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Abstract
The work presented in this thesis addresses two distinct questions: What is the 

distribution and role of presynaptic calcium channels involved in the release of 

glutamate at excitatory synapses in hippocampal cultures? What is the locus of 

expression of long-term potentiation at the perforant path-granule cell synapse in slices 

of the dentate gyrus?

A number of different subtypes of Ca2+ channels are known to support the release of 

glutamate at excitatory synapses. The pattern of co-localisation of these subtypes on 

presynaptic terminals in hippocampal cultures was investigated. N-type (co-conotoxin 

GVIA-sensitive, co-CTx) or P/Q-type (co-agatoxin IVA-sensitive, co-Aga) Ca2+ 

channels were selectively blocked and the reduction in transmitter release probability 

(Pr) was measured using MK-801. The toxins completely blocked release at some 

terminals, reduced Pr at others, and failed to affect the remainder. In contrast, 

nonselective reduction of presynaptic Ca2+ influx by adding Cd2+ or lowering external 

Ca2+ reduced Pr uniformly at all terminals. It was concluded from these results that the 

mixture of N-type and P/Q-type channels varies markedly between terminals on the 

same afferent. A model was developed incorporating a non-uniform distribution of 

Ca2+ channel subtypes across presynaptic terminals. The model suggests that about 

10% of terminals have only N-type channels, about 45% of terminals have only P/Q- 

type channels, and the remaining 45% have a mixture of subtypes. This non-uniform 

distribution may enable terminal-specific modulation of synaptic function by 

neuromodulators that differentially affect a particular Ca2+ channel subtype.

The relationship between extracellular Ca2+ concentration and EPSC amplitude was 

investigated at excitatory autapses on cultured hippocampal neurons. This relationship 

was steeply non-linear, implicating the cooperative involvement of several Ca2+ ions 

in the release of each vesicle of transmitter. The cooperativity was estimated to be 3.1 

using a power function fit, and 3.3 using a Hill equation fit. However, simulations



suggest that these values underestimate the true cooperativity. The role of different 

Ca2+ channel subtypes in shaping the Ca2+ dose-response relationship was studied 

using the selective Ca2+ channel blockers co-Aga (P/Q-type channels) and co-CTx (N- 

type channels). Both toxins broadened the dose-response relationship, and the Hill 

coefficient was reduced to 2.5 by co-Aga and to 2.6 by co-CTx. This broadening is 

consistent with a non-uniform distribution of Ca2+ channel subtypes across presynaptic 

terminals. The similar Hill coefficients in co-Aga or co-CTx suggest that there was no 

difference in the degree of cooperativity for transmitter release mediated via N-type or 

P/Q-type Ca2+ channels. A model of calcium's role in transmitter release was 

developed. It is based on a modified Dodge-Rahamimoff equation that includes a non­

linear relationship between extra- and intracellular Ca2+ concentration, has a 

cooperativity of 4, and incorporates a non-uniform distribution of Ca2+ channel 

subtypes across presynaptic terminals. The model predictions are consistent with all of 

the results reported in this study.

Long-term potentiation (LTP) of synaptic transmission is the putative mechanism 

underlying certain forms of learning and memory. Despite intensive study, it remains 

controversial whether LTP is expressed at a pre- or postsynaptic locus. A novel 

approach was used to investigated this question at excitatory synapses onto granule 

cells in acute slices of the dentate gyrus. The variance of the evoked synaptic 

amplitude was plotted against mean synaptic amplitude at several different Cd2+ 

concentrations. The slope of the variance-mean plot estimates the average amplitude 

of the response following the release of a single vesicle of transmitter (Qav). The 

variance-mean technique was tested by applying the analysis before and after three 

different synaptic modulations: (i) a reduction in Qav by the addition of the glutamate 

receptor antagonist, CNQX, (ii) a reduction in the average probability of transmitter 

release (Pr) by the addition of baclofen, and (iii) an increase in the number of active 

synaptic terminals (N) by increasing the stimulus strength. CNQX reduced the average 

synaptic amplitude and Qav to the same extent, consistent with a postsynaptic action. 

In contrast, neither a change in N or Pr altered Qav. This confirmed that the variance-



mean technique can distinguish between a pre- and a postsynaptic site of modulation. 

The induction of LTP increased the synaptic amplitude and Qav to the same extent, 

strongly supporting a postsynaptic locus of LTP expression in the dentate gyrus. A 

postsynaptic increase in synaptic efficacy could be due to the insertion of additional 

AMPA receptors into the postsynaptic membrane, the unmasking of AMPA receptors 

already present in the membrane or a change in the single channel conductance of the 

AMPA receptor.
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Chapter 1

Introduction

Communication between neurons involves the release of neurotransmitter from 

synaptic terminals. A major challenge in neuroscience is to understand the 

mechanisms of synaptic transmission and its modulation. This thesis examines 

questions relating to synaptic function and modulation at excitatory hippocampal 

synapses. Chapters 3 and 4 explore the relationship between presynaptic voltage 

activated Ca2+ channels and the transmitter release mechanism. Chapter 5 investigates 

the mechanism underlying long lasting plasticity. The Introduction is presented in two 

parts: Part I introduces Ca2+ channel physiology and relates to Chapters 3 and 4; 

Part II introduces long term potentiation (LTP) and relates to Chapter 5.

Part I: Ca2+ channel subtypes and neurotransmitter release

The release of neurotransmitter from a presynaptic terminal involves multiple steps. A 

key step in this process is the entry of Ca2+ into the presynaptic terminal via voltage 

activated Ca2+ channels (Katz and Miledi, 1968; Llinas et al., 1981; Augustine and 

Charlton, 1986; Borst and Sakmann, 1996). It is well established that a wide diversity 

of Ca2+ channel subtypes exist. Electrophysiological studies have indicated that there 

are at least six discernible Ca2+ channel types: L-, N-, P-, Q-, R- and T-type (Tsien et 

al., 1995). The N-, P-, Q- and R-type Ca2+ channels have all been implicated in the 

action potential-dependent release of neurotransmitter at central synapses (Luebke et 

al., 1993; Regehr and Mintz, 1994; Wheeler et al., 1994; Wu and Saggau, 1994b; 

Mintz et al., 1995; Wu et al., 1998). Numerous unresolved questions remain about 

how different presynaptic Ca2+ channel subtypes interact with the transmitter release 

mechanism. This thesis addresses two such questions at excitatory synapses in the 

hippocampus. First, Chapter 3 investigates how the different Ca2+ channel subtypes 

are distributed across different presynaptic terminals. Second, Chapter 4 examines if
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the Ca2+ sensitivity of the transmitter release mechanism differs for Ca2+ influx 

through different channel subtypes.

Pharmacological and biophysical identification of Ca2+ channel subtypes

Voltage activated Ca2+ channels can be divided into high voltage-activated (HVA) or 

low voltage-activated (LVA) classes based on the membrane potential range over 

which the channel is activated. LVA Ca2+ channels will activate at membrane 

potentials as low as -70mV while HVA Ca2+ channels require depolarisation to at least 

-20mV to be activated (Tsien et al, 1988). The only identified member of the LVA 

group has been termed the T-type Ca2+ channel. The T-type channel can also be 

defined by its high sensitivity to Ni2+ and insensitivity to low Cd2+ concentrations 

(< 10pM) (Fox et al., 1987). The different subtypes of HVA Ca2+ channels are 

primarily distinguished pharmacologically (see Table 1.1). The L-type channel is 

blocked by a group of drugs known as the dihydropyridines (DHP, eg. nifedipine, 

nimodipine) and are facilitated by BAY K 8644 (Nowycky et al., 1985). The N-type 

channel is blocked by co-conotoxin GVIA (co-CTx) (Nowycky et al., 1985; Olivera et 

al., 1985; Fox et al., 1987; Williams et al., 1992a; Fujita et al., 1993). Both the P- and 

the Q-type channels are sensitive to co-agatoxin IVA (co-Aga) with the P-type channel 

having a 100 fold greater affinity than the Q-type channel for the toxin (Mintz et al., 

1992a; Mintz et al., 1992b; Wheeler et al., 1994; Randall and Tsien, 1995; Scholz and 

Miller, 1995). A defining biophysical characteristic of the P-type channel is that it 

exhibits little or no inactivation during a depolarisation of up to 1 second while the Q- 

type channel inactivates at a similar rate to the N-type channel (-35% inactivation 

during a 0.1ms pulse, -80mV to OmV) (Randall and Tsien, 1995). A further HVA 

Ca2+ channel, the R-type, has been identified in mammalian neurons. There are no 

known selective blockers of the R-type Ca2+ channel. Currents mediated by this 

channel are insensitive to co-CTx, co-Aga and the DHPs (Ellinor et al., 1993; Zhang et 

al., 1993; Randall and Tsien, 1995; Randall and Tsien, 1997). The R-type channel is 

known to be sensitive to low concentrations of Ni2+ (Wu et al., 1998).
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Table 1.1 Neuronal high voltage activated (HVA) Ca2+ channels. The different subtypes 

of HVA Ca2+ channels are primarily distinguished pharmacologically.

Channel types Pore-forming a l  subunit Pharmacology (blockers)

L a lC , a lD dihydropyridines

N a lB co-conotoxin GVIA

P alA (?)
co-agatoxin IVA (low 

concentrations)

Q a lA (?)
co-agatoxin IVA (high 

concentrations)

R a lE (? ) Ni2+ (low concentrations)



Molecular biology of neuronal Ca2+ channels

Early studies demonstrated that the Ca2+ channel was made up of several subunits 

(Catterall, 1991). Molecular cloning and expression studies have shown that the pore, 

voltage sensor and all pharmacological binding sites are encoded by the a l  subunit 

(Catterall, 1991; Catterall, 1995). Six a l  subunits have been cloned from the 

vertebrate central nervous system (CNS). The accepted nomenclature defines the a l 

subunit as classes A through to E (Birnbaumer et al, 1994) and the recently cloned 

subunit, a lG  (Perez-Reyes et al,  1998). Three additional subunits are found to be 

associated with the a l  subunit: ß, a2 and 5 (Catterall, 1991). The a2 and 8 subunits 

are often considered a single molecular entity since they are encoded by the same gene 

and are linked by disulphide bonds (Jay et al,  1991). The a2/8 has little effect on 

channel kinetics or pharmacology but when co-expressed with the a l  subunit lead to 

an increase in whole-cell current amplitude (Williams et al,  1992b; Gurnett et al, 

1996). In contrast the ß subunit influences both the kinetic and pharmacological 

properties. The voltage activation range, the rate of inactivation and the pharmacology 

of an a  1 subunit can be significantly altered by the co-expression of ß subunits 

(Williams et al, 1992a; Williams et al,  1992b; Ellinor et al, 1993; Stea et al, 1993; 

Zhang et al, 1993; Moreno et al, 1997). The subunit composition of native Ca2+ 

channels remains unknown.

Matching cloned Ca2+ channels to their physiological subtypes

Parallels between the properties of expressed recombinant Ca2+ channels and Ca2+ 

channels found in neurons are slowly becoming established. The clearest example of 

such an association is the a  IB clone which has been shown to encode an co-CTx- 

sensitive channel (Dubel et al, 1992; Williams et al,  1992a; Fujita et al, 1993). A 

more controversial issue has been the assignment of the a lA  subunit. Preliminary 

data pointed to a match to the P-type Ca2+ channel (Mori et al, 1991). However, 

expressed alone it demonstrated rapid inactivation and low sensitivity to co-Aga which 

is more like the Q-type channel (Sather et al, 1993; Stea et al, 1994). More recent 

experiments in which the a lA  subunit is co-expressed with a2/8 and different ß
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subunits may provide the answer (Moreno et al., 1997). The co-expression of a l  A, 

a2/8 and ß lb produced a robust inactivating current that was sensitive to low 

concentrations of w-Aga, consistent with a P-type channel. These experiments also 

co-expressed different ß subunits with the a l A and a2/5 subunits and showed that the 

ß subunit could greatly influence the specificity of the toxin block. Therefore, both the 

P- and the Q-type channel could be encoded by the a lA  subunit with their differing 

pharmacology and kinetics being explained by different ß subunit composition.

The a  IE subunit expressed in oocytes exhibited a voltage activation range, rapid 

inactivation and sensitivity to Ni2+ consistent with a T-type Ca2+ channel. An 

opposing view is that the properties of the a lE  subunit are more closely related to the 

R-type channel (Randall and Tsien, 1997). This interpretation seems justified 

following the recent cloning of the a lG  subunit (Perez-Reyes et al., 1998). When 

expressed in Xenopus oocytes the a lG  subunit exhibits low voltage dependence, slow 

deactivation kinetics and small single channel conductance, all characteristic of the T- 

type Ca2+ channel. L-type channels are encoded by two different clones a  1C and 

a  ID (Mikami et al., 1989; Snutch et al., 1991; Williams et al., 1992b). a  1C encodes 

the classical cardiac L-type Ca2+ channel while a lD  encodes an L-type channel which 

is specific to brain and endocrine tissue.

Ca2+ channel subtypes which support fast transmitter release at central synapses

Multiple Ca2+ channels support the release of neurotransmitter at central synapses, co- 

Aga-sensitive Ca2+ channels (P- or Q-type) seem to play the predominant role, 

although a significant component of release is also supported by (O-CTx-sensitive 

channels (N-type) at most central synapses (Luebke et al., 1993; Regehr and Mintz, 

1994; Wheeler et al., 1994; Wu and Saggau, 1994b; Mintz et al., 1995). The R-type 

Ca2+ channel, which is resistant to co-CTx, co-Aga and the DHPs, but sensitive to low 

concentrations of Cd2+, has also been implicated in supporting transmitter release at 

many central synapses (Mintz et al., 1995; Wu and Saggau, 1995a; Wu et al., 1998).
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There is a general consensus that the DHP-sensitive channel (L-type) does not play a 

role in action potential dependent release (Dunlap et al., 1995).

Although co-Aga-sensitive channels support release at most central synapses, the 

proportion of P-type and Q-type Ca2+ channels may differ for different terminals. For 

instance, transmitter release at the granule cell to Purkinje cell synapse in rat 

cerebellum is blocked by low concentrations of co-Aga (~50nM) suggesting a 

predominance of the P-type Ca2+ channel (Mintz et al., 1995). In contrast, 

experimental evidence in both hippocampal cultures and slices suggests that the Q- 

type Ca2+ channel predominates over the P-type (Wheeler et al, 1994; Scholz and 

Miller, 1995). This conclusion is based primarily on the slow block of the evoked 

synaptic event by co-Aga and the high concentration required (>200nM). This is 

consistent with the slow on-rate and low affinity of co-Aga for the Q-type channel 

(Randall and Tsien, 1995). Additionally, co-conotoxin MVIIC, a toxin known to have 

a high affinity for the Q-type channel, was shown to block the transmitter release 

resistant to co-CTx and co-Aga at low concentrations (Randall and Tsien, 1995). 

However, co-conotoxin MVIIC will also block N- and P-type Ca2+ channels, 

complicating the interpretation of this finding (Sather et al., 1993; Randall and Tsien, 

1995). co-Aga therefore cannot distinguish between P and Q-type Ca2+ channels 

unambiguously and co-Aga-sensitive Ca2+ channels are often named the P/Q-type.

Is transmitter release at hippocampal synapses supported by only N- and P/Q- 

type Ca2+ channels?

As already noted many central synapses exhibit a component of release which is 

resistant to both co-CTx and co-Aga. Evoked release at hippocampal synapses is 

blocked by greater than 97% in both hippocampal slice and culture experiments by the 

co-application of co-CTx and co-Aga (Wheeler et al., 1994; Wu and Saggau, 1994b; 

Scholz and Miller, 1995; Wheeler et al., 1996). However, given the highly non-linear 

relationship between [Ca2+] and transmitter release (see below) it is possible that a 

significant proportion of presynaptic Ca2+ enters through a Ca2+ channel subtype
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resistant to both toxins. The possibility that the resistant Ca2+ channel contributes 

significantly to release was addressed by maximising Ca2+ influx through Ca2 + 

channels (Wheeler et al., 1996). This was achieved by prolonging the action potential 

using the K+ channel blocker 4-aminopyridine (4-AP). The block of the evoked 

transmitter release by the co-application of toxins was not altered despite spike 

broadening. This limits the involvement of other possible Ca2+ channels such as the 

R-type but cannot rule them out entirely. The development of a specific R-type Ca2+ 

channel blocker is required to establish the role of this channel in transmitter release.

Specificity of co-CTx and co-Aga

The specificity of co-CTx and co-Aga in blocking independent classes of Ca2+ channels 

is critical for the interpretation of many experiments in this thesis. In recordings of 

somatic Ca2+ currents in dissociated neurons this assumption holds true (Dunlap et al., 

1995). However, the toxins might not be so selective on presynaptic Ca2+ channels 

involved in transmitter release. The best evidence for non-overlapping block of Ca2+ 

channels at presynaptic terminals has come from imaging studies. By measuring 

presynaptic Ca2+ transients using the Ca2+ sensitive dye furaptra at the cerebellar 

synapse, Mintz et al. (1995) demonstrated the non-overlapping nature of the toxin 

block. The initial application of co-Aga did not interfere with the measured reduction 

of the presynaptic Ca2+ transient on application of co-CTx. Neither did the initial 

addition of co-CTx interfere with the Ca2+ transient reduction on application of co-Aga. 

Wu and Saggau (1994) did a similar experiment looking at CA3-CA1 synapses of the 

hippocampus. They found a similar reduction in presynaptic Ca2+ influx was caused 

by co-Aga in the presence or absence of co-CTx.

How are N- and P/Q-type Ca2+ channels distributed on excitatory presynaptic 

terminals?

Three experimental results are consistent with a scenario in which a mixed population 

of N- and P/Q-type Ca2+ channels co-exist at a single release site and contribute 

jointly to the local Ca2+ transient to trigger release at excitatory neurons, (i) The
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percentage block of synaptic current by co-CTx or co-Aga adds to greater than 100% 

(Wheeler et al., 1994; Wu and Saggau, 1994b; Mintz et al., 1995; Wheeler et al., 

1996). For example, at hippocampal CA3-CA1 synapses co-CTx blocks the excitatory 

postsynaptic current (EPSC) by 46% and co-Aga by 85% (sum = 131%) (Wheeler et 

al., 1994). Such supra-additivity can be explained if Ca2+ influx through N-type 

channels mixes with Ca2+ entering through P/Q-type channels at the release site. If re­

type or P/Q-type Ca2+ channels were segregated (ie. found only on different 

presynaptic terminals) or their Ca2+ domains did not mix, then the sum of their block 

should be less than or equal to 100%. (ii) It is well established that a reduction in the 

probability of transmitter release (Pr) increases the degree of paired pulse facilitation 

(PPF) at central synapses (see below). Both co-CTx and co-Aga enhance PPF 

consistent with a reduction in Pr (Wheeler et al., 1996). If N- and P/Q-type channels 

were segregated then a toxin would completely block release at those terminals 

containing only the subtype for which the toxin was specific and leave the other 

terminals untouched. The synaptic response would reduce but no change in PPF 

would be expected, (iii) Both co-CTx block and co-Aga block can be partially relieved 

by enhancing Ca2+ influx into the presynaptic terminal either by altering the action 

potential with the addition of 4-AP or increasing external [Ca2+] (Wheeler et al., 

1996). The increased influx of Ca2+ through the unblocked channel presumably 

partially substitutes for the loss of influx through the blocked channels. If the channel 

subtypes were segregated then no change in the percentage block of each toxin would 

be expected at elevated external [Ca2+] or in the presence of 4-AP (assuming these 

manipulations do not displace toxin block). These arguments have lead to the 

proposal that the Ca2+ channel subtypes are uniformly distributed, with all excitatory 

presynaptic terminals containing both subtypes in the hippocampus and cerebellum. 

Although the experimental data strongly support a co-localisation of both channel 

subtypes at some presynaptic terminals, they do not demonstrate that all terminals 

contain both subtypes.

7



Few studies have attempted to set limits on the proportion of terminals that contain 

both Ca2+ channel subtypes. N-type Ca2+ channels were shown to be solely 

responsible for neurotransmitter release at -45% of terminals in hippocampal culture 

(Reuter, 1995). This was illustrated by monitoring the depletion of the synaptic 

vesicle dye, FM1-43, at individual terminals. The rate of FM1-43 depletion gives a 

measure of Pr. A subset of terminals did not release transmitter in the presence of co- 

CTx suggesting that release was supported by only N-type channels at these terminals. 

Using a different approach, Wheeler et al. (1996) suggested that a significant fraction 

of terminals cannot rely solely on N-type channels for neurotransmitter release. They 

concluded this by noting that under conditions of maximum Ca2+ entry into the 

presynaptic terminal (spike broadened with 4-AP) that co-CTx block is significantly 

reduced from -45% to -9%. This suggests that P/Q-type channels can substitute for 

N-type channels and so largely restore synaptic transmission under conditions of 

increased Ca2+ influx.

In summary, there is conflicting evidence for the distribution of Ca2+ channel subtypes 

across different presynaptic terminals. Chapter 3 of this thesis addresses this issue by 

monitoring the probability of transmitter release in the presence of the selective Ca2+ 

channel blockers.

The relationship between Ca2+ influx and transmitter release

The non-linear relationship between extracellular Ca2+ concentration ([Ca2+]0) and 

transmitter release was first characterised at the frog neuromuscular junction (NMJ) by 

Dodge and Rahamimoff (1967). In this preparation the excitatory junction potential 

amplitude varies as the 4*h power of [Ca2+]0 at low concentrations. This implicates 

the cooperative involvement of 4 Ca2+ ions in the release of each vesicle of transmitter 

(Dodge and Rahamimoff, 1967). A similar 4™ power relationship was shown at the 

squid giant synapse (Augustine and Charlton, 1986; Stanley, 1986). The relationship 

between transmitter release and [Ca2+]0 is also steeply non-linear at central synapses. 

It is more difficult to measure the degree of cooperativity in CNS preparations due to
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signal-to-noise limitations. Cooperativity estimates suggest that between 2 and 4 Ca2+ 

ions are involved in the release of each vesicle at CNS synapses (Wu and Saggau, 

1994b; Mintz et al, 1995; Borst and Sakmann, 1996; Takahashi et al., 1996).

The Dodge-Rahamimoff equation was derived to explain the role of Ca2+ in triggering 

transmitter release at the frog NMJ (Dodge and Rahamimoff, 1967). The equation 

provides a useful physiological model of transmitter release and has been used to 

describe release at hippocampal synapses (Wheeler et al., 1996). An assumption of 

this equation is that the relationship between [Ca2+]0 and intra-terminal Ca2 + 

concentration ([Ca2+]jt) is linear. However, saturation of Ca2+ influx through Ca2+ 

channels has been demonstrated in many preparations (Augustine and Charlton, 1986; 

Hess et al., 1986; Church and Stanley, 1996). Two recent studies have also 

demonstrated a non-linear relationship between [Ca2+]0 and [Ca2+]it for Ca2+ influx 

through presynaptic Ca2+ channels at CNS synapses, (i) [Ca2+]it was measured using 

the Ca2+ sensitive dye, furapta, that was loaded into the presynaptic terminals of the 

parallel fibre onto purkinje cells in the cerebellum (Mintz et al., 1995). The 

relationship between [Ca2+]0 and [Ca2+]it was shown to be sublinear and this 

relationship was described by a bimolecular process, (ii) Borst and Sakmann (1996) 

show a similar relationship at the giant calyx-type synapse in the rat medial nucleus of 

the trapezoid body. This large synapse allows electrophysiological recordings to be 

made directly from the presynaptic terminal. A sublinear relationship between the 

measured Ca2+ current and [Ca2+]0 was observed but no mathematical relationship 

was described. Wheeler et al. (1996) noted that the Ca2+ dose-response curve deviates 

from the Dodge-Rahamimoff equation at higher [Ca2+]0, consistent with a sublinear 

relationship between [Ca2+]0 and [Ca2+]it. Chapter 4 of this thesis develops a model 

of the transmitter release process at excitatory hippocampal synapses. The model is 

based on the Dodge-Rahamimoff equation and incorporates a sublinear relationship 

between [Ca2+]0 and [Ca2+]it.
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Differences in the Ca2+ cooperativity for influx through different Ca2+ channel 

subtypes

It has been suggested that different Ca2+ channel subtypes mediate transmitter release 

with different cooperativities (Mintz et al., 1995) but this remains controversial (Wu 

and Saggau, 1994b). Mintz et al. (1995) find that release is more steeply dependent on 

[Ca2+]it for P/Q- than for N-type Ca2+ channels at synapses in the cerebellum. 

Cooperativity was estimated at 4 for P/Q-type Ca2+ channels and 2.5 for N-type 

channels. This study used Ca2+ sensitive dyes to measure [Ca2+]jt before and after 

selective block of each Ca2+ channel subtype. Wu et al. (1994) using a similar 

technique in the hippocampus found no significant difference in the cooperativity 

associated with different Ca2+ channel subtypes (Wu and Saggau, 1994b). Chapter 4 

examines this issue by comparing Ca2+ dose-response curves in the presence of co- 

CTx with dose-response curves in the presence of co-Aga.

Ca2+ microdomains

To achieve rapid exocytosis from a presynaptic terminal a high [Ca2+]jt is required. 

Photolysis of caged Ca2+ in the presynaptic terminal and the simultaneous recording 

of the postsynaptic response showed that [Ca2+]jt is required to be higher than 50 fiM 

for release to be equal to action potential dependent release (Heidelberger et al., 1994; 

Lando and Zucker, 1994). Concentrations as high as 50 |iM are only likely to be 

achieved at the face of the plasma membrane which contains clusters of Ca2+ 

channels. The specialised region of the presynatic plasma membrane involved in 

release is known as the active zone. This region is structurally distinct and is defined 

as the area of plasma membrane where synaptic vesicles are docked. Between the 

docked vesicles is a region of electron-dense material thought to be cytoskeletal 

elements and other structural proteins, including Ca2+ channels which have been 

shown to clustered at active zones (Neher, 1998). P/Q- and N-type Ca2+ channels are 

known to be associated with synaptic proteins and are thought to be part of a release 

complex at the active zone (Martin-Moutot et al 1996; Sheng et al., 1996). When the
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Ca2+ channel opens, the influx of Ca2+ creates a local Ca2+ gradient. This local 

gradient has been termed the "Ca2+ microdomain".

The [Ca2+] achieved at the release site upon opening of Ca2+ channels will be 

determined by the interplay of many factors, most of which remain poorly understood. 

These include: (i) the distance between the release site and each Ca2+ channel; (ii) the 

number of Ca2+ channels near the active zone that open simultaneously; (iii) the local 

diffusion coefficient of Ca2+ at the active zone; and (iv) the presence of Ca2+ buffers 

at the active zone.

The above mentioned evidence for the clustering of Ca2+ channels at the active zone 

does not provide an estimate for the distance between Ca2+ channels and the release 

site. Some indirect evidence favours the close apposition of Ca2+ channels to the 

release mechanism, including the rapid triggering of release upon Ca2+ channel 

opening and the lack of effect of introduced Ca2+ buffers such as EGTA (Llinas et al., 

1981; Adler et al., 1991; Sabatini and Regehr, 1996). However, at some central 

synapses EGTA has been shown to reduce transmitter release (Borst and Sakmann, 

1996). This argues against a close apposition. Whether release is predominantly 

initiated by influx through an individual Ca2+ channel or whether it requires the 

opening of multiple channels also remains contentious (see Chapter 4, Discussion). 

The evidence suggesting a close apposition of Ca2+ channels to the release mechanism 

also argues for limited interaction between Ca2+ microdomains. Stanley (1993) 

provided further support for this by showing that the opening of a single Ca2+ channel 

was sufficient to evoke release. However, the supra-additivity of the selective Ca2+ 

channel toxins (Wheeler et al., 1994; Wu and Saggau, 1994b; Mintz et a l, 1995; 

Wheeler et al., 1996) argues strongly for a mixing of Ca2+ microdomains.

The complexity of the local diffusion and chelation of Ca2+ has been explored 

primarily with numerical models (Neher, 1998). However, little is understood about 

the properties of Ca2+ buffers at the active zone: Are the Ca2+ buffers mobile? Do
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they saturate? What are their kinetic parameters? Given that transmitter release 

depends on a high power of [Ca2+] subtle changes in these parameters have profound 

effects on release. Models developed to explain the Ca2+ dynamics and transmitter 

release are therefore limited by these unknown parameters.

In short, we are a long way from understanding the intricacies of Ca2+ behaviour 

within the presynaptic terminal and the effect of this behaviour on transmitter release.

Summary

The entry of Ca2+ into the presynaptic terminal via voltage activated Ca2+ channels is 

a crucial step in the initiation and modulation of transmitter release. The physiological 

relevance for the diversity of Ca2+ channel subtypes remains largely unknown. The 

development of the selective toxins, co-CTx and co-Aga, has provided powerful tools 

with which to address such issues. Two series of experiments described in Chapters 3 

and 4 use the selective toxins to examine how the N- and P/Q-type Ca2+ channels 

interact with the release mechanism at excitatory hippocampal synapses.
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Part II : Long term potentiation

Historical perspective

An understanding of the physiological basis of learning and memory remains elusive. 

The most popular hypothesis, that memories might be stored by changing the strength 

of inter-neuronal connections, was proposed at the turn of the century by Ramon Cajal. 

This hypothesis was later formalised by Hebb (1949), who suggested that memories 

could be stored by forming associative connections between neurons. The increase of 

synaptic strength between neurons was proposed to be dependent on the simultaneous 

activation of both neurons. The discovery by Bliss and Lomo (1973) of a long lasting 

enhancement in synaptic efficacy in response to a train of electrical stimulation 

provided the first experimental model of synaptic plasticity. This phenomenon was 

termed long term potentiation (LTP) and has since been studied extensively as the 

proposed physiological mechanism underlying learning and memory. The finding was 

particularly exciting because: (i) it was demonstrated in the hippocampus, a structure 

that is known to be involved in spatial memory; (ii) the duration of the potentiation 

was long lasting (hours); and (iii) the LTP was induced by patterns of electrical 

stimulation that are similar to those demonstrated in living brains. Numerous 

physiological and behavioural studies have since established LTP as the primary 

candidate for the cellular process underlying memory. However, there is still 

considerable debate as to the mechanisms which produce the increase in synaptic 

efficacy.

Different forms of LTP

There are three major excitatory synaptic pathways in the hippocampus on which most 

LTP studies have focused: the perforant path onto granule cells in the dentate gyrus; 

the mossy fibre input to CA3 pyramidal neurons; and the Shaffer 

collateral/commissural pathway onto pyramidal cells in the CA1 region of the 

hippocampus. All three pathways use glutamate as their neurotransmitter which 

activates both a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and
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N-methyl-D-aspartic acid (NMDA) postsynaptic receptors. However, it is well 

recognised that LTP induction differs between the mossy fibre pathway and the other 

two pathways (Nicoll and Malenka, 1995). Both CA1 and dentate gyrus LTP are 

dependent on the influx of Ca2+ through NMDA receptors (Bliss and Collingridge, 

1993), while mossy fibre LTP occurs independently of the NMDA receptor (Zalutsky 

and Nicoll, 1990). It is also well established that the synaptic potentiation after LTP 

induction is a presynaptic phenomenon at mossy fibre synapses (Zalutsky and Nicoll, 

1990; Nicoll and Malenka, 1995; Son and Carpenter, 1996). In contrast, the locus of 

expression of NMDA-dependent LTP remains controversial. This thesis examines 

LTP at synapses originating from the medial perforant path in the dentate gyrus, an 

NMDA receptor dependent form of LTP (Colino and Malenka, 1993).

Different stages of synaptic potentiation

High frequency stimulation induces two phases of decremental potentiation that are 

distinguished by their time course and D-2-amino-5-phosphonovaleric acid (APV) 

sensitivity. APV is a blocker of the NMDA receptor. The first phase, post-tetanic 

potentiation, has a very short duration (~1 - 4min), is insensitive to APV and is 

thought to be mediated by a simple presynaptic mechanism (Swandulla et al., 1991). 

A second decremental phase, short term potentiation (STP), has a duration of ~10 

-15min and is blocked by APV (Malenka, 1991). The following long-lasting, 

nondecremental component of potentiation is commonly considered to be LTP. The 

majority of studies comparing LTP and STP conclude that they are a similar form of 

potentiation. The induction of both are APV sensitive and require an increase in 

postsynaptic Ca2+ (Malenka, 1991). Additionally, STP has been shown to reversibly 

occlude LTP and vice versa (Huang et al., 1992; but see Schulz and Fitzgibbons, 

1997). Longer lasting LTP or late LTP (> 4 hours) can be distinguished from an 

earlier form of LTP by its dependence on protein synthesis (Nguyen et al., 1994). 

Experiments presented in this thesis fit into the early phase LTP (> 20min but < 

90min).
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Associativity, cooperativity and input specificity of LTP

LTP has many of the characteristics expected from theories proposed for the formation 

of memory (Hebb, 1949) including three basic properties: associativity, cooperativity 

and input specificity (Bliss and Collingridge, 1993). Associativity describes how LTP 

induction at a given synapse can be influenced (or regulated) by other convergent 

synapses which terminate on a spatially distinct region of the postsynaptic cell. For 

instance, a weakly activated synapse which would not normally undergo LTP can 

increase synaptic strength if temporally associated with other, spatially distinct, 

synaptic inputs (McNaughton et al, 1978; Levy and Steward, 1979). Cooperativity is 

a closely related concept which describes a stimulus intensity threshold for the 

induction of LTP. A weak stimulus activating relatively few afferent fibres does not 

trigger LTP while a larger stimulus intensity does. This is because a larger numbers of 

stimulated afferent fibres interact to produce mutual facilitation of LTP induction 

(McNaughton et al., 1978). Input specificity refers to the finding that synaptic inputs 

that are not activated during the induction of LTP do not share the potentiation of the 

tetanised pathway in the same cell (Andersen et al., 1977; Lynch et al., 1977). All 

three of these properties are derived from an underlying requirement of LTP induction; 

that the postsynaptic cell needs to be strongly depolarised at the same time that the 

presynaptic terminals are releasing transmitter. These properties can all be explained 

by the unique properties of the NMDA receptor.

The NMDA receptor: a molecular coincidence detector

NMDA receptors play an instrumental role in LTP induction at certain synapses in the 

hippocampus. At low rates of synaptic activity NMDA receptors contribute very little 

to a synaptic response due to their Mg2+ block. The AMPA receptor plays the 

dominant role in fast communication between neurons. The size of the AMPA current 

is therefore the important parameter defining synaptic strength. However, NMDA 

receptors play an integral part in the LTP induction process. The NMDA receptor is 

highly permeable to Ca2+. It is unusual in that it requires two events to occur 

simultaneously before it is capable of opening to allow the influx of Ca2+. The
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postsynaptic membrane must be sufficiently depolarised (> -40mV) to expel Mg2+ 

from the NMDA channel and at the same time glutamate needs to be released into the 

synaptic cleft promoting NMDA channel opening (Ascher and Nowak, 1988). It is the 

influx of Ca2+ into the postsynaptic cell through the NMDA receptor which is thought 

to initiate the cascade of events leading to an increase in synaptic efficacy.

Associativity, cooperativity and input specificity can all be explained by the unique 

properties of the NMDA receptor. The cooperativity threshold follows from the need 

to depolarise the cell to remove the Mg2+ block. Weak stimuli are unable to produce a 

depolarisation sufficient to unblock the NMDA receptor while stronger stimuli will 

depolarise the cell to greater than - 40mV and remove the Mg2+ block. A similar 

explanation can be given for associativity, with sufficient depolarisation being 

provided by a different set of afferent fibres. Input specificity can be explained by the 

need for the presynaptic terminal to release glutamate at the same time as the cell is 

depolarised. It is important to note that NMDA receptor dependent LTP is not the 

only form; numerous other manipulations of Ca2+ entry into the postsynaptic neuron 

have also been shown to induce LTP (Bliss and Collingridge, 1993).

Ca2+ involvement in LTP induction

One of the few points of agreement in the LTP literature is that Ca2+ plays a central 

role in the induction of LTP. This was first illustrated by Lynch et al. (1983) who 

found that the induction of LTP could be blocked by the intracellular injection of the 

calcium chelator ethylene glycol-bis (ß-aminoethyl ether) (EGTA) into the 

postsynaptic cell. Recent studies using other Ca2+ chelators confirm this result 

(Malenka et al., 1988; Cowan et al, 1998). Malenka et al (1988) provided further 

evidence by injecting a Ca2+ caging compound into the postsynaptic cell. Flash 

photolysis of this compound releases Ca2+ and lead to an increase in synaptic strength 

similar to that observed in LTP. Also, the amount of LTP was shown to be 

progressively reduced at depolarised potentials (Malenka et al., 1988; Perkel et al., 

1993). The positive potentials were postulated to reduce Ca2+ influx, thereby
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suggesting an essential role for Ca2+ in LTP induction. The most likely candidate for 

the source of Ca2+ entry is through the NMDA receptor. Three other potential sources 

of Ca2+ include: (i) voltage activated Ca2+ channels, (ii) release from internal Ca2+ 

stores and (iii) influx of Ca2+ through certain AMPA channels. Debate exists as to the 

relative contribution of these different sources of Ca2+ to the induction of LTP and the 

relative contribution of each may vary between different synapses. The favoured 

hypothesis for NMDA-dependent LTP is that the Ca2+ influx through NMDA 

receptors elicits a cascade of events resulting in LTP induction (Bliss and 

Collingridge, 1993; Nicoll and Malenka, 1995).

Does LTP occur at a pre or postsynaptic locus?

One of the more enduring controversies in neuroscience has been the question of the 

pre- vs postsynaptic locus of LTP expression. The increase in synaptic efficacy after 

the induction of LTP could be accounted for by an increase of one or more of three 

synaptic parameters: (i) an increase in the probability of transmitter release (Pr); (ii) 

an increase in the postsynaptic amplitude in response to a vesicle of transmitter 

(quantal amplitude, q); or (iii) an increase in the number of active synapses 

contributing to a synaptic response (N). Numerous techniques have been developed to 

address whether LTP results from any one or a combination of these factors. This part 

of the introduction will outline several of these approaches.

Quantal analysis

Quantal analysis is the statistical analysis of synaptic transmission based on the 

assumption that it results from the probabilistic release of discrete vesicles of 

transmitter (the quantal model). The first use of quantal analysis examined transmitter 

release at the NMJ (Del Castillo and Katz, 1954). Quantal analysis has since been 

used to study synaptic transmission at both central and peripheral synapses 

(McLachlan, 1978; Redman, 1990). A number of techniques based on the basic 

assumptions of the quantal model have been developed: (i) 1/CV2 approach, (ii) the 

identification of peaks in amplitude histograms, (iii) detection of changes in the failure
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rate and (iv) single release site analysis. Each has its advantages and inherent 

limitations which will be discussed.

1/CV2 method

A frequently used method is based on changes in the coefficient of variation 

(CV = standard deviation/mean) of synaptic amplitude fluctuations after some 

modulation of synaptic strength. An advantage of the 1/CV2 method is that it does not 

require that individual quantal amplitudes be directly resolvable (McLachlan, 1978). 

The method assumes that a fixed population of individual release sites with identical 

quantal parameters (Pr and q). That is, the uniform binomial model is assumed to 

apply. A presynaptic change (Pr and/or N) predicts that 1/CV2 will change, while a 

postsynaptic site of expression (q) predicts that 1/CV2 will be unaltered following a 

modulation. If Pr is small, for a purely presynaptic modulation, the ratio of 1/CV2 

before and following the modulation will equal the ratio of the EPSC amplitude before 

and after modulation. If both pre- and postsynaptic changes are involved the 1/CV2 

ratio vs EPSC amplitude ratio will fall between the limits. Most studies that have used 

the 1/CV2 method in the CA1 region of the hippocampus have implicated an increase 

in the quantal content after LTP induction (Bekkers and Stevens, 1990; Malinow and 

Tsien, 1990; Manabe et al., 1993; Kullmann et al., 1996). Similarly, an increase in 

quantal content was observed in dentate (Wang et al., 1996). However, this method 

assumes that transmitter release is described by a simple binomial process (Faber and 

Korn, 1991). Simulation experiments, in which EPSC amplitude fluctuations are 

generated from a number of synaptic terminals each with different quantal parameters, 

have shown that data typically interpreted as having both a pre-and postsynaptic locus 

may only be attributable to one or the other (Faber and Korn, 1991). Therefore, the 

use of the 1/CV2 method may be misleading given the possible variability in quantal 

parameters between release sites (eg. Pr (Rosenmund et al, 1993)).
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Quantal peaks method

The identification of peaks in amplitude histograms and determination of interpeak 

distance gives a measure of the quantal amplitude. Quantal analysis of amplitude 

histograms from the CA3 region of the hippocampus suggested a presynaptic 

mechanism for LTP. The amplitude histogram shifted to the right after LTP induction 

without any systematic changes in interpeak distances (Voronin, 1983). These studies 

were limited by the poor signal-to-noise ratio of conventional intracellular recordings. 

The application of the whole-cell voltage clamp technique allowed the study of 

synaptic transmission with much improved signal resolution. However, quantal 

analysis of amplitude histograms in the CA1 region of the hippocampus has produced 

varying results. A primarily presynaptic locus has been proposed in some studies 

(Malinow and Tsien, 1990) while other studies have proposed an increase in both 

quantal content (ie. the number of quanta per evoked EPSC) and quantal amplitude 

(Kullmann and Nicoll, 1992; Larkman et al., 1992; Liao et al., 1992; Strieker et al., 

1996a). Foster and McNaughton (1991) showed only a change in the quantal size. 

Quantal analysis of the lateral perforant path in the dentate region of the hippocampus 

suggests a presynaptic mechanism for LTP (Baskys et al., 1991).

A strength of this approach is that the fitting of a theoretical function to peaks in the 

EPSC amplitude histogram may enable all synaptic parameters to be determined 

(Strieker et al., 1996b). However, the identification of peaks in the amplitude 

histograms at central synapses is problematic. Reliable fitting of peaky histograms is 

dependent on a low quantal variance (ie. the variance of the amplitude in response to a 

single vesicle of transmitter) (Redman, 1990). There is considerable debate as to the 

true variance of the unitary synaptic amplitude with many reporting it to be high 

(Bekkers et al., 1990; Liu and Tsien, 1995) while others suggesting it to be low (Jonas 

et al., 1993; Strieker et a l, 1996b). Also, given the small number of EPSCs recorded 

in many of these studies, sampling error may be another potential concern for this 

form of analysis (Clements, 1991). Another problem is that the synaptic parameters of 

each activated release site may not be identical. The fitting of a theoretical function to
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peaks in an amplitude histogram is dependent on underlying assumptions about the 

release mechanism. Simple binomial or Poisson distributions are often used but do not 

take into account variability between synaptic terminals. Finally, the identification of 

peaks in the histograms is based on the assumption that the response to an individual 

quanta can be identified over the background recording noise. The quantal amplitude 

is, however, close to the noise in many preparations. These limitations may explain 

the varying results obtained with this method.

Failures method

If the response to one quantum of transmitter can be detected reliably then the failure 

rate of synaptic transmission can be used as an indicator of Pr. This method has been 

frequently used in conjunction with either peak fitting or 1/CV2 methods. A reduction 

of synaptic failures has been observed in CA1 (Malinow and Tsien, 1990; Malinow, 

1991; Kullmann and Nicoll, 1992; Strieker et al., 1996a). This has been interpreted as 

meaning that there is a increase in Pr (Malinow and Tsien, 1990; Malinow, 1991; 

Kullmann and Nicoll, 1992; but see Strieker et al., 1996a). This index of Pr will be 

compromised if there are difficulties with the detection of single quanta. For instance, 

if LTP increases q then, due to the improved detection of the larger quantal amplitude, 

there could be an apparent increase in Pr even in the absence of presynaptic change.

Single release site method

Quantal parameters can theoretically be estimated by stimulating a single release site. 

The failure rate gives a measure of Pr while the amplitude of successful EPSCs gives a 

measure of q. Three studies have now compared synaptic parameters before and 

following the induction of LTP at putative single release sites. A putative single 

release site is identified in these studies by strict criteria including uniform onset and 

waveform of consecutive EPSCs. LTP induction in the CA1 and CA3 regions reduced 

the failure rate at putative single release sites, consistent with a change in Pr, but little 

change in q (Stevens and Wang, 1994; Bolshakov and Siegelbaum, 1995). However, a 

more recent study using the same technique shows an increase in q after the induction
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of LTP (Isaac et cd., 1996). Experimental limitations are a concern for this type of 

analysis because: (i) the intrinsic recording noise is close to the measured EPSC 

amplitudes and (ii) the relatively indirect assessment of the number of release sites. 

This apparently simple measure of the quantal parameters still gives conflicting 

results, raising doubts as to the technical feasibility of such studies.

Miniature analysis

The analysis of miniature excitatory postsynaptic currents (mEPSCs) is another 

technique that can distinguish between pre- and postsynaptic changes in synaptic 

efficacy. A mEPSC is thought to be generated by the spontaneous release of a single 

vesicle of transmitter and as such is a direct measure of q that is free of assumptions 

about the statistics of evoked transmitter release. Analysis of mEPSCs assumes that 

changes in mEPSC amplitude reflects a postsynaptic change while changes in the 

frequency reflects changes in Pr. In CA1 pyramidal cells the induction of LTP 

produced a large increase in the amplitude of mEPSCs consistent with a postsynaptic 

locus of expression (Manabe et al., 1992). LTP induced by ionophoretically applied 

glutamate to the dendrites of CA1 pyramidal neurons also produced a marked increase 

in mEPSC amplitude (Cormier and Kelly, 1996). In contrast, glutamate induced LTP 

in cultured hippocampal neurons was shown to change the frequency of mEPSCs 

while their average amplitude was unaltered, implicating a presynaptic locus 

(Malgaroli and Tsien, 1992). The discrepancy may be explained by a difference in the 

experimental system (cultured vs CA1 slice). A methodological concern for mEPSC 

analysis is that it depends on the accurate detection of mEPSCs above normal 

recording noise (see Chapter 5, Discussion). Typically, detected mEPSCs exhibit a 

range of amplitudes that grade continuously into the noise suggesting that there may 

be a detection problem.

Paired pulse facilitation as an index of Pr

Paired pulse facilitation (PPF) refers to an increase in an evoked synaptic response to 

the second stimulus pulse of a paired pulse paradigm. The increased size of the second
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response is presumably a result of an increase in Pr, due to residual Ca2+ in the 

presynaptic terminal (Zucker, 1989). Manipulations known to alter Pr also alter the 

degree of PPF. A reduction in PPF is observed when Pr is increased, conversely, an 

increase in PPF is observed if Pr is lowered. Thus PPF provides an index of Pr. Early 

studies looking at the perforant pathway to the dentate showed no change in PPF after 

the induction of LTP, indicating no change in Pr (McNaughton, 1982). A similar 

finding was observed more recently for the medial perforant path (MPP) in the dentate 

(Christie and Abraham, 1994). However, Christie and Abraham (1994) showed a 

reduction in PPF after LTP induction for the lateral perforant path (LPP) implicating a 

change in Pr. Paired pulse experiments in the CA1 region of the hippocampus have 

also shown no change in PPF following the induction of LTP (Muller and Lynch, 

1989; Manabe et al., 1993; Kuhnt and Voronin, 1994; Schulz et al., 1995; Wang and 

Kelly, 1997). PPF was shown to be unaltered during associational-commissural LTP 

but was reduced during mossy fibre LTP in the CA3 region of the hippocampus, 

consistent with a presynaptic locus of expression for the latter (Zalutsky and Nicoll, 

1990).

More recent papers have queried the validity of using PPF as an index of Pr. PPF was 

reduced in experiments in which AMPA receptor responsiveness was altered via a 

Ca2+/calmodulin pathway (Wang and Kelly, 1996; Wang and Kelly, 1997). 

Therefore, the magnitude of PPF seemed to be regulated by a postsynaptic mechanism 

although no account of a retrograde messenger affecting presynaptic parameters was 

considered in their conclusion. Also, PPF might not change if LTP selectively 

enhanced release at synapses with very low Pr (Bliss and Collingridge, 1993; 

Kullmann and Siegelbaum, 1995). Normally a reduction in PPF after increasing Pr is 

thought to involve a saturation of the facilitatory mechanism. Following LTP 

induction, if the Pr is increased only at terminals with very low initial Pr, then the 

increase in Pr at these terminals may not saturate the facilitatory mechanism. Thus, no 

change in the observed PPF would be expected (Bliss and Collingridge, 1993; 

Kullmann and Siegelbaum, 1995). Conclusions drawn from changes in PPF
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implicating either a presynaptic or postsynaptic loci of LTP expression therefore need 

to be made with caution.

Progressive block in MK-801 as a measure of Pr

Pr can also be estimated using the drug MK-801 (Hessler et al., 1993; Rosenmund et 

al., 1993). MK-801 is an open-channel blocker of NMD A channels that is effectively 

irreversible at hyperpolarised potentials (Huettner and Bean, 1988). The rate of 

progressive block of the NMDA EPSC amplitude on successive stimuli can be used to 

estimate Pr. When Pr is high for a given terminal it is more likely to release glutamate 

and open NMDA receptors, which will therefore be blocked more quickly. An 

increase in Pr after the induction of LTP would be expected to increase the rate of 

progressive block. After LTP induction in the CA1 region of the hippocampus there 

was no detectable change in the rate of progressive block arguing against any change 

in Pr (Manabe and Nicoll, 1994). In contrast Kullmann et al. (1996), also studying the 

CA1 region, showed an increase in the progressive block rate, albeit small, following 

LTP induction. LTP induction of the mossy fibre input to CA3 pyramidal neurons 

showed a more substantial increase in the progressive block rate, in keeping with the 

proposed presynaptic locus for this form of LTP (Weisskopf and Nicoll, 1995). Due 

to the irreversible nature of the MK-801 block these experiments compare control 

progressive block rate with post LTP progressive block rate from different cells or 

different inputs onto the same cell. There is a large variation in the rate of progressive 

block in slice experiments making subtle changes after modulation difficult to 

interpret. Additionally, if LTP induction alters the open probability or kinetic 

parameters of the NMDA receptor (Lu et al., 1998), then the comparison of the rate of 

progressive block would no longer be valid.

Scaling NMDA and AMPA receptor components of the EPSC as an index of Pr

Given that both AMPA and NMDA receptors are co-localised on the postsynaptic 

density of excitatory synapses (Bekkers and Stevens, 1989) a change in Pr would be 

expected to alter both currents. Post-tetanic potentiation (a presynaptic form of

23



potentiation) resulted in an increase in both AMPA and NMDA receptor mediated 

currents as expected (Kauer et al., 1988). The presynaptic modulator, baclofen 

(GABAß agonist), also alters both components of synaptic response (Perkel and 

Nicoll, 1993). In contrast, the induction of LTP in the CA1 region was associated with 

a specific increase in the AMPA component of the synaptic response arguing for a 

purely postsynaptic locus (Kauer et al., 1988; Muller et al., 1988; Perkel and Nicoll, 

1993). Similarly, LTP in the dentate exhibited a selective enhancement of the AMPA 

component of the EPSC (Wang et al., 1996). More recent studies have shown that 

NMDA receptor mediated current can undergo LTP (Bashir et ai, 1991; Xie et al., 

1992; Kullmann et a l, 1996). However, the persistent increase in the NMDA 

mediated component is generally small in comparison with that of the AMPA 

component (Kullmann et al., 1996). Whether the enhancement of the NMDA 

component is due to a persistent increase in glutamate release or some postsynaptic 

modification remains to be resolved.

Miscellaneous techniques

Numerous other methods have been used to address the LTP pre- vs postsynaptic 

question. Early studies measuring the overflow of radiolabeled or endogenous 

glutamate before and after LTP argue for an increase in transmitter release (Bliss and 

Collingridge, 1993). Similarly, LTP in the dentate gyrus was associated with an 

enhancement of synaptosomal glutamate release (Canevari et ai, 1994). An antibody 

specific for the intraluminal domain of the synaptic vesicle protein synaptotagmin was 

used to visualise an increase in vesicular cycling after induction of LTP in cultured 

hippocampal neurons supporting a presynaptic locus (Malgaroli et al., 1995). A 

postsynaptic locus should produce a change in the sensitivity of a neuron to 

exogenously applied AMPA receptor agonist before and after LTP. An increase in 

sensitivity of AMPA receptors was noted after LTP in CA1 (Davies et al., 1989). 

Also, an increase in AMPA receptor binding has been illustrated by using a 

quantitative autoradiography method (Maren et al., 1993). Hjelmstad et al. (1997) 

developed a method of measuring Pr based on a synaptic refractory period at short
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paired pulse intervals. They show no change in Pr following LTP, consistent with a 

postsynaptic locus of expression in CA1.

Silent synapse theory of LTP

If a proportion of excitatory synapses express NMDA receptors but do not express 

functional AMPA receptors a proportion of synapses will be silent at resting 

membrane potentials (Kullmann and Siegelbaum, 1995). The theory predicts that on 

induction of LTP these silent synapses are unmasked, by either the insertion or 

activation of AMPA receptors, with no change in transmitter release. Indirect 

evidence for the silent synapse theory came from studies which investigated the CVs 

of the AMPA receptor- and NMDA receptor-mediated EPSCs respectively (Kullmann, 

1994). It was found that basal CV was larger for AMPA EPSCs than NMDA EPSCs, 

consistent with more synapses containing NMDA receptors than AMPA receptors. 

Following LTP induction, there was a significant change in the CV for the AMPA 

EPSC while no change was observed for the NMDA EPSC. Kullmann (1994) argues 

that the result supports the silent synapse theory. Other evidence for silent synapses 

and their implication for LTP has come from experiments using minimal stimulation 

protocols (Isaac et al., 1995; Liao et al., 1995). After initially stimulating an afferent 

to evoke a clear AMPA EPSC the stimulus level was reduced until only failures were 

recorded at negative membrane potentials. The depolarisation of the neuron revealed a 

response which was sensitive to APV, suggesting an NMDA receptor mediated 

current. This indicated that at these synapses only NMDA receptors were active. 

Following the induction of LTP a response was detected at hyperpolarised potentials 

and these currents were blocked by CNQX. This confirmed the unmasking of an 

AMPA receptor mediated current from previously silent synapses. This conclusion 

depends on the reliable detection of small EPSCs using minimal stimulation protocols. 

It may be that small AMPA EPSCs are not detectable prior to LTP induction. Still, 

this evidence supports a postsynaptic increase in the AMPA receptor mediated current, 

either from undetectably small or from zero amplitude.
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More recent evidence challenges this view. Both AMPA and NMDA EPSCs are 

increased following LTP induction (Kullmann et ciL, 1996). Also, an increase was 

seen in the rate of progressive block of the NMDA EPSC in MK-801 following LTP. 

In contrast with the silent synapse theory, these findings are consistent with an 

increase in Pr. Kullmann et al. (1996) argue for a presynaptic contribution to LTP and 

for extrasynaptic spill-over of glutamate onto NMDA receptors to explain the disparity 

in CV between the AMPA and NMDA EPSCs.

Extrasynaptic glutamate spill-over

The glutamate spill-over model suggests that glutamate, released into the cleft, reaches 

a high concentration, opening both the AMPA and NMDA receptors while glutamate 

which escapes the cleft only opens NMDA receptors on neighbouring postsynaptic 

densities (Kullmann and Asztely, 1998). NMDA receptors have a much higher 

affinity for glutamate than AMPA receptors (~xl00) (Patneau and Mayer, 1990). It is 

therefore feasible that the low glutamate concentration experienced by the 

neighbouring postsynaptic densities will only open NMDA receptors. This model can 

therefore explain why the quantal content sensed by AMPA receptors is less than that 

sensed by the NMDA receptors. Kullmann and Asztely (1998) explains the 

observation of silent synapses (based on the minimal stimulation protocol) by 

suggesting that the majority of the NMDA receptor mediated component arises from 

glutamate spill-over. If Pr of the '"observed" synapse(s) is very low (< 0.01) then no 

AMPA receptor mediated signal is seen because no glutamate is released. That is, 

they are presynaptically not postsynaptically silent. On induction of LTP the synapses 

undergo an increase in Pr and an AMPA EPSC is observed. The discrepancy between 

the increase in the NMDA receptor mediated compared with AMPA receptor mediated 

component of the EPSC is explained by proposing that the majority of the NMDA 

receptor mediated signal is generated by spill-over of glutamate from synapses which 

do not undergo LTP. The theory is complicated by the proposed temperature 

dependence of the glutamate spill-over. Also, supporting evidence for an increase in 

Pr is based on the NMDA receptor mediated component of the EPSC. Any
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postsynaptic modification of the NMDA receptor following LTP induction (Lu et cil., 

1998) would complicate interpretation of both the progressive block in MK-801 and 

increase in the NMDA receptor mediated component.

Retrograde messengers

Given that NMDA-dependent LTP induction relies on a postsynaptic influx of Ca2+ 

any presynaptic enhancement would require a subsequent signal from the postsynaptic 

cell, a retrograde messenger. Numerous potential retrograde messengers have been 

proposed including; nitric oxide, carbon monoxide, platelet activating factor and 

arachidonic acid (Bliss and Collingridge, 1993). Synapsin I, a predominantly 

presynaptic protein, has been shown to be phosphorylated after high frequency 

stimulation (Fukunaga et al., 1995). This phosphorylation was blocked by NMDA 

antagonists and postsynaptic calmidazolin implicating a postsynaptic Ca2+/calmodulin 

pathway. However, a direct effect of CaM kinase II on presynaptic function during 

LTP, via a retrograde messenger cascade, has yet to be shown. The involvement of 

other Ca2+ dependent enzymes in the induction of potential retrograde messengers has 

been well established but the role these play in LTP has been questioned (Medina and 

Izquierdo, 1995).

Summary

As demonstrated in this review of the LTP literature, there is an ongoing debate as to 

the true locus of LTP expression. The inherent limitations of the methods developed 

to date mean that other methods of determining synaptic parameters before and 

following LTP will need to be explored. Chapter 5 of this thesis describes a method 

based on the probabilistic nature of synaptic transmission, the variance-mean analysis, 

derived by Dr. J. D. Clements. The variance of the evoked synaptic amplitude is 

plotted against mean synaptic amplitude at several different Cd2+ or Ca2 + 

concentrations. The slope of the variance-mean plot estimates the average amplitude 

of the response following the release of a single vesicle of transmitter. The technique 

is free of many of the assumptions concerning the transmitter release mechanism
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required for traditional quantal analysis. Also, because it can be applied to large 

compound EPSCs it is free of experimental limitations of having to resolve individual 

quantal amplitudes. This technique is used to investigate the locus of LTP expression 

in the dentate region of the hippocampus.
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Chapter 2

General Methods

I. Hippocampal Culture Experiments

Culture preparation

The method of Furshpan and collaborators was used to grow single, isolated 

hippocampal neurons on "microdots" of growth substrate (Furshpan et al., 1986).

Plate preparation

Except where specified, all of the following procedures were performed using sterile 

technique in a laminar flow hood. Clean coverslips were maintained under 95% 

ethanol and flamed dried before use to ensure sterility. The coverslips were placed in 

24-well culture plates, thinly covered in 0.15% agarose (Sigma) solution in df^O and 

allowed to dry. A mixture of rat tail collagen (Sigma) at 0.25mg/ml and poly-D-lysine 

(Collaborative Research) at 0.4mg/ml was applied in a fine mist to the coverslips using 

a glass microatomizer (Fisher Scientific) and allowed to dry. This yielded randomly 

distributed spots of growth substrate on the coverslip (microdots). A small aliquot of 

culture medium (composition below) was placed into each well to wash the substrate 

and the plate was placed in a humidified 5% CO2 incubator (Forma Scientific) 

overnight. This solution was removed just prior to use the following day.

Dissociation procedure

The enzyme solution (composition below) was prepared in 15ml Falcon tubes and 

placed in a 37°C water bath for 30 minutes prior to dissociation. The hippocampi of 

two new born Wistar rats were dissected out under Minimum Essential Medium 

(MEM, Gibco BRL) warmed to 37°C. The whole hippocampus was then cut into 

~lmm cubes and placed into the enzyme solution in a sterile 15ml Falcon tube. The
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tube was placed in a water bath at 37°C and gently agitated for 30-40 minutes. A 

lightly flame-polished Pasteur pipette was used to transfer the tissue from the enzyme 

solution into a new 15ml Falcon tube. In order to halt further enzymatic activity the 

tissue was rinsed four times with fresh culture medium (37°C), discarding the 

supernatant each time. After the final rinse l-2ml of culture medium was added and 

the tissue was gently triturated using the flamed Pasteur pipette. The tissue was 

allowed to settle and the supernatant containing dissociated cells removed and placed 

in a fresh Falcon tube. This procedure was repeated 4-6 times triturating a little more 

vigorously each time. The concentration of cells was determined by counting them 

using a haemocytometer under a phase contrast microscope. The cell suspension was 

diluted with culture medium (37°C) to 4-6 x 104 cells per ml and a 0.5ml aliquot was 

placed into each well of the prepared plate. The plated neurons were kept in a 

humidified 5% CO2 incubator maintained at 37°C.

Maintenance of hippocampal neurons.

The cells were fed after 3-4 days or when the glia were 80% confluent. A 0.25ml 

aliquot of medium was removed and replaced with 0.25ml of fresh culture medium to 

which lOpM cytosine b-D-arabinofuranoside (araC, Sigma) had been added. The araC 

acts to suppress cell division, reducing the possibility of overgrowth by glia. The cells 

were fed again on day 7-8 using the same method but with fresh culture medium only. 

The neurons seemed to prefer self conditioned media and were not fed again. Neurons 

survived up to 28 days under these conditions. Usually 1-4 "microdots" per coverslip 

had a single neuron growing on them. As these isolated neurons develop in culture 

they form synapses onto their own dendrites (Fig. 2.1 A, Fig. 2.2A, B). These synaptic 

connections have been termed "autapses" (Van der Loos and Glaser, 1972; Bekkers 

and Stevens, 1991).
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Figure 2.1



Figure 2. 1 Hippocampal neurons grown in isolation on a "microdot" form synapses 

onto their own dendrites (autapses).

A, Phase contrast micrograph of a neuron grown in culture for 9 days on a "microdot" 

of collagen/poly(d-lysine).

Bar = 50pm.





Figure 2.2 A cartoon illustrating the autaptic culture system.

A, An illustration of the flow pipe set up used for drug application. The size of the 

pipes is greater than the "microdot" ensuring a uniform drug concentration at all 

terminals.

B, A cartoon illustration of an isolated neuron forming autaptic connections.
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Solutions used in the culture preparation

Culture Medium:

To prepare 200ml of culture medium, the following were mixed in a sterile 200ml 

measuring cylinder:

• 4ml of 1M stock glucose in MEM

• 10ml of Fetal Bovine Serum (CSL)

• 2ml Penicillin/Streptomycin 5000 units/ml (CSL)

• 200pl Serum Extender (Collaborative Research)

• make to 200ml with Minimum Essential Medium (MEM, Gibco BRL)

(with Earle's salts 

without L-glutamine 

without phenol red)

The solution was filtered through a 0.22pm Millipore filter into sterile glass bottles for 

storage. The bottle in use was kept at 37°C in a humidified 5% CO2 incubator, its lid 

slightly loosened to allow CO2 equilibration.

Enzyme solutions:

Two alternative recipes were used depending on whether lyophilised papain or papain 

suspension was available.

(i) Lyophilised papain (to prepare 10ml):

• 2ml MEM

• 44pl of 50mM ethylenediaminetetraacetic acid (EDTA, pH adjusted to 7 with 

NaOH)

• 1.5-2mg cysteine (Sigma)

• 134pl of ImM mercaptoethanol (Sigma)

• 200units lyophilised papain (Sigma)
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The above reagents were added together in a 15ml Falcon tube and placed in a water 

bath at 37°C for 30min to activate the papain. The activated solution was then made 

up to 10ml with MEM and filtered through a 0.22pm Millipore filter.

(ii) Papain suspension (to prepare 10ml):

• 10ml MEM

• lOOpl of 50mM EDTA (pH adjusted to 7 with NaOH)

• 150pl of lOOmM CaCl2

• 1.5-2mg cysteine (Sigma)

• 200 units papain suspension (Sigma)

The above reagents were added together in a 15ml Falcon tube and placed in the water 

bath at 37°C for 15min to dissolve the papain. The solution was then filtered through 

a 0.22pm Millipore filter.

Electrophysiology

Whole-cell patch-clamp recordings were obtained from isolated neurons found on 

"microdots" visually identified under a phase contrast microscope (Fig. 2.1, 2.2). All 

culture electrophysiological recordings have were made in voltage clamp mode using 

an Axopatch-lC Patch Clamp (Axon Instruments). All command potentials were 

generated by a software package written by Dr J. M. Bekkers and run on an Osborne 

486-25 computer. The patch electrodes were pulled from thin walled borosilicate 

glass (micro-haematocrit tube, BRI), using a Flaming/Brown micropipettte puller 

(model P-97, Sutter Instruments Co.). Patch electrodes had resistances ranging from 

2.0 to 3.5 MO and contained (in mM) KMeS04 125, KC1 5, EGTA 10, HEPES 10, 

Na2 ATP 2, MgCl2 2, GTP 0.4, pH 7.3, with osmolarity adjusted to 290mOsm with 

sorbitol. The usual bath solution contained (in mM) NaCl 135, KC1 5, CaCl2 3, 

glucose 10, HEPES 10, pH 7.3, with osmolarity adjusted to 310mOsm with sorbitol. 

Salts were from Johnson Matthey or Sigma. A number of variations were made to this
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Standard external solution and these have been noted in the appropriate Chapter 

Method section.

Light positive pressure was applied to the patch electrode and it was lowered, using a 

micromanipulator, onto the cell body of an isolated cultured neuron growing on a 

microdot. Once contact was made with the cell, light suction was applied until the 

electrode formed a giga seal with the cell membrane. The fast electrode capacitance 

was compensated by adjusting the Fast T and Fast Mag dials, eliminating any 

transients generated by a repetitive step command potential. A series of sharp suction 

pulses were made until whole-cell access was obtained. Series resistance (Rs) was 

routinely monitored and only recordings exhibiting an Rs less than 10 MQ were 

analysed. Rs was determined by applying a short 5mV voltage step and measuring the 

peak of the transient capacitance current. Rs compensation was made in order to: (i) 

reduce the voltage error due to current flow through the electrode; and (ii) reduce the 

membrane charging time. The initial current transient generated by the repetitive step 

command potential was eliminated by adjusting the series resistance and whole-cell 

capacitance dials. Rs compensation was in the range 80-90%.

Neurons were voltage clamped at -60mV and a 2-3ms voltage step to OmV was 

applied via the somatic patch electrode. This voltage step opened voltage activated 

Na+ channels, initiating an action potential which propagated down the unclamped 

axon and into the presynaptic terminal, causing the release of neurotransmitter. The 

resultant autaptic current was recorded at the soma under reasonable voltage control 

(Fig. 2.3). Both excitatory and inhibitory neurons formed "autaptic" connections 

(Bekkers and Stevens, 1991) (Fig. 2.3). Only neurons exhibiting excitatory 

postsynaptic currents (EPSCs) were studied in experiments completed for this thesis. 

At times not all the neurons on a microdot can be visualised. Multiple neurons can 

give rise to polysynaptic connections. Polysynaptic connections, however, could be 

easily identified by a multicomponent postsynaptic current and were not analysed. All 

experiments were performed at room temperature (20-24°C).
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Figure 2. 3



Figure 2. 3 Both excitatory and inhibitory neurons form autapses.

A, Excitatory autaptic currents exhibit both a fast AMPA and slow NMDA 

component.

B, AMPA EPSCs can be isolated by blocking NMDA receptors with the addition of 

Mg2+ (lOmM) to the bath solution.

C, NMDA EPSCs can be isolated by blocking AMPA receptors with the addition of 

CNQX (lOpM) to the bath solution.

D, Inhibitory autaptic currents exhibit a positive current at negative holding potentials.

Holding potential was -60mV for all cells. Traces represent the average of 5-10 traces. 

Recordings were from cells grown in culture for 10-14 days.
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Data acquisition and analysis

The data acquisition program was written by Dr J. M. Bekkers and was run on an 

Osborne 486-25 computer. Individual records were filtered at 0.5 or 5kHz using a 4- 

pole Bessel filter. Data was digitised using a TL-1 DMA Interface board (Axon 

Instruments) and stored on disk. Data was analysed off-line using the analysis 

program Axograph (Axon Instruments).

Solution exchange

Solutions were applied via a series of glass flow pipes (Fig 2.2 A), the internal 

diameters of which (500pm) were larger than the diameters of the microdots; this 

ensured a uniform drug concentration at all autaptic contacts. Solution exchanges 

were made by quickly moving the flow pipes, through which solutions flowed 

continuously at ~0.1 ml/min, between autaptic stimuli. All drug solutions were gravity 

fed.

Characterisation of autaptic synaptic currents

Excitatory glutamatergic autapses exhibited both a fast AMPA and a slower NMDA 

receptor mediated component to the EPSC (Fig. 2.3A). The AMPA receptor mediated 

current could be isolated by blocking the NMDA component by the addition of either 

D-2-amino-5-phosphonovaleric acid (50-100pM, APV; RBI) or higher concentrations 

of Mg2+ (lOmM, Fig. 2.3B) to the bath solution. NMDA receptor mediated currents 

can be isolated by the addition of 6-cyano-7-nitroquinoxaline-2,3-dione (lOpM, 

CNQX; RBI) to the bath solution to block AMPA receptors (Fig. 2.3C). Inhibitory 

autapses generate an outward current at -60mV holding potential (Fig. 2.3D). 

Inhibitory currents have been shown to be blocked reversibly by picrotoxin (50pM) 

consistent with a GABAa receptor mediated current (Bekkers and Stevens, 1991).
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II. Hippocampal Slice Experiments

Slice procedure

Wistar rats (17-21 day old) were decapitated on a guillotine, their brains rapidly 

removed and placed into ice cold artificial cerebrospinal fluid (ACSF). The ACSF 

contained (in mM) NaCl, 125; KC1, 3; NaHC03, 25; NaH2P04, 1.25; MgCl2, 1; CaCl2, 

2; glucose, 11 and was gassed with 95% 0 2/5% C 02 (pH 7.4). The brain was 

hemisected along the midline and the cut surface was glued to the stage of a vibratome 

(Camden) with cyanoacrylic glue. The stage was immersed in ice-cold ACSF and 

300pm parasagittal slices were cut. The overlying cortex was removed and the 

hippocampal sections transferred to a Gibb-type holding chamber (Edwards et al., 

1989) containing gassed ACSF. The slices were held at 34°C for 1 hour and then 

maintained at room temperature until recordings were made. An example of a 

hippocampal slice is shown in Fig. 2.4 A.

Electrophysiology

The slices were transferred to a recording chamber where they were superfused with 

gassed ACSF which contained 10pM bicuculline methiodide (Sigma). All slice 

electrophysiological recordings were made in voltage clamp mode using an Axopatch- 

200A Patch Clamp (Axon Instruments). All command potentials were generated by 

the software package pClamp (Axon Instruments) run on an Osborne 486-25 

computer. The patch electrodes were pulled from thin walled borosilicate glass 

(micro-haematocrit tube, BRI) using a Flaming/Brown micropipettte puller (model P- 

97, Sutter Instrument Co.). Patch electrodes had resistances ranging from 3.0 to 5M£T 

Patch electrodes contained (in mM) CsCl, 125; EGTA, 0.5; TES buffer, 10; ATP, 3; 

GTP, 0.4 and MgCl2, 3. The pH was adjusted to 7.3 using CsOH and osmolarity was 

adjusted to between 270 and 290mOsm with sorbitol. Whole cell voltage clamp 

recordings were made using the "Blind" patch-clamp technique from dentate granule 

cells (Blanton et al., 1989). Briefly, positive pressure was applied to the patch 

electrode and it was lowered onto the cell body layer identified in the dentate region of
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Figure 2. 4



Figure 2. 4 The hippocampal slice preparation.

A, A photograph of a hippocampal slice showing CA1, CA3 and the dentate regions.

B, A cartoon of the hippocampus illustrating the stimulating and recording electrodes 

in the dentate region of the hippocampus. The stimulating electrode was positioned in 

the central third of the dentate gyrus molecular layer. This preferentially stimulated 

the medial perforant path (MPP). The lateral perforant path (LPP) runs along the outer 

third of the molecular layer.

Bar = 300p.m.
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the hippocampal slice viewed through a binocular dissecting microscope. Contact 

with a cell was indicated by the sudden increase in resistance which was monitored by 

a repetitive test pulse. Light suction was applied until a giga-seal was formed between 

the electrode tip and the cell membrane. The fast electrode capacitance was 

compensated by adjusting the Fast x and Fast Mag dials. A series of sharp suction 

pulses were made until whole-cell access was obtained. Rs was monitored from the 

peak of the capacitance transient evoked by a voltage step and ranged between 10 and 

27 MO. No Rs compensation was used.

EPSCs were evoked every 3s using low intensity, constant current stimulation through 

a concentric bipolar tungsten stimulating electrode. During synaptic stimulation cells 

were voltage clamped at between -60 and -70mV. The stimulating electrode was 

positioned in the central third of the dentate gyrus molecular layer, preferentially 

stimulated the medial perforant path (Fig. 2.4B) (McNaughton, 1980). Experiments 

were conducted at room temperature (20-24°C). External solutions were changed by 

perfusing the bath with > 10 times its volume.

Data acquisition and analysis

The software package pClamp (Axon Instruments) was used for data acquisition and 

was run on an Osbourne 486-25 computer. Individual records were filtered at 5kHz 

using a 4-pole Bessel filter. Data was digitised using a TL-1 DMA Interface board 

(Axon Instruments) and stored on disk. Data was analysed off-line using the analysis 

program Axograph (Axon Instruments).
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Appendix

List of suppliers of materials and equipment:

Alomone Labs;

Axon Instruments;

BRI;

Camden;

Collaborative Research; 

CSL;

Fisher Scientific;

Forma Scientific;

Gibco BRL;

Johnson Matthey; 

Millipore;

Pfizer Central Research; 

RBI;

Sigma;

Sutter Instruments Co.;

Jerusalem, Israel.

Foster City, CA, USA. 

Herlev, Denmark. 

Leistersire, UK.

Bedford, Mass, USA. 

Melbourne, Australia. 

Loughborough, UK. 

Marietta, OH, USA. 

Gaithersburg, MD, USA. 

Karlsruhe, Germany. 

Sydney, Australia. 

Groton, CT, USA. 

Natick, MA, USA.

St. Louis, MO, USA.

San Rafael, CA, USA.
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Chapter 3

A Non-uniform Distribution of Ca?+ Channel 
Subtypes on Presynaptic Terminals

Introduction

Several different types of presynaptic Ca2+ channel are involved in the support of 

neuruotransmitter release at central synapses. Among them are the two 

pharmacologically defined classes of Ca2+ channel subtype, the co-CTx-sensitive (N- 

type) and the co-Aga-sensitive (P/ Q-type) Ca2+channel. Both N-type and P/Q-types 

of Ca2+ channel support the release of glutamate at excitatory synapses in the 

hippocampus (see Chapter 1, Part I). The question of how these Ca2+ subtypes are 

distributed relative to each other on presynaptic terminals remains unresolved. Ca2+ 

channels could be distributed in one of three possible ways: (i) the subtypes are 

uniformly distributed with all presynaptic terminals containing both subtypes; (ii) 

some terminals contain only N-type while others have only P/Q-type Ca2+ channels; 

or (iii) is there a non-uniform distribution where some terminals only have N-type, 

others only P/Q-type, while others have a mixture of both.

Several lines of evidence suggest that Ca2+ channel subtypes are co-localised on 

excitatory presynaptic terminals and jointly contribute to the Ca2+ influx that triggers 

neurotransmitter release. This evidence includes: the supra-additive sum of co-CTx 

and co-Aga block; an increase in PPF by both toxins; and the partial relief of toxin 

block by increasing Ca2+ influx into presynaptic terminals (see Chapter 1, Part I). 

This evidence has lead to the proposal that the Ca2+ channel subtypes are uniformly 

distributed, with all presynaptic terminals containing both subtypes. However, few 

studies have attempted to set limits on the degree of co-localisation of Ca2+ channel 

subtypes. By monitoring exocytosis, using the vital dye FM1-43, Reuter (1995) 

showed that co-CTx completely blocked release in -45% of terminals in hippocampal
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culture. This suggested that N-type Ca2+ channels were solely responsible for 

neurotransmitter release at these synaptic terminals. In contrast, a different study 

found that co-CTx block was only about 9% when Ca2+ entry into the presynaptic 

terminal was maximised by the addition of 4-AP in hippocampal slice (Wheeler et al., 

1996). Therefore, a significant fraction of terminals cannot rely solely on N-type 

channels for neurotransmitter release at hippocampal neurons.

N-type and P/Q-types of Ca2+ channel are differentially influenced by 

neuromodulators such as adenosine, GABA and glutamate (Wu and Saggau, 1994a; 

Wu and Saggau, 1995b; Qian and Saggau, 1997; Vazquez and Sanchez-Prieto, 1997; 

Huang et al., 1998) (see Discussion). The way in which Ca2+ channels are distributed 

across presynaptic terminals will have important implications for how synaptic 

transmission is modulated. For instance, a non-uniform distribution of Ca2+ channel 

subtypes could permit selective alteration of transmitter release at a subset of terminals 

on a single afferent. Experiments presented in this chapter address the question of 

how Ca2+ channel subtypes are distributed across presynaptic terminals. The 

probability of transmitter release (Pr) was measured by analysing the progressive block 

of the NMDA receptor mediated EPSC using the irreversible open-channel blocker 

MK-801 (Hessler et al., 1993; Rosenmund et al., 1993). N-type or P/Q-type Ca2+ 

channels were selectively blocked and the changes in Pr were measured. Changes in 

Pr provided clues as to how Ca2+ channel subtypes are distributed across excitatory 

autaptic terminals in hippocampal cultures.

Methods

Whole-cell patch-clamp recordings were obtained from isolated hippocampal 

pyramidal cells as described in Chapter 2. The usual bath solution contained (in mM) 

NaCl 135, KC1 5, CaCl2 3, glucose 10, HEPES 10, glycine 0.01, pH 7.3, with 

osmolarity adjusted to 310mOsm with sorbitol. NMDA-mediated currents were 

isolated by adding 10pM CNQX to all bath solutions. Ultra-pure NaCl and KC1 salts 

(Johnson Matthey) were used for bath solutions to reduce possible Mg2+
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contamination. Currents were low pass filtered at 0.5kHz and digitally sampled at 

1kHz.

The progressive block of the NMDA EPSC in the presence of MK-801 was fitted with 

a double exponential curve using a simplex fitting algorithm to minimise j} .

X2 = £ (experimental amplitude - predicted amplitude)2/experimental amplitude 

This is not a true measure of y} but is used because the standard deviation (SD) of 

each data point is not known. However, this form of y} estimates the true %2, based on 

the assumption that the SD at each data point is proportional to the amplitude of that 

data point. The quantal model of synaptic transmission predicts that the SD of the 

synaptic response is approximately proportional its amplitude at low Pr (Chapter 5). 

Implicit in the sum of squared errors (SSE) minimisation is the assumption that the SD 

of each point is constant. Therefore, x 2 minimisation provides a more accurate 

estimate of the free parameters in the fit than the minimisation of SSE. In order to 

improve the signal-to-noise ratio in fits to the progressive block, NMDA EPSC 

currents were usually measured by averaging the amplitude over a 280 ms-long 

window starting 20ms after the stimulus (Rosenmund et al., 1993). Residual non- 

NMDA current, measured in the same way in the presence of lOOpM D-APV at the 

end of each experiment, was subtracted from all EPSC amplitude measurements.

In the paired-pulse experiments (Fig. 3.6), ten traces were averaged in each condition 

(with or without the second pulse) and EPSC amplitudes were measured by averaging 

over the range 20-40ms after the stimulus. The amplitude of the second EPSC was 

found by subtracting the averaged trace without the second stimulus from that with the 

second stimulus. Block by toxin after 30 stimuli in MK-801 (Fig. 3.7) was measured 

by fitting exponential curves to the progressive block time courses before and after 

addition of toxin, and finding the difference between these fitted curves extrapolated to 

the point at which toxin was first added. co-CTx was obtained from Alomone Labs 

and co-Aga was a gift from Pfizer Central Research. MK-801 was from RBI. co-Aga 

experiments were done in bath solutions containing cytochrome-c (Sigma) at 1 mg/ml
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in order to reduce non-specific binding of the toxin. Control experiments showed that 

cytochrome-c alone had no effect (98 ± 2%, n = 3). Statistical comparisons were made 

using the t test.

Results

Progressive block of NMDA EPSCs by MK-801 yields Pr

MK-801 is an open-channel blocker of NMDA channels that is irreversible under the 

conditions of these experiments (Huettner and Bean, 1988). When autaptic NMDA 

EPSCs were repeatedly evoked at 0.1 Hz in solution lacking MK-801, their amplitudes 

were stable (Fig. 3.1 A, triangles; n=  3). When 2jiM MK-801 was added to the 

external solution, stimulation at 0.1 Hz caused a progressive reduction in the 

amplitudes of the EPSCs (Fig. 3.1 A, filled circles; n = 9). Examples of individual 

NMDA EPSCs at different time points in a typical experiment are shown in Fig. 3.IB 

(normalised amplitudes on right). If the MK-801 was removed after 30 stimuli the 

EPSC amplitudes were stable (Fig. 3.1 A, open circles; n=  4), confirming the 

irreversibility of the block under these recording conditions. The rate of the 

progressive block in MK-801 is proportional to transmitter release probability, Pr, 

because when Pr is high, synaptic terminals will be more likely to release glutamate 

and open postsynaptic NMDA channels, which will therefore be blocked more 

quickly. The utility of this technique has already been established (Hessler et al., 

1993; Rosenmund et al., 1993; Manabe and Nicoll, 1994; Weisskopf and Nicoll, 

1995).

The time course of the progressive block of the evoked NMDA EPSC by MK-801 is 

well-fitted by a sum of two exponentials (Fig. 3.1 A), suggesting that the population of 

synaptic terminals can be divided into two classes, one with a high Pr, the other with a 

low Pr (Hessler et al, 1993; Rosenmund et al., 1993). It is likely that terminals have a 

continuous range of Pr values (Huang and Stevens, 1997) and the criterion used to 

divide them into high- and low-Pr categories is somewhat arbitrary. However, the 

general conclusions are not dependent on this classification scheme and the double
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Figure 3.1



Figure 3. 1 Progressive block of NMDA EPSCs by the use-dependent open-channel 

blocker, MK-801, can be used to estimate the probability of glutamate release, Pr.

A, Averaged normalised NMDA EPSC amplitudes plotted against stimulus number, 

for three different kinds of experiment (different symbols). Each point is the ensemble 

average (± SEM) across different cells. Triangles: EPSC amplitude timecourse in 

normal bath solution without MK-801, showing the stability of the EPSCs over the 

duration of a typical experiment (n = 3 cells). Filled circles: EPSC amplitude 

timecourse in bath solution containing 2p.M MK-801, applied at stimulus 0 and 

maintained until the end of the recording (n = 9). The superimposed solid line is a 

double exponential fit, suggesting the existence of at least two groups of terminals, one 

with a high Pr and the other with a low Pr. Open circles: EPSC amplitude timecourse 

after the removal of MK-801 after 30 stimuli, showing that the MK-801 block is 

irreversible under our conditions (n = 4).

B , Left: representative NMDA EPSCs recorded from one cell in control solution 

(trace labelled Con) and at 1, 10 and 30 stimuli after adding 2pM MK-801. Stimulus 

artefacts have been blanked. Right: the same EPSCs normalised at their peaks, 

showing that their decay is faster in the presence of MK-801 and does not change with 

stimulus number. This confirms that a homogeneous population of NMDA channels is 

being activated.
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exponential fit provides a useful estimate of the range and distribution of Pr values 

(see Discussion).

A heterogeneity in the open probability (P0) of NMDA receptors could also be 

expected to give a double exponential progressive block of NMDA EPSC in the 

presence of MK-801. If two classes of NMDA receptors existed on the postsynaptic 

membrane, one with a high P0 and another with a low P0, then the fast component of 

the MK-801 progressive block could be due to the preferential block of the high P0 

NMDA receptors with the slower progressive block due to the low P0 receptors. This 

possibility is ruled out by observing the decay time course of the NMDA mediated 

EPSC at different sweep numbers in MK-801 (Fig. 3.IB). If glutamate activated a 

mixed population of NMDA channels, then those with a higher P0 will be 

preferentially blocked. This will bias the population towards low P0 NMDA channels 

as more channels are blocked by successive stimuli. MK-801 irreversibly blocks open 

channels early in the synaptic event preventing re-opening and thus accelerates the 

EPSC decay. This acceleration is expected to decreased with decreasing P0 

(Rosenmund et al., 1993). There is no change in the NMDA decay time course after 

successive stimuli in the presence of MK-801 (Fig. 3.IB) consistent with a uniform 

population of NMDA receptor PG. This implies that the double exponential nature of 

the progressive block in MK-801 is not a function of postsynaptic NMDA receptor 

heterogeneity (Hessler et al., 1993; Rosenmund et ai, 1993).

The rate constants of progressive block in 2pM MK-801 at 3mM Ca2+ were 

Tfast = 8.9 ± 1.1 stimuli and Tslow = 56.3 ± 5.1 stimuli (mean ± SEM; n = 9). It is 

possible to get a quantitative estimate of Pr using the MK-801 progressive block time 

constants (Hessler et al., 1993; Rosenmund et al., 1993). However, this was not done 

here. The progressive block rate constants provide an index of changes in Pr and 

conclusions made from experiments in this chapter do not require the quantitative 

estimate of Pr.
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The areas under each of the two fitted exponentials give the relative number of 

terminals in the high- and low-Pr categories (Hessler et al., 1993; Rosenmund et eil, 

1993). The area is proportional to the numbers of terminals (N) because the 

progressive block time constant of the exponential is proportional to 1/Pr while the 

exponential amplitude is proportional to the number of terminals times Pr. The area is 

therefore independent of Pr.

Area = Amplitude-T 

aA.Pr-l/Pr 

a  N

In control conditions high-Pr terminals constituted 36.1 ± 6.2% of the total (n = 9).

Three lines of evidence confirm that the progressive block of NMDA EPSCs by MK- 

801 provides an index of Pr:-

(i) Adding Cd2+ (3.5pM) to the bath reduced NMDA EPSC amplitudes by 52 ± 2.4% 

(n = 8), presumably by non-selectively blocking presynaptic voltage-activated Ca2+ 

channels (Fig. 3.2A left) (Sather et al., 1993; Sabatini and Regehr, 1995), although 

there is also a small postsynaptic blocking effect on the NMDA channel (~7%) (Mayer 

et al., 1989). Progressive block rates in MK-801 were slowed approximately two-fold 

by Cd2+: Tfast = 19.1 ± 2.7, Tslow = 96.5 ± 12.4 (n = 8) (Fig. 3.2A, right). This 

corresponds to a reduction of Pr by 53% and 42% at high- and low-Pr terminals, 

respectively. The percentage of high-Pr terminals was unchanged at 34.9 ± 6.0% (cf. 

36.1% in control).

(ii) Reducing the external calcium concentration to 1.5mM reduced NMDA EPSC 

amplitudes by 38 ± 3% (n = 5) and slowed the progressive block rates: Tfast = 14.9 ± 

1.0, Tslow = 77.2 ± 10.0 (n = 5). This corresponds to a reduction of Pr by 40% and 

28% at high- and low-Pr terminals, respectively. The percentage of high-Pr terminals 

was unchanged at 37.2 ± 3.7% {cf. 36.1% in control). This data confirms previous 

results (Rosenmund et al., 1993; Manabe and Nicoll, 1994).
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Figure 3. 2



Figure 3. 2 Control experiments confirm that MK-801 block measures Pr.

A, Non-selective partial blockade of presynaptic Ca2+ currents by Cd2+ uniformly 

reduces Pr at both high- and low-Pr terminals. Left: representative timecourse plot for 

one experiment, showing the block due to Cd2+ (3.5pM) and MK-801 (2pM). Periods 

of drug application are indicated by horizontal bars. At the end of the experiment 

lOOpM D-APV was added, completely blocking the current and confirming that these 

were pure NMDA EPSCs. Right: normalised progressive block plots averaged as in 

Fig. 3. 1A (n = 8 cells). The superimposed solid line is a double exponential fit with 

time constants shown in the inset; the dashed line is the control fit from Fig. 3.1 A. 

Both block time constants are twice the corresponding control values (Fig. 3.1 A), 

indicating a uniform halving of Pr by this concentration of Cd2+.

B, Paired-pulse depression, which reflects Pr averaged across functioning terminals, is 

reduced after most high-Pr terminals have been masked by applying 30 stimuli in 2jiM 

MK-801. All traces are averages of 10 sweeps and were obtained from the same cell 

in drug-free external solution before (left) and after (right) the stimuli in MK-801. 

The interstimulus interval was 70ms. Stimulus artefacts were not blanked.
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(iii) A standard way to detect a modulation of average Pr is to measure a change in 

paired-pulse facilitation or depression (Martin, 1977). After 30 stimuli in MK-801 

most high-Pr terminals should be masked (Fig. 3.1 A), thereby reducing the Pr 

averaged across all terminals contributing to the EPSC. Paired-pulse depression 

(70ms interstimulus interval) was measured in drug-free external solution before and 

after 30 stimuli had been applied in MK-801. The amount of depression was reduced 

by 31.3 ± 7.5% after MK-801 application (p < 0.05; n = 7) (Fig. 3.2B). This confirms 

the expected reduction in average Pr.

co-CTx and co-Aga affect Pr non-uniformly

Having shown that non-specific reduction of Ca2+ currents uniformly decreased Pr? the 

effect of selective blockade of calcium channel subtypes by co-CTx or co-Aga were 

explored next. When N-type calcium channels were irreversibly blocked by co-CTx 

(l|lM) (Williams et al., 1992a; Fujita et al., 1993) the NMDA EPSC amplitude was 

reduced by 41.2 ±4.7 % (Fig. 3.3A, left; n = 9) but there was no change in the time 

constants for the progressive block in 2pM MK-801: Tfast = 7.3 ± 1.3, Tslow = 50.1 ± 

4.9 (Fig. 3.3A, right; n = 8). A postsynaptic effect of co-CTx was excluded by Pfrieger 

et al. (1992)who showed that co-CTx had no effect on the amplitude distribution of 

miniature EPSCs. Also the current generated by the application of exogenous AMPA 

to hippocampal pyramidal cells was unaltered in the presence of co-CTx (Luebke et al., 

1993). By observing no change in the fibre volley on application of co-CTx, a 

presynaptic effect on the action potential has been ruled out by Wheeler et al. (1995).

Since Tfast was unchanged by co-CTx, some functional high-Pr terminals remained 

after co-CTx block. However, the percentage of these terminals was reduced to 19.2 ± 

4.7% (cf. 36.1% in control), suggesting that some were shifted from the high- to low- 

Pr class. Can this shift from high- to low-Pr terminals explain the 41.2% average 

EPSC amplitude reduction in co-CTx? The mean EPSC amplitude, Iepsc> due to a 

fraction fn of terminals with high Pr (Pr,H) and a fraction f^ (= 1 - fn) of terminals
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Figure 3. 3



Figure 3. 3 Selective blockade of different Ca2+ channel subtypes by co-CTx (A) or 

co-Aga (B) has little effect on progressive block time constants, but reduces the 

proportion of high-Pr terminals.

Lefthand panels: representative timecourse plots for individual experiments. 

Horizontal bars show the periods of application of co-CTx (lpM), co-Aga (0.5|iM), 

MK-801 (2pM) and D-APV (lOOpM). The progressive block in panel B (left) is 

shown expanded in the inset.

Righthand panels: normalised progressive block plots averaged as in Fig. 3.1 A (n = 8 

in A; n = 4 in B). The superimposed solid line in each panel is a double exponential fit 

with time constants shown in the inset; the dashed line is the control fit from Fig. 3.1 A. 

The fitted time constants are similar to control, but the area under the fast component, 

which gives the proportion of high-Pr terminals, is reduced.
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with low Pr (Pf,l) is given by Iepsc = M(fnPr,H + flJYD» where N  is the total number 

of functional terminals and i is the unitary current. If N  and i are unaffected by co- 

CTx, then substitution of the values for Pr,H> Pr,L> fH and fL measured before and after 

co-CTx predicts an amplitude reduction by the toxin of only 30%. Since co-CTx does 

not have a postsynaptic effect on i, the additional 10% of block must be due to a 

reduction in N. Thus, a shift from the high- to low-Pr class cannot alone account for 

the observed amplitude reduction, and co-CTx must completely block transmitter 

release from some terminals. This means that some terminals must contain only 

functional N-type Ca2+ channels.

co-Aga at higher concentrations (> lOOnM) is thought to block both P- and Q-type 

Ca2+channels in the hippocampus (Wheeler et al., 1994; Randall and Tsien, 1995; 

Scholz and Miller, 1995; Wheeler et al., 1996). The toxin was used at 0.5|iM, and 

therefore co-Aga-sensitive channels are referred to as P/Q-type channels. In the 

autaptic culture preparation the block by co-Aga was reversible, so the toxin had to be 

present throughout the experiment (Fig. 3.3B, left). co-Aga (0.5|iM) blocked the 

NMDA EPSC amplitude by 81.2 ± 3.2% (n = 5) with no significant change in the 

progressive block time constants in 2|iM MK-801: Tfast = 5.2 ± 1.6, Tslow = 63.2 ± 

15.8 (n = 4; Fig 3.3B, right). Again, this suggests that release probability was 

unaltered at some terminals. The percentage of high-Pr terminals was reduced by 

co-Aga to 8.4 ± 2.4% (cf. 36.1% in control). This reduction predicts a block by co-Aga 

of about 50%, compared with the observed 81% block. So, by the same argument that 

was used for co-CTx, transmitter release from some terminals must be completely 

blocked by co-Aga. Thus, some terminals contain only functional P/Q-type channels.

co-Aga-sensitive and co-CTx-sensitive Ca2+ channels play a predominant role in the 

release of glutamate at excitatory synapses in the central nervous system including the 

hippocampus (see Chapter I, Part I). Many central synapses exhibit a component of 

release which is resistant to both co-CTx and co-Aga (Mintz et al., 1995; Wu and 

Saggau, 1995a). Wheeler et al (1996) suggest that this resistant channel plays a minor
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role at hippocampal synapses. The co-application of co-CTx (lpM) and co-Aga 

(0.5pM) blocked NMDA EPSCs at autapses by 98.6 ± 0.4% (n = 5), confirming that 

N-, P- and Q-type Ca2+ channels are predominant in mediating excitatory synaptic 

transmission in hippocampal cultures (Fig. 3.4). However, a role of a resistant Ca2+ 

channel cannot be entirely ruled out.

Results for selective and non-selective Ca2+ channel blockers are summarised and 

compared in Fig. 3.5. Non-selective block by Cd2+ reduced release probability at all 

terminals (Fig. 3.5A, B) but did not alter the fraction of high- and low-Pr terminals 

(Fig. 3.5C). In contrast, selective block by co-CTx or co-Aga did not alter release 

probability at some terminals (Fig. 3.5A, B) but reduced the percentage of high-Pr 

terminals (Fig. 3.5C). These results suggest that the selective toxins completely 

blocked release from some terminals, converted some terminals from the high- to low- 

Pr class, and left the remainder unaffected. This implies a non-uniform distribution of 

N- and P/Q-type channels across presynaptic terminals.

Paired-pulse depression gives an average measure of Pr

Paired-pulse facilitation (PPF) and depression reflect the average Pr of all terminals 

contributing to an EPSC (Martin, 1977) (see Chapter 1, Part II). Cd2+ (3.5pM) 

reduced paired-pulse depression by 30.0 ±5.1% compared to control (n = 10, 

Fig. 3.6B, D), while co-CTx reduced it by 26.0 ± 7.0% (n = 5, Fig 3.6C, D). Thus, the 

average measure of Pr provided by paired-pulse depression was similar for both Cd2+ 

and co-CTx, consistent with their similar reduction of EPSC amplitude (52% and 41%, 

respectively). In contrast, the MK-801 technique revealed very different effects of 

Cd2+ and co-CTx on high- and low-Pr terminals (Fig. 3.5). This highlights the fact that 

gross measures of Pr, like PPF, obscure details about Pr at subclasses of terminals that 

can be revealed by the MK-801 technique.
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Figure 3. 4



Figure 3. 4 N- and P/Q-type Ca2+ channels support glutamate release at excitatory 

autaptic synapses.

A, An evoked autaptic NMDA EPSC is significantly reduced in the presence of co- 

CTx and is blocked by the co-application of co-CTx and co-Aga. All traces are 

averages of 5 sweeps and were obtained from the same cell. The residual non-NMDA 

current has been subtracted from the average traces.

B, A summary of experiments shown in A. NMDA receptor mediated EPSCs were 

measured by averaging the amplitude over a 280ms-long window starting 20ms after 

the stimulus. Bars represent mean ± SEM (co-CTx; n = 9, co-Aga; n = 5 and co­

application; n = 5).
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Figure 3. 5



Figure 3. 5 Summary of the progressive block experiments. Bars represent mean ± 

SEM; stars indicate a statistically significant difference from control (one star, 

p < 0.05; two stars, p < 0.02). The progressive block time constants are increased by 

Cd2+ but are unaffected by the toxins (A, B). The percentage of high-Pr terminals is 

unaffected by Cd2+ but is reduced by the toxins (C), implying that the toxins cause a 

population shift from high-Pr to low-Pr terminals.
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Figure 3. 6



Figure 3. 6 Paired-pulse depression (PPD) reflects the average Pr of all terminals 

contributing to an EPSC.

A, A paired pulse, with an interstimulus interval of 70ms, results in a depression of 

the second evoked NMDA EPSC at autaptic excitatory synapses.

B, Cd2+, a non-selective blocker of Ca2+ channels, reduces the amount of PPD 

consistent with a reduction in Pr.

C, co-CTx, selective for N-type Ca2+ channels, reduces the amount of PPD consistent 

with a reduction in average Pr.

D, Summary of the PPD experiments. Bars represent mean ± SEM; stars indicate a 

statistically significant difference from control (two stars, p < 0.02, Cd2+; n = 10, 

co-CTx; n = 5).
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High-Pr and Iow-Pr terminals do not correlate with Ca2+ channel subtypes

After 30 stimuli in 2pM MK-801, approximately 97% of high-Pr terminals are masked 

(Fig. 3.1 A), leaving a residual EPSC generated by an almost pure population of low-Pr 

terminals. If transmitter release at these low-Pr terminals was mediated preferentially 

by N-type Ca2+ channels, the residual EPSC would be more sensitive to block by co- 

CTx than the control EPSC. The converse would be true if N-type channels were 

preferentially found on high-Pr terminals. A similar argument applies for P/Q-type 

Ca2+ channels. After 30 stimuli in MK-801 the amount of block was not significantly 

different from control for both co-CTx (53.1 ± 6.5%, n = 6; cf. 41.2 ± 4.7% for control, 

n = 9) and co-Aga (85.5 ± 4%, n = 6\ cf. 81.2 ± 3.2% for control, n = 5) (Fig. 3.7). 

Thus, Ca2+ channel subtypes are similarly distributed on both high- and low-Pr 

terminals.

Discussion

Modelling the effect of toxins on Pr

How is it possible to maintain Pr in a proportion of synaptic terminals after blocking a 

subset of Ca2+ channels with either co-CTx or co-Aga? One mechanism is that each 

terminal contains only N- or only P/Q-type channels. In this case application of a 

toxin would completely remove selected terminals, reducing EPSC amplitude but not 

altering Pr for the terminals that remain. This can be ruled out because of supra- 

additivity of blockade of neurotransmission by co-CTx and co-Aga. The amplitude 

reduction produced by each toxin sums to 122% (see above), consistent with previous 

observations (Mintz et al., 1995; Wheeler et al., 1996) and suggesting that at some 

terminals N-type and P/Q-type channels co-operate to support transmitter release. To 

account for both supra-additivity and the maintenance of Pr in the presence of toxins, 

some terminals must contain mixtures of Ca2+ channel subtypes, but others must 

contain only one or the other subtype. This model is shown schematically in Fig. 3.8. 

The fraction of terminals in each class was estimated from the experimental results.

47



Figure 3. 7



Figure 3. 7 Block of NMDA EPSCs by toxin is similar in control cells (i.e. with both 

high- and low-Pr terminals contributing; panel A) or following 30 stimuli in 2pM MK- 

801 (i.e. after most high-Pr terminals have been masked; panel B). This suggests that 

both high-Pr and low-Pr terminals contain, on average, the same mix of presynaptic 

Ca2+ channel subtypes.

A, B, The above experiment performed using lpM co-CTx (co-CTx). Each panel was 

obtained from a different cell. A similar protocol was used for 0.5pM co-Aga.

C, Summary of experiments of the type shown in A and B. Bars represent 

mean ± SEM. The amount of block by each toxin is not significantly different in 

control or after 30 stimuli in 2pM MK-801.
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Figure 3. 8



Figure 3. 8 A simple model of a non-uniform distribution of presynaptic Ca2+ channel 

subtypes accounts for our data. Presynaptic terminals are assumed to be either high-Pr 

or low-Pr, and to contain only P/Q-type Ca2+ channels (QQ), only N-type (NN) or a 

mixture of the two (NQ), in the same relative proportions for both high- and low-Pr 

sites. When N-type channels are blocked by adding co-CTx, NN-type terminals are 

completely blocked, QQ-type terminals are unaltered, and NQ-type terminals have 

their Pr either reduced or unaffected, depending on the initial Pr. A similar argument 

applies to block of P/Q-type channels by co-Aga. For further details see Discussion. 

The percentages shown above the control terminals are the estimated relative number 

of terminals in each category when the model was optimised to fit the data (Table 3.1). 

The pie graphs give the percentages of functional high- and low-Pr terminals in each

condition.
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The distribution of Ca2+ channel subtypes across autaptic terminals was modelled with 

a number of simplifying assumptions. Terminals were divided into three classes: those 

with only P/Q-type channels (QQ), those with only N-type channels (NN) and those 

with both classes (NQ) (Fig. 3.8). Each class was further divided into two sub-classes 

with high Pr or low Pr. The behaviour of these terminals in the presence of the toxins 

are based on three assumptions:- (i) When co-CTx is applied, pure N-type terminals in 

both the high-Pr and low-Pr categories will be completely blocked because no Ca2+ 

can enter. Similarly, pure P/Q-type terminals will be completely blocked by co-Aga. 

(ii) When co-CTx is applied, high-Pr terminals that contain both N- and P/Q-type 

channels will be shifted to the low-Pr class, because blockade of N-type channels will 

reduce the net presynaptic Ca2+ influx. A similar situation applies for co-Aga. (iii) 

Low-Pr terminals that contain both N- and P/Q-type channels will not be completely 

blocked by either toxin, but will remain in the low-Pr class, although perhaps with 

reduced Pr (see below).

Two experimental observations constrained the distribution of terminal classes: the 

percentage of high- and low-Pr terminals measured under control conditions (Fig. 3.5), 

and the finding that Ca2+ channel subtypes were similarly distributed on high- and 

low-Pr terminals (Fig. 3.7). These constraints meant that the model had only two free 

parameters: the fraction of NN terminals, and the fraction of QQ terminals. The 

relative numbers of terminals in the 6 classes were used to fit four key experimental 

results: (i) amount of co-CTx block of the EPSC, (ii) amount of co-Aga block of the 

EPSC, (iii) percentage of high Pr terminals after co-CTx block and (iv) the percentage 

of high Pr terminals after co-Aga block. The two free parameters were adjusted to give 

the best fit between the model and the corresponding experimental parameters (Table 

3.1) by a simplex optimisation procedure minimising the sum of squared errors (SSE, 

see Appendix).

A Monte Carlo simulation was performed to examine the sensitivity of the model 

predictions to errors in the exponential fits to the progressive block data. This was
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Table 3 .1  Comparison of predicted and experimental data for the model illustrated in 

Fig. 3.8. The percentage of terminals in each category of terminal in Fig. 3.8 was 

estimated as described in Discussion, and the optimal values are shown in Fig. 3.8 for the 

control condition, after rounding each value by 1-2%. The unrounded optimal values 

were used to calculate the Predicted values in the Table.

Predicted Observed

(%) (%)

Amount of co-CTx Block 38.5 41.2 ± 4.7

Amount of co-Aga Block 75.2 81.2 ± 3.2

Percent of high Pr after co-CTx 18.4 19.2 ±4.7

Percent of high Pr after co-Aga 6.4 8.4 ±2.4



done by drawing random samples from a set of gaussian distributions with the same 

means and standard deviations as each of the experimental parameters (high and low 

Pr; percent of terminals with high Pr before and after co-CTx or co-Aga block; 

amplitude reduction following co-CTx and co-Aga block). The two free parameters in 

the model (fractions of NN and QQ terminals) were optimised for each set of sampled 

parameters. One thousand sample sets were drawn, and the means and standard 

deviations of the optimum parameters were calculated. The Monte Carlo fit of the 

model to the data gave the following values for the fractions of different terminal types 

(mean ± SD): 8.2 ± 3.6% (NN), 46.9 ± 6.2% (QQ), 44.8 ± 8.6% (QN).

The model incorporating the above assumptions (Fig. 3.8) gives an accurate 

quantitative description of all aspects of the data. The model explains the amount of 

block produced by co-Aga and co-CTx, and their supra-additivity (Table 3.1). It also 

explains how the toxins reduce the percentage of high-Pr sites, while leaving release 

probabilities unaltered. Together these results suggest that about 10% of terminals 

contain only functional N-type channels, about 45% only functional P/Q-type 

channels, and the remaining 45% a mixture of both types.

Exploring the model

The way in which the NQ low- Pr class of terminal acts in the presence of the toxins 

was examined. Simulations in which the NQ low-Pr terminal class were completely 

blocked by the addition of either toxins did not provide a good match between the 

predicted and experimental values. Similarly, when NQ low-Pr terminals were 

completely blocked by co-CTx but not co-Aga the fit was poor. A better fit to the data 

was seen if co-Aga blocked the NQ low-Pr class but co-CTx did not. The best fit of the 

data was achieved if neither toxin blocked release from the NQ low-Pr class of 

terminals (Table 3.2). This finding probably reflects the complex shift in distribution 

of Pr within the low Pr class of terminals following the application of either toxin. 

Experimentally, no reduction in Pr at terminals in the low-Pr class was seen after the 

application of either toxin. However, a small shift may have been obscured by the
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Table 3. 2 The way in which the NQ low-Pr class of terminal acts in the presence of the 

toxins was examined. The comparison of predicted and experimental data for the 

different model assumptions described are shown. The best fit was achieved if NQ low- 

Pr terminals were resistant to both co-CTx and co-Aga block.

% (O-CTx 

Block

% co-Aga 

Block

% High Pr 

after co-CTx

% High Pr 

after co-Aga

Observed 41.2 81.2 19.2 8.6

NQ low-Pr terminals 

blocked by both toxins

45.7 86.5 27.4 12.46

NQ low-Pr terminals 

blocked by co-CTx only

43.4 78.3 28.0 5.7

NQ low-Pr terminals 

blocked by co-Aga only

41.8 84.0 16.6 13.1

NQ low-Pr terminals 

blocked by neither toxin

38.5 75.2 18.4 6.4



high-Pr terminals that switched to the low-Pr class following toxin block. The 

analytical approach estimates the average Pr for each class, and lacks the resolution to 

detect an altered distribution within the low-Pr class.

The model could be made more realistic by postulating a continuum of Pr values and 

Ca2+ channel ratios, and a graded effect of toxin blockade on each terminal. However, 

attempts at increasing the number of terminal classes and grading the toxin effect on 

each did not greatly improve the fit to the data. Recently a mathematical relationship 

between MK-801 progressive block and a continuum of Pr values has been derived 

(Huang and Stevens, 1997). It would be possible to develop a model in which a 

continuum of Pr was incorporated. However, this would add further degrees of 

freedom to the model making interpretation more difficult. The qualitative 

conclusions are not dependent on the assumption of two classes of Pr. For example, it 

can be concluded unambiguously that Ca2+ channels are distributed non-uniformly on 

presynaptic terminals, because both toxins leave some terminals unaffected. The 

double exponential fit to the progressive block provides a useful analytical measure of 

the range and distribution of Pr across presynaptic terminals and the simple model 

predicts the details of a non-uniform distribution that is consistent with all the data.

Developmental change in Ca2+ channel subtype supporting transmitter release

A developmental change in Ca2+ channel subtype composition supporting transmitter 

release has been demonstrated at excitatory hippocampal neurons grown in culture 

(Scholz and Miller, 1995). At immature synapses (< 15 days in culture) co-CTx 

blocked synaptic transmission by more than 80% while co-Aga was less effective. In 

contrast, in older cultures (>15 days in culture) co-Aga was shown to be more effective 

(-65%) than co-CTx (-30%) at blocking transmission. Therefore, the proportions of 

terminal classes (NN, QQ and QN) would be expected to alter in a developmental 

fashion. All experiments described here used neurons that had been maintained for 

10-14 days in-vitro. A direct developmental comparison between results presented 

here and those of (Scholz and Miller, 1995) is difficult because of the differences in
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the culture preparation method. Scholz and Miller (1995) remove the hippocampi 

from embryonic rats (day 17) while cultures used here are from newborn rat 

hippocampi. Differences in rat species (Wistar vs Sprague-Dawley) between the two 

studies may also complicate developmental comparisons. However, the 

developmental trend observed by Scholz and Miller (1995) may still be valid in our 

preparation. Technical difficulties made the use of the MK-801 technique unreliable 

when addressing developmental changes in Ca2+ channel subunit distribution. In 

immature cultures (< 10 days) the NMDA EPSC is small and fitting exponentials to 

the noisy data proved difficult. Older cultures had very large NMDA EPSC which 

were less well voltage clamped and exhibited rundown compromising the progressive 

block analysis.

Other evidence for a non-uniform distribution of Ca2+ channels 

Reuter (1995) has shown that the distribution of presynaptic N-type channels is non- 

uniform in culture, by using the dye FM1-43 to monitor exocytosis. At some 

terminals exocytosis was entirely blocked by co-CTx, while at others it was only 

partially blocked. co-Aga did not show this heterogeneity, partially blocking all 

terminals to a small extent. These results qualitatively agree with ours for co-CTx but 

not for co-Aga. There are two possible explanations for the discrepancy. First, Reuter 

(1995) used a lower concentration of co-Aga (80nM), which completely blocks P-type 

channels (Mintz et al., 1992a) but is much less effective at blocking the Q-type 

channel (Wheeler et al., 1994; Scholz and Miller, 1995). co-Aga was used at 500nM in 

these experiments, which blocks both P- and Q-type channels effectively. It is 

possible that the altered progressive block observed in co-Aga is due primarily to Q- 

type channels, which Reuter would not have observed. Second, Reuter's experiments 

gave no information about possible differences between inhibitory and excitatory 

terminals, whereas the autapse experiments ensured that a pure population of 

excitatory terminals was studied. A recent study detailed below shows that GABA 

release can be supported by either N-type alone or P/Q-type alone (Poncer et al., 

1997).
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Wheeler et al. (1996) have taken a different approach to this question. When 

presynaptic Ca2+ influx was increased by prolonging the action potential with 4- 

aminopyridine (4-AP), they found that block of synaptic transmission by co-CTx was 

reduced from 46% in control to 9%. From this they concluded that a significant 

fraction of terminals cannot rely solely on N-type channels for neurotransmitter 

release. Although they did not set quantitative limits on this statement, their 

conclusion is in general agreement with the result presented here, which suggests that 

there are about 10% pure N-type terminals (Fig. 3.8). Presumably this 10% of 

terminals is involved in the residual 9% block by co-CTx in 4-AP (Wheeler et al., 

1996). Wheeler et al (1996) found that 4-AP was less effective at reducing the block 

of transmission by co-Aga (from 95% to 74%). Although they did not discuss this 

result, it is consistent with the suggestion that there are many more pure P/Q-type than 

pure N-type terminals.

Synapse specific expression of different Ca2+ channel subtypes has been demonstrated 

at two distinct inhibitory pathways onto CA1 pyramidal neurons (Poncer et al., 1997). 

Intemeurons originating in Str. radiatum were shown to support GABA release by the 

N-type Ca2+ channel alone, while interneurons originating in Str. lucidum and 

Str. oriens supported release via the P/Q-type channel. A heterogeneity of Ca2+ 

channel distribution has also been demonstrated in the preoptic region of the brain. 

Potassium induced GABA release from acutely dissociated medial preoptic neurons 

with co-isolated synaptic boutons was blocked in a heterogenous way by co-CTx or co- 

Aga (Haage et al., 1998).

In summary, our data for a non-uniform distribution of Ca2+ channel subtypes across 

presynaptic terminals is qualitatively consistent with other findings in the CNS.
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Functional implications of a non-uniform distribution of Ca2+ channels

N-type and P/Q-type Ca2+ channels are presumably synthesised in the cell body, 

transported along the axon to presynaptic terminals, then inserted into the membrane 

close to vesicle release sites. If this process is random and there are many Ca2+ 

channels per terminal, then all terminals should have both channel subtypes. The 

existence of terminals where only one type of Ca2+ channel is functional may be 

explained in two ways. The first possibility is that Ca2+ channel subtypes are targeted 

to specific terminals, either by directed transport along the axon or by selective 

insertion at the terminal. The second possibility is that all terminals are non-selective 

and Ca2+ channel subtypes are inserted randomly, but only a few Ca2+ channels are 

functional at a given terminal (Stanley, 1993). The resultant binomial distribution of 

channels would automatically produce some terminals with exclusively N-type or P/Q- 

type channels. For example, if there were two functional Ca2+ channels per terminal, 

and these were inserted randomly from a population of 70% P/Q-type and 30% N-type 

channels, the resulting terminals would be 9% N-type, 49% P/Q-type and 42% mixed. 

These experiments have shown that excitatory synaptic terminals arising from a single 

axon have a non-uniform distribution of Ca2+ channel subtypes. What could be the 

physiological importance of this heterogeneity? Neuromodulators differentially 

modulate specific Ca2+ channel subtypes (see below). One possibility, therefore, 

might be to enable terminal-specific modulation.

Differential modulation of Ca2+ channel subtypes

Synaptic transmission can be regulated by neurotransmitter modulation of Ca2+ 

channels via a G-protein mediated mechanism (Mintz and Bean, 1993; Hille, 1994). 

There is general consensus that the inhibition involves the direct effect of the activated 

G-protein subunit or subunits on the Ca2+ channel itself, with recent evidence 

indicating a key role for the G-proteins ßy subunits (Herlitze et al, 1996; Ikeda, 1996). 

Similar mechanisms of inhibition have been proposed for both N- and P/Q-type Ca2+ 

channels (Mintz and Bean, 1993). However, a few studies have reported that the N- 

type Ca2+ current is inhibited to a greater extent than the P/Q-type Ca2+ current.
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Imaging studies which allow the simultaneous recording of the presynaptic Ca2+ 

transient and the field excitatory postsynaptic potential (EPSP), show that GABAb, 

adenosine (Al) and muscarinic receptors preferentially block the N-type Ca2+ channel 

at CA3 to CA1 synapses (Wu and Saggau, 1994a; Wu and Saggau, 1995b; Qian and 

Saggau, 1997). Similarly, presynaptic inhibition of EPSCs by adenosine in cultured 

hippocampal neurons was preferentially mediated by the N-type Ca2+ channel (Scholz 

and Miller, 1996). The degree of presynaptic inhibition reduced with synaptic 

maturation, consistent with a developmental reduction in the N-type Ca2+ channel 

(Scholz and Miller, 1995). Vazquez and Sanchez-Prieto (1997), using a synaptosomal 

preparation from cerebrocortical neurons, have also demonstrated that modulation of 

release by adenosine (Al) and the metabotropic glutamate receptor is dominated by 

action on the N-type Ca2+ channel. In contrast, presynaptic modulation by the 

metabotropic glutamate receptor was shown to preferably target co-CTx-insensitive 

channels for both inhibitory and excitatory pathways in the rat medulla (Glaum and 

Miller, 1995). This raises the issue of whether the selective modulation is a function 

of the physical location of the Ca2+ channels and the presynaptic modulating receptor, 

or whether there are fundamental differences in the modulation pathways between N- 

and P/Q-type Ca2+ channels. Differential enhancement of Ca2+ currents have also 

recently been demonstrated in rat amygdala neurons (Huang et a l , 1998). The ß- 

adrenergic agonist, isoproterenol, acting through an cyclic AMP cascade was shown to 

selectively increase the Ca2+ current through P/Q-type Ca2+ channels in these neurons.

A comparison of G-protein mediated inhibition of the N- and P/Q-type Ca2+ channels 

has been completed in adrenal chromaffin cells (Currie and Fox, 1997). G-protein 

inhibition of Ca2+ channels produces a slowing of activation kinetics, a reduction of 

the inhibition at positive membrane potentials, and partial relief from inhibition by 

depolarising prepulse (Bean, 1989; Elmslie et al, 1990; Penington et al, 1991; Currie 

and Fox, 1997). The inhibition can be divided into either voltage-sensitive (relieved 

by a conditioning prepulse) or voltage-insensitive inhibition (present after conditioning
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prepulse). Only the voltage-sensitive component of inhibition was larger for N-type 

channels. Currie and Fox (1997) suggest that this difference in kinetics cannot alone 

account for the observed differences between N- and P/Q-type Ca2+ channel 

modulation. Differential G-protein inhibition may be, in part, due to the spatial 

organisation of the Ca2+ channel subtypes and the modulating receptor on presynaptic 

terminals.

In summary, Ca2+ channel subtypes may be differentially modulated. Therefore, 

modulators that are diffusely present in the brain could acquire specificity because of 

the non-uniform distribution of the channels they modulate.

What determines Pr at a given synaptic terminal?

The progressive block of the NMDA EPSC in the presence of MK-801 is best fit by at 

least a double exponential, suggesting a non-uniform distribution of Pr across synaptic 

terminals (Hessler et al., 1993; Rosenmund et al., 1993). Results presented here 

confirm the heterogeneity of Pr at excitatory synapses in dissociated hippocampal 

cultures. The hypothesis that different Ca2+ channel subtypes may be preferentially 

found on either high or low Pr terminals was tested. After 30 stimuli in MK-801 the 

majority of high Pr terminals are blocked leaving an EPSC generated by low Pr 

terminals. The amount of block by either co-CTx or co-Aga was the same for an EPSC 

generated by all terminals and an EPSC generated by low Pr terminals only. This 

argues against any relationship between Pr and Ca2+ channel subtype (see Results).

An anatomical basis for non-uniform Pr has been postulated. Serial electron 

microscopy was used to reconstruct entire presynaptic boutons and the size, number 

and location of docked vesicles were measured (Harris and Sultan, 1995). A large 

variation in the number of docked vesicles per terminal was found. This distribution 

may provide a basis for non-uniform Pr across hippocampal synapses. Additional 

evidence supporting an anatomical basis of the non-uniform Pr has come from studies 

using FM1-43. This technique allows an estimate of the size of the "recycling pool" of
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synaptic vesicles as well as Pr for a given synaptic terminal. Murthy et al (1997) 

found a strong correlation between the Pr of an individual terminal and the number of 

synaptic vesicles. An estimate of a "readily releasable pool" of synaptic vesicles and 

Pr has also been made at putative individual synapses in hippocampal slice (Dobrunz 

and Stevens, 1997). They also showed a strong correlation between Pr and the number 

of synaptic vesicles available for release. A biochemical basis may also underlie the 

difference between Pr at different synaptic terminals. Changes in the phosphorylation 

state of synapsin 1 has been shown to control the fraction of synaptic vesicles 

available for release (Greengard et al., 1993). The availability of additional synaptic 

vesicles for release would presumably increase the Pr of a given terminal. Despite 

evidence correlating the size of the releasable pool with Pr the underlying mechanism 

generating the heterogeneity in Pr remains unresolved.

Conclusion

The analysis of the progressive block of NMDA EPSCs in the presence of MK-801 is 

a powerful technique for demonstrating changes in Pr. This Chapter has investigated 

the pattern of co-localisation of Ca2+ channel subtypes on presynaptic terminals in 

hippocampal cultures. N-type or P/Q-type Ca2+ channels were selectively blocked and 

the changes in Pr were measured using MK-801. The antagonists completely blocked 

release at some terminals, reduced Pr at others, and failed to affect the remainder. In 

contrast, non-selective reduction of presynaptic Ca2+ influx by adding Cd2+ or 

lowering external Ca2+ reduced Pr uniformly at all terminals. It was concluded from 

these results that the mixture of N-type and P/Q-type channels varies markedly 

between terminals on the same afferent. A model was developed incorporating a non- 

uniform distribution of Ca2+ channel subtypes across presynaptic terminals. The 

model accounted for all the experimental data and suggests that about 10% of 

terminals have only N-type channels, about 45% of terminals have only P/Q-type 

channels and the remaining 45% have a mixture of subtypes. The amount of block by 

co-CTx and oo-Aga was unaltered after most of the high-Pr sites were masked by MK- 

801, suggesting that the pattern of co-localisation of Ca2+ channel subtypes is similar
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for high- and low-Pr terminals. Thus, the functional distinction between high- and 

low-Pr terminals cannot be explained by the non-uniform distribution of Ca2+ channel 

subtypes, and may instead have a structural or biochemical basis. Given that Ca2+ 

channel subtypes are differentially affected by neuromodulators, these findings lead to 

the possibility of terminal-specific modulation of synaptic function. This may have 

important ramifications for synaptic modulation and plasticity.

57



Appendix

The function "MK-801 model" was used to search for the optimum distribution of 

terminal classes to explain average experimental results. The function predicts four 

main results for a given distribution of terminal types. It calculates the SSE between 

the predictions and the observed results.

Observed experimental results:

1) Percentage block by co-CTx (Observed_CTX_Block = 41.2%)

2) Percentage block by co-Aga (Observed_Aga_Block= 81.2%)

3) Percentage of high Pr terminals after co-CTx block 

(Observed_CTX_Percent = 19.2%)

4) Percentage of high Pr terminals after co-Aga block 

(Observed_Aga_Percent = 8.4%)

Experimental results used to constrain the model:

1) Measured Pr for high Pr terminals (High_Pr =1/8.9)

2) Measured Pr for low Pr terminals (Low_Pr = 1/56.3)

3) Percentage of high Pr terminal in control conditions 

(High_Pr_Percent = 36.1%)

4) Percentage of low Pr terminal in control conditions 

(Low_Pr_Percent = 63.9%)

The model assumes terminals are divided into three classes:

QQ = only Q-type channels present 

NN = only N-type channels present 

QN = both Q- and N-type channels present
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The computer model:

• Calculate NN fraction from other two fractions 

NN_Fraction = 1 - (QQ_Fraction + QN_Fraction)

• Calculate Low Pr and High Pr terminal type sub-fractions 

QQ_High_Pr_Fraction = QQ_Fraction * High_Pr_Percent / 100 

QN_High_Pr_Fraction = QN_Fraction * High_Pr_Percent / 100 

NN_High_Pr_Fraction = NN_Fraction * High_Pr_Percent / 100

QQ_Low_Pr_Fraction = QQ_Fraction * Low_Pr_Percent / 100 

QN_Low_Pr_Fraction = QN_Fraction * Low_Pr_Percent / 100 

NN_Low_Pr_Fraction = NN_Fraction * Low_Pr_Percent / 100

• Percent of High Pr terminals after co-CTx blocks N-type channels. Assumes that 

co-CTx block of N-type channels totally blocks release from NN terminals, 

converts QN terminals with High Pr to Low Pr, but leaves QN terminals with Low 

Pr unaffected.

CTX_Total_High_Pr = QQ_High_Pr_Fraction

CTX_Total_Low_Pr = QQ_Low_Pr_Fraction + QN_Low_Pr_Fraction 

+ QN_High_Pr_Fraction

CTX_High_Pr_Percent = 100*CTX_Total_High_Pr / (CTX_Total_High_Pr

+ CTX_T otal_Low_Pr)
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• Percent of High Pr terminals after co-Aga blocks Q-type channels. Assumes that 

co-Aga block of Q-type channels totally blocks release from QQ terminals, and 

converts QN terminals with High Pr to Low Pr, but leaves QN terminals with Low 

Pr unaffected.

Aga_Total_High_Pr = NN_High_Pr_Fraction

Aga_Total_Low_Pr = NN_Low_Pr_Fraction + QN_Low_Pr_Fraction 

+ QN_High_Pr_Fraction

Aga_High_Pr_Percent = 100*Aga_Total_High_Pr / (Aga_Total_High_Pr

+ Aga_Total_Low_Pr)

• Part I of SSE calculation

SSE = (CTX_High_Pr_Percent - Observed_CTX_Percent)A2 

+ (Aga_High_Pr_Percent - Observed_Aga_Percent)A2

• Predicted block of transmission by co-CTx and co-Aga

Control_Release = High_Pr * High_Pr_Percent/100 + Low_Pr * Low_Pr_Percent/100 

CTX_Release = High_Pr * CTX_Total_High_Pr + Low_Pr * CTX_Total_Low_Pr 

Aga_Release = High_Pr * Aga_Total_High_Pr + Low_Pr * Aga_Total_Low_Pr

CTX_Block = 100 * (1 - CTX_Release / Control_Release)

Aga_Block = 100 * (1 - Aga_Release / Control_Release)

• Part II of SSE calculation

SSE = SSE + (CTX_Block - Observed_CTX_Block)A2 

+ (Aga_Block - Observed_Aga_Block)A2

• Minimise SSE with respect to variables, QQ_Fraction and QN_Fraction
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Write results:

QQ Fraction QN Fraction NN Fraction

0.4667 0.4534 0.07988

Predicted Observed

co-CTx Block 38.5 41.2

co-Aga Block 75.2 81.2

% High Pr after co-CTx 18.4 19.2

% High Pr after oo-Aga 6.4 8.4
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Chapter 4

Ca2+ Cooperativity of Release and Ca?+ Channel 
Subtypes

Introduction

The relationship between transmitter release and [Ca2+]0 is steeply non-linear at 

central synapses. This non-linear relationship implicates the cooperative involvement 

of multiple Ca2+ ions in the release of each vesicle of transmitter (Chapter 1, Part I). 

The Dodge-Rahamimoff equation provides a model of the relationship between 

[Ca2+]0 and transmitter release at the frog neuromuscular junction (Dodge and 

Rahamimoff, 1967). The Dodge-Rahamimoff equation, however, assumes that there 

is a linear relationship between [Ca2+]0 and intra-terminal Ca2+ concentration 

([Ca2+]it). This relationship is known to be sublinear at higher [Ca2+]0 at central 

synapses (Mintz et al., 1995; Borst and Sakmann, 1996). This chapter examines the 

relationship between [Ca2+]0 and transmitter release at excitatory autaptic synapses in 

hippocampal culture. A modified version of the Dodge-Rahamimoff equation 

incorporating a non-linear relationship between [Ca2+]0 and [Ca2+]it is developed to 

explain the dose-response relationship at these synapses.

Several Ca2+ channels subtypes, including the N-type and the P/Q-type, support the 

release of neurotransmitter at central synapses (Chapter 1, Part I and Chapter 3). It has 

been suggested that different Ca2+ channel subtypes mediate transmitter release with 

different cooperativities but this finding remains controversial. Mintz et al. (1995) 

observe that release is more steeply dependent on [Ca2+]jt for P/Q- than for N-type 

Ca2+ channels at granule cell to Purkinje cell synapses in the cerebellum. In contrast, 

Wu and Saggau (1994) see no significant difference in cooperativity for Ca2+ entering 

via either N- or P/Q-type Ca2+ channels for CA3 - CA1 synapses in the hippocampus. 

Both these studies used Ca2+ sensitive dyes to measure [Ca2+]jt before and after
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selective block of each Ca2 + channel subtype. Mintz et al. (1995) estimate 

cooperativity from only two data points, one recorded before and one after selective 

block. These two points spanned a different [Ca2+]it range for each channel subtype. 

By measuring [Ca2+]jt at several time points after the application of the toxins Wu and 

Saggau (1994) explore the [Ca2+]jt range more thoroughly and see no significant 

difference in cooperativity for the two channel subtypes.

In the present study selective Ca2+ channel blockers and traditional dose-response 

analysis were used to investigate the Ca2+ cooperativity associated with influx through 

different Ca2+ channel subtypes. An empirical comparison, using the Hill equation or 

a power function fit (at low [Ca2+]0), was made between Ca2+ dose-response curves 

generated in the presence of co-CTx or co-Aga. The Ca2+ dose-response curves were 

generated over a wide range of [Ca2+]0 and therefore overcome some of the limitations 

of the imaging studies.

Methods

Whole-cell patch-clamp recordings were obtained from isolated hippocampal 

pyramidal neurons which formed autaptic synapses as described in Chapter 2. The 

bath solution contained (in mM) NaCl 135, KC1 5, MgCh 10, glucose 10, HEPES 10, 

pH 7.3, with osmolarity adjusted to 310mOsm with sorbitol. CaCl2 was added from 

stock to a final concentration between 0.4 and lOmM. Currents were low pass filtered 

at 5kHz and digitally sampled at 10kHz. Series resistance was typically 5MQ (range 4 

- 7MQ), and compensation was set at 80-90%. Errors associated with uncompensated 

series resistance were small under our recording conditions (see Results). EPSCs were 

evoked every 6s. AMPA EPSCs were measured by averaging the amplitude over a 5 - 

10ms range around the peak of the current. Residual non-AMPA current, measured in 

the same way in the presence of lOpM CNQX during each experiment, was subtracted 

from all EPSC measurements.
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All theoretical curves were fit to the data by minimising %2, defined as:

%2 = X (experimental amplitude - predicted amplitude)2 / experimental SD 

In 3 out of 20 cells a single outlier point was deleted before performing Dodge- 

Rahamimoff fit to the full dose-response curve. The quality of the fit for the Hill and 

Dodge-Rahamimoff equations was determined using a yf1 test. Other statistical 

comparisons were made using the Student's t test.

Approaches used to estimate Ca2+ cooperativity

An estimate of the degree of Ca2+ cooperativity was obtained by fitting an equation to 

the EPSC amplitude vs [Ca2+]0 dose-response curve. The Dodge-Rahamimoff 

equation, the Hill equation and the power function were used. Each equation contains 

a parameter related to cooperativity.

The Dodge-Rahamimoff equation

The Dodge-Rahamimoff equation was developed to describe the relationship between 

the endplate potential amplitude and [Ca2+]0. It is based on the assumption that Ca2+ 

ions bind to several independent sites on a presynaptic protein complex to promote the 

release of a transmitter vesicle (Dodge and Rahamimoff, 1967). It also assumes that 

Mg2+ ions can bind to the same sites, but do not promote vesicle release.

The standard Dodge-Rahamimoff equation is,

E = S ( ([Ca2+]0 / Ki) / (1 + [Ca2+]0 / K, + [Mg2+]0 / K2) ) N° 

where:

E is the EPSC amplitude;

Ki is the affinity for Ca2+ binding to the vesicle release complex;

K2 is the affinity for Mg2+ binding to the vesicle release complex;

S is a scaling factor;

ND is the number of Ca2+ ion binding sites that must be occupied to 

trigger the release of a transmitter vesicle.
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The Hill equation

Another method for estimating the degree of cooperativity is to fit a Hill equation. 

The Hill equation provides a useful empirical description of the dose-response 

relationship (Weiss, 1997). The equation only provides an estimate of the number of 

binding sites when extreme positive cooperativity is present between the binding of 

the first and subsequent ligand molecules. That is, the affinity of binding for the first 

Ca2+ ion has to be much lower than subsequent Ca2+ binding affinities. The fit 

provides an estimate of both cooperativity, NH, and affinity, EC5 o, of Ca2+ binding to 

the vesicle release complex.

The Hill equation is,

E = S [Ca2+]0NH / (EC50Nh + [Ca2+]0NH) 

where:

EC5 0  is the Ca2+ concentration giving half the maximal 

synaptic response;

Nh is the Hill coefficient, an empirical value related to the 

cooperativity underlying the dose-response relationship.

The power function

The shape of the dose-response curve at lower Ca2+ concentrations contains the most 

information about cooperativity. In the limit as [Ca2 + ] 0  approaches zero the Hill and 

the Dodge-Rahamimoff equations both reduce to a power function. The power 

function forms a straight line when plotted in log-log coordinates, and the slope of the 

line is equal to the cooperativity parameter, Np.

The power function is,

E = S [Ca2+]0Np 

where:

Np is an empirical parameter indicating the degree of cooperativity 

of the dose-response relationship.
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Results

Ca2+ dose-response curve for autaptic EPSCs

The amplitude of the AMPA EPSC was measured as a function of [Ca2+]0 at autaptic 

synapses on cultured hippocampal neurons (Fig. 4.1 A). EPSC amplitude 

measurements at each [Ca2+]0 were bracketed with measurements at 2mM [Ca2+]0 to 

ensure the stability of the recording (Fig. 4 .IB). The relationship between EPSC 

amplitude and [Ca2+]0 was highly non-linear (Fig. 4.1C), consistent with the 

cooperative involvement of several Ca2+ ions in transmitter release.

Estimating Ca2+ cooperativity

The number of Ca2+ ions that cooperate to trigger the release of a vesicle (the degree 

of cooperativity) was estimated using several approaches. The EPSC amplitude vs 

[Ca2+]0 dose-response curves were fit with the following equations; the Dodge- 

Rahamimoff equation, the Hill equation and the power function.

The Dodge-Rahamimoff equation was developed to describe the relationship between 

[Ca2+]0 and the endplate potential amplitude at the neuromuscular junction (Dodge 

and Rahamimoff, 1967). It is based on physically plausible assumptions, in contrast to 

more empirical approaches such as the Hill equation. It also considers the ion Mg2+ 

which is known to inhibit transmitter release (Dodge and Rahamimoff, 1967).

The standard Dodge-Rahamimoff equation is,

E = S ( ([Ca2+]0 / KO / (1 + [Ca2+]0 / K, + [Mg2+]0 / K2) ) Nd

The two affinity parameters, Kj and K2 , are expressed in terms of extracellular Ca2+ 

and Mg2+ concentrations and were fixed to 2.7 and 4.8mM respectively (Dodge and 

Rahamimoff, 1967; Donaldson and Strieker, 1996). Therefore only two free 

parameters the cooperativity, ND, and the scaling factor, S, are varied to fit the 

experimental data. This equation did not provide a good description of the data and 

the fit could be rejected in every case (p < 0.05, n=9, Fig. 4.1C). The fit could also be 

rejected when either or both K\  and K2 were made free parameters (p < 0.05, n=9).
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Figure 4.1



Figure 4. 1 Non-linear relationship between EPSC amplitude and [Ca2+]0. The 

cooperative involvement of several Ca2+ ions in the release of each vesicle of 

neurotransmitter is demonstrated by the non-linear relationship between [Ca2+]0 and 

EPSC amplitude.

A, AMPA EPSCs recorded at several different [Ca2+]0. Each trace is the average of 

10-50 EPSCs.

B, Amplitude of individual EPSCs (same cell as A) plotted against stimulus number. 

Each [Ca2+]0 is bracketed by an epoch in 2mM [Ca2+]0 to ensure recording stability.

C, Average EPSC amplitude plotted against [Ca2+]0 on log-log axes. Error bars 

indicate ± 1 SD. The solid line is the optimally fitted Dodge-Rahamimoff equation. 

The fit was poor, and could be rejected (p > 0.05).

D, The same data as C, showing the optimally fitted Hill equation (solid line) with a 

Hill coefficient of 3.7. This equation provided an adequate fit (p < 0.05). The degree 

of cooperativity was independently estimated at 3.8 by fitting a power function over 

the 0.4 to 1.2 [Ca2+]0 range (dashed line).



EP
SC

 a
m

pl
itu

de
 (n

A
)

A B
CNQX 10

Stimulus number

C D

Q. 0.1

o  0.01

Calcium (mM)Calcium (mM)

jf
i«

1



The most likely explanation for the failure of this approach is that the standard Dodge - 

Rahamimoff equation assumes a linear relationship between [Ca2+]jt and [Ca2+]0 

whereas it is now known to be sublinear at higher [Ca2+]0 (Mintz et al., 1995; Borst 

and Sakmann, 1996). This possibility is investigated below using the modified 

Dodge-Rahamimoff equation which incorporates a sublinear relationship between 

[Ca2+]it and [Ca2+]0.

The Hill equation provides an empirical description of the dose-response relationship. 

The Hill equation is,

E = S [Ca2+]0NH / (EC50Nh + [Ca2+]0NH)

The fit provides an estimate of both cooperativity, NH, and affinity, EC50, of Ca2+ 

binding to the vesicle release complex. It permits empirical comparison between dose- 

response curves recorded under different conditions (Weiss, 1997). The Hill equation 

gave a good fit to the data in every case (p > 0.05, n=9). The Hill constant, NH, was 

3.3 ± 0.1 and EC50 was 2.3 ± 0.2mM (n=9, solid line, Fig. 4.ID).

The dose-response curve at lower [Ca2+]0 should follow approximately a power 

function form. A fit at lower Ca2 + concentrations would be less affected by 

inadequate voltage clamp and other non-linearities (see Discussion). A power function 

fit restricted to this region may therefore provide a more reliable estimate of 

cooperativity than the Hill equation fit to the entire dose-response curve.

The power function is,

E = S [Ca2+]0Np

The power function forms a straight line when plotted in log-log coordinates, and the 

slope of the line is equal to the cooperativity parameter, NP. The degree of 

cooperativity was estimated at 3.1 ±0.2 (n=9, dashed line, Fig. 4 .ID) by fitting the 

power function over the [Ca2+]0 range from 0.4 to 1.2mM.
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Ca2+ cooperativity in the presence of Cd2+

The effect of non-selective blockade of Ca2+ channels on cooperativity was explored. 

Cd2+ is a competitive blocker of Ca2+ channels, but is not selective for different Ca2+ 

channel subtypes (Sather et al., 1993; Zhang et al., 1993). As expected, Cd2+ 

increased the Ca2+ EC50 in a dose dependent manner: EC50 (2pM Cd2+) 

= 3.5 ± 0.3mM and EC50 (4pM Cd2+) = 5.0 ± 0.3mM (n = 5) (cf. 2.3 in control, Fig. 

4.2A, B). However, Cd2+ produced no change in the degree of cooperativity, 

NP (2jiM Cd2+) =3.1 ±0.1 and NP (4pM Cd2+) = 3.0 ±0.1 (cf. 3.1 in control, 

Fig. 4.2C, D). Similarly, Nh was not significantly changed: (2pM Cd2+) =

3.0 ± 0.2 and NH (4pM Cd2+) = 3.6 ± 0.3 (n = 5) (cf. 3.3 in control). In summary, 

Cd2+ shifted the dose-response curve to the right without changing its steepness at 

lower Ca2+ concentrations.

Ca2+ cooperativity in the presence of co-CTx and co-Aga

The effect of selective blockade of Ca2+ channel subtypes on cooperativity was 

explored next. co-CTx or co-Aga were used to block N-type or P/Q-type channels 

respectively. N- and P/Q-type Ca2+ channels support transmitter release at excitatory 

synapses in the hippocampus (see Chapter 1, Part I and Chapter 3). N-type Ca2+ 

channels were blocked by co-CTx (lpM) in an irreversible manner and this reduced the 

EPSC amplitude by 46.6 ± 4% (n=7, Fig. 4.3A, B) in 2mM Ca2+. The Ca2+ dependent 

binding of co-CTx (Wagner et al., 1988) is not a concern in experiments presented 

here. co-CTx was always added in 2mM [Ca2+]0 and as the EPSC amplitude was 

unchanged when the external solution was bracketed back to 2mM Ca2+ (Fig. 4.3A) 

the binding of co-CTx must be irreversible. co-Aga (500nM) blocks both P- and Q-type 

Ca2+ channels. The EPSC amplitude reduction produced by co-Aga was partially 

reversible in the autaptic culture preparation, therefore, the toxin had to be present 

throughout the experiment. co-Aga (0.5pM) reduced the EPSC by 94 ± 0.4% (n=4, 

Fig. 4.3C, D) in 2mM Ca2+.
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Figure 4. 2



Figure 4. 2 Cd2+ does not change the steepness of the Ca2+ dose-response curve. The 

competitive Ca2+ channel antagonist, Cd2+, shifts the Ca2+ dose-response curve to the 

right in a dose-dependent manner.

A, Linear-log plot of the normalised EPSC amplitude vs [Ca2+]0 for three individual 

cells recorded in normal bath solution (filled circles'), in the presence of 2pM Cd2+ 

(open squares) and 4pM Cd2+ (open triangles'). Each point is the ensemble average 

amplitude ± 1 SD. The solid lines are Hill equation fits to the data.

B, Cd2+ increased the EC50 for Ca2+. Average ECso’s are shown in control solution 

(n=9) and in the presence of Cd2+ (2 and 4pM, n=5). Error bars indicate SEM.

C, Cd2+, did not broaden or change the steepness of the dose-response curve. Log-log 

plot of normalised EPSC amplitude vs [Ca2+]0 is shown for the same three cells as A. 

Solid lines show power function fits to the data.

D, Cd2+ had no effect on cooperativity. Average cooperativity (Np) over the 0.4 to 

1.2mM [Ca2+]0 range in control solution (n=9) and 0.8 to 2mM [Ca2+]0 range in the 

presence of Cd2+ (2 and 4fiM, n=5). Error bars indicate SEM.
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Figure 4. 3



Figure 4. 3 Dose-response relationship for EPSCs recorded in the presence of co-CTx 

and co-Aga.

A, AMPA EPSCs recorded at several different [Ca2+]0 in the presence of co-CTx. 

Each trace is the average of 5-20 EPSCs.

B, Amplitude of individual EPSCs (same cell as A) plotted against stimulus number. 

Each [Ca2+]0 is bracketed by an epoch at 2mM [Ca2+]0 to ensure recording stability.

C, AMPA EPSCs recorded at several different [Ca2+]0 in the presence of co-Aga. 

Each trace is the average of 5-20 EPSCs.

D, Amplitude of individual EPSCs (same cell as in C) plotted against stimulus

number.
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There was no detectable difference between the degree of cooperativity in the presence 

of co-Aga, (Np = 2.2 ±0.4, n=4) or co-CTx (NP = 2.4 ± 0.2, n=7) (unpaired r-test, 

p > 0.05; Fig. 4.4A, B, C). These estimates are based on a power function fit restricted 

to the [Ca2+]0 range from 0.8 to 2mM. Similarly, no difference in cooperativity could 

be detected when the Hill equation was fit over the entire [Ca2+]0 range. In the 

presence of co-Aga, NH was 2.5 ± 0.4 (n=4) and in co-CTx, NH was 2.6 ± 0.2 (n=7).

Non-uniform distribution of Ca2+ channel subtypes

If both N-type and P/Q-type Ca2+ channels are present in the same ratio on all 

presynaptic terminals (uniform distribution) and are functionally equivalent, then 

selective block of one subtype will produce a uniform shift in EC50 at all terminals. 

The dose-response curve will shift to the right with little change in its shape or 

steepness. In contrast, if the distribution of Ca2+ channel subtypes across synaptic 

terminals is non-uniform (Reuter, 1995; Reid et al., 1997) (see Chapter 3) then 

selective block will only shift the EC50 at the subset of terminals that possess both 

Ca2+ channel subtypes. Other terminals will either be completely blocked, or will 

have no shift in their EC50. The resulting mixture of terminals with different EC50S 

will broaden the dose-response relationship and reduce its overall steepness. Thus, a 

reduction in steepness of the dose-response curve in the presence of a selective Ca2+ 

channel blocker would imply a non-uniform distribution of Ca2+ channel subtypes. In 

contrast, a non-selective Ca2+ channel blocker should not alter the overall steepness of 

the dose-response curve. The selective Ca2+ channel blocker, co-CTx, reduced the Hill 

constant NH to 2.6 ± 0.2 (n=7) and co-Aga reduced NH to 2.5 ± 0.4 (n=4) (c f 3.3 in 

control). Similarly, a reduction in the power function was observed: NP (co-CTx) 

= 2.4 ± 0.2 (n=7) and NP (co-Aga) = 2.2 ± 0.4 (n=4)(c/ 3.1 in control). All reductions 

were significant (unpaired f-test, p < 0.05). In contrast, the non-selective blocker, 

Cd2+ (4|iM), increased to 3.6 ± 0.3 (n=5) but this increase was not significant 

(p > 0.05). Also, Cd2+ (4jnM) did not significantly change NP (3.0 ± 0.1, n=5).
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Figure 4. 4



Figure 4. 4 co-CTx and co-Aga broaden the Ca2+ dose-response curve. Selective Ca2+ 

channel blockers shifts the Ca2+ dose-response curve to the right and broaden it.

A, Linear-log plot of the normalised EPSC amplitude vs [Ca2+]0 for three individual 

cells in normal bath solution (filled circles), and in the presence of co-CTx (open 

triangles) and (O-Aga (open squares). Each point is the ensemble average amplitude ± 

1 SD. The solid lines are Hill equation fits to the data.

B, Log-log plot of normalised EPSC amplitude vs [Ca2+]0 for two individual cells 

recorded in the presence of co-CTx (open triangles) or co-Aga (open circles). Each 

point is the ensemble average amplitude ± 1 SD. The solid lines are power function 

fits over the [Ca2+]0 range from 0.8 to 2mM.

C, The broadening of the dose-response curve by selective toxins reduces the 

cooperativity (Np). Average Np is shown in control (n=9), and in the presence of 

either co-CTx (n=7) or co-Aga (n=4). The significant reduction in Np in the presence of 

selective toxin is consistent with a non-uniform distribution of Ca2+ channel subtypes 

across presynaptic terminals. Error bars indicate SEM. Stars indicate statistical 

significance (p < 0.05).
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A non-uniform distribution of Ca2+ channel subtypes also predicts a smaller shift in 

EC50 for the selective toxin block than the non-selective block of Cd2+. This is 

because in the presence of the selective toxins only a proportion of terminals will shift 

to the right on the dose-response curve, while the non-selective blocker will shift all 

terminals. Both co-CTx and Cd2+ reduced the EPSC amplitude by -45% at 2mM Ca2+, 

however, co-CTx shifted the curve significantly less than Cd2+ (EC50 Cd2+ = 3.5mM 

cf EC50 co-CTx = 2.8mM, p < 0.05) consistent with a non-uniform distribution of Ca2+ 

channel subtypes.

Experimental sources of non-linearity

A number of sources of non-linearity may shape the Ca2+ dose-response curve at high 

[Ca2+]0 (see below and Discussion). One potential source of non-linearity is reduced 

driving force due to inadequate voltage clamp of larger synaptic currents. To test for 

this possibility, CNQX (0.5jiM) was applied at a low and a high [Ca2+]0 (1.2 and 

lOmM, Fig. 4.5A). CNQX reduced EPSC amplitude by 80 ± 6% in low [Ca2+]0 and 

by 75 ± 5% in high [Ca2+]0 (n=5, Fig. 4.5B). This difference was not significant 

(p > 0.05). CNQX reduces the EPSC amplitude making it less sensitive to poor 

voltage clamp. The two [Ca2+]0 represent the highest and a lower limit of the Ca2+ 

dose-response curves. There is no significant difference in the scaling by CNQX at 

these two extremes suggesting that the whole dose-response curve scales linearly. 

Thus, clamp error is generally small under these recording conditions.

The modified Dodge-Rahamimoff equation

An underlying assumption used to derive the standard Dodge-Rahamimoff equation 

was that [Ca2+]jt varies linearly with [Ca2+]0, but this relationship was recently found 

to be sublinear at central synapses for [Ca2+]0 > ImM (Mintz et al., 1995; Borst and 

Sakmann, 1996). This sublinearity implies that experimental dose-response curves 

will reach saturation more rapidly than predicted by the standard Dodge-Rahamimoff 

equation. Rapid saturation was seen consistently in the present study and was 

responsible for the poor quality of the fit with this equation (Fig. 4.1C). Note that the

70



Figure 4. 5



Figure 4. 5 Inadequate voltage clamp is not a major source of non-linearity of the 

[Ca2+]0 dose-response relationship. If clamp error is a significant problem then larger 

AMPA EPSCs should be less sensitive to an antagonist.

A, AMPA EPSC amplitude vs stimulus number at 1.2mM and lOmM [Ca2+]0 in the 

absence and presence of the competitive AMPA receptor antagonist CNQX (0.5pM). 

The block of the EPSC by CNQX in high (lOmM) and low (1.2mM) [Ca2+]0 is similar 

indicating that clamp error is generally small under our recording conditions.

B, Average CNQX block at high and low [Ca2+]0 (n=5). Error bars indicate SEM.
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discrepancies between the fit and the data appear larger at low [Ca2+]0 due to the log- 

log coordinates. Similar behaviour has been reported previously (Wheeler et al., 

1996). To address this problem, a sublinear relationship between [Ca2+]jt and [Ca2+]0 

was incorporated into a modified Dodge-Rahamimoff equation. The extracellular 

calcium concentration term was replaced by an empirical expression for the effective 

intra terminal concentration in the modified equation,

[Ca2+]it = [Ca2+]0 / (1 + ([Ca2+]0 / KS)N̂ )1/N*

where:

Ks is the [Ca2+]0 where flux into the terminal is reduced by (1/2)1/Ns;

Ns is the degree of cooperativity for Ca2+ inhibition of Ca2+ flux.

This expression was chosen for two reasons: (i) the relationship between [Ca2+]it and 

[Ca2+]0 is linear at low extracellular concentrations but is sublinear at higher 

concentrations; and (ii) when Ns = 1, the expression reduces to the form predicted by 

the Michaelis-Menten expression for Ca2+ flux through a channel pore with a single 

rate-limiting Ca2+ binding site (Hille, 1992; Church and Stanley, 1996).

The modified Dodge-Rahamimoff equation could not be used to estimate 

cooperativity. The cooperativity parameters, ND and Ns, can interact leading to a non­

unique solution. For this reason, both parameters should be fixed when fitting this 

equation to dose-response data. The modified equation was fit to individual dose- 

response curves and it produced a good fit in 8 out of 9 cases (p > 0.05, Fig. 4.6A). 

The parameters K\ and K2 were fixed at previously reported values for excitatory 

hippocampal synapses (2.7 and 4.8mM respectively) (Donaldson and Strieker, 1996), 

Np was fixed at 4 (Dodge and Rahamimoff, 1967; Borst and Sakmann, 1996), and Ns 

was fixed at 2. Only the scaling factor, S, and the calcium block affinity, Ks, were free 

parameters, and the optimum value of Ks was 2.1 ± 0.2mM (n=9). In the present 

study, when the release cooperativity parameter, Np, was reduced to 3 the quality of 

the fit was also reduced and an adequate fit was obtained in only 3 out of 9 cells 

(p > 0.05). The fit was also sensitive to the setting of Ns. If this parameter was fixed
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Figure 4. 6



Figure 4. 6 .A synaptic model predicts the Ca2+ dose-response curve observed in the 

presence of co-CTx, co-Aga and Cd2+. The modified Dodge-Rahamimoff equation 

which incorporates a sublinear relationship between [Ca2+]jt and [Ca2+]0 provides an 

accurate description of the Ca2+ dose-response curve.

A, Log-log plot of EPSC amplitude vs [Ca2+]0 is shown for an individual cell. The 

solid line is the optimally fitted modified Dodge-Rahamimoff equation which 

represents a good fit (p < 0.05).

B, Log-log plot of average normalised EPSC amplitude vs [Ca2+]0 under four 

different experimental conditions; control (filled circles. n=9), co-Aga (0.5pM, filled 

square. n=5), co-CTx tlpM. filled triangle. n=5) and Cd2+ (2|iM, open circles. n=7). 

EPSC amplitudes from individual cells were normalised to the amplitude recorded at 

2mM [Ca2+]0 in the absence of blockers.

C, A model based on the modified Dodge-Rahamimoff equation (see Inset and 

Results) accurately predicted the observed dose-response curves in B. Theoretical 

dose-response curves are shown in control and in the presence of Ca2+ channel 

blockers. Inset, Schematic overview of the model. Presynaptic terminals were divided 

into three classes; one with only P/Q-type Ca2+ channels (QQ), one with only N-type 

Ca2+ channels (NN) and one with both channel subtypes (NQ).
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at 1, thereby giving a Michaelis-Menten formulation for Ca2+ flux (Church and 

Stanley, 1996), the modified Dodge-Rahamimoff equation no longer fit any of the 

dose-response curves (n=9, p < 0.05). Similarly, in an imaging study, Mintz et al. 

(1995) describe the sublinear relationship between [Ca2+]jt and [Ca2+]0 with a 

bimolecular binding process that has a dissociation constant of 3mM.

A model synapse

A model synapse was constructed to investigate the role of different Ca2+ channel 

subtypes and their distribution across synaptic terminals in synaptic function. The 

model predicts EPSC amplitude as a function of [Ca2+]0 in the presence of Ca2 + 

channel blockers. Three classes of terminal were included in the model: one class 

with only P/Q-type channels (QQ), one class with only N-type channels (NN) and one 

class with both channel subtypes (NQ) (Fig. 4.6C, see Chapter 3). The postsynaptic 

response of the three classes was summed to produce the model synaptic response. It 

was assumed that at an individual terminal Ca2+ entering through different channels 

combined to act on the same vesicle release site or sites (see Discussion). At NQ 

terminals, N-type channels were assumed to contribute one half of the effective 

intraterminal Ca2+, and P/Q-type channels the other half. The two channel subtypes 

were assumed to have similar activation and Ca2+ flux properties.

The modified Dodge-Rahamimoff equation was incorporated into a model synapse. 

Each class of terminal generated a dose-response curve based on a modified Dodge- 

Rahamimoff equation with parameter values derived from the fits to experimental data 

recorded in the absence of Ca2+ channel blockers. The effects of Cd2+ were modelled 

by reducing Ca2+ influx uniformly at each class of terminal. co-CTx blocked influx at 

NN terminals, and reduced influx by half at NQ terminals, while co-Aga blocked influx 

at QQ terminals, and reduced it by half at NQ terminals. The proportion of model 

terminals in the three classes were set at 45% QQ, 45% NQ and 10% NN, based on 

results from a previous study (see Chapter 3). Dose-response curves were generated 

by the model synapse in the presence and absence of Ca2+ channel blockers. The
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model predicted all the main features of the data, and the experimental dose-response 

curves (Fig. 4.6B) are very similar to the model curves (Fig. 4.6C). In constructing 

Fig. 4.6B and 4.6C, all experimental and theoretical EPSC amplitudes were 

normalised to the response in 2mM Ca2+ with no blockers. The cooperativity 

parameter, Np, was calculated from power function fits to the theoretical dose- 

response data using the same [Ca2+]0 range and the same number of data points that 

were used when fitting the experimental data. The theoretical value of Np was 3.0 in 

the absence of blockers, 3.0 in Cd2+, and 2.6 in co-CTx or co-Aga. These theoretical 

values all fell within the 95% confidence intervals for experimental estimates of Np.

The estimated cooperativity, Np, obtained by fitting a power function to the theoretical 

dose-response curves was < 4, even though these curves were constructed from a 

model with a cooperativity, Np>, of 4. This suggests that power function fits 

systematically underestimate cooperativity under these experimental conditions. This 

is because the experimental data could not be extended to sufficiently low [Ca2+]0. 

When the power function fit was applied to the extrapolated theoretical dose-response 

curves over a concentration range from 0.005 to 0.1 mM all values of Np converged to 

4, as expected.

Discussion

Dose-response analysis in the presence of Ca2+ channel non-linearity

In traditional dose-response studies it is assumed that the effective Ca2+ concentration 

attained at release sites in presynaptic terminals during synaptic activation varies 

linearly with [Ca2+]0. On the time-scale of synaptic transmission, the effective 

intraterminal Ca2+ concentration is approximately proportional to the Ca2+ flux into 

the terminal during the presynaptic action potential, and to the duration of the action 

potential (Augustine, 1990; Wheeler et al., 1996). Studies of Ca2+ channel properties 

suggest that Ca2+ flux through a channel varies linearly with [Ca2+]0 at low 

concentrations, but is sublinear at higher concentrations due to transient Ca2+ 

dependent block of the channel pore (Church and Stanley, 1996). Another potential
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source of non-linearity is the membrane potential shielding effect produced by divalent 

cations which becomes significant at concentrations above ~2mM (Hille, 1992). This 

may reduce the presynaptic action potential amplitude and duration, thereby reducing 

net Ca2+ influx and contributing to sublinearity. A further possible source is a non­

linear relationship between ion activity and [Ca2+]0. This is due to the incomplete 

dissociation of salts at higher concentrations (Hille, 1992). The Ca2+ activity was 

estimated to change less than 6% over the [Ca2+]0 range in our solutions (Grahame, 

1947).

The predicted non-linearity has been directly confirmed using Ca2+ imaging 

techniques (Mintz et ai, 1995) and by patch-clamping a large presynaptic terminal 

(Borst and Sakmann, 1996). The relationship between peak Ca2+ concentration in the 

terminal during synaptic activation and [Ca2+]0 was approximately linear for [Ca2+]0 

< ImM, but was significantly sublinear at higher concentrations. This finding 

indicates that power function fits to the dose-response curve should be restricted to the 

concentration range below about ImM, or corrected for the observed sublinearity at 

higher concentrations. In the present study, the dose-response curves recorded in the 

presence of Ca2+ channel blockers were not corrected and were fit from 0.8 to 2mM. 

Cooperativity may be systematically underestimated under these conditions. 

However, this does not preclude a useful comparison between the degree of 

cooperativity in co-CTx and in co-Aga, because both values were estimated over the 

same [Ca2+]0 range and any systematic error should be similar.

The modified Dodge-Rahamimoff equation

The sublinear relationship between [Ca2+]it and [Ca2+]0 was incorporated into the 

modified Dodge-Rahamimoff equation. This greatly improved the fit to the dose- 

response data compared with the standard Dodge-Rahamimoff equation. The 

improvement was due to the faster saturation of the modified Dodge-Rahamimoff 

curve at higher [Ca2+]0. The fit had only 2 free parameters (the same as the standard 

equation), so the improvement was not due to an increase in the degrees of freedom.
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When the release cooperativity parameter, Np, was reduced to 3 the quality of the fit 

was also reduced. This result is compatible with a Ca2+ cooperativity of at least 4 for 

transmitter release. The fit was also sensitive to the setting of Ns. If this parameter 

was fixed at 1, thereby giving a Michaelis-Menten formulation for Ca2+ flux (Church 

and Stanley, 1996), the modified Dodge-Rahamimoff equation no longer fit any of the 

dose-response curves. A similar finding was made by Mintz et al. (1995), who 

describe the sublinear relationship between [Ca2+]jt and [Ca2+]0 with a bimolecular 

binding process. Thus, the sublinearity in the relationship between [Ca2+]it and 

[Ca2+]0 is not simply due to Ca2+ binding at a single site in the channel (Church and 

Stanley, 1996). It is possible that there are multiple binding sites for divalent cations 

in N- and P/Q-type channels (Hille, 1992), or that an independent process, such as 

membrane potential shielding by Ca2+, contributes to the sublinearity. Voltage clamp 

error is another possible source of sublinearity as is concentration dependence of Ca2+ 

activity. In summary, the cooperativity for transmitter release, ND, must be at least 4, 

and the cooperativity for Ca2+ flux inhibition, Ns, must be at least 2 to obtain a good 

fit between the modified Dodge-Rahamimoff equation and the dose-response curve 

observed in the absence of blockers.

No difference between cooperativities for N- and P/Q-type channels

The model shows that cooperativity may be systematically underestimated by the 

power function fit in the experimental [Ca2+]0 range. Despite this, the comparison of 

the Np values under different experimental conditions may still be valid, if the 

systematic error is similar. This possibility was confirmed by analysing the model 

dose-response curves. The values obtained for Np were nearly identical for release 

mediated by N-type or P/Q-type channels (both 2.6). These results were consistent 

with the model settings where both channel subtypes were assumed to have a 

cooperativity of 4. To investigate the sensitivity of the power function fit to 

differences in cooperativity the model was altered such that Ca2+ entering a terminal 

through N-type and P/Q-type channels induced transmitter release with cooperativities 

of 2.5 and 4 respectively (Mintz et al., 1995). A power function fit was performed
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over the same range used for the experimental data and the results for Np were 1.6 in 

the presence of co-Aga and 2.6 in the presence of co-CTx. Thus, the different 

cooperativities could easily be detected from the dose-response curves. This result 

implies that systematic errors do not preclude useful comparison between 

cooperativity estimates for N-type and P/Q-type channels under these experimental 

conditions.

Some Ca2+ imaging studies suggest that the N- and P/Q-type Ca2+ channels support 

release with different cooperativities. The most significant advantage of imaging 

techniques is that they provide a direct measure of Ca2+ concentration in the synaptic 

terminal. This parameter is not measured or accurately controlled in dose-response 

studies. Two recent studies measured presynaptic Ca2+ concentration using the Ca2+ 

sensitive dye, furaptra, while simultaneously recording postsynaptic responses (Wu 

and Saggau, 1994b; Mintz et al., 1995). Mintz et al. (1995) find that release is more 

steeply dependent on [Ca2+]it for P/Q- than for N-type Ca2+ channels at synapses in 

the cerebellum. Cooperativity was estimated at 4 for P/Q-type Ca2+ channels, and 2.5 

for N-type channels. They estimated cooperativity from a power function fit to only 

two data points, one before and one after selective block of a Ca2+ channel subtype. 

The power function fit is only valid at low [Ca2+]jt and a fit in the higher [Ca2+]it 

range would be expected to underestimate Np. co-CTx produced a -25% drop in the 

fluorescence signal while co-Aga reduced the fluorescence signal by -50%. co-Aga 

therefore spans a larger [Ca2+]jt range than co-CTx. The lower measured cooperativity 

for N-type Ca2+ channels may, therefore, reflect the relatively high [Ca2+]jt range over 

which cooperativity was estimated. Wu and Saggau (1994) find no significant 

difference in the cooperativity for N- and P/Q-type channels at excitatory hippocampal 

neurons. In their experiments the [Ca2+]jt range is more extensively explored by 

observing the [Ca2+]jt at various time points of the slow toxin block and at various 

concentrations of toxins. Also, the [Ca2+]jt range over which cooperativity is 

measured is larger than that used by Mintz et al. (1995). co-CTx produced a -40%
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drop in the fluorescence signal (cf. -25%), while co-Aga reduced the fluorescence 

signal by -60% (c/.~50%) at hippocampal synapses.

The presence of a residual Ca2+ fluorescence signal further complicates interpretation 

of these results. When both the N-type and the P/Q-type Ca2+ channels were blocked 

the peak amplitude of the fluorescence transient was only reduced by -75%. The 

remaining 25% was presumably due to Ca2+ entry through non-N, non-P/Q type 

channels. The Ca2+ cooperativity estimates assume that these toxin-resistant channels 

are co-localised on excitatory presynaptic terminals with N-type and P/Q type 

channels, but there is no evidence to support this assumption. Also, it is not clear to 

what extent the toxin-resistant channels are involved in excitatory synaptic 

transmission (Wheeler et al., 1996). The finding of the present study; that 

cooperativity was similar for release mediated by N- or P/Q- type Ca2+ channels is 

consistent with previous results in the hippocampus (Wu and Saggau, 1994b) but 

contrasts with results obtained in the cerebellum (Mintz et al, 1995). This may reflect 

limitations in the experimental method used, although a difference in the functional 

organisation of Ca2+ channel subtypes at synapses in different regions of the brain 

cannot be ruled out.

The non-uniform distribution of Ca2+ channel subtypes

Three changes of the Ca2+ dose-response curve in the presence of co-CTx and co-Aga 

are consistent with the non-uniform distribution of Ca2+ channel subtypes across 

presynaptic terminals as described in Chapter 3: (i) both toxins broaden the dose- 

response relationship; (ii) the shift in the dose-response relations in the presence of co- 

CTx is less than that for the non-selective Cd2+ despite a similar block; and (iii) the 

dose-response relationships saturate at a lower amplitude in the presence of the toxins 

than in control (Fig. 4.6B).

All these observations can be accounted for if the toxins produce a shift to the right in 

the dose-response EC50 at some terminals, completely block other terminals and leave
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the remainder unaffected. The resulting mixture of the unchanged dose-response 

relationship with that of the shifted dose-response relationship predicts a broader dose- 

response curve (see Results). Similarly, if the dose-response curve of only a 

proportion terminals are shifted to the right in the presence of the selective toxins, then 

this shift should be less than that for a non-selective blocker which will shift all 

terminals.

The Ca2+ dose-response curves in the presence of either toxin reaches saturation at an 

EPSC amplitude lower than that observed in control (Fig. 4.6B). This result indicates 

that maximal Ca2+ influx through P/Q-type channels cannot fully substitute for the 

Ca2+ influx lost on blockade of N-type channels. A similar argument applies when 

P/Q-type channels are blocked. Consistent with this, an increase in action potential 

duration (increasing Ca2+ influx) or increase in [Ca2+]0 could not fully reverse the 

block following the application of either co-CTx or co-Aga in hippocampal slice 

(Wheeler et al., 1996). This result is expected if Ca2+ channel subtypes are distributed 

in a non-uniform manner across different presynatic. An alternative explanation may 

be an absolute limit on the rate of Ca2+ influx through either channel subtype (Church 

and Stanley, 1996).

The model synapse incorporating a non-uniform distribution of Ca2+ channel subtypes 

predicts all of these experimental findings. Firstly, it predicts a broader dose-response 

relationship in the presence of selective Ca2+ channel antagonists than in the presence 

of a non-selective antagonist (Fig. 4.6C). This broadening is reflected in the reduced 

values for NP in the presence of co-CTx and co-Aga. Secondly, the shift in EC50 of the 

model response in the presence of co-CTx (EC5o= 2.8mM) is less than that observed in 

2pM Cd2+ (EC50 = 3.2mM), compared with control (EC50 = 2.3mM). Finally, the 

model dose-response relationships in the presence of the toxins saturate at lower EPSC 

amplitudes than the control amplitude. Taken together these results are consistent with 

a non-uniform distribution of Ca2+ channel subtypes across excitatory synaptic 

terminals as described in Chapter 3.
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The overlap of Ca2+ microdomains

An underlying assumption of the model is that, where terminals contain both Ca2+ 

channel subtypes (N- and P/Q-types), Ca2+ influx through the channels combine and 

contribute jointly to the Ca2+ transient responsible for release. The extent to which 

this overlap of Ca2+ influx occurs remains controversial. The opening of presynaptic 

Ca2+ channels by an action potential is known to trigger transmitter release very 

rapidly (60-200 ps) (Llinas et al, 1981; Sabatini and Regehr, 1996). Imaging of Ca2+ 

within the squid and hair cell presynaptic terminals show that high Ca2+ 

concentrations are achieved rapidly near the transmitter release site (Llinas et a l, 

1992; Llinas et al., 1995; Tucker and Fettiplace, 1995). Numerous mathematical 

studies of the Ca2+ distribution near an open Ca2+ channel suggest that the "Ca2+ 

microdomain" at the mouth of the channel forms rapidly and dissipates quickly upon 

channel closure, reaching equilibrium within microseconds (Fogelson and Zucker, 

1985; Simon and Llinas, 1985; Stem, 1992; Winslow et al., 1994; Issa and Hudspeth, 

1996; Sinha et al, 1997). This evidence favours the close apposition of Ca2+ channels 

to the release mechanism and argues against an overlap of Ca2+ microdomains.

Stanley (1993) provides further evidence that non-overlapping Ca2+ domains are 

sufficient to elicit transmitter release. By patch clamping the release face of the 

presynaptic terminals of neurons from the chick ciliary ganglion, he isolated the 

occurrence of a secretory event after the opening of a single Ca2+ channel. It was 

concluded from these experiments that the opening of an individual channel is 

sufficient to trigger release. Similar findings have been demonstrated at the frog 

neuromuscular junction (Yoshikami et a l, 1989) and at the squid giant synapse 

(Augustine, 1990). Ca2+ buffers such as EGTA and l,2-bis(2-aminophenoxy)ethane- 

N,N,N',N'-tetraacetic acid (BAPTA) are often used to infer details about the spatial 

localisation of the Ca2+ channel and the release mechanism. If the channel is in close 

apposition to the release mechanism then slow chelators, such as EGTA, will not be 

effective at reducing release. Consistent with this EGTA did not reduce transmitter
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release at the squid giant synapse (Adler et al., 1991). This evidence argues for the 

involvement of narrow, non-overlapping Ca2+ domains in transmitter release, at least 

at some synapses.

In contrast, two pieces of experimental evidence suggest that an overlap of Ca2+ 

channel microdomains occurs under physiological conditions at central synapses. 

Firstly, the supra-additive sum (-120-140%) of the block of transmitter release by (0- 

CTx and co-Aga argues for the cooperative co-existence of N- and P/Q-type channels 

on presynaptic terminals (Chapter 1, Part I). If the toxins are selective then the only 

way that the sum of their individual blocks can be greater than 100% is if the Ca2+ 

influx through each channel contributes jointly to a local Ca2+ transient that triggers 

release (Wheeler et al., 1994; Wu and Saggau, 1994b; Mintz et al., 1995). Results 

presented in this Chapter and in Chapter 3 are consistent with this finding. Secondly, a 

reduction of synaptic transmission by the slow Ca2+ buffer EGTA (ImM) injected into 

the presynaptic terminal of the calyx of Held (Borst and Sakmann, 1996) indicates that 

Ca2+ must diffuse a relatively long distance to reach the Ca2+ sensor and that an 

overlap in Ca2+ microdomains is likely. A more recent study shows that presynaptic 

Ca2+ channel at the calyx of Held have a high probability of opening (Borst and 

Sakmann, 1998). This is expected if adjacent Ca2+ channels are required to open in 

order for release to occur.

The results of Stanley (1993) cannot exclude the possibility that the opening of many 

channels are more effective than the opening of just one Ca2+ channel in supporting 

release. The supra-additivity of the toxin block demonstrates overlapping Ca2+ 

domains but cannot demonstrate the absolute requirement for multiple channel 

opening to initiate transmitter release. However, it is difficult to reconcile the supra- 

additivity of the toxins with a non-overlapping domain theory. It therefore seems 

likely that at some central synapses, including excitatory synapses in hippocampal 

culture, a degree of overlap occurs between Ca2+ microdomains.
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Conclusions

Dose-response analysis remains a useful tool for investigating Ca2+ cooperativity at 

central synapses, but it is important to incorporate the sublinear relationship between 

[Ca2+]it and [Ca2+]0 in the analysis. A modified Dodge-Rahamimoff equation which 

incorporates a non-linear relationship between [Ca2+]0 and [Ca2+]jt and has a 

cooperativity o f 4 accurately describes the Ca2+ dose-response curve at excitatory 

hippocampal synapses. There was no difference in the degree of cooperativity for 

transmitter release mediated via N-type or P/Q-type Ca2+ channels. Selective blockers 

o f N-type or P/Q-type Ca2+ channels broadened the dose-response relationship, 

consistent with a non-uniform distribution of Ca2+ channel subtypes across different 

synaptic terminals. A model of the role of Ca2+ in transmitter release was developed. 

The model uses the modified Dodge-Rahamimoff equation and incorporates a non- 

uniform distribution of Ca2+ channel subtypes across presynaptic terminals. The 

model describes the Ca2+ dose-response curve generated in the presence of both 

selective and non-selective Ca2+ channel blockers. Experimental estimates of Ca2+ 

cooperativity fell in the range 2 - 3 ,  under a variety of recording conditions and using 

several standard analytical approaches. However, the model results suggest that these 

values systematically underestimate the true cooperativity. Traditional dose-response 

analysis cannot be extended to sufficiently low [Ca2+]0 because o f signal-to-noise 

limitations and therefore systematically underestimates Ca2+ cooperativity. Results 

presented here are consistent with the cooperative involvement of 4 Ca2+ ions for each 

vesicle of transmitter released at a central synapse, and with a non-uniform distribution 

of Ca2+ channel subtypes across synaptic terminals.
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Chapter 5

Long Term Potentiation in the Dentate Gyrus

Introduction

Long-term potentiation (LTP) of synaptic transmission is the putative mechanism 

underlying learning and memory. LTP was first described for the excitatory synaptic 

contacts made by axons of the perforant path onto dentate granule cells (Bliss and 

Lomo, 1973). The perforant path is a synaptic pathway between the entorhinal cortex 

and the dentate gyrus of the hippocampus. The two excitatory input pathways, the 

medial perforant path (MPP) and the lateral perforant path (LPP), both synapse onto 

dentate granule cells. Anatomical studies show that the LPP terminates on the distal 

third, and the MPP on the central third of the dendritic tree (Witter, 1993). Most 

behavioural studies involving LTP have been completed in the dentate region of the 

hippocampus (Jeffery, 1997). Determining the physiological mechanism underlying 

LTP in the dentate region will allow experiments to be designed that could help to link 

LTP and memory.

LTP induction of the MPP input is blocked by (i) NMDA receptor antagonists; or (ii) 

by the injection of Ca2+ chelating agents into the postsynaptic cell (Colino and 

Malenka, 1993). This implicates an essential role of Ca2+ influx through postsynaptic 

NMDA receptors in LTP induction. Two lines of evidence support a postsynaptic 

locus of LTP expression at MPP synapses. Following LTP induction: (i) there is no 

change in paired-pulse depression (Christie and Abraham, 1994); and (ii) AMPA 

binding, measured using quantitative autoradiography, increases in parallel with the 

potentiation of the extracellular field EPSP (Maren et al, 1993). In contrast, several 

recent studies suggest a presynaptic locus. Following LTP induction: (i) progressive 

MK-801 block of the NMDA EPSC is faster (Min et al., 1998); (ii) 1/CV2 increases; 

implying an increase in quantal content (Wang et al., 1996); and (iii) release of
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glutamate from the dentate region is potentiated (Bliss et al., 1987; Errington et al., 

1987) (see Chapter 1, part II). In summary, the locus of expression of LTP for the 

MPP synapses onto dentate granule cells remains a contentious question. A similar 

controversy surrounds this issue at other synapses exhibiting NMDA-dependent LTP 

(see Chapter 1, Part II)

This chapter describes a novel approach for investigating the site of synaptic 

modulation. The approach is free of unrealistic assumptions concerning the 

transmitter release mechanism, and can be applied to multifibre EPSCs. The variance 

of the evoked synaptic amplitude was plotted against mean synaptic amplitude at 

several different Cd2+ concentrations. The slope of the variance-mean plot estimates 

the average amplitude of the response following the release of a single vesicle of 

transmitter (Qav)- The validity of the technique was tested by applying the analysis 

before and after three different synaptic modulations: (i) a reduction in Qav by the 

addition of CNQX, (ii) a reduction in the average probability of transmitter release (Pr) 

by the addition of baclofen, and (iii) an increase in the number of active synaptic 

terminals (N) by increasing the stimulus strength. The variance-mean technique was 

used to investigate the question of the site of expression of LTP for the MPP synapses 

onto dentate granule cells.

Methods

Whole cell voltage clamp recordings were made from dentate granule cells as 

described in Chapter 2. To induce LTP, cells were voltage-clamped at -20mV while 

applying three 100Hz stimulus trains of Is duration, and applied at 60s intervals. 

EPSC amplitudes were measured by averaging over a 5ms window around the peak 

after subtracting the average current over the 10ms interval immediately before the 

stimulus. Mean EPSC amplitude (ji) and variance (a2) were calculated from 60 to 150 

events recorded during a stable epoch. The variance attributable to recording noise 

was estimated in the region prior to the test pulse; and was subtracted from the EPSC
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variance. All variance-mean plots were fit with a theoretical equation (see below) by 

minimising y 2 (see Chapter 3, Methods).

Variance-mean analysis

The variance-mean plot has the form, 

o2 = [i Qav ( 1 + CV2 - Pav)

This expression has the same form as a classical equation developed for non-stationary 

noise analysis of voltage-gated currents (Sigworth, 1980), but is applied here to 

synaptic amplitude fluctuations. Qav is the weighted average amplitude of the 

postsynaptic response to a vesicle of transmitter, CV is the coefficient of variation of 

the response to individual vesicles, and Pav is the weighted average vesicle release 

probability (mathematical derivation is described in Appendix).

Qav = £  Qi (|ii / p.)

Pav = £  Pi (pi / p) (Qi / Qav)

where

Pj = transmitter release probability at the ith terminal

Qj = average quantal amplitude (response to a single vesicle) at the ith terminal 

pi = mean synaptic amplitude at the ith terminal

The main assumption needed to derive these equations is that the presynaptic 

modulation used to construct the variance-mean parabola changes release probability 

by the same factor at all terminals. This assumption is supported by experimental 

evidence for the case of modulation by Cd2+. At autaptic hippocampal synapses, Cd2+ 

reduces Pr by the same factor at all terminals, regardless of their initial Pr (Chapter 3). 

The technique described is an extension of previously reported variance-mean analysis 

methods (Miyamoto, 1975; Clamann et al., 1989; Frerking and Wilson, 1996). In 

contrast to these earlier methods, it does not make the unrealistic assumption that 

release probability or quantal amplitude are uniform at all synaptic terminals. A 

similar generalisation of the variance-mean approach was reported recently (Silver et 

al., in press). The approach developed here predicts that the variance-mean plot traces
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out a parabola as Pav is varied. When Pav is low (< 0.3) the plot is approximately 

linear, rising from the origin with slope, SVm = Qav (1 + CV2). As Pav increases to 

> 0.3 the parabola "rolls-off" reaching a maximum when Pav = (1 + CV2) / 2. Thus, 

the variance-mean parabola can be analysed to extract Qav and Pav.

Results

EPSCs were recorded from dentate granule cells following stimulation of the MPP in 

rat hippocampal slices. The stimulating electrode was positioned in the central third of 

the dentate gyrus molecular layer. This preferentially stimulated the MPP, as 

confirmed by the presence of paired-pulse depression at these synapses (inter stimulus 

interval 30-60ms, n=4, Fig. 5.1 A). The EPSC amplitude fluctuated from stimulus-to- 

stimulus due to random variations in the number of transmitter vesicles that were 

released (Fig. 5.2A). In contrast, the response to a voltage pulse preceding the 

stimulus did not fluctuate, and was monitored to ensure stable recording conditions 

(Fig. 5.2A). Both the mean (p.) and the variance (g 2) of the EPSC amplitude were 

reduced following the addition of 2pM or 6p.M Cd2+ to the extracellular solution 

(Fig. 5.2B). The relationship between a 2 and (I was approximately linear (Fig. 5.2C). 

The variance-mean plot contains information about pre- and postsynaptic function and 

was used to investigate the locus of LTP expression.

Computer simulation testing of the variance-mean technique

The variance-mean technique was tested by applying it to simulated data (completed 

by Dr J. Clements). A model of a compound synaptic input was used to generate 

fluctuating EPSC amplitudes. The model input consisted of 480 terminals with highly 

non-uniform properties. The terminals were divided into 8 groups as shown in Table 

5.1. Each terminal had a CV of 0.4. Gaussian noise with a standard deviation of 3pA 

was added to the simulated amplitudes. A 50% synaptic potentiation was modelled 

via three different mechanisms, each acting in a non-uniform manner: a 100% 

presynaptic increase in Pr at half the terminals; a 100% postsynaptic increase in q at 

half the terminals; or a 100% increase in N for half the groups. Application of Cd2+
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Table 5.1 A simulation of a compound synaptic input was used to generate randomly 

fluctuating EPSCs. The model input consisted of 480 terminals with highly non-uniform 

properties. The terminals were divided into 8 groups.

1 2 3 4 5 6 7 8

Terminals in Group (N) 80 40 80 40 80 40 80 40

Vesicle Release Probability (P) 0.04 0.2 0.04 0.2 0.04 0.2 0.04 0.2

Average Response to a Vesicle (Q) 3 3 6 6 3 3 6 6



Figure 5.1



Figure 5. 1 Paired pulse depression confirms preferential stimulation of the medial 

perforant path (MPP).

A, A paired pulse, with an interstimulus interval of 30ms, results in a depression of 

the second evoked AMPA EPSC recorded from a dentate granule cell. The trace is the 

average of 5 EPSCs



10 ms



Figure 5. 2



Figure 5. 2 Construction and analysis of a variance-mean plot.

A, Five consecutive EPSCs recorded from a granule cell in the dentate gyrus, exhibits 

trial-to-trial amplitude fluctuations that contain information about synaptic function. 

Each EPSC was preceded by a small voltage step to measure Rs, and to ensure that 

recording conditions remained stable.

B, EPSC amplitude plotted against time. Epochs during which EPSC amplitude 

remained stable are shown for each Cd2+ concentration (0, 2 or 6pM). A bar shows 

the mean amplitude during each epoch. Addition of Cd2-*" reduced both the mean and 

the variance of the EPSC amplitude.

C, The variance of the EPSC amplitude is plotted against the mean for each stable 

epoch (variance-mean plot). The slope of this plot estimates the average amplitude of 

the response following the release of a single vesicle, Qav-
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was modelled via a 60% reduction in Pr at all terminals. 50 EPSCs were simulated 

before and during Cd2+ "application" and a variance-mean plot was constructed. A 

typical data set is shown in Fig. 5.3A and the average variance-mean plots before and 

after modulation are shown in Fig. 5.3B. Because Pav was low in these simulations, 

the slope of a variance-mean plot (SVm) was used to estimate Qav = Sy / (1 + CV2).

The results for Qav are summarised in Fig. 5.3C. There was a clear distinction 

between the postsynaptic modulation which altered Qav, and the other modulations 

which did not. The results also revealed a small (< 10%) systematic underestimation of 

Qav that is expected from the linear approximation used to calculate this parameter. 

Thus, the variance-mean technique provides a robust estimate of Qav from as few as 

100 EPSC amplitude measurements. The estimate is insensitive to recording noise, 

intrinsic variability of the response to a vesicle and non-uniformities in the properties 

of terminals, including their response to a modulation. Therefore, the technique can be 

applied confidently to multi-fibre (compound) synaptic inputs.

Variance-mean analysis measures mean quantal amplitude

Variance-mean plots for compound EPSCs recorded in the dentate were all 

approximately linear and exhibited no detectable roll-off (Fig. 5.2C). This implies that 

average release probability is low (< 0.3) for MPP synapses onto granule cells at 

physiological Ca2+ concentrations, consistent with results at other hippocampal 

synapses (Hessler et al., 1993; Rosenmund et al, 1993; Dobrunz and Stevens, 1997; 

Murthy et al., 1997). Therefore, the slope of the variance-mean plot can be used to 

estimate Qav- The value of CV has been estimated at 0.46 for MPP synapses on 

dentate granule neurons by measuring asynchronous miniature EPSCs (Bekkers, 

1995), therefore, Qav = Svm / 1.2 in this preparation. It was estimated that Qav = 2.3 

± 0.3pA (n=10) at -70mV. Whole-cell recordings systematically underestimate EPSC 

peak amplitude and rise-time due to capacitative filtering of high frequencies by the 

cell membrane. The cut-off frequency decreases as the series resistance (Rs) increases 

(Strieker et al., 1996a). Consistent with this, Qav was negatively correlated with both
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Figure 5. 3



Figure 5. 3 The variance-mean plot can identify the locus of synaptic modulation 

when applied to simulated data.

A, Simulated EPSC amplitude plotted against event number. A model of a compound 

synaptic contact was used to simulate EPSC amplitudes under control conditions and 

following each of three types of modulation: postsynaptic modulation that increased 

Qav; presynaptic modulation that increased Pav and modulation that increased the 

number of active terminals. Under each condition, an epoch of 50 events was 

generated before and 50 events after the simulated application of Cd2+.

B, The average variance-mean plot under control conditions (circles), and following 

each type of modulation: postsynaptic (diamonds)', presynaptic (squares), and 

increased number of terminals (triangles). Error bars indicate SEM (n=20). Only 

postsynaptic modulation produced a detectible change in the slope of the variance- 

mean plot.
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Rs (r= -0.55, n=10, Fig. 5.4A), and with EPSC rise-time (r= -0.58, n=10, Fig. 5.4B), 

but not with EPSC amplitude (r= 0.13, n=10, Fig. 5.4C). It should be noted that these 

correlations were only marginally significant. However, the general trend is in 

keeping with the expected effects of electrode resistance on measured currents. 

Filtering of the synaptic signal by the membrane capacitance and series resistance does 

not invalidate the variance-mean plot as a tool for investigating synaptic plasticity, 

because EPSC amplitudes will be underestimated by the same factor before and after 

modulation.

Variance-mean technique reliably identifies site of synaptic modulation

The simulations presented above, show that the variance-mean technique can be used 

to investigate the locus of a synaptic modulation. The reliability of the technique was 

tested by applying it to synaptic responses recorded in dentate granule neurons before 

and after applying each of three different synaptic modulators: (i) CNQX (0.4|iM), a 

competitive antagonist at postsynaptic AMPA receptors; (ii) baclofen (4pM), a 

presynaptic modulator acting via GABAß receptors; and (iii) an increase in the 

stimulus intensity to activate additional presynaptic terminals. At non-saturating 

concentrations of CNQX a fraction of postsynaptic AMPA receptors will be blocked 

reducing the inward current generated in response to one vesicle of transmitter. As 

expected, CNQX reduced the slope of the variance-mean plot (and hence the estimated 

Qav) to the same extent that it reduced EPSC amplitude (37 ± 2% vs 33 ± 2%, n=5, 

Fig. 5.5A, D). In contrast, presynaptic manipulations that change Pr or the number of 

active synapses (N) should not alter Qay. Baclofen acts as a GAB Aß agonist initiating 

a G-protein cascade. Activated G-protein subunits are thought to inhibit Ca2+ influx 

through Ca2+ channels thereby reducing Pr (Mintz and Bean, 1993; Hille, 1994) (see 

Chapter 3, Discussion). There was no significant change in the slope of the variance- 

mean plot (Qav) after the addition of baclofen despite a reduction in EPSC amplitude 

(106 ± 8% vs 41 ± 6%, n=5, Fig. 5.5B, D). An increase in stimulus strength results in 

the recruitment of additional axons increasing the number of active terminals 

contributing to release. There was no significant change in Qav despite an increase in
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Figure 5. 4
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Figure 5. 4 Whole-cell recordings systematically underestimate EPSC peak amplitude 

and rise-time.

A, The Rs of the control EPSC is plotted against Qav (n=10).

B, The 20-80% rise-time of the control EPSC is plotted against Qav (n=10). These 

parameters were negatively correlated due to capacitative filtering by the dendritic and 

somatic membrane, and the uncompensated series resistance.

C, The Qav of the control EPSC is plotted against AMPA EPSC amplitude (n=10).

No correlation is observed.
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Figure 5. 5



Figure 5. 5 The variance-mean plot can identify the locus of synaptic modulation 

when applied to EPSCs recorded from dentate granule cells. The variance of the 

EPSC amplitude is plotted against the mean for each stable epoch at three different 

Cd2+ concentrations, before (closed circles) and after (open circles) synaptic 

modulations.

A, Variance-mean plot before (closed circles) and after (open circles) the application 

of CNQX (0.4pM), a competitive antagonist at postsynaptic AMPA receptors. CNQX 

reduced the slope of the plot and hence Qav> consistent with a postsynaptic 

modulation.

B, Variance-mean plot before (closed circles) and after (open circles) the application 

of baclofen (4pM) which reduces the probability of vesicle release from the 

presynaptic terminal. There was no change in Qav> consistent with a presynaptic 

modulation.

C, Variance-mean plot before (closed circles) and after (open circles) an increase in 

the strength of the stimulus to the presynaptic axons. There was no change in Qav, 

consistent with a presynaptic modulation.

D, Average change in Qav after the application of CNQX (n=5), baclofen (n=5) and 

an increase in stimulus strength (n=5). Error bars indicate SEM. Only CNQX 

produced a significant change in Qav.
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EPSC amplitude after increasing the stimulus strength (101 ± 4% vs 160 ± 12%, n = 5, 

Fig. 5.5 C, D). Thus, the technique can distinguish between a postsynaptic modulation 

which alters Qav, and presynaptic modulations which do not.

A postsynaptic mechanism for LTP

Variance-mean plots were constructed and Qav was measured before and after the 

induction of LTP. If LTP results from a presynaptic increase in vesicle release 

probability, or from the unmasking of silent synaptic terminals (ie increase in N), then 

little or no change in Qav is expected. In contrast, if LTP results from an enhancement 

of the postsynaptic response, then Qav will increase in parallel with the evoked 

synaptic amplitude. The induction protocol produced potentiation lasting > 20 

minutes in 5/12 cells. LTP increased EPSC amplitude by 50 ± 0.4% (n=5, Fig. 5.6), 

and in the same cells increased Qay by 47 ± 0.6% (Fig. 5.6). There was no significant 

difference between the increase in EPSC amplitude and the increase in Qav (p=0.6, 

paired t-test, n=5). Thus, in every cell, LTP of the MPP input to dentate granule cells 

can be explained by an increase in the postsynaptic response to a vesicle of transmitter. 

All experimental results are summarised in Fig. 5.7 which plots the change in Qav, 

against the change in p. following various synaptic modulations. In theory a 

presynaptic modulation should fall on the horizontal dashed line, and a postsynaptic 

modulation on the diagonal line. When the variance-mean analysis is restricted to the 

low Pav range, it is a mathematical generalisation of the 1/CV2 technique (see 

discussion). When 1/CV2 was calculated from a subset of data recorded in the absence 

of Cd2+, it did not change following LTP (p=0.5, paired t-test, n=5,). Taken together, 

these results demonstrate the reliability with which the variance-mean technique can 

identify the site of synaptic modulation, and strongly supports a postsynaptic site for 

LTP expression at MPP synapses onto dentate granule cells.
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Figure 5. 6



Figure 5. 6 The variance-mean plot identifies a postsynaptic locus for expression of 

LTP.

A, EPSC amplitude plotted against time. Epochs during which EPSC amplitude 

remained stable are shown for each Cd2+ concentration before and after the induction 

of LTP. A bar shows the mean amplitude during each epoch.

B, Five consecutive EPSCs measured in 2mM Ca2+ before and after the induction of 

LTP.

C, Variance-mean plot before (closed circles) and after (open circles) the induction of 

LTP. The slope of the plot and hence Qav increased following LTP. This increase 

was very similar to the increase in mean EPSC amplitude following LTP.
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Figure 5. 7



Figure 5. 7 Summary of the changes in Qav vs changes in EPSC amplitude after 

various synaptic modulations.

A, The ratio of Qav after t0 Qav before modulation is plotted against the ratio of 

EPSC amplitude after to EPSC amplitude before modulation. The amplitude ratio was 

measured with no added Cd2+. Baclofen and increased stimulus (two different 

presynaptic modulations) did not alter Qav (horizontal dashed line). CNQX (a 

postsynaptic modulation) and LTP altered Qav to the same extent that they altered the 

EPSC amplitude (diagonal dashed line).
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Discussion

Other evidence concerning the site of LTP expression in the dentate

LTP induction in the dentate increases AMPA binding measured using quantitative 

autoradiography. This may reflect an increase in average receptor affinity or an 

increase in receptor number. The increased binding is highly correlated with the 

potentiation of the extracellular field EPSP supporting a postsynaptic mechanism for 

LTP (Maren et al., 1993). No change in paired pulse depression is seen following 

LTP induction at MPP synapses onto dentate granule cells, implying no change in Pr 

(Christie and Abraham, 1994). In contrast, an increase in glutamate release from the 

dentate gyrus following LTP induction suggests a presynaptic mechanism (Bliss et al., 

1987; Errington et al., 1987). LTP in the dentate is also associated with an 

enhancement of synaptosomal glutamate release (Canevari et al., 1994). A weakness 

of glutamate release studies is that they are not pathway specific. An increase in 

glutamate release may be accounted for by an increase in Pr at LPP synapses. 

Consistent with this, a reduction in PPF after LTP induction has been noted for the 

LPP, suggesting an increase in Pr (Christie and Abraham, 1994).

A presynaptic mechanism was suggested by a recent study that used MK-801 (Min et 

al., 1998). The rate of progressive block of the NMDA receptor component of the 

EPSC in the presence of MK-801 was faster following LTP induction, implying an 

increase in Pr. In contrast, no increase in the rate of the progressive block was noted 

for the LPP. This is not consistent with the presynaptic locus of LTP expression 

suggested for LPP LTP based on PPF experiments (Christie and Abraham, 1994). The 

irreversible nature of the MK-801 block means that is necessary to compare control 

progressive block rate with post LTP progressive block rate from different cells. 

There is a large variation in the rate of progressive block in slice experiments making 

subtle changes following LTP induction difficult to interpret. Also, if LTP induction 

alters the open probability, or kinetic parameters of the NMDA receptor (Lu et al., 

1998), then the comparison of the rate of progressive block would no longer be valid. 

For example, the increased rate of progressive block may simply be due to an increase
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in NMDA receptor open probability. Also, the enhancement of the AMPA receptor 

component of the EPSC was observed to be much greater than that of the NMDA 

component. Traditionally, this has been considered as evidence for a postsynaptic 

locus of LTP expression (Kauer et al., 1988; Perkel and Nicoll, 1993). Min et al 

(1998) reconcile the apparent contradiction of their results by postulating that 

extrasynaptic glutamate spill-over occurs at these synapses (see Chapter 1, Part II). A 

smaller increase in the NMDA receptor mediated compared with AMPA mediated 

component of the EPSC can be explained if the majority of the NMDA receptor 

mediated signal is generated by spill-over of glutamate from synapses which do not 

undergo LTP.

An increase in 1/CV2 has been reported following LTP induction of MPP synapses 

onto dentate granule cells, implying an increase in quantal content (Wang et al., 1996). 

In contrast, results presented in this chapter showed no change in 1/CV2. This 

difference is difficult to reconcile. The validity of the 1/CV2 method is dependent on 

low Pr but both experiments were done at similar [Ca2+]0. Methodological differences 

may partially account for the discrepancy. For example, a minimal stimulation 

protocol was used by Wang et al. (1996), whereas large multifibre EPSCs were 

analysed in experiments presented here. Alternatively, it is possible that the 

differences in the LTP induction protocols used may generate different forms of LTP. 

Methodological considerations may also account for the differences in the average 

amplitude increase following LTP induction which was 50% in the present study vs 

240% reported by Wang et al. (1996). In summary, a postsynaptic locus of LTP 

expression is consistent with finding from many studies on LTP in the dentate region, 

but is difficult to reconcile with others.

Variance-mean technique vs 1/CV2 technique

In the present study, variance-mean analysis was restricted to the linear, low Pav 

range. This meant that only an upper limit could be placed on Pav (< 0-3). Additional 

information could have been extracted by increasing release probability (for example
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by increasing extracellular Ca2+) and analysing the parabolic roll-off of the variance- 

mean plot. Preliminary experiments revealed that the MPP synaptic response ran 

down during a period of elevated Ca2+, invalidating the analysis.

When variance-mean analysis is restricted to the low Pav range, it reduces to the 

1/CV2 technique used in some previous LTP studies, (Bekkers and Stevens, 1990; 

Malinow and Tsien, 1990; Manabe et al., 1993; Wang et al., 1996) but it has several 

advantages. The graphical demonstration that a 2 varies linearly with p. directly 

confirms that Pav is low, which is simply assumed in most 1/CV2 studies. Thus, the 

approach avoids many of the technical difficulties associated with the traditional 

technique (Faber and Korn, 1991). The variance-mean technique also provides built- 

in protection against extraneous sources of excess variability such as run-down of the 

response or active dendritic properties. For example, active dendritic conductances 

should become more apparent as Pr is increased. If they were to contribute excess 

variability, then the variance-mean plot would deviate upwards from the straight line. 

A similar argument holds for synaptic run-down. No systematic upward deviation of 

the variance-mean relationship was observed in the present study.

Variance-mean technique vs other methods

Previous investigations of the locus of LTP expression have used a change in the 

amplitude distribution of mEPSCs to indicate a postsynaptic site (Manabe et al., 

1992), or a change in their frequency of occurrence to indicate a presynaptic site 

(Malgaroli and Tsien, 1992). The average amplitude of spontaneous miniature EPSCs 

(mEPSCs) can, in principle, provide an independent estimate of q across all terminals 

on a cell, but only if all mEPSCs have amplitudes greater than twice the standard 

deviation of the recording noise (Gn) so that they can be reliably detected (Clements 

and Bekkers, 1997). In the recordings presented, average Gn was 1.7pA and Qav was 

2.3pA, so it is expected that some mEPSCs will go undetected. A direct measure of q 

has been made in the dentate preparation measuring asynchronous EPSCs (aEPSCs) 

following proximal stimulation in the presence of extracellular strontium (Bekkers,
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1995). A mean amplitude of 3 - 6 pA (at -70mV) was observed, which is greater than 

that measured here using the variance-mean technique (2.3pA). The discrepancy in 

the results could be explained if a proportion of smaller aEPSCs were missed. The 

variance-mean method, which does not depend upon the direct resolution of individual 

"quantal" events, measures the mean amplitude of all events, both large and small. A 

further explanation may be related to the fact that the aEPSCs in Bekkers (1995) 

originated from a more proximal site on the dendritic tree than the MPP axons 

stimulated in these experiments, and may be less attenuated on average by dendritic 

filtering.

Another common approach uses a change in the percentage of stimuli that do not 

evoke a postsynaptic response (failure rate) to indicate a presynaptic site of expression 

(Malinow and Tsien, 1990; Kullmann and Nicoll, 1992; Stevens and Wang, 1994). An 

increase in Qav would also make single vesicle evoked events easier to detect, 

decrease the apparent failure rate and incorrectly assign a presynaptic locus. Quantal 

analysis based on the detection of peaks in evoked amplitude histograms can also 

provide an estimate of Qav, but it requires that Qav ^ 2 On (Redman, 1990), a 

condition that is not met in our preparation. Mini detection, peak detection and failure 

detection all assume that the postsynaptic response to a single vesicle can be detected 

reliably. The variance-mean technique is free of this constraint. It can identify a 

postsynaptic site of synaptic modulation under conditions where most traditional 

techniques may fail.

Presynaptic mechanisms which could increase Qav

The variance-mean technique predicts that for a purely presynaptic modulation, the 

Qav ratio before and following the modulation will not alter. If both pre- and 

postsynaptic changes are involved in potentiation, the Qav ratio vs EPSC amplitude 

ratio would expect to fall between the horizontal (presynaptic) and diagonal 

(postsynaptic) line (Fig. 5.7). A parallel increase in Qav and average synaptic 

amplitude precludes this for our data. Simulation data suggests that all conceivable
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presynaptic modulations will produce an increase in Qav which is less than the 

increase in the average synaptic amplitude (J. D. Clements, personnel 

communication). However, if synaptic strength increased via both pre- and 

postsynaptic mechanisms in other systems then the variance-mean technique may not 

be able to predict the relative contribution of each to the potentiation. This is 

especially true if the modulations are nonuniform across different terminals.

There are at least two presynaptic mechanisms that could increase both EPSC 

amplitude and Qav- One possibility is an increase in the frequency with which 

multiple vesicles are released simultaneously at an individual terminal (Tong and Jahr, 

1994; Silver et al., 1996). If postsynaptic AMPA receptors are not saturated by the 

release of one vesicle then simultaneous release of two vesicles would be expected to 

increase the postsynaptic response (Silver et al., 1996). An increase in Pr has been 

shown to increase the likelihood of multiple vesicular release at central synapses 

(Tong and Jahr, 1994; Silver et al., 1996). However, it has been shown that the 

NMDA receptor and AMPA receptor components of the EPSC increase linearly with 

increasing Pr (Perkel and Nicoll, 1993; Tong and Jahr, 1994). This argues for the 

saturation of both NMDA and AMPA receptors at hippocampal synapses. An 

alternative interpretation is that both AMPA receptors and NMDA receptors are far 

from saturated. Multi-vesicular release would then result in the linear addition of the 

postsynaptic response, essentially increasing N.

A second possibility is that presynaptic modulation acts selectively at a sub-population 

of terminals with below average release probability, but with above average 

postsynaptic amplitude. This is inconsistent with recent findings suggesting that large 

presynaptic terminals have above average release probability (Murthy et al., 1997), 

more docked vesicles and larger postsynaptic size (Harris and Sultan, 1995). To 

obtain a parallel increase in Qav and EPSC amplitude, just the right amount of 

selective modulation would be required at the large amplitude terminals, and this 

amount would be different at different synapses. A uniform or non-selective
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postsynaptic modulation offers the simplest, most plausible explanation of our LTP 

results.

Signal transduction mechanisms

A postsynaptic locus of expression at MPP synapses onto dentate granule cells is 

likely to involve alterations in the number and/or properties of ion channels that 

mediate synaptic transmission. Either an increase in the number of AMPA receptors 

per synaptic terminal, or a change in their kinetics could account for an increase in 

synaptic efficacy. Many studies have suggested a change in AMPA receptor mediated 

currents following LTP. The induction of LTP has been shown to increase the AMPA 

component of the synaptic response (Kauer et al., 1988; Muller et al., 1988; Perkel 

and Nicoll, 1993; Wang et al., 1996; Min et al., 1998). Also, an increase in sensitivity 

of AMPA receptors was noted after LTP (Davies et al., 1989) and an increase in 

AMPA receptor binding was illustrated using quantitative autoradiography (Maren et 

al., 1993). NMDA-dependent LTP relies on the postsynaptic influx of Ca2+ and 

several different Ca2+ sensitive enzymes have been proposed to play a role in LTP. 

Ca2+/camodulin-dependent protein kinase II (CaM kinase II), protein kinase C, 

tyrosine kinases, phospholipase A2, Ca2+ dependent proteases, guanylyl cyclase and 

cyclic GMP-dependent protein kinases have all been implicated in the induction of 

LTP (Fukunaga et al., 1996). Among these enzymes, CaM kinase II is of particular 

interest.

CaM Kinase II and LTP

Many studies have implicated an essential role of CaM kinase II in the induction of 

LTP. The autophosphorylation of CaM kinase II, triggered by Ca2+, converts the 

enzyme from the Ca2+-dependent to the Ca2+-independent form which is 

constitutively active (Miller et al., 1988). LTP induction triggers a long-lasting 

increase in the autophosphorylated form of CaM kinase II (Barria et al., 1997). Barria 

et al. (1997) also illustrated a long lasting phosphorylation of AMPA receptors after
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LTP induction. Synthetic peptides designed to block the action of CaM kinase II 

injected into the postsynaptic cell, or bath applied KN-62, a blocker of CaM kinase II, 

were shown to inhibit LTP (Malenka et al., 1989; Malinow et al., 1989; Ito et al., 

1991; Otmakhov et al., 1997). Knockout of the gene encoding the a  subunit of CaM 

kinase II resulted in a decreased expression of LTP in hippocampal slices and a 

reduction in spatial learning ability of the mice (Silva et al., 1992a; Silva et al., 

1992b).

The introduction of autothiophosphorylated CaM kinase II (constitutively active form) 

into cultured hippocampal cells resulted in a three fold increase in whole cell AMPA 

receptor mediated current (McGlade McCulloh et al., 1993). Similarly, when a 

constitutively active form of CaM kinase II was transfected into the CA1 hippocampal 

region, slice experiments showed a four fold increase in AMPA EPSC size compared 

with control slices (Pettit et al, 1994). Slices which expressed the constitutively 

active form of CaM kinase II were unable to express LTP suggesting a saturation of 

the enhancement mechanism. The phosphorylation of AMPA receptors expressed in 

HEK cells resulted in an increase in whole cell current generated by exogenously 

applied glutamate (Barria et al., 1997). In summary, these studies suggest that the 

phosphorylation of AMPA receptors by the constitutively active form of CaM Kinase 

II underlies a postsynaptic mechanism for LTP. Whether the phosphorylation 

increases the probability of opening or increases the single channel conductance of the 

AMPA receptors remains unknown. A recent study suggests that an increase in the 

single channel conductance of AMPA receptors occurs following LTP induction at the 

CA3-CA1 synapse (Benke et al., 1998). The involvement of other kinases in the 

mechanisms of LTP cannot be ruled out. For example, protein kinase A (PKA) has 

been shown to alter the kinetic properties of the AMPA receptor (Greengard et al., 

1991).
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Conclusion

The variance-mean technique was shown to be a reliable and robust tool for 

identifying the site of synaptic modulation. It has practical advantages over traditional 

quantal analysis methods such as the 1/CV2 and peak detection. This new approach 

strongly supports a postsynaptic site for LTP expression at MPP synapses onto dentate 

granule cells. Based on current literature and the finding presented in this chapter the 

following model of early phase LTP at MPP synapses is proposed: (i) the LTP 

induction stimulus opens NMDA receptors allowing the influx of postsynaptic Ca2+; 

(ii) a local Ca2+ transient interacts with CaM kinase II converting the enzyme into its 

constitutively active form; (iii) CaM kinase II phosphorylates AMPA receptors 

resulting in an unmasking of latent receptors or an increase in current passing through 

individual AMPA channels.
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Appendix

The mathematical derivation of the variance mean equation used in this chapter was 

done by Dr John D. Clements.

Derivation

Consider a synaptic input consisting of a single terminal.

Let,

P = transmitter release probability

Q = average amplitude of the synaptic response following release 

CV = coefficient of variation of the synaptic response

Now,

p = average synaptic amplitude

= P Q

a2 = synaptic variance

= P (Q - p)2 + (1 - P) (0 - p)2 + P Q2 CV2 

= p Q (1 +CV2 -P)

= p Q (1 + CV2) - p2

This equation describes a parabola with initial slope Q (1 + CV2), and a maximum 

when

P = (1 + CV2) / 2.

Consider a synaptic input consisting of many terminals, each with different properties. 

Both mean and variance add linearly, so the ensemble variance-mean plot will again 

be a parabola.

Let,

Pi = transmitter release probability at the ith terminal 

Qj = average amplitude of the synaptic response at the ith terminal 

CVj = coefficient of variation at the ith terminal 

pi = mean synaptic amplitude at the ith terminal
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= Pi Qi

Now,

o 2 = E Hi Qi (1 +CV;2-Pi)

Define,

Qav = weighted average amplitude of the synaptic response at a terminal 

= X Qi (Hi / W

Pav = weighted average transmitter release probability at a terminal

= 1 Pi (m / H) (Qi / Qav)

CVav2 = weighted average coefficient of variation of the synaptic 

response at a terminal 

= 1 CVi2 (pi / p) (Qi / Qav)

For Qav, the weighting factor for a given terminal is the relative contribution of that 

terminal to the total postsynaptic current amplitude. For CVav2 and Pav, the weighting 

factor for a given terminal is the relative contribution of that terminal to the 

postsynaptic current amplitude multiplied by the amplitude of the synaptic response at 

that terminal relative to the weighted mean amplitude of the response.

Now, substitute Pav, CVav2 and Qav into the equation for a 2,

a 2 -  p Qav (1 + CVav2 - Pav)

So, under low release conditions (Pav -> 0), the g 2 vs p plot will be approximately 

linear with slope Qav (1 + CVav2)-

Consider a presynaptic modulation where the values of Pi are all scaled by the same 

fraction, M, and the values of Qj and CVj remain constant. Let,
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Pi'= release probability at the ith terminal after modulation

= M Pj

So,

Pav -  M Pav 

jT = M |!

and,

G2’ -  p' Qav (1 + CVav2 - Pav')

-  P Qav (1 + CVav2) - p '2 Qav Pav / P

If M is adjusted to several different values and G2' is plotted against |T, the graph will 

have the form of a parabola (A p'2 + B p'), where 

B = Qav (1 + CVav2)

A = - Qav Pav / P

Define,

C = (1 + CVav2 )

So,

Qav = B / C

Pav = - pC( A/ B)

These estimates of average quantal amplitude and release probability require very few 

assumptions about the release process. The main assumption is that the presynaptic 

modulation used to construct the variance-mean parabola acts to change release 

probability by the same factor at all terminals. This assumption is supported by 

experimental evidence for the case of modulation by Cd2+ (see Chapter 3, Fig. 3.2A). 

Cd2+ reduced the Pr equally at both the high Pr and low Pr class. Another implicit 

assumption is that release of a vesicle at one synaptic terminal does not influence the 

release probability or the amplitude of the postsynaptic response at any other terminal 

participating in the synaptic input.
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Chapter 6

General Discussion:
This thesis addresses three questions relating to synaptic function at excitatory 

hippocampal neurons: (i) How are Ca2+ channel subtypes distributed across different 

presynaptic terminals? (ii) Is there a difference in the Ca2+ sensitivity of the release 

mechanism associated with different Ca2+ channel subtypes? (iii) What is the site of 

LTP expression at synapses of the medial perforant pathway onto dentate granule 

cells? Conclusions drawn from the findings presented here have important 

ramifications for both short- and long-term synaptic plasticity.

In the study described in Chapter 3, the pattern of co-localisation of Ca2+ channel 

subtypes on presynaptic terminals was investigated at excitatory hippocampal 

synapses. N-type or P/Q-type Ca2+ channels were selectively blocked by co-CTx or 

co-Aga respectively, and the changes in Pr were measured using a technique based on 

the drug MK-801. The toxins completely blocked release at some terminals, reduced 

Pr at others, and failed to affect the remainder. It was concluded from these results 

that the mixture of N-type and P/Q-type channels must vary markedly between 

terminals on the same afferent. A simple model was developed which described all 

the data and allowed quantitative limits to be placed on the relative distributions of N- 

and P/Q-type Ca2+ channels. The model predicts that on average, about 10% of 

terminals have only N-type channels, about 45% of terminals have only P/Q-type 

channels and the remaining 45% have a mixture of subtypes.

The concept of a non-uniform distribution of Ca2+ channel subtypes across different 

presynaptic terminals is new to the scientific literature. The functional implication of 

this finding remains unknown. It is well established that different Ca2+ channel 

subtypes are differentially modulated by G-protein linked neuromodulators. A non- 

uniform distribution of Ca2+ channel subtypes could therefore permit selective
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alteration of transmitter release at groups of terminals on a single afferent. A 

protective role may also be postulated. In the presence of toxins or other insults, a 

subset of terminals with a fortuitous combination of channels may continue to function 

normally. Thus, a non-uniform distribution of Ca2+ channel subtypes across different 

presynaptic terminals may make synaptic transmission more robust while creating rich 

possibilities for neuromodulation.

A further issue raised by this finding is the mechanism by which presynaptic terminals 

determine what mix of Ca2+ channel subtypes will support release. One possibility is 

that all terminals are non-selective and Ca2+ channel subtypes are inserted randomly. 

If only a few Ca2+ channels are functional at a given terminal then a simple binomial 

distribution of channels would automatically produce the non-uniform distribution. 

Alternatively, Ca2+ channel subtypes could be targeted to specific terminals, either by 

directed transport along the axon or by selective insertion at the terminal. If Ca2+ 

channels are targeted, what cues determine which Ca2+ channel subtype is to be used 

at a given terminal? The developmental change in Ca2+ channel subtype composition 

supporting transmitter release may provide a clue (Scholz and Miller, 1995). Early in 

development the N-type channel predominates while later in development the P/Q- 

type Ca2+ channel becomes more dominant in supporting release at excitatory 

hippocampal neurons. The non-uniform distribution of subtypes may therefore simply 

be a function of synaptic maturity, with N-type channels predominant at immature 

synapses and the P/Q-type channels dominating at mature synapses. If this was so, 

immature synapses would be affected to a greater extent by neuromodulators. This is 

because N-type channels tend to be more heavily modulated than the P/Q-types (see 

Chapter 3, Discussion). The non-uniform distribution may also have a structural basis, 

with the Ca2+ channel subtype expression dependent on where synapses form on the 

dendritic tree.

The study presented in Chapter 4 examines the Ca2+ sensitivity of the transmitter 

release mechanism. A steeply non-linear relationship between [Ca2+]0 and the EPSC
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amplitude was observed at excitatory hippocampal neurons implicating the 

cooperative involvement of multiple Ca2+ ions in triggering release. The Dodge- 

Rahamimoff equation was unable to describe the dose-response relationship between 

[Ca2+]0 and transmitter release. However, the Ca2+ dose-response curve was 

described by a modified Dodge-Rahamimoff equation that incorporated a sublinear 

relationship between [Ca2+]0 and [Ca2+]jt . The selective Ca2+ channel blockers, co- 

CTx and co-Aga, and traditional dose-response analysis were used to investigate the 

cooperativity associated with N- and P/Q-type Ca2+ channel subtypes. No difference 

was found between the degree of cooperativity for transmitter release mediated via N- 

type or P/Q-type Ca2+ channels. The selective Ca2+ channel blockers broadened the 

dose-response relationship, consistent with a non-uniform distribution of Ca2+ channel 

subtypes across synaptic terminals. A model of calcium's role in synaptic transmission 

was developed. The model was based on the modified Dodge-Rahamimoff equation, 

included a Ca2+ cooperativity of 4, and a non-uniform distribution of Ca2+ channel 

subtypes. These experiments were compatible with the results described in Chapter 3.

The model developed in Chapter 4 predicts that there is only one type of release 

machine, incorporating a Ca2+ sensor that exhibits a cooperativity of 4. The model 

suggests that in this study, the measured cooperativity underestimated the true 

cooperativity. Numerous other studies have estimated the degree of Ca2+ 

cooperativity to be between 2 and 4 at different central synapses. Signal-to-noise 

limitations may explain why some studies measure the degree of cooperativity at less 

than 4. If the true cooperativity can be established at 4, this criterion could be used for 

identifying the Ca2+ sensor(s) of the release machine.

Experiments in Chapter 5 test the utility of the variance-mean technique, a novel 

approach for investigating the site of synaptic modulation. The technique was shown 

to be a reliable and robust tool for identifying the site of synaptic modulation. It has 

advantages over traditional quantal analysis methods such as the 1/CV2 and peak 

detection methods. First, it confirms the assumption, usually made implicity in 1/CV2
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analysis, that Pr is low. Second, it does not require that the postsynaptic response to a 

single vesicle can be detected reliably. The locus of LTP expression of the MPP 

synapses onto dentate granule cells was investigated using the variance-mean 

technique. This new approach strongly supports a postsynaptic site for LTP 

expression at these synapses.

Future studies

Further studies on the co-localisation of presynaptic Ca2+ channels 

Several experimental approaches could be used to confirm the non-uniform 

distribution of Ca2+ channels across different presynaptic terminals. It may be 

possible to directly visualise the inter-terminal variability in the Ca2 + channel 

subtypes. Such visualisation could be achieved by using an immunohistochemical 

approach. A double labelling technique is envisaged, using commercially available 

antibodies directed against synapsin I (as a synaptic terminal marker) and Ca2+ 

channel subtype specific antibodies (aIB, N-type or alA , P/Q-type Ca2+ channel). If 

the primary antibodies are generated in different animal systems then secondary 

antibodies with different wavelength fluorescent tags could be used to identify the 

synaptic terminal and the expression of the Ca2+ channel subtype simultaneously. A 

comparison of the Ca2+ channel subtype expression between synaptic terminals could 

then be made using a confocal microscope. It is likely that the heterogeneity in the 

distribution will be graded. A "semi-quantitative" densitometry measurement may be 

required to illustrate the non-uniformity.

It is possible to optically estimate Pr in culture using the synaptic specific dye FM1-43 

(Liu and Tsien, 1995; Reuter, 1995; Murthy et a l, 1997). An extension of 

experiments completed by Reuter (1995) is envisaged. FM1-43 is selectively taken up 

by synaptic vesicles, allowing the visualisation of individual synaptic terminals under 

epifluorescence. Depletion of the dye occurs when a cell is stimulated and releases 

vesicles of neurotransmitter. The rate of depletion can be used as a measure of Pr at 

the individual terminal. This technique could be used to extend the analysis of Pr to
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interneurons, for which the MK-801 technique cannot be used. This technique could 

also be used to explore any developmental changes in the proportion of terminal 

classes.

The hippocampal slice preparation has two major advantages over the culture 

preparation: (i) the structural organisation of the tissue is preserved and (ii) neurons 

have developed within an intact brain and have been subject to all the developmental 

influences associated with normal brain growth. An extension of experiments 

described in Chapter 3 could determine if a non-uniform distribution of Ca2+ channel 

subtypes across different presynaptic terminals occurs in the slice preparation. An 

alternative approach would be to use two photon laser scanning microscopy, which 

allows the direct study of a single, visually identified synaptic terminal in the slice 

preparation. The all or none nature of the Ca2+ transients in dendritic spines implies 

that transmitter is required to be released from a presynaptic terminal for a transient to 

be observed (Emptage et al., 1997). The visualisation of postsynaptic calcium 

transients using two photon laser scanning microscopy can therefore be used as an 

indicator of the success or failure of transmission at a particular synapse. The mean 

failure rate reflects Pr at an individual synapse. Pr at an individual terminal would be 

measured using this imaging technique before and after the addition of the selective 

blockers. Comparison between different synapses would then build up a picture of the 

degree of Ca2+ channel subtype heterogeneity in the slice preparation.

Further studies on Ca2+ cooperativity

The identification of the Ca2 + "sensor(s)" that triggers release remains a major 

challenge. A better understanding of the meaning of Ca2+ cooperativity should be 

possible if the sensor(s) was identified. The calyx of Held is a large synaptic terminal 

and allows the simultaneous recording from both presynaptic terminals and the 

postsynaptic cell. This preparation provides an exciting opportunity for investigating 

the molecular mechanisms underlying the control of transmitter release at a central 

synapse. Substances can be directly injected into the presynaptic terminal and the
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effects on transmitter release can be monitored simultaneously. Flash photolysis of 

caged Ca2+ (eg. DM-Nitrophen) to raise [Ca2+]jt at this synapse could be used to 

investigate the Ca2+ cooperativity of transmitter release. Flash photolysis provides a 

means by which [Ca2+]jt can be uniformly increased. The co-injection of a Ca2+ 

indicator could be used to measure [Ca2+]it in the presynaptic terminal while 

simultaneously recording the size of the postsynaptic EPSC. The uniform increase in 

[Ca2+]it is free of many of the complications associated with the influx of Ca2+ 

through Ca2+ channels.

Future applications of the variance-mean technique

The variance-mean technique has proved to be a powerful tool in identifying the locus 

of LTP expression in the dentate. A natural continuation of this study would be to 

look at LTP and LTD in other regions of the brain. It could be applied to mossy fibre 

LTP (thought to have a presynaptic locus of expression) and the CA3-CA1 synapse 

where most LTP studies have concentrated. The technique could also be used to 

address the issue of pre- or postsynaptic locus of expression of short term plasticity 

such as paired pulse depression or paired pulse facilitation. Numerous neuroactive 

drugs have neuromodulatory actions with an unknown mechanism and site of 

expression. A number of these drugs could act on receptors that are found on both the 

pre- and postsynaptic membranes. The technique could be used to determine the site 

of action of such drugs.
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