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Abstract 
Regulation of salt gland function in the hatchling green sea turtle Chelonia 
mydas was investigated to test a model proposed for its control. The salt gland 
is an efficient means of extra-renal salt excretion used by marine turtles to 
remove excess salt while minimising associated water loss. The mechanisms 
by which marine turtles regulate the function of the salt gland have not 
previously been investigated and are poorly known. Possible sites of control 
were identified and experiments were conducted which examined these 
possible sites of control. Experimental goals were; 1) to quantify the salt gland 
response to salt-loading and measure a number of blood parameters in 
association with secretory activity, 2) to determine the response of the salt gland 
to exogenous application of possible modifying chemicals in vivo, 3) to 
examine gland histology, reconstruct serial sections and measure morphometry 
of gland components, 4) to quantify changes in capillary blood flow in the salt 
gland following salt-loading and chemical application in vivo, and 5) to 
measure the oxygen consumption of salt gland slices in vitro following 
removal from salt loaded and control animals, as well as measure the effect of 
application of possible secretory modifiers in vitro. 

The salt gland responds rapidly to injection of a salt load greater than 400 - 600 
µmol NaCl.100g BW-1 to produce tears containing approximately 800 - 900 
mmolJ-1 sodium and chloride, with the rate of sodium removal about 800 
µmol Na.100g BW-1.hr-1. Plasma osmolarity and sodium concentration both 
rose following salt loading, but fell as secretory activity by the salt gland 
continued. 

Exogenous application of chemicals w as able to influence the activity of the salt 
gland. Adrenalin and methacholine (a cholinergic agonis t) inhibited salt gland 
activity, while atropine (a cholinergic antagonist) stimulated salt gland activity 
when applied simultaneously with a sub-threshold salt load. The peptide 
arginine vasotocin (A VT) has a transient inhibitory effect on salt gland 
secretion, while atrial natriuretic peptide, vasoactive intestinal peptide, 
neuropeptide Y, and molsidomine (a nitric oxide donor) did not influence 
secretion under the conditions of the experiments. Immunohistochemical 
technique confirmed earlier histochemical evidence of adrenergic innervation 
in salt gland. 

Histological technique showed that salt gland tissue had the characteristic 
arrangement of secretory cells forming tubules which drained into a central 
canal. Three dimensional reconstruction of serial sections revealed a branched 
arrangement of central canals draining into a main collection duct. 
Morphometric analysis of an active and inactive gland showed that blood 
vessel volume was twenty times greater in the active gland, with a slight 
increase in central canal volume, while tubule lumen volume did not differ. 
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Blood flow through salt gland capillaries was measured using coloured 
microspheres injected into t?e systemic circulation. Blood flow through salt 
gland capillaries was about 180 times greater in active glands than in inactive 
glands, indicating that circulation was a site of regulation. Exogenous atropine 
increased blood flow although tears were not produced, and adrenalin and 
methacholine decreased capillary blood flow concomitant with inhibition of 
tear production. 

The oxygen consumption of salt gland slices in vitro was measured as an 
indicator of energy-dependent ion transport. Glands were taken from animals 
which had been salt-loaded as well as those which were not, but there was no 
significant difference in oxygen consumption, with both about 35 µmol 02.g 
wet weight-1.hr-1. Addition of methacholine or adrenalin to the incubation 
medium did not change the respiration rate of salt gland tissue, but did 
influence the respiration of cardiac tissue in the same preparation. It was 
calculated that the measured rate of oxygen consumption was sufficient to fuel 
observed secretion rates in vivo. It did not appear that secretory cells were a 
site of direct regulation of salt gland activity under the experimental 
conditions. 

A revised secretory model is presented which identifies blood circulation 
within the salt gland as being the primary site of control of gland activity. This 
control is exerted by adrenergic and cholinergic nerves to regulate the supply of 
blood, oxygen and metabolic substrates to the secretory tubules and so indirectly 
control the ion transport activity of secretory cells. Two alternative secretory 
models are also given which rely on the conduct of further experiments to 
clarify. These differ in that the presence of cholinergic nerves is questioned and 
it is suggested that the influence of methacholine on gland activity is through 
an indirect and unrelated action. Future directions of research are suggested 
which will increase understanding of salt gland function and further test the 
models presented. 
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CHAPTER 1 
General Introduction 

1.1 OSMOREGULATION IN THE MARINE ENVIRONMENT 

Life in the marine environment presents a considerable osmoregulatory 

challenge to vertebrate animals. The concentration of sodium chloride and 

other salts in the internal fluids of nearly all vertebrates is much lower than 

that found in seawater, so that there is a tendency for ions to enter the body 

and water to be lost to the environment. Ions which enter the body in 

excess of requirements must be removed, and potential water loss associated 

with excretion of excess salt is of major physiological significance. Water 

loss associated with ionoregulation and across the integument means that 

the ocean can be a desiccating environment and so water must be conserved 

by marine vertebrates by utilising mechanisms for concentrated salt 

excretion. 

Marine mammals possess a kidney capable of producing urine in which the 

salt concentration exceeds that of seawater (Schmidt-Nielsen, 1990). 

Consequently, for any given volume of seawater that enters the body, the 

salt acquired can be excreted in an equal or lesser volume of water and no 

net water loss occurs. However, other classes of marine vertebrate such as 

sea turtles do not have a kidney with the mammalian concentrating ability 

(Dantzler, 1976; Evans, 1979; Willoughby and Peaker, 1979). In the absence 

of some extrarenal osmoregulatory mechanism, the ionic concentration of 

body fluids would increase and exceed physiological tolerance, ultimately 

leading to death. 

Various secretory glands have been developed by vertebrates to excrete 

concentrated salt solutions and overcome the problem of water 

conservation. Teleost fish possess chloride transporting proteins on the gill 

epithelium (Mayer-Gostan et al., 1987; Staurnes, 1993), elasmobranchs have 

a rectal salt-secreting gland (Silva et al., 1977; Stoff et al., 1979), marine 

reptiles (sea snakes, sea turtles, marine iguanas and salt water crocodiles) 

utilise a variety of cephalic glands (Schmidt-Nielsen and Fange, 1958; 

Dunson and Dunson, 1974; T,aplin and Grigg, 1981) and marine birds (such 
}2; ,....e+e"'-!:t!!~.-.t.Ar~!_ V'V'\A,.\~""~ 

as the albatrossf\and gulR possess paired nasal glands (Schmidt-Nielsen et al., 

1958). Although there are a number of structural, physiological and 

biochemical differences between the gland types, they all share the common 
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feature of elaborating a solution of sodium, chloride and sometimes 

potassium which has a concentration greater than that of seawater. With 

the exception of the teleost gill, these are collectively referred to as "salt 

glands". Thus, through concentrated salt gland secretions large quantities of 

salt can be removed with little water loss, which could not be achieved 

through the kidney of these vertebrates alone. Considerable research has 

been undertaken into the function of elasmobranch and avian salt glands, 

however, the nature of most reptilian salt glands remains relatively 

unexplored. 

1.2 EVOLUTIONARY RELATIONSHIPS OF ANIMALS POSSESSING SALT 

GLANDS 

Salt glands are possessed by distantly related vertebrate groups. It seems 

likely that the reptilian ancestor of modern birds possessed a nasal salt gland 

because salt glands are not found in any other location in birds, unless 

multiple, convergent evolution of the gland occurred. The location of the 

gland among living reptilian families may be orbital, lingual, sublingual, 
(>. '<) I (, I t)_ 

nasal or premaxillary (Figure l.~. The evolutionary history of reptilian salt 

glands is unclear because of the variety of cranial locations in which they are 

found. Marine turtles (chelonians), sea snakes and crocodilians must have 

independently evolved different non-nasal salt glands which enabled them 

to osmoregulate in a marine environment. Nasal salt glands may be 

unsuitable for a marine existence because the external nares must be closed 

when diving, hence preventing secretion of fluid through the nostrils. 

However, secretions from orbital glands can be flushed away with water 

when diving and oral glands can be flushed with water, as the glottis 

prevents water passage into the digestive system. Terrestrial lizards cannot 

flush glands with water, so salt glands which empty into the nasal cavity are 

most suitable because secretions can be easily expelled by exhaling. These 

differences in gland location strongly suggest that avian and reptilian salt 

glands are not homologous structures but have an analogous function. The 

nasal salt glands of birds show many structural similarities to the reptilian 

cranial salt glands, despite differences in embryological origin (Schmidt

Nielsen, 1960). The rectal gland of elasmobranchs shows many similarities 

to avian and reptilian salt glands in the secretory role that it plays. It is 

important to be aware that physiological and biochemical mechanisms 

operating in the avian and elasmobranch salt gland may bear little 

resemblance to those yet to be elucidated in the reptilian salt gland because 

of likely differences in evolutionary development of the glands. However, 
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important clues may be gained from a comparative examination of the 

mechanisms operating for elaborating concentrated salt solutions. 

1.3 PHYLOGENETIC SIGNIFICANCE OF THE CHELONIAN SALT GLAND 

Chelonians possess skull morphological characters not found in any other 

living reptile, bird or mammal (Goin et al., 1978). The Cotylosauria ("Stem 

reptiles") from the Upper Carboniferous period 310 million years ago also 

possessed these characteristics and it is thought that the turtles probably 

represent the most ancient and continuous link with these reptilian 

ancestors (Bellairs and Attridge, 1975). From the Cotylosauria arose all 

reptiles, birds and mammals, both living and extinct, but in these other 

animals the characteristic skull morphological features have been lost. The 

sea turtles are thus members of an order that is in some ways most likely to 

reflect the ancestral state of all living reptiles and birds. In comparison to 

other vertebrates, the salt glands of sea turtles have received very little 

attention since their discovery and they may reveal information regarding 

early vertebrate osmoregulatory mechanisms. 

1.4 THE GREEN SEA TURTLE, CHELONIA MYDAS 

The green sea turtle, Chelonia mydas is a species of turtle which lives in 

tropical and subtropical seas throughout the world with large populations 

around the coast of Queensland, Australia (Limpus and Reed, 1985). The 

turtles lay eggs on coastal and island beaches, but otherwise spend their 

entire lives at sea, migrating between feeding and breeding areas from time 

to time. Hatchlings are primarily carnivorous but adults are herbivorous; 

the preferred diet changes sometime during the juvenile years but the exact 

age is unknown (Bjorndal, 1985). The green turtle is a suitable subject for 

investigation of reptilian salt glands, as they possess functional salt glands at 

hatching1 always remain in a marine environment (unlike the estuarine 

turtle and salt water crocodile) and exist in reasonably large populations in 

Australian waters. Access to adult turtles as experimental animals is 

restricted, as they are protected in Australia, difficult to catch and difficult to 

handle because of their large size. However, the hatchling turtles are more 

suitable as experimental subjects because they hatch on land and are easily 

collected. Mortality rate of hatchling turtles is extremely high, primarily 

due to predation in waters close to shore (Bustard, 1970), so the impact on 

populations of collection of hatchings is much less than collection of adults. 

Thus for both practical and conservation reasons, investigations into the 
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function and regulation of salt gland of Chelonia mydas in this thesis used 

hatchlings as the experimental subject. 

The mechanisms of control of chelonian salt glands are not known, but 

comparative information provides a useful background from which to 

consider likely possibilities worthy of investigation. Structural features, 

nervous and endocrine influences are important indicators of possible 

mechanisms of regulation. Comparative data on these features as well as 

information known about sea turtle salt glands are important to form 

hypotheses about regulation of the chelonian salt gland. The rest of this 

review will describe the information currently known about activity, 

structure and modifiers of the salt gland so that a model may be proposed 

for experimental investigation of regulation of the hatchling green turtle 

salt gland. 

1.5 COiv1PARATIVE SALT GLAND ACTIVITY 

1.5.1 Reptiles 

The salt gland of sea turtles was first identified by Schmidt-Nielsen & Fange 

(1958) as a lachrymal gland located in the orbit behind each eye with a main 

secretory duct opening onto the posterior corner of the eyelid (Figure l.la). 

Secretion can be experimentally initiated in animals with an injected 

sodium chloride load. Increase in plasma sodium concentration appears to 

be the critical factor in initiating secretion, as increase in plasma osmolarity 

alone by sucrose injection is not effective (Marshall and Cooper, 1988), nor is 

injection of potassium chloride. The osmotic concentration of tears is 

approximately twice that of seawater and tears are composed almost entirely 

of sodium and chloride with a small amount of potassium present. The 

rate of tear production ranges from about 6 to a maximum of 5600 

µl. lOOg-1...hrl in adults and hatchlings respectively (Prange and Greenwald, 

1980; Marshall and Cooper, 1988). 

A net water gain can be achieved from ingestion of seawater, as the salt 

contained in any given volume can be excreted by the salt gland in a lesser 

volume of fluid. This net water gain can be used to satisfy physiological 

water requirements such as the removal of nitrogenous wastes via the 

unne. Unfed green (Chelonia mydas) and loggerhead (Caretta caretta) 

turtle hatchlings have been observed to gain weight over several days 

through drinking seawater in response to dehydration (Bennett et al., 1986; 

Marshall and Cooper, 1988). 
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The salt glands of different reptiles produce secretions which vary 1n 

osmotic concentration and the major salts produced. This difference 1n 

ionic composition of secretions is probably largely due to differences 1n 

dietary and environmental ionic composition as well as access to fresh 

water. The ratio of sodium to potassium in secretions from some 

herbivorous lizards approaches 1:100 (Minnich, 1979), whereas the ratio in 

sea turtles is approximately 30:1 (Marshall and Cooper, 1988) reflecting the 

ratio of these ions encountered in the food and the environment. Other 

reptiles demonstrate abilities to concentrate different ions between that of 

the herbivorous lizards and the marine turtles although the concentration 

of the primary ions excreted is always higher than in the plasma. 

There are several species of entirely marine snakes, the most studied of 

which are probably the yellow banded (Laticauda semifasciata) and yellow 

bellied (Pelamis platurus) sea snakes. There was an initial confusion as to 

the identity of the salt glands of these snakes, but it subsequently became 

apparent that they possessed modified lingual or sublingual poison or 

salivary glands which served this function (Figure l.lc). The salt secreting 

ability of sea snakes is not great, ranging from about 30 to 165 µmol 

Na.lOOg-1.hr-1 (Dunson and Dunson, 1974) at a concentration of 400 to 900 

mmol.1-1 NaCl. 

A salt secreting gland in crocodiles was first positively identified in the 

estuarine crocodile Crocodilus porosus (Taplin and Grigg, 1981). It is a 

modified lingual salivary gland with many pores which open onto the 

surface of the tongue (Figure l.ld). This permits animals to survive along 

the salinity gradients found in the estuarine and tidal rivers where many 

crocodiles live, as well as enabling water conservation during the dry 

season. 

1.5.2 Birds 

Although the nasal gland of marine birds had been described earlier, it was 

not understood to have a salt secreting function until secretions from the 

double crested cormorant, (Phalocrocorax auritus) were analysed by 

Schmidt-Nielsen, Jorgensen and Osaki (1958). They found a secreted 

solution containing about 520 mmol.1-1 sodium with an approximately 

equal amount of chloride present. It was subsequently shown that marine 

birds could be stimulated to secrete by stomach loading or injection with 
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seawater and were capable of secreting the salt from large seawater loads. 

The black-backed gull (Larus marinus) secreted a load of 10°/o of its total 

bodyweight in about 3 hours, commencing minutes after loading and at 

rates from 600 to 2200 µl.lOOg- 1.hrl containing up to 900 mmolJ-1 sodium 

(Schmidt-Nielsen, 1960). The concentration of sodium in the secretion of 

other marine birds ranges from 500 to 1100 mmol.1-1 at rates from 168 to 

1362 µl.lOOg-1.hrl (Skadhauge, 1981). In those instances where both sodium 

concentration and rate of fluid production were measured, total sodium 

secretion rates ranged from 122 to 1067 µmol Na.lOOg-1.hr-1. It was 

subsequently found that non-marine birds which had marine ancestors 
(i\ya,.~ flo.nrYw,cu\n,o~ 

(such as the Pekin c:Iuck) possessed an atrophied gland which could be 
I\ 

stimulated to hypertrophy and become fully functional if animals were 

given 1 to 3°/o salt water to drink (Ellis et al., 1963; Schmidt-Nielsen and 

Kim, 1964). The process of fully adapting to salt takes approximately two 

weeks, during which time changes in gland structure occur with an increase 

in gland size. The significant morphological and biochemical changes 

which take place include differentiation of cell types, formation of a 

branched duct arrangement and specialisation of secretory cell membranes 

(Ellis et al., 1963; Ernst and Ellis, 1969; Ernst and Mills, 1977). 

Secretion by the avian salt gland is initiated by an increase 1n plasma 

sodium as well as an increase in total plasma osmolarity by sucrose infusion 

(Schmidt-Nielsen et al., 1958; Banwell et al., 1972) and is detected by 

osmoreceptors in the heart or great blood vessels. The relationship between 

salt gland secretion, extracellular fluid tonicity and extracellular fluid 

volume is complex and has been extensively reviewed (Simon, 1982; 

Gerstberger and Gray, 1993). 

1.5.3 Elasmobranchs 

The rectal gland of elasmobranchs responds to an increase in the volume of 

the extracellular fluid to produce a secretion of approximately 500 mmol.r' 

sodium chloride which is isosmotic with plasma but does not contain the 

high concentration of urea (approximately 300 mM) found in the plasma 

(Silva et al., 1990). The absence of urea permits sodium and chloride to 

comprise almost all of the osmotic pressure of the solution and thereby 

exceed the concentration of these ions found in the plasma. Secretion rates 

have been measured at 190 µl.lOOg-1.hr-1 with a rate of sodium removal of 

approximately 100 µmol Na.lOOg-1.hrl from the spiny dogfish, Squalus 

acanthias (Burger and Hess, 1960). 



1.6 SALT GLAND STRUCTURE 

1.6.1 Macroscopic structure 

7 

The salt glands of birds and reptiles show a large number of common 

structural features at both macroscopic and microscopic level. All have an 

arrangement of blind ended secretory tubules emptying into a series of 

progressively larger ducts (central canals) which then drain into the main 

collecting duct and to the external environment. Avian salt glands are 

situated in or around the orbit (Figure 1.2) and empty into the nasal cavity 

and out the external nares or along the internal nares to the tip of the beak 

(Peaker and Linzell, 1975). Reptilian salt glands empty into the nasal cavity 

(lizards), posterior corner of the eye (chelonians), or mouth (sea snakes and 

crocodiles). There appear to be different cell types present along the duct 

network (Schmidt-Nielsen and Fange, 1958; Marshall, 1989), possibly 

contributing to the concentration of secretions. Unlike birds and turtles, the 

salt glands of lizards and sea snakes are not lobular, but they do retain the 

organisation of many branched secretory tubules which drain into collecting 

ducts and then an excretory duct (Dunson et al., 1971; Minnich, 1979; Barnitt 

and Goertmiller, 1985). Crocodiles possess salt glands which show the same 

basic structural features as those in birds and turtles, but about 30 to 40 

separate, small multilobular glands open onto the surface of the tongue 

(Taplin and Grigg, 1981; Franklin and Grigg, 1993). 

1.6.2 Microscopic structure and cellular histochemistry. 

The microscopic structure of avian and reptilian salt glands also show many 

similarities. The histochemical and ultrastructural features of the avian 

gland have been extensively reviewed by Gerstberger and Gray (1993) and 

will be briefly described here. In the individual secretory tubules, principal 

secretory cells are arranged radially around a central lumen, with peripheral 

cells at the blind ends (Ernst and Ellis, 1969). Peripheral cells are smaller, 

undifferentiated and do not appear to contribute significantly to the 

secretory process. Avian principal secretory cells show extensively folded 

basal and lateral cell membranes, which interdigitate and greatly increase 

the surface area of the cell. These extensive foldings possess many 

mitochondria and form· many intracellular and extracellular compartments, 

features present only in birds adapted to salt water. The apical surface of the 

cells form the walls of the tubule lumen and many small microvilli are 

apparent. The lateral surfaces of principal cells form junctions at the lumen 

which appear to be "leaky" (Ellis et al., 1977) and so form an extensive 
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intercellular channel which may permit fluid movement between cells and 

into the tubule lumen. 

Histochemical staining of principal secretory cells indicates a high 

phospholipid, succinic dehydrogenase and cytochrome oxidase content, as 

well as a high level of Na-K-ATPase activity (Ellis et al., 1963; Ernst and 

Ellis, 1969), suggestive of a major ion transport function. In contrast, 

peripheral cells are small, without folded membranes, possess few 

mitochondria and have low Na-K-ATPase activity. As salt adaption takes 

place, these cells divide and differentiate to form the principal cells as 

tubules increase in length and diameter. 

The central canals and main collection ducts have multi-layered epithelia 

composed of small flat cells and large cylindrical cells with folded lateral 

surfaces, apical microvilli and other features which suggest that the ducts 

may also have a transport role in concentrating primary secretions from the 

secretory tubules (Marshall et al., 1987). 

The salt glands of all reptiles so far examined have a micro structure very 

similar to the avian salt gland (Figure 1.3). Principal secretory cells are 

found along the length of secretory tubules and show extensive folding of 

the lateral membrane, although the basal membrane remains relatively 

unfolded (Abel and Ellis, 1966; Dunson et al., 1971; Lemire et al., 1972; Taplin 

and Grigg, 1981; Franklin and Grigg, 1993). Many mitochondria are present 

and the level of Na-K-ATPase and oxidative enzyme activity is very high 

(Abel and Ellis, 1966; Lemire et al., 1972). The infolding of lateral 

membranes differs slightly from the avian gland in that the space between 

cells is greater and interdigitation between neighbouring cells is not as 

extensive (Peaker and Linzell, 1975; Marshall, 1989). Unlike the avian 

gland, the intercellular space formed between adjacent lateral membranes of 

cells is filled with a mucopolysaccharide (Ellis and Abel, 1964). Apical and 

lateral membrane junctions join the cells in a manner similar to the avian 

gland. Small peripheral cells are found at the blind tubule ends which are 

similar in appearance to avian peripheral cells. The duct system appears 

stratified in the central canals, secondary and main ducts with the presence 

of wide intercellular spaces between large mucocytes (Marshall, 1989). It has 

been proposed that this arrangement serves an ion transport function in 

concentrating the glandular secretion as it travels down the ducts (Marshall 

et al., 1987). The estuarine diamond-back terrapin Malaclemys terrapin 
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shows similar cellular arrangement although salt secreting ability 1s 

substantially less than the marine turtle (Dunson, 1970; Cowan, 1971). 

Although the rectal gland of elasmobranchs has a more simple structure it 

nevertheless has many of the characteristic features described. The rectal 

gland of the dogfish Squalus acanthias has a single central canal which runs 

the length of the gland, with numerous secretory tubules arranged radially 

around and emptying into it. Secretory cells show folding of the basal and 

lateral membranes and have intercellular junctions similar to those in the 

avian gland (Bulger, 1965; Stoff et al., 1979). The elasmobranch, avian and 

chelonian salt glands appear to show a clear example of convergent 

anatomy with independent evolution of similar salt-secreting structures. 

1.7 ENDOCRINE MODIFIERS OF SALT GLAND ACTMTY 

A number of compounds have been reported to have some activity in 

controi of salt glands in various animal species but have rarely been 

investigated in reptiles, particularly the chelonians. Comparative data may 

provide useful clues about possible control mechanisms operating in 

Chelonia mydas. Extensive discussion of the role of hormones on salt gland 

function can be found in reviews by Gerstberger and Gray (1993) and Peaker 

and Linzell (1975). A summary of hormone effects and the experimental 

conditions employed is presented in Table 1.1. 

1.7.1 Steroid hormones 

Early investigations into the role of hormones in salt gland function 

primarily focussed on aldosterone, cort!f?sterone and the effect of 
~':'.'A4,, k~th" ~ ~s 

adrenalectomy on the domestic -due ~ Holmes et al., 1961; Phillips et al., 

1961; Holmes et al., 1963). It is very difficult to identify the specific actions of 

the adrenal hormones on any particular gland without measuring and 

understanding the broader role they play, as they influence many 

physiological systems. Later experiments demonstrated that the effect of 

adrenalectomy on salt gland function was short-lived, with normal 

function resuming in seven days, provided animals were force-fed and kept 

well hydrated. Other evidence showed that the action of corticosteroids on 

the avian salt gland actually resulted from interference with normal cardiac 

function and prevented the increase in blood flow that the gland required 

for secretory activity (Butler, 1984; Butler, 1987). This led to the conclusion 

that there was no direct influence of steroids on salt gland activity, but 

through their numerous other actions, they played a permissive role 
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necessary for maintenance of normal function. Certainly the steroid 

influence on protein synthesis would be expected to play a major role in the 

adaptive process during hypertrophy of the avian salt gland (Peaker and 

Linzell, 1975). 

The action of steroid hormones on reptilian salt glands is likely to be 

similar. Holmes and McBean (1964) investigated the action of 

corticosterone on salt gland activity in hatchling C. mydas by administering 

amphenone B to chemically simulate adrenalectomy. Following 

amphenone B treatment, the salt gland response to a salt-load was 

diminished and replacement therapy with corticosterone restored the 

response to control levels. However, there was no enhancement of the 

secretory response by corticosterone in the absence of amphenone B 

treatment, and secretion following a salt-load still occurred despite injection 

with amphenone B, at about 50°/o of control rates. Effects on blood flow or 

cardiac function were not measured. In any case, no direct effect on salt 

gland activity had been demonstrated and so it is likely that steroids in the 

turtle play a permissive role much the same as in the bird. It would be 

interesting to repeat the study of Holmes and McBean with normal animals, 

as the hatchlings that they used were extremely small for their age. They 

weighed only 50 to 60 g at six months of age compared with a normal weight 

of one to two kilograms at eight months (Wood and Wood, 1993). Clearly 

some factor must have retarded their development and may have been 

associated with abnormal adrenocortical function. 

The action of steroids on salt glands of desert dwelling lizards is probably 

more complex, as there appears to be some involvement with the ability of 

these animals to regulate the cation and anion ratios in secretion. 

Adrenalectomy resulted in an elevated sodium concentration in salt gland 

secretions of the desert iguana, Dipsosaurus dorsalis, which was reversed by 

addition of aldosterone (Templeton et al., 1972). Aldosterone in intact 

animals reduced the sodium concentration, but potassium concentration 

was unaffected. Mineralocorticoids were not capable of inducing salt gland 

secretion directly. It is possible that aldosterone acts to reduce sodium 

excretion by the salt gland so that potassium is preferentially secreted, 

although there is currently no evidence to support this suggestion. 

However, such a function would be consistent with the anti-natriuretic 

action of aldosterone on the kidney. 
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In the animals examined, steroid hormones apparently have a role in the 

long term regulation of salt glands to prepare them for activity, but they are 

not involved in direct stimulation or inhibition of secretion, with the 

possible exception of aldosterone in the desert iguana. 

1.7.2 Arginine vasotocin 

Arginine vasotocin (A VT) 1s a highly conserved peptide found in many 

vertebrate groups with a variety of actions on osmoregulatory organs, 

particularly the kidney. A VT is the only hormone reported to have 

initiated avian salt gland secretion in the absence of a salt-load (Peaker, 1971) 

although the secretion was slow, with an osmotic concentration lower than 

that normally following a salt-load. There seems to be a complex 

interaction with renal parameters affecting homeostasis which may well 

lead to changes in salt gland activity via indirect means such as changing 

plasma sodium concentration. A VT receptors are not detectable in the salt 

gland itself (Keil et al., 1990) and high leveis of A VT can be detected in the 

blood both when the gland is active and inactive (Mohring et al., 1980; 

Gerstberger and Gray, 1993), so it appears unlikely that stimulation reported 

by Peaker (1971) was a direct effect. 

A VT influences renal activity in reptiles also (Butler, 1972), but its effect on 

salt gland activity has not been investigated. An increase in circulating 

A VT levels is seen during nesting of sea turtles (Figler et al., 1989) and is 

believed to stimulate egg laying (Owens and Morris, 1985). Tear samples 

collected from nesting Chelonia 1nydas during the period of egg laying 

showed that tear ionic concentrations were much lower than normal and 

were similar to plasma levels (Cooper, unpublished observations). The 

tears with a low ionic concentration produced by many nesting females may 

be a side effect of the high circulating levels of A VT, in a similar m anner to 

that seen by Peaker (1971) in the goose. However, no studies have 

investigated this observation or determined whether there is a direct effect 

of A VT on salt gland function of reptiles. 

1.7.3 Atrial natriuretic peptide 

Atrial natriuretic peptide (ANP or ANF) acts on a number of vertebrate 

osmoregulatory organs where it generally causes increased diuresis and 

na tri uresis ( Oshima et al., 1984; Keil et al., 1990; Solomon et al., 1992; 

Gunning et al., 1993; Uva et al., 1993). The peptide has been detected 

immunohistochemically in avian salt gland (Lange et al., 1989). Infusion of 
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ANP briefly enhances the response of secreting glands to a salt-load in ducks 

(Schutz and Gerstberger, 1990) by binding to receptors distributed 

throughout the secretory tissue. Circulating levels of ANP increase 

significantly during hypertonic saline infusion (Gray, 1994). However, 

despite these circumstantial findings, the precise role played by ANP 

remains unclear. 

Infusion of ANP will initiate chloride secretion by the dogfish rectal salt 

gland (Solomon et al., 1985; Solomon et al., 1992; Gunning et al., 1993), in 

which it has been shown to stimulate the release of vasoactive intestinal 

peptide (VIP) from neural stores within the gland to increase gland activity 

(Silva et al., 1987). 

No studies have been conducted to investigate the role or activity of ANP in 

reptiles. 

1.8 NEURAL MODIFIERS OF SALT GLAND ACTIVITY 

The rapid activation of the avian and reptilian salt glands following a salt

load (Schmidt-Nielsen et al., 1958; Marshall and Cooper, 1988) suggests 

neural initiation of secretion. Exocrine glands are commonly under neural 

control, with antagonistic sympathetic (adrenergic) and parasympathetic 

( cholinergic) innervation serving to inhibit and stimulate the secretory 

response respectively (Eckert et al., 1988; Withers, 1992). In addition, a 

number of neuropeptides have been discovered which are manufactured or 

stored in peptidergic nerve terminals for release in response to neural 

stimulation to affect the target tissue. There may be a co-release of classical 

neurotransmitters such as adrenalin and acetylcholine with these 

neuropeptides to finely regulate organ function. A summary of neural 

influences on salt gland function is presented in Table 1.2. 

1.8.1 Sympathetic and parasympathetic influence on the salt gland 

The demonstration that injection of acetylcholine or methacholine (a 

cholinergic agonist) stimulated salt gland secretion in the herring gull Larus 

argentatus (Fange et al., 1958a) and the finding that anaesthetics suppress 

secretory activity indicated the importance of nervous control (Schmidt

Nielsen, 1960). As a consequence of these findings, extensive investigations 

were carried out into the type of innervation present in the avian salt gland. 

Histochemical studies showed the presence of adrenergic and cholinergic 

innervation associated with both secretory tubules and vascular elements 



13 

of salt glands in birds which had been acclimated to salt water (Ellis et al., 

1963; Ash et al., 1969; Haase and Fourman, 1970; Peaker and Linzell, 1975). 

Another study found that acetylcholine led to vasodilation and adrenalin 

caused vasoconstriction of blood vessels supplying the avian salt gland 

(Fange et al., 1963). 

The anterior branch of the seventh cranial nerve is considered to be the 

secretory nerve in birds (Ash et al., 1969; Cottle and Pearce, 1970) carrying 

mainly parasympathetic innervation, a feature characteristic of exocrine 

glands. Cholinergic innervation was examined using histochemical 

techniques for detecting the presence of acetylcholinesterase. This revealed 

stained elements which ran between the columns of secreting cells and also 

along the walls of the ducts, as well as elements in the interlobular, 

intralobular, peritubular connective tissue and endothelial cells of 

glandular capillaries (Ellis et al., 1963; Ash et al., 1966; Ash et al., 1969). 

These features are absent or greatly diminished in birds not adapted to salt 

water. Sympathetic adrenergic innervation was also revealed (Haase and 

Fourman, 1970) with a pattern of adrenergic nerve distribution which 

closely matched that of cholinergic fibres. In the goose most adrenergic 

fibres were present in the walls of blood vessels, suggesting a major role in 

the regulation of circulation (Peaker and Linzell, 1975). Other fibres passed 

along the secretory tubules, although it is unclear what role this 

innervation plays. 

The first account of salt glands in a marine turtle by Schmidt-Nielsen and 

Fange (1958) reported that salt gland secretion could be initiated by injection 
~ 

of 10 mg.kg bodyweight-I methacholine. Methacholine also stimulates salt 

gland function (Dunson, 1970) and increased oxygen consumption of 

dissociated salt gland cells in vitro (Shuttleworth and Thompson, 1987) of 

the euryhaline diamondback terrapin, Malaclemys terrapin. Methacholine 
~~~'fY>"~ ~.,.;:a~4vt 

will also stimulate salt gland secretion in the marine 1g ana ,..( chmidt-
,CP~'' '4; to CM:'e> c' 

Nielsen and Fange, 1958) and estuarine croco1le"( aylor et al., 1995). These 

studies suggested that there might be a role for cholinergic innervation in 

control of the sea turtle salt gland although this has received relatively little 

attention, with the only study conducted being that of Abel and Ellis (1966). 

Using histochemical localisation of butyrylcholinesterase, they identified 

cholinergic nerve fibres which ramified through the peritubular connective 

tissue. Butyrylcholinesterase is a catabolic enzyme which will degrade both 

butyrylcholine and acetylcholine, but it is generally found associated with 

¥~v-As~'o~...Jt..-~\7, -~~"-*" ~t'tl~ ~$~ 11"':) 0~~." 
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acetylcholinergic neurons, particularly in the lower vertebrates (Cooper et 

al., 1991). Histochemical localisation of monoamine oxidase indicated the 

presence of putative adrenergic fibres which appeared to be restricted to the 

perilobular connective tissue. Abel and Ellis (1966) suggested that 

cholinergic innervation affected the interlobular arteries to influence blood 

flow to the gland, but the role of adrenergic innervation was unclear. 

However, cholinergic and adrenergic receptors have not yet been 

demonstrated in the gland, nor has there been immunohistochemical 

evidence. A recent study examining innervation of the lachrymal gland in 

the estuarine diamondback terrapin, Malaclemys terrapin failed to show any 

presence of cholinergic innervation using immunohistochemical 

techniques (Belfry and Cowan, 1995). Adrenergic innervation was shown in 

association with blood vessels in the gland. There is some question as to the 

precise function of the lachrymal gland in Malaclemys (Cowan, 1981; 

Cowan, 1990) with the possibility that it performs other activities not related 

to osmoregulation. It is possible therefore that its structure and control 

differ from the salt glands of marine turtles. 

It has been widely assumed that the neural control of secretion in marine 

turtles was similar to that of marine birds, with cholinergic innervation 

initiating and maintaining gland secretion. However, the report by 

Schmidt-Nielsen and Fange (1958) remains the only instance where 

cholinergic stimulation has been investigated in a strictly marine turtle. 

The role of adrenergic stimulation on salt gland activity has never been 

investigated in marine turtles. Thus the precise nature of neural influences 

on salt gland function in turtles is unclear and requires further 

investigation. 

1.8.2 Nitric oxide influence 

Some exocrine glands such as mammalian salivary glands are under the 

control of nitric oxide-containing nerves (Edwards and Garrett, 1993; Rand 

and Li, 1995). Nitric oxide (NO) is formed in the nerves by neuronal nitric 

oxide synthase and is generally associated with a relaxation of blood vessel 

musculature resulting in vasodilation and increased blood flow (Edwards 

and Garrett, 1993; Umans and Levi, 1995). A recent study reported 

histological evidence for the presence of non-adrenergic, non-cholinergic 

(NANC) innervation in the avian salt gland which was proposed to be 

nitric oxide innervation. The nerve fibres appeared to be close to secretory 

tubules and arterioles which suggested that nitric oxide innervation may be 
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involved in regulation of the secretory response of the salt gland (Hiibschle 

et al., 1995). It remains to be seen whether nitrergic nerves exert significant 

or minor control over avian salt gland function. Any potential role of NO 

has not been determined in regulating any reptilian salt gland and should 

be examined. 

1.8.3 Vasoactive intestinal peptide 

Vasoactive Intestinal Peptide (VIP) appears to play an important role in the 

secretory function of a number of exocrine glands. VIP has been identified 
$(1 ....J.A.1,. 5(!a-. ... \...\,..) 

immunohistochemically in the dogfish~ rectal gland (Holmgren and 

Nilsson, 1983; Chipkin et al., 1988), as well as salivary glands in the cat, rat, 

dog and human (Shimizu and Taira, 1979; Lundberg et al., 1980; Uddman et 

al., 1980; Johansson and Lundberg, 1981). VIP is co-released from nerve 

terminals and acts cooperatively with acetylcholine to regulate blood flow 

and secretion in cat salivary gland (Lundberg et al., 1981a; Lundberg et al., 

1981b). With the many functional similarities of salt glands to other 

exocrine glands, it is not surprising that several workers (Lowy et al., 1987; 

Gerstberger, 1988; Gerstberger et al., 1988) subsequently identified a 

stimulatory role of VIP in the avian salt gland. Current evidence suggests 

that VIP has a vasodilatory effect in the avian salt gland, analogous to that 

in the cat salivary gland, although the precise mechanism of action is not 

yet established (Gerstberger and Gray, 1993). In addition, experiments 

conducted on preparations of dissociated salt gland cells showed that VIP 

stimulated chloride secretion via an increased phosphorylation of cyclic 

AMP (Torchia et al., 1992). 

The role of VIP in the elasmobranch rectal gland has been examined both 

immunohistochemically and physiologically. VIP immunoreactive fibres 

surround the circumference of the gland and penetrate the connective 

tissue between secretory tubules (Chipkin et al., 1988), probably acting to 

increase blood flow. In the rectal gland perfused in situ, addition of VIP 

leads to increased blood flow, secretory rate, chloride concentration of 

secretion and an activation of adenylate cyclase to raise levels of cAMP (Stoff 

et al., 1979; Stoff et al., 1988). 

The only reported investigation of VIP activity in salt gland function of 

reptiles has been in the estuarine crocodile Crocodylus porosus where it was 

shown to stimulate lingual salt gland secretion (Taylor, 1992; Taylor et al., 

1995). VIP-like immunoreactivity has been shown in the lachrymal gland 
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of Malaclemys terrapin next to the basement membrane of the secretory 

cells (Belfry and Cowan, 1995). 

VIP appears to have a generally stimulatory role and is a pcss11o1e candidate 

for involvement in control of the sea turtle salt gland but has never been 

examined. 

1.8.4 Neuropeptide Y 

N europeptide Y (NPY) has been reported to inhibit chloride secretion in the 

dogfish (Silva et al., 1993) by inhibiting the stimulatory effect of VIP in the 

rectal gland. NPY has a vasoconstrictive role in the gastrointestinal tract of 

mammals (Friel et al., 1986; Wang et al., 1987) where it also inhibits chloride 

secretion. The direct influence of NPY on salt secretion has not been 

reported in any other animal, although NPY-like immunoreactivity has 

been shown in the lachrymal gland of the diamondback terrapin (Belfry and 

Cowan, 1995). 

1.9 MECHANISM OF IONIC TRANSPORT 

Regulatory mechanisms may operate to control the activity of the secretory 

cells of the salt gland, so it is useful to understand the process by which a 

concentrated salt solution is elaborated by the gland. The proposed cellular 

events which take place to secrete salt by salt gland cells are described below, 

and potential sites of regulation considered. 

Considerable research has investigated the ionic transport events that take 

place in salt glands in order to produce a hypertonic solution. This work 

has been restricted to avian and elasmobranch salt glands and has been 

conducted in vitro due to the difficulties in measuring intracellular activity 

in the living animal. Initial work generally involved the use of perfused 

salt gland slices but later techniques allowed culture of dissociated salt gland 

cells into monolayer sheets with an apical and basal surface. This 

experimentally simulated the serosal (blood or internal) side and the 

mucosal (or tubule lumen) side of the secretory cell and permitted 

measurement of the chemical and electrical properties of both sides 

simultaneously. 

Two models have been suggested to explain the process of concentrated salt 

secretion by the salt gland which differ in the identity of the primary 

secretory cells although the process of fluid elaboration is similar in both. 
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These models have been constructed on experimental evidence gained from 

study of the avian and elasmobranch salt glands, but it is reasonable that 

they are likely to apply to the chelonian salt gland as well. The first model 

draws on a number of earlier theories based on gland histology and 

biochemical evidence from cell culture studies. The second model proposes 

a similar means of ionic transport but a different location of concentrating 

the secretion. 

The first model drew on early histochemical and biochemical evidence 

indicating that the cells forming the secretory tubules concentrate fluid by 

an energy-dependent ion transport process (Lowy et al., 1989). This formed 

the basis of a model proposed by Gerstberger and Gray (1993) to combine 

both active and passive transport mechanisms (Figure 1.4) . Essentially the 

same model is proposed for the elasmobranch rectal gland (Silva et al., 

1990). Sodium, potassium and chloride are pumped from the extracellular 

space into the secretory cell against a concentration gradient by a Na-K-2Cl 

cotransporter on the basal membrane. Energy for this process is provided by 

exchange of potassium into the cell for sodium out of the cell by a Na-K

ATPase. Potassium then passively leaves the cell through basal potassium 

channels. Chloride leaves the cell through channels on the apical surface 

which have been shown to be homologous to cystic fibrosis transmembrane 

conductance regulator protein which permit passive chloride movement 

(Ernst et al., 1994). Movement of chloride into the tubule lumen creates an 

electrochemical gradient which draws sodium down the lateral spaces 

between secretory cells and through the leaky junctions at the apical contact 

point between neighbouring cells. A concentrated solution is formed in the 

tubule lumen because salt is transported in one direction only and limited 

passive entry of water from the blood occurs because the membrane is 

relatively impermeable to water. This energy-dependent ionic transport 

process is proposed to create a highly concentrated solution at the secretory 

tubule which does not undergo any subsequent modification in its passage 

down the collecting ducts. It should be pointed out however, that several 

assumptions must be made when constructing this model from data 

gathered using cell culture techniques. It must be assumed that cellular 

resistance does not change, as the recording of ionic currents under short 

circuit conditions only measures voltage and current. Any change in 

resistance will affect the relationship of V=IR but resistance is not generally 

measured. It is possible that the conductance of other channels or ionic 

gates is changed by experimental manipulation to change resistance 
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although this has not been demonstrated. Additionally, it must be assumed 

that expression of cell transport proteins is normal in cell cultures where 

innervation and vascularisation are absent. Cell morphology is certainly 

different (Hootman and Ernst, 1980; Lowy et al., 1985), but it is not clear 

whether membrane structure remains normal. 

The second model has been proposed on the basis of data from birds and 

turtles which suggests that secretory cells produce a solution which is not 

highly concentrated but is isosmotic or slightly hyperosmotic with plasma 

and subsequently concentrated in the duct system of the gland (Marshall, 

1986; Marshall et al., 1987; Marshall, 1989; Marshall and Saddlier, 1989). It is 

proposed that the primary secretion is concentrated by the addition of salt or 

removal of water across the epithelia of the duct, through an unspecified 

energy-dependent process'. So although the mechanism by which salts are 

transported are similar in both models, the location and identity of the cells 

doing the osmoregulatory work in concentrating the secretion is different. 

Therea:re currently insufficient experimental data to say beyond doubt which 

of the two proposed models is operating in the salt gland; indeed, there may 

be a combination of both. It is possible that the duct system plays a role in 

further concentrating a hyperosmotic primary secretion produced by 

secretory cells. In either case, salt gland secretion must incorporate a highly 

effective transport process for concentration of salt against a large osmotic 

gradient. An understanding of the processes operating to control salt gland 

secretion may provide evidence to support one or the other model of ionic 

transport, perhaps by showing in which region of the gland control is 

exerted thereby indicating which regions of the gland (tubules or ducts) are 

regulated. 

1.10 THE SECRETORY MODEL 

Control of salt gland secretion may involve regulation of blood supply or 

circulation within the gland, ionic transport processes within the gland 

cells, or possible water resorption from a primary secretion. The secretory 

response requires blood flow to the salt gland to supply ions for transport by 

secretory cells, and cellular transport mechanisms for movement of ions 

into secretory tubules. When salt levels are returned to normal, salt gland 

secretion is not required and so must be inhibited or inactivated by some 

means. Inhibitory modifiers may act to suppress either blood circulation or 
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cellular transport activity, or these processes may be suppressed in the 

absence of stimulatory modifiers. 

There are three potential sites at which the secretory process can be 

controlled (Figure 1.5). 1) Vasodilation and vasoconstriction can regulate 

the circulation of blood and ions through and within the salt gland, 2) the 

activity of transport proteins can control the movement of ions through the 

secretory cell, and 3) the secondary removal of water from a primary 

secretion by cells lining the secretory ducts may be modified. When 

attempting to identify the role of possible modifiers of salt gland function, 

the putative modifier should meet at least one of several criteria. It should 

be demonstrated to have an effect on salt gland activity in vivo; be shown to 

be present in or around the gland or have receptors in those areas; to 

influence · cellular activity in vitro; or to cause changes in blood circulation 

to and through the gland. If a single neural or hormonal factor 

demonstrates all these attributes, it is extremely likely that it plays an 

important role in regulation of salt gland function. A failure to meet one or 

more of these criteria does not necessarily mean that a substance is not 

involved, as its role in the model may be restricted to only one of the 

control sites mentioned or experimental design and execution may not be 

appropriate. 

1.11 THESIS ORGANISATION 

In order to investigate the function of the green turtle salt gland and the 

modifiers operating to control the secretion of the gland, experiments were 

conducted to test their role in the proposed secretory model. The response 

of the salt gland to salt-loading in vivo was measured and quantified. 

Accompanying changes in blood osmotic parameters were also measured 

following a salt challenge. These results are described in Chapter 2. The 

ability of a number of potential modifying substances to alter the secretory 

response of the salt gland was examined by quantifying any changes to the 

secretion by the gland in comparison to the normal response to salt-loading 

previously determined. In addition, immunohistochemical technique was 

employed to identify adrenergic nerves in the salt gland. These results are 

described in Chapter 3. Salt gland histology, vasculature and changes in 

blood circulation within the salt gland caused by salt-loading, adrenalin and 

methacholine administration are presented in Chapter 4. The influence of 

salt-loading and addition of adrenalin and methacholine on the rate of 

oxygen consumption of salt gland tissue in vitro is presented in Chapter 5. 
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The synthesis and general implications of the results are discussed 1n 

Chapter 6, with the proposed secretory model reviewed in light of 

experimental results. 
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a) Sea turtles have a lachrymal salt gland located behind each eye which 
empties onto the surf ace of the eyeball. Redrawn from Marshall and 
Saddlier (1989). Lht\6""·,o-. :::::rJ.."s 

b) The Galapagos iguana possesses a nasal salt gland which extends from the 
nasal region to above the eye and drains into the nasal cavity. Redrawn 
from Dunson (1976). A-.-~ly .. ~1~s ~-;.~~~ 9elCl.w--:,~ , (( 
c) The sublingual salt glands of sea snakes,.. are located under or around the 
tongue sheath of the lower jaw. Redrawn from Dunson and Dunson (1974). 
d) Lingual salt glands of crocodiles are located inside the tongue and open 
through pores on its upper surface. Droplets of secreted fluid can be seen on 
the surface of the tongue. From Taplin et al. (1982). C-rot.b~'fl"'-~ roroS'-".S 
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ducts which lead to the external or internal nares. Modified from Fange et al. (1958) and Schmidt-Nielsen (1960). 
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Diagrammatic representation of the major morphological features of the 
principal secretory cell from the reptilian salt gland. The lateral membranes 
are greatly folded to increase cell surface area and form extensive 
intercellular spaces between adjacent cells, while the basal membrane shows 
only slight folding. Junctional complexes are present at the apical junction 
of neighbouring cells and are thought to permit passive ion movement. 
Large numbers of mitochondria and glycogen granules are present, 
suggesting a high rate of cellular metabolic activity. Microvilli project into 
the tubule lumen, with six or seven cells typically forming the 
circumference of each tubule. Redrawn from Peaker and Linzell (1975). 



Table 1.1 
Possible endocrine influences on salt gland function. 

Hormone Animal Experimental Major action Likeli role Source 
technique 

Corticosteroid Salt adapted Adrenalectomy / Partial reinstitution of salt Permissive 1, 2 
hormones duck replacement therapy gland activity 

Administered with Enhancement of secreLory Permissive 3 
salt-load response 

Green turtle Chemical Partial reinstitution of salt Permissive 4 
adrenalectomy / gland activity 
replacement therapy 

Desert Adrenalectomy / Reversal of increased sodium Reduction of 5, 6 
iguana replacement therapy in secretion caused by sodium in 

adrenalectomy secretion 
AVT Salt adapted Intact animal Initiated low level of secretion, Probably not 7 

goose reduced salt concentration a direct effect 
ANF Salt adapted Administered with Briefly enhanced secretory Stimulation 8 

duck salt-load response of salt gland 
Dogfish Intact animal, Stimulates VIP release to Stimulation 9, 10, 11, 

perfused rectal gland, initiate chloride secretion of rectal salt 12 
dissociated cells gland 

Sources: 
1 (Holmes et al., 1961), 2 (Holmes et al., 1963), 3 (Phillips et al., 1961), 4 (Holmes and McBean, 1964), 5 (Templeton et al., 1972), 6 
(Shoemaker et al., 1972), 7 (Peaker, 1971), 8 (Schutz and Gerstberger, 1990), 9 (Solomon et al., 1985), 10 (Solomon et al., 1992), 11 
(Gunning et al., 1993), 12 (Silva et al ., 1987) 

N 
~ 



Table 1.2 
Possible neural and neurohormone influences on salt gland function. 

Ngurohormonel Animal -- Ex12erim~ntal Maj Qr action 
Neurotransmitter technique 
Acetylcholine Herring gull Intact animal, Stimulates salt secretion, 
Methacholine anaesthetised animal causes vasodilation 
Acetylcholine Estuarine In tact animal Stimulates salt secretion 
Methacholine crocodile 
Methacholine Loggerhead In tact animal Stimulates salt secretion 

turtle 
Marine In tact animal Stimulates salt secretion . 
iguana 
Non salt Salt gland slices Increased cellular oxygen 
adapted consumption 
duck 
Estuarine Salt gland slices Increased cellular oxygen 
terrapin consumption 
kept in fresh 
water 
Estuarine Intact animal Stimulated low level of salt 
terrapin secretion 
Salt adapted Dissociated cells Increased cellular oxygen 
duck consumption, increase in 

sodium pump activity 
Adrenalin Herring gull Anaesthetised animal Reduction of salt gland blood 

flow 

Likeli role 

Stimulation 
of salt gland 
Stimulation 
of salt gland 
Stimulation 
of salt gland 
Stimulation 
of salt gland 
Stimulation 
of salt gland 

Stimulation 
of salt gland 

Stimulation 
of salt gland 
Stimulation 
of salt gland 

Inhibition of 
salt gland 

Sourcg 

1, 2 

16 

3 

3 

4 

4 

5 

6, 7 

8 N 
CJl 



-

Table 1.2 (cont.) 
Possible neural and neurohormone influences on salt gland function. 

NfurQhgrmone/ Animal Experimental Maj or action Likeli role Source 
Neurotransmitter technique 
VIP Salt adapted Dissociated salt gland Stimulation of Cl- secretion via Direct effect 9 

duck cells increased phosphorylation of on salt gland 
cAMP cells 

Salt adapted Intact animal at Stimulation of secretion, Stimulation 10, 11 
duck threshold salt increased blood flow of salt gland 

conditions 
Estuarine Intact animal Stimulation of secretion Stimulation 12 
crocodile of salt gland 
Dogfish Rectal gland slices Increase in blood flow, Stimulation 13, 14 

secretory rate, Cl- concentration of rectal salt 
and cAMP levels gland 

NPY Dogfish Perfused gland, Inhibited chloride secretion Inhibition of 15 
isolated tubules, stimulated by VIP rectal salt 
cultured cells gland 

Sources: 
1 (Fange et al., 1958b), 2 (Fange et al., 1963), 3 (Schmidt-Nielsen and Fange, 1958), 4 (Shuttleworth and Thompson, 1987), 5 
(Dunson, 1970), 6 (Hootman and Ernst, 1982), 7 (Hootman and Ernst, 1981), 8 (Fange et al., 1963), 9 (Torchia et al., 1992), 10 
(Hammel et al., 1980), 11 (Gerstberger, 1988), 12 (Taylor, 1992), 13 (Stoff et al., 1979), 14 (Stoff et al., 1988), 15 (Silva et al., 1993), 16 
(Taylor et al., 1995) 

N 
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Figure 1.4 
Proposed model for ionic transport by principal cells of secretory tubules. 
Chloride enters the cell via an energy-dependent basal Na-K-2Cl cotransport 
protein, sodium is pumped out of the cell in exchange for potassium by a 
Na-K-ATPase and potassium leaves the cell through passive channels. 
Chloride leaves the cell through the apical (luminal) membrane, creating an 
electrochemical gradient which draws sodium through the intercellular 
spaces and leaky cell junctions. Solid arrows indicate active ion pumping, 
dashed arrows indicate movement of ions due to concentration or electrical 
gradients. Adapted from Gerstberger & Gray (1993) p 174. 
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Figure 1.5 
Diagrammatic representation of potential sites for control of the secretory 
processes in the salt gland. Neural or hormonal modifiers may affect the 
mechanisms through which these processes operate. 
1) Constriction and relaxation of muscles surrounding blood vessels 
influence the circulation of blood and hence supply of ions and nutrients to 
the salt gland secretory cells. 
2) Ion transport activity may be controlled to regulate the movement of ions 
through the secretory cell from the blood to the tubule lumen. 
3) Control of possible extraction of water from the primary secreted fluid 
will affect the final concentration and rate of fluid production. 
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CHAPTER 2 
Characteristics Of Salt Gland Function 

INTRODUCTION 

2.1 SECRETORY RESPONSE OF THE HATCHLING TURTLE SALT GLAND 

In order to test the proposed secretory model (Figure 1.5) it is necessary to be 

able to stimulate the salt gland's activity and quantify its secretory response. 

The easiest way to experimentally impose a condition which results in salt 

gland activity is to administer a salt-load to the hatchling. The threshold 

conditions of activity can then be determined by administration of various 

quantities of salt and the effect on blood ion concentration measured. The 

rate of salt excretion by the salt gland is a product of both the rate of tear 

production and the concentration of the tears. These two factors can be 

quantified and may reveal if they are controlled separately or are linked. 

Measurement will also indicate if the secretion of salt by the gland is a 

graduated or "all or nothing" response, possibly providing information on 

likely methods of control of activity. 

2.2 EXPERIMENT AL AIM 

Experiments were conducted to obtain data on the salt gland response of the 

hatchling green turtle to a salt-load. Measurements were made of the 

concentration and rate of tear production following injection of a known 

quantity of salt and the threshold of salt gland activity was determined. The 

pattern of the secretory response was quantified and the relationship 

between rate of tear production and tear concentration was investigated. 

This also provided data for comparison with subsequent experimental 

treatments (Chapter 3) to quantify the influence of possible modifiers of 

secretion. Changes in blood ionic composition and packed red blood cell 

volume (hematocrit) were measured to investigate what effect salt-loading 

and salt gland activity had on these blood parameters and to quantify the 

movement of sodium into and out of the blood. 
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Hatchling turtles (approximately 25 to 30 g body mass) were collected from 

Heron Island, located at 151 ° 55' E. 23° 26' S on the Great Barrier Reef, 

Australia as they emerged from the nest and made their way to the sea. 

Following collection they were maintained in fibreglass aquaria 1.7 m x 0.7 

m, filled to a depth of approximately 15 cm with continuously flowing sea 

water. The temperature of the seawater was approximately 28 + 1 oc. 
Feeding commenced after about five days and thereafter hatchlings were fed 

on shelled raw shrimp daily. Animals were marked on the shell with 

liquid paper for identification. Following experiments they were returned 

to the aquarium and observed for a week or more then released to the 

ocean. 

2.4 COLLECTION OF SAMPLES 

2.4.1 Tears 

Tears were collected from the right eye of hatchlings in a five microlitre 

pipette using the technique of Marshall and Cooper (1988). One end of the 

micro-pipette was touched to the corner of the eye where the secretory duct 

of the salt gland emerges. By carefully holding the pipette in position, tears 

were drawn up into the pipette as they were secreted and before any 

evaporation. The rate of secretion was calculated by measuring the time 

taken to fill the pipette and calculated in microlitres per minute. Collected 

tears (5 µl) were absorbed onto p
1
~E_er osmometer discs and measured 

immediately for total osm~ia'ii~YJ\%~cor Vapour Pressure Osmometer 

5500). Discs were then sealed in Eppendorf tubes for subsequent analysis for 

sodium and potassium concentration by atomic absorption 

spectrophotometry (Varian Techtron) and chloride concentration by ion 

chromatography (Dionex QIC analyser). 

2.4.2 Blood 

Blood samples of approximately 0.3 ml were collected from the cervical 

sinus of hatchlings in heparinised 1.0 ml insulin syringes (Terumo, 27G x 

1 /2). The cervical sinus is a paired, blood filled cavity lying on either side of 

the vertebrae of the neck and is a suitable location for sampling venous 
• blood (Owens and Rutz, 1980; Bennett, 1986). Plasma was separated by 

centrifugation and frozen immediately at -70°C for subsequent analysis of 

ionic composition (techniques as for tears). 
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2.5 EXPERIMENTS 

2.5.1 Threshold salt-load for salt gland activation 

The threshold salt-load required for initiation of salt gland secretion was 

determined by injecting various salt-loads into the thoracic cavity of 

hatchlings and determining the proportion of animals which produced 

tears within 30 minutes of injection. Salt-loads injected were 0, 200, 400 and 

600 µmol NaCl.lOOg BW-1 in a volume of 18 ml.kg BW-1. If secretion had 

not commenced within 30 minutes of salt-loading, a blood sample was 

taken from the cervical sinus for measurement of plasma sodium 

concentration. If animals produced tears within 30 minutes of salt-loading, 

a blood sample was obtained at the time tears first appeared. Blood samples 

were immediately centrifuged and plasma frozen for analysis of sodium 

concentration. The plasma sodium concentration was calculated for each of 

the salt-loads administered and total actual plasma sodium (µmol. lOOg 

BW-1) was calculated, assuming that plasma volume comprises about 4.4°/o 

of totai body mass (Thorson, 1968). This permitted a comparison of the 

amount of sodium injected per 100g BW with the amount detected in the 

plasma per 100g BW. The change in plasma sodium as a proportion of the 

total injected sodium could then be determined. 

2.5.2. Response of salt gland to salt-loading 

Tear production rate and tear concentration in response to salt-loading were 

determined to provide a comparison for results obtained under subsequent 

experimental conditions. Hatchlings were injected with sodium chloride 

solution (2700 µmol NaCl.lOOg BW-1) into the thoracic cavity. Control 

animals had isotonic sodium chloride (PBS) solution (N aH2P O 4 20 

mmolJ-1, NaCl 154 mmolJ-1, pH 7.2) injected into the thoracic cavity (270 

µmol NaCl.lOOg BW-1). For both groups, the time in minutes from 

injection .to commencement of any salt gland secretion was measured and 

samples of tears were collected every five minutes from tear initiation over 

an eighty minute period. Tear production (µl.min-1) and ionic 

concentration (mmol.1-1) were determined to permit calculation of the total 

rate of sodium removal (tear production X ionic concentration). 

2.5.3. Blood parameters following salt-loading 

A time-course study was conducted to measure changes in hematocrit, 

plasma osmolarity and plasma sodium concentration following salt

loading. These parameters were measured in animals injected with a salt

load of 2700 µmol NaCl.lOOg BW-1, as well as those which received an 
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injection of PBS (270 µmol NaCl. lOOg BW-1 ), or were untreated. Blood 

samples were obtained from the cervical sinus of some animals 

immediately after salt-loading, then several samples were obtained from 

other animals during the next 70 minutes of the secretory response. 

Significant changes which occurred following treatment or over the course 

of the experiment were determined. 

2.6 STATISTICAL ANALYSIS 

The Mann-Whitney rank test (Sokal and Rohlf, 1981) was employed to 

determine any significant differences in hematocrit, plasma osmolality or 

plasma sodium concentration. Significance was assumed if p<0.05. All 

results are shown as the mean+ 1 standard error. 
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RESULTS 

2.7 THRESHOLD OF SALT GLAND ACTIVITY 

The threshold salt-load required to initiate salt gland tear production was 

between 400 and 600 µmol NaCl.lOOg BW-1. At 400 µmol NaCI.lOOg BW-1, 

one of four animals commenced secreting within 30 minutes of salt

loading. At 600 µmol NaCI.lOOg BW-1 all animals produced tears within 30 

minutes of salt-loading (Table 2.1) and a significant increase in plasma 

sodium of 18.6°/o was measured. Not all of the injected sodium was detected 

in the plasma, as injection of 600 µmol.lOOg BW-1 of sodium chloride only 

resulted in a rise in plasma sodium of 112 µmol.lOOg BW-1. 

2.8 SALT GLAND RESPONSE TO SALT-LOADING 

Since 400 - 600 µmol NaCI.lOOg BW-1 was the threshold for secretion, 

subsequent experiments used 2700 µmol NaCl.lOOg BW-1 for initiating 

secretion and to ensure that sufficient sodium had been introduced to result 

in a sustained secretory response . Isotonic saline (270 µmol NaCl. lOOg 

B w-1) was used as a volumetric control. The delay between injection of 

salt-load and start of secretion averaged 12 minutes (n = 9) with a range 

from 5 to 20 minutes. Upon initiation of secretion, tears reached maximal 

osmotic concentration within two to seven minutes (Figure 2.1) with an 

average osmotic concentration of 1758 + 10 mOsmol.kg-1. Osmotic 

concentration remained high for the period of the experiment. Average 

sodium, chloride and potassium concentrations were 816 + 15, 887 + 21 and 

18 + 0.5 mmol.I-1 respectively (n = 9). Chloride concentration was greater 

than the sum of sodium and potassium (p<0.0001). Sodium and chloride 

accounted for approximately 97°/o of the total osmotic concentration of salt 

gland secretions. 

The rate,. of tear production (Figure 2.2) reached maximum in about fifteen 

minutes. Secretory rate is shown for the right gland only, although glands 

on both sides of the head usually secreted simultaneously. The total rate of 

sodium removal is the product of tear concentration and flow rate, and is 

shown for the right salt gland (Figure 2.3). The maximal secretion rate 

averaged approximately 415 µmol Na.lOOg BW-1.hrl or 830 µmol Na.lOOg 

BW-1.hrl if we assume that right and left glands secrete at the same rate and 

concentration. This was determined by calculating the average of the 

highest rate of all hatchlings. The maximum secretory rate measured from 

a single salt gland was 593 µmol Na.lOOg BW-1.hr-1. 
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2.9 BLOOD PARAMETERS FOLLOWING SALT-LOADING 

Hematocrit of animals injected with PBS (25.7 + 1.7°/o, n = 4) was not 

significantly different from that of untreated animals (26.8 + 1.6°/o, n = 15) or 

hematocrit immediately following salt-loading (24.56 + 2.73°/o, n = 4). 

Hematocrit of salt-loaded animals then rose rapidly and remained elevated 

over the next 80 minutes (Figure 2.4). Hematocrit was approximately 29°/o 

when secretion commenced. 

Plasma osmolality of untreated animals (371 + 6 mosmol.kg-1, n = 15) was 

not significantly different from osmolality of animals injected with PBS (352 

+ 7 mosmol.kg-1, n = 4). Plasma osmolality increased rapidly following salt

loading (Figure 2.5) and was significantly higher than control values for the 

next 70 minutes. Plasma sodium concentration following salt-loading was 

also significantly higher than concentrations measured in control 

animal4Figure 2.6), showing both a greater relative increase and a more 

rapid increase than total osmolality. 
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DISCUSSION 

Injection of salt will initiate secretion from the salt gland of Chelonia 

mydas. A salt-load of between 400 and 600 µmol NaCl.lOOg BW-1 

(equivalent to ingestion of approximately 0.2 to 0.3 ml seawater for a 30 g 

hatchling) is sufficient to stimulate secretion. A previous study (Nicolson 

and Lutz, 1989) reported a similar threshold salt-load required to initiate 

secretion in turtles of 17 to 40 kg body weight, suggesting that the threshold 

is independent of body mass. Injection of 600 µmol NaCl.lOOg BW-1 led to a 

rise in plasma sodium of 112.4 µmol NaCl.lOOg BW-1. Approximately 19°/o 

of the injected salt was detected in the plasma, the remainder presumably 

entering intracellular and interstitial spaces. Therefore at least some of the 

injected salt-load reaches the salt gland in the blood and is available for 

uptake and secretion by the secretory cells. 

The secretory response of hatchlings to a salt-load of 2700 µmol NaCl.lOOg 

BvV-1 was similar to that previously reported (:rviarshall and Cooper, 1988) 

although rate and concentration of secretion differed slightly. The secretory 

response was very rapid, with tears sometimes visible within five minutes 

after salt-loading. The secreted tears contained approximately 1.7 times the 

sodium chloride concentration of seawater and over 35 times the sodium 

chloride concentration of urine from normally hydrated animals (Prange 

and Greenwald, 1980). Sodium, potassium and chloride comprised 97.0°/o of 

the total osmotic pressure, with magnesium, bicarbonate and urea 

accounting for the balance in adult turtles (Nicolson and Lutz, 1989). The 

sodium concentration of tears remains relatively constant during periods of 

secretion and there is only minor fluctuation in tear production rate while 

the gland is active. This suggests that the salt gland shows an "all or 

nothing" response and so is either fully active or fully inactive. This may 

indicate a relatively simple regulation of activity with the gland operating at 

maximal rate when active and ceasing activity completely when secretion is 

not required. 

If it is assumed that both glands secrete at the same rate, approximately 30°/o 

of the injected salt-load was removed in the first hour of secretion. It has 

been reported that the rate and concentration of secretion from right and left 

glands varies (Marshall and Cooper, 1988; Nicolson and Lutz, 1989) but it is 

assumed that variation is equally likely in either gland and balances out 

over the period of measurement. At the measured rate of tear secretion the 

entire salt-load injected could be removed in an average of less than four 
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hours, although it was not determined if animals secreted continuously or 

intermittently until the excess salt was excreted. However, at the observed 

rate of plasma sodium decrease, plasma sodium in salt-loaded animals 

would take only two hours to reach control levels. It is not clear why this 

time differs to that calculated from the salt gland secretory rate, unless 

sodium is being removed from the plasma into some other compartment 

simultaneous with removal and secretion by the salt gland. It may be that 

salt-loading initially overcomes the ability of the salt gland to reduce plasma 

sodium quickly enough, so some sodium leaves the blood and enters 

interstitial or intracellular spaces. This could slowly re-enter the blood at a 

rate which the salt gland could remove. The movement of sodium from 

interstitial fluid back into the plasma may also require plasma sodium to 

fall to a certain level to provide a sufficient driving force for diffusion to 

occur. Marshall and Cooper (1988) showed that plasma osmotic pressure 

had returned to control levels within 18 hours of salt-loading. There may 

be an interaction between the salt gland and the kidney, with the salt gland 

initially removing sodium through concentrated tears to achieve a net 

water gain. If there is a subsequent, slow re-entry of sodium into the blood 

this may be slowly removed by the kidney, utilising some of the water 

gained through salt gland activity. Thus the concentrated secretory activity 

of the salt gland could provide the extra water required for a more dilute salt 

excretion by the kidney, thereby avoiding dehydration. 

The rate of sodium removal from both salt glands of salt-loaded animals 

averaged 814 + 3.7 µmol Na.lOOg BW-1.hr-1, a rate considerably higher than 

117 µmol Na.lOOg BW-1.hr-1 found in an earlier study (Holmes and 

McBean, 1964). The lower rate measured may have resulted from the 

animals used in that study which were very small for their age (Chapter 1). 

This abnormality in growth may have affected the rate of secretion by their 

salt glands. The measured rate of sodium secretion by hatchling turtles in 

this study was much higher than that observed in other reptiles, with the 

exception of the report of Marshall and Cooper (1988) also on hatchling 

turtles (Table 2.2). 

If the salt gland is capable of secreting at the measured rate continuously, up 

to 12 mls of seawater could be drunk by a 30 g hatchling per day. About half 

of this water would remain as freshwater after secretion of the salt, to be 

available for other physiological requirements. Although it is unlikely that 
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this amount of seawater would be intentionally drunk, it illustrates the 

efficiency of this extra-renal route of salt removal. 

The changes in plasma osmolality following salt-loading showed that 

injected salt entered the blood very quickly. In the time between injecting 

the salt-load and taking a blood sample from the cervical sinus (about two 

minutes), plasma osmolality rose from 371 to 394 mosm.kg-1 and plasma 

sodium from 137 to 188 mmol.1-1. Plasma sodium concentration at 

threshold conditions in the experiment described earlier was 162.8 mmolJ-1 

and so had been exceeded in the first minute or so following salt-loading. 

At the commencement of secretion, plasma sodium concentration had only 

increased slightly further to 190 mmol,J~indicating that plasma sodium 

sufficient to stimulate the secretory response was reached nearly 10 minutes 

before secretion actually commenced. It is unclear why the rise in 

osmolality was smaller and occurred more slowly than the rise in plasma 

sodiu1n. There 1nay be n1ove1nent of so1ne other osmotically active ion out 

of the blood which counteracts the osmotic change caused by entry of 

sodium following the salt-load, thus reducing the change in plasma total 

osmolali ty. 

The time difference betvveen plasma sodium reaching threshold and the 

commencement of secretion may reflect the time taken for the detection of 

increased sodium by receptors and stimulus of the secretion pathway. 

Alternatively, the mechanism which detects elevated sodium concentration 

may not be responding to plasma sodium but rather the concentration of 

sodium in some other body compartment which rises more slowly. This 

seems possible given that less than 20°/o of injected sodium is detected in the 

plasma. There are four reasons why this may be the case. 1) The study of 

Kooistra and Evans (1976) showed that there was a part of the exchangeable 

sodium pool with a much higher concentration of sodium than in the 

plasma. They presumed this to be the salt gland itself, but it may be that 

turtles have some other unknown space into which excess sodium can be 

directed. 2) Such a space could store the excess injected sodium not seen in 

the plasma of salt-loaded animals and may be the site at which elevated 

sodium is detected to initiate secretion. 3) If the space is larger in larger 

animals it will take longer to become filled to the point where salt gland 

activity is initiated. The delay between salt-loading and secretion is much 

greater in larger animals (Schmidt-Nielsen and Fange, 1958; Nicolson and 

Lutz: 1989) but is unlikely to be the result of a higher threshold, as 
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evidenced by the similarity of threshold salt-load in hatchling and sub-adult 

animals. 4) Movement of sodium into a storage space would also permit 

the rapid removal of sodium from the blood to be stored and slowly re

released as proposed earlier and so explain the difference in the rate of 

sodium removal by the gland and sodium concentration in the blood. 

Hematocrit of salt-loaded animals rose following salt-loading to a level 

above that of untreated animals and was significantly higher for the 

duration of the experiment. Three possible explanations can be presented 

for understanding the rise in hematocrit. Firstly, there is a movement of 

water out of the blood which is driven by an osmotic gradient caused by salt 

movement into the interstitial spaces. Secondly, there may also be a release 

of stored red blood cells (RBC) from the spleen in response to changing salt 

levels. Thirdly, entry of salt into RBCs causes them to swell as water 

follows the osmotic gradient, so that there is a change in RBC volume 

rather than cell numbers. It seems unlikely that the change in hematocrit 

has a significant role to play in the secretory process, rather it is a secondary 

effect of salt-loading with its own physiological implications but it probably 

does not directly influence the secretion of salt itself. 

Comparing maximal salt secretory rate of hatchlings with larger turtles 

indicates a semi-logarithmic relationship between secretory rate and body 

mass (Table 2.3 and Figure 2.7). The power function is -0.265 and so 

although the threshold for secretion is independent of body mass, the rate of 

secretion is proportionally greater in small animals than large ones. This 

may be associated with the more rapid growth rate of hatchlings (Frazer and 

Ladner, 1986; Wood and Wood, 1993) resulting in a proportionally higher 

intake of food and seawater requiring greater capacity to remove salt. So 

while a range of secretory rates have been reported, it is likely that these are 

simply size-related. A scaling of sodium efflux was also observed in the 

saltwater crocodile, Crocodylus porosus (Taplin, 1984; Grigg et al., 1986), with 

hatchling crocodiles having a greater efflux of sodium and water than larger 

animals. When collecting published data to calculate the relationship 

between secretory rate and body mass, two sources were excluded. These 

were data from Holmes and McBean (1964) and Kooistra and Evans (1976). 

In the first case, body mass of hatchlings used was abnormal as explained 

earlier and hence it is not appropriate to use the generated data for an 

analysis which relies upon normal growth patterns. In the second case, the 
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methodology employed meant that it is not possible to accurately calculate a 

rate of secretion per unit time. 

In summary, the hatchling green turtle has a highly active salt-secreting 

gland. Following a salt-load, hatchlings were easily capable of secreting 1 

mmol NaCl.lOOg BW-1.hr-1 at the maximum rates observed. This rate of 

secretion is sufficient to permit a hatchling to drink up to 12 ml of seawater 

each day with about half that amount retained as freshwater following salt 

removal. Activity of the gland appears to be an "all or nothing" response, 

with tear production rate and concentration changing little during periods 

of secretion. The observed rate of salt secretion was much higher than that 

found in other reptiles and elasmobranchs, and ~imilar to the capacity of 
L.4,.("".5, r:'.'9', I~ 1AS

1 

marine birds such as the black-backed gull. However, the allometric 
i\ 

relationship between body mass and secretory rate probably accounts for at 

least some of this difference, as adult anirnals were usually used in other 

studies. Nevertheless the high secretory rate is striking when it is 

considered that the ectothermic ha tchling turtle has a rate similar to the 

endothermic gull. The measurement of secretory parameters under 

conditions of salt-loading permits the quantitative comparison of 

experimental treatments on the basis of tear production rate, tear 

concentration and total rate of sodium removal by the salt gland. The 

influence of potential controlling modifiers on these parameters are 

investigated in Chapter 3. 
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Table 2.1 
Percentage of animals secreting and plasma sodium (+ 1 std error) 30 
minutes after salt-loading. P values of significant differences in plasma 
sodium compared to control are shown. n = number of animals sampled, 
n.s. = not significant. 

Salt-load 0/o of animals Plasma Sodium Plasma Sodium 
(µmol.lOOg BW-1) secreting after (mmol.1-1) (µmol.lOOg BW-1) 

30 minutes 
0 (n = 15) 0 137.2 + 1.04 603.0 + 4.6 
200 (n = 4) 0 148.4 + 1.08 652.2 + 4.7 
400 (n = 4) 25 155.6 + 1.02 683.8 + 4.5 
600 (n = 4) 100 162.8 + 1.10 715.4 + 4.8 P <o.os 
2700 (n = 9) 100 191.9 + 2.8 843.3 + 12.3 e<o.ot 



Table 2.2 
Salt secreting abilities ot_ diffe!ent reptiles. 
Animal Gland location Concentration of Major ions Rate of secretion Source 

secretion secreted 
Green turtle Chelan ia Orbital 1600 - 2000 mosm.kg-1 Na+, CI- 100-900 µmol Na. 1, 2, 3, 4, 
mydas (lachrymal) lOOg-1.hrl 5 
False iguana Nasal 330 - 1300 mosm.kg-1 K+, CI-, lesser 1 µmol Na.lOOg-1.hrl 6, 7 
Ctenosauria pectinata amounts of Na+ 10 µmol K.lOOg-1.hrl 
Chuckwalla Nasal 660 - 1350 mosm.kg-1 K+, Cl-, lesser 3.2 µmol Na.lOOg-1.hr-1 6, 7 
Sauromalus obesus amounts of Na+ 31.1 µmol K.lOOg-1.hr-1 
Yellow banded sea Sublingual 1150 mosm.kg-1 Na+, Cl- 68 µmol Na.lOOg-1.hr-1 8 
snake Laticauda 
semifasiculata 
Yell ow bellied sea Sublingual 1200 mosm.kg-1 Na+, Cl- 142 µmol Na.lOOg-1. 8 
snake Pelamis platurus hr-1 

Estuarine crocodile Lingual 770 - 1160 mosm.kg-1 Na+ CI-
I 45 µmol Na.lOOg-1.hr-1 9 

Crocodilus porosus 
Sources: 
1 (Holmes and McBean, 1964), 2 (Kooistra and Evans, 1976), 3 (Prange and Greenwald, 1980), 4 (Marshall and Cooper, 1988), 5 
(Nicolson and Lutz, 1989), 6 (Peaker and Linzell, 1975), 7 (Dunson, 1976), 8 (Dunson and Dunson, 1974), 9 (Taplin et al., 1985) 

~ 
t-1 
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Rate (µl.min-1) of salt gland secretions from hatchlings loaded with 2700 
µmol NaCl.lOOg BW-1. The salt-load was injected at O minutes as indicated 
by the arrow (n = 9). 
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Figure 2.3 
Total rate of salt gland sodium removal (µmol.lOOg BW-1.hr-1) by hatchlings 
loaded with 2700 µmol NaCl.lOOg BW-1. The salt-load was injected at 0 
minutes as indicated by the arrow (n = 9). 
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Figure 2.4 
Changes in percentage hematocrit of hatchlings loaded with 2700 µmol 
NaCl.lOOg BW-1. The salt-load was injected at O minutes as indicated by the 
arrow and secretion commenced at 12 minutes. Significant differences from 
the control hematocrit of 25.7°/o are indicated at each data point. n.s. = not 
significant, * = p<0.05, ** = p<0.01, n = number of animals. 
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Figure 2.5 
Changes in plasma osmolality of hatchlings loaded with 2700 µmo 1 
NaCl.lOOg BW-1. The salt-load was injected at O minutes as indicated by the 
arrow and secretion commenced at 12 minutes. Significant differences from 
control are indicated at each data point. n.s. = not significant, * = p<0.05, ** 
= p<0.01, n = number of animals. 
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Figure 2.6 
Changes in plasma sodium of hatchlings loaded with 2700 µmol NaCl.lOOg 
BW-1. The salt-load was injected at O minutes as indicated by the arrow and 
secretion commenced at 12 minutes. Significant differences from control 
are indicated at each data point. n.s. = not significant, * = p<0.05, ** = p<0.01, 
n = number of animals. 



48 

Table 2.3 
Summary of salt gland secretory rate and treatment of green turtles of 
varying body mass. 

Animal mass Secretory rate 
(kg) (µmol N a.hr-1 

.lOOg body mass-1) 
0.025 950 
0.030 830 
1.220 509 
12.500 143 
15.500 77 
50.000 * 28 

* Prange, pers. comm. 

Sources: 

Treatment Source 

Salt-loading 1 
Salt-loading 2 
Salt-loading 3 
Salt-loading 4 
Salt-loading 5 
Dehydration 6 

1 (Marshall and Cooper, 1988), 2 (Reina, this study) 3 (Owens, unpublished), 
4 (Reina, unpublished), 5 (Nicolson and Lutz, 1989), 6 (Prange and 
Greenwald, 1980) 
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Secretory rate (µmol Na.hr-1.lOOg body mass-1 ) plotted against body mass on 
a logarithmic scale. Numbers next to data points indicate the source as 
shown in Table 2.3. 



50 

CHAPTER3 
Innervation and Influence of Possible Modifiers 
Of Salt Gland Activity 

INTRODUCTION 

Control of salt gland secretion may occur at 1) blood flow, 2) pnmary 

transcellular transport, or 3) secondary water resorption or ion transport 

(Figure 1.5). It is not clear what the roles are of nervous and endocrine 

influences in regulation of the chelonian salt gland, but comparative evidence 

suggests that there may be several levels of control serving to regulate both the 

long and short term activity. This chapter will examine possible 

neurochemicals and hormones which may act to initiate or inhibit the 

immediate secretory activity of the hatchling green turtle salt gland. 

Immunohistochemical technique was employed to verify earlier histochemical 

evidence of the presence of adrenergic nerves in the salt gland to see if injection 

of adrenalin may be mimicking the effect of the release of this chemical from 

nerves within the salt gland. 

3.1 CHEMICALS TO BE EXAMINED 

Cholinergic, aminergic and peptidergic control of a variety of salt glands has 

been demonstrated (Tables 1.1 and 1.2). Non-adrenergic, non-cholinergic 

(NANC) nerves are a novel group of nervous cells which are known to 

influence the duck salt gland (Hubschle and Gerstberger, 1994; Hubschle et al., 

1995). Adrenergic and muscarinic cholinergic receptors have been identified in 

avian salt gland tissue and it is proposed that adrenergic and cholinergic 

agonists and antagonists influence secretory cell ion transport through these 

receptors (Stewart and Sen, 1981; Hootman and Ernst, 1982; Snider et al., 1986; 

Lowy et al., 1989). It is thought that the intracellular environment is influenced 
I 

by receptors to regulate the activity of ion transport proteins and so control the 

movement of ions from the blood to a primary secreted fluid in the secretory 

tubule lumen. 

This study examined several neurochemicals and hormones for an effect on the 

salt gland in vivo. General circulation injection was used, as identifying and 

cannulating blood vessels supplying the salt gland in the intact animal was 

difficult. The evidence points to the likely possibility that acetylcholine and 

adrenalin play important roles in controlling secretion of the avian salt gland so 

the effect of these on the chelonian salt gland was examined. Atropine is a 
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competitor for muscarinic cholinergic receptors and has been used in a number 

of studies to examine the role of acetylcholine in exocrine glands. It has been 

shown to inhibit secretion in the avian salt gland (Kaul et al., 1983; Lowy et al., 

1987) and cat submandibular gland (Lundberg et al., 1981a). The effect of 

a tr opine on reptilian salt glands has never been reported 

Comparative studies have revealed salt gland regulatory activity for vasoactive 

intestinal peptide (VIP) and neuropeptide Y (NPY) in the avian salt gland and 

elasmobranch rectal gland (Hammel et al., 1980; Torchia et al., 1992; Silva et al., 

1993; Taylor et al., 1995) but their activity has not been examined in the sea 

turtle. Experiments were conducted to measure the influence on salt secretion 

from the hatchling sea turtle of application of these neuropeptides in vivo. 

Nitric oxide (NO) has recently been implicated in control of the avian salt gland 

(Hiibschle and Gerstberger, 1994; Hiibschle et al., 1995). Molsidomine is a nitric 

oxide agonist which is used in vivo as an NO donor (Reden, 1990) to influence 

blood vessel musculature to regulate blood flow. If it does influence secretion 

this suggests that NO containing nerves may be present which affect the blood 

vessels supplying the gland. Its ability to influence secretion and hence 

indicate if nitrergic innervation is involved has never been examined in the sea 

turtle salt gland. 

Arginine vasotocin (A VT) and atrial natriuretic peptide (ANP) are potential 

endocrine neuromodifiers of salt gland activity and were examined for any 

short term effect on the secretory response. 

3.2 INNERVATION 

Abel and Ellis (1966) inferred cholinergic innervation in the salt gland of 

Chelonia .. mydas by using histochemical techniques to detect the presence of 

cholinesterase as described in Section 1.6.1. They also histochemically 

identified the presence of monoamine oxidase, presuming the presence of 

adrenergic nerves. However, monoamine oxidase is an enzyme with a number 

of substrates including dopamine, tyramine and tryptamine as well as 

adrenalin (Cooper et al., 1991). Abel and Ellis proposed that the enzyme was 

associated with adrenergic nerves in the salt gland, relying on circumstantial 

evidence from the histochemical technique employed. Belfry and Cowan (1995) 

identified adrenergic nerves but not cholinergic nerves in the estuarine turtle, 

despite reports that methacholine stimulated salt gland secretion from this 

animal (Dunson, 1970). Reptilian antibodies to cholinergic nerves have not 
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been produced and those raised in mammals do not appear to bind to salt 

gland tissue (Prof. M. Schemann, personal communication). 

A re-examination of the proposed adrenergic innervation in the green sea turtle 

salt gland is justified, as more specific techniques have become available since 

the study of Abel and Ellis (1966). By using immunohistochemical technique, 

more definitive identification of nerve types can be made. It is not the intention 

to describe proposed adrenergic innervation in detail as was done in the report 

of Abel and Ellis, but to confirm the identity of the nerves that they describe. 

Confirmation of the presence of adrenergic nerves within the salt gland will 

clarify whether adrenalin exerts an influence on salt gland activity through a 

localised release from neural stores, or is carried through the vascular system to 

the salt gland from some remote site. 

3.3 EXPERIMENTAL AIM 

Experiments were conducted to identify possible controlling modifiers by 

testing the hypotheses that methacholine, adrenalin, atropine, molsidomine, 

VIP, A VT, ANP and NPY affect the activity of the salt gland in vivo. These 

substances were examined for their ability to influence the salt gland in several 

ways; 1) to initiate secretory activity, 2) to increase secretion from an active 

gland, and 3) to suppress secretion from an active salt gland. The response of 

the salt gland to these chemicals was quantified and compared with that 

observed in the absence of drug treatment described in Chapter 2. Significant 

changes in secretory activity following application of chemicals implied that 

the chemical affected one or more of the three control points to regulate 

activity. The presence of adrenergic nerves in the gland was examined using 

immunohistochemical techniques. 
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3.4ANIMALS 

Animals used were as described in Section 2.3. 

3.5 COLLECTION OF SAMPLES 

Samples were collected as described in Section 2.4. 

3.6 EXPERIMENTS 
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The chemicals affecting salt gland activity were examined for their ability to 

either stimulate or inhibit secretory activity of the salt gland. Chemicals were 

injected into the thoracic cavity of hatchlings under one or more of four 

experimental conditions. 

1) In the absence of any salt-load to determine if salt gland secretion could be 

initiated by the chemical alone. 

2) Simultaneously with a salt-load of 2700 µmol NaCl.lOOg BW-1 to determine if 

the start of tear secretion effected by the salt-load was accelerated or delayed by 

the chemical. 

3) 20 minutes after secretion had been initiated by a salt-load of 2700 µmol 

NaCl.lOOg BW-1 to determine if secretory parameters were affected by the 

chemical. 

4) Simultaneously with a sub-threshold salt-load to determine if secretion could 

be initiated by the chemical in these circumstances. Subthreshold salt-load was 

calculated on the basis of results of experiment 2.5.1 described in Chapter 2. 

A summary of experimental chemicals, dosages and conditions is presented in 

Table 3.1. 

3.6.1 Control 

Control animals received an injection of phosphate buffered saline (PBS, 0.9°/o 

NaCl) in a volume of 2 ml.kg BW-1 into the thoracic cavity under all the 

experimental conditions described for drugs injected. 

3.6.2 Chemicals 

Where exogenous application of acetylcholine is necessary, methacholine is 

preferred because it is more resistant to degradation by cholinesterases within 

the body (Cooper et al., 1991) and so has a greater opportunity to affect the 

organ of interest. Methacholine (acetyl-~-methyl choline chloride, Sigma), 

adrenalin (adrenalin bitartrate, Sigma), atropine (Sigma), molsidomine 
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(Corvaton®, Cassella-Riedel Pharma), VIP (chicken, Sigma), A VT (Arg8-

vasotocin acetate salt, Sigma), ANP (chicken, Auspep) or NPY (human, 

Auspep) were dissolved in PBS and injected in a volume of 2 ml.kg BW-1 at a 

concentration appropriate to deliver the dosage rates listed in Table 3.1. 

An experiment was conducted to determine if atropine could reverse any 

influence of methacholine in the presence of a salt-load. Animals were injected 

with a salt-load of 2700 µmol NaCl.lOOg BW-1 simultaneously with 

methacholine 5 mg.kg BW-1. Atropine 10 mg.kg BW-1 was injected into the 

thoracic cavity 10 minutes later and secretory parameters measured. Control 

animals received methacholine with a salt-load followed by injection of PBS 

instead of atropine. 

3.6.3 Doses and source of peptides employed 

The doses of chemicals used were estimated on the basis of comparative data of 

AVT dose (Butler, 1972) because the other peptides have never been examined 

in sea turtles. Other reports have utilised infusion techniques, but this was 

very difficult in the hatchling turtle, so a single injection was given in the 

thoracic cavity. A range of doses for most substances was examined within 

permit restrictions on the number of experimental animals which could be 

used. The peptides employed were selected from the types available to 

resemble the amino acid sequence most likely to be found in the green sea 

turtle. Chicken VIP is identical to alligator VIP (Blomqvist et al., 1992; Wang, 

1993) which was presumed to be the most similar to chelonian VIP. Reptilian 

ANP has not been sequenced, so chicken ANP was selected as most likely to be 

suitable (Miyata et al., 1988). A VT has been found to have the same amino acid 

sequence in all non-mammalian vertebrates (Perks, 1987). Human NPY has the 

same sequence as alligator NPY (Wang, 1993) and so was chosen because 

cheloniari NPY has not been sequenced. 

3.7 IMMUNOHISTOCHEMICAL TECHNIQUE 

Immunohistochemical technique permits specific and highly resolved 

identification of many substances in experimental tissue. The principle of the 

technique relies on antibodies which specifically recognise certain substances 

such as enzymes, peptides, neurotransmitters or many other chemicals. Details 

regarding manufacture of antibodies and experimental technique are presented 

elsewhere (Peters and Coons, 1976). In order to visualise the primary antibody 

bound to tissue, a secondary antibody is used which recognises part of the 

primary antibody and is linked to a label which fluoresces or is a substrate of a 
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chemical reaction which results in a visible product. By utilising 

immunohistochemical technique, the location of substances can be identified 

within experimental tissues. 

Immunohistochemical technique was used to attempt identification of 

adrenergic nerves in the salt gland. A primary mouse antibody to tyrosine 

hydroxylase (Incstar) was employed to identify the presence of this enzyme 

which is involved in the synthesis of adrenalin and is used to localise 

adrenergic nerves in the peripheral nervous system (Marfurt and Ellis, 1993; 

Wrobel and Kujat, 1993). Salt glands were collected from hatchling turtles 

following decapitation and were fixed in 4°/o paraformaldehyde in PBS (pH 6.8 

- 7.2). Tissue was mounted in Tissue Tek, frozen in a cryostat (Cryocut E) at 

-2ooc and 14 µm sections cut. Sections were placed on slides coated with poly 

L-lysine and allowed to stand at room temperature for five minutes before 

incubating for five minutes in 0.2°/o hydrogen peroxide, followed by three 

washes of five minutes in PBS with 0.3°/o Triton-X (PBT). Non specific antibody 

binding was blocked by incubation with PBT with 5°/o normal goat serum (PBT 

+ N) at room temperature for two hours. Sections were then incubated with the 

primary antibody diluted 1:200, 1:500 or 1:1000 in PBT +Nat 4°C for 16 hours, 

followed by three washes of five minutes each in PBT then two washes of 30 

minutes each in PBT. Secondary antibody (sheep anti-mouse conjugated to 

horseradish peroxidase, Serotec) was diluted 1:100 in PBT + N and applied to 

the tissue for incubation for three hours followed by three washes of five 

minutes in PBT. A 2:1 ratio of PBT / diaminobenzidine (DAB) solution (1 

mg/ml) was prepared, with 8 µl nickel chloride/ml DAB and 10 µ1/ml 0.2°/o 

hydrogen peroxide. PBT /DAB was applied to the tissue for 10 minutes, then 

the reaction was stopped by washing slides several times with PBT then three 

washes of five minutes with PBS. Tissues were dehydrated in ethanol solutions 

from 50°/o to 100°/o then cleared in methyl salicylate overnight and mounted in 

Fastmount with Colourfast (Histo-labs, Australia). Tissue sections were 

examined under light microscopy with the presence of immunoreactivity to the 

primary antibody detected by dark staining and presumed to indicate 

identification of adrenergic nerves. Rabbit adrenal tissue was used as a positive 

control, with negative controls having incubation with the primary or 

secondary antibody omitted from the procedure. 

3.8 STATISTICAL ANALYSIS 

Differences in secretory parameters among salt gland treatments were 

determined using the non-parametric Mann-Whitney rank test, with 
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significance assumed if p<0.05. The data for each time point in identical 

experiments v,,ere grouped and the time from the commencement of secretion 

was standardised. This was because drug treatments were administered 20 

minutes after the start of tear production, rather than a certain time from 

injection of the salt-load, to allow for individual differences in the delay 

between salt-loading and start of visible gland activity. All results are shown 

as the mean + 1 standard error. 
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Injection of PBS after secretion had been initiated by a salt-load did not affect 

the rate of sodium secretion by the salt gland (Figure 3.1). 

3.10 INFLUENCE OF CHEMICALS ON SALT GLAND SECRETION 

3.10.1 Methacholine 

Methacholine had no measurable effect on salt gland secretion in the absence of 

a salt-load but salt gland secretion stimulated by a salt-load ceased immediately 

following injection of methacholine at a dose of 10 mg.kg BW-1 (Figure 3.2). 

Tears stopped flowing from the gland onto the eye within 2 minutes of 

methacholine administration, while injection of an equal volume of PBS had no 

effect. When methacholine was injected into hatchlings at the same time as a 

salt-load, the onset of secretion was delayed in an apparently dose dependent 

manner (Figure 3.3). The small change in delay between dosages of 5 and 10 

mg.kg BW-1 suggests that maximal inhibition was reached somewhere between 

these dosages. When secretion commenced there was a dose dependent time 

delay for secretion to reach control levels (Table 3.3). Animals receiving a dose 

of 1 mg.kg BW-1 methacholine secreted at control rates almost immediately, but 

higher doses resulted in a depression of total sodium secretion. At a dose of 5 

mg.kg BW-1, secretion commenced at approximately 67°/o of control, rising to 

100°/o after 23 minutes. At a dose of 10 mg.kg-1, secretion commenced at 

approximately 62°/o of control and took 48 minutes to reach 100°/o of control 

rates. 

3.10.2 Adrenalin 

Adrenalin did not measurably influence salt gland activity in the absence of a 

salt-load. Secretion initiated by a salt-load ceased within 2 minutes following 

injection of adrenalin at doses of 25 µg.kg BW-1 (n = 5), 100 µg.kg BW-1 (n = 5), 

500 µg.kg BW-1 (n = 5) and 2 mg.kg BW-1 (n = 2). When adrenalin was 

administered simultaneously with a salt-load, there was a dose dependent 

delay in the onset of secretion (Figure 3.4). When secretion commenced 

following inhibition by adrenalin it took about 10 minutes to return to the 

control rate, this period did not change with increasing dose (Figure 3.4 & Table 

3.4). Following initiation of secretion, rates first were 80°/o of control (25 and 

100 µg.kg BW-1) or 50°/o of control (500 µg.kg BW-1 ). 



.... -------------------------------

58 

3.10.3 Atropine 

In the absence of a salt-load, atropine at a dose of 10 mg.kg BW-1 led to tear 

formation in three of four hatchlings, although tears did not appear until an 

average of 50 minutes after injection (Figure 3.5). The secretory rate was low 

and tears ceased after about 15 minutes. Tears did not appear at doses below 

10 mg.kg-1. When atropine was injected simultaneously with a subthreshold 

salt-load of 200 µmol NaCl.lOOg BW-1, tears appeared in five of seven 

hatchlings (Figure 3.5). Tears were formed an average of ten minutes (+ 2 min) 

after injection and secretion continued for about 15 minutes. 

Atropine reversed the inhibition of salt gland secretion caused by 

methacholine. Methacholine 5 mg.kg-1 was injected at the same time as a salt

load, inhibiting the onset of secretion. After 10 minutes, animals received either 

atropine 10 mg.kg-1 or received PBS, with the atropine treated animal 

producing tears an average of 7 minutes later (range 5 to 10 minutes). Animals 

which received PBS instead of atropine remained inhibited and did not secrete 

(Figure 3.6). 

3.10.4 Molsidomine 

Molsidomine did not initiate salt secretion in the absence of a salt-load at any of 

the doses injected up to 50 mg.kg-1 (n = 8) . 

3.10.5 VIP 

VIP did not initiate secretion in the absence of a salt-load (n = 11) and had no 

significant effect on salt gland secretion under any of the other experimental 

conditions (Figure 3.7). 

3.10.6 AVT 

AVT did 1not initiate secretion in the absence of a salt-load (n = 11). Injection of 

A VT 30 ng.kg-1 produced a transient reduction in sodium secretion by the 

active salt gland (Figure 3.8). This occurred immediately after A VT 

administration and lasted approximately ten minutes, after which secretion 

returned to control values. There was a significant reduction in tear osmotic 

concentration and rate of tear production fell but the change was not 

significant. Total sodium secretion is a product of both osmotic concentration 

and fluid secretion rate, so the effect of A VT on sodium removal is greater than 

that seen in either of these factors alone. There did not appear to be any dose 

dependence of this inhibition, as the reduction in secretory rate caused by a 300 

ng.kg-1 dose of A VT was not significantly different from that of 30 ng.kg-1. 
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3.10.7 ANP 

ANP did not initiate secretion in the absence of a salt-load (n =11) and had no 

measurable effect on salt gland secretion under any of the other experimental 

conditions (Figure 3.9). 

3.10.8 NPY 

NPY did not initiate secretion in the absence of a salt-load (n = 7) and had no 

measurable effect on salt gland secretion under any of the experimental 

conditions (Figure 3.10). 

A summary of the effects of chemicals injected is shown in Table 3.2. 

3.11 ADRENERGIC INNERVATION 

Immunoreactivity to tyrosine hydroxylase (assumed to represent adrenergic 

nerves) was observed in the salt glands and the rabbit adrenal tissue (positive 

control), but not the negative control. A positive reaction was observed when 

the primary antibody was diluted 1:200 and 1:500, but the reaction was weak at 

a dilution of 1:1000. Nerves were observed around the edges of the gland 

(Figure 3.lla) where they branched several times in towards the centre of the 

gland. Other nerves extended into the lobes of the gland (Figure 3.llb) but it 

could not be determined if they were innervating the secretory tubules 

themselves or passing through the lobe. It was not possible to tell if nerves 

were associated with any particular element of the glandular structure. 
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DISCUSSION 

The results demonstrate that the secretory response of the chelonian salt gland 

can be modified in vivo by the application of some exogenous chemicals. The 

hypotheses that methacholine, adrenalin, atropine and A VT influenced the rate 

of sodium secretion under certain experimental conditions were supported by 

the experimental data. The hypotheses regarding the ability of molsidomine, 

VIP, ANP and NPY to affect the secretory response of the salt gland were not 

supported. Immunohistochemical technique confirmed the presence of 

proposed adrenergic nerves within the salt gland. 

The inhibitory action of methacholine was both immediate and sustained, with 

tear production ceasing within two minutes of methacholine injection at doses 

as low as 1 mg.kg BW-1. Its action may have been even more rapid than this, as 

tears observed may have been formed in the gland prior to injection and taken 

a short time to travel down the ducts to the surface of the eye. In another 

investigation on cholinergic stimulation in the crocodile it had been found that 

methacholine had an inhibitory action at higher doses and a stimulatory effect 

at lower doses (Grigg, personal communication). However, in this study doses 

of methacholine down to 100 ng.kg-1 did not stimulate the gland, indicating 

that there was not a reversal of action in this range. When methacholine was 

administered at doses of 5 and 10 mg.kg BW-1 after a salt-load, secretion 

commenced at a rate less than the control rate and took some time to reach 

control levels. It is not apparent from the data how the inhibition of secretory 

activity was achieved, but it resulted in the complete abolition of tear 

production for some time. Histochemical evidence indicated the presence of 

cholinergic nerves within the salt gland (Abel and Ellis, 1966), so it is presumed 

that methacholine mimics the effect of these nerves. However in the absence of 

definitive immunohistochemical evidence, the possibility remains that 

cholinergic nerves are absent and that methacholine is influencing gland 

activity through some unrelated or pharmacological mechanism. 

The inhibitory action of methacholine is in contrast to the earlier report of 

Schmidt-Nielsen and Fange (1958), where they found that methacholine 

initiated the secretory response. The experimental history of the animal 

injected in that study was unclear and it is possible that it had been salt-loaded 

in a previous experiment or had become dehydrated during transport from the 

site of capture (Schmidt-Nielsen, personal communication). If this was the 

case, secretion observed may have been spontaneous or as a result of prior salt

loading and not related to the methacholine injection. The delay between salt-
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loading and salt gland secretion is quite lengthy in large animals (Nicolson and 

Lutz, 1989) and it would be expected that initiation of secretion could take 

several hours in an adult animal. When one considers the period of inhibition 

by methacholine measured in hatchlings (30 to 50 minutes) this is considerably 

less than the delay between salt loading and tear production of about 70 to 100 

minutes reported by Nicholson and Lutz (1989) in juvenile turtles. It is not 

known what delay occurred between injection of methacholine and appearance 

of tears in the study of Schmidt-Nielsen and Fange (Schmidt-Nielsen, personal 

communication), but it is possible that the inhibitory influence of methacholine 

had diminished during the period between an ear lier salt-load and the 

secretion observed. 

Application of exogenous atropine had a stimulatory effect on salt gland 

secretion, which was slight in the absence of a salt-load but which led to 

secretion when administered with a sub-threshold salt-load. There was a long 

delay between injection of atropine and the appearance of tears (about 50 

minutes) when no salt-load was given. The mechanism by which atropine 

stimulated secretion is unclear. Atropine may act either directly by affecting 

salt gland secretory cells or vasculature, or indirectly by influencing cardiac 

function or some other factor which affected the salt gland. 

The long delay between atropine injection and the appearance of tears and the 

brief secretory response indicate that the effect of atropine under the 

experimental conditions was not characteristic of the normal secretory response 

to a salt-load. It is possible that a greater dose of atropine may have been 

sufficient, but this was not attempted for two reasons. 1) Systemic injection of a 

large dose of a cholinergic antagonist may severely interfere with cardiac 

function of the study animal. 2) Any effect of atropine observed at high doses 

may be pharmacological rather than physiological, hence providing misleading 

information. 

Atropine stimulated tear production when administered with a subthreshold 

salt-load, suggesting that elevated plasma sodium may be a prerequisite of 

normal salt gland secretion. However, the secretion evoked by atropine and a 

subthreshold salt-load was only transient. Perhaps after a short time plasma 

salt was reduced by the salt gland or some other means to a level not sufficient 

for secretion to continue. It is feasible that plasma salt must be above a certain 

threshold for the secretory cells to remove it from the blood and so produce 

tears, but from the data it can not be determined if this is the case. 
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The reversal of methacholine inhibition of the salt gland by atropine suggests 

that there may be chronic, cholinergic down-regulation of the gland when 

secretion is not required, which is transiently counteracted by the injection of 

exogenous atropine . Thus in the case of tear production following atropine 

injection, the atropine had not stimulated the gland per se, but rather had 

temporarily prevented methacholine from inhibiting the gland activity. In the 

context of gland control in vivo, the cessation of inhibition by cholinergic nerves 

may permit the gland to become active. 

Adrenalin also exerts an inhibitory influence on salt gland activity in 

hatch.lings, but is more potent than methacholine. A dose of 25 µg.kg BW-1 

adrenalin inhibited the commencement of secretion by 20 minutes, while a dose 

of 1 mg.kg BW-1 methacholine was needed to cause the same delay in secretory 

response. On recovery from inhibition, animals secreted at control rates after 

about 10 minutes,The time for recovery once secretion commenced did not 

change with increasing dose of adrenalin, although the time taken for secretion 

to start was lengthened. It is not possible to determine the location of the 

inhibitory activity of adrenalin from the experiments conducted. 

The detection of adrenergic nerves by immunohistochemical technique 

confirms the localisation of nerves proposed to be adrenergic following 

detection of monoamine oxidase by histochemical methods (Abel and Ellis, 

1966). It was not possible to determine if nerve fibres were associated with 

blood vessels or other elements of the gland structure, but they could be seen 

around the periphery of the gland as well as penetrating into the secretory 

lobes. The identification of these adrenergic nerves supports the proposition 

that the injection of exogenous adrenalin into hatch.ling turtles to influence the 

salt gland mimics the release of adrenalin from nerve fibres within the gland 

itself. 

The nitric oxide donor molsidomine did not stimulate salt gland activity in the 

absence of a salt-load. This may be because there are no receptors sensitive to 

nitric oxide in or around the salt gland or the specificity of NO donor may be a 

critical factor. Molsidomine is a commonly used NO donor with 

vasoregulatory action, but most studies are carried out on mammalian systems. 

Reptilian nitrergic innervation may require different NO donors. Examination 

of a wider range of donors may reveal if this is the case. 
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VIP has a major stimulatory role in avian and elasmobranch groups so it was 

surprising that it was unable to influence the secretory activity of the turtle salt 

gland at the doses used. The fact that the peptide could not be infused into the 

blood vessels supplying the salt gland may have been an important factor. The 

chicken VIP used may not have been suitable for use in the sea turtle if there is 

a difference in amino acid sequence. However, a larger dose may have 

produced some effect. 

ANP and NPY did not appear to affect turtle salt gland activity under the 

experimental conditions, suggesting that control mechanisms differ between 

vertebrate groups possessing salt glands. A VT had a transient inhibitory 

influence on salt gland activity, but only when administered after initiation of 

salt gland secretion by a salt-load. This was mediated primarily through a 

reduction in tear ionic concentration. AVT did not reduce the concentration of 

secretion when administered simultaneously with a salt-load, probably because 

its influence had ceased in the intervening period from salt injection to tear 

formation. The reduction of tear ionic concentration is consistent with the 

observation that dilute tears are produced by nesting female turtles at a time 

when circulating A VT concentrations are very high (P. Cooper, personal 

communication). It is unclear whether A VT has a direct influence on the salt 

gland itself, as its impact on total sodium removal by the gland is relatively 

slight. 

One of the limitations of the experimental technique employed in this study is 

that exogenous chemicals are introduced into the systemic circulation. It is not 

possible to inject directly into the blood vessels supplying that salt gland of the 

turtle hatchling, as epidermal scales lie over the area and the blood vessels are 

very small. The possibility exists that no effect on salt gland activity was seen 

for some 1chemicals because they were degraded rapidly or for some reason did 

not reach the salt gland. Application of higher doses than those employed may 

reveal if this was the case, but a limited number of doses could be examined. 

However, the results of A VT administration shows that peptide at least was 

able to exert an influence on the salt gland. Thus some confidence may be held 

that the other injected peptides at similar doses were also potentially able to 

influence the gland and that absence of effect was a real result and not solely a 

limitation of the experimental technique. Until the amino acid sequences for 

the peptides examined are determined in turtles, there remains a possibility 

that peptides were not recognised by receptors for the endogenous peptide due 

to differences in sequence. 
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Examination of the comparative data shows that the antagonistic actions of 

adrenergic and cholinergic agonists found in other exocrine glands and the 

avian salt gland were not found in the green turtle salt gland. There is not a 

consistency of cholinergic action among reptilian salt glands, with a 

stimulatory role found in the estuarine crocodile and marine iguana but an 

inhibitory action in the hatchling green turtle. Within experimental limitations, 

the peptidergic influences exerted on salt gland secretion in other animals and 

the nitrergic influence seen on the avian gland are not seen in the chelonian 

gland. There may be a role for peptidergic control in the salt gland despite the 

absence of evidence from the experiments conducted. It is possible that an 

osmoregulatory function for a known peptide not tested exists in the chelonian 

salt gland, or there may be novel peptides involved not yet identified. 

In summary, secretion from the salt gland of the ha tchling green turtle is 

inhibited by the neurotransmitters methacholine and adrenalin. Atropine has a 

slight stimulatory influence on the gland and reverses the inhibition of 

methacholine. A VT transiently reduces the secretion from the gland but the 

other peptides examined did not show any measurable effect under the 

experimental conditions used. It is not clear from the data how these modifiers 

exerted their influence, whether by changing blood flow, secretory cell activity 

or other means. It is unusual that both cholinergic and adrenergic inhibition of 

the gland occur, as acetylcholine and adrenalin generally have antagonistic 

roles in controlling activity of other exocrine glands. Adrenergic nerves were 

demonstrated by immunohistochemical means, confirming an earlier report 

which inferred their presence histochemically and indicating that adrenalin 

probably affects the gland through release from adrenergic nerves in the gland. 

Production of suitable antibodies will allow collection of immunohistochemical 

evidence to determine if cholinergic nerves are present. Identification of 

potential neural modifiers of salt gland activity permits an investigation into 

the separate processes which may operate to regulate the salt gland, these are 

described in the chapters following. 



Table 3.1 
Summary of chemicals and doses used under different experimental conditions. All doses are per kg body mass. "No salt-load" 
refers to injection of chemical in the absence of any salt-load. "With salt-load" refers to injection of chemical simultaneously with a 
salt-load of 2700 µmol NaCl.lOOg BW-1. "After salt-load" refers to injection of chemical 20 minutes after initiation of salt gland 
secretion by a salt-load of 2700 µmol NaCl. lOOg BW-1. "With subthreshold salt-load" refers to injection of chemical simultaneously 
with a salt-load of 200 µmol NaCl.lOOg BW-1. A blank box indicates that the chemical was not tested under that particular 
condition. 

Chemical No salt-load With salt-load After salt-load With subthreshold 
salt-load 

Methacholine.kg BW-1 100 ng, 1 µg, 10 µg, 1 mg, 5 mg, 10 mg 2 mg, 10 rrtg 
100 µg, 1 mg, 10 mg 

Adrenalin.kg BW-1 10 mg, 100 mg 25 µg, 100 µg, 500 µg, 25 µg, 100 µg, 500 µg, 10mg 
2 mg, 10 mg 10mg 

Atropine.kg BW-1 10 µg, 100 µg, 1 mg, 10 10mg 
mg 

Molsidomine.kg BW-1 100 ng, 10 µg, 100 µg, 
1 mg, 10 mg, 50 mg 

VIP.kg BW-1 3.5 ng, 10 ng, 30 ng, 60 30 ng 30 ng 30ng 
ng, 300 ng 

AVT.kg BW-1 30 ng 30 ng 30 ng, 300 ng 
ANP.kg BW-1 30 ng, 60 ng 30 ng 30 ng 
NPY.kgBW-1 30ng 30 ng 30 ng 

O"I 
(Jl 
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Table 3.2 
Summary of effects of chemicals injected on salt gland activity under different 
experimental conditions. "O" indicates that the chemical had no measurable 
effect,"-" indicates that there was an inhibitory effect, "+" indicates that there 
was a stimulatory effect. "No salt-load" refers to injection of chemical in the 
absence of any salt-load. "With salt-load" refers to injection of chemical 
simultaneously with a salt-load of 2700 µmol NaCl.lOOg BW-1. "After salt-load" 
refers to injection of chemical 20 minutes after initiation of salt gland secretion 
by a salt-load of 2700 µmol NaCl.lOOg BW-1. "With subthreshold salt-load" 
refers to injection of chemical simultaneously with a salt-load of 200 µmol 
NaCl.lOOg BW-1. A blank box indicates that the chemical was not tested under 
that particular condition. 

Chemical No salt-load With salt- After salt- With 
load load subthreshold 

salt-load 
Methacholine 0 - -

Adrenalin 0 - - 0 
Atropine +? + 

Molsidomine 0 
VIP 0 0 0 0 
AVT 0 0 -

ANP 0 0 0 
NPY 0 0 0 



67 

500 

450 -J,.. 400 
.c 

QJ -
- 0) 350 ca o 
a: 0 ,... 300 
C: -o ca 
·- z 250 -QJ • Salt then PBS 

J,.. o_ 200 • Salt only 
QJ 0 
en E 150 

:::I - 100 

50 

0 
0 10 20 30 40 50 60 70 80 90 

Time (min) 

Figure 3.1 
Effect of injection of phosphate buffered saline (PBS) on sodium secretion rate 
initiated by salt-loading. Average secretion rate is shown+ 1 standard error. 
The first arrow indicates the time of injection of all animals with a salt-load of 
2700 µmol NaCl.lOOg BW-1. At the second arrow, experimental animals 
received an injection of 2 ml.kg-1 PBS (n = 6), while control animals were 
untreated (n = 6). There were no significant differences in secretion rate 
following the PBS injection. 
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90 

Effect of injection of 10 mg.kg BW-1 methacholine (MeCh) on sodium secretion 
rate initiated by salt-loading. Average secretion rate is shown+ 1 standard 
error. The first arrow indicates the time of injection of all animals with a salt
load of 2700 µmol NaCl.lOOg BW-1. At the second arrow, experimental animals 
received an injection of 10 mg.kg BW-1 methacholine (n = 6), while control 
animals received an equal volume of PBS (n = 6). Secretion was abolished in 
about two minutes in treated animals, but continued in controls. The same 
inhibition was seen at doses of 1 and 5 mg.kg BW-1 methacholine. 
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Effect on sodium secretion of methacholine injection of 1 mg.kg BW-1 (n = 6), 5 
mg.kg BW-1 (n = 6), 10 mg.kg BW-1 (n = 6) when injected simultaneously with a 
salt-load of 2700 µmol NaCl.lOOg BW-1. The dashed line indicates the rate from 
animals which received a salt-load only (control). Secretion was measured in 
µmol Na.lOOg-l·hrl and calculated as a percentage of secretion of control (n = 
9). No error bars are shown because only two values were compared at each 
time point - the average control secretory rate and the average experimental 
secretory rate. 
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Table 3.3 
Temporal inhibition by methacholine of secretory response to a salt-load (+ 1 
std error). n = number of animals sampled. 

Dosage of methacholine Delay before Time taken to reach 
injected with salt-load of commencement of 100°/o of control 
2700 µmol N aCl.lOOg Bw-1. secretion. secretory rate after 

initiation. 

0 mg.kg-1 (n = 6) 14.1 + 1.5 minutes 0 minutes 

1 mg.kg-1 (n = 6) 20.0 + 1.8 minutes 2 minutes 

5 mg.kg-1 (n = 6) 50.8 + 3.2 minutes 23 minutes 

10 mg.kg-1 (n=6) 55.0 + 4.5 minutes 48 minutes 

Table 3.4 
Temporal inhibition of secretory response to a salt-load by adrenalin (+ 1 std 
error). n = number of animals sampled. 

Dosage of adrenalin Delay before Time taken to reach 
injected with salt-load of commencement of control secretory rate 
2700 µmol NaCl.lOOg BW-1 secretion after initiation 

0 mg.kg-1 (n = 6) 14.1 + 1.5 minutes 0 minutes 

25 µg.kg-1 (n = 5) 20.0 + 2.2 minutes 8 minutes 

100 µg.kg-1 (n = 5) 34.0 + 1.8 minutes 10 minutes 

500 µg.kg-1 (n = 5) 80.0 + 4.6 minutes 8 minutes 
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Figure 3.4 
Effect on sodium secretion of adrenalin injection of 25 µg.kg BW-1 (n = 5), 100 
µg.kg BW-1 (n = 5) and 500 µg.kg BW-1 (n = 5) when injected simultaneously 
with a salt-load of 2700 µmol NaCl.lOOg BW-1. The arrow indicates the time at 
which the salt-load and adrenalin were injected. The dashed line indicates the 
rate from animals which received a salt-load only (control). Secretion was 
measured in µmol Na.lOOg-1.hrl and calculated as a percentage of secretion of 
control (n = 9). No error bars are shown because only two values were 
compared at each time point - the average control secretory rate and the 
average experimental secretory rate. 
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Figure 3.5 
Influence of atropine on secretion by the salt gland. Average secretion rate is 
shown+ 1 standard error. The arrow indicates time at which animals received 
an injection of salt only (2700 µmol NaCl.lOOg BW-1, n = 9), atropine 10 mg.kg 
BW-1 only (n = 4), or atropine 10 mg.kg BW-1 with a subthreshold salt-load of 
200 µmol NaCl.lOOg BW-1 (n = 7). 1 of 4 animals injected with atropine did not 
secrete and 2 of 7 injected with atropine and a subthreshold salt-load did not 
secrete. 
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Figure 3.6 
Atropine reversal of methacholine inhibition of salt secretion. Average 
secretion rate is shown+ 1 standard error. The first arrow indicates time of 
injection of a salt-load of 2700 µmol NaCl.lOOg BW-1 simultaneous with 
methacholine 5 mg.kg BW-1 . The second arrow indicates the time at which 
animals were injected with either atropine 10 mg.kg BW-1 (n = 4) or the same 
volume of PBS (n = 4). Animals which received atropine began secreting an 
average of seven minutes after atropine injection, while those which received 
PBS did not secrete for the duration of the experiment. 
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Figure 3.7 
Effect of VIP injection (30 ng.kg BW-1) on secretory rate of salt gland. Average 
secretion rate is shown + 1 standard error. The first arrow indicates when all 
animals were injected with a salt-load of 2700 µmol NaCl.lOOg BW-1. Some 
animals also received VIP with the salt-load(n = 11), while others received VIP 
at the time indicated by the second arrow (n = 9). There were no significant 
differences in secretory rate of animals treated with VIP compared to those 
receiving a salt-load alone (n = 9). 
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Figure 3.8 
Effect of AVT injection (30 ng.kg BW-1) on secretory rate of salt gland. Average 
secretion rate is shown+ 1 standard error. The first arrow indicates when all 
animals were injected with a salt-load of 2700 µmol NaCl.lOOg BW-1. The 
second arrow indicates when A VT was injected in some animals (n = 9), while 
control animals received PBS (n = 9). Asterisks indicate significant differences 
in secretory rate, p<0.05. 
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Effect of ANP injection (30 ng.kg BW-1) on secretory rate of salt gland. Average 
secretion rate is shown+ 1 standard error. The first arrow indicates when all 
animals were injected with a salt-load of 2700 µmol NaCl.lOOg BW-1. Some 
animals also received ANP with the salt-load(n = 9t while others received ANP 
at the time indicated by the second arrow (n = 9). There were no significant 
differences in secretory rate of animals treated with ANP compared to those 
receiving a salt-load alone (n = 9). 
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Figure 3.10 
Effect of NPY injection (30 ng.kg BW-1) on secretory rate of salt gland. Average 
secretion rate is shown+ 1 standard error. The first arrow indicates when all 
animals were injected with a salt-load of 2700 µmol NaCl.lOOg BW-1 . Some 
animals also received NPY with the salt-load(n = 5), while others received NPY 
at the time indicated by the second arrow (n = 5). There were no significant 
differences in secretory rate of animals treated with NPY compared to those 
receiving a salt-load alone (n = 9). 
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Figure 3.11 
A) Immunoreactivity to tyrosine hydroxylase was observed at the periphery of 
salt gland sections, with putative adrenergic nerve fibres branching towards the 
interior of the section. Dilution of primary antibody was 1:200. 
B) Other putative adrenergic nerve fibres indicated by the arrows ran through 
the secretory lobes of the salt gland sections, but it could not be seen if they 
terminated within the lobes. Dilution of primary antibody was 1:500. 
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CHAPTER 4 
Salt Gland Histology and Blood Flow 

INTRODUCTION 

To produce a concentrated secretion, the salt gland must be supplied with 

blood from which to extract salt. Blood supply to the gland was identified as 

a possible site of regulation of gland function (Figure 1.5) and may be 

controlled to increase or decrease the availability of salt and other metabolic 

substrates which limit the secretory activity of the gland. This chapter 

investigates whether there are alterations in structure or vasculature and 

blood circulation which accompany changes in the activity of the hatchling 

green turtle gland. Any alterations which occur imply that the flow of blood 

in the gland is regulated, so the ability of possible modifiers to effect such 

changes was examined. Investigation of structure and vasculature was 

conducted using histological and stereological techniques, while the 

circulation of blood through the salt gland was measured using a technique 

employing coloured microspheres injected in vivo. 

4.1 HISTOLOGY 

The histology of the sea turtle salt gland has not been extensively examined, 

with the only comprehensive report being that of Abel and Ellis (1966). The 

gland structure is essentially similar to that of the avian salt gland, with a 

large number of secretory tubules formed by a circular arrangement of 

principal secretory cells. The secretory tubules drain into central canals in 

each lobule of the gland and these in turn form a large collecting duct. Abel 

and Ellis (1966) reported that like the avian salt gland, secretory tubules of 

the green turtle salt gland were surrounded by a network of capillaries 

which contacted the basal (outer) membrane of the secretory cells, similar to 

the arrangement in the avian salt gland. However, the salt glands examined 

were not active when removed, so the histological report made was of salt 

glands which were not secreting salt. There may be important structural 

changes which occur when the salt gland is active, particularly involving 

vasculature around the secretory tubules. The supply of blood may change 

with gland activity, with blood vessels associated with secretory tubules and 

central canals changing diameter or carrying more red blood cells. A 

comparison of gland structure under conditions of activity and inactivity 

may reveal if changes such as these do occur. The structure of salt glands 

from hatchling green turtles was examined and stereological methods were 
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used to quantify any changes associated with secretory activity. New, 

computer three-dimensional reconstruction techniques were used to reveal 

the internal arrangement of central canals and collecting duct in the salt 

gland. Stereological and reconstructive techniques are based upon analysis 

of serial sections of the tissue being examined (Weibel, 1980), so the salt 

gland tissue was cut serially and used for all techniques. 

4.2 THE IMPORTANCE OF SALT GLAND BLOOD SUPPLY 

Salt glands in birds, crocodiles and turtles are highly vascularised, with 

capillary networks encircling secretory tubules (Schmidt-Nielsen, 1960; Abel 

and Ellis, 1966; Hossler and Olson, 1990; Franklin and Grigg, 1993) as well as 

excretory ducts (Marshall et al., 1987). Each secretory tubule is surrounded by 

six or seven capillaries which are in close contact with the basal membranes 

of principal secretory cells (Figure 4.1). Blood appears to flow in the opposite 

direction to the movement of secretory fluid down the tubule (Fange et al., 

1958a), but it has not been shown that this arrangement is important in the 

process of moving ions from the blood to the tubule lumen. The high 

degree of vascularisation indicates that an adequate supply of blood is 

essential to the process by which salt glands produce concentrated secretions. 

Studies of the avian salt gland demonstrated that salt leaves the blood in its 

passage through the gland, with sodium concentration in blood exiting the 

gland 15 to 20°/o lower than in blood entering (Hanwell et al., 1971; Kaul et 

al., 1983). Clearly a reduction in the blood supply to the gland will restrict 

the availability of salt for uptake by secretory cells and so may be a means of 

controlling salt gland activity. Oxygen supply to the secretory cells and the 

gland as a whole will also be affected by changes in the blood flowing 

through the gland. The availability of oxygen for aerobic processes is a 

regulating factor in the metabolic activity of certain animals (Withers, 1992) 

and the possibility exists that the secretory cells of the salt gland are also 

regulated by the available blood-borne oxygen. 

It is important to make the distinction between whole organ blood flow and 

circulatory changes which regulate the amount of blood flowing through the 

capillaries which contact the secretory tubules. An early investigation into 

the vasculature of the herring gull salt gland (Fange et al., 1958b) showed 

that blood can enter and flow through the gland and rejoin the main artery 

distal to the gland. If there is a specific constriction of the arterioles which 

branch from the artery to supply the capillaries surrounding the secretory 

tubules, then blood may pass through the gland but not come into contact 
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with secretory cells. So when blood flows through the salt gland, unless the 

circulatory route is such that the blood is available to the secretory cells then 

salt and other substrates are not available to the secretory tubules (Figure 

4.2). In the context of regulation of blood supply to the secretory cells, it can 

only be said with certainty that regulation occurs if there is a change in the 

capillary blood flow, as the secretory cells are in contact with these vessels. 

Measurements of changes in capillary blood flow with different states of 

gland activity provide evidence of circulatory changes within the gland but 

not necessarily that blood flow through the gland as a whole has changed. 

Therefore it is necessary to employ experimental techniques which measure 

blood flow through capillaries rather than arteries or arterioles. 

Blood flow through the chelonian salt gland has never been measured, so it 

is not known if there are differences associated with secretory activity. 

Experiments were conducted to test the hypothesis that there are circulatory 

differences between active and inactive salt glands. 

The drugs methacholine and adrenalin inhibited secretion and atropine 

stimulated secretion by the chelonian salt gland in vivo (Chapter 3) but it 

was not possible in those experiments to identify how this was achieved. 

Experiments were conducted to measure salt gland circulation in vivo 

following administration of these chemicals to test the hypothesis that they 

were changing the circulation of blood through the gland. If this was the 

case, it implied that at least a portion of their effects on salt gland secretion 

were achieved in this way. 

4.3 MEASUREMENT OF BLOOD FLOW 

Several techniques may be used to measure blood flow in vivo, such as 

laser-doppler flowmetry (Gerstberger, 1991), marker diffusion (Banwell et 

al., 1971) and several types of microsphere techniques (Prinzen and Glenny, 

1994). However, limitations imposed by small size and epidermal scales of 

the study animal meant that a modification of one employing coloured 

microspheres was the most suitable. The microspheres technique involves 

injection of small plastic beads into the systemic circulation which are 

trapped by capillaries in the organs as blood flows throughout the body. 

Because spheres are found in the organ itself, it can be conclusively shown 

that blood carrying the spheres had passed through capillaries of that organ. 

The number of spheres trapped is proportional to the rate of blood flow 

(Kowallik et al., 1991) and the assumption is made that changes in the 
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number of spheres trapped in a tissue ( concentration of spheres per gram of 

tissue) is a direct measure of changes in the rate of blood flow through the 

capillaries of that tissue. Also it is assumed that spheres are equally likely to 

be trapped in all tissues, proportional to their share of the total systemic 

blood flow, provided that capillaries are of similar diameter. In this study, 

the number of spheres trapped in the salt gland and other tissues as a 

measure of capillary blood flow was compared under the experimental 

conditions described above. 

4.4 EXPERIMENT AL AIM 

The aims of the experiments were; 1) to employ histological techniques to 

investigate the structural arrangement of the salt gland including three

dimensional reconstruction of duct arrangement, 2) to use stereological 

methods to measure whether the volume of blood vessels or other gland 

components associated with secretory tubules changes with salt gland 

activity, and 3) to use the coloured microsphere technique to quantitatively 

test the hypothesis that blood circulation in the active hatchling turtle salt 

gland is different than that in the inactive salt gland. In addition, the 

hypotheses were tested that methacholine, adrenalin and atropine all affect 

blood circulation through the hatchling turtle salt gland. Cardiac and 

pectoral muscle tissue samples were also examined to provide comparative 

information on capillary blood flow in other tissues under the experimental 

conditions employed. The aim was to determine whether the site of blood 

flow regulation proposed in the secretory model was indeed influenced by 

modifiers of salt gland activity. 



METHODS 

4.5 ANIMALS 

Animals used were as described in Section 2.3. 

4.6 HISTOLOGICAL TECHNIQUE 

83 

Many techniques may be employed for examining the histology of tissues 

and are generally selected on the basis of the information that is being 

sought. Thin sections of tissue are useful for showing microscopic structure 

of tissues when stained appropriately to reveal different tissue types. Tissues 

are fixed following removal from the animal and may be stained and 

examined some time later. Paraformaldehyde or Bouin's fixative preserve 

cellular structure and allow tissues to be subsequently embedded in resin or 

paraffin wax for cutting into thin sections (Pearse, 1985). The thickness of 

sections varies with the embedding medium, 7 to 14 µm wax sections and 1 

to 3 µm resin sections are typically taken. Selection of the appropriate stain 

will differentially colour tissues and so reveal the presence of connective 

tissue, blood cells, secretory cells etc. Wax embedding and resin embedding 

histological techniques were employed in this study to examine the fine 

structure of hatchling turtle salt glands. 

4.6.1 Collection of tissue samples 

Two methods were used to collect salt glands. 1) Animals were killed by 

decapitation and the salt glands quickly removed and placed in Bouin's 

fixative or 4°/o paraformaldehyde in PBS (pH 6.8 - 7.2t or 2) animals were 

cooled in the refrigerator for about 15 minutes before placing in a -70°C 

freezer for about 30 minutes to kill them. Animals were then thawed 

sufficiently to permit removal of salt glands, which were placed in Bouin's 

fixative and embedded for sectioning in wax. Glands were collected from 

animals ,stimulated to secrete by injection of a salt-load of 2700 µmol 

NaCl.lOOg BW-1, as well as from animals which were untreated and so not 

secreting. 

4.6.2 Wax embedding 

Histological technique was used to identify visible differences in salt gland 

structure from animals which were producing tears as well as those which 

were not. In order to initiate secretion, animals were injected with a salt

load of 2700 µmol NaCl.lOOg BW-1 and the salt glands were removed 15 

minutes after the appearance of tears. Glands were collected both from 

decapitated and frozen animals. Glands were fixed in Bouin's fixative for 
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subsequent wax embedding in a Shandon® Hypercentre and cutting into 

serial sections. Embedding protocol is detailed in Appendix 2. Following 

embedding, tissue was removed and attached to a small wooden block for 

slicing. Sections of 7µm thickness were cut on a Sorvall® JB-4 Microtome 

(Dupont Instruments) slicer and were attached to a gelatine-coated glass 

microscope slide. Slides were then placed on a slide heating rack at 65°C for 

a minimum of 2 hours to fix the sections. 

4.6.3 Resin embedding 

Salt glands were collected from decapitated animals both with active and 

inactive glands as described above. Glands were fixed in 4°/o 

paraformaldehyde in PBS (pH 6.8 - 7.2) prior to embedding in resin and 

sectioning. Tissue was dehydrated in ethanol for five minutes at 20°/o, 40°/o, 

50°/o, 75°/o and 90°/o and overnight at 100°/o, followed by three washes in 100°/o 

ethanol for one hour. Infiltration with London White resin was done at 

room temperature three times for one hour each, before curing at 600C for 24 

hours in a nitrogen atmosphere. Sections of 1 µm thickness were cut on an 

ultramicrotome (Reichert) and mounted on glass slides. 

4.6.4 Staining of tissue sections 

4.6.4.1 Wax embedded sections. 

Salt gland tissue sections which had been wax embedded were stained using 

the Periodic acid-Schiff (PAS) method counterstained with haematoxylin 

and fast green (recipes in Appendix 1). Staining protocol is detailed 1n 

Appendix 2. Mounted sections were examined under light microscopy. 

4.6.4.2 Resin embedded sections. 

Slides were placed on a slide heater at 80DC and stained for 20 seconds with 

0.05°/o toluidine blue in PBS. Stain was then rinsed off the slide with 

distilled water. 

4.7 STEREOLOGICAL TECHNIQUE 

Stereological technique can be employed to permit morphometric 

measurements of internal structures of biological specimens (Weibel, 1980). 

Volume and surface area measurements of various structures within a 

tissue can be made by applying the technique to serial sections of the tissue. 

By measuring two-dimensional area of a particular feature in adjacent 

sections, volume and surface area calculations can be made on the basis of 

two dimensional area or perimeter measurements, section thickness and 
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distance between sections. Although the technique is very tin1e-consuming, 

it permits accurate morphometric quantification of internal structures not 

possible using conventional microscopic technique. 

4.7.1 Three-dimensional reconstruction 

Stained, wax embedded serial sections were used as described in Section 4.6 

above. Images of sections were obtained using a video camera (Sony CCD) 

mounted on a light microscope (Zeiss Axioscope). The images were 

captured and stored using the computer program Adobe Photoshop on a 

Macintosh computer. Images were converted from colour to greyscale to 

reduce computer file size and saved in TIFF format. Every third section was 

captured in this way, with about 60 sections collected for the reconstruction. 

Sections were aligned on a Silicon Graphics workstation so that ducts could 

be accurately tracked through the gland. Using the program "Imod" 

(Kremer et al., 1996) ducts in each section were traced and a closed contour 

formed around them. The program then reconstructed the internal duct 

structure by joining overlapping contours in adjacent sections and rendering 

them in three-dimensional form. 

4.7.2 Morphometric analysis of gland components 

Analysis was conducted on sections of glands taken from two frozen 

hatchlings, one which was salt loaded and one which was not. Six lobes 

from each gland were examined, with the lobes followed through the gland 

until they entered the main collecting duct or became indistinguishable 

from other lobes. Every third section was captured on computer using the 

video technique described above. "Imod" was used to display a computer 

image of the section and individual blood vessels, central canals, lobes and 

tubule lumens within the lobe were outlined and contoured. The area of 

closed contours was calculated in square microns and thus volume was 

determined from section thickness. Not all contours could be followed from 

one section to the next, so the sum volume was calculated from each 

individual section and was not interpolated between sections. The total 

surface area and volume of the different lobular structures from about 400 

tissue sections comprised of over 2300 object contours was calculated in this 

way. The size of lobes varied, so the volume of lobular structures was 

calculated and expressed as a percentage of the total lobe volume. The 

average values for lobes from an active gland were compared with the 

average values of lobes from an inactive gland. 



MICROSPHERE TECHNIQUE 

4.8.1 Injection of microspheres 
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Microspheres used were coloured and made from cross-linked polystyrene

divinylbenzene (Ultrasphere™, E-Z Trac, Los Angeles). These spheres are 

resistant to alkaline digestion and are colour coded to permit identification 

of different sizes. In order to be securely trapped by capillaries, spheres 

should be about 50°/o larger than the dimensions of the red blood cell 

(Thorarensen, personal communication). Green turtle RBCs are elliptical, 

approximately 12 µm by 17 µm (Frair, 1977), so 15 µm and 25 µm diameter 

spheres were selected as the most appropriate sizes. Spheres were added to 

PBS until a total of 300,000 spheres of both sizes were contained in a volume 

of 100 µl PBS. The number of spheres to be injected was calculated from 

estimates of cardiac output, salt gland blood flow and salt gland mass 

according to an equation described by Prinzen and Glenny (1994). The 

suspension was vortexed before injection to ensure even distribution of 

spheres and to prevent clumping. 100 µl of suspension containing 300,000 

spheres was injected into the systemic blood of subject animals by cardiac 

puncture using a heparinised insulin syringe (Terumo, 27G x 1/2). The 

needle was inserted to a depth of about 8 mm in the joint between scutes 

immediately above the external yolk sac. A slight amount of negative 

pressure was applied to the needle to draw blood to determine whether the 

needle penetrated the heart, then the suspension containing the spheres was 

steadily injected over 2 seconds. The initial withdrawal of blood ensured 

that the spheres were injected into the ventricular space and not into the 

muscle of the heart wall. Five minutes after sphere injection the animal 

was killed by decapitation for immediate removal of tissue samples. A time 

period of five minutes between injection and decapitation was based on 

estimates of heart rate and blood volume of hatchlings. Decapitation rather 

than freezing was used to kill the animals because it was necessary to ensure 

an immediate stop in blood flow after five minutes. The salt glands, 

pectoral muscle and cardiac muscle were removed, with tissues always 

collected in the same order. Blood adhering to the surface of the sample was 

blotted off, tissues were weighed and placed into individual Eppendorf tubes 

for microsphere extraction. Left and right salt glands from each animal were 

treated separately in case the order of their removal influenced microsphere 

concentration. 
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4.8.2 Extraction of microspheres 

Microspheres were extracted from tissue samples using a modification of the 

method recommended by the supplier (Ultrasphere™ Extraction Protocol 

91001.4). Ultrasphere™ tissue/blood digest reagent 1 (0.5 ml) was added to 

each sample. In addition, 2000 reference 25 µm spheres in 100 µl PBS were 

added to each sample so that extraction efficiency could be measured. Tissue 

samples were pushed or shaken to the bottom of each Eppendorf tube and 

the cap closed. Tubes were placed in an oven at 85°C for at least 2 hours for 

tissue digestion to occur and then allowed to cool to room temperature 

before vortex mixing. Any tissue samples that did not form a uniform 

suspension were returned to the oven for a further hour to complete 

digestion. Following digestion, Ultrasphere™ tissue/blood digest reagent 2 

(1 ml) was added to the suspension and vortexed. Tubes were centrifuged at 

6500 RPM for 30 minutes so that microspheres formed a small pellet in the 

bottom of the tube. The supernatant was removed with a Pasteur pipette to 

a level slightly above the pellet and discarded. 1.5 ml of Ultrasphere™ 

microsphere counting reagent was added to the tube and the pellet 

resuspended by vortex mixing. If the pellet did not completely resuspend, 

tubes were returned to the oven for 30 minutes before vortexing again. This 

process was repeated until all sediment aggregates had disappeared. Tubes 

were centrifuged at 6500 RPM for 15 minutes and the supernatant removed 

to a level slightly above the pellet. The tube was briefly centrifuged again to 

spin down any liquid adhering to the sides so that liquid volume could be 

accurately determined using a Gilson pipette. Liquid volume was recorded 

and the liquid retained for counting of microspheres. The liquid volume 

was important for calculating total number of microspheres after taking a 

subsample for counting of spheres. 

4.8.3 Counting technique 

The sampling and counting technique was validated by preparing solutions 

of 200 each of 15 µm and 25 µm microspheres in a total volume of 100 µl 

PBS. Five subsamples of 20 µl each were taken and the number of spheres of 

each colour counted under a microscope. Three separate 100 µl standards 

were used and variations between 20 µl subsamples were compared to 

determine the accuracy of subsampling. It was found that number of 

spheres varied by less than + 5°/o in subsamples so this subsampling 

technique was employed for counting spheres in experimental samples. 
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A 20 µl subsample was taken from experimental samples following 

vortexing of the Eppendorf tube to disperse microspheres evenly 

throughout the solution. The number of spheres of each colour was 

counted and recorded and the number of spheres per µl was calculated. The 

total number of spheres was then determined by multiplying the number of 

microspheres per µl by the total volume of solution measured previously 

with a Gilson pipette . Extraction efficiency was determined by dividing the 

total number of reference spheres in the solution by the 2000 that had been 

added to the original tissue sample. The number of spheres in individual 

samples was corrected for extraction efficiency by dividing by the number of 

spheres by the proportion of reference spheres counted. For example, if 1700 

of the 2000 reference spheres were present in the sample, the extraction 

efficiency was 85°/o and 15°/o of the reference spheres had been lost during the 

extraction process-.- It was assumed that 15°/o of the 15 and 25 µm spheres had 

also been lost and so the number in the sample was divided by 85°/o to 

correct accordingly. The total number of each sphere size in the original 

tissue sample was calculated by this method. The number of 15 µm and 25 

µm spheres was multiplied by the sample tissue weight to determine the 

number of spheres per gram of tissue. 

4.8.4 Experiments 

Experiments were conducted to measure blood flow in the presence and 

absence of a salt-load. Salt-loaded animals were injected with 2700 µmol 

NaCl.lOOg BW-1 while control animals were injected with an equal volume 

of PBS (270 µmol NaCl.lOOg BW-1 ). Fifteen minutes after salt gland 

secretions had first appeared in salt-loaded animals, both salt-loaded and 

control animals were injected with spheres by cardiac puncture and tissues 

collected as described above. 

Other experiments were conducted to investigate if the inhibitory influence 

of methacholine and adrenalin and the stimulatory influence of atropine on 

salt gland secretion was produced by changing blood flow. Two groups of 

animals received a salt-load of 2700 µmol NaCl.lOOg BW-1 followed ten 

minutes after the first appearance of tears by injection of adrenalin (500 

µg.kg BW-1) or methacholine (10 mg.kg BW-1) into the thoracic cavity. The 

reason a salt-load was administered prior to injection of these chemicals was 

to replicate the conditions under which their inhibitory effects were found 

in Chapter 3. Microspheres were injected 5 minutes later and tissue samples 

collected as above. A third group of animals received an injection of 
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atropine (10 mg.kg BW-1) in the absence of a salt-load, with spheres injected 

15 minutes later and tissue samples collected. 

4.8.5 Statistical analysis 

The Mann-Whitney rank test was used to determine if there were statistical 

differences in microsphere numbers between salt-loaded and non salt

loaded animals. The same test was applied to determine statistical 

differences among groups of turtles receiving treatment and controls. In all 

cases, significance was assumed if p<0.05. All results are shown as the mean 

+ 1 standard error. 



RESULTS 

4.9 HISTOLOGY 

4. 9 .1 Wax sections 
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Wax sections of the hatchling turtle salt gland show the major features of 

secretory tubules forming numerous lobes within the gland (Figure 4.3). 

Connective tissue surrounds the gland and is visible between secretory 

lobes, with occasional blood vessels apparent between lobes. The main 

collecting duct of the gland was seen as sections approached the middle of 

the gland and the central canal of each lobe was usually seen. Secretory 

tubules were approximately hexagonal in cross section but the lumen of the 

secretory tubule was not always visible, probably due to slight compression 

of the tissue as sections were cut. Blood vessels were seen occasionally 

associated with secretory tubules in both active and inactive glands which 

had been collected by decapitation of the animal. The blood vessels observed 

were small and generally lay in the junction between adjacent secretory 

tubules so that they were in contact with the secretory cells of both. Similar 

blood vessels were also seen around the central canal of some lobes. It was 

apparent that the number of blood vessels in an active gland collected by 

chilling and then freezing the animal (Figure 4.4) was much greater than in 

an inactive gland collected in the same way. It seemed likely that this was a 

more suitable collection technique for preserving the blood within the gland 

during and following its removal, so sections from these glands were used 

for morphometric analysis of blood vessel volume. 

4.9.2 Resin sections 

Resin-embedded sections revealed the same gross morphological 

arrangement of salt gland lobes separated by connective tissue (Figure 4.5a). 

More detail was seen of the secretory tubules and the radial arrangement of 

secretory cells was clear when tubules were cut in transverse section and the 

lumen of some tubules could be seen (Figure 4.5b ). The orientation of 

secretory tubules varies through the gland, so that in a single section they 

were cut variously transversely or longitudinally or some orientation in 

between. However, tubules in close proximity to each other were sectioned 

in generally similar planes. Intercellular spaces created by the extensively 

folded lateral cell membranes of secretory cells were seen, with about six to 

ten cells usually forming the circumference of the tubule (Figure 4.6a & b ). 

Cell nuclei could be seen, but other intracellular structures could not be 

resolved. The structure and type of cells forming the central canal of each 

lobe was different to the secretory tubules, with cells forming layers around 
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the canal lumen. The diameter of the central canal lumen was much greater 

than the lumen of secretory tubules (Figure 4.6c). Large mucocytes were 

present in the cells around the central canal and intercellular spaces were 

visible between cells. 

4.10 STEREOLOGY 

4.10 .1 Three-dimensional reconstruction 

Reconstruction of serial sections shows that the canals from secretory lobes 

join and drain into a common collecting duct. The collecting duct is quite 

large and drains via a duct which folds underneath it and runs anteriorly to 

the posterior canthus on the surface of the eye (Figure 4.7a & b ). The 

collecting duct is situated at the posterior end of the gland and canals run 

from lobes anterior to it to drain primarily into its anterior end. An anterior 

view of the ducts (Figure 4.7c) shows that they run from the lateral regions 

of the gland as well and so form a network which converges from a wider 

lateral and dorsal area into a relatively narrow collecting duct. A small 

number of ducts enter the dorsal surface of the collecting duct directly 

(Figure 4.7d), presumably from lobes positioned directly above it. Some run 

from the posterior end of the gland and join other ducts at the anterior part 

of the collecting duct. The reconstructed region had a volume of 2.9xl08 

µm3 and the surface area was ll.4xl06 µm2. The main collecting duct 

( coloured red) comprised 72°/o of volume and 39°/o of total surface area. 

4.10.2 Morphometric measurement of gland components 

The percentage of total lobe volume constituted by central canals, blood 

vessels and tubule lumens from one active and one inactive gland is shown 

in Table 4.1. It was assumed that the volume of lobes did not change with 

activity, supported by the finding that active and inactive glands did not 

differ significantly in weight (see Section 4.10.3 below). Secretory tubules 

constitute the vast majority of lobular tissue, accounting for over 99°/o of the 

lobular volume. The percentage volume of central canals was slightly 

higher in lobes of the active gland than the inactive gland although they still 

comprised only a fraction of a percent of total lobe volume. The percentage 

volume of blood vessels in sections of the active gland was about 20 times 

greater than in the inactive gland, increasing from 0.034°/o to 0.699°/o. The 

volume occupied by tubule lumens did not change with activity and was 

very low in both cases. It is probable that many lumens were not visible 

because their diameter is small and they would be easily compressed and 
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closed by sectioning. A statistical comparison of the volumes was not 

conducted because of the small sample size. 

4.10.3 Salt gland weight and appearance 

There was no significant difference in weight of active (n = 12) and inactive 

(n = 12) salt glands, averaging 41 + 1 mg. When the overlying tissue was 

dissected free but prior to removal of the gland itself from the animal, active 

salt glands had a pink colour while inactive glands were pale. There was no 

significant difference in microsphere concentration between left and right 

salt glands taken from the same animal under any of the experimental 

conditions. The average microsphere concentration of the two glands was 

used in statistical analysis. 

4.11 MICROSPHERE MEASUREMENTS OF BLOOD FLOW 

4.11.1 Microsphere recovery 

Microsphere extraction efficiency as determined by recovery of reference 

spheres averaged 84.8 + 0.19°/o (n = 112), ranging from 80.7°/o to 89.0°/o. There 

was no significant difference in extraction efficiency of 15 µm and 25 µm 

spheres. 

Significantly more 25 µm diameter spheres were caught in tissues than 15 

µm diameter spheres (p <0.0001), with the number of 15 µm spheres only 

50.04 + 2.6°/o of the number of 25 µm spheres (n = 112). The ratio of 15 µm to 

25 µm microspheres found was not significantly different in any of the 

tissues or any of the experimental groups. As there was no significant 

difference found with microsphere size, only the data from 25 µm sphereso.re. 

shown in the graphs, the data from 15 µm spheres is included in Table 4.2. 

4.11.2 Effect of salt-loading 

All experimental animals were producing tears when sacrificed but tears 

were not produced by control animals which were injected with PBS. Salt

loading significantly increased the number of microspheres present in the 

salt gland tissue compared to control animals injected with PBS (Figure 4.8). 

There was no significant difference in the number of spheres found 1n 

cardiac or pectoral muscle tissue of salt-loaded animals compared to 

controls. 
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4.11.3 Effect of methacholine 

All animals produced tears after salt-loading, but stopped secreting within 

two minutes of methacholine injection (10 mg.kg BW-1). The concentration 

of spheres per gram wet weight caught in salt gland and cardiac tissue 

compared to salt-loaded animals were also significantly reduced following 

methacholine treatment (Figure 4.9). Although the concentration of spheres 

was lower in the salt glands of methacholine treated animals, these animals 

had a significantly higher concentration of spheres in the salt gland than 

those which did not receive a salt-load at all (p<0.0001). The concentration 

of spheres trapped in pectoral muscle slightly decreased but the change was 

not significant. 

4.11.4 Effect of adrenalin 

All animals secreted after salt-loading but tear production ceased within two 

minutes after injection of adrenalin and did not resume prior to sacrifice. 

Adrenalin (500 µg.kgBW-1) administered after a salt-load significantly 

reduced the number of spheres caught in the salt gland compared to animals 

which received a salt-load only (Figure 4.9). Adrenalin also significantly 

increased the number of spheres found in the cardiac tissue and there was 

an increase in the number of spheres found in pectoral muscle although this 

was not significant. There were significantly more (p<0.0001) spheres caught 

in the salt gland after salt-loading followed by adrenalin injection than in 

animals which did not receive a salt-load. 

4.11.5 Effect of atropine 

No animals were secreting following injection of atropine (10 mg.kg BW-1), 

but there was a significant increase in the number of spheres in the salt 

gland compared to control animals (Figure 4.8). There was a significant 

increase 1 in the number of spheres found in cardiac tissue and a slight but 

not significant decrease in the number of spheres in pectoral muscle 

compared to controls. There were significantly fewer (p<0.05) spheres in the 

salt gland following atropine treatment than in the salt gland of animals 

which received a salt-load. 

The concentration of microspheres trapped in tissues under different 

experimental conditions is summarised in Table 4.2. 
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DISCUSSION 

The gross histology of the hatchling green turtle salt gland is the same as 

that described for turtles of an unspecified age (Abel and Ellis, 1966) and 

similar to that of the avian salt gland (Ellis et al., 1963) so will be only briefly 

discussed. The gland is composed of numerous lobes of secretory tubules 

which are round in transverse section, with the tubule lumen occasionally 

visible. The lumen runs along the secretory tubule, before draining into the 

central canal. Intercellular spaces between secretory cells are clearly visible 

in thin resin sections, with about six or seven cells forming the 

circumference of the tubule. Secretory cells comprise the majority of the 

glandular tissue, with only a small proportion of the gland composed of 

connective tissue, blood vessels or cells forming central canals or the main 

collecting duct to the posterior can thus. Three-dimensional reconstruction 

shows that the main collecting duct is located at the posterior side of the 

gland and empties through the posterior canthus via a duct which folds 

under it and runs anteriorly. Thus the movement of secreted fluid in the 

salt gland is generally in a latero-posterior direction. If the suggestion that 

blood flows opposite to the direction of fluid movement is correct then 

blood generally moves in an anterior direction. Blood vessels and blood 

cells are sometimes seen in the connective tissue surrounding the gland as 

well as in the connective tissue between lobes. The cells forming the central 

canal of each lobe were arranged differently to those forming the secretory 

tubules. The canals and collecting duct were much larger in diameter and 

did not have the characteristic radial arrangement of cells, with a more 

stratified appearance. Larger cells were present around the ducts, identified 

by Marshall (1989) as mucocytes. There were intercellular spaces visible 

between the cells of the ducts, these have been proposed to play a role in 

concentrating secreted fluid as it passes down the ducts (Marshall and 

Saddlier, 11989). 

Morphometric analysis of structures within secretory lobes showed 

structural differences between an active and an inactive salt gland. While 

the secretory tubules occupied the vast majority of lobular tissue, the 

volume occupied by central canals, blood vessels and tubule lumens was 

also measurable. The volume occupied by tubule lumens did not change 

with gland secretory activity, while the volume of central canals increased 

slightly in active glands. However, the volume of blood vessels was about 

20 times greater in the active gland than in the inactive gland, with large 

numbers of vessels seen around the secretory tubules. The apparent greater 



95 

volume of central canals in the active gland may be a reflection of greater 

secreted fluid volume passing through these canals and resulting in their 

dilation. However, the diameter of central canals is much larger than blood 

vessels or tubule lumens and this introduces a possible source of 

measurement error as they were not present in all sections. Measurement 

of a small number of large volume canals is inherently more prone to error 

than measurement of a large number of small volume vessels. The greater 

volume of blood vessels found in the active salt gland suggests that 

capillaries were dilated in active glands to increase the blood supply to 

secretory tubules. The association of blood vessels with secretory tubules in 

the hatchling turtle matches that described for the avian salt gland, with the 

secretory tubule surrounded by capillaries in the herring gull. The increase 

in capillary blood supply with secretory activity has not previously been 

detected by histological or stereological means. The proposed secretory 

model (Figure 1.5) suggested that salt gland blood flow was a site of 

regulation, the morphometric evidence indicates that this may be the case. 

It is interesting that the gross differences in vasculature of active and 

inactive glands were more apparent in frozen glands than glands collected 

from decapitated animals. This is probably because freezing the animals 

keeps the blood cells within the gland and they remain there when it is 

removed from the animal. In comparison, perhaps blood drains from the 

gland when the animal is decapitated and so the differences in small blood 

vessels associated with secretory tubules in active and inactive glands is 

disguised. However, the differences were clear in the microsphere 

entrapment experiments, so while blood cells may drain out, the 

microspheres remain securely lodged, probably because they are larger and 

do not deform in shape. However, the 15 µm microspheres were close to 

the largest dimension of the red blood cells, so it is possible that some of 

them may have drained out of capillaries with the blood cells, explaining 

why they were found at a lower concentration than the 25 µm spheres 

which would not drain. 

Quantification by the microsphere technique of the morphometric blood 

vessel volume differences with gland activity shows changes in the 

circulation of blood through salt gland capillaries with secretory activity. In 

considering microsphere entrapment in different tissues, the assumption is 

made that sphere concentration and rate of capillary blood flow are very 

closely related. There is experimental evidence to support this assumption, 
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which has been reviewed and shown elsewhere (Bassingthwaite et al., 1987; 

Prinzen and Glenny, 1994). Thus in the discussion of results, a doubling of 

microsphere concentration is presumed to indicate a change in the rate of 

blood flow of similar magnitude. Changes in sphere concentration may not 

represent changes in total blood flow through the salt gland, due to the 

possibility of specific constriction or relaxation of arterioles branching from 

the main blood vessels passing through the salt gland, as described earlier. 

However, changes in microsphere concentration do show differences in the 

distribution of blood, with blood flow rate through capillaries inferred from 

this. 

Hatchlings were not restrained during the period between microsphere 

injection and tissue collection, but little movement was observed. Thus it 

would be expected that pectoral muscle would be in a relatively inactive 

state with a small requirement for blood flow. In comparison, the 

concentration of spheres found in inactive salt glands was less than 2°/o of 

that found in pectoral muscle, indicating that blood flow through capillaries 

of inactive glands is very low indeed. This suggests that the salt gland is in a 

very quiescent state when salt secretion is not required, presumably with a 

very low need for blood transported nutrients. However, following 

administration of a salt-load, circulation through the hatchling turtle salt 

gland changes. Nearly 200 times more microspheres were trapped in the 

capillaries of active glands than inactive glands. The primary secreting cells 

of secretory tubules in active glands were then in close contact with blood

filled capillaries, thereby permitting uptake of salts from the blood. 

Circulation within the gland differs with gland activity and capillary blood 

flow appears to increase concomitant with secretory activity. Circulatory 

changes following salt-loading do not appear to occur in all organs, as the 

number of spheres trapped in cardiac and pectoral muscle did not 

significantly change. 

Thus the experimental evidence clearly shows that the circulation or pattern 

of blood flow through the hatchling turtle salt gland changes as the gland 

becomes active and initiates secretion. Presumably the change in flow 

pattern results from a neural or endocrine modification of the local 

circulation. The possible site of regulation at blood vessels identified in the 

proposed secretory model is then confirmed as one means by which the 

activity of the salt gland may be controlled. 



97 

Salt gland weights did not differ significantly between active and inactive 

states. Morphometric measurements show that blood vessel volume in an 

active gland is less than one percent of total volume, so it is not surprising 

that a difference in mass could not be detected. It is also possible that the 

volume of blood within the gland is similar in both inactive and active 

states, but its distribution changes from being contained within a small 

number of large diameter blood vessels to being distributed into a much 

larger number of capillaries. 

My experiments did not determine exactly when circulatory changes in the 
~ 

salt gland occurred, whether before, at the same time, or after initiation of 
" tear production. However, given the need for increased availability of salt 

for secretion by the gland, it seems probable that the change occurred before 

tears were observed. Comparative data supports this suggestion, as 

vasodilation was detected before secretion in the herring gull salt gland 

(Thesleff and Schmidt-Nielsen, 1962). 

Methacholine was identified in Chapter 3 as having an inhibitory influence 

on the activity of the salt gland in vivo. Experiments showed that this 

chemical is capable of modifying the circulation of blood through the salt 

gland. Methacholine rapidly inhibited secretion from the salt gland when 

injected after a salt-load, and the concentration of microspheres in the salt 

gland following a salt-load was significantly reduced after injection of the 

drug when compared with animals which received a salt-load alone. This 

infers a reduction in capillary blood flow through the gland following 

methacholine treatment. Thus it would appear that methacholine 

influenced salt gland circulation to reduce capillary blood flow as measured 

by entrapment of microspheres and this explained at least part of its ability to 

inhibit gland secretory activity. 

While the concentration of spheres caught in the salt gland following 

methacholine treatment was reduced to about half that of salt-loaded 

animals, it was still significantly higher than that found in animals which 

had not received a salt-load. Secretions were not produced in methacholine

treated animals, despite capillary blood flow being above control levels and a 

salt-load having been administered, indicating that the requirements for tear 

production were not met. Perhaps capillary blood flow needs to be at or near 

some maximum in order for the secretory process to operate. 
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However, interpretation of the circulatory changes seen in salt glands 

following methacholine treatment is complicated by the possibility that 

methacholine reduced the cardiac output of blood to the systemic circulation 

through a decrease in heart stroke rate and stroke volume (Withers, 1992). 

The observed reduction of about 50°/o in sphere concentration in the 

musculature of the salt gland, heart muscle and the pectoral muscle would 

be consistent with this cholinergic action. It is possible also that 

methacholine influences the flow of blood at some rate-limiting step, 

(including cardiac output) prior to the salt gland in a way which is not 

related to regulation of gland activity. This may be due to a pharmacological 

effect or mimicking the effect of cholinergic nerves unrelated to the salt 

gland. So while administration of methacholine to salt-loaded animals 

certainly results in a reduced microsphere concentration in the salt gland, it 

is not completely clear whether this is due to a localised effect on salt gland 

circulation, a general reduction in systemic blood flow or an unrelated effect 

on blood flow at some rate limiting step supplying the gland. 

The concentration of spheres found in the salt gland was about eighty times 

higher in animals treated with atropine than in those which did not receive 

any treatment. Thus in the absence of a salt-load, some circulatory change 

occurred which permitted entry of microspheres into the salt gland 

capillaries where they became trapped. This would occur through an 

antagonism of whatever cholinergic influences were involved in reducing 

blood flow following administration of methacholine as discussed above. 

Part of this was probably due to an increase in total systemic circulation 

through an increase in cardiac output. Some capillaries must be open in the 

inactive gland to trap the small number of spheres found and an increase in 

heart output may be capable of pushing blood through these at a faster rate 

to increase the number of spheres trapped per unit time. However, the 

eighty fold increase in sphere concentration suggests that there may have 

been also a circulatory change either in the gland or at some rate-limiting 

step to result in the huge increase in sphere entrapment. It would be 

necessary to confirm the presence and exact location of cholinergic nerves to 

determine which of these was the case. Atropine antagonises the effects of 

acetylcholine, so the change in blood circulation that it caused was not due 

to an intrinsic action on the salt gland but rather a reversal of any 

cholinergic action. Thus while there was an antagonism by atropine of 

cholinergic inhibition of salt gland blood flow which resulted in an 

increased concentration of spheres trapped in capillaries it is not possible to 
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determine at precisely which point in the circulatory system it occurred. It 

may have been due to an antagonism of cholinergic nerves in the gland, a 

change in cardiac output, an effect on blood flow at a rate limiting step 

supplying the gland, or a combination of these. 

Adrenalin significantly reduced the concentration of microspheres trapped 

in salt gland tissue following a salt-load when compared to animals which 

received a salt-load alone. Microsphere concentration in the gland was 

reduced by 95°/o but it was still significantly higher than that in control 

animals with inactive glands. Sympathetic stimulation of cardiac tissue by 

adrenalin is known to increase cardiac stroke rate, stroke volume and total 

cardiac output (Withers, 1992). Adrenalin significantly increased the blood 

flow through the cardiac musculature, suggesting that if an increase in 

cardiac output did occur then the extra work done by the heart was 

associated with an increase in blood supply to the heart muscle, thereby 

resulting in more spheres being trapped. While cardiac microsphere 

concentration approximately doubled, salt gland microsphere concentration 

changed in the opposite direction and so was presumably independent of 

cardiac output increase. The reduction in salt gland blood flow clearly shows 

a specific vasoconstrictory response in vessels supplying the gland regardless 

of any increase in systemic blood flow that adrenalin may have caused. 

Adrenalin appears to be capable of shutting down the microcirculatory 

system involved 1n active gland blood flow. Although 

immunohistochemical identification of adrenergic nerves could not resolve 

whether fibres innervated blood vessels directly (Chapter 3), it seems that 

this is the case. The specific vasoconstriction in the salt gland indicates this, 

and adrenergic innervation has been seen surrounding salt gland arterioles 

in the duck (Peaker and Linzell, 1975), with a similar effect on salt gland 

circulation (Fange et al., 1963). 

Similar observations of increased blood flow during secretory activity have 

been reported in studies of the avian salt gland, where blood flow to the 

gland increases by about 15 to 20 fold during periods of activity (Banwell et 

al., 1971; Kaul et al., 1983; Gerstberger et al., 1988; Gerstberger, 1991). Several 

techniques have been used in these studies, the results of which are 

summarised in Table 4.3. Estimates of blood flow from microsphere data 

have been supported by alternative methods. Thus there is support for the 

accuracy of the microspheres technique in salt gland studies, as it measured 

blood flow changes similar to those seen using other techniques. While the 
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magnitude of change measured in the chelonian salt gland is greater than 

that observed in the avian salt gland, this is probably due to a lower basal 

rate of blood flow in the inactive chelonian gland rather than a greatly 

higher rate of blood flow in the active state. The effects of methacholine and 

atropine in the chelonian salt gland are opposite to the effects observed in 

the avian gland, where the chemicals increase and reduce blood flow 

respectively (Fange et al., 1963; Kaul et al., 1983). However, in both the turtle 

and the bird, these chemicals had effects on salt gland circulation consistent 

with their overall influence on salt gland secretion. The inferred decrease in 

salt gland capillary blood flow stimulated by adrenalin in the turtle is similar 

to the effect in the bird (Fange et al., 1963). 

In the context of the secretory model, the results indicate that blood 

circulation is a site of salt gland regulation. Reduction of capillary blood 

flow via vasoconstriction deprives the secretory tubules of salt and other 

metabolic substrates, the reverse is true when vasodilation occurs. It is not 

possible to determine from the technique employed in this study whether 

vasoconstriction and vasorelaxation occurred in capillaries within the gland 

or in a few major blood vessels supplying the gland. However, it is certain 

that the circulatory changes which took place affected the entrapment of 

microspheres in salt gland capillaries, and from this we can infer that the 

supply of blood to the secretory tubules was modified. Changes in 

circulation following salt-loading are very clear, with the salt gland being the 

only tissue examined in which a change was detected. Methacholine 

appears to exert its influence on gland activity by reducing capillary blood 

flow, with atropine demonstrating the reverse effect. The conclusions to be 

drawn from methacholine data are weakened somewhat by the possibility 

that cholinergic influences on cardiac activity may reduce blood flow to all 

organs or that it exerted an unrelated effect on a rate-limiting step of blood 

supply to the gland. The effect on salt gland circulation of atropine injection 

was the reverse of methacholine, with an increase in microsphere 

concentration. However, the data on adrenergic influence is.__ clear, because 

capillary blood flow through the salt gland decreased while blood flow 

through cardiac muscle increased presumably as cardiac output increased 

and adrenergic nerves are known to lie within salt gland tissue. 

In summary, the hatchling green turtle salt gland shows the characteristic 

cellular arrangement of the chelonian salt gland described in detail by Abel 
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and Ellis (1966). The three dimensional, branched arrangement of central 

canals draining into a main collecting duct is shown for the first time using 

computer-aided stereological technique. Morphometric data suggests that 

the circulation of blood through salt gland capillaries is increased in active 

glands. While the small sample size prevents statistical demonstration of 

significant differences, the results of blood vessel volume measurements 

support measurements of microsphere entrapment in active and inactive 

glands. Exogenous modifiers of salt secretion from the gland appear to exert 

at least part of their influence by affecting the flow of blood through salt 

gland capillaries, either directly or indirectly. 
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Diagram of the close association between blood vessels and the secretory 
tubules of the avian salt gland. Arterial blood flows towards the centre of 
the gland and then through capillaries surrounding the secretory tubules 
towards the exterior of the gland. The direction of blood flow is opposite to 
the flow of fluid down the tubule to the central canal. Blood vessels and 
secretory tubules are packed tightly together and occupy the area indicated 
by stippling in the drawing. The arrangement in the chelonian salt gland is 
similar. Redrawn from Fange et al. (1958). 
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Artery Vein 

Figure 4.2 
Diagrammatic representation of circulatory changes which may occur 
without affecting total rate of blood flow. In a system where an artery is 
continuous with a vein (or another artery) but with many capillaries linking 
them, localised vasoconstriction can greatly affect circulation without 
influencing total blood flow. In this case, blood flowing from artery to vein 
through capillaries contacts the tissue close to the capillaries. If the 
capillaries constrict and prevent blood flowing through them, then the 
blood is shunted around and enters the vein directly. Thus the amount of 
blood entering and leaving the tissue is unchanged but its distribution is 
greatly different. 
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Stained wax sections of 7 µm thickness from inactive salt gland. 
A) Longitudinal section of the salt gland reveals numerous secretory lobes 
surrounded by connective tissue and with a central canal often visible. Each 
lobe is made up of many individual secretory tubules packed tightly 
together. The large spaces between some of the lobes are artefacts of the 
slicing technique. 
B) Secretory tubules are composed of secretory cells, the nuclei of which are 
seen surrounding the tubule lumen when cut in transverse section. Blood 
vessels pass through the connective tissue between lobes. 



Figure 4.4 
Stained wax sections of 7 µm thickness from an active salt gland taken from 
a frozen animal. 
A) Blood cells are seen around secretory tubules, often lying in the "corners" 
at the junction between adjacent tubules. 
B) Small blood vessels surround the central canal of each lobe, lying in the 
connective tissue. 
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Lobes 

Figure 4.5 
Salt gland sections of 1 µm thickness embedded in London White resin. 
A) Gross morphology of the salt gland showing secretory lobes, each with a 
central canal and connective tissue separating them. 
B) Secretory tubules are tightly packed and are roughly circular, the tubule 
lumen can sometimes be seen. The lumen of the central canal is much 
larger and has a different cellular arrangement. 



Figure 4.6 (opposite) 
Salt gland sections of 1 µm thickness embedded in London White resin. 
A) Transverse section of salt gland showing radial arrangement of secretory 
cells to form secretory tubules. Approximately six to ten cells form the 
circumference of the tubule, with the intercellular spaces seen between 
them. The nuclei of cells were visible, but other intracellular structur 
were not apparent. 
B) Interpretive drawing for A above. The secretory tubule in the centre of 
the micrograph is redrawn in approximately the same position to illustrat 
its m ajor features more clearly . The tubule is composed of about 8 cell 
sep arated by intercellular spaces and surrounding a central lumen. Other 
tubules are packed closely together and have the same arrangement, 
alth ou gh the plane of section through the tubule sometimes affects th 
observed radial arrangement of the secretory cells. 
C) Transverse section of salt gland through the central canal showin 
epithelial and mucous producing cells. The diameter of the canal is much 
greater than that of the secretory tubule lumen and the cellular 
arrangement is different. Intercellular spaces are visible between cells and 
blood vessels can be seen around the canal. A layer of basal cells surround 
the outer circumference of the canal. 
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Figure 4.7 (opposite and following page) 
Three dimensional computer reconstruction of the branched arrangement 
of ducts in an inactive salt gland. Central canals from individual lobes join 
and enter the main collecting duct. From this a duct leaves the gland t 
drain from the posterior canthus onto the surface of the eye. 
A) Arrangement of ducts shown in side view. The main collecting duct is at 
the posterior side of the gland, with the anterior surface of the gland and th, 
anterior of the head to the left of the illustration. The gland extend 
laterally also, with ducts generally running in a latero-posterior direction. 
B) Side view with individual ducts in different colours to show connection 
more clearly. 
C) Anterior view shows that ducts converge from a wider lateral and dorsal 
area into a relatively narrow entrance to the main collecting duct. 
D) Dorsal view shows that a few ducts drain directly into the mai11. collectin. 
duct from lobes abo 
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* 
• Control (PBS) 
D Salt load 
lzJ Atropine 
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Muscle Salt gland 

Number of 25 µm diameter spheres per gram wet weight of tissue in heart, 
pectoral muscle and salt gland of animals which received either PBS (n = 6), 
a salt-load of 2700 µmol NaCl.lOOg BW-1 (n = 6), or atropine 10 mg.kg BW-1 
(n = 5). Asterisks indicate significant differences in microsphere number 
when compared with control, * = p<.05, *** = p<.0001, n.s. = not significant. 
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Muscle Salt gland 

Number of 25 µm diameter spheres per gram wet weight of tissue in heart, 
muscle and salt gland of animals which received either a salt-load of 2700 
µmol NaCl.lOOg BW-1 (n = 6), a salt-load of 2700 µmol NaCl.lOOg BW-1 
followed by adrenalin 500 µg.kg BW-1 (n = 5), or a salt-load of 2700 µmol 
NaCl.lOOg BW-1 followed by methacholine 10 mg.kg BW-1 (n = 5). Asterisks 
indicate significant differences in microsphere number when compared 
with control, * = p<.05, ** = p<.001, *** = p<.0001, n.s. = not significant. 
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Table 4.1 
Percentage volumes of salt gland components. Computer-aided 
stereological technique was used to measure the volume in salt gland serial 
sections of the secretory lobes, central canals, blood vessels and tubule 
lumens of six lobes from one active salt gland and six lobes from one 
inactive salt gland. In order to standardise for differences in lobe size, the 
volume of components was expressed as a percentage of the volume of the 
lo be in which they were found. 

Region of salt gland 0/o of total lobe volume 0/o of total lobe volume 
Inactive Active 

Lobe 100 100 
Central canals 0.054 0.125 
Blood vessels 0.034 0.699 
Tubule lumens 0.025 0.024 

Table 4.2 
Summary of microsphere concentrations found in tissue samples under 
different experimental conditions. Mean concentration of 25 µm and 15 µm 
spheres are shown per gram wet weight of tissue+ 1 std error. n = number of 
animals sampled. Two salt glands were collected from each animal and the 
average microsphere concentration used in calculations. 

Treatment Tissue 25 µm spheres.g 15 µm spheres.g 
tissue-1 tissue-1 

Control (n = 6) Salt gland 141 + 38 38 + 19 
Cardiac muscle 26318 + 4254 15569 + 2396 
Pectoral muscle 9713 + 4255 3037 + 1670 

Salt-loaded (n = 6) Salt gland 25430 +4918 13867 + 2647 
Cardiac muscle 22858 +3969 16173 + 2630 
Pectoral muscle 6970 + 1908 4153 + 1848 

Methacholine Salt gland 10303 +1792 4453 + 854 
(n = 5) ~~ so.\ t- Cardiac muscle 9201 + 932 4548 + 488 

loo..~ 
Pectoral muscle 2698 + 416 1091 + 246 

Atropine (n = 5) Salt gland 10916 + 1756 7619 + 1386 
Cardiac muscle 53897 + 12042 32372 + 7873 
Pectoral muscle 4508 + 1112 1800 + 367 

Adrenalin (n = 5) Salt gland 1103 + 129 462 + 81 
f h~ "> ~A,\ ,\" ' (!)Or..~ Cardiac muscle 64956 + 7173 32372 + 7873 

Pectoral muscle 15275 + 3992 7919 + 1993 



113 

Table 4.3 
Comparison of salt gland blood flow measurements as measured by different 
techniques. There is close agreement between reports of avian salt gland 
blood flow, with similar values obtained using different experimental 
techniques. 

Technique Animal Blood flow (ml.min-1.g Source 
tissue-1) 

Sapirstein/Fegler a Salt adapted goose 0.8 + 0.2 Control 1 
11.6 + 1.3 Secreting 

Microsphere b Salt adapted duck 0.9 + 0.1 Control 2 
12.5 + 2.5 Secreting 

Microsphere Salt adapted duck 1.1 + 0.2 Control 3 
15.2 + 1.3 Secreting 
6.0 + 1.0 VIP treated 

Laser-Doppler VIP treated 170°/o 
flowmetry c increase over control 

Microsphere b Salt adapted duck 1.3 + 0.2 Control 4 
15.1 + 1.4 Secreting 

Microsphere e Ha tchling green Secreting 180 times This 
turtle greater than control study 

a The Sapirstein/Fegler technique combines measurements of diffusion of an indicator from the blood into tissues 
broportional with their share of cardiac output, with a determination of cardiac output by a thermodilution method. 

Microspheres were radioactively labelled and injected into the left ventricle, with radioactivity in the salt glands 
measured. By ongoing collection of a reference arterial blood sample, flow rate per unit time could be calculated. 
c Laser-Doppler technique measures movement of red blood cells (flux) in salt gland tissue by a laser probe positioned 
against the salt gland surface. It is assumed that superficial blood flow is representative of blood flow throughout the 
entire gland. Only relative flow rates may be measured, it is not possible to calculate blood flow per unit time. Increases 
in flux are not necessarily linear with increases in flow rate, hence VIP stimulated a 600% increase in blood flow when 
measured by radioactive microspheres technique, but a 170% increase in flux was measured by the laser-Doppler 
flowmetry method. 
e Coloured microspheres were injected into the systemic circulation, with numbers trapped in the salt gland counted. 
An ongoing arterial blood sample could not be collected so blood flow per unit time could not be calculated. 

Sources: (1) (Banwell et al., 1971), (2) (Kaul et al., 1983), (3) (Gerstberger et al., 
1988), (4) (Gerstberger, 1991) 
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CHAPTER 5 
Oxygen Consumption Of Salt Gland Tissue 

INTRODUCTION 

The salt gland concentrates salt by removing sodium chloride from the blood 

and producing a final secretion which is five to six times the blood 

concentration. There are several reasons why this is almost certainly an 

energy-dependent process of active ion transport. Although the tubular and 

vascular arrangement of the chelonian and avian salt gland allows blood 

and secreted fluid to flow in opposite directions (Fange et al., 1958b; Abel and 

Ellis, 1966), a passive mechanism such as this is not sufficient to concentrate 

ions to the levels measured in secretions. Secretory cells of the salt gland are 

packed with mitochondria and glycogen granules (Abel and Ellis, 1966), 

indicating a high degree of oxidative metabolic activity. The secretory cells 

also have a high level of Na-K-ATPase activity (Ellis et al., 1963; Ernst and 

Ellis, 1969), again indicating substantial energy requirement. Other enzymes 

which are present in principal secretory cells but not the undifferentiated 

peripheral cells include phosphatases, succinic dehydrogenase and 

cytochrome oxidase (Abel and Ellis, 1966; Ernst, 1986). These features are 

clearly indicative of active ion transport fuelled by aerobic metabolism 

within the secretory cell. Thus a measurement of the aerobic metabolic rate, 

or oxygen consumption of the secretory cells of the salt gland may reflect the 

rate of ion transport activity. Similarly, changes in the rate of oxygen 

consumption imply changes in the rate of energy-dependent ion transport. 

A secretory model has been proposed by Gerstberger and Gray (1993) 

modified from that of Lowy et al. (1989) (Figure 1.4) and another model is 

proposed by Marshall (1987) to explain how active ion transport occurs in the 
I 

avian salt gland. The chelonian salt gland shows sufficient structural and 

biochemical similarity to suggest that these models probably apply to ionic 

transport in the sea turtle salt gland as well. The histological and 

histochemical evidence on which the avian secretory models are based is 

largely also present in the chelonian salt gland, further supporting this 

suggestion. The first model describes a number of steps to move sodium, 

chloride and potassium across the principal secretory cell membrane with 

the result that sodium and chloride are highly concentrated in the secretory 

tubule lumen. This is consistent with the high enzymic activity and large 

numbers of mitochondria in the principal secretory cells. The second model 

suggests that the secretion from the secretory tubules is isosmotic and 
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subsequently concentrated by cells lining the collecting ducts. The 

histological evidence described above tends not to support this model, as 

cells lining the collecting ducts do not have the features described above 

which indicate a high degree of ion transport activity. If they were doing the 

majority of ion transport they should be very active indeed, particularly as 

they constitute a small percentage of the total number of cells in the salt 

gland. Whichever model is accepted, a key feature of both is that they rely 

on transport against a concentration gradient by an energy-dependent process 

which consumes oxygen. 

The secretory model (Figure 1.5) indicates that control of ionic transport can 

be at the level of primary salt production. An indirect method for 

examining if this is true is to measure the oxygen consumption of tissue 

slices. The rate of respiration by isolated tissue slices can be measured in 

vitro, and changes in oxygen consumption detected. However, in order for 

measurement of respiration rate to reveal the activity of salt gland tissue, 

three assumptions must be made. First, the tissue slices must maintain their 

activity in vitro in the absence of innervation and blood flow. Second, the 

oxygen consumption associated with ionic transport must comprise a 

significant proportion of total oxygen consumption by the gland so that 

differences in states of activity can be detected. Third, an increase in 

respiratory rate of tissue must be coupled to an increase in the transport of 

ions and vice versa. In this chapter the rate of oxygen consumption of salt 

gland slices from hatchling turtles was measured in vitro, following 

removal from animals which were actively secreting and also from those 

which were not. The hypothesis was tested that salt glands taken from 

animals which were secreting would consume oxygen at a faster rate than 

inactive salt glands because of an increased rate of energy-dependent ionic 

transport ..- The ability of modifiers of gland activity to change the oxygen 

consumption of salt gland tissue was examined to determine if their effects 

were exerted directly on the activity of secretory cells. 

5.1 IONIC TRANSPORT AND OXYGEN CONSUMPTION 

Provided that the assumptions made regarding the relationship between 

oxygen consumption and ionic transport activity are correct, it may be 

possible to detect whether the secretory cells change in respiratory rate with 

the overall secretory activity of the gland. If the secretory cells themselves 

can exist in states of high and low rates of ion transport, this suggests that 

they may be a target for regulatory modifiers of gland activity as a whole. 
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Studies have shown that oxygen consumption of salt gland tissue from other 

animals can be measured (Borut and Schmidt-Nielsen, 1963; Shuttleworth 

and Thompson, 1987; Silva et al., 1993), so this technique is suitable for 

examining possible changes in oxygen consumption with ion transport by 

the gland. 

5.2 MODIFIERS OF OXYGEN CONSUMPTION 

Methacholine and adrenalin both inhibit secretion from the salt gland in 

vivo (Chapter 3) but it was not possible to determine what aspect of salt 

gland function they were affecting. By examining their ability to influence 

respiration rate of salt glands, the possibility was investigated that they were 

changing the activity of secretory cells directly. The hypothesis was that 

methacholine reduces the respiration rate of salt gland tissue as a result of 

inhibiting energy-dependent ion transport. Similarly, it was hypothesised 

that adrenalin reduces the respiration rate of salt gland tissue for the same 

reason. In the context of the secretory model, this attempted to identify if the 

secretory cells of the tubules or the cells lining the ducts are targets for 

regulation of the activity of the salt gland as a whole. 

5.3 EXPERIMENTAL AIM 

The aim of the experiments was to determine oxygen consumption of salt 

gland tissue in vitro as a measure of energy-dependent ionic transport using 

the oxygen electrode recording technique. Respiration rate of active and 

inactive glands was measured to identify any differences associated with 

secretory activity of the gland. Respiration rate of tissue following 

administration of methacholine and adrenalin was measured to discover if 

at least part of their inhibitory action occurred through inhibition of ionic 

transport by secretory cells. 



METHODS 

5.4 ANIMALS 

Animals used were as described in Section 2.3. 

5.5 COLLECTION OF TISSUE SAMPLES 
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Animals were killed by decapitation and salt glands immediately removed 

and placed in turtle Ringer's solution bubbled with carbogen gas (95°/o 0 2, 5°/o 

CO2). Turtle Ringer's was the same as that used for the estuarine turtle, 

Malaclemys terrapin (Shuttleworth and Thompson, 1987) and contained (in 

mmolJ-1); NaCl 90, KCl 3, CaCl2 2, MgS04 1, NaHC03 10, Na2S04 10, urea 10, 

glucose 5.5, NaH2P04 0.5, Na2HP04 0.5, adjusted to pH 7.2 with NaOH while 

being bubbled with carbogen. Following pH adjustment, total sodium was 

approximately 150 mmolJ-1. Salt glands were mounted on a cutting block 

with cyanoacrylate glue (Selleys Supaglue) in a bathing medium as above. 

Prior to slicing, some salt glands were killed by freezing at -70°C for 30 

minutes or placing them in 100°/o methanol for 15 minutes. Tissue slices of 

200 µm thickness were cut with a vibrating slicer (Campden Instruments) 

and transferred to rest on wire mesh above a small stirrer in the oxygen 

electrode incubation chamber (Figure 5.1). The Ringer's incubation medium 

was bubbled with carbogen and a water jacket maintained the medium at 

28°C. Chambers were sealed immediately after the carbogen bubbler was 

removed and oxygen concentration measured over the course of the 

experiment. At the conclusion of the experiment tissue slices were blotted 

dry and weighed. Sodium dithionite was added to the incubation medium 

to scavenge any remaining oxygen to verify that some oxygen remained in 

the medium and that the recording electrodes were still measuring falling 

oxygen concentration. 

5.6 MEASUREMENT OF OXYGEN CONSUMPTION 

Three recording electrodes were used simultaneously, each measuring 

oxygen concentration of a different incubation chamber. Recording 

electrodes were of the Clark polarographic type (Rank Brothers Instruments, 

Cambridge U.K.), with a platinum cathode in the incubation medium, a 

silver anode isolated from the medium and with a KCl bridge linking the 

two (Figure 5.1). A small magnetic stirrer circulated the incubation medium 

during the experiment. A polarising voltage of 0.6 volts was applied across 

the electrodes so that a current passed between the poles when oxygen was 

present in the incubation medium, with oxygen reduction at the cathode and 

silver oxidation at the anode. The current flowing at the voltage applied was 
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linearly proportional to the concentration of dissolved oxygen. Changes in 

this current were converted to a potential difference and captured by 

computer through a MacLab (AD Instruments). The Chart v3.4 (AD 

Instruments) program was run on a Macintosh SE 30 computer to record, 

store, convert and analyse data. Changes in incubation medium oxygen 

concentration were observed as changes in the voltage displayed on the 

computer. The computer recorded voltage for the duration of the 

experiment, so that the time course of voltage changes could be seen. This 

permitted calculation of the rate of oxygen consumption over time. 

5.7 EXPERIMENTS CONDUCTED 

The oxygen consumption rate of salt gland tissue was measured both from 

glands taken from animals which had been stimulated to secrete with a salt

load of 2700 µmol NaCl.100 g BW-1, and from glands taken from animals 

which were injected with an equal volume of PBS and not secreting. Any 

passive oxygen absorption by the tissue was determined by measuring the 

oxygen consumption rate of the tissue killed by freezing or methanol. 

To determine whether methacholine or adrenalin directly affected oxygen 

consumption of salt gland tissue, the tissue was incubated with and without 

these chemicals in the incubation medium. Once oxygen consumption rate 

had stabilised for approximately 20 minutes, methacholine or adrenalin was 

added to experimental incubation chambers, while control tissues received 

PBS. Twenty five µl of methacholine (5 mg.ml-1 methacholine in PBS) was 

added for a final concentration in the incubation medium of 2.6 x l0-4 M 

while 25 µl of adrenalin (250 µg.ml-1 adrenalin in PBS) was added for a final 

concentration of 1.4 x 10-s M. The dose of methacholine administered was 

similar to that used by Shuttleworth and Thompson (1987) of 5 x l0-4 M 

when measuring oxygen consumption of the salt gland from the estuarine 

terrapin. The dose of adrenalin was lower than that of methacholine and 

was selected on the basis of the relative effective doses of these chemicals in 

vivo. In order to act as a positive control, cardiac tissue from experimental 

animals was removed and sliced as described above. The cardiac slices were 

exposed to the same concentrations of methacholine and adrenalin and the 

effect on oxygen consumption rate measured. A typical experiment was 

conducted with salt gland tissue in one chamber, salt gland or cardiac tissue 

from the same animal in another chamber, and no tissue in the third 

chamber. One tissue received the injected chemical and the second received 
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PBS except when it contained cardiac tissue, in which case it also received the 

injected chemical. 

5.8 CALCULATION OF OXYGEN CONSUMPTION RATE 

The incubation medium was presumed to be saturated with oxygen when 

the voltage observed on the computer reached a maximum and remained at 

that level while the solution was still being bubbled with carbogen. The 

medium was presumed to be completely anoxic following addition of 

sodium dithionite when the voltage observed on the computer reached a 

minimum value. The total oxygen content of the turtle Ringer's was 

measured by saturating the solution using carbogen gas and then measuring 

oxygen partial pressure with a Radiometer ABL505 blood gas analyser. After 

correcting for temperature and salinity, total oxygen content of the 

incubation medium was calculated to be 1.017 µmol.ml-1 . The difference 

between maximum and minimum voltage (after addition of sodium 

dithionite) for each experiment then represented a 100°/o fall in oxygen 

concentration of the medium. Thus for each experiment the measured 

voltage fall as a proportion of the total could be expressed as a fall in 

micromoles of oxygen consumed over the period of the experiment. Oxygen 

consumption rate per unit time could then be calculated and expressed in 

micromoles of oxygen consumed per gram of tissue per hour. For example, 

if the maximum voltage reading of an incubation chamber was 75 m V and 

the minimum was 25 mV, then a decrease from 75 mV to 50 mV 

represented a 50°/o fall in oxygen concentration, a decrease of 12.5 m V 

represented a 25°/o fall and so on. This was converted to the same percentage 

fall from the oxygen concentration of 1.017 µmole.ml-1 in a volume of 2.5 ml 

and the time period over which the fall occurred was determined. This 

could then be expressed as a fall in oxygen concentration in µmole.min-1 and 

calculated per gram of tissue in the incubation chamber. Typically about 40 -

60°/o of the total oxygen in the incubation medium was consumed by salt 

gland tissue during the course of the experiment. 

When measuring fall in recorded voltage, the highest value was taken after 

an initial equilibration of about 10 minutes. The minimum value was taken 

immediately prior to addition of sodium dithionite. The rate of fall from 

control chambers which did not contain tissue or contained dead tissue was 

calculated in the same way. The control rate of oxygen decrease was 

deducted from that of experimental chambers when determining oxygen 
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consumption, as it was presumed to indicate passive uptake by tissue as well 

as spontaneous loss or leakage of oxygen from the incubation chambers. 

In order to identify whether addition of PBS, methacholine or adrenalin 

changed the rate of oxygen consumption of either salt gland or cardiac tissue, 

or of the control chamber, the rate was measured before and after chemical 

addition. The rate was calculated by determining the voltage fall in the five 

minutes before and five minutes after chemical addition and converting to 

oxygen consumption as described above. 

5.9 STATISTICAL ANALYSIS 

The Mann-Whitney rank test was used to determine any significant 

difference in the rates of oxygen consumption by active and inactive salt 

glands. A paired t-test was employed to determine any significant difference 

in oxygen consumption before and after chemical addition. In all cases, 

significance was assumed if p<0.05. All results are shown as the mean + 1 

standard error. 
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RESULTS 

5.10 OXYGEN CONSUMPTION OF ACTIVE AND INACTIVE SALT GLAND 

TISSUE 

There was no significant difference in oxygen consumption rates of salt 

gland slices from animals which had been salt-loaded compared to those 

which had not. After allowing for the rate of oxygen loss from control 

chambers which did not contain tissue (n = 19), salt-loaded glands consumed 

oxygen at 33.938 + 2.902 µmol 02.g wet weight-1.hr-1 (n = 7), while non salt

loaded glands consumed oxygen at 39.975 + 2.518 µmol 02.g wet weight-1.hrl 

(n = 7). The rate of oxygen loss from chambers containing salt gland tissue 

killed by freezing (n = 3) or methanol (n = 2) was not significantly different 

from the empty control chambers. Sample voltage traces from an empty 

control chamber, tissue from salt-loaded (active) and non salt-loaded 

(inactive) animals indicating the fall of oxygen concentration in the medium 

are shown in Figure 5.2a, b & c. 

5.11 INFLUENCE OF METHACHOLINE AND ADRENALIN ON OXYGEN 

CONSUMPTION 

Methacholine did not significantly influence the rate of oxygen consumption 

of salt gland tissue, either from salt-loaded or non salt-loaded animals 

(Figure 5.3). However, the rate of oxygen consumption by cardiac tissue was 

significantly reduced from 52.98 + 15.72 to 13.32 +10.2 µmol 02.g wet 

weight-1.hr-1 following methacholine addition to the incubation medium 

(Figures 5.2d and 5.3). Consumption rate was reduced for approximately five 

minutes before returning to the rate seen prior to the addition of 

methacholine. 

The addition of adrenalin also did not change the oxygen consumption rate 

of salt gland tissue (Figure 5.4), but it transiently increased consumption by 

cardiac tissue slices from 43.20 + 11.52 to 270.00 + 10.20 µmol 02.g wet 

weight-1.hrl (Figures 5.2e and 5.4). 
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DISCUSSION 

There was no observed difference in the rate of oxygen consumption of slices 

from salt glands whether removed from salt-loaded or control hatchlings. 

Therefore under the conditions and assumptions of these experiments, the 

hypothesis that ion transport activity measured by oxygen consumption 

differs with gland activity is not supported. On the strength of this result, it 

would be unlikely that the secretory cells (both of the tubules and those 

proposed to line the ducts) of the salt gland are a target for regulation as 

suggested in the secretory model. The inability of methacholine and 

adrenalin to alter the rate of salt gland tissue respiration means that the 

hypotheses relating to a reduction in secretory cell respiration by these 

chemicals are also not supported under these experimental conditions. Thus 

the results indicate that the energy-dependent ion transport of secretory cells 

proceeds with the same oxygen requirement irrespective of the overall state 

of activity of the gland and independent of the influence of modifiers of 

gland activity. However, a major limitation of the in vitro experimental 

technique is that the tissue being examined is isolated from any controlling 

factors present in vivo. 

Measurements of oxygen consumption in vitro make the assumption that 

the tissue respires normally and responds to modifiers normally. However, 

removal of the salt gland obviously isolates it from neural and circulatory 

influences and these may be important for maintenance of the gland in a 

state of activity or inactivity. When removed from these influences, an 

active gland may become inactive, or the reverse may be true. If this is the 

case, it would not be possible to distinguish between different states of 

activity by measuring oxygen consumption, as the tissue will assume one or 

the other state following removal from the animal. Detection of a difference 

in oxygen consumption of slices from active and inactive glands would tend 

to refute this problem, but this was not observed in this study, and no other 

published studies have measured respiration of the gland in different states 

of activity. Furthermore, it is not currently possible to measure oxygen 

consumption and ion transport of slices simultaneously, so it is impossible 

to be certain that ion transport is actually taking place in the in vitro 

preparation. Results will be discussed in the light of these limitations. 

The rate of oxygen consumption measured in glands removed from salt

loaded and non salt-loaded animals was approximately 35 µmol 02.g wet 

weight-1.hr-1. In order to determine what proportion of the total respiration 
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rate is due to the requirements of ion transport in the active gland, the 

oxygen needed to fuel this work must be calculated. In a salt-loaded animal 

which is secreting, the metabolic cost to the secretory cells of transporting 

ions is calculated from the equation; 

Work (Joules.mole-1) = RT ln Cb1/Crnediurn (Withers, 1992) 

where R is the gas constant, T is the absolute temperature and Cb1 and Crnediurn 

are the blood and medium (secretion) ion concentrations. Substituting the 

appropriate values (R = 8.3143 J.mole-1.K-1, T = 301° Kelvin, Cbl = 190 

mmol.1-1, Crnediurn = 816 mmol.1-1 ), the energy requirement is 3646 J.mole-1 salt 

transported. The amount of salt transported by a single salt gland of 40 mg 

mass in a 30 g hatchling is 125 µmol NaCl.hrl, thus the work done is 0.456 

Joules.hrl. Assuming that energy is provided by carbohydrate metabolism 

with a production of 21.4 kilojoules per litre of oxygen, then the oxygen 

required is 525 µl 0 2.hr-i.g-1, or 22.06 µmol 0 2.hrl.g sait gland weight-1. The 

measured respiratory rate is capable of meeting the calculated ion transport 

energy requirement provided the efficiency of transport is at least about 60°/o. 

The remaining component of the observed respiration must be for the 

support of cellular metabolic activity not related to osmoregulation. It seems 

reasonable that the salt gland would have a high proportion of its oxygen 

consumption used for osmoregulation, as suggested by the large numbers of 

mitochondria and glycogen granules seen in principal secretory cells (Abel 

and Ellis, 1966). The result suggests that the secretory cells of the salt gland of 

the hatchling turtle remain in the same state of activity regardless of 

whether the gland is secreting or not. However, given the limitations of the 

experimental technique discussed earlier, it is entirely possible that the salt 

gland tissue assumed either an active or inactive state following removal 

from the · animal and isolation from any controlling modifiers. Two cases 

can be considered, with either the inactive salt gland slices in the absence of 

in vivo inhibition increasing their activity to match that of the active glands, 

or the reverse occurring in the absence of in vivo stimulation. In the first 

case, the rate of oxygen consumption measured and therefore the ionic 

transport activity inferred is the rate which occurs in salt gland tissue which 

is actively transporting salt. The calculated oxygen requirement for active 

transport is less than the measured rate, indicating that secretory activity 

could have been taking place. In the second case considered, the rate of 

oxygen consumption measured and therefore the ionic transport activity 
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inferred is the rate of basal metabolism by the salt gland when it is not 

producing secretions. 

A further possibility presents itself, that the activity of the salt gland secretory 

cells is limited by the available oxygen concentration. The oxygen supply to 

the salt gland may be tightly controlled in vivo by regulating blood supply so 

that the activity of ion transporting cells is reduced or increased as required. 

Following removal from the animal and incubation in an oxygen-saturated 

environment, the secretory cells may consume oxygen as rapidly as possible 

and consequently transport ions at their maximum rate, regardless of their 

experimental history. The fact that the measured respiration rate exceeds the 

calculated minimum requirement for secretion indicates that this could 

certainly occur. 

Measurements of oxygen consumption from the hatchling turtle salt gland 

are similar to those made from other animals (Table 5.1). The fact that the 

rates measured from avian salt glands were close to those measured from 

turtles and the shark suggests that the avian glands were not in an active 

state. This is suggested because active avian salt glands would be expected to 

have a respiration rate much higher than those of turtles and the shark 

simply because of the comparative metabolic rate of ectothermic and 

endothermic animals. In addition, salt-adapted birds have a greater secretory 

rate per unit mass of salt gland tissue than reptiles or sharks. It is not 

possible to determine if there were comparative differences between active 

and inactive salt glands as this was the only study which measured 

respiration under both conditions. 

Methacholine and adrenalin both inhibit the secretory activity of the salt 

gland in vivo but had no measurable effect on the oxygen consumption rate 

of salt gland tissue in vitro under the experimental conditions. The 

respiration rate of heart muscle responded to injection of methacholine and 

adrenalin into the incubation medium, indicating that the technique was 

working. This would suggest that the inhibitory influence on salt gland 

secretion of both these modifiers is not achieved via a direct effect on the 

secretory cells to change their transport activity. However, in view of the 

possible effects of removal of the gland from the study animal discussed 

earlier, it cannot be ruled out that these chemicals may exert an influence on 

secretory cell ion transport through some intermediate factor which is absent 

in the in vitro preparation. In contrast, methacholine increases the 
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respiration rate of avian salt gland tissue by 50 to 80°/o (Borut and Schmidt-

Nielsen, 1963; Stewart et al., 1979; Hootman and Ernst, 1982) presumably 

exerting at least part of its stimulatory influence on the avian gland in this 

way. The effect of methacholine on the estuarine turtle lachrymal gland and 

shark rectal gland is similar to the bird (Shuttleworth and Thompson, 1987; 

Silva et al., 1993). However, as mentioned in the general introduction the 

salt glands in these animals are not homologous structures, so control 

mechanisms may be different. It does not seem likely that this is due to 

differences in technique, as the experimental methods are similar, and 

observed respiration rates in the absence of drug treatment are also similar. 

Again it is not possible to distinguish whether this is due to methacholine 

really having no influence on ion transport at all, or some result of 

removing the gland from the study animal which prevents its effect being 

observable in the hatchling green turtle. It is not possible to make any 

comparisons on the effect of adrenalin, as its effect on oxygen consumption 

in other animals has not been reported. 

One of the assumptions made in measuring oxygen consumption as an 

indicator of ionic transport is that respiration and transport activity are 

directly linked. However, if respiration and ion transport can be coupled and 

uncoupled, it is possible for the two to be dissociated. In this instance where 

it is suggested that the secretory cells consume oxygen at a rate dependent on 

its availability, respiration may have increased in vitro but if it is uncoupled 

from transport, ion movement will not change. In the context of the gland 

in vivo, a change in blood flow and hence oxygen supply may be associated 

with a concomitant coupling of respiration and ion transport in the secretory 

cells by a modifier of activity. Thus, in vivo there would not be a futile 

increase in respiration which does not result in any greater work done by the 

gland. In the absence of the modifier the process uncouples but again there 

is no futile respiration because the uncoupling is associated with a reduction 

in blood flow and hence oxygen availability to the secretory cells. The result 

of such a control system is that in vitro the coupling or uncoupling described 

above will not be detected by any change in respiratory rate. Although the 

assumption of a direct link between oxygen consumption and ion transport 

is fundamental to respiration experiments, the possibility that the link can be 

uncoupled cannot be ruled out in the absence of a simultaneous 

measurement of both. 
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A consideration of the measured oxygen consumption rate may reveal 

information about the different models of ionic secretion proposed by 

Gerstberger and Gray (1993) and Marshall (1987) if we assume that these 

models apply to both the turtle and avian salt glands. The first model relies 

on energy-dependent ion transport by the principal secretory cells of 

secretory tubules, while the second relies on the majority of ion transport 

work being done by the cells which line the central canals and collecting 

ducts. The rate at which these cells would have to transport ions and 

consume oxygen differs, as they are not present in the salt gland in equal 

numbers. The area of lobular tissue comprised of principal secretory cells is 

approximately 150 times the area of central canals and ducts around which 

the secretory cells proposed by Marshall lie (Marshall et al., 1987). The same 

amount of osmoregulatory work has to be done in both models, but in that 

proposed by Marshall the membrane area over which this transport can 

occur is very much smaller. The size of secretory cells in the tubules and the 

cells lining the ducts is similar (Marshall and Saddiier, 1989) so it is 

reasonable that the relative number of these cells is proportional to the 

relative surface areas. Thus if cells surrounding ducts and central canals are 

responsible for producing the concentrated secretion they must work and 

consume oxygen at a rate about 150 times that of principle secretory cells 

proposed in Gerstberger and Gray's model. From the measured rate of the 

whole gland, the oxygen consumption rate of the cells around collecting 

ducts would be approximately 4400 µmol 02.g wet weight-1 .hr-1. This 

assumes that the salt is concentrated from the blood to the secreted fluid by a 

factor of six times, with the secretory cells of the lobules performing one 

sixth of the total work by producing an initial isosmotic solution and all 

non-osmoregulatory cells in the gland have a comparatively low rate of 

oxygen consumption. So while the total oxygen consumption of the gland is 

the same, in both models, there is a difference in the relative activity of cell 

types. The model of Gerstberger and Gray relies on a large number of cells 

which comprise the majority of the salt gland tissue working at a certain rate, 

while the model of Marshall relies on cells which comprise a small fraction 

of the salt gland working at a greatly higher rate. Thus the measured rate of 

total oxygen consumption by the gland tends to support the model of ionic 

transport of Gerstberger and Gray, as the model of Marshall requires an 

extremely high rate of oxygen consumption by cells surrounding collecting 

ducts, particularly for tissue from an ectothermic animal. Theoretically 

Marshall's model could occur, but it seems more probable that a distribution 
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of osmoregulatory work between a large number of cells (with each cell 

consequently working at a lower rate) would be most likely. 

In view of the potential limitations of the experimental technique used in 

these experiments, the question arises of what may be a more suitable 

method to employ in the future. In order to determine that ion transport is 

actually taking place, a modification of cell culture techniques already 

developed (Lowy et al., 1989) will be useful. By modifying the technique 

using a cultured cell monolayer to simultaneously measure ion 

concentration and oxygen consumption on both the basal and apical sides of 

the monolayer it will be possible to detect the transport of ions and the 

oxygen consumption associated with it. Thus any question about the 

relationship between respiration and energy-dependent ion transport can be 

resolved. In addition, modifiers of gland activity can be examined more 

closely to determine if they influence ion transport without affecting oxygen 

consumption, or vice versa by coupling or uncoupling the link. However, 

the question of overcoming any effect of isolating the salt gland from 

modifiers in vitro is more problematical. This would require development 

of some technique which can measure localised respiration of the gland in 

vivo, preferably simultaneously with measurement of other parameters 

such as blood flow and secretory rate. One alternative method this may be 

achieved is to measure oxygen and salt concentration of blood in the main 

vessels entering the salt gland and comparing this to the oxygen and salt 

concentration of blood leaving the salt gland. Thus the data to be gained 

from conventional measurements of oxygen consumption in vitro using the 

oxygen electrode technique have limitations in relating measurements and 

future experiments may be more informative if cultured cell monolayers or 

other techniques are used. 

In summary, the hypotheses proposed were not supported by data within 

experimental limitations. The oxygen consumption of tissue slices from 

active and inactive glands did not differ and modifiers of gland secretory 

activity in vivo did not change the rate of oxygen consumption in vitro. It is 

possible that this occurred because secretory cells respired at maximum rate 

in the presence of a high oxygen concentration and inhibitors of gland 

activity do not affect secretory cells. It is also possible that the link between 

respiration and ion transport can be uncoupled and that the secretory 

modifiers acted on this link rather than oxygen consumption per se. 
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However, the proposed secretory model (Figure 1.5) is not directly supported 

in identifying the secretory cells of the tubules and the ducts as a target of 

regulators of gland activity. 
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Incubation chamber and oxygen electrode for recording of oxygen 
consumption by salt gland tissue slices. The incubation medium is saturated 
with oxygen and the chamber sealed with the plunger after tissue slices are 
placed on the mesh. The water jacket maintains the incubation medium at a 
constant temperature. A stirrer lies between the electrode and the mesh but 
for clarity this is not shown. A KCl bridge joins the platinum and silver 
wires in the diagram of the electrode. The current flowing between the 
silver anode and platinum cathode of the oxygen electrode is proportional to 
the oxygen concentration in the incubation medium. As the oxygen 
concentration falls in the incubation medium, the current measured by the 
electrode also falls and this is converted to a potential voltage and recorded 
by computer. 
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Figure 5.2 
Sample voltage traces indicating the oxygen consumption of different 
tissues. A fall in the voltage trace indicates a fall in the oxygen concentration 
of the incubation medium and hence the rate of consumption by the tissue 
can be calculated. 
A) Empty control chamber. 
B) Salt loaded (active) salt gland. 
C) Non salt loaded (inactive) salt gland. 
D) Cardiac tissue treated with methacholine 2.6 x 1Q-4M. 
E) Cardiac tissue treated with adrenalin 1.4 x 10-s M. 
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Effect of methacholine on oxygen consumption rate of cardiac tissue (n = 3) 
and salt glands from salt-loaded (n = 6) and non salt-loaded anim als (n = 4). 
Rate is shown in µmoles per hour per gram wet weight of tissue. Rate before 
methacholine addition is compared with rate after methacholine addition, p 
value for change is shown, n.s. = not significant. 
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Effect of adrenalin on oxygen consumption rate of cardiac tissue (n = 3) and 
salt glands from salt-loaded (n = 12) and non salt-loaded animals (n = 8). 
Rate is shown in µmoles per minute per gram wet weight of tissue. Rate 
before adrenalin addition is compared with rate after adrenalin addition, p 
value for change is shown, n.s. = not significant. 
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Animal Treatment Oxygen Source 
consumption 
µmol.g-1.hrl 

Salt adapted duck a Not salt-loaded 120 1 
Non-adapted Not salt-loaded 84 2 
duckling a 

Non-adapted duck b Not salt-loaded 45.4 3 
Estuarine turtle c Not salt-loaded 31 3 
Dogfish shark d Not salt-loaded 33.5 4 
Green turtle Not salt-loaded 39.9 This study 
hatchling e 

Salt-loaded 33.9 

Table 5.1 
Measurements oxygen consumption of salt gland tissue from different 
animals by _use of the polarographic oxygen electrode technique. 
a Slices 300 µrn thick at 37°C. 
b Slices 200 to 300 µrn thick at 38°C. 
c Slices 200 to 300 µrn thick at 23°C. 
d Separated tubules at 2s0 c. 
e Slices 200 µrn thick at 28°C. 

Sources: (1) (Stewart et al., 1979), (2) (Lingham et al., 1980), (3) (Shuttleworth 
and Thompson, 1987), (4) (Silva et al., 1993) 
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The aims of this study were to investigate the control of salt gland secretion in 

the hatchling green sea turtle, Chelonia mydas and to test a model proposed to 

explain its regulation. Experiments were conducted to investigate the ability of 

various modifiers to influence activity of the gland under a number of 

experimental conditions, as well as measurements of blood flow and oxygen 

consumption. In addition, histological, immunohistochemical and 

morphometric evidence was collected to test the model. In this chapter the 

results of these experiments are summarised and the implications of these 

results on the regulation of salt gland secretion are discussed. Some general 

implications of comparative extra-renal osmoregulatory control are considered 

and future directions of research suggested. The secretory model presented in 

Chapter 1 is re-examined in light of experimental data, and revised to reflect 

the results obtained. A model is proposed based on the results obtained in this 

study which explains regulation of hatchling turtle salt gland activity through 

adrenergic and cholinergic nerves. Blood flow through the salt gland is 

identified as an important regulatory site which controls the supply of oxygen 

and salt to secretory cells. Two alternative models are also proposed, based on 

speculation about possible alternatives which require further experiments to 

test. It is suggested that the secretory cells themselves may also be a site of 

neural control, which was not apparent under the conditions of the 

experiments. 

6.2 SUMMARY OF RESULTS 

6.2.1 Characteristics of salt gland function 

The lachrymal salt gland of hatchling green sea turtles produced tears of 

concentrated sodi.um chloride about 10 minutes after a salt-load was 

administered. The threshold salt-load was 400 - 600 µmol NaCl.lOOg BW-1. 

Tear concentration changed little during periods of secretion and contained 800 

- 900 mmol.1-1 sodium and chloride, with the rate of sodium removal 

apparently largely dependent on the rate of tear production as this showed 

more variation. Sodium removal rate averaged 814 + 3.7 µmol Na.lOOg 

BW-1.hrl, assuming both salt glands secreted at approximately the same rate. 

With only slight variations in the concentration and rate of production, the salt 

gland appeared to respond in an "all or nothing" manner, with secretory rate 
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remaining high during periods of activity. Both plasma osmolarity and plasma 

sodium concentration increased following salt-loading, although less than 20°/o 

of the injected sodium was detectable in the plasma during the first hour. 

These parameters then fell as secretion of salt through the gland progressed. It 

was estimated that removal of a salt-load of 2700 µmol NaCl.lOOg BW-1 would 

take approximately four hours. Hematocrit changes were observed following 

salt-loading, but it seems unlikely that they influenced the secretion of salt. 

6.2.2 Influence of possible modifiers of salt gland activity 

A number of possible modifiers of salt gland activity were examined for their 

ability to influence the secretory response of the salt gland. Tear concentration 

and rate of tear production following administration of various chemicals were 

compared with those found in their absence. Methacholine and adrenalin 

completely abolished the secretory response of the salt gland when they were 

administered after secretion had been initiated by a salt-load. The duration of 

inhibition increased with increasing dose. When administered simultaneously 

with a salt-load, both delayed the onset of secretion in a dose dependent 

manner. Atropine stimulated a brief secretory response by the salt gland when 

administered with a sub-threshold salt-load although the rate of secretion was 

lower than normal. The peptide AVT transiently reduced secretion from the 

gland when administered after secretion had been initiated by a salt-load. 

Molsidomine (an NO donor), ANP, VIP and NPY did not influence the salt 

gland under the conditions of the experiments. The data showed that activity 

of the salt gland could be modified by application of exogenous chemicals. It 

was inferred that exogenous application of these chemicals was mimicking 

their release in vivo. Immunohistochemical technique verified histochemical 

identification of adrenergic nerves from an earlier study, indicating that the 

influence of adrenalin in vivo is probably through release from neural stores 

within the gland rather than from some remote site. However, the presence of 

cholinergic nerves is not unequivocal, as circumstantial histochemical evidence 

exists but immunohistochemical evidence does not. 

6.2.3 Salt gland histology, morphometry and blood flow 

The histology of the salt gland from hatchling green turtles showed the 

characteristic arrangement of secretory tubules and lobes as seen in salt glands 

from other animals. Tubules were composed of radially arranged secretory 

cells with a central lumen which drained into a central canal in each lobe. 

Three dimensional reconstruction of serial sections showed a branching 

arrangement of central canals in lobes entering the main collecting duct at the 
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posterior of the gland. Secretory tubule vasculature differed between active 

and inactive glands when measured using morphometric technique. The 

percentage of total lobe volume occupied by blood vessels as indicated by the 

presence of red blood cells was about 20 times greater in an active gland than in 

an inactive gland. The volume of tubule lumens did not differ with gland 

activity and central canal volume was slightly higher in the active gland. The 

difference in blood vessel volume with gland secretory activity provided 

supporting evidence for the identification of regulation of blood circulation 

proposed in the secretory model. This evidence was quantified by measuring 

the circulation of blood through the salt gland using coloured microspheres 

which are trapped in the capillaries. The concentration of spheres trapped per 

gram of tissue was compared between salt glands under different experimental 

conditions as well as cardiac and pectoral muscle. Capillary blood flow was 

inferred from microsphere concentration and so circulatory changes in the 

tissues detected. Salt gland circulation changed significantly in active salt 

glands following salt-loading compared to inactive giands, with capiliary biood 

flow much higher in active glands. Capillary blood flow following salt-loading 

was unchanged in cardiac and pectoral muscle compared to control animals. 

The administration of methacholine to salt-loaded animals resulted in a 

circulatory change to reduce salt gland capillary blood flow compared to salt

loaded animals which did not receive methacholine. However, pectoral and 

cardiac muscle circulatory changes also occurred which suggested that the 

change in the salt gland following methacholine injection may have been due to 

a reduction in systemic blood flow. It was also suggested that exogenous 

methacholine was having an unrelated or pharmacological influence on a rate

determining step of blood supply to the gland. Adrenalin also influenced salt 

gland circulation to reduce capillary blood flow when administered after a salt

load, while it increased capillary blood flow in cardiac and pectoral muscle. 

Atropine.was administered in the absence of a salt-load and changed salt gland 

blood circulation to greatly increase capillary blood flow when compared to 

control animals. This suggested that atropine was either abolishing a tonic, 

localised cholinergic inhibition of blood flow in the gland, or was increasing 

blood flow at the rate-determining step. The proposed secretory model 

identified salt gland circulation as being a possible site of control and this was 

supported by the experimental data. The influences on local circulation of the 

chemicals examined were consistent with their action on salt gland secretion, 

indicating that at least part of their influence was exerted in this way. 
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6.2.4 Oxygen consumption of salt gland tissue 

The polarographic electrode technique was used to measure the oxygen 

consumption of salt gland slices as an indicator of ionic transport activity. 

There was no difference in the oxygen consumption of salt glands taken from 

animals which were actively secreting following a salt-load compared to those 

which were not secreting. The measured oxygen consumption rate of about 35 

µmol.g wet weight-1.hr1 was sufficient to meet the calculated minimum energy 

requirements for ionic transport in vivo. Addition of methacholine or adrenalin 

to the incubation medium did not change the oxygen consumption of salt gland 

but did influence the respiration rate of cardiac tissue. The data suggested that 

the inhibitory action of these chemicals was not mediated through a change in 

the ion transport activity of secretory cells, unless this was not apparent in the 

in vitro preparation. This may be the case if modifiers affect ion transport 

through intermediate factors only present in vivo, or if the link between 

respiration and ion transport can be coupled and uncoupled. 

6.3 RESTING BLOOD FLOW AND ACCESS OF HORMONES OR INJECTED 

CHEMICALS 

The blood flow of the inactive salt gland is very low. Endogenous or injected 

chemicals may not reach the gland itself when it is not secreting because they 

rely on transport via the blood to their site of activity. This infers that the 

stimulation of the salt gland is not via the systemic release of hormones or other 

chemicals but is through a localised release from nerves at their site of activity. 

Thus exogenous compounds with a stimulatory influence may not show any 

effect in activating an inactive gland when they are injected because they 

cannot reach it. This may explain why VIP did not initiate secretion. However, 

chemicals were also injected while the gland was active and consequently 

blood flow was high but they did not influence the rate or concentration of 

secretion. In the avian salt gland, injection of stimulatory chemicals when the 

salt gland is active will increase the rate of secretion (Gerstberger et al., 1988), a 

result not seen in this study. It is possible though that when active the 

hatchling turtle salt gland is secreting at the maximal rate and cannot be 

stimulated further. Perhaps the application of atropine to stimulate a sub

threshold salt gland blood flow followed by the application of the chemical of 

interest will induce a suitable condition for a stimulatory effect to be seen. 

6.4 SUBTHRESHOLD BLOOD FLOW 

Capillary blood flow through the salt gland inferred from microsphere 

entrapment can be elevated significantly above control levels without tears 
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being produced. As was seen with the injection of atropine in vivo, a 

simultaneous subthreshold salt-load was necessary for the secretory response. 

However, atropine was shown to significantly increase microsphere 

entrapment in the absence of a salt-load. It was presumed that this was due to 

atropine blocking cholinergic inhibition of blood flow, but the microsphere 

entrapment was less than that measured following a salt-load. This would 

suggest that there was an atropine-resistant vasoconstriction within the gland, 

most likely those vessels controlled by adrenergic nerves . So even though 

capillary blood flow was elevated, tears were not produced. The addition of 

salt may further stimulate whatever mechanism increases blood flow to result 

in tear formation. The presence of elevated plasma sodium is probably also 

necessary for the production of tears. Secretion may not occur if sodium is not 

above a certain concentration for transport, regardless of capillary blood flow. 

Blood pressure within salt gland capillaries may be important in order to 

provide a force to drive fluid into or between secretory cells through a 

hydrostatic mechanisn1. It would be interesting to experimentally manipulate 

these parameters to determine their importance in the blood flow/ secretion 

relationship. 

6.5 BLOOD FLOW AND OXYGEN CONSUMPTION 

Morphometric examination showed that the active salt gland had a greater 

capillary volume than the inactive salt gland, when tissues were collected 

under appropriate conditions. The differences in circulation between salt 

glands in these two states was quantified in experiments using coloured 

microspheres. When measured by this method, the circulation of blood 

through salt gland capillaries when the gland is inactive was extremely low in 

comparison to other tissues. The massive increase which follows salt-loading is 

associated with secretory activity of the gland and serves to deliver salt and 

oxygen .to the secretory cells. Measurements were made of oxygen 

consumption of salt glands taken from animals which were secreting as well as 

those which were not, but no significant difference was detected. The 

assumption was made that oxygen consumption indicated the rate of energy

dependent ion transport, so it was inferred that ion transport occurred at the 

same rate in vitro regardless of whether the gland was active in vivo or not. The 

possibility exists that respiration and ion transport can be uncoupled so that 

while the measured oxygen consumption rate is sufficient to support the 

observed ion transport in vivo ion transport does not actually occur. However, 

for the purposes of a consideration of whether measured respiration was from 

an active gland or an inactive gland, \Ne can consider the gland to be potentially 
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active if respiration is sufficient to meet the requirements of ion transport. In 

the consideration of blood supply and activity, a potentially active gland will 

have the same requirements as an actually active gland, so the two can be 

considered together, and are commonly referred to as being "active" in this 

section of the discussion So when considering the experimental data the 

question arises as to whether the rate of respiration measured was that of active 

glands actually (or potentially) transporting ions, or inactive glands carrying on 

non-osmoregulatory metabolism. A consideration of the observed changes in 

salt gland capillary blood flow detected using microspheres following salt

loading clarifies this question. 

The rate of blood flow required to supply the salt gland with the oxygen 

necessary to fuel the measured rate of oxygen consumption can be estimated 

and from this I can infer capillary blood flow rate in active and inactive glands. 

If I assume that the respiration rate measured was that of an active salt gland, 

then I can estimate the blood flow required to support i-t anJ compare this with 

the results of microsphere entrapment experiments. It is possible to make some 

estimates of capillary blood flow rate through the turtle salt gland based on 

assumptions about oxygen carrying capacity and efficiency of extraction. 

Assuming that blood carries about 20°/o oxygen (Eckert et al., 1988) or about 9 

µmoLml-1, then the salt gland needs around 64 µLg wet weighrl.min-1 of blood 

to supply the measured respiration rate of 35 µmoLg wet weight-1.hrl (0.58 

µmoLg wet weight-l.min-1). The efficiency of oxygen extraction by the salt 

gland tissue is likely to be about 25°/o (Peaker and Linzell, 1975), so the 

requirement for blood flow is therefore 256 µLg wet weight-1.min-1. This is 

considerably less than the blood flow measured in the Pekin duck of 12.5 ml.g 

wet weight-1.min-1 (Kaul et al., 1983) but is offset by differences in the blood 

volume and relative salt gland mass in these animals. The salt glands are 

proportionally much larger in the hatchling turtle, approximately 0.26°/o of 

body mass compared to 0.047°/o body mass (Kaul et al., 1983) in the salt adapted 

duck. Assuming a blood volume in the turtles of about 15°/o of body mass 

(Thorson, 1968) the salt glands of hatchling turtles require 5.7°/o of the total 

blood volume.g wet weighrl.min-1 calculated on the basis of the blood required 

to supply the measured oxygen consumption above. In comparison, the active 

salt glands of the duck require approximately 3.6°/o of the total blood volume.g 

wet weight-1.min-1 calculated from the rate of blood flow, body mass and salt 

gland mass measured by Kaul et al. (1983) with the total blood volume being a 

similar proportion of body mass to the turtle. Thus although the volume of 

blood flow per gram of salt gland mass is lower in the turtle than the bird, the 
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proportion of the total blood volume and the secretory rate per unit body mass 

is very similar. The net result is that the salt glands of the turtle have a lower 

rate of blood flow per gram of salt gland mass fuelling a lower rate of oxygen

consuming ion transport. However, the rate of secretion as a percentage of body 

mass is similar in the two animals, because in the turtle the glands are 

proportionally larger, requiring the same percentage of total blood per unit 

time, although they are less active in terms of output per unit salt gland mass. 

Thus the blood flow requirements calculated from oxygen consumption of the 

turtle salt gland are consistent with observations of blood flow in the active salt 

gland of the duck. 

To return to the question of whether the rate of oxygen consumption measured 

in Chapter 5 was that of active glands, it appears that this is indeed the case, as 

the proportion of total blood required to support that rate in vivo is the same as 

that measured in active glands of the duck. The difference in capillary blood 

flow in active and inactive glands inferred fron1. rnicrosphere entrapment was 

approximately 180 fold. Thus if the rate of blood flow estimated above was 

from oxygen consumption of an inactive gland, the rate of blood flow in an 

active gland should also be 180 fold greater, or over 1000°/o of total blood 

volume.g wet weight-1.min-1. The salt glands of a 30 g hatchling turtle weigh 

approximately 80 mg and would therefore receive over 80°/o of the total body 

blood volume through their capillaries each minute. This is equal to 6 mls per 

minute, or greater than the combined weight of the salt glands every second. 

Such an enormous rate of blood flow is extremely unlikely, further supporting 

the conclusion that the oxygen consumption rate measured and blood flow 

calculated were of active salt glands from the hatchling turtle. Furthermore, 

this indicates that the rates of oxygen consumption measured of avian tissue 

are not truly indicative of active salt glands as they do not match the rate 

expected from the flow of blood per gram of salt gland tissue. In order for this 

to be the case, the efficiency of oxygen extraction from the blood by the avian 

salt gland would be extremely low, in the order of 2°/o. The measurements of 

avian salt gland respiration were taken from birds which had not been salt

loaded and so presumably were not secreting, so it is not unexpected that the 

rates observed were of inactive glands. Indeed, Borut and Schmidt-Nielsen 

(1963) measured respiration of salt gland slices from the herring gull which was 

not salt-loaded and concluded that the rate they detected in vitro was not 

capable of supplying the energy required for the secretion rates observed 

following salt-loading in vivo. Following from this there must be an intrinsic 

difference in the regulation of avian and chelonian salt gland activity so that 
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turtle salt glands become active (or potentially active) in terms of respiration 

rate in vitro, while avian salt glands remain inactive in vitro. Methacholine 

increased respiration rate of avian salt gland tissue in experiments, but only by 

about 80°/o (Borut and Schmidt-Nielsen, 1963; Hootman and Ernst, 1982) and 

this change is not great enough to require the rate of blood flow measured in 

the avian salt gland in vivo. Thus regardless of whether the hatchling turtle salt 

glands were actually transporting ions or not, the measured rate of oxygen 

consumption and the inferred blood flow was not that of inactive glands and 

was sufficient to supply the requirements of active glands. It was not possible 

to tell if the glands were transporting ions, but they were theoretically capable 

of doing so if one accepts that respiration and ion transport can be uncoupled. 

The assumption of respiration experiments of ion transporting tissues is that 

uncoupling does not occur, but it remains a possibility. 

6.6 OXYGEN AS A SECRETORY MODIFIER 

The results of oxygen consun1ption and blood flow experiments discussed 

above suggest an interesting possibility of secretory cell regulation. While 

oxygen consumption experiments certainly isolate the gland from endogenous 

inhibitory modifiers such as nerves, they also put the salt gland tissue in an 

oxygen-saturated environment. Some animals are oxygen conformers 

(Withers, 1992) with their metabolic activity modified by the available oxygen 

concentration. It is intriguing to speculate that a similar situation may occur in 

the salt gland of the green turtle hatchling. When respiration is measured in 

vitro it may be that the absence of any oxygen limitation allows the tissue to 

carry on metabolic activity at its maximum rate, potentially including ion 

transport. We know that the supply of blood to the secretory cells is regulated, 

so in this way the supply of oxygen is regulated as well. The inactive salt gland 

has a very low capillary blood flow compared to pectoral muscle, so the 

availability of oxygen to cells of the inactive gland is also very low. However, 

following salt-loading, the circulation changes to greatly increase capillary 

blood flow and hence the supply of oxygen and salt. Perhaps in the presence of 

increased oxygen availability the secretory cells are stimulated to respire more 

quickly and consequently transport the salt which is also available. Such a 

system of control can be regulated entirely by changes in blood circulation, and 

is consistent with the suggestion that modifiers do not change the respiration of 

salt gland tissue in the presence of an oxygen saturated environment unless 

respiration and transport are uncoupled. 
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6.7 PEPTIDERGIC CONTROL 

There is clear evidence of peptidergic innervation and regulation of the 

elasmobranch rectal gland (Stoff et al., 1979; Chipkin et al., 1988) and this animal 

would be considered an earlier evolutionary development than the turtle. It is 

therefore surprising that peptidergic mechanisms of salt gland regulation were 

not detected in the turtle. However, the rectal gland of the elasmobranch and 

the lachrymal gland of the turtle have obviously evolved independently, so it 

cannot be assumed that their control mechanisms will be the same. 

Nevertheless the failure to detect peptidergic control of the chelonian salt gland 

does not preclude its presence, as experiments may not be using the right 

peptides, or not under the right conditions. It has bf mentioned also that low 

blood flow in the inactive gland may prevent exogenous peptides from 

reaching their target. 

6.8 A SECRETORY MODEL BASED ON THE RESULTS OF THIS STUDY 

The secretory model presented in the General Introduction (Figure 1.5) needs 

revision now that the components of salt gland activity are better understood 

and to incorporate the experimental data obtained. The effect on the secretory 

model of modifiers examined is presented in Table 6.1 . A model is presented 

which explains salt gland regulation through the activity of nerves. This is for 

two reasons, 1) the response of the salt gland to salt and other active chemicals 

is extremely rapid and 2) the results of microsphere experiments show that the 

blood flow through the inactive gland is extremely low so that hormones or 

other substances released into the blood will have great difficulty in reaching 

the salt gland itself. This second point suggests very strongly that any 

substances affecting the blood flow or cellular activity of the salt gland are 

locally released from nerve endings in or close to the gland. The model also 

identifies that blood supply to the gland and its secretory cells is a target of 

regulatory modifiers. This is based on the clear evidence that the active gland 
' ~ 

has a greater capillary blood flow than the inactive glad and that blood flow 
" can be modified experimentally. The model shows a system of control through 

dual inhibitory innervation by adrenergic and cholinergic nerves. The 

influence of AVT on salt gland secretion is not included in this or the 

alternative models as it is necessary to determine precisely where AVT is 

binding, to know whether it has a direct or indirect effect. 

6.8.1 Model 1 - Inhibitory cholinergic and adrenergic innervation 

Exogenous methacholine and adrenalin both inhibit secretion by the salt gland 

and reduce blood flow through salt gland capillaries. In the model (Figure 6.1) 
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it is assumed that adrenalin and methacholine are mimicking the action of 

adrenergic and cholinergic nerves in salt gland tissue. Thus, both sympathetic 

and parasympathetic nerves inhibit the activity of the salt gland, rather than 

having the antagonistic effects typically associated with exocrine glands and 

seen in the avian salt gland. In the model, elevated sodium is detected by the 

central receptor which inhibits both adrenergic and cholinergic nerves in the 

salt gland. These nerves act to restrict blood flow to the gland and so when 

they are inhibited the supply of salt and oxygen to secretory cells by the blood 

is increased and secretion results. The model suggests that the salt gland is 

subject to a system of inhibitory control, with activity resulting when the 

inhibition is absent rather than becoming active following stimulation from an 

inactive state. It is possible also that cholinergic nerves influence the activity of 

the secretory cells directly, as reported in comparative studies (Borut and 

Schmidt-Nielsen, 1963; Stewart et al., 1979; Hootman and Ernst, 1982), although 

in this case the influence is inhibitory rather than stimulatory as in those 

reports. Respiration of salt gland tissue did not change following methacholine 

administration in this study, but if methacholine acted to uncouple respiration 

and ion transport then its inhibitory influence would not be detected by this 

means. Although the underlying assumption in all experiments which 

measure oxygen consumption as an indicator of ion transport is that this does 

not occur, an experimental setup which measures respiration and ion transport 

simultaneously is the only way to be absolutely sure. It is necessary to identify 

the precise location of cholinergic nerves within the gland to determine if they 

contact secretory cells and so could affect them in this way. 

Possibly the salt gland in hatchling turtles is active most of the time and 

temporarily inhibited from time to time by inhibitory nerves, rather than 

normally being inactive and then being switched on from time to time by 

stimulatory nerves. Hatchling turtles may be secreting while immersed and 

this has not been detected, but hatchlings removed from the water only 

occasionally secrete spontaneously (personal observation). The results of 

adrenalin administration suggest that this may be a result of being removed 

from the water and handled. The salt water crocodile, Crocodilus porosus will 

not secrete salt from the lingual salt glands unless it is immersed and 

unrestrained (Taylor et al., 1995), indicating that emersion probably causes a 

stress response. A similar situation may occur in green turtle hatchlings with 

the release of adrenalin which inhibits the salt gland as a result of stress 

following removal from the water. This inhibition could be over-ridden by 

injection of a salt-load to produce the secretory response observed. It would be 
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interesting to determine if adrenalin also has an inhibitory influence on salt 

gland secretion in the crocodile. 

A consideration of the salt threshold required to initiate salt gland secretion in 

vivo indicates that it is likely that the gland in hatchings is secreting a 

large proportion of the time. It has been calculated that the exchangeable 

sodium pool of hatchling green turtles is 7300 µmol.lOOg BW-1 (Kooistra and 

Evans, 1976), so the threshold sodium influx represents between 5.5°/o and 8.2°/o 

of this. An increase of 5°/o of the exchangeable sodium pool would occur 

through ingestion of only 200µ1 of seawater by a 25 g hatchling, irrespective of 

any additional salt ingested in the food. Hatchlings have been reported to 

drink 2-8.5 ml.lOOg-1.day-1 of seawater (Marshall and Cooper, 1988) and ingest 

700 µmol NaCl.lOOg-1.day-1 in shrimp (Jones et al., 1995) when maintained 

under conditions similar to those in this study. A rapid growth rate is 

important for small turtles to reduce the risk of predation and they must be 

able to secrete salt at a rate which permits maximum growth. At the rate of 

secretion measured in Chapter 2, the salt gland could secrete the salt from 

about 30 ml.lOOg-1.day-1 of seawater. So there is evidence that when 

hatchlings are freely swimming, feeding and drinking they ingest a large 

amount of salt as well as an unknown quantity which must diffuse into the 

body from the environment, and that the salt gland is capable of removing this 

quantity. Total sodium influx then represents a large percentage of the 

hatchling salt gland total secretory capacity. In order to remove this, the gland 

would have to operate a large proportion of the time to reduce internal sodium 

concentration, and would be inhibited from time to time when sodium falls 

sufficiently. In this situation, a system of control which is inhibitory rather than 

stimulatory is more likely to occur. 

The question remains as to why both adrenergic and cholinergic elements 

would be present in the gland, both apparently having the same effect on gland 

activity. The effect of adrenalin on secretion and blood flow is in agreement 

with other reports (Fange et al., 1963; Peaker and Linzell, 1975), while the action 

of methacholine in hatchling turtles in this study is different to other animals 

(Fange et al., 1958a; Schmidt-Nielsen and Fange, 1958; Taylor et al., 1995). Some 

possible reasons for this difference have been discussed in Chapter 3, but 

information on sodium intake and growth rate of hatchling turtles suggests an 

alternative. The possibility exists that there are ontogenetic changes occurring 

in the control mechanisms operating in turtles of different ages. The small size 

and rapid growth rate of hatchling turtles means that they eat proportionally 
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more food and ingest proportionally more seawater than adult turtles. As 

turtles get larger their growth rate slows (Bjorndal and Bolten, 1988) and their 

energy requirements are proportionally much smaller and met by a 

herbivorous rather than an omnivorous diet (Bjorndal, 1980). Through a 

reduction in feeding and drinking requirements, their total sodium intake is 

probably greatly reduced. In addition, scaling of the body mass to surface area 

ratio means that passive entry of salt into the body is reduced as size increases. 

Although the secretory rate of the salt gland is allometrically related to body 

mass it is likely that the salt gland changes from being usually active in 

hatchlings to being intermittently active in adults to maintain salt balance, as is 

the case in marine birds. If so, a system of control which is both inhibitory and 

stimulatory in adults would be suitable. When salt secretion is required, the 

gland is stimulated by some modifier and when secretion is no longer required 

it is inhibited by some other modifier. In this case, the role of acetylcholine or 

adrenalin in the salt gland may switch from being inhibitory to being 

stimulatory. If acetylcholine switches to having a stimulatory effect, this would 

be consistent with the sympathetic/parasympathetic model of control of the 

avian salt gland and other exocrine glands. There is currently no experimental 

evidence to support this proposition but it is interesting to speculate that this 

may occur. The problem in obtaining adult turtles makes this difficult to 

examine experimentally. However, it may be that the model of antagonistic 

roles for cholinergic and adrenergic control of salt gland secretion in the bird 

simply does not apply to the chelonian salt gland. Both systems in the turtle 

may have an inhibitory function and stimulation of the gland occurs through 

an absence of inhibition or some other mechanism. One of the nerve types 

might exert immediate but short-lived inhibition to stop secretion after it is 

initiated, while the other exerts a more long term inhibitory influence during 

periods when secretion is not required. I am not aware of other exocrine 

glands controlled in this way and although such a dual inhibitory system does 

not match current dogma concerning regulation of secretory tissues, it is 

consistent with the experimental data in this thesis. 

6.9 ALTERNATNE MODELS 

Two alternative models are presented which are based on the experimental 

data obtained but also incorporate data collected in other studies. They are also 

dependent on the conduct of further experiments to clarify areas of uncertainty, 

primarily regarding the presence of cholinergic innervation and the effect of 

exogenous cholinergic agonists. 
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6.9.1 Model 2 - Inhibitory adrenergic innervation 

The innervation of the green turtle salt gland has not been unequivocally 

determined; although immunohistochemical technique in this study has 

demonstrated the presence of adrenergic nerves, the same has not been 

reported for cholinergic innervation. There is circumstantial evidence through 

the histological studies of Abel and Ellis (1966) but until a suitable antibody for 

the green turtle salt gland is tested, the immunohistochemical evidence is 

absent. Commercially available mammalian choline-acetyl transferase (ChAT) 

antibodies do not bind to the salt gland of the estuarine turtle (Belfry and 

Cowan, 1995) even though cholinergic agonists stimulate the gland both in vivo 

and in vitro. Mammalian ChA T antibodies do not bind to the salt gland of the 

duck either (Prof. M. Schemann, personal communication) so it seems that 

antibodies may need to be raised directly from the green turtle to definitively 

determine if cholinergic nerves are present in the salt glands of these animals. 

The second model (Figure 6.2) presents regulation of secretion whereby 

secretory activity of the hatchling green turtle salt gland is controlled solely by 

adrenergic regulation of salt gland blood supply. 

Exogenous methacholine and adrenalin both inhibit the activity of the hatchling 

green turtle salt gland, at least part of this effect is achieved by influencing the 

circulation of blood so that salt gland capillaries are not filled. If the 

histochemical evidence of cholinergic nerves is not accepted, it follows that the 

influence of methacholine and atropine on the salt gland is not mimicking 

cholinergic nerves and so occurs for some other reason. Methacholine is 

known to reduce cardiac stroke rate and output (Withers, 1992) and so will 

reduce blood flow rate to some extent. If the changes measured in salt gland 

circulation following methacholine administration are due solely to this 

reduction, then an indirect, inhibitory effect will be seen. Cholinergic influence 

on the heart induces bradycardia and is involved in the diving response 

(Schmidt-Nielsen, 1990). If the injected methacholine stimulates a diving 

response, bradycardia (with consequent reduction in cardiac output) as well as 

a peripheral vasoconstriction will result. This may explain the inhibitory effect 

seen. Alternatively, if methacholine exerts an inhibitory effect on the rate

determining step of blood flow (possibly including cardiac output), then salt 

gland activity will also be reduced. The second model presented therefore 

explains the cholinergic effect seen as being due to a secondary or 

pharmacological response and so the regulation of the salt gland is through the 

action of inhibitory adrenergic nerves alone. Like the first model, this also 

suggests the salt gland is subject to a system of inhibitory control. A solely 
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inhibitory system of control was discussed with regard to the first model above, 

the same arguments apply here. 

6.9.2 Model 3 - Inhibitory adrenergic and stimulatory cholinergic innervation 

The third model (Figure 6.3) describes a system of control where the 

histochemical evidence for the presence of cholinergic nerves is accepted but 

the role of the cholinergic nerves is stimulatory. There is an antagonistic role of 

adrenergic and cholinergic innervation which is not apparent in experiments 

conducted because of the effect of exogenous methacholine described in the 

second model. Elevated sodium is detected by the central receptor which 

inhibits adrenergic nerves and stimulates cholinergic nerves. These act to 

restrict and increase blood flow respectively so that salt and oxygen delivery to 

the salt gland is controlled. In experiments conducted, methacholine caused an 

inhibition of secretion, this is explained by the inhibitory effect on cardiac 

output or on a blood flow determining step so that blood flow to the gland is 

reduced below threshold. The site of action of methacholine cannot be the 

same as the site of cholinergic innervation because of the opposite effects and it 

must be a rate-determining step because of the action of atropine. Atropine 

antagonises the cholinergic influence and increases overall salt gland blood 

flow but at the site of cholinergic nerves it must inhibit blood flow. By having 

the opposite effect to methacholine at the rate-determining step, an increase in 

blood flow can overcome the inhibition at the site of cholinergic nerves so that 

blood flow through the gland as a whole increases. In the reverse case, 

cholinergic nerves stimulate blood flow but because methacholine inhibits flow 

at the rate-determining step the total salt gland blood flow is reduced. This 

may provide an explanation as to why the administration of methacholine in 

this study differed from that in the study of Schmidt-Nielsen and Fange (1958). 

It seems highly possible that the experimental animal used was dehydrated or 

had received an earlier salt load (Schmidt-Nielsen, personal communication), 

both of which are likely to result in a subthreshold blood flow. If this pre

existing stimulation is sufficient to overcome the inhibitory action of 

methacholine on the rate-determining step of blood flow, then the 

methacholine can reach the salt gland tissue. There it can mimic the action of 

cholinergic nerves to increase the local blood flow through capillaries and exert 

any possible effect on ion transport by secretory cells. Another site of 

cholinergic nerves may be at the secretory cells themselves, where they act to 

couple the processes of respiration and ion transport. Thus ion transport 

activity can be increased without a detectable change in oxygen consumption of 

secretory cells. The result is that cholinergic nerves increase salt gland blood 
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flow, or couple respiration and ion transport, or both. It is necessary to identify 

the exact location of nerves to discriminate between these two possibilities. 

An antagonistic sympathetic/parasympathetic system of control is the classical 

scheme for an exocrine gland and matches that proposed for the avian salt 

gland. In this model it is proposed that the inhibitory effects of exogenous 

methacholine disguise the stimulatory influence of cholinergic nerves. 

6.10 EARLY REPTILIAN EXTRA-RENAL OSMOREGULATION 

It was mentioned in the general introduction that skull morphology identified 

turtles as possibly being the closest living descendants of the stem reptiles. 

Whilst it is difficult be confident about physiological comparisons, it seems that 

the control of extra-renal osmoregulation in turtles is a "simple" system, 

perhaps what might be expected in a primitive reptilian ancestor. It is 

interesting to speculate that salt gland regulation in the green turtle is similar to 

that of the stem reptiles and that subsequent development of extrarenal 

osmoregulation by more advanced lizards, snakes, crocodiles and birds relies 

on more complex regulatory systems. 

6.11 FURTHER EXPERIMENTS 

Future research should clarify the secretory models presented here. The 

immunohistochemical experiments required to do this have been described in 

the discussion of the models to identify which elements of the gland, if any, are 

contacted by cholinergic nerves. Other experiments have been suggested and 

described in the discussion of the components of salt gland activity, they are 

briefly summarised below; 1) It will be useful to further examine possible 

peptidergic influences on salt gland activity, both in vivo and in vitro under 

different experimental conditions. 2) Cannulating the blood vessels supplying 

the salt gland will permit localised, exogenous application of proposed 

modifiers of gland activity. Stimulating subthreshold blood flow prior to 

addition will resolve the question of injected chemicals reaching the gland. 3) 

Measurements of blood circulation through the salt gland in situ will provide 

quantitative measurements to support the inferences made based on oxygen 

consumption and microsphere experiments discussed above. 4) An 

experimental preparation which measures both respiration and ion transport 

activity of the gland simultaneously will conclusively demonstrate whether 

these two aspects of gland function can be uncoupled. 5) Experiments similar 

to those in this study should be conducted on green turtles of various ages, to 
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determine if regulation of salt gland activity changes with age and associated 

changes in diet. 

6.12 SUMMARY 

The experimental evidence presented demonstrates that salt secreting activity 

of the salt gland of the hatchling green turtle is regulated. Secretion 

commences following administration of a salt-load above a threshold and the 

mechanisms by which this initiation and suppression of secretion were effected 

were examined experimentally. A model was presented based on the 

experimental evidence which identifies control of blood circulation in the gland 

by adrenergic and cholinergic nerves as being the means by which gland 

activity is regulated. Two other models were suggested as alternatives which 

require further experiments to clarify. These differed in that the presence of 

cholinergic nerves is not accepted in one, and in the other the inhibitory effect 

of exogenous methacholine disguises the true stimulatory influence of 

cholinergic nerves. Measurement of oxygen consumption of the salt gland in 

vitro indicated that respiration rate of secretory cells is not modified by the 

exogenous application of adrenalin or a cholinergic agonist. Calculations of the 

oxygen requirement and blood flow through the gland show that it appears to 

assume a state of activity following removal from the animal, possibly due to 

increased oxygen availability. However, it is possible that the link between 

respiration and ion transport can be coupled and uncoupled so that oxygen 

consumption does not change following chemical administration but ionic 

transport is affected. It is necessary to devise a technique which 

simultaneously measures oxygen consumption and ion transport to determine 

if this is the case. Peptidergic mechanisms of control were not found, although 

they may yet be identified in subsequent studies. Possible reasons for different 

patterns of innervation of adrenergic and cholinergic nerves in the models were 

discussed, with the suggestion that ontogenetic changes may occur as turtles 

grow. The simple, neural control mechanisms proposed to operate in the 

hatchling turtle may reflect a similar state in extra-renal osmoregulation of 

early reptiles. Future experiments are suggested which will make it possible to 

refine and clarify the secretory models. 
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Table 6.1 
Summary of the effects of chemicals examined on salt gland secretion and the 
proposed control points identified in the secretory model. "+" indicates that the 
chemical had a stimulatory effect, "-" indicates that the chemical had an 
inhibitory effect, and "O'' indicates that the chemical had no measurable effect 
under the conditions of the experiment. A blank box indicates that the 
chemical was not examined in that particular experiment. Salt gland secretion 
was measured as the total rate of sodium removal in tears produced by the 
gland. Circulation changes were detected as changes in the flow of blood 
through capillaries of the gland. The activity of secretory tubule cells and duct 
cells was measured by the rate of oxygen consumption as an indicator of 
energy-dependent ion transport activity. 

Chemical Salt gland Circulation Secretory Duct cells 
secretion in (Site 1) tubule cells (Site 3) . (Site 2) vivo 

Salt + + 0 0 
Methacholine - - 0 0 
Adrenalin - - 0 0 
Atropine + + 
Molsidomine 0 
AVT -
ANP 0 
VIP 0 
NPY 0 
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Figure 6.1 
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Model of salt gland regulation in the hatchling green turtle though inhibitory 
action of adrenergic and cholinergic nerves. Elevated sodium is detected by a 
central receptor which inhibits adrenergic and cholinergic nerves in the salt 
gland. These nerves act to restrict the flow of blood to the salt gland secretory 
tubules, either by affecting arterioles supplying the gland or capillaries in the 
gland. Thus through inhibition of the nerves, the delivery of salt and oxygen to 
secretory cells is increased and salt secretion by the gland results. Cholinergic 
nerves may also affect secretory cells directly if they act to uncouple respiration 
and ion transport so that although oxygen consumption is unaffected, the 
transport of salt is inhibited. 
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Model of salt gland regulation based on adrenergic innervation of the gland. 
Elevated sodium is detected by a central receptor which inhibits the activity of 
adrenergic nerves in the salt gland which normally restrict blood flow. In this 
way the delivery of salt and oxygen to secretory cells is controlled. In the 
absence of cholinergic nerves, it is proposed that the effect of exogenous 
methacholine acts to reduce salt gland blood flow through a secondary or 
pharmacological means. Methacholine will reduce cardiac stroke rate and 
output and may result in a 'dive response' resulting in peripheral 
vasoconstriction. Alternatively, there may be an effect on blood flow at some 
rate-determining step through a pharmacological rather than physiological 
action. It must affect a rate-determining step because atropine causes the 
reverse effect. The result is to restrict blood flow so that salt secretion by the 
gland is inhibited. 
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Model of salt gland regulation through inhibitory adrenergic and stimulatory 
cholinergic innervation. A central receptor detects elevated sodium 
concentration and has an inhibitory influence on adrenergic nerves and a 
stimulatory influence on cholinergic nerves. These nerves inhibit and stimulate 
salt gland blood flow respectively to control the supply of salt and oxygen to 
the secretory cells so that sodium secretion is regulated. There may also be an 
stimulatory effect on cholinergic nerves by the receptor/ effector to couple 
respiration and ion transport of secretory cells so that salt secretion occurs 
without an increase in oxygen consumption. However, exogenous 
methacholine affects a rate-determining blood flow point to inhibit salt gland 
activity in the same way as described in the second model. Thus the 
stimulatory influence of cholinergic nerves is disguised by the inhibitory 
influence of the injected cholinergic agonist. It is necessary to identify precisely 
where cholinergic nerves terminate in order to distinguish between points 1 
and 2. 
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APPENDIX 1. 
Recipes 

ACID ALCOHOL 
Dilute 700 ml 100% ethanol with 300 ml distilled H20. 
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Take 1 ml of concentrated HCl (36%) and dilute with 35 ml distilled H20 to 
give 1 % HCl solution. 
Add 10 ml 1 % HCl to 990 ml 70% ethanol. 

1 % ALCIAN BLUE pH 1.0 
Add 10 g alcian blue powder to 1000 ml O.lN HCl. 
Shake until dissolved. 

1 % PERIODIC ACID 
Add 10 g periodic acid to 1000 ml distilled H20 . 
Shake until dissolved. 

SCOTT'S TAPWATER SUBSTITUTE 
Add 2 g sodium bicarbonate or potassium bicarbonate and 20 g magnesium 
sulphate to 1000 ml distilled H20. 
Shake until dissolved. 

MAYER'S ACID HAEMALUM 
Dissolve 50 g ammonia potassium sulphate in 700 ml distilled H20 by 
heating. Add 5 g haematoxylin and dissolve, followed by 1 g sodium iodate. 
Add 300 ml glycerine or glycerol, 20 ml glacial acetic acid and mix 
thoroughly. 

SCHIFF'S REAGENT 
Dissolve 5 g basic fuschin in 1000 ml boiling distilled water in a stoppered 2 
litre flask. 
Shake for 5 minutes. 
Cool to exactly S0°C, filter and add 100 ml of 1N HCl to the filtrate. 
Cool further to 2soc and add 5 g sodium or potassium metabisulphite. 
Store for 18-24 hours in the dark, add 20 g activated charcoal and shake for 1 
minute. 
Remove charcoal by filtration and store in the dark at 0-4°C. 

FAST GREEN 0.5% 
Dissolve 10 g fast green in 990 ml distilled w ater, then add 10 ml glacial 
acetic acid. 



APPENDIX 2. 
Embedding and Staining 

WAX EMBEDDING 
1) 70% Ethanol 5 minutes 
2) 70 % Ethanol 5 minutes 
3) 70% Propanol 15 minutes 
4) 70% Propanol 15 minutes 
5) 90 % Propanol 15 minutes 
6) 90% Propanol 15 minutes 
7) 95% Propanol 15 minutes 
8) 95% Propanol 15 minutes 
9) 100% Propanol 30 minutes 
10) 100% Propanol 30 minutes 
11) Wax@ 60DC under vacuum 30 minutes 
12) Wax@ 60°C under vacuum 60 minutes 

STAINING OF WA .. X EMBEDDED SECTIONS 
1) Wash in histolene. 
2) Rinse in 100 % ethanol 
3) Rinse in 75 % ethanol 
4) Rinse in 50% ethanol 
5) Rinse in distilled H20 
6) Second rinse in distilled H20 
7) Oxidise in 1 % periodic acid 
8) Rinse in distilled H20 
9) Schiff's reagent 
10) Rinse in running H20 
11) 1 % Aldan Blue pH 1.0 
12) Rinse in running H20 

Counterstain with haematoxylin 
13) Mayer's acid haemalum 
14) Rinse in running H20 
15) 1 % acid alcohol 
16) Rinse in distilled H20 
17) Scott's tapwater substitute 
18) Rinse in distilled H20 

Counterstain with fast green 

7 mins 
20 secs 
20 secs 
20 secs 
20 secs 
20 secs 
9 mins 
30 secs 
20 mins 
30 secs 
20 mins 
2 mins 

6 mins 
30 secs 
5 secs 
30 secs 
2 mins 
30 secs 

19) Fast green 5 mins 
20) 50% ethanol 5 mins 
21) 100% ethanol 5 mins 
22) 100 % ethanol 5 mins 
23) Mount with Colourfast and cover with coverslip. 

167 


	b19830749_0_002_R
	b19830749_0_003_R
	b19830749_0_004_R
	b19830749_0_005_R
	b19830749_0_006_R
	b19830749_0_007_R
	b19830749_0_008_R
	b19830749_0_009_R
	b19830749_0_010_R
	b19830749_0_011_R
	b19830749_0_012_R
	b19830749_0_013_R
	b19830749_0_014_R
	b19830749_0_015_R
	b19830749_0_016_R
	b19830749_0_017_R
	b19830749_0_018_R
	b19830749_0_019_R
	b19830749_0_020_R
	b19830749_0_021_R
	b19830749_0_022_R
	b19830749_0_023_R
	b19830749_0_024_R
	b19830749_0_025_R
	b19830749_0_026_R
	b19830749_0_027_R
	b19830749_0_028_R
	b19830749_0_029_R
	b19830749_0_030_R
	b19830749_0_031_R
	b19830749_0_032_R
	b19830749_0_033_R
	b19830749_0_034_R
	b19830749_0_035_R
	b19830749_0_036_R
	b19830749_0_037_R
	b19830749_0_038_R
	b19830749_0_039_R
	b19830749_0_040_R
	b19830749_0_041_R
	b19830749_0_042_R
	b19830749_0_043_R
	b19830749_0_044_R
	b19830749_0_045_R
	b19830749_0_046_R
	b19830749_0_047_R
	b19830749_0_048_R
	b19830749_0_049_R
	b19830749_0_050_R
	b19830749_0_051_R
	b19830749_0_052_R
	b19830749_0_053_R
	b19830749_0_054_R
	b19830749_0_055_R
	b19830749_0_056_R
	b19830749_0_057_R
	b19830749_0_058_R
	b19830749_0_059_R
	b19830749_0_060_R
	b19830749_0_061_R
	b19830749_0_062_R
	b19830749_0_063_R
	b19830749_0_064_R
	b19830749_0_065_R
	b19830749_0_066_R
	b19830749_0_067_R
	b19830749_0_068_R
	b19830749_0_069_R
	b19830749_0_070_R
	b19830749_0_071_R
	b19830749_0_072_R
	b19830749_0_073_R
	b19830749_0_074_R
	b19830749_0_075_R
	b19830749_0_076_R
	b19830749_0_077_R
	b19830749_0_078_R
	b19830749_0_079_R
	b19830749_0_080_R
	b19830749_0_081_R
	b19830749_0_082_R
	b19830749_0_083_R
	b19830749_0_084_R
	b19830749_0_085_R
	b19830749_0_086_R
	b19830749_0_087_R
	b19830749_0_088_R
	b19830749_0_089_R
	b19830749_0_090_R
	b19830749_0_091_R
	b19830749_0_092_R
	b19830749_0_093_R
	b19830749_0_094_R
	b19830749_0_095_R
	b19830749_0_096_R
	b19830749_0_097_R
	b19830749_0_098_R
	b19830749_0_099_R
	b19830749_0_100_R
	b19830749_0_101_R
	b19830749_0_102_R
	b19830749_0_103_R
	b19830749_0_104_R
	b19830749_0_105_R
	b19830749_0_106_R
	b19830749_0_107_R
	b19830749_0_108_R
	b19830749_0_109_R
	b19830749_0_110_R
	b19830749_0_111_R
	b19830749_0_112_R
	b19830749_0_113_R
	b19830749_0_114_R
	b19830749_0_115_R
	b19830749_0_116_R
	b19830749_0_117_R
	b19830749_0_118_L
	b19830749_0_118_R
	b19830749_0_119_L
	b19830749_0_119_R
	b19830749_0_120_R
	b19830749_0_121_R
	b19830749_0_122_R
	b19830749_0_123_R
	b19830749_0_124_R
	b19830749_0_125_R
	b19830749_0_126_R
	b19830749_0_127_R
	b19830749_0_128_R
	b19830749_0_129_R
	b19830749_0_130_R
	b19830749_0_131_R
	b19830749_0_132_R
	b19830749_0_133_R
	b19830749_0_134_R
	b19830749_0_135_R
	b19830749_0_136_R
	b19830749_0_137_R
	b19830749_0_138_R
	b19830749_0_139_R
	b19830749_0_140_R
	b19830749_0_141_R
	b19830749_0_142_R
	b19830749_0_143_R
	b19830749_0_144_R
	b19830749_0_145_R
	b19830749_0_146_R
	b19830749_0_147_R
	b19830749_0_148_R
	b19830749_0_149_R
	b19830749_0_150_R
	b19830749_0_151_R
	b19830749_0_152_R
	b19830749_0_153_R
	b19830749_0_154_R
	b19830749_0_155_R
	b19830749_0_156_R
	b19830749_0_157_R
	b19830749_0_158_R
	b19830749_0_159_R
	b19830749_0_160_R
	b19830749_0_161_R
	b19830749_0_162_R
	b19830749_0_163_R
	b19830749_0_164_R
	b19830749_0_165_R
	b19830749_0_166_R
	b19830749_0_167_R
	b19830749_0_168_R
	b19830749_0_169_R
	b19830749_0_170_R
	b19830749_0_171_R
	b19830749_0_172_R
	b19830749_0_173_R
	b19830749_0_174_R
	b19830749_0_175_R
	b19830749_0_176_R
	b19830749_0_177_R
	b19830749_0_178_R
	b19830749_0_179_R



