
T ow ard A u to n o m o u s C lean in g
w ith M a n ip u la to r A rm s

Junmei Cao
B.Sc. Beijing (China)

February 1999

A thesis submitted for the degree of Master of Engineering

of The Australian National University

Department of Engineering
Faculty of Engineering and Information Technology

The Australian National University

A ck n o w led g em en ts

I would like to express my heart-felt appreciation to my supervisor, Dr. Jon Kieffer,

for his excellent and thorough guidance during my Masters program. Without his help,

support and encouragement, it is impossible to have done the research. Also, I would

like to thank all people in the Department of Engineering who helped me. Finally, I

would like to thank my beloved husband for his understanding and supporting.

S ta tem en t of O rig inality

The information contained in this thesis is the result of original research except where

reference is made. And has not been submitted for the purpose of obtaining a higher

degree at any university or institution.

The research described in this thesis is the result of a collaborative effort with my

supervisor Dr. Jon Kieffer.

Junmei Cao

February, 1999

C onference Paper:

[Cl] J. Kieffer, K. Yu, J. Cao and K. Maw, “Toward blind grouping: an approach to ma

nipulation in unknown sensor-hostile environments,” Proceedings of the International

Conference on Field and Service Robotics, pp.449-455, Canberra, December, 1997.

A b s tra c t

This thesis is to develop techniques to enable a manipulator arm to perform a cleaning

task in an unknown obstacle-filled environment using only force sensing.

Our investigation focusses on reactive control, graph-based modelling for manipu

lator arms and graph-based motion-planning algorithms.

Reactive control strategies have produced significant results in improving the ability

of wheeled and legged mobile robots to cope with unfamiliar environments and uncer

tainties. However, it seems that very few attempts have been made to apply these

strategies to manipulator arms. In this thesis, we extended the purely reactive con

troller [10] with the ability to plan, and used only force sensing. The controller was

applied to an Industrial Scientific SCARA robot to explore an unknown obstacle-filled

environment. The task is to cover all free space to simulate cleaning.

The motion planning problem for manipulator arms is different from mobile robots.

The arm kinematics allows each task position to be reached in a number of configura

tions. Our graph-based modelling for manipulator shows manipulator motion planning

problem can be formulated as a graph search.

To work in unknown environments, robots have to re-plan motions on-the-fly as

new information is acquired. In the thesis, we present a new algorithm to minimise

re-planning computation on uniform graphs by incrementally repairing data. It is es

sentially a simplified version of Stentz’s D* algorithm [8], but, it is easier to implement,

and more efficient for uniform graphs searches.

We also investigate two graph-based motion planning algorithms in the context of

sensor-based motion planning: an optimistic shortest path algorithm and a depth first

search algorithm. We compare the DFS algorithm with the OSP and show that it

achieves similar average-case performance if an original technique that we call “tree-

i i i

pruning” is used. This contradicts widely held perceptions that shortest path algo

rithms are significantly better than depth-first searches. Simulations suggest that the

developed algorithms are effective for manipulator arm motion planning.

iv

C on ten ts

Acknowledgements

Statem ent of Originality

Abstract

1 Introduction

1.1 General B ackground...

1.2 Summary of Contributions..

1.3 Overview of T h es is ..

2 Conceptual Description of the Manipulator Arm Cleaning Problem

2.1 Introduction..

2.2 Description of the Problem ...

2.3 Enabling Technologies for Blind Groping...

2.3.1 Mechanical D esig n ..

2.3.2 S e n s in g ..

2.3.3 C o n tro l ..

2.4 Literature Review ..

2.4.1 Behaviour-based Control..

2.4.2 Sensor-based Motion Planning ..

3 A Reactive Controller for Manipulator Arm

3.1 Introduction..

3.2 Architecture ...

3.2.1 Layer 1: Avoiding Obstacles ...

i

iii

2

2

3

4

5

5

5

8

8

8

9

9

9

12

15

15

17

17

v

3.2.2 Layer 2: W an d e r.. 18

3.2.3 Layer 3: Planning ... 18

3.3 An Algorithm for Planning .. 18

3.3.1 Definitions and Assum ption.. 19

3.3.2 A lgorithm .. 19

3.4 E x perim en t... 21

4 M od ellin g for G raph Search 24

4.1 Introduction.. 24

4.2 Description of the Problem .. 24

4.3 Model of Two-link Planar A r m .. 26

4.4 Model of Three-link Planar Robot Arm .. 30

4.5 Discussion... 37

5 S en sor-b ased M o tio n planning 40

5.1 Introduction.. 40

5.2 Definitions... 41

5.3 Summary of OSP and P -D F S ... 42

5.4 The Optimistic Shortest Path Algorithm.. 42

5.5 The Pruned Depth-first Search A lgorithm ... 44

6 Efficient graph m ark ing and upd ating 49

6.1 Introduction.. 49

6.2 Summary of a lgorithm ... 50

6.3 Incremental repair algorithm in detail .. 50

7 E valuation o f A lg o r ith m s th rou gh S im u lation 55

7.1 Introduction.. 55

7.2 The Benefit of Dynamic M ark ing ... 56

7.3 The Benefit of Pruning .. 57

7.4 OSP vs. PJ3FS .. 59

7.4.1 Examples of Performance to the Two Algorithm s......................... 59

7.4.2 Performance Variation with Graph S i z e .. 60

7.4.3 Different Obstacle Size .. 63

vi

7.4.4 Different Density of Feasible Paths ... 67

7.4.5 Coverage P ro b le m ... 69

7.4.6 Application to Manipulation Arm ... 70

7.5 Conclusion .. 72

8 C on clu sion s 74

8.1 Conclusions... 74

8.2 Future Research .. 75

B ib liograp h y 76

vii

List of F igures

3-1 The control system for cleaning.. 17

3-2 Coverage experimental system ... 21

3-3 Terrain coverage of an empty environment... 22

3- 4 Terrain coverage of an obstacle-filled environment.................................. 23

4- 1 Two-link planar a r m ... 26

4-2 Two arm so lu tio n s ... 27

4-3 Corresponding relationship between task space graph and joint space

graph ... 28

4-4 Connected two-solution .. 29

4-5 Model of two-link planar robot a rm .. 30

4-6 The work space for a two-link robot a rm ... 30

4-7 Three-link planar a r m ... 31

4-8 Relationship of joint space and task s p a c e ... 32

4-9 Model of three-link planar arm: s h e e t l .. 33

4-10 Model of three-link planar arm: sh ee t2 .. 34

4-11 Model of three-link planar arm: sh ee t3 .. 34

4-12 Model of three-link planar arm: sh ee t4 .. 35

4-13 Model of three-link planar arm: sh ee t5 .. 35

4-14 Model of three-link planar arm: sh ee tö .. 36

4-15 Model of three-link planar arm: sh ee t7 .. 36

4-16 Model of three-link planar arm: sh e e ts .. 37

7-1 The benefit of marking algorithm ... 57

7-2 Marking: OSP vs P-DFS ... 57

Vlll

7-3 Performance of the P_DFS vs the DFS without p ru n in g 58

7-4 Performance of the OSP vs the DFS without pruning............................. 59

7-5 Examples of grid-based environm ent... 60

7-6 An efficient example of graph search with O S P .. 61

7-7 An inefficient example of graph search with P -D F S 62

7-8 An efficient example of graph search with P -D F S 63

7-9 An inefficient example of graph search with O S P 64

7-10 Performance of OSP vs P-DFS in a grid of size 10 * 1 0 65

7-11 Performance of OSP vs P-DFS in a grid of size 20 * 20 65

7-12 Performance of OSP vs P-DFS in a grid of size 30 30 65

7-13 Typical comparison environment with small obstacles 66

7-14 Typical comparison environment with big obstacles.................................. 66

7-15 Performance of OSP vs P-DFS in small obstacles environment.............. 67

7-16 Performance of OSP vs P-DFS in big obstacles environment.................. 67

7-17 Performance of OSP vs P-DFS with different density of feasible paths . 68

7-18 The coverage performance of OSP vs P-DFS in grid size of 10 * 10 . . . 69

7-19 The coverage performance of OSP vs P-DFS in grid size of 20 * 20 . . . 70

7-20 The coverage performance of OSP vs P-DFS in grid size of 30 * 30 . . . 70

7-21 Performance of P-DFS vs OSP when P-DFS algorithm treat the coverage

problem as a series of new find-goal p rob lem s... 71

7-22 The find-goal performance to manipulator arm of OSP vs P-DFS 72

7-23 The coverage performance to manipulation arm of the OSP vs the P-DFS 72

ix

C h a p te r 1

In tro d u c tio n

1.1 G eneral B ackground

The development of specialised service robots [1] was brought about by the increasing

demand to economise on several kinds of services. A representative application field is

floor-cleaning. Our work is directed toward the development of an autonomous vacuum

cleaning system to perform floor cleaning in unknown obstacle-filled environment using

only force sensing.

Motivation for the autonomous cleaning problem comes from the materials handling

in heavy industry. BHP, for example, spends about 8 million dollars per annum to

collect raw materials that fall from conveyor belts in the Port Kembla Steel works. It is

generally done by hand, using shovels and scrapers, exposing workers to heavy manual

labour in dusty and unhealthy conditions. So developing automated cleaning systems

can potentially not only decrease costs for heavy industry, but also free the workers

from hostile and unhealthy environments.

To move around, find a path, or do a job like cleaning seems very simple for a

human. However, the human operator can not be replaced easily by ‘‘artificial intel

ligence” [1]. One reason is the complexity of cleaning task. The difference between

robots and animals is that animals use their brain to solve a problem, and we start to

understand the complexity of these “simple” tasks when we analyse the complexity of

the brain [2]. Another reason is the limitations of the actual technology. This field needs

smart systems that are well adapted to their environment through their shapes, sen

sors, actuators and behaviours [3]. Therefore, most of the developed cleaning machines

2

1.2. S U M M A R Y OF C O N TR IBU TIO N S 3

primarily assist a human operator in large, fixed cleaning areas with known structure.

The lack of results is common to a large range of applications in autonomous robotics.

In the last decade, new approaches have tried to bring “artificial intelligence” and

the computer science community back to the real world to get better results in the

field of autonomous mobile robotics [4]. Reactive control, for example, have produced

significant results in improving the ability of wheeled and legged mobile robots to

cope with unfamiliar environments and uncertainties [10, 18, 22]. Reactive systems

are a relatively recent development in robotics that has redirected artificial intelligence

research. This new approach grew out of a dissatisfaction with existing methods for

producing intelligent robotic response and a growing awareness of the important of

looking at biological systems as a basis for construction intelligent behaviour [5].

In addition, the development of force sensing technology brings good results in

heavy industry environment. It offers the advantages of being well developed, rugged,

reliable and economical.

In the thesis, we present some foundational research toward the development of an

autonomous vacuum cleaning system to work in an heavy industrial environment based

on reactive control and force sensing with suitable motion planning algorithms.

1.2 Sum m ary o f C ontributions

The general objective has been to develop techniques to enable a manipulator arm to

perform a cleaning task in an unknown obstacle-filled environment using only force

sensing. In summary, this research has made the following contributions:

1. Experimental implementation of a reactive controller for a manipulator arm to

perform surface coverage. This controller extends the purely reactive controller

[10] with ability of planning, and uses only force sensing. The experiment is

limited to end-effector force sensing rather than the whole arm sensing.

2. Graph-based modelling for manipulator motion planning. The motion planning

problem for manipulators is different from mobile robots. The arm kinematics

allows each task position to be reached in a number of configurations. Our graph-

based modelling for manipulator shows manipulator motion planning problem can

be formulated as a graph search.

1.3. OVERVIEW OF THESIS 4

3. Efficient graph marking scheme to minimise re-planning computation on uniform

graphs by incrementally repairing data. It is essentially a simplified version of

Stentz’s D* algorithm [8], but, it is easier to implement, and more efficient for

uniform graphs searches.

4. Based on the efficient graph marking scheme, vve develop efficient implementations

of two algorithms for graph-based motion planning: an optimistic shortest path

algorithm (OSP) and a depth first search algorithm (DFS). Also, we develop

an innovative pruning rule for our DFS algorithm, which keeps the robot from

exploring subgraphs that are obviously void of goals.

5. A study of OSP vs DFS algorithms in sensor-based motion planning. This shows

that our DFS achieves similar average-case performance with OSP algorithm.

This contradicts widely held perceptions that OSP algorithms are significantly

better than DFS searches.

1 .3 O v e r v ie w o f T h e s is

Chapter 2 presents the conceptual description of the manipulator arm cleaning prob

lem. It is an overview of the problem. Enabling technologies are discussed and a general

literature review is given. Chapter 3 develops a reactive motion planning algorithm for

a manipulator arm in our laboratory. Experiment results are given to demonstrate

complete coverage in an unknown obstacle-filled environment. Chapter 4 talks about

modelling. It presents graph search models for our cleaning problem. Chapter 5 gives

sensor-based motion planning algorithms. The algorithms are more general and more

realistic for practical application than the one considered in chapter 3. Chapter 6 de

scribes the details of our incremental repair algorithm (similar to Stentzs D* algorithm)

which improves the computational efficiency of sensor-based graph searches. Chapter

7 gives an evaluation of algorithms though simulation. Chapter 8 concludes this work

and presents further research.

C hapter 2

C o n c e p tu a l D e sc rip tio n o f th e

M a n ip u la to r A rm C lean in g

P ro b le m

2 .1 I n tr o d u c t io n

This chapter presents an overview of the cleaning problem. It begins by describing the

cleaning problem. In section 2.3, we talk about enabling technologies that we feel will

be important to develop the system. A literature review is given in section 2.4.

2.2 D escrip tion o f th e P rob lem

Path planning problems are nearly as old as mankind: they were necessary early in our

history for basic activities such as finding food and other necessities. Here, we consider

autonomous coverage of unknown terrain in a heavy industry environment.

Robots for field applications should be low-cost, rugged and reliable. Especially,

cleaning in heavy industry requires that machines are insensitive to dirt and dust. In

addition, they should also be designed to operate effectively in unknown and sensor-

hostile environments. This applies to their mechanical design as well as their sensing

and control strategies.

For collecting raw material we envision an autonomous system comprising mobile

robot with a dexterous arm that manipulates a vacuum tool to perform cleaning. Rather

5

2.2. DESCRIPTION OF THE PROBLEM 6

than mobile robot navigation problem, we focus on controlling a manipulator arm to

perform floor cleaning in unknown obstacle-filled and sensor-hostile environment. We

highlight our problem as follows:

1. A manipulator arm is to accomplish the cleaning.

2. The manipulator arm works in a heavy industrial environment.

3. The environment is filled with unknown obstacles.

4. The obstacles have unknown shape.

5. Obstacles can interfere with the links of the manipulator arm as well as the end-

effector.

6. At the beginning, the robot know nothing about the environment.

Autonomous cleaning seems feasible if the following requirements can be met.

• Sensing

Measurement of environment parameters is fundamental to the successful applica

tion of robots. For a manipulator arm to be autonomous it must be able to sense

obstacles and traverse paths through its environment. In addition, the sensing

system should work correctly regardless of the shape of the obstacles.

• Control

The control system need to achieve multiple goals in the environment: it is trying

to reach a target while avoiding obstacles. And it must be responsive to high

priority goals. For example, avoiding obstacles is much more important than

reaching a goal. Furthermore, to respond quickly, the system should be as simple

as possible instead of an extremely complex control system.

• Motion planning

We are interested in two kinds motion planning: surface coverage and find goal.

Surface coverage describes an action by which all free space in an environment

are covered in a systematic and efficient manner. Find goal focusses on finding a

path from a start location to a goal location. Based on the two types of motion

2.2. DESCRIPTION OF THE PROBLEM 7

planning, we can not only ensure a complete sweep of all free space, but also

perform some targeted cleaning in particular areas.

• Reliability

The system must be rugged, reliable and insensitive to dirty and dust.

The usual approach to this task would be to start by building a three dimensional

model of the environment. Then we would employ an algorithm to plan a trajectory

to cover all free space or from the start point to a target position, and then pass this

path to a servo system to give us precise control of the robot’s joints.

Forget the problems of implementing such a complex control system for the mo

ment. What seems to be the trouble is that it is difficult to get the reliable environment

information from sensors. The approach described above relies on accurate world mod

elling. To build a proper three-dimensional model, we need to take multiple images

from different directions and then fuze them into a single coherent description [12].

Unfortunately, the sensors needed to support this endeavour are typically expensive,

difficult to implement and problematic in dirty and dusty environment. Also, some of

these sensing techniques require special lighting or impose restrictions on the surface

properties of objects [28]. In addition, it is difficult to get clean data from the sensors

mounted on a moving vehicle. Furthermore, the undeveloped sensor fusion techniques

prevent us getting an accurate world model.

However, without an accurate world model, it is impossible to implement the robot

navigation algorithm described above. As Leonard and Durrant-Whyte said in [33]

to answer the question of why robot and reliable autonomous mobile robot naviga

tion remains such a difficult problem:“ In our view, the reason for this is clear. It is

not the navigation process per se that is a problem - it is the reliable acquisition or

extraction of information about navigation beacons, from sensor information, and the

automatic correlation or correspondence of these with some navigation map that makes

the autonomous navigation problem so difficult.”

To overcome this limitation, we avoid building a three dimensional model and pre

cise manipulator control. Instead, we follow Brooks [10] to adopt a “vertical'’ decom

position of our control system. We also choose to base our control on force sensing.

The uncertain and sensor-hostile nature of the environment under conveyor belts has

2.3. ENABLING TECHNOLOGIES FOR BLIND GROPING 8

led us to the concept of blind groping, and we believe it is a better method to solve the

cleaning problem, in term of realizable, low-cost, rugged and reliable.

blind groping: robotic arm manipulation in unknown

environments based primarily on force and proprioceptive sensing.

2.3 Enabling Technologies for Blind Groping

2.3.1 M echanical Design

Industrial robot arms are unsuitable for blind groping because they are not designed

for force control or to accommodate unexpected impacts with the environment. The

philosophy of Whole Arm Manipulation (WAM) [20], however, provides principles and

technology for developing such arms. The WAM arm is designed to contact and sense

the environment with any of its surfaces. This allows the manipulator arm to learn

whether a given motion is possible through trial motions.

According to WAM principles robot arms should be light weight, back drivable and

constructed from durable material. In [20], Townsend and Salisbury showed how this

can be achieved using cable-drive technology. They also describe how motor current

sensing can be applied to determine the location of environmental forces on the arm.

We believe that these principles, along with rugged design standards such as those

developed in the mining industry should be a suitable for developing blind groping

manipulators.

2.3.2 Sensing

The sensor system is an important part of the robot as it provides information about

the environment. This information is used for control loops, finding the location of

objects and monitoring the environment for changes that may affect the task. For

blind groping, detection and avoidance of obstacles is especially important.

Because remote sensing is problematic in many environments, it is particularly

difficult in dirty and dusty environments, we feel that force sensing will play a key role

in field applications.

Force sensing technology offers the advantages of being well developed, rugged,

reliable and economical. It is also insensitive to the wide variety of noise sources that

2.4. LITERATURE REVIEW 9

effect remote sensing technologies: atmospheric dust, variable lighting, acoustic and

electromagnetic noise. In addition, the shape of obstacles is not important for force

sensing.

2.3 .3 Control

The cleaning problem offers new challenges to robot arm control that are perhaps more

familiar to researches in mobile robotics and legged locomotion: the key problem is

how to achieve robust and useful operation in unknown or uncertain environments.

Inaccurate sensors , world unpredictability, and imperfect control often cause the

failure of traditional planning and navigation methods for real-time robot systems. In

contrast, behaviour-based control strategies has been used successfully in improving

the ability of mobile robots to cope with unfamiliar environment and uncertainties

[10, 22, 26, 27, 28, 29]. To accomplish cleaning we believe that traditional theories for

manipulator motion and force control should be integrated into a reactive or behaviour

control framework. The traditional controllers are needed to support free motion and

contour following and the behaviour control framework is important for organising tasks

and for reacting quickly to unexpected events.

2.4 L iterature R eview

In the subsection, we focus on the literature of behaviour-based control and motion

planning. Mechanical design is beyond the scope of our research.

2.4.1 B ehaviour-based Control

Reactive robotic systems originate in the cybernetic movement of the 1940s. Grey

Walter developed an electronic “tortoise” capable of moving about the world, avoiding

perceived threats and attracted to certain goals [5].

With the development of artificial intelligence, a number of people interested in

organising intelligence have contributed to this field [10, 15]. There was a requirement

that intelligence be reactive to dynamic aspects of the environment, that a mobile robot

operate on time scales similar to those of animals and humans, and that intelligence be

able to generate robust behaviour in the face of uncertain sensors , an unpredictable

2.4. LITERATURE REVIEW 10

environment and a changing world. There is no generally accepted term to describe

this style of work. It has sometimes been called “reactive planning” . Sometimes the

approach is called “behaviour-based” as the computation components tend to be be

haviour producing modules [11].

Brooks [10] is a leader of the reactive robotic paradigm. He believes tha t:“ From

an evolutionary stance, human level intelligence did not suddenly leap onto the scene,

There were precursors and foundations throughout the lineage to humans. Much of

this substrate is present in other animals today. The study of that substrate may well

provide constraints on how higher level thought in humans could be organised.” [11]

In [10], Brooks designed a control structure, called subsumption architecture, for

autonomous mobile robots. He articulated the departure from classical AI and broke

away from the sense-plan-act paradigm that dominated AI in the 1970-80s as typified

by robots like Shakey that used resolution theorem proving as its primary reasoning

mechanism [5]. The basic idea proposed is to decompose the robot system based on

its external behaviour rather than internal operation. Reactive robotic control systems

are characterised by a tight coupling between sensing and action, typically without the

use of any intervening global representations. With the control system, a mobile robot

wandered around unconstrained laboratory areas and computer rooms. Sonar data was

used for real-time obstacle avoidance because it is useful for low-level interactions and

it is cheap and easy implement than visual data.

However, it is recognised that purely reactive robotic systems are not appropriate

for every robotic application, especially in situations where the world can be accurately

modelled and there is restricted uncertainty. Aiming for the compensation of shortcom

ings of the subsumption architecture,several approaches have been proposed. Hybrid

architecture [14, 16, 23] is the most common approach. It permits reconfiguration of

reactive control systems based on available world knowledge, adding considerable flex

ibility over purely reactive systems. The idea is that the reactive system handles the

real-time issues of being embedded in the world, while the deliberative system does the

‘hard’ stuff traditionally imagined to be handled by an Artificial Intelligence system. In

[14], it is shown how a priori world knowledge, when available, can be used to configure

behavioural and perceptual strategies in an efficient form. Although Brooks [11] thinks

that these approaches are suffering from the well known “horizon effect” , it has bought

2.4. LITER ATU R E REVIEW 11

better performance in their overall system with the reactive component.

It’s a complex endeavour and inevitable process to realize the ambition of artificial

intelligence. Brooks said:“ We sometimes need to step back and question why we

are proceeding in the direction we are going, and look around for other promising

directions.”

Reactive control directly couples real-time sensory information to motor actions

without the use of intervening symbolic representations. Arkin [18] lists the following

general characteristics of reactive control:

• It is typically manifested by a decomposition into primitive behaviours.

• Global representations are avoided.

• Sensor decoupling is preferred over sensor fusion.

• It is well suited for dynamically changing environments.

In addition, the reactive system also has the following characteristics:

• The global system is robust.

• The system can cope with multiple goals.

• The system is well-adapted for hardware implementation [30].

Behaviour-based and reactive control strategies have produced significant results

in improving the ability of wheels and legged mobile robots to cope with unfamiliar

environments and uncertainties [10, 11, 21, 26], however, it seems that very few at

tempts have been made to apply these strategies to manipulator arms [27]. Although

robot arms have been traditionally associated with highly constrained and predictable

environments, in field robotics applications they will have to cope higher levels of un

certainty. In [34], Connell followed Brooks [10] to implement a reactive controller for

an actual mobile robot arm to locate and retrieve empty soda cans in an unstructured

environment using a variety of local sensors to get information of environment.

To realize our cleaning task, we are interested in applying the behaviour-based

control strategies to our manipulator arm using force sensing only. It is a novel attempt.

In chapter 3, we present an experimental reactive controller for a manipulator arm in

2.4. LITERATURE REVIEW 12

our laboratory. It covers all free space in its workspace using only the force sensor to

obtain information about the environment.

2.4.2 S enso r -based M o t io n P la n n in g

Much of the focus of the research effort in path planning for robots has concentrated on

the problem of finding a path from a start location to a goal location, while minimising

one or more parameters such as length of path, energy consumption or journey time

[7, 8]. Surface coverage or sweeping can be defined as: a path of complete coverage is

a planned path in which a robot sweeps all areas of free space in an environment in a

systematic and efficient manner [17].

One problem of interest is to provide nearly identical algorithms for the two prob

lems, so switching between them is easy and the approach is well-suited to higher-level

supervision.

Path planning problems can be classified in two main groups: known environment

and unknown environment [8].

There are many research results for the known environment [31]. For the known

environment case, a path is generated from a given map of the environment.

In [3], for example, a 2D-map of a prior known walls, pillars, staircase or fixed

objects is given. With the map, a rule based planning system generates the motion

sequence for an appropriate cleaning path according to robot geometry and kinematic

restrictions.

Zelinsky in [17] presents a complete coverage algorithm for an unstructured environ

ment. The distance transform path planning methodology [35] is used in the algorithm.

In this method, the planner starts at the goal cell and propagates distances through free

space. Like dropping a stone in a pond, the ripples radiate out, bouncing off objects in

their path, with the first ripple to reach a designated point taking the shortest path,

A distance transform value is calculated for each grid square [32]. Once the distance

transforms are generated, the path is planned from start to goal. The algorithm is

described as: if the cells around the start cell do not have a lower value than it does,

ripples in the distance transform did not reach it and, this, there is no path. If they

do have a lower value, the ripples did reach the start cell and there is a path. To find

it, follow the valley (lowest values) to the goal. In this way, a path can be found from

2.4. LITER ATU R E REVIEW 13

any start point to the goal.

Choset and Pignon in [24] use cellular decomposition technique to decompose a free

space into cells and an adjacency graph to reflect the connectivity of the individual cells.

Motion planning between two points is achieved via a graph search of this adjacency

graph. By covering each of the cells of the decomposition, a robot is guaranteed to

cover the entire free space. This is done in two steps: a path is found in the adjacency

graph that visit each node, and then the robot motions are computed within each cell.

However, there are fewer result for unknown environments. Without a prior knowl

edge of the world, robots have to replan motions on-the-fly as new information is

acquired. This is known as sensor-based motion planning.

In fact, once an unknown environment is modelled by cell decomposition, road maps,

terrain grids etc., then path-planning problem reduce to a sensor-based graph search

[7, 8, 6. 19]. In these publications, the robot assumes that the terrain is clear unless

it knows otherwise. It uses this “‘freespace assumption” to plan a shortest potentially

traversable path though vertices that are known to be open or unknown. Whenever

it detects an obstacle that blocks the planned path, the robot re-plans its path. If it

reaches a goal vertex, then it stops and reports success. If it fails to find a traversable

path from its current vertex to the goal vertex, it stops and reports that the goal vertex

can not be reached. In [7], Seven Koenig presents the following ‘“proof' that planning

with the freespace assumption is correct.

Every time the robot cannot follow a planned path, it has learned

about at least one additional blocked vertex. There are only a finite

number of them, implying that planning with the freespace assumption

terminates in finite time. Planning with the freespace assumption reports

success only if it is at the goal vertex and has thus solved the sensor-based

planning problem. It reports failure only if no traversable path from its

current vertex to the goal vertex exists. Since there is a traversable

path from its current vertex to the starting vertex, there is no traversable

path from the starting vertex to the goal vertex either. Consequently,

reaching the goal vertex is impossible in this case.

Another benefit of the algorithm is that the shapes of obstacles need not to be

considered.

2.4. LITERATURE REVIEW 14

With the freespace assumption and distance transform, sensor-based motion plan

ning schemes, such as [6], rely on the following shortest-path strategy: determine the

patli from the current position to the goal that appears to be shortest based on current

knowledge. Then move along it. When new obstacles are encountered, the “shortest

path ” may need to be revised, but the policy (to follow it) remains the same. We call

this the optimistic shortest path (OSP) strategy. It is often associated with A* or Di-

jkstra's algorithm which are used to make the shortest path calculations. OSP provide

good average-sense performance for finite graphs. However, its worst-case performance

is less tightly bounded than any depth-first search(DFS) and there is no evidence that

OSP is optimal against any specific criteria. DFS algorithms cover graphs with no

more than two traversals of each edge in the spanning tree they generate. This bounds

the cost of a goal search to twice the weight of the heaviest spanning tree. No search

algorithm can provide a better worst-case performance bound [7].

With cellular decomposition, freespace assumption, the distance transform and

some rules, we present DFS and OSP coverage planning algorithm in chapter 5. In

chapter 6, we present essentially a simplified version of Stentz’s algorithm to minimise

re-planning computations, which is easier to implement, and more efficient for uniform

graphs searches. In chapter 7, we compare DFS with OSP algorithms, and show that

it achieves similar average-case performance against some criteria.

C h a p te r 3

A R eac tiv e C o n tro lle r for

M a n ip u la to r A rm

3.1 In trodu ction

In this chapter, we present a reactive floor-coverage controller that was implemented

experimentally in our laboratory. We did this “proof of principle" experimental work

to familiarise ourselves with the basic issues. Firstly, manipulator arms have tradi

tionally worked in constrained and predictable environments, their ability to work in

field robotics applications where they must cope with higher levels of uncertainty is not

clear. In addition, we are interested in how a reactive controller can achieve coverage

task. Finally, the performance of force sensing in blind groping is also of interest to us.

The experiment was designed to answer these questions, but it is not general because

it is limited to end-effector force sensing rather than the whole arm sensing. The con

troller followed Brooks [10], but extends the purely reactive subsumption architecture

with some ability to plan. The robot worked in an unknown and obstacle-filled envi

ronment. Its task was to explore all free space in its workspace and to stop when it

knew that better coverage can not be obtained.

Different from traditional centralised sequential controller, a reactive controller is

a collection of independent behaviours. Each behaviour only pays attention to those

factors relevant to their particular task rather than general-purpose. For example, if the

task is to avoid an obstacle then the associated control system does not need to know

the shape of the obstacle. To do so, the perceptual burden is distributed, and there is

15

3.1. I N T R O D U C T IO N 16

not complex computation between the sensor data and execution. By tightening the

link between sensor data and execution, the robot can cope with uncertainty quickly.

It is important to our cleaning task because we expect that blind groping will require

the ability to respond quickly.

The different behaviours interact though a suppression mechanism. The mechanism

allows higher level behaviours to override lower level behaviours. Each behaviour can

realize a small task, but with all these behaviours, the robot can realize a more complex

task. The architecture is presented in detail in section 3.2. We used only force-sensor

to interact with environment. Of course, we also need encoder to measure the position

of the robot. We use a value of force sensor to judge that the arm has collided with

obstacles.

Instead of an accurate world map, the workspace of the robot arm is modelled as a

grid-like map. The map provides the system with a global perspective on task execution

which is lacking in the purely reactive system. The lack of an explicit world model was

originally seen as an advantage of subsumption architecture. However, without a world

model, a system can not anticipate a targeted action until that action happens to be

sensed. For our cleaning task, the robot has to explore all free space with a systematic

and efficient manner. The purpose of a world model is twofold: To keep track of the

state of the world, and to describe the effect of an action. So the world map can

potentially decrease unnecessary actions and ensure that all free space is reached.

Planning is to look ahead and to make decisions based on the outcome of actions.

In the past, planning has been studied in isolation. Traditional planning system con

structed plans in a centralised planning subsystem. Planners were seen as logical en

gines which generated a complete, detailed plan. Our planner described in section

3.3 avoids global searches by using only the state of a local patch of the map. The

experiment in section 3.4 proves that the planner can cover all free space.

Our work described in the chapter is based on the following assumption and limi

tations:

1. As long as the value of force sensor is above a threshold, no matter whether

the collision is with obstacles or with a pile of granular material, it is treated as

meeting an obstacle.

3.2. A R C H IT E C T U R E 17

2. Obstacles are stationary. In the cleaning problem, granular material may be spill

from conveyor belts at any time. However, we assume that the spilling process is

much slower than the cleaning process.

3. Only the end-effector of the robot arm meet obstacles.

3.2 A rch itec tu re

The reactive controller followed Brooks architecture [10]. The complete set of be

haviours and their interconnections is shown in Fig 3-1. There are three layers in the

control system. Each layer with actuators can accomplish a special task. Each box is

a module which implements a specific behaviour. Individual layers can be working on

individual goals concurrently, and there is no need to make an early decision on which

goal should be pursued. The suppression mechanism then mediates the actions that

are taken. The objective is to design each behaviour so that the resulting interaction

achieves the cleaning task.

\ayer3

robot
(encoder) heading

heading

layer 1 actuators

ArmMove Record
heading

Planning

Calcu Force

DecidingWander

Figure 3-1: The control system for cleaning

3.2 .1 Layer 1: A v o id in g O b stac les

The lowest level of the control system is for obstacle avoidance. If contact with an

obstacle occurs, then the robot arm will halt, then move away to the position given.

The behaviour of Caleuforce is used to calculate the force from force sensor and get

3.3. A N A LGOR ITHM FOR P L A N N I N G 18

a force with magnitude and direction. The function also checks whether the force is

above a threshold, which implies the arm has contacted an obstacle. If this happens,

the Halt function will immediately stop the robot moving and send a heading for the

arm to move away.

3.2 .2 Layer 2: W ander

Combined with the first layer, layer 2 guides the robot to wander and explore its

workspace without collision. The function of Wander is to generate a heading randomly.

Deciding takes result of Calcuforce and combines with the heading from Wander to

produce a modified heading.

3.2 .3 Layer 3: P lanning

In this layer, decision sequences are generated by the planner based on the environmen

tal situation. Combined with layers 1 and 2, the robot will go to the targeted position

avoiding obstacles. The planner needs a world model to evaluate alternatives. The

model contains enough information to make a decision. With the planner, the robot

can achieve an coverage behaviour or find-goal behaviour, and it stops when better

coverage can not be obtained.

3.3 A n A lg o r ith m for P la n n in g

The section describes a behaviour for covering a 2D grid-like graph that contains un

known obstacles. The algorithm guarantees complete coverage, includes a simple ter

mination condition, and uses a cell-closing mechanism to improve efficiency.

Let the robot’s two-dimensional configuration space be divided into a grid of cells.

Each cell is either occupied or free. The robot’s location is represented by a cell on

the grid. The robot starts with no knowledge of which cells are free or occupied and is

assigned the task of visiting all cells that are reachable from its starting position. For

simplicity, the robots is only able to move to one of the four cells adjacent to its current

position, not diagonally.

3.3. AN ALGORITHM FOR PLANNING 19

3.3.1 Definitions and Assumption

1. Definitions:

• neighbouring cell: one of the four cells adjacent to a given cell

• corner cell: one of four cells diagonal to a given cell. A neighbour to two of

the neighbouring cells

• unreachable cell: a cell that has been found to contain an obstacle or is

outside a predetermined search area (workspace)

• closed cell: a cell that has been visited and is not worth revisiting because

it does not lead to any unvisited cell

• door: the connection between two neighbouring cells

• unexplored door: a door from a visited cell to a cell whose status in unknown

(a cell of unknown status is one that has not been visited and is not known

to be unreachable).

2. Assumption:

One failure to move to a cell is sufficient to consider the cell unreachable (a cell’s

reachability does not depend on the direction it is approached from).

3.3.2 Algorithm

1. Summary of algorithm:

The algorithm looks at the 4 neighbours of the current cell, then eliminates those

which do not exist (are not part of the grid), are known to be unreachable, or are

closed. Of the remaining cells, the algorithm chooses the cell that has been visited

the least number of times. If several cells meet this criteria the algorithm uses an

arbitrary preference scheme(e.g. right-front-left-ba.ck, north-south-west-east, etc.

or even randomly) to choose between them.

Heuristic proof: the scheme is similar to the potential function approach to

motion planning, except that the value of the potential function in each cell

increases with the number of visits. The robot can not remain stuck in a local

well because visits within the well eventually convert it into a peak. Complete

coverage follows from boundedness of the grid.

3.3. A N ALG O R ITH M FOR P L A N N I N G 20

2. T erm ination C ondition:

The termination algorithm keeps track of the number of unexplored doors and

terminates when there are none left. Complete coverage has then been achieved.

Proof: Only an unexplored door can lead to an unvisited cell. If there are none

left, then all reachable cells have been visited.

The termination condition is implemented by a counter that is initialised to the

number of unexplored doors in the starting cell, then incremented or decremented

according to the following two rules.

rule 1: when a cell is visited for the first time, the unexplored doors counter is

incremented for each door that leads to an unvisited cell and decremented of reach

door that leads to a visited cell.

rule2: Whenever a cell is found to be unreachable (i.e. , when an attempt to move

through an unexplored door fails) the unexplored doors counter is decremented

for each door leading from the unreachable cell to a visited cell.

3. C losing cells: A cell can be closed if it has been visited and its closure does not

block access to unvisited cells.

The conditions above can be satisfied in many ways, but we are only interested

in cases, such as the following, that can be determined from local information.

Criteria 1: If a cell has been visited AND three out of four of its neighbours are

unreachable(or closed) then the cell can be closed.

X = unreachable (or closed)
cell * may be closed if visited

Criteria 2: If a cell has been visited and two adjacent neighbours are unreachable

(or closed) AND the opposite corner cell has been visited and is not closed,

THEN the cell can be closed.

X = unreachable (or closed)
V = visited and not closed
cell * may be closed if visited

? X 7
X * 7
7 7 V

? X ?
X * X
7 7 ?

3.4. EXPERIM ENT 21

we use the above criteria in following way:

When a cell is entered:

(a) check its neighbouring cells against both criteria

(b) check its corner cells against both criteria

(c) check its neighbouring cells(again) again both criteria

3.4 E xperim ent

The coverage algorithm was implemented on an industrial Scientific CF-310 SCARA

robot shown in Fig.3-2. A JR3 force-torque wrist sensor was mounted between the

wrist and a spherical end-effector which was used to encounter partially filled plastic

buckets which serve as obstacles. The robot is an industrial robot with four degrees of

freedom, and both base and elbow were equipped with an encoder and a tachometre.

The reactive controller was implemented bv C language on the Yxworks operating

system. The sampling frequency for both position and force sensing is 300 HZ.

The task is to explore the unknown obstacle-filled environment and to move the

end-effector over the all free space to simulate cleaning. In the experiment, we assume

that only end-effector can meet with obstacle rather than the whole arm.

SCARA Robot

Force sensor

Unknow Cylinderical

Obstacles
Spherical

Tool

Figure 3-2: Coverage experimental system

3.4. EXPERIM ENT 22

1. em pty environm ent

Terrain coverage of an empty workspace works well. Figure (3-3) show the re

sulting path of coverage. Attention should be paid to cell a and b. When a robot

moved to the cell a or b, it found a way go to unvisited cell efficiently because of

closing cells rules.

Figure 3-3: Terrain coverage of an empty environment: the robot started at the

cell indicated by the light shadowed triangle, and terminated at the dark shadowed

triangle. The line indicates the path.

2. environm ent w ith obstacles

The figure (3-4) is an example of covering an obstacle-filled environment. Com

plete coverage was obtained in this case with no more than two visits to any

cell.

3.4. EXPERIMENT 23

1 1 ' T '

1 1 2
V

1 ' \
\

1 1 r Y

1 2 .L 2
\
\
\

\ 2 i 1 2
’ ‘ ‘ Y ‘

\....... t.w i 1 ►
i

l ;

/ 2 2 2 A -

i

i ;

2 2 1 .?(l

2 r y . ? /
■ y

2 V > 1.
' / •
//

2 2 . ^ Y

Figure 3-4: Terrain coverage of an obstacle-filled environment: The full circles repre

sent obstacles (buckets) grown by the radius of the spherical end-effector tool. Starting

at the position indicated by the down pointing triangle, the manipulation tool explored

its workspace using the r-f-l-b preference scheme and cell closing . The tool explored

the reachable workspace to the grid resolution shown. The numbers represent the

number of visits to each cell. All cells except the last were closed before termination.

3. C on clusion

The results of the experiment support the conclusion that a manipulator arm

driven by a reactive controller can work well in an unknown obstacle-filled envi

ronment.

Also, a reactive controller with a planner can accomplish a coverage task (to

simulate cleaning).

Finally, we conclude that using only force sensing is a reasonable way to solve

our cleaning problem.

C h a p te r 4

M o d ellin g for G ra p h S earch

4.1 In tro d u c tio n

In this chapter, we present graph search models for our manipulator arm cleaning

problem. These models are more general and more realistic for practical applications

than the problem considered in chapter 3. The chapter begins with a description of the

cleaning problem, then we propose solutions to the modelling problem.

4.2 D e sc r ip tio n o f th e P ro b le m

Our objective is to control a manipulator arm to perform floor cleaning in an unknown

obstacle-filled environment. To be more realistic for practical applications, our investi

gation is based on the following assumptions:

1. Obstacles can interfere with the links of an arm as well as the end-effector.

2. The arm can sense contact with obstacles. Here, we provide robot arm a realistic

sensing capability. As we describe in section 2.3.1, WAM manipulation arm, for

an example, offers a benefit of contacting and interacting with the environment

by using any of its surface. Backdrivability and motor current sensing allow the

manipulator to learn whether a given motion is possible through trial motion.

Based on these two assumptions and some results from chapter 3, we would like to

provide a sensor-based motion planning algorithm for manipulator arms. The cleaning

problem is complicated by the following facts.

24

4.2. D E S C R IP T IO N OF TH E PR O B LEM 25

Firstly, manipulator kinematics brings a new challenge to graph search. For a

robot arm, there exist several arm solutions which are corresponding to the same task

space location. In an environment where only the end-effector can contact obstacles,

a manipulator arm can use either one of them to explore a task position and make a

conclusion about whether the location is reachable. But for the problem in this chapter,

there maybe exist some solutions which can not be reached because unknown obstacles

prevent moving of its links. So, it may be necessary to try each kinematic solution to

answer the cpiestion of whether the location is reachable or not.

Secondly, exploring task space using each arm solution in joint space is a sufficient

condition for complete coverage of the reachable task space vertices, but it is not a

necessary condition. Therefore, efficency is also an issue.

To solve the problem, we propose to

1. Build a manipulator joint space graph

The search task requires a graph on which a manipulator can find a path to a

specified goal or report the goal is unreachable. Because of the manipulator arm

kinematics, there are several arm solutions for the same task space location. For

a redundant robot, the solutions are infinite. It is necessary to build a joint space

model that covers all arm solutions.

2. Provide an algorithm to search in that graph for specific task-space goals. The

algorithm should meet the following requirements:

(a) It is easy to implement.

(b) Its computations can be done efficiently.

(c) It does not need to make assumptions about the shapes of obstacles.

(d) It knows to stop when the arm is certain that a graph search task is finished

or unreachable.

(e) It is can be achieve goal search and coverage problem together efficiently.

In sections 4.3 and 4.4, we present examples of how to build joint-space models for

a two-link planar(non-redundant) and three-link planar(redundant) robot arm. The

4.3. MODEL OF TWO-LINK PLANAR ARM 26

models are undirected and unweighted graph. Algorithms to search on these models in

detail are given in chapter 5.

4.3 M od el o f T w o-link P lanar A rm

Consider the inverse kinematics solution of the arm shown in Figure (4-1), it is desired

to find the joint variables 9\ and 92 corresponding to a given end-effector position and

orientation G.

Figure 4-1: Two-link planar arm

For a end-effector location G(Gx,G y), the following equations can be obtained:

Gj. = (i i cos #1 + (I2 cos($i + #2)

Gy = (i\ sin 6\ + ci2sin(0i + O2)

Squaring and summing the equations yields:

&l -f- Gy = (if T (if T 2(i\(i2 cos92

From which

cos #2 = Gl + Gl ~ a\ ~ «2

2d\(l2

The existence of a solution obviously imposes that —1 < cos ̂ 2 < 1, otherwise the given

point would be outside the arm reachable workspace. If this condition is satisfied then

two solutions for #2 can be computed as

92 = ± arccos G l + G y ~ ° \ ~ (l

2«ifl2
(4.2)

4.3. M ODEL OF TW O-LINK P L A N A R ARM 27

Substituting into equation (4.1) yields an algebraic system of two equations in which

there are two unknown sin 9\ and cos#i, whose solution is

(«1 -f «2 cos #2) Gy — (i2 sin 02Gx
sin =

cos 0\ —

Gl + Gl

(öl + «2 cos 92) Gy + «2 sin 92G:
Gl + Gl

Thus for each 62 solution a unique value of 0\ can be computed

9\ = atan2 (sin 0i,cos$i) (4.3)

From the equation (4.2) above we know that for a each end-effector position, there

are two arm solutions. We call the one with negative 02 ‘elbow up' and the one with

positive 0) 'elbow down' as shown in Figure (4-2).

elbow-up
elbow-down

Figure 4-2: Two arm solutions

If we put all arm solutions in a graph, we can get a initial model of joint space graph.

Figure (4-3) shows the relationship between the task space graph and joint space graph.

The task-space graph T is generated by dividing the task space into uniformly-space

vertices. Edges connect each vertex to its four nearest neighbour. The joint space

graph is then determined with vertices that map onto the task space graph through

the robot kinematics. As shown in Figure (4-3), the joint space graph J is composed

of two sheets that correspond to the two different inverse kinematic solutions: elbow

up and elbow down. The vertices on each sheet are connected to four neighbours as in

the task-space graph. In addition, there are some edges that connect vertices (e.g. i\

and /2), that are not on the same sheet, these edges are determined as follows.

Consider that most manipulators have configurations where the .Jacobian is singu

lar. these configurations are often places where two or more branches of the inverse

kinematic join together. For the robot arm considered these correspond to task space

4.3. M ODEL OF TW O-LINK P L A N A R ARM 28

Figure 4-3: Corresponding relationship between task space graph and joint space

graph

vertices which only have one solution. An obvious position where this occurs is at

the boundary of the workspace of the robot. Our two-link manipulator exhibits two

workspace boundary singularities: One when the arm is fully retracted (the angle be

tween the links is zero), and one when it is fully extended (the angle between the links

is 7T). So there is a possibility to connect two ‘sheets’ J i and J 2 together when the two

solutions pass though kinematic singularities.

A task space vertex may not be exactly on the boundary. So, for most cases, we

assume a. motion of robot arm in Figure(4-4), which is from one arm posture to another.

Obviously, the motion is easier to perform when a vertex is near the boundary.

For a vertex near outer boundary G i, for an example, the easiest motion of moving

from one arm posture to another is to move from one arm solution vertex to another.

In an unknown environment, the same location motion can be achieved when shadow'

region S between the two posture and near the end-effector area, is clear for both robot

arm and end-effector. Hence, it is reasonable to assume that: the smaller the area of

4.3. MODEL OF TWO-LINK P L A N A R A RM 29

Y*

outer boundary A y

rnner

Figure 4-4: Connected two-solution

S. tho more possible the motion can be achieved. Because the area of S depends not

only on the angle yi but also on the length of the robot arm a\ and a2, we define an

edge between the two arm solution vertices if the length of distance OG'1 satisfied

(«1 A « 2) > \ A 2 A y 2 > 0.8(«i A « 2) (4.4)

For a vertex near inner boundary, G 2 for an example, if there is no joint limitation,

there exist the same location motion as near outer boundary. So we define an edge

between the two arm solution vertices if the length of distance OG2 satisfied equation

(4.5). If there is joint limitation, then there don't exist such edges. Here, we only

consider the situation a\ > a2.

(«1 - «2) < \ A 2 A y2 < 1.5(ai - a2) (4.5)

Now, we can connect the two ‘sheets’ Ji , J 2 of Figure (4-3) according to the equation

(4.4), (4.5) and put them into a same ‘sheet’. We call it a ’double sheet’ because it is

formed by two ‘sheets’. So we gain a model of a two-link robot arm as a ’double sheet'.

The model is presented in the Figure (4-5), which is mapped from a task space shown

in Figure (4-6). In Figure (4-6), there are 8 vertices satisfy equation (4.4), 4 vertices

satisfy equation (4.5). Therefore, there are 12 edges between elbow-up solution vertices

and elbow-down solution vertices.

4.4. M ODEL OF TH R EE-LIN K PL A N A R RO BO T ARM 30

y !

A
r-<*—:—<

, i <
►—;—<
\ \ .

>—;—<
, i «

•—!—<
-f-

-o-
*- n 1 . AA
t" - 9 - --g>-- -4--
9 - —© - - - 4-

A, 4- ■4-

<A - - 9 - ->--<
- - -

i—<>-- <

— <£>

-
I

- -<S)

Figure 4-5: Model of two-link planar robot arm

Figure 4-6: The work space for a two-link robot arm

4.4 M o d e l o f T h re e - lin k P la n a r R o b o t A rm

Now, we build a model of three-link planar robot arm in much the same way as building

a model of two-link planar robot arm described above.

A three-link planar robot arm is illustrated in Figure (4-7). It is redundant with

respect to the task of positioning its tool point P. In terms of a minimal number of

parameters, it is convenient to specify position and orientation by the two coordinates

G x, G y and the angle 0, which are related to the tool point position by the following

ecju ations.

4.4. MODEL OF THREE-LINK PLANAR ROBOT ARM 31

Figure 4-7: Three-link planar arm

0 — + $2 ~t~ $3 (4.6)

Gx = Px - Ü3 cos 0
(4.7)

G*y = Py — 03 sin 0

Therefore, for a given vertex P{PX) Py) , if 0 is known, then Gx and Gy is known.

Variables 6 1 and 62 can then be computed by equation (4.3), (4.2) presented in the

section (4.3). Obviously, for a given tool position P, there exist infinite solutions to

the equation (4.7) with 0 serving as an independent parameter. In order to get a joint

space graph, 0 is artificially specified as 0, tt/4, 7t/ 2 , ..., 7tt/4. For a each 0, there may

be two arm solutions associating with elbow-down and elbow-up (Here, elbow-down

and elbow-up is based on link 1 and link 2). Hence, there may exist 16 arm solutions

for a given end-effector position Figure (4-8).

Let us focus careful attention on Figure (4-8). Firstly, there are two parts Ji, J2

in it. J i includes all elbow-down solutions and J2 includes all elbow-up solutions.

Secondly, each part has 8 ‘sheets’ respectively. Thirdly, each ‘sheet’ is associated with

a specified 0. In addition, each task space vertex has 16 joint space vertices that map

onto it. Vertex a is an example. Finally, vertical vertices in each part connect to each

other. Table (4.1) presents an explanation of Figure (4-8).

Similar to the way that we built the model of the two-link robot, we put elbow-up

and elbow-down solution for the same specified 0 together and define an edge between

the two sheet vertices when they satisfy the condition equation (4.4) and equation (4.5).

So we put J\\ and J21 in a ‘sheet’ and get the first ‘double sheet’ J\ in joint space J ,

put J12 and J22 in a ‘sheet’ and get the second ‘double sheet’ J2 in joint space J ...

4 .4 . M O D E L OF T H R E E -L IN K P L A N A R R O B O T A R M 32

J

T

Figure 4-8: Relationship of joint space and task space

‘sheet’ 4> arm ‘sheet’ 0 arm

J \\ 0 elbow-down •hi 0 elbow-up

J\2 7t/4 elbow-down J 22 7 r /4 elbow-up

J 13 7t/2 elbow-down J 23 7t/2 elbow-up

■J 14 37t/4 elbow-down J 24 37t/4 elbow-up

J 15 7T elbow-down <^25 7T elbow-up

J 16 57t/4 elbow-down J 26 5tt/4 elbow-up

J 17 3tt/2 elbow-down •hi 3tt/2 elbow-up

J 18 7tt/4 elbow-down J 28 7tt/4 elbow-up

Table 4.1: Explanation of joint space

put J is and J28 in a ‘sheet’ and get another ‘double sheet’ Jg in joint space J. This

finally provides a model of a three-link arm.

Figures (4-9)- (4-16) show how each of the ‘double sheet’ is formed. In these figures,

the left figure represents the task space. For a three-link arm shown in Figure (4-7),

the two non-shadowed circle rings show the position of G which satisfied the equation

4.4. M ODEL OF TH R EE-LIN K PL A N A R RO BO T A RM 33

(4.4) and equation (4.5). If the robot arm moves its work space with G in the two

non-shadowed circle rings and keeps the same </>, then we get the other two shadowed

circle rings which shows the end-effector position P . Therefore, if a vertex is in the

shadowed circle rings, that means the task space vertex has two connected vertices

(elbow up vertex and elbow down vertex) in its joint space graph. The right figure

shows its associated ‘double sheet’.

* Y4 y !
© -----------© ------------------------------- © -------------<9 '

© - - ■

— :— < — :— < — i—{
A',

— :— <

— ® —

— i—1 ;

AT
• —

a ~,— © — - - - - © - -

i t i ; i /
< 9 —

J k • ä

1
- - © —

& — ■ - - - ® - -A:p h - © ---------

A", , i t i :

. ' <

* *
V ' A , V " P T l

A s k — ___ - -
1 i 1

>-------------- >------------- « ►------------- ►------------- < >— * ►

I

■ - ©

Figure 4-9: Sheet l, <f) = o

4.4. MODEL OF THREE-LINK PLANAR ROBOT ARM 34

Figure 4-10: Sheet 2, $ = tt/4

Figure 4-11: Sheet 3, <f> = ■ n j (l

4.4. M ODEL OF THREE-LINK P L A N A R RO BO T A RM 35

Figure 4-12: Sheet 4, <j> = ‘Sn/4

Figure 4-13: Sheet 5, (j) = n

4.4. MODEL OF THREE-LINK PLANAR ROBOT ARM 36

Figure 4-14: Sheet 6, — bn/4

© -------- © --------- © — -©----------------------

4

© - - ■

4 — ;— 4 ►— r H

A:\
>—i—< \—i—4

A",
>— i— (4 ;

- - © - - - - - - -

© - - ■

» j *
- - - 4) — - - - - - - - -

1 ’ ! '

A .

Yl 1 1 • i i / t 4 ,

A", A t
A:

> j (
- - Ö - -

A t
A i — ~(§h —

* ! <

*A tu A ►- - - - - - - - - - - 4 ►

Y !
© ------ ©© ------- ©-------© ------- ©

i4 — ;— 4 4 — 1— 4 4 — 1— <

— & —

4 — ;— 4 4 — |— < » :

Ä :
^ j <

f t "

- ~ ■ 0 ” — - 4 —
* i ’

A n
f -

. i . .

/ r , ^ ,

-

1 1 1M %
1 : 1

A : - f ”
' - “ © - - - - - -

- -

/ T 4 4

— i - -

►- - - - - - - - - - - 4

— 4 - - 1 A

4 A

■ - t y

4

Figure 4-15: Sheet 7, <fi = Zn/2

4.5. D ISC U SSIO N 37

4.5 D iscu ss io n

In this chapter, vve have developed a method for determining joint-space graph models

of manipulators. In the models, the vertices represent configurations of the manipula

tor. The edges represent motions between configurations. And at least two joint space

vertices map on a task space vertex. In such a manipulator graph, several vertices map

onto the same task space goal. That means when a task space vertex is specified as

goal, then a set of joint-space vertices which map on the task space vertex are treated as

goals. Once the task space vertex is reached, the other vertices that map onto the same

task space position are no longer goals. So, a graph search problem for a manipulator

can be formulated as following:

T h e F ind-goal P rob lem

1. Make a task space graph and identify the goal vertices on it.

2. Use inverse kinematics to identify the joint space model.

3. Identify all joint-space vertices that map onto the task-space goal vertices as goal

vertices in the joint-space graph.

4.5. D ISC U SSIO N 38

4. Initialise the current vertex of the joint-space graph to the initial configuration

of the manipulator.

5. Set the status of all vertices to unknown.

6. Apply a goal-seeking algorithm to the joint-space graph

T h e C over-goal P rob lem

1. Make a task space graph and mark all vertices as goals

2. Use inverse kinematics to identify the joint space model.

3. Mark all joint-space vertices as goals.

4. Initialise the current vertex of the joint-space graph to the initial configuration

of the manipulator.

5. Set the status of all vertices to unknown.

0. Apply the goal-seeking algorithm to the joint-space graph

7. While reachable goals remain

(a) Remove the found task space vertex from the set of task space goals

(b) Re-identify the joint space goal vertices

(c) Apply the goal-seeking algorithm to the joint space graph

For a two-link planar arm we get a 2D joint space graph, while three-link planar

arm we get a 3D joint-space graph. It is easy to imagine that the joint-space graph

should be more complicated for 4 or more links manipulator. However, as long as the

manipulators motion can be modelled by a graph, then a similar graph-search algorithm

can be developed to suit them all. We use neighbours to indicate edges that connect

vertices. All neighbours are assumed to be equally close, so the resulting graph is

unweighted. If an edge is found closed, then its neighbour is removed. The advantage

of the data structure is:

1. It accurately represents models of different shape in 2D or 3D.

2. It can handle both local and global maps.

4.5. D ISC U SSIO N 39

3. It does not rely on the assumption that the model is true to square, as invariably

it is not.

4. It leads to efficient algorithms for graph searching.

5. It is easy to integrate sensor data with simple algorithms for map construction,

adaption and extension.

In the next chapter, we describe our algorithms for sensor-based graph searches

that are not specific to any particular model.

C h a p te r 5

S en so r-b ased M o tio n p la n n in g

5.1 In trodu ction

Sensor-based motion planning is important for robots to work in unknown environ

ments. Because such robots have no a priori knowledge of the world, they must replan

motion on-the-fly as new information is acquired. It is different from ordinary mo

tion planning because the robot does not have full information about the environment.

Sensor based planning must weave the latest sensor information into robot’s planning

process, and each search is not isolated. When a new obstacle is encountered, robots

will replan based on the current state of environment which has probably only changed

incrementally with respect to its previous state. Algorithms to support such “sensor-

based motion planning” can be compared with respect to minimising robot motion and

minimising online computation.

In this chapter, we introduced two sensor-based motion planning algorithms: The

Optimistic Shortest Path Algorithm (OSP) and The Pruned Depth-First Search (P-

DFS).

The OSP algorithm, such as [6] and [8], rely on the following shortest-path strategy:

determine the path from the current position to the goal that appears to be shortest,

based on current knowledge combined with the free-space assumption. Then move along

it. When new obstacles are encountered, the “shortest path” may need to be revised,

but the policy (to follow it) remains the same. OSP is popular because it is known

to converge for finite graphs and to provide good average-sense performance (not in

a worst-case). Our OSP algorithm described in section 5.4 inherits the shortest-path

40

5.2. D EFIN ITIO N S 41

strategy and focusses on reducing on-line computation by an efficient graph marking

and updating algorithm detailed in chapter 6.

The OSP algorithm provides good average-sense performance, however, its worst-

case performance is less tightly bounded than any depth-first search (DFS). Further

more, there is no evidence that OSP is optimal against any specific criteria. DFS

algorithms are practical for robots to physically implement because they require no

“jumps” by the search agent. DFS algorithms cover graphs with no more than two

traversals of each edge in the spanning tree they generate. This bounds the cost of

a goal search to twice the weight of the heaviest spanning tree. No search algorithm

can provide a better worst-case performance bound. Nevertheless, DFS average perfor

mance is thought to be inferior to OSP because, even when guided by a heuristic, an

early mistake can force DFS to explore large areas of the graph that are distant from

the goal.

In section 5.5 we present a DFS algorithm that we believe has average performance

comparable to OSP. The algorithm combines DFS with a shortest-path heuristic that

has a self-blocking property that keeps the robot from exploring subgraphs that are

obviously void of goals. We imagine that it is “pruning” fruitless branches from the

tree search and have named it Pruned DFS(P-DFS). P-DFS is still a depth-first search,

but not a complete one. Also, we use an efficient graph marking and updating algorithm

to reduce computation, which is the same as the one used in OSP algorithm.

The efficient graph marking and updating algorithm provided to both OSP and

DFS algorithms is essentially a simplified version of Stentz’s D* algorithm. But it is

easier to implement and are more efficient for uniform graphs searches.

This chapter introduces the two algorithms respectively in section 5.4 and section

5.5. Our efficient graph marking and updating algorithm is the same for both algo

rithms, so we introduce it for both in chapter 6

5.2 D efin ition s

• visited vertex: a vertex that is either the current vertex, or has been the current

vertex at one time.

• unvisited vertex: a vertex that has never been the current vertex.

5.3. S U M M A R Y OF OSP A N D P-DFS 42

• goal vertex: any vertex that is desirable to reach (there may be one, or many).

• unknown edge: an edge whose motion has not been tried.

• open edge: an edge whose motion has been successfully completed.

• closed edge: an edge whose motion has been tried and failed.

• neighbour: two vertices are neighbours if they share an un-closed edge(an edge

with status unknown or open).

• source neighbour: the neighbour that the current vertex was first entered from.

• mark: an integer assigned for motion planning purposes.

• high neighbour: a neighbour with a higher mark

• low neighbour: a neighbour with a lower mark

• level neighbour: a neighbour with the same mark.

5.3 Summary of OSP and P-DFS

Implementation of these algorithms is very similar. Let each vertex V be marked with

the length of the shortest path from the current vertex to the goal through v. The

freespace assumption should be used and, for P-DFS only, visited vertices should be

treated as obstacles. Given a correctly marked graph the motion planning algorithm

for each step is:

OSP: If one or more neighbours are marked, then try to move to the lowest one.

Else stop (goal is unreachable).

P-DFS: If one or more neighbours are marked, then try to move to the lowest one.

Else search the trunk of the visited tree for marked neighbours of visited vertices. If

found, then backtrack to the first one. Else stop (goal is unreachable).

5.4 The Optimistic Shortest Path Algorithm

We are interested in the OSP algorithm because it has good average-sense performance.

Furthermore, although depth-first search has the best worst -case performance bound,

5.4. T H E O P T IM IS T IC SH O RTEST PATH A LG O R ITH M 43

it is arguable that this bound may be impractical for typical problem. In addition, other

algorithms may out perform it in an average sense. The main drawback of the depth-

first algorithm is that it artificially constrains motion to a tree. If the most optimistic

move is to a visited neighbour, the directed depth-first algorithm will not take the

most optimistic move until it has exhaustively searched the subtree of each unvisited

neighbour. In the OSP algorithm, each motion is the most optimistic for the current

state of information. Because motion is not constrained to a tree, optimal worst-case

bounds on termination have been sacrificed. However, the algorithm is guaranteed to

terminate for finite graphs, and it is reasonable to expect that it will perform well,

especially in relatively uncluttered environments.

1. M arking algorithm

• Given: a graph with edges in any state (open, closed, unknown), vertices in

any state (visited, unvisited), and a set of goal vertices on that graph.

• Consider that all vertices are initially unmarked

• Mark all goal vertices with distance = 0

• set current-distance =0

• while there exist unmarked neighbours of marked vertices

- identify all unmarked neighbour vertices

- mark them with distance = current-distance + 1

- set current-distance = current-distance + 1

2. M otion planning algorithm

The OSP algorithm can be described as follows:

5.5. THE PRUNED DEPTH-FIRST SEARCH ALGORITHM 44

mark the graph using the marking algorithm

while the current vertex is not a goal vertex

if current vertex has no marked neighbour

stop(terminate because no goals can be reached

else

go to a lower mark vertex

if goal reached

stop

else update graph with new-found closed edge

end

end

end

5.5 T h e P ru n e d D e p th - f irs t S ea rch A lg o r ith m

1. Three strategies to the P-DFS algorithm

Interestingly, the attractive worst-case performance bound that DFS algorithms

enjoy in goal seeking is achieved without using knowledge of the goal’s loca

tion. An undirected depth-first search (using Tarry’s algorithm: backtrack if all

neighbours of current vertex have been visited, otherwise move to an unvisited

neighbour) will stumble on the goal in the process of systematically exploring the

reachable subgraph. Furthermore, any heuristic can be added to choose between

unvisited neighbours without disturbing the worst-case performance bound.

To improve average performance, we use three strategies in the P-DFS algorithm:

1) marking only unvisited vertices 2) pruning rule 3) a goal-seeking heuristic.

(a) Marking algorithm:

The graph marking algorithm is modified to propagate marks only through

unvisited vertices. Each vertex that can reach a goal through a path of only

unvisited vertices (under the optimistic assumption that all unknown edges

are open) is marked with a distance. The distance represents the number of

edges in the shortest unvisited path to the goal.

5.5. THE PRUNED DEPTH-FIRST SEARCH ALGORITHM 45

• Given: a graph with edges in any state (open, closed, unknown), vertices

in any state (visited, unvisited), and a set of goal vertices on that graph.

• Consider that all vertices are initially unmarked

• Mark all goal vertices with distance = 0

• set current-distance =0

• while marked vertices have unmarked and unvisited neighbours

- identify all unmarked and unvisited neighbours of vertices that have

been marked

- mark them with distance = current-distance + 1

- set current-distance = current-distance + 1

It is obvious that the marking algorithm has the following characters.

i. If a vertex is unmarked and unvisited, then there is no path from it to

any goal vertex (even under the optimistic assumption that all unknown

edges will be open).

n. If any vertex is marked, then all of its unvisited neighbours will be

marked, (proof: the marking algorithm propagates marks through un

visited neighbours).

iii. All marked vertices, except goal vertices, have at least one neighbour

with a lower mark than itself.

The reason for not allowing visited vertices to be marked is that the tree-

structured search does not allow them to be used. Although the joint-space

graph will generally contain loops, the chronological-backstepping algorithm

refuses to use any. The algorithm imposes an artificial tree structure on

the paths that it will move on. For example: when the current vertex

moves, it may find new neighbours that have already been visited, This

is an opportunity to make a loop, but the algorithm won’t try to go to these

neighbours because it only allowed to return to previously-visited vertices

through chronological back-steps.

The chronological backstepping algorithm produces the tree-structured graph

when searching the graph. The search tree is not unique and is not known

ahead of time. The search tree evolves starting from the initial vertex (the

5.5. TH E PR U N E D D E P T H -F IR S T SEA RCH A LG O R ITH M 46

tree root) and grows whenever an unvisited neighbour is successfully moved

to. Each visited vertex can eventually be associated with a branch of the

tree (possibly null) that is linked to the root only through itself. However,

this branch is not defined when the vertex is first visited. It is fully de

fined when the vertex is revisited through backstepping. If the chronological

backstepping algorithm returns to a vertex, then it returns from a branch

of the search tree that has been exhaustively searched without finding a

goal. The reason is because the algorithm only returns to vertices through

chronological back-steps.

This marking scheme which avoids loops leads to the possibility that some

unvisited vertices(those which are surrounded by visited vertices) may not

be marked.

(b) P ru n ing rule: ignore unvisited neighbours that are cut off from the goal by

a subgraph of visited vertices.

Because a tree search cannot cross itself(except when backtracking), it serves

no purpose to explore subgraphs that can only reach a goal through already

visited vertices. P-DFS still provides a depth-first tree search, but not a

complete one. It avoided searching fruitless branches.

The to-be-ignored neighbours (roots of fruitless branches) are easily identi

fied when computing shortest paths for the goal-seeking heuristic: they are

the ones that provide no path to the goal. Also they will be unmarked by

the modified marking algorithm.

(c) heuristic: move to the unvisited neighbour that is nearest to goal under the

freespace assumption. By nearest we mean the one that is on the shortest

path of unvisited vertices from the current vertex to the goal.

Visited vertices are treated as obstacles because a DFS can only use them

in backtracking. This heuristic implies that P-DFS uses the same strategy

as OSP. But it does so within the constraints imposed by a tree-structured

search. So P-DFS improves performance without disturbing the worst-case

bounds.

5.5. THE PRUNED DEPTH-FIRST SEARCH ALGORITHM 47

2. Algorithm

The P-DFS algorithm can be described as follows:

mark the graph using marking strategy

while the current vertex is not a goal vertex

if all neighbours of the current vertex are unmarked

search the tree of visited vertices for marked neighbours

if none found

stop(terminate because no goals can be reached)

else

back step to first visited vertex with a marked neighbour

end

else(the current vertex has at least one marked neighbour)

try to move to the marked neighbour that has the lowest distance mark

(if several neighbours share the lowest distance, them choose arbitrarily)

if successful

update current vertex

update graph marking

end

end

end

The P-DFS algorithm has the following characters.

(a) All moves, or attempted moves are either to marked vertices or are chrono

logical backsteps.

(b) The graph marks have to be updated whenever the robot moves success

fully (because an unvisited vertex becomes visited), but not when it discov

ers a closed edge(proof: the current vertex does not need remarking because

it is already an unmarked visited vertex, The marked vertex does not need

remarking because its low neighbours remain unchanged by the edge closure)

(c) The algorithm terminates only when a goal is reached, or when the graph

marks indicate that all goals are unreachable

5.5. THE PRUNED DEPTH-FIRST SEARCH ALGORITHM 48

(d) Chronological backstepping imposes a tree-structure on the way the graph

is traversed. Graph edges that are not consistent with the tree are never

tried. (Proof: no attempt is made to move to a visited neighbour, except

through backstepping).

(e) If the reachable graph has N vertices, then the algorithm will terminate after

no more than 2(N-1) successful edge transversal. (Proof: a tree-structure

graph with N vertices has N-l edges. Chronological backstepping ensures

that no edge will be traversed more than twice).

(f) If the reachable graph has N vertices and M edges (including edges that

join to unreachable vertices), then the total number moves attempted before

termination is bounded by M+N-l. (Proof: The coverage tree of the reach

able graph will have N-l edges. This leaves M-(N-l) edges for unsuccessful

moves).

(g) The algorithm can terminate without complete coverage of the reachable

graph if marking indicate that all goals are unreachable

C h a p te r 6

E fficien t g ra p h m ark in g a n d

u p d a tin g

6.1 In trodu ction

Different from ordinary searches in which each search is isolated, sensor-based planning

is a sequence of searches that are very similar to each other. When a new obstacle is

encountered, the new search will differ from the previous search only by an incremental

change to the environmental model (graph). This implies that there is a potential

to reduce computation if data from one search can be reused in the next, rather than

regenerated from scratch. Recognising this, Stentz [8] modified the A* search algorithm

to incrementally repair, rather than regenerate, its field of optimal-path pointers.

In the chapter, we present a new algorithm to minimise replanning computations

on uniform graphs by incrementally repairing data. This algorithm is essentially a

simplified version of Stentz’s D* algorithm that it is easier to implement and are more

efficient for uniform graphs searches. The algorithm is provided to both OSP and DFS

algorithms.

The principles we use to reduce marking are essentially the same as Stentz uses in

his D* algorithm [8].

1. mark no more than is immediately needed for motion planning

2. when new information changes the graph, update only the vertices that are ef

fected

49

6.2. S U M M A R Y OF ALGORITHM 50

6.2 S u m m a ry o f a lg o r ith m

We use propagation to initially generate marks, to clear marks, and to remark vertices.

Changes are seen as being triggered by events that directly invalidate the mark of a

small number of easily identified vertices that we call invalid roots (see below). From

the invalid roots, changes can potentially propagate through large regions that we

call invalid subgraphs. The correction process has two stages: 1) identify the invalid

subgraphs and clear marks from them, then2) re-propagate marks back into these

subgraphs from correctly-marked neighbours. To minimise computation the initial

marking and subsequent clearing/ re-marking processes are only done to the extent

required to plan the robot’s next motion (until a neighbour of the current vertex is

marked).

6.3 In c re m e n ta l re p a ir a lg o r ith m in d e ta il

The concepts of dependency and support are useful for describing the algorithm. Any

marked vertex (other than the goal) has at least one low neighbour (a neighbour with

a lower mark than it has). If a vertex has only one low-neighbour than it depends on

that neighbour for its mark (recall how marks are generated by a breadth-first search

from the goal). Such dependency can propagate through many vertices. Each vertex

is supported by its low neighbours in the sense that it depends on them for its mark.

Mark corrections are triggered by different events in the two search algorithms, but

in either algorithm the invalid rots are easily identified:

OSP: if the current vertex has only one low-neighbour and fails in an attempt to

move to it. Then that edge is removed from the graph and the current vertex is left

unsupported. It is the invalid root.

P-DFS: if the current vertex moves to a marked vertex, then that vertex becomes

visited and its mark must be cleared. This leaves any vertices that depended on the

newly-cleared vertex unsupported. They are the invalid roots.

Once the roots of the invalid subgraph have been identified, the correction process

is to identify and clear marks from the invalid subgraph, then re-propagate mark from

supported neighbours(if any exist) .

M ark clearing is accomplished through incremental propagation. A stack called

6.3. INCREM ENTAL REPAIR ALGORITHM IN DETAIL 51

clear.stack is defined to keep track of undone clearing.

clear_stack = stack of all marked vertices that have no low-neighbours (low marks

on top)

The following algorithm performs one incremental propagation of the clearing pro

cess. Note that in addition to clearing marks, clear.mark identifies supported neigh

bours of the newly-cleared vertices and places them in a stack called mark_stack.

clear-next__
clear-frontier = pop lowest vertices from clear_stack

more_to_clear = dependent neighbours of clear-frontier

marked-boundary = other(non- dependent) marked neighbours

of clear-frontier

clear marks from clear-frontier

insert more_to_clear into clear_stack

insert marked-boundary into mark_stack

Re-marking: Suppose that marks have been cleared from an invalid subgraph and

the supported neighbours to that subgraph have been identified and placed in a stack,

called markstack.

mark_stack = stack of all marked vertices that have unmarked neighbours (low

marks on top)

Then remarking can be accomplished by repeated application of the following algo

rithm which provides one incremental propagation of marks.

mark-next_____________________________________
mark-frontier = pop all lowest- vertices from mark_stack

remove unmarked vertices from mark -frontier

more_to_mark = unmarked neighbours of mark-frontier

mark more_to_mark with mark(mark-frontier) + 1

push more_to_mark onto mark-stack

Interleaving marking and clearing. Now we wish to interleave these algorithms

so that marking, clearing, and re-marking is only done to the extent immediately re

quired for path planning. The following function, propagate_marks, incrementally prop

agates marks once using mark_next, but before doing so it applies clear.next as many

6.3. INCREMENTAL REPAIR ALGORITHM IN DETAIL 52

times as necessary to ensure that enough vertices are cleared for one correct incremen

tal propagation of marks. If the graph has been exhaustively marked, propagate_marks

returns marking-complete = 1. Function lowest() in line 5 returns the lowest mark in

the stack.

marking complete = propagate marks()
while mark-stack = empty h clear_stack ± empty

clear_next

end

if ma.rk_stack ^ empty

while clear_stack ^ empty&

lowest(clear..stack) <= lowest (mark.stack) + 2

clear.next

end

mark_next

marking-complete = 0

else

marking-complete = 1

end

The condition italicised in line 6 insures that each vertex in clear_stack is at least 3

edges (and 2 clear vertices) away from each vertex in mark_stack when mark-frontier

is propagate (see theorem below). This buffer is a little bigger than necessary, but it

simplifies the propagation of clear-frontier if there is at least one cleared vertex between

it and mark-frontier after mark-frontier is propagated.

Theorem 1: condition (*) insures that there are at

least N-f 1 edges and N clear vertices between any vertex

in clear_stack and any vertex in mark-frontier,

lowest (clear_stack) > lowest (mark.stack) + N (*)

Proof of Theorem

1. After re-marking, all marks in an invalid subgraph must increase. (Proof: The

free space assumption implies that marks can never decrease. Marks in an invalid

6.3. INCREM ENTAL REPAIR ALGORITHM IN DETAIL 53

subgraph can not remain unchanged because that would imply a shortest path

after correction is the same as one before which contradicts the fact that all

shortest paths were previously undermined. Therefore all marks in an invalid

subgraph must increase.)

2. Let M = the current mark of all vertices in mark-frontier.

3. 1. implies that the maximum mark that a vertex in mark-frontier could have had

before correction is M — 1.

4. Condition (*) ensures that all vertices in clear-frontier currently have a mark of

M+N. Note the marks in clear-frontier are not yet corrected.

5. 3. and 4. imply that the difference between marks in clear-frontier and mark-frontier,

before any marks were corrected, was at least (M -f n) — (M — l) = N + 1. Thus

there were at least N+l edges between them.

G. Edge closures never decrease the distance between vertices, therefore there must

be at least N +l edges between clear_stack and mark-frontier if condition is ob

served.

Integration. The following pseudo-code shows how the marking algorithms are

integrated into the sensor-based motion planning algorithms.

6.3. INCREMENTAL REPAIR ALGORITHM IN DETAIL 54

OSP Sz P-DFS with incremental data repair_______
mark all goals with zero

mark _stack = goals;

clear_stack = ()

marking-complete = 0

while goal not found

while current vertex has no marked neighbours

and not (marking .complete)

marking-complete = propagate_marks()

end

if current vertex has a marked neighbour

try to move to the lowest neighbour

if successful

update graph and add invalid roots to

clear_stack *

else

update graph and add invalid roots to

clear_stack !

end

elseif marking-complete &; back-search not complete *

backtrack to first unvisited neighbour *

else

stop goal are unreachable

end

end

* applies only to P-DFS

! applies only to OSP

C h a p te r 7

E valuation of A lgorithm s

th ro u g h S im ulation

7.1 In trod u ction

Once the sensor-based motion planning problem is reduced to a graph search, algo

rithms to guide the search can be compared with respect to minimising robot motion

and minimising online computation. In chapter 5, we introduced two algorithms, the

OSP and the P-DFS, to solve the problem of robot motion planning. The OSP al

gorithm is popular because it is known to provide good average-sense performance:

according to one source [7], it preformed 45% better than the DFS on average. How

ever, DFS algorithm is known to provide better worst-case performance bounds. In

this chapter we show that our DFS algorithm, P-DFS, has average-sensor performance

comparable to DFS and argue that this is the consequence of the innovative pruning

rule. We also evaluate the performance of the scheme for efficient graph marking that

was described in chapter 6.

Therefore, in this chapter we try to answer three questions:

1. What is the benefit of dynamic marking and is it different for the two algorithms?

2. What is the benefit of the “pruning rule” ?

3. How much better does the OSP perform than the P-DFS algorithm ?

The first question is addressed in section 7.2. Section 7-3 shows the result of the

55

7.2. THE BENEFIT OF DYNAMIC M ARKING 56

benefit of the “ pruning rule” . The third question is difficult to answer because each

algorithm is sometimes better than the other and performance depends on factors that

are largely unknown and difficult to study analytically. Nevertheless, we try to answer

the question by comparing the performance of the algorithms for a large number of

simulations in section 7.4. The comparison is a little messy, because we, according to

our floor cleaning problem, conduct several sets of simulations to try to isolate the effect

of a variety of factors: graph size (7.4.2), obstacle size (7.4.3), density of feasible paths

(7.4.4) and goal search vs. coverage problem (7.4.5). and multiple inverse kinematic

solution for manipulator (7.4.6). All results support the conclusion that OSP performs

about 5% better than P-DFS, regardless of any of these factor.

7.2 T h e B enefit o f D ynam ic M arking

Sensor-based searches are different from ordinary searches in that each search is not

isolated, but rather, one in a sequence of search that are very similar to each other.

When a new obstacle is encountered, the new search will differ from the previous search

only by an incremental change to the environmental model (graph). This implies that

there is a potential to reduce computations if data from one search can be reused in

the next, rather than regenerated from scratch. This section shows the benefit of our

scheme for incrementally repairing data on uniform graphs search (chapter 6). Recall

that this algorithm is essentially a simplified version of Stentz’s D* algorithm that it is

easier to implement and more efficient for uniform graph searches.

To evaluate the reduction in marking compared with remarking from scratch, we

counted the number of marks made for 1000 random searches on graphs of 5 different

sizes. Figure 7-1 shows the on-average factor of improvement for each graph size. It

is clear that the two algorithms reduce marking by a large factor that increases with

graph size. For graphs ranging in size from 100 to 3600 vertices, dynamic marking

reduced marking by a factor about 20 to 200 times. This result is consistent with

results presented in [8] for the D* algorithm.

Figure 7-2 compares the average number of marks made by the efficient version

of the OSP to those made by the efficient version of the P-DFS for the same set of

graph searches. Results show that the two algorithms require about the same amount

7.3. THE BENEFIT OF PRUNING 57

200

180

160

140

I 120
5

I 100

I
I 00

60

40

20

0

Figure 7-1: Shows that the proposed algorithms greatly reduce marking compared with

re-marking from scratch

Do s p

IP -D F S

graph size (number of vertices)

of marking , regardless of grapli size. Therefore, in term of computation, the two

algorithms are the same.

graph size (number of vertices)

Figure 7-2: Shows that marking is about the same for OSP and P-DFS when the

proposed algorithms are used

7.3 The Benefit of Pruning

The “pruning rule” allows a robot to ignore unvisited neighbours that are cut off from a

goal by a subgraph of visited vertices. Because a tree search cannot cross itself (except

when backtracking), it serves no purpose to explore subgraphs that can only reach a

goal through already visited vertices. We believe the rule can improve the performance

7.3. THE BENEFIT OF PRUNING 58

of a robot guided by the DFS algorithm.

Figure 7-7 illustrates pruning. A robot was searching for goal G starting from S

without knowledge of the graph at the beginning. When it reached the vertex a in

subgraph g, the lower-right subgraph comprised by vertices b, c, d, e and their edges

was cut off from the goal by the path of visited vertices and became unmarked. (

vertices c, d and e are unmarked before the sub-figure because the algorithm marks

no more than is immediately needed for motion planning). Then P-DFS ignored them

and backtracked to the vertex which it first come from. A no-pruning DFS would have

to explore the subgraph before backtracking.

Figure 7-3 compares the total number of moves (or path length) for P-DFS and

DFS applied to 750 randomly generated search problems on a grid of size 20 * 20. The

searches were generated by a random placement of the goal and the robot within a

graph generated by cutting various densities of randomly selected edges. The result

shows “pruning rule” improves the performance of DFS dramatically: P-DFS performs

about 40% better than DFS without pruning on average.

Moves DFS without pruning

Figure 7-3: Performance of the P.DFS vs the DFS without pruning

Figure 7-4 shows the comparison of the OSP versus the DFS algorithm. The exper

iment environment and method are exactly the same as Figure 7-3. The OSP presents

45% better average performance than the DFS: the result that we find is consistent with

7.4. OSP VS. P_DFS 59

remarks we have seen in the literature [7]. Combined, these results suggest that pruning

dramatically improves the average-sense performance of DFS to a level comparable to

OSP.

Moves DFS

Figure 7-4: Performance of the OSP vs the DFS without pruning

7.4 O SP vs. PJD FS

The results in last section suggest that the P-DFS algorithm presents a comparable

performance to the OSP algorithm. In this section, we try to detect whether the

performance of the two algorithms vary with graph size, obstacle size and the density

of feasible paths. OSP always moves along the shortest path based on current knowledge

with the free-space assumption and this offers a good average-sense performance. On

the other hand, P-DFS goes to unvisited vertices until a branch is found fruitless and

guarantees a covering graph with no more than two traversals of each edge in the

spanning tree it generates. However, these advantages are not absolute. In fact, each

algorithm can sometimes be better than the other. For this reason, the section begins

with examples of better performance to the two algorithms respectively. Then we

compared them by a numerical simulations.

7.4.1 E xam ples of Perform ance to th e Two A lgorithm s

To illustrate how each algorithm can sometimes be better than the other, a robot is

employed to explore two similar environments shown in Figure 7-5. Figure 7-5(b)is

7.4. OSP VS. P_DFS 60

formed by moving one obstacle from Figure 7-5(a). As a consequence, the two al

gorithms present an opposite result: OSP performs better than P-DFS in the 7-5(a)

environment, while it performs worse in the 7-5(b) environment.

Figure 7-5: Examples of grid-based environment, the shadowed areas represent ob

stacles. In the two similar environment , the OSP and P_DFS algorithms present

different performance

Figure 7-6 and Figure 7-7 show the performance of a robot guided by the two

algorithms to explore the environment of Figure 7-5(b). At the beginning , the robot

know nothing about the environment (The start position is S, and goal is G). The

robot driven by the different algorithm chooses the same path from sub-figure a to e.

However, OSP provides better performance due to going back to the shortest path at

sub figure e, while the P-DFS find a path to goal only after visiting all of the unvisited

tree branches.

Conversely, the P-DFS algorithm performs better than the OSP algorithm in right

environment shown in Figure 7-5(b). Figure 7-8 shows a robot guided by P-DFS succeed

to find a path in the branch on which it stand to the goal, while one driven by the OSP

in Figure 7-9 reaches the goal after several trail searches.

7 .4 .2 Perform ance V ariation w ith Graph Size

To investigate whether the performance of the two algorithms vary with graph size, they

are applied to 1000 randomly generated search problems on graph size 10*10, 20*20 and

30*30 respectively. The start vertex and the goal are also placed randomly. Figure 7-10,

Figure 7-11 and Figure 7-12 present nearly the same graph and the average difference

(a) (b)

7.4. OSP VS. P_DFS 61

© — 0 — (5>— 10

0— 0— © © — 0— ©

© — © — •0 — © — © © — ©

• ■ - 0—©—0 ©—0

© — 0— (5)— ©

© — © — ©

•• 0—O—00—©—0 0—O—0

•••0—O—0 0—Ö—0

visited edge visited vertex

closed edge

unknow edge
current vertex

Figure 7-6: An efficient exam ple of graph search with OSP The robot guideTby OSP

algorithm always go to the shortest path based on the current knowledges with the free

space assumption. Therefore, the robot goes back to the visited vertex from sub figure

e to f.

is 3.97%, 5.23% and 5.66%. The results show the difference of the two algorithms is

less than 5% in the small graph, such as size 10 * 10, and the performance of the OSP

is slightly better than the P-DFS with increasing graph size, but the increase is very

small compared the total performances. Thus, we conclude that the OSP performs

about 5% better than P-DFS on average, regardless of graph size.

7.4. OSP VS. P_DFS 62

open edge

closed edge
unknow edge

O
o

visited vertex

current vertex

Figure 7-7: An inefficient example of graph search with P-DFS:The robot driven by

P-DFS do not backtrack until the branch is found fruitless. Consequently, the robot

chooses a longer path from e to f. The figure also shows the robot is kept from exploring

subgraph comprising by vertices b, c, d, e and their edges that are obviously void of

goals due to “pruning rule’’

7.4. OSP VS. P_DFS 63

open edge Q visited vertex

close edge Q current vertex

unknown edge

Figure 7-8: An efficient example of graph search with P-DFS: In the case, the robot

happen to stand on a fruitful branch. Accordingly, it result in an efficient search.

7.4 .3 D ifferent O bstacle Size

We are especially interested in developing a manipulator arm to perform floor cleaning

by removing spilled granular material from under and around heavy plant equipment

such as conveyor. Thinking of the real problem, it is reasonable to imagine that there

maybe exist various size of obstacles in the real environment. So we try to answer the

question: Is the performance of the two algorithms sensitive to the size of obstacles. The

7.4. OSP VS. PJDFS 64

• • • (o)—0

open edge

closed edge

unknown edge

O visited vertex

O current vertex

Figure 7-9: An inefficient example of graph search with OSP: The example shows the

feature going to the shortest path of OSP results in inefficient search sometimes. In

the case, the robot go back from e to f to try to follow the shortest path based on the

current knowledge with free-space assumption. Unfortunately, the trail search is failed.

So the robot go back to g again according to the shortest path.

7.4. OSP VS. P_DFS 65

. *. '

* * V -
r. • ■ • • ..

V V
dF ::" •

mJW* •
| F

Move» P-D FS

Figure 7-10: Performance of OSP vs P-DFS in a grid of size 10 * 10

Figure 7-11: Performance of OSP vs P-DFS in a grid of size 20 * 20

••

Move» P-D FS

Figure 7-12: Performance of OSP vs P-DFS in a grid of size 30 30

typical comparison environments are given in Figure 7-13 and Figure 7-14. In Figure

7-13, each obstacle cuts only one edge. We called a small obstacles environment. In

Figure 7-14, each obstacle cuts several edges. It is called a big obstacles environment.

7.4. OSP VS. P_DFS 66

Figure 7-13: Typical comparison environment with small obstacles

Figure 7-14: Typical comparison environment with big obstacles

Figure 7-15 and Figure 7-16 are obtained from 1000 graph search problems produced

randomly on a grid of size 20 * 20 with different obstacle sizes. They present very

similar results. And the average difference of moves is very close: 5.01% and 5.77%. In

conclusion, the size of obstacles do not effect the performance of the two algorithms.

These results are also consistent with those we have previously found in this chapter:

OSP performs about 5% better than the P-DFS on average in the simulations.

7.4. OSP VS. PJDFS 67

• * /
• • •

• <

Moves P-DFS

Figure 7-15: Performance of OSP vs P-DFS in small obstacles environment

Moves P-DFS

Figure 7-16: Performance of OSP vs P-DFS in big obstacles environment

7.4 .4 D ifferent D en sity of Feasible Paths

So far, we compared the two algorithms by different graph size and different obsta

cle size. In summary, P-DFS provides comparable performance to the OSP which only

performs about 5% better and the results do not vary with graph size and obstacle size.

Now, we are interested in another question: In which kind of environments does OSP

perform better than P-DFS. In particular we aim to test the hypothesis that P-DFS

performs better for graphs that have a low density of feasible paths.

To define “density of feasible paths” , firstly, we define two graphs: 1) optimistic

graph in which all edges are open and 2) actual graph where all of the edges associated

7.4. OSP VS. P_DFS 68

with impossible moves are closed. Secondly, let the graph be modelled as an electrical

circuit with each edge representing a resistor, each goal associated with ground, and

the start vertex represents a source voltage. The current in this circuit would flow from

the start vertex to the ground using all of the paths available. Furthermore, the ratio

of effective resistance in the two graph is a density measure. We think the following

ratio density provides a good measure of the density of feasible paths.

effective resistance in the optimistic graph

density of feasible path = --

effective resistance in the actual graph

Figure 7-17 was obtained from 1000 graph search problem produced randomly. It

shows the exactly the same performance of the proposed algorithms when density is

going to 1 (no obstacle) and the P-DFS is slightly better than the OSP with the

decrease of density. This supports the hypothesis that P-DFS performs better for

graphs that have a low density of feasible paths. In the same way, the average difference

of performance to the two algorithms on is only 4.89%, about 5% on average.

density of feasible paths

Figure 7-17: : Performance of OSP vs P-DFS with different density of feasible paths:

Shows the P-DFS is slightly better than the OSP algorithm with the decrease of density.

7.4. OSP VS. PJDFS 69

7.4 .5 C overage Problem

All results so-far presented are for single goal searches. Results suggest that the P-DFS

algorithm is comparable to the OSP algorithm in single goal search problem. Coverage

problem is another problem we are interested in because our objective is to control a

manipulator arm to perform floor cleaning in an unknown obstacles-filled environment.

Now, we compare the two algorithms for the surface coverage problem.

Different from a find-goal problem, all vertices but start vertex are regarded as goals

in a coverage problem which is demanded to visit all reachable vertices. Therefore, the

coverage problem is an extension of a find-goal problem, which has multi-goals. For

this reason, we, similarly, measure the total moves to evaluate the performance of the

two algorithms. As before, 1000 randomly generated graph search problems in grid size

10 * 10, 20 * 20 and 30 * 30 were applied to the two algorithms respectively. The results,

Figure 7-18, Figure 7-19 and Figure 7-20, show they did not overlap with the results of

single goal. When the moves are relatively small, the two algorithms present nearly the

same results. However, OSP presents an obviously better performance when the moves

are bigger than an amount which depends on graph size and the amount increase with

the increase of graph size. The average difference of moves are 12.40%, 15.49% and

16.31%. This shows that OSP is significantly better and the difference increase with

graph size.

Figure 7-18: The coverage performance of OSP vs P-DFS in grid size of 10 * 10

Why does the OSP algorithm perform so much better than P-DFS in the coverage

problem rather than the simple find-goal problem? The reason is that the P-DFS is

limited to tree search, so early covering motion can force P-DFS to explore large areas

7.4. OSP VS. P_DFS 70

Figure 7-19: The coverage performance of OSP vs P-DFS in grid size of 20 * 20

Figure 7-20: The coverage performance of OSP vs P-DFS in grid size of 30 * 30

of the graph that are distance from the goal. Figure 7-21 shows the two algorithms

have a similar performance if P-DFS is allowed to treat the coverage problem as a series

of new find-goal problems. In other words, let P-DFS forget about its tree whenever

a goal is found. In the 1000 randomly produced search problems, the P-DFS and the

OSP only perform 1.78% difference on average.

7.4.6 A pplication to M anipulation Arm

So far, our results have not considered manipulator arm kinematics. To accomplish a

cleaning problem by a manipulation arm, the robot has to move in its joint-space graph

but the cleaning task occurs in task space. For a find single goal problem for a robot

arm, there are at least two joint space vertices marked as goals. If one of these goals is

reached, the find goal task is finished. For a coverage problem, all vertices but a set of

start vertex are treated as goals. When a goals is reached, all vertices that map onto

7.4. OSP VS. P_DFS 71

Figure 7-21: Let the P-DFS algorithm treat the coverage problem as a series of new

find-goal problems, then it performs nearly the same as the OSP algorithm

the same task-space position in are not goals anymore simultaneously. If no more goals

can be reached , then the coverage is finished. So application to manipulation arm also

can be treated as a example of multi-goals search. In the section we focus on whether

the previous results searched on grid-like graphs still hold for manipulator arm graphs.

Our investigation is based on a two planar manipulation arm whose link lengths are 5

and 5, and joint Jimit is [—2/3 * n 2/3 * 7rj.

1000 searches were generated randomly in a task space graph of size 20 * 20 . The

base of manipulation arm is placed in the centre of a graph. Figure 7-22 and Figure

7-23 show the results for the find goal problem and the coverage problem respectively.

The result shown in Figure 7-22 is similar to those shown in Figure 7-11 and 7-19,

especially 7-22. Besides, the average difference of the moves is also very close to that in

Figure 7-22: 5.87% vs. 5.23%. It suggest that the previous results hold for application

to manipulator arms.

Figure 7-23 shows nearly the same results as Figure 7-19: the average difference of

the two algorithm is 14.3% for Fig 7-19, while it was 15.49% for Fig. 7-23. Thus we

conclude that previous results for coverage also hold for manipulator arms.

7.5. C O N C LU SIO N 72

Figure 7-22: The find-goal performance to manipulator arm of OSP vs P-DFS

100 150
Moves P-OFS

Figure 7-23: The coverage performance to manipulation arm of the OSP vs the P-DFS,

the result is similar as that in Figure 7-19

7.5 C onclusion

Results suggest that depth-first search algorithms applied to sensor-based motion plan

ning can be more efficient than is generally recognised. In particular, branch pruning

seems to improve performance about 40% on-average, to a point comparable to the

shortest path algorithm. This is significant because DFS has a better worst-case bound

on performance. And the results do not vary with graph size, obstacle size and the

density of feasible paths.

Coverage problem is a find multi-goals problem. The result of comparing the two

7.5. CON CLU SION 73

algorithms suggest that the OSP is significantly better than the P-DFS. However, they

have nearly the same performance if P-DFS treat the coverage problem as a series of

new find-goal problem.

In addition, simulations suggest that the above results hold for manipulator arms.

Furthermore, the results show that online computation for uniform graph searches

can be dramatically reduced by proposed algorithms that reuse data from previous

searches.

C h a p te r 8

C onclusions

8.1 C onclusions

In this thesis, we have investigated three problems to enable the manipulator arm to

perform floor cleaning in unknown environments. The approach is based on experiment,

modelling and verification by computer simulation. A thorough effort was made to con

sider theoretical and practical aspects. The work is directed to a practical application

and our solutions are based on realistic technologies.

R ea ctiv e controller to perform floor coverage (to s im u la te c lean in g).

The experimental work supports the conclusion that a manipulator arm driven by a

reactive controller can work well in an unknown obstacle-filled environment and perform

coverage motion. Only force sensing was used in the experiment. Results suggest that

force sensing provides an useful basis for the system to work well in a heavy industrial

environment.

G rap h-b ased m odellin g for m anip u lator m otion p lanning.

The modelling results in chapter 4 shows that manipulator motion planning problem

can be formulated as a graph search. This provides a foundation for efficient and general

motion planning algorithms for manipulator arms.

G rap h-b ased m otion -p lan n in g a lgorithm s.

In chapter 5-7, we described two sensor-based motion planning algorithms: an

optimistic shortest path algorithm (OSP) and a depth first search algorithm (DFS).

A scheme to minimise re-planning computation on uniform graphs by incrementally

74

8.2. F U T U R E R ESEARCH 75

repairing data is developed for the both algorithms, which is essentially a simplified

version of Stentz’s D* algorithm that it is easier to implement and are more efficient for

uniform graphs searches. In addition, an original technique that we call “tree-pruning”

is used for DFS algorithm. With the algorithm, the DFS algorithm achieves similar

average-case performance with the OSP algorithm. The study results show that the two

algorithms are efficient algorithms to manipulator arm motion planning. It is important

in practical application in term of minimising online computation and minimising robot

motion.

8.2 Future R esearch

This thesis has presented some foundational research toward realizing an new type of

autonomous cleaning system. There are still many problems to realize our ambition:

to free workers from hostile and unhealthy environment.

Firstly, we envision that an manipulator arm be purpose-built according to Whole

Arm Manipulation principles.

In addition, the addition of a vacuum mounted on the manipulator arm will bring

some new challenges to control.

Finally, research is needed into providing the arm with the ability to know whether

it is colliding with obstacles or a pile of granular material when it is cleaning in an

unknown obstacle-filled environment.

B ib lio g rap h y

[1] M. Schraft, M. H., and H. Volz. Service robots: The appropriate level of automa

tion and the role of users/ operators in the task execution. In Proceedings of the

25th ISIR , 1994, pages 225-231, Hannover.

[2] I. R. Ulrich, F. Mondada, J.D. Nicoud. Autonomous vacuum cleaner. Robotics

and autonomous systems, 19, 1997, pp 233-245.

[3] C. Ilofner and G. Schmidt. Path planning and guidance techniques for an au

tonomous mobile cleaning robot. In Proc. of the IEEE Int. Conf. on intelligent

mobile cleaning robots and system, 12-16, 1994, Neubibery.

[4] R. A. Brooks. Elephants don’t play chess. Robotics and autonomous systems,

6:3-15, 1990.

[5] R. C. Arkin. Reactive robotic systems, article in Handbook of Brain Theory and

Neural Networks, ed. M. Arbib, MIT Press, pp 793-796, 1995.

[6] G. Foux, M. Heymann, and A. Bruckstein. Two-dimensional robot navigation

among unknown stationary polygonal obstacles. IEEE Trans. Robotics and Au

tomation, 9(1): 96- 102, 1993.

[7] S. Koenig, Y. Smirnov. Sensor-based planning with the freespace assumption.

Proc. IEEE Int. Conf. Robotics and Automation, 3540- 3545, 1997.

[8] A. Stentz. Optimal and efficient path planning for unknown and dynamic en

vironments. International Journal of Robotics and Automation, 10(3): 89- 100,

1995.

[9] T. Lozano-Perez. Automatic planning of manipulator transfer movements. IEEE

Transactions on Systems, Man and Cybernetics, SMC-11, 10, pp. 681-698.

76

B IB L I O G R A P H Y 77

[10] R. A. Brooks. A Robust layered control system for a mobile robot. IEEE J. of

Robotics and Automation, vol.ra-*2,no.l,pp.14-23,March 1986.

[11] R. A. Brooks. Intelligent without representation. Artificial Intelligence Vol. 47,

pp. 139-159, 1991.

[12] N. Ayache and O. D. Faugeras. Building a consistent 3D representation of a

mobile robot’s environment by combining multiple stereo views. Proc. IJCAI-87,

pp. 808-810, 1987.

[13] S. Nakasuka, T. Yairi and H. Wajima. Autonomous generation of reflexion-based

robot controller using inductive learning. Robotics and Autonomous Systems, 17,

pp.287-305,1996.

[14] R. C. Arkin. Integrating behaviour. The M IT Pree, Cambridge AL4,1990.

[15] P. Maes. Designing autonomous agents: theory and practice from biology to

engineering and back. MIT Press,1990.

[16] T. C. Henderson and R. Grupen. Logical behaviours. J. of Rob. Syst.

[17] A. Zelinsky, R. A. Jarvis, J. C Byrne and S. Yuta. Planning paths of complete

Coverage of an unstructured Environment by a mobile robot. 6th International

conference on advanced robotics, pp 533-538, 1993, Tokyo.

[18] R. C. Arkin. Behaviour-based robot navigation in extended Domains. Journal of

Adaptive Behaviour, Vol. 1, No. 2, pp. 201-225, 1992.

[19] I. Nourbakhsh and M. Genesereth. Assumptive planning and execution: a simple,

working robot architecture. Autonomous Robots, 3(1): 49-67, 1996.

[20] W. R. Townsend, K. J. Saliabury. Mechanical design for whole-arm manipulation.

Robotics and Biological System: Toward a new Bionics?, Eds. Dario, Sardini, and

Aerischer, NATO ASI Series F: Computation and System Science, Vol 102: 153-

164, 1993.

[21] E. C. Chalfant. Planning in subsumption architectures. Conference on Intelligent

Robotics in Field,Factory,Service, and space p.2vol. xv+885, 788-98 vol.2.

B I B L I O G R A P H Y 78

[22] R. J. Clark, R. C. Arkin and A. Ram. Learning momentum; on-line performance

enhancement for reactive systems. IEEE Int.Conf. on Robotics and Automation

May 1992.

[23] T. M. Mitchell. Becoming increasingly reactive. Proc. of Conference on Artificial

Intelligence 1990.

[24] H. Choset and P. Pignon, Coverage path planning: The boustrophedon decomposi

tion. International Conference on Field and Service Robotics, Canberra, Australia,

1997.

[25] U. M. Nassal. Motion coordination and reactive control of autonomous multi

manipulator systems. J. of Robotic Systems, 737-754,1996

[26] M. J. Mataric. Integration of representation into goal-driven behaviour-based

robots. IEEE Trans, on Rob. and Auto., Vol 8, No 3,June 1992.

[27] D. C. Mackenzie and R. C. Arkin. Behaviour-based mobile manipulation for drum

sampling. Inter. Con. on Robotics and Auto, April 1996.

[28] J. II. Connell. A behaviour-based arm controller. IEEE Trans.on Robotics and

Auto. ,vol5, no.6,pp.784-791,December 1989.

[29] J. M. Cameron , D. C. MacKenzoe and E. C. Arkin. Reactive control for mobile

manipulation. IEEE Inter, conf. on Robotics and Automation, Atlanta 1993.

[30] R. Brooks and J. Connell. Asynchronous distributed control system for a mobile

robot Mobile Robots. In Proceedings of SPIE’s Canbridge Symposium on Optical

and Optoelectronic Engineering, Cambridge, MA, October, pp. 77-8

[31] E. Gonzalez, A. Suarez, C. Moreno, F. Artigue. Complementary regions: a surface

filling algorithm. Pro. of IEEE Int. Con. on Rob. and Aut., 1996.

[32] Phillip John Mckerrow. Introduction to robotics. Addision-Wesley Publishin com

pany, 1991.

[33] J. J. Leonard and II. F. Durrant-Whyte. Directed sonar sensing for mobile robot

navigation. Kluwer Academic Publishers, 1992.

B I B L I O G R A P H Y 79

[34] J. H. Connell. A behaviour-based arm controller. IEEE Transactions on Robotics

and Automation. Vol. 5, No. 6, December 1989.

[35] R. Jarvis and K. Kang. A new approach to robot collision-free path planning.

Robots in Australia’s Future Conference, pp. 71-79, 1986.

