot of Item p-values TO versus T1 

Plot of Item Reliabilities TO versus T1 

Plot of Item Difficulty Parameters TO versus T1 

Plot of Item Discrimination Parameters TO 
versus T1 

III 



Table 5-1: 

Table 5-2: 

Table 5-3: 

Table 5-4: 

Table 5-5: 

Table 5-6: 

I." 

List of Tables 

RMSR Values 

Reliabilities for Three and Four Factor Models 

Correlations between Number Correct and Ability 
Estimate - TO 

R-square Values for Regression Analyses 

Regression Equations for the Models 

Correlations between Number Correct and Ability 
Estimate - Tl 

• 



CHAPTER 1 

INTRODUCTION 

The Australian Army Psychology Corps is one of the largest 

organisations of psychologists in Australia, employing nearly 50 

psychologists and a similar number of clerical and administrative 

staff. The Corps has a number of roles and one of the principal 

ones is to act as the "quality control" for the Army's recruiting 

efforts screening in excess of 15,000 people per annum for the 

various avenues of entry to the Australian Regular Army (ARA). The 

role of the screening is twofold; first to identify those candidates 

who lack the necessary traits to complete initial training; and 

secondly, to provide adequate information for the future training 

and allocation of the individual. 

The selection procedures for the different avenues of entry to 

the Army have a common foundation, that is: 

a. some measure of general ability, 

b. some measure of ability or aptitude that is specific to the 

avenue of entry, 

c. some measure of personality or coping ability, 

d. an interview with an Army psychologist, and 

-
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e. a final screening process where the examinee is considered in 

competition with those others applying for the same entry. 

There are three types of entrant to the Army; General Entry 

(GE) applicants, Officer and Apprentice applicants. GEs provide by 

far the bulk of Army entrants with about 6,000 tested each year. 

1.1 General Entry Selection 

I Applicants for general entry to the Army must be between 17 and 

34 years of age when they enlist and must otherwise be literate 

enough to complete the application form. This is a straightforward 

document requiring the applicant to provide information about 

family history, nationality, basic employment and education historY e 

After making initial contact with an Army recruiter the 

individual will complete and submit an application form and will be 

given a date to present for "testing" where he or she will undergo 

further screening for entry to the Army. 

On the test day the examinee will go through the following 

process (in the order specified): 

a. a preliminary medical screening; 

b. a psychometric test battery consisting of a 14 item test of 

written comprehension called the Recruiting Office Form 1 

-
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(R01), a 100 item test of general ability called the Army 

General Classification Test (AGC) and a 52 item anxiety 

checklist called the Self Descriptive Inventory (SDI), all of 

which have all been developed specifically for the Army; 

c. a structured interview with an Army psychologist which covers 

family history, education, employment history, motivation, and 

expectations for recruit training; 

d. a complete medical examination; and 

e. an interview with the Enlistment Officer which covers similar 

ground to what the psychologist investigates and also addresses 

drug use, criminal record, etc. 

All of the information is collated by the Enlistment Officer 

who has the final say on the individual's success or otherwise on 

the day. The successful examinee will be enlisted at some later 

stage (normally two to six weeks depending on c i rcumstances). 

1.1.1 Recruit Training 

Recruit training involves an intensive 13 week training course 

covering topics ranging from physical fitness, to navigation to 

elements of military law. As well as completing these studies, the 

recruit spends considerable time (often hours per day) preparing and 

maintaining his or her equipment and uniforms. 

... 



Recruit training places considerable other pressures on the 

recruit. In particular the socialisation process the recruit 

undergoes and the generally dangerous training undertaken, for 

example rifle shooting, grenade practise, and gas training. The 

recruit training environment requires a great deal of the recruits' 

personal resources, over and above their cognitive abilities. 

1.1.2 Allocation to Initial Trade Training 

Further psychometric testing is conducted during recruit 

training which involves tests of arithmetic and mathematical 

achievement, clerical aptitude and mechanical comprehension. The 

results of these tests are combined with the recruit's initial 

testing to provide a psychometric profile which is fundamental to 

the allocation of the recruit to initial employment traininge 

Immediately on completion of recruit training the soldier will 

commence Initial Employment Training (IET)e Employments available 

for lET range from Medical Assistant and Rifleman, which have few 

prerequisites for allocation in terms of cognitive ability, through 

to Electronics Technician which requires a high level of general 

ability and mathematics ability. 

1.2 The Importance of Psychological Testing 

The initial psychological testing serves two purposes: it is 

used to screen the individual for an complex selection/rejection 

... 
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process, and it is used for allocating those selected to a very 

broad range of employments. Finally, it must also be able to 

provide valid information and stand up to scrutiny at indeterminate 

points in the future. 

Two important points need to be considered; first, while there 

is a cognitive component in recruit training, the bulk of the 

stressors are essentially non-cognitive, the communal living, the 

discipline, the physical requirements. Secondly, the Army enlists 

large numbers of individuals and only those who are considered 

manifestly unsuitable are screened out (e.g. the bottom 5-6% based 

on performance on the AGC, among other criteria). 

Thus, on the surface of it, the screening instrument need only 

provide a measure of the individual's functioning level at the 

particular cut point chosen to maximise its effectiveness. In this 

case at the very lower end of the scale. Certainly there can be 

only limited predictive value in a test of cognitive ability when 

the bulk of the stressors for the recruit are non-cognitive. More 

may be gained by making the test highly accurate around the cutting 

point rather than providing a reasonable level of information across 

a more broad range of ability. 

This would make the task of the initial test o~ general ability 

seem, on the surface, fairly easy because the test would only need 

to provide discrimination at the lower end of the ability spectrum. 

Unfortunately the test also needs to be able to identify potentially 

successful candidates for intensive and lengthy vocational courses 

A 
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(electronics trade as an example). Thus the test needs considerably 

more versatility than it would seem on first appearances. 

The Current Instrument. The current instrument used by the 

Army for the selection and allocation of general entry soldiers is a 

100 item spiral omnibus format test of general ability, the Army 

~ Il f General Classification test (AGC). This test was purpose built for 

the Army and has been in use for about 30 years, but until 1987 was 

only used for allocating recruits and their future career 

management. In 1987 it was introduced for selection as well. 

II' 

1.3 The Current Problem 

Due to changes in the availability of another test used by AA 

Psych Corps, the AGC was reviewed in 1989. This highlighted the age 

of the instrument and some other limitations of the test and the 

testing procedure (e.g. the time taken to administer the test, the 

fact that only a single general ability score was available, etc). 

It was decided that the test was lacking in face validity and that 

it should be replaced. 

This decision led to a set of test guide-lines being developed 

by the Directorate of Psychology - Army, the salient features of 

these were that: 

a. the test should provide (at least) three separate scores, 

namely verbal, numerical and spatial abilities; 
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b. the test should be stable and not dated over 10-20 years if 

possible; 

c. the test should be free of (unspecified) bias; and 

d. the test should take advantage of the current test development 

and administration technologYe 

These guidelines raised a number of issues for the development 

of the test. The first was an organisational constraint that the 

test must be able to discriminate between different abilities, this 

dictates much of the form of the construction of the test. Also the 
I . ,: construction of the test is necessarily constrained, seriously, by 

the other three requirements as they are fundamental to the design 

of any test. These organisational constraints highlighted the two 

aspects that are fundamental to any test design project, namely the 

model of ability that provides the foundation of the test and the 

test development methodology to be used in constructing the test. 

These would have to be investigated as part of the test development 

process. 

1.4 Chapter Summary 

The Army tests a broad range of individuals for entry to the 

Army. The results of this testing is not only used for selecting 

individuals, it is also critical in the allocation of soldiers and 

forms a permanent record for the future management of the soldier. 



I" 
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A review of the existing sel ection test found that it lacked 

face validity and needed to be replaced. Test guide-lines were 

developed and these indicated that it was necessary to investigate 

both the model of ability on which the new test would be based and 

the test development methodology which was to be used in the 

development of the test. 

... 
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CHAPTER 2 

MODELS OF INTELLIGENCE 

Intelligence, along with personality, is one of the most 

written about topics in psychology. The list of individuals who 

have written in the field reads like a "Who's Who" of psychology; 

Spearman, Thurstone, Terman, Cattell, Eysenck, Wechsler, Burt, 

Vernon; the list seems endless. Unfortunately, with so many 

researchers working in the field, one tends to get a range of 

theories proliferating, not to mention a range of definitions of 

intelligence. 

There are many definitions of intelligence and they cover a 

wide range of approaches from the totally operational definition of 

Boring (1929) that intelligence is whatever is measured by 

intelligence tests, to "physiological" definitions concerning the 

connections of the synapses in the brain, to "biological" 

definitions that describe intelligence in terms of its impact on 

the organism's ability to adapt to its environment, to 

psychological definitions that refer to the types of thought 

processes that comprise "intelligent behaviour" (usually abstract 

thinking). Many different approaches have been taken to the study 

of intelligence over the years; the developmental approach of Binet 

and Piaget, the psychometric approach, the "neo-behaviourist" 

approach (Butcher, 1968), and the recent componential approach of 

the cognitive scientists. 

All 
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Despite the proliferation of theories, there are two main 

paradigms in intelligence today; these are the information­

processing (or cognitive) theories of people like Sternberg (1985), 

Jensen (1982), and Pellegrino and Kail (1982), and the 

"traditional" psychometric approach of people like Thurstone 

(1938), Guilford (1967), Cattell (1971), and Horn (1988). 

2.1 The cognitive Paradigm 

The cognitive approach to intelligence can be seen as largely 

the result of the enormous growth in cognitive psychology in recent 

years. Although relatively recent, the origins of this approach 

date back to some of the earliest work done in the area of 

measuring human differences, namely that of Francis Galton in the 

latter half of the 19th Century. Indeed, Spearman's early work 

took as much cognizance of "Sensory Discrimination" as it did of 

academic performance (Spearman, 1904). 

The early researchers in the experimental psychology field 

were primarily concerned with measuring individuals on basic 

sensory discriminations, e.g. using visual and auditory stimuli, 

and tactile stimuli such as telling the distance between two pin 

pricks on one's finger. Using these procedures the L~pothesis 

developed, particularly among psychologists with some physiological 

training, that there was " ... a general cognitive capacity probably 

dependant upon the number, complexity of connections and 

organization of nerve-cells in the cerebral cortex." (Butcher, 

1968, pIS). 

~ 

.... 
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Although the early work was strongly physiological in nature, 

the approach today is an area of cognitive science. The cognitive 

theorist is interested in understanding the mental "processes" that 

occur during "intell'igent behaviour" and the theories in the field 

concentrate on the components or rules, that are used in solving 

cognitive tasks. 

The concept of an "information-processing component" is 

fundamental to the cognitive approach. An information-processing 

component is a cognitive operation or function that is a building 

block of intelligent behaviour. Generally components include 

memory functions, information acquisition processes (perception) 

and information-processing processes. 

Components have been used for the development of tests (smith, 

1986; Irvine, Dann and Anderson, 1990), for the analysis of 

existing tests (Carpenter, Just and Shell, 1990), the analysis of 

general intelligence (Hunt, 1982; Detterman, 1987; Sternberg and 

Gardner, 1982; Detterman, 1982) and the analysis of the factors of 

intelligence (Maybery, 1990; Pellegrino and Kail, 1982). 

There are many theories of cognition, some dealing with 

specific ' cognitive tasks, e.g. Pel'~grino and Glaser's theory of 

inductive reasoning (Pellegrino & Glaser, 1980, 1982), while others 

deal with more general cognitive aspects of intelligence. Two of 

the more influential writers in the field are Sternberg and Carroll 

who have both contributed significantly to the work in the area, 

particularly in the area of general theories of human cognition. 

.. 
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2.1.1 Sternberg's Triarchic Theory 

Sternberg's (1985) theory is perhaps the best-known of the 

cognitive theories. It is based on three basic components of 

intelligence (or cognition), hence the term "triarchic", these are: 

the "meta-components", the "performance components", and the 

"knowledge acquisition components". 

Meta-components. These are the higher level components that 

are responsible for the planning and monitoring of intelligent 

behaviour. They are responsible for a range of tasks that include: 

deciding the nature of the task at hand, selecting the lower order 

components required to complete the task, selecting a mental 

representation for the information, and monitoring the solution of 

the problem. 

Performance Components. These are the lower order components 

referred to above that act on the instructions of the meta­

components. While there are some general performance components, 

e.g. encoding the nature of the stimulus, most are specific to the 

task. 

Knowledge Acquisition Components. These are the components 

required for acquiring information and storing it in memory. 

Sternberg (1985) cites three as the "most important" for 

intelligence, these are: selective encoding, selective combination, 

and selective comparison. Generally these components act together 

... 
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in a highly interactive way which makes them difficult to analyse 

separately. 

sternberg (1980) defines four ways in which these components 

can interact: direct activation of one by another, indirect 

activation of one by another through the action of a third, direct 

feedback from one to another, and indirect feedback from one to 

another again through the action of a third component. All control 

in the system rests with the meta-components which are the only 

type of components that are able to receive feedback from their own 

type. 

2.1.2 Carroll's Theory 

Carroll's theory differs from that of Sternberg in that the 

former is more specific about the components of intelligence where 

Sternberg takes a broader view of his components. 

After investigating a number of the major tests available 

Carroll (1981), identified a set of ten information-processsing 

components. These were: 

a. Monitor - during a task, this process drives the operation of 

the other processes. 

b. Attention - this is based on the individual's expectations 

about the types of stimuli that are to be presented. 
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c. Apprehension - this is the registering of a stimulus. 

d. Perceptual Integration - this is the process of integrating 

the perception of the stimulus and comparing it with previous 

representations. 

e. Encoding - this is the forming of an internal representation 

of the stimulus. 

f. Comparison - this is used to ascertain whether two stimuli are 

the same or similar. 

Ii g. Co-representation Formation - this is used to form a new 

representation, related to a pre-existing representation. 

h. Co-representation Retrieval - this is the process of finding, 

in memory, a representation related to another representation. 

i. Transformation - this is used to change a r epresentation based 

on some specified rule. 

j. Response Execution - this is the process of producing a 

response, either overt or covert, to a mental representation. 

Carroll (1981) states that these cover all of the basic 

processes involved in a range of cognitive processes and these 

'I components can be used to form the basis of a componential task 

performance. 

I' 
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2.1.3 Application of the Cognitive Approach to the Current Problem 

According to Sternberg (1985) the cognitive approach is 

interested in mental processes whereas the psychometric approach is 

interested in mental structure. The cognitive psychologist is 

interested in how a task is performed, and is less interested in 

how people differ on their performance on the task, unless it aids 

the understanding of the underlying process. 

Despite this, the cognitive approach has been applied to the 

study of individual differences. Snow (1979) identified four areas 

of information-processing where individuals may differG He 

labelled these: parameter differences, or differences on the 

components used; sequence differences, or differences in the order 

in which the same components are executed; route differences where 

different sequences of components are used; and strategic 

differences. 

Sternberg (1977) suggested six areas where individuals differ: 

the components they use, their rules for combining components, the 

order of component processing, the mode of component execution, the 

time taken to execute a component, and the mental representation on 

which the component acts. Both of these examine indiv~~ual 

differences on the components of information-processing, but the 

fundamental aim is to aid the understanding of cognition rather 

than the differentiation of individuals. 

~ 
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Another consideration in t he application of the cognitive 

approach to the study of individual differences is the types of 

tasks involved. Due to the requirement to measure response latency 

as well as response accuracy, the tasks used in the cognitive 

approach are more effectively presented in an interactive computer 

environment. In fact the recent growth in availability of this 

type of equipment is in part responsible for the recent upsurge in 

work in this area. 

Although there have been cases where a cognitive analysis of 

the types of tasks found in traditional pencil-and-paper tests have 

been conducted, these are necessarily post hoc analyses (Carpenter, 

Just and Shell, 1990). There have been attempts to apply the 

principles of the cognitive approach to pencil-and-paper tests but 

they are few and far between (Irvine, Dann, and Anderson, 1990; 

Smith, 1990). 

The information-processing approach is inappropriate for 

the present Army project for two reasons: 

a. Cognitive theorists are primarily concerned with identifying 

the fundamental components of "intelligence" and as yet have 

focussed little attention on using their techniques for 

differentiating between individ~~~ls. Some progress in this 

area has been made, the work of Irvine, Dann, and Anderson 

(1990) for the British Army is one example, but they are, as 

yet, few. 

~ 
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b. As stated above the techniques a nd tasks are much more suited 

for computer administration, involving such things as 

measuring latencies, real time pattern matching, etc. The 

current project called basically for the replacement of a 

pencil-and-paper test with another pencil-and-paper test. 

There was no provision for the acquisition of the equipment 

necessary to really take advantage of this approach. 

This is not to say that the information-processing approach is 

without merit, on the contrary it is continually making advances in 

the understanding of how humans process information and behave 

cognitively. The current problem for the Army, however, is to 

differentiate between individuals and (generally) try to predict a 

pattern of human behaviour, i.e. successful completion of recruit 

training. This is a task for which the psychometric approach 

provides a much more appropriate foundation. 

2.2 Psychometric Models 

The psychometric approach is the traditional approach to 

intelligence and can be seen as being characterised by two things: 

first, the use of "higher" order tasks such as analogies, series 

etc rather than the simple perceptual or cognitive tasks used by 

the cognitive theorists; and secondly, the use of correlational 

techniques (in particular factor analysis) developed by Galton 

(1888), Pearson (1900), and Spearman (1904b) and extended by Burt 

(1940), and Thurstone (1947). 

--

AlII 
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Like the cognitive approach, the psychometric area has, as a 

result of the number of different individuals working in the field, 

developed a wide range of theories to account for the structure of 

intelligence in humans. One of the major divisions in the many 

models proposed is between those that allow a general intelligence 

factor and those that don't (Gustafsson, 1984). These two schools 

of thought have also been called the British and American schools 

because of their location and the whole controversy was initiated 

as a result of the work "of Spearman (1904a). 

2.2.1 Spearman's Model 

Spearman (1904a) was the first researcher to propose a 

general factor in human intelligence. His work was, in many ways, 

a reaction to what he perceived as the failure of experimental 

psychologists to find a connection between the laboratory and real 

life. He felt that this was due to the poor experimental methods 

of the researchers at the time. Generally he felt that there was a 

lack of problem definition, a general failure to take into account 

experimental error, and poor understanding and use of correlation 

techniques. After providing solutions to these problems Spearman 

examined performance on sensory discrimination tasks, a variety of 

academic subjects, and ratings of intellectual ability in an 

attempt to identify the source of individual differences of 

intelligence. In this study he found an almost perfect 

relationship between "general discrimination" and "general 

intelligence" and went on to claim that there existed a general 

factor which was common to all areas of intellectual activity. 

...... 
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This general factor of Spearman's, labelled "g", can be seen 

as representing an individual's "mental energy" (Carroll, 1991, 

p558), and is present in all intelligence tests along with a factor 

labelled "s" which represents that component that is specific to 

that test alone. This became known as Speaman's "Two Factor 

Theory" of intelligence. Spearman also developed the "tetrad 

difference" (Spearman, 1904b) method of analysing a matrix of 

correlations to demonstrate that g and s are the only significant 

factors. 

After Spearman much of the work that included a general factor 

of intelligence was conducted by British psychologists, . 
ln 

particular Sir Cyril Burt and P.E. Vernon. 

2.2.2 The Work of Burt and Vernon 

While Burt (1940) generally supported Spearman's two factor 

theory, he divided the general or common factor (as he called it) 

into universal and group factors, the latter common to "a certain 

group of traits" (pl03). The specific factors he divided into 

singular (relating to a single trait) and accidental (relating to a 

particular testing occasion) factors. Burt considered the 

combination of these four types of factors as a " ... fundamental 

logical postulate ... " (pl03), expressing it as a mathematical 

equation. 

... 
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Burt's model was supported empirically by his discovery much 

earlier (Burt, 1909) of evidence of a sensory discrimination group 

factor in addition to g. Later Burt (1939) was to provide fairly 

strong evidence for the existence of verbal and numeric group 

factors in the abilities of school age children. Although the 

general factor accounted for more variance than the group factors 

combined, their contribution was none-the-Iess significant. 

Although Vernon (1950) supported Spearman's concept of general 

intelligence, he felt that Spearman had neglected the existence of 

group factors. This was because the sample sizes employed by 

Spearman were too small for the residual correlations between the 

tests and the general factor to be statistically significant. As 

Vernon (1950) states, n ••• lack of statistical significance does not 

disprove the existence of additional factors; it only fails to 

prove it. n ( p 14). 

Vernon had empirical support for his position from an earlier 

(1947) study he had conducted where he analysed the results of an 

administration of thirteen tests to a sample of about 1,000 Army 

recruits. From this, the existence of two group factors was quite 

clear, although the variance accounted for by the general factor he 

also identified was double that of the group factors. Vernon 

labelled these; v:ed, a verbal-numerical-educational fac~or, and 

k:m, a practical-spatial-mechanical factor. He further 

demonstrated that these factors would divide into minor group 

factors if the analysis was thorough enough (in this case v:ed was 

divided into verbal and numerical abilities). Vernon's model is 

graphically depicted in Figure 1. 
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Major group factors v:ed k:m 

Minor group factors 

Specific factors 

Figure 2-1: Vernon's (1950) Hierarchical Model of 

Abilities 

Despite this support for the concept of a general factor of 

intelligence from Britain, in the US the concept received much less 

support. with the refinement of factor analysis, particularly the 

work done by Thurstone (1938 and 1947) in developing the procedure 

to allow multiple common factors and in developing the concept of 

"simple structure", the emergence of theories of intelligence based 

on a multitude of relatively equal factors occurred. 

Many models of this type have been developed, but three of the 

most important (for a variety of reasons) were Thurstone's Primary 

Mental Abilities (1938), Guilford's Structure of Intellect model 

(1967), and the theory of fluid and crystallised intelligence 

developed by Cattell and Horn (Horn and Cattell, 1966). 
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2.2. 3 Thurstone's Primary Mental Abilities 

One of the problems that Vernon identified in Spearman's work 

was that the sample sizes he used were too small to educe the 

existence of group factors. A second problem was that general 

intelligence is more evident in children, the sample with which 

Spearman worked, than adults because they are more intellectually 

homogeneous than adults. Working with much larger samples of 

adults, Thurstone applied the new factor analytic techniques to 

large test batteries and was able to identify a number of 

replicable factors (Thurstone, 1940; Thurstone and Thurstone, 

1941). These he reduced to seven Primary Mental Abilities (PMA): 

Verbal Comprehension, Numerical Facility, Induction, Deduction, 

Spatial Ability, Perceptual Speed, and Rote Memory. 

While in his original analyses Thurstone kept his factors 

orthogonal, that is uncorrelated, he later allowed the factors to 

be correlated (oblique factors), something which greatly 

facilitated the attainment of simple structure within the set of 

factors. Simple structure, as defined by Thurstone, really means 

that only a small number of tests should load on anyone factor and 

all other tests should have very small (approaching zero) loadings 

with the factor. Similarly, each test should load on preferably 

only one factor with near zero loadings on the other factors. 

Simple structure is one of the primary sources of difference 

between this model and that of Spearman and the British school. In 

particular, achieving simple structure means that it is unlikely 

that a general factor will appear that correlates with all of the 
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.... 



23 

tests. Rather, each test will correlate with one or two factors 

and each factor will cover a separate but possibly overlapping set 

of tests (Vernon, 1950). 

2.2.4 Guilford's structure of Intellect Model 

Guilford's model developed as an extension of Thurstone's 

PMAs. His work with the US military during World War 2 verified 

Thurstone's work and identified more primary abilities so that 

Guilford identified some 25 abilities (Guilford, 1985). His work 

after the war verified the existence of most of these factors and 

added to the list, bringing the total of identified factors to 

about 40. It was at this time that Guilford decided that some 

organisation of these abilities was required. 

He did this by defining abilities in terms of three facets: 

their contents, that is the type of information featured; their 

products, that is the form that the types of information took; and 

their operations, the kind of mental processes that were involved. 

He defined different types of operations, contents and products, 

some empirically and some theoretically, and he conceptualised the 

model so that primary abilities were represented as the conjunction 

of a content, product and an operation. 

Guilford's facets or categories were operationally defined 

(Guilford, 1985) as: 
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a. operations - cognition, memory, divergent production, 

convergent production, and evaluation. 

b. Contents - visual, symbolic, semantic, and behavioural. 

c. Product - unit, class, relation, system, transformation, and 

implication. 

Guilford later refuted this, allowing his factors to correlate 

with one another and showing that higher order abilities could be 

extracted from the SOl model (Guilford, 1984). Other researchers 

have also demonstrated the obliqueness of the SOl model (Kelderman , 

Mellenbergh and Elshout, 1981). Despite this he stopped short of 

supporting a hierarchical model as suggested by Burt and Vernon. 

In fact Guilford was quite opposed to the idea of a general factor 

of intelligence finding "Of some 48,000 correlations between pairs 

of tests, about 18% were below .10, many of them below zero ... " 

(Guilford, 1985, p238). 

~ 
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Although theoretically elegant, Guilford's model has been 

broadly criticised on a variety of methodological and conceptual 

grounds (cf Horn and Knapp, 1973; Undheim and Horn, 1977; Vernon, 

1979). Certainly more recent work, using more sophisticated 

research methods, have found his work wanting in a number of areas 

(Bachelor, 1989). Despite this, Guilford's model was a serious 

attempt at providing some order to the many factorial models of 

intelligence that exist. 

2.2.5 Fluid and Crystallised Intelligence 

One of the more popular models of ability is that of Cattell 

and Horn (Horn and Cattell, 1966; Cattell, 1971). This model is 

based on factor analysis of several orders. That is an oblique 

factor analysis of a set of tests yields a number of first order, 

or primary, factors. The intercorrelations of these factors are 

subsequently factor analysed to yield second order factors 

(secondaries), and so on. 

This process has yielded a two level h i erarchical model with 

five secondaries, these are: 

a. fluid intelligence - Gf; 

b. crystallised intelligence - Gc; 

c. visualization capacity - Gv; 

....... 
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e. general speededness - Gs; and 

g. general fluency - Gr. 

Of these the most commonly identified secondaries are 

those pertaining to fluid and crystallised intelligence. Indeed 

the original model proposed that there was no single general factor 

of intelligence, but that general intelligence was a combination of 

Gf and Gc (Cattell, 1971) a position that is still argued (Horn, 

1988). 

2.2.6 Common Methodological Problems 

All of the psychometric models are based on some form of 

factor analysis, which has been typically applied in an exploratory 

fashion to a set of standard tests. until recently, and certainly 

in most, if not all, of the models discussed here, this analysis 

used a principal components analysis (PCA) of the matrix of 

intercorrelations of the tests for the extraction of the initial 

set of factors (singular or multiple). PCA provides only a rigid 

(i.e. orthogonal) rotation of the coordinate axes of the matrix of 

correlations. By deriving these in such a way as to maximise the 

amount of variation explained by each ~ ~msequent component, one is 

left with a set of linear composites equal in number to the number 

of variables in the original matrix, in decreasing order of the 

amount of variation they account for in the original data. It is 

then up to the researcher to try and determine the minimum number 

of components that adequately describe the data. 

~ 
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There are fundamentally two problems with this approach. 

First, the derived components relate only to the variables in the 

original data set. That is, in strict theoretical terms, the 

components obtained are not generalisable outside that particular 

data set. Secondly, there is no provision for statistically 

testing the fit of the model chosen. While there are many "tests" 

for the "correct" number of components such as the scree test 

(Cattell, 1966) and the Kaiser criterion (Kaiser, 1960), they are 

not tests in the sense of traditional inferential statistics. 

The advent of more sophisticated common factor analysis 

techniques has gone some way to reducing the problems faced by the 

early factor analysts. In particular, the development of 

confirmatory common factor analysis (as opposed to exploratory 

component analysis) by Joreskog (1969) has allowed a more 

rigourous, statistically testable application of the factor 

analytic technique. This is not to say that common factor analysis 

is a perfect analytic tool (Marsh, Balla, and McDonald 1988); also , 

there are good arguments for the use of both component analysis and 

factor analysis (Velicer and Jackson, 1990) . Confirmatory common 

factor analysis has, however, allowed some more statistically 

rigourous analyses of some common models of intelligence to be 

undertaken (e.g. Bachelor, 1989). 

Another, related, development that has had a significant 

impact on psychometric methods has been the development of 

sophisticated techniques for covariance structure analysis 

(Joreskog, 1970). This has allowed some especially powerful and 
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interesting results to be obtained from analyses of existing models 

of intelligence (Gustafsson, 1984; Undeheim and Gustafsson, 1987). 

2.2.7 A Unifying Model 

The recent revision of Cattell's model by Gustafsson and 

Undheim (1987; Gustafsson, 1984; Undheim, 1981a, 1981b) has 

provided an interesting alternative to the models of Cattell and 

Horn and Vernon. Basically Gustafsson has found that Cattell and 

Horn's Gf, or fluid intelligence, is statistically identical to 

what Vernon (1950) called general intelligence. 

Gustafsson (1984) felt that "The kinds of tests identified to 

measure Gf comes very close to the kind of tests that Vernon lists 

as measures of g in his model." (p 184). After identifying Gc 

with Vernon's v:ed and Gv with k:m and then allowing a third order 

factor, labelled g, he had what he felt was a resolution of the 

main differences between the two major hierarchical models of 

ability. Gustafsson recognised that the relationship between g and 

Gf was an empirical question and, following the work of Undheim 

(1981a, 1981b), he used covariance structure analysis to examine 

his model. 

Gustafsson (1984) found support for his model, that is three 

secondaries (Gf, Gc, and Gv) and one tertiary factor g. He also 

found that, statistically, g was identical to Gf. This result was 

later verified in a series of experiments (Undheim and Gustafsson, 

1987). 

--
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2.2.8 Selecting a Model 

Of the psychometric models of intelligence available, those of 

Vernon and Cattell-Horn are, as described by Gustafsson, the 

..... two most important hierarchical models ... " (1984, p184). 

Gustafsson also provides strong evidence that his combination of 

the two models is empirically sound and theoretically reasonableG 

How then does the model fit the organisational constraints set for 

our project, that is the provision of a score for verbal, numeric 

and spatial abilities? 

Although not tightly defined in the original instruction, one 

could conceptualise our required spatial ability as Gv from the 

Cattell-Horn model. The remaining two required factors, verbal and 

numeric ability, are consistent with Vernon's (1947) findings that 

these were the minor group factors that comprised v:ed, or in this 

case Gc. Thus we would have our numeric and verbal abilities 

combining to form Gc and our spatial abilities representing Gc with 

general ability as a higher-order factore 

2.2.9 Testing the Model 

Although Undheim and Gustafsson (1987) provide fairly sound 

support for their model, it was based on an analysis of existing 

standard tests. In the current situation the project will be 

starting from scratch, that is, writing the items rather than using 
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existing tests, therefore it seems prudent to test the adequacy o f 

the model using item data rather than test score data. 

The main aim of this test will be to determine whether we 

should include some measure of fluid intelligence as a separate 

factor from general intelligence. Despite the evidence of 

Gustafsson, fluid intelligence is one of the most enduring features 

of the Cattell-Horn model. Also, given the way it has been 

conceptualised, that is as an individual's capacity to deal with 

new and unfamiliar problems, and given the wide roles to which the 

current test will be put, Gf may be one of the most important 

abilities that we could measure. 

Testing the model will involve comparing the adequacy of fit 

of the three factor model (verbal, numeric, and spatial abilities) 

against the fit of the four factor model (verbal, numeric, spatial, 

and fluid abilities). Given that all of the secondaries correlate 

with general intelligence, the three factor model should provide at 

least as good a fit to a set of test items as the four factor 

model. 

After examining the different types of items that are 

generally used in psychometric tests two conclusions were drawn: 

a. there are generally three broad types of stimuli or content 

areas in test items, namely verbal, numerical and spatial ; 

b. test items can address abilities that are specific to the 

stimulus type, eg addition in a numerical item, word knowledge 

~ 
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in a verbal item, or they can address abilities that can be 

generalised over stimulus, eg inductive reasoning as in 

analogy problem. 

This latter set of abilities are those that are typically used 

to define Gf and thus it was decided to write four types of items, 

labelled as follows: 

a. numerical operations, eg arithmetic, clock questions, etc; 

b. verbal operations, eg word knowledge; 

c. spatial operations, eg paper form board, paper folding, etc; 

and 

d. fluid ability items, eg analogies, series, etc using all three 

stimulus types. 

By combining these in a test we should be able to test the 

model by conducting a confirmatory factor analysis on the set of 

items and hypothesising two factor structures; a four factor 

structure comprising verbal, numeric, spatial and fluid ability, 

and a three factor structure of verbal, numeric and spatial 

ability. In the three factor model, th€ fluid ability items of 

appropriate stimulus type would be included in the other scales; 

for example, the verbal reasoning items would be included with the 

verbal operations items to form the verbal factor. 

~ 
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The Hypothesis. Our hypothesis is that the three factor 

structure will produce at least as good a representation of this 

set of items as the four factor model. 

2.3 Chapter Summary 

There are two main paradigms of intelligence extant today; the 

cognitive paradigm and the psychometric paradigm. The former 

seeks primarily to understand the processes involved in intelligent 

behaviour. Its models are characterised by identifying the basic 

components of intelligent behaviour and examining their operations 

through the accuracy and latency of responses to very simple 

cognitive tasks. The cognitive paradigm was seen as being 

difficult to operationalise for the current project. 

The psychometric paradigm traditionally uses factor analytic 

techniques to identify the underlying structure of ability tests 

and items. It can be characterised by its use of more complex 

cognitive tasks than the cognitive paradigm and its greater 

reliance on differentiating between individuals. 

There are many models of intelligence under the psychometric 

paradigm ranging from nne to over one hundred factors underlying 

intelligence. Of all of these, Gustafsson's combination of the 

hierarchical models of Cattell-Horn and Vernon is considered the 

most empirically sound and theoretically reasonable. Furthermore 

it fits the organisational requirements quite well and was 

~ 
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therefore chosen to provide the basis for the test development 

project. 

The importance of fluid ability is difficult to discount and 

the current project will be developing a test from scratch rather 

than using developed instruments (as had Gustafsson in developing 

his model) and therefore it was decided that the model should be 

tested. This would be done by examining the factor structure of a 

set of items and comparing a structure that includes a fluid 

ability scale with one that did not. It was hypothesised that the 

latter would provide as good a fit to the data as the former. 

........ 
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CHAPTER 3 

TEST THEORY 

Having determined the model of ability that will be used to 

develop the test the next feature that is critical in any test 

development project is the theory chosen with which one will 

develop the test. This includes the theory underlying the 

selection of items to be included in the test, the calibration of 

these items and the test, and the development of the scale of 

measurement of the test. 

Why have a test theory? Writing appropriate questions, 

grouping them together and counting up the number that an 

individual examinee gets right does not generally produce an 

outcome that is consistent with other tests aimed at the same 

target group. So consistency (reliability) is the first goal of 

having a test theory. 

There are two main components to any test theory; the 

technique for selecting "good" items, and the technique by which 

one generates a "score" for an individual. 

3.0.1 Selecting Items 

The selection of the items to include in a test is obviously 

fundamental to the development of the test. There are two features 
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to this process; selecting items that tap the ability that you are 

trying to measure, and selecting items that will glve you a 

meaningful measure of the particular ability you are trying to 

measure. 

There is hardly any point in asking a question about the 

history of Australia, for example, if you are trying to measure 

someone's ability to manipulate two dimensional figures. Thus the 

first step in selecting items is to draw items from appropriate 

content areas. This is largely an experiential and theoretical 

issue. The test developer, after deciding what content areas are 

to be measured, selects items that he believes are appropriate to 

that content area. 

Having selected a pool of items, the test developer tests 

these on a sample of individuals who are representative of the 

intended test audience. The items must be tested because what the 

developer considers representative of a content area may not accord 

with what is really the case. Also, the sampl e must be somewhat 

representative so that the information from the sample at least 

pertains to the group to whom it will be admi nistered. 

3.0.2 Scoring the Test 

Once the test has been developed and we are satisfied that t he 

items in the test all tap the appropriate content area, we can 

administer the test. Then the next question is how are we to use 
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...... 



II 

36 

the test to differentiate between individuals? This is, after al l , 

the reason for which we have written our test. 

Do we simply add up the number of items that an individual 

answers correctly and assign that as the person's "score"? How do 

we group individuals in this case; if one examinee answers one more 

item correctly than another examinee, is that sufficient to 

differentiate between them for a selection decision? What degree 

of error, if any, is there in the measurements made by our test? 

All of these considerations reinforce the need for a test 

theory_ Our test is a measuring instrument. Unfortunately, we 

don't have the luxury of being able to directly measure the things 

that psychologists typically want to measure. In some cases, that 

which we wish to measure can only be defined in terms of the 

instrument used to take the measurement. One is reminded of 

Boring's (1929) operational definition of intelligence as whatever 

the intelligence test measures. 

Our test needs to measure that which we claim it measures, and 

it must be able to measure that ability consistently over repeated 

uses. It is for these and the above reasons that we need a test 

theory. Today there are two predominant test theories; Classical 

Test Theory (CTT) and Item Response Theo~~ (IRT). 

~ 
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3.1 Classical Test Theory 

This is the "traditional" test development model and until the 

1970's nearly all of the psychometric tests in use were based on 

Classical test theory. 

3.1.1 The Basic Assumptions of Classical Test Theory 

Classical test theory as described by people like Gulliksen 

(1950) and Nunnally (1978) is fundamentally a "true score theory" 

(Lord and Novick, 1968). The theory states that for any trait we 

attempt to measure, each individual so measured has a "true score". 

This is based on the assumption that there is an infinite domain of 

items relevant to the trait and that the true score is the number 

of correct answers the person would make if they were administered 

all of the items in this domain of items (Kline, 1986)e 

Obviously it is not possible to administer every item from an 

infinite domain of items and therefore random samples of items, 

tests, are used. Thus an individual's score on a test will be 

comprised of two components, their true score on that trait and an 

error component (as the test is only a random sample from the item 

domain); and the equation for an individual's test score is: 

X· = T + E· 1 1 

Where Xi is the observed score on test i, T is the individual's 

true score on the trait (note that this is a constant) and Ei is 

the error component associated with this test. 

( 1 ) 
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Being a random sample from the domain of test items, it is 

assumed that the errors will be random and that the distribution of 

the errors will be independent of the individual's true score. I t 

is also assumed that the distribution of errors has a mean of zero, 

and that the error of measurement for an individual on any two 

tests is uncorrelated. These are expressed mathematically as 

follows: 

r(T,Ei) = 0 

E(Ei) = 0 

r(E· E·) = 0 
l' J 

( 2 ) 

( 3 ) 

( 4 ) 

Where r indicates the correlation coefficient, and E in Equation 3 

is the expectation operator. 

These assumptions form the basic structure of Classical Test 

Theory. It is on these equations that the methodology of Classical 

Test Theory is based. 

3.1.2 The Methodology of Classical Test Theory 

The methodology of Classical Test Theory involves the 

following steps: 

a. developing a pool of items, 

b. trialling these on a sample of subjects that is representative 

of the test's intended audience to obtain appropriate item 

statistics, 
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c. selecting those items which meet the test's design 

specifications (normally based on the obtained item 

statistics), and 

d. assembling these into a test which is calibrated (or normed) 

on a representative sample of subjects. 

The first of these steps, developing a pool of items, . 
1S 

common to any test development procedureG It is unrealistic to 

expect that all of the items that one writes will be exactly what 

is required. Rather an experimental approach is taken and one 

develops a pool of items that are trialled on a representative 

sample, with the expectation that some of the items will not be 

adequate for the task. 

Item writing should be considered both a science and an art 

and is fundamental to the test development process. Briefly, item 

writing is an extremely complex process that requires a good 

knowledge of the subject matter, of the types of items that can be 

used, and, overall, considerable planning (see, for example, 

Tinkleman, 1971; Wesman, 1971). Needless to say, good item writing 

can contribute considerably to the development of the test (Kline, 

1986) . 

Having developed a pool of items, they are then trialled on a 

representative sample to obtain two item statistics that are 

fundamental to the item selection process; the item difficulty and 

the item reliability. 

....... 
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Item Difficulty. The item d i fficulty is simply measured as 

the proportion of subjects who c orrectly answer an item; this also 

represents the easiness of the i t em and for this reason has also 

been more correctly called the item facility value. The value of 

this statistic is that an item with too few or too many individuals 

correctly responding will provide little discrimination between 

individuals, that is, too little information. Kline (1986) 

recommends that items with facilities between 0.2 and 0.8 can be 

considered for further use in a test but that items falling outside 

these limits provide too little discrimination to be of any 

practical value. 

Item Reliability. An item's reliability, or discrimination a s 

it is sometimes known, is its correlation with the overall test 

score. In the case of items scored dichotomously (i.ee right or 

wrong, as is generally the case with ability test items) this is 

the biserial correlation (Lord & Novick, 1968)e This statistic 

tells how much the item contributes to the scale score and gives an 

indication of how important the item is to the scale score. The 

higher the item reliability the better the particular item relates 

to that scale as measured with that sample. There is, 

theoretically, no upper bound for item reliability, and Kline 

(1986) recommends that any item with a reliability in excess of 0 .3 

can be further considered. 

Selection of items for high reliability needs to be tempered, 

however, by consideration of what Cattell (1972) calls "bloated 

specifics". Cattell holds that choosing items with too high 

reliabilities can lead to selecting only a very narrow range of 
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item types, and while this would l ead to a scale with high 

reliability, the scale's items would be too specific to properly 

measure the trait in which we were interested. For example, if the 

test concerned were for verbal ability, then selecting only word 

knowledge items would lead to a scale with high reliability but it 

would be an imperfect measure of the verbal ability trait. Dealing 

with "bloated specifics" is an experiential issue and requires the 

test developer to ensure that an adequate range of test item types 

are included in the test. 

Having trialled a set of items and selected those which . meet 

the prescribed item statistic guidelines, these are now assembled 

into a test and the test is trialled. This trial results in two 

outcomes; an estimate of the test reliability, and, evidence of 

whether further refinement of the test is needed. 

Test Reliability. A test's reliability, is the extent to 

which it reflects an individual's true score on a trait, that is, 

the correlation of the observed score with the true score. It can 

be shown that the square root of a test's average correlation with 

all other tests in the domain of interest is its reliability, 

(Kline, 1986; Nunnally, 1978). Thus reliability is defined, 

operationally, in terms of parallel measures. There are two types 

of reliability coefficients; coefficients ~= stability which 

examine parallel measures over time, and coefficients of 

equivalence which examine the equivalence of two parallel measures. 

Unfortunately a test's reliability can only ever be estimated as we 

can never test all of the tests in the universe, but sampling 

theory shows that such estimates are more than adequate. 

~ 
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Coefficient Alpha. One of the most common means of estimating 

a test's reliability is through coefficient alpha (Cronbach, 1970). 

This is an estimate of the correlation of the test with another 

test of the same length from the universe of items (Kline, 1986) 

and is calculated as follows: 

L [ 1 - SUM[Vari] ] 
k - 1 [vary] 

alpha - ( 5 ) 

Where k is the number of items in the test, SUM[vari] is the sum of 

item variances and [vary] is the variance of the test. The Kuder­

Richardson 20 (KR-20) formula is a special case of coefficient 

alpha for dichotomously scored items. 

The Effect of Test Length. with the conceptualization of true 

score as an individual's score on a test of infinite length, then 

it is obvious that the longer the test, the more accurate the 

estimate of the individual's true score e Thus the n,umber of items 

in the test has a direct influence on a test's reliability and this 

has been operationalised in the Spearman-Brown Prophesy formula 

(Guilford, 1956). This formula, used originally to calculate the 

reliability of a test after a split-half reliability study, relates 

the number of items in a test directly to the reliability of the 

test. 

Test Refinement. One of the other considerations from the 

test trial is a refinement of the test. All of the item statistics 

so far calculated, the item difficulty and item reliability, are 
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sample dependent statistics. That is, they relate to the sample of 

items and individuals on which they were calculated, a factor that 

has been identified as one of the major limitations of CTT 

(Hambleton and Swaminathan, 1985). Thus, an item's statistics may 

change when the test is trialled on another sample. Given that the 

item trial sample was relatively representative, and the same 

applies to the test trial sample, any significant changes in the 

performance of an item can most likely be attributed to a problem 

with the item and the item will be normally be discarded. 

After any final refinements to the test, if required, the test 

will usually have to be normed. Cut-off points, or standard 

scores, are calculated from the distribution of test scores to 

represent certain percentages of the samplee There are a variety 

of norms available, the IQ scale has a mean of 100 and a standard 

deviation of 15, the T scale has a mean of 50 and a standard 

deviation of 10, etc. As with the original item statistic these 

norms are sample dependent and therefore a test that is used over 

some length of time will require periodic re-norming to ensure that 

the cut-offs chosen still reflect the appropriate percentages of 

the population. 

3.1.3 Limitations of Classical Test Theory 

Hambleton and Swaminathan (1985), perhaps two of the harshest 

critics of CTT, cite five limitations of CTT; these are: 

a. that the item statistics fundamental to the model are sample 

dependent; 
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b. that comparisons of individuals are limited to situations 

where the individuals are administered the same or parallel 

tests; 

c. that test reliability, a concept fundamental to CTT, . 
1S 

defined in terms of parallel measures, something that, they 

claim, is difficult to realise in real life; 

d. that CTT provides no indication of how an individual might 

perform on a particular item; and finally 

e. that the model assumes that each individual's error variance 

is identical. 

Lumsden (1976), with his "Flogging Wall Test", also provided 

an erudite description of what he saw as a major problem with the 

concept of a test's reliability, namely that a test's reliability 

is related to the individual's score on the test. This is because 

the test is of finite length and therefore test scores of those 

individuals near the extremes of scores on the test must suffer 

either a floor (at the low score extreme) or ceiling (at the high 

extreme) effect which reduces the variance of scores at the 

extremes and therefore reduces the calculated reliabilities of 

these scores. 

Finally, Lord and Novick (1968) cite three points of view with 

regard to the concept of true scores: that of Thorndike (1964) who 

feels that true scores are of no theoretical interest; that of 
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Loevinger (1957) who feels that since true scores aren't directly 

measurable, the observed score is the only meaningful notion and 

that true scores have no practical interest; and their own, which 

is basically supportive of the concept. Thus the fundamental 

premise of CTT has also been found wanting by some people, in some 

cases. 

Some of these criticisms are more problematic than others. In 

particular, the sample dependent nature of the item statistics, the 

requirement for at least parallel measurements to be able to 

meaningfully compare individuals, and Lumsden's (1976) concerns 

about the concept of test reliability. 

3.1.4 Benefits of Classical Test Theory 

Despite these criticisms CTT ha~ survived for many years and 

has had an enormous impact on psychology as a science and has 

proved to be robust in almost all practical test situations. 

From an administrator's point of view scoring a CTT based test 

is a quick and simple matter. From the test developer's point of 

view the item statistics required are simple to calculate and don't 

require inordinantly large samples 0 Also, being based on simple 

linear statistical models, the theory behind CTT is easy to 

understand. 

~ 
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3.2 Item Response Theory 

Item Response Theory (IRT) is the other predominant test 

theory in use today and can be seen as the main alternative test 

theory to the Classical Test Theory described above. 

IRT is a subset of a wider measurement theory called Latent 

Trait theory. This assumes that an individual's performance on a 

particular measurement is completely determined by a set of latent, 

or unobservable, traits. Many psychological theories are based on 

this concept of latent traits but often without any requirement 

that the traits actually exist (Lord and Novick, 1968). 

Item Response Theory requires two assumptions be made of the 

data: the first concerns the dimensionality of the latent space, 

and the second is known as the assumption of local independence. 

3.2.1 Dimensionality 

The assumption pertaining to the dimensionality of the latent 

space is fundamental to all IRT models, and in testing terms can be 

considered as follows: given a set of n test items and k traits, 

denoted by the vector: A = (aI' a2' ... ' ak)i each examinee can 

then be described by a point in the k-dimensional space, the latent 

space, described by A. Next, consider all of the populations of 

interest, if the (joint) distribution of items scores for examinees 

with the same value of A is also the same then A is said to "span" 

the latent space, and the latent space is said to be "complete". 

~ 
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The regression of item score on A, that is the plot of average 

item score for given values of A, is called the item characteristic 

function. Because the distribution of item scores is the same 

across populations for a given value of A, the item characteristic 

function is also invariant across populations. As a consequence of 

this, any parameter used to describe the item characteristic 

function is also invariant across populations. 

Thus, if it can be determined that the items in a test can be 

described by a complete latent space, then the parameters that 

describe the relation between item scores and the latent traits 

will be invariant across the populations of interest. For binary 

items, the item characteristic function specifies exactly how the 

observed responses relate to the latent traits, and because of 

this, it is possible to make inferences about the latent traits 

directly from the item responses (Lord and Novick, 1968). 

3.2.2 Local Independence 

Whenever more than one test item is being considered, the 

assumption of local independence is considered necessary for useful 

theoretical work (Lord and Novick, 1968). In practical terms, 

local independence mean that the relative position of items within 

a test has no bearing on ~Kaminees' performance on them. 

In more theoretical terms, local independence can be defined 

as meaning that within any group of examinees with the same value 

for A, the distribution of item scores are independent of each 

other. This doesn't mean that the items are unrelated to each 

~ 
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other, rather it means that the items are only related to each 

other through the latent variables aI' a 2 , ... ,ak. This is 

equivalent to saying that the l atent variables span the latent 

space because, if the item scores were not independent (conditional 

on A) then this would mean that there were some variable(s) in the 

latent space other than the k latent variables we have considered . 

For binary items, this has considerable importance. In 

particular, because binary items are scored 0 or 1; then for a 

pattern of item responses: V = (Ull U2/ ••• Uk ), Un 1 or 0; the 

distribution of V (conditional on A) is: 

n u \ - u 
P(VIA) = n Pg~ Qg j ( 6 ) 

~~, 

Now from this, if for some population of examinees, A has a 

distribution g(A), then P(V), the unconditional distribution of V, 

is given by: 

P(V) - f g(A) fr p;~ 
9" \ 

\ - LA 

Q j dA 
g 

Because we can draw a sample from P(V) (i.e. obtai n an empirical 

( 7 ) 

estimate of P(V» we can use equation (7) to make inferences about 

g(A) . 

Thus the assumption of local independence allows one to take a 

sample of item responses and make inferences about the latent 

(unobservable) traits underlying the examinees' performance. 

~ 
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3.2.3 Item Response Models 

There are a variety of models for item response theory that 

generally differ in one of three ways. These are: 

a. the dimensionality of the model, 

b. the number of parameters involved, and 

c. the form of the function involved. 

Model Dimensionality. This was one of the most controversial 

features of IRT, because early IRT models required that the latent 

space be unidimensional. This found harsh criticism from Goldstein 

(1980) and was perhaps largely the result of confusion over the 

meaning of unidimensionality. McDonald's (1981) definition of 

unidimensionality in terms of the common factor model and Hambleton 

and Swaminathan's (1985) qualification of this to mean "one 

dominant factor" provided perhaps the best compromise between the 

strict requirements of the IRT model and the practical 

considerations of the test developer. While multi-dimensional 

models are available, they provide unique difficulties in their 

scoring and the interpretation of item responses, and the bulk of 

the current models use McDonald's (1981) conceptualization of 

unidimensionality to allow the assumption of unidimensionality to 

be made. 

......... 
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Model Parameters. The most simple of IRT models, the Rasch 

model (Rasch, 1960), uses only two parameters in describing the 

item characteristic function; one representing the individual's 

standing on the latent trait (their ability), the other represents 

the amount of the trait required to correctly answer the item (the 

item difficulty). other parameters that have been considered in 

IRT models include; an item discrimination parameter that allows 

for an item to provide different levels of discrimination at 

different levels of the latent trait; a parameter to take into 

account the probability that an examinee with very low levels of 

the latent trait correctly answers (i.e. guesses) an item, this is 

usually called the psuedo-guessing parameter; and a parameter that 

allows for an examinee of very high ability answering an "easy" 

item incorrectly, though this parameter is less common than the 

others. 

Function Form. There are two main function forms that are 

used for IRT models; the normal ogive and the logistic models. The 

details of the normal ogive model were first developed by Lawley 

(1943) and is given by: 

<:lQ 

Pg(Al = Pg(A,ag,bgl = PHI [Lg(Al] =.r phi(tl dt 
... L~(~) 

( 8 ) 

Where LgCA) = agCA - bg ) and phiCt) is the normal frequency 

function. The a g parameter indicates the amount of information an 

item provides about A, the discrimination parameter discussed 

above, and is assumed to be finite and positive. The b g parameter 

is related to the level of ability at which the item discriminates 

-.......... 
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most effectively (the difficulty parameter) and for the normal 

ogive model Pg(bg ) = 0.5 (Lord and Novick, 1968). 

The logistic test model was introduced by Birnbaum (1968), and 

is one that very closely approximates the normal ogiveo The 

logistic model is as follows: 

PSI(x) = e X/(l + eX) = 1/(1 + e-X) ( 9 ) 

It has been shown (Lord & Novick, 1968) that for all values of 

x, the normal ogive and the logistic model, when scaled by a value 

of 1.7, differ by no more than 0.01 in value. Given this we can 

now write: 

Pg(A) = PSI[1.7ag (A - b g )] = (1 + exp[-1.7ag (A - bg)])-l (10) 

This equation (10) is obviously much easier to work with than 

equation (8) above and therefore the normal ogive model provides a 

mathematically convenient approximation of the normal ogive and an 

IRT model in its own right. Both models are unidimensional and of 

the two the two parameter logistic model is by far the more 

commonly implemented. Asa result only this model will be discussed 

further. 

3.2.4 The Methodology of Item Response Theory 

The methodology of IRT follows an essentially similar format 

to that of CTT. The steps involved are: 

~ 
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a. develop a pool of items, 

b. decide the IRT model to use, 

c. trial the items on a sample of examinees, 

d. discard those which do not fit the model, and 

e. calibrate the refined test. 

Apart from selecting which IRT model is to be used the steps 

involved are basically identical to those for CTT, it is the way 

items are calibrated and, in particular, the apparent lack of a 

need to develop norms for the final test that sets IRT apart. 

Model Selection. As discussed above there are two types of 

models commonly used in IRT, the normal ogive and the logistic 

model. Of the two, the logistic model is by far the simpler to 

implement and therefore is the most commonly available. The 

approximation of this to the normal ogive is so close, as shown 

above, that, for practical purposes, it is the same. The next most 

important criterion for model selection is how many parameters will 

be used in the model and this will be dictated by the type of test 

that is being developed. For example, a multiple choice test can 

be considered prone to guessing and therefore the test developer 

may want to take this into account by including a psuedo-guessing 

parameter, whereas a free-response test is much less prone to this 

sort of error in measurement. A final consideration in deciding 

........... 
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the number of parameters in the model is the sample size available 

for calibration purposes. The more parameters included the larger 

the sample size required to adequately estimate the parameters (see 

for example, Hambleton and Cook, 1983; Lord, 1983). 

Item Trials. This is essentially the same process as for a 

CTT test development procedure. The pool of items is administered 
I: 

; to a group of examinees to obtain estimates of the fit of the model 

Ii' 

to the data. The requirements for this sample are similar to that 

for the CTT based test, a representative sample will ensure that 

the model parameter estimates will be as accurate as possible at 

the desired ability level. If the test is trialled on a sample 

that is very different from that to which the final test will be 

administered, ability estimates for the final group can be made 

(identical to the original estimates up to a linear transformation) 

but they will not be as accurate as those made for the trial group. 

For example, if the test is trialled on a sample of examinees with 

very high levels of a trait then the ability estimates for 

individuals with high trait levels will be very accurate compared 

to those for individuals with relatively low levels of the trait. 

Parameter Estimation. Parameter estimation is normally made 

using some form of maximum likelihood estimation method. The two 

most common are marginal maximum likelihood (MML) originated by 

Bock and Lieberman (1970) , and operationalised in the BILOG computer 

software package (Mislevy and Bock, 1990); and the earlier Joint 

Maximum Likelihood approach suggested by Birnbaum (1968) and 

operationalised in the computer program LOGIST (Wingersky, Barton, 

and Lord, 1982). Of these two, the BILOG implementation has been 

~ 
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shown to be slightly more robust to violations of the assumptions 

IRT (Ackerman, 1987) and also more effective with a wider range of 

sample sizes, in terms of items and subjects (Mislevy and Stocking, 

1989). 

Test Refinement. As with the CTT based test, it is to be 

expected that not all of the items chosen in the initial pool will 

adequately fit the model. There will therefore be a requirement to 

discard some items from this pool as was done in the development of 

a CTT based test. One of the features of the MML procedure as 

implemented in BILOG is that it allows calculation of goodness-of­

fit indices for the individual items in the test. 

Estimating an Examinee's Ability. Having refined the test it 

is now ready for use and here one of the major differences between 

the two test development methods appears. This is that there is 

allegedly no need to administer the test to another sample to 

develop norms for the test. This is because once the item 

parameters have been determined, and they are said to be invariant 

across samples, an examinee's ability can be calculated, in 

standard score form, directly from the ICC. This estimate will 

also be invariant across samples of items taken from the originally 

calibrated item pool (Hambleton and Swaminathan, 1985). 

J 

3.2.5 Limitations of Item Response Theory 

IRT is mathematically elegant and, providing the appropriate 

assumptions can be met, allows the test developer to make very 

--
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strong statements about an individual's ability level based pure ly 

on their responses to a set of test items. This is not to say that 

IRT is without its critics. The earliest criticisms of IRT centred 

on the assumptions it required of the data and the fact that few 

items seemed to fit the chosen models. 

The Assumptions of IRT. The early criticisms of IRT concerned 

the assumption of unidimensionality that was a requirement of the 

models (Goldstein, 1980). As stated above, McDonald's (1981) 

description of the unidimensionality issue in terms of the common 

factor model clarified many of these criticisms. 

Item Fit to IRT Models. Another common criticism of IRT was 

that very few items seemed to fit the models used, and this was 

particularly true of the Rasch model, the prime concern being that 

legitimate items would be discarded because of poor fit to the 

model. A close examination of the Rasch model shows that not only 

is it a special case of the two parameter logistic model but that 

it is also a very strong measurement model in its own right (see, 

for example, Andrich, 1988)~ As such it makes quite stringent 

requirements of the data, but in return allows the user to make 

very strong statements about the data. Certainly other IRT models, 

for example the two parameter logistic model, are not so strict on 

the requirements of the data for L ~e model and consequently show 

much higher proportions of items fitting. 

In practical terms IRT presents a few other problems, most 

prominent of these is scoring the test. As stated above, once the 

item parameters of the test have been determined, scoring the test 
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for a new examinee is simply a case of inputting the examinee's 

response pattern into the ICC. Unfortunately this is not a simple 

process and normally requires the application of sophisticated 

computer software. This may not be a problem for a computer 

administered test but the reality is that, in most situations, 

tests are still manually administered and scored. 

The rationale for scoring a test is to simplify the data 

pertaining to an examinee's responses to an item set. The range of 

an examinee's responses to a set of v items is v-dimensional, while 

any scoring formula, say t = t(v), used on the responses yields a 

one-dimensional range of values. So scoring a test provides a real 

simplification of the available data. The problem now is to 

simplify the data without losing any information. Fortunately, 

statistical theory provides a class of statistics called sufficient 

statistics that serve this exact purpose. 

Sufficient statistics. A sufficient statistic is one which 

summarizes all of the information in a sample concerning a target 

parameter. Formally a statistic is a sufficient statistic for a 

parameter if the conditional distribution of the sample values 

(given the statistic) does not depend on the target parameter (Hogg 

and craig, 1978). For example, the sample mean is a sufficient 

statistic for t~e population mean of a normally distributed 

population. In the case of the psychological test we are looking 

for a statistic that can be used to provide a more efficient 

estimate of the examinee's ability. Birnbaum (1968) has shown that 

for tests with equivalent items the number correct is a sufficient 

statistic for the examinee's ability, and that for the two 

-
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parameter logistic test model, the sum of item scores weighted by 

their discrimination parameter, a g , is a sufficient statistic. 

Indeed one of the attractions of the Rasch model, was that 

some function of an examinee's number right score could be used as 

an estimate of their ability. 

For a test that is to be manually administered and marked this 

offers some hope, but it still requires work. Unless the Rasch 

model is going to be used, with its concomitant rigourous demands 

on the data, the test developer still has to deal with a weighted 

sum of item scores which still have to be entered into a complex 

equation. Really, the test administrator wants to be able to simply 

add up the number right on a test and use this as the examinee's 

score. Is it possible to do this and still retain the benefits of 

using an IRT test development method? Two issues need to be 

addressed for this to happen; the need for a weighted sum and the 

form of the scoring functionG 

Weighted Composites. In terms of the weighted composite, 

there is a considerable amount of literature available on the 

comparison between different weighting schemes (Wilks, 1938) and 

most show that unit weights are as good or better than differential 

weights for prediction purposes (Wainer, 1976; Dawes and Corrigan, 

1974; Einhorn and Hogarth, 1975). Indeed Dinero and Haertel (1977) 

explored this question in a testing setting using simulated data. 

They found that items with varying discriminations estimated using 

the Rasch model gave little loss of information. So it seems that 

it may be possible to simply use the unweighted test score as an 

-
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estimator of ability even if we select items based on the two 

parameter logistic model. 

Form of the Function. While the form of the function for the 

estimation of the examinee's ability in the two parameter logistic 

model is fairly complex (see Lord and Novick, 1968, p 429), it is 

only a non-decreasing function in the test score. Given this, the 

unweighted number right score should provide good correlation with 

the ability estimate and therefore should be an adequate sUbstitute 

for the ability estimate. 

3.3 Comparing the Models 

From a practical point of view the CTT based test is easy to 

develop and administer. The IRT based test is more complex but 

allows the test developer to make very strong statements about an 

examinee's ability from their responses to a set of test items. 

Which is better? Unfortunately the literature yields only one 

(somewhat dated) study where the relative merits of CTT and IRT 

were directly compared (Douglass, Khavari, & Farber, 1979). 

Douglass et al (1979) found that, although the two test 

development procedures produced different tests, in terms of their 

item composition, there was little difference in the correlations 

of the tests with an external criterion. Although this work was 

done with a clinical instrument rather than an ability test and 

used the Rasch model as the IRT test model for test development, 

the results are of relevence here. Certainly there is no reason to 

-
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assume that the results of Douglass et al (1979) should not be 

repeated here, that is, tests developed using CTT and IRT may wel l 

have different item compositions but should be equally useful in 

predicting an external criterion. 

Even if this is the case the sample-free nature of the IRT 

estimates are attractive to the test developer. An ideal situation 

would be to somehow combine the ease of administration of the CTT 

test with the power of the IRT test. The discussion above has lead 

to the conclusion that a test may be developed using an IRT model, 

in this case the two parameter logistic model, but we might obtain 

adequate ability estimates using a simple number right statistic. 

We therefore have three models to consider; firstly, the CTT 

model, secondly, the "standard" two parameter logistic model, and 

thirdly, items modelled on the two parameter logistic model but 

with ability estimated via the simple number right score. Our 

primary concerns are that each of the models should be able to 

produce equivalent estimates of examinee ability. 

As always the difficulty with these questions is what criteria 

are to be used to ascertain the adequacy, or otherwise, of the 

ability estimates? In the current situation it is fortunate that a 

ready criterion presents itself, namely the ability e-timates 

provided by the existing Army selection test, the AGC. This test 

is to be replaced by the new test, not because of any perceived 

inadequacy in the performance of the test, but rather because it 

lacks face validity due to its age and the opportunity presents 

.-
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itself to replace it. As such it is critical that the new test 

replicate the performance of the AGC as closely as possible. 

The Hypotheses. Our first hypothesis is that a test developed 

using CTT, although different in item composition, will not produce 

appreciably better estimates of examinee ability, defined in terms 

of performance on the existing selection test than a test developed 

using an IRT model. The second hypothesis is that a test developed 

using IRT will produce the same ability estimates, as defined 

above, whether the full ability estimation procedure is used or a 

simple number right test score is used. 

3.4 Chapter Summary 

There are two test development theories predominant; Classical 

Test Theory and Item Response Theory_ CTT assumes that for any 

trait on which we attempt to measure an individual there will be a 

true score for that person which is a constant. The measure we 

take can only ever approximate this true score and the central 

problem in CTT is to build a test that will make this estimate as 

accurate as possible. We try to minimise the error of measurement. 

CTT has been criticised on a number of grounds, in particular the 

estimates it makes are sample depen~ent. 

Item response theory, states that an examinee's performance on 

a test item can be completely determined by their standing on the 

traits underlying that item. If a set of dichotomously scored test 

items occupies a complete latent space then inferences about an 

.-
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examinee's standing on the traits underlying those items can be 

made directly from the examinee's responses to those items. To 

achieve this in practical terms, IRT makes strong assumptions about 

the dimensionality of the data and the conditional independence of 

the items. If these assumptions can be met, however, the IRT 

parameter estimates obtained are (theoretically) sample-free, up to 

a linear transformation of the estimates. 

Although CTT is the traditional test development model and is 

simple to implement, IRT offers much for the test developer. It is 

not without its problems though, in particular it requires complex 

scoring formulae and therefore is more difficult to implement in a 

pencil-and-paper test form. Investigation of the scoring formulae 

indicate, however, that simple number right score may provide an 

adequate approximation of the ability estimates provided by the 

full model. 

It was therefore decided to test two hyptohesesi whether IRT 

produced a better measure than a CTT based test and whether simple 

number right score could provide an adequate replacement for the 

less practical ability estimates from the IRT model . 
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CHAPTER 4 

METHOD 

There were two phases to the project; the development of tests 

using the different strategies (i.e. the classical model and the 

two parameter logistic model), and the comparison of the scores 

obtained from the different strategies (including the modified two 

parameter item response model) with the existing instrument. 

4.1 The Instrument 

A set of 52 items provided the calibration test (called the 

TO) for the development of the final test (the Tl) from which the 

concurrent validities would be calculated. The TO included 18 

verbal items (code and word knowledge items), 10 spatial (paper 

form board, rotations and unfolding items), 10 numeric items 

(arithmetic and clock items), and 14 reasoning (analogies and 

series items). Of the reasoning items, there were five with verbal 

content, five spatial and four with numeric content. The items 

were organised in a spiral omnibus format without regard to any 

ordering for difficulty. The Tl included items selected after the 

first part of the analyses and was also designed as a spiral 

omnibus format test. This was also administered to a sample of 

Army examinees. 

4.2 Analyses 

Four analyses were conducted: 
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a. a factor analysis of the item set was conducted to test the 

dimensionality of the item pool, a reliability analysis of the 

scales was also conducted as a confirmatory procedure for the 

factor analysis; 

b. a CTT analysis of the items was conducted; 

c. an IRT analysis of the items was conducted; and 

d. a comparison was made of the relative effectiveness of each of 

the different test development strategies using regression 

analysis. 

Factor Analysis. As discussed in Chapter 2, a need was seen 

to ascertain the dimensionality of the item pool. In particular a 

three and four factor representation of the item space were to be 

compared. The problems of factor analysing test (binary) data is 

well documented, the basic problem being that neither the 

tetrachoric correlation nor the phi coefficient are considered a 

suitable base for factor analysis. A technique developed by 

Christoffersson (1975) uses the distribution of joint probabilities 

and the generalised least squares principle to conduct a multiple­

factor analysis of dichotomised data. This approach was shown to 

be equivalent to the "harmonic-least-squares" approach implemented 

by Fraser (1988) in his computer program NOHARM and this is the 

program that was used here. NOHARM allows a confirmatory as well 

as an exploratory analysis to be done and the former approach will 

be used here. The fit of each model to the data will be compared 

by examining the root mean square of the residual (RMSR) inter-item 
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correlations and by examining individual item communalities. The 

results of this analysis will provide the factor structure of the 

TIe 

CTT Analyses. CTT uses three main statistical tools for 

identifying "good" items; a / difficulty index, item-total 

correlations and a measure of the scale's reliability to test the 

usefulness of the scale. The most common difficulty index is 

simply the proportion of examinees correctly answering an item, 

this is often called the "p-value". The item-total correlation 

simply shows how well an individual item contributes to the scale 

score to which it belongs. The reliability of a scale can be seen 

as the internal consistency of the set of items that form the 

scale. Item difficulty values of 0.2 and 0.8 (Kline, 1986) were 

used as boundaries, outside of which items would be discarded as 

being of little use, a lower bound was set on the item-total 

correlation of 0.2 for suitability for further consideration. 

IRT Analysis. The IRT analysis was conducted using the micro­

computer based program BILOG 3 (Mislevy and Bock, 1990). This 

software provides a range of options for the analysis of items and 

tests and the two parameter logistic model was chosen as the model 

for the analysis. BILOG uses the MML estimation procedure 

mentioned in the previous chapter. MML assumes the inQependence of 

item responses conditional on the examinees' ability level, that is 

for examinees with the same level of the trait under investigation 

(see Equation 6 from Chapter 3). 

Item Selection. BILOG provides a range of goodness-of-fit 

statistics for individual items dependent on the number of items in 
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the scale being examined. These include; testing the goodness-of­

fit of the model directly for very short tests (10 or fewer items), 

where all or nearly all of the 2n item response patterns appear in 

the data, using a likelihood ratio chi-square statistic; for tests 

of 11 to 20 items, Mislevy and Bock (1990) claim that no reliable 

test exists for testing the overall fit of the model but 

standardised posterior residuals can be calculated for individual 

items for testing the model; and, for sufficiently long tests, more 

than 20 items, a likelihood ratio chi-square statistic can be 

calculated from the estimated ability levels of the examinees based 

on the model and their ability level as estimated from the model. 

Regression Analyses. The utility of the three test 

development models will be compared, as discussed, by comparing 

their concurrent validities with the current Army selection test, 

the AGC. Number right scores for the CTT test and the modified two 

parameter model and scale scores for the two parameter logistic 

model will be calculated (for each of the three scales) and then 

raw scores on the AGC will be regressed onto these~ The resulting 

R2 values will be compared for each model to indicate which test 

development model provides the best fit to the criterion. 

4.3 Sample 

TO Sample. The TO was administered to 209 male Army GE 

examinees at two test sites. The group ranged in age from 16 to 32 

years and had a median age of 18 years. Through an administrative 

error school level was only recorded at one of the test sites (104 

cases); 56.7% had completed Year 10 or below, 19.2% had completed 

Year 11 and 24% had completed Year 12. Scores on the current Army 
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GE selection tests (the AGe, a 100 item spiral omnibus format test 

of general ability) ranged from 14 to 87 with a mean score of 

50.923 and standard deviation of 13.86. This compares reasonably 

well with the figures from all examinees for 1989; range 0-98, mean 

50.54, standard deviation 14.85. 

Tl Sample. The Tl was administered to a sample of 371 Army 

examinees. There were 357 males and 14 females in the sample (the 

number of females was small enough that it was considered unlikely 

that any sex differences would effect the results). The mean age 

for this sample was 18.9 years, and of these 66% had completed Year 

12 at school, 10% Year 11 and 24% Year 10 or less at school. 

Scores on the AGe ranged from 25 to 95 with a mean of 61013 and a 

standard deviation of 12.42. These figures compare less well with 

the general figures than those for the TO samplee 
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CHAPTER 5 

RESULTS 

5.1 Sample 

There were considerable differences in the composition of the 

samples used for the initial item selection, the TPAB-TO sample, 

and that used for the final test calibration, the TPAB-T1 sample. 

This was caused by the different entry types of the two groups. 

Due to policy changes between when the TO was administered and 

when the T1 was administered, GE examinees were not being processed 

for entry to the Army when the T1 was administered. The only 

avenue of entry open, and therefore the only source of subjects 

available, was a special form of Reserve entry, the Ready Reserve. 

Because of the requirements of this form of service, high school 

graduates were specifically targeted for the Ready Reserve. This 

resulted in a much higher proportion of Year 12 graduates (66% in 

the T1 sample versus only 24% for the TO sample) which probably 

also contributed to the significantly higher mean AGe score for the 

Tl sample (t = 9.117, P < 0.005)0 

Although a confounding variable, this difference in the sample 

composition means that one of the main claims of IRT will be able 

to be considered, namely that parameter estimates are invariant 

across groups while those of CTT are not. 

--
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5.2 First Phase of the Research 

5.2.1 The Factor structure of the Item Set 

Two analyses were conducted to investigate the factor 

structure of the item set. First, a confirmatory factor analysis 

using the NOHARM computer program (Fraser, 1988) was conducted to 

determine whether a three or a four factor model was required to 

adequately describe the item set. Then a reliability analysis was 

conducted as a confirmatory procedure for the factor analysis. 

Two factor structures were investigated: 

a. a three factor model where items were allocated to factors on 

the basis of their content, ie verbal, numerical and spatial; 

and 

b. a four factor model which included a reasoning factor along 

with the three above. 

For completeness a single factor structure was also included in the 

factor analysis. 

The main means provided by the NOHARM factor analysis package 

for testing the fit of the model is by the analysis of the residual 

correlation matrix through the root mean square of the residuals 

(RMSR). Fraser (1988) states that an RMSR n ••• in the order of the 

typical standard error of the residuals (4 times the reciprocal of 
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the square root of the sample size) ... " (p2) indicates that the 

hypothesised model should not be rejected. Table 5-1 below shows 

the RMSR for the models plus Fraser's suggested value. 

Table 5-1: RMSR Values 

Model Value 

Three Factor Model .01069 

Four Factor Model .01063 

Single Factor Model .01093 

Suggested Value .27669 

As can be seen from this, all of the models yield RMSR values 

well below Fraser's (1988) suggested value and there is little 

difference between the values. 

As there is little overall difference between the models, the 

next step was to examine how individual items fared under each 

model. This was done by examining the unique variances for each 

item under the different models (these statistics are at Annex A) 

and discarding items that fit poorly to the hypothesised 

structures. Items were discarded if they yielded high unique 

variances (>0.8) in two of the three factor solutions. A total of 

26 items were dropped from further consideration under this 

criterion. 
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Of the remaining 26 items , the items fit the three factor 

model best in 20 cases and the four factor model in eight cases 

(two items had identical communalities under both models). In no 

case did any item fit the single factor model best. The conclusion 

to be drawn from this analysis is that; first, separate abilities 

are required to best explain the data at hand, and secondly, that a 

reasoning, or fluid ability, scale is not required to adequately 

fit the data, over and above the fit provided by the scales related 

to the other secondary abilities, namely verbal; numeric and 

spatial ability. 

To augment the factor analysis, a reliability analysis of the 

three and four scale models was conducted. The scale reliabilities 

for the models are in Table 5-2 below. This also includes the 

Spearman-Brown (SB) prophesy formula (Guilford, 1956) value for the 

three scales common to both models. This calculation is based on 

increasing the original scales by the number of appropriate items 

from the reasoning scale. 

Table 5-2: Reliabilities for Three and Four Factor Models 

Factor 

Verbal 

Spatial 

Numerical 

Reasoning 

Four 

0.608 

0.520 

0.656 

0.641 

Reliability 

Three 

0.674 

0.610 

0.726 

SB Value 

0.664 

0.619 

0.732 

"""1IIIIIIII 
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The Spearman-Brown prophesy formula measures how much the 

reliability of a test would improve if it were lengthened by a 

specific amount. This is based on lengthening an existing test 

with items from the same scale and was originally developed for 

estimating the reliability of a complete test from its split-half 

reliability. 

In this case, the scales in the three factor model were 

lengthened by including the items of appropriate content from the 

reasoning scale. The results in Table 2 show that in all cases the 

scales from the three factor model show an increase in reliability 

in the same order as that specified by the Spearman-Brown formula. 

From this we can conclude that the reasoning items contribute 

to the internal consistency of the other three scales, a conclusion 

that was confirmed by examining the individual item statistics. 

These showed that the majority of the reasoning items contributed 

positively to the reliabilities for the three-factor scales. This 

supports the conclusion drawn from the factor analysis that a scale 

devoted specifically to reasoning, or fluid ability, is not 

necessary to adequately describe the item set. 

5.2.2 CTT Analysis 

The selection of items using the CTT procedure followed the 

"standard" CTT parameter cutoffs of p-value greater than 0.2 and 

less than 0.8 and item-total correlations greater than 0.2 (Kline, 

....... 
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1989). A total of 31 items "passed" these criteria, 15 verbal, 9 

numeric and 7 spatial items. From this set a twenty item test 

comprising seven verbal items, six spatial and seven numeric items 

was constructed. Complete CTT item statistics are at Annex B. 

5.2.3 IRT Analysis 

IRT parameters were then estimated for the complete item set 

within their individual scales. This was a two stage process where 

poorly fitting items were discarded after the first calibration and 

the analysis was conducted again on the reduced item set (item 

calibration statistics are at Annex C). From this second 

calibration a twenty item test was constructed containing seven 

verbal, six spatial and seven numeric items. 

5.2.4 Supplementary Analyses 

Two supplementary analyses were conducted. First, a Rasch 

analysis of the items fitting the two parameter logistic model was 

conducted to examine the differences in fit of the items to the two 

models. Comparative statistics for the two calibrations are at 

Annex D, and these generally show that many of the items chosen as 

fitting the two parameter logistic model would not have been chosen 

under the Rasch model. 

Secondly, for comparison purposes simple number correct scores 

for the scales in the second IRT calibration were correlated with 
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the two parameter ability estimates from these "scales"G The 

resulting values are in Table 5-3, below. 

Table 5-3: Correlations between Number Correct and Ability 

Estimate - TO 

Scale 

Numeric 

Verbal 

Spatial 

Correlation 

0.967 

0.950 

0.939 

Interestingly, these correlations all show very strong 

relationships between the number correct score and the ability 

estimate provided by the two parameter logistic model. This bodes 

well for the comparison of the two parameter logistic model with 

the normal and modified scoring procedures o 

Common Items. The final test, the Tl, contained 27 items, 

nine each of the three scales and there were 13 items common to 

both the CTT and IRT sets (five of the verbal and four each of the 

numeric and spatial items). 

....... 
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5.3 Second phase of the Research 

5.3.1 Regression Analysis 

Having developed the instruments, AGC scores were regressed 

against the three scales to compare the three models. The 

hypotheses in which we were interested were; whether the CTT and 

IRT tests gave comparable concurrent validities despite having 

different item compositions; and whether, for the IRT test, the 

number correct score provided reasonable estimates of examinees' 

abilities. Table 5-4 below contains the R-square values for the 

three different tests. 

Table 5-4: R-square Values for Regression Analyses 

Test 

CTT 

IRT (Ability Estimate) 

IRT (Number Right) 

R-square 

0.428 

0.417 

0.399 

As can be seen from the results in Table 4, the IRT based test 

predicted almost as much variance in the dependent variable as that 

from the CTT based test (41.7% as opposed to 42.8%) and that simple 

number correct scores based on the IRT based test was not far below 

the amount of variance predicted by the other two models (39.9%). 

Also, with one exception, all three scales entered the regression 

equations for all three models (see Table 5-5). The only non-

....... 
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significant scale, using the "traditional" alpha level of 0.5, is 

the spatial subtest for the IRT test when the simple number right 

score is used as the ability estimate. In all cases the scales 

entered the equations in the same order, namely numeric, verbal and 

spatial. 

Table 5-5: Regression Equations for the Models 

Model: CTT test; 

Parameter Standard T for HO: 
Variable OF Estimate Error Parameter=O Prob > ITI 

Intercept 1 32.067777 2.10474370 15.236 0.0001 
Numeric 1 3.481933 0.35802845 9.725 0.0001 
Verbal 1 1.363631 0.40731851 3.348 0.0009 
Spatial 1 1.363060 0.39694888 3.434 0.0007 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .0. e • • • • • • • 0 • • • • • • • • 0 

Model: IRT test (ability estimates) 

Parameter Standard T for HO: 
Variable OF Estimate Error Parameter=O Prob > ITI 

Intercept 1 61.134771 0.49420314 123.704 0.0001 
Numeric 1 5.251413 0.60731244 8.647 0.0001 
Verbal 1 3.063147 0.58115971 5.271 0.0001 
Spatial 1 1.329721 0.55943467 2.377 0.0180 

• • • • • • • • • • • • • • • • • • • Q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • e • • • • • • • e _ 

Model: IRT test (number correct score) 

Parameter Standard T for HO: 
Variable OF Estimate Error Parameter=O Prob > ITI 

Intercept 1 23.431491 2.80503610 8.353 0 . 0001 
Numeric 1 3.993169 OG46499314 8.588 0 . 0001 
Verbal 1 1.899013 0.45032997 4.217 0 . 0001 
Spatial 1 1.079507 0.55013166 1 . 962 0.0505 

Generally all three test development models performed 

equally well with the CTT predicting slightly more variance in the 

~ 
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criterion than the IRT ability estimates, which were, in turn, a 

little better than number right scores based on the IRT test. 

The comparison of IRT ability estimates and number correct 

scores also showed remarkable similarity in performance. 

Correlating the ability estimates made for each scale yielded the 

results in Table 5-6. 

Table 5-6: Correlations between Number Correct and Ability 

Estimate - T1 

Scale 

Numeric 

Verbal 

Spatial 

Correlation 

0.970 

0.976 

0.961 

These values are even higher than those for the TO, and all 

were significantly different from zero~ 

5.3.2 Supplementary Analyses 

As mentioned above, there were significant differences in the 

characteristics of the two samples which allowed the opportunity to 

compare the stability of the item parameter estimates for each of 

the two test development models. The CTT parameter estimates and 

the IRT final (i.e. rescaled) parameter estimates are in Annex E. 

........ 
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stability of CTT Item Parameter Estimates. In all but one 

case the item facility estimates from the T1 sample were higher 

than those for the TO sample. The two sets of parameters also 

showed a reasonably linear relationship with each other, see Figure 

5-1 below. 

This is as expected, given that the Tl sample scored significantly 

higher on the AGe and the Tl correlates well with the AGe. 

Unf~r.tunately, the behaviour of the item reliabilities is less easy 

to predict, with the majority being lower in the Tl sample, with 

the exception of the Spatial scale where all but one were greater 

in the later sample. The plot of the two sets of estimates is at 

.......... 
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Figure 5-2 below and shows no clear relationship between the two 

sets of estimates. 

0.60 
• 

0.55+ • • • • 
0.50T • • • • • Oo45t • 
0.40 • 4) 

a. • • E 
n2 0.35

T • CI) • ~ .... 0.30 
• 

0.25 1 • 
0.20+ • 
0.15

1 
• 

0.10 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

TO Sample 

Figure 5-2: Plot of Item Reliabilities T1 versus TO 

stability of the IRT Item Parameter Estimates. As mentioned, 

one of the theoretical strengths of IRT is that the item parameter 

estimates are sample free. However, as can be seen in Annex E 

differences in difficulty parameter estimates across the two 

samples ranged from 0.21 to 3.391. There would also appear to be a 

linear relationship between the two sets of estimates as shown in 

Figure 5-3 below. 
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Figure 5-3: Plot of Item Difficulty Parameters TO versus Tl 

Differences in the discrimination parameter estimates were 

smaller and ranged from 0.045 to 0.749, this isn't surprising 

however as these parameters generally have a narrower range than 

the difficulty parametere In this case however, there appears to 

be no relationship between the two sets of parameter estimates (see 

Figure 5-4). 
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Figure 5-4: Plot of Item Discrimination Parameters TO versus Tl 

Despite the apparent differences in the parameter estimates, 

95% confidence intervals based on the standard errors of these 

estimates gave only four difficulty parameter estimates of all of 

the estimates which were different across samplese 

5.4 Chapter Summary 

Two sets of analyses were presented; an analysis of the 

structure of the item set, and a comparison of the CTT and IRT test 

development methodologies. 

The analysis of the structure of the item set showed that a 

three factor structure consisting of scales representing verbal, 
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numeric and spatial ability adequately accounted for the data set 

and that the addition of a scale representing fluid ability, called 

reasoning ability, did not improve the fit of the model to the 

data. 

The comparison of the test development methodologies showed 

that despite different item compositions, both predicted the same 

amount of variance in the external criterion. A comparison of the 

ability estimates provided by the IRT model and simple number right 

score also showed almost identical results. Finally, a comparison 

of item parameter estimates across the two samples showed that the 

CTT parameters varied as expected, given the differences in the 

samples, and that the IRT parameter estimates varied in a similar 

fashion but that these variations were within 95% confidence 

intervals based on the standard errors of the estimates. 

........ 
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CHAPTER 6 

DISCUSSION 

This study was a predominantly practical one; there was a 

requirement to produce a selection test for the Army. This also 

provided the opportunity to examine some methodological issues in 

test development. In particular two fundamental aspects of test 

development; the model of ability underlying the test and the test 

construction theory used, have been examinede 

6.1 Study Findings 

6.1.1 The Model of Intelligence 

The aim of this analysis was to determine if it was necessary 

to include fluid ability as a separate scale to provide an adequate 

measure of general ability in addition to the verbal, numeric, and 

spatial ability scales required for the test development project. 

The place of fluid ability in the group of secondary abilities has 

been well documented, though some more recent work (Undheim and 

Gustafsson, 1987) has provided a new view on this. Rather, fluid 

intel~igence has been seen as possibly a manifestation of general 

ability and not a secondary ability at all. It was hypothesised, 

therefore, that a factor structure consisting of three factors; 

verbal, numeric, and spatial ability, should provide as good an 

account of the data as the same structure with a fourth scale, 

fluid ability. 
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In a departure from the usual research in this area, the 

analyses were conducted at the item level rather than the test 

level. That is, in most previous research it has been usual for 

batteries of tests to be analysed, for example Gustafsson (1984) 

analysed a battery of thirteen ability tests and three standard 

achievement tests, and Undheim and Gustafsson (1987) analysed a 

battery of 26 tests. In the current study it was the items 

comprising the tests that were analysed. 

The results showed quite strong support for the hypothesised 

three factor structure for the item compared with the four factor 

structure. It should be noted, however, that the differences 

evident in the factor analysis were at the item level, that is in 

the item communalities or the amount of information the factor 

structure provided about each item, rather than in the overall fit 

of the two models. The reliability analysis of the scales also 

showed strong support for the three factor model finding that the 

items in the fluid ability scale were equally at home in scales 

related to their content area, that is numeric, verbal or spatial. 

That items traditionally seen as relating to fluid ability 

were shown to be equally useful as items in the other scales 

support the contention that, rather than being a separate secondary 

ability, fluid ability is related to all of the secondaries. The 

ability of the fluid items to contribute to both a separate scale, 

as well as the other scales indicates that the items contain 

variance unique to both. Therefore the results previously 

mentioned (Gustafsson, 1984; Undheim & Gustafsson, 1987) are not 
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surprising as it would be expected that the scales would all 

correlate with the fluid ability scale. 

6.1.2 Test Theory 

Two a priori hypotheses were examined in the area of the test 

theory used to develop the test: First, whether CTT and IRT would 

produce similar estimates of examinee ability, and secondly, 

whether the simple number right score, on an IRT based test, would 

produce the same estimate of examinee ability as the estimates 

yielded by the complete IRT calibration procedure. Due to 

substantive differences in the samples used for the first and 

second test administrations it was also possible to examine one of 

the (claimed) major advantages of IRT, namely the sample-free 

nature of the item parameter estimates. 

The Comparability of CTT and IRT Ability Estimates. The results 

quite clearly supported the hypothesis that, despite differences in 

the item composition of the two tests, both the CTT based test and 

the IRT test would predict the same amount of variance in the 

criterion measure, scores on the current selection test (see Table 

5-4). This is a clear replication of the results of Douglass et al 

(1979) when they compared the Rasch model and CTT. Thus, in terms 

of the external validity of the two tests, as measured in this 

study, there was no difference in the measures provided by the two 

test methodologies. 

Similarity of Ability Estimates. The study also strongly 

supported the second hypothesis that number right scores for the 

~ 
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IRT based test would be very similar to the ability estimates made 

from the full calibration. The correlations between the estimates 

for all three scales were all extremely high (see Table 5-6) and 

both scoring strategies yielded similar concurrent validities with 

the criterion measure (see Table 5-4). These results provide clear 

support for the notion that the more complex IRT ability estimation 

procedure can be adequately approximated by number right score. 

This is based on the idea that unit weights can be used in the 

linear combination of item scores, the differences in item 

discrimination parameters can be ignored, and that because the 

formula for the ability estimate is a non-decreasing function, 

simple number right score will provide an adequate approximation of 

the ability estimate. 

stability of the Item Parameter Estimates. This analysis 

provided mixed results. First, as expected, the CTT item parameter 

estimates showed considerable variation over the two test 

administrations. These changes were in the direction that would be 

predicted, given that the Tl sample was "smarter" on the external 

criterion. That is, the p-values were greater in the second sample 

and, generally, the item reliabilities were reduced as there was 

less variation in the responses of the second group (because the 

items were generally easier for this group there were fewer 

different responses in the second sample). The changes in the p­

values were considerably more linear, and therefore more 

predictable, than the changes in the item reliabilities. The 

parameter estimates provided by the IRT calibration also 

demonstrated considerable differences. But these were within 

confidence intervals based on the standard errors of the parameter 

........ 
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estimates. The differences did, however, follow very similar 

patterns to those seen in the CTT parameter estimates. The changes 

in the b-values were roughly linear and generally these estimates 

were larger for the Tl sample. The a-value estimates, on the 

contrary, showed almost no relationship. 

6.2 Implications of the Findings 

6.2.1 Models of Intelligence 

The fact that the three scales provide as adequate a fit of 

the data as the four factor model indicates that, in practical 

terms, the fluid ability scale contributes little information 

independent of the other secondaries in the model. Thus, to build 

as efficient a test as possible for the present purposes, three 

scales should be included; numeric, verbal and spatial ability. 

In current terms of the structure of intelligence the results 

have provided some support for the theory that fluid ability should 

not be considered a separate secondary ability. Rather it is 

related to all secondary abilities because it is, in fact, a 

manifestation of general ,bility to which all secondary abilities 

are subordinate. 

The results here showed that items traditionally considered to 

be in the domain of fluid ability are equally related to other 

secondary abilities based on their content, that is whether they 

....... 
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are of verbal, spatial or numeric content. Any scale constructed 

containing these items could reasonably be expected to correlate 

with fluid intelligence. While examining this at the test level 

may yield these correlations between the secondaries, including 

fluid ability, examining it at the item level may provide better 

insight. The overlap in items between fluid ability and the other 

secondary abilities examined here may provide an indication of how 

fluid ability is a manifestation of g rather than being a separate 

secondary ability. 

As items which measure fluid intelligence contribute to both a 

fluid ability scale as well as a content related scale, perhaps we 

can conclude that performance on a test item can be conceptualised 

as requiring a content component and an operation component. Thus 

performance on a test item would involve varying levels of both 

components. There could also be some interaction between the 

operation component and the content component. For example, 

performance on an arithmetic item would require operations that are 

highly content-specific, whereas performance on an analogy problem 

would require operations that were more content-independent, 

because the operations required are similar across content types. 

Thus individuals may have different levels of the content 

compon~nt, that is some would have a greater facility with, say, 

arithmetic, which would be tempered by different levels of the 

operation component, that is some would have better general test 

taking skills than others. Individuals with high levels of the 

operation component would be generally good on intelligence type 

tests, they would have high general ability. Similar models of 

........ 
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test items, in terms of components which differentially effect the 

difficulty of the item, have been formulated under the name 

"Component Latent Trait Models" (see, for example, Embretson, 1984; 

Embretson & Wetzel, 1987)e 

This conception of performance on intelligence test items is 

obviously consistent with Spearman's two factor model, that is all 

tests have a common and specific component. It is also compatible 

with the Cattellian models of primary and secondary abilities with 

the difference that fluid ability is made up of content-independent 

items drawn from the range of secondary abilities and therefore the 

secondary abilities are subordinate to fluid ability. Secondary 

ability scales contain items that require content-specific and 

content-independent operations, but that are all within the same 

content area. 

In terms of the cognitive paradigm this concept of item 

performance would mean that instead of looking at item performance 

as a single piece of data, there are the content and operation 

components to be considered and the operation component can be 

broken into operations that were content-specific and those that 

were content-independent. The basic components of information 

processing would effect each separately; for example, cognitive 

speed might be more relevant to the content-independent operations 

than the content-specific operations while the reverse may be true 

for, say, long term memory. As mentioned above, the type of models 

discussed by Embretson (1984) reflect this to some extent. 

........ 
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Thus the concept discussed not only provides a possible 

explanation for the data at hand, but it also appears consistent 

with two of the major paradigms of intelligence; the psychometric 

and the cognitive paradigms. 

6.2.2 Test Theory 

In terms of test theory, the results of the study are more 

practical in their application but no less wide ranging. The 

results have shown that, in an applied test development setting 

with examinees of a general range of abilities and using the types 

of tests one can expect to find in common testing situations there 

are few practical differences between Classical Test Theory and 

Item Response Theory. The two approaches produce tests that yield 

very similar external validities, and their parameter estimates 

behave similarly under conditions of varying the calibration sample 

composition. Finally, it has also been shown that simple number 

right score produces very close approximations to the more complex 

IRT ability estimates. 

The implications of this are that for most test development 

situations the simpler CTT development procedures are probably 

adequate for the task. Certainly the finding with regard to t:~ 1 

closeness of number right scores and the IRT ability estimates is a 

very positive one for the practical test developer. This means 

that in a pencil-and-paper test situation, tests could be developed 

using the sophisticated techniques of IRT but that a simple scoring 

procedure can be used which will give a good approximation of the 

........ 
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estimates that would have been made using the full IRT model. 

Given the high degree of linearity between the two, all that is 

required of the test developer is to develop norm tables that 

equates number right score to the IRT ability estimate. 

One can ask therefore, given the emphasis in the literature 

over the past ten years for IRT over CTT, what are the advantages 

of IRT over CTT? In a practical sense, the only real difference 

offered by IRT would at first appear to be the apparent sample-free 

nature of the item parameter estimates, the ability to provide 

standard errors of the parameter estimates made during the 

estimation procedure and the ability to statistically test the fit 

of items to the model. One could, however, argue about the utility 

of the standard error estimates. Certainly those provided during 

this study by the BILOG implementation of IRT are very wide. 

Moreover in this study they (the standard errors of the estimates) 

allowed large, consistent, differences in parameter estimates to be 

non-significant. 

The advantage provided by IRT lies perhaps in the fact that 

the estimation procedures commonly used can provide standard errors 

of the estimates (made by a test) conditional on the estimated 

ability level. This information, summarised in the Test 

Information Function (TIF), is perhaps the m~~t often overlooked in 

using IRT to develop a test, but may be one of the few advantages 

of IRT over CTT. The CTT analogue of the TIF is the test 

reliability (whether estimated by coefficient alpha or KR-20) which 

provides only a single score as an indicator of the accuracy of the 

estimate of an examinee's ability. Therefore the test developer 

......... 
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using IRT procedures can not only estimate an examinee's ability 

but also gain an indication of the accuracy of the estimate of the 

examinee's ability. 

Although the difference in parameter estimates were not 

significantly different in the purely statistical sense, they were 

certainly large enough to cause concern over the IRT claims of the 

invariance of the item parameter estimates. One is forced to ask 

just how invariant is invariant? 

Certainly the early adherents of IRT, especially proponents of 

the Rasch model, made quite sweeping claims for IRT. Wright and 

Panchapakesan (1969) claim that the outcome of an individual's 

attempt at a test item is " ... the product of the ability of the 

person and the easiness of the item and nothing more!" (p23) which 

is a considerable simplification of the situation, particularly the 

assumptions underlying the model. Even Rasch (1966) gives scant 

recognition to the one assumption that is fundamental to any latent 

trait model, the statistical independence of the items, or in other 

words the dimensionality of the test. 

The mathematical invariance of the item parameter estimates is 

predicated on the dimensionality of the latent space. Early IRT 

proponents took an axiomatic approach to the dimension~~ity issue; 

tests were unidimensional, items which did not fit the model were 

discarded. As Wright and Panchapakesan state "The model assumes 

that all the items used are measuring the same trait." (p25). Thi s 

was the initial concern of the earlier critics of IRT but these 

were largely satisfied by McDonald (1981) when he used the common 
I ~ 
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factor model to provide the basis for the dimensionality 

assumptions required of IRT. 

The model as specified by Lord and Novick (1968), however, 

requires a complete latent space and requires this for all 

populations of interest. Even when this is satisfied, the item 

parameter estimates are sample-free only up a linear transformation 

of the item difficulty and the item discrimination (Stocking & 

Lord, 1982). Thus the dimensionality of the test must be satisfied 

for all possible populations of interest in the first instance, and 

even if this is so, the best one can hope for is a high correlation 

between the two sets of item parameter estimates. 

This high correlation between the two sets of item parameter 

estimates certainly occurred in the data here, but only for the 

item difficulties. The behaviour of the discrimination parameters 

is something of a concern, the apparent lack of relationship 

between the parameter estimates over the two samples being contrary 

to what was expected under the model. Unfortunately the 

limitations of the present study restrict us to simply reporting 

the discrepancy and speculating on the stability of the 

discrimination parameter. One wonders whether this is not an 

indication of support for the Rasch model (or single parameter 

models) over the two parameter model~? 

What is perhaps most interesting is the similarity of the 

behaviour of the "comparable" CTT and IRT parameter estimates, that 

is the p-values and the item difficulty and the item reliabilities 

and the item discrimination. In both cases, the two sets of 
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parameters behaved almost identically. If one of the major 

advantages of IRT over CTT is the sample-free (up to a linear 

transformation) item parameter estimates, yet the CTT parameters 

behave identically, how much of an advantage is provided by the IRT 

procedure? IRT requires fairly strong assumptions be made about 

the data to achieve linearly related item parameter estimates while 

CTT makes no such assumptions and, in this study at least, achieves 

the same result. 

In terms of advantages of IRT over CTT, the quality of the 

information provided by CTT can also be improved. Given that the 

p-values are simply the proportion of examinees correctly 

responding to an item, one can obtain a sample variance for this 

and from this calculate a standard error of the proportion. 

Certainly, this requires that the calibration sample be largely 

representative of the target population, but IRT also requires this 

of its calibration sample, and as shown in this study this is no 

idle requirement. Also, as has been shown above, the item 

parameter estimates for the two models behaved very similarly 

across the different calibration samples. 

6.2.3 Latent Traits versus True Scores 

Despite the apparent differences in the concepts of latent 

traits and true scores, are they really that different? The main 

differences between the two are really to do with the different 

emphases placed on the trait being measured and an individual's 

standing on this trait. 
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The similarities between the true-score based CTT model and 

the latent-trait based IRT model were formalised by Lord and Novick 

(1968). They showed not only the fundamental relationship between 

true scores and latent traits but also that the p-value is directly 

related to the b parameter and that the a parameter is a known 

monotonic increasing function of the biserial correlation between 

the item and the latent trait, which is measured in CTT by the item 

reliability. The similarities observed between the results of the 

two analyses conducted here support this and the work of Douglass 

et al (1979). 

6.3 Improvements to the study 

The concept of content and operation components in test item 

performance requires considerable further investigation. In this 

study only a limited range of secondary abilities were examined and 

the findings could benefit from being able to be generalised across 

a wider range of abilities. In particular only a limited range of 

fluid ability items were included in the study. 

Having examined fluid ability as a secondary ability, and 

finding support for the contention that it may in fact be simply a 

manifestation of general ability (within a hierarchical model), the 

next step would be to test the hierarchical model at the item 

level. The aim in the present study was limited to determining 

whether it was necessary to include fluid ability in a test of 

general ability. Determining the validity of Gustafsson's (1984) 

......... 



95 

unifying model, at the item level, would require a complete 

investigation, but the results of this study indicate that it may 

be a fruitful investigation. 

In general, the limitations to the investigation of the factor 

structure of the model of intelligence are primaril¥ in the range 

of items used and in the need to extend the study to fully examine 

the hierarchical model of intelligence. 

The study provided an applied comparison of the utility of the 

CTT and IRT test development methodologies in a relatively common 

test development situation. Given the similarities found in the 

performance of the two methodologies in this setting, the next step 

would be to broaden the scope of the comparison of the 

methodologies to encompass both a wider range of abilities of 

examinee and a wider range of test types. Although the practical 

similarities between the two have been shown within the usual 

limits of test development, the more refined statistics available 

to the IRT methodology should provide for much better estimation at 

the more extreme limits of testing. 

To adequately test the dimensionality issues raised, it would 

be necessary to compare tests of varying degrees of dimensionality. 

For example, a test could be developed with item loadings at, say, 

0.9 or better, and comparing this with a test that met the 

"standard" factor analysis criteria, that is items loading 0.3 or 

better. These two tests would be compared in terms of their items' 

fit to the IRT model chosen and the stability of their item 

parameter estimates over calibration samples with different 

........ 
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compositions. In this case one would hypothesise that the more 

unidimensional the test, the better the fit to the IRT model and 

the more stable the item parameter estimates. 

Another possible problem that was highlighted in this study 

was the accuracy of the estimates provided by the IRT development 

procedure. The literature has shown that BILOG is one of the 

better implementations of the IRT (Mislevy and Stocking, 1989) 

procedure and that the sample sizes used were adequate for the task 

(Harwell & Janosky, 1991). Despite this, the standard errors 

provided in the estimation of the item parameter estimates were 

such that large, consistent, differences in the estimates were 

ultimately non-significant. This was particularly noticeable for 

the more extreme parameter estimates. Given that this information 

provides one of IRT's main advantages over CTT, it should be 

investigated. 

Finally, one of the main findings of the study was the 

similarity of behaviour of the CTT and IRT parameter estimates 

across different samples. Given the potential importance of this 

finding for the practical test developer this is a finding that 

would be well worth replicating. 

6.4 contributions of the Study 

The primary contribution of this study is to directly compare 

the IRT and CTT test development methodologies in an applied test 

development setting; this is something that has been lacking in t h e 
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literature to date. It has shown that for normal test development 

purposes, there are few differences between the two models and in 

the results of the test they produce. Moreover, it has been shown 

that simple number right scores can provide a very close 

approximation of IRT ability estimates. Thus, a test could be 

developed using the precision of IRT, and then administered with a 

very simple scoring formula, thus reducing the complexity of 

administering the test while retaining the power of the IRT 

development procedure. 

More general questions have been raised about the similarities 

between the two models. Some of the primary advantages of IRT over 

CTT have been shown to not occur in this applied setting. In 

particular the item parameter estimates behaved almost identically 

across two substantively different samples of examinees. 

An examination of the factor structure of the set of items 

used for the test development has yielded some further support for 

the notion that fluid ability is a manifestation of general ability 

rather than being a secondary ability. This remains to be 

conclusively tested, but has provided a different way of looking at 

performance on a test item, and one that appears to be consistent 

with the two major paradigms of intelligence. 

........ 
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ANNEX A 

UNIQUE VARIANCES - DIFFERENT FACTOR MODELS 

Models 

Item 3 4 1 Reject 

1 0.94 1 0.947 * 
2 0.64 1 0.694 
3 0.93 0.99 0.933 * 
4 0.8 1 0.849 * 
5 0.88 0.99 0.908 * 
6 0.92 0.92 0.926 * 
7 0.71 0.61 0.743 
8 0.48 0.92 0.579 
9 0.59 0.75 0.64 
10 0.55 0.84 0.61 
11 0.93 0.92 0.95 * 
12 0.64 0.71 0.69 
13 0.77 0 .. 57 0.8 
14 0.88 0.56 0.9 * 
15 0.84 0.6 0.88 * 
16 0.7 0.93 0.76 
17 0.73 0.63 0.76 
18 0.8 0.74 0083 * 
19 0.59 0.88 0 .. 64 
20 0.57 Oe76 0 .. 63 
21 0.97 0.76 0.98 * 
22 0.9 0.76 0 .. 92 * 
23 0.64 0 .. 81 0.,68 
24 0.83 0.59 0,,86 * 
25 0.55 0 .. 59 0.63 
26 0.44 0.97 0 .. 51 
27 0.39 0.89 0.,48 
28 0051 0.63 0 .. 6 
29 0 .. 57 0.76 0 .. 6 
30 0.71 0.51 0.75 
31 0.79 0.49 0082 
32 0.95 0.5 0 .. 95 * 
33 0.57 0.57 0 .. 64 
34 0 .. 68 0.57 0.75 
35 0.6 0,,71 0 .. 69 
36 0 .. 75 0.75 0 .. 8 
37 0.,41 0.9/ 0.46 
38 0.87 0.53 0.88 * 
39 0.44 0.55 0.52 
40 0.91 0.45 0.92 * 



1 3 

Models 

Item 3 4 1 Reject 

41 0.55 0.79 0.62 
42 0.82 0.44 0.84 * 
43 0.97 0.88 0.97 * 
44 0.87 0.5 0.9 * 
45 1 0.89 1 * 
46 1 0.51 1 * 
47 0.97 0.8 0.97 * 
48 0.9 0.97 0.91 * 
49 0.82 0.84 0.84 * 
50 0.86 1 0.88 * 
51 0.99 1 0.99 * 
52 0.89 0.97 0.9 * 



ITEM NAME 

Q7 
Q9 

Q10 
Q18 
Q19 
Q20 
Q26 
Q29 
Q30 
Q38 
Q39 
Q40 
Q48 
Q49 

ITEM NAME 

Q4 
Q5 
Q8 

Q14 
Q15 
Q16 
Q24 
Q25 
Q28 
Q34 
Q35 
Q36 
Q44 
Q45 
Q47 
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ANNEX B 

CLASSICAL TEST THEORY ITEM STATISTICS - TO 

CLASSICAL ITEM STATISTICS FOR NUMERIC SUBTEST 

NUMBER 
TRIED 

209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209 .. 0 
209.0 
209.0 
209.0 
209.0 

NUMBER ITEM*TEST CORR 
RIGHT P-VALUE LOGIT/1.7 BISERIAL 

152.0 .727 .58 .431 
174.0 .833 .94 .453 
134.0 .641 .34 .596 
179.0 .856 1.05 .472 

91.0 .435 -.15 .589 
137.0 .656 .38 .525 
137.0 .656 .38 .576 
192.0 .919 1.43 .379 

47.0 .225 -.73 .507 
49.0 .234 -.70 .343 
50.0 .239 -.68 .636 
29.0 .139 -1.07 .252 
32.0 .153 -1.01 .299 
53.0 .254 -.64 .395 

CLASSICAL ITEM STATISTICS FOR SPATIAL SUBTEST 

NUMBER 
TRIED 

209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 

NUMBER ITEM*TEST CORR 
RIGHT P-VALUE LOGIT/1.7 BISERIAL 

54.0 .258 -.62 .266 
78 .. 0 .373 -.30 .242 

191.0 .914 1.39 .627 
203.0 .971 2.07 .212 
200.0 .957 1.82 .431 
150.0 .718 .55 .394 
197.0 .943 1.65 .423 
204.0 .. 976 2.18 .643 
182.0 .871 1.12 .559 
160.0 .766 .70 .443 
160.0 .766 .70 .524 
163.0 .780 .74 .352 
156.0 .746 .64 .365 

5.0 .024 -2.18 .032 
85 .. 0 .407 -.22 .017 



ITEM NAME 

Q1 
Q2 
Q3 
Q6 

Q11 
Q12 
Q13 
Q17 
Q21 
Q22 
Q23 
Q27 
Q31 
Q32 
Q33 
Q37 
Q41 
Q42 
Q43 
Q46 
Q50 
Q51 
Q52 

115 

CLASSICAL ITEM STATISTICS FOR VERBAL SUBTEST 

NUMBER 
TRIED 

209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 
209.0 

NUMBER ITEM*TEST CORR 
RIGHT P-VALUE LOGIT/1.7 BISERIAL 

159.0 .761 .68 .225 
156.0 .746 .64 .569 
110.0 .526 .06 .143 
137.0 .656 .38 .209 
165.0 .789 .78 .281 
139.0 .665 .40 .532 
165.0 .789 .78 .397 

76.0 .. 364 -.33 .388 
167.0 .799 .81 .221 
156.0 .. 746 .64 .271 
191.0 0914 1.39 .516 

96.0 .459 -.10 .596 
134.0 .641 .34 .381 

33.0 .158 -.98 .121 
184.0 .. 880 1.17 .668 
181.0 .866 1e10 .569 
166.0 .794 .79 .618 

94.0 .450 -.12 .309 
45.0 ,,215 -076 .142 
98.0 .469 - .. 07 -.030 
88 .. 0 .421 -,,19 .242 
29.0 ,,139 -1.07 .011 

101.0 . 483 -.04 .313 
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ANNEX C 

ITEM RESPONSE THEORY ITEM PARAMETER ESTIMATES - TO 

SUBTEST NUMERIC: ITEM PARAMETERS AFTER CYCLE 12 

ITEM INTERCEPT SLOPE THRESHOLD DISPERSN ASYMP STD 
S.E. S.E. S.E. S.E. S.E. POST RESID 

-------------------------------------------------------------------
Q7 

Q9 

Q10 

Q18 

Q19 

Q20 

Q26 

Q29 

Q30 

Q38 

Q39 

Q40 

Q48 

Q49 

.744 

.136* 

1.217 
.187* 

.587 

.163* 

1.372 
.221* 

-.152 
.128* 

.610 

.150* 

.684 

.172* 

1.685 
.291* 

-.892 
.140* 

-.756 
.114* 

-.960 
.180* 

-1.130 
.142* 

-1.076 
.135* 

-.724 
.124* 

.716 

.197* 

.791 

.236* 

1.137 
.302* 

.836 

.272* 

1.026 
.277* 

1.047 
.243* 

1.263 
.309* 

.669 

.347* 

.698 

.190* 

.395 

.123* 

1.064 
.277* 

.303 

.131* 

.350 

.138* 

.525 

.145* 

-1.040 
.247* 

-1.539 
.341* 

-.517 
.125* 

-1.642 
.382* 

.148 

.138* 

-.583 
.134* 

-.542 
.119* 

-2.518 
.986* 

1.277 
.329* 

1.916 
.598* 

.902 

.210* 

3.732 
1.557* 

3 .. 075 
1.121* 

1.380 
.391* 

1.397 
.384* 

1.264 
.378* 

.880 

.234* 

1.196 
.390* 

.975 

.263* 

.955 

.221* 

.792 

.194* 

1.494 
.775* 

1.432 
.390* 

2.533 
.786* 

.940 

.244* 

3.304 
1.429* 

2.858 
1.130* 

1.905 
.525* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.. 000 

.000* 

.000 

.000* 

.000 

.000* 

.000 

.000* 

.820 

.537 

.983 

1.048 

1.515 

.732 

.424 

1.842 

1.608 

.887 

.405 

1.174 

.801 

.387 

-----------------------------------------------------------------~ 

* STANDARD ERROR 
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SUBTEST SPATIAL : ITEM PARAMETERS AFTER CYCLE 12 

ITEM INTERCEPT SLOPE THRESHOLD DISPERSN ASYMP STD 
S.E. S.E. S.E. S.E. S.E. POST RESID 

-------------------------------~----------------------------------
Q4 -.707 .476 1.486 2.100 .000 1.195 

.131* .157* .471* .691* .000* 

Q5 -.320 .393 .816 2.546 .000 1.339 
.100* .142* .366* .923* .000* 

Q8 2.240 1.297 -1.727 .771 .000 .524 
.527* .541* .400* .322* .000* 

Q14 2.161 .316 -6.835 3.163 .000 1.205 
.286* .309* 6.523* 3.089* .000* 

Q15 2.100 .535 -3.926 1.870 .000 ~693 

.295* 0306* 1.936* 1.070* .000* 

Q16 .682 .580 -1.176 1.725 .000 .562 
.125* .. 191* .343* .568* .000* 

Q24 1.954 .780 -2.505 1.282 .000 1.410 
.287* .289* .788* .475* .000* 

Q25 3.442 1.371 -2.511 .729 .000 .835 
.749* .525* .543* .280* .000* 

Q28 1.717 1.188 -1.445 .842 .000 .694 
.333* .419* .314* .297* .000* 

Q34 ~924 .766 -1.206 1.305 .000 .818 
.. 166* .243* .306* .415* .000* 

Q35 1 .. 251 1 . 323 -.946 .756 .. 000 .653 
.290* .423* .174* .241* .. 000* 

Q36 .875 .509 -1.719 1.966 .000 .944 
.140* .217* .632* .838* .000* 

Q44 .770 .630 -1.222 1.586 .000 .696 
.140* .236* .387* .594* .000* 

Q45 1-2 . 180 .160 13.610 6.243 .000 2.561 
.290* .596* 50.215* 23.207* .000* 

Q47 -.217 .018 11.855 54.646 .000 .499 
.090* .124* 79.632* 369.532* .000* 

-----------------------------------------------------------------
* STANDARD ERROR 
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SUBTEST VERBAL . ITEM PARAMETERS AFTER CYCLE 12 . 

ITEM INTER SLOPE THRESHOLD DISPERSN ASYMP CHISQ DF 
S.E. S.E. S.E. S.E. S.E. (PROB) 

-------------------------------------------------------------------
Ql .730 .339 -2.153 2.952 .000 2.9 5.0 

.102* .128* .793* 1.114* .000* ( .7173) 

Q2 .949 1.040 -.912 .961 .000 2.2 2.0 
.148* .218* .150* .202* .000* ( .3321) 

Q3 .065 .169 -.383 5.930 .000 12.2 6.0 
.083* .092* .520* 3.240* .000* ( .0568) 

Q6 .400 .279 -1.432 3.582 .000 .8 5.0 
.089* .112* .609* 1.437* .000* ( .9758) 

Q11 .847 .388 -2.180 2.574 .000 3.0 4.0 
.109* .137* .736* .909* .000* ( .5572) 

Q12 .593 .938 -.632 1.066 .000 .6 3.0 
.127* .222* .132* .252* .000* ( .8902) 

Q13 .937 .625 -1.499 1.600 .000 6.0 3.0 
.136* .170* .327* .435* .000* ( .1119) 

Q17 -.374 .530 .706 1.887 .000 2.0 4.0 
.094* .122* .227* .434* .000* ( .7311) 

Q21 .839 .227 -3.697 4.408 .000 9.7 5.0 
.105* .117* 1.868* 2.277* .000* ( .0828) 

Q22 .692 .379 -1.828 2.642 .000 1.4 5.0 
.103* .121* .561* .842* .000* ( .9208) 

Q23 1.731 .772 -2.243 1.295 .000 1.8 2.0 
.223* .226* .503* .380* .000* ( .4169) 

Q27 -.095 1.257 .076 .796 .000 4.9 3.0 
.118* .. 287* .099* .182* .000* ( .1813) 

Q31 .392 .471 -.833 2.125 .000 9.0 5.0 
.092* .123* .272* .556* .000* ( .1080) 

Q32 -1.000 .168 5.936 5.937 .000 2.4 4.0 
.113* .102* 3.592* 3.612* .000* ( .6700) 

Q33 2.057 1.545 -1.331 .647 .000 .3 1.0 
.386* .429* .178* .180* .000* ( .6088) 

Q37 1.558 1.033 -1.508 .968 .000 .2 2.0 
.236* .292* .277* .273* .000* ( .9148) 

-----------------------------------------------------------------
(I 
1., 
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III 

SUBTEST VERBAL 

ITEM 

Q41 

Q42 

Q43 

Q46 

Q50 

Q51 

Q52 

INTER 
S.E. 

1.330 
.250* 

-.125 
.087* 

-.775 
.102* 

-.073 
.082* 

-.203 
.089* 

-1.079 
.119* 

-.038 
.088* 
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ITEM PARAMETERS AFTER CYCLE 12 

SLOPE 
S.E. 

1.325 
.354* 

.390 

.115* 

.182 

.116* 

THRESHOLD DISPERSN 
S.E. S.E. 

-1.004 
.145* 

.320 

.239* 

4.259 
2.679* 

.755 

.202* 

2.562 
.757* 

5.496 
3.505* 

.000 11497.952 1******** 

.093* ********* ******** 

.436 

.115* 

.094 

.151* 

.430 

.116* 

.465 2.294 

.242* .607* 

11.481 110.644 
18 .. 360* 17.148* 

.. 088 2.328 

.208* .628* 

ASYMP CHISQ DF 
S. E. (PROB) 

.000 I .0 1.0 

.000* ( .8562) 

.000 I 4.0 4.0 

.000* ( .4045) 

.000 I 2.4 5.0 

.000* ( .7887) 

.000 I 3.1 6.0 

.000* ( .7982) 

.000 I 4.6 4.0 

.000* ( .3338) 

.000 1 2.0 4.0 

.000* ( .7453) 

.000 I 4.7 4.0 

.000* ( .3162) 
-------------------------________________________________________ CID 

* STANDARD ERROR 

********* - means that the statistic could not be calculated. 
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ANNEX D 

Tl ITEM-MODEL FIT STATISTICS: TWO PARAMETER AND RASCH MODELS 

Scale Item 2PL Model Rasch Model 

Numeric 7 0.820 1.160 

9 0.537 0.631 

10 0.983 2.525 

18 1.048 0.862 

20 0.732 0.762 

26 0.424 1.107 

39 0.405 2.077 
• • • • • • • • • • • • • • • • • • • • • • • • • • • ~ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 • • • Q 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • e • • • • • • • • • • • • • • • • • • • • • • • • • • 

Spatial 8 0.524 1.918 

16 0 .. 562 0.359 

25 0.835 1.301 

28 0.694 1.603 

34 0.813 1.233 

35 0.635 1.609 

Note: Standardised residuals are presented for the Numeric and 
Spatial scales while the probabilities associated with the Chi-

li, Square test are presented for the Verbal scale. 
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ANNEX E 

ITEM PARAMETER ESTIMATES FOR BOTH SAMPLES 

CTT Item Parameter Estimates 

Item TO Sample T1 Sample 

Numeric p value rbis p value rbis 

7 0.727 0.436 0.814 0.280 

10 0.641 0.564 0.811 0.551 

19 0.435 0.517 0.544 0.562 

20 0.656 0.582 0.798 0.563 

26 0.656 0.617 0.795 0.468 

30 0.225 0.490 0.461 0.333 

39 0.239 0.558 0.334 0.344 

Alpha = 0.726 Alpha = 0.660 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 • 0 C • e e ~ • • s • • • • • • • • • • • • • • • • • • • • • • • • 

Verbal p value rbis p value rbis 

2 0.746 0.574 0.879 0.383 

12 0.665 0 .. 498 0.771 0.475 

13 0.789 0 .. 363 00849 0.552 

17 0.364 0.348 0.526 0.452 

27 0.459 0.558 0 .. 647 0.496 

33 0.880 0.703 0.919 0.413 

41 0.794 0.599 0.868 0.137 

Alpha = 0.719 Alpha = 0.580 

I 
J 
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CTT Item Parameter Estimates 

Item TO Sample T1 Sample 

Spatial p value rbis p value rbis 

4 0.258 0.392 0.388 0.257 

5 0.373 0.253 0.582 0.388 

16 0.718 0.381 0.841 0.474 

34 0.766 0.419 0.846 0.576 

35 0.766 0.462 0.787 0.484 

36 0.780 0.181 0.776 0.199 

Alpha = 0.586 Alpha = 0.614 

p value - item facility rbis - item-total biserial correlation 
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IRT Item Parameter Estimates 

Item TO Sample T1 Sample 

Numeric a b a b 

7 0.467 -1.469 0.422 -2.432 
0.123 0.410 0.109 0.648 

9 0.585 -2.032 0.826 -2.453 
0.181 0.670 0.256 0.913 

10 0.772 -0.6~0 0.827 -1.659 
0.173 0.220 0.203 0.520 

18 0.528 -2.409 0.263 -5.697 
0.166 0.790 0.150 3.274 

20 0.847 -0.690 0.759 -1.624 
0.191 0.237 0.174 0.461 

26 0.927 -0.665 0.571 -1.849 
0.219 0.251 0.1266 0.451 

39 0.884 1.196 0.323 1.,406 
0.246 0.431 0.086 0 .. 376 

• • • • • • • e • .0. • • ~ • • • e • • • • • • • • • • • • • • • • • • • • • • • • • • ~ • • • • • • e • • • e _ • • • • • • 0 0 e 

Verbal a b a b 

2 0.954 -1,,063 0.457 -3.036 
0.260 0.375 0.113 0.773 

12 0.656 -0 .. 825 0.424 -1.993 
0.175 0,,271 0.100 0.489 

17 0.460 0.,852 0.615 -0.122 
0.123 0.262 0.134 0.117 

23 0.688 -2,,643 0.498 -4.336 
00205 0.854 0,,160 1.434 

27 0.923 0.160 0.,799 -0.685 
0.236 0,,169 0.201 0.239 

37 0.795 -1.954 0.447 -3.280 
0.240 0.672 0.133 0.999 

41 0.639 -1.625 0.233 -5.016 

III 
0.173 0.486 0.102 2.200 
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IRT Item Parameter Estimates 

Item TO Sample T1 Sample 

Spatial a b a b 

8 0.868 -2.404 0.586 -4.150 
0.334 1.094 0.338 2.518 

16 0.371 -1.675 0.460 -2.588 
0.116 0.546 0.107 0.630 

25 0.680 -4.115 0.482 -3.776 
0.283 1.854 0.143 1.162 

28 0.538 -2.378 0.519 -3.454 
0.170 0.859 0.147 1.023 

34 0.609 -1.507 1.066 -1.785 
0 .. 162 0.453 0.321 0.802 

35 1 .. 709 -1.068 0.960 -1.430 
0.785 1.136 0.245 0.523 

a - item discrimination parameter b - item difficulty parameter 

The figure immediately under the parameter estimate is the standard 
error for the estimate .. 
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ANNEX F 

DETAILS OF NOHARM ANALYSIS 

Background 

The problems normally associated with applying factor analysis 

to binary (or dichotomous) data stems from the use of either the 

phi coefficient or the tetrachoric correlation coefficient as the 

bivariate measure of association. Because the range of values that 

can be taken by the phi coefficient is dependent on the p-values of 

the individual items, it was originally thought that applying 

factor analysis to a matrix of phi coefficients would lead to the 

extraction of factors based solely on the difficulty of the items 

in the data sets (McDonald, 1985). The tetrachoric correlation 

coefficient, on the other hand, leads to problems because most 

factor analytic methods require that the correlation matrix be 

Grammian (Christoffersson, 1975), a situation theat does not always 

occur with a matrix of tetrachoric correlation coefficients. 

McDonald (1967) showed, however, that while traditional linear 

factor analytic methods were unsuitable for application to binary 

data, nonlinear methods, particularly those derived from latent 

trait item analysis, were suited to this data. Christoffersson 

(1975) developed a method, based on the work of McDonald (1967), 

for fitting a normal ogive model to a set of item covariances. He 

did this by using generalised least squares to estimate a ten-term 

series approximation to the tetrachoric function which he used to 

express the item covariances (Balla & McDonald, 1985). 
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Fraser (1988) implemented essentially the same method f o r 

fitting the normal ogive model in his program NO HARM , but 

substituted ordinary least squares and only used a three-term 

approximation to the tetrachoric function (Balla & McDonald, 1 985 ). 

Using NOHARM 

The user of NOHARM supplies a matrix of scored item responses 

(i.e., ones or zeros corresponding to either correct or incorrect 

responses respectively) along with various parameters of the model 

to be fitted. Depending on the model to be fitted, the user also 

supplies a variety of information concerning the data supplied and 

the output required, values representing the probability of 

examinees correctly guessing the answer to each item, and a pattern 

matrix to indicate which variables are to load on which factor. 

NOHARM allows the user to constrain parameters of the pattern 

matrix to be equal to zero (i.e., the item does not load on the 

factor), to be equal to another parameter that is to be estimated 

(for example all items loading on the same factor can be estimated 

to have the same loading, and Fraser (1988) uses this method as an 

example of estimatin the rasch model), finally, parameters can be 

estimated independently of all other parameters (this is the 

technique used for estimated general factor analysis models). the 

NOHARM user thus has the flexibility to estimate a br~, ~d range o f 

models simply on the basis of the pattern of coefficients supplie d 

in the pattern matrix. 

t NOHARM supplies three indices of the fit of the model to the data : 

the residual inter-item covariances, the root mean square of the 
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residual covariances (rmsr) , and the unique variances of trhe 

individual items (the additive inverse of the communalities) after 

the model has been estimated. McDonald ( 1981) asserts that the 

dimensionality of a set of variables can be ascertained if the 

residual covariances, after fitting the appropriate model, are 

small. Thus Fraser (1988) provide an approximate value against 

which to test the obtained RMSR, namely four times the reciprocal 

of the sample size. He also states that the individual residual 

covariances can be examined and any patterns of high values taken 

as an indicator that there may be further factors to be extracted 

from the data. Finally, he used in the current study, the unique 

variances give some measure of how well individual items are 

represented by the hypothesized factor structure. 

The Current Analysis 

In the current analysis, a matrix of item responses was 

obtained and scored using an SPSs* program written by the author; 

these item scores were then analyses using NOHARM. Three NOHARM 

analyses were conducted: in the first, a single factor was 

hypothesised with all items loading on the factor and all of the 

loadings estimated independently of each othe. In the second 

analysis three factors were hypothesised; items identified as 

tapping the verbal, numeric and spatial domains were each loaded on 

to one of the factors and their loadi ngs were then estimated 

independently of the other parameters. In the final analysis, four 

factors were hypothesised, the three above and the fourth 

representing the "fluid" ability domain. In this case items from 

the other three domains that were identified as tapping the fluid 

domain (e.g., number analogy itmes as opposed to arithmetic items) 
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were loaded onto the fluid factor and then the loading estimated, 

again independently of other parameters. In no case was a complex 

solution estimated, that is, all itmes were estimated loading onto 

only one factor. 

In the current analysis guessing parameters were set to the inverse 

of the number of response choices and the factors to be extracted 

were uncorrelated. This latter decision was based on the notion 

that the scales in the final test would be able to be used 

independently in a differential prediciton model. In hindsight, it 

would have been useful to also estimate the model allowing the 

factors to be correlated as this less restrictive model would 

probably have yielded a better fit to the data and the utility of 

unciorrelated scales could have been considered in light of a more 

complete set of data. 

As indicated previously, both the RMSR values and the item 

unique variances were examined to determine the fit of the model. 

The RMSR values were all well below Fraser's (1988) suggested data, 

and the examination of the unique vari ances indicated that the 

three factor model fit the data best of all. 
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ANNEX G 

A NOTE ON RELIABILITIES 

It is important to note that the reliability coefficients 

presented in Table 5-2 of this paper represent coefficients 

calculated in the reduced set of items after the conduct of the 

factor analysis (i.e., they are based on a total of 26 items across 

three [or four] scales). these reliabilities then, do not reflect 
I 

II the reliabilities of the final test. In fact the entire project was 

aimed at determining the methodology to be used for developing the 

~ actual test and did not attempt to develop the test as such. 

The aim of presenting the Spearman-Brown values in this table 

was to be able to compare the internal consistency of the scales 

from the different models. Because the four-factor scales were 

subsets of the three-factor scales, it was necessary to adjust 

their reliabilities to account for these differences in scale 

length. 

The final test is likely to have between 60 and 75 item as 

opposed to the 26 items discussed in this thesis. This would yield 

significant improvements in the reliabilities of the scales over 

those presented on table 5-2. If the final test has 75 items (i.e., 

three times the number of items used when the values in Table 5-2 

were calculated), and given the exisiting reliabilities, the 

reliabilities for the three scales would show the increases given 

in Table B-1 below. 
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Table G-l: Estimated Reliabilities of Final Test 

Factor Reliability 

Verbal 

Spatial 

Numerical 

Original 

0.674 

0.610 

0.726 

Final Test 

0.861 

0.826 

0.888 

These Final Test reliabilities can be considered reasonable 

for three scales within a 75 item test and would provide a sound 

~ base for the type of personnel decisions made in the selection 

model used by the Army. 

III 
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