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A b s tra c t

This thesis is to develop techniques to enable a manipulator arm to perform a cleaning 

task in an unknown obstacle-filled environment using only force sensing.

Our investigation focusses on reactive control, graph-based modelling for manipu­

lator arms and graph-based motion-planning algorithms.

Reactive control strategies have produced significant results in improving the ability 

of wheeled and legged mobile robots to cope with unfamiliar environments and uncer­

tainties. However, it seems that very few attempts have been made to apply these 

strategies to manipulator arms. In this thesis, we extended the purely reactive con­

troller [10] with the ability to plan, and used only force sensing. The controller was 

applied to an Industrial Scientific SCARA robot to explore an unknown obstacle-filled 

environment. The task is to cover all free space to simulate cleaning.

The motion planning problem for manipulator arms is different from mobile robots. 

The arm kinematics allows each task position to be reached in a number of configura­

tions. Our graph-based modelling for manipulator shows manipulator motion planning 

problem can be formulated as a graph search.

To work in unknown environments, robots have to re-plan motions on-the-fly as 

new information is acquired. In the thesis, we present a new algorithm to minimise 

re-planning computation on uniform graphs by incrementally repairing data. It is es­

sentially a simplified version of Stentz’s D* algorithm [8], but, it is easier to implement, 

and more efficient for uniform graphs searches.

We also investigate two graph-based motion planning algorithms in the context of 

sensor-based motion planning: an optimistic shortest path algorithm and a depth first 

search algorithm. We compare the DFS algorithm with the OSP and show that it 

achieves similar average-case performance if an original technique that we call “tree-
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pruning” is used. This contradicts widely held perceptions that shortest path algo­

rithms are significantly better than depth-first searches. Simulations suggest that the 

developed algorithms are effective for manipulator arm motion planning.
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C h a p te r  1

In tro d u c tio n

1.1 G eneral B ackground

The development of specialised service robots [1] was brought about by the increasing 

demand to economise on several kinds of services. A representative application field is 

floor-cleaning. Our work is directed toward the development of an autonomous vacuum 

cleaning system to perform floor cleaning in unknown obstacle-filled environment using 

only force sensing.

Motivation for the autonomous cleaning problem comes from the materials handling 

in heavy industry. BHP, for example, spends about 8 million dollars per annum to 

collect raw materials that fall from conveyor belts in the Port Kembla Steel works. It is 

generally done by hand, using shovels and scrapers, exposing workers to heavy manual 

labour in dusty and unhealthy conditions. So developing automated cleaning systems 

can potentially not only decrease costs for heavy industry, but also free the workers 

from hostile and unhealthy environments.

To move around, find a path, or do a job like cleaning seems very simple for a 

human. However, the human operator can not be replaced easily by ‘‘artificial intel­

ligence” [1]. One reason is the complexity of cleaning task. The difference between 

robots and animals is that animals use their brain to solve a problem, and we start to 

understand the complexity of these “simple” tasks when we analyse the complexity of 

the brain [2]. Another reason is the limitations of the actual technology. This field needs 

smart systems that are well adapted to their environment through their shapes, sen­

sors, actuators and behaviours [3]. Therefore, most of the developed cleaning machines
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1.2. S U M M A R Y  OF C O N TR IBU TIO N S 3

primarily assist a human operator in large, fixed cleaning areas with known structure. 

The lack of results is common to a large range of applications in autonomous robotics.

In the last decade, new approaches have tried to bring “artificial intelligence” and 

the computer science community back to the real world to get better results in the 

field of autonomous mobile robotics [4]. Reactive control, for example, have produced 

significant results in improving the ability of wheeled and legged mobile robots to 

cope with unfamiliar environments and uncertainties [10, 18, 22]. Reactive systems 

are a relatively recent development in robotics that has redirected artificial intelligence 

research. This new approach grew out of a dissatisfaction with existing methods for 

producing intelligent robotic response and a growing awareness of the important of 

looking at biological systems as a basis for construction intelligent behaviour [5].

In addition, the development of force sensing technology brings good results in 

heavy industry environment. It offers the advantages of being well developed, rugged, 

reliable and economical.

In the thesis, we present some foundational research toward the development of an 

autonomous vacuum cleaning system to work in an heavy industrial environment based 

on reactive control and force sensing with suitable motion planning algorithms.

1.2 Sum m ary o f  C ontributions

The general objective has been to develop techniques to enable a manipulator arm to 

perform a cleaning task in an unknown obstacle-filled environment using only force 

sensing. In summary, this research has made the following contributions:

1. Experimental implementation of a reactive controller for a manipulator arm to 

perform surface coverage. This controller extends the purely reactive controller 

[10] with ability of planning, and uses only force sensing. The experiment is 

limited to end-effector force sensing rather than the whole arm sensing.

2. Graph-based modelling for manipulator motion planning. The motion planning 

problem for manipulators is different from mobile robots. The arm kinematics 

allows each task position to be reached in a number of configurations. Our graph- 

based modelling for manipulator shows manipulator motion planning problem can 

be formulated as a graph search.
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3. Efficient graph marking scheme to minimise re-planning computation on uniform 

graphs by incrementally repairing data. It is essentially a simplified version of 

Stentz’s D* algorithm [8], but, it is easier to implement, and more efficient for 

uniform graphs searches.

4. Based on the efficient graph marking scheme, vve develop efficient implementations 

of two algorithms for graph-based motion planning: an optimistic shortest path 

algorithm (OSP) and a depth first search algorithm (DFS). Also, we develop 

an innovative pruning rule for our DFS algorithm, which keeps the robot from 

exploring subgraphs that are obviously void of goals.

5. A study of OSP vs DFS algorithms in sensor-based motion planning. This shows 

that our DFS achieves similar average-case performance with OSP algorithm. 

This contradicts widely held perceptions that OSP algorithms are significantly 

better than DFS searches.

1 .3  O v e r v ie w  o f  T h e s is

Chapter 2 presents the conceptual description of the manipulator arm cleaning prob­

lem. It is an overview of the problem. Enabling technologies are discussed and a general 

literature review is given. Chapter 3 develops a reactive motion planning algorithm for 

a manipulator arm in our laboratory. Experiment results are given to demonstrate 

complete coverage in an unknown obstacle-filled environment. Chapter 4 talks about 

modelling. It presents graph search models for our cleaning problem. Chapter 5 gives 

sensor-based motion planning algorithms. The algorithms are more general and more 

realistic for practical application than the one considered in chapter 3. Chapter 6 de­

scribes the details of our incremental repair algorithm ( similar to Stentzs D* algorithm) 

which improves the computational efficiency of sensor-based graph searches. Chapter 

7 gives an evaluation of algorithms though simulation. Chapter 8 concludes this work 

and presents further research.



C hapter 2

C o n c e p tu a l D e sc rip tio n  o f th e  

M a n ip u la to r  A rm  C lean in g  

P ro b le m

2 .1  I n tr o d u c t io n

This chapter presents an overview of the cleaning problem. It begins by describing the 

cleaning problem. In section 2.3, we talk about enabling technologies that we feel will 

be important to develop the system. A literature review is given in section 2.4.

2.2 D escrip tion  o f  th e  P rob lem

Path planning problems are nearly as old as mankind: they were necessary early in our 

history for basic activities such as finding food and other necessities. Here, we consider 

autonomous coverage of unknown terrain in a heavy industry environment.

Robots for field applications should be low-cost, rugged and reliable. Especially, 

cleaning in heavy industry requires that machines are insensitive to dirt and dust. In 

addition, they should also be designed to operate effectively in unknown and sensor- 

hostile environments. This applies to their mechanical design as well as their sensing 

and control strategies.

For collecting raw material we envision an autonomous system comprising mobile 

robot with a dexterous arm that manipulates a vacuum tool to perform cleaning. Rather

5



2.2. DESCRIPTION OF THE PROBLEM 6

than mobile robot navigation problem, we focus on controlling a manipulator arm to 

perform floor cleaning in unknown obstacle-filled and sensor-hostile environment. We 

highlight our problem as follows:

1. A manipulator arm is to accomplish the cleaning.

2. The manipulator arm works in a heavy industrial environment.

3. The environment is filled with unknown obstacles.

4. The obstacles have unknown shape.

5. Obstacles can interfere with the links of the manipulator arm as well as the end- 

effector.

6. At the beginning, the robot know nothing about the environment.

Autonomous cleaning seems feasible if the following requirements can be met.

• Sensing

Measurement of environment parameters is fundamental to the successful applica­

tion of robots. For a manipulator arm to be autonomous it must be able to sense 

obstacles and traverse paths through its environment. In addition, the sensing 

system should work correctly regardless of the shape of the obstacles.

• Control

The control system need to achieve multiple goals in the environment: it is trying 

to reach a target while avoiding obstacles. And it must be responsive to high 

priority goals. For example, avoiding obstacles is much more important than 

reaching a goal. Furthermore, to respond quickly, the system should be as simple 

as possible instead of an extremely complex control system.

• Motion planning

We are interested in two kinds motion planning: surface coverage and find goal. 

Surface coverage describes an action by which all free space in an environment 

are covered in a systematic and efficient manner. Find goal focusses on finding a 

path from a start location to a goal location. Based on the two types of motion
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planning, we can not only ensure a complete sweep of all free space, but also 

perform some targeted cleaning in particular areas.

• Reliability

The system must be rugged, reliable and insensitive to dirty and dust.

The usual approach to this task would be to start by building a three dimensional 

model of the environment. Then we would employ an algorithm to plan a trajectory 

to cover all free space or from the start point to a target position, and then pass this 

path to a servo system to give us precise control of the robot’s joints.

Forget the problems of implementing such a complex control system for the mo­

ment. What seems to be the trouble is that it is difficult to get the reliable environment 

information from sensors. The approach described above relies on accurate world mod­

elling. To build a proper three-dimensional model, we need to take multiple images 

from different directions and then fuze them into a single coherent description [12]. 

Unfortunately, the sensors needed to support this endeavour are typically expensive, 

difficult to implement and problematic in dirty and dusty environment. Also, some of 

these sensing techniques require special lighting or impose restrictions on the surface 

properties of objects [28]. In addition, it is difficult to get clean data from the sensors 

mounted on a moving vehicle. Furthermore, the undeveloped sensor fusion techniques 

prevent us getting an accurate world model.

However, without an accurate world model, it is impossible to implement the robot 

navigation algorithm described above. As Leonard and Durrant-Whyte said in [33] 

to answer the question of why robot and reliable autonomous mobile robot naviga­

tion remains such a difficult problem:“ In our view, the reason for this is clear. It is 

not the navigation process per se that is a problem -  it is the reliable acquisition or 

extraction of information about navigation beacons, from sensor information, and the 

automatic correlation or correspondence of these with some navigation map that makes 

the autonomous navigation problem so difficult.”

To overcome this limitation, we avoid building a three dimensional model and pre­

cise manipulator control. Instead, we follow Brooks [10] to adopt a “vertical'’ decom­

position of our control system. We also choose to base our control on force sensing. 

The uncertain and sensor-hostile nature of the environment under conveyor belts has
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led us to the concept of blind groping, and we believe it is a better method to solve the 

cleaning problem, in term of realizable, low-cost, rugged and reliable.

blind groping: robotic arm manipulation in unknown 

environments based primarily on force and proprioceptive sensing.

2.3 Enabling Technologies for Blind Groping

2.3.1 M echanical Design

Industrial robot arms are unsuitable for blind groping because they are not designed 

for force control or to accommodate unexpected impacts with the environment. The 

philosophy of Whole Arm Manipulation (WAM) [20], however, provides principles and 

technology for developing such arms. The WAM arm is designed to contact and sense 

the environment with any of its surfaces. This allows the manipulator arm to learn 

whether a given motion is possible through trial motions.

According to WAM principles robot arms should be light weight, back drivable and 

constructed from durable material. In [20], Townsend and Salisbury showed how this 

can be achieved using cable-drive technology. They also describe how motor current 

sensing can be applied to determine the location of environmental forces on the arm.

We believe that these principles, along with rugged design standards such as those 

developed in the mining industry should be a suitable for developing blind groping 

manipulators.

2.3.2 Sensing

The sensor system is an important part of the robot as it provides information about 

the environment. This information is used for control loops, finding the location of 

objects and monitoring the environment for changes that may affect the task. For 

blind groping, detection and avoidance of obstacles is especially important.

Because remote sensing is problematic in many environments, it is particularly 

difficult in dirty and dusty environments, we feel that force sensing will play a key role 

in field applications.

Force sensing technology offers the advantages of being well developed, rugged, 

reliable and economical. It is also insensitive to the wide variety of noise sources that
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effect remote sensing technologies: atmospheric dust, variable lighting, acoustic and 

electromagnetic noise. In addition, the shape of obstacles is not important for force 

sensing.

2.3 .3  Control

The cleaning problem offers new challenges to robot arm control that are perhaps more 

familiar to researches in mobile robotics and legged locomotion: the key problem is 

how to achieve robust and useful operation in unknown or uncertain environments.

Inaccurate sensors , world unpredictability, and imperfect control often cause the 

failure of traditional planning and navigation methods for real-time robot systems. In 

contrast, behaviour-based control strategies has been used successfully in improving 

the ability of mobile robots to cope with unfamiliar environment and uncertainties 

[10, 22, 26, 27, 28, 29]. To accomplish cleaning we believe that traditional theories for 

manipulator motion and force control should be integrated into a reactive or behaviour 

control framework. The traditional controllers are needed to support free motion and 

contour following and the behaviour control framework is important for organising tasks 

and for reacting quickly to unexpected events.

2.4  L iterature R eview

In the subsection, we focus on the literature of behaviour-based control and motion 

planning. Mechanical design is beyond the scope of our research.

2.4.1 B ehaviour-based Control

Reactive robotic systems originate in the cybernetic movement of the 1940s. Grey 

Walter developed an electronic “tortoise” capable of moving about the world, avoiding 

perceived threats and attracted to certain goals [5].

With the development of artificial intelligence, a number of people interested in 

organising intelligence have contributed to this field [10, 15]. There was a requirement 

that intelligence be reactive to dynamic aspects of the environment, that a mobile robot 

operate on time scales similar to those of animals and humans, and that intelligence be 

able to generate robust behaviour in the face of uncertain sensors , an unpredictable
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environment and a changing world. There is no generally accepted term to describe 

this style of work. It has sometimes been called “reactive planning” . Sometimes the 

approach is called “behaviour-based” as the computation components tend to be be­

haviour producing modules [11].

Brooks [10] is a leader of the reactive robotic paradigm. He believes tha t:“ From 

an evolutionary stance, human level intelligence did not suddenly leap onto the scene, 

There were precursors and foundations throughout the lineage to humans. Much of 

this substrate is present in other animals today. The study of that substrate may well 

provide constraints on how higher level thought in humans could be organised.” [11]

In [10], Brooks designed a control structure, called subsumption architecture, for 

autonomous mobile robots. He articulated the departure from classical AI and broke 

away from the sense-plan-act paradigm that dominated AI in the 1970-80s as typified 

by robots like Shakey that used resolution theorem proving as its primary reasoning 

mechanism [5]. The basic idea proposed is to decompose the robot system based on 

its external behaviour rather than internal operation. Reactive robotic control systems 

are characterised by a tight coupling between sensing and action, typically without the 

use of any intervening global representations. With the control system, a mobile robot 

wandered around unconstrained laboratory areas and computer rooms. Sonar data was 

used for real-time obstacle avoidance because it is useful for low-level interactions and 

it is cheap and easy implement than visual data.

However, it is recognised that purely reactive robotic systems are not appropriate 

for every robotic application, especially in situations where the world can be accurately 

modelled and there is restricted uncertainty. Aiming for the compensation of shortcom­

ings of the subsumption architecture,several approaches have been proposed. Hybrid 

architecture [14, 16, 23] is the most common approach. It permits reconfiguration of 

reactive control systems based on available world knowledge, adding considerable flex­

ibility over purely reactive systems. The idea is that the reactive system handles the 

real-time issues of being embedded in the world, while the deliberative system does the 

‘hard’ stuff traditionally imagined to be handled by an Artificial Intelligence system. In 

[14], it is shown how a priori world knowledge, when available, can be used to configure 

behavioural and perceptual strategies in an efficient form. Although Brooks [11] thinks 

that these approaches are suffering from the well known “horizon effect” , it has bought
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better performance in their overall system with the reactive component.

It’s a complex endeavour and inevitable process to realize the ambition of artificial 

intelligence. Brooks said:“ We sometimes need to step back and question why we 

are proceeding in the direction we are going, and look around for other promising 

directions.”

Reactive control directly couples real-time sensory information to motor actions 

without the use of intervening symbolic representations. Arkin [18] lists the following 

general characteristics of reactive control:

• It is typically manifested by a decomposition into primitive behaviours.

• Global representations are avoided.

• Sensor decoupling is preferred over sensor fusion.

• It is well suited for dynamically changing environments.

In addition, the reactive system also has the following characteristics:

• The global system is robust.

• The system can cope with multiple goals.

• The system is well-adapted for hardware implementation [30].

Behaviour-based and reactive control strategies have produced significant results 

in improving the ability of wheels and legged mobile robots to cope with unfamiliar 

environments and uncertainties [10, 11, 21, 26], however, it seems that very few at­

tempts have been made to apply these strategies to manipulator arms [27]. Although 

robot arms have been traditionally associated with highly constrained and predictable 

environments, in field robotics applications they will have to cope higher levels of un­

certainty. In [34], Connell followed Brooks [10] to implement a reactive controller for 

an actual mobile robot arm to locate and retrieve empty soda cans in an unstructured 

environment using a variety of local sensors to get information of environment.

To realize our cleaning task, we are interested in applying the behaviour-based 

control strategies to our manipulator arm using force sensing only. It is a novel attempt. 

In chapter 3, we present an experimental reactive controller for a manipulator arm in
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our laboratory. It covers all free space in its workspace using only the force sensor to 

obtain information about the environment.

2.4.2 S enso r -based  M o t io n  P la n n in g

Much of the focus of the research effort in path planning for robots has concentrated on 

the problem of finding a path from a start location to a goal location, while minimising 

one or more parameters such as length of path, energy consumption or journey time 

[7, 8]. Surface coverage or sweeping can be defined as: a path of complete coverage is 

a planned path in which a robot sweeps all areas of free space in an environment in a 

systematic and efficient manner [17].

One problem of interest is to provide nearly identical algorithms for the two prob­

lems, so switching between them is easy and the approach is well-suited to higher-level 

supervision.

Path planning problems can be classified in two main groups: known environment 

and unknown environment [8].

There are many research results for the known environment [31]. For the known 

environment case, a path is generated from a given map of the environment.

In [3], for example, a 2D-map of a prior known walls, pillars, staircase or fixed 

objects is given. With the map, a rule based planning system generates the motion 

sequence for an appropriate cleaning path according to robot geometry and kinematic 

restrictions.

Zelinsky in [17] presents a complete coverage algorithm for an unstructured environ­

ment. The distance transform path planning methodology [35] is used in the algorithm. 

In this method, the planner starts at the goal cell and propagates distances through free 

space. Like dropping a stone in a pond, the ripples radiate out, bouncing off objects in 

their path, with the first ripple to reach a designated point taking the shortest path, 

A distance transform value is calculated for each grid square [32]. Once the distance 

transforms are generated, the path is planned from start to goal. The algorithm is 

described as: if the cells around the start cell do not have a lower value than it does, 

ripples in the distance transform did not reach it and, this, there is no path. If they 

do have a lower value, the ripples did reach the start cell and there is a path. To find 

it, follow the valley (lowest values) to the goal. In this way, a path can be found from
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any start point to the goal.

Choset and Pignon in [24] use cellular decomposition technique to decompose a free 

space into cells and an adjacency graph to reflect the connectivity of the individual cells. 

Motion planning between two points is achieved via a graph search of this adjacency 

graph. By covering each of the cells of the decomposition, a robot is guaranteed to 

cover the entire free space. This is done in two steps: a path is found in the adjacency 

graph that visit each node, and then the robot motions are computed within each cell.

However, there are fewer result for unknown environments. Without a prior knowl­

edge of the world, robots have to replan motions on-the-fly as new information is 

acquired. This is known as sensor-based motion planning.

In fact, once an unknown environment is modelled by cell decomposition, road maps, 

terrain grids etc., then path-planning problem reduce to a sensor-based graph search 

[7, 8, 6. 19]. In these publications, the robot assumes that the terrain is clear unless 

it knows otherwise. It uses this “‘freespace assumption” to plan a shortest potentially 

traversable path though vertices that are known to be open or unknown. Whenever 

it detects an obstacle that blocks the planned path, the robot re-plans its path. If it 

reaches a goal vertex, then it stops and reports success. If it fails to find a traversable 

path from its current vertex to the goal vertex, it stops and reports that the goal vertex 

can not be reached. In [7], Seven Koenig presents the following ‘“proof' that planning 

with the freespace assumption is correct.

Every time the robot cannot follow a planned path, it has learned 

about at least one additional blocked vertex. There are only a finite 

number of them, implying that planning with the freespace assumption 

terminates in finite time. Planning with the freespace assumption reports 

success only if it is at the goal vertex and has thus solved the sensor-based 

planning problem. It reports failure only if no traversable path from its 

current vertex to the goal vertex exists. Since there is a traversable 

path from its current vertex to the starting vertex, there is no traversable 

path from the starting vertex to the goal vertex either. Consequently, 

reaching the goal vertex is impossible in this case.

Another benefit of the algorithm is that the shapes of obstacles need not to be

considered.
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With the freespace assumption and distance transform, sensor-based motion plan­

ning schemes, such as [6], rely on the following shortest-path strategy: determine the 

patli from the current position to the goal that appears to be shortest based on current 

knowledge. Then move along it. When new obstacles are encountered, the “shortest 

path ” may need to be revised, but the policy ( to follow it ) remains the same. We call 

this the optimistic shortest path (OSP) strategy. It is often associated with A* or Di- 

jkstra's algorithm which are used to make the shortest path calculations. OSP provide 

good average-sense performance for finite graphs. However, its worst-case performance 

is less tightly bounded than any depth-first search(DFS) and there is no evidence that 

OSP is optimal against any specific criteria. DFS algorithms cover graphs with no 

more than two traversals of each edge in the spanning tree they generate. This bounds 

the cost of a goal search to twice the weight of the heaviest spanning tree. No search 

algorithm can provide a better worst-case performance bound [7].

With cellular decomposition, freespace assumption, the distance transform and 

some rules, we present DFS and OSP coverage planning algorithm in chapter 5. In 

chapter 6, we present essentially a simplified version of Stentz’s algorithm to minimise 

re-planning computations, which is easier to implement, and more efficient for uniform 

graphs searches. In chapter 7, we compare DFS with OSP algorithms, and show that 

it achieves similar average-case performance against some criteria.
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A R eac tiv e  C o n tro lle r  for

M a n ip u la to r  A rm

3.1 In trodu ction

In this chapter, we present a reactive floor-coverage controller that was implemented 

experimentally in our laboratory. We did this “proof of principle" experimental work 

to familiarise ourselves with the basic issues. Firstly, manipulator arms have tradi­

tionally worked in constrained and predictable environments, their ability to work in 

field robotics applications where they must cope with higher levels of uncertainty is not 

clear. In addition, we are interested in how a reactive controller can achieve coverage 

task. Finally, the performance of force sensing in blind groping is also of interest to us. 

The experiment was designed to answer these questions, but it is not general because 

it is limited to end-effector force sensing rather than the whole arm sensing. The con­

troller followed Brooks [10], but extends the purely reactive subsumption architecture 

with some ability to plan. The robot worked in an unknown and obstacle-filled envi­

ronment. Its task was to explore all free space in its workspace and to stop when it 

knew that better coverage can not be obtained.

Different from traditional centralised sequential controller, a reactive controller is 

a collection of independent behaviours. Each behaviour only pays attention to those 

factors relevant to their particular task rather than general-purpose. For example, if the 

task is to avoid an obstacle then the associated control system does not need to know 

the shape of the obstacle. To do so, the perceptual burden is distributed, and there is

15
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not complex computation between the sensor data and execution. By tightening the 

link between sensor data and execution, the robot can cope with uncertainty quickly. 

It is important to our cleaning task because we expect that blind groping will require 

the ability to respond quickly.

The different behaviours interact though a suppression mechanism. The mechanism 

allows higher level behaviours to override lower level behaviours. Each behaviour can 

realize a small task, but with all these behaviours, the robot can realize a more complex 

task. The architecture is presented in detail in section 3.2. We used only force-sensor 

to interact with environment. Of course, we also need encoder to measure the position 

of the robot. We use a value of force sensor to judge that the arm has collided with 

obstacles.

Instead of an accurate world map, the workspace of the robot arm is modelled as a 

grid-like map. The map provides the system with a global perspective on task execution 

which is lacking in the purely reactive system. The lack of an explicit world model was 

originally seen as an advantage of subsumption architecture. However, without a world 

model, a system can not anticipate a targeted action until that action happens to be 

sensed. For our cleaning task, the robot has to explore all free space with a systematic 

and efficient manner. The purpose of a world model is twofold: To keep track of the 

state of the world, and to describe the effect of an action. So the world map can 

potentially decrease unnecessary actions and ensure that all free space is reached.

Planning is to look ahead and to make decisions based on the outcome of actions. 

In the past, planning has been studied in isolation. Traditional planning system con­

structed plans in a centralised planning subsystem. Planners were seen as logical en­

gines which generated a complete, detailed plan. Our planner described in section 

3.3 avoids global searches by using only the state of a local patch of the map. The 

experiment in section 3.4 proves that the planner can cover all free space.

Our work described in the chapter is based on the following assumption and limi­

tations:

1. As long as the value of force sensor is above a threshold, no matter whether 

the collision is with obstacles or with a pile of granular material, it is treated as 

meeting an obstacle.
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2. Obstacles are stationary. In the cleaning problem, granular material may be spill 

from conveyor belts at any time. However, we assume that the spilling process is 

much slower than the cleaning process.

3. Only the end-effector of the robot arm meet obstacles.

3.2 A rch itec tu re

The reactive controller followed Brooks architecture [10]. The complete set of be­

haviours and their interconnections is shown in Fig 3-1. There are three layers in the 

control system. Each layer with actuators can accomplish a special task. Each box is 

a module which implements a specific behaviour. Individual layers can be working on 

individual goals concurrently, and there is no need to make an early decision on which 

goal should be pursued. The suppression mechanism then mediates the actions that 

are taken. The objective is to design each behaviour so that the resulting interaction 

achieves the cleaning task.

\ayer3

robot
(encoder) heading

heading

layer 1 actuators

ArmMove Record
heading

Planning

Calcu Force

DecidingWander

Figure 3-1: The control system for cleaning

3.2 .1  Layer 1: A v o id in g  O b stac les

The lowest level of the control system is for obstacle avoidance. If contact with an 

obstacle occurs, then the robot arm will halt, then move away to the position given. 

The behaviour of Caleuforce is used to calculate the force from force sensor and get
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a force with magnitude and direction. The function also checks whether the force is 

above a threshold, which implies the arm has contacted an obstacle. If this happens, 

the Halt function will immediately stop the robot moving and send a heading for the 

arm to move away.

3.2 .2  Layer 2: W ander

Combined with the first layer, layer 2 guides the robot to wander and explore its 

workspace without collision. The function of Wander is to generate a heading randomly. 

Deciding takes result of Calcuforce and combines with the heading from Wander to 

produce a modified heading.

3.2 .3  Layer 3: P lanning

In this layer, decision sequences are generated by the planner based on the environmen­

tal situation. Combined with layers 1 and 2, the robot will go to the targeted position 

avoiding obstacles. The planner needs a world model to evaluate alternatives. The 

model contains enough information to make a decision. With the planner, the robot 

can achieve an coverage behaviour or find-goal behaviour, and it stops when better 

coverage can not be obtained.

3.3 A n  A lg o r ith m  for P la n n in g

The section describes a behaviour for covering a 2D grid-like graph that contains un­

known obstacles. The algorithm guarantees complete coverage, includes a simple ter­

mination condition, and uses a cell-closing mechanism to improve efficiency.

Let the robot’s two-dimensional configuration space be divided into a grid of cells. 

Each cell is either occupied or free. The robot’s location is represented by a cell on 

the grid. The robot starts with no knowledge of which cells are free or occupied and is 

assigned the task of visiting all cells that are reachable from its starting position. For 

simplicity, the robots is only able to move to one of the four cells adjacent to its current 

position, not diagonally.
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3.3.1 Definitions and Assumption

1. Definitions:

• neighbouring cell: one of the four cells adjacent to a given cell

• corner cell: one of four cells diagonal to a given cell. A neighbour to two of 

the neighbouring cells

• unreachable cell: a cell that has been found to contain an obstacle or is 

outside a predetermined search area ( workspace)

• closed cell: a cell that has been visited and is not worth revisiting because 

it does not lead to any unvisited cell

• door: the connection between two neighbouring cells

• unexplored door: a door from a visited cell to a cell whose status in unknown 

( a cell of unknown status is one that has not been visited and is not known 

to be unreachable).

2. Assumption:

One failure to move to a cell is sufficient to consider the cell unreachable ( a cell’s 

reachability does not depend on the direction it is approached from).

3.3.2 Algorithm

1. Summary of algorithm:

The algorithm looks at the 4 neighbours of the current cell, then eliminates those 

which do not exist (are not part of the grid), are known to be unreachable, or are 

closed. Of the remaining cells, the algorithm chooses the cell that has been visited 

the least number of times. If several cells meet this criteria the algorithm uses an 

arbitrary preference scheme(e.g. right-front-left-ba.ck, north-south-west-east, etc. 

or even randomly) to choose between them.

Heuristic proof: the scheme is similar to the potential function approach to 

motion planning, except that the value of the potential function in each cell 

increases with the number of visits. The robot can not remain stuck in a local 

well because visits within the well eventually convert it into a peak. Complete 

coverage follows from boundedness of the grid.
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2. T erm ination  C ondition:

The termination algorithm keeps track of the number of unexplored doors and 

terminates when there are none left. Complete coverage has then been achieved.

Proof: Only an unexplored door can lead to an unvisited cell. If there are none 

left, then all reachable cells have been visited.

The termination condition is implemented by a counter that is initialised to the 

number of unexplored doors in the starting cell, then incremented or decremented 

according to the following two rules.

rule 1: when a cell is visited for the first time, the unexplored doors counter is 

incremented for each door that leads to an unvisited cell and decremented of reach 

door that leads to a visited cell.

rule2: Whenever a cell is found to be unreachable (i.e. , when an attempt to move 

through an unexplored door fails ) the unexplored doors counter is decremented 

for each door leading from the unreachable cell to a visited cell.

3. C losing  cells: A cell can be closed if it has been visited and its closure does not 

block access to unvisited cells.

The conditions above can be satisfied in many ways, but we are only interested 

in cases, such as the following, that can be determined from local information.

Criteria 1: If a cell has been visited AND three out of four of its neighbours are 

unreachable(or closed) then the cell can be closed.

X = unreachable ( or closed) 
cell * may be closed if visited

Criteria 2: If a cell has been visited and two adjacent neighbours are unreachable 

( or closed) AND the opposite corner cell has been visited and is not closed, 

THEN the cell can be closed.

X = unreachable (or closed)
V = visited and not closed 
cell * may be closed if visited

? X 7
X * 7
7 7 V

? X ?
X * X
7 7 ?
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we use the above criteria in following way:

When a cell is entered:

(a) check its neighbouring cells against both criteria

(b) check its corner cells against both criteria

(c) check its neighbouring cells(again) again both criteria

3.4  E xperim ent

The coverage algorithm was implemented on an industrial Scientific CF-310 SCARA 

robot shown in Fig.3-2. A JR3 force-torque wrist sensor was mounted between the 

wrist and a spherical end-effector which was used to encounter partially filled plastic 

buckets which serve as obstacles. The robot is an industrial robot with four degrees of 

freedom, and both base and elbow were equipped with an encoder and a tachometre. 

The reactive controller was implemented bv C language on the Yxworks operating 

system. The sampling frequency for both position and force sensing is 300 HZ.

The task is to explore the unknown obstacle-filled environment and to move the 

end-effector over the all free space to simulate cleaning. In the experiment, we assume 

that only end-effector can meet with obstacle rather than the whole arm.

SCARA Robot

Force sensor

Unknow Cylinderical 

Obstacles
Spherical

Tool

Figure 3-2: Coverage experimental system
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1. em pty  environm ent

Terrain coverage of an empty workspace works well. Figure (3-3) show the re­

sulting path of coverage. Attention should be paid to cell a and b. When a robot 

moved to the cell a or b, it found a way go to unvisited cell efficiently because of 

closing cells rules.

Figure 3-3: Terrain coverage of an empty environment: the robot started at the 

cell indicated by the light shadowed triangle, and terminated at the dark shadowed 

triangle. The line indicates the path.

2. environm ent w ith obstacles

The figure (3-4) is an example of covering an obstacle-filled environment. Com­

plete coverage was obtained in this case with no more than two visits to any 

cell.
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Figure 3-4: Terrain coverage of an obstacle-filled environment: The full circles repre­

sent obstacles (buckets) grown by the radius of the spherical end-effector tool. Starting 

at the position indicated by the down pointing triangle, the manipulation tool explored 

its workspace using the r-f-l-b preference scheme and cell closing . The tool explored 

the reachable workspace to the grid resolution shown. The numbers represent the 

number of visits to each cell. All cells except the last were closed before termination.

3. C on clusion

The results of the experiment support the conclusion that a manipulator arm 

driven by a reactive controller can work well in an unknown obstacle-filled envi­

ronment.

Also, a reactive controller with a planner can accomplish a coverage task (to 

simulate cleaning).

Finally, we conclude that using only force sensing is a reasonable way to solve 

our cleaning problem.
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M o d ellin g  for G ra p h  S earch

4.1 In tro d u c tio n

In this chapter, we present graph search models for our manipulator arm cleaning 

problem. These models are more general and more realistic for practical applications 

than the problem considered in chapter 3. The chapter begins with a description of the 

cleaning problem, then we propose solutions to the modelling problem.

4.2  D e sc r ip tio n  o f th e  P ro b le m

Our objective is to control a manipulator arm to perform floor cleaning in an unknown 

obstacle-filled environment. To be more realistic for practical applications, our investi­

gation is based on the following assumptions:

1. Obstacles can interfere with the links of an arm as well as the end-effector.

2. The arm can sense contact with obstacles. Here, we provide robot arm a realistic 

sensing capability. As we describe in section 2.3.1, WAM manipulation arm, for 

an example, offers a benefit of contacting and interacting with the environment 

by using any of its surface. Backdrivability and motor current sensing allow the 

manipulator to learn whether a given motion is possible through trial motion.

Based on these two assumptions and some results from chapter 3, we would like to 

provide a sensor-based motion planning algorithm for manipulator arms. The cleaning 

problem is complicated by the following facts.

24
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Firstly, manipulator kinematics brings a new challenge to graph search. For a 

robot arm, there exist several arm solutions which are corresponding to the same task 

space location. In an environment where only the end-effector can contact obstacles, 

a manipulator arm can use either one of them to explore a task position and make a 

conclusion about whether the location is reachable. But for the problem in this chapter, 

there maybe exist some solutions which can not be reached because unknown obstacles 

prevent moving of its links. So, it may be necessary to try each kinematic solution to 

answer the cpiestion of whether the location is reachable or not.

Secondly, exploring task space using each arm solution in joint space is a sufficient 

condition for complete coverage of the reachable task space vertices, but it is not a 

necessary condition. Therefore, efficency is also an issue.

To solve the problem, we propose to

1. Build a manipulator joint space graph

The search task requires a graph on which a manipulator can find a path to a 

specified goal or report the goal is unreachable. Because of the manipulator arm 

kinematics, there are several arm solutions for the same task space location. For 

a redundant robot, the solutions are infinite. It is necessary to build a joint space 

model that covers all arm solutions.

2. Provide an algorithm to search in that graph for specific task-space goals. The 

algorithm should meet the following requirements:

(a) It is easy to implement.

(b) Its computations can be done efficiently.

(c) It does not need to make assumptions about the shapes of obstacles.

(d) It knows to stop when the arm is certain that a graph search task is finished 

or unreachable.

(e) It is can be achieve goal search and coverage problem together efficiently.

In sections 4.3 and 4.4, we present examples of how to build joint-space models for 

a two-link planar( non-redundant) and three-link planar( redundant) robot arm. The
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models are undirected and unweighted graph. Algorithms to search on these models in 

detail are given in chapter 5.

4.3 M od el o f  T w o-link P lanar A rm

Consider the inverse kinematics solution of the arm shown in Figure (4-1), it is desired 

to find the joint variables 9\ and 92 corresponding to a given end-effector position and 

orientation G.

Figure 4-1: Two-link planar arm

For a end-effector location G(Gx,G y), the following equations can be obtained:

Gj. =  ( i i  cos #1 +  ( I2 cos($i +  #2)

Gy = (i\ sin 6\ + ci2sin(0i + O2 )

Squaring and summing the equations yields:

&l  -f- Gy = (if T (if T 2(i\(i2 cos92

From which

cos #2 = Gl  +  Gl ~ a\ ~  «2

2d\(l2

The existence of a solution obviously imposes that —1 < cos ̂ 2  < 1, otherwise the given 

point would be outside the arm reachable workspace. If this condition is satisfied then 

two solutions for #2 can be computed as

92 = ±  arccos G  l  +  G  y ~  ° \  ~  (l

2«ifl2
(4.2)
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Substituting into equation (4.1) yields an algebraic system of two equations in which 

there are two unknown sin 9\ and cos#i, whose solution is

(«1 -f «2  cos #2 ) Gy — (i2 sin 02Gx
sin =

cos 0\ —

Gl + Gl

(öl +  «2  cos 92 ) Gy + «2 sin 92G:
Gl + Gl

Thus for each 62 solution a unique value of 0\ can be computed

9\ =  atan2 (sin 0i,cos$i) (4.3)

From the equation (4.2) above we know that for a each end-effector position, there 

are two arm solutions. We call the one with negative 02 ‘elbow up' and the one with 

positive 0) 'elbow down' as shown in Figure (4-2).

elbow-up
elbow-down

Figure 4-2: Two arm solutions

If we put all arm solutions in a graph, we can get a initial model of joint space graph. 

Figure (4-3) shows the relationship between the task space graph and joint space graph. 

The task-space graph T is generated by dividing the task space into uniformly-space 

vertices. Edges connect each vertex to its four nearest neighbour. The joint space 

graph is then determined with vertices that map onto the task space graph through 

the robot kinematics. As shown in Figure (4-3), the joint space graph J is composed 

of two sheets that correspond to the two different inverse kinematic solutions: elbow 

up and elbow down. The vertices on each sheet are connected to four neighbours as in 

the task-space graph. In addition, there are some edges that connect vertices (e.g. i\ 

and /2 ), that are not on the same sheet, these edges are determined as follows.

Consider that most manipulators have configurations where the .Jacobian is singu­

lar. these configurations are often places where two or more branches of the inverse 

kinematic join together. For the robot arm considered these correspond to task space
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Figure 4-3: Corresponding relationship between task space graph and joint space 

graph

vertices which only have one solution. An obvious position where this occurs is at 

the boundary of the workspace of the robot. Our two-link manipulator exhibits two 

workspace boundary singularities: One when the arm is fully retracted (the angle be­

tween the links is zero), and one when it is fully extended (the angle between the links 

is 7T). So there is a possibility to connect two ‘sheets’ J i and J 2 together when the two 

solutions pass though kinematic singularities.

A task space vertex may not be exactly on the boundary. So, for most cases, we 

assume a. motion of robot arm in Figure(4-4), which is from one arm posture to another. 

Obviously, the motion is easier to perform when a vertex is near the boundary.

For a vertex near outer boundary G i, for an example, the easiest motion of moving 

from one arm posture to another is to move from one arm solution vertex to another. 

In an unknown environment, the same location motion can be achieved when shadow' 

region S between the two posture and near the end-effector area, is clear for both robot 

arm and end-effector. Hence, it is reasonable to assume that: the smaller the area of
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Y*

outer boundary A y

rnner

Figure 4-4: Connected two-solution

S. tho more possible the motion can be achieved. Because the area of S depends not 

only on the angle yi but also on the length of the robot arm a\ and a2, we define an 

edge between the two arm solution vertices if the length of distance OG'1 satisfied

(«1 A « 2 )  > \ A 2 A y 2 >  0.8(«i A « 2 )  (4.4)

For a vertex near inner boundary, G 2 for an example, if there is no joint limitation, 

there exist the same location motion as near outer boundary. So we define an edge 

between the two arm solution vertices if the length of distance OG2 satisfied equation 

(4.5). If there is joint limitation, then there don't exist such edges. Here, we only 

consider the situation a\ > a2.

(«1 -  «2) < \ A 2 A y2 < 1.5(ai -  a2) (4.5)

Now, we can connect the two ‘sheets’ Ji ,  J 2 of Figure (4-3) according to the equation 

(4.4), (4.5) and put them into a same ‘sheet’. We call it a ’double sheet’ because it is 

formed by two ‘sheets’. So we gain a model of a two-link robot arm as a ’double sheet'. 

The model is presented in the Figure (4-5), which is mapped from a task space shown 

in Figure (4-6). In Figure (4-6), there are 8 vertices satisfy equation (4.4), 4 vertices 

satisfy equation (4.5). Therefore, there are 12 edges between elbow-up solution vertices 

and elbow-down solution vertices.
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Figure 4-5: Model of two-link planar robot arm

Figure 4-6: The work space for a two-link robot arm

4.4  M o d e l o f  T h re e - lin k  P la n a r  R o b o t A rm

Now, we build a model of three-link planar robot arm in much the same way as building 

a model of two-link planar robot arm described above.

A three-link planar robot arm is illustrated in Figure (4-7). It is redundant with 

respect to the task of positioning its tool point P. In terms of a minimal number of 

parameters, it is convenient to specify position and orientation by the two coordinates 

G x, G y and the angle 0, which are related to the tool point position by the following 

ecju ations.
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Figure 4-7: Three-link planar arm

0 —  + $2 ~t~ $3 (4.6)

Gx = Px -  Ü3 cos 0
(4.7)

G*y = Py — 03 sin 0

Therefore, for a given vertex P{PX) Py) , if 0 is known, then Gx and Gy is known. 

Variables 6 1 and 62 can then be computed by equation (4.3), (4.2) presented in the 

section (4.3 ). Obviously, for a given tool position P, there exist infinite solutions to 

the equation (4.7) with 0 serving as an independent parameter. In order to get a joint 

space graph, 0 is artificially specified as 0, tt/4, 7t/ 2 ,  ..., 7tt/4. For a each 0, there may 

be two arm solutions associating with elbow-down and elbow-up (Here, elbow-down 

and elbow-up is based on link 1 and link 2). Hence, there may exist 16 arm solutions 

for a given end-effector position Figure (4-8).

Let us focus careful attention on Figure (4-8). Firstly, there are two parts Ji,  J2 

in it. J i  includes all elbow-down solutions and J2 includes all elbow-up solutions. 

Secondly, each part has 8 ‘sheets’ respectively. Thirdly, each ‘sheet’ is associated with 

a specified 0. In addition, each task space vertex has 16 joint space vertices that map 

onto it. Vertex a is an example. Finally, vertical vertices in each part connect to each 

other. Table (4.1) presents an explanation of Figure (4-8).

Similar to the way that we built the model of the two-link robot, we put elbow-up 

and elbow-down solution for the same specified 0 together and define an edge between 

the two sheet vertices when they satisfy the condition equation (4.4) and equation (4.5). 

So we put J\\  and J21 in a ‘sheet’ and get the first ‘double sheet’ J\ in joint space J , 

put J12 and J22 in a ‘sheet’ and get the second ‘double sheet’ J2 in joint space J  ...
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J

T

Figure 4-8: Relationship of joint space and task space

‘sheet’ 4> arm ‘sheet’ 0 arm

J \\ 0 elbow-down •hi 0 elbow-up

J\2 7t/4 elbow-down J 22 7 r /4 elbow-up

J 13 7t/2 elbow-down J  23 7t/2 elbow-up

■J 14 37t/4 elbow-down J  24 37t/4 elbow-up

J 15 7T elbow-down <^25 7T elbow-up

J 16 57t/4 elbow-down J  26 5tt/4 elbow-up

J 17 3tt/2 elbow-down •hi 3tt/2 elbow-up

J 18 7tt/4 elbow-down J 28 7tt/4 elbow-up

Table 4.1: Explanation of joint space

put J is and J28 in a ‘sheet’ and get another ‘double sheet’ Jg in joint space J. This 

finally provides a model of a three-link arm.

Figures (4-9)- (4-16) show how each of the ‘double sheet’ is formed. In these figures, 

the left figure represents the task space. For a three-link arm shown in Figure (4-7), 

the two non-shadowed circle rings show the position of G which satisfied the equation
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(4.4) and equation (4.5). If the robot arm moves its work space with G in the two 

non-shadowed circle rings and keeps the same </>, then we get the other two shadowed 

circle rings which shows the end-effector position P . Therefore, if a vertex is in the 

shadowed circle rings, that means the task space vertex has two connected vertices 

(elbow up vertex and elbow down vertex) in its joint space graph. The right figure 

shows its associated ‘double sheet’.
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Figure 4-10: Sheet 2, $  = tt/4

Figure 4-11: Sheet 3, <f> =  ■ n j (l
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Figure 4-12: Sheet 4, <j> = ‘Sn/4

Figure 4-13: Sheet 5, (j) =  n
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Figure 4-14: Sheet 6, — bn/4
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4.5 D iscu ss io n

In this chapter, vve have developed a method for determining joint-space graph models 

of manipulators. In the models, the vertices represent configurations of the manipula­

tor. The edges represent motions between configurations. And at least two joint space 

vertices map on a task space vertex. In such a manipulator graph, several vertices map 

onto the same task space goal. That means when a task space vertex is specified as 

goal, then a set of joint-space vertices which map on the task space vertex are treated as 

goals. Once the task space vertex is reached, the other vertices that map onto the same 

task space position are no longer goals. So, a graph search problem for a manipulator 

can be formulated as following:

T h e F ind-goal P rob lem

1. Make a task space graph and identify the goal vertices on it.

2. Use inverse kinematics to identify the joint space model.

3. Identify all joint-space vertices that map onto the task-space goal vertices as goal 

vertices in the joint-space graph.
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4. Initialise the current vertex of the joint-space graph to the initial configuration 

of the manipulator.

5. Set the status of all vertices to unknown.

6. Apply a goal-seeking algorithm to the joint-space graph

T h e C over-goal P rob lem

1. Make a task space graph and mark all vertices as goals

2. Use inverse kinematics to identify the joint space model.

3. Mark all joint-space vertices as goals.

4. Initialise the current vertex of the joint-space graph to the initial configuration 

of the manipulator.

5. Set the status of all vertices to unknown.

0. Apply the goal-seeking algorithm to the joint-space graph

7. While reachable goals remain

(a) Remove the found task space vertex from the set of task space goals

(b) Re-identify the joint space goal vertices

(c) Apply the goal-seeking algorithm to the joint space graph

For a two-link planar arm we get a 2D joint space graph, while three-link planar 

arm we get a 3D joint-space graph. It is easy to imagine that the joint-space graph 

should be more complicated for 4 or more links manipulator. However, as long as the 

manipulators motion can be modelled by a graph, then a similar graph-search algorithm 

can be developed to suit them all. We use neighbours to indicate edges that connect 

vertices. All neighbours are assumed to be equally close, so the resulting graph is 

unweighted. If an edge is found closed, then its neighbour is removed. The advantage 

of the data structure is:

1. It accurately represents models of different shape in 2D or 3D.

2. It can handle both local and global maps.
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3. It does not rely on the assumption that the model is true to square, as invariably 

it is not.

4. It leads to efficient algorithms for graph searching.

5. It is easy to integrate sensor data with simple algorithms for map construction, 

adaption and extension.

In the next chapter, we describe our algorithms for sensor-based graph searches 

that are not specific to any particular model.
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S en so r-b ased  M o tio n  p la n n in g

5.1 In trodu ction

Sensor-based motion planning is important for robots to work in unknown environ­

ments. Because such robots have no a priori knowledge of the world, they must replan 

motion on-the-fly as new information is acquired. It is different from ordinary mo­

tion planning because the robot does not have full information about the environment. 

Sensor based planning must weave the latest sensor information into robot’s planning 

process, and each search is not isolated. When a new obstacle is encountered, robots 

will replan based on the current state of environment which has probably only changed 

incrementally with respect to its previous state. Algorithms to support such “sensor- 

based motion planning” can be compared with respect to minimising robot motion and 

minimising online computation.

In this chapter, we introduced two sensor-based motion planning algorithms: The 

Optimistic Shortest Path Algorithm (OSP) and The Pruned Depth-First Search (P- 

DFS).

The OSP algorithm, such as [6] and [8], rely on the following shortest-path strategy: 

determine the path from the current position to the goal that appears to be shortest, 

based on current knowledge combined with the free-space assumption. Then move along 

it. When new obstacles are encountered, the “shortest path” may need to be revised, 

but the policy ( to follow it ) remains the same. OSP is popular because it is known 

to converge for finite graphs and to provide good average-sense performance ( not in 

a worst-case). Our OSP algorithm described in section 5.4 inherits the shortest-path

40
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strategy and focusses on reducing on-line computation by an efficient graph marking 

and updating algorithm detailed in chapter 6.

The OSP algorithm provides good average-sense performance, however, its worst- 

case performance is less tightly bounded than any depth-first search (DFS). Further­

more, there is no evidence that OSP is optimal against any specific criteria. DFS 

algorithms are practical for robots to physically implement because they require no 

“jumps” by the search agent. DFS algorithms cover graphs with no more than two 

traversals of each edge in the spanning tree they generate. This bounds the cost of 

a goal search to twice the weight of the heaviest spanning tree. No search algorithm 

can provide a better worst-case performance bound. Nevertheless, DFS average perfor­

mance is thought to be inferior to OSP because, even when guided by a heuristic, an 

early mistake can force DFS to explore large areas of the graph that are distant from 

the goal.

In section 5.5 we present a DFS algorithm that we believe has average performance 

comparable to OSP. The algorithm combines DFS with a shortest-path heuristic that 

has a self-blocking property that keeps the robot from exploring subgraphs that are 

obviously void of goals. We imagine that it is “pruning” fruitless branches from the 

tree search and have named it Pruned DFS(P-DFS). P-DFS is still a depth-first search, 

but not a complete one. Also, we use an efficient graph marking and updating algorithm 

to reduce computation, which is the same as the one used in OSP algorithm.

The efficient graph marking and updating algorithm provided to both OSP and 

DFS algorithms is essentially a simplified version of Stentz’s D* algorithm. But it is 

easier to implement and are more efficient for uniform graphs searches.

This chapter introduces the two algorithms respectively in section 5.4 and section 

5.5. Our efficient graph marking and updating algorithm is the same for both algo­

rithms, so we introduce it for both in chapter 6

5.2 D efin ition s

• visited vertex: a vertex that is either the current vertex, or has been the current 

vertex at one time.

• unvisited vertex: a vertex that has never been the current vertex.
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• goal vertex: any vertex that is desirable to reach (there may be one, or many).

• unknown edge: an edge whose motion has not been tried.

• open edge: an edge whose motion has been successfully completed.

• closed edge: an edge whose motion has been tried and failed.

• neighbour: two vertices are neighbours if they share an un-closed edge(an edge 

with status unknown or open).

• source neighbour: the neighbour that the current vertex was first entered from.

• mark: an integer assigned for motion planning purposes.

• high neighbour: a neighbour with a higher mark

• low neighbour: a neighbour with a lower mark

• level neighbour: a neighbour with the same mark.

5.3 Summary of OSP and P-DFS

Implementation of these algorithms is very similar. Let each vertex V be marked with 

the length of the shortest path from the current vertex to the goal through v. The 

freespace assumption should be used and, for P-DFS only, visited vertices should be 

treated as obstacles. Given a correctly marked graph the motion planning algorithm 

for each step is:

OSP: If one or more neighbours are marked, then try to move to the lowest one. 

Else stop (goal is unreachable).

P-DFS: If one or more neighbours are marked, then try to move to the lowest one. 

Else search the trunk of the visited tree for marked neighbours of visited vertices. If 

found, then backtrack to the first one. Else stop (goal is unreachable).

5.4 The Optimistic Shortest Path Algorithm

We are interested in the OSP algorithm because it has good average-sense performance. 

Furthermore, although depth-first search has the best worst -case performance bound,
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it is arguable that this bound may be impractical for typical problem. In addition, other 

algorithms may out perform it in an average sense. The main drawback of the depth- 

first algorithm is that it artificially constrains motion to a tree. If the most optimistic 

move is to a visited neighbour, the directed depth-first algorithm will not take the 

most optimistic move until it has exhaustively searched the subtree of each unvisited 

neighbour. In the OSP algorithm, each motion is the most optimistic for the current 

state of information. Because motion is not constrained to a tree, optimal worst-case 

bounds on termination have been sacrificed. However, the algorithm is guaranteed to 

terminate for finite graphs, and it is reasonable to expect that it will perform well, 

especially in relatively uncluttered environments.

1. M arking algorithm

• Given: a graph with edges in any state (open, closed, unknown), vertices in 

any state (visited, unvisited), and a set of goal vertices on that graph.

• Consider that all vertices are initially unmarked

• Mark all goal vertices with distance = 0

• set current-distance =0

• while there exist unmarked neighbours of marked vertices

-  identify all unmarked neighbour vertices

-  mark them with distance = current-distance + 1

-  set current-distance = current-distance + 1

2. M otion planning algorithm

The OSP algorithm can be described as follows:
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mark the graph using the marking algorithm 

while the current vertex is not a goal vertex

if current vertex has no marked neighbour

stop(terminate because no goals can be reached 

else

go to a lower mark vertex 

if goal reached 

stop

else update graph with new-found closed edge 

end

end

end

5.5 T h e  P ru n e d  D e p th - f irs t  S ea rch  A lg o r ith m

1. Three strategies to the P-DFS algorithm

Interestingly, the attractive worst-case performance bound that DFS algorithms 

enjoy in goal seeking is achieved without using knowledge of the goal’s loca­

tion. An undirected depth-first search (using Tarry’s algorithm: backtrack if all 

neighbours of current vertex have been visited, otherwise move to an unvisited 

neighbour) will stumble on the goal in the process of systematically exploring the 

reachable subgraph. Furthermore, any heuristic can be added to choose between 

unvisited neighbours without disturbing the worst-case performance bound.

To improve average performance, we use three strategies in the P-DFS algorithm: 

1) marking only unvisited vertices 2) pruning rule 3) a goal-seeking heuristic.

(a) Marking algorithm:

The graph marking algorithm is modified to propagate marks only through 

unvisited vertices. Each vertex that can reach a goal through a path of only 

unvisited vertices (under the optimistic assumption that all unknown edges 

are open) is marked with a distance. The distance represents the number of 

edges in the shortest unvisited path to the goal.
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• Given: a graph with edges in any state (open, closed, unknown), vertices 

in any state (visited, unvisited), and a set of goal vertices on that graph.

• Consider that all vertices are initially unmarked

• Mark all goal vertices with distance = 0

• set current-distance =0

• while marked vertices have unmarked and unvisited neighbours

-  identify all unmarked and unvisited neighbours of vertices that have 

been marked

-  mark them with distance =  current-distance +  1

-  set current-distance =  current-distance +  1

It is obvious that the marking algorithm has the following characters.

i. If a vertex is unmarked and unvisited, then there is no path from it to 

any goal vertex ( even under the optimistic assumption that all unknown 

edges will be open).

n. If any vertex is marked, then all of its unvisited neighbours will be 

marked, (proof: the marking algorithm propagates marks through un­

visited neighbours).

iii. All marked vertices, except goal vertices, have at least one neighbour 

with a lower mark than itself.

The reason for not allowing visited vertices to be marked is that the tree- 

structured search does not allow them to be used. Although the joint-space 

graph will generally contain loops, the chronological-backstepping algorithm 

refuses to use any. The algorithm imposes an artificial tree structure on 

the paths that it will move on. For example: when the current vertex 

moves, it may find new neighbours that have already been visited, This 

is an opportunity to make a loop, but the algorithm won’t try to go to these 

neighbours because it only allowed to return to previously-visited vertices 

through chronological back-steps.

The chronological backstepping algorithm produces the tree-structured graph 

when searching the graph. The search tree is not unique and is not known 

ahead of time. The search tree evolves starting from the initial vertex (the
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tree root) and grows whenever an unvisited neighbour is successfully moved 

to. Each visited vertex can eventually be associated with a branch of the 

tree (possibly null) that is linked to the root only through itself. However, 

this branch is not defined when the vertex is first visited. It is fully de­

fined when the vertex is revisited through backstepping. If the chronological 

backstepping algorithm returns to a vertex, then it returns from a branch 

of the search tree that has been exhaustively searched without finding a 

goal. The reason is because the algorithm only returns to vertices through 

chronological back-steps.

This marking scheme which avoids loops leads to the possibility that some 

unvisited vertices( those which are surrounded by visited vertices) may not 

be marked.

(b) P ru n ing  rule: ignore unvisited neighbours that are cut off from the goal by 

a subgraph of visited vertices.

Because a tree search cannot cross itself( except when backtracking), it serves 

no purpose to explore subgraphs that can only reach a goal through already 

visited vertices. P-DFS still provides a depth-first tree search, but not a 

complete one. It avoided searching fruitless branches.

The to-be-ignored neighbours (roots of fruitless branches) are easily identi­

fied when computing shortest paths for the goal-seeking heuristic: they are 

the ones that provide no path to the goal. Also they will be unmarked by 

the modified marking algorithm.

(c) heuristic: move to the unvisited neighbour that is nearest to goal under the 

freespace assumption. By nearest we mean the one that is on the shortest 

path of unvisited vertices from the current vertex to the goal.

Visited vertices are treated as obstacles because a DFS can only use them 

in backtracking. This heuristic implies that P-DFS uses the same strategy 

as OSP. But it does so within the constraints imposed by a tree-structured 

search. So P-DFS improves performance without disturbing the worst-case 

bounds.
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2. Algorithm

The P-DFS algorithm can be described as follows:

mark the graph using marking strategy 

while the current vertex is not a goal vertex

if all neighbours of the current vertex are unmarked

search the tree of visited vertices for marked neighbours 

if none found

stop(terminate because no goals can be reached) 

else

back step to first visited vertex with a marked neighbour 

end

else(the current vertex has at least one marked neighbour)

try to move to the marked neighbour that has the lowest distance mark 

(if several neighbours share the lowest distance, them choose arbitrarily) 

if successful

update current vertex 

update graph marking 

end 

end 

end

The P-DFS algorithm has the following characters.

(a) All moves, or attempted moves are either to marked vertices or are chrono­

logical backsteps.

(b) The graph marks have to be updated whenever the robot moves success­

fully (because an unvisited vertex becomes visited), but not when it discov­

ers a closed edge(proof: the current vertex does not need remarking because 

it is already an unmarked visited vertex, The marked vertex does not need 

remarking because its low neighbours remain unchanged by the edge closure)

(c) The algorithm terminates only when a goal is reached, or when the graph 

marks indicate that all goals are unreachable
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(d) Chronological backstepping imposes a tree-structure on the way the graph 

is traversed. Graph edges that are not consistent with the tree are never 

tried. (Proof: no attempt is made to move to a visited neighbour, except 

through backstepping).

(e) If the reachable graph has N vertices, then the algorithm will terminate after 

no more than 2(N-1) successful edge transversal. ( Proof: a tree-structure 

graph with N vertices has N-l edges. Chronological backstepping ensures 

that no edge will be traversed more than twice).

(f) If the reachable graph has N vertices and M edges ( including edges that 

join to unreachable vertices), then the total number moves attempted before 

termination is bounded by M+N-l. (Proof: The coverage tree of the reach­

able graph will have N-l edges. This leaves M-(N-l) edges for unsuccessful 

moves).

(g) The algorithm can terminate without complete coverage of the reachable 

graph if marking indicate that all goals are unreachable
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E fficien t g ra p h  m ark in g  a n d

u p d a tin g

6.1 In trodu ction

Different from ordinary searches in which each search is isolated, sensor-based planning 

is a sequence of searches that are very similar to each other. When a new obstacle is 

encountered, the new search will differ from the previous search only by an incremental 

change to the environmental model (graph). This implies that there is a potential 

to reduce computation if data from one search can be reused in the next, rather than 

regenerated from scratch. Recognising this, Stentz [8] modified the A* search algorithm 

to incrementally repair, rather than regenerate, its field of optimal-path pointers.

In the chapter, we present a new algorithm to minimise replanning computations 

on uniform graphs by incrementally repairing data. This algorithm is essentially a 

simplified version of Stentz’s D* algorithm that it is easier to implement and are more 

efficient for uniform graphs searches. The algorithm is provided to both OSP and DFS 

algorithms.

The principles we use to reduce marking are essentially the same as Stentz uses in 

his D* algorithm [8].

1. mark no more than is immediately needed for motion planning

2. when new information changes the graph, update only the vertices that are ef­

fected

49
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6.2 S u m m a ry  o f a lg o r ith m

We use propagation to initially generate marks, to clear marks, and to remark vertices. 

Changes are seen as being triggered by events that directly invalidate the mark of a 

small number of easily identified vertices that we call invalid roots (see below). From 

the invalid roots, changes can potentially propagate through large regions that we 

call invalid subgraphs. The correction process has two stages: 1) identify the invalid 

subgraphs and clear marks from them, then2) re-propagate marks back into these 

subgraphs from correctly-marked neighbours. To minimise computation the initial 

marking and subsequent clearing/ re-marking processes are only done to the extent 

required to plan the robot’s next motion ( until a neighbour of the current vertex is 

marked).

6.3 In c re m e n ta l  re p a ir  a lg o r ith m  in  d e ta il

The concepts of dependency and support are useful for describing the algorithm. Any 

marked vertex ( other than the goal ) has at least one low neighbour ( a neighbour with 

a lower mark than it has). If a vertex has only one low-neighbour than it depends on 

that neighbour for its mark ( recall how marks are generated by a breadth-first search 

from the goal). Such dependency can propagate through many vertices. Each vertex 

is supported by its low neighbours in the sense that it depends on them for its mark.

Mark corrections are triggered by different events in the two search algorithms, but 

in either algorithm the invalid rots are easily identified:

OSP: if the current vertex has only one low-neighbour and fails in an attempt to 

move to it. Then that edge is removed from the graph and the current vertex is left 

unsupported. It is the invalid root.

P-DFS: if the current vertex moves to a marked vertex, then that vertex becomes 

visited and its mark must be cleared. This leaves any vertices that depended on the 

newly-cleared vertex unsupported. They are the invalid roots.

Once the roots of the invalid subgraph have been identified, the correction process 

is to identify and clear marks from the invalid subgraph, then re-propagate mark from 

supported neighbours( if any exist) .

M ark  clearing is accomplished through incremental propagation. A stack called
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clear.stack is defined to keep track of undone clearing.

clear_stack = stack of all marked vertices that have no low-neighbours (low marks 

on top)

The following algorithm performs one incremental propagation of the clearing pro­

cess. Note that in addition to clearing marks, clear.mark identifies supported neigh­

bours of the newly-cleared vertices and places them in a stack called mark_stack.

clear-next____________________________________________
clear-frontier = pop lowest vertices from clear_stack

more_to_clear = dependent neighbours of clear-frontier

marked-boundary = other( non- dependent) marked neighbours

of clear-frontier

clear marks from clear-frontier

insert more_to_clear into clear_stack

insert marked-boundary into mark_stack

Re-marking: Suppose that marks have been cleared from an invalid subgraph and 

the supported neighbours to that subgraph have been identified and placed in a stack, 

called markstack.

mark_stack = stack of all marked vertices that have unmarked neighbours (low 

marks on top)

Then remarking can be accomplished by repeated application of the following algo­

rithm which provides one incremental propagation of marks.

mark-next_____________________________________
mark-frontier = pop all lowest- vertices from mark_stack

remove unmarked vertices from mark -frontier

more_to_mark = unmarked neighbours of mark-frontier

mark more_to_mark with mark( mark-frontier) +  1

push more_to_mark onto mark-stack

Interleaving marking and clearing. Now we wish to interleave these algorithms 

so that marking, clearing, and re-marking is only done to the extent immediately re­

quired for path planning. The following function, propagate_marks, incrementally prop­

agates marks once using mark_next, but before doing so it applies clear.next as many
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times as necessary to ensure that enough vertices are cleared for one correct incremen­

tal propagation of marks. If the graph has been exhaustively marked, propagate_marks 

returns marking-complete =  1. Function lowest() in line 5 returns the lowest mark in 

the stack.

marking complete =  propagate marks()
while mark-stack = empty h  clear_stack ± empty 

clear_next

end

if ma.rk_stack ^  empty

while clear_stack ^  empty& 

lowest( clear..stack) <= lowest (mark.stack) + 2 

clear.next 

end

mark_next

marking-complete = 0

else

marking-complete = 1

end

The condition italicised in line 6 insures that each vertex in clear_stack is at least 3 

edges ( and 2 clear vertices) away from each vertex in mark_stack when mark-frontier 

is propagate ( see theorem below). This buffer is a little bigger than necessary, but it 

simplifies the propagation of clear-frontier if there is at least one cleared vertex between 

it and mark-frontier after mark-frontier is propagated.

Theorem 1: condition (*) insures that there are at 

least N-f 1 edges and N clear vertices between any vertex 

in clear_stack and any vertex in mark-frontier, 

lowest ( clear_stack) > lowest (mark.stack) +  N (*)

Proof of Theorem

1. After re-marking, all marks in an invalid subgraph must increase. (Proof: The 

free space assumption implies that marks can never decrease. Marks in an invalid
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subgraph can not remain unchanged because that would imply a shortest path 

after correction is the same as one before which contradicts the fact that all 

shortest paths were previously undermined. Therefore all marks in an invalid 

subgraph must increase.)

2. Let M = the current mark of all vertices in mark-frontier.

3. 1. implies that the maximum mark that a vertex in mark-frontier could have had 

before correction is M  — 1.

4. Condition (*) ensures that all vertices in clear-frontier currently have a mark of 

M+N. Note the marks in clear-frontier are not yet corrected.

5. 3. and 4. imply that the difference between marks in clear-frontier and mark-frontier, 

before any marks were corrected, was at least (M -f n) — (M  — l) = N  + 1. Thus 

there were at least N+l edges between them.

G. Edge closures never decrease the distance between vertices, therefore there must 

be at least N +l edges between clear_stack and mark-frontier if condition is ob­

served.

Integration. The following pseudo-code shows how the marking algorithms are 

integrated into the sensor-based motion planning algorithms.
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OSP Sz P-DFS with incremental data repair_______
mark all goals with zero 

mark _stack =  goals; 

clear_stack = () 

marking-complete = 0

while goal not found

while current vertex has no marked neighbours 

and not (marking .complete) 

marking-complete = propagate_marks() 

end

if current vertex has a marked neighbour 

try to move to the lowest neighbour 

if successful

update graph and add invalid roots to 

clear_stack *

else

update graph and add invalid roots to 

clear_stack !

end

elseif marking-complete &; back-search not complete * 

backtrack to first unvisited neighbour *

else

stop goal are unreachable

end

end

* applies only to P-DFS 

! applies only to OSP
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E valuation  of A lgorithm s 

th ro u g h  S im ulation

7.1 In trod u ction

Once the sensor-based motion planning problem is reduced to a graph search, algo­

rithms to guide the search can be compared with respect to minimising robot motion 

and minimising online computation. In chapter 5, we introduced two algorithms, the 

OSP and the P-DFS, to solve the problem of robot motion planning. The OSP al­

gorithm is popular because it is known to provide good average-sense performance: 

according to one source [7], it preformed 45% better than the DFS on average. How­

ever, DFS algorithm is known to provide better worst-case performance bounds. In 

this chapter we show that our DFS algorithm, P-DFS, has average-sensor performance 

comparable to DFS and argue that this is the consequence of the innovative pruning 

rule. We also evaluate the performance of the scheme for efficient graph marking that 

was described in chapter 6.

Therefore, in this chapter we try to answer three questions:

1. What is the benefit of dynamic marking and is it different for the two algorithms?

2. What is the benefit of the “pruning rule” ?

3. How much better does the OSP perform than the P-DFS algorithm ?

The first question is addressed in section 7.2. Section 7-3 shows the result of the

55
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benefit of the “ pruning rule” . The third question is difficult to answer because each 

algorithm is sometimes better than the other and performance depends on factors that 

are largely unknown and difficult to study analytically. Nevertheless, we try to answer 

the question by comparing the performance of the algorithms for a large number of 

simulations in section 7.4. The comparison is a little messy, because we, according to 

our floor cleaning problem, conduct several sets of simulations to try to isolate the effect 

of a variety of factors: graph size (7.4.2), obstacle size (7.4.3), density of feasible paths 

(7.4.4) and goal search vs. coverage problem (7.4.5). and multiple inverse kinematic 

solution for manipulator (7.4.6). All results support the conclusion that OSP performs 

about 5% better than P-DFS, regardless of any of these factor.

7.2 T h e B enefit o f  D ynam ic M arking

Sensor-based searches are different from ordinary searches in that each search is not 

isolated, but rather, one in a sequence of search that are very similar to each other. 

When a new obstacle is encountered, the new search will differ from the previous search 

only by an incremental change to the environmental model (graph). This implies that 

there is a potential to reduce computations if data from one search can be reused in 

the next, rather than regenerated from scratch. This section shows the benefit of our 

scheme for incrementally repairing data on uniform graphs search (chapter 6). Recall 

that this algorithm is essentially a simplified version of Stentz’s D* algorithm that it is 

easier to implement and more efficient for uniform graph searches.

To evaluate the reduction in marking compared with remarking from scratch, we 

counted the number of marks made for 1000 random searches on graphs of 5 different 

sizes. Figure 7-1 shows the on-average factor of improvement for each graph size. It 

is clear that the two algorithms reduce marking by a large factor that increases with 

graph size. For graphs ranging in size from 100 to 3600 vertices, dynamic marking 

reduced marking by a factor about 20 to 200 times. This result is consistent with 

results presented in [8] for the D* algorithm.

Figure 7-2 compares the average number of marks made by the efficient version 

of the OSP to those made by the efficient version of the P-DFS for the same set of 

graph searches. Results show that the two algorithms require about the same amount
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Figure 7-1: Shows that the proposed algorithms greatly reduce marking compared with 

re-marking from scratch
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of marking , regardless of grapli size. Therefore, in term of computation, the two 

algorithms are the same.
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Figure 7-2: Shows that marking is about the same for OSP and P-DFS when the 

proposed algorithms are used

7.3 The Benefit of Pruning

The “pruning rule” allows a robot to ignore unvisited neighbours that are cut off from a 

goal by a subgraph of visited vertices. Because a tree search cannot cross itself ( except 

when backtracking), it serves no purpose to explore subgraphs that can only reach a 

goal through already visited vertices. We believe the rule can improve the performance
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of a robot guided by the DFS algorithm.

Figure 7-7 illustrates pruning. A robot was searching for goal G starting from S 

without knowledge of the graph at the beginning. When it reached the vertex a in 

subgraph g, the lower-right subgraph comprised by vertices b, c, d, e and their edges 

was cut off from the goal by the path of visited vertices and became unmarked. ( 

vertices c, d and e are unmarked before the sub-figure because the algorithm marks 

no more than is immediately needed for motion planning). Then P-DFS ignored them 

and backtracked to the vertex which it first come from. A no-pruning DFS would have 

to explore the subgraph before backtracking.

Figure 7-3 compares the total number of moves (or path length) for P-DFS and 

DFS applied to 750 randomly generated search problems on a grid of size 20 * 20. The 

searches were generated by a random placement of the goal and the robot within a 

graph generated by cutting various densities of randomly selected edges. The result 

shows “pruning rule” improves the performance of DFS dramatically: P-DFS performs 

about 40% better than DFS without pruning on average.

Moves DFS without pruning

Figure 7-3: Performance of the P.DFS vs the DFS without pruning

Figure 7-4 shows the comparison of the OSP versus the DFS algorithm. The exper­

iment environment and method are exactly the same as Figure 7-3. The OSP presents 

45% better average performance than the DFS: the result that we find is consistent with
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remarks we have seen in the literature [7]. Combined, these results suggest that pruning 

dramatically improves the average-sense performance of DFS to a level comparable to 

OSP.

Moves DFS

Figure 7-4: Performance of the OSP vs the DFS without pruning

7.4 O SP vs.  PJD FS

The results in last section suggest that the P-DFS algorithm presents a comparable 

performance to the OSP algorithm. In this section, we try to detect whether the 

performance of the two algorithms vary with graph size, obstacle size and the density 

of feasible paths. OSP always moves along the shortest path based on current knowledge 

with the free-space assumption and this offers a good average-sense performance. On 

the other hand, P-DFS goes to unvisited vertices until a branch is found fruitless and 

guarantees a covering graph with no more than two traversals of each edge in the 

spanning tree it generates. However, these advantages are not absolute. In fact, each 

algorithm can sometimes be better than the other. For this reason, the section begins 

with examples of better performance to the two algorithms respectively. Then we 

compared them by a numerical simulations.

7.4.1 E xam ples of Perform ance to th e Two A lgorithm s

To illustrate how each algorithm can sometimes be better than the other, a robot is 

employed to explore two similar environments shown in Figure 7-5. Figure 7-5(b)is
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formed by moving one obstacle from Figure 7-5(a). As a consequence, the two al­

gorithms present an opposite result: OSP performs better than P-DFS in the 7-5(a) 

environment, while it performs worse in the 7-5(b) environment.

Figure 7-5: Examples of grid-based environment, the shadowed areas represent ob­

stacles. In the two similar environment , the OSP and P_DFS algorithms present 

different performance

Figure 7-6 and Figure 7-7 show the performance of a robot guided by the two 

algorithms to explore the environment of Figure 7-5(b). At the beginning , the robot 

know nothing about the environment ( The start position is S, and goal is G ). The 

robot driven by the different algorithm chooses the same path from sub-figure a to e. 

However, OSP provides better performance due to going back to the shortest path at 

sub figure e, while the P-DFS find a path to goal only after visiting all of the unvisited 

tree branches.

Conversely, the P-DFS algorithm performs better than the OSP algorithm in right 

environment shown in Figure 7-5(b). Figure 7-8 shows a robot guided by P-DFS succeed 

to find a path in the branch on which it stand to the goal, while one driven by the OSP 

in Figure 7-9 reaches the goal after several trail searches.

7 .4 .2  Perform ance V ariation w ith  Graph Size

To investigate whether the performance of the two algorithms vary with graph size, they 

are applied to 1000 randomly generated search problems on graph size 10*10, 20*20 and 

30*30 respectively. The start vertex and the goal are also placed randomly. Figure 7-10, 

Figure 7-11 and Figure 7-12 present nearly the same graph and the average difference

(a) (b)
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Figure 7-6: An efficient exam ple of graph search with OSP The robot guideTby OSP 

algorithm always go to the shortest path based on the current knowledges with the free 

space assumption. Therefore, the robot goes back to the visited vertex from sub figure 

e  to f.

is 3.97%, 5.23% and 5.66%. The results show the difference of the two algorithms is 

less than 5% in the small graph, such as size 10 * 10, and the performance of the OSP 

is slightly better than the P-DFS with increasing graph size, but the increase is very 

small compared the total performances. Thus, we conclude that the OSP performs 

about 5% better than P-DFS on average, regardless of graph size.
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open edge

closed edge 
unknow edge

O
o

visited vertex 

current vertex

Figure 7-7: An inefficient example of graph search with P-DFS:The robot driven by 

P-DFS do not backtrack until the branch is found fruitless. Consequently, the robot 

chooses a longer path from e to f. The figure also shows the robot is kept from exploring 

subgraph comprising by vertices b, c, d, e and their edges that are obviously void of 

goals due to “pruning rule’’
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open edge Q visited vertex

close edge Q  current vertex

unknown edge

Figure 7-8: An efficient example of graph search with P-DFS: In the case, the robot 

happen to stand on a fruitful branch. Accordingly, it result in an efficient search.

7.4 .3  D ifferent O bstacle Size

We are especially interested in developing a manipulator arm to perform floor cleaning 

by removing spilled granular material from under and around heavy plant equipment 

such as conveyor. Thinking of the real problem, it is reasonable to imagine that there 

maybe exist various size of obstacles in the real environment. So we try to answer the 

question: Is the performance of the two algorithms sensitive to the size of obstacles. The
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closed edge

unknown edge
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O  current vertex

Figure 7-9: An inefficient example of graph search with OSP: The example shows the 

feature going to the shortest path of OSP results in inefficient search sometimes. In 

the case, the robot go back from e to f  to try to follow the shortest path based on the 

current knowledge with free-space assumption. Unfortunately, the trail search is failed. 

So the robot go back to g again according to the shortest path.



7.4. OSP VS. P_DFS 65

. *. ' 

* * V -
r. • ■ • • ..

V  V
dF ::"  •

mJW* •
| F

Move» P-D FS

Figure 7-10: Performance of OSP vs P-DFS in a grid of size 10 * 10

Figure 7-11: Performance of OSP vs P-DFS in a grid of size 20 * 20

••

Move» P-D FS

Figure 7-12: Performance of OSP vs P-DFS in a grid of size 30 30

typical comparison environments are given in Figure 7-13 and Figure 7-14. In Figure 

7-13, each obstacle cuts only one edge. We called a small obstacles environment. In 

Figure 7-14, each obstacle cuts several edges. It is called a big obstacles environment.
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Figure 7-13: Typical comparison environment with small obstacles

Figure 7-14: Typical comparison environment with big obstacles

Figure 7-15 and Figure 7-16 are obtained from 1000 graph search problems produced 

randomly on a grid of size 20 * 20 with different obstacle sizes. They present very 

similar results. And the average difference of moves is very close: 5.01% and 5.77%. In 

conclusion, the size of obstacles do not effect the performance of the two algorithms. 

These results are also consistent with those we have previously found in this chapter: 

OSP performs about 5% better than the P-DFS on average in the simulations.
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Figure 7-15: Performance of OSP vs P-DFS in small obstacles environment

Moves P-DFS

Figure 7-16: Performance of OSP vs P-DFS in big obstacles environment

7.4 .4  D ifferent D en sity  of Feasible Paths

So far, we compared the two algorithms by different graph size and different obsta­

cle size. In summary, P-DFS provides comparable performance to the OSP which only 

performs about 5% better and the results do not vary with graph size and obstacle size. 

Now, we are interested in another question: In which kind of environments does OSP 

perform better than P-DFS. In particular we aim to test the hypothesis that P-DFS 

performs better for graphs that have a low density of feasible paths.

To define “density of feasible paths” , firstly, we define two graphs: 1) optimistic 

graph in which all edges are open and 2) actual graph where all of the edges associated
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with impossible moves are closed. Secondly, let the graph be modelled as an electrical 

circuit with each edge representing a resistor, each goal associated with ground, and 

the start vertex represents a source voltage. The current in this circuit would flow from 

the start vertex to the ground using all of the paths available. Furthermore, the ratio 

of effective resistance in the two graph is a density measure. We think the following 

ratio density provides a good measure of the density of feasible paths.

effective resistance in the optimistic graph

density of feasible path = ------------------------------------------------------

effective resistance in the actual graph

Figure 7-17 was obtained from 1000 graph search problem produced randomly. It 

shows the exactly the same performance of the proposed algorithms when density is 

going to 1 (no obstacle) and the P-DFS is slightly better than the OSP with the 

decrease of density. This supports the hypothesis that P-DFS performs better for 

graphs that have a low density of feasible paths. In the same way, the average difference 

of performance to the two algorithms on is only 4.89%, about 5% on average.

density of feasible paths

Figure 7-17: : Performance of OSP vs P-DFS with different density of feasible paths: 

Shows the P-DFS is slightly better than the OSP algorithm with the decrease of density.
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7.4 .5  C overage Problem

All results so-far presented are for single goal searches. Results suggest that the P-DFS 

algorithm is comparable to the OSP algorithm in single goal search problem. Coverage 

problem is another problem we are interested in because our objective is to control a 

manipulator arm to perform floor cleaning in an unknown obstacles-filled environment. 

Now, we compare the two algorithms for the surface coverage problem.

Different from a find-goal problem, all vertices but start vertex are regarded as goals 

in a coverage problem which is demanded to visit all reachable vertices. Therefore, the 

coverage problem is an extension of a find-goal problem, which has multi-goals. For 

this reason, we, similarly, measure the total moves to evaluate the performance of the 

two algorithms. As before, 1000 randomly generated graph search problems in grid size 

10 * 10, 20 * 20 and 30 * 30 were applied to the two algorithms respectively. The results, 

Figure 7-18, Figure 7-19 and Figure 7-20, show they did not overlap with the results of 

single goal. When the moves are relatively small, the two algorithms present nearly the 

same results. However, OSP presents an obviously better performance when the moves 

are bigger than an amount which depends on graph size and the amount increase with 

the increase of graph size. The average difference of moves are 12.40%, 15.49% and 

16.31%. This shows that OSP is significantly better and the difference increase with 

graph size.

Figure 7-18: The coverage performance of OSP vs P-DFS in grid size of 10 * 10

Why does the OSP algorithm perform so much better than P-DFS in the coverage 

problem rather than the simple find-goal problem? The reason is that the P-DFS is 

limited to tree search, so early covering motion can force P-DFS to explore large areas
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Figure 7-19: The coverage performance of OSP vs P-DFS in grid size of 20 * 20

Figure 7-20: The coverage performance of OSP vs P-DFS in grid size of 30 * 30

of the graph that are distance from the goal. Figure 7-21 shows the two algorithms 

have a similar performance if P-DFS is allowed to treat the coverage problem as a series 

of new find-goal problems. In other words, let P-DFS forget about its tree whenever 

a goal is found. In the 1000 randomly produced search problems, the P-DFS and the 

OSP only perform 1.78% difference on average.

7.4.6 A pplication  to M anipulation Arm

So far, our results have not considered manipulator arm kinematics. To accomplish a 

cleaning problem by a manipulation arm, the robot has to move in its joint-space graph 

but the cleaning task occurs in task space. For a find single goal problem for a robot 

arm, there are at least two joint space vertices marked as goals. If one of these goals is 

reached, the find goal task is finished. For a coverage problem, all vertices but a set of 

start vertex are treated as goals. When a goals is reached, all vertices that map onto
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Figure 7-21: Let the P-DFS algorithm treat the coverage problem as a series of new

find-goal problems, then it performs nearly the same as the OSP algorithm

the same task-space position in are not goals anymore simultaneously. If no more goals 

can be reached , then the coverage is finished. So application to manipulation arm also 

can be treated as a example of multi-goals search. In the section we focus on whether 

the previous results searched on grid-like graphs still hold for manipulator arm graphs. 

Our investigation is based on a two planar manipulation arm whose link lengths are 5 

and 5, and joint Jimit is [—2/3 * n 2/3 * 7rj.

1000 searches were generated randomly in a task space graph of size 20 * 20 . The 

base of manipulation arm is placed in the centre of a graph. Figure 7-22 and Figure 

7-23 show the results for the find goal problem and the coverage problem respectively.

The result shown in Figure 7-22 is similar to those shown in Figure 7-11 and 7-19, 

especially 7-22. Besides, the average difference of the moves is also very close to that in 

Figure 7-22: 5.87% vs. 5.23%. It suggest that the previous results hold for application 

to manipulator arms.

Figure 7-23 shows nearly the same results as Figure 7-19: the average difference of 

the two algorithm is 14.3% for Fig 7-19, while it was 15.49% for Fig. 7-23. Thus we 

conclude that previous results for coverage also hold for manipulator arms.
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Figure 7-22: The find-goal performance to manipulator arm of OSP vs P-DFS

100 150
Moves P-OFS

Figure 7-23: The coverage performance to manipulation arm of the OSP vs the P-DFS, 

the result is similar as that in Figure 7-19

7.5 C onclusion

Results suggest that depth-first search algorithms applied to sensor-based motion plan­

ning can be more efficient than is generally recognised. In particular, branch pruning 

seems to improve performance about 40% on-average, to a point comparable to the 

shortest path algorithm. This is significant because DFS has a better worst-case bound 

on performance. And the results do not vary with graph size, obstacle size and the 

density of feasible paths.

Coverage problem is a find multi-goals problem. The result of comparing the two
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algorithms suggest that the OSP is significantly better than the P-DFS. However, they 

have nearly the same performance if P-DFS treat the coverage problem as a series of 

new find-goal problem.

In addition, simulations suggest that the above results hold for manipulator arms.

Furthermore, the results show that online computation for uniform graph searches 

can be dramatically reduced by proposed algorithms that reuse data from previous 

searches.
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C onclusions

8.1 C onclusions

In this thesis, we have investigated three problems to enable the manipulator arm to 

perform floor cleaning in unknown environments. The approach is based on experiment, 

modelling and verification by computer simulation. A thorough effort was made to con­

sider theoretical and practical aspects. The work is directed to a practical application 

and our solutions are based on realistic technologies.

R ea ctiv e  controller  to  perform  floor coverage (to  s im u la te  c lean in g).

The experimental work supports the conclusion that a manipulator arm driven by a 

reactive controller can work well in an unknown obstacle-filled environment and perform 

coverage motion. Only force sensing was used in the experiment. Results suggest that 

force sensing provides an useful basis for the system to work well in a heavy industrial 

environment.

G rap h-b ased  m odellin g  for m anip u lator m otion  p lanning.

The modelling results in chapter 4 shows that manipulator motion planning problem 

can be formulated as a graph search. This provides a foundation for efficient and general 

motion planning algorithms for manipulator arms.

G rap h-b ased  m otion -p lan n in g  a lgorithm s.

In chapter 5-7, we described two sensor-based motion planning algorithms: an 

optimistic shortest path algorithm (OSP) and a depth first search algorithm (DFS). 

A scheme to minimise re-planning computation on uniform graphs by incrementally

74
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repairing data is developed for the both algorithms, which is essentially a simplified 

version of Stentz’s D* algorithm that it is easier to implement and are more efficient for 

uniform graphs searches. In addition, an original technique that we call “tree-pruning” 

is used for DFS algorithm. With the algorithm, the DFS algorithm achieves similar 

average-case performance with the OSP algorithm. The study results show that the two 

algorithms are efficient algorithms to manipulator arm motion planning. It is important 

in practical application in term of minimising online computation and minimising robot 

motion.

8.2  Future R esearch

This thesis has presented some foundational research toward realizing an new type of 

autonomous cleaning system. There are still many problems to realize our ambition: 

to free workers from hostile and unhealthy environment.

Firstly, we envision that an manipulator arm be purpose-built according to Whole 

Arm Manipulation principles.

In addition, the addition of a vacuum mounted on the manipulator arm will bring 

some new challenges to control.

Finally, research is needed into providing the arm with the ability to know whether 

it is colliding with obstacles or a pile of granular material when it is cleaning in an 

unknown obstacle-filled environment.
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